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Abstract

ABSTRACT

Despite the endeavours of many decades, the design of artificial enzymes 

remains challenging. The work presented here investigates two known 

molecules as scaffolds for the design of artificial enzymes; an 18 amino acids a 

helical peptide with two disulfide bridges -  Apoxaldie' able to catalyse the 

decarboxylation of oxaloacetate, and the 86-amino acid colicin E9 immunity 

protein (Im9) with four a helices.

Apoxaldie was modified such that the active site lysines were substituted 

by 2,4-diaminobutyric acid in order to increase the proximity of the enzyme 

active site to the chiral environment of the a helix. The designed peptide 

('Apoxaldie-Dab') was synthesized with two different strategies and the correct 

formation of disulfide bonds was achieved. However, Apoxaldie-Dab did not 

show the expected activity for the decarboxylation of oxaloacetate. Circular 

dichroism studies showed a 30% loss of a helicity upon introduction of 2,4- 

diaminobutyric acid into Apoxaldie which can explain the decrease in activity.

In the case of Im9, two series of mutants, constructed around histidine 10 

and asparagine 78 respectively, were designed to introduce histidine-based 

active sites into hydrophobic clefts. Site directed mutagenesis, gene expression 

and variant protein purification were carried out for ten variant mutants 

together with the wild type. The secondary structure and thermal stability of 

each protein were studied and catalytic activities were examined by monitoring 

the hydrolysis of p-nitrophenol acetate via ultraviolet-visible spectroscopy. The 

Im9 variant Tm9-W74A/N78H' demonstrated three times more activity 

compared to Im9, indicating the modification of IM9 to possess a histidine 

based active site increased activity as hypothesized through its rational design.



Abstract

The initial work of applying directed evolution on Tm9-W74A/N78H' 

was accomplished by constructing a phage display library. A transition state 

analogue was synthesised to test screening the expressed library. This method 

can be further developed to assist the design of Im9-based artificial enzymes.
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1-Introduction

1.1 Overview

1.1.1 Structure of Enzymes

Enzymes are proteins and therefore they are mostly made of a-L-amino 

acids. There are 20 natural a-amino acids that are universally found in proteins 

(Stryer 1988) and they share, at neutral pH, the general formula:

In relation to the nature of the R group, the amino acids can be classified 

in three large categories (Figure 1.1): polar-neutral, polar-charged and non

polar.

The amino acids are connected by amide (peptide) bonds and the order 

of the amino acids in the sequence of the protein defines its primary structure. 

Polypeptide chains can fold in organised structures i.e. secondary structure like 

a-helices (Figure 1.2), which are stabilised by intra-chain hydrogen bonds, and 

p-sheets (Figure 1.3), which are stabilised by hydrogen bonds between strands.

The structured parts of the proteins are connected by structural elements like p- 

turns and loops.

R O

h 3n O
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1-Introduction

Name Structure Name Structure

Aspartate 
Asp (D)

Glutamate 
Glu (E)

W ° ° -
O NH +

O

O OO

NH,+

Arginine 
Arg (R)

Lysine 
Lys (K)

r
H,N N

2 H

HjNt

OO'

NH,+

OO'

n h 3+

Asparagine 
Asn (N)

Glutamine 
Gin (Q)

Histidine 
His (H)

H,N'YT°
o  n h 3+

OO-

o
H„N

OO

NH,+

OO

HN NH,+

Tyrosine 
Tyr (Y)

Serine 
Ser(S)

Threonine 
Thr (T)

HO

OO

NH,+

HO
OO'

NH,+

OO

NH,+

Glycine 
Gly (G) NH ,+

OO' Cysteine 
Cys (C)

HS
OO'

NH,+

Alanine 
Ala (A)

Valine 
Val (V)

^ c o o

NH,+

OO

NH,

Methionine 
Met (M)

Proline 
Pro (P)

OO'

NH,+

\ - +NH,

Leucine 
Leu (L)

OO'

NH,+

Phenylalanine 
Phe (F)

oo-

NH,+

Isoleucine 
He (I)

:oo*
NH,+

Tryptophan 
Trp (W)

OO

NH,+

Figure 1.1: Amino Acids. Common amino acids can be classified in to three large 
categories: non polar (in black); polar non-charged (in blue); and polar charged (in red).
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 O '
H'
I

^ - * c -  
N ^ |

i " ' ®

o ' :>"  1 
' I I

n ' I

H
•«.
•  \

o',
i - i

: ^ r i . ;
[ I • hydrogen bond
1 ,  ~ JLV° I * '  ' 1 ©  = am ino acid
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I

I---* '

acid 
side chain

(£ )

Figure 1.2: a-Helix secondary structure stabilised by intra-chain hydrogen bonds.

O Q

‘N
H^ V V ~ Y

A X. P ' x  P

b  y W ' t W
b  : 9  : 9i 1 I I

O 1 O

A ^ s A A
IS T ~  Y 1

o  o
! hydrogen bond

Figure 1.3: fi-Sheet parallel (A) and antiparallel (B) secondary structure stabilised by 
hydrogen bonds between strands.
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1-Introduction

The tertiary structure of a protein is the way the secondary structure 

elements interact together. The folding usually happens around a hydrophobic 

core leaving the hydrophilic residues mainly on the outside in contact with the 

solvent, with the exception of some proteins which interact with biological 

membranes.

1.1.2 Cofactors

Many enzymes require small molecules to perform as catalysts. These 

molecules are termed cofactors (Table 1.2).

Enzymes that require a cofactor but do not have one bound are called 

apoenzymes or apoproteins. An apoenzyme together with its cofactor(s) is called 

the holoenzyme, which is the active form.

Cofactors can bind to the enzyme covalently or in 

association/dissociation equilibrium. In the second case their concentrations 

influence enzymes activities. Some cofactors are recycled in the catalytic 

reactions but others, like NADH, are consumed in stoichiometric amounts 

(Drauz et al. 2002).

5



1-Introduction

Table 1.1: List of cofactors and their functions.

Compound Function

Nicotinamide adenine 
dinucleotide (NADH)

Oxidation-reduction

Nicotinamide adenine 
dinucleotide phosphate 
(NADPH)

Oxidation-reduction

Flavin adenine dinucleotide 
(FAD)

Oxidation-reduction

Flavin mononucleotide Oxidation-reduction

Haem Electron transfer

CoenzymeA Acyl group transfer

Adenosine triphosphate (ATP) Phosphate/pyrophosphate transfer, 
adenylation

Pyridoxal phosphate Transamination, amino acid 
decarboxylation, deamination, 
glycogenolysis, condensation reaction in 
heme synthesis

Thiamine pyrophosphate Decarboxylation, transfer of C2 units

Biotin Transfer of CO2

Tetrahydrofolic acid Transfer of Ci groups

S-Adenosyl methionine Methylation

Adenosyl-cobalamin Isomerisation (hydrogen-shift)

Methyl-cobalamin Methylation

6



1-Introduction

1.1.3 Henri-Michaelis-Menten Model

Victor Henri published the first successful mathematical model for 

describing enzyme kinetics in 1903 (Henri 1903). In 1913 Leonor Michaelis and 

Maud Leonora Menten expanded Henri's earlier work and rederived the 

enzyme rate equation that today bears their names (Michaelis et al. 1913).

The Michaelis-Menten mechanism is based on the following features that 

characterise many enzymatic reactions:

a) The initial rate of product formation is proportional, for a given 

initial concentration of the substrate ([S]o), to the total 

concentration of the enzyme ([E]o).

b) For a given [E]o and for low [S], the rate of product formation is 

proportional to [S]o.

c) For a given [E]o and high values of [S] the rate of product 

formation becomes independent of [S] reaching a maximum 

velocity Vvaax.

In the mechanism the enzyme (E) forms a complex with the substrate (S). 

The complex ES can either release the unchanged S or the modified product P.

E + S ^  ES ka, k \  (Ks for Michaelis-Menten) 1.1

ES -» E + P kb (/ccat for Michaelis-Menten) 1.2

Michaelis and Menten assumed that ES is in thermodynamic equilibrium 

with E and S, an assumption that is not always true. Haldane and Briggs 

modified the mechanism introducing the steady state approximation (Briggs et 

a l 1925).

7



1-Introduction

The rate of product formation is

v  = k b [ ES] 1.3

In the steady-state 

d[ESl
- t — l= fc a[E ][S ]-fca[ES]-fcb[ES] = 0 1.4

at

It follows that

where [E] and [S] are the concentrations of unbound enzyme and substrate, 

respectively. Defining the Michaelis constant as

„  fc’a + fcb [E][S]
1 6

K m has the units of molar concentration. We can write

[E]0 = [E] + [ES] 1.7

Because the concentration of the substrate is usually in large excess 

compared to the enzyme we can write

[S] *  [S]0 1.8

and therefore

[es] = ----- [- 1 °___  i 9

L J l  + #fM/[S]0

Substituting this in equation 1.3 we obtain

kb[E]0 - t i nv  = ---------------- 110
1 +  /W [S ]o

When

[S]0 «  1.11

8



1-Introduction

The rate is proportional to [S]o 

k :
 ̂ = ^ -[S ]0[E]0 1-12

When

[S]0 »  Km 1.13

the rate is independent of [S]o and reaches its maximum

v  — vmax — fcb[E]o 1.14

Substituting the definition of Vmax in equation 1.10 we have

_ ^max 1 1 c

v “  1 + tfM/[S]0

kb (kcat), often called turnover number, is a first order rate constant related 

to the properties and reactions of the enzyme-substrate, enzyme-intermediate, 

and enzyme-product complexes. Km is an apparent dissociation constant and 

can be seen as the dissociation constant of all complexes that the enzyme form 

with the different compound and it is equal to the substrate concentration at 

which v  = vmax/ 2  (Fersht 1984). The ratio k cat/ K M can be used to compare the 

relative rates of an enzyme acting on different competitive substrates.

1.1.4 Enzyme Specificity

One of the outstanding characteristics of enzymes is the specificity they 

exhibit for the reactions they catalyse. There are different levels of specificities 

(DeMan 1999):

a) Bond specificity: the enzyme acts on substrates that have similar 

structure and contain the same type of bond (e.g. amylase which 

catalyses the cleavage of the a-l,4-glycosidic bonds in starch, 

dextrin and glycogen).
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b) Group specificity: the enzyme acts on substrates that have the 

same type of bond and the same substructure surrounding it (e.g. 

pepsin which catalyses the hydrolysis of the central peptide bonds 

in which the amino group belongs to aromatic amino acids)

c) Absolute specificity: the enzyme catalyses only one reaction (e.g. 

carbonic anhydrase which catalyses the reversible reaction 

between carbon dioxide hydration and bicarbonate dehydration).

d) Stereochemical specificity: the enzyme acts only on a particular 

steric or optical isomer (e.g. D-amino acid oxidase which catalyses 

the oxidation of D-amino acids to the corresponding imino acids).

e) Dual specificity: there are two types of dual specificity. In the first 

the enzyme acts on two substrates performing one kind of reaction 

(e.g. xanthine oxidase catalyse the oxidation of hypoxanthine to 

xanthine and the oxidation of this to uric acid). In the second type 

the enzyme performs two different reactions on the substrate (e.g. 

isocitrate dehydrogenase catalyses the conversion of isocitrate to 

a-ketoglutarate performing an oxidation followed by a 

decarboxylation (Stoddard et al. 1993)).

The specificity is connected with the geometry of the active site, which is 

designed to accommodate the substrate (Fischer's "lock and key", and 

Koshland's induced fit model) or, as it is now generally accepted, the transition 

state. Geometric complementarities, however, are not enough. Electrostatic, 

hydrophobic and hydrogen-bonding interactions are essential to the docking of 

the substrate in the active site (Fersht 1984).

10



1-Introduction

1.1.5 Rate Enhancement

Enzymes are catalysts, so they speed up the rate of the reaction in which 

they are involved without undergoing any overall change and without 

modifying the equilibrium of the reaction. In the presence of enzymes, reactions 

that would otherwise take millions of years happen in a fraction of a second 

(Figure 1.4).

The "lock and key" model was based on the hypothesis that the active 

site of the enzyme is shaped in a way to accommodate exactly the substrate in 

its ground level. Pauling in his transition state theory suggested that enzymes 

are complementary to the structure of the activated complexes (transition state) 

of the reaction they catalyse and that the attraction of the enzyme for the 

transition state of the reaction would stabilise its energy, leading to a decrease 

in the activation energy of the reaction and an increase in the rate of the reaction 

(Pauling 1948) (Figure 1.5).

The higher affinity of inhibitors designed to mimic the transition state for 

the enzyme compared to the substrate supports Pauling's theory, and can be 

used to gain useful indications of the particular mechanism by which a 

substrate is transformed by the enzyme that it inhibits. The structure of an 

effective inhibitor should reflect and confirm the mechanism on which its 

design was based.
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Rale constant

k = 10'15 sec1

k = 10"12 sec1

k = 10~9 sec*1

k = 10"6 sec1

k = 10'3 sec-1

k = 1 se c 1

k = 1 m sec1

Reaction

glycine decarboxylation 

a-O-glycoside hydrolysis 

phosphodiester hydrolysis 

amino acid racemisation 

peptide hydrolysis

Half-time

1.1 billion years 

12 million years

130.000 years

6.000 years 

450 years

ribose phosphodiester hydrolysis 4 years

triosephosphate isomerization 2 days

peptide cis-trans isomerization 23 seconds

typical enzyme substrate
complex formation 10 milliseconds

Figure 1.4: Half-times of biological reactions proceeding spontaneously at 25 °C in 
neutral solution in the absence of a catalyst (Snider et al. 2000).

In certain cases it may be difficult to isolate reaction intermediates, and 

inhibitors can sometimes provide mechanistic information that is not easily 

accessible by other methods (Wolfenden 1976). In 1978 Schowen wrote: "...the 

entire and sole source of catalytic power is the stabilisation of the transition 

state; reactant-state interactions are by nature inhibitory and only waste 

catalytic power" (Gandour et al. 1978). Page, however, in 1987 listed 21 

published theories of enzyme catalysis (Page et al. 1987) and Menger challenged
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the transition state theory with the "split site" model in which the active site is 

subdivided into a region of binding and a region of reaction (Menger 1992). In 

1995 Murphy replied to Menger's observations showing again the centrality of 

the transition state stabilisation in the overall process of the catalytic activity of 

enzymes (Murphy 1995).

ES*

£4>
H
I

EP

E + S
ES

E + P

Reaction coordinate

Figure 1.5: Energy level diagram of an enzyme-catalysed reaction and the corresponding 
non catalysed chemical reaction where E represent the free enzyme; S represent the free 
substrate; S* represent the free transition state; ES represent the enzyme-substrate 
complex; ES* represent the enzyme-transition state complex; EP represent the enzyme- 
product complex; P represent the free product states. Enzymes increase the rates of 
chemical reactions by stabilising the transition state of the reaction, hence lowering the 
activation energy barrier to product formation.

Bruice introduced the term near attack conformation (NAC) to define the 

required conformation for juxtaposed reactants to enter a transition state (TS) 

(Lightstone et al. 1996). The greater the mole fraction of reactant conformations 

that are present as NACs, the greater the rate constant. Rate constants for bond 

making and breaking in enzymatic reactions depend on, (i) the fraction of ES 

present as NACs, (ii) the change in solvation of reactant species within the
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NAC, as compared to water, and (iii) electrostatic forces which can stabilize the 

TS (Bruice et al. 1998).

Lightstone et al. analysed a series of intramolecular reactions of 

dicarboxylic acid monoesters which yield five- and six-membered cyclic 

anhydride, as models for enzymatic reaction with the NAC method. They 

found that the rate constants for the reactions of the studied esters were directly 

dependent upon the mole fraction of the ground state of each ester present as 

NACs. When the ground state consists of only NACs, the rate enhancement is 

108 (Lightstone et al. 1996). In a following report Lightstone et al. studied the 

transition state structures in anhydride formation from three esters 

(monoglutarate, succinate, and 3,6-endoxo-A4-tetrahydrophthalate esters) using 

ab initio calculation. The transition state structures for the three reactions were 

essentially identical. Applying the criteria of superimposable transition states 

and the lack of evidence for frequency changes in the transition states in the 

direction of increasing rate Lightstone et al. concluded that the structures of the 

transition states do not contribute to the different rate constants for the three 

esters analysed. Therefore any difference in activation energy from NAC to 

transition state must reside in small differences in the NAC structures for the 

three esters, a feature of the ground state (Lightstone et al. 1997).

Bruice suggested that a rational stance for the enzymologist is to consider 

driving forces for enzymatic reactions to arise from both ground state and 

transition state features. The free energy of reaction going from NAC to 

transition state can then be dominated by either entropy or enthalpy, 

depending upon the nature of the reaction. Electrostatic forces and the 

heterogeneous environment of the active site may provide up to another 1 0 8 

fold rate enhancement due to stabilization of the transition state (Bruice et al. 

1998).
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The stabilisation of the transition state, and consequent rate 

enhancement, is accomplished by enzymes in different ways. These can be 

grouped into 5 categories (Copeland 2000):

1) Approximation (i.e. proximity) of reactants, which results in an 

increase of the effective concentration of the reactants.

2) Covalent catalysis (i.e. electrophilic and nucleophilic catalysis), 

with the formation of covalently bonded species, followed by the 

release of the product, the latter usually being the rate limiting 

step in the process.

3) General or specific acid-base catalysis, in which the catalytic

residues stabilise the transition state via proton transfer.

4) Conformational distortion. In which the enzymes change

conformation of the active site to force the substrate into a 

structure that resembles the transition state.

5) Preorganisation of the active site for transition state

complementarity, in which the active site favours the formation of 

the transition state by removing the destabilising influence of the 

solvent.

The contribution of each mechanism to the overall stabilisation of the 

transition state is an intrinsic characteristic of each single enzyme.

Since any stabilisation of the transition state alone will lower the 

activation energy and any stabilisation of the ground state alone will increase
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the activation energy (Fersht 1984), binding and stabilisation of the transition 

state have been the preferred targets in the design of artificial enzymes.

1.2 Artificial Enzymes

The crystallisation of urease by Sumner proved enzymes are proteins 

and gave the possibility to study the mechanism in details and to build models 

to mimic their actions (Sumner 1926).

Enzymes, with their high specificity and activity, can be regarded as 

perfect catalysts and it would be desirable to have an enzyme for those 

reactions not accessible to normal procedures, as in the functionalization of 

unactivated carbons remote from functional groups (Breslow 2005). 

Unfortunately, although several thousand enzymes have been characterised, 

this is still not realised. The design of new enzymes with the required 

characteristic for each different case is one of the ultimate goals of protein 

engineering (Ulmer 1983). The difficulty in the ex novo design of enzymes lays 

in the impossibility to predict the folding of protein from its primary structure, 

although great progress have been m ade in the prediction of small peptides 

folding (Venkatraman et al. 2001). To overcome above difficulty, several 

approaches have been used, like the use of pre-existing scaffolds (cyclodextrin 

and small peptides) or the (re)design of new active site onto existing enzymes 

(Trainor et al. 1981; Breslow et al. 1988; Ye et al. 1992; Johnsson et al. 1993; Broo et 

al. 1997; Broo et al. 1998; Nilsson et al. 2000; Taylor et al. 2001; Drauz et al. 2002; 

Taylor et al. 2002; Del Valle 2004; Weston et al. 2004).
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1.2.1 Macrocycles as Scaffolds

Ronald Breslow coined the term Biomimetic Chemistry to describe 

chemistry which tries to imitate biological processes (Breslow 1972). Since 1956 

Breslow used cyclodextrins as scaffolds on which to graft catalytic groups to 

imitate the general principles of enzymatic catalysis, with particular attention to 

the geometry of the enzyme-substrate complexes.

Cyclodextrins are cyclic oligosaccharides, composed of 5 or more a-D- 

glucopyranoside units linked a-1,4 as in amylose (Del Valle 2004). The 

cyclodextrin cavity mimics the active site of an enzyme, allowing substrate 

discrimination. Breslow attached a thiazolium group on p- and y-cyclodextrin in 

order to catalyse the condensation of two benzaldehyde molecules to form 

benzoin. The p-cyclodextrin was too small to bind two benzaldehyde molecules 

and did not catalyse the reaction, but the y-cyclodextrin increased the rate of the 

reaction 150-fold compared to the reaction without the cyclodextrin ring, and 

the benzoin was expelled out of the cyclodextrin cavity because of its larger size 

(Breslow et al. 1988). Breslow synthesised different bis-imidazole p- 

cyclodextrins (the difference was in the distance between imidazole rings, i.e. 

how many glucose units between them) and tested their catalytic activities in 

the hydrolysis of the cyclic phosphate of 4-t-butylcatechol. The three isomers 

with zero, one and two glucose residues between the imidazole rings, catalysed 

the reaction with one imidazole acting as base and the other protonated one as 

acid. The isomer with the higher activity was the one with the two imidazole 

rings right next to each other with the ImH+ protonating the phosphate 

oxyanion to facilitate formation of a phosphorane intermediate (Figure 1.6) 

(Breslow et al. 1996a; Breslow et al. 1996b; Breslow et al. 1996c).

Cyclodextrins have been used to synthesise flavocyclodextrins as models 

for flavoenzymes (i.e. enzymes that bind the cofactor riboflavin and catalyse
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several reactions like oxidation, hydroxylation, etc.). The model with flavin 

bound to the secondary side (the larger opening of the toroid like structure) of a 

P-cyclodextrin was able to catalyse the oxidation of 1-(1- 

naphthyl)methyldihydronicotinamide with saturation kinetics like a real 

enzyme (Ye et al. 1992).

Other macrocycles have been used to mimic the active site cavity of an 

enzyme. Cyclophanes (hydrocarbons consisting of an aromatic unit and an 

aliphatic chain that forms a bridge between two non-adjacent positions of the 

aromatic ring) were linked covalently to catalyse the benzoin condensation in 

different solvents. In methanol the equilibrium of the reaction was favourable to 

the formation of benzoin (Jimenez et al. 1989).

O

A

H/OH 
OH R - 0 -

B

Figure 1.6: The bis-imidazole cyclodextrin (A) with the imidazole rings right next to 
each other catalysed the hydrolysis of cyclic phosphate of 4-t-butylcatechol (B) via a 
phosphorane intermediate (C) (Breslow 2005).

An octopus cyclophane was used to incorporate non-covalently bound 

pyridoxal-5'-phosphate into its cavity to construct an artificial holoenzyme 

(Figure 1.7). Different alkylamines were linked to the "tentacles" as substrates. 

The Schiff base formation was measured as a function of the different 

hydrophobicity of the alkylamines (Murakami et al. 1989).
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Figure 1.7: An octopus cyclophane made introducing multiple amphipathic components 
into a rigid macrocyclic skeleton. The R groups form the "tentacles" of the octopus and 
the alkylamine acting as substrate are bounded to them (Murakami et al. 1989).

1.2.2 Peptides as Scaffolds

The use of polypeptides in the design of new enzymes allows a greater 

synthetic flexibility than the methods previously discussed, especially when 

used in conjunction with genetic methods like mutagenesis. Changes to the 

gene sequence encoding a protein will result in modifications to that protein. 

The combination of the 20 proteinogenic amino acids gives the possibility to 

create a virtually infinite number of molecules (the num ber of possible 

combination for a simple 10 amino acid peptide is 1.024 x 1013), although not all 

combinations are useful in the design of new enzymes. The polypeptide should 

fold in a specific way in order to create a catalytic arrangement of the side 

chains and this is the greatest difficulty in the de novo design of enzymes. The 

preference of each natural L-amino acid for the different secondary structure 

conformations (a-helix, p-sheet and random  coil) has been calculated using 

known X-ray structure of proteins (Chou et al. 1974; Levitt 1978) statistical 

analysis (Munoz et al. 1994) thermodynamic analysis (O'Neil et al. 1990).

The a-helical fold has been extensively used in de novo design of folded 

peptides. Generally amino acid sequences that assume an a-helix conformation 

in a folded protein are not helical when excised from the protein. However the
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use of appropriate strategies like incorporation of helix stabilising residues 

(Eisenberg et al. 1986; Betz et al. 1995; Monera et al. 1996; Doig 2008; Song et al. 

2008; Huang et a l), the creation of salt bridges between residues separated by 

one a-helical turn (Goodman et al. 1989; Errington et al. 2005; Dzubiella 2008; 

Suveges et al. 2009; Walker et al. 2009; Sommese et al. 2010) allow the design of 

peptides that form a-helices.

Monomeric a-helices can interact to form coiled coil, a structure firstly 

described by Crick (Crick 1953) consisting of two to five a-helices wrapped 

around each other. Coiled coils can be left-handed or right handed. In the most 

common left handed coiled coil the num ber of residues per turn of the helix 

decrease from the typical 3.6 to 3.5. Each helix has a periodicity of seven (a 

heptad repeat) with a minimum of two repeats (Burkhard et al. 2000). This 

repeat is usually denoted (a-b-c-d-e-f-g)« in one helix, and (a'-b'-c'-d'-e'-f'-g')* 

in the other. In this model, a and d are typically nonpolar core residues found at 

the interface of the two helices, whereas e and g are solvent exposed, polar 

residues that give specificity between the two helices through electrostatic 

interactions (Mason et al. 2004). In the right handed coiled coil, the number of 

residues per turn of the helix increase to 3.67. The periodicity of the helix is 

eleven residues every three turn of the helix (undecatad repeat). The repeated 

unit is usually denoted with the letter from a to k with the residues. There are 

very few examples of right handed coiled coil in nature, one is tetrabrachion 

from Staphylothermus marinus, which forms a parallel tetramer (Stetefeld et al. 

2000). Similar to coiled coil are a-helical bundles which most commonly 

contain four helices and can be grouped into two major types -  those in which 

the helix crossing angles are all the same and near 2 0 °, and those in which 

larger helix crossing angles occur (Kohn et al. 1998). One of the major 

differences between helical bundles and coiled coils is that a coiled coil contains
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a narrow hydrophobic face (hydrophobic residues primarily at the a and d 

heptad positions), while bundles tend to contain a wider hydrophobic face, 

owing to a greater incidence of hydrophobicity at the e and g positions (Epand 

1993). a-Helical bundles have been used to mimic metallonucleases (Rossi et al. 

2004), quinoproteins (redox components and enzymes in biological systems) (Li 

et a l 2006), polypeptides for control of nanoparticle assembly (Aili et al. 2007), 

protein models of radical enzymes (Dai et al. 2002), substrate-accessible 

carboxylate-bridged binuclear metal centre (Di Costanzo et al. 2001) and 

peptides with oxaloacetate activity (Johnsson et al. 1993; Taylor et al. 2001; 

Taylor et al. 2002) etc.

The use of p-sheet, the other common secondary structure configuration 

has been limited by experimental difficulties. The residues involved in the 

formation of p-sheets are at variable and often distant positions in the 

sequences. Also, the exposed amides at the edge of p-sheets can hydrogen-bond 

to other sheets, leading to insoluble aggregates (Bryson et al. 1995). Metal ion 

and disulfide bonds have been used to stabilise the p-sheet (Pessi et al. 1993; 

Quinn et al. 1994; Yan et al. 1994) and advances in computational methods 

allowed the design of small p-sheet motif (Kraemer-Pecore et al. 2003).

Gutte et a l synthesised one of the first artificial enzyme a 34 residue 

polypeptide, following the Chou-Fasman method (Chou et a l 1974), to bind the 

nucleotide sequence GAA (the anticodon of yeast tRNAphe) (Figure 1.8).

The polypeptide had tendency to polymerise, due to the presence of two 

cysteine residues, and the monomer and dimer were purified. The dimer 

showed a better ribonuclease activity compared to the monomer (Gutte et a l  

1979).
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Figure 1.8: Proposed secondary structure of an artificial 34-residue DNA binding 
polypeptide. Hydrogen bonds are represented as thin red lines. In the proposed model the 
a-helix axis (from residues 23 to residues 33) lies above the hydrophobic side of the fi- 
sheet (from residues 1 to residues 16). The amino acid symbols in boxes represent side 
chains involved in hydrogen bonds between different secondary structures (Gutte et al. 
1979).

