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Abstract

In this thesis, a new population-based search algorithm called the Bees Algorithm (BA) is 

presented. The algorithm mimics the food foraging behaviour of swarms of honey bees. 

In its basic version, the algorithm performs a kind of neighbourhood search combined 

with random search and can be used for both combinatorial and functional optimisation. 

In the context of this thesis both domains are considered. Following a description of the 

algorithm, the thesis gives the results obtained for a number of complex problems 

demonstrating the efficiency and robustness o f the new algorithm.

Enhancements of the Bees Algorithm are also presented. Several additional features are 

considered to improve the efficiency o f the algorithm. Dynamic recruitment, proportional 

shrinking and site abandonment strategies are presented. An additional feature is an 

evaluation of several different functions and of the performance of the algorithm 

compared with some other well-known algorithms, including genetic algorithms and 

simulated annealing.

The Bees Algorithm can be applied to many complex optimisations problems including 

multi-layer perceptrons, neural networks training for statistical process control and the 

identification of wood defects in wood veneer sheets. Also, the algorithm can be used to 

design 2D electronic recursive filters, to show its potential in electronics applications.



A new structure is proposed so that the algorithm can work in combinatorial domains. In 

addition, several applications are presented to show the robustness of the algorithm in 

various conditions. Also, some minor modifications are proposed for representations of 

the problems since it was originally developed for continuous domains.

In the final part, a new algorithm is introduced as a successor to the original algorithm. A 

new neighbourhood structure called Gaussian patch is proposed to reduce the complexity 

of the algorithm as well as increasing its efficiency. The performance of the algorithm is 

tested by use on several multi-model complex optimisation problems and this is compared 

to the performance o f some well-known algorithms.
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Chapter 1

INTRODUCTION

This chapter presents the motivation and research objectives, and the methods 

adopted. The chapter also outlines the general structure of the thesis.

1.1. Motivation

Many complex multi-variable optimisation problems cannot be solved exactly within 

polynomially bounded computation times. This has generated much interest in search 

algorithms that find near-optimal solutions in reasonable running times. Many 

intelligent swarm-based optimisation methods were developed. Evolutionary 

algorithms may be considered as one of the first of this class of algorithms. 

Evolutionary Strategies (Rechenberg, 1965), Evolutionary Programming (Fogel et al.,
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1966) and Genetic Algorithms (Holland, 1975) were developed to deal with complex 

multi-variable optimisation problems. Although they are considered in this class because 

of their population-based structure, they may also be separated from swarm-based 

optimisation algorithms due to their centralised control mechanisms. Some of the first 

significant examples in this class were Ant System (Dorigo et al., 1991) and Particle 

Swarm Optimisation algorithms (Kennedy and Eberhart, 1995) which have no centralised 

control over their individuals.

In the context of optimisation and swarm intelligence, the first motivation for the research 

presented in this thesis was to develop a novel intelligent swarm-based optimisation 

method called the Bees Algorithm which would be capable of solving many complex 

multi-variable optimisation problems in more robust and efficient ways than existing 

algorithms. Secondly, to implement the algorithm for continuous domains and improve it 

with additional features which are necessary for complex industrial problems. 

Combinatorial problems are another domain for swarm intelligence algorithms. In this 

field, it is quite difficult to implement the current algorithm in this domain when it was 

proposed originally for continuous domains. Therefore, it is interesting to explore the 

opportunities and limitations of the improved algorithm to this challenging domain and 

this is the third motivation. Fourthly, to further develop the algorithm with the addition of 

a new organised structure as well as improved robustness and efficiency. The Final 

motivation for this research is to encourage the use of the Bees Algorithm for complex 

multi-variable optimisation problems as an alternative to the use of more popular 

intelligent swarm-based optimisation methods such as genetic algorithms, artificial ant 

colony algorithm and particle swarm optimisation algorithm.
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1.2. Aims and Objectives

The overall research aim is to develop swarm-based optimisation algorithms which are 

inspired by honey-bees’ foraging behaviours, for use in complex optimisation 

problems and with improved efficiency.

The main research objectives are:

• To develop a new intelligent swarm-based optimisation method inspired by the 

food foraging behaviours of honey-bees. Also to apply it to various industrial 

problems.

• To enhance the algorithm’s neighbourhood search procedure so that it can perform 

well in combinatorial domains.

• To improve the original algorithm with a new neighbourhood strategy and to 

reduce the number of parameters as proposed in the original algorithm.

1.3. Methods

For the topics analysed in this thesis, each one will follow the same problem solving 

methods to reach the desired objectives. The methods used in this research may be 

summarised as follows:

■ Literature review: the most relevant papers for each research topic will be 

reviewed to clarify the key points in the subject and to identify any 

shortcomings.
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■ A novel swarm-based optimisation procedure will be proposed along with 

improved versions of the algorithm. Innovation started with a informed 

criticism of existing methods. Studying Nature is a most important part of this 

thesis.

■ Many experiments will be carried out to understand the behaviours of the 

algorithm under different conditions. To do this, some software needs to be 

written in a variety of programming languages and the results compared to 

existing works in the literature.

1.4. Outline of the thesis

Chapter 2 briefly reviews swarm intelligence and intelligent swarm-based optimisation 

algorithms. Behaviours of honey-bees in natural conditions, including food foraging 

used in the context of this thesis are explained in details. Computational simulations of 

honey-bee behaviours are reviewed to show the link between nature and optimisation 

algorithms. Honey-bees inspired algorithms are also reviewed in this chapter.

Chapter 3 introduces the Bees Algorithm as a novel intelligent swarm-based 

optimisation method in its simplest form. Then, it focuses on enhancements to the 

Bees Algorithm for local and global search. The algorithm is improved with the

4



addition of dynamic recruitment, proportional patch shrinking and site abandonment 

ideas. The performances of the basic and improved algorithms are also compared and 

the differences presented. Also, the improved algorithm is compared with some well- 

known algorithms to show its performance and robustness.

Chapter 4 focuses on implementations of the Bees Algorithm in continuous domains. 

The algorithm is applied first on training multi-layered perceptrons (MLP) neural 

networks for statistical process control. Details of this application and of MLP-Bees 

Algorithm training are explained. Then another application for similar MLP neural 

networks is presented. The application focuses on a real data set for wood defect 

identification. The performance of the algorithm is also evaluated for a 2D recursive 

filter design problem.

Chapter 5 describes improvements to the Bees Algorithm. These additions make the 

algorithm suitable for use in combinatorial domains. Since it was developed for 

continuous domains, some modifications were needed to apply the algorithm to 

neighbourhood search. Several local search algorithms are suggested for the algorithm 

as well as site abandonment. The performance of the modified algorithm is evaluated 

for several difficult applications including single machine job scheduling, flow shop 

scheduling and manufacturing cell formation problems. For all the problems, the 

algorithm is also modified in terms of suitable neighbourhood structure and 

representation.

5



Chapter 6 presents the Bees Algorithm-II as an improved version of the original 

algorithm. The chapter introduces a new structure that has more control over the 

randomness used for neighbourhood search. A Gaussian distribution is used in the 

form of a normal random variate generator as a new recruitment strategy. Also, the 

procedure to reduce the number of parameters, which were many and difficult to set, is 

explained. The performance of the proposed algorithm is evaluated for several 

functional optimisation problems and the results are compared both with the original 

Bees Algorithm and with other well-known algorithms.

Chapter 7 summarises the thesis and proposes directions for further research.

Appendix A presents the C++ Code for the Bees Algorithm.

6



Chapter 2

BACKGROUND

This chapter reviews the notation as well as the basic concepts of swarm intelligence 

theory. Several intelligent swarm-based optimisation algorithms are investigated. In 

this chapter, the individual and social behaviour of honey-bees is reviewed from a 

swarm intelligence point of view. Several computational models are also presented to 

explain the interactions between individuals that constitute the swarm intelligence. 

Finally, the most recent studies of algorithms inspired by the behaviour of honey-bees 

and their applications are reviewed.

2.1. Swarm intelligence

Swarm Intelligence (SI) is defined as the collective problem-solving capabilities of 

social animals (Bonabeau et al., 1999). SI is the direct result o f self-organisation in

7



which the interactions of lower-level components create a global-level dynamic 

structure that may be regarded as intelligence (Bonabeau et al., 1999). These lower- 

level interactions are guided by a simple set of rules that individuals of the colony 

follow without any knowledge of its global effects. Individuals in the colony only have 

local-level information about their environment. Using direct and/or indirect methods 

of communication,, local-level interactions affect the global organization o f the 

colony.

Self-organization is created by four elements as were suggested by Bonabeau et al., 

(1999). Positive feedback is defined as the first rule of self-organization. It is basically 

a set of simple rules that help to generate the complex structure. Recruitment of honey 

bees to a promising flower patch is one o f the examples of this procedure. The second 

element of self-organization is negative feedback, which reduces the effects of positive 

feedback and helps to create a counterbalancing mechanism. The number of limited 

foragers is an example of negative feedback. Randomness is the third element in self

organisation. It adds an uncertainty factor to the system and enables the colonies to 

discover new solutions for their most challenging problems (food sources, nest sites 

etc.). Last but not least, there are multiple interactions between individuals. There 

should be a minimum number of individuals who are capable of interacting with each 

other to turn their independent local-level activities into one interconnected living 

organism. As a result of combination o f these elements, a decentralised structure is 

created. In this structure there is no central control even though there seems to be one. 

A hierarchical structure is used only for dividing up the necessary duties; there is no 

control over individuals but over instincts. This creates dynamic and efficient 

structures that help the colony to survive despite many challenges.
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There are many different species of animal that benefit from similar procedures that 

enable them to survive and to create new and better generations. Honey-bees, ants, 

flocks of birds and shoals of fish are some of the examples of this efficient system in 

which individuals find safety and food. Moreover, even some other complex life forms 

follow similar simple rules to benefit from each others’ strength. To some extent, even 

the human body can be regarded as a self-organised system. All cells in the body 

benefit from each others’ strength and share the duties of overcoming the challenges 

which are often lethal for an individual cell.

2.2. Intelligent swarm-based optimisation

Swarm-based optimisation algorithms (SOAs) mimic nature’s methods to drive a 

search towards the optimal solution. A key difference between SOAs and direct search 

algorithms such as hill climbing and random walk is that SOAs use a population of 

solutions for every iteration instead o f a single solution. As a population of solutions is 

processed as an iteration, the outcome o f each iteration is also a population of 

solutions. If an optimisation problem has a single optimum, SOA population members 

can be expected to converge to that optimum solution. However, if  an optimisation 

problem has multiple optimal solutions, an SOA can be used to capture them in its 

final population. SOAs include Evolutionary Algorithms (i.e. the Genetic Algorithm), 

the Ant Colony Optimisation (ACO) and the Particle Swarm Optimisation (PSO). 

Common to all population-based search methods is a strategy that generates variations 

of the solution being sought. Some search methods use a greedy criterion to decide

9



which generated solution to retain. Such a criterion would mean accepting a new 

solution if and only if  it increases the value of the objective function.

2.2.1. Evolutionary algorithms

Inspired by the biological mechanisms of natural selection, mutation and 

recombination Evolutionary Algorithms (EAs) were first introduced in the forms of 

Evolutionary Strategies (Rechenberg, 1965), Evolutionary Programming (Fogel et al., 

1966) and afterwards Genetic Algorithms (Holland, 1975). EAs were the first search 

methods to employ a population o f agents. In EAs, using the stochastic search 

operators, the population is evolved to the optimal point(s) of the search space. 

Population, genome encoding and selections of good individuals are some of the most 

common features for all EAs. The selection procedure (deterministic or stochastic) is used 

to pick the good individuals that will produce the new population (Holland, 1975; Fogel, 

2000). The crossover operator was introduced to create new individuals by randomly 

exchanging the genes. This operator provides a social interaction effect between 

individuals (Holland, 1975; Fogel, 2000). The mutation operator was introduced to 

generate small perturbations to enable exploration of the search space and avoid any 

premature convergence (Holland, 1975; Fogel, 2000). There are several different types 

of EAs in the literature including evolutionary strategies, evolutionary programming, 

genetic algorithm and differential evaluation.

Evolutionary strategies (ES) were first introduced by Rechenberg, (1965) as one of the 

first successful applications of EAs. Further improvements to these were also made by
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Schwefel, (1981). ES was defined as an optimization technique based on ideas of 

adaptation and evolution (Rechenberg, 1965). ES uses primarily mutation and 

selection as its search operators. In EAs, solutions are represented in two (often three) 

n-dimensional real vectors as well as by standard deviations. The mutation operator is 

defined as the addition of a random value (normally distributed) to each vector. The 

selection operator is deterministic based on the fitness ranking. The population of 

basic ES consists of two individuals, parent and mutant of the parent. For the next 

generation, if  the fitness of the mutant is better than or equal to that of its parent then 

the mutant becomes parent. Otherwise the mutant is ignored. This procedure is defined 

as a (1 + 1)-ES. On the other hand, there is also a (1 + X)-ES in which X mutants is 

generated and competes with the parent who was ignored and the best mutant becomes 

the parent of the next generation (Schwefel, 1981).

Evolutionary programming (EP) was first introduced by Fogel et al., (1966) to predict 

a binary time series. It was further developed by Fogel, (1995) and applied to several 

different problems, including optimisation and machine learning. The original model 

was based on the organic evolution of the species, thus recombination was not 

included in EP. The representations used for EP depended on the problem domains. 

The main difference between EP and other EAs is that there is no interaction between 

individuals in EP. This means that no crossover operator is used, only the mutation 

operator used to create offspring individuals. As a selection method, all individuals are 

selected to be parents and all parents mutated to create the same number of offspring. 

Gaussian mutation was used to generate an offspring from each parent and the next 

generation was constructed by better parents as well as selected offspring. EP was 

applied to many optimisation problems (Back, 1993; Fogel, 1995).
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Holland, (1975) first introduced a schema theory as a basis for Genetic Algorithms 

(GAs). The GA is based on natural selection and genetic recombination. In GAs 

candidate solutions are encoded in the form of binary strings called chromosomes 

which are constructed by a number o f sub-strings representing the features of 

candidate solutions. This binary representation, however, set aside the maximum 

number of schemata to be processed for all individuals (Holland, 1975). There were 

several binary encoding systems which were introduced in the literature making 

different representations available for different domains (Michalewicz, 1996). 

However, there are some shortcomings with these representations, including high 

computational cost and trapping to local optima (Fogel, 2000). The algorithm works 

by choosing solutions from the current population and then applying genetic operators 

-  such as mutation and crossover -  to create a new population. The algorithm 

efficiently exploits historical information to speculate on new search areas with 

improved performance (Fogel, 2000). When applied to optimisation problems, the GA 

has the advantage of performing a global search. The GA may be hybridised with 

domain-dependent heuristics for improved results. For example, Mathur et al., (2000) 

described a hybrid of the ACO algorithm and the GA for continuous function 

optimisation.

Differential Evolution (DE) was proposed by Stone and Price, (1997) as a population- 

based search strategy which was similar to standard EAs. The only difference was in 

the breeding stage where a different operator was used. In this stage, an arithmetic 

crossover operator was used to create an offspring out of three parents. An arithmetic 

operator was used to calculate the differences between randomly selected pairs of 

individuals (Price et al., 2005). A new generation was created by the offspring
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population if one offspring was better then a parent, otherwise the parent would stay in 

the new generation list.

2.2.2. Ant colony optimisation

Ant Colony Optimisation (ACO) is a non-greedy population-based metaheuristic 

which emulates the behaviour of real ants. It can be used to find near-optimal solutions 

to difficult optimisation problems. Ants are capable of finding the shortest path from 

the food source to their nest using a chemical substance called pheromone which is 

used to guide the exploration. The pheromone is deposited on the ground as the ants 

move and the probability that a passing stray ant will follow this trail depends on the 

quantity of pheromone laid.

Ant-inspired algorithms were introduced by Dorigo et al., (1991). Ant System (AS) is 

one of very first versions of ant-inspired algorithms to be proposed in the literature 

(Dorigo et al., 1991; Dorigo, 1992; Dorigo et al., 1996). The first algorithm was 

aiming to search for an optimal path in a graph based on a probabilistic decision 

depending on positive and negative feedback (i.e. pheromone update and decay). 

Pheromone which is updated by all the ants after a complete tour is the key idea in this 

algorithm. Pheromone update ( tv) for the edges of the graph (aj) that are joining the

cities i and j  is calculated as follows (Dorigo et al., 1991):

m

(2 .1)

13



where m is the number of ants, p  e (o,l] is the evaporation rate, and Ar* is the quantity

of pheromone laid on the edge (ij). The value of the quantity of pheromone laid on the 

edges is determined by the tour length (X*) of an ant:

A r* = —  i f  ant k used edge (i , j ) in its tour, (2.2)
0 otherwise,

In AS, solutions are constructed according to a probabilistic decision made at each 

vertex. A transition function pic^ \ s f)  is used to calculate the probability o f an ant 

moving from town i to town j:

_ a r „ / 7

X Cj,eAr(jP )T'I 

0

i f  j  e  N {spk } 

otherwise,
(2.3)
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1. Parameter Initialisation

2. WHILE (stopping criterion not met) do

3. ScheduleActivities

4. AntSolutionsConstruct( )

5. PheromoneUpdate()

6. DeamonActions( ) optional

7. END ScheduleActivities

8. END WHILE

Figure 2.1 The ant colony optimisation metaheuristic
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where a and p  are parameters that control the relative importance of the pheromone 

( Tij) versus the desirability of edge i,j ( rjy ) which is determined using rjy = \/dy , where

dy is the length of edge ( cy) and jv(sf) is the set of edges that do not belong to the

partial solution s pk of ant k .

After AS was introduced as a basic method for ant-inspired algorithms, the ACO 

metaheuristic was developed to explain the behaviour of ants in more general ways 

(Dorigo and Di Caro, 1999) and was applied to TSP problems. ACO consists of three 

main functions (see Fig. 2.1) namely, AntSolutionConstruct(), PheromoneUpdate() 

and DeamonAction(). Equation 2.1 performs trail updates. Equation 2.3 is a procedure 

to construct the solution by iteratively moving through neighbouring positions using a 

transition rule. The DeamonAction() function is an optional procedure that updates the 

global best solution.

There are several improved versions o f the ACO metaheuristic in the literature. The 

differences between the original idea and improved versions are made clear in this 

section. Further discussion can be found in references. Gambardella and Dorigo, 

(1996) proposed the Ant Colony System (ACS) which differs mainly by its pheromone 

update function. It was developed to be more in line with the natural behaviour of ants. 

A local pheromone update was employed including the update at the end of each 

epoch. Bullnheimer et al., (1996) presented a rank-based Ant System which includes 

the ranking concept into the pheromone update procedure. In this algorithm, ants are 

ranked according to the decreasing order of their fitness. The amount of pheromone 

deposited is distributed according to their order, meaning that the better fitness will 

receive more pheromone. Dorigo et al., (1996) proposed the Elitist Ant System, which
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differs such that the global best solution deposits pheromone at every iteration along 

with all the other ants. Stutzle and Hoos, (2000) proposed Max-Min Ant System with 

two improvements: namely, only the best ant updates the pheromone trials, and the 

pheromone update function is bound. There were also many hybrid versions of the ant- 

inspired algorithms which include Q-leaming (Gambardella and Dorigo, 1995) and 

GA (Pilat and White, 2002).

2.23 . Particle swarm optimisation

Kennedy and Eberhart, (1995) proposed the Particle Swarm Optimisation (PSO) which 

is a stochastic optimisation algorithm based on the social behaviour of groups of 

organisations, for example the flocking o f birds or the schooling of fish. Pseudo-code 

of the PSO algorithm is given in Fig. 2.2. Similar to evolutionary algorithms, the PSO 

initialises with a population of random solutions. It searches for local optima by 

simply updating generations of individuals. However, PSO has no such operators such 

as crossover and mutation that EAs employ. Instead, individual solutions in a 

population are viewed as “particles” that evolve or change their positions with time. 

Each particle modifies its position in search space according to its own experience and 

also that of a neighbouring particle by remembering the best position visited by itself 

and its neighbours. Thus the PSO has a structure that combines local and global search 

methods (Eberhart and Kennedy, 2001).
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1. Create particles (population) distributed over solution space ( s ? , v(° ).

2 . While (Stopping criterion not met) do

3. Evaluate each particle’s position according to the objective function.

4 . I f  (  s f +1 is better than s f ) (update pbest)

k _  k+\ 
si ~ si

5. Determine the best particle (update gbest).

6. Update particles’ velocities according to

v*+1 = v* + c{randl {pbest, -  sf  )+ c2rand2 (gbest -  sf  )

7 . Move particles to their new positions according to

s f +I = s f + v f +]

8. Go to step 3 until stopping criteria are satisfied.

Figure 2.2 Pseudo-code o f the PSO algorithm
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In Fig. 2.2 the basic pseudo-code of the PSO algorithm is presented. The algorithm 

starts with creating particles that are uniformly distributed throughout the solution 

space by defining the initial conditions for each agent. Each agent is defined with an 

initial position ( sf  ) and an initial velocity ( vf). The pbest is set to current searching 

for each agent and the best pbest is set to gbest. After checking the stopping criterion 

in step 2, each particle’s position is evaluated according to the objective function in 

step 3. If the existing position is better than the previous one, then pbest is updated in 

step 4 and followed by gbest update in step 5.

In step 6, particles’ velocities are updated using the velocity vector given in equation 

2.4. It has three main components: namely, particle’s best performance so far (pbest), 

the best so far amongst all particles (gbest) and the inertia of particles (v). gbest 

represents the social interaction of particles in an indirect way.

vf+l = v? +clrandl{pbesti - s f ) + c 2rand2{g b es t-s f  ) (2.4)

where, vf is velocity of agent i at iteration k, Cj is weighting factor, randj is a random 

number between 0 and 1, sf is current position of agent i at iteration k, pbesti is 

personal best of agent i and gbest is the global best of the population.

In step 7, particles are moved to their new positions. The current position of a particle 

with a given velocity calculated by Equation 2.5 which updates the position as 

follows:
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where, sf+1 is the position of agent / at iteration k+1, sf is position of agent i at 

iteration k and vf+1 is the velocity of agent i at iteration k+ \ .

The PSO explained above was developed for continuous domains. Kennedy and 

Eberhart, (1997) also developed a discrete version of PSO for combinatorial domains. 

Instead of creating a continuous position, agents were determined as true or false as a 

result of a probability function (personal and social interactions) represented as 

follows:

The probability threshold is calculated by an agent's predisposition (v) to be able to say 

true or false. The threshold is set in the range [0, 1] and the agent is more likely to

(2.6)

choose 1 if  v is higher and 0 otherwise. A sigmoid function is often used to determine

the value of v:

(2.7)

The agent's disposition should be adjusted for its success and that of the group. In 

order to accomplish this, a formula for each v f  that will be some function of the 

difference between the agent's current position and the best positions found so far by



itself and by the group. Similar to the basic continuous version, the formula for the 

binary version of PSO can be described as follows:

v*+i _  v* + rand^pbest. -  s * )+  rand {gbest -  s -  ) (2 -8 )

P i +l < 5ig(v*+1) then s*+1 = 1; otherwise s f +1 = 0  (2  9 )

where, rand is a random number (rand > 0) drawn from a uniform distribution and

n kHPi is a vector of random numbers between 0 and 1. The limit of rand is set so that 

two rand sum to no more than 4.0. Formulas are iteratively repeated for each 

dimension. The discrete PSO algorithm is almost identical to the basic PSO except the 

above decision equations 2.8 and 2.9. Vmax is also set at beginning of an experiment, 

usually set to [-4.0, +4.0]. Several improved and hybrid versions of the PSO algorithm 

can also be found in the literature including (Kennedy, 2001; Kwang and Mohamed, 

2008).

2.3. Bees in Nature: Food Foraging and Nest Site Selection 

Behaviours

A colony of honey-bees can extend itself over long distances (more than 10 km) and in 

multiple directions simultaneously to exploit a large number of food sources (Von 

Frisch, 1967; Seeley, 1996). A colony prospers by deploying its foragers to good
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fields. In principle, flower patches with plentiful amounts of nectar or pollen that can 

be collected with less effort should be visited by more bees, whereas patches with less 

nectar or pollen should receive fewer bees (Camazine et al., 2001).

The foraging process begins in a colony by scout bees being sent to search for 

promising flower patches. Scout bees move randomly from one patch to another. 

During the harvesting season, a colony continues its exploration, keeping a percentage 

of the population as scout bees (Seeley, 1996).

When they return to the hive, those scout bees that found a patch which is rated above 

a certain quality threshold (measured as a combination of some constituents, such as 

sugar content) deposit their nectar or pollen and go to the “dance floor” to perform a 

dance known as the “waggle dance” (Von Frisch, 1967). Source quality can be 

understood as simply the relation between gain and cost (see equation 2.10) from a 

specific nectar source (Von Frisch, 1976).

Source Quality[i] = (gain[i] - costs[i]) / costs[i] (2.10)

This mysterious dance is essential for colony communication, and contains three 

pieces of information regarding a flower patch: the direction in which it will be found, 

its distance from the hive and its quality rating (or fitness) (Von Frisch, 1967; 

Camazine et al., 2001). This information helps the colony to send its bees to flower 

patches precisely, without using guides or maps. Each individual’s knowledge of the 

outside environment is gleaned solely from the waggle dance. This dance enables the 

colony to evaluate the relative merit of different patches according to both the quality
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of the food they provide and the amount of energy needed to harvest it (Camazine et 

al., 2001). After waggle dancing on the dance floor, the dancer (i.e. the scout bee) 

goes back to the flower patch with follower bees that were waiting inside the hive. 

More follower bees are sent to more promising patches. This allows the colony to 

gather food quickly and efficiently.

While harvesting from a patch, the bees monitor its food level. This is necessary to 

decide upon the next waggle dance when they return to the hive (Camazine et al., 

2001). If the patch is still good enough as a food source, then it will be advertised in 

the waggle dance and more bees will be recruited to that source.

Nectar source selection behaviour is one o f the most challenging as well as vital tasks 

for honey-bee colonies (Camazine et al., 2001). When a honey-bee colony becomes 

overcrowded it needs to be divided for effective source management (Von Frisch, 

1967; Camazine et al., 2001). This critical decision making process works without a 

central control mechanism. Nectar source selection behaviour mainly deals with the 

situation of a colony choosing between several nectar sources by simply measuring 

several factors at once and comparing them with other solutions. The decision is made 

when all the scout bees are dancing for the same site and it takes a couple of days 

before half of the colony moves to a new hive.

