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A B ST R A C T iv

In [2], the following extension of the higher order Rellich inequality

^ J A V ( x ) |2| ^  > 7 ( n , a , i ) ^ J / ( x ) | 2| ^ -  (1)

was proven by W. Allegretto for all /  G C ^ R 71 \  {0}). The constant 7 is 
calculated explicitly by the author for all n > 2, a > 0 and j  G N, giving 
the value of the constant in the previously unknown case n < a  +  4j. Hence 
proving that 7  is equal to zero if and only if n < a  +  4j  and n — a = 0 
(mod 2). In this problematic case, the author finds tha t the higher order 
Rellich inequality (1) can be forced to be non-trivial if further restrictions 
are placed on the function in §n_1.

An alternative method to restricting the functional class is to look at the 
Rellich type inequality

/  I A a / M I 2^  >$>(«,a, 10 [ l/fx)!2^  (2)
J  Rn  | X |  J ^ n  | X  J

found by W.D. Evans and R.T. Lewis in [15] for n = 2,3,4. The magnetic 
Laplacian is of the form A a =  (V — zA)2 where in spherical coordinates

A . J  W * ) *  if n = 2’ (3)

with 4/ G L°°(0,27r) and 4/(0) =  4/(27t). The potential A is of Aharonov- 
Bohm type and the constant $  is dependant upon the distance of the mag
netic flux 4/ to the integers Z. By finding the discrete spectrum of the 
Friedrichs extension of — A a  in L2(Sn_1), the author is able to extend the 
Rellich type inequality (2) to all n > 2 and a > 0. Consequently, the higher 
order Rellich type inequality

[  IA a / ( x ) |2] ^  > S i ( n , a , 9 , j )  f  (4)
^Rn lX| JRn |X|

can be constructed. The inequality (4) is shown to be non-trivial for all 
n < a  +  4j  and n — a  = 0 (mod 2), the previously problematic case.

The Rellich type inequality (4) enables an analysis of the spectral prop
erties of perturbations of the magnetic operator A ^ to be undertaken in
L2(Rn), n > 2. Furthermore, a CLR type bound for the number of negative 
eigenvalues of the operator A ^ can be found in L2(R8), a space in which 
there is no CLR bound for the operator A4.
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Please note that some of the results in the proceeding historical review have 
been reproduced here in an alternative form to the originals to allow for direct 
comparison of the results. A list of relevant notation appears in section 1.4.

1.1 T h e R ellich  inequality

In lectures at New York University in 1953, published posthumously in [24], 
Rellich first proved the following inequality

[  |/(X )|» * L  (1.D
J R n J R n  | x |

for n > 2 and /  E C'o°(]Rn\{ 0}) with the further restriction in two dimensions 
that the functions satisfy

r2n p2n
/  f  (r, 6) cos 6d6 = /  / ( r ,  9) sin 9d6 = 0 . (1.2)

Jo Jo

As it can be seen, the Rellich inequality is trivial in four dimensions. In order 
to extend several non-oscillation theorems for elliptic equations of order 2 and 
4, the Rellich inequality was extended by Allegretto [2], resulting in

/  ia / ( x)I2t̂  ^  fc(n -“ ) /  i / ( x )i2i r i ^ i  (i-3)
J R n |X | J R n  |X |

where

. (n +  a)2(n — 4 — a)2 , ,
k (n , a) = ------------ — +  r(n , a), (1.4)

'(n, a ) =  inf < m(m  +  n — 2) (m 2 +  (n — 2)m 
meNo I \

n 2 — 4n — 4a — a 2
+ )}■

(1.5)
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The following was observed; k(n , a) =  0 iff for some triplet a , n and ra,

m (m  +  n — 2) =  — — 4n — 4a — a 2). (1.6)

Furthermore, Allegretto found the following higher order Rellich inequality 
by induction,

[  |Aj / ( x ) |2^  > J ] fc (n ,a  +  4») /  | / ( x ) |2 J *  . (1.7)
J R n lx l i= 0  *'Rn  ' I

In Schmincke’s investigation [26] of the class of potentials q for which the 
Schrodinger operator — A+q  in L2(Rn) is essentially self-adjoint, the following 
generalisation of the Rellich inequality was proven. For n > 2, /  E Co°(Kn \  
{0}) and s E [~n(”~4)., qq^ then

,2 dx[  |A /(x ) |2dx > ~ s f |V /(x ) |
JRn

/  i/(
Jr.71

+  I f  |/ ( x ) | ^  ( 1 ' 8 )

16 ./Rn

where the original Rellich inequality can be recovered for n > 4 by taking 
s = 0. In the same spirit of the evolution of (1.1) to (1.3), Schmincke’s result 
was extended by Bennet [4]. Suppose n >  2, a  E [(—oo, —n) U (—2, oo)] and 
a ±  n  — 4. If /  e  C0°°(R“ \  {0}) and s € [ -  oo), then

2 dxJ  | A / ( x ) | ^ > - s (  |V /(x ) |:
J R n  lx l J R n Ix l Qx

[(n +  a )2 +  4s](n -  4 — a )2 f  , £( 2 dx
+  ------  “ ---------- “ / l/(x16 J x » n  | X | Q +  4

Schminke’s proof inspired Davies and Hinz’s impressive paper [9] in which, 
among other things, sharp constants for the Rellich inequality in Lp(Rn) were
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first obtained. For all /  £ Co°(IRn \  {0}) and 2 — 2p < a  < n — 2p then

L  |a/(x)|piJ - c[n'a'p)L |/(x)|p̂  (lio)
where the constant c is sharp and defined by

(n — a  — 2p)((p — l)n  +  a)
c(n, a ,p )  =   ---------------------------------------------------------- (1.11)

P

By an inductive step, Davies and Hinz found, for j  £ N and 2 — 2p < a < 
n — 2jp, the higher order Rellich inequality

L  -  c ( n *a > p ii)L | / ( x ) | p ( i -i2)

for all /  £ C0°(Rn \  {0}) with a sharp constant

j -1
C (n ,o ,p , j )  = Y [ c ( n , a  +  4k,p). (1.13)

fc=0

In Section 2.1, the exact values of Allegretto’s constant k(n ,a)  are cal
culated. This enables us in Section 2.2 to explicitly state the higher order 
L2(Mn) Rellich inequality

L lAjf{x){2W  - 7(n’a,i)/ j /(x)|2R ^  (L14)
for all /  £ Co°(Mn \  {0}), j  £ N and a  >  0. When n > a  +  4j, then

r -\ TT (n +  a  +  4z)2(n — a — 4(z +  l ))2
= [ [ - ---------------------      (1.15)

i~0

which agrees with C (n ,a ,2 , j ) ,  see (1.13), the constant found by Davies and 
Hinz. When n < a  +  4j, there was very little information available in the 
literature. When j  = 1, Allegretto found that k(n,a)  =  0 iff the condition
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(1.6) is satisfied and that in the case a = 0 then (1.6) implies that n is even.
When n < a  +  4j ,  the constant 7 (n, o, j )  is dependant on the fractional 

part of 9Lj 1, e say. In particular, when a — n  is an even integer (5 =  0) then 
the constant 7 (72, a , j )  is equal to zero and (1.14) becomes a trivial inequality. 
This dependence on the fractional part of as opposed to simply n and a 
means that the constant 7 (71, a , j )  has a very different behaviour depending 
on whether n < a  +  4j  or n > a  +  Aj. For example, if j  = 1 and a = 2;

n 7 (71, 2 , 1 ) 71 7 (71, 2 , 1 )

2 0 6 0

3 1 7 81
16 16

4 0 8 2 5

5 1
16 9 1089

16

Section 2.3 concentrates on the problematic cases when the higher order 
Rellich inequality (1.14) becomes trivial i.e. when n < a  +  4j and 1~ L 6  Z. 
It becomes apparent that in these cases a non-trivial higher order Rellich 
inequality in L2(Mn) can be found if some restrictions are placed on the 
function in §n_1. The Rellich inequality (1.1) in L2(R2) with the restriction
(1.2) on the function is a particular case of this (see Remark 2 .11). One 
application of this addresses the problem of there being no non-trivial Rellich 
inequality in four dimensions. In doing so, for all /  £ C^°(R4) and

[  f(r,uj)Y0A(u>)du> = 0, (1.16)
Js3

then
[  \A f (x ) \2dx > 9 f  |/ (x ) |2^  (1.17)

J  R4 J  R4 \ X\

where ^0,4(0;) is the four dimensional spherical harmonic of degree 0 .



1. Introduction 6

1.2 M agn etic  P o ten tia ls

1.2.1 T he A haronov-Bohm  effect

The Aharonov-Bohm effect, predicted by Aharonov and Bohm in [1], is a 
quantum mechanical phenomenon where a charged particle is affected by 
electromagnetic fields from which the particle is excluded. There has been 
a suggestion that the Aharonov-Bohm effect demonstrates tha t the electro
magnetic potentials (rather than the electric and magnetic fields) are the 
fundamental quantities in quantum mechanics.

The specific case of interest in this text is the magnetic Aharonov-Bohm 
effect, where the wave function of a charged particle passing around a long 
solenoid experiences a phase shift as a result of the enclosed magnetic field, 
despite the magnetic field being zero in the region through which the particle 
passes. The magnetic Aharonov-Bohm effect was experimentally confirmed 
by Tonomura [29] in 1986. In this case, the magnetic potential A is taken to 
be

in spherical coordinates with \j/ E T°°(0, 27t) and \k(0) =  \P(27t). The as
sociated magnetic field B =  curl A  is equal to zero in the domain \  Cn 
where

A :=
if n =  2

(1.18)

{0} if n =  2
(1.19)

{x =  (r,eu  ...,0„-i) : r I E j s m f l*  =  0} if n  >  3.
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1.2.2 R epairing the Hardy inequality in two dim en
sions

In 1925, Hardy formulated and proved his famous inequality: let p > 1 and 
/  E L2(R+), /  > 0. Then F(x)  = / Qx f{t)dt  < oo for every x > 0 and

I  (^rYdx̂ { ^ Y  i  f{x)dx' (L20)
where the constant ls sharp. However it has been noted, see [17], that
Landau, Polya, Riesz and Schur made very important contributions to the 
development of (1.20). Many aspects of the inequality have been generalised 
over the years and one form which is of particular interest is the p = 2 
multi-dimension version of the Hardy inequality, namely

[  |V /(x ) |2dx > [  |/ ( x ) |2^  (1.21)
J  Rn  J  | X |

for all /  E Cq°(Rn \  {0}) and n > 2. The constant is best possible and
there is equality if and only if /(x )  =  0. When n = 2, the Hardy inequality is 
only trivially true but a non-trivial Hardy type inequality, where the |x |2 term 
is replaced with |x |2(l+ log2 |x|), can be found if some additional assumptions 
are placed on / .  For example,

f  |V /(x ) |2dx > c  [  | | if / /(x)rfx  =  0.
JR2 JR* |x |2(l +  log |x|) -/{|x|=l}

( 1.22)

This logarithmic factor is not ideal. Solomyak [28] found that the log |x| 
term is only required for functions /  depending on |x| and can be removed if 
the function satisfies /(x )d x  =  0 for any r > 0. Laptev and Weidl’s
imaginative approach in [20] to the problem was to introduce a non-trivial 
magnetic field A G C(M2\{0}) with the condition that curl A  G Ljoc(M.2\{  0}).
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Then for /  G C^°(1R2 \  {0}), the Hardy type inequality

[  |V A/( x ) |2dx > a f  |/(x ) | 
J R2 J R2

2 dx
(1.23)

holds where

VA =  V — iA. (1.24)

Not only have Laptev and Weidl removed the unpleasant logarithmic factor 
but they have done so without placing any additional assumptions on / .  A 
magnetic potential A of Aharonov-Bohm type is an important example of 
(1.23). More precisely, if in polar coordinates (r, 6) in M2 \  {0}, the potential 
A is of the form

then the magnetic field B =  cur IA  generated is equal to zero in IR2 \  {0}. As 
long as the magnetic flux

When the magnetic flux $  G Z, V A is equivalent by gauge invariance to V 
and so (1.23) transforms back to (1.21) which is trivial in M2.

1.2.3 R epairing the R ellich inequality

As discussed in Section 1.1, in order for the Rellich inequality (1.1) to be non
trivial in n =  2,4, additional assumptions had to be placed on the function.

(1.26)

then (1.23) is non-trivial with the sharp constant
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Inspired by ideas from [20] and [9], Evans and Lewis [15] sought to tackle
this problem by replacing the Laplacian A with a magnetic Laplacian A a =
V a where A is (1.18), an Aharonov-Bohm potential. If n = {2,3,4} and 

E (0,1) then Evans and Lewis found the following Rellich type inequality,

f  |A a / ( x ) | 2t ^  > $ ( n ,a , l ')  f  l / ( x ) |2rrn^j- (L27)
J R n  lx | J  R "  lx l

for all /  E Co°(Rn \  {0}). The constants given by

$ (2 , o, fr) -  mf {(m  +  # ) 2 -  ^  ^  ^  } , (1.28)

4>(3, a , i )  = mf {(m  -  4 )(m  -  ¥  +  1) -  +  ̂  +  3) } \  (1.29)

$ (4 ,  a ,  f )  =  ja rf  | ( r a  +  ^ ) 2 -  1 -  (1 .30 )

where Z' =  {m  : (m +  ^ ) 2 > 1}- Similarly to the Laptev-Weidl inequality,
Evans and Lewis have found in (1.27), a Rellich type inequality in the critical 
cases n = 2,4 without making any additional assumptions on / .