The first de novo rational designed functional peptides were the 14- 

residue amphipathic a-helices oxaldie 1 and oxaldie 2 (Figure 1.9) (Johnsson et 

al. 1993). The helicity of the two peptides increased with concentration. Oxaldie 

1 and oxaldie 2 aggregate in solution to form helical bundles. The designed 

active site was based on amino groups -  either the amino terminal in oxaldie 1 

(the pKa of which was depressed to 7.2 by its interaction with the helix dipole) 

or a lysine side chain in oxaldie 2 (pfG depressed to 8.9 by electrostatic 

interactions with other lysine side chains). The peptides catalysed the 

decarboxylation of J3-ketoacids through the formation of a Schiff base between 

the substrate and the active amino group (Johnsson et al. 1993).
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Figure 1.9: Sequence of oxaldie 1 and 2 (R is hydrogen for oxaldie 1 and acetyl for 
oxaldie 2). In the helix wheel representation the hydrophobic alanine residues are in 
orange circles, the hydrophobic leucine residues are in green squares and the positively 
charged lysine residues, acting as catalytic residues, in azure pentagons.

Based on oxaldie 2, Taylor et al. designed oxaldie 3 and oxaldie 4 (Taylor 

et al. 2001; Taylor et al. 2002). In this case the scaffolds were based on pancreatic 

polypeptides (avian for oxaldie 3 and bovine for oxaldie 4), which are 36 amino 

acid polypeptides with a proline rich helix (residues 1-8) and an a-helix 

(residues 14-31). Those peptides form dimers in solution (Figure 1.10) (Blundell 

et al. 1981). Lysine residues (4 in oxaldie 3 and 3 in oxaldie 4) were grafted on 

the a-helix portion of the peptides without disturbing the hydrophobic core or 

the dimer interface. Both peptides showed a higher activity compared to 

oxaldie 2 with K m and kcat independent from the concentration of the catalyst 

between 2 and 200 pM (Taylor et al. 2001; Taylor et al. 2002).
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aPP g p s q p t y p g d d a p v e d l i r f y d n l q q y l n w t r h r y n h 2
0 x 3  AcGPSQPTYPGDDAPVEDLKRFYKNLKQYLKWNH2 
O x -4  AcAPLEPEYPGDNATPEQMKQYAKELKRYINMLNH2
bPP a p l e p e y p g d n a t p e q m a q y a a e l r r y i n m l t r p r y n h 2

Figure 1.10: Structures of oxaldie-3 with four lysines (A) and oxaldie 4 with three 
lysines (B) acting as the active site, and sequence alignment of avian pancreatic 
polypeptides, bovine pancreatic polypeptides, Oxaldie-3 and Oxaldie-4 (C). The model is 
based on the X-ray structure of avian pancreatic polypeptides (Blundell et al. 1981).

Weston et al. used the 18 residues Apamin to design Apoxaldie, a 

monomeric miniature enzyme with high resistance to thermal and chemical 

denaturation. Apamin is a neurotoxin present in the bee venom. Two disulfide 

bonds stabilise a C-terminal a-helix on which solvent exposed face an active site 

based on lysine residues was grafted. The success in Apoxaldie design was 

confirmed by the lack of activity of reduced Apoxaldie in which the a-helix is

not present. Apoxaldie inherited the thermal and chemical denaturation

resistance of Apamin with a catalytic activity comparable to the best peptide- 

based oxaloacetate decarboxylase (Weston et al. 2004).

Nicoll et al. used bovine pancreatic peptide (the scaffold of oxaldie-4) to 

design Art-Est a miniature enzyme with p-nitrophenyl esterase activity. The 

catalytic moiety was made of histidine grafted on the solvent exposed face of
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the C-terminal a-helix. The histidine side chains reactivity was modulated by 

arginine and glutamate (Figure 1.11). The success of the design was confirmed 

by the depression of pKa of histidine 18 was to 5.5 and by the detection of the 

acyl-enzyme intermediate by mass spectrometry.

Figure 1.11: Structure of Art-Est. The active histidine 18 and histidine 22 (in red) were 
grafted on the solvent exposed surface of the a-helix (blue) of bovine pancreatic peptide. 
The pKa of the active histidine was modulated by glutamate 15 and arginine 26. Model 
based on NMR study (Nicoll et al. 2004).

In 1994 Atassi et al. claimed the successful reproduction of the active site 

of trypsin and chymotrypsin in two cyclic peptides of 29 residues: TrPepz and 

ChPepz. The peptides, cyclised by disulfide bond, were constructed linking the 

residues present in trypsin and chymotrypsin active sites using glycine as 

spacer. TrPepz was able to catalyse the hydrolysis of N-tosyl-L-arginine with 

Km similar to trypsin and kcat almost half of the parent enzyme. ChPepz on the 

other hand was able to catalyse the hydrolysis of the ester group of N-benzoyl- 

L-tyrosine ester with Km and kcat values comparable to chymotrypsin. (Atassi et
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al. 1993). Wells et al. and Corey et al. however in two independent studies were 

unable to reproduce Atassi results for TrPepz and ChPepz (Corey et al. 1994; 

Wells et al. 1994). A molecular dynamics study of TrPepz showed that the 

cyclopeptide was quite flexible and therefore lacking the spatial organisation of 

the catalytic residues found in trypsin and chymotrypsin (Marrone et al. 1994).

The folding problem in the construction of de novo designed artificial 

enzymes has proven to be difficult to tackle because of the extraordinary 

complexity of the folding mechanism (Breslow 2005). In order to overcome this 

difficulty Mutter proposed the concept of template assembled synthetic 

proteins (TASP) (Figure 1.12) (Tuchscherer et a l 1996). This approach uses 

topological templates for the induction of well-defined folding topologies (e.g. 

four helix bundles) (Tuchscherer et al. 1996). Sherman et al. used this approach 

to construct a four helix bundle using a cavitand (a container shaped molecule 

(Cram 1983)) as template and they named the new molecules "caviteins" from 

cavitand  and proteins (Huttunen-Hennelly et al. 2007). The caviteins displayed 

some native-like properties like tertiary structures and a hydrophobic core 

(Huttunen-Hennelly et al. 2007; Seo et al. 2007).
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Amphiphilic helices / p-sheets topological templates

Figure 1.12: Topological templates have been as devices in order to induce and stabilise 
a-helix bundle or p-sheet TASP molecules to mimic some properties of natural proteins.

1.2.3 Rational (Re)design of Existing Proteins

Another approach to design artificial enzymes is to use existing proteins 

and modify them to gain new functions or improve the existing functions. This 

method can basically overcome the difficulty of predicting the tertiary structure 

of new designed proteins. The use of gene m anipulation techniques and 

screening techniques make it possible to force a chosen protein to evolve in the 

desired direction.

1.2.4 Directed Evolution

Using methods mentioned above, few successes in rational design have 

been reported, although many have been attempted. When successful, the rate 

accelerations and catalytic efficiencies are almost always considerably lower 

than those seen for natural enzymes. This is because often the sites of mutation
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which will improve or change the specificity of the enzyme are far away from 

the active site and their position is almost impossible to predict (Moore et al. 

1996). The use of directed evolution can, however, help improve their 

efficiency. The procedure that "should allow a new type of evolutionary 

biomolecular engineering" (directed evolution) was suggested by Eigen and 

Gardiner (Eigen et al. 1984):

1) Produce a m utant spectrum of self-reproducing templates.

2) Separate and clone individual mutants.

3) Amplify clones.

4) Express clones.

5) Test for optimal phenotypes.

6) Identify optimal genotypes.

7) Return to 1 with a sample of optimal genotypes.

Directed evolution does not require any knowledge of the structure, 

function or even mechanism. Different strategies can be used in order to create 

the mutants. Random point mutagenesis of the whole gene is a common 

approach. The mutations are typically introduced by error prone PCR, mutator 

strains, or by treatment of the isolated DNA with UV light or chemical reagents. 

These can be simple non alkylating agents (like formaldehyde, hydroxylamine, 

methoxyamine, nitrous acid, bisulfite etc.), alkylating agents (like dialkyl 

sulaftes, alkyl alkane sulfonates, dialkyl nitrosamine, N-nitrosoureas, etc.) or 

aromatic mutagens (like 2 -acetylaminofluorene, N-hydroxy-l-naphthylamine, 

N,N-dimethyl-4-aminoazobenzene, benzo(a)pyrene, etc.) (Singer et al. 1982). An
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appropriate error rate is essential for the success of this approach. Too low an 

error rate will produce not enough diversity and the screening is wasted by too 

many copies of the parent enzymes. If the error rate is too large, the number of 

positive mutants will be very low and the screening is wasted by the large 

number of inactive clones.

Error prone PCR uses non-optimal conditions for the reaction (e.g., 

increasing the concentration of M gCl2, adding MnCh to the reaction mixture, 

increasing and unbalancing the concentrations of the four dNTPs, adding 

deoxyinosine triphosphate (dITP), increasing the concentration of Taq 

polymerase, or increasing the extension time and cycle numbers). The error rate 

of Taq DNA polymerase is, under normal reaction conditions, about 0.002% to 

0 .0 2 % per nucleotide per replication, too low for efficient mutagenesis of small 

genes. With the modified reaction conditions the error rates can be as high as 

2% per nucleotide position. Mutator strains introduce defined spectra of 

mutations at frequencies up to 1 0 0 , 0 0 0  times that in wild type bacteria due to 

defects in DNA replication and repair machinery. The main problem of the 

single point mutation approach lies in the structure of the genetic code which 

limits the accessible amino acid substitutions. Depending on the specific 

codons, only 24-40% of the possible amino acid changes are accessible by single 

base substitutions (Sirotkin 1986). Furthermore to obtain the best mutations 

(those that will change the physicochemical characteristic of the mutants) 

multiple substitution at a single codon are required (Miyazaki et al. 1999). 

Focused mutagenesis allows the library size to be reduced (a quintuple 

mutation gives a theoretical library size of only ~1 0 6 mutants) but it is possible 

that important mutation sites are left out from the screening. Several kits are 

available to perform saturation mutagenesis on a single amino acid, such as the 

Altered Site®II (Promega, Madison, WI, USA), and QuikChange™ (Stratagene,
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La Jolla, CA, USA) site-directed mutagenesis systems. When more amino acids 

are to be targeted and if they are all in one region of the gene, the usual 

approach is to use oligonucleotide-cassette mutagenesis, where a piece of the 

gene between two restriction sites is excised and a synthetic oligonucleotide 

with the random mutation is ligated in its place. If the sites chosen to be 

randomised are too far apart, other approaches like recursive PCR are used 

(Prodromou et al. 1992).

DNA shuffling is PCR without synthetic primers. In the process, a 

collection of mutants of the same gene, or related families of genes are first 

chopped up with enzymes. The DNA fragments then are separate into single

stranded templates by thermal denaturation. When the temperature is lowered, 

fragments that share complementary DNA regions will bind to each other and 

non-complementary regions will hang over the ends of the templates. PCR is 

then used to build new double-helical DNA with the complementary regions as 

primers creating a mixed structure or chimera. In the final step, PCR 

reassembles these chimeras into full-length, shuffled genes (Cohen 2001).

Once the appropriate random m utation technique is chosen a screening 

technique powerful enough to cover all the possible mutants is needed. The 

screening can be carried out in vivo  (when the properties of the enzyme are 

related to the fitness of the cell) or in vitro.

1.2.4.1 Selection and Screening Techniques

Selection methods are designed to increase the percent of positive 

variation removing the non-positive mutants or allowing only those with the 

wanted characteristics to grow. Screening refers to a qualitative or quantitative 

assay of each single clone or few pooled clones of a m utant library.
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The importance of the choice of an appropriate selection/screening 

technique cannot be overestimated. The conditions of the screening should be 

as similar as possible to those of the reaction, in which the enzyme is going to 

be used (same pH, temperature, solvent, etc.). Modified substrates are often 

used to simplify the analysis of the reaction with production of fluorescent or 

coloured compounds. In these cases however, the optimised enzyme may not 

be active when the 'real' substrate is used. This problem can be solved by 

performing a second screening against the real substrate or in conditions more 

similar to the real one (Moore et al. 1996). Another problem can arise when a 

stress is used in in vivo selection. The stress that is supposed to select for the 

desired characteristic can trigger an unpredictable response like activation of 

new genes (Patten et al. 1996).

Selection/screening methods can be divided in low throughput and high 

throughput. The first usually have a low level of error in the measurement but 

positive mutants can be missed because they are not sampled. High throughput 

methods have a higher error level in the measurement which means that 

positive m utant can be discarded. Microplate based screening can use 

fluorescence (Joo et al. 1999; Hardiman et al. 2010) or colour changes (Fox et al. 

2007) to detect the mutation in the activity.

1.2.5 Exploiting Enzyme Promiscuity

The specificity of enzymes has been thought of as the cornerstone of 

catalysis however actively searching for promiscuous activities usually reveals 

one (Nobeli et al. 2009). Different classifications of promiscuity have been 

proposed. Copley defined four types of catalytic promiscuity: first, enzymes use 

different substrates to perform one chemical reaction; second, enzymes produce
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different products due to imperfect control of the reactants and use of different 

sites in catalysis; third, enzymes use the same residues in the active site to 

perform different overall reactions; fourth, enzymes catalyse different 

transformations using different mechanisms (Copley 2003). Hult and Berglund 

defined three major types of enzymatic promiscuity that can be combined: first, 

condition promiscuity (catalysis in a variety of temperatures, pH, etc.); second, 

substrate promiscuity; and third, catalytic promiscuity (different chemical 

transformations performed) (Hult et al. 2007). Bornscheuer and Kazlauskas 

classify catalytic promiscuity according to whether the reactions involve 

different functional groups, different mechanisms or, more commonly, both 

(Bornscheuer et al. 2004). Nobeli et al. classify catalytic promiscuity in levels 

(promiscuity at the individual gene or transcript level; promiscuity at the 

individual protein level; and family promiscuity); manifestation (multiple 

substrates or partners; multiple chemical reactions); condition that trigged the 

promiscuity (differential expression; environmental conditions; concentration of 

ligand); and different mechanisms (post-translational modifications; multiple 

domains; oligomeric state; etc.). Almost any mechanism is available to any 

level, can be triggered by any condition and can have any effect (Nobeli et al. 

2009).

Babtie et al. analysed the possible causes of enzyme promiscuity. Active 

site flexibility allows enzymes to accommodate different substrates. 

Hydrophobic binding, driven by desolvation, do not require a specific 

arrangement of functional groups and may be less discriminatory than 

electrostatic interactions or hydrogen bonding. The intrinsic reactivity of the 

active site due to the presence of multiple functional groups may be sufficient 

to trigger promiscuity as well as the presence of new functional group derived
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from post translational modification. The presence of cofactors increasing the 

reactive potential of the active site can as well facilitate promiscuity.

An example of a promiscuous enzyme is chymotrypsin, which catalyses 

the hydrolysis of many different types of compounds like amides, esters, thiol 

esters, acid chlorides and anhydrides. All the substrates are thought to react via 

tetrahedral transition states or intermediates. The first step of the reaction 

consists of a nucleophile attack by a serine at a carbonyl carbon. Chymotrypsin 

also catalyses attack at a tetrahedral phosphoryl group, a reaction that proceeds 

via a trigonal bipyramidal intermediate. This alternative reaction involves 

attack on a different atom, cleavage of a different type of bonds and results in 

covalent modification of the enzyme (Zhao et al. 1994).

The concept that high selectivity is necessary for high activity has been 

challenged by BcPMH an enzyme from Burkholderia caryophilli PG2952 

originally assigned as a phosphonate monoester hydrolase (van Loo et a l 2010). 

BcPMH belongs to the alkaline phosphatase super-family which members 

catalyse the hydrolysis of phosphate monoester and diester and sulphate 

monoester (Galperin et al. 1998). BcPMH is able to hydrolyse with high 

efficiency (from 1 0 7 to 1 0 12 second-order rate acceleration) phosphonate 

monoester and diester, phosphate monoesters, phosphate triester, sulfate 

monoesters and sulfonate monoesters. For all the reactions except for phosphate 

triester BcPMH displays saturation kinetics. BcPMH presents almost all the 

characteristic listed by Babtie et al. that can trigger promiscuity. Its active site 

has a diameter approximately twice that of the largest substrate and is able to 

accommodate all the six substrates. A highly reactive metal atom (iron or zinc) 

is coordinated in the active site. The reactive potential of the active site is 

further enhanced by the presence of a formylglycine (derived from a
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posttranslational modification of a cysteine) which is thought to be involved in 

the hydrolysis of five of the six substrates (van Loo et al. 2010).

A single mutation is sometimes enough to increase the catalytic 

efficiency of the side reaction. An example is the protease papain which exhibits 

promiscuity by catalysing nucleophilic attack on nitriles. Its nitrile hydratase 

activity has been greatly improved by addition of a general acid residue. The 

single point mutation Glnl9Glu increases the rate of multiple turnovers by 

more than 104 fold. It has been suggested that the introduced residues act as 

general acids that facilitate the successive additions of water required to convert 

the nitrile to its carboxylic acid and ammonia products (Dufour et al. 1995).

y-Humulene synthase, a highly promiscuous sesquiterpene synthase was 

converted, through a series of mutations in the active site, to seven specific and 

active synthases that use different reaction pathways to produce specific and 

very different products. Saturation mutagenesis was performed for each chosen 

residue and the mutants were analysed treating each m utated residue as an 

independent variable. The mutations that increased the production of one 

particular product were then combined together to construct the seven specific 

synthases (Yoshikuni et al. 2006).

Promiscuity can be used as "starting points' for both in vivo  and in vitro  

evolution of new functions. The enhancement and exploitation of catalytic 

promiscuity has emerged as an important strategy for developing novel 

biocatalysts (Gerlt et al. 2009).

1.2.5.1 Creating a New Function

A more challenging task is to create a completely new function. A single 

substitution permits an L-Ala-D/L-Glu epimerase (AEE) to catalyse the O- 

succinylbenzoate synthase (OSBS) reaction (Figure 1.13). The progenitor is not
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promiscuous for the OSBS reaction. The natural enzymes that catalyse the AEE 

and OSBS reactions share potential Lys acid/base catalysts on opposite faces of 

the active site at the ends of the second and sixth p-strands in the (p/a)s-barrel 

(modified TIM barrel) domain. The mutant AEE-G-297-D showed OSBS activity 

while retaining a reduced level of the progenitor's activity (Schmidt et al. 2003).

Substrate Intermediate Product

OSBS

Figure 1.13: Reactions catalysed by the mutant AEE-G-297-D: 1,1-proton transfer 
(AEE) and fi-elimination!dehydration (OSBS).

1.2.6 Computational M ethods

The use of computational methods in de novo enzyme design is 

increasing in importance year by year with the increasing power of computers. 

Because of the complexity of the problem a simple energy minimisation of a 

single protein state seldom gives good results. Multi-objective searches are a 

better approach for designing specificity (to stabilise one or more states relative 

to others), improving binding affinity (to increase interaction while maintaining
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folding stability), and designing de novo proteins (to avoid alternate structures 

and aggregation). Often enzyme design requires more detailed objectives than 

simply binding the transition state and coordination of key active-site 

functional groups (Lippow et al. 2007).

The first computational methods used in enzyme design, such as ORBIT 

(Dahiyki 1996) and Dezymer (Hellinga et al. 1991), have primarily been used to 

search for catalytic site placement in one or a small num ber of scaffolds. The 

more recent Rosetta method employs hashing techniques (indexing algorithms 

that use selected keys to place the data into the array) to allow searching 

through large numbers of protein scaffolds for optimal catalytic site placement 

(Zanghellini et al. 2006).

The program Dezymer was used by Dwyer et al. to claim a breakthrough 

in rational enzyme design: the introduction of triose phosphate isomerase (TIM) 

activity in a computationally redesigned ribose-binding protein (RBP) from E. 

coli (Dwyer et al. 2004). TIM interconvert dihydroxy acetone phosphate (DHAP) 

and glyceraldehyde 3-phosphate (GAP) (Figure 1.14), therefore the first step in 

the design was the prediction of m utation that converted RBP into a receptor 

for DHAP using a combinatorial optimization algorithm (Looger et al. 2003).

36



1-Introduction

| G luorA sp j I

- Q '^ O  “O ^ ^ O

OH

Lys

DHAP

H H
OH **------  „  ; O...

< —  ;  :
*'O H  H 2P  . o h  - n

rfik W  h

Enediol GAP

Scheme 1.1: TIM mechanism for the interconversion of DHAP and GAP via enendiol

The design process to introduce catalytic activity was divided into three

steps: a set of geometrical definition of key interactions contributing to catalysis

was firstly generated; then a combinatorial search algorithm (Hellinga et al.

1991) was used to identify positions where placement of catalytic residues and

substrate simultaneously satisfies the defined geometrical constraints; finally a

receptor design algorithm (Looger et al. 2003) was used to generate the

remainder complementary surface around the placed substrate. One m utant

(NovoTiml.O) out of the fourteen designed displayed TIM activity. A further

series of mutation was designed to increase activity and thermal stability of

NovoTiml.O leading to NovoTiml.2. Complementation of a TIM-deficient

strain by overexpressed NovoTims (1.0 and 1.2) was tested on gluconeogenic

substrates (lactate and glycerol) in the presence and absence of the inducer

isopropyl-D-thiogalactopyranoside (IPTG). NovoTimsl.O and 1.2 support IPTG-

dependent growth on lactate, but not glycerol while NovoTim l.l was not

tested. The most active NovoTims showed a 105- to 106-fold increase in the Tim-

catalysis over background reaction and an alanine-scanning mutagenesis

indicates that all residues designed to be catalytically active contribute

substantially to rate enhancement (Dwyer et al. 2004). However further analysis
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on the NovoTims by J. Richard at State University of New York showed that the 

TIM activity registered by Dwyer et al. was due to a contamination of native 

TIM from the bacteria used to overexpress NovoTims leading to the retraction 

of the report (Dwyer et al. 2008). In the retraction Dwyer et al. acknowledge the 

finding of Richard and explained with the TIM contamination all the results 

obtained. J. F. Kirsch and J. Richard however pointed out in two letters in 

response to the retraction that several results published in the Dwyer report 

(lower Km compared to the wild type TIM; decrease of activity after alanine 

mutation; the results of the in vivo experiment) could not be explained by 

simply contamination but only by really working NovoTims. The use of 

Dezymer to predict ligand binding has been questioned by Schreier et al. who 

tried to assemble and analyse five of the designed proteins that seemed to work 

best. Most of the analysed proteins were not suitable for structural studies due 

to instability and aggregation. However, they were able to solve the crystal 

structure of an arabinose binding protein designed to bind serotonin. The 

protein crystallised in presence of an excess of serotonin is in an open 

conformation with no serotonin bound, although the side-chain conformations 

in the empty binding pocket are very similar to the conformations predicted. 

During subsequent characterization using isothermal titration calorimetry, CD, 

and NMR spectroscopy, no indication of binding could be detected for any of 

the tested designed receptors, whereas wild-type proteins bound their ligands 

as expected. Schreier et al. concluded that although the computational 

prediction of side-chain conformations appears to be working, it does not 

necessarily confer binding as expected and that the computational design of 

ligand binding is not a solved problem and needs to be revisited (Schreier et al. 

2009).

38



1-Introduction

Recently the Rosetta algorithm has been used successfully in the design 

of two set of enzymes. In the first Rothlisberger et al. designed enzymes that 

catalyse the Kemp elimination. The reaction, which needs a general base to 

remove a proton from a carbon, is known to be catalysed by bovine serum 

albumin and is used as model for proton transfer from carbon (Figure 1.15).

Scheme 1.2: Mechanism of Kemp elimination catalysed by a general base.

The first step was the design of two idealised active sites, which 

contained either an aspartate/glutamate or a histidine-aspartate couple as the 

catalytic base. Using quantum mechanical and classical methods functional 

groups were added to improve the transition state (TS) stabilisation. Next 

RosettaMatch (Zanghellini et al. 2006) was used to screen a large set of stable 

protein scaffolds with known X-ray structures to find backbone positions that 

could accommodate the designed active sites. RosettaDesign (Liu et al. 2006) 

was used to optimise the packing of residues on a given backbone by 

combining side-chain orientations for the various amino acids deposited in a 

rotamer library. RosettaMatch was used to check the quality of a design by 

means of a multi-parameter scoring on the basis of catalytic geometry and TS 

energy. On the basis of these scores, 59 designs were experimentally tested from 

the more than 1 0 5 analysed. 8  of them, which contained between 1 0  and 2 0  

residue exchanges, showed weak enzymatic activity with catalytic efficiencies

BH B 1  *

5-nitrobenzisoxazole 2-hydroxy-5-nitrobenzonitrile
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(kcai/KM) increased up to 2.5T05 fold. The X-ray structure of one of the variants 

was solved and the active site superimposes with a root mean square deviation 

of 0 . 9 5  A with the calculated active site model. The back-mutation of the 

introduced catalytic bases in several designs abolished or strongly reduced 

catalytic activity suggesting that the new enzymes catalysed the Kemp 

elimination with the expected reaction mechanism. The catalytic activity was 

further improved by seven rounds of directed evolution and best variant 

showed a > 2 0 0 -fold improvement in activity compared to the starting enzyme 

(Rothlisberger et al. 2008).

The second set of enzymes designed with the Rosetta method are able to 

catalyse a retro-aldol reaction, which requires the breaking of a carbon-carbon 

bond in a non-natural substrate (Jiang et al. 2008). A different method was used 

to address the higher complexity of the reaction with multiple intermediates 

and transition states. The various reaction intermediates and transition states 

were modelled in the context of a specific set of functional residues. The models 

were superimposed and four alternative active site motifs, all with a 

nucleophilic lysine and general acid/base for the proton transfer steps. Three 

dimensional models for each motif were generated varying the degrees of 

freedom of the composite TS, the orientation of catalytic site chains relative to 

the TS and the conformation of the side chains. RosettaMatch was then used to 

identify a suitable scaffold to host the candidate catalytic site and 72 candidates, 

based on 10 scaffolds, were experimentally tested. 32 designs showed a small 

catalytic activity. The X-ray structure of the best variant confirmed the active 

site design but showed a significantly difference in the loops surrounding the 

active site. The designed enzymes displayed only modest catalytic activity, with 

one molecule of product generated in 2 hours. The low activity of the designed 

enzymes is principally due to the limited num ber of residues (maximum 4) that
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can be designed simultaneously. In natural occurring enzymes group 

positioning and protonation states create a network of polar interactions and a 

more extended hydrogen-bond networks. Computational design of such 

extended polar networks is exceptionally challenging because of the difficulty 

of accurately computing the free energies of buried polar interactions (Jiang et 

a l 2008).

The reports show that it is possible to design enzymes using 

computational methods but the increase in the rates compared to the 

background reaction for the computational designed enzymes (faat/K uncut ~ 102- 

104) are lower than the synzymes designed by Hollfelder et a l  (fo a t/K u n c u t » 107) 

(Hollfelder et a l  2001) and in the range of those of a set of catalytic antibody 

(/Ccat/Kuncut ~ 104) (Thom et a l  1995), and serum albumins (A W K u n c u t  ~ 103-104) 

(Hollfelder et a l 1996). Although computational designs allow structure 

prediction close to atomic resolution they are not yet able to take account of all 

the interaction involved in a catalytic process. Several rounds of directed 

evolution for fine-tuning of structures and improvement of catalytic efficiency 

are still necessary (Damborsky et a l 2009).

1.2.7 Catalytic Antibodies

Pauling suggested that enzyme are designed to stabilise the transition 

state of the reaction and that the mechanism was similar to the binding of an 

antibody to its antigen (Pauling 1948). This suggestion led to the idea of using 

antibodies as catalysts. Antibodies (or immunoglobulins) are glycoproteins 

produced by vertebrates with the task to neutralise, upon binding, foreign 

bodies like virus, bacteria (the antigens) or simple molecules (haptens). 

Antibodies have specific and high affinity for the antigens that elicited their
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synthesis, they recognise a specific group or cluster of amino acids on a large 

molecule called an antigenic determinant (epitope) (Stryer 1988). When a 

transition state analogue of a particular reaction is used as the hapten the 

resulting antibody is, in theory, able to catalyse that reaction and the hapten 

will be an inhibitor.

The technique was developed independently by Lerner and Schultz. 

