
The Bees Algorithm

Theory, Improvements and Applications

A thesis submitted to Cardiff University

For the degree of

Doctor of Philosophy

by

Ebubekir Ko$

Manufacturing Engineering Centre

School o f Engineering

University o f Wales, Cardiff

United Kingdom

March 2010

UMI Number: U585416

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585416
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

In this thesis, a new population-based search algorithm called the Bees Algorithm (BA) is

presented. The algorithm mimics the food foraging behaviour of swarms of honey bees.

In its basic version, the algorithm performs a kind of neighbourhood search combined

with random search and can be used for both combinatorial and functional optimisation.

In the context of this thesis both domains are considered. Following a description of the

algorithm, the thesis gives the results obtained for a number of complex problems

demonstrating the efficiency and robustness o f the new algorithm.

Enhancements of the Bees Algorithm are also presented. Several additional features are

considered to improve the efficiency o f the algorithm. Dynamic recruitment, proportional

shrinking and site abandonment strategies are presented. An additional feature is an

evaluation of several different functions and of the performance of the algorithm

compared with some other well-known algorithms, including genetic algorithms and

simulated annealing.

The Bees Algorithm can be applied to many complex optimisations problems including

multi-layer perceptrons, neural networks training for statistical process control and the

identification of wood defects in wood veneer sheets. Also, the algorithm can be used to

design 2D electronic recursive filters, to show its potential in electronics applications.

A new structure is proposed so that the algorithm can work in combinatorial domains. In

addition, several applications are presented to show the robustness of the algorithm in

various conditions. Also, some minor modifications are proposed for representations of

the problems since it was originally developed for continuous domains.

In the final part, a new algorithm is introduced as a successor to the original algorithm. A

new neighbourhood structure called Gaussian patch is proposed to reduce the complexity

of the algorithm as well as increasing its efficiency. The performance of the algorithm is

tested by use on several multi-model complex optimisation problems and this is compared

to the performance o f some well-known algorithms.

To my wife and daughter

Acknowledgements

I would like to express my sincere gratitude to my supervisor Professor D.T. Pham for his

excellent guidance throughout my research and his huge support during the more difficult

stages of my research. I would also like to thank my family for the support and

encouragement they have given me always, especially my wife and my beautiful daughter

for their immense patience.

Special thanks to Professor Sakir Kocabas who introduced me to the field of artificial

intelligence several years ago and Professor Ercan Oztemel who helped me to meet

Professor D.T. Pham.

Thank you to the members of “BayBees” group for providing interesting comments and

presentations in our daily and weekly meetings.

Finally I would like to thank the ORS award, the MEC and institutions from Turkey for

funding my research.

DECLARATION AND STATEMENTS

DECLARATION

This work has not previously been accepted in substance for any degree and is not

concurrently submitted in candidature for any degree.

S ig n e d < f f !^ K ^ ^ '^ /rrrrrXEbubekir K0 9) Date 05/02/2010

STATEMENT 1

This thesis is being submitted in partial fulfilment of the requirements for the degree

of Doctor of Philosophy (PhD).

Signed \?<r<fSrr. .T.. 7(Ebubekir K0 9) Date 05/02/2010

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where

otherwise stated. Other sources are acknowledged by explicit references.

Signed . ."tEbubekir K0 9) Date 05/02/2010

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and

for inter-library loan, and for the title and summary to be made available to outside

organisations.

Signed TTT. (Ebubekir Ko?) Date 05/02/2010

Contents

Abstract i

Acknowledgements iv

Declaration v

Contents vi

List of Figures x

List of Tables xiii

Abbreviations xiv

List of Symbols xvi

1 INTRODUCTION... 1

1.1. M o t iv a t io n .. 1

1.2 . A im s a n d O b j e c t i v e s ... 3

1.3 . M e t h o d s .. 3

1 .4. O u t l in e o f t h e T h e s is .. 4

2 BACKGROUND.. 7

2 .1 . S w a r m In t e l l ig e n c e .. 7

2 .2 . In t e l l ig e n t S w a r m -b a s e d O p t i m i s a t i o n ..9

2.2.1. Evolutionary algorithms.. 10

2.2.2. Ant colony optimisation.. 13

2.2.3. Particle swarm optimisation..17

2 .3 . B e e s in N a t u r e : F o o d F o r a g in g a n d N e s t S ite S e l e c t io n B e h a v io u r s 21

2 .4 . C o m p u t a t io n a l s im u l a t io n s o f h o n e y b e e b e h a v io u r s ...23

2 .4 .1. Nectar-Source Selection Models.. 2 4

2.4.2. Nest-Site Selection Models...30

2.5. H o n e y - b e e s in s p ir e d a l g o r it h m s ...31

2.6. S u m m a r y ...47

3 THE BEES ALGORITHM: THEORY AND IMPROVEMENTS......................... 48

3.1. P r e l im in a r ie s ...48

3.2. T h e B e e s A l g o r it h m ... 50

3.3. C h a r a c t e r is t ic s o f t h e p r o p o s e d B e e s A l g o r it h m .. 54

3.3.1. Neighbourhood Search..54

3.3.2. Site Selection..57

3.3.3. Global Search...57

3.4. Im p r o v e m e n t s o n l o c a l a n d g l o b a l s e a r c h ...59

3.4.1. Dynamic neighbourhood.. 59

3.4.2. Proportional shrinking...61

3.4.3. Site abandonment... 62

3.5. E x p e r im e n t a l R e s u l t s ..64

3 .6 . S u m m a r y ...77

4 BEES ALGORITHM FOR CONTINUOUS DOMAINS... 78

4 .1 . P r e l im in a r ie s ..7 8

4.2. O p t im is a t io n o f th e W e ig h t s o f M u l t i-L a y e r e d P e r c e p t r o n s

U sin g t h e B e e s A l g o r it h m f o r Pa t t e r n R e c o g n it io n

in S t a t is t ic a l P r o c e s s C o n t r o l C h a r t s ... 79

4.2.1. Control Chart Patterns...80

4.2.2. Proposed Bees Algorithm for MLP weight optimisation............................84

vii

4.2.3. Experimental results..87

4 .3 . O p t im isin g N e u r a l N e t w o r k s f o r Id e n t if ic a t io n o f

W o o d D e f e c t s U s in g t h e B e e s A l g o r it h m ... 93

4.3.1. Wood veneer defects... 93

4.3.2. Neural networks and their optimisation..99

4.3.3. Experimental results..102

4 .4 . D e sig n o f a T w o - D im e n s io n a l R e c u r s iv e F ilter U sin g

t h e B e e s A l g o r it h m ... 104

4.4.1. Recursive filter design problem... 105

4.4.2. Experimental results..107

4 .5 . S u m m a r y .. 112

BEES ALGORITHM FOR COMBINATORIAL DOMAINS...............................113

5.1. P r e l im in a r ie s ..113

5 .2 . A P r o p o s e d B e e s A l g o r it h m f o r c o m b in a t o r ia l D o m a in s115

5.2.1. Neighbourhood Search Strategies..115

5.2.2. Random Search And Site Abandonment.. 118

5.3. U s in g t h e B e e s A l g o r it h m t o S c h e d u l e Jo b s fo r a M a c h in e 120

5.3.1. Single machine scheduling problem.. 121

5.3.2. The Bees Algorithm for single machine scheduling problem...................122

5.3.3. Experimental results.. 128

5 .4 . T he B e e s A l g o r it h m fo r P e r m u t a t io n F l o w s h o p S e q u e n c in g

P r o b l e m .. 136

5.4.1. Formulation of the permutation flowshop sequencing problem............... 137

5.4.2. The Bees Algorithm for PFSP..138

5.4.3. Experimental Results... 142

5.5. M a n u f a c t u r in g C ell F o r m a t io n U s in g T h e B e e s A l g o r it h m 146

5.5.1. The Cell Formation problem.. 147

5.5.2. Cell Formation using the Bees Algorithm... 148

5.5.3. Experimental Results... 151

5.6. S u m m a r y ... 157

6 THE BEES ALGORITHM-II... 159

6.1. P r e l im in a r ie s .. 159

6.2. T h e B e e s a l g o r it h m - I I ..160

6.2.1. Gaussian patch structure..161

6.2.2. Parameters..164

6.3. E x p e r im e n t a l R e s u l t s ...169

6.4. S u m m a r y ... 182

7 CONCLUSION...183

7.1. C o n t r ib u t io n s ..183

7.2. C o n c l u s io n s ...184

7.3. S u g g e s t io n s a n d F u t u r e R e s e a r c h ..187

Appendix A C++ Code for the Bees Algorithm...188

REFERENCES.. 193

ix

List of Figures

Figure 2.1 The ant colony optimisation metaheuristic.. 15

Figure 2.2 Pseudo-code of the PSO algorithm.. 18

Figure 2.3 Mathematical model of foraging behaviour...................................... 26

Figure 2.4 Pseudo-code of the ABC algorithm... 38

Figure 2.5 Pseudo-code of the BCO algorithm... 40

Figure 2.6 BCO with 2-opt local search for TSP.. 42

Figure 2.7 Basic steps of the MBO algorithm... 45

Figure 3.1 Pseudo-code of the basic Bees 51

Algorithm...

Figure 3.2 Flowchart of the basic Bees Algorithm... 52

Figure 3.3 Simple example of the bees algorithm... 53

Figure 3.4 Graphical explanation of basic neighbourhood search.................... 56

Figure 3.5 Mean iteration required for different combination of selection 58

Figure 3.6 Successfulness of different combinations of selection methods.... 58

Figure 3.7 The Bees Algorithm with dynamic recruitment................................ 60

Figure 3.8 Pseudo-code of the Bees Algorithm with sc and sat......................... 63

Figure 3.9 Visualization of 2D axis parallel hyper-ellipsoid function.............. 6 6

Figure 3.10 Evolution of fitness with the number of points visited..................... 6 6

Figure 3.11 Inverted Shekel’s Foxholes... 69

Figure 3.12 Evolution of fitness with the number of points visited.................... 69

Figure 3.13 2D Schwefel’s function.. 71

Figure 3.14 Evolution of fitness with the number of points visited.................... 71

x

Figure 4.1 Examples of the control chart patterns... 83

Figure 4.2 The MLP network training procedure using the Bees Algorithm... 8 6

Figure 4.3 Structure of a multi-layered perceptrons.. 8 8

Figure 4.4 Performance of the system... 90

Figure 4.5 Wood veneer defect types.. 95

Figure 4.6 The inspection rig for wood defect detection.................................... 95

Figure 4.7 Generic automated visual inspection system for identification 97

Figure 4.8 Feedforward neural network with one hidden layer......................... 101

Figure 4.9 Performance of the Bees Algorithm.. 110

Figure 4.10 Desired amplitude response |Md(col, co2)| of the 2-D filter 110

Figure 4.11 Amplitude response |M(co 1, oo2)| obtained using the BA................. I l l

Figure 4.12 Amplitude response |M(col, co2)| obtained using the GA................. I l l

Figure 5.1 Pseudo-code of the Bees Algorithm for combinatorial domains... 116

Figure 5.2 2-opt operator.. 117

Figure 5.3 Performance of the Bees Algorithm with local search methods.... 119

Figure 5.4 Illustration of the solution set... 123

Figure 5.5 Neighbourhood operators for single machine scheduling

problem.. 124

Figure 5.6 Illustration of the neighbourhood search methods............................ 126

Figure 5.7 Solution set and neighbourhood methods.. 127

Figure 5.8 A machine-job matrix and the makespan... 140

Figure 5.9 Neighbourhood operators for PSFP... 141

Figure 5.10 Representation of a machine-part incidence matrix.......................... 149

Figure 5.11 Neighbourhood operators for cell formation problem..................... 150

Figure 5.12 The initial configuration of the m-p incidence (16x30)................... 154

xi

Figure 5.13 The composition of the manufacturing cells for 16x30................... 154

Figure 5.14 The initial configuration of the m-p incidence (10x20)................... 155

Figure 5.15 The composition of the manufacturing cells for (10x20)................ 155

Figure 6.1 Bell shape of the Gaussian distribution with..................................... 163

Figure 6.2 A simple demonstration o f the normal random variate generator.. 165

Figure 6.3 Pseudo code of the Bees Algorithm-II... 168

Figure 6.4 Visualization of 2D axis parallel hyper-ellipsoid function.............. 171

Figure 6.5 Evolution of fitness with the number of points visited..................... 171

Figure 6 .6 Inverted Shekel’s Foxholes... 175

Figure 6.7 Evolution of fitness with the number of points visited..................... 175

Figure 6 .8 Schwefel’s function... 176

Figure 6.9 Evolution of fitness with the number of points visited..................... 176

xii

List of Tables

Table 3.1 Test Functions (Mathur et al., 2000).. 73

Table 3.2 Parameter Settings for the Bees Algorithm...................................... 74

Table 3.3 Results... 75

Table 4.1 The parameters of the Bees Algorithm for MLP weight training... 89

Table 4.2 MLP classification results... 91

Table 4.3 Results for different pattern recognisers.. 92

Table 4.4 Features selected for training of neural networks............................. 96

Table 4.5 Pattern classes and the examples used for training and testing 98

Table 4.6 Parameters of the bees algorithm for identification of wood

defects.. 103

Table 4.7 Results for defect identification - 17 features.................................. 103

Table 4.8 Results for defect identification - 11 features.................................. 103

Table 4.9 Parameters of the bees algorithm for 2-d recursive filter design... 109

Table 5.1 The parameters of the Bees Algorithm.. 121

Table 5.2 Minimum deviation of the computational results............................. 122

Table 5.3 Comparison of maximum deviations between the BA and DPSO. 124

Table 5.4 Comparison between the Bees Algorithm (BA), DPSO and DE... 125

Table 5.5 Bees Algorithm parameters for PFSP.. 144

Table 5.6 Benchmark results for the permutation FSP...................................... 145

Table 5.7 Results of CF problems from the literature.. 156

Table 6.1 Test Functions... 179

Table 6.2 Parameter Settings for the Bees Algorithm-II.................................. 180

Table 6.3 The performance of the Bees Algorithm-II...................................... 181

xiii

Abbreviations

AI Artificial Intelligence

ML Machine Learning

SI Swarm Intelligence

BA Bees Algorithm

BA-II Bees Algorithm-II

EAs Evolutionary Algorithms

EP Evolutionary Programming

ES Evolutionary strategies

GA Genetic Algorithm

TS Tabu Search

PSO Particle Swarm Optimisation

DPSO Discrete PSO

SOAs Swarm-based optimisation algorithms

DE Differential Evolution

AS Ant System

ACO Ant Colony Optimisation

SA Simulated Annealing

SIMPSA Simplex method

MLP Multi-Layered Perceptrons

BP Backpropagation

n Number of scout bees

m Number of patches selected out of n visited points

e Number of best patches out of m selected patches

xiv

nep Number of bees recruited for e best patches

nsp Number of bees recruited for the other (m-e) selected patches

ngh Size of patches

sc Shrinking constant

pd Patch density

p Selection threshold (p defined as a percentage)

sat Site abandonment threshold

XV

List of Symbols

v* velocity of agent.

p g (o,l] the evaporation rate.

At-j the quantity of pheromone laid on edge (ij).

n (s£) the set of edges that do not belong to the partial solution s£ of ant

s- current position of agent i at iteration k.

pbestj personal best of agent i.

gbest the global best of the population.

picy | s f) transition function

k +i
vector of random numbers

ngh(i) Neighbouring function

<Ppta (x) Gaussian function

ximr Normal random variate generator

xvi

Chapter 1

INTRODUCTION

This chapter presents the motivation and research objectives, and the methods

adopted. The chapter also outlines the general structure of the thesis.

1.1. Motivation

Many complex multi-variable optimisation problems cannot be solved exactly within

polynomially bounded computation times. This has generated much interest in search

algorithms that find near-optimal solutions in reasonable running times. Many

intelligent swarm-based optimisation methods were developed. Evolutionary

algorithms may be considered as one of the first of this class of algorithms.

Evolutionary Strategies (Rechenberg, 1965), Evolutionary Programming (Fogel et al.,

1

1966) and Genetic Algorithms (Holland, 1975) were developed to deal with complex

multi-variable optimisation problems. Although they are considered in this class because

of their population-based structure, they may also be separated from swarm-based

optimisation algorithms due to their centralised control mechanisms. Some of the first

significant examples in this class were Ant System (Dorigo et al., 1991) and Particle

Swarm Optimisation algorithms (Kennedy and Eberhart, 1995) which have no centralised

control over their individuals.

In the context of optimisation and swarm intelligence, the first motivation for the research

presented in this thesis was to develop a novel intelligent swarm-based optimisation

method called the Bees Algorithm which would be capable of solving many complex

multi-variable optimisation problems in more robust and efficient ways than existing

algorithms. Secondly, to implement the algorithm for continuous domains and improve it

with additional features which are necessary for complex industrial problems.

Combinatorial problems are another domain for swarm intelligence algorithms. In this

field, it is quite difficult to implement the current algorithm in this domain when it was

proposed originally for continuous domains. Therefore, it is interesting to explore the

opportunities and limitations of the improved algorithm to this challenging domain and

this is the third motivation. Fourthly, to further develop the algorithm with the addition of

a new organised structure as well as improved robustness and efficiency. The Final

motivation for this research is to encourage the use of the Bees Algorithm for complex

multi-variable optimisation problems as an alternative to the use of more popular

intelligent swarm-based optimisation methods such as genetic algorithms, artificial ant

colony algorithm and particle swarm optimisation algorithm.

2

1.2. Aims and Objectives

The overall research aim is to develop swarm-based optimisation algorithms which are

inspired by honey-bees’ foraging behaviours, for use in complex optimisation

problems and with improved efficiency.

The main research objectives are:

• To develop a new intelligent swarm-based optimisation method inspired by the

food foraging behaviours of honey-bees. Also to apply it to various industrial

problems.

• To enhance the algorithm’s neighbourhood search procedure so that it can perform

well in combinatorial domains.

• To improve the original algorithm with a new neighbourhood strategy and to

reduce the number of parameters as proposed in the original algorithm.

1.3. Methods

For the topics analysed in this thesis, each one will follow the same problem solving

methods to reach the desired objectives. The methods used in this research may be

summarised as follows:

■ Literature review: the most relevant papers for each research topic will be

reviewed to clarify the key points in the subject and to identify any

shortcomings.

3

■ A novel swarm-based optimisation procedure will be proposed along with

improved versions of the algorithm. Innovation started with a informed

criticism of existing methods. Studying Nature is a most important part of this

thesis.

■ Many experiments will be carried out to understand the behaviours of the

algorithm under different conditions. To do this, some software needs to be

written in a variety of programming languages and the results compared to

existing works in the literature.

1.4. Outline of the thesis

Chapter 2 briefly reviews swarm intelligence and intelligent swarm-based optimisation

algorithms. Behaviours of honey-bees in natural conditions, including food foraging

used in the context of this thesis are explained in details. Computational simulations of

honey-bee behaviours are reviewed to show the link between nature and optimisation

algorithms. Honey-bees inspired algorithms are also reviewed in this chapter.

Chapter 3 introduces the Bees Algorithm as a novel intelligent swarm-based

optimisation method in its simplest form. Then, it focuses on enhancements to the

Bees Algorithm for local and global search. The algorithm is improved with the

4

addition of dynamic recruitment, proportional patch shrinking and site abandonment

ideas. The performances of the basic and improved algorithms are also compared and

the differences presented. Also, the improved algorithm is compared with some well-

known algorithms to show its performance and robustness.

Chapter 4 focuses on implementations of the Bees Algorithm in continuous domains.

The algorithm is applied first on training multi-layered perceptrons (MLP) neural

networks for statistical process control. Details of this application and of MLP-Bees

Algorithm training are explained. Then another application for similar MLP neural

networks is presented. The application focuses on a real data set for wood defect

identification. The performance of the algorithm is also evaluated for a 2D recursive

filter design problem.

Chapter 5 describes improvements to the Bees Algorithm. These additions make the

algorithm suitable for use in combinatorial domains. Since it was developed for

continuous domains, some modifications were needed to apply the algorithm to

neighbourhood search. Several local search algorithms are suggested for the algorithm

as well as site abandonment. The performance of the modified algorithm is evaluated

for several difficult applications including single machine job scheduling, flow shop

scheduling and manufacturing cell formation problems. For all the problems, the

algorithm is also modified in terms of suitable neighbourhood structure and

representation.

5

Chapter 6 presents the Bees Algorithm-II as an improved version of the original

algorithm. The chapter introduces a new structure that has more control over the

randomness used for neighbourhood search. A Gaussian distribution is used in the

form of a normal random variate generator as a new recruitment strategy. Also, the

procedure to reduce the number of parameters, which were many and difficult to set, is

explained. The performance of the proposed algorithm is evaluated for several

functional optimisation problems and the results are compared both with the original

Bees Algorithm and with other well-known algorithms.

Chapter 7 summarises the thesis and proposes directions for further research.

Appendix A presents the C++ Code for the Bees Algorithm.

6

Chapter 2

BACKGROUND

This chapter reviews the notation as well as the basic concepts of swarm intelligence

theory. Several intelligent swarm-based optimisation algorithms are investigated. In

this chapter, the individual and social behaviour of honey-bees is reviewed from a

swarm intelligence point of view. Several computational models are also presented to

explain the interactions between individuals that constitute the swarm intelligence.

Finally, the most recent studies of algorithms inspired by the behaviour of honey-bees

and their applications are reviewed.

2.1. Swarm intelligence

Swarm Intelligence (SI) is defined as the collective problem-solving capabilities of

social animals (Bonabeau et al., 1999). SI is the direct result o f self-organisation in

7

which the interactions of lower-level components create a global-level dynamic

structure that may be regarded as intelligence (Bonabeau et al., 1999). These lower-

level interactions are guided by a simple set of rules that individuals of the colony

follow without any knowledge of its global effects. Individuals in the colony only have

local-level information about their environment. Using direct and/or indirect methods

of communication,, local-level interactions affect the global organization o f the

colony.

Self-organization is created by four elements as were suggested by Bonabeau et al.,

(1999). Positive feedback is defined as the first rule of self-organization. It is basically

a set of simple rules that help to generate the complex structure. Recruitment of honey

bees to a promising flower patch is one o f the examples of this procedure. The second

element of self-organization is negative feedback, which reduces the effects of positive

feedback and helps to create a counterbalancing mechanism. The number of limited

foragers is an example of negative feedback. Randomness is the third element in self­

organisation. It adds an uncertainty factor to the system and enables the colonies to

discover new solutions for their most challenging problems (food sources, nest sites

etc.). Last but not least, there are multiple interactions between individuals. There

should be a minimum number of individuals who are capable of interacting with each

other to turn their independent local-level activities into one interconnected living

organism. As a result of combination o f these elements, a decentralised structure is

created. In this structure there is no central control even though there seems to be one.

A hierarchical structure is used only for dividing up the necessary duties; there is no

control over individuals but over instincts. This creates dynamic and efficient

structures that help the colony to survive despite many challenges.

8

There are many different species of animal that benefit from similar procedures that

enable them to survive and to create new and better generations. Honey-bees, ants,

flocks of birds and shoals of fish are some of the examples of this efficient system in

which individuals find safety and food. Moreover, even some other complex life forms

follow similar simple rules to benefit from each others’ strength. To some extent, even

the human body can be regarded as a self-organised system. All cells in the body

benefit from each others’ strength and share the duties of overcoming the challenges

which are often lethal for an individual cell.

2.2. Intelligent swarm-based optimisation

Swarm-based optimisation algorithms (SOAs) mimic nature’s methods to drive a

search towards the optimal solution. A key difference between SOAs and direct search

algorithms such as hill climbing and random walk is that SOAs use a population of

solutions for every iteration instead o f a single solution. As a population of solutions is

processed as an iteration, the outcome o f each iteration is also a population of

solutions. If an optimisation problem has a single optimum, SOA population members

can be expected to converge to that optimum solution. However, if an optimisation

problem has multiple optimal solutions, an SOA can be used to capture them in its

final population. SOAs include Evolutionary Algorithms (i.e. the Genetic Algorithm),

the Ant Colony Optimisation (ACO) and the Particle Swarm Optimisation (PSO).

Common to all population-based search methods is a strategy that generates variations

of the solution being sought. Some search methods use a greedy criterion to decide

9

which generated solution to retain. Such a criterion would mean accepting a new

solution if and only if it increases the value of the objective function.

2.2.1. Evolutionary algorithms

Inspired by the biological mechanisms of natural selection, mutation and

recombination Evolutionary Algorithms (EAs) were first introduced in the forms of

Evolutionary Strategies (Rechenberg, 1965), Evolutionary Programming (Fogel et al.,

1966) and afterwards Genetic Algorithms (Holland, 1975). EAs were the first search

methods to employ a population o f agents. In EAs, using the stochastic search

operators, the population is evolved to the optimal point(s) of the search space.

Population, genome encoding and selections of good individuals are some of the most

common features for all EAs. The selection procedure (deterministic or stochastic) is used

to pick the good individuals that will produce the new population (Holland, 1975; Fogel,

2000). The crossover operator was introduced to create new individuals by randomly

exchanging the genes. This operator provides a social interaction effect between

individuals (Holland, 1975; Fogel, 2000). The mutation operator was introduced to

generate small perturbations to enable exploration of the search space and avoid any

premature convergence (Holland, 1975; Fogel, 2000). There are several different types

of EAs in the literature including evolutionary strategies, evolutionary programming,

genetic algorithm and differential evaluation.

Evolutionary strategies (ES) were first introduced by Rechenberg, (1965) as one of the

first successful applications of EAs. Further improvements to these were also made by

10

Schwefel, (1981). ES was defined as an optimization technique based on ideas of

adaptation and evolution (Rechenberg, 1965). ES uses primarily mutation and

selection as its search operators. In EAs, solutions are represented in two (often three)

n-dimensional real vectors as well as by standard deviations. The mutation operator is

defined as the addition of a random value (normally distributed) to each vector. The

selection operator is deterministic based on the fitness ranking. The population of

basic ES consists of two individuals, parent and mutant of the parent. For the next

generation, if the fitness of the mutant is better than or equal to that of its parent then

the mutant becomes parent. Otherwise the mutant is ignored. This procedure is defined

as a (1 + 1)-ES. On the other hand, there is also a (1 + X)-ES in which X mutants is

generated and competes with the parent who was ignored and the best mutant becomes

the parent of the next generation (Schwefel, 1981).

Evolutionary programming (EP) was first introduced by Fogel et al., (1966) to predict

a binary time series. It was further developed by Fogel, (1995) and applied to several

different problems, including optimisation and machine learning. The original model

was based on the organic evolution of the species, thus recombination was not

included in EP. The representations used for EP depended on the problem domains.

The main difference between EP and other EAs is that there is no interaction between

individuals in EP. This means that no crossover operator is used, only the mutation

operator used to create offspring individuals. As a selection method, all individuals are

selected to be parents and all parents mutated to create the same number of offspring.

Gaussian mutation was used to generate an offspring from each parent and the next

generation was constructed by better parents as well as selected offspring. EP was

applied to many optimisation problems (Back, 1993; Fogel, 1995).

11

Holland, (1975) first introduced a schema theory as a basis for Genetic Algorithms

(GAs). The GA is based on natural selection and genetic recombination. In GAs

candidate solutions are encoded in the form of binary strings called chromosomes

which are constructed by a number o f sub-strings representing the features of

candidate solutions. This binary representation, however, set aside the maximum

number of schemata to be processed for all individuals (Holland, 1975). There were

several binary encoding systems which were introduced in the literature making

different representations available for different domains (Michalewicz, 1996).

However, there are some shortcomings with these representations, including high

computational cost and trapping to local optima (Fogel, 2000). The algorithm works

by choosing solutions from the current population and then applying genetic operators

- such as mutation and crossover - to create a new population. The algorithm

efficiently exploits historical information to speculate on new search areas with

improved performance (Fogel, 2000). When applied to optimisation problems, the GA

has the advantage of performing a global search. The GA may be hybridised with

domain-dependent heuristics for improved results. For example, Mathur et al., (2000)

described a hybrid of the ACO algorithm and the GA for continuous function

optimisation.

Differential Evolution (DE) was proposed by Stone and Price, (1997) as a population-

based search strategy which was similar to standard EAs. The only difference was in

the breeding stage where a different operator was used. In this stage, an arithmetic

crossover operator was used to create an offspring out of three parents. An arithmetic

operator was used to calculate the differences between randomly selected pairs of

individuals (Price et al., 2005). A new generation was created by the offspring

12

population if one offspring was better then a parent, otherwise the parent would stay in

the new generation list.

2.2.2. Ant colony optimisation

Ant Colony Optimisation (ACO) is a non-greedy population-based metaheuristic

which emulates the behaviour of real ants. It can be used to find near-optimal solutions

to difficult optimisation problems. Ants are capable of finding the shortest path from

the food source to their nest using a chemical substance called pheromone which is

used to guide the exploration. The pheromone is deposited on the ground as the ants

move and the probability that a passing stray ant will follow this trail depends on the

quantity of pheromone laid.

Ant-inspired algorithms were introduced by Dorigo et al., (1991). Ant System (AS) is

one of very first versions of ant-inspired algorithms to be proposed in the literature

(Dorigo et al., 1991; Dorigo, 1992; Dorigo et al., 1996). The first algorithm was

aiming to search for an optimal path in a graph based on a probabilistic decision

depending on positive and negative feedback (i.e. pheromone update and decay).

Pheromone which is updated by all the ants after a complete tour is the key idea in this

algorithm. Pheromone update (tv) for the edges of the graph (aj) that are joining the

cities i and j is calculated as follows (Dorigo et al., 1991):

m

(2 .1)

13

where m is the number of ants, p e (o,l] is the evaporation rate, and Ar* is the quantity

of pheromone laid on the edge (ij). The value of the quantity of pheromone laid on the

edges is determined by the tour length (X*) of an ant:

A r* = — i f ant k used edge (i , j) in its tour, (2.2)
0 otherwise,

In AS, solutions are constructed according to a probabilistic decision made at each

vertex. A transition function pic^ \ s f) is used to calculate the probability o f an ant

moving from town i to town j:

_ a r „ / 7

X Cj,eAr(jP)T'I

0

i f j e N {spk }

otherwise,
(2.3)

14

1. Parameter Initialisation

2. WHILE (stopping criterion not met) do

3. ScheduleActivities

4. AntSolutionsConstruct()

5. PheromoneUpdate()

6. DeamonActions() optional

7. END ScheduleActivities

8. END WHILE

Figure 2.1 The ant colony optimisation metaheuristic

15

where a and p are parameters that control the relative importance of the pheromone

(Tij) versus the desirability of edge i,j (rjy) which is determined using rjy = \/dy , where

dy is the length of edge (cy) and jv(sf) is the set of edges that do not belong to the

partial solution s pk of ant k .