As mentioned above and observed in Section 2.2, the Rellich inequality
(1.3) is trivial when n < a  +  4 and E Z, so as the value of a  increases, 
the number of critical cases, by which we mean the number of dimensions 
for which (1.3) is trivial, will increase. With this in mind and using ideas 
heavily influenced by [15], the purpose of Chapter 3 was to find (1.27) for 
all n > 2 and a > 0. In order to do this, the positive eigenvalues of our 
magnetic Laplace-Beltrami operator (see Theorem 3.2) were calculated in 
all dimensions n > 2. Then Theorem 1 of [15] could be applied thereby 
resulting in Theorem 3.8 which gives (1.27) for all n > 2, a > 0 , *  e  (0 , 1) 
and /  E C'o°(Rn \  Cn) where

$(n , a, tf) =  inf {(m  +  ̂ )(m  +  l '  +  n - 2 ) +  ^  +  a ^ n — - — — } 2 (1.31)
m€ Z(n) 1 4 J
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and =  {m £ Z : m  < 2—n —'I' or m  > —'I'}. The cut in the domain Cn is 
determined by the choice of the magnetic potential A  (see (1.18) and (1.19)). 
Importantly the Rellich type inequality found has a non-zero constant

4>(n, a , ^ )

when n < a  +  4 and n — a  = 0 (mod 2), the case where the ordinary 
Rellich inequality become trivial. In contrast to Section 1.1, no additional 
restrictions were placed on the function / .  A consequence of Theorem 3.8 
is a higher order Rellich type inequality which is non-trivial in the cases in 
which the higher order Rellich inequality (1.7) is only trivially true.

1.3 C L R  ty p e  bounds

Consider the higher order Schrodinger operators

H v = ( - A y  -  V , j £  N (1.33)

in L2(Mn) where V > 0 and V £ L^(M.n). This operator is defined as 
that associated with a closed semi-bounded quadratic form. It has essential 
spectrum [0 , oo) and for n > 2j ,

N ( H V) < c (n , j ) f  V(x)vcbt  (1-34)
jRn

where N ( H y ) denotes the number of negative eigenvalues of the operator Hy.  
When j  = 1, (1.34) is known as the Cwikel-Lieb-Rozenblum (CLR) bound, 
after the authors of the three earliest proofs, see [8], [21] and [25]. More 
generally, Egorov [12] proved that if the Laplacian is replaced by a positive 
elliptic differential operator of order 2j  with sufficiently smooth coefficients, 
then for n > 2j, (1.34) still remains valid. A natural question is, what

—
& ( q - a - 2 ) 2 if 4 r e ( 0 , £ ] ,  

( ^  +  a  +  l ) 2( ^ -  l ) 2 if § G ( | , 1 )
(1.32)
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happens to (1.34) when n <2p.  The condition V  £ L*i (Rn) does not imply 
the operator Hy  is semi-bounded from below, let alone that (1.34) remains 
true. When n < 2j ,  [5] and [7] found some different estimates for N(Hy)  
when n is even and n is odd respectively.

The limiting case n = 2j  has proved to be more obtuse, see [7] [27], [5], 
[6] and [18]. Found by Laptev and Netrusov in [19], a CLR type inequality 
can be obtained for the operator Hy$ which is Hy  with an additional Hardy 
term l^l-2-7,

Hy,b := (~ A ) j +  b\x\~2j -  V  (1.35)

in R2-7. If V > 0 and V £ L1(M+, Lp(Sn_1)) for 1 < p < oo, then by Theorem
1.2 in [19], Hy^  is a self-adjoint operator whose essential spectrum coincides 
with [0 , oo) and

N ( H Vtb) < c(6,7i,p)||Vr||Li(R+iJrP(s«-i)). (1.36)

Returning to the j  — 1 case, the CLR inequality is valid for n > 3 and 
(1.36) gives a CLR type bound in two dimensions. Using (1.36) and the 
Laptev-Weidl inequality, Balinsky, Evans and Lewis [3] were able to fulfill the 
prediction made in [20] in their study of the negative spectrum of magnetic 
Schrodinger operators. More precisely, let TA be the self-adjoint realisation 
in L2(R2) of — A a — V defined by the associated form where V £ L/1oc(R \{ 0}), 
V  > 0 and

V £ L \ R  +,L°°(Sn- \ r d r ) ) .  (1.37)

The magnetic potential A is defined as (1.25), of Aharonov-Bohm type. Then
if the magnetic flux is not an integer, we have

A(Ta ) <  a(4f)||Vr||Li(K+;Lo0(§i);T,dr). (1.38)

Futhermore it is also proven in [3] that the L l (R+; L00̂ 1); rdr)-norm cannot 
be replaced by the L1(R2)-norm i.e. an inequality of the form (1.34) cannot
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be found for the magnetic Schrodinger operator in two dimensions. Evans 
and Lewis [14] continued the analysis by using the inequality (1.27) found 
by them to construct a CLR type inequality in the limiting case n = 4 and 
j  = 2. This is of the form

N(L&) < &(^)||V’||£l(R+;£oo(s3);rt/r) (1.39)

where L a is the self-adjoint realisation of A ^ +  B + — V defined by the 
quadratic form. B + is an operator of multiplication by the function 6+, 
where

0 < b+ e  L*(R+; L°°(Sn-1); r3dr) =  L^R+j r3dr) <g> L°°(Sn- 1) (1.40)

and

0 < V < L1((0, oo); r3dr). (1-41)

Furthermore, Evans and Lewis [14] found that the operator La has the es
sential spectrum [0, oo). The space L2(R8) having no CLR bound for the
operator A4, is another example of a critical case. Consequently in Chapter 
4, the spectral perturbations of the magnetic operator A ^ are investigated. 
Take K + to be the operator of multiplication by the function k+, where

0 < k + e  L1(R+; L°°(§n-1); r7dr) = L1(M+; r7dr) <8> L°°(S71” 1). (1.42)

Then the essential spectrum of the self-adjoint realisation of AAA+ K + defined 
by the quadratic form coincides with [0, oo). Furthermore the following CLR- 
type inequality

N ( J a )  <  c (  ̂  )  11 11Z,1 (R +  ;X,oo (g7) jT-rfr.) (1-43)

holds in L2(R8), where J A is the self-adjoint realisation of A ^ -f K + — V
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defined by the quadratic form and

0 < V  < L1((0, oo);r7dr).

1.4 N o ta tio n

The following notation will be used throughout the thesis;

C The set of complex numbers.

Co°(f2) The set of infinitely differential functions of compact 
support in Q.

Lp(Q) = { / :  f n \ f\pdx  < oo}.

N The set of natural numbers.

N0 =  NU{0}.

M The set of real numbers.

R+ The set of nonnegative real numbers.

Mn n-dimensional Euclidean space.

Re[z] The real part of z G C.

§n_1 Unit hypersphere in Rn.

Z The set of integers.

(1.44)
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V Gradient.

A Laplacian.

~z The complex conjugate of z G C.

a < b a is bounded above by a constant multiple of 6, the
multiple being independent of any variables in a and b.

a := b a is defined by b.

T  fn Restriction of the operator T  to the set Q.

Further notation will be introduced in the text.
Chapters are divided into sections, with for example Section 3.2 denot

ing section 2 of chapter 3. Theorems, Corollaries, Lemmas and Remarks 
are numbered in sequence within each Chapter: Theorem 2 .1, Remark 2.2, 
Corollary 2.3 etc. Equations and formulae are number consecutively within 
each chapter, so (4.3) denotes the third equation in Chapter 4. The symbol 
■  denotes the end of a proof.

A number of references are cited throughout the text, denoted by [•]. A 
full list of which are given in the bibliography.



Chapter 2

The higher order Rellich  
inequality
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2.1 T h e R ellich  ineq u ality  and A lle g r e tto ’s 

con stan t

The Rellich inequality

/  lA / ( x )l2] ^  ^  * (" .“ ) /  l / ( x )l2] r n ^  (2 1 )
J R n  | x | J R n lx l

was proven by Allegretto in [2], where

k ( n , a ) = {n + a) \ - 4 - a) \ r (n ,a ) ,  (2 .2)

r (n ,a )  = inf \ m (m  +  n — 2) (m 2 +  (n — 2)m 
meNo I V

n2 — 4n — Aa — a 2 \  'i 
+  2 ) ) '

Define

(2.3)

frac[x\ := x — [xj (2.4)

where |x j is the floor function (the largest integer less than or equal to x). 
Under this definition 0 < frac[x\ < 1, x =  [x\ +  frac[x\ and Allegretto’s 
constant can be calculated.

Theorem  2.1. Suppose e fracl 9̂ ]  and a > 0. Then

k(n,a)  =  <
L".±gJ2feT»-4)2 if n > a  + 4

16 (2.5)
l(n, a) if  n < a  + 4
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where

l(n, cn) =  <

0

e2(e — a — 2)2 

(1 — e ) 2 ( £  — a — 3)2

if e = 0,

if  0 < e < ^ - ^ (° ^ )(°+3), (2 .6)

if  la ta  _  < £ < i.

Remark 2.2. The statement, k(n ,a)  = 0 iff n — a = 0 (mod 2) and n < 
a + 4, agrees with the condition of Allegretto (Corollary 2, [2]).

Remark 2.3. It can be seen from the proof of Theorem 2.1 that

(Oi +  3) -y/(o: +  l)(o; +  3) 1
2 ’

see (2.27), which implies that

l{n, o) =
(2a -  3): 

16

when n — a = 1 (mod 2) and n < a + 4.

Proof. Rewrite Allegretto’s constant

k (n ' a ) = {m(m+»- 2)+( ^ )  m  r
Define for x  G M+

0 (x, n, o) :=x2 +  (n — 2)x +  

n — a — 4'

(n +  a)(n — a — 4)

/  n — a — 4 \ /= (* +    )(* +
4

n -f a'

and set

(2.7)

(2 .8)

(2.9)

(2 .10)

X -  : =  — ■
n +  a

(2 .11)
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x+ :=
o +  4 — n

( 2 . 12)

Now

d
— 0 (x, n, o) =  2x* +  (n — 2) =  0 
ox

1 -

n
(2.13)

and since the function 0 (:r, n, a ) 2 is symmetric about its local maximum x+ 
and re* is zero or negative, we need only look at x > x*. Therefore, finding the 
infm€N0 0 (m, n, o )2 becomes two different problems depending on whether or 
not the largest zero x + belongs to M+U{0}. The two different cases are given 
by

x + <
< 0  if n > a  +  4,

> 0  if n < a  +  4.
(2.14)

C ase 1: n > a  +  4

x. 0

Figure 2.1: 0(x , n, a ) 2 when n > a  +  4.
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The infmeN0 0(m , n, a ) 2 occurs when m = 0, therefore

fc („ ,a )=  inf e ( m , n , a f = {n + a ) \ - a - 4 ) 2
m€ No 16

C ase 2: n < a  +  4

i !i i
1

\ /  \  /
\  ./

0

Figure 2.2: 0(:r, n, a )2 when n < a + 4.

Evidently from Figure 2.2,

k(n ,a )  =  inf Q (m ,n ,a ) 2
77lGNo

=  min{0 (m _ ,n ,a) , 0 (m+ ,n ,a ) 2} =: Z(n,o)

where m_ and m + are the two integers neighbouring £+ i.e.

m_ :=2 +  (5, 

m + :=3 +  5

(2.15)

(2.16)

(2.17)

(2.18)
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where

a  — n
—5 +  £,

S:=
a — n

e :=frac
'a  — n ' 
.  2 .

(2.19)

(2 .20) 

(2 .21)

By calculation

0(5  +  2, n, a) —e(e — a — 2),

0 (5  +  3, n, a) =(1  — e)(3 +  a — e).

(2 .22)

(2.23)

Noting that

0 (5  +  3, n, a) +  0 (5  +  2, n, a) =2e2 -  2(a +  3)e +  a  +  3 =: g{e) (2.24)

and

0 (5  +  3, n, a) — 0 (5  +  2, n, a) =3 +  a — 2e > 0

since 0 <  £ < 1. The equation p(e*) =  0 has the solution

(2.25)

(o +  3) \J  (a +  l) (a  +  3)
(2.26)

2 2

because the second root -f y(a+i)(a+3) >  ̂ djscarcjecj Observing that

1  ̂ (a +  3) y /(a  +  2)2 - l
2 > 2 2

_  (a + 3) y /(a  + l )2 +  2(a +  1)
2 2 <

(2.27)
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and

g(0) =a +  3 > 0,

0(1) =  — ( a +  1) < 0 ,

(2.28)

(2.29)

we have

V ( e  - a - 2 ) 2 if n < £ < i s ± ^ -  V ^ ^ +3\

by the difference of two squares.

2.2 T h e h igher order R ellich  in eq u a lity

Corollary 4 (i) in [2] gives the following extension of the higher order Rellich 
inequality, where the constant is given in terms of a product of Allegretto’s 
constants k(n ,a ). This constant can now be calculated explicitly as a con
sequence of Theorem 2.1.

Theorem  2.4. I f  j  £ N and a  > 0 then

[  |A V (x )|2r~j“ > f  |/(x ) |J R" |XI 7R"

2 dx
x| a+*j (2.31)

for all f  £ Co°(Rn \  {0}) where

• if n > a  +  4j ,
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• if  a  +  4 < n < a  +  4j and £ := frac[9lj Dl] ^  0,

/ TT (n +  a  +  4z)2(?7. -  a -  4(i +  l ))2
7  (n,a,j)= j !  ------------------------ —---------------------

* ti  (2‘33)
P J  Z(ra,ar +  4*).

• if  n < a  +  4 and £ ^  0,

j -1
7 (71, a, j )  = JJZ (n,a: +  4z). (2.34)

i=0

• if  n < a  +  4j and £ = 0 (i.e. when n — a = 0 (mod 2))

l ( n , a ij)  — 0. (2.35)

Rem ark 2.5. When n > a + 4j ,  Theorem 2.4 agrees with the inequality
found by Davies and Hinz (p = 2 ) in [9] and as proved by Davies and Hinz,
7 (77, a, j ) is optimal when n >  a + 4j .