Lerner used a tetrahedral phosphonate as the transition state analogue for the 

hydrolysis of carboxylic esters which proceed through a tetrahedral 

intermediate (Tramontano et al. 1986). Schultz also used a tetrahedral 

phosphonate as the transition state analogue but for the hydrolysis of carbonate 

esters (Pollack et al. 1986).

One of the most successful catalytic antibodies was developed by Barbas 

III in collaboration with Lerner (Wagner et al. 1989)'. The antibody 38C2 

catalyses the aldol addition and the retro-aldol reaction and it is the first 

commercial available catalytic antibody. A p-diketone was used as hapten to 

elicit antibodies with a reactive lysine residue in the active site (Wagner et al. 

1989). Another remarkable example is the antibody 1F7 which is able to catalyse 

the stereospecific Claisen rearrangement of (-)-chorismate into prephenate 

(Hilvert et al. 1988b). The abzyme 1F7 was raised against a transition state 

analogue inhibitor of natural occurring chorismate mutase and accelerates the 

mutase reaction by a factor of 2 x 102 over background (Hilvert et al. 1988a). 

When produced cytoplasmically at high concentrations in a chorismate mutase 

deficient yeast strain, the Fab fragment of this catalyst reconstitutes the 

shikimate biosynthetic pathway leading to the aromatic amino acids tyrosine 

and phenylalanine, conferring a substantial growth advantage under 

auxotrophic conditions (Tang et al. 1991).
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Abzymes can be regarded as the most successful enzyme mimics so far 

described (Breslow 2005). However their activity is still far lower than the 

natural occurring enzymes. One of the reason of this lower activities can be 

traced in the affinity of antibody for their respective transition states, which is 

usually in the 109 M range while for enzymes can reach 10 24 M (Stewart et al. 

1995). Another reason is the dynamic of the antibody/transition state 

interaction. Enzymes have evolved to recognise a series of structures that 

connect the substrate and product along the reaction coordinate; by contrast, 

catalytic antibodies are elicited to a single, specific structure. Consequently, the 

binding energy is applied by abzymes to preferential transition-state 

stabilisation whereas enzymes may also act to destabilise bound substrates 

(Stewart et al. 1995). The lower efficiency of catalytic antibody compared to 

natural enzymes may also be explained with the scaffold shared by all 

antibodies. Studies on catalytic antibodies show the recurrence of a basic hapten 

recognition motif (MacBeath et al. 1996; Charbonnier et al. 1997; Romesberg et al. 

1998; Xu et al. 1999; Hilvert 2000). In favourable cases a nearly perfect shape 

complementarity of the binding pocket to its ligand can be achieved. In general, 

however, these frequently selected binding pockets may be poorly suited to 

particular catalytic tasks or may represent local minima from which it will be 

difficult to evolve further (Hilvert 2000).

1.3 Summary

Enzymes can be seen as the perfect catalysts with their specificity and 

huge rate enhancement. Artificial enzymes are designed to reproduce enzymes 

performance. The use of non-protein scaffolds on which to graft an active site 

with precise geometrically directed functionalisations can have a role in
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chemical processes where harsh conditions are needed since they are usually 

more robust than proteins. De novo design of new enzymes is limited by the 

lack of understanding of the folding rules, therefore existing protein (often 

enzymes themselves) are generally used as starting points for the design of 

enzymes able to catalyse reactions not covered by the natural enzymes. Rational 

design and/or directed evolution are used for this purpose. Structural 

knowledge of the starting protein is a necessary prerequisite for rational design. 

When directed evolution is used, it is necessity to reduce the library size to 

match the performance of the screening method in use. Artificial enzymes 

design remains to be the fascinating yet extremely challenging field.

1.4 Aims

Different approaches have been used to create new enzymes. Rate 

accelerations comparable to catalytic antibodies have been achieved with 

miniature enzymes based on peptide scaffold. Their simple mechanism of 

action has allowed a detailed study of the reaction mechanism; however the 

exposure of the active site to the solvent limits their selectivity toward different 

substrates.

The overall aim of this project is to generate improved small artificial 

enzymes. Possibilities of achieving good catalytic activity and discrimination of 

the substrates, based on enzyme structure and on the geometry of the transition 

state will be examined.

Two different strategies are planned to achieve the design of artificial 

enzymes. In the first strategy the miniature oxaloacetate decarboxylase, 

Apoxaldie will used as starting point. By shortening the side chains of the active 

lysine residues, the aim is to bring the active site closer to the peptide backbone,
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in the hope that the chiral environment of the a-helix and the increased 

proximity of the amino group would help increase its selectivity and activity.

In the second strategy, the colicin DNase immunity protein Im9 would 

be used as a scaffold. Im9 has been extensively studied and it is easily 

produced. Its structure present several hydrophobic clefts, where active sites 

would be created using histidine. The designed active site will present a cavity, 

created by mutating a bulky aromatic amino acid into an alanine, on which the 

substrate would bind.

The rationally designed Im9-based artificial enzymes would then be 

submitted to directed evolution. A library of Im9 mutants would be displayed 

the on phage pill protein and screened against a transition state analogue.
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2. MATERIALS AND METHODS
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2.1 Chemicals

All chemicals were purchased from Thermo Fisher Scientific or Sigma 

Aldrich unless otherwise stated. IPTG, ampicillin, carbenicillin and MOPS were 

purchased from Melford. All amino acids and peptide reagents were 

purchased from Novabiochem. Oligonucleotides were purchased from Operon 

Technologies (Germany).

2.2 Microbial Media

All media were prepared using deionised water, and were sterilised by 

autoclaving for 20 min at 121 °C prior to use (Sambrook et al. 2001).

2.2.1 Luria-Bertani (LB) medium

Bacto-Tryptone (1% w/v), NaCl (1% w/v) and yeast extract (0.5% w/v), 

pH adjusted to 7.0 with 5 M NaOH.

2.2.2 2 x YT medium

Bacto-Tryptone (1.6% w/v), yeast extract (1% w/v) and NaCl (0.5% w/v), 

pH adjusted to 7.0 with 5 M NaOH.

2.2.3 SOC medium

Bacto-Tryptone (2% w/v), Bacto Yeast Extract (0.5% w/v), 5 M NaCl (0.2% 

v/v), 1 M KC1 (0.25% v/v) and 1 M MgCh (1% v/v), pH adjusted to 7.0 with 5 M
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NaOH. Prior to use 1 M MgS04 (1% v/v) and 1 M glucose (2% v/v), both filter- 

sterilised using a 0.2 pm syringe filter, were added to the autoclaved solution.

2.2.4 SB medium

MOPS (1% w/v), Bacto-Tryptone (3% w/v) and yeast extract (2% w/v), 

pH adjusted to 7.0 with 5 M NaOH.

2.2.5 LB agar

Bacto-Tryptone (1% w/v), NaCl (1% w/v), yeast extract (0.5% w/v) and 

agar (1.5% w/v), pH adjusted to 7.0 with 5 M NaOH. Following autoclaving, the 

solution was cooled to 37 °C, antibiotic was added where appropriate, and the 

agar poured to form plates.

2.2.6 LB top agar

Bacto-Tryptone (1% w/v), NaCl (1% w/v), yeast extract (0.5% w/v) and 

agar (0.75% w/v), pH adjusted to 7.0 with 5 M NaOH. Following autoclaving, 

the solution was cooled to 45 °C and poured on the top of LB agar plates.

2.2.7 2 x YT agar

Bacto-Tryptone (1.6% w/v), yeast extract (1% w/v), NaCl (0.5% w/v) and 

agar (1.5% w/v), pH adjusted to 7.0 with 5 M NaOH. Following autoclaving, the 

solution was cooled to 37 °C, antibiotic was added where appropriate, and the 

agar poured to form plates.
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2.3 Sterile Solutions

All sterile solutions were prepared using deionised water and, unless 

stated otherwise, were filter-sterilised using a 0.2 pm syringe filter prior to 

storage.

2.3.1 Antibiotic stock solutions

Ampicillin (100 mg m L 1), carbenicillin (100 mg m l/1) and kanamycin (50 

mg m L 1) stocks were stored at -20 °C. Tetracycline (40 mg m L 1) was sterilised 

as above, diluted with an equal volume of autoclaved, cooled glycerol, and 

stored at -20 °C.

2.3.2 Tris-Buffered saline (TBS)

Tris-HCl (0.5 mM) and NaCl (10 mM), pH adjusted to 7.0 with 5 M 

NaOH. Stored at room temperature.

2.3.3 1% (w/v) BSA in TBS

BSA (1% w/v) was dissolved in sterile TBS solution (Section 2.33). Stored 

at 5 °C.

2.3.4 0.5% (v/v) Tween 20 in TBS

Tween 20 (0.5% v/v) was dissolved in sterile TBS solution (Section 2.3.4). 

Stored at 5 °C.
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2.4 Solutions For Competent Cell Preparation

All solutions were prepared using deionised water.

2.4.1 Preparation of competent cells (with CaCh)

CaCh solution 1: CaCh (0.1 M).

CaCh solution 2: CaCh (0.1 M) and glycerol (15% v/v).

Solutions were sterilised by autoclaving at 121 °C for 20 minutes and 

stored at 4 °C.

2.4.2 Preparation of super competent cells (with RbCl)

RbCl solution 1: RbCl (100 mM), CHsCOOK (30 mM), CaCh (10 mM),

MnCh (50 mM) and glycerol (15% v/v), pH adjusted to 5.8 with dilute acetic

acid.

RbCl solution 2: RbCl (10 mM), CaCh (75 mM), 3-(N -

morpholino)propanesulfonic acid (MOPS) (10 mM) and glycerol (15% v/v), pH 

adjusted to 7.0 with 1 M NaOH.

Solutions were filter-sterilised using a 0.2 pm syringe filter and stored at

5°C.

2.4.3 Preparation of electro-competent cells

10% (v/v) glycerol was sterilised by autoclaving for 20 minutes at 121 °C.
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2.5 Non-Sterile Solutions

Except where otherwise stated, all non-sterile solutions were prepared 

using deionised water.

2.5.1 dNTPs

dNTP stock solutions (100 mM) were purchased from Bioline. These 

were diluted with ultra-pure water to a concentration of 10 mM each for site 

directed mutagenesis experiments or 25 mM each for PCR experiments, and 

stored at -20 °C.

2.5.2 Ethidium bromide

Ethidium bromide (25 mM) was stored in the dark at 5 °C. For gel 

staining, this stock was diluted to give a working concentration of 6 pM.

2.5.3 DNA loading dye for agarose gels (lOx)

Bromophenol blue (2.5 mg m L 1) and glycerol (30% w/v). Stored at room 

temperature. The dye was mixed with the DNA sample 1:10 immediately prior 

to use.

2.5.4 50x TAE buffer stock for agarose gels

EDTA (0.1 M), glacial acetic acid (5.7% v/v) and Tris base (2 M), pH 

adjusted to 8.5 with NaOH 5 M. Stored at room temperature. Diluted 1:50 

immediately before use.
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2.5.5 SDS stacking buffer

Tris base (0.5 M), pH adjusted to 6.8 with diluted hydrochloric acid. 

Stored at 4 °C.

2.5.6 SDS resolving buffer

Tris base (1.5 M), pH adjusted to 8.8 with diluted hydrochloric acid. 

Stored at 4 °C.

2.5.7 10% (w/v) ammonium persulfate

Ammonium persulfate (10% w/v). Stored at 4 °C.

2.5.8 Electrode running buffer (lOx) for SDS-PAGE

Tris base (3.03% w/v), glycine (14.4% w/v) and SDS (1% w/v). Stored at 

room temperature. Diluted 1:10 prior to use.

2.5.9 Protein loading dye (4x) for SDS-PAGE

Glycerol (40%), bromophenol blue (0.08% w/v), SDS (8% w/v), p- 

mercaptoethanol (4%) and Tris-HCl (0.2 M), pH adjusted to 6.8 with diluted 

sodium hydroxide. Diluted 1:4 before use.
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2.5.10 Protein purification buffer A

(EDTA) (1 mM), Tris-base (50 mM), P-mercaptoethanol (1 mM) and 

sodium chloride (10 mM), pH adjusted to 7.5 with diluted hydrochloric acid. 

The solution was filter-sterilised and degassed in vacuo. Stored at room 

temperature.

2.5.11 Protein purification buffer B

EDTA (1 mM), Tris-base (50 mM), p-mercaptoethanol (1 mM) and 

sodium chloride (1 M), pH adjusted to 7.5 with diluted hydrochloric acid. The 

solution was filter-sterilised and degassed in vacuo. Stored at room temperature.

2.5.12 Phosphate buffer

Potassium phosphate (10 mM), pH adjusted to 7.0 with diluted 

hydrochloric acid. The solution was degassed in vacuo and stored at room 

temperature.

2.5.13 Protein dialysis buffer

Protein purification buffer A was diluted 50-fold.

2.6 DNA Purification

All the buffers were stored at room temperature unless stated otherwise.
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2.6.1 DNA miniprep buffers

Buffer PI (suspension buffer): Tris-HCl (50 mM), EDTA (10 mM) RNase 

A (25 pg m L 1), pH adjusted to 8.0 with diluted sodium hydroxide. Stored at 4 

°C.

Buffer P2 (lysis buffer): NaOH (0.2 M) and SDS (1% w/v).

Buffer N3 (neutralisation and binding buffer): guanidine hydrochloride 

(4 M) and potassium acetate (0.5 M), pH adjusted to 4.2 with diluted 

hydrochloric acid.

Buffer PB (wash buffer): guanidine hydrochloride (8 M), ethanol (38% 

v/v), and Tris-HCl (20 mM), pH adjusted to 6.6 with diluted sodium hydroxide.

Buffer PE (wash buffer): NaCl (20 mM), ethanol (80% w/v) and Tris-HCl 

(2 mM), pH adjusted to 7.5 with diluted sodium hydroxide.

Buffer EB (elution buffer): Tris-HCl (10 mM), pH adjusted to 8.5 with 

diluted sodium hydroxide.

2.6.2 Agarose gel DNA extraction

Buffer QG (gel solubilising buffer): guanidine thiocyanate (5.5 M) and 

Tris-HCl (2 mM), pH adjusted to 6.6 with diluted sodium hydroxide.

Buffer PE (wash buffer): NaCl (20 mM), ethanol (80% w/v) and Tris-HCl 

(2 mM), pH adjusted to 7.5 with diluted sodium hydroxide.

Buffer EB (elution buffer): Tris-HCl (10 mM), pH adjusted to 6.6 with 

diluted sodium hydroxide.
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2.6.3 DNA from PCR purification miniprep

Buffer PB (wash buffer): guanidine hydrochloride (8 M), ethanol (38% 

v/v) and Tris-HCl (20 mM), pH adjusted to 7.5 with diluted sodium hydroxide 

pH 6.6.

Buffer PE (wash buffer): NaCl (20 mM), ethanol (80% w/v) and Tris-HCl 

(2 mM), pH adjusted to 7.5 with diluted sodium hydroxide.

Buffer EB (elution buffer): Tris-HCl (10 mM), pH  adjusted to 8.5 with 

diluted sodium hydroxide.

2.6.4 Nucleotide removal miniprep

Buffer PN (binding buffer): sodium perchlorate (16 M) and sodium 

acetate (0.5 M), pH adjusted to 4.2 with diluted hydrochloric acid.

Buffer PE (wash buffer): NaCl (20 mM), ethanol (80% w/v) and Tris-HCl 

(2 mM), pH adjusted to 7.5 with diluted sodium hydroxide.

Buffer EB (elution buffer): Tris-HCl (10 mM), pH  adjusted to 8.5 with 

diluted sodium hydroxide.

2.7 E. coli Strains

2.7.1 Cloning strains

XLl-Blue ultracompetent cells (Stratagene, CA, USA) were used for 

cloning following site directed mutagenesis and ligation. The transformation
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efficiency was > 1 x 109 cfu/pg for super competent cells and > 1 x 1010 cfu/pg for 

electro competent cells

2.7.2 Expression strains

For expression of Im9 and all the mutants BL21(DE3) competent cells 

(Stratagene, CA, USA) were used. IPTG was used to induce protein expression.

2.7.3 Preparation of ultra-competent cells

XLl-Blue cells from a glycerol stock were streaked onto LB agar 

containing 20 pg mL4 tetracycline, and incubated at 37 °C for 16 h. A negative 

control was performed using LB agar containing 20 pg mL4 ampicillin.

100 mL of LB medium containing 20 pg mL4 tetracycline was inoculated 

with a single colony from the agar plate and incubated at 37 °C overnight. This 

culture was subcultured (1:50 dilution) into 100 mL of LB medium containing 

20 pg mL4 tetracycline and incubated at 37 °C until an optical density of 0.6 (at 

600 nm) was reached.

The culture was held on ice for 15 min and then harvested in a Thermo 

IEC 243 Centra CL3R centrifuge at 2750 g, 4 °C for 10 min. Cells were re

suspended in RbCl solution 1 (40% of the culture volume), held on ice for 15 

min, and the centrifugation step repeated. The pellet was re-suspended in RbCl 

solution 2 (4% of the culture volume), held on ice for 10 min, and transferred to 

sterile Eppendorf tubes in 100 pL aliquots. Cell suspensions were flash frozen in 

liquid nitrogen and stored at -80 °C. Transformation efficiency was calculated 

(Section 2.7.6) and expressed as cfu/pg DNA used.
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2.7A  Preparation of competent cells

BL21(DE3) cells from a glycerol stock were streaked onto non-selective 

LB agar and incubated at 37 °C for 16 h. A negative control was performed 

using LB agar containing 20 pg m L 1 ampicillin.

10B mL of non-selective LB medium was inoculated with a single colony 

from the agar plate and incubated at 37 °C overnight. This culture was 

subcultured (1:50 dilution) into 100 mL of non-selective LB medium and 

incubated at 37 °C until an optical density of 0.6 (at 600 nm) was reached. 

Competent cells were then prepared as described in section 2.7.3.

2.7.5 Preparation of electrocompetent cells

XL 1-Blue from a glycerol stock were streaked onto LB agar containing 20 

pg m L 1 of tetracycline and incubated at 37 °C for 16 h. A negative control was 

performed using LB agar containing 20 mg mL4 ampicillin.

15 mL of LB medium containing 20 pg mL4 tetracycline was inoculated 

with a single colony from the agar plate and incubated at 37 °C overnight. This 

culture was subcultured (1:200) into LB medium containing 20 pg mL4 

tetracycline and incubated at 37 °C until an optical density of 0.7 (at 600 nm) 

was reached.

The culture was held on ice for 15 min and then harvested in a Thermo 

IEC 243 Centra CL3R centrifuge at 2750 g, 4 °C for 10 min. Cells were re

suspended in ice-cold sterile 10% (v/v) glycerol solution (50% of the culture 

volume) and the centrifugation step repeated. The re-suspension and 

centrifugation procedure was repeated two more times. The final pellet was 

resuspended in ice-cold sterile 10% (v/v) glycerol solution (2% of the culture
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volume), and transferred to sterile Eppendorf tubes in 40 pL aliquots. Cell 

suspensions were flash frozen in liquid nitrogen and stored at -80 °C. 

Transformation efficiency was calculated (Section 2.7.6) and expressed as cfu/pg 

DNA used.

2.7.6 Calculation of the transformation efficiency

The transformation efficiency, expressed in colony formation units (cfu) 

per pg, of the competent cells was calculated with the following equation:

c f u  on  p la te  1 x 103 n g
T r a n s fo r m a tio n  e f f i c i e n c y  { c f u  ug') = = ------ — — —;-----r x ---------------

J JJ '  w  n g  o f  DNA p la te d  pg

2.7.7 Transformation of cells with plasmids

Competent cells (Section 2.7.3 and 2.7.4) were thawed on ice and plasmid 

solution (1 pL) was added under sterile condition. After incubation for 30 min 

on ice the cells were heat shocked in a water bath at 42 °C for 1 min then held 

on ice for at least 2 min. Non-selective LB medium (1 mL) was added and, after 

1 h incubation at 37 °C, cells were harvested by centrifugation, resuspended in 

LB medium (100 pL), were spread onto LB agar containing 20 pg mL4 ampicillin 

and incubated overnight at 37 °C. Plates were stored at 4 °C. A negative control 

was performed using sterile water in place of the plasmid solution.

2.7.8 Transformation of electrocompetent cells with DNA phagemid

Electrocompetent cells (Section 2.7.5) were thawed on ice and plasmid 

solution (1 pL) was added under sterile condition. The cells were transferred to
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a pre-chilled sterile electroporation cuvette (0.1 cm gap), and pulsed once at 

2500 V. Sterile SOC medium (960 pL, prewarmed to 37 °C) was immediately 

added, the solution was transferred to a sterile tube and incubated for 1 h at 37 

°C with shaking at 200 rpm. 200 pL of the culture were spread onto LB agar 

containing 20 pg mL4 carbenicillin and incubated overnight at 37 °C. Plates 

were stored at 4 °C. A negative control was performed using sterile water in 

place of the plasmid solution.

2.8 Manipulation of DNA

2.8.1 Determination DNA concentration

Plasmid concentration was determined measuring the absorbance at 260 

nm by UV spectroscopy on a UV-spectrophotometer (NanoDrop 1000, Thermo 

Scientific).

2.8.2 Site directed mutagenesis

DNA mutations were performed using the Stratagene® QuikChange® 

site directed mutagenesis kit following the manufacturer's instructions. The 

primers were designed to obtain the desired Im9 mutants (Table 2.1 ):
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Mutant

Im9-F15A

Template

Im9

Primers

F w d  5 ' -G TG A T T A T A C A G A A G C T G A A G C TT T A C A G C T T G T A A C A A C -3' 
B w d  5 ' -G T T G T T A C A A G C T G T A A A G C T T C A G C T T C T G T A T A A T C A C -3'

Im9-Y10H Im9 F w d  5 ' -G C A T A G C A TT A G T G A T C A TA C A G A A G C TG A A G C -3' 
B w d  5 ' -G C T T C A G C T T C T G T A T G A T C A C T A A T G C T A T G C -3'

Im9-Y10H-F15A Im9-F15A F w d  5 ' -G C A T A G C A TT A G T G A T C A TA C A G A A G C TG A A G C -3' 
B w d  5 ' -G C T T C A G C T T C T G T A T G A T C A C T A A T G C T A T G C -3 '

Im9-W74A Im9 F w d  5 ' -GTAAAA CA ATGG AG AG CC GC TCA CG GTA AG TC AG GA TTTA AC -3' 
B w d  5 ' -G T T A A A T C C T G A C T T A C C G T G A G C G G C T C T C C A T T G T T T T A C -3'

Im9-N78H Im9 F w d  5 ' -G TA A AA CA AG CG AG AG CC GC TCA CG GTAA GTC AG GA TTTAA C-3' 
B w d  5 ' -G TT A A A T C C T G A C T T A C C G T G A G C G G C T C T C G C T T G T T T T A C -3'

Im9-L52E/W74 A/N78H Im9-W74A/N78H F w d  5 ' -G CACCCTAGTGG TAG TG ATGAAATATA TT A C C C A A A A G A A G G -3 '  
B w d  5 ' -C C T T C T T T T G G G T A A T A T A T T T C A T C A C T A C C A C T A G G G T G C -3 '

Im-L52D/W74A/N78H Im9-W74A/N78H F w d  5 ' -G CA CC CT A GTGG TAG TG ATGATATATATTACCCAAAAGAAG G-3 '  
B w d  5 ' -C C T T C T T T T G G G T A A T A T A T A T C A T C A C T A C C A C T A G G G T G C -3'

Im9-D51A/L52E/W74 A/N 7 8H Im9-L52E/W74A/N78H F w d  5 '  GAGCACCCTAGTGGTAGTGCGGAAATATATTACCCAAAAG 3 '  
B w d  5 '  CTTTTGGGTAATATATTTCCGCACTACCACTAGGGTGCTC 3 '

Im-D51A/L52D/W74A/N78H Im9-L52D/W74A/N78H F w d  5 '  GAGCACCCTAGTGGTAGTGCGGATATATATTACCCAAAAG 3 '  

B w d  5 '  CTTTTGGGTAATATATATCCGCACTACCACTAGGGTGCTC 3 '
a*o
S-

Table 
2.1: Prim
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In order to sub-clone the Im9-W74A/N78H gene in the phagemid pHEN2 

a Sacl restriction site was engineered instead of the stop codon (TAG)

Im9-Sflcl

F w d  5 ' -G T C A G G A T T T A A A C A G G G C G A G C T C A T G A G T G C C G A T G G  

G G T A C C - G '

B w d  5 ' - G G T A C C C C A T C G G C A C T C A T G A G C T C G C C C T G T T T A A A T  

C C T G A C - 3 '

In order to construct the library of random mutants a K pnl restriction site 

was engineered in the Im9-W74A-N78H(SacI)

Im 9-K pnl

F w d  5 ' - G A T G A C T C A C C T T C A G G T A C C G T A A A C A C A G T A A A A C A A G C - 3 '

B w d  5 ' - G C T T G T T T T A C T G T G T T T A C G G T A C C T G A A G G T G A G T C A T C - 3 '

Table 2.2: Reagents for site-directed mutagenesis.

Reagent Volume (uL)
dNTPs (40 mM total. 10 mM each NTP) 1

Forwards nrimer (100 uM') 1
Backwards nrimer (100 llM1) 1

Parent olasmid 1
lOx Pfu buffer 2.5

Pfu Dolvmerase 1
ddH 20 17.5

Total volume 25
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Table 2.3: Site directed mutagenesis program.

Mutaeenesis Sten Temnerature (°C) Time (sec)

1 [nitial denaturation 95 60

X 
25

2 Denaturation 95 30
3 Annealine 55 60
4 Primer extension 72 360

5 Final extension 72 720

After the PCR reaction the template DNA was digested with D pnl.

2.8.3 Polymerase chain reaction (PCR)

The oligonucleotide to construct the random  library was designed as 

follow and amplified using PCR.

5 ' -C C T C A C C T T C A G G T A C C G T A A A C N N K V N S A A A N N K V N S A G A G C C  

N N K C A C G G T N N K T C A G G A T T C A A G C A G G G C G A G C T C - 3 '

N = G , C , A , T ;  K = G , T ; V = A , C , G ;  S = G , C

Primers for PCR amplification of random  sequence:

F w d  5 ' - G C G G C A T T A A C C T C A C C T T C A G G T A C C G T A A A C - 3 '

B w d  5 ' - G C G G G G G C A G C T G A G C T C G C C C T G C T T G A A T C C - 3 '
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Table 2.4: PCR reagents for the amplification of the random sequence.

Reaeent Volume (uL)

dNTPs (100 mM total. 25 mM each dNTPl 0.8
Forwards nrimer (100 uMi 1

Backwards nrimer (100 uMi 1
Random olieonucleotide (32 nMi 1

lOx Pfu buffer 10
Pfu nolvmerase (2.5 U/uLl 2

ddH 20 84.2
Total volume 100

Table 2.5: PCR program for the amplification o f the random sequence.

Step T (°C) Time (s)
1 Initial denaturation

2 Denaturationir> 
<N

3 Annealing
4 Primer extension

5 Final extension 30a

2.8.4 Digestion of DNA with restriction endonucleases

For every endonuclease the manufacturer's instructions were followed.

Digestion reactions with N col (buffer: 50 mM Tris-HCl, 100 mM NaCl, 10 mM 

MgCh, 1 mM DTT, pH 7.9), Sacl (buffer: 10 mM Bis-Tris-Propane-HCl, 10 mM 

MgCh, 1 mM Dithiothreitol, pH 7.0) and K pnl (buffer: 10 mM Bis-Tris-Propane- 

HCl, 10 mM MgCh, 1 mM Dithiothreitol, pH 7.0) were performed sequentially 

with a purification step, using agarose gel electrophoresis, before the following 

reaction. The reactions were carried at 37 °C for 4 h.
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Digestion of the parent plasmid after site directed mutagenesis reactions was 

performed with D pnl (buffer: 20 mM Tris-acetate, 50 mM potassium acetate, 10 

mM Magnesium acetate, 1 mM DTT) for 1 h at 37 °C.