2.4. Computational Simulations of Honey-bee Behaviours

In this section, the computational simulation models of different honey-bee behaviours 

are presented as a bridging effort between nature and engineering to understand the
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innovation path of swarm intelligence algorithms. The behaviours of honey-bees in 

nature have been studied thoroughly and several mathematical models were 

introduced. These models explain many aspects of the honey-bees in mathematical 

terms. There are several honey-bees related models introduced in the literature 

including nectar-source selection, nest-site selection, colony thermoregulation and 

comb pattern models (Camazine et al., 2001). Since the foraging behaviours of honey

bees is the scope of this thesis, nectar-source selection and nest-site selection models 

are presented in this section.

2.4.1. Nectar-Source Selection Models

Nectar source selection is one of the most challenging tasks for honey-bee colonies. 

This critical practice works without a central control mechanism. For nectar source 

selection, several mathematical models have been introduced. These models mainly 

deal with the situation of a colony choosing between several nectar sources. There are 

quite a few models developed to analyse the food source selection process of honey

bee colonies (Camazine and Sneyd, 1991; Bartholdi et al., 1993).

Camazine et al., (1991) and Camazine et al., (2001) presented a differential equations 

model to analyse the food-source selection process of honey-bees. Individual bees are 

represented in this model using a flow diagram for the nectar-source selection 

processes. Each forager bee needs to be in a compartment at any specific time. 

According to the model, there are five decision making branches for the situation of a 

colony choosing between two nectar sources. For every branch, there is a probability



function to calculate the probability o f taking one or the other fork at each of the five 

branch points. Since the bees mostly depend on randomness, the probability of 

choosing one nectar source also depends on randomness related to number of dancers 

on the dance floor as well as on the time spent dancing. The results of the experiment 

show how a colony selectively exploits the richer food source for several hours. After 

altering the food sources, the model reacts promptly to adjust the population 

distribution and the exploitation process to a new environment.

To explain how the model works, a flow diagram given in Fig. 2.3 describes the 

foraging behaviour of a colony for every individual bee. In this model, each forager is 

in one of seven different compartments, represented by an activity (Camazine et al., 

1991):

A: foraging at nectar source A 

B: foraging at nectar source B 

D^: dancing for nectar source A 

D*: dancing for nectar source B 

F: unemployed foragers observing a dancer 

H^: unloading nectar from source A
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HIVE
Unloading nectar 

from B (Hr)
Unloading nectar 

from A ( H a)

1 ~P 1 ~P

Following
dancers

Dancing 
f o r  A ( D a)

Dancing 
for B ( D r)

Pf P f

Foraging at nectar 
source A (A)

Foraging at nectar 
source B (B)

Figure 2.3 This mathematical model shows how honey-bee colonies allocate forager 

bees between two nectar sources (A and B). HA, He, DA, DB, A, B, F are the 

compartments and the number of foragers in the compartments. rl-r7 are the rates of 

leaving for each component. P$ , P$ , PdA, P$, etc. denote the probability of choosing 

a fork in each branch. This flow diagram is drawn in accordance with the model figure 

given in (Camazine et al. 1991).
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Hg: unloading nectar from source B

These variables refer to both the name of the compartment and the number of bees 

within each compartment. There are two separate cycles in the model, and bees from 

one nectar source can only switch over to other one on the dance floor (Camazine et 

al., 1991).

In this model, there are two factors affecting the proportion of the total forager number 

in each compartment: (1) the rate at which a bee moves from one compartment to 

another and (2) the probability that a bee takes a fork at each of the five branch points 

(diamonds), r, stands for a rate constant defined as the fraction of bees leaving a 

compartment in a given time interval equal to 1/T„ where each T, is the time to get 

from one compartment to another. The unit o f the rate constant is given as min'1 

(Camazine et al., 1991).

In the first branch, P* stands for the abandoning function that denotes the probability 

that a bee may abandon the nectar source or go back to the dance floor to observe 

another dancer bee (Camazine et al., 1991). This function depends on the profitability 

of the source, so pjf represents the probability that a bee leaving H^, abandoning the 

nectar source and becoming a follower bee (F) (Camazine et al., 1991).

The second branch point is for the bees that did not abandon their source (Camazine et 

al., 1991). At this point, a bee decides whether to dance for the nectar source or to fly 

back to the nectar source. P</, denotes the probability of performing a dance for the 

nectar source (Camazine et al., 1991). Its value also depends on the profitability o f the
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nectar source similar to the abandoning function, p f  denotes the probability of 

performing a dance for the nectar source.

The third branch occurs on the dance floor when a follower bee dances to decide for 

one of the nectar sources (Camazine et al., 1991). P*, denotes the probability of a 

follower bee following dances for nectar source A and leaving for this nectar source 

(Camazine et al., 1991). Thus, the probability of following a dancer bee for A (Pp)  

can be calculated by D^/(D^+D5). The time limitation of and D# has been weighted 

and denoted as da and db- Therefore, each function (see equations 2.11 and 2.12) 

indicates the proportion of the total dancing for each nectar source by taking into 

account the number of dancers and the time spent dancing (Camazine et al., 1991).

Equations of the model, with some assumptions for simplicity, are written as the 

following set of differential equations (Camazine et al. 1991):

(2.13)

(2.14)
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dH
dt

A = r^A-ryH A (2.15)

^ -  = ( l-P dBl l - P f } 5H B + r6D„ + P ?rAF - r 7B (2.16)
at

dDS- = P f ( i - P ^ 5H B - r AD B (2.17)
dt

* L e- = rlB - r sH B (2.18)

~  -  P }h H A + P f r 5H B - r AF (2.19)

Yonezawa and Kikuchi, (1996) presented a model based on bee collective intelligence 

for honey collection (i.e. foraging). The model investigated the principle of 

intelligence generated by collective and cooperative behaviour in a complex 

environment. The model simulated one and three foraging bees. The results of the 

simulation showed that the three bees model produced more balanced results than 

those produced by the one bees model.

Cox et al., (2003) introduced a model of foraging in honey-bee colonies. This model 

addresses the missing factors of the model presented by Camazine et al., (1991). In 

this model, the effects of environmental and colony factors are investigated. The 

effects of the source (rate of nectar flow, distance from hive) and the consequences of 

forager behaviours are also implemented in the differential equations set.
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Schmickl et al., (2004) presented a comprehensive model of nectar source selection in 

honey-bee colonies. Although the model is built on individual processes, it produces 

interesting results on the global-colony level. Another interesting feature of the model 

is that it is built to project the daily net honey gain of the hypothetical honey-bee 

colony. Thus, this gives the opportunity to explore the economic results of foraging 

decisions. The presented model is developed to examine the dynamics and efficiency 

of the decentralized decision making system of a honey-bee colony in a changing 

environment. However, as the most significant difference from previous models, target 

selection and workload balancing processes as well as the energy balance of each 

foraging bee have been implemented in the model. Also, the foragers are treated as 

individual agents who expend energy and show specific behaviours.

2.4.2. Nest-site Selection Models

Nest-site selection is another vital practice which requires an optimisation process as 

nectar source selection behaviour does in honey-bee colonies. Nest-site selection in 

honey-bee colonies can be summarised as a social decision making process. In this 

process, scout bees locate several potential nest sites, evaluate them, and select the 

best one on a competitive signalling basis (Passino and Seeley, 2006).

Several nest-site selection models have been introduced (Camazine et al., 1999; 

Britton, 2002; Passino and Visscher, 2003) and then a comprehensive one introduced 

by Passino and Seeley, (2006). It was developed using the bees’ decision making 

processes extracted by early empirical studies. The effects of several features of the
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nest-site selection processes in honey-bee colonies have been studied using this model 

(Passino and Seeley, 2006).

2.5. Honey-bees inspired algorithms

In this section, honey-bees inspired algorithms are reviewed, many developed 

recently. The main streams in this domain can be divided in three subgroups: (1) 

Foraging and nectar source selection behaviours related, (2) marriage behaviours 

related and (3) queen bee behaviours related studies. Because of their efficiency and 

robustness, the foraging and nectar source selection behaviours are the most studied 

field in terms of an optimisation approach.

Sato and Hagiwara, (1997) introduced the very first honey-bees inspired algorithm, 

called the bee system, as an improved version of genetic algorithms. This system 

claims to be inspired basically from ‘finding a source and recruiting others to i t ’ 

behaviour. However, this idea was implemented as a hybrid genetic algorithm. In the 

algorithm, some of the chromosomes are considered as superior ones and others try to 

find solutions around them using multiple populations. Moreover, the algorithm uses 

some operators such as the concentrated crossover and pseudo simplex methods. The 

bee system applied to function optimisation and simulation results were presented in a 

normalised error form. As a result, this algorithm produces better results compared to 

GA with a high success rate and less normalised error values for nine different test 

functions.

31



Lucic and Teodorovic, (2001) presented another bee system, which is one of the early 

attempts to develop a direct bee-inspired algorithm in last decade. The algorithm was 

developed for combinatorial domains and applied to traveller salesman problems 

(TSP) that aim to find the minimum distance route between paths passing through 

each only once. In this algorithm, the hive is located in a solution space randomly and 

following a probabilistic selection similar to that used in the Ant Colony Optimisation. 

Partial solutions are constructed in stages using a probabilistic equation derived from 

the Logit model (see equation 2.20).

^ P 0 4 ( u , z ) - e a  4 (u , z )

M “>z ) =  Y  Hto.fr,.,) £ € r ( « , z ) v « , z

T e Y \ u , z )

(2.20)

Then, bees recruited to these partial solutions are expanded further. After initial 

improvements, before relocating the hive, the solution produced in the current iteration 

is improved using the 2-opt and 3-opt heuristic algorithms. The results for the traveller 

salesman problem are also presented.

Yang, (2005) proposed a virtual bee algorithm (VBA) to solve the function 

optimisation in engineering problems. The VBA begins with deploying a troop of 

virtual bees in the phase space for random exploration. The main steps of the VBA for 

function optimisation are given as: ul)  creating a population o f  multi-agents or virtual 

bees, each bee is associated with a memory bank with several strings; 2) encoding o f  

the objectives or optimization functions and converting into the virtual food; 3) 

defining a criterion fo r  communicating the direction and distance in the similar
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fashion o f  the fitness function or selection criterion in the genetic algorithms; 4) 

marching or updating a population o f  individuals to new positions fo r  virtual food  

searching, marking food and the direction with virtual waggle dance; 5) after certain 

time o f  evolution, the highest mode in the number o f  virtual bees or intensity/frequency 

o f  visiting bees corresponds to the best estimates; 6) decoding the results to obtain the 

solution to the p r o b le m This procedure may be presented as the following pseudo

code:

1: // Create a initial population o f virtual bees A(t)

2: // Encode the function f(x,y,...) into virtual food/nectar 

3: Initial Population A(t);

4: Encode f(x,y) |-> F(x,y);

5: // Define the criterion for communicating food location with others 

6: Food F(x,y) |-> P(x,y)

7: / / Evolution of virtual bees with time 

8: t=0;

9: while (criterion)

10: // March all the virtual bees randomly to new positions 

11: t=t+l;

12: Update A(t);

13: // Find food and communicate with neighbouring bees 

14: Update F(x,y), P(x,y);

15: // Evaluate the encoded intensity/locations of bees 

16: Evaluate A(t), F(x,y), P(x,y)

17: end while
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18: // Decode the results to obtain the solution 

19: Decode S(x,y,t);

In terms of encoding the location of agents, the algorithm deals with the problem 

domain similar to Genetic Algorithms. The algorithm is applied to one and two 

dimensional functional optimisation problems and compared with GA. Results showed 

that the algorithm finds solutions to the problems (1-D and 2-D) better than GA.

Lemmens et al., (2006) introduced a non-pheromone-based algorithm inspired by the 

behaviour of honey-bees, called the Bee Foraging Algorithm. The algorithm uses two 

essential strategies; recruitment and navigation. The recruitment strategy is used to 

distribute information regarding a nectar source to other members of the colony. The 

navigation strategy is proposed for efficiency of navigation in an unknown 

environment. It is based on a strategy called Path Integration, which is actually used 

by natural bees to navigate back to hive while they are moving between far apart 

nectar sources. The general structure o f the algorithm is similar to the structure of the 

ant colony optimisation. The algorithm consists of three main functions and internal 

states in these functions. The very first function is called ManageBeesActivityQ which 

deals with the activity of agents based on their internal states. There are six internal 

states in which each agent performs a specific behaviour; 'AtHome\ 'StayAtHome', 

'Exploration \  'Exploration', 'HeadHome', 'CarryingFood'. The agent internal state 

changes are called “Algorithm 1” and this process may be outlined as follows:

1: If State is StayAtHome then 

2: If Vector exists then

3: Exploitation
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and if

else if Agent not AtHome then 

if Agent has food then 

CarryingFood 

else if Depending on chamce then

HeadHome, Exploration or Exploitation

end if

else if exploit preference AND state is AtHome then 

if Vector exists then 

Exploitation

else

Exploration

end if

else if StayAtHome preference AND state is AtHome then 

if Vector exists then 

Exploitation

else

StayAtHome

end if

else

Exploration

end if

The second function, which is called Calculate Vector0, is used to calculate the path 

integration vector for each agent. The algorithm uses a third optional function called 

DemonActionO which can be used to implement the centralised actions such as global 

information, which is important for an agent to decide to dance (or not to dance).

Lemmens et al., (2007) introduced a hybrid swarm intelligence algorithm called the 

Bee System with inhibition pheromones (BSP). It combines the algorithm presented 

above (Lemmens et al., 2006) and the ant colony optimisation. In order to overcome
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the shortcomings of the previous bee system, in which there are two procedures both 

of which are borrowed from the ant colony optimisation, new procedures are 

implemented in the algorithm. The first proposed procedure employs a rather simpler 

way to improve the obstacle avoidance capabilities. It helps an agent while following a 

path integration (PI) vector. When it bounces into an obstacle it simply selects a 

random direction (in this case left or right) and then follows the outlines of the 

obstacle in that direction until following the PI vector becomes possible again. The 

second procedure is proposed to enhance the learning capability of the algorithm. In 

this procedure agents can deposit inhibition pheromone at a certain location. Agents 

following a PI vector benefited from this enhanced learning mechanism just to find a 

better solution both in static and dynamic environments.

Karaboga et al., (2007), Karaboga et al., (2008) and Karaboga et al., (2009) presented 

an Artificial Bee Colony (ABC) algorithm for optimising numerical test functions. 

ABC is inspired by the foraging behaviour o f honey-bees swarms. The algorithm uses 

three types of bees, called employed bees, onlooker bees and scout bees. The 

population is split equally into two parts, the first half as employed bees and the 

onlookers as the other half. This algorithm also employs a random scout bee for 

exploration of the search space. The algorithm has three main steps for each iteration; 

employed bees placed on food sources, onlooker bees placed on food sources 

depending on their nectar amount and scout bees sent to the search area for 

exploration. The detailed pseudo-code of the ABC algorithm is presented in Fig. 2.4 

but the main steps of the algorithm are given below:

1: Initialize Population
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2: Repeat

3: Place the employed bees on their food sources

4: Place the onlooker bees on the food sources depending on their nectar amounts 

5: Send the scouts to the search area for discovering new food sources 

6: Memorize the best food source found so far 

7: Until (requirements are met)

For each flower patch, ABC uses proportional selection to recruit the onlooker bees to 

promising patches (see equation 2.21).

= -  (2 -2 1 ) 
Z w f <e.)

Where Pi is the probability of selection for a patch by each onlooker bee; Qt is the 

position of the ith food source; F(Qj) represents the nectar amount of the food source 

located at Qi and S : the number of food sources around the hive. The neighbourhood 

search algorithm uses the extrapolation crossover method to create new solutions. In 

this phase, an employed bee randomly chooses another employed bee and generates a 

new solution. If this solution is better than the existing one, a new employed bee is 

selected as the representative bee for the patch. As presented in this thesis, ABC also 

uses site abandonment, which is simply leaving a patch if no more improvement is 

observed on the patch after certain number of iterations. This is defined as the limit in 

the ABC and can be calculated according to the formula:

Limit = D * SN (2.22)

where SN is the number of employed bees and D is the dimension of the problem.
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1. Initialize the population of solutions xi, i = 1.. .SN

2. Evaluate the population

3. cycle=l

4. repeat

5. Produce new solutions ui for the employed bees and evaluate them

6. Apply the greedy selection process for the employed bees

7. Calculate the probability values Pi for the solutions xi

8. Produce the new solutions ui for the onlookers from the solutions xi selected 

depending on Pi and evaluate them

9. Apply the greedy selection process for the onlookers

10. Determine the abandoned solution for the scout, if  exists, and replace it with a 

new randomly produced solution xi

11. Memorize the best solution achieved so far

12. cycle=cycle+l

13. until cycle=MCN

Figure 2.4 Pseudo-code of the ABC algorithm
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Teodorovic et al., (2006) proposed a Bee Colony Optimisation (BCO) metaheuristic 

which is capable of solving combinatorial optimisation problems. A Fuzzy Bee 

System was also proposed in (Teodorovic et al., 2006). BCO has been developed for 

combinatorial problems and the pseudo-code of the algorithm is given in Fig. 2.5. 

Similar to the ant colony optimisation algorithm, it has a constructive way of building 

the solutions but the main difference is that the BCO algorithm builds the solutions 

partially. In each stage bees build a partial solution by flying a couple of nodes during 

a forward pass. In the backward pass stage, all bees are sent back to the hive and bees 

are allowed to exchange information about the quality of the partial solutions created 

and to decide whether to abandon the created partial solution and become again an 

uncommitted follower; continue to expand the same partial solution without recruiting 

the nest mates; or dance and thus recruit nest mates before returning to the created 

partial solution. On the other hand, there is no procedure for the selection of the best 

sites or becoming an uncommitted bee. The Fuzzy Bee System was developed to help 

bees during decision making process but instead of random selection, bees select 

patches using a roulette wheel approach. To be able to do this a verbal explanation of 

the partial solution is used as follows:

If the length of the advertised path is SHORT and the number of bees advertising the 

path is:

SMALL

Then the advertised partial solution attractiveness is:

MEDIUM
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1. Initialization. Determine the number o f bees B, and the number of iterations I. 

Select the set of stages ST = {Sti, st2 Stm}. Find any feasible solution x of the 

problem. This solution is the initial best solution.

2. Set i: 1. Until i = I, repeat the following steps:

3. Setj 1. Untilj = m, repeat the following steps:

Forward pass: Allow bees to fly from the hive and to choose B partial solutions 

from the set of partial solutions Sj at stage stj.

Backward pass: Send all bees back to the hive. Allow bees to exchange 

information about quality of the partial solutions created and to decide whether to 

abandon the created partial solution and become again uncommitted follower, 

continue to expand the same partial solution without recruiting the nestmates, or 

dance and thus recruit the nestmates before returning to the created partial 

solution. Setj: =j + 1.

4. If the best solution xi obtained during the i-th iteration is better than the best- 

known solution, update the best known solution (x: = xj.

5. Set, i: = i + 1.

Figure 2.5 Pseudo-code of the BCO algorithm.
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Wong et al., (2008) introduced a bee colony optimisation (BCO) algorithm for 

travelling salesman problem (TSP). The basic procedure for the BCO with a 2-opt 

local search for TSP is given in Fig. 2.6. It is similar to the bee colony optimisation 

algorithm discussed above. According to the authors, there are several alterations that 

differentiate this algorithm from the BCO algorithm developed by Teodorovic et al., 

(2006). Bees in the earlier model do not have the ability to remember the number of 

bees that have visited an arc (Wong et al., 2008). In this improved model, bees show 

the entire feasible path rather than partial tours using the waggle dance and the bee 

hive was proposed to have an equal distance from all cities. During the construction of 

solutions procedure, bees were influenced by both arc fitness and the distance between 

cities. With these differences, the improved algorithm may be applied to many well- 

known TSP data sets and the results shows that it performs well compared to other 

state of the art algorithms.

Wedde et al., (2004) presented a routing algorithm for fixed networks, called BeeHive, 

that was inspired by the communication activities of honey-bees. The algorithm 

employed the idea of a bee agent model in which the agents travel through network 

regions called foraging zones. These were designed as fixed partitions in a network 

containing representative and non-representative nodes which were capable of 

launching long or short bee agents to update routing. Zang, (2005) further developed 

the BeeHive algorithm based on a stochastic process. It works without saving the 

topology or other global information in the routing tables. The main procedures of the 

algorithm may be presented as follows:
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1 . procedure BCO

2 . Initialize_Population()

3. while all bees have not built a complete path do

4. Observe_Dance()

5. Forage_ByTransRule()

6 . P erform W  aggl e_D ance ( )

7. end while

8 . end procedure BCO

Figure 2.6 BCO with 2-opt local search for TSP by Wong et al. (2008)
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■ main procedure 

in parallel

1 : send the received packet, bee agents, echo or ack to a corresponding procedure.

2 : run procedure for routing decision.

3: run explore procedure for updating data.

4: run update procedure for updating module.

5: run measure procedure for measuring module.

6 : run echo procedure for measuring procedure.

7: run echo procedure for measuring module.

8 : run ack procedure for measuring module.

Three modules were introduced, namely the routing, the updating and the updating 

module. Further details of these modules can be found in (Zang, 2005). This algorithm 

performed several simulations on some well-known routing data and the results were 

compared to AntNet and Distributed Genetic Algorithm. These results show that the 

algorithm performed well against many benchmarks compared to other population- 

based algorithms.

Wedde et al., (2005a) and Wedde et al., (2005b) presented BeeAdHoc, a routing 

algorithm for energy efficient routing in mobile ad hoc networks. The algorithm was 

developed based on the BeeHive algorithm. Although they share some features, the 

BeeAdHoc routing algorithm uses several types of different agents, namely packers 

(used to receive and store data packets from the transport layer), scouts (used to 

discover new routes), foragers (used to receive and transport data packets) and swarms 

(used to help with unreliable transport protocols). Similar to BeeHive, the artificial
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bee agents are used in packet switching networks to find suitable paths between nodes 

by updating the routing table. Two types of agents are used -  short distance bee agents 

which disseminate routing information by travelling within a restricted number of 

hops and long distance bee agents which travel to all nodes of the network. The 

BeeAdHoc was also defined as a reactive source routing algorithm and it claimed to 

consume less energy compared to other Mobile Ad Hoc Networks algorithms. Results 

confirmed that the BeeAdHoc did indeed consume less energy compared to the DSR, 

AODV and DSDV algorithms.

Abbas, (2001) presented a marriage in the honey-bees optimisation algorithm (MBO). 

The algorithm simulates the evolution o f honey-bees in several stages. It starts with a 

solitary colony (i.e. single queen bee without a colony) and goes all the way up to the 

emergence of eusocial colony (a full colony with one or two queens in the chamber). 

The algorithm is based on simulated annealing and in many ways it resembles the 

annealing procedure. The pseudo-code of the MBO algorithm is given in Fig. 2.7. The 

algorithm starts with the random initialisation of workers as well as the genotype of 

each queen. A set of mating-flights is made with a random initialisation of the values 

of energy, speed, and position of each queen. Then, each queen moves between states 

according to her speed and she mated with a drone using an equation similar to a 

simulated annealing procedure. A drone mates with a queen probabilistically using an 

annealing function:

A ( / )

Pr ob(Q, D) = e 5 ( 0  (2.23)
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1. The algorithm starts with the mating-flight, where a queen (best solution) 

selects drones probabilistically to form the spermatheca (list of drones). A drone is 

then selected from the list at random for the creation of broods.

2. Creation of new broods (trial solutions) by crossoverring the drones’ genotypes 

with the queen’s.

3. Use of workers (heuristics) to conduct local search on broods (trial solutions).

4. Adaptation of workers’ fitness based on the amount of improvement achieved 

on broods.

5. Replacement of weaker queens by fitter broods.

Figure 2.7 Basic steps of the MBO algorithm.
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If the result of mating is successful, then drones’ sperm is added to a list of partial 

solutions, the so called spermatheca. After turning back to the nest, the queen bee 

starts breeding by randomly selecting a sperm from the spermatheca. Then crossover 

and mutation operators are applied to produce different broods. Workers are also used 

to improve the broods. If any of these broods are better than the queen, the queen is 

replaced. The remaining broods are then killed and a new mating flight starts. The 

algorithm was applied to a fifty propositional satisfiability problems (SAT) with 50 

variables and 215 constraints and results showed that the algorithm performed well for 

these specific types of problems. Moreover, Benetcha et al., (2005) adapted this 

algorithm to a Max-Sat problem and presented further simulation results. Haddad et 

al., (2006) applied the same procedure given in Fig. 2.7 for a water resource 

optimisation problem. Although the procedure is the same, it was called the Honey- 

Bees Mating Optimisation (HBMO) algorithm. Further functional optimisation tests 

also presented in the paper.

Jung, (2003) proposed a queen bee evolution algorithm for enhancing the optimisation 

capability of genetic algorithms. The algorithm was inspired by the role of queen bee 

in the reproduction process. In the algorithm, as the fittest individual in a generation, 

the queen bee crossbreeds with the other bees selected as parents by a selection 

algorithm. This proposed procedure increases the chance of premature convergence. 

An intensive mutation procedure is proposed to deal with this problem. Experimental 

results of one combinatorial and two continuous applications demonstrated that the 

proposed hybrid algorithm was able to converge in most cases. Azeem and Saad, 

(2004) and Qin et al., (2004) made some improvements to the algorithm with several 

different applications.
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Gordon et al., (2003) proposed the application of a discrete bee dance algorithm to the 

problem of pattern formation on a grid for a group of identical autonomous robotic 

agents with limited communication capabilities. The algorithm was defined as a 

sequence of several coordinated waggle dances on a grid where the bee agents share 

their information, cooperate and solve their problems to be able to overcome their 

shortcomings.

2.6. Summary

This chapter has reviewed the theory and applications of swarm intelligence as well as 

the behaviours of honey-bees to provide general background information for the 

research reported in subsequent chapters of the thesis.
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Chapter 3

THE BEES ALGORITHM: 

THEORY AND IMPROVEMENTS

3.1. Preliminaries

Many complex multi-variable optimisation problems cannot be solved exactly within 

polynomially bounded computation times. This generates much interest in search 

algorithms that find near-optimal solutions in reasonable running times. The swarm- 

based algorithm described in this thesis is a search algorithm capable of locating good 

solutions efficiently. The algorithm is inspired by the food foraging behaviour of 

honey bees and could be regarded as belonging to the category of “intelligent” 

optimisation tools.
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In this chapter, a new population-based search algorithm called the Bees Algorithm 

(BA) is presented (Pham et al., 2006). The algorithm mimics the food foraging 

behaviour of swarms of honey bees. In its basic version, the algorithm performs a kind 

of neighbourhood search combined with random search and can be used for both 

combinatorial optimisation and functional optimisation. The Bees Algorithm is 

presented in this chapter, with benchmark results comparing the performance of the 

algorithm with some well-known algorithms in the literature. Further details are also 

given of the local and global search methods used in this algorithm. Moreover, in this 

chapter, details of the improvements made to local and global search methods are 

presented, including dynamic recruitment, proportional shrinking and abandonment 

strategies.