Proof. By Corollary 4 in [2],

[  |A V (x )|2^ > 7 ( n , a , j )  [  l / W l T - g j -  (2.36)
jR n |x | JRn |X|

for all /  6 \  {0}) where

j - 1
7 (n, a , j )  = Y [ k (n ,a  + 4i). (2.37)

» = 0



2. The higher order Rellich inequality 23

Applying Theorem 2.1 gives

k(n, a  + Ai) = <
(n+<*+4i)2( n —a —4 ( i + l ) ) 2 ; f  „  >  a  +  4 ( j  +  ! ) ,

Z(n, a  +  4i) if n < a  +  4(2 +  l),
(2.38)

for i G {0,1, . . .J  -  1}. If n > a  +  4j  then n > a  +  4(z +  1) for all i G 

{0 , 1, . . .J  -  1} and so

7 (n , a , j ) =  f j  (w +  a  4 0 2(ra ~  a — 4(i +  1))

2= 0

(2.39)

as required. If n < a  +  4 then n < a  +  4(2 +  1) for all i G {0,1, . . . , j  — 1} and 
so

j -1
~/(n,a,j)  =  J p ( n , a  +  4i) . (2 .40)

2 = 0

When a  +  4 < n < a  +  4i7 then there exists 6 G { 1 ,2 ,  . . . , 7  — 1} such that

a + 4 b < n < a - \-  4(6 +  1), (2 .41)

where

b =
n —a  _ -j

4 1

L ^ J

if n — a  =  0 (mod 4), 

if n — a  ^  0 (mod 4).
(2.42)

W hen 2 G {0 ,1 , . . . ,  b — 1} then n > 0  +  4 (2  + 1 )  but when 2 G {&, 6 + 1 , . . . ,  j  — 1} 

then  n < a  +  4(2 +  1) and so

6-1 j - 1
7 (22, o , j) = /c(n, a  +  42). A;(n, 0  +  4i)

2 = 0  2 = 6

t-t  (n +  a  +  4i)2(n — a — 4(i +  l) )2 
=  1 1 --------------------^ -------------------- 1 1  /(n, a  +  4t). (2.43)

2 = 0  2 = 6
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Suppose n — a = 0 (mod 2), then

a 71 G Z => e = 0 => /(n, a  +  Ai) = 0 (2.44)

which implies j ( n ,a , j )  = 0 for all n < a  +  4j .  Therefore if it is assumed 
that n — a  ^  0 (mod 2), then b = \Jk̂ L\ and the result follows. ■

2.3 R estr ic tio n  o f th e  class o f  fu n ction s

The Rellich inequality becomes trivial when n < a + 4 and n — a = 0 (mod 2) 
according to Theorem 2.1 (see (2.6)). When a = 0 and n = 2, a non-trivial 
Rellich inequality can be found if extra restrictions are placed on the function 
class. Can this idea be extended to all n < a  +  4 and n — a = 0 (mod 2)? 
Firstly we need to investigate why the constant vanishes. In [15], Evans and 
Lewis developed the following abstract inequality (referred to as Theorem 1 
in [15]):

Theorem  2.6 (Evans and Lewis). Let be a non-negative self-adjoint 
operator in the space L 2 {Sn~l ]du) whose spectrum is discrete and consists of 
isolated eigenvalues Xm,m  G T, where X is a countable index set. Let

_ d2 n — 1 d
( 5)

and define the operator D Lr 4- on the domain

Vo : = { / : / £  C0°°(ir \ {0}),
f ( r , - ) e V ( A w) f o r O < r < o o , D f e L 2 (Rn)}

in L 2 (R"), where V(A^) denotes the domain of Then for all f  G V 0 such
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that | • | 2£ )/ G L2(Mn), we have that

f  S C (n ,a ) / | / ( x ) |2t - ^  (2.47)
JRn |X| J Rn |X|

where

„ r „ (n  +  a \  ( n  — a  — 4 \ 'i 2 _
Q) =  { Am +  ( — )  ( -2 )  /  ' (2’48)

For example, if D = —A, then is the Laplace-Beltrami operator which 
has eigenvalues pm, given by

pm = m (m  +  n — 2) (2.49)

for m  G No- In this case, Theorem 2.6 returns to equation (2.1) and illustrates 
that the constant k(n , a) is of the form

r { (n  + ol\  tn  — a — 4 \ ' i 2
k{n' a) =  W  +  ( — ) ( -2 ) } ' (2'50)

A technique is needed which will “eliminate” the eigenvalues in /c(n, a) which 
cause the constant to become equal to zero. In order to do this, the following 
adapted version of Theorem 2.6 will be proven.

T h eo rem  2.7. Let the assumptions of Theorem 2.6 hold. Let Q C X be a 
countable index subset such that if  m  6 Q then

I  / ( r ,  cj)um(cj)duj =  0 (2.51)
J §n-i

where Xm is an eigenvalue (repeated according to multiplicity) of the operator 
Aw with corresponding normalised eigenvector um(uj). Then for all f  £ T>0 

such that | • |~ 2 D f  G Z/2(Rn), we have that
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where
~ . . r / n - \ - a \ / n  — a — 4 \ ' i 2 _  ̂ .

C{n' a) =  ^  { A”* +  ( — ) (  2 ) /  ' (2'53)

Proof. Since the spectrum of Aw is assumed to be discrete, its normalised
eigenvectors um,ra  G 1  with the eigenvalues {Am} repeated according to
multiplicity, form an orthonormal basis of L2(Sn-1; dcu). For /  G T>o, set

z m[f]{r) := [  f(r,u j)um(uj)duj. (2.54)
J sn_1

Then 2 m[f] G Co°(R+) and on using Parseval’s identity and the fact that 
Zm[f] — 0 when m  G Q, it follows that
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poo

E A™ /  |2 ro[ / ] ( r ) |V - “- 5dr
m e  I  J  0

poo

E  A™ /  |-Zm[/](r)|2rn- “- 5rfr.
JOm e 2 \Q

Now from the proof of Theorem 1 in [15],

/  | £ / ( x ) | 2^ > E A™ f°° \2mlf](r)\2r"~a~5dr 
Jr™ |X| meJ Jo

1   poo
+ - ( n - o - 4 ) ( n  +  a ) ^  Am /  \Zm[f](r)\2rn~a~5dr

m g l

+ {(„ .1)(c,+ 1) + ( ^ ) ' } ( ! ^ i ) - / >J;wl,
poo

= E  A» /  I - Z J / I M I V — 5*
mei\a ^

1 poo

+  o(n “  Q ~  4)(n +  a )A™ /
mex\e

+ E  { ^ ) \ ^ = ^ ) 2 T  \ Z M ) ? r ^ d r
mei\g Jo

-  £  { M ^ F F ^ T  i a - 1 / l M i v — *
mei\g

^ F + F ^ F F 1)}’ E f  '2-i'iw'v '
m € T \Q

n + a \ / ' n  — a — 4\ ' i  2 /* , 2 dx
>6i\el V 2 /V 2 / J  J R„ |x |a+4 

and the result follows.

(2.57)

dx
x | a + 4

a~5dr

(2.58)

R em ark  2.8. It can be seen from the proof of Theorem 2.1 that the constant 
k(n,a)  in the inequality (2.1) vanishes when 9((3,n,a) = 0 and (3 G N0.
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These conditions are satisfied when n < a + 4, n — a = 0 (mod 2) and

0 = 2 + (2-59)

Thus, if  the eigenvalue pp is removed from the constant k(n,a) ,  it will no 
longer vanish when n < o  +  4 and n — a = 0 (mod 2).

Let l(n , o) denote the new constant given by

7/ x f (n  +  a \  (n  — a — 4 \ 'i 2
1{H’a) = {Pm + (— ) ( 2 ) 1 (2-60)

which can be calculated in the same manner as l(n, a ), see Theorem 2.1.

L em m a 2.9. Suppose n < a  + 4, n — a  =  0 (mod 2) and a > 0. Then

, (a +  l )2 when n < a + 4,
/ ( n , a ) = < ; V ' (2.61)

(a +  3)2 when n =  a  +  4.

Proof. By definition

a) = J g U  {m(ra + n - 2) + ( H 2 ) (!LZp i ) }2' (2-62)

From the Proof of Theorem 2.1 it follows that j3 G No is the only local
minimum of 0 (x ,n , a ) 2 (see (2.10)) in R+. If (3 ^  0, i.e. when n < a  +  4,
then the new minimum will be at either of the integers neighbouring 0, hence

l(n, a) — m in{0(0 -  1, n, a), 0 (0  +  1, n, a)}. (2.63)

By calculation

0 ( 0 - l , n ,  a) =  —(a +  1), (2.64)

0 ( 0 + 1  , n ,a)  = ( a + 3). (2.65)
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Therefore

l(n, a) =  (a +  l )2 (2 .66)

when n < a; +  4. If n =  a  -f 4 then (3 = 0 and so (3 — 1 ^ No, hence

Theorem 2.7, together with Lemma 2.9 can be used to find a non-trivial 
Rellich inequality in the problematic case n < a  -f 4 and n — a = 0 (mod 2), 
see Remark 2.8.

T h eo rem  2.10. Suppose n < o  +  4, n — a  =  0 (mod 2) and a  >  0. Let Tm,n 
denote the space of n-dimensional spherical harmonics of degree m, where the 
dimension of y m,n is given by

R em ark  2.11. Suppose a = 0 and n = 2, then Ae =  — , Pm = vn2 , (3 = 1

lî cx. +  4, o) — (o 3)2 (2.67)

and the result follows.

k,"m ,n  • —
(2m +  n — 2)(m +  n — 3)! 

m\(n — 2)! (2 .68)

Then for all f  E Co°(Mn \  {0}) which satisfies

(2.69)

for all Y  E V21 following inequality holds

where /(n, o) zs given by Lemma 2.9.
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and k i }2 =  2. So

A $Y(0) =  Y(0)

~ w Y(e)  =  Y{e)
I

Y(6) = eie =  cos0 +  isin0. (2.71)

Therefore by Theorem 2.10, the Rellich inequality

f  |A /(x ) |2dx > f  |/ ( x ) |2^  (2.72)
Jr 2 Jr.2 Ix l

is valid for all f  G Cq°(R2 \  {0}) which satisfy

[  f{r,0) cosOdO = j / ( r ,  9) smOdO = 0. (2.73)
Js1 Js1

A result already known in the literature.

Proof. Suppose D = — A, in which case is the Laplace-Beltrami operator.
It is known that pm (see (2.49)) are the eigenvalues of Aw with corresponding
multiplicity kmn̂ and eigenvectors Y  G y m,ni the n-dimensional spherical 
harmonics of degree m, see [13]. On account of

j  f(r,uj)Y(uj)duj = 0 (2.74)
J sn_1

for all Y  G y 2+2=2 .^, Theorem 2.7 gives the Rellich inequality
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where

c =  inf
meN0\{2+^

— /(n, a).

f / /n  +  a \ / n  -  a  -  4\ ' i  2
{m(m + n -  2) +  ( — ) ( ---------   ) }

n — a — 4

(2.76)

By taking a = 0 and n = 4 in Theorem 2.10, a non-trivial Rellich inequal
ity in four dimensions is found by placing only one extra condition on the 
function.

When looking at the higher order Rellich inequality of order j ,  the con
stant 7 (n, a, j )  was equal to zero when n < a  +  4j and n — a  =  0 (mod 2) 
(see Theorem 2.4). Using the same argument as we did in the case of the 
Rellich inequality, a non-trivial higher order Rellich inequality can be found 
in the problematic cases by restricting the functional class. Looking at the 
n < a  +  4 case first;

T h eo rem  2.13. Suppose n < a + 4, n — a = 0 (mod 2) and a  > 0. Then 
for all f  E C£°(Rn \  {0}) which satisfies

C oro llary  2.12. For all f  E Cq°(R4 \  {0}) and

(2.77)

where Y  E 3 0̂,4; then

(2.78)

f  f(r,u)Y(uj)duj = 0
J sn_1

(2.79)
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for a l l Y e U & y 2+ a + 4 i —n  WC h(lVC

f |A V (x )|2^ > 7 ( n , a , j )  [  l/(x ) |2^ -  (2.80)
J R r i  |X j  J fr n  |X |

where
j -1

7 (n , a , j )  =  J J / ( n , a  +  4z). (2.81)
i=0

The space y m,n is defined as in Theorem 2.10.

Proof. For j  = 1, Theorem 2.13 is precisely Theorem 2.10. Assume (2.80) is 
true for j  — 1, then

/  |A V (x )|2]^  =  /  |A ^ ( A / ( x))|2^
JRn |x | J Rn lXl

1~2 r fa
> n « ( n . «  +  4i) /  |A /(x )l2 (2.82)

i=o J r" 11

Owing to the assumption that

f f(r,u>)Y(u>)duj = 0 (2.83)
7s"-1

for all Y  G T21 a+4(7-i)-n n, Theorem 2.10 can be applied and it follows that

/  |A y (x ) |2- ^ > / ( n , a  +  4 ( j - l ) )
JR" lx l

r d x  (2 8 4 )
. n ^ , « + 4 * ) ^ j / ( x ) i 2^ -

4=0

and the result then follows by induction. ■

The case a  +  4 < n < a  +  4j is constructed using a combination of Theorems 
2.4 and 2.13.
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T h eo rem  2.14. Let a  +  4 < n < a  +  4/, n — a = 0(mod2), a  > 0 and

— 1 if  n — a = 0 (mod 4),
6 = <  • '  ' (2.85)i—a   1

4 2

Then for all f  £ C^°(Rn \  {0}) which satisfies

f  f(r,uj)Y(cj)cLu = 0 (2.86)
J  s™-1

/or a// y  £ Ui=6 "^2 i Q+42i~n,a- we have

[  Ia j7 (x ) |2t ^  > 7 {n,a, j )  f  |/ ( x ) |2t ^  (2.87)
JRn |x | J]Rn |x |

where

-\ TT (n +  on +  4i)2(n — a  — 4(i +  l ))2 4-4 ~
7 (n , a , j )  =   —---------- . J J / ( n ,  a +  4z). (2.88)

i=0 i=b

The space y m,n is defined as in Theorem 2.10.