After AS was introduced as a basic method for ant-inspired algorithms, the ACO

metaheuristic was developed to explain the behaviour of ants in more general ways

(Dorigo and Di Caro, 1999) and was applied to TSP problems. ACO consists of three

main functions (see Fig. 2.1) namely, AntSolutionConstruct(), PheromoneUpdate()

and DeamonAction(). Equation 2.1 performs trail updates. Equation 2.3 is a procedure

to construct the solution by iteratively moving through neighbouring positions using a

transition rule. The DeamonAction() function is an optional procedure that updates the

global best solution.

There are several improved versions o f the ACO metaheuristic in the literature. The

differences between the original idea and improved versions are made clear in this

section. Further discussion can be found in references. Gambardella and Dorigo,

(1996) proposed the Ant Colony System (ACS) which differs mainly by its pheromone

update function. It was developed to be more in line with the natural behaviour of ants.

A local pheromone update was employed including the update at the end of each

epoch. Bullnheimer et al., (1996) presented a rank-based Ant System which includes

the ranking concept into the pheromone update procedure. In this algorithm, ants are

ranked according to the decreasing order of their fitness. The amount of pheromone

deposited is distributed according to their order, meaning that the better fitness will

receive more pheromone. Dorigo et al., (1996) proposed the Elitist Ant System, which

16

differs such that the global best solution deposits pheromone at every iteration along

with all the other ants. Stutzle and Hoos, (2000) proposed Max-Min Ant System with

two improvements: namely, only the best ant updates the pheromone trials, and the

pheromone update function is bound. There were also many hybrid versions of the ant-

inspired algorithms which include Q-leaming (Gambardella and Dorigo, 1995) and

GA (Pilat and White, 2002).

2.23 . Particle swarm optimisation

Kennedy and Eberhart, (1995) proposed the Particle Swarm Optimisation (PSO) which

is a stochastic optimisation algorithm based on the social behaviour of groups of

organisations, for example the flocking o f birds or the schooling of fish. Pseudo-code

of the PSO algorithm is given in Fig. 2.2. Similar to evolutionary algorithms, the PSO

initialises with a population of random solutions. It searches for local optima by

simply updating generations of individuals. However, PSO has no such operators such

as crossover and mutation that EAs employ. Instead, individual solutions in a

population are viewed as “particles” that evolve or change their positions with time.

Each particle modifies its position in search space according to its own experience and

also that of a neighbouring particle by remembering the best position visited by itself

and its neighbours. Thus the PSO has a structure that combines local and global search

methods (Eberhart and Kennedy, 2001).

17

1. Create particles (population) distributed over solution space (s ? , v(°).

2 . While (Stopping criterion not met) do

3. Evaluate each particle’s position according to the objective function.

4 . I f (s f +1 is better than s f) (update pbest)

k _ k+\
si ~ si

5. Determine the best particle (update gbest).

6. Update particles’ velocities according to

v*+1 = v* + c{randl {pbest, - sf)+ c2rand2 (gbest - sf)

7 . Move particles to their new positions according to

s f +I = s f + v f +]

8. Go to step 3 until stopping criteria are satisfied.

Figure 2.2 Pseudo-code o f the PSO algorithm

18

In Fig. 2.2 the basic pseudo-code of the PSO algorithm is presented. The algorithm

starts with creating particles that are uniformly distributed throughout the solution

space by defining the initial conditions for each agent. Each agent is defined with an

initial position (sf) and an initial velocity (vf). The pbest is set to current searching

for each agent and the best pbest is set to gbest. After checking the stopping criterion

in step 2, each particle’s position is evaluated according to the objective function in

step 3. If the existing position is better than the previous one, then pbest is updated in

step 4 and followed by gbest update in step 5.

In step 6, particles’ velocities are updated using the velocity vector given in equation

2.4. It has three main components: namely, particle’s best performance so far (pbest),

the best so far amongst all particles (gbest) and the inertia of particles (v). gbest

represents the social interaction of particles in an indirect way.

vf+l = v? +clrandl{pbesti - s f) + c 2rand2{g b es t-s f) (2.4)

where, vf is velocity of agent i at iteration k, Cj is weighting factor, randj is a random

number between 0 and 1, sf is current position of agent i at iteration k, pbesti is

personal best of agent i and gbest is the global best of the population.

In step 7, particles are moved to their new positions. The current position of a particle

with a given velocity calculated by Equation 2.5 which updates the position as

follows:

19

where, sf+1 is the position of agent / at iteration k+1, sf is position of agent i at

iteration k and vf+1 is the velocity of agent i at iteration k+ \ .

The PSO explained above was developed for continuous domains. Kennedy and

Eberhart, (1997) also developed a discrete version of PSO for combinatorial domains.

Instead of creating a continuous position, agents were determined as true or false as a

result of a probability function (personal and social interactions) represented as

follows:

The probability threshold is calculated by an agent's predisposition (v) to be able to say

true or false. The threshold is set in the range [0, 1] and the agent is more likely to

(2.6)

choose 1 if v is higher and 0 otherwise. A sigmoid function is often used to determine

the value of v:

(2.7)

The agent's disposition should be adjusted for its success and that of the group. In

order to accomplish this, a formula for each v f that will be some function of the

difference between the agent's current position and the best positions found so far by

itself and by the group. Similar to the basic continuous version, the formula for the

binary version of PSO can be described as follows:

v*+i _ v* + rand^pbest. - s *)+ rand {gbest - s -) (2 -8)

P i +l < 5ig(v*+1) then s*+1 = 1; otherwise s f +1 = 0 (2 9)

where, rand is a random number (rand > 0) drawn from a uniform distribution and

n kHPi is a vector of random numbers between 0 and 1. The limit of rand is set so that

two rand sum to no more than 4.0. Formulas are iteratively repeated for each

dimension. The discrete PSO algorithm is almost identical to the basic PSO except the

above decision equations 2.8 and 2.9. Vmax is also set at beginning of an experiment,

usually set to [-4.0, +4.0]. Several improved and hybrid versions of the PSO algorithm

can also be found in the literature including (Kennedy, 2001; Kwang and Mohamed,

2008).

2.3. Bees in Nature: Food Foraging and Nest Site Selection

Behaviours

A colony of honey-bees can extend itself over long distances (more than 10 km) and in

multiple directions simultaneously to exploit a large number of food sources (Von

Frisch, 1967; Seeley, 1996). A colony prospers by deploying its foragers to good

21

fields. In principle, flower patches with plentiful amounts of nectar or pollen that can

be collected with less effort should be visited by more bees, whereas patches with less

nectar or pollen should receive fewer bees (Camazine et al., 2001).

The foraging process begins in a colony by scout bees being sent to search for

promising flower patches. Scout bees move randomly from one patch to another.

During the harvesting season, a colony continues its exploration, keeping a percentage

of the population as scout bees (Seeley, 1996).

When they return to the hive, those scout bees that found a patch which is rated above

a certain quality threshold (measured as a combination of some constituents, such as

sugar content) deposit their nectar or pollen and go to the “dance floor” to perform a

dance known as the “waggle dance” (Von Frisch, 1967). Source quality can be

understood as simply the relation between gain and cost (see equation 2.10) from a

specific nectar source (Von Frisch, 1976).

Source Quality[i] = (gain[i] - costs[i]) / costs[i] (2.10)

This mysterious dance is essential for colony communication, and contains three

pieces of information regarding a flower patch: the direction in which it will be found,

its distance from the hive and its quality rating (or fitness) (Von Frisch, 1967;

Camazine et al., 2001). This information helps the colony to send its bees to flower

patches precisely, without using guides or maps. Each individual’s knowledge of the

outside environment is gleaned solely from the waggle dance. This dance enables the

colony to evaluate the relative merit of different patches according to both the quality

22

of the food they provide and the amount of energy needed to harvest it (Camazine et

al., 2001). After waggle dancing on the dance floor, the dancer (i.e. the scout bee)

goes back to the flower patch with follower bees that were waiting inside the hive.

More follower bees are sent to more promising patches. This allows the colony to

gather food quickly and efficiently.

While harvesting from a patch, the bees monitor its food level. This is necessary to

decide upon the next waggle dance when they return to the hive (Camazine et al.,

2001). If the patch is still good enough as a food source, then it will be advertised in

the waggle dance and more bees will be recruited to that source.

Nectar source selection behaviour is one o f the most challenging as well as vital tasks

for honey-bee colonies (Camazine et al., 2001). When a honey-bee colony becomes

overcrowded it needs to be divided for effective source management (Von Frisch,

1967; Camazine et al., 2001). This critical decision making process works without a

central control mechanism. Nectar source selection behaviour mainly deals with the

situation of a colony choosing between several nectar sources by simply measuring

several factors at once and comparing them with other solutions. The decision is made

when all the scout bees are dancing for the same site and it takes a couple of days

before half of the colony moves to a new hive.

2.4. Computational Simulations of Honey-bee Behaviours

In this section, the computational simulation models of different honey-bee behaviours

are presented as a bridging effort between nature and engineering to understand the

23

innovation path of swarm intelligence algorithms. The behaviours of honey-bees in

nature have been studied thoroughly and several mathematical models were

introduced. These models explain many aspects of the honey-bees in mathematical

terms. There are several honey-bees related models introduced in the literature

including nectar-source selection, nest-site selection, colony thermoregulation and

comb pattern models (Camazine et al., 2001). Since the foraging behaviours of honey­

bees is the scope of this thesis, nectar-source selection and nest-site selection models

are presented in this section.

2.4.1. Nectar-Source Selection Models

Nectar source selection is one of the most challenging tasks for honey-bee colonies.

This critical practice works without a central control mechanism. For nectar source

selection, several mathematical models have been introduced. These models mainly

deal with the situation of a colony choosing between several nectar sources. There are

quite a few models developed to analyse the food source selection process of honey­

bee colonies (Camazine and Sneyd, 1991; Bartholdi et al., 1993).

Camazine et al., (1991) and Camazine et al., (2001) presented a differential equations

model to analyse the food-source selection process of honey-bees. Individual bees are

represented in this model using a flow diagram for the nectar-source selection

processes. Each forager bee needs to be in a compartment at any specific time.

According to the model, there are five decision making branches for the situation of a

colony choosing between two nectar sources. For every branch, there is a probability

function to calculate the probability o f taking one or the other fork at each of the five

branch points. Since the bees mostly depend on randomness, the probability of

choosing one nectar source also depends on randomness related to number of dancers

on the dance floor as well as on the time spent dancing. The results of the experiment

show how a colony selectively exploits the richer food source for several hours. After

altering the food sources, the model reacts promptly to adjust the population

distribution and the exploitation process to a new environment.

To explain how the model works, a flow diagram given in Fig. 2.3 describes the

foraging behaviour of a colony for every individual bee. In this model, each forager is

in one of seven different compartments, represented by an activity (Camazine et al.,

1991):

A: foraging at nectar source A

B: foraging at nectar source B

D^: dancing for nectar source A

D*: dancing for nectar source B

F: unemployed foragers observing a dancer

H^: unloading nectar from source A

25

HIVE
Unloading nectar

from B (Hr)
Unloading nectar

from A (H a)

1 ~P 1 ~P

Following
dancers

Dancing
f o r A (D a)

Dancing
for B (D r)

Pf P f

Foraging at nectar
source A (A)

Foraging at nectar
source B (B)

Figure 2.3 This mathematical model shows how honey-bee colonies allocate forager

bees between two nectar sources (A and B). HA, He, DA, DB, A, B, F are the

compartments and the number of foragers in the compartments. rl-r7 are the rates of

leaving for each component. P$, P$, PdA, P$, etc. denote the probability of choosing

a fork in each branch. This flow diagram is drawn in accordance with the model figure

given in (Camazine et al. 1991).

2 6

Hg: unloading nectar from source B

These variables refer to both the name of the compartment and the number of bees

within each compartment. There are two separate cycles in the model, and bees from

one nectar source can only switch over to other one on the dance floor (Camazine et

al., 1991).

In this model, there are two factors affecting the proportion of the total forager number

in each compartment: (1) the rate at which a bee moves from one compartment to

another and (2) the probability that a bee takes a fork at each of the five branch points

(diamonds), r, stands for a rate constant defined as the fraction of bees leaving a

compartment in a given time interval equal to 1/T„ where each T, is the time to get

from one compartment to another. The unit o f the rate constant is given as min'1

(Camazine et al., 1991).

In the first branch, P* stands for the abandoning function that denotes the probability

that a bee may abandon the nectar source or go back to the dance floor to observe

another dancer bee (Camazine et al., 1991). This function depends on the profitability

of the source, so pjf represents the probability that a bee leaving H^, abandoning the

nectar source and becoming a follower bee (F) (Camazine et al., 1991).

The second branch point is for the bees that did not abandon their source (Camazine et

al., 1991). At this point, a bee decides whether to dance for the nectar source or to fly

back to the nectar source. P</, denotes the probability of performing a dance for the

nectar source (Camazine et al., 1991). Its value also depends on the profitability o f the

27

nectar source similar to the abandoning function, p f denotes the probability of

performing a dance for the nectar source.

The third branch occurs on the dance floor when a follower bee dances to decide for

one of the nectar sources (Camazine et al., 1991). P*, denotes the probability of a

follower bee following dances for nectar source A and leaving for this nectar source

(Camazine et al., 1991). Thus, the probability of following a dancer bee for A (Pp)

can be calculated by D^/(D^+D5). The time limitation of and D# has been weighted

and denoted as da and db- Therefore, each function (see equations 2.11 and 2.12)

indicates the proportion of the total dancing for each nectar source by taking into

account the number of dancers and the time spent dancing (Camazine et al., 1991).

Equations of the model, with some assumptions for simplicity, are written as the

following set of differential equations (Camazine et al. 1991):

(2.13)

(2.14)

28

dH
dt

A = r^A-ryH A (2.15)

^ - = (l-P dBl l - P f } 5H B + r6D„ + P ?rAF - r 7B (2.16)
at

dDS- = P f (i - P ^ 5H B - r AD B (2.17)
dt

* L e- = rlB - r sH B (2.18)

~ - P }h H A + P f r 5H B - r AF (2.19)

Yonezawa and Kikuchi, (1996) presented a model based on bee collective intelligence

for honey collection (i.e. foraging). The model investigated the principle of

intelligence generated by collective and cooperative behaviour in a complex

environment. The model simulated one and three foraging bees. The results of the

simulation showed that the three bees model produced more balanced results than

those produced by the one bees model.

Cox et al., (2003) introduced a model of foraging in honey-bee colonies. This model

addresses the missing factors of the model presented by Camazine et al., (1991). In

this model, the effects of environmental and colony factors are investigated. The

effects of the source (rate of nectar flow, distance from hive) and the consequences of

forager behaviours are also implemented in the differential equations set.

29

Schmickl et al., (2004) presented a comprehensive model of nectar source selection in

honey-bee colonies. Although the model is built on individual processes, it produces

interesting results on the global-colony level. Another interesting feature of the model

is that it is built to project the daily net honey gain of the hypothetical honey-bee

colony. Thus, this gives the opportunity to explore the economic results of foraging

decisions. The presented model is developed to examine the dynamics and efficiency

of the decentralized decision making system of a honey-bee colony in a changing

environment. However, as the most significant difference from previous models, target

selection and workload balancing processes as well as the energy balance of each

foraging bee have been implemented in the model. Also, the foragers are treated as

individual agents who expend energy and show specific behaviours.

2.4.2. Nest-site Selection Models

Nest-site selection is another vital practice which requires an optimisation process as

nectar source selection behaviour does in honey-bee colonies. Nest-site selection in

honey-bee colonies can be summarised as a social decision making process. In this

process, scout bees locate several potential nest sites, evaluate them, and select the

best one on a competitive signalling basis (Passino and Seeley, 2006).

Several nest-site selection models have been introduced (Camazine et al., 1999;

Britton, 2002; Passino and Visscher, 2003) and then a comprehensive one introduced

by Passino and Seeley, (2006). It was developed using the bees’ decision making

processes extracted by early empirical studies. The effects of several features of the

30

nest-site selection processes in honey-bee colonies have been studied using this model

(Passino and Seeley, 2006).

2.5. Honey-bees inspired algorithms

In this section, honey-bees inspired algorithms are reviewed, many developed

recently. The main streams in this domain can be divided in three subgroups: (1)

Foraging and nectar source selection behaviours related, (2) marriage behaviours

related and (3) queen bee behaviours related studies. Because of their efficiency and

robustness, the foraging and nectar source selection behaviours are the most studied

field in terms of an optimisation approach.

Sato and Hagiwara, (1997) introduced the very first honey-bees inspired algorithm,

called the bee system, as an improved version of genetic algorithms. This system

claims to be inspired basically from ‘finding a source and recruiting others to i t ’

behaviour. However, this idea was implemented as a hybrid genetic algorithm. In the

algorithm, some of the chromosomes are considered as superior ones and others try to

find solutions around them using multiple populations. Moreover, the algorithm uses

some operators such as the concentrated crossover and pseudo simplex methods. The

bee system applied to function optimisation and simulation results were presented in a

normalised error form. As a result, this algorithm produces better results compared to

GA with a high success rate and less normalised error values for nine different test

functions.

31

Lucic and Teodorovic, (2001) presented another bee system, which is one of the early

attempts to develop a direct bee-inspired algorithm in last decade. The algorithm was

developed for combinatorial domains and applied to traveller salesman problems

(TSP) that aim to find the minimum distance route between paths passing through

each only once. In this algorithm, the hive is located in a solution space randomly and

following a probabilistic selection similar to that used in the Ant Colony Optimisation.

Partial solutions are constructed in stages using a probabilistic equation derived from

the Logit model (see equation 2.20).

^ P 0 4 (u , z) - e a 4 (u , z)

M “>z) = Y Hto.fr,.,) £ € r (« , z) v « , z

T e Y \ u , z)

(2.20)

Then, bees recruited to these partial solutions are expanded further. After initial

improvements, before relocating the hive, the solution produced in the current iteration

is improved using the 2-opt and 3-opt heuristic algorithms. The results for the traveller

salesman problem are also presented.

Yang, (2005) proposed a virtual bee algorithm (VBA) to solve the function

optimisation in engineering problems. The VBA begins with deploying a troop of

virtual bees in the phase space for random exploration. The main steps of the VBA for

function optimisation are given as: ul) creating a population o f multi-agents or virtual

bees, each bee is associated with a memory bank with several strings; 2) encoding o f

the objectives or optimization functions and converting into the virtual food; 3)

defining a criterion fo r communicating the direction and distance in the similar

32

fashion o f the fitness function or selection criterion in the genetic algorithms; 4)

marching or updating a population o f individuals to new positions fo r virtual food

searching, marking food and the direction with virtual waggle dance; 5) after certain

time o f evolution, the highest mode in the number o f virtual bees or intensity/frequency

o f visiting bees corresponds to the best estimates; 6) decoding the results to obtain the

solution to the p r o b le m This procedure may be presented as the following pseudo­

code:

1: // Create a initial population o f virtual bees A(t)

2: // Encode the function f(x,y,...) into virtual food/nectar

3: Initial Population A(t);

4: Encode f(x,y) |-> F(x,y);

5: // Define the criterion for communicating food location with others

6: Food F(x,y) |-> P(x,y)

7: / / Evolution of virtual bees with time

8: t=0;

9: while (criterion)

10: // March all the virtual bees randomly to new positions

11: t=t+l;

12: Update A(t);

13: // Find food and communicate with neighbouring bees

14: Update F(x,y), P(x,y);

15: // Evaluate the encoded intensity/locations of bees

16: Evaluate A(t), F(x,y), P(x,y)

17: end while

33

18: // Decode the results to obtain the solution

19: Decode S(x,y,t);

In terms of encoding the location of agents, the algorithm deals with the problem

domain similar to Genetic Algorithms. The algorithm is applied to one and two

dimensional functional optimisation problems and compared with GA. Results showed

that the algorithm finds solutions to the problems (1-D and 2-D) better than GA.

Lemmens et al., (2006) introduced a non-pheromone-based algorithm inspired by the

behaviour of honey-bees, called the Bee Foraging Algorithm. The algorithm uses two

essential strategies; recruitment and navigation. The recruitment strategy is used to

distribute information regarding a nectar source to other members of the colony. The

navigation strategy is proposed for efficiency of navigation in an unknown

environment. It is based on a strategy called Path Integration, which is actually used

by natural bees to navigate back to hive while they are moving between far apart

nectar sources. The general structure o f the algorithm is similar to the structure of the

ant colony optimisation. The algorithm consists of three main functions and internal

states in these functions. The very first function is called ManageBeesActivityQ which

deals with the activity of agents based on their internal states. There are six internal

states in which each agent performs a specific behaviour; 'AtHome\ 'StayAtHome',

'Exploration \ 'Exploration', 'HeadHome', 'CarryingFood'. The agent internal state

changes are called “Algorithm 1” and this process may be outlined as follows:

1: If State is StayAtHome then

2: If Vector exists then

3: Exploitation

34

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

and if

else if Agent not AtHome then

if Agent has food then

CarryingFood

else if Depending on chamce then

HeadHome, Exploration or Exploitation

end if

else if exploit preference AND state is AtHome then

if Vector exists then

Exploitation

else

Exploration

end if

else if StayAtHome preference AND state is AtHome then

if Vector exists then

Exploitation

else

StayAtHome

end if

else

Exploration

end if

The second function, which is called Calculate Vector0, is used to calculate the path

integration vector for each agent. The algorithm uses a third optional function called

DemonActionO which can be used to implement the centralised actions such as global

information, which is important for an agent to decide to dance (or not to dance).

Lemmens et al., (2007) introduced a hybrid swarm intelligence algorithm called the

Bee System with inhibition pheromones (BSP). It combines the algorithm presented

above (Lemmens et al., 2006) and the ant colony optimisation. In order to overcome

35

the shortcomings of the previous bee system, in which there are two procedures both

of which are borrowed from the ant colony optimisation, new procedures are

implemented in the algorithm. The first proposed procedure employs a rather simpler

way to improve the obstacle avoidance capabilities. It helps an agent while following a

path integration (PI) vector. When it bounces into an obstacle it simply selects a

random direction (in this case left or right) and then follows the outlines of the

obstacle in that direction until following the PI vector becomes possible again. The

second procedure is proposed to enhance the learning capability of the algorithm. In

this procedure agents can deposit inhibition pheromone at a certain location. Agents

following a PI vector benefited from this enhanced learning mechanism just to find a

better solution both in static and dynamic environments.

Karaboga et al., (2007), Karaboga et al., (2008) and Karaboga et al., (2009) presented

an Artificial Bee Colony (ABC) algorithm for optimising numerical test functions.

ABC is inspired by the foraging behaviour o f honey-bees swarms. The algorithm uses

three types of bees, called employed bees, onlooker bees and scout bees. The

population is split equally into two parts, the first half as employed bees and the

onlookers as the other half. This algorithm also employs a random scout bee for

exploration of the search space. The algorithm has three main steps for each iteration;

employed bees placed on food sources, onlooker bees placed on food sources

depending on their nectar amount and scout bees sent to the search area for

exploration. The detailed pseudo-code of the ABC algorithm is presented in Fig. 2.4

but the main steps of the algorithm are given below:

1: Initialize Population

36

2: Repeat

3: Place the employed bees on their food sources

4: Place the onlooker bees on the food sources depending on their nectar amounts

5: Send the scouts to the search area for discovering new food sources

6: Memorize the best food source found so far

7: Until (requirements are met)

For each flower patch, ABC uses proportional selection to recruit the onlooker bees to

promising patches (see equation 2.21).

= - (2 -2 1)
Z w f <e.)

Where Pi is the probability of selection for a patch by each onlooker bee; Qt is the

position of the ith food source; F(Qj) represents the nectar amount of the food source

located at Qi and S : the number of food sources around the hive. The neighbourhood

search algorithm uses the extrapolation crossover method to create new solutions. In

this phase, an employed bee randomly chooses another employed bee and generates a

new solution. If this solution is better than the existing one, a new employed bee is

selected as the representative bee for the patch. As presented in this thesis, ABC also

uses site abandonment, which is simply leaving a patch if no more improvement is

observed on the patch after certain number of iterations. This is defined as the limit in

the ABC and can be calculated according to the formula:

Limit = D * SN (2.22)

where SN is the number of employed bees and D is the dimension of the problem.

37

1. Initialize the population of solutions xi, i = 1.. .SN

2. Evaluate the population

3. cycle=l

4. repeat

5. Produce new solutions ui for the employed bees and evaluate them

6. Apply the greedy selection process for the employed bees

7. Calculate the probability values Pi for the solutions xi

8. Produce the new solutions ui for the onlookers from the solutions xi selected

depending on Pi and evaluate them

9. Apply the greedy selection process for the onlookers

10. Determine the abandoned solution for the scout, if exists, and replace it with a

new randomly produced solution xi

11. Memorize the best solution achieved so far

12. cycle=cycle+l

13. until cycle=MCN

Figure 2.4 Pseudo-code of the ABC algorithm

38

Teodorovic et al., (2006) proposed a Bee Colony Optimisation (BCO) metaheuristic

which is capable of solving combinatorial optimisation problems. A Fuzzy Bee

System was also proposed in (Teodorovic et al., 2006). BCO has been developed for

combinatorial problems and the pseudo-code of the algorithm is given in Fig. 2.5.

Similar to the ant colony optimisation algorithm, it has a constructive way of building

the solutions but the main difference is that the BCO algorithm builds the solutions

partially. In each stage bees build a partial solution by flying a couple of nodes during

a forward pass. In the backward pass stage, all bees are sent back to the hive and bees

are allowed to exchange information about the quality of the partial solutions created

and to decide whether to abandon the created partial solution and become again an

uncommitted follower; continue to expand the same partial solution without recruiting

the nest mates; or dance and thus recruit nest mates before returning to the created

partial solution. On the other hand, there is no procedure for the selection of the best

sites or becoming an uncommitted bee. The Fuzzy Bee System was developed to help

bees during decision making process but instead of random selection, bees select

patches using a roulette wheel approach. To be able to do this a verbal explanation of

the partial solution is used as follows:

If the length of the advertised path is SHORT and the number of bees advertising the

path is:

SMALL

Then the advertised partial solution attractiveness is:

MEDIUM

39

1. Initialization. Determine the number o f bees B, and the number of iterations I.

Select the set of stages ST = {Sti, st2 Stm}. Find any feasible solution x of the

problem. This solution is the initial best solution.

2. Set i: 1. Until i = I, repeat the following steps:

3. Setj 1. Untilj = m, repeat the following steps:

Forward pass: Allow bees to fly from the hive and to choose B partial solutions

from the set of partial solutions Sj at stage stj.

Backward pass: Send all bees back to the hive. Allow bees to exchange

information about quality of the partial solutions created and to decide whether to

abandon the created partial solution and become again uncommitted follower,

continue to expand the same partial solution without recruiting the nestmates, or

dance and thus recruit the nestmates before returning to the created partial

solution. Setj: =j + 1.

4. If the best solution xi obtained during the i-th iteration is better than the best-

known solution, update the best known solution (x: = xj.

5. Set, i: = i + 1.

Figure 2.5 Pseudo-code of the BCO algorithm.

40

Wong et al., (2008) introduced a bee colony optimisation (BCO) algorithm for

travelling salesman problem (TSP). The basic procedure for the BCO with a 2-opt

local search for TSP is given in Fig. 2.6. It is similar to the bee colony optimisation

algorithm discussed above. According to the authors, there are several alterations that

differentiate this algorithm from the BCO algorithm developed by Teodorovic et al.,

(2006). Bees in the earlier model do not have the ability to remember the number of

bees that have visited an arc (Wong et al., 2008). In this improved model, bees show

the entire feasible path rather than partial tours using the waggle dance and the bee

hive was proposed to have an equal distance from all cities. During the construction of

solutions procedure, bees were influenced by both arc fitness and the distance between

cities. With these differences, the improved algorithm may be applied to many well-

known TSP data sets and the results shows that it performs well compared to other

state of the art algorithms.

Wedde et al., (2004) presented a routing algorithm for fixed networks, called BeeHive,

that was inspired by the communication activities of honey-bees. The algorithm

employed the idea of a bee agent model in which the agents travel through network

regions called foraging zones. These were designed as fixed partitions in a network

containing representative and non-representative nodes which were capable of

launching long or short bee agents to update routing. Zang, (2005) further developed

the BeeHive algorithm based on a stochastic process. It works without saving the

topology or other global information in the routing tables. The main procedures of the

algorithm may be presented as follows:

41

1 . procedure BCO

2 . Initialize_Population()

3. while all bees have not built a complete path do

4. Observe_Dance()

5. Forage_ByTransRule()

6 . P erform W aggl e_D ance ()

7. end while

8 . end procedure BCO

Figure 2.6 BCO with 2-opt local search for TSP by Wong et al. (2008)

42

■ main procedure

in parallel

1 : send the received packet, bee agents, echo or ack to a corresponding procedure.

2 : run procedure for routing decision.

3: run explore procedure for updating data.

4: run update procedure for updating module.

5: run measure procedure for measuring module.

6 : run echo procedure for measuring procedure.

7: run echo procedure for measuring module.

8 : run ack procedure for measuring module.

Three modules were introduced, namely the routing, the updating and the updating

module. Further details of these modules can be found in (Zang, 2005). This algorithm

performed several simulations on some well-known routing data and the results were

compared to AntNet and Distributed Genetic Algorithm. These results show that the

algorithm performed well against many benchmarks compared to other population-

based algorithms.

Wedde et al., (2005a) and Wedde et al., (2005b) presented BeeAdHoc, a routing

algorithm for energy efficient routing in mobile ad hoc networks. The algorithm was

developed based on the BeeHive algorithm. Although they share some features, the

BeeAdHoc routing algorithm uses several types of different agents, namely packers

(used to receive and store data packets from the transport layer), scouts (used to

discover new routes), foragers (used to receive and transport data packets) and swarms

(used to help with unreliable transport protocols). Similar to BeeHive, the artificial

43

bee agents are used in packet switching networks to find suitable paths between nodes

by updating the routing table. Two types of agents are used - short distance bee agents

which disseminate routing information by travelling within a restricted number of

hops and long distance bee agents which travel to all nodes of the network. The

BeeAdHoc was also defined as a reactive source routing algorithm and it claimed to

consume less energy compared to other Mobile Ad Hoc Networks algorithms. Results

confirmed that the BeeAdHoc did indeed consume less energy compared to the DSR,

AODV and DSDV algorithms.

Abbas, (2001) presented a marriage in the honey-bees optimisation algorithm (MBO).