The chapter is organised as follows: section 3.2 presents a description the basic Bees 

Algorithm in its simplest form with a simple example of the algorithm procedure. In 

section 3.3, some key characteristics o f the Bees Algorithm are discussed, including 

site selection, neighbourhood search and global search. Improvements to local and 

global search are presented in section 3.4, including dynamic recruitment, proportional 

shrinking for selected sites and site abandonment. Experimental results and benchmark 

tables are presented in section 3.5 to demonstrate the performance and the robustness 

o f the algorithm compared to some well-known algorithms in the literature.
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3.2. The basic Bees Algorithm

The Bees Algorithm is an optimisation algorithm inspired by the natural foraging 

behaviour of honey bees to find the optimal solution. Fig. 3.1 shows the pseudo-code 

and Fig. 3.2 presents the flowchart o f the basic Bees Algorithm in its simplest form. 

The algorithm requires a number of parameters to be set, namely: number of scout 

bees (n), number of patches selected out of n visited points (m), number of best 

patches out of m selected patches (e), number of bees recruited for e best patches 

(nep), number of bees recruited for the other (m-e) selected patches (nsp), size of 

patches (ngh) and the stopping criterion. The algorithm starts with the n scout bees 

being placed randomly in the search space. The fitnesses of the points visited by the 

scout bees are evaluated in step 2. A simple demonstration is given in Fig. 3.3 which 

shows the basis steps of the algorithm.

In step 4, bees that have the highest fitnesses are chosen as “selected bees” and those 

sites that have been visited will be chosen for neighbourhood search. Then, in steps 5 

and 6 , the algorithm conducts searches in the neighbourhood of the selected bees in 

terms of more bees for the e best bees. The latter can be chosen directly according to 

the fitnesses associated with the points they are visiting. Alternatively, the fitness 

values are used to determine the probability of the bees being selected. Searches in the 

neighbourhood of the e best bees which represent more promising solutions are made 

more detailed by recruiting more bees to follow the e best bees than other selected 

bees. Also within scouting, differential recruitment is one of the key operations of the 

Bees Algorithm. Both scouting and differential recruitment are used in nature.
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1. Initialise population with random solutions.

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

//Forming new population.

4. Select sites for neighbourhood search.

5. Recruit bees for selected sites (more bees for e best sites) and evaluate 

fitnesses.

6 . Select the fittest bee from each site.

7. Assign remaining bees to search randomly and evaluate their fitnesses.

8 . End While.

Figure 3.1 Pseudo-code o f the basic Bees Algorithm

However, in step 6 , for each site only one bee with the highest fitness will be selected 

to form the next bee population. In nature, there is no such a restriction. This 

restriction is introduced here to reduce the number of points to be explored.

In step 7, the remaining bees in the population are assigned randomly around the 

search space scouting for new potential solutions. These steps are repeated until a 

stopping criterion is met. At the end of each iteration, the colony will have two parts to 

its new population -  representatives from each selected patch and other scout bees 

assigned to conduct random searches.
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(more Bees for the Best e Sites)

Select m Sites for Neighbourhood Search
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Assign the (n-m) Remaining Bees to Random Search

Figure 3.2 Flowchart of the basic Bees Algorithm
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Graph 1. Initialise population with random solutions 
and evaluate the fitness.

Graph 4. Recruit bees around selected sites (more bees 
for the best e sites).

Graph 3. Define neighbourhood range. Graph 6. Assign remaining bees “o” to search 
randomly and evaluate their fitness

Graph. 2. Select sites for neighbourhood search' 
and“0,\ Graph 5. Select the fittest from each site

Figure 3.3 Simple example of the Bees Algorithm
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3.3. Characteristics of the proposed Bees Algorithm

In this section some key characteristics of the proposed Bees Algorithm will be 

discussed in detail, including neighbourhood search and site selection strategies.

3.3.1 Neighbourhood Search

Neighbourhood search is one of the essential parts for all evolutionary algorithms as 

well as for the Bees Algorithm. In the Bees Algorithm, the searching process in a 

selected site is similar to that of the foraging field exploitation of honey bee colonies 

in nature. As explained in previous chapter, when a scout bee finds any good enough 

foraging field, she advertises it back to the hive in order to recruit more bees to that 

field. This behaviour is useful in terms of bringing more nectar into the hive. Hence, 

this fruitful method might be also useful for engineering optimization problems.

The harvesting process also includes a monitoring phase which is necessary for 

decision making for a waggle dance back in the hive for the purpose of recruiting 

more bees to that site. In the Bees Algorithm, this monitoring process can be used as a 

neighbourhood search. Essentially, when a scout bee finds a good field (good 

solution), she advertises her field to more bees. Subsequently, those bees fly to that 

source, take piece of nectar and return back to hive. Depending on the quality, this 

source can be advertised by some of the bees that are already aware of the source. In 

the proposed Bees Algorithm, this behaviour has been used as a neighbourhood 

search. As explained above, from each foraging site (or neighbourhood site) only one
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bee is chosen. This bee must have the best solution information about that field. Thus, 

the algorithm can create some solutions which are related to the previous ones.

Neighbourhood search is based on a random distribution of bees in a predefined 

neighbourhood range (patch size). For every selected site, bees are randomly 

distributed to find a better solution. As shown in Fig. 3.4, only the fittest (best) bee is 

chosen as a representative and the centre o f the neighbourhood patch shifted up to best 

bees' position (from A to B).

On the other hand, during the harvesting process other elements should also be taken 

into account for increasing efficiency, such as number of recruited bees in the 

neighbourhood patch and the patch size.

The number of recruited bees around selected sites should be defined properly. When 

the number is increased, then the number o f function evaluations will also be increased 

and vice versa.

This problem also depends on the neighbourhood range. If the range can be arranged 

adequately, then the number of recruited bees will depend on the complexity of a 

solution space. This will be discussed later with more details.
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Figure 3.4 Graphical explanation of basic neighbourhood search.
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3.3.4 Site Selection

For site selection two different techniques have been implemented: probabilistic 

selection and best site selection.

In probabilistic selection, the roulette wheel method has been used and sites with 

better fitness have more chance of being selected, but in best site selection, the best 

sites according to fitness will be selected. In this section, different combinations of 

selection using the two methods from pure probabilistic selection (q=0 ) to pure best 

site selection (q=l) have been investigated and mean iterations required to enrich the 

answer. Results are shown in Fig. 3.5 and Fig. 3.6.

Regarding results, best selection will present better results and also is simpler, so in its 

basic form the best sites method is selected as the neighbourhood site selections 

method for the Bees Algorithm.

3.3.5. Global Search

In the first step, all scout bees (n) are placed randomly across the fitness landscape to 

explore for new flower patches. After neighbourhood search, n-m bees are again 

placed randomly across the fitness landscape to explore new patches. The latter part is 

the main global search tool for the Bees Algorithm.
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Figure 3.5 Mean iteration required for different combinations of selection

Successfulness

100

 q=0
 q=0.1

q=0.5 
q=0.9 

 q=1

100

n ( P o p u la t io n  )

150 200

Figure 3.6 Successfulness of different combinations of selection methods
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3.4. Improvements in local and global search

In this section, further improvements to the Bees Algorithm are presented including 

dynamic recruitment, proportional shrinking for selected sites and site abandonment.

3.4.1 Dynamic recruitment

Dynamic recruitment is introduced to improve the way that the bees are recruited into 

a selected site. In the basic Bees Algorithm, when a site is selected for neighbourhood 

search there will be a certain number o f bees assigned for local search. In the previous 

strategy, bees are sent all at once to the same local search space defined as the 

neighbourhood patch (see Fig. 3.4). Although it is proven to be a useful strategy, 

dynamic recruitment presented here deals with the local search space faster.

Details of dynamic recruitment are given in Fig. 3.7. In step 5, bees are sent into 

selected patches one by one and if there is any improvement compared to the original 

bee, the recruited bee will replace the original and the patch will move to a new 

position around the new and fittest recruit. This will be carried out until the visits by 

all recruited bees are completed..
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1. Initial population with n random solution.

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the fittest 

bee from each site and shrink patches

for(k=l ; k=e ; k++) // Elite Sites

for(Bee=l ; Bee= nep ; Bee-H-) // More Bees for Elite Sites

BeesPositionInNgh() = GenerateRandomValueInNgh(/rom x+ngh to x-ngh); 

Evaluate Fitness = Bee(i); //Evalute the fitnees of recruited Bee(i)

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = Bee(i); 

for(k=e ; k=m; k++) // Other selected sites (m-e)

for(Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e)

BeesPositionInNgh() = GenerateRandomValueInNgh(/ro/n x+ngh to x-ngh); 

Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = Bee(i);

6. Assign remaining bees to search randomly and evaluate their fitnesses. // (n-m) assigned to 

search randomly into whole solution space

7. End While

Figure 3.7 The Bees Algorithm with dynamic recruitment.
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3.4.2 Proportional shrinking for selected sites

The term proportional shrinking refers to a contraction of patch sizes of all selected 

sites (m) in every iteration of the algorithm proportional to a constant ratio called 

Shrinking Constant (sc). Equation 3.1 gives the definition of the proportional 

shrinking idea, in which the initial patch size is set as a starting patch size in the first 

iteration of the algorithm. Depending on the iteration (i), the patch size of the site m 

(Nghm(\)) is calculated as a contraction from the previous size (Nghm(i-1)) proportional 

to the value of sc. The value of sc can be defined by the user between 0 and 1 that 

represents the percentage by which the patch will shrink. However, the patch size must 

be a positive value all the time (Nghm(i) > 0).

N hgJi)
i = l Nghynii) = InitialPafchSize,

i> \ Nghm(i) = Nghm( i - \ i ( \ - S C ) )  and 7V gU ')>0.
(3.1)

This new strategy, implemented as step 6  in Fig. 3.8, is proposed to improve the 

solution quality and evaluation time. At the beginning, for the local search, a wide 

patch size increases the probability of finding a better solution. By shrinking it saves 

the time and increases the solution quality by fine tuning in relatively narrow local 

search space.
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3.4.3 Site Abandonment

The site abandonment strategy is introduced to improve the efficiency of the local 

search. The term refers the abandonment of a site in which there is no more 

improvement of the fitness value of the fittest bee after a certain number of iterations. 

In many complex optimisation problems, there may be many local solutions in their 

solution spaces and it is not possible to escape from local optima without an efficient 

procedure.

Parallel scout bee search and better neighbourhood exploitation are two strong features 

of the Bees Algorithm that are capable of dealing with many complex optimisation 

problems. But for all other algorithms it may not be possible to escape from local 

optima. Site abandonment is here introduced to deal with this problem.

In step 8  (see Fig. 3.8), if  the points visited near a selected site are all inferior to that 

site, after a certain number of iterations (i.e. sat: site abandonment threshold), then the 

location of the site is recorded and the site abandoned. Bees at the site are assigned to 

random search (i.e. made to scout for new potential solutions).

This step is directly inspired by honey-bees in nature. Depending on the solution, 

quality bees either continue to exploit a patch by sending more bees or will abandon 

the site after several visits.
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1. Initial population with n random solution.

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the fittest

bee from each site and shrink patches 

for (k=l ; k=e ; k++) // Elite Sites

for (Bee=l ; Bee= nep ; Bee++) // More Bees for Elite Sites

BeesPositionInNgh() = GenerateRandomValueInNgh(/rom x+ngh to x-ngh); 

Evaluate Fitness = Bee(i); //Evalute the fitnees of recruited Bee(i)

If (Bee(i) is better then Bee(i-l)) RepresentativeBee = Bee(i); 

for (k=e ; k=m; k++) // Other selected sites (m-e)

for (Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e)

BeesPositionInNgh() = GenerateRandomValueInNgh(/ro/w x+ngh to x-ngh); 

Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better then Bee(i-l)) RepresentativeBee = Bee(i);

6. for (patch=l; patch=m; patch++) //Shrink all patches (m) proportional to SC

N g h ji)  = N g h ji - 1)* ((l -  SC));

7. If (Iteration > sat)

If (no improvement on the site)

Save the Best Fitness;

Abandon the Site;

Bee(m) = GenerateRandomValue(All Search Space);

8. Assign remaining bees to search randomly and evaluate their fitnesses. // (n-m) assigned to

search randomly into whole solution space

Figure 3.8 Pseudo-code of the Bees Algorithm with proportional shrinking and site

abandonment.
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3.5. Experimental Results

Clearly, the Bees Algorithm as described above is applicable to both combinatorial 

and functional optimisation problems. In this section, functional optimisation is 

presented to show the robustness of the algorithm.

Three standard functional optimisation problems were used to test the Bees Algorithm 

and establish the correct values of its parameters and seven problems for 

benchmarking the algorithm. As the Bees Algorithm searches for the maximum, 

functions to be minimised were inverted before the algorithm was applied.

The first test function (see equation 3.2) is the axis parallel hyper-ellipsoid which is 

similar to De Jong's function 1 (see Fig. 3.9). It is also known as the weighted sphere 

model. It is continuous, convex and unimodal.

f\a(x) = Y,ixf
M (3.2)

-5.12 <Xj <5.12

Global Minimum for this function:

/ ( x )  = 0; x ( i )  =  0, i  =  \  : n
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The following parameter values were set for the axis parallel hyper-ellipsoid test 

function: scout bee population n= 10, number of selected sites m=3, number of elite 

sites e=l, initial patch size ngh=0.5, number of bees around elite points nep=2, number 

of bees around other selected points nsp=2 .

The following parameter values of the Bees Algorithm were set for this test: scout bee 

population n= 10, number of selected sites m=3, number of elite sites e=l, initial patch 

size ngh=2.75, number bees around elite points nep=2, number of bees around other 

selected points nsp=2. And the following parameter values of the improved Bees 

Algorithm were set for this test: scout bee population n= 10, number of selected sites 

m=3, number of elite sites e=l, initial patch size ngh=5.12, number of bees around 

elite points nep=2 , number of bees around other selected points nsp=2 , shrinking 

constant sc=0.20 (20%) and site abandonment threshold sat=10. The basic Bees 

Algorithm was set with exactly the same parameters excluding the shrinking constant 

and site abandonment threshold.

Fig. 3.10 shows the fitness values obtained as a function of the number of points 

visited for both original and improved algorithms. The results are averages for 100 

independent runs. It can be seen that after approximately 500 visits, the improved 

algorithm was able to find solutions close to the optimum while the original algorithm 

needs more time to find the optimum. It is also important to emphasise that the initial 

patch size was set as the whole solution space for the improved Bees Algorithm.
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Figure 3.9 Visualization of 2D axis parallel hyper-ellipsoid function.
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Figure 3.10 Evolution of fitness with the number of points visited (the axis parallel 

hyper-ellipsoid)
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Shekel’s Foxholes (see equation 3.3), a 2D function from De Jong’s test suite (Fig. 

3 .1 1 ), was chosen as the first function for testing the algorithm.

f ( x )  = 119.998 - f )
1

j +  Z  1 x  ~ a
i=i i y (3.3)

„ - I -  32
V  1-32

-16
-32

0
-32

16
-32

32
-32

0
32

16
32

32
32

-  65 .536 < xi < 65 .536 

For this function,

*max = (-32,-32)

/ ( 2 _ )  = 1»  -998
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The following parameter values of the Bees Algorithm were set for this test: scout bee 

population n= 45, number of selected sites m=3, number of elite sites e=l, initial patch 

size ngh=3, number bees around elite points nep=7, number of bees around other 

selected points nsp=2. And the following parameter values for the improved Bees 

Algorithm were set for this test: scout bee population n= 10, number of selected sites 

m=3, number of elite sites e=l, initial patch size ngh=3, number bees around elite 

points nep=2 , number of bees around other selected points nsp=2 , shrinking constant 

sc= 0.01 (1%) and site abandonment threshold sat=10. The basic Bees Algorithm was 

set with exactly the same parameters excluding the shrinking constant and site 

abandonment threshold.

Note that ngh defines the initial size o f the neighbourhood in which follower bees are 

placed. For example, if  x is the position o f an elite bee in the ith dimension, follower 

bees will be placed randomly in the interval Xje ± ngh in that dimension at the 

beginning of the optimisation process.

Fig. 12 shows the fitness values obtained as a function of the number of points visited. 

The results are averages for 100 independent runs. It can be seen that after 

approximately 1200 visits, the Bees Algorithm was able to find solutions close to the 

optimum. However, the improved algorithm is able to find solutions close to the 

optimum faster than its predecessor
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Figure 3.12 Evolution of fitness with the number of points visited (Inverted Shekel’s

Foxholes)
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To test the reliability of the algorithm, the inverted Schwefel’s function with six 

dimensions (see equation 3.4) was used. Fig. 4 shows a two-dimensional view of the 

function to highlight its multi-modality.

/ ( * ) = -  Z -  x ,  sin( V T T T )
(3.4)

-  500 < x t < 500 

For this function,

xmax = (420.9829,420.9829,420.9829,420.9829,420.9829,420.9829)

/ ( * - ) «  2513.9

The following parameter values o f the Bees Algorithm were set for this test: scout 

bees population n=500, number of selected sites m=15, number of elite sites e=5, 

initial patch size ngh=20, number of bees around elite points nep=50, number of bees 

around other selected points nsp=30. And the following parameter values for the 

improved Bees Algorithm were set for this test: scout bees population n=500, number 

of selected sites m=15, number of elite sites e=5, initial patch size ngh=20, number of 

bees around elite points nep=50, number of bees around other selected points nsp=30. 

shrinking constant sc=0.05 (5%) and site abandonment threshold sat=20. The basic 

Bees Algorithm was set with exactly the same parameters excluding the shrinking 

constant and site abandonment threshold.
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Fig. 3.14 shows how the fitness values evolve with the number of points visited. The 

results are averages for 100 independent runs. After approximately 3,000,000 visits, 

the Bees Algorithm was able to find solutions close to the optimum. On the other 

hand, the improved Bees Algorithm was able to find solutions close to the optimum 

much faster than the original algorithm. The main reason for this high success rate is 

the shrinking strategy as well as the dynamic recruitment.

The Bees Algorithm was applied to seven benchmark functions (Mathur et al., 2000) 

and the results compared with those obtained using other optimisation algorithms. The 

test functions and their optima are shown in Table 3.1.

The Bees Algorithm was applied to eight benchmark functions (Mathur et al., 2000) 

and the results compared with those obtained using other optimisation algorithms. The 

test functions and their optima are shown in Table 3.1.
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Table 3.1 Test Functions (Mathur et al., 2000)

No Function Name Interval Function Global Optimum

1 De Jong
[-2.048,

2.048]
max F  =  (3905.93) -  lO O ^ -  z j )  -  ( 1  -  z , ) !

X (l,l)

F=3905.93

2
Goldstein & 

Price
[-2,2]

m i n F  =  [ l  +  ( j Cl +  :jC2 +  l ) 2 ( 1 9 - 1 4 -X l+ 3 ^ - 1 4 X 2  +  6 ^ | x J + 3 x j ) l  
J T [ 3 0 + ( 2  j c , -  3  j c 2) 2(1  8 - 3 2  j c , + 1 2  j c f + 4 8  j c 2 - 3 6 j c , j c 2 + 2 7 ^ ) ]

X(0,-1)

F=3

3 Branin [-5,10]

min F = a(Xl ~ b X l +cx r d)2+ e ( l - f )  cos( * , ) + e

o =  l,6 =  —  f — ) ,c = - X 7 , d  = 6,e = \ 0 , f  = - X -  
4 {22)  22 8 2

X(-22/7,12.275) 

X(22/7,2.275) 

X(66/7,2.475) 

F=0.3977272

4
Martin & 

Gaddy
[0,10] min F  = (Xl  ~ X2)2 + (0 t ,+ X 2 ~ 10)/3)2

X(5,5)

F=0

5 Rosenbrock
[-1.2,1.2] 

[-10,10]

ii vT
m i X + H—* 1

X (l,l)

F=0

6 Rosenbrock [-1.2,1.2] m i n  F  =  £  ( 1 0 0  ( * ,2 -  X ( + , ) 2 +  ( 1  -  Xl)2}
i = I

X (l, 1,1,1) 

F=0

7 Hyper sphere
[-5.12,

5.12] 111111 F = E x , 2
i=i

X(0,0,0,0,0,0) 

F=0
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Table 3.2. Parameter Settings for the Bees Algorithm

Parameters

Func No n m e nep nsp ngh sc(%) sat

1 10 3 1 2 4 0.1 1 10

2 20 3 1 1 5 2 20 10

3 10 3 1 2 4 0.8 5 10

4 20 3 1 2 4 0.5 5 10

5a 8 2 1 1 4 0.1 1 10

5b 10 3 1 2 4 0.1 0.5 10

6 20 5 1 4 10 0.01 0.5 10

7 10 3 1 2 10 0.3 1 10
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Table 3.3 Results

fiinc

no

SIMPSA

NE

SIMPSA GA ANTS

The Bees 

Algorithm

su
cc

es
s 

% mean 

no. of 

eval. su
cc

es
s 

% mean 

no. of 

eval. su
cc

es
s 

% mean 

no. of 

eval. su
cc

es
s 

% mean 

no. of 

eval. su
cc

es
s 

%

mean no. 

of eval.

1 *** *** *** 1 0 0 10160 1 0 0 6000 1 0 0 1 2 1 0

2 *** *** *** *** 1 0 0 5662 1 0 0 5330 1 0 0 999

3 *** *** *** *** 1 0 0 7325 1 0 0 1936 1 0 0 1657

4 *** *** *** *** 1 0 0 2844 1 0 0 1688 1 0 0 526

5a 1 0 0 10780 1 0 0 4508 1 0 0 1 0 2 1 2 1 0 0 6842 1 0 0 898

5b 1 0 0 12500 1 0 0 5007 *** *** 1 0 0 7505 1 0 0 2306

6 99 21177 94 3053 *** *** 1 0 0 8471 1 0 0 29185

7 *** *** *** 1 0 0 15468 1 0 0 22050 1 0 0 7113

*** Data not available
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Table 3.3 presents the results obtained by the Bees Algorithm and those by the 

deterministic Simplex method (SIMPSA) (Mathur et al., 2000), the stochastic 

simulated annealing optimisation procedure (NE SIMPSA) (Mathur et al., 2000), the 

Genetic Algorithm (GA) (Mathur et al., 2000) and the Ant Colony System (ANTS) 

(Mathur et al., 2000). Again, the numbers of points visited shown are averages for 100 

independent runs.

All the algorithms were run 100 times for each parameter setting on each benchmark 

problem. For each of the 100 trials, the optimisation procedure was run until either it 

located an exact solution or found a solution which was less then 0 .0 0 1  (or %0 .1 , 

whichever was smaller).

The first test function was De Jong’s, for which the Bees Algorithm could find the 

optimum 120 times faster than ANTS and 207 times faster than GA, with a success 

rate of 100%. The second function was Goldstein and Price’s, for which the Bees 

Algorithm reached the optimum almost 5 times faster than ANTS and GA, again with 

100% success. With Branin’s function, there was a 15% improvement compared with 

ANTS and 77% improvement compared with GA, also with 100% success.

Functions 5 and 6  were Rosenbrock’s functions in two and four dimensions 

respectively. In the two-dimensional function, the Bees Algorithm delivers 100% 

success and good improvement over the other methods (at least twice fewer 

evaluations than the other methods). In the four-dimensional case, the Bees Algorithm 

needed more function evaluations to reach the optimum with 100% success. NE 

SIMPSA could find the optimum with 10 times fewer function evaluations but the 

success rate was only 94% and ANTS found the optimum with 100% success and 3.5

76



times faster than the Bees Algorithm. Test function 7 was a Hyper Sphere model of six 

dimensions. The Bees Algorithm needed half the number of function evaluations 

compared with GA and one third of that required for ANTS.

3.6. Summary

A new swarm-based intelligent optimisation procedure called the Bees Algorithm is 

presented. The algorithm mimics the food foraging behaviour of swarms of honey 

bees. In its basic version, the algorithm performs a kind of neighbourhood search 

combined with random search. Further investigations are also given on details of the 

local and global search methods used in the algorithm. Also, details of the 

improvements made to local and global search methods are presented, including 

dynamic recruitment, proportional shrinking and abandonment strategies. The 

performance of the algorithm is evaluated on benchmark results, comparing it to some 

other well-known algorithms in the literature.

77



Chapter 3

THE BEES ALGORITHM: 

THEORY AND IMPROVEMENTS

3.1. Preliminaries

Many complex multi-variable optimisation problems cannot be solved exactly within 

polynomially bounded computation times. This generates much interest in search 

algorithms that find near-optimal solutions in reasonable running times. The swarm- 

based algorithm described in this thesis is a search algorithm capable o f locating good 

solutions efficiently. The algorithm is inspired by the food foraging behaviour of 

honey bees and could be regarded as belonging to the category of “intelligent” 

optimisation tools.
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In this chapter, a new population-based search algorithm called the Bees Algorithm 

(BA) is presented (Pham et al., 2006). The algorithm mimics the food foraging 

behaviour of swarms of honey bees. In its basic version, the algorithm performs a kind 

of neighbourhood search combined with random search and can be used for both 

combinatorial optimisation and functional optimisation. The Bees Algorithm is 

presented in this chapter, with benchmark results comparing the performance of the 

algorithm with some well-known algorithms in the literature. Further details are also 

given of the local and global search methods used in this algorithm. Moreover, in this 

chapter, details of the improvements made to local and global search methods are 

presented, including dynamic recruitment, proportional shrinking and abandonment 

strategies.

The chapter is organised as follows: section 3.2 presents a description the basic Bees 

Algorithm in its simplest form with a simple example of the algorithm procedure. In 

section 3.3, some key characteristics of the Bees Algorithm are discussed, including 

site selection, neighbourhood search and global search. Improvements to local and 

global search are presented in section 3.4, including dynamic recruitment, proportional 

shrinking for selected sites and site abandonment. Experimental results and benchmark 

tables are presented in section 3.5 to demonstrate the performance and the robustness 

of the algorithm compared to some well-known algorithms in the literature.
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3.2. The basic Bees Algorithm

The Bees Algorithm is an optimisation algorithm inspired by the natural foraging 

behaviour of honey bees to find the optimal solution. Fig. 3.1 shows the pseudo-code 

and Fig. 3.2 presents the flowchart o f the basic Bees Algorithm in its simplest form. 