Proof. Identically to (2.41)-(2.42), there exists b £ { 1 ,2 ,...,/ — 1} such that

a  +  4b < n < a  +  4(6 +  1), (2.89)

where

~  1 if n — a  =  0 (mod 4),
4 ' (2.90)

|2=sj =  2 = 2 - 1  i f n - a  =  2 (mod 4).

When i £ {0,1,..., 6 —1} then n > a  +  4(z +  1) and so Theorem 2.4 can be
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applied,

/ |Aj/(x)|2i^J Rn

—n  (n q + 4 ^)2(n -.~ a — + 1))2 ^  | / y _V (x)|2_ j ^ _  ( 2 - 9 1 )

When i 6 {6,6 +  1 , j } then n < a  +  4(i +  1). Since

j  f(r,u>)Y(uj)du = 0 (2.92)
7 § n - 1

for all y  G Ui=6 W i Q+42i~n,u- the assumptions of Theorem 2.13 are satisfied 
and applying it to (2.91) gives

/  lAV (x ) |2] ^  >nf(n,a, j )  (  l/(x )l2r f Q* 4- (2.93)
</Rri |x | JK" |x |

where

7 ( n , a , J ) = n (w +  a  +  4j)2(rai ~ a ~ 4(8 +  1)):
i—0 
j-b-1

. l(n, a  +  46 +  4z)
i=0

6 _ 1  ( n r ,  1 ^  I ^  / I / o  I I \ \ 2  J - 1

= n ( n + a + 4i) (ra~ a ~ 4(' + 1 ) ) - i p w + 4o. (2.94)
!6i=0 i=b
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According to Theorem 2.4, the higher order Rellich inequality

f  Ia V ( x ) | 2t ^  >  7 (n,a, j )  f  | / ( x ) | 2 j f *  (3.1)
J Rn |x | J]Rn |x |

becomes trivial (7 (72, a, j )  = 0) for all n — a = 0 (mod 2) and n < a  +  4j. 
Each time the Rellich inequality is applied to A lf  (taking it to A1-1/ )  the 
power of the modulus of x  in the denominator is increased by 4. Let us 
take for the moment the ordinary Rellich inequality (j = 1); the trivial cases 
occur when n < a  +  4 and n — a = 0 (mod 2) and it can be seen that as a 
(the power of |x|) increases, the number of dimensions in which the Rellich 
inequality is trivial grows. This illustrates that the bound n < a  +  4jf is due 
to the iterative nature of the Rellich inequality. Hence the key to finding a 
higher order Rellich type inequality for all n < a  +  4j  lies in finding a Rellich 
type inequality for all n < a  +  4.

In Theorem 2.10, a Rellich inequality in L 2 (Rn) was found in the problem 
case, n < a  +  4 and n — a = 0 (mod 2) by placing extra assumptions on the 
function /  on Sn_1. This in turn produced a higher order Rellich inequality 
for all n < a +4 j  and n —a  =  0 (mod 2). An alternative solution is to replace 
the Laplacian A with a so-called magnetic Laplacian Aa- The idea was first 
utilised by Laptev and Weidl in [20] who, by replacing the gradient V with a 
magnetic gradient V a =  V — zA, found a Hardy type inequality in L2(R2), a 
case in which the Hardy inequality is trivial. The magnetic potential A  is any 
non-trivial A  G C(R2 \  {0}) with the condition that curl A  G Ljoc(R 2 \  {0}) 
e.g.

W )A(r, fl)=  (— sinfl, cosfl), G L°°(0, 27t), 4/(0) =  ^(27r), (3.2)

a magnetic potential of Aharonov-Bohm type. The Laptev-Weidl inequality 
is valid for all /  G C'o°(R2\{0}), so no additional assumptions on the function 
are required.

Analogously to the Laptev-Weidl inequality, Evans and Lewis in [15]
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found a Rellich type inequality with a magnetic potential in L2(Mn) for all 
/  G Co°(Rn \  {0}) when n  G {2,3,4}. Here the Laplacian was replaced by a 
magnetic Laplacian A a  =  V a, where the potential A is again of Aharonov- 
Bohm type. As explained above, to find a non-trivial higher order Rellich 
type inequality for all n < a  +  4j  and n — a = 0 (mod 2), a Rellich type 
inequality is needed for all n < a  +  4 and n — a = 0 (mod 2). With this in 
mind, the inequality of Evans and Lewis is extended to all dimensions n in 
the proceeding chapter. Firstly a magnetic Laplacian is constructed.

3.1 T h e m agn etic  Laplacian

For arbitrary n > 3, the following spherical coordinates are introduced

Xi =  r cos#i, (3.3)
i - 1

xj = rcosOj JJsin#*;, j  G {2,3,..., n — 1}, (3.4)
k= 1

n —1

X n  = r  sin Ok- (3.5)
k = i

Define the orthonormal vectors
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for all j  G {1,..., n — 2} and

^0, - s in 0 n_i,cos0n- i) -®n—1 (3.8)
n —2

Then it can be shown that the gradient in spherical coordinates is

n —1

(3.9)

Suppose G C°°(S) (or equivalently, 'J/ G C°°(0, 27t) and 'I'W(O) =  \I/^(27r) 
for all i G No), then the magnetic potential A is taken to be the 1-form

A := <
if n = 2,

i f n - 3 >

(3.10)

defined on R \  £ n where

{0} if n = 2,
Cr>'.= { (3-11)

{x =  ( r , 0 : r U lZ ls in e , = 0} if n > 3.

Define the magnetic gradient as

V a := V  — zA (3.12)

and the magnetic Laplacian to be A a =  V a , then (3.12) yields

A a /  =  (V -  iA )(V / -  i A f )

=  V (V /) -  iV (A /) -  iA .V / -  A .A / 

=  A /  -  i(V A )/ -  2 iA .V / -  A .A /. (3.13)
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Now

_  A /  d 1 d 1 9 \
VA = \ eo¥r + + g  r U H \s m e keiW j)

1

r I l L i sin^
i

3 =  2

^(0n_i)en_i 

d
®n—1dOr 1

since rfe" -1 e„_! =  0. Alsode

1 d 1 d
A .V / =  _ n_'2 .—~ ® (^ n -l)en -l-(e0o 1 e lfl/TT- I I  *=i sin ^  V dr r 90i

n— 1
V-"' 1

+ h r ^ i \ ^ ke idej

tt(fln-l) Of  
r 2 n*= i Sin2 8 k d6 n-i

and

A .A  =

(3.14)

(3.15)

r* ITE? Bin2 9*'

Now by Egorov and Shubin [13], the Lapacian in spherical coordinates is

(3.16)

n —1d2 n — I d  1
A = ------ 1---------------b > -----

dr2 r dr r 2q7-
.7 =  1 J

where

' \ n d d 2
( n - y - l ) c o t ^ — +  —  j

*' J

if j  =  1,

(3.17)
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Hence 

—A a
d2 n — 1 <9
dr 2 r  dr

1 / d2

r 2<2Vi-i V
a 2 n — 1 d
dr 2 r dr

1
(i d

^29n-l \  a e„ .i

n —2

- V  —r 2 g
3 = 1 J

d ^2
( n - i - l ) c o t e , — + ^

.   , d

n—2

(3.19)

If n=2, simply use the negative magnetic Laplacian defined by Evans and 
Lewis in [15],

d2_ _ J L _ _ I A  1
A dr 2 r dr r 2 (3-20)

Denote by ^  the mean value of the function 4/ over S (the magnetic flux) i.e.

g> := J- f  m(0)de. (3.21)
2tt Jo

R em ark  3.1. Consider the magnetic potentials, 

Aq := <

A 1 :=

Ao :— <

^ W ) e i i f  n = 2 ,

i f n > 3 ,

if n  =  2,

i f  n >  3,

i ( f  +  m)ei if  n = 2 ,

^ - i r (*  +  m)en_1 if  n >  3,

(3.22)

(3.23)

(3.24)

w/zere m G Z. I t ’s an easy exercise to show that Ai zs o/ £/ze form  VPi for
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some potential function Pi and i E {0,1,2}. For instance, in two dimensions,

_  dP0 1 dPo 1 t  / n \
VPo — e o H— ~̂n~e i — -̂ -o — _ ^ (^ i)e idr r dOi r

0
ar

m -
'01r° i

Po(^i) =  /  +  constant (3.25)
Jo

and so Po(2ir) — -Po(O) =  2nty. It follows that for i , j  E {0,1,2} and i ^  j  
that

Ai =  Aj +  VP* (3.26)

where Pg =  Pi — Pj E C'°°(S) zs called the gauge function. Then U : VKX) 1— > 
zs a unitary transformation on L2(Mn) and

C ^ -A aJC T V  =  - A a .z/;. (3.27)

Therefore — A a0, — A ax azzd — A a2 are unitarily (gauge) equivalent. This 
leads to the consequence that we can assume w.l.o.g that =  'L E [0,1) is a 
constant. Furthermore, it follows that if  ^  =  0 (or equivalently §  G ZJ, then 
—A a  is gauge equivalent to —A.

In order to apply Theorem 2.6 with D = — A a, the discrete eigenvalues 
of the angular part of the negative magnetic Laplacian need to be found.

T heo rem  3.2. Suppose for j  G (2 , . . .  ,n},  the following iterative operators
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are defined;

h - j ,u  { f i n + l — j  > • • • i ® n— l )  ■ <

' +  * ( ^ - i ) ) 2 if j  = 2 ,
d 2 ( a a  d— (j  2) cot Qn+l-j dQn+l_j

(3.28)
where An_iiU, is the Friedrichs extension of the non-negative symmetric oper
ator An_i)W in L 2 (Sn~2). Then the Friedrichs extension of An^  in I/2(Sn-1) 
has a discrete spectrum consisting of eigenvalues

p ^  = (m  +  4- n -  2) (3.29)

where

m  G Z ^  :={m G Z : m < 2 - n - §  or m  > —̂ } . (3.30)

R em ark  3.3. To show the motivation behind Theorem 3.2, we recall that

—A a = Lr  Anw. (3.31)
r

R em ark  3.4. The operator ATCiW can 6e seen 6e a “magnetic Laplace- 
Beltrami operator” because iffy G Z, then the operator AnA, zs gauge invariant 
to the n-dimensional Laplace-Beltrami operator and as expected the above 
Theorem gives the exact expression to find the positive eigenvalues (denoted 
by pm - see (2-49)) of this operator.

R em ark  3.5. The eigenvalues p^  have already been calculated by Evans and 
Lewis in [15] for n =  2,3,4. The two dimensional case

pZ = (*  + m f  (3.32)

is especially crucial as it will be shown in the proof of Theorem 3.2 that all
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the higher dimensions reduce to the two dimensional case.

Before the Theorem is proven, the following preliminaries are needed. 

L em m a 3.6. Suppose n £ N \  {1, 2}. The associated Legendre equation

du /  „ /id2u
l e t

u / \ „ du / u \F +  (n - 2 ) c o t e 1-  +  ( A - - ^ - ) «  =  0 (3.33)

can be reduced to

d2w dw
+ c o t6 ldd: + (A

( n - 3 ) ( n - l )  ^  +
sin

{—  =  0 (3.34)
i '

by using the transformation, u = sin n2 Oiw.

n—3
Proof. Let u = sin 2“ Oiw, then

du . _n=3 dw n — 3 n-3
—  =  sm 2 0 \ — ------ — sm 2 0 1 co t6 1 W, (3.35)

d2U . _ n =3 d2W . . n-3 „ ^ dw
=  sin 2 6 1 — -r — (n — 3) sm 2 ^ c o t ^ —— 

du^ d0\de2
(n — 3 )(n — 1) .  n_̂3 0 „ n - 3  n-3

H-----------   sm 2 Q1 Cot2 9iw-H------— sin 2 QlW.
4 2

(3.36)

Then (3.33) becomes

 n—3
sin 2 ~d2w dw (n — 3)2 9 „

. M l +CO t e i dB[------- ~  cot

+ A +
n — 3

sin 5 )
(3.37)

w = 0.
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Multiplying by sin ”23 Qx and noting that cot2#i =  sin| g — 1, it follows that

d2w
!(%

. dw / .  in — ’6 )* n — '6 \i +  v A' - \
+  cot ^1—— + ( A-1------   1-----------  . 2 n— W  =  0. (3.38)

dO 1 V 4 2 sin2 61 /
(n — 3)2 n — 3 ^  + (n-3^

Lemma 3.7. Le£ n G N \{ 1 ,2 } ; gwen that the following iterative relation is 
true for all i G { 3 , n}

£i • (fPi 1 4“

where pi G Z, i/ien

( i - 3 ) 21* 1\2 
-} +2)  -

1 \ 2 ( z - 2 ) s
(3.39)

<
(mn — £2 )2 — i f  n is even,

(mn — +  | ) 2 — ^4 ^  */ n ®s °dd-
(3.40)

i  1 \ 2 1
4'

l l a  1 \ 2

where m n G Z.

Proof Clearly (3.40) is true when n = 3 by putting i = 3 into (3.39)

/  1 I V
f3 =  (P3 -  £ | +  j )

Again by (3.39),

e . - ( » - { 6  +  J } '  +  ± ) - - ,

Substituting (3.41) into (3.42) gives

/ I  I 1 1 \ 2
=  ( p 4 - | P 3 - ^  +  2 + 2 )  - 1

=  (P4 -  P3  + Q ) 2 -  1 if P3 -  Q  +  \  >  0,

(P4 +P3 + 1  -  Q ) 2 -  1 if Ps -  Q  +  \  < 0 .