The algorithm simulates the evolution o f honey-bees in several stages. It starts with a

solitary colony (i.e. single queen bee without a colony) and goes all the way up to the

emergence of eusocial colony (a full colony with one or two queens in the chamber).

The algorithm is based on simulated annealing and in many ways it resembles the

annealing procedure. The pseudo-code of the MBO algorithm is given in Fig. 2.7. The

algorithm starts with the random initialisation of workers as well as the genotype of

each queen. A set of mating-flights is made with a random initialisation of the values

of energy, speed, and position of each queen. Then, each queen moves between states

according to her speed and she mated with a drone using an equation similar to a

simulated annealing procedure. A drone mates with a queen probabilistically using an

annealing function:

A (/)

Pr ob(Q, D) = e 5 (0 (2.23)

44

1. The algorithm starts with the mating-flight, where a queen (best solution)

selects drones probabilistically to form the spermatheca (list of drones). A drone is

then selected from the list at random for the creation of broods.

2. Creation of new broods (trial solutions) by crossoverring the drones’ genotypes

with the queen’s.

3. Use of workers (heuristics) to conduct local search on broods (trial solutions).

4. Adaptation of workers’ fitness based on the amount of improvement achieved

on broods.

5. Replacement of weaker queens by fitter broods.

Figure 2.7 Basic steps of the MBO algorithm.

45

If the result of mating is successful, then drones’ sperm is added to a list of partial

solutions, the so called spermatheca. After turning back to the nest, the queen bee

starts breeding by randomly selecting a sperm from the spermatheca. Then crossover

and mutation operators are applied to produce different broods. Workers are also used

to improve the broods. If any of these broods are better than the queen, the queen is

replaced. The remaining broods are then killed and a new mating flight starts. The

algorithm was applied to a fifty propositional satisfiability problems (SAT) with 50

variables and 215 constraints and results showed that the algorithm performed well for

these specific types of problems. Moreover, Benetcha et al., (2005) adapted this

algorithm to a Max-Sat problem and presented further simulation results. Haddad et

al., (2006) applied the same procedure given in Fig. 2.7 for a water resource

optimisation problem. Although the procedure is the same, it was called the Honey-

Bees Mating Optimisation (HBMO) algorithm. Further functional optimisation tests

also presented in the paper.

Jung, (2003) proposed a queen bee evolution algorithm for enhancing the optimisation

capability of genetic algorithms. The algorithm was inspired by the role of queen bee

in the reproduction process. In the algorithm, as the fittest individual in a generation,

the queen bee crossbreeds with the other bees selected as parents by a selection

algorithm. This proposed procedure increases the chance of premature convergence.

An intensive mutation procedure is proposed to deal with this problem. Experimental

results of one combinatorial and two continuous applications demonstrated that the

proposed hybrid algorithm was able to converge in most cases. Azeem and Saad,

(2004) and Qin et al., (2004) made some improvements to the algorithm with several

different applications.

46

Gordon et al., (2003) proposed the application of a discrete bee dance algorithm to the

problem of pattern formation on a grid for a group of identical autonomous robotic

agents with limited communication capabilities. The algorithm was defined as a

sequence of several coordinated waggle dances on a grid where the bee agents share

their information, cooperate and solve their problems to be able to overcome their

shortcomings.

2.6. Summary

This chapter has reviewed the theory and applications of swarm intelligence as well as

the behaviours of honey-bees to provide general background information for the

research reported in subsequent chapters of the thesis.

47

Chapter 3

THE BEES ALGORITHM:

THEORY AND IMPROVEMENTS

3.1. Preliminaries

Many complex multi-variable optimisation problems cannot be solved exactly within

polynomially bounded computation times. This generates much interest in search

algorithms that find near-optimal solutions in reasonable running times. The swarm-

based algorithm described in this thesis is a search algorithm capable of locating good

solutions efficiently. The algorithm is inspired by the food foraging behaviour of

honey bees and could be regarded as belonging to the category of “intelligent”

optimisation tools.

48

In this chapter, a new population-based search algorithm called the Bees Algorithm

(BA) is presented (Pham et al., 2006). The algorithm mimics the food foraging

behaviour of swarms of honey bees. In its basic version, the algorithm performs a kind

of neighbourhood search combined with random search and can be used for both

combinatorial optimisation and functional optimisation. The Bees Algorithm is

presented in this chapter, with benchmark results comparing the performance of the

algorithm with some well-known algorithms in the literature. Further details are also

given of the local and global search methods used in this algorithm. Moreover, in this

chapter, details of the improvements made to local and global search methods are

presented, including dynamic recruitment, proportional shrinking and abandonment

strategies.

The chapter is organised as follows: section 3.2 presents a description the basic Bees

Algorithm in its simplest form with a simple example of the algorithm procedure. In

section 3.3, some key characteristics o f the Bees Algorithm are discussed, including

site selection, neighbourhood search and global search. Improvements to local and

global search are presented in section 3.4, including dynamic recruitment, proportional

shrinking for selected sites and site abandonment. Experimental results and benchmark

tables are presented in section 3.5 to demonstrate the performance and the robustness

o f the algorithm compared to some well-known algorithms in the literature.

49

3.2. The basic Bees Algorithm

The Bees Algorithm is an optimisation algorithm inspired by the natural foraging

behaviour of honey bees to find the optimal solution. Fig. 3.1 shows the pseudo-code

and Fig. 3.2 presents the flowchart o f the basic Bees Algorithm in its simplest form.

The algorithm requires a number of parameters to be set, namely: number of scout

bees (n), number of patches selected out of n visited points (m), number of best

patches out of m selected patches (e), number of bees recruited for e best patches

(nep), number of bees recruited for the other (m-e) selected patches (nsp), size of

patches (ngh) and the stopping criterion. The algorithm starts with the n scout bees

being placed randomly in the search space. The fitnesses of the points visited by the

scout bees are evaluated in step 2. A simple demonstration is given in Fig. 3.3 which

shows the basis steps of the algorithm.

In step 4, bees that have the highest fitnesses are chosen as “selected bees” and those

sites that have been visited will be chosen for neighbourhood search. Then, in steps 5

and 6 , the algorithm conducts searches in the neighbourhood of the selected bees in

terms of more bees for the e best bees. The latter can be chosen directly according to

the fitnesses associated with the points they are visiting. Alternatively, the fitness

values are used to determine the probability of the bees being selected. Searches in the

neighbourhood of the e best bees which represent more promising solutions are made

more detailed by recruiting more bees to follow the e best bees than other selected

bees. Also within scouting, differential recruitment is one of the key operations of the

Bees Algorithm. Both scouting and differential recruitment are used in nature.

50

1. Initialise population with random solutions.

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

//Forming new population.

4. Select sites for neighbourhood search.

5. Recruit bees for selected sites (more bees for e best sites) and evaluate

fitnesses.

6 . Select the fittest bee from each site.

7. Assign remaining bees to search randomly and evaluate their fitnesses.

8 . End While.

Figure 3.1 Pseudo-code o f the basic Bees Algorithm

However, in step 6 , for each site only one bee with the highest fitness will be selected

to form the next bee population. In nature, there is no such a restriction. This

restriction is introduced here to reduce the number of points to be explored.

In step 7, the remaining bees in the population are assigned randomly around the

search space scouting for new potential solutions. These steps are repeated until a

stopping criterion is met. At the end of each iteration, the colony will have two parts to

its new population - representatives from each selected patch and other scout bees

assigned to conduct random searches.

51

N
ei

gh
bo

ur
ho

od
Se

ar
ch

No Is Stopping
Criteria met?

Yes

New Population of Scout Bees

Stop Foraging

Evaluate the Fitness of the Population

Determine the Size of Neighbourhood
(Patch Size ngh)

Recruit Bees for Selected Sites
(more Bees for the Best e Sites)

Select m Sites for Neighbourhood Search

Select the Fittest Bee from Each Site

Initialise a Population of n Scout Bees

Assign the (n-m) Remaining Bees to Random Search

Figure 3.2 Flowchart of the basic Bees Algorithm

52

Graph 1. Initialise population with random solutions
and evaluate the fitness.

Graph 4. Recruit bees around selected sites (more bees
for the best e sites).

Graph 3. Define neighbourhood range. Graph 6. Assign remaining bees “o” to search
randomly and evaluate their fitness

Graph. 2. Select sites for neighbourhood search'
and“0,\ Graph 5. Select the fittest from each site

Figure 3.3 Simple example of the Bees Algorithm

53

3.3. Characteristics of the proposed Bees Algorithm

In this section some key characteristics of the proposed Bees Algorithm will be

discussed in detail, including neighbourhood search and site selection strategies.

3.3.1 Neighbourhood Search

Neighbourhood search is one of the essential parts for all evolutionary algorithms as

well as for the Bees Algorithm. In the Bees Algorithm, the searching process in a

selected site is similar to that of the foraging field exploitation of honey bee colonies

in nature. As explained in previous chapter, when a scout bee finds any good enough

foraging field, she advertises it back to the hive in order to recruit more bees to that

field. This behaviour is useful in terms of bringing more nectar into the hive. Hence,

this fruitful method might be also useful for engineering optimization problems.

The harvesting process also includes a monitoring phase which is necessary for

decision making for a waggle dance back in the hive for the purpose of recruiting

more bees to that site. In the Bees Algorithm, this monitoring process can be used as a

neighbourhood search. Essentially, when a scout bee finds a good field (good

solution), she advertises her field to more bees. Subsequently, those bees fly to that

source, take piece of nectar and return back to hive. Depending on the quality, this

source can be advertised by some of the bees that are already aware of the source. In

the proposed Bees Algorithm, this behaviour has been used as a neighbourhood

search. As explained above, from each foraging site (or neighbourhood site) only one

54

bee is chosen. This bee must have the best solution information about that field. Thus,

the algorithm can create some solutions which are related to the previous ones.

Neighbourhood search is based on a random distribution of bees in a predefined

neighbourhood range (patch size). For every selected site, bees are randomly

distributed to find a better solution. As shown in Fig. 3.4, only the fittest (best) bee is

chosen as a representative and the centre o f the neighbourhood patch shifted up to best

bees' position (from A to B).

On the other hand, during the harvesting process other elements should also be taken

into account for increasing efficiency, such as number of recruited bees in the

neighbourhood patch and the patch size.

The number of recruited bees around selected sites should be defined properly. When

the number is increased, then the number o f function evaluations will also be increased

and vice versa.

This problem also depends on the neighbourhood range. If the range can be arranged

adequately, then the number of recruited bees will depend on the complexity of a

solution space. This will be discussed later with more details.

55

Representative
(Best) Bee /

(a)

Representative
(Best) Bee /

 L

(b)

Figure 3.4 Graphical explanation of basic neighbourhood search.

56

3.3.4 Site Selection

For site selection two different techniques have been implemented: probabilistic

selection and best site selection.

In probabilistic selection, the roulette wheel method has been used and sites with

better fitness have more chance of being selected, but in best site selection, the best

sites according to fitness will be selected. In this section, different combinations of

selection using the two methods from pure probabilistic selection (q=0) to pure best

site selection (q=l) have been investigated and mean iterations required to enrich the

answer. Results are shown in Fig. 3.5 and Fig. 3.6.

Regarding results, best selection will present better results and also is simpler, so in its

basic form the best sites method is selected as the neighbourhood site selections

method for the Bees Algorithm.

3.3.5. Global Search

In the first step, all scout bees (n) are placed randomly across the fitness landscape to

explore for new flower patches. After neighbourhood search, n-m bees are again

placed randomly across the fitness landscape to explore new patches. The latter part is

the main global search tool for the Bees Algorithm.

57

Mean Iterations to get the answer in 1000 runs

1200
1000
800

600
400
200

q=0
q=0.1
q=0.5
q=0.9
q=1

300100 150

n (P o p u la t io n)

200 250

Figure 3.5 Mean iteration required for different combinations of selection

Successfulness

100

 q=0
 q=0.1

q=0.5
q=0.9

 q=1

100

n (P o p u la t io n)

150 200

Figure 3.6 Successfulness of different combinations of selection methods

58

3.4. Improvements in local and global search

In this section, further improvements to the Bees Algorithm are presented including

dynamic recruitment, proportional shrinking for selected sites and site abandonment.

3.4.1 Dynamic recruitment

Dynamic recruitment is introduced to improve the way that the bees are recruited into

a selected site. In the basic Bees Algorithm, when a site is selected for neighbourhood

search there will be a certain number o f bees assigned for local search. In the previous

strategy, bees are sent all at once to the same local search space defined as the

neighbourhood patch (see Fig. 3.4). Although it is proven to be a useful strategy,

dynamic recruitment presented here deals with the local search space faster.

Details of dynamic recruitment are given in Fig. 3.7. In step 5, bees are sent into

selected patches one by one and if there is any improvement compared to the original

bee, the recruited bee will replace the original and the patch will move to a new

position around the new and fittest recruit. This will be carried out until the visits by

all recruited bees are completed..

59

1. Initial population with n random solution.

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the fittest

bee from each site and shrink patches

for(k=l ; k=e ; k++) // Elite Sites

for(Bee=l ; Bee= nep ; Bee-H-) // More Bees for Elite Sites

BeesPositionInNgh() = GenerateRandomValueInNgh(/rom x+ngh to x-ngh);

Evaluate Fitness = Bee(i); //Evalute the fitnees of recruited Bee(i)

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = Bee(i);

for(k=e ; k=m; k++) // Other selected sites (m-e)

for(Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e)

BeesPositionInNgh() = GenerateRandomValueInNgh(/ro/n x+ngh to x-ngh);

Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = Bee(i);

6. Assign remaining bees to search randomly and evaluate their fitnesses. // (n-m) assigned to

search randomly into whole solution space

7. End While

Figure 3.7 The Bees Algorithm with dynamic recruitment.

60

3.4.2 Proportional shrinking for selected sites

The term proportional shrinking refers to a contraction of patch sizes of all selected

sites (m) in every iteration of the algorithm proportional to a constant ratio called

Shrinking Constant (sc). Equation 3.1 gives the definition of the proportional

shrinking idea, in which the initial patch size is set as a starting patch size in the first

iteration of the algorithm. Depending on the iteration (i), the patch size of the site m

(Nghm(\)) is calculated as a contraction from the previous size (Nghm(i-1)) proportional

to the value of sc. The value of sc can be defined by the user between 0 and 1 that

represents the percentage by which the patch will shrink. However, the patch size must

be a positive value all the time (Nghm(i) > 0).

N hgJi)
i = l Nghynii) = InitialPafchSize,

i> \ Nghm(i) = Nghm(i - \ i (\ - S C)) and 7V gU ')>0.
(3.1)

This new strategy, implemented as step 6 in Fig. 3.8, is proposed to improve the

solution quality and evaluation time. At the beginning, for the local search, a wide

patch size increases the probability of finding a better solution. By shrinking it saves

the time and increases the solution quality by fine tuning in relatively narrow local

search space.

61

3.4.3 Site Abandonment

The site abandonment strategy is introduced to improve the efficiency of the local

search. The term refers the abandonment of a site in which there is no more

improvement of the fitness value of the fittest bee after a certain number of iterations.

In many complex optimisation problems, there may be many local solutions in their

solution spaces and it is not possible to escape from local optima without an efficient

procedure.

Parallel scout bee search and better neighbourhood exploitation are two strong features

of the Bees Algorithm that are capable of dealing with many complex optimisation

problems. But for all other algorithms it may not be possible to escape from local

optima. Site abandonment is here introduced to deal with this problem.

In step 8 (see Fig. 3.8), if the points visited near a selected site are all inferior to that

site, after a certain number of iterations (i.e. sat: site abandonment threshold), then the

location of the site is recorded and the site abandoned. Bees at the site are assigned to

random search (i.e. made to scout for new potential solutions).

This step is directly inspired by honey-bees in nature. Depending on the solution,

quality bees either continue to exploit a patch by sending more bees or will abandon

the site after several visits.

62

1. Initial population with n random solution.

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the fittest

bee from each site and shrink patches

for (k=l ; k=e ; k++) // Elite Sites

for (Bee=l ; Bee= nep ; Bee++) // More Bees for Elite Sites

BeesPositionInNgh() = GenerateRandomValueInNgh(/rom x+ngh to x-ngh);

Evaluate Fitness = Bee(i); //Evalute the fitnees of recruited Bee(i)

If (Bee(i) is better then Bee(i-l)) RepresentativeBee = Bee(i);

for (k=e ; k=m; k++) // Other selected sites (m-e)

for (Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e)

BeesPositionInNgh() = GenerateRandomValueInNgh(/ro/w x+ngh to x-ngh);

Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better then Bee(i-l)) RepresentativeBee = Bee(i);

6. for (patch=l; patch=m; patch++) //Shrink all patches (m) proportional to SC

N g h ji) = N g h ji - 1)* ((l - SC));

7. If (Iteration > sat)

If (no improvement on the site)

Save the Best Fitness;

Abandon the Site;

Bee(m) = GenerateRandomValue(All Search Space);

8. Assign remaining bees to search randomly and evaluate their fitnesses. // (n-m) assigned to

search randomly into whole solution space

Figure 3.8 Pseudo-code of the Bees Algorithm with proportional shrinking and site

abandonment.

63

3.5. Experimental Results

Clearly, the Bees Algorithm as described above is applicable to both combinatorial

and functional optimisation problems. In this section, functional optimisation is

presented to show the robustness of the algorithm.

Three standard functional optimisation problems were used to test the Bees Algorithm

and establish the correct values of its parameters and seven problems for

benchmarking the algorithm. As the Bees Algorithm searches for the maximum,

functions to be minimised were inverted before the algorithm was applied.

The first test function (see equation 3.2) is the axis parallel hyper-ellipsoid which is

similar to De Jong's function 1 (see Fig. 3.9). It is also known as the weighted sphere

model. It is continuous, convex and unimodal.

f\a(x) = Y,ixf
M (3.2)

-5.12 <Xj <5.12

Global Minimum for this function:

/ (x) = 0; x (i) = 0, i = \ : n

64

The following parameter values were set for the axis parallel hyper-ellipsoid test

function: scout bee population n= 10, number of selected sites m=3, number of elite

sites e=l, initial patch size ngh=0.5, number of bees around elite points nep=2, number

of bees around other selected points nsp=2 .

The following parameter values of the Bees Algorithm were set for this test: scout bee

population n= 10, number of selected sites m=3, number of elite sites e=l, initial patch

size ngh=2.75, number bees around elite points nep=2, number of bees around other

selected points nsp=2. And the following parameter values of the improved Bees

Algorithm were set for this test: scout bee population n= 10, number of selected sites

m=3, number of elite sites e=l, initial patch size ngh=5.12, number of bees around

elite points nep=2 , number of bees around other selected points nsp=2 , shrinking

constant sc=0.20 (20%) and site abandonment threshold sat=10. The basic Bees

Algorithm was set with exactly the same parameters excluding the shrinking constant

and site abandonment threshold.

Fig. 3.10 shows the fitness values obtained as a function of the number of points

visited for both original and improved algorithms. The results are averages for 100

independent runs. It can be seen that after approximately 500 visits, the improved

algorithm was able to find solutions close to the optimum while the original algorithm

needs more time to find the optimum. It is also important to emphasise that the initial

patch size was set as the whole solution space for the improved Bees Algorithm.

65

4-

!
vs

fc
isASJXTl

variable 2 variable 1

Figure 3.9 Visualization of 2D axis parallel hyper-ellipsoid function.

Axis Parallel Hyper-Ellipsoid Function
0.2

0.15

cn
56 cZ

0.05

1000 200 300 400 500 600 700 800 900 1000

Generated Points (Mean number o f Function Evaluations)

— The Bees Algorithm — Improved Bees Algorithm

Figure 3.10 Evolution of fitness with the number of points visited (the axis parallel

hyper-ellipsoid)

66

Shekel’s Foxholes (see equation 3.3), a 2D function from De Jong’s test suite (Fig.

3 .1 1), was chosen as the first function for testing the algorithm.

f (x) = 119.998 - f)
1

j + Z 1 x ~ a
i=i i y (3.3)

„ - I - 32
V 1-32

-16
-32

0
-32

16
-32

32
-32

0
32

16
32

32
32

- 65 .536 < xi < 65 .536

For this function,

*max = (-32,-32)

/ (2 _) = 1» -998

67

The following parameter values of the Bees Algorithm were set for this test: scout bee

population n= 45, number of selected sites m=3, number of elite sites e=l, initial patch

size ngh=3, number bees around elite points nep=7, number of bees around other

selected points nsp=2. And the following parameter values for the improved Bees

Algorithm were set for this test: scout bee population n= 10, number of selected sites

m=3, number of elite sites e=l, initial patch size ngh=3, number bees around elite

points nep=2 , number of bees around other selected points nsp=2 , shrinking constant

sc= 0.01 (1%) and site abandonment threshold sat=10. The basic Bees Algorithm was

set with exactly the same parameters excluding the shrinking constant and site

abandonment threshold.

Note that ngh defines the initial size o f the neighbourhood in which follower bees are

placed. For example, if x is the position o f an elite bee in the ith dimension, follower

bees will be placed randomly in the interval Xje ± ngh in that dimension at the

beginning of the optimisation process.

Fig. 12 shows the fitness values obtained as a function of the number of points visited.

The results are averages for 100 independent runs. It can be seen that after

approximately 1200 visits, the Bees Algorithm was able to find solutions close to the

optimum. However, the improved algorithm is able to find solutions close to the

optimum faster than its predecessor

68

*# * #
-<t

Figure 3.11 Inverted Shekel’s Foxholes

Inverted Shekel's Foxholes

120

100

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Generated Points (Mean number o f Function Evaluations)

— The Bees Algorithm — Improved Bees Algorithm

Figure 3.12 Evolution of fitness with the number of points visited (Inverted Shekel’s

Foxholes)

69

To test the reliability of the algorithm, the inverted Schwefel’s function with six

dimensions (see equation 3.4) was used. Fig. 4 shows a two-dimensional view of the

function to highlight its multi-modality.

/ (*) = - Z - x , sin(V T T T)
(3.4)

- 500 < x t < 500

For this function,

xmax = (420.9829,420.9829,420.9829,420.9829,420.9829,420.9829)

/ (* -) « 2513.9

The following parameter values o f the Bees Algorithm were set for this test: scout

bees population n=500, number of selected sites m=15, number of elite sites e=5,

initial patch size ngh=20, number of bees around elite points nep=50, number of bees

around other selected points nsp=30. And the following parameter values for the

improved Bees Algorithm were set for this test: scout bees population n=500, number

of selected sites m=15, number of elite sites e=5, initial patch size ngh=20, number of

bees around elite points nep=50, number of bees around other selected points nsp=30.

shrinking constant sc=0.05 (5%) and site abandonment threshold sat=20. The basic

Bees Algorithm was set with exactly the same parameters excluding the shrinking

constant and site abandonment threshold.

70

-1000
500

Variable 2 -500 -500 Variable 1

500

Figure 3.13 2D Schwefel’s function

Inverted Schwefel’s Function (6 dim)

2400

2200

B
£ 2000

1800

1600

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 100000
0

Generated Points (mean number of evaluations)

The Bees Algorithm --------Improved Bees Algorithm

Figure 3.14 Evolution of fitness with the number of points visited (Inverted

Schewefel’s Fuction)

71

Fig. 3.14 shows how the fitness values evolve with the number of points visited. The

results are averages for 100 independent runs. After approximately 3,000,000 visits,

the Bees Algorithm was able to find solutions close to the optimum. On the other

hand, the improved Bees Algorithm was able to find solutions close to the optimum

much faster than the original algorithm. The main reason for this high success rate is

the shrinking strategy as well as the dynamic recruitment.

The Bees Algorithm was applied to seven benchmark functions (Mathur et al., 2000)

and the results compared with those obtained using other optimisation algorithms. The

test functions and their optima are shown in Table 3.1.

The Bees Algorithm was applied to eight benchmark functions (Mathur et al., 2000)

and the results compared with those obtained using other optimisation algorithms. The

test functions and their optima are shown in Table 3.1.

72

Table 3.1 Test Functions (Mathur et al., 2000)

No Function Name Interval Function Global Optimum

1 De Jong
[-2.048,

2.048]
max F = (3905.93) - lO O ^ - z j) - (1 - z ,) !

X (l,l)

F=3905.93

2
Goldstein &

Price
[-2,2]

m i n F = [l + (j Cl + :jC2 + l) 2 (1 9 - 1 4 -X l+ 3 ^ - 1 4 X 2 + 6 ^ | x J + 3 x j) l
J T [3 0 + (2 j c , - 3 j c 2) 2(1 8 - 3 2 j c , + 1 2 j c f + 4 8 j c 2 - 3 6 j c , j c 2 + 2 7 ^)]

X(0,-1)

F=3

3 Branin [-5,10]

min F = a(Xl ~ b X l +cx r d)2+ e (l - f) cos(* ,) + e

o = l,6 = — f —) ,c = - X 7 , d = 6,e = \ 0 , f = - X -
4 {22) 22 8 2

X(-22/7,12.275)

X(22/7,2.275)

X(66/7,2.475)

F=0.3977272

4
Martin &

Gaddy
[0,10] min F = (Xl ~ X2)2 + (0 t ,+ X 2 ~ 10)/3)2

X(5,5)

F=0

5 Rosenbrock
[-1.2,1.2]

[-10,10]

ii vT
m i X + H—* 1

X (l,l)

F=0

6 Rosenbrock [-1.2,1.2] m i n F = £ (1 0 0 (* ,2 - X (+ ,) 2 + (1 - Xl)2}
i = I

X (l, 1,1,1)

F=0

7 Hyper sphere
[-5.12,

5.12] 111111 F = E x , 2
i=i

X(0,0,0,0,0,0)

F=0

73

Table 3.2. Parameter Settings for the Bees Algorithm

Parameters

Func No n m e nep nsp ngh sc(%) sat

1 10 3 1 2 4 0.1 1 10

2 20 3 1 1 5 2 20 10

3 10 3 1 2 4 0.8 5 10

4 20 3 1 2 4 0.5 5 10

5a 8 2 1 1 4 0.1 1 10

5b 10 3 1 2 4 0.1 0.5 10

6 20 5 1 4 10 0.01 0.5 10

7 10 3 1 2 10 0.3 1 10

74

Table 3.3 Results

fiinc

no

SIMPSA

NE

SIMPSA GA ANTS

The Bees

Algorithm

su
cc

es
s

% mean

no. of

eval. su
cc

es
s

% mean

no. of

eval. su
cc

es
s

% mean

no. of

eval. su
cc

es
s

% mean

no. of

eval. su
cc

es
s

%

mean no.

of eval.

1 *** *** *** 1 0 0 10160 1 0 0 6000 1 0 0 1 2 1 0

2 *** *** *** *** 1 0 0 5662 1 0 0 5330 1 0 0 999

3 *** *** *** *** 1 0 0 7325 1 0 0 1936 1 0 0 1657

4 *** *** *** *** 1 0 0 2844 1 0 0 1688 1 0 0 526

5a 1 0 0 10780 1 0 0 4508 1 0 0 1 0 2 1 2 1 0 0 6842 1 0 0 898

5b 1 0 0 12500 1 0 0 5007 *** *** 1 0 0 7505 1 0 0 2306

6 99 21177 94 3053 *** *** 1 0 0 8471 1 0 0 29185

7 *** *** *** 1 0 0 15468 1 0 0 22050 1 0 0 7113

*** Data not available

75

Table 3.3 presents the results obtained by the Bees Algorithm and those by the

deterministic Simplex method (SIMPSA) (Mathur et al., 2000), the stochastic

simulated annealing optimisation procedure (NE SIMPSA) (Mathur et al., 2000), the

Genetic Algorithm (GA) (Mathur et al., 2000) and the Ant Colony System (ANTS)

(Mathur et al., 2000). Again, the numbers of points visited shown are averages for 100

independent runs.

All the algorithms were run 100 times for each parameter setting on each benchmark

problem. For each of the 100 trials, the optimisation procedure was run until either it

located an exact solution or found a solution which was less then 0 .0 0 1 (or %0 .1 ,

whichever was smaller).

The first test function was De Jong’s, for which the Bees Algorithm could find the

optimum 120 times faster than ANTS and 207 times faster than GA, with a success

rate of 100%. The second function was Goldstein and Price’s, for which the Bees

Algorithm reached the optimum almost 5 times faster than ANTS and GA, again with

100% success. With Branin’s function, there was a 15% improvement compared with

ANTS and 77% improvement compared with GA, also with 100% success.

Functions 5 and 6 were Rosenbrock’s functions in two and four dimensions

respectively. In the two-dimensional function, the Bees Algorithm delivers 100%

success and good improvement over the other methods (at least twice fewer

evaluations than the other methods). In the four-dimensional case, the Bees Algorithm

needed more function evaluations to reach the optimum with 100% success. NE

SIMPSA could find the optimum with 10 times fewer function evaluations but the

success rate was only 94% and ANTS found the optimum with 100% success and 3.5

76

times faster than the Bees Algorithm. Test function 7 was a Hyper Sphere model of six

dimensions. The Bees Algorithm needed half the number of function evaluations

compared with GA and one third of that required for ANTS.

3.6. Summary

A new swarm-based intelligent optimisation procedure called the Bees Algorithm is

presented. The algorithm mimics the food foraging behaviour of swarms of honey

bees. In its basic version, the algorithm performs a kind of neighbourhood search

combined with random search. Further investigations are also given on details of the

local and global search methods used in the algorithm. Also, details of the

improvements made to local and global search methods are presented, including

dynamic recruitment, proportional shrinking and abandonment strategies. The

performance of the algorithm is evaluated on benchmark results, comparing it to some

other well-known algorithms in the literature.

77

Chapter 3

THE BEES ALGORITHM:

THEORY AND IMPROVEMENTS

3.1. Preliminaries

Many complex multi-variable optimisation problems cannot be solved exactly within

polynomially bounded computation times. This generates much interest in search

algorithms that find near-optimal solutions in reasonable running times. The swarm-

based algorithm described in this thesis is a search algorithm capable o f locating good

solutions efficiently. The algorithm is inspired by the food foraging behaviour of

honey bees and could be regarded as belonging to the category of “intelligent”

optimisation tools.

48

In this chapter, a new population-based search algorithm called the Bees Algorithm

(BA) is presented (Pham et al., 2006). The algorithm mimics the food foraging

behaviour of swarms of honey bees. In its basic version, the algorithm performs a kind

of neighbourhood search combined with random search and can be used for both

combinatorial optimisation and functional optimisation. The Bees Algorithm is

presented in this chapter, with benchmark results comparing the performance of the

algorithm with some well-known algorithms in the literature. Further details are also

given of the local and global search methods used in this algorithm. Moreover, in this

chapter, details of the improvements made to local and global search methods are

presented, including dynamic recruitment, proportional shrinking and abandonment

strategies.