The algorithm requires a number o f parameters to be set, namely: number of scout 

bees (n), number of patches selected out of n visited points (m), number of best 

patches out of m selected patches (e), number of bees recruited for e best patches 

(nep), number of bees recruited for the other (m-e) selected patches (nsp), size of 

patches (ngh) and the stopping criterion. The algorithm starts with the n scout bees 

being placed randomly in the search space. The fitnesses of the points visited by the 

scout bees are evaluated in step 2. A simple demonstration is given in Fig. 3.3 which 

shows the basis steps of the algorithm.

In step 4, bees that have the highest fitnesses are chosen as “selected bees” and those 

sites that have been visited will be chosen for neighbourhood search. Then, in steps 5 

and 6 , the algorithm conducts searches in the neighbourhood of the selected bees in 

terms of more bees for the e best bees. The latter can be chosen directly according to 

the fitnesses associated with the points they are visiting. Alternatively, the fitness 

values are used to determine the probability of the bees being selected. Searches in the 

neighbourhood of the e best bees which represent more promising solutions are made 

more detailed by recruiting more bees to follow the e best bees than other selected 

bees. Also within scouting, differential recruitment is one of the key operations of the 

Bees Algorithm. Both scouting and differential recruitment are used in nature.
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1. Initialise population with random solutions.

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

//Forming new population.

4. Select sites for neighbourhood search.

5. Recruit bees for selected sites (more bees for e best sites) and evaluate 

fitnesses.

6 . Select the fittest bee from each site.

7. Assign remaining bees to search randomly and evaluate their fitnesses.

8 . End While.

Figure 3.1 Pseudo-code o f the basic Bees Algorithm

However, in step 6 , for each site only one bee with the highest fitness will be selected 

to form the next bee population. In nature, there is no such a restriction. This 

restriction is introduced here to reduce the number of points to be explored.

In step 7, the remaining bees in the population are assigned randomly around the 

search space scouting for new potential solutions. These steps are repeated until a 

stopping criterion is met. At the end of each iteration, the colony will have two parts to 

its new population -  representatives from each selected patch and other scout bees 

assigned to conduct random searches.
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Figure 3.2 Flowchart of the basic Bees Algorithm
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Graph 1. Initialise population with random solutions 
and evaluate the fitness.

Graph 4. Recruit bees around selected sites (more bees 
for the best e sites).

Graph. 2. Select sites for neighbourhood search' 
and“°”. Graph 5. Select the fittest from each site

Graph 3. Define neighbourhood range. Graph 6. Assign remaining bees “o” to search 
randomly and evaluate their fitness

Figure 3.3 Simple example of the Bees Algorithm
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3.3. Characteristics of the proposed Bees Algorithm

In this section some key characteristics of the proposed Bees Algorithm will be 

discussed in detail, including neighbourhood search and site selection strategies.

3.3.1 Neighbourhood Search

Neighbourhood search is one o f the essential parts for all evolutionary algorithms as 

well as for the Bees Algorithm. In the Bees Algorithm, the searching process in a 

selected site is similar to that of the foraging field exploitation of honey bee colonies 

in nature. As explained in previous chapter, when a scout bee finds any good enough 

foraging field, she advertises it back to the hive in order to recruit more bees to that 

field. This behaviour is useful in terms of bringing more nectar into the hive. Hence, 

this fruitful method might be also useful for engineering optimization problems.

The harvesting process also includes a monitoring phase which is necessary for 

decision making for a waggle dance back in the hive for the purpose of recruiting 

more bees to that site. In the Bees Algorithm, this monitoring process can be used as a 

neighbourhood search. Essentially, when a scout bee finds a good field (good 

solution), she advertises her field to more bees. Subsequently, those bees fly to that 

source, take piece of nectar and return back to hive. Depending on the quality, this 

source can be advertised by some of the bees that are already aware of the source. In 

the proposed Bees Algorithm, this behaviour has been used as a neighbourhood 

search. As explained above, from each foraging site (or neighbourhood site) only one
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bee is chosen. This bee must have the best solution information about that field. Thus, 

the algorithm can create some solutions which are related to the previous ones.

Neighbourhood search is based on a random distribution of bees in a predefined 

neighbourhood range (patch size). For every selected site, bees are randomly 

distributed to find a better solution. As shown in Fig. 3.4, only the fittest (best) bee is 

chosen as a representative and the centre o f the neighbourhood patch shifted up to best 

bees' position (from A to B).

On the other hand, during the harvesting process other elements should also be taken 

into account for increasing efficiency, such as number of recruited bees in the 

neighbourhood patch and the patch size.

The number of recruited bees around selected sites should be defined properly. When 

the number is increased, then the number o f function evaluations will also be increased 

and vice versa.

This problem also depends on the neighbourhood range. If the range can be arranged 

adequately, then the number of recruited bees will depend on the complexity o f a 

solution space. This will be discussed later with more details.
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Figure 3.4 Graphical explanation of basic neighbourhood search.
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3.3.4 Site Selection

For site selection two different techniques have been implemented: probabilistic 

selection and best site selection.

In probabilistic selection, the roulette wheel method has been used and sites with 

better fitness have more chance o f being selected, but in best site selection, the best 

sites according to fitness will be selected. In this section, different combinations of 

selection using the two methods from pure probabilistic selection (q=0 ) to pure best 

site selection (q=l) have been investigated and mean iterations required to enrich the 

answer. Results are shown in Fig. 3.5 and Fig. 3.6.

Regarding results, best selection will present better results and also is simpler, so in its 

basic form the best sites method is selected as the neighbourhood site selections 

method for the Bees Algorithm.

3.3.5. Global Search

In the first step, all scout bees (n) are placed randomly across the fitness landscape to 

explore for new flower patches. After neighbourhood search, n-m bees are again 

placed randomly across the fitness landscape to explore new patches. The latter part is 

the main global search tool for the Bees Algorithm.
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Figure 3.5 Mean iteration required for different combinations of selection

Successfulness

100

 q=0
 q=0.1

q=0.5 
q=0.9 

 q=1

100

n ( P op u la t io n  )

150 200

Figure 3.6 Successfulness of different combinations of selection methods
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3.4. Improvements in local and global search

In this section, further improvements to the Bees Algorithm are presented including 

dynamic recruitment, proportional shrinking for selected sites and site abandonment.

3.4.1 Dynamic recruitment

Dynamic recruitment is introduced to improve the way that the bees are recruited into 

a selected site. In the basic Bees Algorithm, when a site is selected for neighbourhood 

search there will be a certain number o f bees assigned for local search. In the previous 

strategy, bees are sent all at once to the same local search space defined as the 

neighbourhood patch (see Fig. 3.4). Although it is proven to be a useful strategy, 

dynamic recruitment presented here deals with the local search space faster.

Details of dynamic recruitment are given in Fig. 3.7. In step 5, bees are sent into 

selected patches one by one and if  there is any improvement compared to the original 

bee, the recruited bee will replace the original and the patch will move to a new 

position around the new and fittest recruit. This will be carried out until the visits by 

all recruited bees are completed..
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1. Initial population with n random solution.

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the fittest 

bee from each site and shrink patches

for(k=l ; k=e ; k++) // Elite Sites

for(Bee=l ; Bee= nep ; Bee++) // More Bees for Elite Sites

BeesPositionlnNghO = GenerateRandomValueInNgh(/rom x+ngh to x-ngh); 

Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = Bee(i); 

for(k=e ; k=m ; k++) // Other selected sites (m-e)

for(Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e)

BeesPositionlnNghO = GenerateRandomValueInNgh(/rom x+ngh to x-ngh); 

Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = Bee(i);

6. Assign remaining bees to search randomly and evaluate their fitnesses. // (n-m) assigned to 

search randomly into whole solution space

7. End While

Figure 3.7 The Bees Algorithm with dynamic recruitment.
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3.4.2 Proportional shrinking for selected sites

The term proportional shrinking refers to a contraction of patch sizes of all selected 

sites (m) in every iteration of the algorithm proportional to a constant ratio called 

Shrinking Constant (sc). Equation 3.1 gives the definition of the proportional 

shrinking idea, in which the initial patch size is set as a starting patch size in the first 

iteration of the algorithm. Depending on the iteration (/), the patch size o f the site m 

(Nghm(i)) is calculated as a contraction from the previous size (Nghm(i-\)) proportional 

to the value o f sc. The value of sc can be defined by the user between 0 and 1 that 

represents the percentage by which the patch will shrink. However, the patch size must 

be a positive value all the time (Nghm(i) > 0).

i = l N g h ^i)  = InitialPathSize,
Nhgm(i) = -

i>  1 Nghm(i) = Nghm( i- lX ( l-S C ) )  and N g ^ X ) .
(3.1)

This new strategy, implemented as step 6  in Fig. 3.8, is proposed to improve the 

solution quality and evaluation time. At the beginning, for the local search, a wide 

patch size increases the probability o f finding a better solution. By shrinking it saves 

the time and increases the solution quality by fine tuning in relatively narrow local 

search space.
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3.4.3 Site Abandonment

The site abandonment strategy is introduced to improve the efficiency of the local 

search. The term refers the abandonment of a site in which there is no more 

improvement of the fitness value of the fittest bee after a certain number of iterations. 

In many complex optimisation problems, there may be many local solutions in their 

solution spaces and it is not possible to escape from local optima without an efficient 

procedure.

Parallel scout bee search and better neighbourhood exploitation are two strong features 

o f the Bees Algorithm that are capable o f dealing with many complex optimisation 

problems. But for all other algorithms it may not be possible to escape from local 

optima. Site abandonment is here introduced to deal with this problem.

In step 8  (see Fig. 3.8), if  the points visited near a selected site are all inferior to that 

site, after a certain number of iterations (i.e. sat: site abandonment threshold), then the 

location of the site is recorded and the site abandoned. Bees at the site are assigned to 

random search (i.e. made to scout for new potential solutions).

This step is directly inspired by honey-bees in nature. Depending on the solution, 

quality bees either continue to exploit a patch by sending more bees or will abandon 

the site after several visits.
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1. Initial population with n random solution.

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the fittest

bee from each site and shrink patches 

for (k=l ; k=e ; k++) // Elite Sites

for (Bee=l ; Bee= nep ; Bee++) // More Bees for Elite Sites

BeesPositionlnNghO = GenerateRandomValueInNgh(/rom x+ngh to x-ngh)', 

Evaluate Fitness = Bee(i); //Evalute the fitnees of recruited Bee(i)

If (Bee(i) is better then Bee(i-l)) RepresentativeBee = Bee(i); 

for (k=e ; k=m ; k++) // Other selected sites (m-e)

for (Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e)

BeesPositionlnNghO = GenerateRandomValuelnNgh(/rom x+ngh to x-ngh); 

Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better then Bee(i-l)) RepresentativeBee = Bee(i);

6. for (patch=l; patch=m; patch++) //Shrink all patches (m) proportional to SC

NghJi)  = Ngkm( i - i ) * ( { ] - S C ) ) ;

7. If (Iteration > sat)

If (no improvement on the site)

Save the Best Fitness;

Abandon the Site;

Bee(m) = GenerateRandomValue(All Search Space);

8. Assign remaining bees to search randomly and evaluate their fitnesses. // (n-m) assigned to

search randomly into whole solution space

Figure 3.8 Pseudo-code of the Bees Algorithm with proportional shrinking and site

abandonment.
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3.5. Experimental Results

Clearly, the Bees Algorithm as described above is applicable to both combinatorial 

and functional optimisation problems. In this section, functional optimisation is 

presented to show the robustness of the algorithm.

Three standard functional optimisation problems were used to test the Bees Algorithm 

and establish the correct values o f its parameters and seven problems for 

benchmarking the algorithm. As the Bees Algorithm searches for the maximum, 

functions to be minimised were inverted before the algorithm was applied.

The first test function (see equation 3.2) is the axis parallel hyper-ellipsoid which is 

similar to De Jong's function 1 (see Fig. 3.9). It is also known as the weighted sphere 

model. It is continuous, convex and unimodal.

/iaw = 2 > ,2
/=1 (3.2)

-5.12 < jc, < 5.12

Global Minimum for this function:

f ( x )  = 0; x(0 = 0, i = \ :n

64



The following parameter values were set for the axis parallel hyper-ellipsoid test 

function: scout bee population n= 10, number of selected sites m=3, number of elite 

sites e=l, initial patch size ngh=0.5, number o f bees around elite points nep=2, number 

of bees around other selected points nsp=2 .

The following parameter values of the Bees Algorithm were set for this test: scout bee 

population n= 10, number of selected sites m=3, number of elite sites e=l, initial patch 

size ngh=2.75, number bees around elite points nep=2, number of bees around other 

selected points nsp=2. And the following parameter values of the improved Bees 

Algorithm were set for this test: scout bee population n= 10, number of selected sites 

m=3, number of elite sites e=l, initial patch size ngh=5.12, number of bees around 

elite points nep=2 , number of bees around other selected points nsp=2 , shrinking 

constant sc=0.20 (20%) and site abandonment threshold sat=10. The basic Bees 

Algorithm was set with exactly the same parameters excluding the shrinking constant 

and site abandonment threshold.

Fig. 3.10 shows the fitness values obtained as a function of the number of points 

visited for both original and improved algorithms. The results are averages for 100 

independent runs. It can be seen that after approximately 500 visits, the improved 

algorithm was able to find solutions close to the optimum while the original algorithm 

needs more time to find the optimum. It is also important to emphasise that the initial 

patch size was set as the whole solution space for the improved Bees Algorithm.
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Figure 3.9 Visualization of 2D axis parallel hyper-ellipsoid function.
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Figure 3.10 Evolution of fitness with the number of points visited (the axis parallel 

hyper-ellipsoid)
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Shekel’s Foxholes (see equation 3.3), a 2D function from De Jong’s test suite (Fig. 

3.11), was chosen as the first function for testing the algorithm.

/ (J C )  = 119.998 - f ) ---------------- -
, = 1 2 /  \ 0

j + Z  ( x . - a  
I  1 9

y  v
32 - 1 6  0 16 32 ... 0 16 32

- 3 2  - 3 2  - 3 2  - 3 2  - 3 2  ... 32 32 32

-  65 .536 < xf < 65 .536

For this function,

=  ( - 3 2 ,-3 2 )

f ( Z max) = H9 .998

(3.3)
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The following parameter values of the Bees Algorithm were set for this test: scout bee 

population n= 45, number of selected sites m=3, number of elite sites e=l, initial patch 

size ngh=3, number bees around elite points nep=7, number of bees around other 

selected points nsp=2. And the following parameter values for the improved Bees 

Algorithm were set for this test: scout bee population n= 10, number of selected sites 

m=3, number of elite sites e=l, initial patch size ngh=3, number bees around elite 

points nep=2 , number of bees around other selected points nsp=2 , shrinking constant 

sc= 0.01 (1%) and site abandonment threshold sat=10. The basic Bees Algorithm was 

set with exactly the same parameters excluding the shrinking constant and site 

abandonment threshold.

Note that ngh defines the initial size o f the neighbourhood in which follower bees are 

placed. For example, if  x is the position o f an elite bee in the ith dimension, follower 

bees will be placed randomly in the interval xje ±ngh in that dimension at the 

beginning of the optimisation process.

Fig. 12 shows the fitness values obtained as a function of the number of points visited. 

The results are averages for 100 independent runs. It can be seen that after 

approximately 1200 visits, the Bees Algorithm was able to find solutions close to the 

optimum. However, the improved algorithm is able to find solutions close to the 

optimum faster than its predecessor
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Figure 3.11 Inverted Shekel’s Foxholes
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Figure 3.12 Evolution of fitness with the number of points visited (Inverted Shekel’s

Foxholes)
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To test the reliability of the algorithm, the inverted Schwefel’s function with six 

dimensions (see equation 3.4) was used. Fig. 4 shows a two-dimensional view of the 

function to highlight its multi-modality.

/ ( * ) = - !  - x , s i n (  y/\  x , | )
- ■ (3.4)

-  500 < x, < 500 

For this function,

* n a x  = (420.9829,420.9829,420.9829,420.9829,420.9829,420.9829)

/ ( i « ) *  2513.9

The following parameter values o f the Bees Algorithm were set for this test: scout 

bees population n=500, number of selected sites m=15, number of elite sites e=5, 

initial patch size ngh=20, number of bees around elite points nep=50, number of bees 

around other selected points nsp=30. And the following parameter values for the 

improved Bees Algorithm were set for this test: scout bees population n=500, number 

of selected sites m=15, number of elite sites e=5, initial patch size ngh=20, number of 

bees around elite points nep=50, number of bees around other selected points nsp=30. 

shrinking constant sc=0.05 (5%) and site abandonment threshold sat=20. The basic 

Bees Algorithm was set with exactly the same parameters excluding the shrinking 

constant and site abandonment threshold.

70



Variable 2 -500 -500 Variable 1

Figure 3.13 2D Schwefel’s function

Inverted Schw efel’s Function ( 6 dim )

2400

2200

£
£  2000

1800

1600
100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

0
Generated Points ( mean number o f evaluations )

The Bees Algorithm --------Improved Bees Algorithm

Figure 3.14 Evolution of fitness with the number of points visited (Inverted

Schewefel’s Fuction)
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Fig. 3.14 shows how the fitness values evolve with the number of points visited. The 

results are averages for 100 independent runs. After approximately 3,000,000 visits, 

the Bees Algorithm was able to find solutions close to the optimum. On the other 

hand, the improved Bees Algorithm was able to find solutions close to the optimum 

much faster than the original algorithm. The main reason for this high success rate is 

the shrinking strategy as well as the dynamic recruitment.

The Bees Algorithm was applied to seven benchmark functions (Mathur et al., 2000) 

and the results compared with those obtained using other optimisation algorithms. The 

test functions and their optima are shown in Table 3.1.

The Bees Algorithm was applied to eight benchmark functions (Mathur et al., 2000) 

and the results compared with those obtained using other optimisation algorithms. The 

test functions and their optima are shown in Table 3.1.
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Table 3.1 Test Functions (Mathur et al., 2000)

No Function Name Interval Function Global Optimum

1 De Jong
[-2.048,

2.048]
max F = (3905.93) -  100C* -  X \) " 0  " X,)2

X (l,l)

F=3905.93

2
Goldstein & 

Price
[-2,2]

min F = [1 + (Xl+x3 +1)2 0 9-14 x, + 3 x! ~14 Xi+ 6 X, X2 + 3 XT*)] 
[̂30+(2JCl-3X2)I(18-32JCl + 12^ + 48Xl-36XlXj + 27x;)l

X(0,-1)

F=3

3 Branin [-5, 10]

min F = a(x2 -  bXl+ c Xl-  d f  + e(l -  f )  cos(Xl)+e

a = l,b = —  [ — ) ,c = - X 7 , d  = 6,e = \0 , f  = - X -  
4 y i l )  22 8 2

X (-22/7,12.275) 

X(22/7,2.275) 

X(66/7,2.475) 

F=0.3977272

4
Martin & 

Gaddy
[0, 10] min F = (Xx ~ X2>2 + (<X,+ X2 ~ 1 ° )7 3)2

X(5,5)

F=0

5 Rosenbrock
[-1.2,1.2] 

[-10,10]
min F =100 ( x ] -  X l ) 2 + (i -  Xx) 2

X (l,l)

F=0

6 Rosenbrock [-1.2,1.2] min F = £  {100 (x ] ~ X^  + 0 " Xt)2) >*1
X (l,1,1,1) 

F=0

7 Hyper sphere
[-5.12,

5.12]
“ to F = Z x , 21=I

X(0,0,0,0,0,0) 

F=0
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Table 3.2. Parameter Settings for the Bees Algorithm

Parameters

Func No n m e nep nsp ngh sc(%) sat

1 1 0 3 1 2 4 0 .1 1 1 0

2 2 0 3 1 1 5 2 2 0 1 0

3 1 0 3 1 2 4 0 .8 5 1 0

4 2 0 3 1 2 4 0.5 5 1 0

5a 8 2 1 1 4 0 .1 1 1 0

5b 1 0 3 1 2 4 0 .1 0.5 1 0

6 2 0 5 1 4 1 0 0 .0 1 0.5 1 0

7 1 0 3 1 2 1 0 0.3 1 1 0
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Table 3.3 Results

func

no

SIMPSA

NE

SIMPSA GA ANTS

The Bees 

Algorithm

su
cc

es
s 

% mean 

no. of 

eval. su
cc

es
s 

% mean 

no. of 

eval. su
cc

es
s 

% mean 

no. of 

eval. su
cc

es
s 

% mean 

no. of 

eval. su
cc

es
s 

%

mean no. 

of eval.

1 *** ♦♦♦ *** *** 1 0 0 10160 1 0 0 6000 1 0 0 1 2 1 0

2 ♦♦♦ *** *** *** 1 0 0 5662 1 0 0 5330 1 0 0 999

3 *** *** *** *** 1 0 0 7325 1 0 0 1936 1 0 0 1657

4 ** * *♦* *** *** 1 0 0 2844 1 0 0 1688 1 0 0 526

5a 1 0 0 10780 1 0 0 4508 1 0 0 1 0 2 1 2 1 0 0 6842 1 0 0 898

5b 1 0 0 12500 1 0 0 5007 *** ♦♦♦ 1 0 0 7505 1 0 0 2306

6 99 21177 94 3053 *** ♦♦♦ 1 0 0 8471 1 0 0 29185

7 *** **♦ *** *** 1 0 0 15468 1 0 0 22050 1 0 0 7113

*** Data not available
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Table 3.3 presents the results obtained by the Bees Algorithm and those by the 

deterministic Simplex method (SIMPSA) (Mathur et al., 2000), the stochastic 

simulated annealing optimisation procedure (NE SIMPSA) (Mathur et al., 2000), the 

Genetic Algorithm (GA) (Mathur et al., 2000) and the Ant Colony System (ANTS) 

(Mathur et al., 2000). Again, the numbers of points visited shown are averages for 100 

independent runs.

All the algorithms were run 100 times for each parameter setting on each benchmark 

problem. For each of the 100 trials, the optimisation procedure was run until either it 

located an exact solution or found a solution which was less then 0 .0 0 1  (or %0 .1 , 

whichever was smaller).

The first test function was De Jong’s, for which the Bees Algorithm could find the 

optimum 120 times faster than ANTS and 207 times faster than GA, with a success 

rate of 100%. The second function was Goldstein and Price’s, for which the Bees 

Algorithm reached the optimum almost 5 times faster than ANTS and GA, again with 

100% success. With Branin’s function, there was a 15% improvement compared with 

ANTS and 77% improvement compared with GA, also with 100% success.

Functions 5 and 6  were Rosenbrock’s functions in two and four dimensions 

respectively. In the two-dimensional function, the Bees Algorithm delivers 100% 

success and good improvement over the other methods (at least twice fewer 

evaluations than the other methods). In the four-dimensional case, the Bees Algorithm 

needed more function evaluations to reach the optimum with 100% success. NE 

SIMPSA could find the optimum with 10 times fewer function evaluations but the 

success rate was only 94% and ANTS found the optimum with 100% success and 3.5
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times faster than the Bees Algorithm. Test function 7 was a Hyper Sphere model of six 

dimensions. The Bees Algorithm needed half the number o f function evaluations 

compared with GA and one third of that required for ANTS.

3.6. Summary

A new swarm-based intelligent optimisation procedure called the Bees Algorithm is 

presented. The algorithm mimics the food foraging behaviour o f swarms of honey 

bees. In its basic version, the algorithm performs a kind of neighbourhood search 

combined with random search. Further investigations are also given on details of the 

local and global search methods used in the algorithm. Also, details o f the 

improvements made to local and global search methods are presented, including 

dynamic recruitment, proportional shrinking and abandonment strategies. The 

performance of the algorithm is evaluated on benchmark results, comparing it to some 

other well-known algorithms in the literature.
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Chapter 4

BEES ALGORITHM FOR CONTINUOUS 

DOMAINS

4.1. Preliminaries

In this chapter, several continuous applications of the Bees Algorithm are presented, 

including neural network training for a variety of industrial applications and recursive 

filter design. Neural networks are computational models of the biological brain. Like 

the brain, a neural network comprises a large number of interconnected neurons. Each 

neuron is capable of performing only simple computation. However, as an assembly of 

neurons, a neural network can learn to perform complex tasks including pattern 

recognition, system identification, trend prediction and process control.

One of the best known types of neural network is the Multi-Layered Perceptron 

(MLP). MLP networks are usually trained; that is the weights of the connections
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between the neurons are adjusted, by employing the backpropagation (BP) algorithm, 

which is a gradient-based optimisation algorithm. Because of its reliance on gradient 

information, the BP algorithm sometimes has difficulties handling local optima and 

cannot develop MLP networks with optimally adjusted weights.

The chapter is organised as follows: section 4.2 presents a detailed discussion on the 

optimisation of the weights o f multi-layered perceptrons (MLPs) using the Bees 

Algorithm for pattern recognition in statistical process control charts. Section 4.3 

presents the identification of defects in wood veneer sheets using the neural networks 

for several different features. Section 4.4 presents an application of the Bees 

Algorithm to electronic recursive filter design. The general summary of the proposed 

method, applications and possible future research are analysed in section 4.5.

4.2. Optimisation of the Weights of Multi-Layered Perceptrons 

Using the Bees Algorithm for Pattern Recognition in Statistical 

Process Control Charts

In this section, an implementation of the Bees Algorithm is presented for training the 

weights of Multi-Layered Perceptrons (MLP) for pattern recognition in statistical 

process control charts. The results o f control chart pattern recognition experiments 

using the Bees Algorithm are compared with the standard backpropagation algorithm.
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4.2.1. Control Chart Patterns

Control charts enable a manufacturing engineer to compare the actual performance of 

a process with customer specifications and provide a process capability index to guide 

and assess quality improvement efforts (Montgomery, 2000). By means of simple 

rules, it is possible to determine if  a process is out of control and needs corrective 

action. However, it is possible to detect incipient problems and prevent the process 

from going out of control by identifying the type of patterns displayed by the control 

charts. These patterns can indicate if  the process being monitored is operating 

normally or if  it shows gradual changes (trends), sudden changes (shifts) or periodic 

changes (cycles), (see Fig. 4.1). Various techniques that have been applied to this 

control chart pattern recognition task can be seen in (Pham and Oztemel, 1992; Pham 

and Oztemel, 1995; Pham and Chan,, 2001).