(3.41)

(3.42)

(3.43)
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Since ^3,^4 E Z, both cases can be written as

£4 =  (m4 -  Q ) 2 -  1

with WI4 6  Z and so (3.40) is true for n =  4. Again by (3.39),

(  f ,  (/ — 3)2 -1 i 1\2 ( I -  2)2
6 -  (p i - { C i- i  +  — j — } + 5 )  — •

Firstly assume (3.40) is true for n =  Z — 1 where I is even, then 

Substituting this into (3.45) gives

G = ( » - { ( m ' - 1 - €J  +  5 ) V  +  5 ) 2 ( Z _ 2 )
1 
2=  (?/ “  |™l-i -^ 2  +  7i +

1 \ 2 (I — 2):

_   ̂ -  mi-1 +  £22)2 -  if m i-i -  £22 +  |  > 0 ,

k +  raz-1 +  1 -  £22 )2 -  if m i- 1 “  £2 +  2 < 0-

Since pi, m/_i G Z, both cases can be generalised as

6  =  (mt - £ f  )2 - ( ' - 2)2

with G Z. Secondly, assuming again that (3.40) is true for n 
in this case I is odd, then

^ ( m ^ - d ) 2 - ^ - ^ .

(3.44)

(3.45)

(3.46)

(3.47)

(3.48) 

— 1 but

(3.49)
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Substituting this into (3.45) gives

1 \ 2 ( I -  2)J

4
(1-2)’

4 if
{ l - 2 f if

Since pi,m i-\  G Z both cases can be generalised as

1 \ 2 ( I -  2)2

(3.50)

(3.51)

with mi G Z. Therefore for all I > 4, if (3.40) is true for n = I — 1 then it is 
true for n = I and the result then follows by induction. ■

3.2 P r o o f o f  T heorem  3.2

Take n > 3, q G {3, ...,n} and denote by vqJq(6n+i- q, ..., (9n_ i)  and £qdq, 
the eigenvectors and corresponding eigenvalues, respectively, of the opera
tor Aq>UJ(0n+i- q, ..., 0n-i). Now since A 9_ i )W(0 n + 2 - g , ..., 0n - i )  is a self-adjoint 
operator, V q - i j ^  form an orthonormal basis of L2(§9-2). Therefore, on 
identifying L ^ S 9-1) with © ^ { ^ ( O ,  tt); sin9-2 0i }  we have

d2 d
^-q,u) ( ^ n + l — qi @n— l )  piQ2 COt @n+l— q~^nOVn+l_q OUn+i - q

oin 0 {fin+2—qi • • • j $ n - l )
Sin  C'ri+l —qr

=  ® { T SJl_1( t f i ) ® V u ^ 1} (3.52)
jq -1
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where / 9_i j q_x is the identity on and 'Yqj q_1 is an operator defined
on Cg°(0,7r) by

W * )  =  - ^  -  (? -  2 )co tSl A  +  (3.53)

Setting T 9J9_1(^i)w =  Xu gives

g  +  ( q - 2 ) c o t e ^  + (A - ^ * = i ) u =  0. (3.54)

By Lemma 3.6, this can be reduced to

g  +  cot f t g  + (A +  -  0- (3.55)30f 30i V 4 sm 0i /

Now in [15], Evans and Lewis found that the Friedrichs extension of the 
operator

-  g  -  cot 0! g  +  - g  (3 .56 )30f 30i sim 0i

has a discrete spectrum consisting of eigenvalues

*<?(g =  0  ~  /*) (i +  1 -  At), j  E {& E Z : >  0}. (3.57)

So replacing /i2 with £g-ij,_1 +  and subtracting ^ z .2)2-.1. gives the eigen
values of the Friedrichs extension of T 9J- x(0i) to be

e *  - ( *  -  [ w ,  +  * )  ( i .  -  [ w ,  +  g g 1 + 1)

(9 ~  2)2 -  1

=  ( j ,  -  +  g g } ’ +  g  -  (3 .58 )
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where j q G {k  G Z : £q̂  >  0}. Equation (3.58) is true for all q G {3, ...,n}, 
so by Lemma 3.7

0 ’n  -  C2 j '2 ) 2  “  i f  71 iS  e V e n ’

k On -  Clj2 +  \ f  -  if ™ is Odd,
(3.59)

with j n G {A; G Z : > 0}. Note that £2j 2 are the eigenvalues of the
operator A2)U,(#i), which from [15] are known to be £2j-2 — O2 +  ^ ) 2. Hence 
if n is even

£ n ,jn  — ( j n  +  | j 2  +  ^ | ) 2  —  -----

( j n  +  32  +  ^ ) 2  -  i f  32  +  ^  >  0 ,

(—in +  j 2 +  ^ ) 2 — otherwise.

Both of these can be enumerated as the following

t  r- t \2  (n — 2)2
£»i» =  0n +  ^ ) 2 - 1—

(3.60)

(3.61)

with j n  G {A; G Z : > 0 } . Since n is an even integer and j n  G Z, setting
Z 3 m  =  (jn — |  +  1) gives the eigenvalues of the operator AnjW to be

Pm =  (m  +  V)(m  +  'L +  n -  2), 

with m G Z ^  {fc G Z : > 0}. Similarly if n is odd

/- (■ 1 • t 1 f \ 2 (n — 2)2
£n ,Jn  — ( ^ n  +  | j2  +  ^ 1  +  -  J   ------

(3.62)

On + . 7 2  +  *  +  \ ?  ~  ^ 4 ^  i f  J 2  +  $  >  0 ,

(“ in +  J2 +  ^  ~  \ ) 2 — n̂~P otherwise.
(3.63)
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Both of these can be enumerated as the following

+  *  +  (3.64)

Since n is an odd integer and j n G Z, setting Z 3 m  = {jn — § +  D aSain 
gives (3.62). W hat remains is to find When > 0 there are two
possibilities. Either

m  +  ^  > 0 and m  +  4^+n — 2 > 0

4 4 (3.65)

m  > — Si? and m  > 2 — n —

or

m  +  ^  < 0 and m  4- 'I'+n — 2 < 0

^  ^  (3.66)

m  < — 'I' and m < 2 — n — 'I'.

Since 2 — n — ^  ^  when n > 2, then

Z ^  =  {m G Z : m < 2 - n - l o r m >  —̂ } . (3.67)

3.3 A  R ellich  ty p e  inequality  w ith  a m agn etic  

p oten tia l

Theorem 2.6, together with Theorem 3.2, gives a Rellich type inequality with 
a magnetic potential. We now impose the condition that the flux 'I' ^  Z, or 
equivalently (by gauge invariance) that \I> E (0,1), see Remark 3.1.
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Theorem  3.8. Suppose a  > 0, n > 2 and 4* =  ^  JQ27r 4f(t)dt G (0,1). Then 
for all f  G C£°(Kn \  Cn) (defined in (3.11)),

[  |Aa / ( x ) |2^  >*(» ,< * ,« ) [  l /(x ) |2- ^  (3.68)
J R n |x | J R 11 lx l

where

<J»(n,a,'l) =  inf { (to+ *)(re  +  $  + n - 2) +  +  ~  ~ 4 ) | 2 (3.69)
mez(n)  ̂ 4 J

and is defined in Theorem 3.2. Suppose e := frac l9̂ ] ,  then the con
stant 4>(n, a, 4/) is equal to zero if and only if

n < a 4- 4 (3.70)

and

V e { £ , l - £ } .  (3.71)

Remark 3.9. When n — a = 0 (mod 2), £ =  0 and so Theorem 3.8 gives 
a non-trivial Rellich type inequality for all 4/ G (0,1) when n < a  + 4 and 
n — a = 0 (mod 2). In this case, the ordinary Rellich inequality is only 
trivially true.

Rem ark 3.10. Evans and Lewis [15] found that for a  = 0 and n = 3,
even though the ordinary Rellich inequality was non-trivial, the Rellich type
inequality (3.68) is trivial when 'I' =  | .  The conditions (3.70) and (3.71)
imply that this is actually true for alln < a  + 4 and n — a =  1 (mod 2) when
4? = 1 * 2 •

Proof. From (3.19),
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n—2

+ ^ n i = i sinet
i .

+  ™ -2  ■ a  ̂
ll*=i sm^Jt

i r a 2l r c?"“ 0
—Lr -  —x +  (n -  2 )co t^ i—-

r 2 l<90? dOi

n~3 l  r <92 
+  E  H P T — 7 - 1 ^ 2  +  (™ -  i  -  1) cot

<9 '

+
n 2 = ?sin^

(3.72)

where in accordance with the definition given in Theorem 3.2,

2

AjiW(0ti+1_j ,
( +  * (*»-!))

, O n - 1 ) : =  < -  , -  ( j  “  2 )  C

if i  =  2,

a02+1_. (J 2) cot 6>n+1 _j a0n+:

^ sin 9n+i-j A?-!.<*> (@n+2-j ? • • • 5 $n-l) if j  > 3.
(3.73)

Take the extended operator

q2 q
An,u) {0\ j • ■ ■ > ^ n — l) qq2 (P 2) COt 6\ ~qq~

(3.74)
+  “ —7“ An_ i  w(02, •••, Bn- 1) sin 6 1

where An_ijU; is the Friedrich’s extension in L2(Sn~2) of the operator An_itW. 
Then applying Theorem 3.2 gives the eigenvalues of the Friedrichs extension 
in L2(§n_1) of the operator AUjUJ as

= (m +  &)(m +  ^  +  n — 2) (3.75)
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for m  G Z>(nK Applying Theorem 1 from [15] (see Theorem 2.6) gives (3.68) 
with

,f,\ ■ e J * , (« +  « ) ( " - « - 4 ) \ 2
<S>(n,a,<t) =  inf 4/C +  - f

mez<n) t 4  )

=j s l  {(m + + *) (m + n r  ~ 2+ *) }2- (3-76)

Suppose that $ (n , o, 'I') is equal to zero, then either

n  -I- rv ~
m  +  +  V = 0 (3.77)

or

77 — CV ~
m +  4 - ^  - 2  + ^  =  0. (3.78)

By noting the definition of Z^n\  the condition (3.77) is satisfied when 

71 -4- rv  — rv  —  T)
0 = m  + — —  +  ^ < 2 ------—  =* n < a  +  4. (3.79)

z z

Rearranging (3.77) gives

a — n ~ . .
m - n H -----  — =  -4 '.  (3.80)

z

Since $  G (0,1), m 6 Z and the fractional parts of both sides of (3.80) must 
be equal, it follows

, rOt — n, „ ~ .
frac[—  ■■ ] =  1 -  (3.81)

The condition (3.78) is similarly true iff n < a  +  4, rearranging (3.78)

~ a — n ,
m - 2  + y  = - —— . (3.82)
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Taking the fractional parts of both sides gives

rv — n  ~
f r a c P — ^ }  = *  (3.83)

as required.

The Rellich type inequality is in itself an interesting object but the need 
for it arose from the fact that the Rellich inequality is only trivially true when 
n < a  +  4 and E Z. To this end, the value of $ (n ,a , \k) is calculated 
explicitly in this case.

C oro llary  3.11. Suppose 2 < n < a + A, n — 0  =  0 (mod 2) and Af E (0,1). 
Then if n < a. + A,

[ ¥ (A !  - a - 2 ) 2 z /^ E ( ( U ] ,
$ ( n , a , t f ) = 4  2J (3 .84)

P #  +  a  + l)2( ^ - l ) 2 i / I '  € (i, 1)

and

4?(o +  4, a , \k) = <
^ 2(*  +  a  +  2)2 if if E (0, |] ,

( ^ - o - 3)2( ^ - 1 ) 2 i / t t  e (§,1).
(3.85)

R em ark  3.12. For a  =  0 and n — 2,4, the same constants are found by 
Evans and Lewis in [15].

Proof. By Theorem 3.8

$ (n ,a , ^ ) =  inf { (m +  ̂ )(m  +  ̂ + n - 2 ) +  -U +  a ^ n— - — — } . (3.86)
mez(n) t 4 J

Define for all i e R,

t (x , n, a, A?) :=x2 +  (n — 2 +  2A?)x +  +  n — 2)
(n +  a) (n — a  — 4)+ _
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/  n + a  ~\ /  n — a n ~\ ,n
= ( x + - ^ - + * ) { x + - y ~ - 2 + +  (3-87)

and set

— 7 7  — r\ „
:=  -----   (3 .88)

x+ := + p + 2 - # .  (3 .89)

It is evident that the points and x + are the global minimums of the 
function r(x, n, a , 4>)2 and so the integer minimum of r(x, n, a , 4>)2 
(minmGz r(x,  n, a , 4')2) occurs at one of the integers neighbouring x _ and x + 
i.e.