The chapter is organised as follows: section 3.2 presents a description the basic Bees

Algorithm in its simplest form with a simple example of the algorithm procedure. In

section 3.3, some key characteristics of the Bees Algorithm are discussed, including

site selection, neighbourhood search and global search. Improvements to local and

global search are presented in section 3.4, including dynamic recruitment, proportional

shrinking for selected sites and site abandonment. Experimental results and benchmark

tables are presented in section 3.5 to demonstrate the performance and the robustness

of the algorithm compared to some well-known algorithms in the literature.

49

3.2. The basic Bees Algorithm

The Bees Algorithm is an optimisation algorithm inspired by the natural foraging

behaviour of honey bees to find the optimal solution. Fig. 3.1 shows the pseudo-code

and Fig. 3.2 presents the flowchart o f the basic Bees Algorithm in its simplest form.

The algorithm requires a number o f parameters to be set, namely: number of scout

bees (n), number of patches selected out of n visited points (m), number of best

patches out of m selected patches (e), number of bees recruited for e best patches

(nep), number of bees recruited for the other (m-e) selected patches (nsp), size of

patches (ngh) and the stopping criterion. The algorithm starts with the n scout bees

being placed randomly in the search space. The fitnesses of the points visited by the

scout bees are evaluated in step 2. A simple demonstration is given in Fig. 3.3 which

shows the basis steps of the algorithm.

In step 4, bees that have the highest fitnesses are chosen as “selected bees” and those

sites that have been visited will be chosen for neighbourhood search. Then, in steps 5

and 6 , the algorithm conducts searches in the neighbourhood of the selected bees in

terms of more bees for the e best bees. The latter can be chosen directly according to

the fitnesses associated with the points they are visiting. Alternatively, the fitness

values are used to determine the probability of the bees being selected. Searches in the

neighbourhood of the e best bees which represent more promising solutions are made

more detailed by recruiting more bees to follow the e best bees than other selected

bees. Also within scouting, differential recruitment is one of the key operations of the

Bees Algorithm. Both scouting and differential recruitment are used in nature.

50

1. Initialise population with random solutions.

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

//Forming new population.

4. Select sites for neighbourhood search.

5. Recruit bees for selected sites (more bees for e best sites) and evaluate

fitnesses.

6 . Select the fittest bee from each site.

7. Assign remaining bees to search randomly and evaluate their fitnesses.

8 . End While.

Figure 3.1 Pseudo-code o f the basic Bees Algorithm

However, in step 6 , for each site only one bee with the highest fitness will be selected

to form the next bee population. In nature, there is no such a restriction. This

restriction is introduced here to reduce the number of points to be explored.

In step 7, the remaining bees in the population are assigned randomly around the

search space scouting for new potential solutions. These steps are repeated until a

stopping criterion is met. At the end of each iteration, the colony will have two parts to

its new population - representatives from each selected patch and other scout bees

assigned to conduct random searches.

51

N
ei

g
h

b
o

u
rh

o
o

d

S
ea

rc
h

No Is Stopping
Criteria met?

Yes

New Population of Scout Bees

Stop Foraging

Evaluate the Fitness of the Population

Recruit Bees for Selected Sites
(more Bees for the Best e Sites)

Determine the Size of Neighbourhood
(Patch Size ngh)

Select m Sites for Neighbourhood Search

Select the Fittest Bee from Each Site

Initialise a Population of n Scout Bees

Assign the (n-m) Remaining Bees to Random Search

Figure 3.2 Flowchart of the basic Bees Algorithm

52

A *

Graph 1. Initialise population with random solutions
and evaluate the fitness.

Graph 4. Recruit bees around selected sites (more bees
for the best e sites).

Graph. 2. Select sites for neighbourhood search'
and“°”. Graph 5. Select the fittest from each site

Graph 3. Define neighbourhood range. Graph 6. Assign remaining bees “o” to search
randomly and evaluate their fitness

Figure 3.3 Simple example of the Bees Algorithm

53

3.3. Characteristics of the proposed Bees Algorithm

In this section some key characteristics of the proposed Bees Algorithm will be

discussed in detail, including neighbourhood search and site selection strategies.

3.3.1 Neighbourhood Search

Neighbourhood search is one o f the essential parts for all evolutionary algorithms as

well as for the Bees Algorithm. In the Bees Algorithm, the searching process in a

selected site is similar to that of the foraging field exploitation of honey bee colonies

in nature. As explained in previous chapter, when a scout bee finds any good enough

foraging field, she advertises it back to the hive in order to recruit more bees to that

field. This behaviour is useful in terms of bringing more nectar into the hive. Hence,

this fruitful method might be also useful for engineering optimization problems.

The harvesting process also includes a monitoring phase which is necessary for

decision making for a waggle dance back in the hive for the purpose of recruiting

more bees to that site. In the Bees Algorithm, this monitoring process can be used as a

neighbourhood search. Essentially, when a scout bee finds a good field (good

solution), she advertises her field to more bees. Subsequently, those bees fly to that

source, take piece of nectar and return back to hive. Depending on the quality, this

source can be advertised by some of the bees that are already aware of the source. In

the proposed Bees Algorithm, this behaviour has been used as a neighbourhood

search. As explained above, from each foraging site (or neighbourhood site) only one

54

bee is chosen. This bee must have the best solution information about that field. Thus,

the algorithm can create some solutions which are related to the previous ones.

Neighbourhood search is based on a random distribution of bees in a predefined

neighbourhood range (patch size). For every selected site, bees are randomly

distributed to find a better solution. As shown in Fig. 3.4, only the fittest (best) bee is

chosen as a representative and the centre o f the neighbourhood patch shifted up to best

bees' position (from A to B).

On the other hand, during the harvesting process other elements should also be taken

into account for increasing efficiency, such as number of recruited bees in the

neighbourhood patch and the patch size.

The number of recruited bees around selected sites should be defined properly. When

the number is increased, then the number o f function evaluations will also be increased

and vice versa.

This problem also depends on the neighbourhood range. If the range can be arranged

adequately, then the number of recruited bees will depend on the complexity o f a

solution space. This will be discussed later with more details.

55

Representative
(Best) Bee /

(a)

Representative
(Best) Bee /

(b)

Figure 3.4 Graphical explanation of basic neighbourhood search.

56

3.3.4 Site Selection

For site selection two different techniques have been implemented: probabilistic

selection and best site selection.

In probabilistic selection, the roulette wheel method has been used and sites with

better fitness have more chance o f being selected, but in best site selection, the best

sites according to fitness will be selected. In this section, different combinations of

selection using the two methods from pure probabilistic selection (q=0) to pure best

site selection (q=l) have been investigated and mean iterations required to enrich the

answer. Results are shown in Fig. 3.5 and Fig. 3.6.

Regarding results, best selection will present better results and also is simpler, so in its

basic form the best sites method is selected as the neighbourhood site selections

method for the Bees Algorithm.

3.3.5. Global Search

In the first step, all scout bees (n) are placed randomly across the fitness landscape to

explore for new flower patches. After neighbourhood search, n-m bees are again

placed randomly across the fitness landscape to explore new patches. The latter part is

the main global search tool for the Bees Algorithm.

57

Mean Iterations to get the answer in 1000 runs

1200
1000
800

600
400
200

q=0
q=0.1
q=0.5
q=0.9
q=1

300100 150

n (P o p u la t i o n)

200 250

Figure 3.5 Mean iteration required for different combinations of selection

Successfulness

100

 q=0
 q=0.1

q=0.5
q=0.9

 q=1

100

n (P op u la t io n)

150 200

Figure 3.6 Successfulness of different combinations of selection methods

58

3.4. Improvements in local and global search

In this section, further improvements to the Bees Algorithm are presented including

dynamic recruitment, proportional shrinking for selected sites and site abandonment.

3.4.1 Dynamic recruitment

Dynamic recruitment is introduced to improve the way that the bees are recruited into

a selected site. In the basic Bees Algorithm, when a site is selected for neighbourhood

search there will be a certain number o f bees assigned for local search. In the previous

strategy, bees are sent all at once to the same local search space defined as the

neighbourhood patch (see Fig. 3.4). Although it is proven to be a useful strategy,

dynamic recruitment presented here deals with the local search space faster.

Details of dynamic recruitment are given in Fig. 3.7. In step 5, bees are sent into

selected patches one by one and if there is any improvement compared to the original

bee, the recruited bee will replace the original and the patch will move to a new

position around the new and fittest recruit. This will be carried out until the visits by

all recruited bees are completed..

59

1. Initial population with n random solution.

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the fittest

bee from each site and shrink patches

for(k=l ; k=e ; k++) // Elite Sites

for(Bee=l ; Bee= nep ; Bee++) // More Bees for Elite Sites

BeesPositionlnNghO = GenerateRandomValueInNgh(/rom x+ngh to x-ngh);

Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = Bee(i);

for(k=e ; k=m ; k++) // Other selected sites (m-e)

for(Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e)

BeesPositionlnNghO = GenerateRandomValueInNgh(/rom x+ngh to x-ngh);

Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = Bee(i);

6. Assign remaining bees to search randomly and evaluate their fitnesses. // (n-m) assigned to

search randomly into whole solution space

7. End While

Figure 3.7 The Bees Algorithm with dynamic recruitment.

60

3.4.2 Proportional shrinking for selected sites

The term proportional shrinking refers to a contraction of patch sizes of all selected

sites (m) in every iteration of the algorithm proportional to a constant ratio called

Shrinking Constant (sc). Equation 3.1 gives the definition of the proportional

shrinking idea, in which the initial patch size is set as a starting patch size in the first

iteration of the algorithm. Depending on the iteration (/), the patch size o f the site m

(Nghm(i)) is calculated as a contraction from the previous size (Nghm(i-\)) proportional

to the value o f sc. The value of sc can be defined by the user between 0 and 1 that

represents the percentage by which the patch will shrink. However, the patch size must

be a positive value all the time (Nghm(i) > 0).

i = l N g h ^i) = InitialPathSize,
Nhgm(i) = -

i> 1 Nghm(i) = Nghm(i- lX (l-S C)) and N g ^ X) .
(3.1)

This new strategy, implemented as step 6 in Fig. 3.8, is proposed to improve the

solution quality and evaluation time. At the beginning, for the local search, a wide

patch size increases the probability o f finding a better solution. By shrinking it saves

the time and increases the solution quality by fine tuning in relatively narrow local

search space.

61

3.4.3 Site Abandonment

The site abandonment strategy is introduced to improve the efficiency of the local

search. The term refers the abandonment of a site in which there is no more

improvement of the fitness value of the fittest bee after a certain number of iterations.

In many complex optimisation problems, there may be many local solutions in their

solution spaces and it is not possible to escape from local optima without an efficient

procedure.

Parallel scout bee search and better neighbourhood exploitation are two strong features

o f the Bees Algorithm that are capable o f dealing with many complex optimisation

problems. But for all other algorithms it may not be possible to escape from local

optima. Site abandonment is here introduced to deal with this problem.

In step 8 (see Fig. 3.8), if the points visited near a selected site are all inferior to that

site, after a certain number of iterations (i.e. sat: site abandonment threshold), then the

location of the site is recorded and the site abandoned. Bees at the site are assigned to

random search (i.e. made to scout for new potential solutions).

This step is directly inspired by honey-bees in nature. Depending on the solution,

quality bees either continue to exploit a patch by sending more bees or will abandon

the site after several visits.

62

1. Initial population with n random solution.

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the fittest

bee from each site and shrink patches

for (k=l ; k=e ; k++) // Elite Sites

for (Bee=l ; Bee= nep ; Bee++) // More Bees for Elite Sites

BeesPositionlnNghO = GenerateRandomValueInNgh(/rom x+ngh to x-ngh)',

Evaluate Fitness = Bee(i); //Evalute the fitnees of recruited Bee(i)

If (Bee(i) is better then Bee(i-l)) RepresentativeBee = Bee(i);

for (k=e ; k=m ; k++) // Other selected sites (m-e)

for (Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e)

BeesPositionlnNghO = GenerateRandomValuelnNgh(/rom x+ngh to x-ngh);

Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better then Bee(i-l)) RepresentativeBee = Bee(i);

6. for (patch=l; patch=m; patch++) //Shrink all patches (m) proportional to SC

NghJi) = Ngkm(i - i) * ({] - S C)) ;

7. If (Iteration > sat)

If (no improvement on the site)

Save the Best Fitness;

Abandon the Site;

Bee(m) = GenerateRandomValue(All Search Space);

8. Assign remaining bees to search randomly and evaluate their fitnesses. // (n-m) assigned to

search randomly into whole solution space

Figure 3.8 Pseudo-code of the Bees Algorithm with proportional shrinking and site

abandonment.

63

3.5. Experimental Results

Clearly, the Bees Algorithm as described above is applicable to both combinatorial

and functional optimisation problems. In this section, functional optimisation is

presented to show the robustness of the algorithm.

Three standard functional optimisation problems were used to test the Bees Algorithm

and establish the correct values o f its parameters and seven problems for

benchmarking the algorithm. As the Bees Algorithm searches for the maximum,

functions to be minimised were inverted before the algorithm was applied.

The first test function (see equation 3.2) is the axis parallel hyper-ellipsoid which is

similar to De Jong's function 1 (see Fig. 3.9). It is also known as the weighted sphere

model. It is continuous, convex and unimodal.

/iaw = 2 > ,2
/=1 (3.2)

-5.12 < jc, < 5.12

Global Minimum for this function:

f (x) = 0; x(0 = 0, i = \ :n

64

The following parameter values were set for the axis parallel hyper-ellipsoid test

function: scout bee population n= 10, number of selected sites m=3, number of elite

sites e=l, initial patch size ngh=0.5, number o f bees around elite points nep=2, number

of bees around other selected points nsp=2 .

The following parameter values of the Bees Algorithm were set for this test: scout bee

population n= 10, number of selected sites m=3, number of elite sites e=l, initial patch

size ngh=2.75, number bees around elite points nep=2, number of bees around other

selected points nsp=2. And the following parameter values of the improved Bees

Algorithm were set for this test: scout bee population n= 10, number of selected sites

m=3, number of elite sites e=l, initial patch size ngh=5.12, number of bees around

elite points nep=2 , number of bees around other selected points nsp=2 , shrinking

constant sc=0.20 (20%) and site abandonment threshold sat=10. The basic Bees

Algorithm was set with exactly the same parameters excluding the shrinking constant

and site abandonment threshold.

Fig. 3.10 shows the fitness values obtained as a function of the number of points

visited for both original and improved algorithms. The results are averages for 100

independent runs. It can be seen that after approximately 500 visits, the improved

algorithm was able to find solutions close to the optimum while the original algorithm

needs more time to find the optimum. It is also important to emphasise that the initial

patch size was set as the whole solution space for the improved Bees Algorithm.

65

-5 -5
variable 2 variable 1

Figure 3.9 Visualization of 2D axis parallel hyper-ellipsoid function.

Axis Parallel Hyper-Ellipsoid Function
0.2

0.15

0.05

0 100 200 300 400 500 600 700 800 900 1000

Generated Points (Mean number o f Function Evaluations)

- o — The Bees Algorithm — Improved Bees Algorithm

Figure 3.10 Evolution of fitness with the number of points visited (the axis parallel

hyper-ellipsoid)

6 6

Shekel’s Foxholes (see equation 3.3), a 2D function from De Jong’s test suite (Fig.

3.11), was chosen as the first function for testing the algorithm.

/ (J C) = 119.998 - f) ---------------- -
, = 1 2 / \ 0

j + Z (x . - a
I 1 9

y v
32 - 1 6 0 16 32 ... 0 16 32

- 3 2 - 3 2 - 3 2 - 3 2 - 3 2 ... 32 32 32

- 65 .536 < xf < 65 .536

For this function,

= (- 3 2 ,-3 2)

f (Z max) = H9 .998

(3.3)

67

The following parameter values of the Bees Algorithm were set for this test: scout bee

population n= 45, number of selected sites m=3, number of elite sites e=l, initial patch

size ngh=3, number bees around elite points nep=7, number of bees around other

selected points nsp=2. And the following parameter values for the improved Bees

Algorithm were set for this test: scout bee population n= 10, number of selected sites

m=3, number of elite sites e=l, initial patch size ngh=3, number bees around elite

points nep=2 , number of bees around other selected points nsp=2 , shrinking constant

sc= 0.01 (1%) and site abandonment threshold sat=10. The basic Bees Algorithm was

set with exactly the same parameters excluding the shrinking constant and site

abandonment threshold.

Note that ngh defines the initial size o f the neighbourhood in which follower bees are

placed. For example, if x is the position o f an elite bee in the ith dimension, follower

bees will be placed randomly in the interval xje ±ngh in that dimension at the

beginning of the optimisation process.

Fig. 12 shows the fitness values obtained as a function of the number of points visited.

The results are averages for 100 independent runs. It can be seen that after

approximately 1200 visits, the Bees Algorithm was able to find solutions close to the

optimum. However, the improved algorithm is able to find solutions close to the

optimum faster than its predecessor

68

J
4

4
4

4
4 4

4 «
* -41

*

4
4

Figure 3.11 Inverted Shekel’s Foxholes

Inverted S h ek el's F oxholes

120

100

60

40
20000 200 400 600 800 1000 1200 1400 1600 1800

Generated Points (Mean number o f Function Evaluations)

- The Bees Algorithm — Improved Bees Algorithm

Figure 3.12 Evolution of fitness with the number of points visited (Inverted Shekel’s

Foxholes)

69

To test the reliability of the algorithm, the inverted Schwefel’s function with six

dimensions (see equation 3.4) was used. Fig. 4 shows a two-dimensional view of the

function to highlight its multi-modality.

/ (*) = - ! - x , s i n (y/\ x , |)
- ■ (3.4)

- 500 < x, < 500

For this function,

* n a x = (420.9829,420.9829,420.9829,420.9829,420.9829,420.9829)

/ (i «) * 2513.9

The following parameter values o f the Bees Algorithm were set for this test: scout

bees population n=500, number of selected sites m=15, number of elite sites e=5,

initial patch size ngh=20, number of bees around elite points nep=50, number of bees

around other selected points nsp=30. And the following parameter values for the

improved Bees Algorithm were set for this test: scout bees population n=500, number

of selected sites m=15, number of elite sites e=5, initial patch size ngh=20, number of

bees around elite points nep=50, number of bees around other selected points nsp=30.

shrinking constant sc=0.05 (5%) and site abandonment threshold sat=20. The basic

Bees Algorithm was set with exactly the same parameters excluding the shrinking

constant and site abandonment threshold.

70

Variable 2 -500 -500 Variable 1

Figure 3.13 2D Schwefel’s function

Inverted Schw efel’s Function (6 dim)

2400

2200

£
£ 2000

1800

1600
100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

0
Generated Points (mean number o f evaluations)

The Bees Algorithm --------Improved Bees Algorithm

Figure 3.14 Evolution of fitness with the number of points visited (Inverted

Schewefel’s Fuction)

71

Fig. 3.14 shows how the fitness values evolve with the number of points visited. The

results are averages for 100 independent runs. After approximately 3,000,000 visits,

the Bees Algorithm was able to find solutions close to the optimum. On the other

hand, the improved Bees Algorithm was able to find solutions close to the optimum

much faster than the original algorithm. The main reason for this high success rate is

the shrinking strategy as well as the dynamic recruitment.

The Bees Algorithm was applied to seven benchmark functions (Mathur et al., 2000)

and the results compared with those obtained using other optimisation algorithms. The

test functions and their optima are shown in Table 3.1.

The Bees Algorithm was applied to eight benchmark functions (Mathur et al., 2000)

and the results compared with those obtained using other optimisation algorithms. The

test functions and their optima are shown in Table 3.1.

72

Table 3.1 Test Functions (Mathur et al., 2000)

No Function Name Interval Function Global Optimum

1 De Jong
[-2.048,

2.048]
max F = (3905.93) - 100C* - X \) " 0 " X,)2

X (l,l)

F=3905.93

2
Goldstein &

Price
[-2,2]

min F = [1 + (Xl+x3 +1)2 0 9-14 x, + 3 x! ~14 Xi+ 6 X, X2 + 3 XT*)]
[̂30+(2JCl-3X2)I(18-32JCl + 12^ + 48Xl-36XlXj + 27x;)l

X(0,-1)

F=3

3 Branin [-5, 10]

min F = a(x2 - bXl+ c Xl- d f + e(l - f) cos(Xl)+e

a = l,b = — [—) ,c = - X 7 , d = 6,e = \0 , f = - X -
4 y i l) 22 8 2

X (-22/7,12.275)

X(22/7,2.275)

X(66/7,2.475)

F=0.3977272

4
Martin &

Gaddy
[0, 10] min F = (Xx ~ X2>2 + (<X,+ X2 ~ 1 °)7 3)2

X(5,5)

F=0

5 Rosenbrock
[-1.2,1.2]

[-10,10]
min F =100 (x] - X l) 2 + (i - Xx) 2

X (l,l)

F=0

6 Rosenbrock [-1.2,1.2] min F = £ {100 (x] ~ X^ + 0 " Xt)2) >*1
X (l,1,1,1)

F=0

7 Hyper sphere
[-5.12,

5.12]
“ to F = Z x , 21=I

X(0,0,0,0,0,0)

F=0

73

Table 3.2. Parameter Settings for the Bees Algorithm

Parameters

Func No n m e nep nsp ngh sc(%) sat

1 1 0 3 1 2 4 0 .1 1 1 0

2 2 0 3 1 1 5 2 2 0 1 0

3 1 0 3 1 2 4 0 .8 5 1 0

4 2 0 3 1 2 4 0.5 5 1 0

5a 8 2 1 1 4 0 .1 1 1 0

5b 1 0 3 1 2 4 0 .1 0.5 1 0

6 2 0 5 1 4 1 0 0 .0 1 0.5 1 0

7 1 0 3 1 2 1 0 0.3 1 1 0

74

Table 3.3 Results

func

no

SIMPSA

NE

SIMPSA GA ANTS

The Bees

Algorithm

su
cc

es
s

% mean

no. of

eval. su
cc

es
s

% mean

no. of

eval. su
cc

es
s

% mean

no. of

eval. su
cc

es
s

% mean

no. of

eval. su
cc

es
s

%

mean no.

of eval.

1 *** ♦♦♦ *** *** 1 0 0 10160 1 0 0 6000 1 0 0 1 2 1 0

2 ♦♦♦ *** *** *** 1 0 0 5662 1 0 0 5330 1 0 0 999

3 *** *** *** *** 1 0 0 7325 1 0 0 1936 1 0 0 1657

4 ** * *♦* *** *** 1 0 0 2844 1 0 0 1688 1 0 0 526

5a 1 0 0 10780 1 0 0 4508 1 0 0 1 0 2 1 2 1 0 0 6842 1 0 0 898

5b 1 0 0 12500 1 0 0 5007 *** ♦♦♦ 1 0 0 7505 1 0 0 2306

6 99 21177 94 3053 *** ♦♦♦ 1 0 0 8471 1 0 0 29185

7 *** **♦ *** *** 1 0 0 15468 1 0 0 22050 1 0 0 7113

*** Data not available

75

Table 3.3 presents the results obtained by the Bees Algorithm and those by the

deterministic Simplex method (SIMPSA) (Mathur et al., 2000), the stochastic

simulated annealing optimisation procedure (NE SIMPSA) (Mathur et al., 2000), the

Genetic Algorithm (GA) (Mathur et al., 2000) and the Ant Colony System (ANTS)

(Mathur et al., 2000). Again, the numbers of points visited shown are averages for 100

independent runs.

All the algorithms were run 100 times for each parameter setting on each benchmark

problem. For each of the 100 trials, the optimisation procedure was run until either it

located an exact solution or found a solution which was less then 0 .0 0 1 (or %0 .1 ,

whichever was smaller).

The first test function was De Jong’s, for which the Bees Algorithm could find the

optimum 120 times faster than ANTS and 207 times faster than GA, with a success

rate of 100%. The second function was Goldstein and Price’s, for which the Bees

Algorithm reached the optimum almost 5 times faster than ANTS and GA, again with

100% success. With Branin’s function, there was a 15% improvement compared with

ANTS and 77% improvement compared with GA, also with 100% success.

Functions 5 and 6 were Rosenbrock’s functions in two and four dimensions

respectively. In the two-dimensional function, the Bees Algorithm delivers 100%

success and good improvement over the other methods (at least twice fewer

evaluations than the other methods). In the four-dimensional case, the Bees Algorithm

needed more function evaluations to reach the optimum with 100% success. NE

SIMPSA could find the optimum with 10 times fewer function evaluations but the

success rate was only 94% and ANTS found the optimum with 100% success and 3.5

76

times faster than the Bees Algorithm. Test function 7 was a Hyper Sphere model of six

dimensions. The Bees Algorithm needed half the number o f function evaluations

compared with GA and one third of that required for ANTS.

3.6. Summary

A new swarm-based intelligent optimisation procedure called the Bees Algorithm is

presented. The algorithm mimics the food foraging behaviour o f swarms of honey

bees. In its basic version, the algorithm performs a kind of neighbourhood search

combined with random search. Further investigations are also given on details of the

local and global search methods used in the algorithm. Also, details o f the

improvements made to local and global search methods are presented, including

dynamic recruitment, proportional shrinking and abandonment strategies. The

performance of the algorithm is evaluated on benchmark results, comparing it to some

other well-known algorithms in the literature.

77

Chapter 4

BEES ALGORITHM FOR CONTINUOUS

DOMAINS

4.1. Preliminaries

In this chapter, several continuous applications of the Bees Algorithm are presented,

including neural network training for a variety of industrial applications and recursive

filter design. Neural networks are computational models of the biological brain. Like

the brain, a neural network comprises a large number of interconnected neurons. Each

neuron is capable of performing only simple computation. However, as an assembly of

neurons, a neural network can learn to perform complex tasks including pattern

recognition, system identification, trend prediction and process control.

One of the best known types of neural network is the Multi-Layered Perceptron

(MLP). MLP networks are usually trained; that is the weights of the connections

78

between the neurons are adjusted, by employing the backpropagation (BP) algorithm,

which is a gradient-based optimisation algorithm. Because of its reliance on gradient

information, the BP algorithm sometimes has difficulties handling local optima and

cannot develop MLP networks with optimally adjusted weights.

The chapter is organised as follows: section 4.2 presents a detailed discussion on the

optimisation of the weights o f multi-layered perceptrons (MLPs) using the Bees

Algorithm for pattern recognition in statistical process control charts. Section 4.3

presents the identification of defects in wood veneer sheets using the neural networks

for several different features. Section 4.4 presents an application of the Bees

Algorithm to electronic recursive filter design. The general summary of the proposed

method, applications and possible future research are analysed in section 4.5.

4.2. Optimisation of the Weights of Multi-Layered Perceptrons

Using the Bees Algorithm for Pattern Recognition in Statistical

Process Control Charts

In this section, an implementation of the Bees Algorithm is presented for training the

weights of Multi-Layered Perceptrons (MLP) for pattern recognition in statistical

process control charts. The results o f control chart pattern recognition experiments

using the Bees Algorithm are compared with the standard backpropagation algorithm.

79

4.2.1. Control Chart Patterns

Control charts enable a manufacturing engineer to compare the actual performance of

a process with customer specifications and provide a process capability index to guide

and assess quality improvement efforts (Montgomery, 2000). By means of simple

rules, it is possible to determine if a process is out of control and needs corrective

action. However, it is possible to detect incipient problems and prevent the process

from going out of control by identifying the type of patterns displayed by the control

charts. These patterns can indicate if the process being monitored is operating

normally or if it shows gradual changes (trends), sudden changes (shifts) or periodic

changes (cycles), (see Fig. 4.1). Various techniques that have been applied to this

control chart pattern recognition task can be seen in (Pham and Oztemel, 1992; Pham

and Oztemel, 1995; Pham and Chan,, 2001).

Training and testing data are produced using equation (4.1) for normal patterns,

equation (4.2) for cyclic patterns, equation (4.3) for increasing or decreasing trend

patterns, and equation (4.4) for upwards or downwards shift patterns. A total of 1500

patterns, 250 patterns in each of the six classes, were generated using the following

equations:

1. Normal patterns:

y0) = M + r(t) CT (4 1)

2. Cyclic patterns:

80

y(t) = fj. + r{t) cr +a sin(2;tf / 7") ^ 2)

3. Increasing or decreasing trends:

y(t) = M + r (t) c r ± g t

4. Upwards or downwards shifts:

y(t) = fi + r (t) a ± k s

where

P = mean value of the process variable being monitored (taken as 80 in this work)

a = standard deviation of the process (taken as 5)

a = amplitude of cyclic variations (taken as 15 or less)

& = magnitude of the gradient of the trend (taken as being in the range 0.2 to 0.5)

^ = parameter determining the shift position (= 0 before the shift position; = 1 at the

shift position and thereafter)

r = normally distributed random number (between - 3 and +3)

s = magnitude of the shift (taken as being in the range 7.5 to 20)

1 = discrete time at which the pattern is sampled (taken as being within the range 0 to

59)

T = period of a cycle (taken as being in the range 4 to 12 sampling intervals)

= sample value at time t

498 patterns (83 in each class) were used for training an MLP classifier and 1002

patterns (167 in each class) were employed for testing the trained classifier.

81

Each pattern used in the experiments was a time series comprising 60 points. The

value y W at each point t was normalised to fall in the range [0 , + 1] according to the

following equation (Pham and Oztemel, 1995):

max s mm (4.5)

where,

T(0 = scaled pattern value (in the range 0 to 1)

y mm = minimum allowed value (taken as 35)

Tmax = maximum allowed value (taken as 125)

82

[_ - -
Normal Pattern

Cycle

4 A/yV\yVAfV M /

Increasing Trend

Decreasing Trend

Upward Shift

Downward Shift

Figure 4.1. Examples of the control chart patterns

4.2.2. Proposed Bees Algorithm for MLP weight optimisation

This section summarises the main steps of the Bees Algorithm applied to MLP weight

optimizations. It is based on the pseudo-code of the algorithm given in Fig. 3.8.

The algorithm requires a number of parameters to be set, namely: number of scout

bees (n), number of sites selected for exploitation out of n visited sites (m), number of

top-rated (elite) sites among the m selected sites (e), number of bees recruited for the

best e sites (nep), number of bees recruited for the other (m-e) selected sites (nsp),

initial size of each patch (ngh; a patch is a region in search space that includes a

visited site and its neighbourhood), shrinking constant (sc) and stopping criterion. The

algorithm starts with the n scout bees being placed randomly in the search space. The

fitnesses of the sites visited by the scout bees are evaluated in step 2 .