Training and testing data are produced using equation (4.1) for normal patterns, 

equation (4.2) for cyclic patterns, equation (4.3) for increasing or decreasing trend 

patterns, and equation (4.4) for upwards or downwards shift patterns. A total of 1500 

patterns, 250 patterns in each of the six classes, were generated using the following 

equations:

1. Normal patterns:

y0 )  = M + r(t) CT (4 1 )

2. Cyclic patterns:
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y( t) = fj. + r{t) cr +a  sin(2;tf / 7") ^  2 )

3. Increasing or decreasing trends:

y(t) = M + r ( t ) c r ± g t

4. Upwards or downwards shifts:

y(t) = fi + r ( t ) a ± k s

where

P  = mean value of the process variable being monitored (taken as 80 in this work) 

a  = standard deviation of the process (taken as 5) 

a = amplitude of cyclic variations (taken as 15 or less)

& = magnitude of the gradient of the trend (taken as being in the range 0.2 to 0.5)

^ = parameter determining the shift position (= 0  before the shift position; = 1 at the 

shift position and thereafter)

r = normally distributed random number (between -  3 and +3) 

s = magnitude of the shift (taken as being in the range 7.5 to 20)

1 = discrete time at which the pattern is sampled (taken as being within the range 0  to 

59)

T  = period of a cycle (taken as being in the range 4 to 12 sampling intervals)

= sample value at time t 

498 patterns (83 in each class) were used for training an MLP classifier and 1002 

patterns (167 in each class) were employed for testing the trained classifier.
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Each pattern used in the experiments was a time series comprising 60 points. The

value y W  at each point t was normalised to fall in the range [0 , + 1 ] according to the 

following equation (Pham and Oztemel, 1995):

max s  mm (4.5)

where,

T( 0  = scaled pattern value (in the range 0  to 1)

y mm = minimum allowed value (taken as 35)

Tmax = maximum allowed value (taken as 125)
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4.2.2. Proposed Bees Algorithm for MLP weight optimisation

This section summarises the main steps of the Bees Algorithm applied to MLP weight 

optimizations. It is based on the pseudo-code of the algorithm given in Fig. 3.8.

The algorithm requires a number of parameters to be set, namely: number of scout 

bees (n), number of sites selected for exploitation out of n visited sites (m), number of 

top-rated (elite) sites among the m selected sites (e), number of bees recruited for the 

best e sites (nep), number of bees recruited for the other (m-e) selected sites (nsp), 

initial size of each patch (ngh; a patch is a region in search space that includes a 

visited site and its neighbourhood), shrinking constant (sc) and stopping criterion. The 

algorithm starts with the n scout bees being placed randomly in the search space. The 

fitnesses of the sites visited by the scout bees are evaluated in step 2 .

In step 4, the m sites with the highest fitnesses are designated as “selected sites” and 

chosen for neighbourhood search. In step 5, the algorithm conducts searches around 

the selected sites, assigning more bees to search in the vicinity of the best e sites. 

Selection of the best sites can be made directly according to the fitnesses associated 

with them. Alternatively, the fitness values are used to determine the probability of the 

sites being selected. Searches in the neighbourhood of the best e sites -  those which 

represent the most promising solutions - are made more detailed. As already 

mentioned, this is done by recruiting more bees for the best e sites than for the other 

selected sites. Together with scouting, this differential recruitment is a key operation 

of the Bees Algorithm. For each patch, only the bee that has found the site with the 

highest fitness (the “fittest” bee in the patch) will be selected to form part of the next 

bee population. In nature, there is no such a restriction. This restriction is introduced
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here to reduce the number of points to be explored. In step 6 , after the recruitment, all 

patches will shrink down evenly, proportional to shrinking constant (sc). Also in step 

6 , if  the points visited near a selected site are all inferior to that site, after a certain 

number of iterations (i.e. Abandon threshold), then the location of the site is recorded 

and the site abandoned. Bees at the site are assigned to random search (i.e. made to 

scout for new potential solutions).

In step 8 , the remaining bees in the population are assigned randomly around the 

search space to scout for new potential solutions.

At the end of each iteration, the colony will have two parts to its new population: 

representatives from the selected patches, and scout bees assigned to conduct random 

searches. These steps are repeated until a stopping criterion is met.

The MLP network training procedure using the Bees Algorithm thus comprises the 

following steps given in Fig. 4.2. The training of an MLP network can be regarded as 

the minimisation of an error function. The error function defines the total difference 

between the actual output and the desired output of the network over a set of training 

patterns (Pham and Liu, 1995). Training proceeds by presenting to the network a 

pattern of known class taken randomly from the training set. The error component 

associated with that pattern is the sum of the squared differences between the desired 

and actual outputs of the network corresponding to the presented pattern. The 

procedure is repeated for all the patterns in the training set and the error components 

for all the patterns are summed to yield the value of the error function for an MLP 

network with a given set of connection weights.
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1. Generate an initial population o f bees.

2. Apply the training data set to determine the value of the error function 

associated with each bee.

3. Based on the error value obtained in step 2, create a new population of bees 

comprising the best bees in the selected neighbourhoods and randomly placed 

scout bees.

4. Stop if the value of the error function has fallen below a predetermined 

threshold.

5. Else, return to step 2.

Figure 4.2 The MLP network training procedure using the Bees Algorithm.
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In terms of the Bees Algorithm, each bee represents an MLP network with a particular 

set of weight vectors. The aim of the algorithm is to find the bee with the set of weight 

vectors producing the smallest value o f the error function.

The configuration of the multi-layer perceptrons (MLPs) involves three layers: an 

input layer, a hidden layer and an output layer (see Fig. 4.3). The input layer has 60 

neurons, one for each point in a pattern. The hidden layer consists of 35 neurons. This 

number of hidden neurons is the same as adopted in previous experiments with BP- 

trained networks. The output layer comprises 6  neurons, one for each of the six classes 

(Pham and Oztemel, 1992). The input neurons perform no processing roles, acting 

only as buffers for the input signals. Both hidden and output layers’ biases are used for 

each neuron. Processing is carried out by the hidden and output neurons, the activation 

functions for which were chosen to be o f the sigmoidal type (Pham and Liu, 1995).

4.23. Experimental results

Table 4.1 shows the parameter values adopted for the Bees Algorithm. The values 

were decided empirically. In addition, the algorithm was initialised with all weight 

values set randomly within the range -1 to 1. However, a square root error function is 

deployed to determine the difference between the ideal and actual outputs for each 

bee. Table 4.2 presents the training and test results for ten separate runs of the Bees 

Algorithm. A typical plot of how classification accuracy evolves during training is 

shown in Fig. 4.4. For comparison, the average for the ten runs is given in Table 4.3 

against the classification results for an MLP network trained using backpropagation 

(Pham and Oztemel, 1992).
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Figure 4.3. Structure o f a multi-layered perceptron network
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Table 4.1 The parameters of the Bees Algorithm for SPC-MLP weight training

Bees Algorithm parameters Symbol Value

Population n 2 0 0

Number of selected sites m 2 0

Number of elite sites e 2

Initial patch size ngh 0 .1

Number bees around elite points nep 50

Number of bees around other nsp 2 0selected points

Shrinking constant sc 0 .0 1  ( 1%)

Site abandonment threshold sat 50
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Table 4.2. MLP classification results

Number of runs Training accuracy Test accuracy

1 98.59% 97.10%

2 98.59% 96.70%

3 98.39% 96.50%

4 98.85% 97.20%

5 98.19% 96.30%

6 96.39% 97.30%

7 97.78% 97.80%

8 98.99% 96.50%

9 98.91% 97.30%

1 0 97.79% 96.60%

Maximum 98.99% 97.80%

Minimum 97.78% 96.30%

Mean 98.25% 96.93%
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Table 4.3 Results for different pattern recognisers

Pattern recogniser Learning accuracy Test accuracy

MLP (Backpropagation) 96.0% 95.2%

MLP (Bees Algorithm) 98.2% 96.9%
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4.3. Optimising Neural Networks for Identification of Wood Defects 

Using the Bees Algorithm

This section presents an application o f the new algorithm to the problem of identifying 

defects in plywood veneer. An example of a sheet of wood veneer is shown in Fig. 4.5. 

It can be seen that the sheet contains several defects. These could create quality 

problems when the sheets are bonded together. Researchers have developed systems 

for automatically detecting and identifying defects in plywood veneer. Such systems 

generally involve the use of image processing techniques, feature extraction to capture 

the essential characteristics of all defects and a classifier to recognise these defects. 

The following sections provide an introduction to the algorithm and an explanation of 

the wood defect problem and the neural network used to identify the defects.

4.3.1. Wood veneer defects

In this study, using a charge-coupled device (CCD) matrix camera, the wood veneer 

defects were captured and stored on a digital computer. The wood veneer data 

acquisition rig is shown in Fig. 4.6. These images were converted into grey level 

histograms after applying segmentation and image processing algorithms. From the 

first and second order statistical features extracted from the histogram, 17 features 

were selected for training the neural network. These are shown in Table 4.4. 

Altogether 12 wood veneer defects and clear wood as shown in Fig. 4.5 were included 

in the examples used for training and testing the neural networks. Automated Visual 

Inspection (AVI) systems for identifying defects using neural networks have been
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proposed by Pham and Alcock, (1996) and Packianather and Drake, (2005). The 

generic process for the visual inspection of wood defects is given in Fig. 4.7.

The wood panels are automatically moved to the image capture area by a conveyor 

belt. The system uses a Hamamatsu monochrome CCD matrix camera (resolution 739 

x 575 pixels) to take images of the wood veneer. Uniform illumination is provided by 

a back light (58W fluorescent lamp) and front lighting system (halogen lamps: edges 

500W and middle 300W). Basic image processing functions (e.g. thresholding and 

filtering) are implemented in hardware. Image segmentation algorithms are used to 

detect the boundaries of the sheet and open defects and defect detection algorithms are 

used to find potential defect areas.

For the particular application studied here, 232 examples (both defects and clear 

wood) were employed. This represents the complete set of examples available to the 

authors. Each example is a vector containing 17 features. Table 4.5 shows thirteen 

different classes of vectors and the number of examples in class. The initial 

classification of these examples had been performed by a human inspector. For 

subsequent neural network classification experiments, for each class, 80% (185 in 

total) of the examples were selected at random to form the training set and the 

remaining 20% (47 in total) formed the test set.
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Bark Clear Coloured Curly 
Wood Streaks grain

Discoloration Holes Pin Rotten Roughness
knots

Sound Splits Streaks Worm
knots holes

Figure 4.6 Wood veneer defect types. (There are 12 distinct types of defect that need 

to be identified by the neural network plus clear wood)

Figure 4.5 The inspection rig for wood defect detection.
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Table 4.4 Features selected for training of neural networks.

Feature Description

1 Mean grey level (p)

2 Median grey level below which 50% o f the 
values fall

3 Mode grey level the most frequent value

4 Standard deviation of 
the grey levels (s) the spread

5 Skewness
direction, extent o f 

departure from  
symmetry

6 Knrtosis
measures the 

"peakedness " o f the 
histogram

7 Number of pixels with 
a grey level <80 number of dark pixels

8 Number of pixels with 
a grey level >220 number o f bright pixels

9

Grey level (p) for 
which there are 20 

pixels below

lowest grey level - The 
grey level p is used as 

the lowest grey level to 
accommodate for 

potential noise pixels

10

Grey level (s) for 
which there are 20 

pixels above

highest grey level -  The 
grey level s is used as 

the highest grey level to 
accommodate far 

potential noise pixels

11 Histogram tail length 
on the dark side (q-p)

q is the grey level below 
which there are 2000 

pixels

12 Histogram tail length 
on the bright side (s-r)

r is the grey level above 
which there are 2000 

pixels

13

Number of edge pixels 
after thresholding a 

segmented window at 
mean value

defined to detect dark 
and bright defects

14 Number of pixels after 
thresholding at g -2a

15 The number of edge 
pixels for feature 14

f l  4 and flS  defined to 
detect dark defects

16 Number of pixels after 
thresholding at p +2o

17 Calculate the number 
of edge pixels for 
feature 16

f l6  and fl7  defined to 
detect bright defects
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Veneer sheet

Feature Extraction

Defect 1 Defect n Defect free

Figure 4.7 Generic automated visual inspection system for wood defect identification.
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Table 4.5 Pattern classes and the number of examples used for training and testing.

Pattern Class Total Used for 
training

Used for 
Testing

Bark 20 16 4

Clear wood 20 16 4

Colored
streaks

20 16 4

Curly grain 16 13 3

Discoloration 20 16 4

Holes 8 6 2

Pin knots 20 16 4

Rotten knots 20 16 4

Roughness 20 16 4

Sound knots 20 16 4

Splits 20 16 4

Streaks 20 16 4

Wormholes 20 16 4

Total 232 185 47
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4.3.2. Neural networks and their optimisation

The architecture of a feedforward neural network with one hidden layer is shown in 

Fig. 4.8. Each layer is made up of processing elements called neurons. Every neuron 

has a number of inputs, each of which must store a connection weight to indicate the 

strength of the connection. Connections are initially made with random weights. The 

neuron sums the weighted inputs and computes a single output using an activation 

function. A number of different activation functions can be used. In this study, a 

hyperbolic tangent function is used in order to increase the difference between the 

outputs and further details are provided in (Packianather and Drake, 2005). Each 

neuron in a layer is fully connected to every neuron in the subsequent layer, forming a 

fully connected feedforward neural network. In a feedforward neural network, 

information flows from the input layer to the output layer without any feedback. There 

is one bias neuron for each hidden layer and the output layer, as illustrated in Fig. 4.8, 

and they are connected to each neuron in their respective layer. These connections are 

treated as weights. During the training process these weights are adjusted to achieve 

optimal accuracy and coverage.

The standard method for refining such a neural network is using an error 

backpropagation algorithm. During the training phase, the feedforward calculation is 

combined with backward error propagation to adjust the weights. The error term for a 

given pattern is the difference between the desired output and the actual output (the 

output from feed forward calculation). In this study, the Bees Algorithm is used to 

optimise the weights the neural network in place of the backpropagation. Feedforward 

neural networks have one hidden layer.
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In this section, the Bees Algorithm is used to optimise the weights the neural network 

uses in place of the backpropagation algorithm described above and utilised in the 

work described in (Packianather and Drake, 2005). The algorithm follows the exact 

same procedure given in section 4.2.2 but with different configurations for the MLP.

In order to maintain comparability, the neural network structure (number of hidden 

layers) remained the same in both neural networks, with 17 input neurons, 51 hidden 

neurons and 13 output neurons. The optimisation using the Bees Algorithm will 

involve the “Bees” searching for the optimal values of the weights assigned to the 

connections between the neurons within the network, where each bee represents a 

neural network with a particular set o f weights. The aim of the Bees Algorithm is to 

find the bee producing the smallest value of the error function.
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Figure 4.8 Feedforward neural network with one hidden layer.
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4.3.3. Experimental results

The parameters used by the Bees Algorithm are given in Table 4.6. Table 4.7 shows 

the mean accuracies achieved in thirty experiments using the conventional 

backpropagation method (Packianather and Drake, 2005) with 17 features, the Bees 

Algorithm and the results using a non-neural network approach, in this case, a 

Minimum Distance Classifier (MDC).

The results show that the Bees Algorithm is able to achieve accuracies comparable to 

the backpropagation method. As the two mean accuracies are identical, this suggests 

that for this particular neural network structure and for the data set being used for 

training, accuracies in the region o f 8 6 % are the highest that can be achieved. The 

results given in Table 4.8 for data with 11 features show that for the reduced feature 

set the accuracy o f both methods increases and the Bees Algorithm achieves better 

accuracy than the backpropagation method.
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Table 4.6 Parameters of the bees algorithm for identification of wood defects

Bees Algorithm parameters Symbol Value

Population n 1 0 0

Number of selected sites m 2 0

Number of elite sites e 1

Initial patch size ngh 0 .1

Number bees around elite points nep 50

Number of bees around other 
selected points nsp 1 0

Shrinking constant sc 0 .0 1  ( 1%)

Site abandonment threshold sat 50

Table 4.7 Results for defect identification -  17 features

Method Mean Accuracy (%)

NN - Backpropagabon 86.52

NN - Bees Algorithm 86J2

MDC (Non-NN) 63.12

Table 4.8 Results for defect identification -  11 features

Method Mean Accuracy (H)

NN - Badcpropagabofi 87.97

NN - Bees Algorithm 88.65
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4.4. Design of a Two-dimensional Recursive Filter Using the Bees 

Algorithm

Two-dimensional (2-D) digital filters have many applications in fields such as digital 

image processing, medical data processing, radar and sonar data processing, pattern 

recognition, robotics and mechanical engineering (Mladenov and Mastorakis, 2001; 

Mastorakis and Gonos, 2003). An overview of the area of 2-D digital filter design is 

given in (Kaczorek, 1985; Tzafestas, 1986)

It is essential that the designed filters are stable (Mladenov and Mastorakis, 2001). 

Several optimisation methods have been proposed for determining the values of the 

parameters of 2-D digital filters to produce stable designs. Due to the complex search 

spaces involved, the methods used tend to be search methods that look for near- 

optimal solutions in order to be able to complete the optimisation in finite times 

(Mladenov and Mastorakis, 2001; Mastorakis, Gonos, 2003).

The swarm-based algorithm described in this thesis is a search algorithm capable of 

locating good solutions efficiently. Fig. 3.8 shows the pseudo-code for the algorithm 

in detail. The algorithm requires a number of parameters to be set, namely: number of 

scout bees (n), number of sites selected for exploitation out of n visited sites (m), 

number of top-rated (elite) sites among the m selected sites (e), number of bees 

recruited for the best e sites (nep), number of bees recruited for the other (m-e) 

selected sites (nsp), initial size of each patch (ngh; a patch is a region in search space 

that includes a visited site and its neighbourhood), shrinking constant (sc) and
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stopping criterion. The algorithm adapted for this application aims to find an optimum 

design for two-dimensional digital filters.

4.4.1. Recursive filter design problem

The filter has the following transfer function (Mastorakis and Gonos, 2003):

2 2

H ( z u z 2 )  = H 0
»=0 y=0

> a QQ ~  12 ’  "00 

Y \ ( \  + b k Z\ +Ckz 2 + d kz lz 2)
k=I (4.6)

The desired amplitude response of the filter is (see also Fig. 4.10):

M d(eol io)2) =

1 + co\ <0.08;r

0.5 i f  0 . 0 8 +a)$ <0.12jt 

0 otherwise .
(4.7)

The aim is to minimise J,

Nt Nj 2
J (aij y h  »'ck >Ho ) = Z j Z l M (®l ’ ̂  i  ~\M d »°>2 )|]

/il=0«2=0 ^4

where
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M  (fi> ! ,<0 2 )  =  H  (  Z i , Z 2 )

(4.9)

For this design problem, let = (n 150)nu = (n /5 0 ^  and ni=50 and n2=50. Function

J  becomes:

The design constraints are given as (Mastorakis and Gonos, 2003):

“ 0  + d k ) < (bk + ck) < (1 + d k )

- Q - d k ) < ( b k - c k ) < ( \ - d k )

(1 + d k ) > 0 (4 .1 1 )

( l - d k ) > 0  

where k = 1 , 2 .

In this problem, the aim is to determine vector x = (aOl, a02, alO, a20, al 1, al2, a21, 

a22, b l, b2, cl, c2, d l, d2, H0)T of unknown parameters to minimise J, subject to the 

design constraints.

(4.10)
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4.4.2. Experimental results

The pseudo-code of the Bees Algorithm used for this experiment is given in Fig. 3.8 in 

the previous chapter. The following parameter values for the Bees Algorithm were set 

empirically for this exercise: the scout bee population n = 1 0 0 0 , number of selected 

sites m = 2 0 , number of elite sites e = 2 , initial patch size ngh = 0 .1 , number of bees 

around elite points nep = 50, number o f bees around other selected points nsp = 20 and 

shrinking constant sc = 1% and site abandonment threshold sat = 50 iterations.

The scout bee population (n) is usually in the range 100 to 1500 bees. Because of the 

complexity of this problem, n was set to a high value. Number of selected sites is one 

of the most important parameter, especially if  there are many local optima, so it was 

set to a relatively high number. According to experimental studies on the Bees 

Algorithm, number of elite sites (e) usually does not need to set carefully, thus it was 

set to a small value. Initial patch size (ngh) was set as 0.1 and shrank down to 0.01 

after several iterations due to the value of the shrinking constant.

The Bees Algorithm was run for 10,000 iterations to find a minimum value for the 

function (5) with the settings given for the algorithm. The performance of the 

algorithm for a two-dimensional (2D) recursive digital filter design is presented in Fig. 

4.9.
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The optimal vector x obtained using the Bees Algorithm for 10,000 iterations is:

x = (-0.3057, -1.1113, 0.2214, 0.2410,-0.9693, 2.0700, -1.2764, 0.5772, -0.9303, 

0.0986, -0.9190, 0.0214, 0.8711, -0.6785, 0.00007)T.

Thus, the optimum filter transfer function is (Mastorakis and Gonos, 2003):

H( z l, z2) = 0.00007
(l -  0.9303z, -  0.9190z2 + 0.871 lz,z2)

(l -  0.0986z, + 0.02 14z 2 -  0.6785z,z2)

* (l + 0.2214z, + 0.2410z,2 -  0.9693z,z2 + 2.0700z,z|

-  0.3057z2 -  1.2764z,2z2 + 0.5772z,2zf -1 .1113z|)

(4.12)

The amplitude response |M(col, co2)| o f the obtained filter is shown in Fig. 4.11. For 

comparison, Fig. 4.12 presents the amplitude response |M(col, co2)| of a filter 

optimised using a GA (Mastorakis and Gonos, 2003).
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Table 4.9 Parameters of the bees algorithm for 2-d recursive filter design

Bees Algorithm parameters Symbol Value

Population n 1 0 0 0

Number of selected sites m 2 0

Number of elite sites e 2

Initial patch size ngh 0 .1

Number bees around elite points nep 50

Number of bees around other nsp 1 0selected points

Shrinking constant sc 0 .0 1  ( 1%)

Site abandonment threshold sat 50
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Figure 4.9 Performance of the Bees Algorithm.



Figure 4.10 Desired amplitude response |Md(col, co2)| of the 2-D filter (Mastorakis

and Gonos, 2003).

Figure 4.11 Amplitude response |M(col, co2)| obtained using the Bees Algorithm.
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Figure 4.12 Amplitude response |M(col, co2)| obtained using a GA (Mastorakis and

Gonos, 2003).

4.5. Summary

In this chapter, implementations of the algorithm on several continuous applications 

are presented, including neural network training for variety of industrial applications 

and recursive filter design. As a first implementation, the Bees Algorithm is used for 

optimisation of the weights of multi-layered perceptrons for pattern recognition in 

statistical process control charts. And a similar structure of neural networks is trained 

by the Bees Algorithm for identification of defects in wood veneer sheets in a plywood 

factory. The accuracy obtained is comparable to that achieved using backpropagation. 

However, the Bees Algorithm proved to be considerably faster. This work therefore 

confirms the usefulness of the algorithm as an optimisation tool, particularly when 

considering that it has produced even higher accuracies than backpropagation in other 

applications. Finally in this chapter, the first of many potential applications of the Bees 

Algorithm in the area of electronics circuit design is presented. The application 

involved optimising the parameters o f a 2-D recursive filter to try and achieve a given 

desired frequency response. The filter produced by the Bees Algorithm has a 

frequency response noticeably closer to the desired response than that by a filter 

designed using a GA. Taking account of the No Free Lunch principle, it is important 

to limit this conclusion to the actual tests conducted and not to generalize it to all 

conditions.
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Chapter 5

BEES ALGORITHM FOR COMBINATORIAL 

DOMAINS

5.1. Preliminaries

Combinatorial optimisation problems have attracted much attention over the years. 

Many of them are NP-hard (Garey and Johnson, 1979; Aarts E and Lenstra, 1997). It 

is generally believed that NP-hard problems cannot be solved to optimality within 

polynomially bounded computation times. Several algorithms that can find near- 

optimal solutions within reasonable running times have been developed. A population- 

based algorithm is one example.

In this chapter, the Bees Algorithm is presented for combinatorial domains. The 

algorithm mimics the food foraging behaviour o f swarms of honey bees. In its basic
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version, the algorithm performs a kind of neighbourhood search combined with 

random search and can be used for both combinatorial optimisation and functional 

optimisation. The functional optimisation application is discussed in previous chapters 

where it is proven that the algorithm works well in continuous domains. This is mainly 

due to its balanced local and global search architecture. However, combinatorial 

domains need a completely different approach when it comes to a mathematical 

definition of the distance. This raises many other challenges for an algorithm which 

was originally developed to work in continuous domains.

The neighbourhood concept defined in combinatorial domains is completely different 

of those defined in continuous domains. One of the aims of this chapter is to define a 

new neighbourhood structure which can be functional for local search. To be able to 

achieve that, several local search algorithms combined with the Bees Algorithm and 

the best combinations used in several applications are presented in this chapter.

The chapter is organised as follows: section 5.2 presents a description the Bees 

Algorithm for discrete problems including local and global search strategies used for 

the algorithm. A Bees Algorithm is presented for scheduling jobs for a machine and 

the results are presented and discussed in section 5.3. In section 5.4, a permutation 

flowshop sequencing problem is studied in many job/machine combinations using the 

Bees Algorithm and computational results compared with some other well-known 

algorithms. In section 5.5, an application of the Bees Algorithm to form machine-part 

cells is presented. A general summary of the proposed method is given and possible 

future research are analysed in section 5.6.
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5.2. A proposed Bees Algorithm for the combinatorial domain

In this section, details of the Bees Algorithm for combinatorial domains are presented. 

The Bees Algorithm basically consists of two parts: neighbourhood search and global 

search. The pseudo-code of the Bees Algorithm for combinatorial domains is given in 

Fig. 5.2. In essence, the algorithm is very similar to those presented in chapter 3. The 

main differences here are: in step 5, the patch idea is replaced by a local search 

operator to be able to perform a local search and the, shrinking procedure is also 

removed from the algorithm. However, the abandonment procedure is kept to help the 

algorithm to improve the global search part. Improvements and modifications are 

discussed in the following sections.

5.2.1. Neighbourhood search strategies

As mentioned, the main feature of combinatorial domains, unlike continuous domains, 

is that there is no mathematical distance definition for the neighbourhood search. 

Since the Bees Algorithm was developed for continuous domains, it is necessary to 

modify the neighbourhood part by simply replacing the patch with a local search 

operator.

There are several exchange neighbourhood strategies and local search algorithms in 

the literature. Swap operators (simple, double, insert ect.) are considered as exchange 

neighbourhood strategies (Aarts and Lenstra, 1997). They simply change the position 

of a randomly selected city to create an altered path. By contrast, 2-Opt and 3-Opt are 

simple local search algorithms that delete two or three edges, thus breaking the tour 

into two paths and then reconnecting those paths later.
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1. Initial population with n random solution; random(Sequence(n)).