2.8.5 DNA visualisation and purification

Agarose (0.5-1.5% w/v) was dissolved in 50 mL of TAE buffer (40 mM 

Tris acetate, 2 mM EDTA pH  8.0) by microwave heating and poured into a Mini 

Gel Kit Tray (CSB Scientific). Once cold the gel was covered in TAE buffer and 

the DNA samples (0.25% bromophenol blue, 30% glycerol) were loaded into 

wells. Gels were run at 60 A for 75 min, stained with ethidium  bromide (0.2 pg 

m l1) and visualised by fluorescence of the intercalated ethidium bromide 

following excitation at 254 nm with a GeneFlash UV light box (Syngene, 

Cambridge, UK). Molecular weight ladders (1 kb for circular plasmid and 100 

bp for small fragments) were used to identify the appropriate bands. When 

required, DNA fragments were excised from the agarose gel with a clean 

scalpel blade and stored in an eppendorf tube.

DNA was extracted from the gel according to the manufacturer's 

instructions using the QIAquick gel extraction kit (QIAGEN, Crawley, UK) and 

stored at -20 °C.

2.8.6 Sub-cloning of Im9-W74A/N78H(NcoI-SacI) gene in pHEN2 
phagemid

Im9-W74A/N78H(NcoI/SacI) gene was excised from plasmid pET21d by 

sequential double digestion with N col and Sacl. The reaction mixture was 

visualised on an agarose gel and the band with the gene was cut out and DNA
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extraction was performed. The Im9-W74A/N78H(NcoI/SacI) gene was inserted 

with T4 ligase (New England Biolabs) in previously double digested and 

purified pHEN2 phagemid. The reaction was performed at room temperature 

for 30 minutes.

XLl-Blue ultracompetent cells were transformed with the ligation 

reaction (2 pL) and with the double digested phagemid as a control.

2.8.7 Library ligation

Sequential double digestion with K pnl and Sacl was performed on the 

DNA insert codifying for the random  mutations (Section 2.8.3). The reaction 

mixture was visualised on agarose gel to confirm the digestion. The digested 

insert was purified with the nucleotide removal miniprep (Section 2.6.4) and 

ligated, with T4 ligase (NEB), in a equimolar amount of previously double 

digested and purified pHEN2 phagemid. The reaction was performed at room 

temperature for 30 min. The DNA was precipitated (Section 2.8.9) and stored 

overnight at -80 °C.

2.8.8 Plasmid purification (QIAprep Spin Miniprep Kit)

LB medium (5 mL) containing 50 pg m L 1 ampicillin was inoculated with 

a single colony of cells containing the desired plasmid. After overnight 

incubation at 37 °C with shaking at 150 rpm in an Innova® 43 shaker (New 

Brunswick Scientific, Hertfordshire, UK) cells were harvested at 13,500 rpm in 

an Eppendorf centrifuge 5415R. The QIAprep® Spin Miniprep Kit (QIAGEN, 

Crawley, UK) was used to purify the plasmid following the manufacturer's
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instructions, using EconoSpin™ All-in-1 mini spin columns (Epoch Biolabs Inc, 

TX, USA).

2.8.9 DNA precipitation

DNA was precipitated by adding glycogen (20 pg m L 1), 0.1 volume of 3 

M sodium acetate (pH 5.2) and 2.2 volumes of ethanol. The DNA solution was 

stored at -80 °C overnight before centrifugation.

2.8.10 DNA sequencing

DNA of plasmid constructs and PCR products was sequenced by Lark 

Technologies (Cogenics, Essex, UK) or the DNA Sequencing Facility at School 

of Bioscience, Cardiff University.

2.9 Phage Display

2.9.1 Preparation of helper phage VCSM13

SB medium (2 mL) containing 20 pg m L 1 tetracycline was inoculated 

with XLl-Blue cells (2 pL) (Section 2.7.5) and incubated for 1 h at 37 °C with 

shaking at 250 rpm. 1 pL of a 10'6 dilution (in SB medium) of commercially 

obtained VCSM13 was added to the XLl-Blue culture and incubated for 15 min 

at room temperature. Liquefied LB top agar (3 mL) was added and the resulting 

solution was poured onto non-selective LB agar and incubated overnight at 37 

°C.
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The following day, SB medium (10 mL) containing 20 pg m L 1 tetracycline 

was inoculated with XLl-Blue cells (10 pL) and incubated for 1 h at 37 °C with 

shaking at 250 rpm. A single VCSM13 plaque was transferred to the cell culture. 

The infected culture was added to SB medium (500 mL) containing 20 pg m L 1 

tetracycline and 20 pg mL'1 kanamycin. The flask was incubated overnight at 37 

°C with shaking at 250 rpm.

The culture was centrifuged at 2500 g  for 15 min. The supernatant 

solution was incubated at 70 °C for 20 minutes and centrifuged again at 2500 g  

for 15 min. The supernatant solution was stored at 4 °C.

The titre of the phage helper preparation was calculated and expressed in 

plaque-forming units (pfu) per mL.

2.9.2 Library transformation

For each transformation 300 pL of XLl-Blue electrocompetent cells 

(Section 2.7.5) were incubated on ice for 1 min with 1.4 pg of ligated library 

(Section 2.8.7). The cells were electroporated (Section 2.7.8). The cuvette was 

flushed with 5 mL of SOC medium (Section 2.2.3) at room temperature and the 

suspension was transferred to a 50 mL polypropylene tube and incubated 

shaking at 37 °C for 1 h. 10 mL of warm SB medium (Section 2.2.4), 3 pL of 100 

mg/mL carbenicillin and 30 pL of 5 mg/mL tetracycline were added. 2 pL of the 

culture were plated to calculate the titer. The 15 mL culture was incubated for 1 

h at 37 °C, 4.5 pL of 100 mg/mL carbenicillin were added and the culture was 

incubated for another h. 2 mL of VCSM13 helper phage (Section 2.9.1) were 

added and the solution was transferred to a 500 mL bottle prior the addition of 

183 mL of warm SB medium, 92.5 pL of 100 mg/mL carbenicillin and 370 pL of 5 

mg/mL tetracycline. The culture was incubated for 2 h at 37 °C. 280 pL of 5100



2-Materials and methods

mg/mL kanamycin was added and the culture was incubated overnight at 37 

°C.

The cells were harvested by centrifugation and the supernatant was 

transferred in a clean bottle. PEG-8000 (4% w/v) and sodium chloride (3% w/v) 

were added. The solution was stored on ice for 30 min, centrifuged at 15,000 g  

for 15 min, and the supernatant was discarded and the phage pellets were 

resuspended in 2 mL of Tris buffer (15 mM pH  8) with BSA (1% w/v). The 

solution was centrifuged at 10,000 g and the supernatant was passed through a 

0.2 pm filter. The phage preparation was used for panning.

2.9.3 Panning

The fresh prepared library (Section 2.9.2) was incubated with 50 pL of 

Dynabeads with no transition state analogue bounded for 1.5 h in order to 

remove the non-specific binders. The phage solution was then incubated for 1.5 

h with Dynabeads with the transition state analogue bound. In the meantime 2 

x 2 mL of SB medium were inoculated with 2 pL of XLl-Blue electrocompetent 

cells and incubated shaking until an optical density of 1 at 600 nm. The phage 

solution was removed and the beads were washed 4 times with Tween 20 

(0.05%) in TBS. The beads were then incubated with 50 pL of 100 mM glycine- 

HC1 (pH 2.2) for 10 min at room temperature. The solution was then transferred 

to a microcentrifuge tube containing 3 pL of 2 M Tris base. The neutralised 

solution was added to one of the 2 mL XLl-Blue cultures and it was incubated 

for 15 min at room temperature. 6 mL of SB medium, 1.6 pL of 100 mg/mL 

carbenicillin and 12 pL of 5 mg/mL tetracycline, were added to the culture in a 

50 mL polypropylene tube. 2 pL of this culture were plated on LB 

agar/carbenicillin plates for the output tittering. For the input titering 50 pL of
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the other 2 mL SB culture were inoculated with 1 pL of a 10'6 dilution of the 

phage preparation and plated after 15 min incubation on LB agar/carbenicillin 

plates. The 8 mL culture was incubated at 37 °C for 2 h and ampicillin was 

added after the first hour. The culture was transferred to a 500 mL bottle and 1 

mL of VCSM13 helper phage (Section 2.9.1) plus 91 mL of SB medium with 

carbenicillin and tetracycline were added. The culture was incubated overnight 

at 37 °C (kanamycin was added after the first 2 h).

The cells were harvested by centrifugation and the supernatant was 

transferred in a clean bottle. PEG-8000 (4% w/v) and sodium chloride (3% w/v) 

were added. The solution was stored on ice for 30 min, centrifuged at 15,000 g  

for 15 min, and the supernatant was discarded and the phage pellets were 

resuspended in 2 mL of Tris buffer (15 mM pH  8) with BSA (1% w/v). The 

solution was centrifuged at 10,000 g and the supernatant was passed through a 

0.2 pm filter. The phage preparation was used for the next panning round.

2.10 Protein Expression

2.10.1 Test expression

To optimise condition a small-scale expression was performed for every 

mutated protein.

LB medium (100 mL) was inoculated with 1 mL of an overnight culture 

and incubated at 37 or 30 °C to an OD 600 nm of 0.6. Expression was induced with 

IPTG and allowed to continue for 5 h at 37 °C or overnight at 16 °C. The 

expression was sampled every hour (37 °C) or every 4 h (16 °C) for SDS- PAGE 

analysis. All mutants gave best results at 16 °C.
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2.10.2 Large scale expression

BL21(DE3) competent cells (Stratagene, CA, USA) were transformed with 

the required plasmid and incubated overnight on LB agar containing 50 pg m L 1 

ampicillin at 37 °C. LB medium (100 mL) containing 50 pg m L 1 ampicillin was 

inoculated with a single colony and incubated overnight at 30 °C with shaking 

at 150 rpm in a Innova® 43 shaker. This starter culture was then subcultured 

(1:100 dilution) into LB medium (6 x 500 mL) containing 50 pg m L 1 ampicillin 

and incubated at 30 °C, 150 rpm to an OD 600 nm of 0.6. Expression was induced 

with IPTG and the temperature was lowered to 16 °C. The expression was 

allowed to proceed overnight. Cells were harvested via centrifugation in a 

Sorvall RC5C Plus (Thermo Scientific, UK) centrifuge (rotor SLA-3000) at 16000 

g  for 12 minutes at 4 °C and stored at -20 °C.

2.11 Protein Purification

2.11.1 DEAE anion exchange chromatography

Frozen cells were thawed on ice, resuspended in protein purification 

buffer A, and lysed by sonication for 3 min. Cellular debris was removed via 

centrifugation in a Sorvall RC5C Plus centrifuge (rotor SS-34) at 34000 g  for 20 

min at 4 °C, and the supernatant solution was applied to a DEAE 

(diethylaminoethyl) column (70 mL). After equilibration with purification 

buffer A (3 column volumes) to remove unbound proteins, the desired protein 

was eluted with a linear salt gradient (NaCl 50-1000 mM) using purification 

buffer B over 6 column volumes. The fractions containing the protein, as judged 

by SDS-PAGE, were pooled and dialysed against protein dialysis buffer.
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2.11.2 SourceQ™ anion exchange chromatography

The dialysed solution following DEAE purification was applied to a 

Tricorn™ (GE healthcare) column packed with SourceQ™ (GE healthcare) resin 

(8 mL). The column was washed with purification buffer A (3 column volumes) 

to remove unbound proteins. The desired protein was then eluted in 

purification buffer B with a linear salt gradient (NaCl 50-1000 mM) over 20 

column volumes. The fractions containing the protein, as judged by SDS-PAGE, 

were pooled and dialysed against protein dialysis buffer.

2.11.3 Ni affinity chromatography

Frozen cells were thawed on ice, resuspended in 500 mM phosphate 

buffer (pH 7), and lysed by sonication for 3 min. Cellular debris was removed 

via centrifugation in a Sorvall RC5C Plus centrifuge (rotor SS-34) at 34000 g  for 

20 min at 4 °C, and the supernatant solution was applied to a HiTrap™ (GE 

Healthcare) column (1 mL) charged with NiSCh solution. The protein was 

eluted with phosphate buffer containing increasing concentrations of imidazole 

(10-200 mM). The fractions containing the protein, as judged by SDS-PAGE, 

were pooled and, dialysed against 500 mM phosphate buffer (pH 7).

2.11.4 Amicon ultrafiltration

High molecular weight impurities were removed by passing the solution 

through a YM30 membrane. The pure protein was collected in the flow

through, freeze dried, and stored at -20 °C.
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2.12 Protein Characterisation

2.12.1 SDS polyacrylamide gel electrophoresis

SDS gels (5% stacking gel, 17% running gel) were produced following 

the Mini-PROTEAN™ 3 Cell (Bio-Rad) protocols. Protein loading dye was 

added to the samples, which were then heated to 90 °C for 1 min to denature 

proteins prior to loading onto the gel. Gels were run at 200 V for 55 min in 1 x 

electrode running buffer. Proteins were visualised by staining the gel (0.25% 

w/v Coomassie Brilliant Blue R250 in 40% v/v ethanol, 10% v/v glacial acetic 

acid) for 1 h and destaining it (40% v/v ethanol, 10% v/v glacial acetic acid) for 1 

h.

2.12.2 MALDI-TOF

A solution of 10 mg mL^sinapinic acid (for proteins) or 10 mg mL4 a- 

cyano-4-hydroxycinnamic acid (CHCA) (for peptides) in water:acetonitrile: 

trifluoroethanoic acid (40:60:0.1; v/v) was used as matrix. Sandwich sample 

preparation was used: 1 pL of the matrix was loaded on the plate and allow to 

dry, then 1 pL of sample solution was loaded on the top of the matrix and again 

allow to dry. Finally 1 pL on the matrix was loaded on the top to complete the 

process. The samples were analysed with a MALDI-TOF Micro MX 

spectrophotometer (Waters, Manchester, UK) used in reflection mode, positive 

polarity, mass range 3,000-12,000 to identify the protein of interest (molecular 

weight of 9,000-10,000) and mass range 1,500-3,500 to identify Apoxaldie 

(molecular weight of 1,900).
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2.12.3 Determination of the concentration of Im9

The concentration of Im9 (WT and mutants) was determined by UV 

spectroscopy measuring the absorbance at 280 nm. An extinction coefficient of 

11400 M 1 cm 1 (Wallis et al. 1994) was used for Im9. The extinction coefficient for 

the mutants were calculated using the ProtParam tool (Gasteiger et al. 2005).

2.12.4 Kinetics parameters for Im9

Kinetic data were acquired on a Shimadzu UV-2101PC 

spectrophotometer equipped with a Shimadzu CPS thermocontroller, in 100 

mM MOPS (pH 7) at 17 °C. The production of p-nitrophenol was monitored at 

320 nm (8320nm = 7600 M 1 cm 1). An excess of protein (150-600 pM) was used to 

determinate the pseudo-first-order rate constants. Due to its low aqueous 

solubility, the substrate p-nitrophenol acetate was dissolved in acetonitrile to 

give a stock solution of 15 mM. This solution (3 pL) was added to temperature 

equilibrated protein solution (997 pi) in a 10 mm path-length cuvette to give a 

final substrate concentration of 30 pM. A linear regression analysis of the 

pseudo first order data determined experimentally gave the second order rate 

constants as a function of the protein concentration.

2.13 Peptide Syntheses

2.13.1 Standard synthesis

Apoxaldie and Apoxaldie-Dab were synthesised using a microwave 

assisted Liberty peptide synthesiser (CEM) and standard Fmoc chemistry (Jones
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1992). The Fmoc and side-chain protected amino acids [Asn, Cys (Trt); Cys 

(Acm); Glu (OtBu); Thr (tBu); Dab, Lys (Boc)] were coupled to a Rink amide 

resin on a polystyrene support. The amino acids were activated in situ  using O- 

benzatriazol-lyl-N,N,N,N-tetramethyluroniumhexafluorophosphate, 

hydroxybenzatriazole and, N,Ndiisopropylethylamine (HBTU, HOBt, DIEA). 

All peptides were acetylated with acetic anhydride on resin.

Cleavage from the resin and deprotection was performed with 10 mL 

trifluoroacetic acid (TFA):water:phenol:triisopropylsilane (88:5:5:2; v/v) per 

gram of resin for 2 h at room temperature. After filtration to remove the resin 

the solution was concentrated under reduced pressure and the peptide was 

precipitated with ice-cold diethyl ether ( 3 x 5  mL). The precipitate was 

dissolved in water:acetonitrile (50:50 v/v) and lyophilised to give yields in the 

range of 5-10 mg of peptide.

2.13.2 Oxidation and purification of Apoxaldie

Apoxaldie was reduced with two equivalents of solid phase supported 

tris(2-carboxyethyl)phosphine (TCEP) to ensure complete reduction in 5 mM 

potassium phosphate buffer (pH 8). The final peptide concentration was 0.3 mg 

ml-1 to prevent oligomerisation. The TCEP resin was removed and oxidation 

was performed stirring vigorously overnight. Water was removed under 

reduced pressure with gentle heating. Apoxaldie was purified by semi

preparative reversed phase high pressure liquid chromatography (RP-HPLC) 

on a LUNA 10 p C18 column (250 x 10 mm) using a linear gradient of 60-100% 

v/v aqueous acetonitrile (containing 0.05% TFA) over 40 min at 5 mL min-1. RP- 

HPLC analysis using a linear gradient of 60-100% v/v aqueous acetonitrile
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(containing 0.05% TFA) over 30 min at 2 mL min-1 on an analytical LUNA 10 p 

C18 column (250 x 4.6 mm) revealed the peptide was pure.

2.13.3 Orthogonal preparation of Apoxaldie-Dab

Orthogonally protected peptides were synthesised by Alta Bioscience 

(University of Birmingham, U.K.) using trityl (Trt) and S-acetamidomethyl 

aminoacetal (Acm) protection for the thiol groups (Trt for Cys 1 and Cys 11, 

Acm for Cys 3 and Cys 15). Standard protecting groups were used for all other 

amino acids and capping of the N-terminal amino group was performed with 

acetic anhydride.

The peptide was received fully deprotected except for Cys 3 and Cys 15.

The first disulfide bond was formed by dissolving the peptide in 5 mM 

potassium phosphate buffer (pH 8) at a concentration of 0.5 mg m L 1. Oxidation 

occurred overnight at room temperature. After concentration under reduced 

pressure with gentle heating, the peptide was purified by RP-HPLC on a LUNA 

lOp C18 column (250 x 21.2 mm) using a linear gradient of 60-100% v/v aqueous 

acetonitrile (containing 0.05% TFA) over 1 hour at 5 mL min-1.

The Acm protecting groups were removed with silver triflate (10 peptide 

equivalents) in TFA (5 mL) for 1 h at 4 °C. TFA was removed under reduced 

pressure with gentle heating and the peptide precipitated and washed with ice- 

cold diethyl ether (3 x 15 mL). The peptides were purified by RP-HPLC on a 

LUNA lOp C18 column (250 x 21.2 mm) using a linear gradient of 60-100% v/v 

aqueous acetonitrile (containing 0.05% TFA) over 40 minutes at 5 mL min-1.

The second disulfide bond was then formed by air oxidation (see above) 

and the final product isolated by HPLC on a LUNA lOp C18 column (250 x 21.2
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mm) using a linear gradient of 60-100% v/v aqueous acetonitrile (containing 

0.05% TFA) over 40 minutes at 5 mL min-1. The identity of the products was 

confirmed by MALDI-TOF-MS.

2.14 Apoxaldie and Apoxaldie-Dab Characterisation

2.14.1 Determination of the concentration of Apoxaldie-Dab

The concentration of Apoxaldie-Dab was determined by quantitative 

amino acid analysis (Alta Bioscience).

2.14.2 Determination of the concentration of Apoxaldie

The concentration of Apoxaldie in its oxidised form was determined by 

UV spectroscopy using 5,5'-dithiobis(2-nitrobenzoic acid) (Ellman's reagent) 

after reduction of the samples with solid supported TCEP.

Oxidised glutathione (GSSG) was used to construct a calibration curve. 

GSSG (0.125-1 mM) and Apoxaldie (unknown concentration) solutions (200 pL 

each) were reduced with TCEP slurry (100 pL) for 1 h under nitrogen. The 

samples were then incubated with Ellman's reagent for 15 min following the 

manufacturer's instruction and the absorbance was measured at 412 nm. Linear 

regression of the data gave the calibration curve.
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2.14.3 Kinetics parameters for Apoxaldie and Apoxaldie-Dab

Kinetic data were acquired on a Shimadzu UV-2101PC 

spectrophotometer equipped with a Shimadzu CPS thermocontroller. The rate 

of production of pyruvate from decarboxylation of oxaloacetate was 

determined at 25 °C in N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid 

(BES) (1 M, pH 7) containing NaCl (10 mM). An enzyme-coupled assay, with 

lactate dehydrogenase reducing pyruvate to lactic acid using NADH as 

cofactor, was used to record kinetic data for Apoxaldie and Apoxaldie-Dab. The 

oxidation of NADH (0.2 M) was monitored at 340 nm following the linear 

decrease in absorbance ( e n a d h  = 6.23 x 103) over time.

The concentration of the peptides was held at 10 pM and the 

concentration of oxaloacetate was varied from 5 mM to 200 mM.

2.15 CD Spectroscopy

Circular dichroism (CD) spectroscopy was performed using a 

Chirascan™ (Applied Photophysics, UK). All experiments were carried out in 

degassed 10 mM potassium phosphate buffer (pH 7.0), using a 0.1 cm path- 

length cuvette. All the blank experiments were recorded with only buffer in the 

cuvette. A working concentration of 10 pM was used for Im9 at its mutants as 

well for Apoxaldie and Apoxaldie-Dab.

Spectra were recorded between 190 and 400 nm. Thermal unfolding 

experiments were performed between 5 and 90 °C in a 1 mm path cuvette with 

a temperature gradient of 0.5 °C min-1. The signal (in mdeg) obtained from the 

CD experiments was converted to MRE using the following equation
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& m r e  — 0  ~  (10 x n x c x l )

where

0  = CD signal in mdeg

n = number of backbone peptide bonds

c = concentration of the sample in mol dm*3

1 = path-length of the cuvette in cm

2.16 Synthesis of Transition State Analogue

A mixture of ethyl 4-(diethoxyphosphoryl)butanoate 1 (2.65 g, 10.6 

mmol) and concentrated HC1 (60 mL) was stirred under reflux for 15 h. After 

removal of the solvent, the residues was washed with dioxane (10 mL) and 

concentrated under reduced pressure to dryness. This process was repeated 

twice. The solid was then washed with toluene (10 mL) and concentrate under 

reduced pressure. This process was repeated twice. The crude compound 2 was 

obtained as white solid (1.7 g, 10.1 mmol) and was suspended in SOCL (3 mL,

40.4 mmol) and DMF (200 pL) as a catalyst. The mixture was stirred at 55 °C for 

15 h. After cooling, excess of SOCL was removed under reduced pressure. The 

crude acyl chloride 3 was obtained as green oil (2.25 g).

To p-nitrophenol (5.60 g, 40.4 mmol) in THF (40 mL) was added NaH 

(60% dispersion in paraffin liquid, 1.60 g (0.94 g), 40.4 mmol) with stirring at 

room temperature. Stirring was continued until evolution of H 2 ceased. To the 

mixture was added a solution of the crude trichloride 3 (1.7 g, 10.1 mmol) in 

THF (40 mL) gradually with vigorous stirring at room temperature. The 

mixture was stirred for 12 h. The reaction mixture was poured into an ice-
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aqueous solution of HC1 and then was extracted with ethyl acetate (3 x 50 mL). 

The combined organic layers were washed with brine, dried over MgSCh and 

concentrated under reduced pressure to dryness. Triester 4 was obtained as a 

brown powder (5.38 g, 25% from 1).

The triester 4 (5.38 g, 10.1 mmol) was stirred vigorously in 0.5 M aqueous 

NaOH solution (200 mL) at room temperature for 48 h. After removal of 

unreacted impurities by filtration, the filtrate was acidified with 0.5 M aqueous 

HC1 solution and concentrated under reduced pressure to dryness. The residue 

was purified by RP-HPLC (Luna: C-18 reverse phase column, CH3CN:0.1% 

aqueous TFA = 20:80, 3.0 mL m in 1, 254 nm, retention time 14.6 min). The 

CH3CN and TFA were removed under reduced pressure and the water by 

lyophilisation to give acid 5 as a white solid (231 mg, 8% from 1). NMR 

(400MHz, D2O) : 5 8.17 (d, J=9.0Hz, 2H), 7.17 (d, J=8.5Hz, 2H), 2.39 (m, 2H), 

1.80-1.63 (m, 4H); 13C NMR (100 MHz, D2O) 5 177.4, 158.1, 145.1, 126.2, 121.1, 

34.7, 31.1, 27.8.

Tosyl-Dynabeads® (50 mg, 5-10 pmol) were stirred in CH 3CN (2.25 mL) 

and 10 pM aqueous NaOH (2.25 mL) at room tem perature for 24 hours. The 

reaction was followed by analytical RP-HPLC monitoring the release of the 

tosyl group. The HO-Dynabeads were collected and washed with H 2O.

The beads (30 mg, 3-6 pmol) were mixed with acid 5 (2 mg, 6 pmol) in 

DMF (5 mL), Z^N'-diisopropylcarbodiimmide (1 pL, 7 pmol) and 4- 

dimethylaminopyridine (catalytic amount) were added to the mixture and 

stirred at room tem perature for 24 h. The ester 6 was collected and washed 

with water (Scheme 2.1). The success of the reaction was confirmed by the 

presence of p-nitrophenol which was released by incubation of the beads with 

HC1.
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Reagents and conditions: a) conc. HCL, reflux; b) SOCL2, DMF; c) p-nitrophenol, NaH, THF 
d) 0.5 M NaOH; e) DMF, DIC, DMAP.

Scheme 2.1: Synthesis of 4-(hydroxy(4-nitrophenoxy)phosphoryl) butanoate-
Dynabeads®
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3. APOXALDIE-DAB
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3.1 Introduction

Small peptides without a definite secondary structure seldom display 

catalytic activity, so a simple array of functional groups is not enough to induce 

function. Multidisulfide peptides, with defined secondary structure are 

therefore of particular interest. The spacing between the cysteines plays a key 

role in the correct formation of the disulfide bonds avoiding formation of non

native forms (Loret et al. 1990; Olivera et al. 1991; Chau et al. 1992; Huyghues- 

Despointes et al. 1992; Ramalingam et al. 1993; Xu et al. 1994; Dauplais et al. 1995; 

Fainzilber et al. 1995; Price-Carter et al. 1996b; Price-Carter et al. 1996a; Landon 

et al. 1997; Blanc et al. 1998; Lecomte et al. 1998; Pegoraro et al. 1999; Savarin et al. 

1999; Martin et al. 2000; Chin et al. 2001; Chagot et al. 2005; Fuller et al. 2005; Han 

et al. 2006; Tan et al. 2006; Kang et al. 2007; Zugasti-Cruz et al. 2008; Daly et al. 

2009; Halai et al. 2009; Jacob et a l ) .  Small rigid peptides can be used as scaffolds 

on which to graft active sites. The intrinsic stability of those peptides allows 

several mutations on the solvent exposed faces w ithout disturbing their folding.

The 18-residue peptide apamin is a neurotoxin present in the venom of 

honeybees (Figure 3.1). Its neurotoxic activities consist in the selective blocking 

of the small conductance Ca2+ activated K+ (SKCa) channels (Fletcher et al. 2007). 

Two disulfide bonds make it extremely stable to thermal and chemical 

denaturation: apamin does not unfold completely even at 70 °C in 6 M 

guanidinium hydrochloride (Pease et al. 1988). Apamin has been used as 

scaffold to create hybrids with a broad range of functions (Pease et al. 1990; 

Brazil et al. 1997; Turner et al. 2003; Weston et al. 2004; Li et al. 2009).
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Figure 3.1: Molecular model of apamin based on N M R structure. The two disulfide 
bonds (Cys 1-Cys 11 and Cys 3-Cys 15) make the peptide extremely stable (Pease et al. 
1988)

Pease et al. synthesised two hybrid apamin-S peptides. The S peptide 

consisting of the first 20 amino acid of RNase A and binds to S protein (with an 

association constant of 106 M 1), the large fragment of RNase A from which it 

was cleaved, reactivating the nuclease activity (Potts et al. 1963). The two 

hybrids were constructed replacing the non-cysteine amino acids from the 

helical region of apamin with those from the S-peptide. Both hybrids folded 

into a structure essentially identical to that of the parent apamin and restored 

the nuclease activity to a level essentially equivalent to that found with the S 

peptide itself (Pease et al. 1990).