In step 4, the m sites with the highest fitnesses are designated as “selected sites” and

chosen for neighbourhood search. In step 5, the algorithm conducts searches around

the selected sites, assigning more bees to search in the vicinity of the best e sites.

Selection of the best sites can be made directly according to the fitnesses associated

with them. Alternatively, the fitness values are used to determine the probability of the

sites being selected. Searches in the neighbourhood of the best e sites - those which

represent the most promising solutions - are made more detailed. As already

mentioned, this is done by recruiting more bees for the best e sites than for the other

selected sites. Together with scouting, this differential recruitment is a key operation

of the Bees Algorithm. For each patch, only the bee that has found the site with the

highest fitness (the “fittest” bee in the patch) will be selected to form part of the next

bee population. In nature, there is no such a restriction. This restriction is introduced

84

here to reduce the number of points to be explored. In step 6 , after the recruitment, all

patches will shrink down evenly, proportional to shrinking constant (sc). Also in step

6 , if the points visited near a selected site are all inferior to that site, after a certain

number of iterations (i.e. Abandon threshold), then the location of the site is recorded

and the site abandoned. Bees at the site are assigned to random search (i.e. made to

scout for new potential solutions).

In step 8 , the remaining bees in the population are assigned randomly around the

search space to scout for new potential solutions.

At the end of each iteration, the colony will have two parts to its new population:

representatives from the selected patches, and scout bees assigned to conduct random

searches. These steps are repeated until a stopping criterion is met.

The MLP network training procedure using the Bees Algorithm thus comprises the

following steps given in Fig. 4.2. The training of an MLP network can be regarded as

the minimisation of an error function. The error function defines the total difference

between the actual output and the desired output of the network over a set of training

patterns (Pham and Liu, 1995). Training proceeds by presenting to the network a

pattern of known class taken randomly from the training set. The error component

associated with that pattern is the sum of the squared differences between the desired

and actual outputs of the network corresponding to the presented pattern. The

procedure is repeated for all the patterns in the training set and the error components

for all the patterns are summed to yield the value of the error function for an MLP

network with a given set of connection weights.

85

1. Generate an initial population o f bees.

2. Apply the training data set to determine the value of the error function

associated with each bee.

3. Based on the error value obtained in step 2, create a new population of bees

comprising the best bees in the selected neighbourhoods and randomly placed

scout bees.

4. Stop if the value of the error function has fallen below a predetermined

threshold.

5. Else, return to step 2.

Figure 4.2 The MLP network training procedure using the Bees Algorithm.

86

In terms of the Bees Algorithm, each bee represents an MLP network with a particular

set of weight vectors. The aim of the algorithm is to find the bee with the set of weight

vectors producing the smallest value o f the error function.

The configuration of the multi-layer perceptrons (MLPs) involves three layers: an

input layer, a hidden layer and an output layer (see Fig. 4.3). The input layer has 60

neurons, one for each point in a pattern. The hidden layer consists of 35 neurons. This

number of hidden neurons is the same as adopted in previous experiments with BP-

trained networks. The output layer comprises 6 neurons, one for each of the six classes

(Pham and Oztemel, 1992). The input neurons perform no processing roles, acting

only as buffers for the input signals. Both hidden and output layers’ biases are used for

each neuron. Processing is carried out by the hidden and output neurons, the activation

functions for which were chosen to be o f the sigmoidal type (Pham and Liu, 1995).

4.23. Experimental results

Table 4.1 shows the parameter values adopted for the Bees Algorithm. The values

were decided empirically. In addition, the algorithm was initialised with all weight

values set randomly within the range -1 to 1. However, a square root error function is

deployed to determine the difference between the ideal and actual outputs for each

bee. Table 4.2 presents the training and test results for ten separate runs of the Bees

Algorithm. A typical plot of how classification accuracy evolves during training is

shown in Fig. 4.4. For comparison, the average for the ten runs is given in Table 4.3

against the classification results for an MLP network trained using backpropagation

(Pham and Oztemel, 1992).

87

bias bias

input
output j

input 2

^ output 2

input
^ output

input
layer

hidden
layer

output
layer

Figure 4.3. Structure o f a multi-layered perceptron network

88

Table 4.1 The parameters of the Bees Algorithm for SPC-MLP weight training

Bees Algorithm parameters Symbol Value

Population n 2 0 0

Number of selected sites m 2 0

Number of elite sites e 2

Initial patch size ngh 0 .1

Number bees around elite points nep 50

Number of bees around other nsp 2 0selected points

Shrinking constant sc 0 .0 1 (1%)

Site abandonment threshold sat 50

89

A
cc

ur
ac

y
(%

)

100

95

90

85

80 -

75 —

70 —
0 200 400 600 800 1000

N u m b e r of t ra in ing i tera tions

Figure 4.4 Performance of the system

90

Table 4.2. MLP classification results

Number of runs Training accuracy Test accuracy

1 98.59% 97.10%

2 98.59% 96.70%

3 98.39% 96.50%

4 98.85% 97.20%

5 98.19% 96.30%

6 96.39% 97.30%

7 97.78% 97.80%

8 98.99% 96.50%

9 98.91% 97.30%

1 0 97.79% 96.60%

Maximum 98.99% 97.80%

Minimum 97.78% 96.30%

Mean 98.25% 96.93%

91

Table 4.3 Results for different pattern recognisers

Pattern recogniser Learning accuracy Test accuracy

MLP (Backpropagation) 96.0% 95.2%

MLP (Bees Algorithm) 98.2% 96.9%

92

4.3. Optimising Neural Networks for Identification of Wood Defects

Using the Bees Algorithm

This section presents an application o f the new algorithm to the problem of identifying

defects in plywood veneer. An example of a sheet of wood veneer is shown in Fig. 4.5.

It can be seen that the sheet contains several defects. These could create quality

problems when the sheets are bonded together. Researchers have developed systems

for automatically detecting and identifying defects in plywood veneer. Such systems

generally involve the use of image processing techniques, feature extraction to capture

the essential characteristics of all defects and a classifier to recognise these defects.

The following sections provide an introduction to the algorithm and an explanation of

the wood defect problem and the neural network used to identify the defects.

4.3.1. Wood veneer defects

In this study, using a charge-coupled device (CCD) matrix camera, the wood veneer

defects were captured and stored on a digital computer. The wood veneer data

acquisition rig is shown in Fig. 4.6. These images were converted into grey level

histograms after applying segmentation and image processing algorithms. From the

first and second order statistical features extracted from the histogram, 17 features

were selected for training the neural network. These are shown in Table 4.4.

Altogether 12 wood veneer defects and clear wood as shown in Fig. 4.5 were included

in the examples used for training and testing the neural networks. Automated Visual

Inspection (AVI) systems for identifying defects using neural networks have been

93

proposed by Pham and Alcock, (1996) and Packianather and Drake, (2005). The

generic process for the visual inspection of wood defects is given in Fig. 4.7.

The wood panels are automatically moved to the image capture area by a conveyor

belt. The system uses a Hamamatsu monochrome CCD matrix camera (resolution 739

x 575 pixels) to take images of the wood veneer. Uniform illumination is provided by

a back light (58W fluorescent lamp) and front lighting system (halogen lamps: edges

500W and middle 300W). Basic image processing functions (e.g. thresholding and

filtering) are implemented in hardware. Image segmentation algorithms are used to

detect the boundaries of the sheet and open defects and defect detection algorithms are

used to find potential defect areas.

For the particular application studied here, 232 examples (both defects and clear

wood) were employed. This represents the complete set of examples available to the

authors. Each example is a vector containing 17 features. Table 4.5 shows thirteen

different classes of vectors and the number of examples in class. The initial

classification of these examples had been performed by a human inspector. For

subsequent neural network classification experiments, for each class, 80% (185 in

total) of the examples were selected at random to form the training set and the

remaining 20% (47 in total) formed the test set.

94

Bark Clear Coloured Curly
Wood Streaks grain

Discoloration Holes Pin Rotten Roughness
knots

Sound Splits Streaks Worm
knots holes

Figure 4.6 Wood veneer defect types. (There are 12 distinct types of defect that need

to be identified by the neural network plus clear wood)

Figure 4.5 The inspection rig for wood defect detection.

95

Table 4.4 Features selected for training of neural networks.

Feature Description

1 Mean grey level (p)

2 Median grey level below which 50% o f the
values fall

3 Mode grey level the most frequent value

4 Standard deviation of
the grey levels (s) the spread

5 Skewness
direction, extent o f

departure from
symmetry

6 Knrtosis
measures the

"peakedness " o f the
histogram

7 Number of pixels with
a grey level <80 number of dark pixels

8 Number of pixels with
a grey level >220 number o f bright pixels

9

Grey level (p) for
which there are 20

pixels below

lowest grey level - The
grey level p is used as

the lowest grey level to
accommodate for

potential noise pixels

10

Grey level (s) for
which there are 20

pixels above

highest grey level - The
grey level s is used as

the highest grey level to
accommodate far

potential noise pixels

11 Histogram tail length
on the dark side (q-p)

q is the grey level below
which there are 2000

pixels

12 Histogram tail length
on the bright side (s-r)

r is the grey level above
which there are 2000

pixels

13

Number of edge pixels
after thresholding a

segmented window at
mean value

defined to detect dark
and bright defects

14 Number of pixels after
thresholding at g -2a

15 The number of edge
pixels for feature 14

f l 4 and flS defined to
detect dark defects

16 Number of pixels after
thresholding at p +2o

17 Calculate the number
of edge pixels for
feature 16

f l6 and fl7 defined to
detect bright defects

96

Veneer sheet

Feature Extraction

Defect 1 Defect n Defect free

Figure 4.7 Generic automated visual inspection system for wood defect identification.

97

Table 4.5 Pattern classes and the number of examples used for training and testing.

Pattern Class Total Used for
training

Used for
Testing

Bark 20 16 4

Clear wood 20 16 4

Colored
streaks

20 16 4

Curly grain 16 13 3

Discoloration 20 16 4

Holes 8 6 2

Pin knots 20 16 4

Rotten knots 20 16 4

Roughness 20 16 4

Sound knots 20 16 4

Splits 20 16 4

Streaks 20 16 4

Wormholes 20 16 4

Total 232 185 47

98

4.3.2. Neural networks and their optimisation

The architecture of a feedforward neural network with one hidden layer is shown in

Fig. 4.8. Each layer is made up of processing elements called neurons. Every neuron

has a number of inputs, each of which must store a connection weight to indicate the

strength of the connection. Connections are initially made with random weights. The

neuron sums the weighted inputs and computes a single output using an activation

function. A number of different activation functions can be used. In this study, a

hyperbolic tangent function is used in order to increase the difference between the

outputs and further details are provided in (Packianather and Drake, 2005). Each

neuron in a layer is fully connected to every neuron in the subsequent layer, forming a

fully connected feedforward neural network. In a feedforward neural network,

information flows from the input layer to the output layer without any feedback. There

is one bias neuron for each hidden layer and the output layer, as illustrated in Fig. 4.8,

and they are connected to each neuron in their respective layer. These connections are

treated as weights. During the training process these weights are adjusted to achieve

optimal accuracy and coverage.

The standard method for refining such a neural network is using an error

backpropagation algorithm. During the training phase, the feedforward calculation is

combined with backward error propagation to adjust the weights. The error term for a

given pattern is the difference between the desired output and the actual output (the

output from feed forward calculation). In this study, the Bees Algorithm is used to

optimise the weights the neural network in place of the backpropagation. Feedforward

neural networks have one hidden layer.

99

In this section, the Bees Algorithm is used to optimise the weights the neural network

uses in place of the backpropagation algorithm described above and utilised in the

work described in (Packianather and Drake, 2005). The algorithm follows the exact

same procedure given in section 4.2.2 but with different configurations for the MLP.

In order to maintain comparability, the neural network structure (number of hidden

layers) remained the same in both neural networks, with 17 input neurons, 51 hidden

neurons and 13 output neurons. The optimisation using the Bees Algorithm will

involve the “Bees” searching for the optimal values of the weights assigned to the

connections between the neurons within the network, where each bee represents a

neural network with a particular set o f weights. The aim of the Bees Algorithm is to

find the bee producing the smallest value of the error function.

100

bias bias

input

input 2

input

input
layer

hidden
layer

output
layer

output j

^ output 2

^ output n

Figure 4.8 Feedforward neural network with one hidden layer.

101

4.3.3. Experimental results

The parameters used by the Bees Algorithm are given in Table 4.6. Table 4.7 shows

the mean accuracies achieved in thirty experiments using the conventional

backpropagation method (Packianather and Drake, 2005) with 17 features, the Bees

Algorithm and the results using a non-neural network approach, in this case, a

Minimum Distance Classifier (MDC).

The results show that the Bees Algorithm is able to achieve accuracies comparable to

the backpropagation method. As the two mean accuracies are identical, this suggests

that for this particular neural network structure and for the data set being used for

training, accuracies in the region o f 8 6 % are the highest that can be achieved. The

results given in Table 4.8 for data with 11 features show that for the reduced feature

set the accuracy o f both methods increases and the Bees Algorithm achieves better

accuracy than the backpropagation method.

102

Table 4.6 Parameters of the bees algorithm for identification of wood defects

Bees Algorithm parameters Symbol Value

Population n 1 0 0

Number of selected sites m 2 0

Number of elite sites e 1

Initial patch size ngh 0 .1

Number bees around elite points nep 50

Number of bees around other
selected points nsp 1 0

Shrinking constant sc 0 .0 1 (1%)

Site abandonment threshold sat 50

Table 4.7 Results for defect identification - 17 features

Method Mean Accuracy (%)

NN - Backpropagabon 86.52

NN - Bees Algorithm 86J2

MDC (Non-NN) 63.12

Table 4.8 Results for defect identification - 11 features

Method Mean Accuracy (H)

NN - Badcpropagabofi 87.97

NN - Bees Algorithm 88.65

103

4.4. Design of a Two-dimensional Recursive Filter Using the Bees

Algorithm

Two-dimensional (2-D) digital filters have many applications in fields such as digital

image processing, medical data processing, radar and sonar data processing, pattern

recognition, robotics and mechanical engineering (Mladenov and Mastorakis, 2001;

Mastorakis and Gonos, 2003). An overview of the area of 2-D digital filter design is

given in (Kaczorek, 1985; Tzafestas, 1986)

It is essential that the designed filters are stable (Mladenov and Mastorakis, 2001).

Several optimisation methods have been proposed for determining the values of the

parameters of 2-D digital filters to produce stable designs. Due to the complex search

spaces involved, the methods used tend to be search methods that look for near-

optimal solutions in order to be able to complete the optimisation in finite times

(Mladenov and Mastorakis, 2001; Mastorakis, Gonos, 2003).

The swarm-based algorithm described in this thesis is a search algorithm capable of

locating good solutions efficiently. Fig. 3.8 shows the pseudo-code for the algorithm

in detail. The algorithm requires a number of parameters to be set, namely: number of

scout bees (n), number of sites selected for exploitation out of n visited sites (m),

number of top-rated (elite) sites among the m selected sites (e), number of bees

recruited for the best e sites (nep), number of bees recruited for the other (m-e)

selected sites (nsp), initial size of each patch (ngh; a patch is a region in search space

that includes a visited site and its neighbourhood), shrinking constant (sc) and

104

stopping criterion. The algorithm adapted for this application aims to find an optimum

design for two-dimensional digital filters.

4.4.1. Recursive filter design problem

The filter has the following transfer function (Mastorakis and Gonos, 2003):

2 2

H (z u z 2) = H 0
»=0 y=0

> a QQ ~ 12 ’ "00

Y \ (\ + b k Z\ +Ckz 2 + d kz lz 2)
k=I (4.6)

The desired amplitude response of the filter is (see also Fig. 4.10):

M d(eol io)2) =

1 + co\ <0.08;r

0.5 i f 0 . 0 8 +a)$ <0.12jt

0 otherwise .
(4.7)

The aim is to minimise J,

Nt Nj 2
J (aij y h »'ck >Ho) = Z j Z l M (®l ’ ̂ i ~\M d »°>2)|]

/il=0«2=0 ^4

where

105

M (fi> ! ,<0 2) = H (Z i , Z 2)

(4.9)

For this design problem, let = (n 150)nu = (n /5 0 ^ and ni=50 and n2=50. Function

J becomes:

The design constraints are given as (Mastorakis and Gonos, 2003):

“ 0 + d k) < (bk + ck) < (1 + d k)

- Q - d k) < (b k - c k) < (\ - d k)

(1 + d k) > 0 (4 .1 1)

(l - d k) > 0

where k = 1 , 2 .

In this problem, the aim is to determine vector x = (aOl, a02, alO, a20, al 1, al2, a21,

a22, b l, b2, cl, c2, d l, d2, H0)T of unknown parameters to minimise J, subject to the

design constraints.

(4.10)

106

4.4.2. Experimental results

The pseudo-code of the Bees Algorithm used for this experiment is given in Fig. 3.8 in

the previous chapter. The following parameter values for the Bees Algorithm were set

empirically for this exercise: the scout bee population n = 1 0 0 0 , number of selected

sites m = 2 0 , number of elite sites e = 2 , initial patch size ngh = 0 .1 , number of bees

around elite points nep = 50, number o f bees around other selected points nsp = 20 and

shrinking constant sc = 1% and site abandonment threshold sat = 50 iterations.

The scout bee population (n) is usually in the range 100 to 1500 bees. Because of the

complexity of this problem, n was set to a high value. Number of selected sites is one

of the most important parameter, especially if there are many local optima, so it was

set to a relatively high number. According to experimental studies on the Bees

Algorithm, number of elite sites (e) usually does not need to set carefully, thus it was

set to a small value. Initial patch size (ngh) was set as 0.1 and shrank down to 0.01

after several iterations due to the value of the shrinking constant.

The Bees Algorithm was run for 10,000 iterations to find a minimum value for the

function (5) with the settings given for the algorithm. The performance of the

algorithm for a two-dimensional (2D) recursive digital filter design is presented in Fig.

4.9.

107

The optimal vector x obtained using the Bees Algorithm for 10,000 iterations is:

x = (-0.3057, -1.1113, 0.2214, 0.2410,-0.9693, 2.0700, -1.2764, 0.5772, -0.9303,

0.0986, -0.9190, 0.0214, 0.8711, -0.6785, 0.00007)T.

Thus, the optimum filter transfer function is (Mastorakis and Gonos, 2003):

H(z l, z2) = 0.00007
(l - 0.9303z, - 0.9190z2 + 0.871 lz,z2)

(l - 0.0986z, + 0.02 14z 2 - 0.6785z,z2)

* (l + 0.2214z, + 0.2410z,2 - 0.9693z,z2 + 2.0700z,z|

- 0.3057z2 - 1.2764z,2z2 + 0.5772z,2zf -1 .1113z|)

(4.12)

The amplitude response |M(col, co2)| o f the obtained filter is shown in Fig. 4.11. For

comparison, Fig. 4.12 presents the amplitude response |M(col, co2)| of a filter

optimised using a GA (Mastorakis and Gonos, 2003).

108

Table 4.9 Parameters of the bees algorithm for 2-d recursive filter design

Bees Algorithm parameters Symbol Value

Population n 1 0 0 0

Number of selected sites m 2 0

Number of elite sites e 2

Initial patch size ngh 0 .1

Number bees around elite points nep 50

Number of bees around other nsp 1 0selected points

Shrinking constant sc 0 .0 1 (1%)

Site abandonment threshold sat 50

109

0.3

E 0.2

0.1

2000 4000
N u m b e r of I t e ra t ions

6000 8000 10000

Figure 4.9 Performance of the Bees Algorithm.

Figure 4.10 Desired amplitude response |Md(col, co2)| of the 2-D filter (Mastorakis

and Gonos, 2003).

Figure 4.11 Amplitude response |M(col, co2)| obtained using the Bees Algorithm.

I ll

Figure 4.12 Amplitude response |M(col, co2)| obtained using a GA (Mastorakis and

Gonos, 2003).

4.5. Summary

In this chapter, implementations of the algorithm on several continuous applications

are presented, including neural network training for variety of industrial applications

and recursive filter design. As a first implementation, the Bees Algorithm is used for

optimisation of the weights of multi-layered perceptrons for pattern recognition in

statistical process control charts. And a similar structure of neural networks is trained

by the Bees Algorithm for identification of defects in wood veneer sheets in a plywood

factory. The accuracy obtained is comparable to that achieved using backpropagation.

However, the Bees Algorithm proved to be considerably faster. This work therefore

confirms the usefulness of the algorithm as an optimisation tool, particularly when

considering that it has produced even higher accuracies than backpropagation in other

applications. Finally in this chapter, the first of many potential applications of the Bees

Algorithm in the area of electronics circuit design is presented. The application

involved optimising the parameters o f a 2-D recursive filter to try and achieve a given

desired frequency response. The filter produced by the Bees Algorithm has a

frequency response noticeably closer to the desired response than that by a filter

designed using a GA. Taking account of the No Free Lunch principle, it is important

to limit this conclusion to the actual tests conducted and not to generalize it to all

conditions.

112

Chapter 5

BEES ALGORITHM FOR COMBINATORIAL

DOMAINS

5.1. Preliminaries

Combinatorial optimisation problems have attracted much attention over the years.

Many of them are NP-hard (Garey and Johnson, 1979; Aarts E and Lenstra, 1997). It

is generally believed that NP-hard problems cannot be solved to optimality within

polynomially bounded computation times. Several algorithms that can find near-

optimal solutions within reasonable running times have been developed. A population-

based algorithm is one example.

In this chapter, the Bees Algorithm is presented for combinatorial domains. The

algorithm mimics the food foraging behaviour o f swarms of honey bees. In its basic

113

version, the algorithm performs a kind of neighbourhood search combined with

random search and can be used for both combinatorial optimisation and functional

optimisation. The functional optimisation application is discussed in previous chapters

where it is proven that the algorithm works well in continuous domains. This is mainly

due to its balanced local and global search architecture. However, combinatorial

domains need a completely different approach when it comes to a mathematical

definition of the distance. This raises many other challenges for an algorithm which

was originally developed to work in continuous domains.

The neighbourhood concept defined in combinatorial domains is completely different

of those defined in continuous domains. One of the aims of this chapter is to define a

new neighbourhood structure which can be functional for local search. To be able to

achieve that, several local search algorithms combined with the Bees Algorithm and

the best combinations used in several applications are presented in this chapter.

The chapter is organised as follows: section 5.2 presents a description the Bees

Algorithm for discrete problems including local and global search strategies used for

the algorithm. A Bees Algorithm is presented for scheduling jobs for a machine and

the results are presented and discussed in section 5.3. In section 5.4, a permutation

flowshop sequencing problem is studied in many job/machine combinations using the

Bees Algorithm and computational results compared with some other well-known

algorithms. In section 5.5, an application of the Bees Algorithm to form machine-part

cells is presented. A general summary of the proposed method is given and possible

future research are analysed in section 5.6.

114

5.2. A proposed Bees Algorithm for the combinatorial domain

In this section, details of the Bees Algorithm for combinatorial domains are presented.

The Bees Algorithm basically consists of two parts: neighbourhood search and global

search. The pseudo-code of the Bees Algorithm for combinatorial domains is given in

Fig. 5.2. In essence, the algorithm is very similar to those presented in chapter 3. The

main differences here are: in step 5, the patch idea is replaced by a local search

operator to be able to perform a local search and the, shrinking procedure is also

removed from the algorithm. However, the abandonment procedure is kept to help the

algorithm to improve the global search part. Improvements and modifications are

discussed in the following sections.

5.2.1. Neighbourhood search strategies

As mentioned, the main feature of combinatorial domains, unlike continuous domains,

is that there is no mathematical distance definition for the neighbourhood search.

Since the Bees Algorithm was developed for continuous domains, it is necessary to

modify the neighbourhood part by simply replacing the patch with a local search

operator.

There are several exchange neighbourhood strategies and local search algorithms in

the literature. Swap operators (simple, double, insert ect.) are considered as exchange

neighbourhood strategies (Aarts and Lenstra, 1997). They simply change the position

of a randomly selected city to create an altered path. By contrast, 2-Opt and 3-Opt are

simple local search algorithms that delete two or three edges, thus breaking the tour

into two paths and then reconnecting those paths later.

115

1. Initial population with n random solution; random(Sequence(n)).

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the fittest

bee from each site and shrink patches

for (k=l ; k=e ; k++) // Elite Sites

for (i=l ; i= nep ; i++) // More Bees for Elite Sites

RecruitedBee(k)(i) = NeighbourhoodOperator(Sequence(k));

Evaluate Fitness = RecruitedBee(k)(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = RecruitedBee(k)(i);

for (k=e ; k=m; k++) // Other selected sites (m-e)

for (Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e)

RecruitedBee(k)(i) = NghOperator(Sequence(k));

Evaluate Fitness = RecruitedBee(k)(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = RecruitedBee(k)(i);

6. If (Iteration > sat)

If (no improvement on the site)

Save the Best Fitness;

Abandon the Site;

Bee(m) = GenerateRandomValue(All Search Space);

7. Assign remaining bees to search randomly and evaluate their fitnesses. // (n-m) assigned to

search randomly into whole solution space

8. End While

Figure 5.1 Pseudo-code of the Bees Algorithm for combinatorial domains.

116

B B

A D D

Figure 5.2 2-opt operator (a) Original tour (A, B, C, D, E, F, A),

(b) Tour after 2-opt (A, B, E, D, C, F, A)

There are also the k-Opt (k>3) approach, which is basically a cut o f several points and

reconnect strategy. Tabu search, simulated annealing and GA other well-known local

search operators in the literature (Aarts and Lenstra, 1997). In this study, only the

exchange and 2/3-Opt operators are used to modify the Bees Algorithm.

2 -opt and 3-opt heuristics are frequently applied to problems that deal with

combinatorial domains. They are a simple and efficient local search method which

finds near optimal solutions. Fig. 5.2(a) shows the original tour and Fig. 5.2(b) the tour

after the 2-opt procedure (Aarts and Lenstra, 1997). It is based on eliminating two (or

three) arcs in R in order to obtain two different paths. These eliminated two or three

paths are then reconnected in the only other possible way. Let us consider a feasible

solution, R, with the permutation of A, B, C, D, E, F, A as shown in Fig. 5.2(a). Two

arcs are randomly picked i.e. (B, C) and (E, F) then the path between them is

117

eliminated to create two separate paths, B, A, F and E, D, C. In the next step these

two separate tours are reconnected as A, B, E, D, C, F, A. 3-opt adopts the same

procedure but in this version three arcs are randomly picked to create a new tour.

Fig. 5.3 shows the performance o f the Bees Algorithm with several local search

operators including simple (2 point) swap, double (4 point) swap, insert, 3 point swap,

2-Opt and 3-Opt. These strategies are adopted in this chapter as a new neighbourhood

search method instead of the original patch idea. One or two procedures are used

depending on the complexity of the problem. Further details are given in the

experiment sections.

5.2.2. Random search and site abandonment

In the first step, all scout bees (n) are represented by a randomly created sequence

(l,2 ,...,n) across the combinatorial domain to explore for new flower patches.

Site abandonment is introduced to improve the efficiency of the local search. In the

case of combinatorial (NP-hard) problems, the algorithm is very likely to get trapped

in local optima. In step 6 (see Fig. 5.1), if the points visited near a selected site are all

inferior to that site, after a certain number of iterations (i.e. sat: site abandonment

threshold), then the location of the site is recorded and the site abandoned. Bees at the

site are assigned to random search (i.e. made to scout for new potential solutions).

After neighbourhood search, in step 7 n-m bees are again placed randomly across the

combinatorial domain to explore for new patches.

118

The Bees Algorithm and local search methods for a 51 city TSP problem

900

800 Simple Swap

Double Swap

Insert

3 point Swap

2-opt
3-opt

700

600

500

400
101 121

iteration

Figure 5.3 Performance of the Bees Algorithm with different local search methods.

119

5.3. Using the Bees Algorithm to schedule jobs for a machine

Job scheduling for a machine with a firm due date involves finding an optimal

schedule that minimise the sum of early and late penalties. Each job has a different

processing time and also early and late penalties in respect of the due date. All jobs

must be completed before the due date. However, only one job can be completed on

the exact due date and the others can be completed either before or after.. If some jobs

finish before the due date, early penalties will be applied. Similarly, late penalties will

be incurred for jobs finishing late (Biskup and Feldmann, 2001). This problem is one

of those combinatorial optimization problems which can be seen as searching for all

feasible solutions to find the best discrete set of the sequence of operations. In

addition, this is known to be an NP-hard problem (Garey and Johnson, 1979), which

means that it cannot be solved to optimality within polynomially-bounded

computation times. Therefore it has been extensively investigated and many meta­

heuristic approaches have been proposed to find the near optimal solution for this

particular problem. Feldmann and Biskup, (2003) applied Evolutionary Strategy (ES),

Simulated Annealing (SA) and Threshold Accepting (TA). Hino et al., (2005) applied

Genetic Algorithm (GA) and Tabu Search (TS) to the same problem. Hino et al also

proposed hybrid meta-heuristics such as HTG (Tabu search + Genetic Algorithm) and

HGT (Genetic Algorithm + Tabu Search). Recently, population-based algorithms have

been applied to this problem. Nearchou applied Differential Evolution (DE)

(Nearchou, 2006) and Pan et al applied Discrete Particle Swarm Optimisation (DPSO)

Algorithm (Pan et al., 2006). More recently, Lee et al applied Ant Colony

Optimisation (ACO) (2007) but they only tested it on 200 jobs, while the above

researchers tested on from 1 0 to 1 0 0 0 jobs.

120

5.3.1. Single machine scheduling problem

Biskup and Feldmann, (2001) developed single machine scheduling benchmarks and

also proposed two new heuristics to solve this problem. The characteristics of this

benchmark set are explained in the following section. The survey revealed that many

approaches have been applied to solve this data set recently.

In this problem, a number of jobs will be processed without interruption on a single

machine. All jobs are available at time zero, each of which has its own processing time

(pj) and needs exactly one operation. If the completion time (Cj) of job j is smaller

than or equal to the due date (d), the job’s earliness is Ej=d-Cj. If it is greater than the

due date, the job’s tardiness is Tj=Cj-d. The goal of this problem is to find a sequence

S of n jobs that minimises the total o f the earliness and tardiness penalties:

f (s) = ± (/ x l E l + 0 i TJ)

(5.1)

where aj and pj are the earliness and tardiness penalties per time unit respectively.

Three well-known properties (Biskup and Feldmann, 2001; Feldmann and Biskup,

2003) which are essential for an optimal schedule are as follows:

There are no idle times between consecutive jobs; a general proof is given by Cheng

and Kahlbacher, (1991).