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the fittest

bee from each site and shrink patches 

for (k=l ; k=e ; k++) // Elite Sites

for (i=l ; i= nep ; i++) // More Bees for Elite Sites

RecruitedBee(k)(i) = NeighbourhoodOperator(Sequence(k));

Evaluate Fitness = RecruitedBee(k)(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = RecruitedBee(k)(i); 

for (k=e ; k=m; k++) // Other selected sites (m-e)

for (Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e) 

RecruitedBee(k)(i) = NghOperator(Sequence(k));

Evaluate Fitness = RecruitedBee(k)(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = RecruitedBee(k)(i);

6. If (Iteration > sat)

If (no improvement on the site)

Save the Best Fitness;

Abandon the Site;

Bee(m) = GenerateRandomValue(All Search Space);

7. Assign remaining bees to search randomly and evaluate their fitnesses. // (n-m) assigned to

search randomly into whole solution space

8. End While

Figure 5.1 Pseudo-code of the Bees Algorithm for combinatorial domains.
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B B

A D D

Figure 5.2 2-opt operator (a) Original tour (A, B, C, D, E, F, A), 

(b) Tour after 2-opt (A, B, E, D, C, F, A)

There are also the k-Opt (k>3) approach, which is basically a cut o f several points and 

reconnect strategy. Tabu search, simulated annealing and GA other well-known local 

search operators in the literature (Aarts and Lenstra, 1997). In this study, only the 

exchange and 2/3-Opt operators are used to modify the Bees Algorithm.

2 -opt and 3-opt heuristics are frequently applied to problems that deal with 

combinatorial domains. They are a simple and efficient local search method which 

finds near optimal solutions. Fig. 5.2(a) shows the original tour and Fig. 5.2(b) the tour 

after the 2-opt procedure (Aarts and Lenstra, 1997). It is based on eliminating two (or 

three) arcs in R in order to obtain two different paths. These eliminated two or three 

paths are then reconnected in the only other possible way. Let us consider a feasible 

solution, R, with the permutation of A, B, C, D, E, F, A as shown in Fig. 5.2(a). Two 

arcs are randomly picked i.e. (B, C) and (E, F) then the path between them is

117



eliminated to create two separate paths, B, A, F and E, D, C. In the next step these 

two separate tours are reconnected as A, B, E, D, C, F, A. 3-opt adopts the same 

procedure but in this version three arcs are randomly picked to create a new tour.

Fig. 5.3 shows the performance o f the Bees Algorithm with several local search 

operators including simple (2 point) swap, double (4 point) swap, insert, 3 point swap, 

2-Opt and 3-Opt. These strategies are adopted in this chapter as a new neighbourhood 

search method instead of the original patch idea. One or two procedures are used 

depending on the complexity of the problem. Further details are given in the 

experiment sections.

5.2.2. Random search and site abandonment

In the first step, all scout bees (n) are represented by a randomly created sequence 

( l,2 ,...,n) across the combinatorial domain to explore for new flower patches.

Site abandonment is introduced to improve the efficiency of the local search. In the 

case of combinatorial (NP-hard) problems, the algorithm is very likely to get trapped 

in local optima. In step 6  (see Fig. 5.1), if  the points visited near a selected site are all 

inferior to that site, after a certain number of iterations (i.e. sat: site abandonment 

threshold), then the location of the site is recorded and the site abandoned. Bees at the 

site are assigned to random search (i.e. made to scout for new potential solutions). 

After neighbourhood search, in step 7 n-m bees are again placed randomly across the 

combinatorial domain to explore for new patches.
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The Bees Algorithm and local search methods for a 51 city TSP problem

900
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Double Swap 

Insert
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2-opt
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700
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400
101 121

iteration

Figure 5.3 Performance of the Bees Algorithm with different local search methods.
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5.3. Using the Bees Algorithm to schedule jobs for a machine

Job scheduling for a machine with a firm due date involves finding an optimal 

schedule that minimise the sum of early and late penalties. Each job has a different 

processing time and also early and late penalties in respect of the due date. All jobs 

must be completed before the due date. However, only one job can be completed on 

the exact due date and the others can be completed either before or after.. If some jobs 

finish before the due date, early penalties will be applied. Similarly, late penalties will 

be incurred for jobs finishing late (Biskup and Feldmann, 2001). This problem is one 

of those combinatorial optimization problems which can be seen as searching for all 

feasible solutions to find the best discrete set of the sequence of operations. In 

addition, this is known to be an NP-hard problem (Garey and Johnson, 1979), which 

means that it cannot be solved to optimality within polynomially-bounded 

computation times. Therefore it has been extensively investigated and many meta

heuristic approaches have been proposed to find the near optimal solution for this 

particular problem. Feldmann and Biskup, (2003) applied Evolutionary Strategy (ES), 

Simulated Annealing (SA) and Threshold Accepting (TA). Hino et al., (2005) applied 

Genetic Algorithm (GA) and Tabu Search (TS) to the same problem. Hino et al also 

proposed hybrid meta-heuristics such as HTG (Tabu search + Genetic Algorithm) and 

HGT (Genetic Algorithm + Tabu Search). Recently, population-based algorithms have 

been applied to this problem. Nearchou applied Differential Evolution (DE) 

(Nearchou, 2006) and Pan et al applied Discrete Particle Swarm Optimisation (DPSO) 

Algorithm (Pan et al., 2006). More recently, Lee et al applied Ant Colony 

Optimisation (ACO) (2007) but they only tested it on 200 jobs, while the above 

researchers tested on from 1 0  to 1 0 0 0  jobs.
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5.3.1. Single machine scheduling problem

Biskup and Feldmann, (2001) developed single machine scheduling benchmarks and 

also proposed two new heuristics to solve this problem. The characteristics of this 

benchmark set are explained in the following section. The survey revealed that many 

approaches have been applied to solve this data set recently.

In this problem, a number of jobs will be processed without interruption on a single 

machine. All jobs are available at time zero, each of which has its own processing time 

(pj) and needs exactly one operation. If the completion time (Cj ) of job j is smaller 

than or equal to the due date (d ), the job’s earliness is Ej=d-Cj. If it is greater than the 

due date, the job’s tardiness is Tj=Cj-d. The goal of this problem is to find a sequence 

S of n jobs that minimises the total o f the earliness and tardiness penalties:

f ( s )  =  ± ( / x l E l  +  0 i TJ )

(5.1)

where aj and pj are the earliness and tardiness penalties per time unit respectively. 

Three well-known properties (Biskup and Feldmann, 2001; Feldmann and Biskup, 

2003) which are essential for an optimal schedule are as follows:

There are no idle times between consecutive jobs; a general proof is given by Cheng 

and Kahlbacher, (1991).

An optimal schedule has the so-called V-shape property, that is, jobs finished before 

the due date are ordered according to non-increasing ratios pj/aj and jobs finished after
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the due date are ordered according to non-decreasing ratios pj/pj; the proof can be 

made by the interchange argument, see, for example (Baker and Scudder, 1990).

There is an optimal schedule in which either the processing time o f  the first job  starts 

at time zero or one job is finished at the due date; the proof is similar to that of 

Hoogeveen and van de Velde, (1991).

All potential optimal schedules can be divided into three cases:

1) The first job starts at time zero and the last early job is finished exactly at time d,

2) The first job starts at time zero and the last early job is finished before d. Here a 

straddling job exists and

3) The first job does not necessarily start at time zero.

5.3.2. The Bees Algorithm for single machine scheduling problem

In this study, a solution set for the jobs scheduling problem consists of both 

continuous and combinatorial domains as shown in Fig. 5.4. Due to this characteristic 

the Bees Algorithm requires modification.

Fig. 5.1 presents the pseudo-code o f the Bees Algorithm for a single machine 

scheduling problem. During initialization, the idle time is randomly generated in the
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continuous domain and the jobs sequence in the combinatorial domain respectively. 

During the conduct of a neighbourhood search in the continuous domain for the idle 

time, the basic Bees Algorithm was adopted.. On the other hand, the combinatorial 

domain for establishing jobs sequences requires the other proper neighbourhood 

search. In Fig. 5.5, the neighbourhood operators used for the single machine 

scheduling problem is presented. Fig. 5.6 presents the neighbourhood search methods 

which were adopted in this work.

Continuous Combinatorial Part
Part

Tardy setEarly setIdle time

Figure 5.4 Illustration of the solution set
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NeighbourhoodOperator (Sequence(k));

//Simple Swap operator 

do{

Ll=(rand()%index);

L2=(rand()%index);

} while ((LI ==index)| |(L1 ==L2)||(L2==index)); 

tl = Sequence [k][Ll];

Sequence [k][Ll] = Sequence [k][L2];

Sequence [k][L2] = tl;

//Insert Operator

do{

L1 =(rand()%index); 

L2=(rand()%index);

} while ((LI =index)||(L  1= L 2 ) | |(L2=index)); 

for(int j=Ll j<L2J++) temparrayl [j]=Tabu[k][j]; 

tl = Tabu[k][L2]; temp=0; temp=Ll+l; 

for(j=Ll J<L2 J++) {

Tabu[k][temp]=temparrayl [j]; 

Temp=temp+1;}

Tabu[k][Ll]=tl;

temp=0;

Figure 5.5 Neighbourhood operators for single machine scheduling problem
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Neighbourhood search is an important element of all optimisation algorithms. The 

Bees Algorithm is no exception. It was originally developed for use in continuous 

domains, and proved to work well compared to other optimisation algorithms. For the 

first part of the problem investigated in this section, the original Bees Algorithm has 

been proposed without any modification. On the other hand, as mentioned in the 

previous chapter, combinatorial domains need a completely different approach when it 

comes to a mathematical definition o f the distance. This raises many other challenges 

for an algorithm which was originally developed to function in the continuous domain.

In the neighbourhood search step, the Bees Algorithm benefits from some of the 

original ideas to explore towards a good solution. However, because of the issue of the 

definition of the distance, it is not possible to use the idea of the patch size in this 

study. Instead, combinations of several methods have been deployed to perform the 

neighbourhood search. Simple-swap and insert methods have been selected from the 

literature because of the partitioned structure of the problem (see Fig. 5.5). Given the 

equal chance to be chosen, each of these methods has performed for each recruited bee 

(nep and nsp) for every iteration.

Simple-swap is a well known local search method for combinatorial problems (Aarts 

and Lenstra, 1997). Because of the partitioned structure of the problem domain, the 

simple-swap method has been slightly modified for this implementation. Swapping 

can only occur between early and tardy sets (see Fig 5.7(b)). This means that it is 

unnecessary to perform any changes in the sets because of the early and tardy time 

evaluations. The insert method is another efficient means of creating new solutions in 

combinatorial domains. It is similar to simple-swap, but insertion does not work vice
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versa. A randomly picked job order is simply inserted in a randomly defined position 

between job orders. It has also been slightly modified for this problem. One job order 

can only be inserted into a position in another set (see Fig. 5.7(c)). In this way, 

redundant evaluations have been reduced significantly.

B A

(a) Simple-swap method

(b) Insert method

Figure 5.6 Illustration of the neighbourhood search methods
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(a) Solution Set

a
0

(b) Simple-swap method

i B A

0
(c) Insert method

Figure 5.7 Solution set and neighbourhood methods
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5.3.3. Experimental results

There are seven different data sets with different numbers of jobs (n=10, 20, 50, 100, 

200, 500, 1000). The processing time, earliness and tardiness penalties are given to 

each of the jobs. The common due date can be calculated as:

where SUM_p is the sum of processing time and h is the restrictive factor ( h =0.2, 

0.4, 0.6, 0.8 were used for this benchmark). The value of the restrictive factor h 

classifies the problems as less or more restricted against a common due date. Each 

data set contains 10 instances (from K=1 to K=10). Therefore the problem has 280 

instances in total. These instances can be downloaded from the OR-Library website 

(http://people.brunel.ac.Uk/~mastjjb/jeb/orlib/schinfo.h tml).

The performance of the algorithm was quantified by two indices: 1) percentage of 

relative deviations (A), 2) standard deviation. To obtain the average performance of 

the algorithm, 10 runs were carried out for each problem instance to report the 

statistics based on the percentage o f relative deviations (A) from the upper bounds in 

Biskup and Feldmann, (2003). To be more specific, A avg was computed as follows:

where, F B A ,  F ref and R  are the fitness function values generated by the Bees Algorithm 

in each run, the reference fitness function value generated by Biskup and Feldmann,
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(2003), and the total number of runs, respectively. For convenience, Amin, Amax and 

A std denote the minimum, maximum and standard deviation of the percentage of 

relative deviation in fitness function value over R runs, respectively. Table 5.1 shows 

the parameter values used for this experiment.

The results obtained by the Bees Algorithm were compared with the results from 

(Biskup and Feldmann, 2003; Feldmann and Biskup, 2003; Hino et al., 2005; Pan et 

al., 2006; Nearchou, 2006). Note that in Biskup and Feldmann (2003), the average 

percentage improvements and their standard deviations are given using the best 

solution among all the heuristics; namely evolution search (ES), simulated annealing 

(SA), threshold accepting (TA) and TA with a back step (TAR). Since the Bees 

Algorithm is stochastic, its minimum, maximum, average and standard deviation of 

runs should be given to evaluate its performance. However, Hino et al., (2005) 

conducted 10 runs and selected the best out of 10 runs even updating the idle time. For 

this reason, the minimum percentage of relative deviation (A min) of the Bees 

Algorithm was compared to Hino et al., (2005) and Pan et al. (2006). Note that the 

best results so far in the literature are reported in bold in all tables given in this section.

Table 5.2 summarises Amin of the computational results to be compared to Hino et al., 

(2005) and Pan et al. (2006) with regard to h.  As seen in Table 5.2 (h = 0.2 and 

h = 0.4 ), there is not a large difference, but for h = 0.6 and h = 0.8 there is a great deal 

of difference, especially with the larger size problems (ranging from 100 to 1000 

jobs). The Bees Algorithm, discrete particle swarm optimisation (DPSO) and GA have 

a similar tendency to yield a negative percentage of relative deviations ( Amin), which 

means that they overperform (Biskup and Feldmann 2003). However, Tabu Search
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(TS), HTG (TS+GA) and HGT (GA+TS) show a tendency to diverge after 100 jobs 

and give positive percentage of relative deviations (A min), which means they are 

inferior to Biskup and Feldmann, (2003).

Table 5.3 shows maximum percentage o f relative deviations ( Amax) between the Bees 

Algorithm and DPSO with regard to h.  When h is 0.2, 0.4 and 0.6, Amax of the Bees 

Algorithm is superior to the DPSO and the total average is also much better than the

DPSO. In particular, the Bees Algorithm is superior to the DPSO, when ^ is 0.6. It is 

also interesting to note that, as seen in Pan et al. (2006), even the average of maximum 

percentage of relative deviation ( Amax ) o f the Bees Algorithm is much better than Amin 

of TS, GA, HTG and HGT.

Table 5.4 shows comparative results for the Bees Algorithm and DPSO in terms of 

minimum, maximum and average percentage of relative deviations and standard 

deviations. The average percentage o f relative deviation (Aavg ) of the Bees Algorithm

was compared to the DPSO (Pan et al., 2006) and differential evolution (DE) 

(Nearchou, 2006). It was found that the Bees Algorithm outperforms these two 

algorithms. As seen from the total averages in Table 5.4, the Bees Algorithm is 

slightly better than the DPSO at -2.15. For 200, 500 and 1,000 jobs, when h equals 0.6 

or 0.8, the Bees Algorithm and DPSO performs better than the DE. As can be seen, 

the standard deviation for the Bees Algorithm is nearly zero, which means that it is 

slightly more robust than DPSO. All the statistics obtained show that the performance 

of the Bees Algorithm is superior to all other existing approaches.
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Table 5.1 The parameters of the Bees Algorithm

Parameters Value

p : Population 2 rt*

m : Number of selected sites 200

e : Number of elite sites 100

ngh : Initial patch size 6

nep : Number of bees around elite points 50

nsp : Number of bees around other selected points 30

Sat: Site abandonment threshold 50

* : When the number of jobs n is less than 100, p - 2 n .  Otherwise, p  = 400.
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Table 5.2 Minimum deviation of the computational results

n/h 0.2

DPSO TS GA HTG HGT Bees Algorithm

10 0.00 0.25 0.12 0.12 0.12 0.00

20 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84

50 -5.70 -5.70 -5.68 -5.70 -5.70 -5.70

100 -6.19 -6.19 -6.17 -6.19 -6.19 -6.19

200 -5.78 -5.76 -5.74 -5.76 -5.76 -5.78

500 -6.42 -6.41 -6.41 -6.41 -6.41 -6.43

1,000 -6.76 -6.73 -6.75 -6.74 -6.74 -6.76

AVG -4.96 -4.91 -4.92 -4.93 -4.93 -4.96

n/h 0.4

DPSO TS GA HTG HGT Bees Algorithm

10 0.00 0.24 0.19 0.19 0.19 0.00

20 -1.63 -1.62 -1.62 -1.62 -1.62 -1.63

50 -4.66 -4.66 -4.60 -4.66 -4.66 -4.66

100 -4.94 -4.93 -4.91 -4.93 -4.93 -4.94

200 -3.75 -3.74 -3.75 -3.75 -3.75 -3.75

500 -3.56 -3.57 -3.58 -3.58 -3.58 -3.57

1,000 -4.37 -4.39 -4.40 -4.39 -4.39 -4.35

AVG -3.27 -3.24 -3.24 -3.25 -3.25 -3.27
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Table 5.2 Minimum deviation o f the computational results (Continues)

n/h 0.6

DPSO TS GA HTG HGT Bees Algorithm

10 0.00 0.10 0.03 0.03 0.01 0.00

20 -0.72 -0.71 -0.68 -0.71 -0.71 -0.72

50 -0.34 -0.32 -0.31 -0.27 -0.31 -0.34

100 -0.15 -0.01 -0.12 0.08 0.04 -0.15

200 -0.15 -0.01 -0.13 0.37 0.07 -0.15

500 -0.11 0.25 -0.11 0.73 0.15 -0.11

1,000 -0.06 1.01 -0.05 1.28 0.42 -0.05

AVG -0.22 0.04 -0.20 0.22 -0.05 -0.22

n/h 0.8

DPSO TS GA HTG HGT Bees Algorithm

10 0.00 0.00 0.00 0.00 0.00 0.00

20 -0.41 -0.41 -0.28 -0.41 -0.41 -0.41

50 -0.24 -0.24 -0.19 -0.23 -0.23 -0.24

100 -0.18 -0.15 -0.12 -0.08 -0.11 -0.18

200 -0.15 -0.04 -0.14 0.26 0.07 -0.15

500 -0.11 0.21 -0.11 0.73 0.13 -0.11

1,000 -0.06 1.13 -0.05 1.28 0.40 -0.05

AVG -0.16 0.07 -0.13 0.22 -0.02 -0.16
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Table 5.3 Comparison of maximum deviations between the BA and DPSO

Amax

h DPSO Bees Algorithm

0.2 -4.90 -4.95

0.4 -3.18 -3.26

0.6 -0.03 -0.22

0.8 -0.16 -0.16

Avg -2.07 -2.15
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Table 5.4 Comparison between the Bees Algorithm (BA), DPSO and DB

^min Amax AaVg Astd

n h DPSO BA DPSO BA DPSO BA DE DPSO BA

10 0.2 0.00 0.00 0.11 0.00 0.01 0.00 0.00 0.03 0.00

0.4 0.00 0.00 0.15 0.00 0.02 0.00 0.00 0.05 0.00

0.6 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 0.2 -3.84 -3.84 -3.79 -3.83 -3.83 -3.84 -3.84 0.02 0.00

0.4 -1.63 -1.63 -1.57 -1.63 -1.62 -1.63 -1.63 0.02 0.00

0.6 -0.72 -0.72 -0.66 -0.72 -0.71 -0.72 -0.72 0.03 0.00

0.8 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 0.00 0.00

50 0.2 -5.70 -5.70 -5.61 -5.69 -5.68 -5.70 -5.69 0.03 0.00

0.4 -4.66 -4.66 -4.52 -4.66 -4.63 -4.66 -4.66 0.05 0.00

0.6 -0.34 -0.34 -0.23 -0.34 -0.31 -0.34 -0.32 0.04 0.00

0.8 -0.24 -0.24 -0.24 -0.22 -0.24 -0.24 -0.24 0.00 0.01

100 0.2 -6.19 -6.19 -6.15 -6.19 -6.18 -6.19 -6.17 0.02 0.00

0.4 -4.94 -4.94 -4.82 -4.93 -4.90 -4.94 -4.89 0.04 0.00

0.6 -0.15 -0.15 0.26 -0.14 -0.09 -0.14 -0.13 0.14 0.00

0.8 -0.18 -0.18 -0.18 -0.17 -0.18 -0.18 -0.17 0.00 0.00

200 0.2 -5.78 -5.78 -5.74 -5.77 -5.77 -5.78 -5.77 0.01 0.00

0.4 -3.75 -3.75 -3.68 -3.74 -3.72 -3.75 -3.72 0.02 0.01

0.6 -0.15 -0.15 0.56 -0.15 -0.03 -0.15 0.23 0.27 0.00

0.8 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 0.20 0.00 0.00

500 0.2 -6.42 -6.43 -6.40 -6.42 -6.41 -6.43 -6.43 0.01 0.00

0.4 -3.56 -3.57 -3.51 -3.56 -3.54 -3.57 -3.57 0.01 0.00

0.6 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 1.72 0.00 0.00

0.8 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 1.01 0.00 0.00

1000 0.2 -6.76 -6.76 -6.73 -6.74 -6.75 -6.75 -6.72 0.01 0.01

0.4 -4.37 -4.35 -4.32 -4.33 -4.35 -4.34 -4.38 0.01 0.01

0.6 -0.06 -0.05 -0.03 -0.05 -0.04 -0.05 1.29 0.01 0.00

0.8 -0.06 -0.05 -0.06 -0.05 -0.06 -0.05 2.79 0.00 0.00

Avg -2.15 -2.15 -2.07 -2.15 -2.14 -2.15 -1.87 0.03 0.00
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5.4. The Bees Algorithm for Permutation Flowshop Sequencing 

Problem

For permutation flowshop sequencing, the problem to which the Bees Algorithm was 

applied in this investigation, m different machines are set up in series and each job 

must be processed on every machine (in the order to 1.. .m). The processing order of 

the n jobs is the same for every machine. Permutation of the n jobs gives a makespan 

(the time taken to complete the job sequence) and the aim is to find the permutation 

that gives the minimum makespan (Taillard, 1993).

The permutation flowshop sequencing problem (PFSP) was first introduced by 

Johnson, (1954) and has attracted the attention of many researchers since then. It has 

been proved that permutation flowshop sequencing with makespan minimisation is an 

NP-hard problem (Kan, 1976). Therefore, using different heuristic optimisation 

techniques, researchers have attempted to find high-quality solutions in a reasonable 

computational time instead of looking for the optimal solution (Campbell et al., 1970; 

Dannenbring, 1977; Framinan, 2003). To obtain high-quality solutions, many meta

heuristic optimisation techniques have been tried. They include the Genetic Algorithm 

(Reeves, 1993; Reeves, 1995), Tabu Search (Taillard, 1993; Nowicki, 1996), 

Simulated Annealing (Osman, 1989; Ogbu 2004), Particle Swarm Optimisation 

(Tasgetiren, et al., 2004) and Ant Colony Optimisation (Rajendran and Ziegler, 2004; 

Stiitzle, 1998).
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5.4.1. Formulation of the permutation flowshop sequencing problem

A formulation of the PFSP is provided in (Tasgetiren, et al., 2004). Given the 

processing times pjk for job j on machine k, and a job permutation n = (7 i l ,7 c 2 ,7m}, 

the n jobs (j = 1, 2 , n) will be sequenced through m machines (k = 1, 2, ...,m) using 

the same permutation n. Let C(7cj,m) denote the completion time of job 7ij on machine 

m. The completion time of an n-job-m-machine problem can be calculated as follows 

(Tasgetiren, et al., 2004):

C(xiJ) = Pxl,i (5 .4 )

C(xj  ,1) = C(xj_x ,1) + p KjX
j z , ..., n (5.5)

C(x„k)  = C ( x „ k ~ l )  + p ^  k =  2; m  ( 5 6 )

C(Xj,k)  = max)C(n h l ,k),C(it j t k - 1)}+ p , k

j = 2 , ... ,n  k = 2 , ... ,m  (5.7)

Then, among the set II of all permutations, a permutation 7t* can be found such that 

the makespan Cmax(7c*)is:

Cmax(7i*) < C(7tn,m) n e n  (5.8)
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5.4.2. The Bees Algorithm for PFSP

Fig. 5.1 shows the pseudo-code for the algorithm. For a PFSP, the algorithm will try to 

find a permutation with minimum makespan Cmax- As explained in previous chapters, 

the algorithm requires the following parameters to be set: number of scout bees (n), 

number of sites selected out of n visited sites (m), number of the top sites among the m 

selected sites (e), number of bees recruited for the top e sites (nep), number of bees 

recruited for the other (m-e) selected sites (nsp), site abandonment threshold (sat) and 

stopping criterion.

The algorithm starts with an initial population of n scout bees. Each bee is a symbolic 

string representing a sequence of machines and jobs. Details of the completion times 

for the jobs on the different machines are given in a machine-job matrix (see Fig. 5.8). 

For an m x n machine-job matrix, a string with a length of m + n is needed to encode 

each candidate solution. The first m bits o f the string represent the sequence of 

machines that appear in the rows o f the matrix and the last n bits of the string represent 

the sequence of jobs appearing in the columns of the matrix.

In step 2, the fitness computation process is carried out for each site visited by a bee 

by calculating the corresponding makespan (see equations 5.4, 5.5, 5.6, 5.7and 5.8).

In step 4, the m sites with the highest fitnesses (the shortest makespans) are designated 

as “selected sites” and chosen for neighbourhood search.

In steps 5 and 6 , the algorithm conducts searches around the selected sites, assigning 

more bees to search in the vicinity o f the best e sites. The neighbourhood operator for
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the PFS problem is given in Fig. 5.8. Selection of the best sites can be made directly 

according to the fitnesses associated with them. Alternatively, the fitness values can be 

used to determine the probability of the sites being selected. Neighbourhood operators 

for the algorithm are presented in Fig. 5.9. Given the equal chance to be chosen, each 

of these methods is performed for each recruited bee (nep and nsp) for every iteration. 

Searches in the neighbourhood of the best e sites, which represent the most promising 

solutions, are made more detailed by recruiting more bees for the best e sites than for 

the other selected sites. Only the bee with the highest fitness will be selected to form 

the next bee population.