Brazil et al. synthesised three hybrid peptides encompassing a portion of 

apamin and a sequence from an amphipathic helix in the N-terminal region of 

bovine rhodanase in order to study the binding to molecular chaperone cpn60, 

which helps the protein fold (Brazil et al. 1997). The hybrids were designed to 

present either a hydrophobic or hydrophilic face of the amphipathic helix. The
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peptide with the exposed hydrophilic face did not bind to cpn60, instead the 

one with a hydrophobic face exposed bound with a K d of 106 pM. This 

observation showed that the binding to cpn60 is favoured by a secondary 

structure that organises and exposes a hydrophobic surface.

Li et al. grafted 4 residues of PMI peptide to apamin (Li et al. 2009). PMI 

is a 12 amino acids peptide which inhibits the interactions between protein 

tumour suppressor p53, MDM2 and MDMX. The latter two are oncogenic 

proteins that negatively regulate p53. The hybrid peptides demonstrated to be 

potent inhibitors of the p53-MDM2/MDMX interaction.

Turner et al. fused apamin to the DNA binding helix of MyoD creating 

the protein apa-MyoD (Turner et al. 2004). The disulfide stabilised helix from 

apamin was used to hold apa-MyoD's DNA recognition helix in a 

predominantly a-helical conformation. Consequently the DNA complexes with 

apa-MyoD showed an increased thermal stability (by 13 °C) and a 20-fold 

increase in binding specificity relative to MyoD. The significant increase of 

DNA binding demonstrated by the oxidised apa-MyoD was due the presence of 

the disulfide bonds. The reduced apa-MyoD, on the other hand, showed only a 

2-fold increase of binding due the lack of the disulfide bonds.

Weston et al. synthesised Apoxaldie, an apamin-derived miniature 

enzyme with oxaloacetate decarboxylase activity (Weston et al. 2004). The active 

site was designed with three Lys residues in positions 9, 13 and 16 on the 

solvent exposed face of the apamin a-helix (Figure 3.2).

The proximity of two other Lys had been reported to decrease the pKa of 

an amino residue of Lys by two orders of m agnitude in the Oxaldie peptides 

(Johnsson et a l  1993; Taylor et al. 2001; Taylor et al. 2002). The proposed 

mechanism of action was based on the amine-catalysed decarboxylation of p-
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keto acids (as in acetoacetate decarboxylase) where a Schiff-base is formed after 

the attack of the amino group on the carbonyl group (Scheme 3.1).

Apoxaldie showed remarkable thermal stability, with no loss of 

secondary structure up to 75 °C. The peptide showed a remarkable chemical 

stability to denaturant with a little loss of helicity in presence of 6 M 

guanidinium chloride. The rate of decarboxylation was increased by almost 

four orders of magnitude compared to simple amines, while Apamin didn't 

show any measurable activity (Weston et al. 2004).

K9

C l

K15£15
C3

K13

Figure 3.2: Molecular model of Apoxaldie-1 based on the N M R structure of apamin. 
Cysteine residues are shown in yellow, lysines in red, helical residues in green, and other 
residues in blue.
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Scheme 3.1: Proposed mechanism of action of oxaldie peptides. The mechanism was 
based on the amine-catalysed decarboxylation of fi-keto acids.

3.1.1 Aims

The aim of this part of the project was to produce a new miniature 

enzyme based on the previously-characterised miniature oxaloacetate 

decarboxylase Apoxaldie (Weston et al. 2004).

Shortening the side chains of the basic amino acids in the active site will 

bring them nearer to the chiral environment of the a-helix of apamin scaffold 

therefore increase the selectivity toward chiral substrates (Colonna et al. 1983; 

Takagi et al. 2000; Kelly et al. 2004; Blank et al. 2006; Maayan et al. 2009). At the 

same time a shorter side chains will bring the amino groups closer. This spatial 

proximity should further lower the basic amino acids' pKa compared to 

Apoxaldie and consequently increase the catalytic activity.
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3.2 Results and Discussion

3.2.1 Design of a new apamin-based miniature enzyme

In order to bring the active site of Apoxaldie closer to the chiral 

environment of the apamin scaffold and to restrict the flexibility of the side 

chain of Lys residues in the active-site, homologues with shorter side chains 

were considered (Figure 3.3).

O
HO> HO

NH„

NH2

L-lysine

1
NH,

L-2,4-diaminobutyric acid (Dab)

HO NH-

HO H2N

o - V
n h 2

L-omithine

1
NH.

L>2,3-diaminopropionic acid

Figure 3.3: Structure of lysine and its homologues.

The possible candidates were L-2,3-diaminopropionic acid (three 

methylene groups fewer than lysine), L-2,4-diaminobutyric acid (Dab) (two 

methylene groups fewer than lysine), and L-ornithine (one methylene group 

fewer than lysine). The polar side chain of L-2,3-diaminopropionic acid can 

effectively form H-bonds with the CO or NH groups in the peptide backbone 

(Padmanabhan et al. 1996). This characteristic leads to the destabilisation of the 

a-helix. For this reason L-2,3-diaminopropionic acid was not considered. As L- 

ornithine has only one methylene group less than lysine, its physiochemical
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properties remain very similar to lysine. Dab's side chain is between L-2,3- 

Diaminopropionic acid and L-ornithine side chain length. The miniature 

enzyme was then designed using Dab and named as Apoxaldie-Dab.

3.2.2 Synthesis and purification of Apoxaldie-Dab

Apoxaldie-Dab was synthesised using standard Fmoc chemistry solid 

phase peptide synthesis (Jones 1992) using a microwave assisted peptide 

synthesiser (Scheme 3.2). The Fmoc and side-chain protected amino acids were 

coupled with Rink amide resin on polystyrene support. The amino acids were 

activated in situ  using 0-benzatriazol-lyl-N,N,N,N-

tetramethyluroniumhexafluorophosphate, hydroxybenzatriazole and, N ,N -  

diisopropylethylamine (HBTU, HOBt, DIEA). The peptide was N-terminally 

acetylated on resin with acetic anhydride. Apoxaldie-Dab was then cleaved and 

fully deprotected in trifluoroacetic acid (TFA) in the presence of scavengers 

(phenol; triisopropylsilane; and water) to give the final product

Ac-CNCKAPETDabLCADabACDabLN-NH2

The peptide was purified by reversed phase high pressure liquid 

chromatography (RP-HPLC) with a Luna C18 column (5 pm, 150 x 10 mm) 

using a linear gradient 60-90% aqueous acetonitrile containing 0.05% TFA over 

30 min, flow rate 5 mL m in 1 and was detected by MALDI-TOF mass 

spectrometry, to have a mass of 1895 which is in agreement with the calculated 

value of 1894.88 (Figure 3.4). The final yield of the purified peptide was around 

20%.
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Scheme 3.2: Solid phase peptide synthesis using standard Fmoc chemistry.
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Figure 3.4: RP-HPLC chromatogram of purified reduced Apoxaldie-Dab using a linear 
gradient of 60-90% v/v aqueous acetonitrile (containing 0.05% TFA) over 30 min at 5 
mL m im 1. The peak with a retention time o f 12.6 minutes (73% acetonitrile) contained 
the peptide as confirmed by M ALD I mass spectrometry (insert).

3.2.3 Oxidation of Apoxaldie-Dab

To ensure that all cysteines residue were fully reduced prior to oxidation, 

the purified peptide was dissolved in potassium  phosphate buffer (pH 8.0, final 

peptide concentration 250 pM to avoid polymerisation) and incubated with 

immobilised TCEP at room tem perature for 1 h. The immobilised TCEP was 

removed by filtration and the fully reduced peptide was air oxidised by 

vigorous stirring. Air oxidation is catalysed by traces of metals, such as 

copper(II) and iron(III), present in the solution and the reaction requires the 

ionised thiolate species (Cecil et al. 1959) (Scheme 3.3).
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Scheme 3.3: Air oxidation of the peptide. The reaction is catalysed by traces of metals 
present in the solution.

The concentration of free sulfhydryl groups was checked with 5,5'-dithio- 

fo's-(2-nitrobenzoic acid) (DTNB or Ellman's reagent). DTNB reacts specifically 

to -SH groups at neutral and basic pH  and the reaction produces 2-nitro-5- 

thiobenzoic acid (TNB) (Scheme 3.4), which can be easily detected by UV-VIS 

spectroscopy at 412 nm.

o

DNTB2- TNTB2'Mixed disulfide

Scheme 3.4: Ellman's reagent reaction. The product of the reaction can be easily detected 
by UV-vis spectroscopy.

The timeline of oxidation of disulfide was checked by taking a sample of

the peptide solution every 12 h and subjecting it to Ellman's reagent test.

Typically a 250 pL of peptide solution was mixed with a 50 pL of DTNB 4

mg/mL stock solution in phosphate buffer pH  8.0. Total reaction volume was

2.5 mL. The reaction was incubated at room tem perature for 15 min before the

UV absorbance at 412 nm was measured. The UV readings indicated that even

after 48 h there were still approximately 30% of the sulfhydryl groups
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(concentration of -SH = 300 pM) present. Therefore DMSO was added to the 

reaction mixture to give a final concentration of 5% v/v to facilitate oxidation. 

DMSO as a mild oxidizing agent for thiols produces water and dimethylsulfide 

as by-products from the oxidation (Wallace 1964; Wallace et al. 1964).

2 RSH + (CH3)2SO -----► [(CH3)2S(OH)SR] -----► R2S + RSSR + H20

DMSO is miscible with water and allows the oxidation reaction to be 

performed over a broad pH range. The reaction has been found to be up to forty 

times faster than simple air oxidation (Tam et al. 1991). In the case of Apoxaldie- 

Dab, upon addition of DMSO, the oxidation was complete in 2 h (concentration 

of sulfhydryl groups below Ellman's reagent detection limit) and the oxidised 

peptide was purified by RP-HPLC with a Luna C l8 column (5 pm, 150 x 10 

mm) using a linear gradient 60-90% aqueous acetonitrile containing 0.05% TFA 

over 30 min, flow rate 5 mL m in 1. The chromatogram shows the presence of 2 

isomers (Figure 3.4). MALDI-TOF mass spectrometry confirmed both have the 

correct mass 1891, as the calculated mass for the oxidised peptide is 1891 

(Figure 3.5).

The overlapping of the peaks made the complete separation of the two 

isomers impossible. In order to improve the separation a flatter gradient was 

used 70-80% aqueous acetonitrile and 0.05% TFA over 40 min but the 

separation did not improve. Another oxidation strategy, using reduced 

glutathione (GSH) mixed in a 10:1 ratio with its oxidized form (GSSG) as redox 

buffer, was then used. Thiols have been used to help renaturation of proteins; 

the presence of traces of metals help the reaction but the sulfhydryl-disulfide
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exchange can be the only method of re-oxidation (Scheme 3.5) (Wetlaufer et al. 

1970).

13 min800
100]
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1500 2000
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Figure 3.5: RP-HPLC trace of air oxidise Apoxaldie-Dab mixture recorded using a linear 
gradient of 60-90% v/v  aqueous acetonitrile (containing 0.05% TFA) over 30 min at 5 
mL min-1. The two peaks contained the peptide in the oxidised form as confirmed by 
MALDI mass spectrometry (inserts).
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Scheme 3.5: The use of GSH-GSSG redox buffer helps renaturation of the proteins.

The peptide (final concentration 250 pM) was dissolved in phosphate 

buffer (pH 8.0) containing GSH/GSSG (4/0.4 mM) with constant stirring for 24 

h. The oxidised peptide was purified by RP-HPLC with a Luna C18 column (5
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pm, 150 x 10 mm) using the flatter gradient 70-80% aqueous acetonitrile and 

0.05% TFA over 40 min. However no appreciable improvement in the 

separation was achieved (Figure 3.6).

500i 73.5

GSSG
400

300
(A

X< 200 13 m in
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72.5
10 1211 13 14 15
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Figure 3.6: RP-HPLC trace after use of redox buffer using a linear gradient of 70-80%  
v/v aqueous acetonitrile (containing 0.05% TFA) over 40 min at 5 mL min-1. The 
separation of the two isomers didn't improve.

3.2.4 Synthesis and purification of Apoxaldie-Dab with orthogonal 
protection

To obtain Apoxaldie-Dab in the desired conformation, the peptide was 

synthesized by Alta Bioscience (University of Birmingham) using orthogonal 

triphenylmethyl (Trt) (Cys 1 and 11) and acetamidomethyl (Acm) (Cys 3 and 

15) protecting groups.

The peptide was received fully deprotected except for the Cys 3 and 15 

which were protected with Acm (Scheme 3.6). The peptide (final concentration 

250 pM) was dissolved in phosphate buffer (pH 8.0) and air oxidised to form 

the first disulfide bond between Cys 1 and Cys 11 overnight with constant
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stirring. The completion of the reaction was monitored with Ellman's reagent 

(sulfhydryl concentration below detectable limit). The peptide was purified by 

RP-HPLC with a Luna C l8 column (5 pm, 150 x 10 mm) using a linear gradient 

60-90% aqueous acetonitrile containing 0.05% TFA over 30 min, flow rate 5 mL 

m in1. The purified peptide with 1 disulfide bond was then subjected to the 

removal of the Acm protecting groups of Cys 3 and Cys 15. The deprotection 

was performed with silver triflate (10 peptide equivalents) in TFA. After the 

reaction, the acid was removed under reduced pressure and the peptide was 

purified by RP-HPLC with a Luna C18 column (5 pm, 150 x 10 mm) using a 

linear gradient 60-90% aqueous acetonitrile containing 0.05% TFA over 30 min, 

flow rate 5 mL m in 1. The second disulfide bond was then formed by air 

oxidation in phosphate buffer (pH 8.0) and the final product isolated by HPLC 

with a Luna C18 column (5 pm, 150 x 10 mm) using a linear gradient 60-90% 

aqueous acetonitrile containing 0.05% TFA over 30 min, flow rate 5 mL m in 1. 

The mass of the products was confirmed by MALDI-TOF-MS.

The purity of the purified peptide was assessed by RP-HPLC Luna C18 

analytical column (5pm, 150 x 5 mm) using a linear gradient (60-90% aqueous 

acetonitrile containing 0.05% TFA over 30 min, flow rate 1 mL m in 1). The 

peptide eluted as a single peak (Figure 3.7).



3-Apoxaldie-Dab

Acm Acm

Ac-Cys-Asn-Cys-Lys-Ala-Pro-Glu-Thr-Dab-Leu-Cys-Ala-Dab-Ala-Cys-Dab-Leu-Asn-NH2

Air OX
Phosphate buffer pH 8.0 
room temperature 
overnight AcmAcm

Ac-Cys-Asn-Cys-Lys-Ala-Pro-Glu-Thr-Dab-Leu-Cys-Ala-Dab-Ala-Cys-Dab-Leu-Asn-NH2r 1) AgOTf (10 eq)
TFA

2) Air OX
Phosphate buffer pH 8.0 

^  room temperature 
overnight

Ac-Cys-Asn-Cys-Lys-Ala-Pro-Glu-Thr-Dab-Leu-Cys-AIa-Dab-Ala-Cys-Dab-Leu-Asn-NH2r
Scheme 3.6: Synthesis of Apoxaldie-Dab using Acm protecting group for Cys 3 and 15.
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Figure 3.7: RP-HPLC trace of Apoxaldie-Dab on an analytical column using a linear 
gradient (60-90% v/v aqueous acetonitrile containing 0.05% TFA over 30 min). The 
peptide eluted as single peak.
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3.2.5 Synthesis and purification of Apoxaldie

Apoxaldie was synthesised as a positive control using standard Fmoc 

chemistry (Jones 1992) using a microwave assisted peptide synthesiser (Scheme 

3.2). The peptide was N-terminally acetylated on resin with acetic anhydride 

and C-terminally amidated to give the final sequence

Ac-CNCKAPETKLCAKACKLN-NH2

The peptide was purified by RP-HPLC with a Luna C l8 column (5 pm, 

150 x 10 mm) using a linear gradient 60-90% aqueous acetonitrile containing 

0.05% TFA over 30 min, flow rate 5 mL m in'1 and was found by MALDI-TOF 

mass spectrometry to have a mass of 1938 Da, which is in agreement with the 

calculated value of 1937 Da.

3.2.6 Oxidation of Apoxaldie

The purified peptide (0.5 mM) was treated with immobilised TCEP to 

assure that the cysteines were present in the reduced form. The fully reduced 

peptide was then air oxidised at pH 8.0. Testing with Ellman's reagent 

indicated that the reaction was complete after 24 h and the oxidised peptide 

was purified by RP-HPLC with a Luna C18 column (5 pm, 150 x 10 mm) using a 

linear gradient 60-90% aqueous acetonitrile containing 0.05% TFA over 30 min, 

flow rate 5 mL m in 1. The HPLC chromatogram showed the presence of a single 

peak and the mass of the eluted, 1933 Da, for the oxidised form was confirmed 

by MALDI-TOF mass spectrometry (Figure 3.8).
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Figure 3.8: RP-HPLC trace using a linear gradient (60-90% v/v aqueous acetonitrile 
containing 0.05% TFA over 30 min) of Apoxaldie in its fu lly  oxidised form. The peptide 
eluted as a single peak and its mass confirmed by M ALDI mass spectrometry (insert).

3.2.7 Circular dichroism  spectroscopy

Circular dichroism spectroscopy measures the difference in absorption 

for left and right circularly polarized components of plane polarized radiation 

by optically active molecules. The intensity of the CD signal is zero unless the 

chromophore is optically active either intrinsically or because it is in an 

asymmetric environment (Kelly et al. 1997). Polypeptides and proteins form 

structures that are intrinsically chiral due to the exclusive presence of L-amino 

acids and CD spectroscopy has been used extensively to study their secondary 

structure.

The far UV region from 250 to 180 nm (transitions n—»tc* (210 nm) and 

Ti—>tt* (ca. 190 nm) in the amide bond) carries most of the information on the 

secondary structure (Figure 3.9), particularly the region below 190 nm. 

Unfortunately in biological systems it is difficult to acquire data with high
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quality below 190 nm with conventional CD spectrophotometer due to loss of 

intensity of the flux from Xenon light sources. This problem can be overcome 

using synchrotron radiation CD (SRCD) spectroscopy where the radiation light 

source can be orders of magnitude brighter than a Xenon lamp. SRCD 

spectroscopy is an emerging technique that allows acquisition of lower 

wavelength UV data. At very low wavelengths in the vacuum UV region below 

190 nm, the presence of strong charge-transfer transition signals, which contain 

information of protein/peptide tertiary structures can be collected by SRCD in 

the presence of buffers and absorbing components, thereby more closely 

mimicking 'physiological' conditions (Miles et al. 2006).

=  a  -helix  

|  = p -sh e e t  

|  = random  coil

m d eg

180 190 200 210 220 230 240 250
W avelen gh t (nm )

Figure 3.9: CD spectra o f different protein secondary structures. In yellow a-helix; in 
blue /3-sheet; and in red random coil. Picture from  
http://www.proteinchemist.com/cd/cdspec.html.

The CD of a protein can be measured as the mean ellipticity per residue, 

0, and the helicity (fraction of residues in a helix) is often estimate from the 

mean ellipticity per residue at a wavelength of 222 nm [0]222 as helical structures 

the ellipticity has a negative maximum at 222 nm. These simple estimates of
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helicity assume that each residue in a helix contributes equally to [6 ) 2 2 2  (Yang et 

a l 1986). Theoretical calculation have suggested that the ellipticity, [6 )222, is 

sensitive to both the length of the helix and the conformation of the residues in 

the helix (Gans et al. 1991; Manning et al. 1991). The length dependence makes 

[0 ] 222 a linear function of the num ber of residues in a helix and the number of 

helices. Thus for the same num ber of residues in helices [6 ) 2 2 2  may differ 

depending on the number of helices that these residues are distributed over. 

This obscures the simple proportionality between helix content and CD signal 

at 222 nm (Hirst et al. 1994). Manning et al. calculated the CD spectrum of 

helices with residues in different conformation and found that [6 ) 2 2 2  may vary 

by up to a factor of three for helices ranging from hydrophilic (q> = -67°, \j/ = -44°) 

to hydrophobic (cp = -48°, \|/ = -57°) (Manning et al. 1991).

Different methods have been used to perform deconvolution of the CD 

spectra to calculate the percentage of a-helix, p-sheet and random  coil present in 

the secondary structure. Early methods used simple linear and non-linear least 

square analyses based on '■'representative reference spectra" of different 

secondary structural types (Chang et al. 1978). Constraints were used to ensure 

that the result had physical meaning (avoiding negative percentages of one type 

structure) and that the sum of different types of structure was one (Wallace et al. 

1987). Recent methods make use of more sophisticated methods such as 

parameterised fits, self-consistency and neural networks and have been used 

routinely for more than twenty years now (Whitmore et al. 2008). Generally, 

deconvolution gives the best results for a-helices because of their regular 

structure and the stronger CD signals produced in comparison to p-sheets and 

random coils. Another im portant factor for the success of the analysis is the 

quality of the reference spectra (how well they resemble the structure analysed 

e.g. the use of spectra of peptides as references for the deconvolution of the
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spectrum of a peptide will give more reliable results than the use of spectra of 

molten globular proteins) (Whitmore et al. 2008). The program CDNN, the 

algorithm of which is based on a back-propagating neural network model, is 

frequently used to evaluate CD spectra from globular proteins (Bohm 1997). 

Poshner et al. implemented the program with a series of 20 artificial reference 

spectra of peptides (calculated with PEPFIT (Reed et al. 1997)) whose secondary 

structure is composed of different percentages of a-helix, p-sheet (parallel and 

antiparallel), P-turn and random coil (Poschner et al. 2007). This allows the 

program CDNN-PEPFIT, used in this work, to evaluate more precisely the 

secondary structure of small peptides.

The CD spectrum of Apoxaldie-Dab (Figure 3.10) shows a minimum at 

205 nm and a shoulder at 222 nm  as seen for apamin (Miroshnikov et al. 1978) 

and Apoxaldie (Weston et al. 2004). The deconvolution of the spectrum however 

shows that the percent of a-helix is smaller in Apoxaldie-Dab than in Apoxaldie 

(Table 3.1). Weston et al. detected a similar reduction in helix content in 

Apoxaldie compared to Apamin.

The proposed reason of the decreased helicity was either a distortion of 

the C-terminal end of Apoxaldie or the presence of 3io-helix. The first 

hypothesis was supported by molecular dynamic simulations which suggested 

an unravelling of the last three N-terminal residues (Weston et al. 2004). The 

distortion of the end of the helix should be more im portant in Apoxaldie-Dab 

due the lower helical propensity of Dab compared to Lys (Hatano et al. 1970; 

Padmanabhan et al. 1996). The difficulties in the oxidation reaction (see above) 

suggest that a similar distortion is present at the beginning of the helix and this 

can prevent the peptide from folding into the native Apamin conformation. The 

mixture of isomers produced using the earlier synthesis and step-oxidation 

strategy (see above) also showed the presence of a-helical secondary structural
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elements (Figure 3.9, non-native fold), but the CD spectrum is clearly different 

to that of the purified correct isomer produced using the step-oxidation 

strategy.

-  Apoxaldie-Dab native fold
-  Apoxaldie-Dab non native fold

2S0220 280
X/nm
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l—' rs
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Figure 3.10: CD spectra of oxidised Apoxaldie-Dab isomers mixture (25 pM) from the 
direct oxidation strategy in potassium phosphate buffer (10 mM, pH 7). The black line 
indicated the native oxidised form of Apoxaldie-Dab and the blue line the non native 
oxidised form.

In order to increase the helicity of the peptide, which is essential for the

right orientation of the amino side chain groups (Weston et al. 2004) and

therefore the catalytic efficiency, 2,2,2-trifluoroethanol was used.

Trifluoroethanol is a co-solvent known to increase the helix propensity of

peptides and proteins (Goodman et al. 1969). Two mechanisms have been

proposed to explain this effect: a) direct binding of trifluoroethanol (Jasanoff et

al. 1994); b) stabilisation of the H-bonds in the helix via weakening of the

hydrogen bonds between water and peptide backbones in the coil form

(Cammers-Goodwin et al. 1996). The second mechanism has been supported by

molecular calculations which suggested that the stabilizing effect of TFE is

induced by the preferential aggregation of TFE molecules around the peptides.

This coating displaces water, thereby removing alternative hydrogen-bonding

102



3-Apoxaldie-Dab

elements (Figure 3.9, non-native fold), but the CD spectrum is clearly different 

to that of the purified correct isomer produced using the step-oxidation 

strategy.

-  Apoxaldie-Dab native fold
-  Apoxaldie-Dab non native fold
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Figure 3.10: CD spectra o f oxidised Apoxaldie-Dab isomers m ixture (25 pM ) from the 
direct oxidation strategy in potassium phosphate buffer (10 mM , pH  7). The black line 
indicated the native oxidised form  o f Apoxaldie-Dab and the blue line the non native 
oxidised form.

In order to increase the helicity of the peptide, which is essential for the

right orientation of the amino side chain groups (Weston et al. 2004) and

therefore the catalytic efficiency, 2,2,2-trifluoroethanol was used.

Trifluoroethanol is a co-solvent known to increase the helix propensity of

peptides and proteins (Goodman et al. 1969). Two mechanisms have been

proposed to explain this effect: a) direct binding of trifluoroethanol (Jasanoff et

al. 1994); b) stabilisation of the H-bonds in the helix via weakening of the

hydrogen bonds between water and peptide backbones in the coil form

(Cammers-Goodwin et al. 1996). The second mechanism has been supported by

molecular calculations which suggested that the stabilizing effect of TFE is

induced by the preferential aggregation of TFE molecules around the peptides.

This coating displaces water, thereby removing alternative hydrogen-bonding
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partners and providing a low dielectric environm ent that favours the formation 

of intrapeptide hydrogen bonds. Because TFE interacts only weakly with 

nonpolar residues, hydrophobic interactions within the peptides are not 

disrupted. As a consequence, TFE promotes stability rather than inducing 

denaturation (Roccatano et al. 2002).

The CD spectrum of Apoxaldie-Dab in 15% trifluoroethanol shows an 

increase in the helicity content (deconvolution data) (Table 3.1) with a shift of 

the minimum from 205 to 207 nm (Figure 3.11) but w ithout reaching the same 

level as Apoxaldie (Weston et al. 2004). A higher percentage of trifluoroethanol 

usually shows a smaller fraction increase in the helicity and at the same time a 

drastic change in the condition of the reaction. Trifluoroethanol (pfCa 12.4) is a 

stronger acid than water (pK& 15.7) w ith a lower dielectric constant ( s t f e  = 26.1, 

Swater = 76.4 for water) and it has been hypothesized that the condition with TFE 

become more acidic than the apparent pH (Cammers-Goodwin et al. 1996). For 

this reason no further addition of trifluoroethanol was conducted.

40i

-  Apoxaldie-Dab native fold
-  Apoxaldie-Dab 15% TFE

20
<x>

260100 220 240 280

Figure 3.11: CD spectra o f Apoxaldie-Dab native fold and in presence o f TFE in 
potassium phosphate buffer (10 m M , pH  7). The black line indicated the oxidised 
Apoxaldie-Dab (25 juM) and the red line the same peptide in presence o f TFA (15%).
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The spectrum of Apoxaldie shows a minimum at 206 nm and a shoulder 

at 222 nm (Figure 3.12). The deconvolution of the spectra estimated an a-helical 

content of 38% in good agreement with the published 35% (Weston et al. 2004).

- Apoxaldie red
-  Apoxaldie ox

soWDO
73

260 280100

- 20-

Figure 3.12: CD spectrum o f Apoxaldie (25 pM ) in potassium phosphate buffer (10 mM, 
pH  7). The black line indicated the oxidised Apoxaldie and the red dotted line the reduced 
form.