An optimal schedule has the so-called V-shape property, that is, jobs finished before

the due date are ordered according to non-increasing ratios pj/aj and jobs finished after

121

the due date are ordered according to non-decreasing ratios pj/pj; the proof can be

made by the interchange argument, see, for example (Baker and Scudder, 1990).

There is an optimal schedule in which either the processing time o f the first job starts

at time zero or one job is finished at the due date; the proof is similar to that of

Hoogeveen and van de Velde, (1991).

All potential optimal schedules can be divided into three cases:

1) The first job starts at time zero and the last early job is finished exactly at time d,

2) The first job starts at time zero and the last early job is finished before d. Here a

straddling job exists and

3) The first job does not necessarily start at time zero.

5.3.2. The Bees Algorithm for single machine scheduling problem

In this study, a solution set for the jobs scheduling problem consists of both

continuous and combinatorial domains as shown in Fig. 5.4. Due to this characteristic

the Bees Algorithm requires modification.

Fig. 5.1 presents the pseudo-code o f the Bees Algorithm for a single machine

scheduling problem. During initialization, the idle time is randomly generated in the

122

continuous domain and the jobs sequence in the combinatorial domain respectively.

During the conduct of a neighbourhood search in the continuous domain for the idle

time, the basic Bees Algorithm was adopted.. On the other hand, the combinatorial

domain for establishing jobs sequences requires the other proper neighbourhood

search. In Fig. 5.5, the neighbourhood operators used for the single machine

scheduling problem is presented. Fig. 5.6 presents the neighbourhood search methods

which were adopted in this work.

Continuous Combinatorial Part
Part

Tardy setEarly setIdle time

Figure 5.4 Illustration of the solution set

123

NeighbourhoodOperator (Sequence(k));

//Simple Swap operator

do{

Ll=(rand()%index);

L2=(rand()%index);

} while ((LI ==index)| |(L1 ==L2)||(L2==index));

tl = Sequence [k][Ll];

Sequence [k][Ll] = Sequence [k][L2];

Sequence [k][L2] = tl;

//Insert Operator

do{

L1 =(rand()%index);

L2=(rand()%index);

} while ((LI =index)||(L 1= L 2) | |(L2=index));

for(int j=Ll j<L2J++) temparrayl [j]=Tabu[k][j];

tl = Tabu[k][L2]; temp=0; temp=Ll+l;

for(j=Ll J<L2 J++) {

Tabu[k][temp]=temparrayl [j];

Temp=temp+1;}

Tabu[k][Ll]=tl;

temp=0;

Figure 5.5 Neighbourhood operators for single machine scheduling problem

124

Neighbourhood search is an important element of all optimisation algorithms. The

Bees Algorithm is no exception. It was originally developed for use in continuous

domains, and proved to work well compared to other optimisation algorithms. For the

first part of the problem investigated in this section, the original Bees Algorithm has

been proposed without any modification. On the other hand, as mentioned in the

previous chapter, combinatorial domains need a completely different approach when it

comes to a mathematical definition o f the distance. This raises many other challenges

for an algorithm which was originally developed to function in the continuous domain.

In the neighbourhood search step, the Bees Algorithm benefits from some of the

original ideas to explore towards a good solution. However, because of the issue of the

definition of the distance, it is not possible to use the idea of the patch size in this

study. Instead, combinations of several methods have been deployed to perform the

neighbourhood search. Simple-swap and insert methods have been selected from the

literature because of the partitioned structure of the problem (see Fig. 5.5). Given the

equal chance to be chosen, each of these methods has performed for each recruited bee

(nep and nsp) for every iteration.

Simple-swap is a well known local search method for combinatorial problems (Aarts

and Lenstra, 1997). Because of the partitioned structure of the problem domain, the

simple-swap method has been slightly modified for this implementation. Swapping

can only occur between early and tardy sets (see Fig 5.7(b)). This means that it is

unnecessary to perform any changes in the sets because of the early and tardy time

evaluations. The insert method is another efficient means of creating new solutions in

combinatorial domains. It is similar to simple-swap, but insertion does not work vice

125

versa. A randomly picked job order is simply inserted in a randomly defined position

between job orders. It has also been slightly modified for this problem. One job order

can only be inserted into a position in another set (see Fig. 5.7(c)). In this way,

redundant evaluations have been reduced significantly.

B A

(a) Simple-swap method

(b) Insert method

Figure 5.6 Illustration of the neighbourhood search methods

126

Continuou
s Part

Combinatorial Part

A A
f Idle time V" Early set “ V Tardy set A

.J B _ U . A J _____ 1________ I
0

B

(a) Solution Set

a
0

(b) Simple-swap method

i B A

0
(c) Insert method

Figure 5.7 Solution set and neighbourhood methods

127

5.3.3. Experimental results

There are seven different data sets with different numbers of jobs (n=10, 20, 50, 100,

200, 500, 1000). The processing time, earliness and tardiness penalties are given to

each of the jobs. The common due date can be calculated as:

where SUM_p is the sum of processing time and h is the restrictive factor (h =0.2,

0.4, 0.6, 0.8 were used for this benchmark). The value of the restrictive factor h

classifies the problems as less or more restricted against a common due date. Each

data set contains 10 instances (from K=1 to K=10). Therefore the problem has 280

instances in total. These instances can be downloaded from the OR-Library website

(http://people.brunel.ac.Uk/~mastjjb/jeb/orlib/schinfo.h tml).

The performance of the algorithm was quantified by two indices: 1) percentage of

relative deviations (A), 2) standard deviation. To obtain the average performance of

the algorithm, 10 runs were carried out for each problem instance to report the

statistics based on the percentage o f relative deviations (A) from the upper bounds in

Biskup and Feldmann, (2003). To be more specific, A avg was computed as follows:

where, F B A , F ref and R are the fitness function values generated by the Bees Algorithm

in each run, the reference fitness function value generated by Biskup and Feldmann,

128

Common due date (d) = round [SUMjp * h] (5.2)

(5.3)

http://people.brunel.ac.Uk/~mastjjb/jeb/orlib/schinfo.h

(2003), and the total number of runs, respectively. For convenience, Amin, Amax and

A std denote the minimum, maximum and standard deviation of the percentage of

relative deviation in fitness function value over R runs, respectively. Table 5.1 shows

the parameter values used for this experiment.

The results obtained by the Bees Algorithm were compared with the results from

(Biskup and Feldmann, 2003; Feldmann and Biskup, 2003; Hino et al., 2005; Pan et

al., 2006; Nearchou, 2006). Note that in Biskup and Feldmann (2003), the average

percentage improvements and their standard deviations are given using the best

solution among all the heuristics; namely evolution search (ES), simulated annealing

(SA), threshold accepting (TA) and TA with a back step (TAR). Since the Bees

Algorithm is stochastic, its minimum, maximum, average and standard deviation of

runs should be given to evaluate its performance. However, Hino et al., (2005)

conducted 10 runs and selected the best out of 10 runs even updating the idle time. For

this reason, the minimum percentage of relative deviation (A min) of the Bees

Algorithm was compared to Hino et al., (2005) and Pan et al. (2006). Note that the

best results so far in the literature are reported in bold in all tables given in this section.

Table 5.2 summarises Amin of the computational results to be compared to Hino et al.,

(2005) and Pan et al. (2006) with regard to h. As seen in Table 5.2 (h = 0.2 and

h = 0.4), there is not a large difference, but for h = 0.6 and h = 0.8 there is a great deal

of difference, especially with the larger size problems (ranging from 100 to 1000

jobs). The Bees Algorithm, discrete particle swarm optimisation (DPSO) and GA have

a similar tendency to yield a negative percentage of relative deviations (Amin), which

means that they overperform (Biskup and Feldmann 2003). However, Tabu Search

129

(TS), HTG (TS+GA) and HGT (GA+TS) show a tendency to diverge after 100 jobs

and give positive percentage of relative deviations (A min), which means they are

inferior to Biskup and Feldmann, (2003).

Table 5.3 shows maximum percentage o f relative deviations (Amax) between the Bees

Algorithm and DPSO with regard to h. When h is 0.2, 0.4 and 0.6, Amax of the Bees

Algorithm is superior to the DPSO and the total average is also much better than the

DPSO. In particular, the Bees Algorithm is superior to the DPSO, when ^ is 0.6. It is

also interesting to note that, as seen in Pan et al. (2006), even the average of maximum

percentage of relative deviation (Amax) o f the Bees Algorithm is much better than Amin

of TS, GA, HTG and HGT.

Table 5.4 shows comparative results for the Bees Algorithm and DPSO in terms of

minimum, maximum and average percentage of relative deviations and standard

deviations. The average percentage o f relative deviation (Aavg) of the Bees Algorithm

was compared to the DPSO (Pan et al., 2006) and differential evolution (DE)

(Nearchou, 2006). It was found that the Bees Algorithm outperforms these two

algorithms. As seen from the total averages in Table 5.4, the Bees Algorithm is

slightly better than the DPSO at -2.15. For 200, 500 and 1,000 jobs, when h equals 0.6

or 0.8, the Bees Algorithm and DPSO performs better than the DE. As can be seen,

the standard deviation for the Bees Algorithm is nearly zero, which means that it is

slightly more robust than DPSO. All the statistics obtained show that the performance

of the Bees Algorithm is superior to all other existing approaches.

130

Table 5.1 The parameters of the Bees Algorithm

Parameters Value

p : Population 2 rt*

m : Number of selected sites 200

e : Number of elite sites 100

ngh : Initial patch size 6

nep : Number of bees around elite points 50

nsp : Number of bees around other selected points 30

Sat: Site abandonment threshold 50

* : When the number of jobs n is less than 100, p - 2 n . Otherwise, p = 400.

131

Table 5.2 Minimum deviation of the computational results

n/h 0.2

DPSO TS GA HTG HGT Bees Algorithm

10 0.00 0.25 0.12 0.12 0.12 0.00

20 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84

50 -5.70 -5.70 -5.68 -5.70 -5.70 -5.70

100 -6.19 -6.19 -6.17 -6.19 -6.19 -6.19

200 -5.78 -5.76 -5.74 -5.76 -5.76 -5.78

500 -6.42 -6.41 -6.41 -6.41 -6.41 -6.43

1,000 -6.76 -6.73 -6.75 -6.74 -6.74 -6.76

AVG -4.96 -4.91 -4.92 -4.93 -4.93 -4.96

n/h 0.4

DPSO TS GA HTG HGT Bees Algorithm

10 0.00 0.24 0.19 0.19 0.19 0.00

20 -1.63 -1.62 -1.62 -1.62 -1.62 -1.63

50 -4.66 -4.66 -4.60 -4.66 -4.66 -4.66

100 -4.94 -4.93 -4.91 -4.93 -4.93 -4.94

200 -3.75 -3.74 -3.75 -3.75 -3.75 -3.75

500 -3.56 -3.57 -3.58 -3.58 -3.58 -3.57

1,000 -4.37 -4.39 -4.40 -4.39 -4.39 -4.35

AVG -3.27 -3.24 -3.24 -3.25 -3.25 -3.27

132

Table 5.2 Minimum deviation o f the computational results (Continues)

n/h 0.6

DPSO TS GA HTG HGT Bees Algorithm

10 0.00 0.10 0.03 0.03 0.01 0.00

20 -0.72 -0.71 -0.68 -0.71 -0.71 -0.72

50 -0.34 -0.32 -0.31 -0.27 -0.31 -0.34

100 -0.15 -0.01 -0.12 0.08 0.04 -0.15

200 -0.15 -0.01 -0.13 0.37 0.07 -0.15

500 -0.11 0.25 -0.11 0.73 0.15 -0.11

1,000 -0.06 1.01 -0.05 1.28 0.42 -0.05

AVG -0.22 0.04 -0.20 0.22 -0.05 -0.22

n/h 0.8

DPSO TS GA HTG HGT Bees Algorithm

10 0.00 0.00 0.00 0.00 0.00 0.00

20 -0.41 -0.41 -0.28 -0.41 -0.41 -0.41

50 -0.24 -0.24 -0.19 -0.23 -0.23 -0.24

100 -0.18 -0.15 -0.12 -0.08 -0.11 -0.18

200 -0.15 -0.04 -0.14 0.26 0.07 -0.15

500 -0.11 0.21 -0.11 0.73 0.13 -0.11

1,000 -0.06 1.13 -0.05 1.28 0.40 -0.05

AVG -0.16 0.07 -0.13 0.22 -0.02 -0.16

133

Table 5.3 Comparison of maximum deviations between the BA and DPSO

Amax

h DPSO Bees Algorithm

0.2 -4.90 -4.95

0.4 -3.18 -3.26

0.6 -0.03 -0.22

0.8 -0.16 -0.16

Avg -2.07 -2.15

134

Table 5.4 Comparison between the Bees Algorithm (BA), DPSO and DB

^min Amax AaVg Astd

n h DPSO BA DPSO BA DPSO BA DE DPSO BA

10 0.2 0.00 0.00 0.11 0.00 0.01 0.00 0.00 0.03 0.00

0.4 0.00 0.00 0.15 0.00 0.02 0.00 0.00 0.05 0.00

0.6 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 0.2 -3.84 -3.84 -3.79 -3.83 -3.83 -3.84 -3.84 0.02 0.00

0.4 -1.63 -1.63 -1.57 -1.63 -1.62 -1.63 -1.63 0.02 0.00

0.6 -0.72 -0.72 -0.66 -0.72 -0.71 -0.72 -0.72 0.03 0.00

0.8 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 0.00 0.00

50 0.2 -5.70 -5.70 -5.61 -5.69 -5.68 -5.70 -5.69 0.03 0.00

0.4 -4.66 -4.66 -4.52 -4.66 -4.63 -4.66 -4.66 0.05 0.00

0.6 -0.34 -0.34 -0.23 -0.34 -0.31 -0.34 -0.32 0.04 0.00

0.8 -0.24 -0.24 -0.24 -0.22 -0.24 -0.24 -0.24 0.00 0.01

100 0.2 -6.19 -6.19 -6.15 -6.19 -6.18 -6.19 -6.17 0.02 0.00

0.4 -4.94 -4.94 -4.82 -4.93 -4.90 -4.94 -4.89 0.04 0.00

0.6 -0.15 -0.15 0.26 -0.14 -0.09 -0.14 -0.13 0.14 0.00

0.8 -0.18 -0.18 -0.18 -0.17 -0.18 -0.18 -0.17 0.00 0.00

200 0.2 -5.78 -5.78 -5.74 -5.77 -5.77 -5.78 -5.77 0.01 0.00

0.4 -3.75 -3.75 -3.68 -3.74 -3.72 -3.75 -3.72 0.02 0.01

0.6 -0.15 -0.15 0.56 -0.15 -0.03 -0.15 0.23 0.27 0.00

0.8 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 0.20 0.00 0.00

500 0.2 -6.42 -6.43 -6.40 -6.42 -6.41 -6.43 -6.43 0.01 0.00

0.4 -3.56 -3.57 -3.51 -3.56 -3.54 -3.57 -3.57 0.01 0.00

0.6 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 1.72 0.00 0.00

0.8 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 1.01 0.00 0.00

1000 0.2 -6.76 -6.76 -6.73 -6.74 -6.75 -6.75 -6.72 0.01 0.01

0.4 -4.37 -4.35 -4.32 -4.33 -4.35 -4.34 -4.38 0.01 0.01

0.6 -0.06 -0.05 -0.03 -0.05 -0.04 -0.05 1.29 0.01 0.00

0.8 -0.06 -0.05 -0.06 -0.05 -0.06 -0.05 2.79 0.00 0.00

Avg -2.15 -2.15 -2.07 -2.15 -2.14 -2.15 -1.87 0.03 0.00

135

5.4. The Bees Algorithm for Permutation Flowshop Sequencing

Problem

For permutation flowshop sequencing, the problem to which the Bees Algorithm was

applied in this investigation, m different machines are set up in series and each job

must be processed on every machine (in the order to 1.. .m). The processing order of

the n jobs is the same for every machine. Permutation of the n jobs gives a makespan

(the time taken to complete the job sequence) and the aim is to find the permutation

that gives the minimum makespan (Taillard, 1993).

The permutation flowshop sequencing problem (PFSP) was first introduced by

Johnson, (1954) and has attracted the attention of many researchers since then. It has

been proved that permutation flowshop sequencing with makespan minimisation is an

NP-hard problem (Kan, 1976). Therefore, using different heuristic optimisation

techniques, researchers have attempted to find high-quality solutions in a reasonable

computational time instead of looking for the optimal solution (Campbell et al., 1970;

Dannenbring, 1977; Framinan, 2003). To obtain high-quality solutions, many meta­

heuristic optimisation techniques have been tried. They include the Genetic Algorithm

(Reeves, 1993; Reeves, 1995), Tabu Search (Taillard, 1993; Nowicki, 1996),

Simulated Annealing (Osman, 1989; Ogbu 2004), Particle Swarm Optimisation

(Tasgetiren, et al., 2004) and Ant Colony Optimisation (Rajendran and Ziegler, 2004;

Stiitzle, 1998).

136

5.4.1. Formulation of the permutation flowshop sequencing problem

A formulation of the PFSP is provided in (Tasgetiren, et al., 2004). Given the

processing times pjk for job j on machine k, and a job permutation n = (7 i l ,7 c 2 ,7m},

the n jobs (j = 1, 2 , n) will be sequenced through m machines (k = 1, 2, ...,m) using

the same permutation n. Let C(7cj,m) denote the completion time of job 7ij on machine

m. The completion time of an n-job-m-machine problem can be calculated as follows

(Tasgetiren, et al., 2004):

C(xiJ) = Pxl,i (5 .4)

C(xj ,1) = C(xj_x ,1) + p KjX
j z , ..., n (5.5)

C(x„k) = C (x „ k ~ l) + p ^ k = 2; m (5 6)

C(Xj,k) = max)C(n h l ,k),C(it j t k - 1)}+ p , k

j = 2 , ... ,n k = 2 , ... ,m (5.7)

Then, among the set II of all permutations, a permutation 7t* can be found such that

the makespan Cmax(7c*)is:

Cmax(7i*) < C(7tn,m) n e n (5.8)

137

5.4.2. The Bees Algorithm for PFSP

Fig. 5.1 shows the pseudo-code for the algorithm. For a PFSP, the algorithm will try to

find a permutation with minimum makespan Cmax- As explained in previous chapters,

the algorithm requires the following parameters to be set: number of scout bees (n),

number of sites selected out of n visited sites (m), number of the top sites among the m

selected sites (e), number of bees recruited for the top e sites (nep), number of bees

recruited for the other (m-e) selected sites (nsp), site abandonment threshold (sat) and

stopping criterion.

The algorithm starts with an initial population of n scout bees. Each bee is a symbolic

string representing a sequence of machines and jobs. Details of the completion times

for the jobs on the different machines are given in a machine-job matrix (see Fig. 5.8).

For an m x n machine-job matrix, a string with a length of m + n is needed to encode

each candidate solution. The first m bits o f the string represent the sequence of

machines that appear in the rows o f the matrix and the last n bits of the string represent

the sequence of jobs appearing in the columns of the matrix.

In step 2, the fitness computation process is carried out for each site visited by a bee

by calculating the corresponding makespan (see equations 5.4, 5.5, 5.6, 5.7and 5.8).

In step 4, the m sites with the highest fitnesses (the shortest makespans) are designated

as “selected sites” and chosen for neighbourhood search.

In steps 5 and 6 , the algorithm conducts searches around the selected sites, assigning

more bees to search in the vicinity o f the best e sites. The neighbourhood operator for

138

the PFS problem is given in Fig. 5.8. Selection of the best sites can be made directly

according to the fitnesses associated with them. Alternatively, the fitness values can be

used to determine the probability of the sites being selected. Neighbourhood operators

for the algorithm are presented in Fig. 5.9. Given the equal chance to be chosen, each

of these methods is performed for each recruited bee (nep and nsp) for every iteration.

Searches in the neighbourhood of the best e sites, which represent the most promising

solutions, are made more detailed by recruiting more bees for the best e sites than for

the other selected sites. Only the bee with the highest fitness will be selected to form

the next bee population.

In step 6 , if the points visited near a selected site are all inferior to that site, after a

certain number of iterations (i.e. Abandon threshold), then the location of the site is

recorded and the site abandoned. Bees at the site are assigned to random search (i.e.

made to scout for new potential solutions).

In step 7, the remaining bees in the population are assigned randomly around the

search space to scout for new potential solutions.

At the end of each iteration, the colony will have two parts to its new population:

representatives from the selected sites, and scout bees assigned to conduct random

searches. Steps 4-7 are repeated until either the best fitness value has stabilised or the

specified maximum number of iterations has been reached.

139

m/n

m

Figure 5.8 A machine-job matrix and the makespan.

140

NeighbourhoodOperator (Sequence(k));

//Simple Swap operator

do{

L1 =(rand()%index);

L2=(rand()%index);

} while ((L1 = in d ex) | |(L 1 = L 2)| |(L2=index));

tl = Sequence [k][Ll];

Sequence [k][LI] = Sequence [k][L2];

Sequence [k][L2] = tl;

//Insert Operator

do{

L1 =(rand()%index);

L2=(rand()%index);

} while ((LI =index)||(L 1 =L2)||(L2— index));

for(int j=Ll J<L2 J++) temparrayl[j]=Tabu[k][j];

tl = Tabu[k][L2]; temp=0; temp=Ll+l;

for(j=Ll J<L2y++) {

T abu[k] [temp]=temparray 1 [j];

Temp=temp+1;}

Tabu[k][Ll]=tl;

temp=0;

Figure 5.9 Neighbourhood operators for PSFP

141

5.4.3. Experimental Results

The Bees Algorithm for solving PFSPs was implemented in C++ and run on an Intel

P4 2.4 GHz PC with 1GB memory. For the Taillard benchmark data set (Taillard,

1993), the Bees Algorithm, a genetic algorithm (GA) (Tasgetiren, et al., 2004) and a

particle swarm optimisation (PSO) algorithm were employed (Tasgetiren, et al., 2004).

The parameters of the Bees Algorithm are shown in Table 5.5 for each data set. The

population size was made equal to twice the number of jobs as was the case for the

other algorithms (Tasgetiren, et al., 2004). The Bees Algorithm used the ‘insert and

exchange’ operator to perform neighbourhood search.

For the GA, permutation representation was adopted and the crossover and mutation

probabilities were taken as 1.0 and 0.05 percent respectively (Tasgetiren, et al., 2004).

To perform two-cut crossover, one individual was selected randomly and the other by

tournament selection with a size of 2. Tournament selection with a size of 2 was also

used for constructing the population for the next generation. The insert operator was

used as the mutation operator (Tasgetiren, et al., 2004).

The PSO parameters, cl, c2, wO, and a, were set as 2, 2, 0.9, and 0.975, respectively

(Tasgetiren, et al., 2004). The performance of the algorithm was expressed by two

indices: 1) percentage deviations (A) and 2) standard deviation. To obtain the average

performance of the algorithm, ten runs were carried out for each problem instance. A

is the percentage deviation from the reference value reported by Taillard, (1993). The

average Aavg for the ten runs was computed as follows:

142

A = f ^ x i o o l /r
av* p /

, = 1 V ^ ref) ! (5.9)

where Fba is the fitness value generated by the Bees Algorithm in each run, F ref is the

reference fitness value generated by Taillard, (1993) and R = 10 is the total number of

runs, respectively. Table 5.6 summarises the results obtained. In the table, Astd denotes

the standard deviation in A over the R runs.

As can be seen in Table 5.6, the Bees Algorithm outperformed the GA, PSOspv and

PSOvns. Compared to the GA and PSOspv, the Bees Algorithm gave results that were

more stable and closer to those presented by Taillard, (1993). However, the algorithm

produced only slightly better results compared to PSOvns. This similarity in the

results may be due to the closeness between the local search method adopted by the

Bees Algorithm and the variable neighbourhood search (VNS) technique implemented

in PSO for conducting local search. However, although VNS employs the insert-and-

exchange operator, unlike the Bees Algorithm, it performs this operation only on the

best solution. For the Bees Algorithm, the selection of several sites (m) for local

search provides more information than VNS can. This property can help the Bees

Algorithm to escape from local optima.

143

Table 5.5 Bees Algorithm parameters for PFSP

Data Set

Parameters*

n m e nep nsp

20x5 40 2 0 5 2 0 0 1 0 0

2 0 x 1 0 40 2 0 5 400 1 0 0

2 0 x2 0 40 2 0 5 600 1 0 0

50x5 1 0 0 50 30 400 2 0 0

50x10 1 0 0 70 1 0 600 300

50x20 1 0 0 80 1 0 1 0 0 0 500

100x5 2 0 0 1 2 0 1 0 500 2 0 0

1 0 0 x 1 0 2 0 0 1 2 0 1 0 1 0 0 0 300

1 0 0 x2 0 2 0 0 1 2 0 2 0 1500 400

*Site abandonment threshold sat=50 for all data sets

Table 5.6 Benchmark results for the permutation flowshop sequencing problem

GA[25] PSOspv[25] PSOvnS[25] The Bees Algorithm

DATA SETS A a v g Astd A tvg A std Aavg A std A avg A std

20x5 3.13 1 .8 6 1.71 1.25 0.28 0.49 0.28 0.3

20x10 5.42 1.72 3.28 1.19 0.7 0.46 0.13 0 .1 2

20x20 4.22 1.31 2.84 1.15 0.56 0.34 0.17 0.41

50x5 1.69 0.79 1.15 0.70 0.18 0 .2 2 0 .1 0.35

50x10 5.61 1.41 4.83 1.16 1.04 0.64 1.03 1.07

50x20 6.95 1.09 6 .6 8 1.35 1.71 0.48 1.48 0.57

100x5 0.81 0.39 0.59 0.34 0 .1 1 0.17 0 .1 0.06

100x10 3.12 0.95 3.26 1.04 0.67 0.33 0.58 0.13

100x20 6.32 0.89 7.19 0.99 1.28 0.39 2.55 0.45

MEAN 4.04 1.156 3.734 1.018 0.725 0.391 0.720 0.384

5.5. Manufacturing Cell Formation Using The Bees Algorithm

Manufacturing industry is under intense pressure from the increasingly competitive

global marketplace. Shorter product life-cycles, unpredictable demands, and diverse

customer needs have forced manufacturing firms to operate more efficiently and

effectively in order to adapt to changing requirements. Traditional manufacturing

systems, such as job shops and flow lines, cannot handle such environments. Cellular

Manufacturing (CM), which incorporates the flexibility of job shops and the high

production rate of flow lines, has emerged as a promising alternative for such cases

(Mungwattana, 2000).

CM is the application of the concept o f group technology (GT) in manufacturing

systems. GT is a manufacturing philosophy that exploits similarities in product design

and production processes. A fundamental issue in CM is the determination of part

families and machine cells. This issue is known as the cell formation (CF) problem.

The CF problem involves the decomposition of a manufacturing system into cells.

Part families are identified such that they are fully processed within a cell. The cells

are formed to capture the advantages o f GT such as reduced setup times, reduced in-

process inventories, improved product quality, shorter lead times, reduced tool

requirements, improved productivity, and better overall control of operations

(Wemmerlov and Hyer, 1987).

The CF problem has long been recognised as the most challenging problem in

realising the concept of cellular manufacturing. It belongs to the class of NP-hard

problems, which means that an increase in the problem size will cause an exponential

increase in the computational time for all prevalent optimisation techniques. Many

146

methods to solve this problem have been developed (Miltenburg and Zhang, 1991;

Jeffrey et al., 1996), including array-based methods, clustering methods, mathematical

programming-based methods, graph theoretic methods, and artificial intelligence-

based methods.

5.5.1. The Cell Formation problem

The CF problem solved here is to simultaneously group machines and their

corresponding part families into cells so that intercellular movements are minimised.

It can be formulated by using an M x N machine-part incidence matrix, A = [ay],

where ay is a binary variable that takes the value o f 1 if part j requires processing on

machine i, and 0 otherwise. The problem is equivalent to decomposing A into a

number of diagonal blocks of submatrices, where each diagonal block represents a

manufacturing cell. The effectiveness o f the decomposition can be determined by a

normalised bond energy measure denoted as a in equation 5.10 (Mak et al., 2000).

a = /=1 7=1 i=l y=l
M N
I 5 X

(5.10)

The objective is to group parts and machines into clusters by sequencing the rows and

columns of a machine-part incidence matrix, so as to maximise the bond energy

measure of the incidence matrix. In the next section, a new method to solve the CF

optimisation problem is described.

147

5.5.2. Cell Formation using the Bees Algorithm

The proposed CF algorithm utilises the ability of the Bees Algorithm to search for the

appropriate groups of part families and machine cells such that the bond energy

metric a (equation 5.10) is maximised. Fig. 5.1 shows the steps of the Bees Algoritm

used for CF, which are also followed in the Bees Algorithm. These steps are described

in detail below.

The proposed algorithm requires a number o f parameters to be set, namely, number of

scout bees («), number of sites selected for neighbourhood search (out of n visited

sites) (m), number of top-rated (elite) sites among m selected sites (e), number of bees

recruited for the best e sites (nep), number of bees recruited for the other (m-e)

selected sites (nsp), site abandonment threshold (sat) and the stopping criterion.

The algorithm starts with an initial population of n scout bees. Each bee is a symbolic

string representing the sequence of machines and parts that appear in a machine-part

incidence matrix (see Fig. 5.10). For an M x A machine-part incidence matrix, a string

with a length of M + N is needed to encode each candidate solution. The first M bits

of the string represent the sequence o f machines that appear in the rows of the

incidence matrix, while the last N bits of the string represent the sequence of parts

appearing in the columns of the matrix.

148

m/ii 1 2 3 4 5 6
1 0 1 1 0 0 1
2 0 1 0 1 1 0
3 1 0 0 1 1 1
4 1 1 1 0 0 0
5 0 0 1 0 1 1
6 1 0 0 1 1 0

Figure 5.10 Representation o f a machine-part incidence matrix.

In step 2, the fitness computation process is carried out for each site visited by a bee

by calculating the bond energy measure a (see equation 5.10).

In step 4, the m sites with the highest fitnesses are designated as “selected sites” and

chosen for neighbourhood search.

In steps 5, the algorithm conducts searches around the selected sites, assigning more

bees to search in the vicinity of the best e sites. Neighbourhood operators for the

algorithm are presented in Fig. 5.11. Selection of the best sites can be made directly

according to the fitnesses associated with them. Alternatively, the fitness values are

used to determine the probability o f the sites being selected. Searches in the

neighbourhood of the best e sites which represent the most promising solutions are

made more detailed by recruiting more bees for the best e sites than for the other

selected sites. Together with scouting, this differential recruitment is a key operation

of the Bees Algorithm.