•■= l^-J, (3.90)

ra“ := |z -J  +  1, (3.91)

:= I++J, (3.92)

:= |++J +  !• (3.93)

Taking into consideration that 4/ G (0,1) and G Z, it follows that

(3.94) 

and

—n — a
m  =

2
-n — a

4'

-  1

m
n

+ 2 — 4'

+ 2 - 1
a — n

+  1 . (3.95)
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Hence

m l  (3.96)

m" + 2. (3.97)

Take n < a  -f 4 which implies that n < a  +  2 because n — ck =  0 (mod 2) 
and so

m“ < 1 - n ,  (3.98)

m l+ > 0. (3.99)

Therefore m l_, Trit, m l+ , m“ G By direct calculation

T(ml_, n, a, 4>) =  (4> — a — 3 )(^  — 1), (3.100)

r(m “ ,n, a, ^ )  =  ^ ( ^  — a  — 2), (3.101)

T(ra+, n, a, 4>) =  (^  +  a  +  1)(^ — 1), (3.102)

r(m “ ,n, a, ^ ) =  4'('Ir +  a  +  2). (3.103)

Noting that

r(m “ ,n ,a ,  ^ )  — r(ra+, n, a , \k) =  —24>(a +  2) < 0, (3.104)

r(m “ ,n ,a ,  ’I') +  r(m “ ,n ,a ,  ^ )  =  24>2 > 0, (3.105)

r(m z_ ,n , a , 4>) -  r(m z+,n, a, 4>) =  2(1 — ^ ) ( a  +  2) > 0, (3.106)

r (m l_,n,  a , 4>) +  r(m z+,n,o;, 4>) =  2(4> — l ) 2 > 0, (3.107)

it follows by the difference of two squares that

min{r(m“ , n, a, 4>)2, r(m“ , n, a, 4>)2} =  r(m“ , n, a, ^ ) 2 (3.108)
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and

min{T(?7?/_, n, a, 4>)2, r (m l+ , n, a, ^ ) 2} =  t(t72+, n , a , 'I')2 . (3.109)

Hence the infimum occurs at either m l+ or 772“ . Again by calculation 

r(m “ , n, cn, 1I') +  r(m z+, n, a , =  —a  — 1 — 2^(1 — # ) < 0  (3.110)

r(m “ , n, a , 4/) — r(m /+, n, a , \i>) =  (a +  1)(1 — 2\k)
> 0  if * e ( 0 ,§ ] ,

< 0  if ^ G (§ ,1 ) .

(3.111)

Therefore when n < a  +  4,

$ (72, a ,'I ')  =  inf r(m , 72, a , ^ ) 2 
me z(")

r(m “ ,7i,a, ^ ) 2 if G (0, |] , 

r (m l+,n, a, 4>)2 if 'I 'G  ( | ,  1).
(3.112)

Take n = a  +  4, then

77l|_ =  1 —72, (3.113)

777+ = -72, (3.114)

772“ =  -1 , (3.115)

772“ =  0. (3.116)

In this case m l_, G Z^n) but 772“ , 772+  ^  Z(n\  and so the infimum occurs 
at either m l_ or 772+. By calculation

5 ~ 1
7-(772Z_, 72, a, 4/) +  r(772“ , 72, a , ^ )  =  a  +  -  +  2(4> -  - )  > 0,

z z (3.117)
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~ > 0  if 'I 'G  (0, ±],
r(m _, n, a, 'I') — r(m !f, n, a, \I/) =  (a +  3)(1 — 2'!') <

[ < 0  if e  ( |,1 ) .

(3.118)

Therefore

4>(a +  4, a, 4') =  inf r(ra, a  +  4, a, 1J/)'
“(n)

r(ra“ , a  +  4, a , 4>) 2 if ^  G (0, | ] ,  ^

r(m!_, a  +  4, a , 4>)2 i f 4 > G ( | , l )

as required.

3.4  A  higher order R ellich  ty p e  in eq u ality

As a consequence of Theorem 3.8, the following higher order Rellich type 
inequality can be constructed.

C oro llary  3.13. Suppose a > 0, j  G N, n > 2 and 4/ G (0,1). Then

f  Ia a / ( x )|21 ^  ^  0 ( n ,a ,$ , i )  f  | / ( x ) f , f*  (3.120)
«/Rn |X | JRn |X | J

for all f  G Co°(Mn \  Cn), where

j ~1
fl(n, a, ^ , j )  = J J  4>(rz, a  +  4z, 4>) (3.121)

i=0

and is #zz;en by (3.69) in Theorem 3.8.

R em ark  3.14. When n < a + 4j and G Z, the constant Q(n, a, ^ , i )  zs 
non-zero for all 4/ G (0,1) and so Corollary 3.13 gives a non-trivial higher 
order Rellich type inequality for all f  G C'o°(Rn \ £ n). In this case the higher 
order Rellich inequality is only trivially true, see Theorem 2.f.



3. A Rellich type inequality w ith m agnetic potentials 58

Proof. For j  = 1, (3.120) is precisely Theorem 3.8. Assume (3.120) is true 
for j  — 1, then

[  |A i / ( x ) |2i ^  =  [  |Aja- !(Aa /(x ) ) |2^
J R n lx | J R n | x |

> n  *(n , a  +  4i, * ) £  |Aa / ( x ) |2 ]x[o^ (j_1)

><f>(n, a  +  4(j — 1), 4>)

. n * ( n , a  + 4<,») [  l /W I2, - ^ -  (3.122)
t=o J*n |x|

and the result then follows by induction. ■
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The Rellich type inequality found in Theorem 3.8 enables an analysis of 
the spectral properties of the magnetic quad-harmonic operator A ^ to be 
undertaken. Furthermore in L2(IR8), a space in which there is no CLR type 
bound for the number of negative eigenvalues of the operator A4, a CLR type 
bound can be found for the operator A \ .  In this Chapter the convention 
(unless otherwise indicated by a subscript) will be tha t || • || and (•, •) denote 
the L2(Rn) norm and inner-product respectively.

4 .1  A n  u p p er b ou n d  for || 11/ 11|2(s^-1}̂ ri_SI (ir+)

As defined in (2.54), we take Z m[f](r) : M+ i—> C to be the L 2 inner-product 
on the hypersphere §n_1 of the function /  : Mn t—> C with the m -th eigenvec
tor um : Sn_1 i—> C of the non-negative self-adjoint operator (see Theorem 
2.6), i.e.

z m[f\{r) -= ( f(r ,- ) ,u m)  =  [  f{r,uj)um{uj)dLJ, (4.1)\  / L2(Sn_1) JSn-1

Z m [ fK r ) ■ = §- J^n i f{r,Uj)Um(uj)dLU, (4.2)

for j  £ N and

Z m\h-u>f] — ( Aw/( r ,  ■), Um J = Xm ( fiXi ')? )V / L2(sn_1) V /  L2(sn_1) 4̂ 3 ^

=A mZmlf]-

L em m a 4.1. Suppose D = L r + ^A^, where
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Then for all f  £ V 0 where

T>0 = { f : f € C ? ( W ' \ { 0 } ) ,

/ ( r ,  •) £ £>(AW) for  0 < r  < oo, D f  £ L2/Tn>n
(4.5)

we have
poo

/  |2 m[ 0 / ] |V " - 1- “dr
Jo

2 +  2Am +  ( " - , i ) (a  +  i ) lg<,iw (4.6)

+  +  ^  4 f4a ) (a  +  2)Am|Z m\f\\2y n- l~adr.

Proof The inner-product (u ,v)L2(s«-i) is linear in u , therefore

(4.7)

and so

poo  p  c

/  |.Zm[D /]|2r n_1_“dr =  /
J 0 JO

r n - i- a dr

, n —1 —a
/•oo 2

/  Zm[Lr/] +  — ̂ [ A ^ / ]  
Jo r

POO

*/0
- /*oo ________

J 0
p O O

/  |-Zm[A^/]|
Jo

T 2/?e

l2r " - 5- “rfr. (4.8)

The assumption /  £ X>o implies tha t 2 m[/] 6 Cq°(M+) and so by using the 
fact that -£m commutes with Lr we obtain

/•OO /"OO
/  | ^ n[Lr/ ] | V - 1- “dr =  /  |i r - Z m [ / ] | 2r n _ 1 _ “ d r

JO Jo
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poo

=  /  |2 ® [/] | 2r n- 1- “rfr
Jo

_ /*oo --------------

+  ( n - l ) . 2 f l e  /  2 ® [ / ] . . 2 £ ) [ / ] r n- 2- 0 d r
L JO J

poo
+  ( n -  l )2 /

Jo
poo

= /
Jo

poo
+ ( n -  l ) (a  +  1) /  |Z ( ,» [ / ] |V -3- “dr (4.9)

Jo

by applying integration by parts. Noting (4.3), it follows

2fle
_ / »00  ____________

/  £4L,./]JZm[Aa,/]r"-3- “<ir
L JO

p  o o  ___________

/  LrZm[/]Zm[/]rn- 3- “dr 
Vo

=2XmRe

=  -  2 \ m R e

=2A

=2A,

-  7 * 0 0  _____________

/  2 ® [/]2 n .[ /] r" -3- “<ir
L Vo

r /•oo ________

2(n — l)Amiie /  ^ 1)[ /]2 m[/]rn- 4- “dr 
L Vo

poo

■n \ Z ^ { f \ \ 2rn- 3- adr Jo r /-OO _____
2(a +  2)Amfle /  Z £ [ f } Z m{f}r’' - i -°‘dr

Jo J
poo

/Jo
\2„n-3-adr

poo
4- (a +  2)(n -  4 -  o)Am / |^m [/]|2r n_5_aVr (4.10)

Vo

and

poo

/  |.Zm[Au,/]|
Vo

2rn~5~adr = Xl
poo

/  l-z™[/]lJo
2  n —5 —a dr. (4.11)

Substituting (4.9)-(4.11) into (4.8) gives the appropriate result.
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L em m a 4.2.  For any r,8  G (0, oo), j  G No and (3 e R ,  we have the inequality

\Z m l f} ( r )\2r(3+1 -  \  j  \Z m + 1)[f}(S)\2s0+2ds
roo (4-12)

+(/3 +  l + 6) /  |Z ^ [ f ] { s ) \2s0ds 
Jo

for all f  e  V 0.

Proof. By integration by parts

2 Re |2r /9+l' [  z ^ [ } ) ( s ) . z ! £ \ } } ( s ) s ^ d s ]  =  |2 ® [/] ( r ) |:
,/o (4.13)

- o » + i )
./0

Noting tha t Re u < |tt| and

a 2
2ab < —  +  £62 (4-14)

(3

for all 5 > 0, it follows that

l^ m V lM I2^ 1

< 2 [  \ z £ +1̂ f](s)s%+1\ . \ z £ )[f](s)s%\ds + (/?+  1) f  IZ ^ [ f ] ( s ) \2s0ds 
Jo Jo

Jo l̂ m+1)[/](S)|2s/3+2̂  + (^+l + ^)^ \Z m\ f ] ( s ) \2SPds
1 /*oo poo

Jo lZ ^ +1)^ W I 2^ +2ds +  ^ + 1  +  ^  JQ \Z m [f] (s )\2sPds (4.15)

since |Zm+1^[/](s)|2s/3+2 > 0 and |2^J^[/](s)|2s^ > 0 for all s G [0, oo]. ■  

Combining Lemma 4.1 and Lemma 4.2 gives the following Corollary.
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C o ro lla ry  4.3. Suppose f  G X>0 and

C(n, a) =  mf {Am +  ( ^ )  ( "  "  ‘)  } '  *  0

as given in [15]. Then 

D f  2

(4.16)

X 2

where

> M (n ,a )  (a +  1) d f(r , ■)
dr

n —2—a

L2(Sn_1)

n —4 —a
(4.17)

L ° ° ( 0 ,oo)

A t ( n , a )  :=
C(n,  a )

C (n ,a ) +  [Am(Am - ^ ) ] m,_

and [a]m _ := maxmGj{0, - a } .

(4.18)

R em ark  4.4. It can be seen that (4-17) is a generalisation of Corollary 1 in 
[1 4 ] where the a  = 0 case was considered.

Proof. By Lemma 4.1,

Jpoo pOO

' | Z m[Df](s)\2sn- 1- ad s =  /  \ Z ^ , [f\(s)\2sn~1~ads
0 J 0

poo

+  ( n - l ) ( a  +  l) /  \Z£>\f\(s)\V 3- 0*
Jo

+ \ m {2 £  \Z ^ [ f \ { s ) \2sn- 3- ads 

+ (n -  4 -  a ) (a  +  2) J \Zm[f](s)\2sn~1~ads'j
poo

+ Xm \Zm[f](s)\2Sn- l~ads 
Jo

poo

=■■ A  +  Am/ 2 + \ 2m \z m[f}(s )\2sn- 1- ads.
Jo

(4.19)
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For arbitrary > 0,

Ii = 61[j-J"\zMs)\2Sn-1-“ds
poo

+ (n — 2 — a + 8\) j \ z £ )[f](s)\2sn~3- Qds
poo

+  (a  +  1 -  (Ji)(n +  5X -  1) /  \ZM[f](s)\
Jo

V

2s

Taking =  0 + 1, it follows by Lemma 4.2 that

/i> (a+l) |2£>[/](r)|V -a-“

for some r G (0, oo). Similarly, for 62 > 0

l 2 = 262( - J ^  | 2 « [ / ] ( s ) |V - 3- “<i5

+ (n — 4 — a + S2) J \Zm[f](s)\2 sn~5~adsJ
poo

+  [(a +  2 -  2<52)(n -  4 -  a) -  2<S|] /  \Zm[f](s)\
Jo

and

h  > (a + 2 )\Zm[f](r)\2rn~4~a -  £ ° \ Z m[f](s)\2 sn~*

by taking 82  = Q̂ .  Therefore

poo

/  |2m[D/](s)|V-1-°ds
Jo

>{a + 1 ) | ^ 1)[ / ] ( r ) |V - 2- “ +  (a + 2 ) \m\Zm[f](r)\2 rn~4' 
(a +  2)2' <•“

+  A771 I ^ 7 )  r  \ z m[f]{s)\2sn- &- ads

4~3~ads.