Table 3.1: Deconvolution o f the CD spectra using the program CDNN-PEPFIT. 
*Apamine value from  N M R  data (Pease et al. 1988)
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a-helix 2 6 .3 % 3 2 .4 % 3 6 .5 % -5 0 %

p-antiparallel 2 .6 % 6 .3 % 6 .1% -

P-parallel 0 .0 % 0 .1 % 0.1 % -

p-turn 1 .0% 0.6 % 0.8% -

Random coil 7 4 .9 % 6 3 .0 % 5 7 .4 % -5 0 %

Total Sum 1 0 4 .8 % 1 0 2 .4 % 1 0 0 .9 %

104



3-Apoxaldie-Dab

3.2.8 Kinetics study

An enzyme-coupled assay was used to study the peptide-catalysed 

decarboxylation of oxaloacetate (Johnsson et al. 1993; Taylor et al. 2001; Weston 

et al. 2004). The assay uses lactate dehydrogenase to convert the pyruvate 

produced by the decarboxylation reaction into lactate (Scheme 3.7). Lactate 

dehydrogenase needs the presence of NADH as cofactor and the consumption 

of NADH can be followed by UV spectroscopy at 340 nm (e = 6.23xl03 M 1 cm 1).

O NADH NAD+

KL-LDH O XO O
oxaloacetate pyruvate L-lactate

Scheme 3.7: The conversion of N A D H  to N A D +, during the reduction of pyruvate to 
lactate, was used to monitor the decarboxylation of oxaloacetate to form pyruvate and 
carbon dioxide.

The decarboxylation of oxaloacetate was followed at 25 °C in N,N-bis(2- 

hydroxyethyl)-2-aminoethanesulfonic acid (BES) (pH 7). The concentration of 

the peptides was kept constant (10 pM) whereas the concentration of 

oxaloacetate varied from 5 mM to 200 mM.

The catalytic activity of Apoxaldie-Dab was however not able to be 

detected using this assay. A ten-fold increase in its concentration did not 

improve the readout of the assay. This can be due to the low a-helical content in 

Apoxaldie-Dab structure compare to Apoxaldie, 26% against 36% (Table 3.1). A 

helicity of 26% means that the a-helix is only 5 residues in length, probably in 

the region between the two disulfide bonds from C ysll to Cys 15. In this case
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Dab9 and Dabl6 side chains will be not aligned with the side chain of Dabl3 (as 

they are in Apamin Figure 3.13). As a consequence the pKa of the side chain 

amino groups of Dab residues cannot be m odulated by their m utual interaction.

Dab 16 Dab 9
Dab 13

Figure 3.13: Alignment of Dab residues in Apoxaldie-Dab in a model based on Apamin 
crystal structure.

The catalytic reaction using Apoxaldie-Dab was then tested in the 

presence of 15% 2,2,2-trifluoroethanol (to improve the helicity (Figure 3.9 and 

Table 3.1)) in BES (pH 7). While the peptide concentration constant (10 pM), 

oxaloacetate concentration was increased from 5 mM to 200 mM. Again no 

appreciable activity was detected, probably because the denaturation of lactate 

dehydrogenase when the concentration of TFA is higher than 5%, consequently 

the catalytic reaction d idn 't take place (Allemann 1989).

As a positive control the experiment was repeated with Apoxaldie using 

the same conditions. The peptide showed saturation kinetics with kcat = 0.08 ± 

0.02 s_1 and K m = 32 ± 8 (Figure 3.14) in agreem ent with the published data ( kcat 

= 0.07 ± 0.02 and K m = 30 ± 5 (Weston et al. 2004).
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Figure 3.14: Rate of the catalysed decarboxylation o f oxaloacetate as a function of 
substrate concentration. The reaction was carried out at 293 K in N,N-bis-(2- 
hydroxyethyl)-2-aminoethanesulfonic acid (1 M, pH 7) containing 10 mm NaCl. The 
concentration of oxidised Apoxaldie was kept constant (10 pM ) and the concentration of 
oxaloacetate was varied (5 m M  to 200 mM).

3.3 Conclusion

A new putative oxaloacetate decarboxylase, Apoxaldie-Dab, was 

designed by replacing the three catalytic lysine residues of Apoxaldie with L- 

2,4-diaminobutryric acid (Dab) residues. Production of Apoxaldie-Dab was 

more complicated than that of the parent Apoxaldie due to the formation of two 

isomers during the oxidation reaction required to form the two disulfide 

bridges between four cysteines. The desired isomer was obtained using 

orthogonally protected cysteine pairs. The formation of incorrect disulfide 

bridges was therefore successfully prevented allowing the production of 

Apoxaldie-Dab. However, Apoxaldie-Dab showed no appreciable catalytic 

activity, whereas the parent Apoxaldie was an efficient oxaloacetate 

decarboxylase as described previously [Section 3.5.2 and (Weston et al. 2004)].

The helix breaking activity of Dab is likely to be one of the main causes 

for the lack of activity of Apoxaldie-Dab. The distortion of the helix increased as
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the helicity decreased, shown by the deconvolution of the CD spectra that 

Apoxaldie contains approximately 36% helix whereas Apoxaldie-Dab contains 

only 26%. The two cysteine residues in the helix are one tu rn  of helix apart 

(Figure 3.1) and this makes its C-terminal region subject to distortion. Such 

distortion, which is also present in Apoxaldie, although to less extent (Weston et 

al. 2004), may prevent the interaction between the amino group of the Dab 

residues necessary to modulate their pKa therefore increase their activity in the 

decarboxylation reaction. If the pKa is not m odulated as desired, the protonated 

side-chains of the Dab residues will be unable to carry out their intended 

catalytic functions. In order to understand better the conformation assumed by 

Apoxaldie-Dab, a molecular modelling study in conjunction w ith NMR and X- 

ray spectroscopy will be necessary. The use of ornithine instead of Dab may 

solve the problem of strong helix distortion w hen apam in is used as a scaffold.
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4.1 Introduction

4.1.1 Artificial enzymes

The design of new enzymes able to catalyse a chosen reaction is one of 

the ultimate goals of protein engineering. The task is particularly challenging 

due to the difficulty of predicting the folded structure of a new designed 

protein from its primary structure (Section 1.7). The use of natural proteins as 

"blue prints" is a way to overcome this problem. Small peptides have been used 

as scaffolds on which to graft an active site with good results (Section 1.11), but 

the exposure of the catalytic residues to the solvent limits the specificity of the 

reactions. Catalytic antibodies as artificial enzymes, have given good results but 

the difficulties in developing im proved transition-state analogues and in the 

refinements of immunization and screening protocols limit the possibility of 

further improvement of their activities (Section 1.17).

The use of small proteins as scaffolds has several advantages. Proteins 

are easily expressed and purified and they are big enough to accommodate an 

active site in a cavity shielded by the solvent.

4.1.2 Im9

Im9 is a monomeric 86-amino acid protein (MW 9580) (Figure 4.1) which 

inhibits the DNase activity of colicin E9 (James et al. 1993). Im9 amino acids 

sequence is:

M E L K H S I S D Y T E A E F L Q L V T T I C N A D T S S E E E L V K L V T H

F E E M T E H P S G S D L I Y Y P K E G D D D S P S G I V N T V K Q W R A A

N G K S G F K Q G
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Its structure consists of a distorted four-helix bundle without a prosthetic 

group or disulfide bond.

Im9 has been intensively studied as a model for protein folding. It folds, 

like the majority of the small proteins (< 100 amino acid residues) (Cranz- 

Mileva et al. 2005), with a two state mechanism at pH 7 w ithout an intermediate 

(Ferguson et al. 1999).

Helix III

Helix II
Helix IV

N -term inus

Helix I

C -term inus

Figure 4.1: Ribbon diagram o f the structure o f Im9 illustrating its four-helical fold  
(Osborne et al. 1996).

Wallis et al. perform ed an alanine scan mutagenesis of 34 residues: C23; 

N24; D26; T27; S28; S29; E30; E31; E32; L33; V34; K35; L36; V37; T38; E41; E42; 

T44; E45; H46; P47; S48; G49; S50; D51; L52; 153; Y54; Y55; P56; D60; S63; V68; 

N69. These residues were chosen on the basis of a NMR analysis of the binding 

reaction with E9 DNase: the residues whose amides showed large or 

intermediate changes in chemical shift were m utated to alanine. The scan 

revealed that the mutants, with the exception of P47 and Y54, did not have
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significantly altered solvent accessibility. The buried residues showed a greater 

effect on stability than the solvent exposed residues (Wallis et al. 1998).

Friel et al. used <D analysis to study the effect of several mutations on the 

folding of Im9 (Friel et al. 2003). In <D analysis, mutations are designed to delete 

or alter existing weak interactions. The param eter O (= AAGtyAAGo, where AAG* 

is the change of free energy of activation and AAGo the change in free energy of 

folding on mutation) is a measure of the average extent of structure formation 

at the m utated site on a scale of 0 to 1: <D = 0 implies that at the site of mutation 

the structure in the transition state and in the native structure are folded in the 

same way; 0  = 1 implies that at the site of mutation the structure in the 

transition state and in the native structure are unfolded in the same way. 

Fractional values are more difficult to interpret and may imply that there is 

partial non-covalent bond formation or a mixture of states (Fersht et al. 1992). 

The study showed that Im9 folds around a specific hydrophobic core with three 

of the helix, (I, II, and IV) preformed, and that the rate-limiting transition state 

is robust to m utation (Friel et al. 2003).

Paci et al. used the ® values from the Friel et al. study as restraints in an 

in silico study to assess the importance of each residue in the folding mechanism 

of Im9 (Paci et al. 2004). They used B  analysis to determine which amino acid 

residues make the most im portant contribution to generating the small-world 

network (a network in which the connection topology, in this case between 

amino acid residues, is half way between completely regular or completely 

random (Watts et al. 1998)) of interaction that characterise a protein structure, 

with Bk defined as the num ber of pairs (z, j) of vertices such that the shortest 

path between i and j  passes through k, normalised by the total number of pairs 

(Freeman 1977). Thus B  measures the centrality of a residue in the network of 

interactions that characterise a protein structure and provides a correction to
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the use of the num ber of contacts for describing the structural relevance of a 

residue; i.e. the key residues are not necessarily the residues with the largest 

number of contacts (Vendruscolo et a l  2002). In their study Paci et a l found that 

the residues F15, V19, 167, V71, K72, and R75 are important in determining the 

network of interactions that stabilise the transition state of Im9. The results of 

the B analysis were used to back calculate the O values for all the residues of 

Im9. The experimental values of O used as constrain in the B analysis and the 

calculated data were essentially identical. Several non-m utated residues (S6,17, 

S8, Y10, Y54, Y55, W74, and R75) showed to be important in the stabilisation of 

the transition state.

4.1.3 p-Nitrophenol hydrolysis as a model reaction

The hydrolysis of p-nitrophenyl acetate (PNPA) into p-nitrophenol (PNP) 

and acetate catalysed by a nucleophilic histidine was selected as the target 

reaction because it can easily be followed by UV-VIS spectroscopy and has a 

low activation barrier at neutral pH  in aqueous solution.

The aminolysis of carboxylic acid esters has been extensively studied. In 

the past, several partly contradictory expressions of the reaction mechanism 

were proposed (Bender et a l  1957; Sacher et a l  1964; Menger 1966; Shawali et a l  

1967; Anderson et a l 1969; Menger et a l  1969; Nakamizo 1969; Satchell et a l 

1969; Satchell et a l 1970). Today the generally accepted mechanism of ester 

aminolysis consists of two parallel reaction channels (Scheme 4.1) (Schmeer et 

a l 1999).

The contributions of the two paths to the overall reaction are determined 

by the difference of the basicities of the imidazole and the leaving group in the 

respective solvent. Reaction channel 2 becomes detectable when the basicity of
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the leaving group (p-nitrophenolate) is at least three units greater than the 

basicity of the attacking nucleophile. In water, the difference of the basicities is 

nearly zero and the formation of the intermediate A is therefore the rate- 

determining process (km > ki and km > km), and the resulting N-acetylimidazole 

from path 1 is hydrolysed in a fast reaction.

R

Ry %  ♦ h- n ^ n W * 
|  W  k„

H' N ^ n A  
W  >

A R

o
Til

w  ; o
A R

R-o- * iu n^ .n-A ^  
W  R

h 2o  „ / /
2 ►  R —OH + R— ^

O

O -H
+ h - n ^ n  

\= J

R
2 h' n^ n 'V °"  + h. n^ n y s NJ y o " + h_n<̂ n, h

w „ ,/°  w  kv \= J  b  w  
a  R b R

R

k yi^  R —O" + H ' N ^ . N - H +w  w  °
Scheme 4.1: Generally accepted mechanism o f ester aminolysis.

^vi,

In non-aqueous solvents (or in the hydrophobic pocket of an enzyme 

active site), the basicity of the imidazole is much lower than that of the p- 

nitrophenolate ion. A general base can, however, increase it by withdrawing the 

proton from the heterocycle. Thus, the decomposition of the intermediate A via
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both reaction paths becomes rate determining: km, kiv, and kv are lower than all 

other rate constants (Schmeer et al. 1999).

In natural proteases nucleophile-catalysed hydrolysis is usually 

performed by a catalytic serine or cysteine. Histidine usually acts as a general 

acid or base, but can act as a nucleophile as in phosphate transfer reactions 

(Fersht 1984). However, a key requirement for a successful nucleophilic 

catalysis is a higher relative instability of the acylated enzyme intermediate 

relative to the substrate in buffer in order to increase the rate of product 

formation over the uncatalysed buffer rate (Fersht 1984; Bolon et al. 2001). An 

acyl-histidine intermediate would be less stable than an acyl-serine or an acyl- 

cysteine intermediate (Bolon et al. 2001), therefore, histidine was chosen as 

nucleophile in the design of the active site.

4.1.4 Aims

The aim of this part of the project was to produce an artificial enzyme 

using the colicin DNase immunity protein Im9. Its robustness to mutation and 

the fact that it can easily be expressed and purified made Im9 an ideal 

candidate. The protein will be used as a scaffold on which to graft an active site 

in the hydrophobic cleft between helices, using histidine residues as 

nucleophiles for the catalytic reaction.

In the design strategy, a bulky aromatic amino acid positioned in a 

hydrophobic cleft, w ould be m utated to alanine in order to create a cavity for 

substrate binding (Figure 4.2). Then a second amino acid would be mutated to 

histidine. The second active-site histidine w ould be provided by the native 

protein sequence. Mutations of nearby residues to tune the pKa values of the 

two histidines were also considered.
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The new miniature enzymes would be characterised using mass 

spectrometry and CD spectroscopy. The kinetic activity of the designed 

miniature enzymes will be measured following the hydrolysis of p-nitrophenyl 

acetate by UV spectroscopy.

Figure 4.2: The mutation of a bulky aromatic amino acid (Phenylalanine in blue) 
situated in a hydrophobic cleft (A) to a small amino acid (Alanine in red) will create a 
cavity (B) for substrate binding (p-nitrophenyl acetate in green) (C).

4.2 R esu lts  an d  D is c u s s io n

4.2.1 Expression of Im9 w ild type

The Im9 gene, sub-cloned into pET21d was obtained from Dr. Nicoll, 

previous member of the group. BL21(DE3) cells were used as the expression 

host. For large scale expression cells were grown in LB medium at 37 °C to an 

OD6oonm of 0.6 (typically 4 h after inoculation). Gene expression was induced 

with IPTG (0.5 mM) and cells were harvested 4 h after induction.
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4.2.2 Purification of Im9

The published Im9 purification protocol involves a three-step procedure, 

an initial ammonium sulfate precipitation followed by DEAE ion-exchange 

chromatography and size exclusion chrom atography (Wallis et al. 1992). To 

avoid the time-consuming size exclusion purification, a method involving two 

steps of anion exchange purification was developed. The first step involved a 

weak anion-exchange resin (DEAE) for group separation, and the second step 

applied a strong anion resin (SourceQ®) to realise the final purification. An 

ultra-filtration step was also included. This m ethod was used to purify all the 

mutants as well.

The protein expressed overnight at 16 °C (Section 2.10.2) was present in 

the supernatant (Figure 4.3), confirmed by MALDI-TOF mass spectrometry. The 

supernatant was applied to a DEAE (anion exchange) column and eluted with a 

salt gradient (from 10 mM NaCl to 400 mM over 40 min and from 400 mM to 1 

M NaCl over 10 min with a constant flow rate of 8 mL min *) (Figure 4.4).

83000

62000
47500

32500

25000

14000

Figure 4.3: SDS-polyacrylamide gel electrophoresis showing cell lysate. Lane I: broad 
range protein marker; lane 2: supernatant solution (containing the protein); lane 3: cell 
debris pellet.
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Figure 4.4: Top: Chromatogram of DEAE purification of Im9. The protein was eluted 
with a salt gradient (from 10 mM  NaCl to 400 mM  over 40 min and from 400 mM to 1 
M  NaCl over 10 min with a constant flow rate of 8 mL m in 1). The absorbance at 280 nm 
(red) and NaCl concentration (green) are shown. The peak containing Im9 is indicated 
between the blue bars. Bottom: 12% SDS-PAGE following DEAE purification; lane 1: 
broad range protein marker; lane 2-4 impurity: lane 5-13 fractions containing Im9.

The fractions containing Im9 were determined using SDS- 

polyacrylamide gel electrophoresis (Figure 4.4). Those fractions were then 

pooled and dialysed to remove the salt. The resulting solution was then applied 

onto a SourceQ® column and eluted with a salt gradient (from 10 mM NaCl to 

400 mM over 12.5 min and from 400 mM to 1 M NaCl over 2.5 min with a 

constant flow rate of 8 mL m in 1) (Figure 4.5). SDS-PAGE was performed to 

identify the fractions containing Im9 (Figure 4.5). The purified protein was 

freeze-dried and stored at -20 °C.
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Figure 4.5: Top: Chromatogram of ResourceQ™ purification of Im9. The protein was 
eluted with a salt gradient (from 10 mM  NaCl to 400 mM  over 12.5 min and from 400 
mM to 1 M  NaCl over 2.5 min with a constant flow rate of 8 mL m in 1). The absorbance 
at 280 nm (red) and NaCl concentration (green) are shown. The peak containing Im9 is 
indicated between the blue bars. Bottom: 12% SDS-PAGE following ResourceQ 
purification; lane 1: broad range protein marker; lane 2-14 fractions containing Im9.

4.2.3 Characterisation of Im9

The mass of purified Im9WT was analysed via MALDI mass 

spectrometry giving a mass of 9583 (calculated mass 9582.5). The secondary 

structure and thermal stability of the protein were analysed using CD 

spectroscopy (Figure 4.6) and the spectra were deconvoluted with the program 

CDNN (Poschner et al. 2007). The protein showed, as expected, around 48% a- 

helical structure with a melting tem perature of 56 °C (Figure 4.7) in good 

agreement with the literature data of 57 °C (Wallis et al. 1992).
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2  -3CN 220 260 280
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Figure 4.6: CD spectra of Im9. Spectrum recorded at 20 °C in 10 mM potassium 
phosphate buffer (pH 7.0).

X/nm

Figure 4.7: Effect of the temperature on Im9 structure across the UV range and followed 
at 222 nm (insert). Spectra recorded in 10 mM  potassium phosphate buffer (pH 7.0).

4.2.4 Design of the active site

The NMR-derived structure of Im9 was used to find a relatively solvent 

shielded cavity in which to design an active site (Osborne et al. 1996). A semi

hydrophobic site might enhance the binding of p-nitrophenyl esters. A
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mechanism-based design was used to sketch an active site based around two 

histidine residues, one acting as an acid and the other as a nucleophile (Scheme 

4.2).

Glu

Scheme 4.2: Proposed mechanism of the hydrolysis of p-nitrophenyl acetate used to 
sketch the active site.

4.3 D e s ig n  1: Im 9-Y 10H /F 15A  se r ie s

In the first design, phenylalanine 15, situated at the beginning of helix I, 

was mutated to alanine to create the active site cavity, while the replacement of
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tyrosine 10 with histidine generated a possible general acid within hydrogen 

bonding distance of the carbonyl of the substrate helping to stabilise the 

negative charge formed after nucleophilic attack of native histidine 39 (Figure 

4.8).

The following three m utants were prepared by site directed mutagenesis 

(SDM): Im9-F15A; Im9-Y10H; Im9-Y10H/F15A. DNA sequencing confirmed 

that the desired m utations were successfully created.

Helix III

Helix I

Alal5

H is 10, Helix IV
i s3 9

Figure 4.8: Molecular model o f Im9-Y10H/F15A based on the NM R structure of Im9 
(Osborne et al. 1996).

The protein was produced overnight in good yield in soluble form with 

no presence of inclusion body (Figure 4.9). For the purification, cells were 

harvested 16 h after induction.
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4.3.1 Test expression of Im9 m utants

Although w ild-type Im9 expressed well at 37 °C (Section 4.2.1), the 

expression of Im9 m utants at 37 °C led to the formation of inclusion bodies 

(Figure 4.9). A low tem perature protein expression protocol was developed to 

tackle this problem.

BL21(DE3) cells were transform ed with the m utated plasmid and grown 

in LB medium at 30 °C to an OD6oonm of 0.6 (typically after 7 h). The temperature 

was lowered to 16 °C and gene expression was induced with IPTG (0.5 mM).

1 2 3 4 5

Im9 -Y10H

Figure 4.9: SDS-PAGE showing lysate o flm 9  mutants at different temperatures; lane 1: 
purified Im9 wt used as marker; lane 2 pellets from expression at 37 °C with inclusion 
bodies of Im9-Y10H: lane 3 supernatant from expression at 37 °C; lane 4 2 pellets from 
expression at 16 °C; lane 5 supernatant from expression at 16 °C containing the majority 
oflm9-Y10H.

4.3.2 Purification of Im9-Y10H/F15A m utants

Im9 m utants were purified using the same method for the wild type 

protein (Section 4.2.2). Following purification, MALDI mass spectrometry 

indicated masses of 9555 for Im9-Y10F1 (calculated mass 9556.5), 9505 for Im9- 

F15A (calculated mass 9506.4), and 9483 for Im9-Y10IT/F15A (calculated mass 

9480.4).
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4.3.3 Characterisation of Im9-Y10H

Residue Y10 is located in an unstructured loop before helix I. A 

molecular dynamic simulation suggested that Y10 it is more stable in the 

transition state ensembles for lm9 folding than in the native form suggesting 

that it can play a role in the stabilisation of the transition state together with Y54 

and R75 (Paci et al. 2004). M orton et al. investigated further the importance of 

non-native interactions in the correct folding of Im9 but without elucidating the 

role of Y10 (Morton et al. 2007). Analysis of the three-dimensional structure 

suggests a possible hydrogen bond between Y10 and H39 which may stabilises 

the tertiary structure. M utation to histidine is expected to maintain the 

interaction, helping to m odulate the pKa of the m utated histidine.

The CD spectrum  of Im9-Y10H shows a lower helicity than the wild type, 

and deconvolution result suggests Y10H has approximate 27% a-helix, almost 

half that of wild type Im9 (Figure 4.10). There is shift of the minima from 222 

and 208 nm to 226 and 205 nm. The melting tem perature also decreased to 41 

°C, 17 °C lower than the wild type (Figure 4.11).

-  Im9-Y10H
-  Im9 w t</5

£  10*

260 280220

Figure 4.10: CD spectra of Im9-Y10H (red) and Im9 w t (black) recorded at 20 °C. 
Spectra recorded in 10 m M  potassium phosphate buffer (pH 7.0).
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41
-30i

10* UJ
-45

£ - o  a -1N 260 280

Figure 4.11: Effect o f the temperature on Im9-Y10H structure across the UV range and 
followed at 222 nm (insert). Spectra recorded in 10 m M  potassium phosphate buffer (pH 
7.0).

4.3.4 Characterisation of Im9-F15A

F15 is located in the beginning of helix I and has been recognised as an 

important residue in determining the netw ork of interactions that stabilise the 

transition state. Along with residues V19, 167, V71, K72 and R75, F15 helps the 

packing of helices I and IV (Paci et al. 2004). The importance of F15 in the 

stabilisation of the transition state is consistent with its relatively high 

experimental value of O = 0.58, although the stabilising effect of residues from 

helices I, II and IV on the rate-limiting transition state is m uch lower then those 

in the native hydrophobic core (Friel et al. 2003). This suggested that the mutant 

would be less stable than the w ild type w ith less a-helix content and a lower 

melting point.

The CD spectrum  of Im9-F15A (Figure 4.12) shows a lower helicity than 

the wild type, and deconvolution gives 27% a-helix, similar to that of Im9-Y10H
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and almost half that of the wild type. The melting tem perature also decreased 

to 26 °C, 30 °C lower than the wild type (Figure 4.13).

20i

-  Im9-F15A

-  Im9 w t10 '

220 260 280

Figure 4.12: CD spectra of Im9-F15A (green) and Im9 w t (black) recorded at 20 °C. 
Spectra recorded in 10 mM  potassium phosphate buffer (pH 7.0).

26
20 40 60 80 10020i

w
© T -15

260 280

Figure 4.13: Right: effect of the temperature on Im9-F15A structure across the UV range 
and followed at 222 nm (insert). Spectra recorded in 10 mM  potassium phosphate buffer 
(pH 7.0).
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4.3.5 Characterisation of Im9-Y10H/F15A

This m utant was expected to be less stable than Im9-Y10H and Im9-F15A 

due to the combination of the destabilising effect of the two mutations. The CD 

spectrum of Im9-Y10H/F15A shows very little a-helix secondary structure 

(around 7% from deconvolution), and no improvement was observed even at 5 

°C (Figure 4.14).

20i

-  Im9 wt
-  Im9-Y10H/F15A10

:40 260 280

Figure 4.14: CD spectra of Im9-Y10H/F15A (red) and lm9 wt (black) recorded at 20 °C.
Spectra recorded in 10 m M  potassium phosphate buffer (pH 7.0).

A  first attem pt to increase the stability of Im9-Y10H/F15A was made by 

changing the pH. Im9-Y10H/F15A has a theoretical isoelectric point of 4.53 with 

a predicted net negative charge of 9. It has been shown that low pH destabilises 

the native form leading to a higher population of intermediate (Gorski et al. 

2001), therefore the CD spectrum  was m easured at pH 8. The spectrum showed 

no improvement of a-helix content comparing to the one at pH 7 (Figure 4.15).
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-  Im9-Y10H-F15A pH 8
-  Im9-Y10H-F15A pH 7

2  * rH p—i
200 240 260 280

AVnm

Figure 4.15: CD spectra of Im9-Y10H/F15A at pH 7 (green) and pH 8 (red) recorded at 
20 °C. Spectra recorded in 10 mM  potassium phosphate buffer (pH 7.0).

In a second attempt, different concentrations of salt were added to the 

buffer. Salt can m odulate protein stability but the mechanism of 

stabilisation/destabilisation is not clear (Makhatadze et al. 1998). Three 

mechanisms are usually used to explain the effect of salts on the 

thermodynamic stability of proteins. The first is a Hofmeister effect with the 

increase in salt concentration likely leading to an increase in the apparent 

hydrophobic effect (and the salting-out of the non-polar core) due to changes in 

the solvent structure (Leberman et al. 1995). The second theory, suggested by 

computational studies results (Gilson et al. 1989) and by experimental data 

(Robinson et al. 1993), is the Debye-Hiickel screening of unfavourable 

electrostatic interactions between parallel helix macro dipoles. The Debye- 

Hiickel screening effect is nonspecific in nature, so both favourable and 

unfavourable interactions will be screened by mobile ions. The third theory is 

an anion binding model like the one for the salt interaction with nucleic acids 

(Goto et al. 1990). In order to obtain good CD data, sodium perchlorate, which is 

"invisible" in the far UV, was used. Perchlorate stabilises the a-helix

128



4-Im9

conformation of peptides (Masaru et al. 1997) and the acid-induced A state of 

proteins (Goto et al. 1990). Perchlorate has been shown to populate 

intermediates of several proteins whose structures resemble the classical molten 

globule state (Ahmad et al. 1979; Ham ada et al. 1993; Maity et al. 2004).

Three different concentrations (50, 100 and 250 mM) of sodium 

perchlorate were used. The CD spectra showed no detectable increase in the 01- 

helix content of the m utant with the traces almost completely superimposable 

on the one without salt (Figure 4.16)

73 -15'

X/nm
260

N o N aC 104 
50 mM  N aC 104 

100 mM  N aC 104 

250 mM  N aC 104

280

Figure 4.16: CD spectra of Im9-Y10H/F15A recorded at 20 °C with different 
concentrations of NaClOr. no salt (black); 50mM (blue); 100 mM  (green); 250 mM  
(yellow). Spectra recorded in 10 mM  potassium phosphate buffer (pH 7.0).