149

Neigh bo urhoodOpera tor (Sequence(k));

//Simple Swap operator

do{Ll=(rand()%index); L2=(rand()%index);}

while ((LI =index)||(L1 = L 2) | |(L2=index));

tl = Sequence [k][Ll];

Sequence[k][Ll] = Sequence[k][L2];

Sequence[k][L2] = tl;

//2-Opt Operator...

do {L1 =(rand()%index); L2=(rand()%(index-L 1)+L 1);}

while ((LI =index)11(L1 = L 2));

double deg=ceil((L2-Ll)/2);

for(int i=0;i<deg;i-H-) {

int templ=Ll; int temp2=L2;

tl = Sequence[k][templ];

Sequence[k] [tempi] = Sequence[k][temp2];

Sequence[k][temp2] = tl;

L1=L1+1; L2=L2-1;}

//Insert Operator

do (L1 =(rand()%index); L2=(rand()%index);}

while ((L1 ==index) | |(L 1 =L2)||(L2=index));

for(int j=Ll j<L2J++) temparrayl[j]= Sequence[k][j];

tl = Sequence[k][L2]; temp=0; temp=Ll+l;

for(j=Ll J<L2j++){ Sequence[k][temp]=temparrayl[j]; Temp=temp+1;}

Tabu[k][Ll]=tl;

temp=0;

Figure 5.11 Neighbourhood operators for cell formation problem

150

In step 6 , for each patch only the bee with the highest fitness will be selected to form

the next bee population. In nature, there is no such a restriction. This restriction is

introduced here to reduce the number o f points to be explored.

In step 7, the remaining bees in the population are assigned randomly around the

search space to scout for new potential solutions.

At the end of each iteration, the colony will have two parts to its new population:

representatives from the selected patches, and scout bees assigned to conduct random

searches. Steps 4-7 are repeated until either the best fitness value has stabilised or the

specified maximum number of iterations has been reached.

5.53. Experimental Results

In this section, two examples are first used to illustrate the operation of the proposed

CF algorithm. Then, eight benchmark CF problems with different sizes are used to

test the effectiveness of the algorithm. The results obtained are compared to the best-

known solutions reported in the literature. The grouping efficiency measure

(Miltenburg and Zhang, 1991), e, is adopted to assess the quality of the solutions. The

e measure is defined as follows:

e =

*=1

1—
l n\+ nl)

(5.11)

151

where n\ is the number of non-zero entries within the manufacturing cells in the

machine-part incidence matrix; K is the number of manufacturing cells formed; Mk

and Nk (k = 1, 2,..., K) are the number of the machines and parts allocated to the

manufacturing cell k; ri2 is the number of exceptional elements in the machine-part

incidence matrix.

In equation 5.11, the first term represents the cell density and can be written as:

*=i

(5.12)

A high value of e/ indicates that the machines and parts in each manufacturing cell are

very similar to one another. The second term represents the intercellular material

flows and can be given as:

* 2 = 1 -- (5.13)
+n2

A low value of £2 will result if less exceptional elements exist in the incidence matrix.

According to equation 5.11, the value o f the grouping efficiency measure, £, ranges

from -1 to 1. The higher this value, the better the formed machines and parts groups.

In the first illustrative example (Srinivasan et al., 1990; Mak et al., 2000), a 16 x 30

machines-parts incidence matrix is utilised. The initial configuration of the matrix is

shown in Fig. 5.12. The parameters of the proposed CF algorithm are set as follows: n

= 100, m = 40, e = 20, nep = 200, nsp = 100, sat = 50 and maximum number of

152

iterations = 1000. By sequencing the order of rows (machines) and columns (parts) of

the incidence matrix, the resulting configuration of the matrix is shown in Fig. 5.13.

In order to maximise the bond energy of the matrix, the machines and parts are

grouped into 4 manufacturing cells. The bond energy measure, a, of the final solution

is 1.301. The cell density measure, £/, is 0.816 which indicates that the machines and

parts in the manufacturing cells are very similar. The measure of intercellular material

flows, s2 , is 0.155. The corresponding grouping efficiency of the final solution, e, is

0.661, which is better than the best solution given in (Srinivasan et al., 1990; Mak et

al., 2 0 0 0).

In the second illustrative example (Srinivasan et al., 1990; Mak et al., 2000), a 10 x 20

machines-parts incidence matrix (see in Fig. 5.14) is employed. The parameters of the

proposed CF algorithm are set as follows: n = 100, m = 40, e = 20, nep = 200, nsp =

100, sat = 50 and maximum number o f iterations = 1000. The final configuration of

the incidence matrix is shown in Fig. 5.15. The machines and parts are grouped into 4

manufacturing cells. The bond energy o f the final solution is 1.388. The cell values of

£/, e2 , and e o f this solution are 1.000, 0.000, and 1.000 respectively. This solution is

exactly the same as that suggested in (Srinivasan et al., 1990; Mak et al., 2000).

In order to further test its effectiveness, the proposed CF algorithm is applied to 8 test

problems. The results of the CF algorithm are compared against those of the best-

known solutions. All the problems are formulated by 0-1 machine-part incidence

matrices. The parameters of the CF algorithm are set to n = 100, m = 40, e = 20, nep =

200, nsp = 100, sat= 50 and maximum number of iterations = 100.

153

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3
1 2 3 4 5 6 7 8 9 0 1 2 34 5 6 7 8 9 0 1 2 34 5 6 7 8 9 0

l '
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1 1 1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 11 1 1 1 1

1 1 1 11 1 1
1 1 1 1 1 1 1 1

1 1 1 1 11
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1
111 11 1 1 1

Figure 5.12 The initial configuration o f the machine-part incidence matrix of the first

illustrative example (16x30).

1 1 2 11 2 2 1 3 1 1 2 2 11 1 2 2 2 2 2
71 1 8 5 4 6 4 6 9 0 9 8 2 2 7 2 4 Q 1 6 0 3 3 9 3 5 7 8 5

6 1 1 1 1
15 1 1 1 1 1 1 1

9 1 1 1 1 1 1

3 1 1 1 1 1 1 1

13 1 1 1 1 1 1
2 1 1 1 1 1 1

12 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1

Figure 5.13 The composition of the manufacturing cells for the first illustrative

example (16x30).

154

1 1 1 1 1 1 1 1 1 1 2

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
1 1 1 1

2 1 1 1 1 1

3 1 1 1 1 1
4 1 1 1
5 1 1 1 1 1 1
6 1 1 1
7 1 1 1 1 1 1
8 1 1 1 1 1 1

9 1 1 1 1 1 1
1C 1 1 1 1 1 1

Figure 5.14 The initial configuration o f the machine-part incidence matrix of the

second illustrative example (1 0 x2 0).

1 1 1 1 1 1 1 1 2 1 1

8 2 0 5 3 7 4 1 2 6 6 1 9 9 4 7 8 0 5 3
9 1 1 1 1 1 1
5 1 1 1 1 1 1
8 1 1 1 1 1 1
10 1 1 1 1 1 1
7 1 1 1 1 1 1
6 1 1 1
4 1 1 1
1 1 1 1
2 1 1 1 1 1
3 1 1 1 1 1

Figure 5.15 The composition of the manufacturing cells for the second illustrative

example (1 0 x2 0).

155

Table 5.7 Results of solving 8 well-known benchmark CF problems from the literature.

Best-known
solutions

Results from the CF-Bees
Algorithm

No
Literature
references Size K *2 e a s2 e

1 Boctor, (1991) 7x11 3 0.760 0.095 0.665 1.095 0.760 0.095 0.665

2 Boctor, (1991) 7x11 3 0.760 0 .0 0 0 0.760 1.053 0.760 0 .0 0 0 0.760

3 Srinivasan et al.,
1990 1 0 x2 0 4 1 .0 0 0 0 .0 0 0 1 .0 0 0 1.388 1 .0 0 0 0 .0 0 0 1 .0 0 0

4 Carrie, (1973) 20x35 4 0.760 0.015 0.745 1.555 0.794 0.029 0.760

5 Chandrasekharan
et al., (1989) 24x40 7 1 .0 0 0 0 .0 0 0 1 .0 0 0 1.515 1 .0 0 0 0 .0 0 0 1 .0 0 0

6
Chandrasekharan

etal., (1989) 24x40 7 0.939 0.075 0.864 1.423 0.925 0.061 0.864

7 Chandrasekharan
et al., (1989) 24x40 7 0.855 0.138 0.717 1.192 0.860 0.153 0.707

8
Mak et al.,

(2000) 40x100 1 0 0.910 0.086 0.824 1.471 0.910 0.077 0.833

156

Table 5.7 summarises the results obtained. As can be seen from the table, the

proposed CF algorithm has produced similar results to those of the best-known

solutions for problems 1, 2, 3, 5 and 6 . In problem 7, the grouping efficiency measure,

e, is slightly reduced from 0.717 to 0.707. However, the CF algorithm achieved better

results for problems 4 and 8 . In problem 4, the cell density measure, £/, has been

increased from 0.760 to 0.794, while the measure of intercellular flows, £2, has been

increased from 0.015 to 0.029. This has led to an increase of the grouping efficiency,

£, from 0.745 to 0.760. In problem 8 , which involves a 40 x 100 machine-part

incidence matrix, the value of £2 has been reduced from 0.086 to 0.077. The value of

£/ has also been increased from 0.903 to 0.910. Therefore, the grouping efficiency has

been improved (increased) from 0.815 to 0.833.

5.6. Summary

In this chapter a new procedure is suggested for the Bees Algorithm to deal with

combinatorial domains and the algorithm is applied to several complex optimisation

problems with specific modifications. The algorithm is first applied to a single job

scheduling problem. The results are compared to those obtained by some other well-

known algorithms to be found in the literature, including evolution search (ES),

simulated annealing (SA), threshold accepting (TA) and TA with a back step (TAR).

The results obtained suggest that the modified Bees Algorithm performs better than or

as well as the others. The second application introduced is of a permutation flow-shop

sequencing problem. The modified Bees Algorithm used a slightly different

neighbourhood strategy to deal with this complex problem. It performed well

157

compared to other well-established algorithms, including a genetic algorithm, PSOspv

and PSOyns. In the last example, the modified Bees Algorithm also employed a

different neighbourhood search strategy due to nature of the cell formation problem.

The results show that the modified Bees Algorithm also performs better than the

others in this domain.

158

Chapter 6

THE BEES ALGORITHM-II

6.1. Preliminaries

In this chapter, an improved version of the Bees Algorithm, so called The Bees

Algorithm-II is presented. As mentioned in previous chapter, the Bees Algorithm is a

new population-based search algorithm and it mimics the food foraging behaviour of

swarms of honey bees. In its basic version, the algorithm performs a kind of

neighbourhood search combined with random global search. The Bees Algorithm-II,

however, is a more efficient and robust version of the original algorithm. The

159

enhanced version can be defined as a more compact version of its predecessor with

additional improvements in terms o f neighbourhood search and lesser parameters.

The aims of this chapter are: to lessen the complexity by reducing the user defined

parameters of the Bees Algorithm, to create a single population leading to a more

comprehensive algorithm and to introduce a new patch structure to improve efficiency

and control over randomness throughout the neighbourhood search.

The chapter is organised as follows: section 6.2 presents a description of the Bees

Algorithm-II in detail, including the new ideas of a Gaussian patch and reduced

parameters. In section 6.3, to demonstrate the performance of the new improved

algorithm, experimental results are presented, including comparison with the original

version and other well-known algorithms. A general summary of the proposed method

and of possible future research work are given in section 6.4.

6.2. The Bees Algorithm-II

As mentioned in previous chapters, the Bees Algorithm is an optimisation algorithm

inspired by the natural foraging behaviour of honey bees to find the optimal solution.

The basic Bees Algorithm in its simplest form is presented in Fig. 3.1 as well as the

improved version in Fig. 3.8. Although the Bees Algorithm is exceptionally

successful, there are a few concerns over its relatively high parameter numbers and the

related difficulty of setting them for a specific application. In this section, several new

ideas are introduced to address these issues, including Gaussian neighbourhood search

160

and reducing parameters by the new patch structure as well as by reorganisation of the

parameter groups.

6.2.1 Gaussian patch structure

Gaussian distribution or normal distribution is defined as a theoretical continuous

probability distribution with finite mean and variance (Simon, 2006). The graph of the

associated probability density function is bell-shaped, with a peak at the mean, and is

known as the Gaussian function or bell curve (Simon, 2006). The continuous

probability function is given in equation 6 .1 :

< V (z) =
’■Jin

exp (x ~ m)
2(7 ‘

2 A
(6.1)

where,

X ~ N (p ,a2)

p.: Candidate solution

a: Standard deviation

161

In the Bees Algorithm, neighbourhood search is performed randomly with a

predefined initial patch size for all selected sites. In the original version of the Bees

Algorithm a uniform random distribution is used to send bees to a selected site for

local search. An initial patch size (ngh) is set to define the boundaries of the local

search and bees are sent into this search space. To improve the solution quality and

performance, a proportional shrinking method was introduced. This new method adds

another user defined parameter to the algorithm. In fact, the shrinking constant is one

of the most critical parameters in the set and it needs careful tuning. The Gaussian

distribution is introduced to overcome these vulnerabilities of the algorithm by

eliminating the shrinking procedure.

A new parameter, so called the patch density (pd), is introduced in place of the initial

patch size (ngh) parameter. In the Gaussian distribution this term refers to the standard

deviation of a set a. By adjusting patch density (pd) the shape of a patch can be

modified, as illustrated in Fig. 6.1. Different patch density values can create bigger or

lesser size bells and thus the size o f the patch can be adjusted using this parameter.

In the original algorithm, ngh defines the initial size of the neighbourhood in which

follower bees are placed. For example, if x is the position of an elite bee in the iA

dimension, follower bees will be placed randomly in the interval xie ±ngh in that

dimension at the beginning of the optimisation process. In this case, xie is regarded as

mean (p) in a Gaussian distribution. Around this value a bell-shaped distribution is

produced with patch density (pd). After the modification of equation 6.1, the normal

random variate generator will be as follows in equations 6.2 and 6.3:

162

0.8

0.7

0.5

0.4

0.3

0.2

3 ■2 05 -4 1 2 3 4 5

Figure 6.1 Bell shape of the Gaussian distribution with given mean and standard

deviation.

163

y = (rand ()%100)/100

(6.2)

L „V -2 1 o g (4 y -2)2)
x imr = x im + P d (2 Y ' 1) -------- 7 “ -------- ----------------[2(2y-l)

(6.3)

where, ximr is the position of a recruited bee in the i1*1 dimension, xim is the position of a

selected bee in the i dimension, pd is the patch density, y is a normalised random

value generator between 0 and 1 0 0 .

A simple demonstration of the normal random variate generator is presented in Fig.

6.2. With patch densities varying from 1 to 0.1, variations of the distribution of 100

bees are shown. While more bees visit in close proximity to the position of a selected

bee, still some of them still have the chance of visiting far sites of the patch. This

guided search reduces the necessity o f having an initial patch size and a shrinking

procedure, which is difficult to adjust.

6.2.2 Parameters

There are eight parameters of the original Bees Algorithm to be set, namely:

■ n: Number of scout bees,

■ m: Number of patches selected out of n visited points,

■ e: Number of best patches out of m selected patches (elite),

164

xim=5, pd=0.5, n=100xim=5, pd=l, n=100

Xim=5, pd=0.1, n=100

Figure 6.2. A simple demonstration of the normal random variate

generator.

165

■ nep\ Number of bees recruited for e best patches,

■ nsp: Number of bees recruited for the other (m-e) selected patches (nsp),

■ ngh: Size of patches

■ sc: Shrinking constant

■ sat: Site abandonment constant

Three of them (n, nep and nsp) are directly population number definition parameters,

two of them (m and e) population partitioning parameters and the last three are

parameters for controlling the local search.

In the new structure presented in this chapter, these three parameter groups are

replaced with only one parameter each, namely:

■ n: Scout bee population

■ p: Selection threshold (p defined as a percentage)

■ pd: Patch density

The scout bee population is similar to that given in the previous definition. However,

it is the only population. There are no separate recruitment populations defined such as

nep and nsp. The selection threshold (p) replaces the partitioning group in the previous

structure. The number of best sites is equal to np and the number of recruited bees is

equal to n - np. The patch density concept has been discussed above in detail.

The pseudo-code of the Bees Algorithm-II is presented in Fig. 6.3. There are four

parameters of the Bees Algorithm-II to be set, namely: scout bee population («),

166

selection threshold (p), patch density (pd) and site abandonment threshold (sat). The

algorithm starts with the n scout bees being placed randomly in the search space. The

fitnesses of the points visited by the scout bees are evaluated in step 2 .

In step 4, bees (np) that have the highest fitnesses are chosen as “selected bees” and

those sites that have been visited by them will be chosen for neighbourhood search.

Then, in step 5, the algorithm conducts searches in the neighbourhood of the selected

bees. The latter can be chosen directly according to the fitnesses associated with the

points they are visiting. Alternatively, the fitness values are used to determine the

probability of the bees being selected.

In step 5, for each site only one bee with the highest fitness will be selected to form

the next bee population.

In step 6 , if the points visited near a selected site are all inferior to that site, after a

certain number of iterations (i.e. sat: site abandonment threshold), then the location of

the site is recorded and the site abandoned. Bees at the site are assigned to random

search (i.e. made to scout for new potential solutions).

In step 7, the remaining bees in the population are assigned randomly around the

search space scouting for new potential solutions. These steps are repeated until a

stopping criterion is met.

167

1. Initial population with n random solution.

2 . Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (np) for neighbourhood search.

5. Recruit bees n- np for selected sites, evaluate fitnesses and select the fittest bee from each site

for (k=l ; k=m ; k++)

for (Bee=l ; Bee= (n - np); Bee++)

BeesPositionInNgh() = ximr;

y = (rand ()% 100) /100

x tmr = x im + p d {(2 y-1)7-21og(4y- 2)2) / 2 (2 y - l) 2 j

Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = Bee(i);

6 . If (Iteration > sat) //Cheking site abandonment threshold

If (no improvement on the site)

Save the Best Fitness;

Abandon the Site;

Bee(m) = GenerateRandomValue(All Search Space);

7. Assign remaining bees to search randomly and evaluate their fitnesses. // (n - np) assigned to

search randomly into whole solution space

8 . End While

Figure 6.3 Pseudo-code of the Bees Algorithm-II

168

6.3. Experimental Results

Clearly, the Bees Algorithm as described above is applicable to both combinatorial

and functional optimisation problems. In this section, functional optimisation is

presented to show the robustness o f the algorithm.

Three standard functional optimisation problems were used to test the Bees Algorithm

and to establish the correct values o f its parameters and seven for benchmarking the

algorithm. As the Bees Algorithm searches for the maximum, the functions to be

minimised were inverted before the algorithm was applied.

The first test function is the axis parallel hyper-ellipsoid which is similar to De Jong's

function 1 (see Fig. 6.4). It is also known as the weighted sphere model. It is

continuous, convex and unimodal.

i = l

(6.4)

-5.12 < jc, <5.12

Global Minimum for this function:

/ (*) = 0; *(0 = 0, i = l :n

The following parameter values were set for the axis parallel hyper-ellipsoid test

function: scout bee population n= 1 0 , number of selected sites m=3 , number of elite

169

sites e=l, initial patch size ngh=0.5, number bees around elite points nep=2, number of

bees around other selected points nsp=2 .

The following parameter values o f the Bees Algorithm were set for this test: scout bee

population n= 10, number of selected sites m=3, number of elite sites e=l, initial patch

size ngh=2.75, number of bees around elite points nep=2, number of bees around other

selected points nsp=2. The following parameter values for the improved Bees

Algorithm were set for this test: scout bee population n= 10, number of selected sites

m=3, number of elite sites e=l, initial patch size ngh=5.12, number bees around elite

points nep=2 , number of bees around other selected points nsp=2 , shrinking constant

so=0.20 (%20) and threshold for site abandonment sat=10. The parameters for the

Bees Algorithm-II were set for this test: scout bee population n=8 , selection threshold

p=0 .1 (%1 0), patch density pd=0 .1 and site abandonment threshold sat=1 0 .

Fig. 6.5 shows the fitness values obtained as a function of the number of points visited

for both original and improved algorithms. The results are averages for 100

independent runs. After approximately 500 visits, the Bees Algorithm was able to find

solutions close to the optimum while the Bees Algorithm-II was able to find the

optimum twice as fast as the original. The main reason behind this speed is the value

of patch density, which is the only parameter in the set needs careful tuning. The scout

bee population was set at 8 and 1 0 percent of these (rounded up to 1) are allowed to

perform the waggle dance and the rest (n-np) sent for neighbourhood search.

170

variable 2 variable 1

Figure 6.4 Visualization of 2D axis parallel hyper-ellipsoid function.

Axis Parallel Hyper-Ellipsoid Function
0.2

0.15

0.05

0 100 200 300 400 500 600 700 800 900 1000

Generated Points (Mean number o f Function Evaluations)

- a — The Bees Algorithm — The Bees Algorithm-II

Figure 6.5 Evolution of fitness with the number of points visited (the axis parallel

hyper-ellipsoid)

171

Shekel’s Foxholes (see Fig. 6 .6), a 2D function from De Jong’s test suite, was chosen

as the first function for testing the algorithm.

/ (*) = 119.998
• V J + 2 .

1 = 1
(6.5)

x - a
i ij

a . . =
- 3 2
- 3 2

- 1 6
- 3 2

0
- 3 2

16
- 3 2

32
- 3 2

0
32

16
32

32
32,

- 65 .536 < x (< 65 .536

For this function,

= (-32 ,-32)

/ (* „ ,) = 119 -998

The following parameter values of the Bees Algorithm were set for this test: scout bee

population n= 45, number of selected sites m=3, number of elite sites e=l, initial patch

size ngh=3, number of bees around elite points nep=7, number of bees around other

selected points nsp=2. And the following parameter values for the improved Bees

Algorithm were set for this test: scout bee population n= 10, number of selected sites

m=3, number of elite sites e=l, initial patch size ngh=3, number of bees around elite

points nep=2 , number of bees around other selected points nsp=2 , shrinking constant

172

sc=0.01 (% 1) and threshold for site abandonment sat=10. The parameters for the Bees

Algorithm-II were set for this test as follows: scout bee population n=20, selection

threshold p=0.1 (%10), patch density pd=9 and site abandonment threshold sat=10.

Fig. 6.7 shows the fitness values obtained as a function of the number of points visited.

The results are averages for 100 independent runs. It can be seen that after

approximately 1200 visits, the Bees Algorithm was able to find solutions close to the

optimum. However, the Bees Algorithm-II was able to find a solution better than the

original algorithm, twice as fast with less than half of the population set for the

original algorithm.

To test the reliability of the algorithm, the inverted Schwefel’s function with six

dimensions (see equation 6 .6) was used. Fig. 6 .8 shows a two-dimensional view of the

function to highlight its multi-modality.

/ (*) = - E - x , sin(V l I) (6*6)i = 1

- 500 < jc, < 500

For this function,

*max = (420.9829,420.9829,420.9829,420.9829,420.9829,420.9829)

/ (* _) * 2513.9

173

The following parameter values for the Bees Algorithm were set for this test: scout

bees population n=500, number o f selected sites m=15, number of elite sites e=5,

initial patch size ngh=20, number o f bees around elite points nep=50, number of bees

around other selected points nsp=30. And the following parameter values for the

improved Bees Algorithm were set for this test: scout bees population n=500, number

of selected sites m=15, number o f elite sites e=5, initial patch size ngh=20, number of

bees around elite points nep=50, number of bees around other selected points nsp=30.

shrinking constant sc=0.05 (%5) and threshold for site abandonment sat=20. The

parameters for the Bees Algorithm-II were set for this test as follows: scout bee

population n=100, selection threshold p=0.05 (%5), patch density pd=l and site

abandonment threshold sat=1 0 .

Fig. 6.9 shows how the fitness values evolve with the number o f points visited. The

results are averages for 100 independent runs. After approximately 30,000 visits, the

Bees Algorithm was able to find solutions close to the optimum. However, the Bees

Algorithm-II was able to find solutions very close to the optimum (approached less

than 0.03 after 10,000 mean number o f function evaluations) much faster than the

original algorithm. The main reasons for this high success rate are again patch density

as well as a high population number.

174

I

Figure 6.6 Inverted Shekel’s Foxholes

Inverted S hekel's Foxholes

120

100

60 —

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Generated Points (Mean number o f Function Evaluations)

— The Bees Algorithm —•— The Bees Algorithm-II

Figure 6.7 Evolution of fitness with the number of points visited (Inverted Shekel’s

Foxholes)

175

Variable 2 -500 -500 Variable 1

Figure 6.8 2D Schwefel’s function

Inverted Schw efel’s Function (6 dim)

2400

2200

G
£ 2000

1800

1600

0 10000 20000 30000 40000 50000
Generated Points (mean number o f evaluations)

— The Bees Algorithm —■— The Bees Algorithm-II

Fig 6.9 Evolution of fitness with the number of points visited (Inverted Schewefel’s

Fuction)

176

The algorithms were applied to seven benchmark functions (Mathur et al., 2000) and

the results compared with those obtained using other optimisation algorithms. The test

Algorithm are given in Table 3.2 and parameter settings for the Bees Algorithm-II are

given in Table 6.2. As can be seen in the parameter table, scout bee population and

selection threshold were almost identical for all problems with little fluctuation, while

variations of patch density were greater. The main reason behind these variations is the

dependence of the patch density on the solution space and complexity of the functions.

Table 6.3 presents the results obtained by the Bees Algorithm and those by the

deterministic Simplex method (SIMPSA) (Mathur et al., 2000), the stochastic

simulated annealing optimisation procedure (NE SIMPSA) (Mathur et al., 2000), the

Genetic Algorithm (GA) (Mathur et al., 2000) and the Ant Colony System (ANTS)

(Mathur et al., 2000). Again, the numbers of points visited shown are averages for 100

independent runs.

All the algorithms were run 100 times for each parameter setting on each benchmark

problem. For each of the 100 trials, the optimisation procedure was run until (stopping

criterion) either it located an exact solution or found a solution within 0 .0 0 1 (or %0 .1 ,

whichever is smaller) as shown in equation 6.7.

The first test function was De Jong’s, for which the Bees Algorithm-II found the

optimum slightly faster than the original algorithm, 120 times faster than ANTS and

200 times faster than GA, with a success rate of 100%.

functions and their optima are shown in Table 6.1. Parameter settings for the Bees

Stopping Criterion (6.7)

177

The second function was Goldstein and Price’s, for which the Bees Algorithm-II

reached the optimum much faster than the original algorithm and almost 7 times faster

than ANTS and GA, again with 100% success.

With Branin’s function, there was a big improvement with the Bees Algorithm-II. The

algorithm performed almost three times better than the Bees Algorithm. There was a

30% improvement compared with ANTS and 120% improvement compared with GA,

also with 1 0 0 % success.

Functions 5 and 6 were Rosenbrock’s functions in two and four dimensions

respectively. In the two-dimensional function (function 5), the Bees Algorithm-II

delivers a good improvement over the other methods (at least twice fewer evaluations

than the original algorithm) with a 100% success rate. In the four-dimensional case

(function 6), the Bees Algorithm needed more function evaluations (but less function

evaluations compared to the original algorithm) to reach the optimum with 1 0 0 %

success. NE SIMPS A could find the optimum with almost 10 times fewer function

evaluations but the success rate was only 94% and ANTS found the optimum with

100% success and was 3.5 times faster than the Bees Algorithm.

Test function 7 was a Hyper Sphere model of six dimensions. The Bees Algorithm-II

needed almost one third of the number of function evaluations compared with the

original algorithm and was much faster than GA and ANTS.

178

Table 6.1 Test Functions

No
Function

Name
Interval Function

Global

Optimum

1 De Jong
[-2.048,

2.048]
max F = (3905.93) - 100(Jcf - x \) - (1 - x) 2

X (l,l)

F=3905.93

2
Goldstein &

Price
[-2,2]

minF=[l+(jCl+jCj + l)J(19-14j£:i + 3^-14Xj+6XlJ:2+3jC|)]
^[30+(2Xl-3jc2)2(18-32JCl + 12A:; + 48JC2-36XlX2 + 27Jc;)]

X(0,-1)

F=3

3 Branin [-5,10]

min F = a(X l - b x]+cx r d f + e (\ - f) cosC*,)+ e

a = l,b = — f — 1 ,c = - X l , d = 6,e = \ 0 , f = - X -
4 \ 22J 22 S :

X(-22/7,12.275)

X(22/7,2.275)

X(66/7,2.475)

F=0J977272

4
Martin &

Gaddy
[0,10] m in F = (X l - X J 2 + ((^ + X j -1 0) / 3)2

X(5,5)

F=0

5 Rosenbrock
[-1.2,1.2]

[-10,10]
min F = 100 (* * - x 2) 2 + (1 - X]) 2

X (l,l)

F=0

6 Rosenbrock [-1.2,1.2] min F = £ {100 (x 2. - ^ .+,)2 + (1 - j^) 2}
< = l

X(l,1,1,1)

F=0

7 Hyper sphere
[-5.12,

5.12] minF = 'L x 2i
i= 1

X(0,0,0,0,0,0)

F=0

179

Table 6.2 Parameter Settings for the Bees Algorithm-II

Function no
Parameters

n P pd sat

1 1 0 0.3 (%30) 0.05 1 0

2 1 0 0 .2 (%2 0) 0.005 1 0

3 1 0 0 .2 (%2 0) 0 .1 1 0

4 1 0 0 .2 (%2 0) 0 .1 1 0

5a 15 0 . 2 (%2 0) 0.05 1 0

5b 1 0 0 . 2 (%2 0) 0 .1 1 0

6 15 0.4 (%40) 0.07 1 0

7 1 0 0 .2 (%2 0) 0.3 1 0

180

Table 6.3 The performance of the Bees Algorithm-II

Func
no

SIMPSA NE SIMPSA GA ANT The Bees
Algorithm

The Bees
Algorithm - II

success
%

mean
no of
func
evals

success
%

mean
no of
func
evals

success
%

mean
no of
func
evals

success
%

mean
no of
func
evals

success
%

mean
no of
func
evals

success
%

mean
no of
func
evals

1 *** ** *** *** 100 10160 100 6000 100 868 100 853.82

2 *** *** *** *** 100 5662 100 5330 100 999 100 771.97

3 *** *** *** *** 100 7325 100 1936 100 1657 100 448.97

4 *** *** *** *** 100 2844 100 1688 100 526 100 243.82

5a 100 10780 100 4508 100 10212 100 6842 100 631 100 633.422

5b 100 12500 100 5007 *** *** 100 7505 100 2306 100 2016.56

6 99 21177 94 3053 *** *** 100 8471 100 28529 100 28293.3

7 *** *** *** *** 100 15468 100 22050 100 7113 100 2106.9

6.4. Summary

In this chapter, enhancements to neighbourhood search and parameter numbers are

presented. A new local search method is introduced to reduce the need for patch

181

shrinking as well as guiding the randomness. Also, the number of user defined

parameters is reduced to a reasonable number by a new theoretical approach. The

simulation results compared with the original algorithm, as well as to other well-

known algorithms are presented. The results showed that the algorithm performed

much better than its original version and other algorithms.