(4.20)

(4.21)

(4.22) 

n~3~ads

~ads (4.23)
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> («  +  1) | [/] (r) |2r n-2~“ + (a  +  2 ) \m\Zm{f}(r)\2rn- 4- a

{Am ((C> *  2)2 -  Am) ,  0} j T  \Zm{f](s)]2sn- !i- ads. (4.24)max

The operator Au has a discrete spectrum consisting of eigenvalues Am, m  G X, 
where Z is a countable index set. Therefore summing m  over X  gives

roo

E  /
J0

................
r n £ l  ®

> (a  +  l ) ^ | ^ ' ) [ / ] ( r ) | V - 2- “
mel

+  (a  +  2) min{Am} V ]  |2:m[/](r) |2r n_4_a
m £ l

{ Am( (Q̂ 2)2 -  Am) .«} E  j f  \Zmlf}(s)\2sn- 5~ads— maxmGl _ m€l
(4.25)

and by Parseval’s identity

m el u
  roo

S i  1

Finally by Theorem 1 from [15]

m g l

f  ^  V
J g n - 1  or (4.26)

E | 2 m[/](r) |2 =
m G l

[  \f(r,uj)\2duj, 
J  § " - 1

(4.27)

' m [ / ] ( s ) | 2 « n _ 5 ' “ r f*  = L UMf | x | “ -
(4.28)

[£ > /](s ) |V -1"“ds =
J  K n

(4.29)

1 I / W '’ 5 F =  5  c t h ) L m ^ ) f W  14301

Substituting (4.26)-(4.30) into (4.25) gives the required result. ■
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T heorem  4.5. Suppose / ,  D f  E Vq and C(n, 0)C(n, 4) > 0. Then

D2f  ||2 > KD(n) 9 }
dr

„ n —6

L 2 (Sn _ 1 )

+ 6 m in { A m} | | / | | | 2(Sn_1)r n 'mel v ’

(4.31)

L ° ° ( 0 ,oo)

where

«n(rc) :=
C(n, 0)C(n, 4)

> 0 .
C(n, 4) +  [Am(Am — 18)]mj_

Proof. Applying Theorem 1 from [15] and then Corollary 4.3 gives 

D f  2

(4.32)

D f\\ >C(n,0)

>C(n, 0)M(n , 4) d /( r , •)
dr

„n —6

L2̂
n —8+  6m in{Am} | | / ( r , - ) | | i 2 (Sn - i)r

m  v '  L ° ° ( 0 ,oo)

Finally, the assumption C(n, 0)C(n,4) > 0 implies tha t /C£>(n) > 0.

(4.33)

Corollary 4.6. / /  E (0, ^) U ( |,0 )  when n E {3,5,7} and E (0,1) 
otherwise, then

9‘/ 2 8+2t <
dr1 L 2 (Sn _ 1 ) L ° ° ( 0 ,oo) ~

< I I A i / l l 2 (4.34)

/ o r  /  E C£°(Rn \  £ n) and t E {0,1}.

Proof Take D = — A a, then Theorem 3.8 implies tha t the product

C(n, 0)C(n, 4) =  4>(n, 0, ^)4>(n, 4, i )  > 0 (4.35)

except when n E {3,5,7} and see Remarks 3.9 and 3.10. Therefore,
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Theorem 4.5 with Am =  (see Theorem 3.2) and T>0 =  C£°(Mn \  Cn) gives

d f
dr

6
L2(Sn~l)

+  6 min { ^ } | | /H i2(sn- i )r T
(4.36)

L ° ° ( 0 ,oo)

All that needs to be shown is that minme2(n){p^} is positive. By definition, 
m  £ Z ^  implies tha t p^ > 0. Furthermore by Theorem 3.2

min {p*} =  min {(m +  4>)(ra +  #  +  n — 2)},
n €  Z (n ) m€:Z(n )

(4.37)

which is non-zero since 41 + n — 2 ^  Z, hence

m.in (Pm> > °-
ne Z(")

(4.38)

4 .2  Form s and O p erators

Let F a  denote the Friedrichs extension of A a  \v0 where V q =  Co°(Rn \  £ n) 
and set Ta =  F^ . We denote by 7^(Fa), the Hilbert Space determined by 
V (T a ) and the graph inner-product

( p , ^ ) r A = ( r Ap , r A^) +  ( p , ^ )
(4.39)

= ( ( r A +  0 ^  (r A +  *W

with norm

N l r A =  (/<,M)?A =  (llr A H r +  N | 2) i - (4.40)
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Note tha t V fT x )  is the form domain of F a , V q is dense in H(T x)  and for 
p 6 Z>o,

\ \ A l n f  = ( A ^ n )  = (T ln ,n )

=  l |rA#*l|2 (4.41)

since V q lies in T>(Tx)-

L em m a 4.7. Suppose that the hypothesis of Corollary f .6  is satisfied and let 
K + be the operator of multiplication by the real-valued function k+, where

0 < k+ e  ^ ( R + jL 00̂ - 1);/'7̂ )  =  L l (R+,r7dr) <g> ^ ( S " " 1). (4.42)

Then k \  : H{TA ) -► F 2(Mn)

i. is bounded;

ii. is Tx-compact on L 2(Rn);

Hi. has Tx-bound zero.

Proof. i. Define the sesquilinear form

8\pL,v] := (K+p,i/), p, v e H ( T x ) -  (4.43)

Then the associated quadratic form is
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Corollary 4.6 shows that for /i G V 0,

\(K+fi,n)\ = f  [  k+(r, u)\fi(r, uj)\2 dcurn~1 dr
Jo Jsn-1

< [  ||Mr,-)IU°°(S"-i) f  \n{r,u)\2durn~ldr 
Jo JS"-1roc

< /  IIM*", •)IU-(S-i)^7||||^ |li2(Sn-i)r n_8||L<x3(M+)c/r 
Jo

^||^+IU 1(K+;̂ 00(Sn- 1;r7dr))||rA/^||2- (4.45)

Since T>0 is dense in ^(ITa), (4.45) holds for all h G H^Ta ) by conti
nuity, and so

l l ^ l / ^ l l ^ l l ^ l l L M M ^ L o c c s n - i ^ l l ^ l l ^ .  (4.46)

Hence K+ is bounded,

ii. Let Hi —̂ 0 in L2(Rn) i.e.

( r t . / ) - 0  (4.47)

for all /  G L2(Mn). Set vi = (Ta  + then for all /  G T>(Ta )

{vu f ) r A = ( ( r A +  i)vi, (Fa  +  0 / )

= ( ( r A +  0 ( r A +  *)"Vi, ( r A +  i ) f )  (4.48)

= ( ^ , ( r A  +  0 / )  °

since (Fa +  z )/ G L 2 (lRn ) and so vi 0 in W(Fa)- Given £ > 0, choose 
such that

k+ 6 C'” (R+, L°°(Sn_1)), supp k+ c Q e = B(0; ce) \  b ( 0;
v Cc ' (4.49)

I I ^ + I I l 00^™ )  <  c e ^ n d  \ \ \ \ k +  — k +  | | l oo(St i_ 1 ) | | L 1 ( R + ; r 7 d r)  <  £
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for some cP > 1. Now

| | / f | ( r A  +  i ) _ V ( l l 2 H I - K + " / ! ! 2

=  [ A:+(x)|i//(x)|2dx
J R"

=  [  k+(x)\vi(x.)\2dx  
JRn

+  [  (k+ -  k+)(x)\vi{x)\2dx. (4.50)
J Rn

where

[  j  (k+(r,u) -  k+(r,uu))\vi(r,uj)\2dujrn~l dr 
I  o J S” - 1

< [  | | M r ,  0  -  M r > *) IUoo(Sn-: i) f  \vi{r,tu)\2dujrn~ldr
Jo J S71-1

poo

=  /  r 7\\k+ (r, •) -  k+(r,  *) I ( s —  i ) - 11^( i r ,  O l l z ^ S " -  ')dr
Jo

< | | r n 8 | | ^ | | i 2 ( Sn - l ) | |L° ° ( R+ )
poo

. /  r7\\k+(r, •) -  k+(r, - ) I U ° ° ( S " -*)dr.
Jo

< | | | | / c +  -  A:+l lLoo( S " - 1) | | L i ( K + ; ^ ) l l r n _ 8 | l ^ l l i 2 ( S " - 1) I U 00(K+)

< £ | | r n - 8 | | ^ | | ^ 2(STl- i ) | U - ( R + )

<eC\\Tx vi\\ : (4.51)

this is due to the extension of Corollary 4.6 by continuity to 1~L(Ta), 
since V q is dense in 7Y(Fa)- Also

[  k+(x)\vi(x)\2dx = f  k+(x)\vi(x)\2dx  
J  Rn Jn£

<\\K\\L^(Qe)\Wi\\h(iie) — (4.52)
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and so consequently

| t f + ( r A +  i ) 'V < II2 <  cc\ M\ l Hni) +  e C n r v / , 11. (4.53)

For ip E Uo, we have

UVaV’II2 = (a a V’.V') <  IIAa ^IIIMI

< ^ = I |A a ^II2 + ^ M 2 =  ^

< - J = | |A ^ | |W  +  ^ | |V - | |2

s 75l|A**l|i+ ( s s  + T ) lwl’
= - ) = ( | | A ^ | | 2 +  |M I 2)

= - ^ ( | | r A ^ | |2 +  ||^ ||2)  =  ^ | | ( r A +  i)V'l!2 

1
“ 7 1

(4.54)

since UTa^II2 — (A a ^ ,^ )  =  II^a^II2- Since V 0 is dense in 77(Fa), 
(4.54) holds for all ^  G 7f(rA). Following the steps of the Proof of 
Theorem 7.21 in Lieb and Loss [22], suppose 0 ^  f  G D0, then

A I  f l J . ( L K  + L K )  
dxj  2 V | / |  dxj  | / |  dxj J

-Re I  d f
\ f \d x j \

= Re L ( J L _ i
| / |  \ d x 3

iA ,) f ] (4.55)

Therefore

IVI/ II  = Re <  | v A/ | (4.56)
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and applying this diamagnetic inequality to (4.54) gives

HVhlll2 <  IIVa ^II2 <  ^  (4.57)

and so { |^ |}  G The continuity of the embedding H (T A) c—>
just established and ist 0 in H (T a) implies tha t \ist\ 0 

(see Dunford and Schwarz [10], Theorem V.3.15). Furthermore, since 
H 1(Rn) is compactly embedded in L 2(Q£), see [11], it follows by Rel- 
lich’s Theorem that ist —> 0 in L 2(f2e). Hence (4.53) becomes

lim ||/C J(rA +  i)-1///||2 < eC  lim | | r A^ ||.  (4.58)
l —+oo l —>oo

But e can be chosen arbitrarily small, therefore

lim ||.K+(rA +  z)_1/q ||2 =  0 (4.59)
t—► oo

and K } (T a  +  z)-1 is compact on L2(Rn) and by definition in [23], K+ 
is relatively compact with respect to TA ( r A-compact).

i
iii. Furthermore by Lemma III.7.7 in [11], r A-compact implies that K+ 

has r A-bound zero.
■

T h eo rem  4.8. Assume the hypothesis of lemma f . l ,  then

i. the form  0A[/z, is] = ( r A/z, T Ais) is closed and T^ is the associated self- 
adjoint operator.

ii. the symmetric form  f)A[/z, is] = ( r A/z, TAz/) +  (K +p,is) is closed and 
bounded below. Let H \  — +  K + denote the operator associated with 
f)A. It has form domain

r>(()A) =  Q ( H \ )  =  Q ( r i )  =  z> (rA) (4.60)
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and
cress(H%) = <Jess( r i )  =  [0, oo). (4.61)

Proof. i. This follows from Examples VI. 1.23 and VI.2.13 in Kato [16] 
but for completeness, a proof is constructed. Define the form

0a[a*} v\ := ( r A/i, r A^) , T>(qa ) = V ( r A ). (4.62)

So

0A^n Âm] ||TA/̂ n FA/2m|| • (4.63)

Since TA is self-adjoint and hence, in particular, closed, 7^(TA) is com
plete. To prove that g A is closed, it is necessary to show that

Hn —*' A4, 0A [l̂ n -  Hrn\ ~ > 0 as 72, 777. > OO (4.64)

imply tha t 0A[^n — A*] —► 0. From (4.63) and (4.64), it follows that
{fj,n}  is a Cauchy sequence in 7i (TA ) and hence goes to a limit, v  say.
But v  — fi since

IIHn ~  v || <  ||fJ-n ~  v ||rA (4-65)

The fact that gA is closed now follows since 0A[/in ~ lA — ||TAÂn. — 
Ta ji\\2. The adjoint q*a of the form gA is

9 a [v,A  =  9a [v, v] = ( r A^ r A/i) =  ( r A/x ,rAi/) =  gA [ ^ A  (4.66)

and

0a M  =  ( r A/i, r A//) =  | | r A/x||2 >  o, (4.67)

so 0A is a semi-bounded symmetric form. Consequently by the First
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Representation Theorem, in [16], there exists a unique self-adjoint op
erator G such that V(G)  C T>(qa ) and

0 a  [/b v\ =  (TA/x, TAz/) = (G/x, v) (4.68)

for all /x G T>(C), zx G X>(gA)- Since (S' is unique and

( r A/i, r A*/) =  (r^/x, z/) (4.69)

for /x G £>(rA), zx g T>(qa ) then G = TA since V (T 2A) is dense in V($jA)
- it is a core of 0A.

i
ii. By Lemma 4.7, K+ has r A-bound zero i.e.

\ m i , f < a M 2 + b\\rA \\2 (4.70)

with the greatest lower bound of 6, b0 = 0. Due to (4.44), (4.70) can 
be rewritten as

£[/x] <  a\\fi\\2 +  6(Ta /x, r Afjt) (4.71)

so the form R  is relatively (form) bounded with respect to gA with 
0A-bound zero. Define the form

f)A =  0 a  +  R (4.72)

on V ( l)A) =  £>(gA) H V(R) — T>(gA) since V {qa ) C V(R). It is a 
consequence of R  being gA-bounded with b < 1 and Theorem VI. 1.33 
in [16] tha t f)A is closed since gA is a closed form and that they have 
the same domain.