The almost complete lack of a-helix in Im9-Y10H/F15A is quite 

surprising. Paci et al. suggested that helices I and IV are not only substantially 

formed in the rate-limiting transition state, but their hydrophobic packing is 

also essentially native-like (Paci et al. 2004). The mutation F15A although 

destabilising the tertiary structure of the protein, should not influence the 

formation of helix I, as suggested by 27% a-helix present in the Im9-F15A
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mutant. A possible explanation for the lack of helicity of Im9-Y10H/F15A is that 

the destabilisation caused by m utated histidine (Y10H) of the hydrophobic core 

around which the helices I and IV fold led to destabilisation of all helices.

4.4 Design 2: Im9-W74A/N78H series

In the second set of design, mutations around tryptophan 74 and 

asparagine 78 were thoroughly investigated by generating seven mutants. 

Tryptophan 74 was m utated to alanine to create the cavity and asparagine 78 

was mutated to histidine to act as nucleophile (Figure 4.17). A further mutation 

of leucine 52 to an amino acid with an acidic side-chain was introduced in order 

to modulate the pKa of the native histidine 46, while the native lysine 80 was 

considered to be in an appropriate position to m odulate the pKa of the 

introduced histidine 78.

The following m utants were therefore prepared by site directed 

mutagenesis: Im9-W74A; Im9-N78H; Im9-W74A/N78F1, Im9-

L52E/W74A/N78H, Im9-L52D/W74A/N78H, Im9-D51A/L52D/W74A/N78H and 

Im9-D51 A/L52E/W74 A/N78H.

DNA sequencing confirmed that all the desired mutations were 

successful with no unw anted mutations. Im9 m utants were purified as 

described for the wild type protein (Section 4.2.2). Following purification, 

MALDI mass spectrometry indicated masses of 9468 for Im9-W74A (calculated 

mass 9467.3), 9605 for Im9-N78H (calculated mass 9605.5), 9491 for Im9- 

W74A/N78H (calculated mass 9490.4), 9507 for Im9-L52E/W74A/N78F1 

(calculated mass 9506.3), 9492 for Im9-L52D/W74A/N78F1 (calculated mass 

9492.3), 9462 for Im9-D51A/L52E/W74A/N78H (calculated mass 9462.3) and 

9449 for Im9-D51A/L52D/W74A/N78H (calculated mass 9448.3).
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Figure 4.17: Molecular model of Im9-L52D/W74A/N78H based on the NM R structure 
ofIm9 (Osborne et al. 1996).

4.4.1 Im9-W74A

W74 is located in the C-terminal part of helix IV and has been used to 

study the kinetics of Im9 protein folding (Friel et al. 2003) because its 

fluorescence in the native fold is quenched by interaction with histidine 46, the 

imidazole ring of which forms a stacking interaction with the indole ring 

(Wallis et al. 1998). It has been shown that W74 interacts with Y54 and Y55 in the 

transition state ensemble and the interaction persisted even in presence of 6 M 

urea, an interaction that is not present in the native fold of the protein and 

neither in the denatured state (Paci et al. 2004). This suggests a role of W74 in 

the folding of the protein.

The CD spectrum  shows a change in the intensity of the two minima, 

with an increase of the signal at 222 nm  and a decrease at 208 nm (Figure 4.18). 

The deconvolution of the spectrum  indicated 34.8% a-helix. The mutant has a 

melting point of 37 °C (Figure 4.19).
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Figure 4.18: CD spectra of Im9-W74A (red) and Im9 wt (black) recorded at 20 °C. 
Spectra recorded in 10 mM  potassium phosphate buffer (pH 7.0).
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Figure 4.19: Effect of the temperature on Im9-W74A structure across the UV range and 
followed at 2 2 2  nm (insert). Spectra recorded in 10 mM  potassium phosphate buffer (pH 
7.0).

4.4.2 Characterisation of Im9-N78H

N78 is the last residue in the C-terminal part of helix IV. It doesn't have 

any interaction with other residues in the protein so it was expected that the 

mutation to histidine w ouldn 't disturb the folding of the protein.
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The CD spectrum  is almost superimposable with that of the wild type 

(Figure 4.20). The deconvolution gave an a-helix content of 49% indicating that 

the mutation d idn 't perturb  the structure as confirmed by the melting 

tem perature of 55 °C (Tm wild type = 57 °C) (Figure 4.21).

20i

-  Im 9-N 78H
10- -  Im 9 w t

220 260 280

Figure 4.20: CD spectrum o f Im 9-N78H . Left: spectra o f Im9 w t (red) and Im9 wt 
(black) recorded at 20 °C. Spectra recorded in 10 m M  potassium phosphate buffer (pH  
7.0).
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Figure 4.21: Effect of the temperature on Im9-N78H structure across the UV range and
followed at 222 nm (insert). Spectra recorded in 10 mM potassium phosphate buffer (pH
7.0).
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4.4.3 Characterisation of Im9-W74A/N78H

This m utant was expected to have the same characteristics as Im9-W74A 

due to the fact that Im9-N78H shares similarity with the wild type thermal 

stability wise and secondary structure wise.

The CD spectra of Im9W74A/N78H and Im9-W74A are almost 

superimposable (Figure 4.22). The two m utants have a similar a-helix content, 

34.4% for Im9-W74A/N78H and 34.8% for Im9-W74A and melting tem perature 

35 °C for the double m utant and 37 °C for Im9-W74A) (Figure 4.23).

20i

-  Im 9-W 74A /N 78H
-  Im 9-W 74A

10*

220 :40 260 280

Figure 4.22: CD spectra o f Im 9-W 74A/N78H  (red) and Im9-W74A (green) recorded at 
20 °C. Spectra recorded in 10 m M  potassium phosphate buffer (pH 7.0).
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Figure 4.23: Effect o f the temperature on Im9-W 74A/N78H structure across the UV 
range and followed at 222 nm (insert). Spectra recorded in 10 mM  potassium phosphate 
buffer (pH 7.0).

4.4.4 Characterisation of Im9-L52E/W74A/N78H and Im9- 
L52D/W74A/N78H

In order to m odulate the pKa of the native H46 a m utation of L52 to an 

amino acid with an acidic side-chain (glutamic acid or aspartic acid) was 

performed. L52 is situated in the m iddle of helix III which plays a key role in 

the hydrophobic core. It interacts with many residues: 167, T70 and V71 from 

helix IV; H46, S48 and G49 from the loop between helices II and III; F40 from 

helix II.

The CD spectrum  of Im9-L52E/W74A/N78H shows a loss of secondary 

structure compared w ith the wild type, w ith a shift of the minimum to 206 nm, 

a decrease of the m inim um  at 222 nm  (Figure 4.24), which more resembles the 

denaturised state of Im9 wild type. The therm al denaturation of the protein 

didn 't show a melting point but a progressive loss of the secondary structure 

(Figure 4.25). Friel et al. showed that the m utation L52A does not destabilise the 

rate-limiting transition state of Im9 (Friel et al. 2003) but the introduction of a
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longer charged chain probably destroys the hydrophobic interaction of helix III 

with the rest of the molecule. The deconvolution of the spectrum gave an a- 

helix content of 14%.

20i
rHi a>
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-  Im9-L52E-W 74A-N78H
-  Im9 w tS io

280220 140 260
AVnm

- 10-

Figure 4.24: CD spectra o f Im9-L52E/W 74A/N78H (red) and Im9 wt (black) recorded at 
20 °C. Spectra recorded in 10 m M  potassium phosphate buffer (pH 7.0).
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Figure 4.25: Effect of the temperature on Im9-L52E/W74A/N78H structure across the
UV range and followed at 222 nm (insert). Spectra recorded in 10 mM potassium
phosphate buffer (pH 7.0).
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Im9-L52D/W74A/N78H shows minima at 208 nm and 222 nm in its CD 

spectrum (Figure 4.26), as in Im9-W74A/N78H. Although more structured than 

the previous m utant with glutam ic acid, probably because of the shorter side- 

chain, the m utant was far less stable than Im9-W74A/N78H, with complete loss 

of secondary structure at 26 °C (Figure 4.27). The deconvolution of the spectrum 

indicated the a-helix content of this m utant was about 20%.

10*

orH

220 260 280

Figure 4.26: CD spectrum of Im9-L52D/W 74A/N78H  recorded at 20 °C. Spectrum 
recorded in 10 m M  potassium phosphate buffer (pH 7.0).
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Figure 4.27: Effect of the temperature on Im9-L52D/W74A/N78H structure across the
UV range and followed at 222 nm (insert). Spectra recorded in 10 mM potassium
phosphate buffer (pH 7.0).
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4.4.5 C haracterisation of Im9-D51A/L52D/W74A/N78H and Im9- 
D51A/L52E/W74A/N78H

The m utations L52D and L52E, located in the m iddle of helix III, 

appeared to cause further destabilisation to the m utant Im9-W74A/N78H. This 

observation confirmed the im portance of helix III in the hydrophobic core of the 

native state of Im9 for the protein structure integrity. Residue D51 which is the 

first amino acid in the N-term inal part of the helix III, was m utated to alanine in 

order to improve its helicity and its docking into the other helix.

The m utation D51A how ever decreased the melting point of the m utant 

to 20 °C from 26 °C for Im9-L52D/W74A/N78H (Figure 4.28 and Figure 4.29). 

The deconvolution of the spectrum  show ed its a-helix content as 21%

The D51A m utation did not im prove the therm al stability of the two 

mutants, and the CD spectra of the two m utants, Im9-L52E/W74A/N78H and 

Im9-D51A/L52E/W74A/N78H, w ere alm ost identical (Figure 4.30 and Figure 

4.31).

20i

-  Im 9-D 51A -L52D -W 74A -N 78H
1G -  Im 9-L52D -W 74A -N 78H

CD

260 280220
X/nm

Figure 4.28: CD spectra o f Im 9-D 51A/L52D /W 74A/N78H  (blue) and Im9-
L52D/W 74A/N78H (red) recorded at 20 °C. Spectra recorded in 10 m M  potassium 
phosphate buffer (pH 7.0).
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Figure 4.29: Effect of the temperature on Im9-D51A/L52D/W74A/N78H structure 
across the U V range and followed at 222 nm (insert). Spectra recorded in 10 mM  
potassium phosphate buffer (pH 7.0).
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Figure 4.30: CD spectra of Im9-D51A/L52E/W74A/N78H (green) and Im9- 
L52E/W74A/N78H (red) recorded at 20 °C. Spectra recorded in 10 mM potassium 
phosphate buffer (pH 7.0).
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Figure 4.31: Effect o f the temperature on Im9-D51A/L52E/W 74A/N78H structure 
across the UV range and followed at 222 nm (insert). Spectra recorded in 10 mM  
potassium phosphate buffer (pH 7.0).

4.5 K in etic  data

The catalytic efficiency of Im9 w t and its 10 m utants in the hydrolysis of 

p-nitrophenyl acetate was investigated. The reactions were followed by UV 

spectroscopy to m onitor the production of p -nitrophenol at 320 nm (8320™ = 7600 

M 1 c m 1) as the product of the hydrolysis (Bennett et al. 1977).

The reaction rates were then determ ined under pseudo-first order 

conditions assum ing that in the presence of a great excess of catalyst compared 

to substrate the concentration of the form er will rem ain constant:

—d [ s u b s tra te ]
 —-------- = k  x [ su b s tra te ]  x [p r o te in \

When

[ su b s tra te ]  «  [p ro te in ]  k ' = k  x [p ro te in ]

then

4.1

4.2
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—d[substrate]
= k' x [substrate] 4.3dt

rearranged to give

d[substrate]
= —k' x dt 4.4[substrate]

integrated to give

In [substrate] = —k' x t + C 4.5

for t = 0

In [substrate] 0 = C 4.6

substitute in answer

\n[substrate] = —k' x t + In [substrate] 0 4.7

Which is the mathematical presentation of a straight line. The slope of the line 

(k') gives the pseudo first-order rate constant of the reaction for a given catalyst 

concentration. Substitution of k' and catalyst concentration in equation 2 gives 

the pseudo- first order rate (Atkins). The reaction was first tested using the 4- 

methyl imidazole, which mimics the histidine side-chain, catalysed reaction 

(pH 7), as a comparison (Figure 4.32 and Figure 4.33).
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Figure 4.32: Reaction o f 4-methylim idazole (150-600 pM ) with p-nitrophenyl acetate 
(15 pM ) at pH  7, 20 °C, as followed by the production o f p-nitrophenol. [p-nitrophenyl 
acetate] was plotted on a log scale to give pseudo fir s t order rate constants at different 
catalyst concentrations.

As expected, the reaction rates increased w ith increasing 4- 

methylimidazole concentrations. The apparent second-order rate constant for 

the 4-methylimidazole catalysed hydrolysis of p-nitrophenyl acetate (pH 7) is

0.080 ± 0.015 M 1 s_1, consistent w ith the published value of 0.11 M 1 s 1 (Bolon et

al. 2001).
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Figure 4.33: Pseudo first order rate constant for the 4-methylimidazole (150-600 pM ) 
catalysed hydrolysis o f p-nitrophenyl acetate (15 pM ) at pH  7, 20 °C over a range of 
catalyst concentrations. The gradient of the line gives the apparent second order rate 
constant.

The catalytic efficiency of Im9 and its 10 m utants to catalyse the 

hydrolysis p-nitrophenyl acetate were tested under the same conditions (Table

Im9 and the m utants Im9-N78H and Im9-W74A showed activities similar 

to 4-methylimidazole. The m utant Im9-W74A/N78H increased the rate of the 

reaction three-fold. The further m utations, L52D and D51A, however showed a 

decrease in the rate of catalysis com pared to Im9-W74A/N78H, probably due to 

the loss in stability caused by the m utations. The m utants Im9-N78H and Im9- 

Y10H/F15A, with the latter lacking any secondary structure, have the same 

number of histidine residues as Im9-W74A/N78H. Their lower activities show 

that the increase in the rate of Im9-W74A/N78H is not just a simple result of the 

additional histidine residues in the protein, bu t also related to the designed 

active site. The presence of several lysine residues on the surface of the protein

4.1).

can explain the activity of Im9 itself (Figure 4.34).
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Table 4.1: Apparent second order rate constant of the tested catalysts.

Catalyst Apparent second order 
rate constant [M l  s 1]

% activity relatively to 
4-methylimidazole

4-methylimidazole 0.080 ± 0.015 100%

Im9 0.120 ±0.032 150%

Im9-Y10H 0.041 ± 0.005 50%

Im9-F15A 0.098 ±0.007 122%

Im9-Y1OH/F15 A 0.130 ±0.006 162%

Im9-N78H 0.130 ±0.012 162%

Im9-W74A 0.090 ±0.005 112%

Im9-W74A/N78H 0.364 ± 0.032 455%

Im9-L52D/W74A/N78H 0.234 ± 0.027 292%

Im9-D51A/L52D/W74A/N78F1 0.083 ± 0.005 103%

Lys

Figure 4.34: Cartoon representation of the NM R structure ofIm9 (Osborne et al. 1996), 
with the surface lysine residues shown.
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In order to trap the acetylated intermediates of Im9-W74A/N78H, Im9- 

W74A and Im9-N78H, the proteins were incubated with a five-fold excess of p- 

nitrophenyl acetate. The reaction mixtures were analysed by MALDI mass 

spectrometry every 20 min for 1 h. The three proteins showed a similar profile 

with two additional peaks, M+42 (acetylation) and M+84 mass units 

(diacetylation) detected from all of them (Figure 4.35). The accumulation of 

acetyl residues in Im9-W74A and Im9-N78H shows that these are nonspecific 

sites of acetylation on the proteins, probably on the lysine residues which are 

known to be irreversibly acetylated by p-nitrophenyl acetate (De Caro et al. 

1988). Im9-W74A/N78H showed a faster accumulation of acetyl groups 

compared with the other two, which can be explained by the higher activity of 

this m utant compared to the other two.
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Figure 4.35: Mass spectra of Im9-W74A, Im9-N78H, Im9-W74A/N78H incubated with 
five-fold excess of p-nitrophenyl acetate. The presence of peaks M+42 (acetylation) and 
M+84 (diacetylation) indicate the presence of nonspecific sites of acetylation.

146



4-Im9

4.6 Conclusions

Im9 was chosen to be the scaffold for the novel design of catalyst for the 

hydrolysis of p-nitrophenyl acetate. The designed active site was based on 

histidine residues. Site-directed mutagenesis was used to generate the 

sequences of 2 series, Im9-Y10H/F15A and Im9-W74A/N78H, to give a total of 

ten mutants. Together with the wild type Im9, 11 proteins were expressed and 

purified. MALDI-TOF measurements confirmed the mass for all of them. CD 

experiments were conducted to investigate the protein and m utants secondary 

structures and thermal stabilities. Kinetic data using p-nitrophenyl acetate as 

substrate were collected to study the artificial enzymes' activities. As proof of 

concept, artificial enzymes based on Im9 were designed and obtained.

Among the two series of m utants tested, Im9-Y10H/F15A did not 

demonstrate enough stability; either secondary structure consequently was not 

able to accelerate the rate of p-nitrophenol acetate hydrolysis any more than 

wild-type Im9. Whereas Im9-W74A/N78H retained good stability and increased 

the rate of the reaction three-fold compared to 4-methylimidazole and wild- 

type Im9. Additional mutations designed to improve the catalytic efficiency 

however destabilised the protein secondary structures.

Detection of acetylated proteins suggests that, rather than complete 

catalysis, a single turnover event is observed with consequent inactivation of 

the active site. This is suggested by the faster acetylation detected with the more 

reactive Im9-W74A/N78H when compared to the other mutants.

Interestingly diacetylation of Im9-W74A/N78H, Im9-W74A and Im9- 

N78H were also observed. This suggests the presence of nonspecific acetylation 

sites, probably solvent-exposed lysines. Indeed Im9-W74A/N78H with 34% a- 

helix, comparing to the 48% for wild type, may have more residues exposed to
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solvent. However the three fold rate increase displayed by the Im9-W74A/N78H 

cannot be explained only by solvent exposed lysines being able to remove acetyl 

group from the substrate, because the completely unstructured Im9-Y10H/F15A 

did not show a similar effect. Therefore the increase catalytic activity 

demonstrated by Im9-W74A/N78H can be closely related to its active site in 

which the native histidine 46 acts in synergy with the m utated histidine 78.

A single turnover event would mean that a further modification of the 

active site is necessary to allow water to enter and hydrolyse the acetylated 

histidine. The increased instability exhibited by Im9 m utants with the increased 

number of altered amino acids indicates the structural stability, which is 

connected with the tolerance to mutation (Besenmatter et al. 2006), of the 

protein needs to be improved. The introduction of disulfide bonds to stabilise 

the structure can be a solution, however due to the strict geometrical 

requirement, this is not a straightforward solution. Furthermore the disulfide 

stabilises both the native and the unfolded state of a protein and therefore can 

lead to destabilisation of the protein (Zavodszky et al. 2001). Another solution 

can be the construction of a chimeric protein with a sterically constrained and 

immunodominant antibody loop region as done for Im7 which led to an 

increase in the melting temperature by 10 °C (Juraja et al. 2006).
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5. DIRECTED EVOLUTION OF IM9-W74A/N78H
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5.1 Introduction

5.1.1 Directed evolution

Rational design seldom produces enzymes that can rival natural 

enzymes in terms of rate enhancement. To increase their catalytic efficiency a 

directed evolution step is usually included in the design process (Breslow 2005). 

The number of mutants generated by randomisation of the protein sequence 

increases exponentially with the num ber of amino acids involved: a total of 20n 

(where n is the number of randomised amino acids) possible m utants are 

obtained when a complete degeneration of the genetic code is used. The high 

number of mutants to be screened requires a powerful selection m ethod and 

phage display was chosen because of its relative simplicity (the selection 

method can be described as affinity chromatography) compared to in vivo  

selection (Farinas et al. 2001).

5.1.2 Phage display

The phage display technique was first introduced by Smith who showed 

that DNA fragments can be inserted into filamentous phage gene III to create a 

fusion protein with the inserted sequence in the middle. The "fusion phages" 

retained their infectivity and could be enriched more than 1000-fold over 

ordinary phage by affinity for antibody directed against the foreign sequence 

(Smith 1985).

Filamentous bacteriophages are a group of viruses in which a circular 

DNA (+) single-stranded genome is encapsulated in a long protein capsid 

cylinder. The viruses enter the host cells and use the biological machinery of the
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host to replicate its DNA and express the proteins that constitute the capsid. 

The phage is assembled at the moment of its extrusion from the cell. The main 

consequence of the infection is an approximately 50% increase in the replication 

time of the host (Barbas III et al. 2004).

The capsid is formed by 5 proteins (Figure 5.1). The major capsid protein 

VIII (pVIII) is the constituent of the cylinder and is mainly a-helical (Marvin et 

a l 1994). The minor protein III (pill), responsible for the infection process, is 

made up of three domains separated by glycine rich regions (Marvin 1998).

5 nm

1000 nm
o—  pill Q pVIII pVII + pIX

Figure 5.1: Structure of a typical filamentous phage virion (Krumpe et al. 2006).

The replication process starts with the synthesis of the complementary 

DNA (-) strand by bacterial enzymes to produce a supercoiled double-stranded 

circular DNA. One of the first proteins produced from the newly synthesised 

circular DNA, pll, nicks the (+) strand and a replication cycle, carried out by 

bacterial enzymes, starts using the resulting 3 '-hydroxyl terminus as a primer 

and the DNA (-) strand as template. The displaced open single DNA (+) strand 

is then cyclised and converted to a double strand by bacterial enzymes. The 

process continues until a critical concentration of protein V (pV) is reached, 

then the pV dimer inhibits double strand production and only the DNA (+) is 

then replicated. This switch initiates the assembly process which leads to the
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extrusion of the single DNA (+) strand encapsulated in the coating proteins 

(Barbas III et al. 2004).

All five coating proteins have been used to create a fusion with the 

protein or peptide to be displayed, but pill and pVIII fusions are most common 

(Brakmann et al. 2002). Only small peptides can be displayed in fusion with 

pVIII (Petrenko et al. 1996) because larger peptides prevent the correct packing 

of the capsid (Endemann et al. 1995) and the extrusion of the phage due to steric 

hindrance (Marciano et al. 1999). To display a large protein in pVIII a hybrid 

system is usually used with the chimeric gene placed in a plasmid (Greenwood 

et al. 1991). When bacteria transformed with this plasmid are infected with wild 

type phage, the chimeric pVIII is used as well as the pVIII wild type in the 

coating process leading to a hybrid phage with multiple copies of the fusion 

protein displayed at the phage surface. Polyvalent display leads to 

multivalency binding events and confers a high apparent affinity (avidity) on 

weak-binding virions. When the initial binding affinity of the WT protein is low 

(Ki > 1 pM) a polyvalent display strategy may be advantageous because it 

allows a far greater representation of rare library variants (Zani et a l) .

pill is the capsid protein most often used to create fusion proteins. The 

disadvantage is that only 5 molecules can be displayed (the num ber of pill 

molecules in the capsid) but the advantage is that even large proteins can be 

displayed without compromising the packing of the capsid (Barbas III et al. 

2004). Sometimes a large protein displayed on p ill can decrease the infectivity 

(Smith 1985) but this can be overcome by using a phagemid, a plasmid that 

contains a phage origin of replication in addition to its plasmid origin of 

replication and that can be packed in the phage coat (Barbas III et al. 2004). The 

wild type pill is produced by a helper phage, which encodes for the production 

of the coating proteins for the phagemid and for the helper phage itself. A

152



5-Directed evolution o f Im9

hybrid phage will then be assembled with a mixture of wild type p ill and the 

chimeric pill (Dunn 1996). Phagemids are easier to handle than phages but the 

number of foreign proteins displayed in each phage is difficult to control and 

sometime much fewer than one copy per phage is displayed (Brakmann et al. 

2002).

Phage display was invented to perform affinity screening of protein 

fragments encoded by the associated complementary DNA fragment (Barbas III 

et al. 2004). In the first phage selection experiment a polyclonal antibody against 

the EcoRI endonuclease was used to coat a polystyrene dish and to selectively 

bind phage that displayed a fragment this protein fused to pill, from a pool 

containing a large excess of phage w ithout insert. The phages w ith the insert 

that still bound to the plate after several washes were then eluted by 

denaturation of the immobilised antibodies in acidic conditions. The eluted 

phage were after neutralisation used to infect E. coli cells, which amplified the 

enriched pool of antibody-binding phage (Smith 1985).

5.1.3 Biopanning

All the methods that have been used to screen phage display libraries 

have the same objective: to find ligands for the screening molecule which is 

usually immobilised (Brakmann et al. 2002). The phage population can be 

divided into four major groups. Firstly, nonbinding phage, which represent the 

vast majority of the library and are removed by repeated washing. Tween 20 

helps to remove this population lowering the background binding (Smith et al. 

1993). Secondly, plate binders, which contain a particular sequence 

WXXWXXXW that binds polyurethane/polystyrene magnetic particles even in 

the presence of surfactants (Gebhardt et al. 1996). This population can be
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removed by performing a pre-screening with all the components except the 

screening molecule. The last two populations are binders of the screening 

molecule, with low affinity binders more abundant than high affinity binders.

When selecting for catalytic activity the screening molecule should not 

only bind the desired phage population but should select for m utants able to 

catalyse the reaction for which the enzyme is designed. Several strategies have 

been used. One is the use of an inhibitor of the reaction that resembles the 

product or the substrate. Substrate analogues were used to screen a phage 

displayed library of mutants of staphylococcal nuclease (SNase), a Ca2+ 

dependent phosphodiesterase which cleaves DNA with preference for 

thymidine on the 5' side of the cleavage site (Scheme 5.1). The best m utant 

screened against a thymidine substrate analogue (Figure 5.2A) was almost as 

active as the wild type; those screened against a guanosine substrate analogue 

(Figure 5.2B) were ten time less active but displayed a change in specificity 

(Light et al. 1995).

SNase

O
//

\ \

Scheme 5.1: Hydrolysis of the D NA substrate by SNase.
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Figure 5.2: Thymidine-based (A) and guanosine-based (B) phosphorothionate substrate 
analogues used in panning selections. The substrate analogues were attached to BSA to 
facilitate immobilisation for panning (Light et al. 1995).

Molecules that are able to bind covalently with a side chain of a residue 

in the active site have been used to screen for active enzymes or abzymes 

(monoclonal antibody with catalytic activity). A screening molecule with a 

reactive cysteine, BSA-conjugated a-phenetyl pyridyl disulfide was used to 

bind phage-antibodies (Scheme 5.2). The substrate analogues were attached to 

BSA to facilitate immobilisation for panning. Two out of ten of the selected 

phage-antibodies contained an unpaired cysteine, one was able to catalyse the 

hydrolysis of a thioester whose electrophilic carbonyl occupies the position of 

the reactive sulphur during selection (Scheme 5.3) (Janda et al. 1994).

The recognition of the transition state theory has led to the design of 

transition-state analogues (TSA) as potent inhibitors of enzymes and to their 

use as haptens to induce the immune system into generating antibodies 

endowed with catalytic activity, nam ed abzymes or catalytic antibodies. A 

library of carbonic anhydrase mutants, a metalloenzyme that catalyses the 

hydration of CO2, was screened for zinc-ion binding against an immobilised 

sulphonamide, a transition-state analogue inhibitor (Figure 5.3). Selected 

mutants had different grades of affinity for zinc, from equal to 100-fold lower
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than the wild type, and 80% had CO2 hydrase activity close to that of the wild 

type (Hunt et al. 1997).

mAb

Scheme 5.2: Mechanism of covalent binding of a BSA-conjugated disulfide to the active 
site of a monoclonal antibody.

. H S^
+ mAb

"mAb ,OH
HS.

'‘mAb

X=H or HCONH

Scheme 5.3: One of the selected antibodies catalyses the hydrolysis of a thioester (Janda 
et al. 1994).

Resin

Figure 5.3: p-Aminomethyl benzenesulfonamide, a transition-state analogue, used to 
select mutants of carbonic anhydrase (Hunt et al. 1997).
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Lipolytic abzymes were selected from a phage displayed library of 

mutants against a transition-state analogue of lipases/esterases (Figure 5.4). 