182

Chapter 7

Conclusion

In this chapter, the contributions and conclusions of this thesis are presented and

suggestions for future work provided.

7.1 Contributions

The main contributions of this thesis are:

1. A new intelligent swarm-based optimisation algorithm called the Bees Algorithm,

which is inspired by the food foraging behaviour of honey-bees, is presented in

this thesis.

183

2. Enhancements to the algorithm are also presented, with proofs to show that the

algorithm is both robust and efficient. The provision of a dynamic neighbourhood

helped the algorithm to perform procedures faster. Proportional shrinking

improved the performance of the algorithm in terms of solution quality and speed

as well as better source usage. Site abandonment was introduced to increase the

overall effect of random global search as well as to enable better source allocation.

3. Local search was introduced to deal with combinatorial domains more efficiently.

Implementations to several different types o f problems were suggested.

4. A new neighbourhood procedure was developed to deal with local search without

the need for use of the shrinking method but with even better performance.

5. A reduction in the number o f parameters was suggested, achieving real

improvements to the ease o f use when setting the parameters and running the

algorithm.

7.2. Conclusions

In this thesis the swarm intelligence and swarm-based optimisation algorithms are

discussed. Swarm intelligence is considered as the collective problem-solving

capabilities of social animals. In the context of developing an algorithm, first the

biological and morphological features of the honey-bees are presented. Some basic

rules which create intelligence are presented, including individual and social level

interactions. Mathematical simulation models are also presented as a bridging effort

184

between nature and engineering. These simulation models were helpful in

understanding the interactions in honey-bee colonies at various levels. Food foraging

models are reviewed in detail as one o f the most successful and efficient part of the

social life o f honey-bee colonies. The key conclusions for each topic analysed are:

■ A new swarm-based intelligent optimisation procedure called the Bees Algorithm

is presented. The algorithm mimics the food foraging behaviour of swarms of

honey bees. In its basic version, the algorithm performs a kind of neighbourhood

search combined with random search. Also given are further details of the local

and global search methods used in the algorithm. Details o f the improvements

made to local and global search methods are presented, including dynamic

recruitment, proportional shrinking and abandonment strategies. The performance

of the algorithm is evaluated on benchmark results, comparing them to those

results achieved by some other well-known algorithms in the literature.

■ The implementations o f the algorithm to several continuous applications are also

presented, including neural network training for a variety o f industrial applications

and recursive filter design. As a first implementation, the Bees Algorithm was used

for the optimisation o f the weights o f multi-layered perceptrons for pattern

recognition in statistical process control charts. A similar structure o f neural

networks was trained with the Bees Algorithm for the identification of defects in

wood veneer sheets in a plywood factory. Lastly, a 2-d electronic recursive filter

was designed using the Bees Algorithm to show its robustness.

185

■ A new procedure is suggested as an addition to the Bees Algorithm to deal with

combinatorial domains. The algorithm is applied to several complex optimisation

problems with specific modifications for each. The algorithm is first implemented

in a single job scheduling problem. The results are compared to some other well-

known algorithms in the literature and it is shown that the modified algorithm

performs better than or as well the others. The second application is to a

permutation flow-shop sequencing problem. The algorithm used a slightly

different neighbourhood strategy to deal with this complex problem. The algorithm

performed well compared to other well-established algorithms. In the last example,

the algorithm also uses a different neighbourhood search strategy due to the nature

of the cell formation problem. The results show that the algorithm performs better

for this domain.

■ Lastly, enhancements to neighbourhood search and parameter numbers are

presented. A new local search method is introduced to reduce the need for patch

shrinking and for guiding the randomness. Also, the number of user defined

parameters is reduced to a reasonable number by a new theoretical approach. The

simulation results compared with those obtained by the original algorithm as well

as by other well-known algorithms, are presented. The results show that the

modified algorithm performs much better than its original version and than the

other algorithms.

186

7.3 Suggestions for future research

Possible extensions that can be made to the work presented in this thesis include:

■ Developing a mathematical model for the algorithm to improve the theoretical

base and to explain the convergence behaviour.

■ Developing an enhanced algorithm which improves on the balanced local and

global search structure o f the Bees Algorithm.

■ Developing a new local search algorithm for combinatorial domains to increase the

efficiency o f the Bees Algorithm.

■ Developing a discretization method for the algorithm to improve the existing local

search procedure.

■ Using both the original and improved versions for several different industrial

applications to extend the scope o f the algorithm.

■ Creating hybrid algorithms to benefit from each others’ strength.

187

APPENDIX A

C++ Code for the Bees Algorithm

#include "stdafx.h"
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <stdio.h>
#include <conio.h>
#include <iostream.h>
#include <limits.h>
#include <fstream.h>
#include <iomanip.h>
#include "params.h"
#include "func.h"

// Parameters used in main.cpp
#define pop 1 0 0 0 // max num of population

//Test parameters:
int R =l;
int imax=5000;

// Nunber o f runs (Nunber o f different tests)
// Number o f iterations

//The Bees Algorithm parameters:
int n= 10; // Number o f Scout Bees
int m= 5; // Number o f selected Locations
int e= 1; // Elite point/s
int nsp= 4; // Number o f Bees around each selected locations
int nep= 10; // Number o f Bees around each elite locations
double ngh=0.1; // Neighbourhood initial patch size
double sc=0.01; // Shrinking constant; defined as percentage (%) and

range is between 0 - 1

188

#define dim 2 // Dimensions o f the test function
double start_x[]={-5.12,-512};
double end_x[]={5.12,5.12, };
double ans=0 .0 0 1 ;

int NumOfEvalCounter=0 ;

double func(double x[][pop], int i) // Definition of Fitness Functions
{

NumOfEvalCounter++;
double y;
//Axis parallel hyper-ellipsoid function
y=0;
for(int j= 0 ;j< 2 ;j ++)

y=y+((j+l)*pow(x[j][i],2));
y=-y;

double randfunc(double xs, double xe) // Definition o f Randon number Generator
Function
{

double randnum;

randnum=rand() ;
randnum=x s+randnum * (xe-x s) / RA NDM AX;

return randnum;
}

double myrandom() //Random generator
{

double r;
int M,x;
M =10000;
x= M-2;
r = (1.0+(rand()%x))/M;
return r;

}

void funcSort(double inPl[],double oPl[],double inP2[][pop],double oP2[][pop],int
size) // Sorting function
{

// double temp 1 =inP 1 [0];
int temp2 ;
double temp 1 =-INT_MAX;

189

for(int j= 0 ;j<size;j++) //sort
{

for(int k=0;k<size;k-H-)
if(inPl[k]> tempi)
{

templ=inPl[k];
temp2 =k;

}

oPl[j]=tem pl;

for(int d=0 ;d<dim;d++)
oP2 [d] [j]=inP2 [d] [temp2];

tempi =-INT_MAX;

inP 1 [temp2]=-INT_MAX;

} //end sort

}

void main()
{

cout«"Program started...\n";

int i,d j,k,aa[100] ,ranSearchBees, counter, runs, fail, iter;
double nghx, tem pi, bPos[dim][pop], bNghPos[dim][pop], fit[pop],
bNghFit[pop], sortedFit[pop], candidx[dim][pop], bPosSort[dim][pop];

ofstream Result; //Opening a file to report the results...
Result.open("Result.xls");

srand((unsigned)time(NULL));// Different random numer each time

fail=0 ;

for(runs=0 ; runs<R; runs++) //R is the number of runs
{
NumOfEvalCounter=0;
nghx=ngh; //define patch size

//Initial Random distribution
for(i=0;i<n;i-H-)
{

190

for(d=0 ;d<dim;d++)
bPos[d][i]=randfunc(start_x[d],end_x[d]);

fit[i]=func(bPos,i);
}//End o f random distribution

//Run until maximum number o f iteration met
for(iter=0 ; iter<imax ;iter++)
{
// Sorting fitnesses & positions
fimcSort(fit, sortedFit, bPos, bPosSort, n);

counter=0 ;
// Choosing best m
for(i=0;i<m;i-H-)

for(d=0;d<dim;d-H-)
candidx[d][i] = bPosSort[d][i];

//Recruitment stage
for(i=0 ;i<m;i++)
{

if(i<e)
aa[i]=nep; // Number o f bees around each elite sites
else

aa[i]=nsp; // Number o f bees around other selected sites
>

// Search in the neighbourhood
temp 1 =-INT_MAX;
for(k=0;k<m;k-H-)//k site
{

for(j=OJ<aa[k]a-H-) //j recruited bee
{

for(d=0 ;d<diin;d++)//d dimension
{

do
{

bNghPos[d][j] = randfunc(candidx[d][k]-nghx, candidx[d][k]+nghx);

//bNghPos[d][j]=NRVG(candidx[d][k],StdDev);

}
while(bNghPos[d][j]<start_x[d] || bNghPos[d][j]>end_x[d]);

}

bNghFit[j]=ftmc(bNghPosj);

if(bNghFit[j]>= sortedFit[k])
{

191

for(d=0;d<dim;d-H-) { bPos[d][counter]=bNghPos[d][j];
candidx[d] [k]=bNghPos[d] [j];}

sortedFit[k]=bNghFit[j];
}

}// end o f recruitment

counterH-; // next member o f the new list

temp 1 =-INT_MAX; //

} // end o f Neighbourhood Search

//Shrink all the patches using the shrinking constant (sc) variable
nghx=nghx*(l -sc);

// Send rest o f the bees for random search...
ranSearchBees=n-m; // Number o f bees for random search
for(k=0;k<ranSearchBees;k-H-)
{

for(d=0 ;d<dim;d++)

bPos[d] [counter]=randfunc(start_x[d] ,end_x[d]);

counter+H-;
>

//Evalute the fitness values o f the new list
for(j=0;j<n;j++) fit[j]=func(bPosj);

//Stopping Criteria
// if (NumOfEvalCounter>50000) break;
if (fit[0] >= ans) break;

} //end iter = imax

c o u t« " \n ,f« i t e r + l « " "«N um O fEvalC ounter«" "« fit[0];

R esu lt« ite r+ 1 « " "«N um O fE valC ounter«" "« fit[0]« e n d l;
} //End o f Runs

Result.close();

c o u t« " \n Program finished...\n";
}

192

REFERENCES

Aarts, E. and Lenstra, J. K. (1997). Local search in combinatorial optimization. John

Wiley & Sons Ltd, England.

Abbass, H. A. (2001). Marriage in honey bees optimization (MBO): A haplometrosis

polygynous swarming approach. Proceedings o f the Congress on Evolutionary

Computation, CEC2001, Seoul, Korea, May 2001, 207-214.

Azeem, M. F. and Saad, A. M., (2004). Modified queen-bee evolution based genetic

algorithm for tuning o f scaling factors o f fuzzy knowledge base controller. IEEE

INDICON’04 Proceedings o f the India Annual Conference, pp. 299-303.

Back, T., Rudolph, G., and Schwefel, H. P. (1993). Evolutionary programming and

evolution strategies: Similarities and differences. Proceedings of the Second Annual

Conference on Evolutionary Programming, Evolutionary Programming Society, San

Diego, CA, pp. 11-22.

Baker, K. R. and Scudder, G. D. (1990). Sequencing with earliness and tardiness

penalties: a review. Operations Research, 38, 22-36.

Benatchba, K., Admane, L. and Koudil, M. (2005). Using bees to solve a data-mining

problem expressed as a max-sat One. IWINAC’05, LNCS 3562, pp. 212—220.

193

Bilchev, G. and Parmee, I.C. (1995). The ant colony metaphor for searching

continuous design spaces. Proceedings o f the AISB Workshop on Evolutionary

computation, University o f Sheffield, UK.

Biskup, D. and Feldmann, M. (2001). Benchmarks for scheduling on a single machine

against restrictive and unrestrictive common due dates. Computers & operations

research, 28, 787-801.

Boctor, F. F. (1991). A linear formulation o f the machine-part cell formation problem.

Int. Journal o f Production Research, 29(2), pp. 343-356.

Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999). Swarm Intelligence from Natural

to Artificial Systems. Oxford University Press, New York.

Britton, N. F., Franks, N. R., Pratt, S. C. and Seeley, T. D. (2002) Deciding on a new

home: how do honeybees agree? Proc. R. Soc. Lond. B 269, 1383-1388.

Bullnheimer, B., Hartl, R. F. and Strauss, C. (1999). A new rank-based version of the

Ant System: A computational study, Central European Journal for Operations

Research and Economics 7 (1), pp. 25-38.

Camazine, S. and Sneyd, J. (1991). A model of collective nectar source selection by

honey bees: self-organization through simple rules. Journal of Theoretical Biology

149:547-571.

194

Camazine, S., Deneubourg, J., Franks, N. R., Sneyd, J., Theraula, G. and Bonabeau, E.

(2003). Self-organization in biological systems. Princeton: Princeton University Press.

Camazine, S., Visscher, P.K., Finley, J. and Vetter, R.S. (1999). House-hunting by

honey bee swarms: collective decisions and individual behaviours. Insectes soc. 46

348-360.

Campbell, H. G, Dudek, R. A. and Smith, M. L. (1970). A heuristic algorithm for the n

job, m machine sequencing problem. Management Science 16(10), pp. B630-B637.

Carrie, A. S. (1973). Numerical taxonomy applied to group technology and plant

layout. Int. Journal o f Production Research,, 11(4), pp. 399-416.

Chandrasekharan, K. P. and Rajagopalan, R. (1989). Groupability: an analysis o f the

properties o f binary data for group technology. Int. Journal o f Production Research, 27,

pp. 1035-1052.

Cheng, T. C. E., and Kahlbacher, H. G. (1991). A proof for the longest-job-first policy

in one-machine scheduling. Naval Research Logistics.

Cox, M. D. and Myerscough, M. R. (2003). A flexible model o f foraging by a honey

bee colony: the effects o f individual behaviour on foraging success. Journal of

Theoretical Biology 223 179-197.

195

Dannenbring, D. G. (1977). An evaluation of flow shop sequencing heuristics.

Management Science. 23(11), pp. 1174-1182.

Dorigo, M. (1992). Optimization, learning and natural algorithms (in Italian). PhD

thesis, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy.

Dorigo, M. and Stutzle, T. (2004). Ant colony optimization. Cambridge, London :

MIT Press.

Dorigo, M., and Di Caro, G. (1999). The ant colony optimization metaheuristic. New

Ideas in Optimization, pp. 11-32.

Dorigo, M., Maniezzo, V. and Colomi, A. (1991). Positive feedback as a search

strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano,

Milan, Italy.

Dorigo, M., Maniezzo, V. and Colomi, A. (1996). Ant System: Optimization by a

colony o f cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics -

Part B, 26(1):29—41.

Feldmann, M. and Biskup, D. (2003). Single-machine scheduling for minimizing

earliness and tardiness penalties by meta-heuristic approaches. Computers & Industrial

Engineering, 44, 307-323.

196

Fogel, D. B. (1995). Evolutionary Computations: Toward a New Philosophy of

Machine Intelligence. IEEE Press, New York.

Fogel, L. J., Owens, A. J. and Walsh, M. J. (1966). Artificial intelligence through

simulated evolution. New York: Wiley.

Framinan, J. M. and Leisten, R. (2003). An efficient constructive heuristic for

flowtime minimisation in permutation flow shops. OMEGA, 31, pp. 311-317.

Gambardella, L. M. and Dorigo, M. (1996). Solving symmetric and asymmetric TSPs

by ant colonies, Proceedings o f the 1996 IEEE international conference on

evolutionary computation (ICEC’96), IEEE Press, Piscataway, NJ, pp. 622-627.

Gambardella, L. M., Dorigo, M. (1995). Ant-Q: A reinforcement learning approach to

the travelling salesman problem. In Proceedings of ML-95, twelfth international

conference on machine learning. Tahoe City, CA: Morgan Kaufmann. pp. 252-260.

Garey, M. R. and Johnson, D. S. (1979). Computers and intractability: a guide to

theory of NP-completeness, Freeman, San Francisco.

Goldberg, D. E. (1997). Genetic algorithms in search, optimization, and machine

learning. Addison Wesley, MA.

197

Gordon, N., Wagner, I. A. and Bruckstein, A. M. (2003). Discrete bee dance

algorithms for pattern formation on a grid. Proceedings of the IEEE/WIC International

Conference on Intelligent Agent Technology (IAT’03).

Haddad, O. B., Ashraf, A. and Marin, M. A. (2006). Honey-bees mating optimization

(HBMO) algorithm: a new heuristic approach for water resources optimization. Water

Resources Management, 20: 661-680.

Hino, C. M., Ronconi, D. P. and Mendes, A. B. (2005). Minimizing earliness and

tardiness penalties in a single-machine problem with a common due date. European

Journal of Operational Research, 160, 190-201.

Holland, J. H. (1975). Adaptation in natural and artificial systems. University of

Michigan Press.

Hoogeven, J. A. and Velde, S. L. V. D. (1991). Scheduling around a small common

due date. European Journal o f Operational Research, 55, 237-242.

Jeffrey, A. J., Russell, E. K. C. and Thomas, C. A. (1996). Comprehensive review of

production-oriented manufacturing cell formation techniques. Available at:

http://citeseer.ist.psu.edu/joines96comprehensive.html

Bartholdi, J. J., Seeley, T. D., Tovey, C. A. and Vate, J. H. V. (1993). The pattern and

effectiveness o f forager allocation among flower patches by honey bee colonies.

Journal of Theoretical Biology. Volume 160, Issue 1, Pages 23-40.

198

http://citeseer.ist.psu.edu/joines96comprehensive.html

Johnson, S. M. (1954). Optimal two-and three-stage production schedules. Naval

Research Logistics Quarterly, 1, pp. 61-68.

Kaczorek, T. (1985). Two-dimensional linear systems. Berlin, Germany, Springer-

Verlag.

Kan, R. A. H. G. (1976). Machine scheduling problems: classification, complexity and

computations. Nijhoff, The Hague.

Karaboga, D. and Akay, B. (2007). Artificial bee colony (ABC) algorithm on training

artificial neural networks. Proc IEEE 15th Signal Processing and Communications

Applications, p. 1-4.

Karaboga, D. and Akay, B. (2009). A comparative study of artificial bee colony

algorithm, Appl. Math. Comput., doi: 10.1016/j.amc.2009.03.090 (in press).

Karaboga, D. and Basturk, B. (2008). On the performance of artificial bee colony

(ABC) algorithm. Applied Soft Computing 8(1), p. 687-697.

Kennedy, J. and Eberhart, R. (1997). A discrete binary version o f the particle swarm

optimization algorithm. Proc. o f the 1997 conference on Systems, Man, and

Cybernetics (SMC'97), pp.4104-4109.

199

Kennedy, J. and Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of

IEEE International Conference on Neural Networks (ICNN'95), Vol. IV, pp. 1942-

1948, Perth, Australia.

Kennedy, J. and Ebemhart, R. (2001). Swarm Intelligence. Morgan Kaufmann

Publishers, San Francisco.

Kennedy, J., Eberhart, R. C., and Shi, Y. (2001). Swarm intelligence, Morgan

Kaufmann Publishers, San Francisco,.

Lee, K. Y. and Mohamed, A. (Edited) (2008). Fundamentals o f particle swarm

optimization techniques. Chapter 5, fundamentals o f particle swarm optimization

techniques. The Institute o f Electrical and Electronics Engineers.

Lee, Z. J. (2007). An intelligent algorithm for scheduling jobs on a single machine

with a common due date. Lecture Notes in Computer Science Springer

Berlin/Heidelberg, pp. 689-695.

Lemmens, N. (2006). To bee or not to bee: a comparative study in swarm intelligence.,

N. Lemmens., Master's Thesis, Maastricht University, The Netherlands.

Lemmens, N., de Jong, S., Tuyls, K. and Nowe, A. (2007). A bee system with

inhibition Pheromones. European conference on complex systems (ECCS), Dresden,

Germany.

200

Lucic', P. and Teodorovic', D. (2001). Bee system: modelling combinatorial

optimization transportation engineering problems by swarm intelligence. In: Preprints

of the TRISTAN IV Triennial Symposium on Transportation Analysis, Sao Miguel,

Azores Islands, Portugal, June, pp. 4 4 1 ^4 5 .

Mak, K. L., Wong, Y. S. and Wang, X. X. (2000). An adaptive genetic algorithm for

manufacturing cell formation. The Int. Journal of Advanced Manufacturing

Technology, 16, pp. 491—497.

Mastorakis, N. E., Gonos, I. F. and Swamy, M. N. S. (2003). Design of two-

dimensional recursive filters using genetic algorithm. IEEE Transactions on Circuits

and Systems-I: Fund. Theory and Applications, vol. 50, no.5, p. 634-639.

Mathur M., Karale, S. B., Priye, S., Jayaraman, V. K. and Kulkami B. D. (2000). Ant

colony approach to continuous function optimization. Industrial & Engineering

Chemistry Research, 39, 3814 - 3822

Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs.

3rd rev. and extended ed. Berlin: Springer-Verlag.

Miltenburg, J. and Zhang, W. (1991). A comparative evaluation of nine well-known

algorithms for solving the cell formation problem in group technology. Journal of

Operations Management, 10(1), pp. 44-69.

201

Mladenov, V. M. and Mastorakis, N. E. (2001). Design of two-dimensional recursive

filters by using neural networks, IEEE Transactions on Neural Networks, vol. 12, no.3,

p. 585-590.

Montgomery, D. C. (2000). Introduction to statistical quality control. 4th ed., , Wiley,

New York, NY.

Mungwattana, A. (2000). Design o f cellular manufacturing systems for dynamic and

uncertain production requirements with presence o f routing flexibility. PhD Thesis,

Faculty o f the Virginia Polytechnic Institute and State University, Virginia, USA.

Nearchhou, A. C. (2006). A differential evolution approach for the common due date

early/tardy job scheduling problem. Computers & Operations Research.

Nowicki, E. and Smutnicki, C. (1996). A fast tabu search algorithm for the

permutation flowshop problem. European Journal of Operational Research, 91, pp.

160-175.

Ogbu, F. and Smith, D. (2004). The application of the simulated annealing algorithm

to the solution o f the n/m/Cmax flowshop problem. International Journal o f Production

Research, 42(3), pp. 473-491.

Osman, I. and Potts, C. (1989). Simulated annealing for permutation flow shop

scheduling. OMEGA, 17(6), pp. 551-557.

202

Packianather, M. S. and Drake, P. R. (2005). Identifying defects on plywood using a

minimum distance classifier and a neural network. In: Pham D.T., Eldukhri E., Soroka

A ed(s) 1st I*PROMS Virtual International Conference on Intelligent Production

Machines and System. Cardiff University, Cardiff pp. 543-548.

Pan, Q-K., Tasgetiren, M. F. and Liang, Y-C. (2006). A discrete particle swarm

optimization algorithm for single machine total earliness and tardiness problem with a

common due date. 2006 IEEE Congress on Evolutionary Computation. Sheraton

Vancouver Wall Centre Hotel, Vancouver, BC, Canada.

Passino, K. M. and Seeley, T. D. (2006). Modeling and analysis of nest-site selection

by honeybee swarms: the speed and accuracy trade-off. Journal of Behavioral Ecology

and Sociobiology. Volume 59, Number 3, p. 427-442.

Pham, D.T., Ghanbarzadeh, A., K0 9 , E., Otri, S., Rahim, S., and Zaidi, M. (2006) The

Bees Algorithm, a novel tool for complex optimisation problems, in Proc 2nd Int

virtual conf on intelligent production machines and systems (IPROMS). Oxford:

Elsevier.

Pham, D. T. and Alcock, R. J. (1996). Automatic detection of defects on birch wood

boards. Proc. I Mech E, Part E, J. o f Process Mechanical Engineering. 210, 45-52.

Pham, D. T. and Chan, A. B. (2001). Unsupervised adaptive resonance theory neural

networks for control chart pattern recognition. Proc of Institution of Mechanical

Engineers, Volume 215, Part B, pp. 59-67.

203

Pham, D. T. and Oztemel, E. (1995). An integrated neural network and expert system

tool for statistical process control. Proc o f Institution of Mechanical Engineers, Vol.

209, Part B: pp. 91-97.

Pham, D.T. and Liu, X. (1995). Neural networks for identification. Prediction and

Control. London: Springer.

Pham, D.T. and Oztemel, E. (1992). Control chart pattern recognition using neural

networks. Journal of Systems Engineering, pp. 256-262.

Pilat, M. L. and White, T. (2002). Using genetic algorithms to optimize ACS-TSP.

ANTS’02. Proceedings o f the third international workshop on ant algorithms,

Springer-Verlag, pp. 282-287.

Price, K. V., Stom, R. M. and Lampinen, J. A. (2005). Differential evolution. Springer,

p. 538.

Qin, L. D., Jiang, Q. Y., Zou, Z. Y. and Cao, Y. J. (2004). A queen-bee evolution

based on genetic algorithm for economic power dispatch. UPEC 2004 39th

International Universities Power Engineering Conference, Bristol, UK, pp. 453-456.

Rajendran, C. and Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop

scheduling to minimize makespan/maximum lateness of jobs. European Journal of

Operational Research, 155(2), pp. 426-438.

204

Rechenberg, I. (1965). Cybernetic solution path of an experimental problem.

RoyalAircraft Establishment, Famborough p. Library Translation 1122.

Reeves, C. (1993). Improving the efficiency o f tabu search for machine sequencing

problem. Journal o f Operational Research Society, 44(4), pp. 375-382.

Reeves, C. (1995). A genetic algorithm for flowshop sequencing. Computers and

Operations Research, 22(1), pp. 5-13.

Reeves, C. and Yamada, T. (1998). Genetic algorithms, path relinking and the

flowshop sequencing problem. Evolutionary Computation, 6 , pp. 45-60.

Sato, T. and Hagiwara, M. (1997). Bee system finding solution by a concentrated

search .Proceeding o f the IEEE International Conference on System, Man and

Cybernetics, Vol 4[C]. pp. 3954~3959.

Schmickl, T. and Crailsheim, K. (2004). Costs o f environmental fluctuations and

benefits of dynamic decentralized foraging decisions in honey bees. Adaptive

Behaviour, Vol. 12, No. 3-4, 263-277.

Schwefel, H. P. (1981). Numerical optimization of computer models. Chichester:

Wiley.

205

Seeley, T. D. (1995). The wisdom o f the hive - the social physiology of honey bee

colonies. Harvard University Press, Cambridge, Massachusetts.

Seeley, T. D. and Visscher, P. K.. (2003). Choosing a home: how the scouts in a honey

bee swarm perceive the completion o f their group decision making. Behav Ecol

Sociobiol 54:511-520.

Simon, M. K. (2006). Probability distributions involving Gaussian random variables: a

handbook for engineers and scientists. Springer International Series in Engineering

and Computer Science.

Srinivasan, G., Narendran, T.T. and Mahadevan, B. (1990). An assignment model for

part-families problem in group technology. Int. Journal of Production Research.

Stom, R. and Price, K. (1997). Differential evolution: a simple evolution strategy for

fast optimizationJoumal o f global optimization. Journal of global optimization,

Volume 11, Number 4 / December, pp. 341-359.

Stiitzle, T. (1998). An ant approach to the flowshop problem. In: Proceedings of the

6 th European Congress on Intelligent Techniques and Soft Computing (EUFIT’98).

Verlag Mainz. Germany, pp. 1560-1564.

Stutzle, T. and Hoos, H. H. (2000). M ax-min ant system, Future Generation Computer

Systems 16 (8), pp. 889-914.

206

Sung, H. J. (2003). Queen-bee evolution for genetic algorithms. Electronic Letters,

39(6), 575-576.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of

Operational Research, 64, pp. 278-285.

Tasgetiren, M. F., Sevkli, M, Liang, Y-C. and Gencyilmaz, G. (2004) Particle swarm

optimization algorithm for permutation flowshop sequencing problem. 4th

International Workshop on Ant Algorithms and Swarm Intelligence (ANTS2004),

Brussels, Belgium, pp. 382-389.

Teodorovic, D., Lucic, P., Markovic, G. and Oreo, M. D. (2006). Bee colony

optimization: principles and Applications, Neural Network Applications in Electrical

Engineering, pp. 151-156.

Tovey, C. A. (2004). The honey bee algorithm, a biologically inspired approach to

internet server optimization. Engineering Enterprise, pp. 13-15.

Tzafestas, S. G. (1986). Ed., Multidimensional systems, techniques and applications.

New York, Marcel Dekker.

Von Frisch, K. (1967). Bees: their vision, chemical senses, and language. Cornell

Paperbacks publishing.

207

Wedde, H. F., Farooq, M. and Zhang, Y. (2004). BeeHive: An Efficient Fault-Tolerant

Routing Algorithm Inspired by Honey Bee Behavior. ANTS 2004, LNCS 3172,

pp.83-94.

Wedde, H. F., Farooq, M., Pannenbaecker, T., Vogel, B., Mueller, C., Meth, J., and

Jeruschkat, R. (2005a). BeeAdHoc: An Energy Efficient Routing Algorithm for

Mobile AdHoc Networks Inspired by Bee Behaviour. GECCO’05, June 25-29.

Wedde, H. F., Farooq, M., Pannenbaecker, T., Vogel, B., Mueller, C., Meth J., and

Jeruschkat, R. (2005b). BeeAdHoc: An energy efficient routing algorithm for mobile

Ad Hoc networks inspired by bee behaviour. Proceedings o f the conference on

Genetic and evolutionary. Washington DC, USA Pages: 153 - 160.

Wemmerlov, U. and Hyer, N. L. (1987). Research issues in cellular manufacturing. Int.

Journal of Production Research, 25, pp. 413—431.

Wong, L., Yoke, M., Low, H. and Chong, C. S. (2008). A bee colony optimization

algorithm for traveling salesman problem. IEEE Second Asia International Conference

on Modelling & Simulation, pp. 818-823.

Yang X. (2005). Engineering optimization via Nature-Inspired Virtual Bee Algorithms.

IWINAC 2005. LNCS 3562, pp.317-323.

208

Yonezawa, Y. and Kikuchi T. (1996). Ecological algorithm for optimal ordering used

by collective honey bee behaviour. Seventh Int. Symposium on Micro Machine and

Human Science, pp. 249-257.

Zhang, Y. (2005). BeeHive. PhD Thesis, University of Dortmund.

209