In step 6 , if  the points visited near a selected site are all inferior to that site, after a 

certain number of iterations (i.e. Abandon threshold), then the location of the site is 

recorded and the site abandoned. Bees at the site are assigned to random search (i.e. 

made to scout for new potential solutions).

In step 7, the remaining bees in the population are assigned randomly around the 

search space to scout for new potential solutions.

At the end of each iteration, the colony will have two parts to its new population: 

representatives from the selected sites, and scout bees assigned to conduct random 

searches. Steps 4-7 are repeated until either the best fitness value has stabilised or the 

specified maximum number of iterations has been reached.
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Figure 5.8 A machine-job matrix and the makespan.
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NeighbourhoodOperator (Sequence(k));

//Simple Swap operator 

do{

L1 =(rand()%index); 

L2=(rand()%index);

} while ((L1 = in d ex) | |(L 1 = L 2 )| |(L2=index)); 

tl = Sequence [k][Ll];

Sequence [k][LI] = Sequence [k][L2];

Sequence [k][L2] = tl;

//Insert Operator

do{

L1 =(rand()%index); 

L2=(rand()%index);

} while ((LI =index)||(L  1 =L2)||(L2— index)); 

for(int j=Ll J<L2 J++) temparrayl[j]=Tabu[k][j]; 

tl = Tabu[k][L2]; temp=0; temp=Ll+l; 

for(j=Ll J<L2y++) {

T abu[k] [temp]=temparray 1 [j]; 

Temp=temp+1;}

Tabu[k][Ll]=tl;

temp=0;

Figure 5.9 Neighbourhood operators for PSFP
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5.4.3. Experimental Results

The Bees Algorithm for solving PFSPs was implemented in C++ and run on an Intel 

P4 2.4 GHz PC with 1GB memory. For the Taillard benchmark data set (Taillard, 

1993), the Bees Algorithm, a genetic algorithm (GA) (Tasgetiren, et al., 2004) and a 

particle swarm optimisation (PSO) algorithm were employed (Tasgetiren, et al., 2004). 

The parameters of the Bees Algorithm are shown in Table 5.5 for each data set. The 

population size was made equal to twice the number of jobs as was the case for the 

other algorithms (Tasgetiren, et al., 2004). The Bees Algorithm used the ‘insert and 

exchange’ operator to perform neighbourhood search.

For the GA, permutation representation was adopted and the crossover and mutation 

probabilities were taken as 1.0 and 0.05 percent respectively (Tasgetiren, et al., 2004). 

To perform two-cut crossover, one individual was selected randomly and the other by 

tournament selection with a size of 2. Tournament selection with a size of 2 was also 

used for constructing the population for the next generation. The insert operator was 

used as the mutation operator (Tasgetiren, et al., 2004).

The PSO parameters, cl, c2, wO, and a, were set as 2, 2, 0.9, and 0.975, respectively 

(Tasgetiren, et al., 2004). The performance of the algorithm was expressed by two 

indices: 1) percentage deviations (A) and 2) standard deviation. To obtain the average 

performance of the algorithm, ten runs were carried out for each problem instance. A 

is the percentage deviation from the reference value reported by Taillard, (1993). The 

average Aavg for the ten runs was computed as follows:
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A = f  ^ x i o o l  /r
av* p  /

, = 1 V ^ ref ) ! (5.9)

where Fba is the fitness value generated by the Bees Algorithm in each run, F ref is the 

reference fitness value generated by Taillard, (1993) and R = 10 is the total number of

runs, respectively. Table 5.6 summarises the results obtained. In the table, Astd denotes 

the standard deviation in A over the R runs.

As can be seen in Table 5.6, the Bees Algorithm outperformed the GA, PSOspv and 

PSOvns. Compared to the GA and PSOspv, the Bees Algorithm gave results that were 

more stable and closer to those presented by Taillard, (1993). However, the algorithm 

produced only slightly better results compared to PSOvns. This similarity in the 

results may be due to the closeness between the local search method adopted by the 

Bees Algorithm and the variable neighbourhood search (VNS) technique implemented 

in PSO for conducting local search. However, although VNS employs the insert-and- 

exchange operator, unlike the Bees Algorithm, it performs this operation only on the 

best solution. For the Bees Algorithm, the selection of several sites (m) for local 

search provides more information than VNS can. This property can help the Bees 

Algorithm to escape from local optima.
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Table 5.5 Bees Algorithm parameters for PFSP

Data Set

Parameters*

n m e nep nsp

20x5 40 2 0 5 2 0 0 1 0 0

2 0 x 1 0 40 2 0 5 400 1 0 0

2 0 x2 0 40 2 0 5 600 1 0 0

50x5 1 0 0 50 30 400 2 0 0

50x10 1 0 0 70 1 0 600 300

50x20 1 0 0 80 1 0 1 0 0 0 500

100x5 2 0 0 1 2 0 1 0 500 2 0 0

1 0 0 x 1 0 2 0 0 1 2 0 1 0 1 0 0 0 300

1 0 0 x2 0 2 0 0 1 2 0 2 0 1500 400

*Site abandonment threshold sat=50 for all data sets



Table 5.6 Benchmark results for the permutation flowshop sequencing problem

GA[25] PSOspv[25] PSOvnS[25] The Bees Algorithm

DATA SETS A a v g Astd A tvg A std Aavg A std A avg A std

20x5 3.13 1 .8 6 1.71 1.25 0.28 0.49 0.28 0.3

20x10 5.42 1.72 3.28 1.19 0.7 0.46 0.13 0 .1 2

20x20 4.22 1.31 2.84 1.15 0.56 0.34 0.17 0.41

50x5 1.69 0.79 1.15 0.70 0.18 0 .2 2 0 .1 0.35

50x10 5.61 1.41 4.83 1.16 1.04 0.64 1.03 1.07

50x20 6.95 1.09 6 .6 8 1.35 1.71 0.48 1.48 0.57

100x5 0.81 0.39 0.59 0.34 0 .1 1 0.17 0 .1 0.06

100x10 3.12 0.95 3.26 1.04 0.67 0.33 0.58 0.13

100x20 6.32 0.89 7.19 0.99 1.28 0.39 2.55 0.45

MEAN 4.04 1.156 3.734 1.018 0.725 0.391 0.720 0.384



5.5. Manufacturing Cell Formation Using The Bees Algorithm

Manufacturing industry is under intense pressure from the increasingly competitive 

global marketplace. Shorter product life-cycles, unpredictable demands, and diverse 

customer needs have forced manufacturing firms to operate more efficiently and 

effectively in order to adapt to changing requirements. Traditional manufacturing 

systems, such as job shops and flow lines, cannot handle such environments. Cellular 

Manufacturing (CM), which incorporates the flexibility of job shops and the high 

production rate of flow lines, has emerged as a promising alternative for such cases 

(Mungwattana, 2000).

CM is the application of the concept o f group technology (GT) in manufacturing 

systems. GT is a manufacturing philosophy that exploits similarities in product design 

and production processes. A fundamental issue in CM is the determination of part 

families and machine cells. This issue is known as the cell formation (CF) problem. 

The CF problem involves the decomposition of a manufacturing system into cells. 

Part families are identified such that they are fully processed within a cell. The cells 

are formed to capture the advantages o f GT such as reduced setup times, reduced in- 

process inventories, improved product quality, shorter lead times, reduced tool 

requirements, improved productivity, and better overall control of operations 

(Wemmerlov and Hyer, 1987).

The CF problem has long been recognised as the most challenging problem in 

realising the concept of cellular manufacturing. It belongs to the class of NP-hard 

problems, which means that an increase in the problem size will cause an exponential 

increase in the computational time for all prevalent optimisation techniques. Many
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methods to solve this problem have been developed (Miltenburg and Zhang, 1991; 

Jeffrey et al., 1996), including array-based methods, clustering methods, mathematical 

programming-based methods, graph theoretic methods, and artificial intelligence- 

based methods.

5.5.1. The Cell Formation problem

The CF problem solved here is to simultaneously group machines and their 

corresponding part families into cells so that intercellular movements are minimised. 

It can be formulated by using an M  x N  machine-part incidence matrix, A = [ay], 

where ay is a binary variable that takes the value o f 1 if  part j  requires processing on 

machine i, and 0 otherwise. The problem is equivalent to decomposing A into a 

number of diagonal blocks of submatrices, where each diagonal block represents a 

manufacturing cell. The effectiveness o f the decomposition can be determined by a 

normalised bond energy measure denoted as a in equation 5.10 (Mak et al., 2000).

a  = /=1 7=1 i=l y=l
M N
I 5 X

(5.10)

The objective is to group parts and machines into clusters by sequencing the rows and 

columns of a machine-part incidence matrix, so as to maximise the bond energy 

measure of the incidence matrix. In the next section, a new method to solve the CF 

optimisation problem is described.
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5.5.2. Cell Formation using the Bees Algorithm

The proposed CF algorithm utilises the ability of the Bees Algorithm to search for the 

appropriate groups of part families and machine cells such that the bond energy 

metric a (equation 5.10) is maximised. Fig. 5.1 shows the steps of the Bees Algoritm 

used for CF, which are also followed in the Bees Algorithm. These steps are described 

in detail below.

The proposed algorithm requires a number o f parameters to be set, namely, number of 

scout bees («), number of sites selected for neighbourhood search (out of n visited 

sites) (m), number of top-rated (elite) sites among m selected sites (e), number of bees 

recruited for the best e sites (nep), number of bees recruited for the other (m-e) 

selected sites (nsp), site abandonment threshold (sat) and the stopping criterion.

The algorithm starts with an initial population of n scout bees. Each bee is a symbolic 

string representing the sequence of machines and parts that appear in a machine-part 

incidence matrix (see Fig. 5.10). For an M x  A  machine-part incidence matrix, a string 

with a length of M  + N  is needed to encode each candidate solution. The first M  bits 

of the string represent the sequence o f machines that appear in the rows of the 

incidence matrix, while the last N  bits of the string represent the sequence of parts 

appearing in the columns of the matrix.
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m/ii 1 2 3 4 5 6
1 0 1 1 0 0 1
2 0 1 0 1 1 0
3 1 0 0 1 1 1
4 1 1 1 0 0 0
5 0 0 1 0 1 1
6 1 0 0 1 1 0

Figure 5.10 Representation o f a machine-part incidence matrix.

In step 2, the fitness computation process is carried out for each site visited by a bee 

by calculating the bond energy measure a (see equation 5.10).

In step 4, the m sites with the highest fitnesses are designated as “selected sites” and 

chosen for neighbourhood search.

In steps 5, the algorithm conducts searches around the selected sites, assigning more 

bees to search in the vicinity of the best e sites. Neighbourhood operators for the 

algorithm are presented in Fig. 5.11. Selection of the best sites can be made directly 

according to the fitnesses associated with them. Alternatively, the fitness values are 

used to determine the probability o f the sites being selected. Searches in the 

neighbourhood of the best e sites which represent the most promising solutions are 

made more detailed by recruiting more bees for the best e sites than for the other 

selected sites. Together with scouting, this differential recruitment is a key operation 

of the Bees Algorithm.
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Neigh bo urhoodOpera tor (Sequence(k));

//Simple Swap operator

do{Ll=(rand()%index); L2=(rand()%index);} 

while ((LI =index)||(L1 = L 2 )  | |(L2=index)); 

tl = Sequence [k][Ll];

Sequence[k][Ll] = Sequence[k][L2];

Sequence[k][L2] = tl;

//2-Opt Operator...

do {L1 =(rand()%index); L2=(rand()%(index-L 1 )+L 1);} 

while ((LI =index)11(L1 = L 2 )); 

double deg=ceil((L2-Ll)/2); 

for(int i=0;i<deg;i-H-) {

int templ=Ll; int temp2=L2; 

tl = Sequence[k][templ];

Sequence[k] [tempi] = Sequence[k][temp2]; 

Sequence[k][temp2] = tl;

L1=L1+1; L2=L2-1;}

//Insert Operator

do (L1 =(rand()%index); L2=(rand()%index);} 

while ((L1 ==index) | |(L 1 =L2)||(L2=index)); 

for(int j=Ll j<L2J++) temparrayl[j]= Sequence[k][j]; 

tl = Sequence[k][L2]; temp=0; temp=Ll+l;

for(j=Ll J<L2j++){ Sequence[k][temp]=temparrayl[j]; Temp=temp+1;} 

Tabu[k][Ll]=tl; 

temp=0;

Figure 5.11 Neighbourhood operators for cell formation problem
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In step 6 , for each patch only the bee with the highest fitness will be selected to form 

the next bee population. In nature, there is no such a restriction. This restriction is 

introduced here to reduce the number o f points to be explored.

In step 7, the remaining bees in the population are assigned randomly around the 

search space to scout for new potential solutions.

At the end of each iteration, the colony will have two parts to its new population: 

representatives from the selected patches, and scout bees assigned to conduct random 

searches. Steps 4-7 are repeated until either the best fitness value has stabilised or the 

specified maximum number of iterations has been reached.

5.53. Experimental Results

In this section, two examples are first used to illustrate the operation of the proposed 

CF algorithm. Then, eight benchmark CF problems with different sizes are used to 

test the effectiveness of the algorithm. The results obtained are compared to the best- 

known solutions reported in the literature. The grouping efficiency measure 

(Miltenburg and Zhang, 1991), e, is adopted to assess the quality of the solutions. The 

e measure is defined as follows:

e =

*=1

1—  
l n\+ nl )

(5.11)
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where n\ is the number of non-zero entries within the manufacturing cells in the 

machine-part incidence matrix; K  is the number of manufacturing cells formed; Mk 

and Nk (k = 1, 2,..., K) are the number of the machines and parts allocated to the 

manufacturing cell k; ri2 is the number of exceptional elements in the machine-part 

incidence matrix.

In equation 5.11, the first term represents the cell density and can be written as:

*=i

(5.12)

A high value of e/ indicates that the machines and parts in each manufacturing cell are 

very similar to one another. The second term represents the intercellular material 

flows and can be given as:

* 2 = 1 -------------------------------------------------------------------------------------- (5.13)
+n2

A low value of £2 will result if  less exceptional elements exist in the incidence matrix. 

According to equation 5.11, the value o f the grouping efficiency measure, £, ranges 

from -1 to 1. The higher this value, the better the formed machines and parts groups.

In the first illustrative example (Srinivasan et al., 1990; Mak et al., 2000), a 16 x 30 

machines-parts incidence matrix is utilised. The initial configuration of the matrix is 

shown in Fig. 5.12. The parameters of the proposed CF algorithm are set as follows: n 

= 100, m = 40, e = 20, nep = 200, nsp = 100, sat = 50 and maximum number of
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iterations = 1000. By sequencing the order of rows (machines) and columns (parts) of 

the incidence matrix, the resulting configuration of the matrix is shown in Fig. 5.13. 

In order to maximise the bond energy of the matrix, the machines and parts are 

grouped into 4 manufacturing cells. The bond energy measure, a, of the final solution 

is 1.301. The cell density measure, £/, is 0.816 which indicates that the machines and 

parts in the manufacturing cells are very similar. The measure of intercellular material 

flows, s2 , is 0.155. The corresponding grouping efficiency of the final solution, e, is 

0.661, which is better than the best solution given in (Srinivasan et al., 1990; Mak et 

al., 2 0 0 0 ).

In the second illustrative example (Srinivasan et al., 1990; Mak et al., 2000), a 10 x 20 

machines-parts incidence matrix (see in Fig. 5.14) is employed. The parameters of the 

proposed CF algorithm are set as follows: n = 100, m = 40, e = 20, nep = 200, nsp = 

100, sat = 50 and maximum number o f iterations = 1000. The final configuration of 

the incidence matrix is shown in Fig. 5.15. The machines and parts are grouped into 4 

manufacturing cells. The bond energy o f the final solution is 1.388. The cell values of 

£/, e2 , and e o f this solution are 1.000, 0.000, and 1.000 respectively. This solution is 

exactly the same as that suggested in (Srinivasan et al., 1990; Mak et al., 2000).

In order to further test its effectiveness, the proposed CF algorithm is applied to 8  test 

problems. The results of the CF algorithm are compared against those of the best- 

known solutions. All the problems are formulated by 0-1 machine-part incidence 

matrices. The parameters of the CF algorithm are set to n = 100, m = 40, e = 20, nep = 

200, nsp = 100, sat= 50 and maximum number of iterations = 100.
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1 1 1 1 1 1 1 1 1 1 2 2 2 2 2  2 2 2 2 2 3 
1 2 3 4 5  6 7 8  9 0 1 2  34 5 6 7 8  9 0 1 2  34 5 6 7  8  9 0

l '
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16

1 1  1 1 1 1 1  1 

1 1  1 1 1 1  
1 1 1 1 1 1 1  

1 1 1 1  1 1  1 
1 1 1 1 1 1  1 1 1

1 1 1 1  
1 1 1  1 1 1 1  1 

1 1 1 1 1  1 1  1 

1 1 1 1 1 1  
1 1  1 11 1 1 1 1  

1 1 1 11 1 1 
1 1 1  1 1 1 1 1  

1 1 1  1 11 
1 1 1 1 1 1  1 1 

1 1 1 1 1 1 1  
111 11 1 1 1

Figure 5.12 The initial configuration o f the machine-part incidence matrix of the first

illustrative example (16x30).

1 1 2  11 2 2 1 3  1 1 2 2 11 1 2 2 2 2 2
71 1 8 5 4 6 4 6 9 0 9 8 2 2 7 2 4 Q  1 6 0 3 3 9 3 5 7 8 5

6 1 1 1 1
15 1 1 1 1 1 1  1

9 1 1 1 1 1 1

3 1 1 1 1 1 1 1

13 1 1 1 1 1 1
2 1 1 1 1 1 1

12 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1

4 1 1 1 1  1 1 1

7 1 1 1 1 1 1 1

1 1 1 1  1 1 1 1

11 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1

Figure 5.13 The composition of the manufacturing cells for the first illustrative

example (16x30).
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1 1 1 1 1 1 1 1 1 1 2

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
1 1  1 1

2  1 1 1  1 1

3 1 1 1  1 1
4 1 1 1
5 1 1 1 1 1 1
6 1 1 1
7 1 1 1 1  1 1
8  1 1 1 1  1 1

9 1 1 1 1 1 1
1C 1 1 1 1  1 1

Figure 5.14 The initial configuration o f the machine-part incidence matrix of the 

second illustrative example (1 0 x2 0 ).

1 1 1  1 1 1 1 1 2  1 1  

8 2 0 5 3 7 4 1 2 6 6 1 9 9 4 7 8 0 5 3
9 1 1 1 1 1 1
5 1 1 1 1 1 1
8 1 1 1 1 1 1
10 1 1 1 1 1 1
7 1 1 1 1 1 1
6 1 1 1
4 1 1 1
1 1 1 1
2 1 1 1 1 1
3 1 1 1 1 1

Figure 5.15 The composition of the manufacturing cells for the second illustrative

example ( 1 0 x2 0 ).
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Table 5.7 Results of solving 8 well-known benchmark CF problems from the literature.

Best-known
solutions

Results from the CF-Bees 
Algorithm

No
Literature
references Size K *2 e a s2 e

1 Boctor, (1991) 7x11 3 0.760 0.095 0.665 1.095 0.760 0.095 0.665

2 Boctor, (1991) 7x11 3 0.760 0 .0 0 0 0.760 1.053 0.760 0 .0 0 0 0.760

3 Srinivasan et al., 
1990 1 0 x2 0 4 1 .0 0 0 0 .0 0 0 1 .0 0 0 1.388 1 .0 0 0 0 .0 0 0 1 .0 0 0

4 Carrie, (1973) 20x35 4 0.760 0.015 0.745 1.555 0.794 0.029 0.760

5 Chandrasekharan 
et al., (1989) 24x40 7 1 .0 0 0 0 .0 0 0 1 .0 0 0 1.515 1 .0 0 0 0 .0 0 0 1 .0 0 0

6
Chandrasekharan 

etal., (1989) 24x40 7 0.939 0.075 0.864 1.423 0.925 0.061 0.864

7 Chandrasekharan 
et al., (1989) 24x40 7 0.855 0.138 0.717 1.192 0.860 0.153 0.707

8
Mak et al., 

(2000) 40x100 1 0 0.910 0.086 0.824 1.471 0.910 0.077 0.833
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Table 5.7 summarises the results obtained. As can be seen from the table, the 

proposed CF algorithm has produced similar results to those of the best-known 

solutions for problems 1, 2, 3, 5 and 6 . In problem 7, the grouping efficiency measure, 

e, is slightly reduced from 0.717 to 0.707. However, the CF algorithm achieved better 

results for problems 4 and 8 . In problem 4, the cell density measure, £/, has been 

increased from 0.760 to 0.794, while the measure of intercellular flows, £2, has been 

increased from 0.015 to 0.029. This has led to an increase of the grouping efficiency, 

£, from 0.745 to 0.760. In problem 8 , which involves a 40 x 100 machine-part 

incidence matrix, the value of £2 has been reduced from 0.086 to 0.077. The value of 

£/ has also been increased from 0.903 to 0.910. Therefore, the grouping efficiency has 

been improved (increased) from 0.815 to 0.833.

5.6. Summary

In this chapter a new procedure is suggested for the Bees Algorithm to deal with 

combinatorial domains and the algorithm is applied to several complex optimisation 

problems with specific modifications. The algorithm is first applied to a single job 

scheduling problem. The results are compared to those obtained by some other well- 

known algorithms to be found in the literature, including evolution search (ES), 

simulated annealing (SA), threshold accepting (TA) and TA with a back step (TAR). 

The results obtained suggest that the modified Bees Algorithm performs better than or 

as well as the others. The second application introduced is of a permutation flow-shop 

sequencing problem. The modified Bees Algorithm used a slightly different 

neighbourhood strategy to deal with this complex problem. It performed well
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compared to other well-established algorithms, including a genetic algorithm, PSOspv 

and PSOyns. In the last example, the modified Bees Algorithm also employed a 

different neighbourhood search strategy due to nature of the cell formation problem. 

The results show that the modified Bees Algorithm also performs better than the 

others in this domain.
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Chapter 6

THE BEES ALGORITHM-II

6.1. Preliminaries

In this chapter, an improved version of the Bees Algorithm, so called The Bees 

Algorithm-II is presented. As mentioned in previous chapter, the Bees Algorithm is a 

new population-based search algorithm and it mimics the food foraging behaviour of 

swarms of honey bees. In its basic version, the algorithm performs a kind of 

neighbourhood search combined with random global search. The Bees Algorithm-II, 

however, is a more efficient and robust version of the original algorithm. The
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enhanced version can be defined as a more compact version of its predecessor with 

additional improvements in terms o f neighbourhood search and lesser parameters.

The aims of this chapter are: to lessen the complexity by reducing the user defined 

parameters of the Bees Algorithm, to create a single population leading to a more 

comprehensive algorithm and to introduce a new patch structure to improve efficiency 

and control over randomness throughout the neighbourhood search.

The chapter is organised as follows: section 6.2 presents a description of the Bees 

Algorithm-II in detail, including the new ideas of a Gaussian patch and reduced 

parameters. In section 6.3, to demonstrate the performance of the new improved 

algorithm, experimental results are presented, including comparison with the original 

version and other well-known algorithms. A general summary of the proposed method 

and of possible future research work are given in section 6.4.

6.2. The Bees Algorithm-II

As mentioned in previous chapters, the Bees Algorithm is an optimisation algorithm 

inspired by the natural foraging behaviour of honey bees to find the optimal solution. 

The basic Bees Algorithm in its simplest form is presented in Fig. 3.1 as well as the 

improved version in Fig. 3.8. Although the Bees Algorithm is exceptionally 

successful, there are a few concerns over its relatively high parameter numbers and the 

related difficulty of setting them for a specific application. In this section, several new 

ideas are introduced to address these issues, including Gaussian neighbourhood search
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and reducing parameters by the new patch structure as well as by reorganisation of the 

parameter groups.

6.2.1 Gaussian patch structure

Gaussian distribution or normal distribution is defined as a theoretical continuous 

probability distribution with finite mean and variance (Simon, 2006). The graph of the 

associated probability density function is bell-shaped, with a peak at the mean, and is 

known as the Gaussian function or bell curve (Simon, 2006). The continuous 

probability function is given in equation 6 .1 :

< V ( z )  =
’■Jin

exp (x ~ m )
2(7 ‘

2 A
(6.1)

where,

X ~ N (p ,a2 )

p.: Candidate solution

a: Standard deviation
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In the Bees Algorithm, neighbourhood search is performed randomly with a 

predefined initial patch size for all selected sites. In the original version of the Bees 

Algorithm a uniform random distribution is used to send bees to a selected site for 

local search. An initial patch size (ngh) is set to define the boundaries of the local 

search and bees are sent into this search space. To improve the solution quality and 

performance, a proportional shrinking method was introduced. This new method adds 

another user defined parameter to the algorithm. In fact, the shrinking constant is one 

of the most critical parameters in the set and it needs careful tuning. The Gaussian 

distribution is introduced to overcome these vulnerabilities of the algorithm by 

eliminating the shrinking procedure.

A new parameter, so called the patch density (pd), is introduced in place of the initial 

patch size (ngh) parameter. In the Gaussian distribution this term refers to the standard 

deviation of a set a. By adjusting patch density (pd) the shape of a patch can be 

modified, as illustrated in Fig. 6.1. Different patch density values can create bigger or 

lesser size bells and thus the size o f the patch can be adjusted using this parameter.

In the original algorithm, ngh defines the initial size of the neighbourhood in which 

follower bees are placed. For example, if  x  is the position of an elite bee in the iA 

dimension, follower bees will be placed randomly in the interval xie ±ngh in that 

dimension at the beginning of the optimisation process. In this case, xie is regarded as 

mean (p) in a Gaussian distribution. Around this value a bell-shaped distribution is 

produced with patch density (pd). After the modification of equation 6.1, the normal 

random variate generator will be as follows in equations 6.2 and 6.3:
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Figure 6.1 Bell shape of the Gaussian distribution with given mean and standard

deviation.
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y  = (rand ()%100)/100

(6.2)

L  „V -2 1 o g (4 y -2 )2)
x imr =  x im +  P d  ( 2 Y  '  1 ) -------- 7 “ -------- ----------------[ 2(2y-l)

(6.3)

where, ximr is the position of a recruited bee in the i1*1 dimension, xim is the position of a 

selected bee in the i dimension, pd is the patch density, y  is a normalised random 

value generator between 0  and 1 0 0 .

A simple demonstration of the normal random variate generator is presented in Fig. 

6.2. With patch densities varying from 1 to 0.1, variations of the distribution of 100 

bees are shown. While more bees visit in close proximity to the position of a selected 

bee, still some of them still have the chance of visiting far sites of the patch. This 

guided search reduces the necessity o f having an initial patch size and a shrinking 

procedure, which is difficult to adjust.