Four mutants, able to bind the TSA, were selected and their catalytic activity 

was measured (Leong et al. 2007).

H HNO
NH

Figure 5.4: TSA of lipase, 5-(2-oxo-hexahydro-thieno[3,4-d]imidazol-6-yl)-pentanoic 
acid ll-[ethoxy-(4-nitro-phenoxy)-phosphoryl]-undecylester (Leong et al. 2007).

The success of the biopanning experiment can be followed by 

determining the number of phage eluted from the immobilised target protein 

versus a control without binding molecule by titering the recovered phage on a 

antiobiotic medium (Rudgers et al. 1999). After each round of binding and 

enrichment, the number of phage eluted from the target protein should increase 

while the number of phage eluted from the control should stay approximately 

the same. This method is good for monitoring the success of a panning 

experiment, but it does not always hold true if the displayed peptides bind 

weakly to the target molecule. If after three rounds of binding and enrichment 

there is no increase in the number of phage eluted from the target protein 

versus the control, it is useful to check the sequence of the recovered phages. A 

comparison of the target protein and control sequence data should indicate if a 

specific type of sequence is being selected (Arnold et al. 2003).
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5.1.4 Aim

This part of thesis was the preliminary work to design and construct a 

library of Im9 m utants using directed evolution and phage display 

technologies. The possibility of screening the library would also be studied 

using a transition state analogue of the hydrolysis of p-nitrophenol esters by 

biopanning, which would also involve the synthesis of this analogue.

5.2 Results and Discussion

5.2.1 Design of the mutations

As Im9-W74A/N78H showed a three-fold increase in the rate of 

hydrolysis of p-nitrophenyl acetate compared to wild type Im9 (Section 4.2.17), 

this m utant was chosen as a starting point for directed evolution to further 

improve the esterase activity. The NMR structure of wild type Im9 was used to 

analyse the region around the designed active site (Osborne et al. 1996). To 

improve the binding of the substrate and to allow the use of random  cassette 

mutagenesis (Section 5.3.2), m utations were concentrated around the cavity 

created by the m utated alanine 74. Six positions were chosen: Thr 70; Val 71; 

Gin 73; Ala 74; Ala 77; and Lys 80 (Figure 5.5). Ala 74 was included to allow the 

formation of a cavity with a different shape.

For the randomisation of the gene in four of the six targeted positions 

(Thr 70; Gin 73; Ala 77; and Lys 80) the NNK codon doping strategy was used 

(where N = adenine, cytosine, guanine or thymine and K = guanine or thymine) 

which codes for all the twenty amino acids and a stop codon. For the remaining 

two targeted positions (Val 71 and Ala 74) the VNS codon doping strategy was
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used (where V = adenine, cytosine, or guanine and S = cytosine or guanine) 

which codes for 16 amino acids with Trp, Phe, and Tyr as well as Cys and all 

stop codons excluded. The aromatic amino acids were excluded for these 

mutations because they will not create a cavity in position 74 and to avoid steric 

clash with the helix II. The number of possible different mutants, not including 

those containing stop codons, with this design is 4 x 107 (204 x 162) and the 

number of possible codon variants is 6 x 108.

Helix IV

Helix 11

Helix I

Figure 5.5: Cartoon representation of the NM R structure of!m 9, with residues chosen 
for randomisation shown as blue sticks and catalytic histidine residues as red sticks.

5.2.2 Sub-cloning Im9 into pHEN2

The pET21 vector containing the gene encoding Im9-W74A/N78H 

(Section 4.2.14) was used as a starting point for the sub-cloning of this gene into 

a pHEN2 phagemid (gift from Dr. James Redman) to create a fusion with the N-
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terminus of the pill minor coating protein. pHEN2 encodes a hexa-histidine tag 

downstream from the inserted gene, which is then followed by an amber stop 

codon. This allows production of the fused protein without the pill in non 

amber suppressor cells like E. coli BL21.

First, a Sacl restriction site was inserted at the 3' terminus of the gene 

using site directed mutagenesis to allow transfer from the plasmid pET21 to the 

phagemid pHEN2. The Im9 gene was then excised from the pET21 vector using 

two consecutive digestion reactions, first w ith N col and then with Sacl. pHEN2 

was also digested in the same way. The DNA was purified after each reaction 

and the fragments were visualised using agarose gel electrophoresis and 

ethidium bromide staining (Figure 5.6).

10000
8000
6000
5000
4000
3000

2000

1500

1000

500

1500

1000
900
800
700
600
500

400

300

200

Figure 5.6: Left: lkb DNA marker, doubly digested with Ncol and Sacl (A) and intact 
(B) phagemid. Right: 100 bp D N A marker and excised Im9 gene (C). Numbers indicate 
base pairs per fragment in the marker lanes.

The linearised pHEN2 vector and the Im9 gene were ligated using T4 

DNA Ligase. The reaction mixture was transformed into E. coli XLl-Blue
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competent cells and the closed phagemid (Figure 5.7) was extracted and 

purified. The sequence was analysed to confirm the insertion.

Ff origin: to allow  
production of single 
stranded vector and 
subsequent encapsidation  
into phage particles

plasmid origin 
of replication

r —̂ pHEN-seq 
I ^6xHis-tag
Sflcl-G AGCT'C

lac\transcription\start

NcoI-C’CATG G

CC -  ATG- GAA- CTG-AAG- CAT -  AGC -  ATT -  AGT -  GAT -  TAT -  ACA- GAA-GCT -  
GAA-TTT-TTA-CAG- CTT -  GTA-ACA-ACA-ATT -  TGT -  AAT -  GCG-GAC -  ACT -  
TCC-AGT-GAA-GAA-GAA-CTG-GTT-AAA-TTG-GTT-ACA-CAC-TTT-GAG- 
GAA-ATG-ACT -  GAG- CAC -  CCT -  AGT -  GGT -  AGT -  GAT -  TTA-ATA- TAT -  TAC -  
CCA-AAA- GAA- GGT -  GAT -  GAT -  GAC -  TCA-CCT -  TCA-GGT -  ACC -  GTA-AAC -  
ACA- GTA-AAA- CAA- GCG-AGA- GCC -  GCT -  CAC -  GGT -  AAG- TCA- GGA-TTT- 
AAA-CAG-GGC-GAG-CTC

Figure 5.7 Top: Circular representation of the pH E N l phagemid with the inserted Im9 
gene. Bottom: DN A sequence of Im9-W 74A/N78H, showing the Ncol restriction site 
(red), Sacl restriction site (blue) and Kpnl restriction site (green) used for random 
cassette mutagenesis.

5.2.3 Random cassette m utagenesis

As the designed random  mutations were concentrated in a restricted 

area, the cassette mutagenesis technique was chosen (Botstein et al. 1985). This 

method consists of excising a DNA fragment and replacing it with an 

oligonucleotide carrying the desired mutations. Using site directed 

mutagenesis, isoleucine 67 (codon ATT), at the beginning of helix IV, was
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mutated to threonine (codon ACC) in order to engineer a new restriction site, 

Kpnl, in the middle of the Im9-W74A/N78 gene. The new K pnl restriction site 

and the Sacl site at the end of the gene were used as termini for the fragment 

carrying the mutations.

The cassette with the random  mutations was constructed using three 

single stranded DNA oligonucleotides: an oligonucleotide with the randomised 

codons and two short oligonucleotides to be used as PCR primers to amplify 

the sequence (Figure 5.8). Although the m inimum num ber of base pairs 

between the end of the recognition site and the terminus of the fragment 

necessary for 100 percent successful digestion is one for both enzymes (NEB 

2009), a longer fragment was designed. This was intended to give a sufficiently 

large change on restriction digestion to allow the cut and uncut fragments to be 

distinguished on an agarose gel.

GCG GCA TTA ACC TCA CCT TCA GGT ACC GTA AAC

CC TCA CCT TCA GGT ACC GTA AAC NNK VNS
AAA NNK VNS AGA GCC NNK CAC GGT NNK TCA GGA TTC AAG
CAG GGC GAG CTC AAG TTC
GTC CCG CTC GAG TCG ACG GGG GCG

Figure 5.8: The single stranded oligonucleotide with the degenerate codons (black), with 
the forward (red) and reverse complementary (blue) primer for PCR.

5.2.4 Library preparation

The vector and the random  cassette (after amplification and purfication) 

were prepared using two consecutive digestion reactions, first with K pnl and 

then with Sacl. The DNA was purified after each reaction and the fragments 

were visualised following agarose gel electrophoresis (Figure 5.9).
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Figure 5.9: Left: lkb DNA marker, double digested (A) and intact (B) phagemid pHEN2. 
Right: 100 bp DNA marker, uncut random insertion (C), double digested random 
insertion (D), random insertion single digested with Kpnl (E) and random insertion 
single digested with Sacl (F).

In order to determine the amount of DNA necessary to give a library 

complexity big enough to cover the all the possible mutants, and to find the 

optimal ligation conditions, a series of test ligation reactions was performed 

changing the ratio of vector and insert (1:4; 2:4; 1:1; 2:1; 4:1). A back self-ligation 

was performed with the double digested phagemid alone to measure the 

background reaction. The reaction products were transformed after heat 

inactivation of the T4 DNA ligase, by electroporation into E. coli XLl-Blue. The 

heat inactivation of the ligase is necessary to avoid inhibition of the 

transformation (Ymer 1991). The transformed cultures were plated and the 

number of transformants per pg of vector DNA in the more successful reaction 

(1:4) was calculated to be equal to 4.11 x 107. The absence of colonies from the 

back self-ligation reaction indicated the absence of undigested or singly 

digested phagemid. The total amount of DNA required to cover the number of 

mutants was calculated by dividing the number of possible mutants (6.04 x 108, 

Section 5.2.1) by the transformant per pg (4.11 x 107) and was equal to 15.1 pg of 

double digested vector. The web program GLUE (Firth et al. 2005), used to
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analyse the complexity of the library, gave a completeness of 96% with an 

expected number of different amino acid of 3.9 x 107.

10 ligation reactions with 1.51 pg vector were performed and E. coli XL1- 

Blue electrocompetent cells were transform ed with the DNA from the ligation 

reactions. A small amount of the culture was plated to titer the transformed 

bacteria. Helper phage was added to the culture to start the production of 

phage and after overnight incubation the phage pellets were precipitated, 

resuspended in TBS and filtered. The freshly prepared phage library was used 

for panning.

5.2.5 Panning

The transition state analogues norm ally used for the selection of enzymes 

able to catalyse p-nitrophenyl esters are phosphates, phosphonates, 

phosphonamidates, and phosphinates and their esters, which are expected to 

mimic the charge delocalisation and tetrahedral geometry of the transition 

states (Figure 5.10) (Tantillo et al. 1999).

o o o oii ii ii jj
- n 'Pv"OR’ -r>-'Pv"OR’ o  V"R
u  OR °  OR u  NHR R
Phosphate Phosphonate Phosphonamidate Phosphinate

Figure 5.10: Transition-state analogues for p-nitrophenyl esters.

Several antibodies which catalyse the hydrolysis of aryl esters have been 

designed using such transition state analogues (Figure 5.11) (Golinelli- 

Pimpaneau et al. 1994; Wilmore et al. 1994; Zhou et al. 1994; Mu et al. 1997;
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Tawfik et al. 1997; Wedemayer et al. 1997; Stephens et al. 1998; Odenbaugh et al. 

2000; Gul et al. 2003; Sonkaria et al. 2004; Boucher et al. 2007; Zhang et al. 2007).

earner

earner

substrate

O

o-I

X

OH

TSA substrate

P~ H
'carrier

TSA

NH

substrate

Figure 5.11: Transition state analogue and substrate of the abzymes 48G7 (A) 
(Wedemayer et al. 1997); CNJ206 (B) (Golinelli-Pimpaneau et al. 1994); 17E8 (C) (Zhou 
et al. 1994).

For the panning the phosphonate transition state analogue 4-[hydroxy (4- 

nitrophenoxy)phosphoryl]butanoic acid was synthesised and coupled to 

magnetic beads (Dynabeads®) (Scheme 5.4). The phosphonate 4-[hydroxy(4- 

nitrophenoxy)phosphoryl]butanoic acid has been successfully used to raise 

catalytic antibodies able to catalyse the hydrolysis of p-nitrophenyl esters 

(Tawfik et al. 1990)
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Reagents and conditions: i) HC1 cone; ii) SOCl2, DMF; iii) p-N02C6H40H; 
iv) NaOH; v) DMF, DIC, DMAP

Scheme 5.4: Synthesis of the transition state analogue coupled with magnetic beads.

A mixture of ethyl 4-(diethoxyphosphoryl)butanoate A (10.6 mmol) and 

concentrated HC1 (60 mL) was stirred under reflux for 15 h. The solvent was 

removed under reduced pressure and the residue was washed with dioxane (10 

mL) and concentrated under reduced pressure to dryness. This procedure was 

repeated twice. The solid was then w ashed with toluene (10 mL) and dried 

under reduced pressure. This procedure was again repeated twice. The 4- 

phosphonobutanoic acid B was obtained as white solid (10.1 mmol) and was 

suspended in SOCh (40.4 mmol) and DMF (200 |uL) as a catalyst. The mixture 

was stirred at 55 °C for 15 h. After cooling, excess of SOCh was removed under 

reduced pressure and crude acyl chloride was obtained as green oil (2.25 g).
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Sodium p-nitrophenolate was prepared by mixing p-nitrophenol (40.4 

mmol) dissolved in 40 mL of THF with NaH dispersed in paraffin liquid (40.4 

mmol) with constant stirring at room temperature. Stirring was continued until 

evolution of H 2 ceased. A solution of the crude acyl chloride (10.1 mmol) in 40 

mL of THF was gradually added with vigorous stirring to the p-nitrophenolate 

mixture at room temperature. The reaction mixture was stirred for 12 h and 

then poured into an ice-aqueous solution of HC1. The triester 4-nitrophenyl 4- 

(bis(4-nitrophenoxy)phosphoryl)butanoate C was extracted with ethyl acetate (3 

x 50 mL). The combined organic layers were washed with brine, dried over 

MgSCh and concentrated under reduced pressure to dryness.

The triester C obtained as a brow n pow der (10.1 mmol) was stirred 

vigorously in 0.5 M aqueous NaOH solution (200 mL) at room temperature for 

48 h. After removal of unreacted im purities by filtration, the filtrate was 

acidified with 0.5 M aqueous HC1 solution and concentrated under reduced 

pressure to dryness. The residue was purified by RP-HPLC Luna C18 (25 x 10 

mm, 5 pm) isocratic with 20% acetonitrile in 0.01% aqueous TFA solution (3.0 

mL m in 1, retention time 14.6 min). The acetonitrile and TFA were removed 

under reduced pressure and the water was removed by lyophilisation to give 4- 

(hydroxy(4-nitrophenoxy)phosphoryl)butanoic acid D as a white solid with a 

final yield of 8% from A.

Tosyl-Dynabeads® (50 mg, 5-10 pmol) were stirred in CH 3CN (2.25 mL) 

and 10 pM aqueous NaOH (2.25 mL) at room tem perature for 24 hours. The 

reaction was followed by analytical RP-HPLC Luna C18 (15 x 4.6 mm, 5 pm) 

isocratic with 20% acetonitrile in 0.01% aqueous TFA solution (1.0 mL m in 1) 

monitoring the release of the tosyl group (retention time 17 min). The HO- 

Dynabeads were collected and washed with H 2O.
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The beads (30 mg, 3-6 pmol) were coupled with acid D (2 mg, 6 pmol) in 

DMF (5 mL) using N,N'-diisopropylcarbodiimmide (1 pL, 7 pmol) and 4- 

dimethylaminopyridine (catalytic amount). The mixture was stirred at room 

temperature for 24 h. The ester E was collected and washed with water. The 

success of the reaction was tested by hydrolysing the final product with 

hydrochloric acid and checking the production of 4-nitrophenol by UV 

spectroscopy. Due to the variable substitution of the beads, a quantitative 

measure of the yield of the reaction was not possible.

The freshly prepared library was pooled and divided into three groups 

for panning with the phagemid containing the Im9-W74A/N78H gene as the 

control. The library was first pre-screened against Dynabeads® without the TSA 

to remove non-specific binders. The second round of screening used 

Dynabeads® with TSA bound. Unbound phages were removed with detergent 

(Tween 20). Bound phages were eluted under acidic conditions and after 

neutralisation were used to inoculate a new  culture. Three rounds of panning 

were performed and the phages were titered after each round (Table 5.1).

Although there was a good enrichment in the second round, the third 

round gave no colonies in two of the three phage groups. Because there was no 

enrichment in the third round of panning, it was decided to sequence the DNA 

extracted from the phages. Three colonies were selected from each successful 

round of panning for a total of twenty-one m utants. Twelve of the twenty-one 

sequencing reaction failed. The nine successful sequences did not show 

enrichment for any particular sequence (Table 5.2).

168



5-Directed evolution o f Im9

Table 5.1: Panning results.

Groups In/out 1st round In/out 2nd round In/out 3rd round

1 3.11 • 10-7 1.78 • 10-5 No colonies

2 2.05 • 10-8 1.12 • 10-5 1.25 • 10-6

3 1.05 • 10-7 9.11 • 10-6 No colonies

Wild type 1.51 • 10-8 1.26 • 10-8 1.63 • 10-8

Table 5.2: List of mutations present in sequenced mutants.

^ \ p o s i t i o n

mutant

70 71 73 74 77 80

Im9-
W74A/N78H

Thr Val Gin Ala Ala Lys

group 1 round 1 Val Leu Tyr Asn Gin Arg

group 1 round 1 Val Ala Ala Arg Gly Phe

group 2 round 1 Met Val Cys Ser Trp Thr

group 3 round 1 Asp Thr Ser He Val Val

group 1 round 2 Pro Val Tyr Leu Asn Ala

group 2 round 2 Arg Ala Asp Gly lie Val

group 3 round 2 Trp Asp Leu Ala Arg Phe

group 3 round 2 Ser His Pro Thr Cys Ser

group 1 round 3 Gly lie Asn Val Stop Ser

5.2.6 Test expression of Im9 mutants in pHEN2

The phagemid pHEN2 was constructed to allow the expression of the 

fused protein without the need to subclone. An amber stop codon (TAG) is 

situated between the p ill protein and the fused protein Im9. When amber 

suppressor strains like XL 1-Blue are transform ed with the phagemid translation

169



5-Directed evolution o f Im9

proceeds through the amber codon and the two proteins are expressed as one. 

When non amber suppressor cells are transformed with the phagemid the fused 

protein is expressed as a separate entity. A His-tag is present downstream from 

the protein sequence to facilitate the purification of the protein.

Im9 mutants were produced in BL21(DE3) cells (non amber suppressor). 

The protein of interest, present in the supernatant (Figure 5.12), was applied to 

a nickel column and eluted with an imidazole step gradient (from 20 mM; 40 

mM; 60 mM NaCl to 1 M NaCl).

83000 
62000 
47500 
32500

25000

14000

Figure 5.12: 12% SDS polyacrylamide gel from purification of His-Im9 with a Ni- 
column. Lane 1: broad range protein marker; lane 2- 5: fractions eluted with 20 mM  
imidazole; lane 6- 9; fractions eluted with 40 mM  imidazole containing the His-lm9; lane 
10-13: fractions eluted with 60 mM  imidazole.

The fractions 6-8 containing the His-Im9 m utant, identified by SDS- 

PAGE (Figure 5.13), were collected and Amicon ultra-filtration (MWCO 30 kDa) 

was used to remove the larger proteins leading to a pure product (Figure 5.13) 

as confirmed by MALDI mass spectrometry 12978 (calculated 12979.2).

1 2 3 4 5 6 7 8 9 10 11 12 13

His-Im9
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Figure 5.13: 12% SDS polyacrylamide gel from Amicon ultrafiltration (MWCO 30 
kDa). Lane 1: broad range protein marker; lane 2: flow through containing the His-Im9.

5.3 C o n c lu s io n s

The construction of a phage display library of Im9-W74A/N78H was 

accomplished. First step was the design of two restriction sites into 

Im9W74A/N78H gene to allow the subcloning to take place. Second step was 

the successful subcloning of Im9 m utant gene into a pHEN2 phagemid. This 

step was then followed by applying the cassette mutagenesis to introduce 

random mutations. The introduced random  mutations were located around the 

active site of Im9. The success of library construction was confirmed by the 

absence of self-ligation of the open vector in the control ligation.

A test expression and purification of His-Im9 in pHEN2 phagemid 

demonstrates the possibility of expression and analysis of eventual successfully 

screened mutants without the necessity of a time consuming subcloning 

procedure. A transition state analogue was synthesised and coupled to 

magnetic beads for the screening of the library. The screening however did not 

lead to an enrichment of any particular sequence. One of the main reasons
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could be non-optimal screening conditions. The solid-phase panning typically 

has a high capturing yield but low discrimination (Barbas III et al. 2004) and this 

can explain the presence of binder w ith bulky group in position 74 (see Table 

5.2). The positive note is that binding m utants can be isolated. To improve the 

panning results a screening in solution should be included: with the "right" 

concentration of the screening molecule the capture of the clones with higher 

affinity will be maximised (Barbas III et al. 2004). For this purpose the screening 

molecule needs to be modified. The transition state analogue can be bound to 

biotin and, after capturing the binders from the solution, the complexes will be 

captured on immobilised streptavidin. The combination of the two screening 

methods, first a solid-phase screening and then a solution screening, would 

hopefully lead to a selection of only high affinity binders. Another reason for 

the poor results of the panning can be the library itself therefore different 

designs should be tried including a random isation of the residues that are 

around the native histidine 46 (see Figure 5.6).
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6. GENERAL CONCLUSION
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This thesis focused on the ever-challenging topic of artificial enzyme 

design. A peptide, Apoxaldie and a protein, Im9 were chosen to initiate the 

work. Apoxaldie-Dab and 10 Im9 m utants were designed and prepared. Their 

secondary structures were characterised by CD and the catalytic reactions were 

studied. Two Im9 m utants showed im proved activities. The work extended to 

the pioneering study of Im9 phage displayed library construction. The library 

together with the transition state analogue were successfully prepared. The 

mechanism of the designed artificial enzym es was discussed.

6.1 Apoxaldie-Dab

Apoxaldie-Dab, a new  putative oxaloacetate decarboxylase based on 

Apoxaldie, was designed and synthesised m utating Lysine residues in the 

active site of Apoxaldie w ith Dab residues in order to bring the active amino 

groups nearer to the chiral environm ental of the a-helix backbone. The designed 

18 aa peptide has two pair of cysteines and the formation of the native disulfide 

bonds has proved to be crucial for the peptide structure. Two synthetic 

strategies were explored: the former involved the synthesis of Apoxadie-Dab 

prim ary sequence w ith 4 free cysteines following by direct oxidation; the latter 

strategy applied the synthesised peptide w ith two cysteine residues protected 

by Acm and the other two cysteines protected by Trt. The use of orthogonal 

protecting groups allowed to deprotect and to oxidise the two pair of cysteines 

sequentially. This m ethod overcame the difficulty in the formation of the native 

disulfide bridges. The obtained peptide was then studied in the decarboxylation 

reaction using oxaloacetate as the substrate.

Apoxaldie-Dab's catalytic activity however was not observed in the 

assay. This can be explained by the helix breaking property of Dab, which
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probably prevents the modulation of the p Ka of the amino residues, which is 

necessary to achieve a catalytic activity by destabilising the active site 

secondary structure. The deconvolution of the CD spectra supports this 

hypothesis, showing a decrease of helicity in Apoxaldie-Dab (26%) compared to 

Apoxaldie (36%).

The synthesis of Apoxaldie derived peptides using ornithine to 

substitute the lysine residues in the active site is suggested for the future work. 

As the experimental results w ith Apoxaldie-Dab indicating the helicity of the 

peptide could be the index of the activity, using ornithine residue, which has 

the intermediate side chain length and helix propensity between lysine and 

Dab, may solve the helix distortion problem  with Dab, consequently lead to an 

active artificial peptide.

6.2 Im9

In order to design a catalyst for the hydrolysis of p-nitrophenyl acetate 

the colicin DNase inhibitor Im9 was used. It was chosen because of its known 

structure and well-studied folding mechanism. A histidine based active site was 

designed in a hydrophobic cleft in order to shield it from the solvent and 

achieve substrate selectivity.

Two series of 10 m utants were then expressed, purified and 

characterised. Together with Im9 wild type, the 11 proteins secondary 

structures and thermal stabilities were examined by CD and their catalytic 

properties were studied by UV spectroscopy following the hydrolysis of p- 

nitrophenol.
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The three Im9-Y10H/F15A series m utants showed comparable activity to 

the wild type with the two single m utants Y10H and F15A slightly unstable and 

the double m utant Y10H/F15A almost completely unstructured even at 5 °C.

In the second series, the single m utant N78H had similar stability and 

catalytic activity as the WT, the other single m utant W74A was slightly less 

stable but had the same activity. The double m utant Im9-W74A/N78H retained 

the secondary structure and good stability with a three-fold increase in the 

hydrolysis of p-nitrophenyl acetate com pared to Im9 wild type. Encouraged by 

this result, attem pts to further increase the double m utant efficiency were 

carried out by tuning the p Ka of the active histidine residues via mutations of 

nearby amino acid residues. Two m utants w ith 3 m utation sites and two with 4 

mutation sites were generated. Im9-L52D/W74A/N78H showed a doubled 

activity with half of the a-helicity comparing to WT. The rest of the mutants 

however demonstrated similar catalytic activity with great loss of the helicity. 

They are thermally unstable comparing to the WT.

The increased catalytic activity of Im9-W74A/N78H compared to the 

unstructured Im9-Y10H/F15A, which contains the same num ber of histidine 

residues, indicates that the spatial arrangem ent of the histidines plays an 

im portant role in the reaction. An attem pt to trap the acetylated intermediate by 

monitoring the reaction using MALDI-MS showed an accumulation of acetyl 

residues on the protein. This reveals that other residues on the surface of the 

protein are able to remove an acetyl group from the substrate. Furthermore the 

increased acetyl accumulation for Im9-W74A/N78H, which was the most active 

among the tested mutants, m ay suggest that a single turnover event is 

happening with the consequent inactivation of the active site. If this is the case, 

further m utation will be necessary, in order to open a channel toward the active 

site, to allow water molecules to hydrolyse the acetyl-histidine intermediate.
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6-General conclusion

This additional m utation however w ould probably further destabilise the 

mutants, as shown by the set of m utants attem pting to tune the p Ka. Therefore, 

prior to test, the intrinsic stability of Im9 needs to be improved.

6.3 Phage Display

As Im9-W74A/N78H showed increased catalytic activity, the work of 

applying directed evolution and phage display to facilitate the design of 

artificial enzyme was also initiated aiming to construct a phage display library 

of Im9-W74A/N78H. This was achieved by first designing two restriction sites 

into Im9W74A/N78H gene to allow the subcloning to take place, then 

subcloning of Im9 m utant gene into a pHEN2 phagem id, following by applying 

the cassette mutagenesis using designed inserts. The introduced random 

mutations were located around the active site of Im9. The success of library 

construction was confirmed by the absence of self-ligation of the open vector in 

the control ligation. The phagem id pHEN2 allows production of the displayed 

proteins in non amber suppressor strains. The displayed proteins are expressed 

with a His-tag that facilitates purification; therefore the selected mutants can be 

tested without the necessity of subcloning the gene in another vector. A test 

expression of His-tagged Im9-W74A/N78H was successfully performed and the 

protein was purified in a two-step procedure.

A transition state analogue phosphonate was also synthesised and 

immobilised to magnetic beads to facilitate solid phase the screening of the 

library. Test screening of the constructed library against the synthesised solid 

phase immobilised transition state analogue, although leading to no enrichment 

in any particular sequence, shows that binding m utants can be easily isolated.
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6-General conclusion

This suggests that the detection of m utants w ith high affinity for the transition 

state analogue could be possible by adjusting the screening conditions.

For future work, solution screening is suggested to maximise the 

selection of high affinity binders as the solid phase screening has a high 

capturing yield but low discrimination toward high affinity binders. Different 

designed libraries should also be tested to increase the possibility of finding an 

active mutant.
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