We denote the non-negative self-adjoint operator associated with f)A 
by H \ .  Recall that TA is the self-adjoint operator associated with gA
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(see (4.67)). In Lemma 4.7, the operator 7^1(1^ ~  *)_1 shown to be 
compact in L2(En). Also 'H(T\)  is continuously embedded in TY(Fa) 
since, if /  £ we have

M l L H i r W  +  M 2 

= ( i W )  +  M 2

< l | r i ^ l l 2 +  | l l ^ l l 2- (4.73)

It follows that

^+ (X a  -  0 " 1 € /C(L2(En)) (4.74)

where /C(L2(En)) =  /C(L2(En), L2(En)) is the set of all compact map
pings from L2(En) into itself. Theorem IV.4.4 shows that (4.74) implies 
the assumptions of Theorem IV.4.2.(iv) (both of [11]), which gives

( r l  -  i)~l ~  (H 2A -  i ) - 1 e IC(L2(E n), Q(T2a )) C /C(L2(En). (4.75)

Since the operators and H \  are both self-adjoint then the complex 
number i belongs to the intersection of their resolvent sets and it follows 
by (4.75) and Theorem IX.2.4, also from [11], that

<7es5( r i )  =  aess(H i) .  (4.76)

Alternatively (4.76) follows from Reed and Simon [23], pg 369. To 
calculate cress(r^ ) , consider the following scale transformation

S :u * -> u c ; itc(x) =  c^u(cx), c > 0. (4.77)

In view of the denseness of V Q in 7i(TA), it is sufficient to assume
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u € .V o in the following argument. Let y =  cx, then

INI2 =  [  H y ) \ 2d y =  f  c~n\uc(x)\2cndx
J R n J R n

= f  \uc(x)\2dx = \\uc\\2.
J R n

Hence 5  is a unitary transformation, moreover

duc(x) _  y -  du(y) dyk _  z +1du(y) 
dxj ^  dyk dxj dyj

which implies that

Vxuc(x) =  c2+1Vyu(y),

A4uc(x) =  c4n+8AyU(y).

Since

4(0) -  4(0)
I I ^   ̂ I IM |y|

A x — ! | Cff c  | | e# — cA .y,

it follows that

V A uc(x) = (V x +  zAx)wc(x) =  Vxuc(x) +  zAxuc(x)

= c^+1Vyzzc(y) +  zcAyC^iz(y) =  c2+1V A^(y)

and so

A i u c(x) = c4n+8AXu(y).

Therefore on V (J

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

S ~ \A 4a )S  =  c? + sA 4a . (4.85)
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This gives for u, v G X>o,

( r As u , r A5w) =  c ^ +8( r Au, r A«). (4.86)

Since S  maps £>0 to V 0, it follows from the uniqueness property of the 
Friedrichs extension that

S - ' F D S  =  c ^ +8r i  (4.87)

and hence, since > 0 and c is arbitrary, o '(r^ ) =  [0, oo).
■

4 .3  A  C L R  ty p e  in eq u a lity  for A \  + K + — V  in

L 2(M8)

In [14], Evans and Lewis considered the problem of finding a bound for the 
number of negative eigenvalues of — V  in four dimensions where

V  G L1(M+; r3dr) 0  L°°(S3). (4.88)

A necessary step of the method employed in [14] was to show that D 2 = 
(Lr +  ^ A w)2 is of the form

^ 2 = ©{X!n(Am) 0 / m} (4.89)
m€J

where

Xn(Am) = ^ T̂ ( r - 1̂ )  -  2Am +„(" ~ 1} 4 -  ( rn- 3T )r 1 arl \  drzJ rn 1 dr \ d r )  M qrh
Am(Am +  2 (n — 4))

r 4
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Suppose {um}m6i  are the normalised eigenvectors of the operator Aw, where 
J  is a countable index set, then Im is the identity on the orthonormal basis 
{um}mei °f L2(§n_1)- (4.89) and (4.90) was used to show in [14] that for 
c < m in i# 4, (1 — 4/)4}, we have

-  V  =  ®  {(x»(p*) -  V(r)) <g) /*}

-  0  { {xn(Pm) +  ^4 )  0  =  A 2 +  C4^ 1)
|m|>l

where

pm =  m (m  +  n -  2), (4.92)

= (m  +  4>)(m +  ^  +  n -  2), (4.93)

see Theorem 3.2. and I*  are identities on the orthonormal bases of 
Z/2(§n_1) formed by the normalised eigenvectors of the Laplace-Beltrami op
erator and the magnetic Laplace-Beltrami operator respectively. The in
equality (4.91) implies that

N ( A 2a  - V ) < n ( A 2 +  yPj (4.94)

where N(-) is the number of negative eigenvalues of the operator. It follows 
that to look at — V, an expression of the form (4.89) for the operator D 4 
is needed. It follows from (4.89) that
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=  £  /  (  f  Xn(^m)f ( r , co)um (u)duj )  
m Jo '

• ( /  1 Xn(Am ) f ( r , u ) u m  (Lj)dcjj  

=  £  [ Xn(Am)/(x).Xn(Am) / (x )d x
m

=  £  f  Xn(Am)2/ ( x ) . / ( x ) d x  (4.95)
_  «/Kn

and so with this in mind, the operator x2 is investigated. 

L em m a 4.9.

- 2 / ' 1  y - *  A ) +  C j (n ) )  /  n _ 9 + 2 , <ji \
X n \ A ) 2 -^ i r n - 1 fir j  V  flr j  J

i=i dT dr (4.96)
PoW+

where

P4(n, A) =  0, (4.97)

c4(n) =  1, (4.98)

P3(n,A) =  4A, (4.99)

c3(n) =  6(n — 1), (4.100)

P2(n,X) = 6A2 +  6(3n -  13)A, (4.101)

c2(n) =  6(n -  l)(2n -  7), (4.102)

Pi(n,A) =  4A3 +  (30n — 158)A +  (53n2 — 479n +  1146)A, (4.103)

ci(n) =  15(n — l)(n  -  3)(n — 5), (4.104)

Po(n i A) =  A(A +  2(n — 4))(A +  4 ( 77. — 6))(A +  6 ( 7 1  — 8)). (4.105)

Proof. The proof consists of applying the operator Xn(A) to itself and using
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the operator relation
1 d _  d / ■ \  a

r a dr d r \ r a ) ra+l
to tidy the original expression into a summation of the form

ao dJ ( ri dJ A
r n - 1 d r j  \  d r j  )

a,j dj f  t dJ
i 

3

For ease of reading, define

d r } \  d r i)

Then

2 / x / x X  _,8 r A2(A +  2(n -  4))(A +  4(n -  6
X n ( ^ )  ~  X n ( A ) X n ( A )  —  T , j = l a j l j  4  —

where

CLi =1,

I , = r^-‘ dt^(r dr*( dr*))

n2 =2A +  (n -  1),

J, =  -  — -—  ( r n~l —  (  1 d r" - s d \ \  
rn~1dr2 \  dr2 \ r n~1 dr d r ) )

=  - W )  +  ^ t £ ( ^ £ ) + 6 (™ -4 W (2)

12(n — 3) d / „ * d? \  . . .
+ (r ^ )  - 12(n -  3)(" - 6W(1)’ 

0*3 =A(A +  2(n — 4)),

r n_1 d r 2 V dr2 \ r 4 J J

(4.106)

(4.107)

(4.108)

(4.109)

(4.110)

(4.111)

(4.112)

(4.113)

(4.114)
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= 0 (2 ) -  -  [8<" -  6) -  20]<?(1)
20(n — 7) d , 2 0 ( n - 7 ) ( n - 8 )

+  r7 d^ + ---------- J5-----------' (4 -115)
<i4=2A +  ( n - l ) ,  (4.116)

/  -  1 dId — — d /  1 rf2 r „_! d2
1 dr \ d r \ r n -1 dr2 dr2) )

= ~ Q (  3 ) - ^ ( r - ^ ) + 2 (n -4 )Q (2 )

a5 =(2A +  (n — l) )2, (4.118)
1 d /  „ , d /  1 d ^ , Qd_ i l  (Vn-3—- (    _ r » - 3 l ^

1 dr \  d r \ r n~l dr d r ) )T <

=Q(2) — 3(n — 3)Q(1), (4.119)

<26 —A(2A +  (n — 1))(A 4- 2(ti — 4)), (4.120)
r 1 d /  „ q d

1 dr V dr \ r 4/ /
4 d 4(n — 8)

“  ”  Q W  +  ^ ---- > (4.121)

a7 =A(A +  2(n -  4)), (4.122)
d2. n - l  a

dr2
8 d /  n_6 d2 \ o rW l. 20(n -  7) d

I7 — r n_i —
r n + 3  ^r2 d r 2

and

a8 —A(2A +  (72 — 1))(A +  2(72 — 4)), (4.124)

h  = — — rn- 3—r n + 3 d r  d r

=  ~ Q { 1 )  -  7 * i -  (4-125)
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Substituting (4.110)-(4.125) into (4.109) gives the required result. ■

T h e o re m  4.10. Let Ja  := ^ a  +  K + — V , 0 < V  < Z/1 ((0, oo); r7dr), 'F G 
(0,1) and n  =  8. Then there exists a positive constant C(\F) such that the 
number N(J a ) of negative eigenvalues of J a  satisfies

N(J a ) <  C,(^r)||||^ ||Loo(S7)IU1((0,oo);r7dr) (4.126)

where C(\F) depends on the distance o/\F from {0,1}.

Proof. From (4.95)

A i  + K + - V > A i - V =  ®  { [ x s O * 2 - ^ ) ] ® / * }  (4.127)
m6Z(n)

where Xs(Pm)2 1S given by Lemma 4.9 and due to (3.61)

pZ  =  (m + I f  -  9, (4.128)

Z<n) =  (m  g Z : pZ > 0} =  {m 6  Z : m <  - 4  or ra >  3} (4.129)

since 'F G (0,1). By identical steps,

A4 +  £  -  V =  ©  {  [xs(Pm)2 +  £  -  v ( r ) ]  0  7 ° }  (4.130)
|m |> 3

where

Prn =  m 2 -  9. (4.131)



4. C ounting E igenvalues 84

Now

X s ( p m ) 2 -  X S ( P m ?  -  £  

3
^  ( - l ) 2 [ P , ( 8 , p * )  -  Pj(8,pm)} d> /  a<_ , X
2—j r7 drj v drj )
3 = 1

PpfaPm) ~ Po (8, Pm) ~ C 
' r 8

If m  > 3 then

p* = m 2 +  2m ^ +  -  9

> ra2 -  9 +  tf2 =  pm +  4>2

which implies tha t for j  G {1,2,3,4}

> (A»y +  # 2j.

It follows from (4.134) that

Cj(8 ,p*) -  Ps(8,Pm) = 4 [p* -  Pm] >  o,

^ 2(8 , p*) -  ^ 2(8 , Pm) = 6[(Pm)2 -  (pm)2] +  66[p* -  pm] >  0, 

J M 8 . P * )  -  P l ( 8 ,  Pm) =4[(Pm)3 -  (Pm)3] +  22[(P^ ) 2 -  (pm)2]

+ 706[p* -  Pm] >  0.

Also

a>(8,Prn) -  -Po(8,Pm) =[(Pm)4 ~  (Pm)4] +  16[(Pm)3 “  (Pm)3]

+ 48[(p*)2 -  (Pm)2] -  C 

> # 8 +  16#6 +  48#4 -  c

(4.132)

(4.133)

(4.134)

(4.135)

(4.136)

(4.137)

(4.138)
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and therefore if c < 4>4('I'2 +  4)(4/2 +  12) then

Xs(pZ)2 -  Xs(pm)2 -  ^  > o. (4.139)

If ra < —4 then

Pm = m 2 +  2 m^f +  — 9

= (r a  +  l ) 2 — 9 +  2 ra4> +  ^ 2 — 2 m  — 1 

= Pm+i +  ( ^  — l ) 2 +  2('I' — 1 )(ra +  1)

>Pm+l +  ( i  -  l ) 2 (4.140)

since ('I' — l)(ra  +  1) > 0. This implies that for j  £ {1, 2,3,4}

(p*)4 >  (P-n+i)4 + (4  -  l ) y  (4.141)

which similarly to above, shows that

Pi( 8 ,p * ) - .P j (8,pm+1) > 0  (4.142)

when i £ {1,2,3}. Again

Po(S,pZ) -  P 0(8 ,p m+i) -  c =[(pZ)4 -  (pm+1)4] +  16[(p*)3 -  (pm+1)3]

+  48[(p*)2 - ( p m+1)2] - c  

>(\& -  l )8 +  16(* -  l ) 6 +  48(l» -  l ) 4 -  c
(4.143)

and

X(Pm)2 -  X(pm+1? ~  £  >  0 (4.144)
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if c < (4> — 1)4[(^ — l ) 2 +  4][(4> — l)2 +  12]. Therefore

m >  3

- V ( r )
m >  3

7° )m J

(4.145)

and

m < —4

N [  ® { ( x 8(p*)2- ^ ( r ) ] ( g ) 0

- N {  ®  { [xs(Pm)'
m < —3

+  "  V(r) 1° ]• m J

(4.146)

if c < m in{^4[^ 2 +  4][^2 +  12], ( ^  -  1)4[(^ -  l ) 2 +  4][(\I> -  l )2 +  12]}. Note 
tha t from (4.128) and (4.129), since 'L G (0,1), only m  > 3 and m  < —4 
needs to be considered, consequently

N( Ja ) < N ( r 2A -  V) < IV ( a 4 +  ^  -  V(r )) (4.147)

The operator A 4 +  ^  — V{r)  is of the type for which Laptev and Netrusov 
in [19] established a CLR type bound, and so by Laptev and Netrusov’s 
Theorem 1.2

N ( J a ) < J v ( a 4 +  ^  -  K (r)) <  C | | | |V | | i ~ (S7) | | i i ((o,oo);rT,(r) (4.148)

where the constant C depends on only c, which in turn depends on 'L and so 
C = C(V).  m
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