6.2.2 Parameters

There are eight parameters of the original Bees Algorithm to be set, namely:

■ n: Number of scout bees,

■ m: Number of patches selected out of n visited points,

■ e: Number of best patches out of m selected patches (elite),
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xim=5, pd=0.5, n=100xim=5, pd=l, n=100

Xim=5, pd=0.1, n=100

Figure 6.2. A simple demonstration of the normal random variate

generator.
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■ nep\ Number of bees recruited for e best patches,

■ nsp: Number of bees recruited for the other (m-e) selected patches (nsp),

■ ngh: Size of patches

■ sc: Shrinking constant

■ sat: Site abandonment constant

Three of them (n, nep and nsp) are directly population number definition parameters, 

two of them (m and e) population partitioning parameters and the last three are 

parameters for controlling the local search.

In the new structure presented in this chapter, these three parameter groups are 

replaced with only one parameter each, namely:

■ n: Scout bee population

■ p: Selection threshold (p defined as a percentage)

■ pd: Patch density

The scout bee population is similar to that given in the previous definition. However, 

it is the only population. There are no separate recruitment populations defined such as 

nep and nsp. The selection threshold (p) replaces the partitioning group in the previous 

structure. The number of best sites is equal to np and the number of recruited bees is 

equal to n -  np. The patch density concept has been discussed above in detail.

The pseudo-code of the Bees Algorithm-II is presented in Fig. 6.3. There are four 

parameters of the Bees Algorithm-II to be set, namely: scout bee population («),
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selection threshold (p), patch density (pd) and site abandonment threshold (sat). The 

algorithm starts with the n scout bees being placed randomly in the search space. The 

fitnesses of the points visited by the scout bees are evaluated in step 2 .

In step 4, bees (np) that have the highest fitnesses are chosen as “selected bees” and 

those sites that have been visited by them will be chosen for neighbourhood search.

Then, in step 5, the algorithm conducts searches in the neighbourhood of the selected 

bees. The latter can be chosen directly according to the fitnesses associated with the 

points they are visiting. Alternatively, the fitness values are used to determine the 

probability of the bees being selected.

In step 5, for each site only one bee with the highest fitness will be selected to form 

the next bee population.

In step 6 , if  the points visited near a selected site are all inferior to that site, after a 

certain number of iterations (i.e. sat: site abandonment threshold), then the location of 

the site is recorded and the site abandoned. Bees at the site are assigned to random 

search (i.e. made to scout for new potential solutions).

In step 7, the remaining bees in the population are assigned randomly around the 

search space scouting for new potential solutions. These steps are repeated until a 

stopping criterion is met.
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1. Initial population with n random solution.

2 . Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (np) for neighbourhood search.

5. Recruit bees n- np  for selected sites, evaluate fitnesses and select the fittest bee from each site

for (k=l ; k=m ; k++)

for (Bee=l ; Bee= (n -  np); Bee++)

BeesPositionInNgh() = ximr;

y  = (rand ()% 100) /100

x tmr = x im + p d {(2 y-1)7-21og(4y- 2 )2) / 2 (2 y - l ) 2 j

Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = Bee(i);

6 . If (Iteration > sat) //Cheking site abandonment threshold

If (no improvement on the site)

Save the Best Fitness;

Abandon the Site;

Bee(m) = GenerateRandomValue(All Search Space);

7. Assign remaining bees to search randomly and evaluate their fitnesses. // (n -  np) assigned to 

search randomly into whole solution space

8 . End While

Figure 6.3 Pseudo-code of the Bees Algorithm-II
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6.3. Experimental Results

Clearly, the Bees Algorithm as described above is applicable to both combinatorial 

and functional optimisation problems. In this section, functional optimisation is 

presented to show the robustness o f the algorithm.

Three standard functional optimisation problems were used to test the Bees Algorithm 

and to establish the correct values o f its parameters and seven for benchmarking the 

algorithm. As the Bees Algorithm searches for the maximum, the functions to be 

minimised were inverted before the algorithm was applied.

The first test function is the axis parallel hyper-ellipsoid which is similar to De Jong's 

function 1 (see Fig. 6.4). It is also known as the weighted sphere model. It is 

continuous, convex and unimodal.

i = l

(6.4)

-5.12 < jc, <5.12

Global Minimum for this function:

/ ( * )  = 0; *(0 = 0, i = l :n

The following parameter values were set for the axis parallel hyper-ellipsoid test 

function: scout bee population n= 1 0 , number of selected sites m=3 , number of elite
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sites e=l, initial patch size ngh=0.5, number bees around elite points nep=2, number of 

bees around other selected points nsp=2 .

The following parameter values o f the Bees Algorithm were set for this test: scout bee 

population n= 10, number of selected sites m=3, number of elite sites e=l, initial patch 

size ngh=2.75, number of bees around elite points nep=2, number of bees around other 

selected points nsp=2. The following parameter values for the improved Bees 

Algorithm were set for this test: scout bee population n= 10, number of selected sites 

m=3, number of elite sites e=l, initial patch size ngh=5.12, number bees around elite 

points nep=2 , number of bees around other selected points nsp=2 , shrinking constant 

so=0.20 (%20) and threshold for site abandonment sat=10. The parameters for the 

Bees Algorithm-II were set for this test: scout bee population n=8 , selection threshold 

p=0 .1  (%1 0 ), patch density pd=0 .1  and site abandonment threshold sat=1 0 .

Fig. 6.5 shows the fitness values obtained as a function of the number of points visited 

for both original and improved algorithms. The results are averages for 100 

independent runs. After approximately 500 visits, the Bees Algorithm was able to find 

solutions close to the optimum while the Bees Algorithm-II was able to find the 

optimum twice as fast as the original. The main reason behind this speed is the value 

of patch density, which is the only parameter in the set needs careful tuning. The scout 

bee population was set at 8  and 1 0  percent of these (rounded up to 1 ) are allowed to 

perform the waggle dance and the rest (n-np) sent for neighbourhood search.
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Figure 6.4 Visualization of 2D axis parallel hyper-ellipsoid function.
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Figure 6.5 Evolution of fitness with the number of points visited (the axis parallel

hyper-ellipsoid)
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Shekel’s Foxholes (see Fig. 6 .6 ), a 2D function from De Jong’s test suite, was chosen 

as the first function for testing the algorithm.

/ ( * )  = 119.998
• V  J + 2 .

1 = 1
(6.5)

x  -  a 
i ij

a . .  =
- 3 2
- 3 2

- 1 6
- 3 2

0
- 3 2

16
- 3 2

32
- 3 2

0
32

16
32

32
32,

-  65 .536 < x (  <  65 .536

For this function,

= (-32 ,-32) 

/ ( * „ , )  = 119 -998

The following parameter values of the Bees Algorithm were set for this test: scout bee 

population n= 45, number of selected sites m=3, number of elite sites e=l, initial patch 

size ngh=3, number of bees around elite points nep=7, number of bees around other 

selected points nsp=2. And the following parameter values for the improved Bees 

Algorithm were set for this test: scout bee population n= 10, number of selected sites 

m=3, number of elite sites e=l, initial patch size ngh=3, number of bees around elite 

points nep=2 , number of bees around other selected points nsp=2 , shrinking constant
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sc=0.01 (% 1) and threshold for site abandonment sat=10. The parameters for the Bees 

Algorithm-II were set for this test as follows: scout bee population n=20, selection 

threshold p=0.1 (%10), patch density pd=9 and site abandonment threshold sat=10.

Fig. 6.7 shows the fitness values obtained as a function of the number of points visited. 

The results are averages for 100 independent runs. It can be seen that after 

approximately 1200 visits, the Bees Algorithm was able to find solutions close to the 

optimum. However, the Bees Algorithm-II was able to find a solution better than the 

original algorithm, twice as fast with less than half of the population set for the 

original algorithm.

To test the reliability of the algorithm, the inverted Schwefel’s function with six 

dimensions (see equation 6 .6 ) was used. Fig. 6 .8  shows a two-dimensional view of the 

function to highlight its multi-modality.

/ ( * ) = - E  -  x ,  sin( V l I) (6*6)i = 1

-  500 < jc, < 500

For this function,

*max = (420.9829,420.9829,420.9829,420.9829,420.9829,420.9829)

/ ( * _ ) *  2513.9
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The following parameter values for the Bees Algorithm were set for this test: scout 

bees population n=500, number o f selected sites m=15, number of elite sites e=5, 

initial patch size ngh=20, number o f bees around elite points nep=50, number of bees 

around other selected points nsp=30. And the following parameter values for the 

improved Bees Algorithm were set for this test: scout bees population n=500, number 

of selected sites m=15, number o f elite sites e=5, initial patch size ngh=20, number of 

bees around elite points nep=50, number of bees around other selected points nsp=30. 

shrinking constant sc=0.05 (%5) and threshold for site abandonment sat=20. The 

parameters for the Bees Algorithm-II were set for this test as follows: scout bee 

population n=100, selection threshold p=0.05 (%5), patch density pd=l and site 

abandonment threshold sat=1 0 .

Fig. 6.9 shows how the fitness values evolve with the number o f points visited. The 

results are averages for 100 independent runs. After approximately 30,000 visits, the 

Bees Algorithm was able to find solutions close to the optimum. However, the Bees 

Algorithm-II was able to find solutions very close to the optimum (approached less 

than 0.03 after 10,000 mean number o f function evaluations) much faster than the 

original algorithm. The main reasons for this high success rate are again patch density 

as well as a high population number.
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I

Figure 6.6 Inverted Shekel’s Foxholes
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Figure 6.7 Evolution of fitness with the number of points visited (Inverted Shekel’s

Foxholes)
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Figure 6.8 2D Schwefel’s function
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Fig 6.9 Evolution of fitness with the number of points visited (Inverted Schewefel’s

Fuction)
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The algorithms were applied to seven benchmark functions (Mathur et al., 2000) and 

the results compared with those obtained using other optimisation algorithms. The test

Algorithm are given in Table 3.2 and parameter settings for the Bees Algorithm-II are 

given in Table 6.2. As can be seen in the parameter table, scout bee population and 

selection threshold were almost identical for all problems with little fluctuation, while 

variations of patch density were greater. The main reason behind these variations is the 

dependence of the patch density on the solution space and complexity of the functions.

Table 6.3 presents the results obtained by the Bees Algorithm and those by the 

deterministic Simplex method (SIMPSA) (Mathur et al., 2000), the stochastic 

simulated annealing optimisation procedure (NE SIMPSA) (Mathur et al., 2000), the 

Genetic Algorithm (GA) (Mathur et al., 2000) and the Ant Colony System (ANTS) 

(Mathur et al., 2000). Again, the numbers of points visited shown are averages for 100 

independent runs.

All the algorithms were run 100 times for each parameter setting on each benchmark 

problem. For each of the 100 trials, the optimisation procedure was run until (stopping 

criterion) either it located an exact solution or found a solution within 0 .0 0 1  (or %0 .1 , 

whichever is smaller) as shown in equation 6.7.

The first test function was De Jong’s, for which the Bees Algorithm-II found the 

optimum slightly faster than the original algorithm, 120 times faster than ANTS and 

200 times faster than GA, with a success rate of 100%.

functions and their optima are shown in Table 6.1. Parameter settings for the Bees

Stopping Criterion (6.7)
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The second function was Goldstein and Price’s, for which the Bees Algorithm-II 

reached the optimum much faster than the original algorithm and almost 7 times faster 

than ANTS and GA, again with 100% success.

With Branin’s function, there was a big improvement with the Bees Algorithm-II. The 

algorithm performed almost three times better than the Bees Algorithm. There was a 

30% improvement compared with ANTS and 120% improvement compared with GA, 

also with 1 0 0 % success.

Functions 5 and 6  were Rosenbrock’s functions in two and four dimensions 

respectively. In the two-dimensional function (function 5), the Bees Algorithm-II 

delivers a good improvement over the other methods (at least twice fewer evaluations 

than the original algorithm) with a 100% success rate. In the four-dimensional case 

(function 6 ), the Bees Algorithm needed more function evaluations (but less function 

evaluations compared to the original algorithm) to reach the optimum with 1 0 0 % 

success. NE SIMPS A could find the optimum with almost 10 times fewer function 

evaluations but the success rate was only 94% and ANTS found the optimum with 

100% success and was 3.5 times faster than the Bees Algorithm.

Test function 7 was a Hyper Sphere model of six dimensions. The Bees Algorithm-II 

needed almost one third of the number of function evaluations compared with the 

original algorithm and was much faster than GA and ANTS.
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Table 6.1 Test Functions

No
Function

Name
Interval Function

Global

Optimum

1 De Jong
[-2.048,

2.048]
max F  = (3905.93) -  100(Jcf -  x \) -  (1 -  x ) 2

X (l,l)

F=3905.93

2
Goldstein & 

Price
[-2,2]

minF=[l+(jCl+jCj + l)J(19-14j£:i + 3^-14Xj+6XlJ:2+3jC|)] 
^[30+(2Xl-3jc2)2(18-32JCl + 12A:; + 48JC2-36XlX2 + 27Jc;)]

X(0,-1)

F=3

3 Branin [-5,10]

min F  = a(X l - b x ]+cx r d f + e ( \ - f )  cosC*,)+ e

a = l,b = —  f — 1 ,c = - X l , d  = 6,e = \ 0 , f  = - X -  
4 \ 22J  22 S :

X(-22/7,12.275) 

X(22/7,2.275) 

X(66/7,2.475) 

F=0J977272

4
Martin & 

Gaddy
[0,10] m in F  = (X l  -  X J 2 + ( ( ^ + X j  -1 0 ) /  3)2

X(5,5)

F=0

5 Rosenbrock
[-1.2,1.2] 

[-10,10]
min F  = 100 ( * *  -  x  2) 2 + (1 -  X ] ) 2

X (l,l)

F=0

6 Rosenbrock [-1.2,1.2] min F = £  {100 (x 2. -  ^ .+,)2 + (1 -  j^ ) 2}
< = l

X(l,1,1,1) 

F=0

7 Hyper sphere
[-5.12,

5.12] minF = 'L x 2i
i= 1

X(0,0,0,0,0,0) 

F=0
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Table 6.2 Parameter Settings for the Bees Algorithm-II

Function no
Parameters

n P pd sat

1 1 0 0.3 (%30) 0.05 1 0

2 1 0 0 .2  (%2 0 ) 0.005 1 0

3 1 0 0 .2  (%2 0 ) 0 .1 1 0

4 1 0 0 .2  (%2 0 ) 0 .1 1 0

5a 15 0 . 2  (%2 0 ) 0.05 1 0

5b 1 0 0 . 2  (%2 0 ) 0 .1 1 0

6 15 0.4 (%40) 0.07 1 0

7 1 0 0 .2  (%2 0 ) 0.3 1 0
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Table 6.3 The performance of the Bees Algorithm-II

Func
no

SIMPSA NE SIMPSA GA ANT The Bees 
Algorithm

The Bees 
Algorithm - II

success
%

mean 
no of 
func 
evals

success
%

mean 
no of 
func 
evals

success
%

mean 
no of 
func 
evals

success
%

mean 
no of 
func 
evals

success
%

mean 
no of 
func 
evals

success
%

mean 
no of 
func 
evals

1 *** ** *** *** 100 10160 100 6000 100 868 100 853.82

2 *** *** *** *** 100 5662 100 5330 100 999 100 771.97

3 *** *** *** *** 100 7325 100 1936 100 1657 100 448.97

4 *** *** *** *** 100 2844 100 1688 100 526 100 243.82

5a 100 10780 100 4508 100 10212 100 6842 100 631 100 633.422

5b 100 12500 100 5007 *** *** 100 7505 100 2306 100 2016.56

6 99 21177 94 3053 *** *** 100 8471 100 28529 100 28293.3

7 *** *** *** *** 100 15468 100 22050 100 7113 100 2106.9

6.4. Summary

In this chapter, enhancements to neighbourhood search and parameter numbers are 

presented. A new local search method is introduced to reduce the need for patch
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shrinking as well as guiding the randomness. Also, the number of user defined 

parameters is reduced to a reasonable number by a new theoretical approach. The 

simulation results compared with the original algorithm, as well as to other well- 

known algorithms are presented. The results showed that the algorithm performed 

much better than its original version and other algorithms.
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Chapter 7

Conclusion

In this chapter, the contributions and conclusions of this thesis are presented and 

suggestions for future work provided.

7.1 Contributions

The main contributions of this thesis are:

1. A new intelligent swarm-based optimisation algorithm called the Bees Algorithm, 

which is inspired by the food foraging behaviour of honey-bees, is presented in 

this thesis.
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2. Enhancements to the algorithm are also presented, with proofs to show that the 

algorithm is both robust and efficient. The provision of a dynamic neighbourhood 

helped the algorithm to perform procedures faster. Proportional shrinking 

improved the performance of the algorithm in terms of solution quality and speed 

as well as better source usage. Site abandonment was introduced to increase the 

overall effect of random global search as well as to enable better source allocation.

3. Local search was introduced to deal with combinatorial domains more efficiently. 

Implementations to several different types o f problems were suggested.

4. A new neighbourhood procedure was developed to deal with local search without 

the need for use of the shrinking method but with even better performance.

5. A reduction in the number o f parameters was suggested, achieving real 

improvements to the ease o f use when setting the parameters and running the 

algorithm.

7.2. Conclusions

In this thesis the swarm intelligence and swarm-based optimisation algorithms are 

discussed. Swarm intelligence is considered as the collective problem-solving 

capabilities of social animals. In the context of developing an algorithm, first the 

biological and morphological features of the honey-bees are presented. Some basic 

rules which create intelligence are presented, including individual and social level 

interactions. Mathematical simulation models are also presented as a bridging effort
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between nature and engineering. These simulation models were helpful in 

understanding the interactions in honey-bee colonies at various levels. Food foraging 

models are reviewed in detail as one o f the most successful and efficient part of the 

social life o f honey-bee colonies. The key conclusions for each topic analysed are:

■ A new swarm-based intelligent optimisation procedure called the Bees Algorithm 

is presented. The algorithm mimics the food foraging behaviour of swarms of 

honey bees. In its basic version, the algorithm performs a kind of neighbourhood 

search combined with random search. Also given are further details of the local 

and global search methods used in the algorithm. Details o f the improvements 

made to local and global search methods are presented, including dynamic 

recruitment, proportional shrinking and abandonment strategies. The performance 

of the algorithm is evaluated on benchmark results, comparing them to those 

results achieved by some other well-known algorithms in the literature.

■ The implementations o f the algorithm to several continuous applications are also 

presented, including neural network training for a variety o f industrial applications 

and recursive filter design. As a first implementation, the Bees Algorithm was used 

for the optimisation o f the weights o f multi-layered perceptrons for pattern 

recognition in statistical process control charts. A similar structure o f neural 

networks was trained with the Bees Algorithm for the identification of defects in 

wood veneer sheets in a plywood factory. Lastly, a 2-d electronic recursive filter 

was designed using the Bees Algorithm to show its robustness.
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■ A new procedure is suggested as an addition to the Bees Algorithm to deal with 

combinatorial domains. The algorithm is applied to several complex optimisation 

problems with specific modifications for each. The algorithm is first implemented 

in a single job scheduling problem. The results are compared to some other well- 

known algorithms in the literature and it is shown that the modified algorithm 

performs better than or as well the others. The second application is to a 

permutation flow-shop sequencing problem. The algorithm used a slightly 

different neighbourhood strategy to deal with this complex problem. The algorithm 

performed well compared to other well-established algorithms. In the last example, 

the algorithm also uses a different neighbourhood search strategy due to the nature 

of the cell formation problem. The results show that the algorithm performs better 

for this domain.

■ Lastly, enhancements to neighbourhood search and parameter numbers are 

presented. A new local search method is introduced to reduce the need for patch 

shrinking and for guiding the randomness. Also, the number of user defined 

parameters is reduced to a reasonable number by a new theoretical approach. The 

simulation results compared with those obtained by the original algorithm as well 

as by other well-known algorithms, are presented. The results show that the 

modified algorithm performs much better than its original version and than the 

other algorithms.
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7.3 Suggestions for future research

Possible extensions that can be made to the work presented in this thesis include:

■ Developing a mathematical model for the algorithm to improve the theoretical 

base and to explain the convergence behaviour.

■ Developing an enhanced algorithm which improves on the balanced local and 

global search structure o f the Bees Algorithm.

■ Developing a new local search algorithm for combinatorial domains to increase the 

efficiency o f the Bees Algorithm.

■ Developing a discretization method for the algorithm to improve the existing local 

search procedure.

■ Using both the original and improved versions for several different industrial 

applications to extend the scope o f the algorithm.

■ Creating hybrid algorithms to benefit from each others’ strength.
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APPENDIX A

C++ Code for the Bees Algorithm

#include "stdafx.h" 
#include <stdlib.h> 
#include <time.h> 
#include <math.h> 
#include <stdio.h> 
#include <conio.h> 
#include <iostream.h> 
#include <limits.h> 
#include <fstream.h> 
#include <iomanip.h> 
#include "params.h" 
#include "func.h"

// Parameters used in main.cpp
#define pop 1 0 0 0  // max num of population

//Test parameters: 
int R =l; 
int imax=5000;

// Nunber o f runs (Nunber o f different tests) 
// Number o f iterations

//The Bees Algorithm parameters:
int n= 10; // Number o f Scout Bees
int m= 5; // Number o f selected Locations
int e= 1; // Elite point/s
int nsp= 4; // Number o f Bees around each selected locations
int nep= 10; // Number o f Bees around each elite locations
double ngh=0.1; // Neighbourhood initial patch size 
double sc=0.01; // Shrinking constant; defined as percentage (%) and

range is between 0 - 1
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#define dim 2 // Dimensions o f the test function
double start_x[]={-5.12,-512}; 
double end_x[]={5.12,5.12, }; 
double ans=0 .0 0 1 ;

int NumOfEvalCounter=0 ;

double func(double x[][pop], int i ) // Definition of Fitness Functions 
{

NumOfEvalCounter++; 
double y;
//Axis parallel hyper-ellipsoid function 
y=0;
for(int j= 0 ;j< 2  ;j ++)

y=y+((j+l)*pow(x[j][i],2 ));
y=-y;

double randfunc( double xs, double xe ) // Definition o f Randon number Generator 
Function 
{

double randnum; 

randnum=rand() ;
randnum=x s+randnum * (xe-x s) / RA NDM AX; 

return randnum;
}

double myrandom() //Random generator 
{

double r; 
int M,x;
M =10000; 
x= M-2;
r = (1.0+(rand()%x))/M; 
return r;

}

void funcSort(double inPl[],double oPl[],double inP2[][pop],double oP2[][pop],int 
size) // Sorting function 
{

// double temp 1 =inP 1 [0];
int temp2 ;
double temp 1 =-INT_MAX;
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for( int j= 0 ;j<size;j++) //sort
{

for(int k=0;k<size;k-H-)
if(inPl[k]> tempi )
{

templ=inPl[k];
temp2 =k;

}

oPl[j]=tem pl;

for(int d=0 ;d<dim;d++) 
oP2 [d] [j ]=inP2 [d] [temp2 ];

tempi =-INT_MAX;

inP 1 [temp2]=-INT_MAX;

} //end sort

}

void main()
{

cout«"Program  started...\n";

int i,d j,k,aa[ 100] ,ranSearchBees, counter, runs, fail, iter;
double nghx, tem pi, bPos[dim][pop], bNghPos[dim][pop], fit[pop],
bNghFit[pop], sortedFit[pop], candidx[dim][pop], bPosSort[dim][pop];

ofstream Result; //Opening a file to report the results... 
Result.open("Result.xls");

srand( (unsigned)time( NULL ) );// Different random numer each time

fail=0 ;

for(runs=0 ; runs<R; runs++) //R is the number of runs 
{
NumOfEvalCounter=0; 
nghx=ngh; //define patch size

//Initial Random distribution 
for(i=0;i<n;i-H-)
{
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for(d=0 ;d<dim;d++)
bPos[d][i]=randfunc(start_x[d],end_x[d]);

fit[i]=func(bPos,i);
}//End o f random distribution

//Run until maximum number o f iteration met 
for(iter=0 ; iter<imax ;iter++)
{
// Sorting fitnesses & positions 
fimcSort(fit, sortedFit, bPos, bPosSort, n);

counter=0 ;
// Choosing best m 
for(i=0;i<m;i-H-)

for(d=0;d<dim;d-H-)
candidx[d][i] = bPosSort[d][i];

//Recruitment stage 
for(i=0 ;i<m;i++)
{

if(i<e)
aa[i]=nep; // Number o f  bees around each elite sites 
else

aa[i]=nsp; // Number o f bees around other selected sites
>

// Search in the neighbourhood 
temp 1 =-INT_MAX; 
for(k=0;k<m;k-H-)//k site
{

for(j=OJ<aa[k]a-H-) //j recruited bee 
{

for(d=0 ;d<diin;d++)//d dimension 
{

do
{

bNghPos[d][j] = randfunc(candidx[d][k]-nghx, candidx[d][k]+nghx); 

//bNghPos[d][j]=NRVG(candidx[d][k],StdDev);

}
while(bNghPos[d][j]<start_x[d] || bNghPos[d][j]>end_x[d]);

}

bNghFit[j]=ftmc(bNghPosj);

if(bNghFit[j]>= sortedFit[k])
{
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for(d=0;d<dim;d-H-) { bPos[d][counter]=bNghPos[d][j];
candidx[d] [k]=bNghPos[d] [j];} 

sortedFit[k]=bNghFit[j];
}

}// end o f recruitment

counterH-; // next member o f  the new list

temp 1 =-INT_MAX; //

} // end o f Neighbourhood Search

//Shrink all the patches using the shrinking constant (sc) variable 
nghx=nghx*(l -sc);

// Send rest o f the bees for random search... 
ranSearchBees=n-m; // Number o f bees for random search 
for(k=0;k<ranSearchBees;k-H-)
{

for(d=0 ;d<dim;d++) 

bPos[d] [counter]=randfunc(start_x[d] ,end_x[d]); 

counter+H-;
>

//Evalute the fitness values o f  the new list 
for(j=0;j<n;j++) fit[j]=func(bPosj);

//Stopping Criteria
// if  (NumOfEvalCounter>50000) break;
if  (fit[0 ] >= ans) break;

} //end iter = imax

c o u t« " \n  ,f« i t e r + l « "  "«N um O fEvalC ounter«" "« fit[0 ];

R esu lt« ite r+ 1 « "  "«N um O fE valC ounter«" "« fit[0 ]« e n d l; 
} //End o f Runs 

Result.close();

c o u t« " \n  Program finished...\n";
}
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