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Abstract

Equilibrium geometries, interaction energies and harmonic frequencies of (NH3)n 

(n =  2 — 5) and NH4 +(NH3)n (n = 2 — 5) were computed using correlated electronic 

calculations (MP2) in conjunction with aug-cc-pVXZ (X=D, T, Q) basis sets and the 

Counterpoise procedure. The zero-point energy (ZPE) on the relative stability of the 

clusters was estimated using harmonic frequencies. For both pure and protonated 

ammonia clusters we found that using basis set superposition error (BSSE) corrected 

forces or freezing the monomer structure to its gas phase geometry had only a weak 

impact on the energetics and structural properties of the clusters.

For pure ammonia clusters, (NH3)n (n =  2 — 5), we found that low lying isomers 

for (NH3 ) 4  and (NH3)s have similar binding energies, perhaps suggesting the presence 

of a very smooth energy landscape. The harmonic frequencies highlighted the presence 

of vibrational fingerprints for the presence of double acceptor ammonia molecules. In 

addition, many-body effects for n = 2 — 4 were investigated; we found the 3-body 

effects to account for 10-15% of the total interaction energy and 4-body effects to be 

negligible.

Under these premises, a model pair interaction fitted to ab initio data for rigid 

ammonia molecules was developed. It was extended with a description of polarisation 

effects, introduced by using a noniterative form of the charge-on-spring model, the 

latter accounting for more than 95% of the dipole induction energy and of the increased 

molecular dipole. This model was used to optimise putative global minima for (NH3)n 

(n =  3 — 20); the structure and energetics of the clusters with n = 2 — 5 were found 

to be in good agreement with previous ab initio results. For larger isomers our model



predicts larger binding energies than previous analytical surfaces, and also predicts a 

reorganisation of the energy ranking and a different global minimum structure.

For protonated ammonia clusters, we have found two general types of isomeric 

structures, globular and linear, the former showing larger binding energies. Harmonic 

frequencies reveal that the signature of these clusters is given mainly by NH4+. In agree

ment with the literature we also found that higher frequencies for the N-H vibrational 

modes of the NH4+ are seen upon increasing cluster size. Finally, the vaporisation en

ergy computed in this work compares well with previous theoretical and experimental 

data.
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Chapter 1

Introduction

1.1 Ammonia

When the ancient city of Thebes became the most important metropolis in Egypt, 

Amiin, the patron of the city [1 ], knew a fame that surpassed the national frontiers. 

One of the many constructions erected to the worship of the deity was the Oracle of 

Siwa, in the oasis of Siwa (Libyan desert) [1,2]. Both the oasis and the temple were well 

known by the classic Greeks, who found in Ammon (Greek for Amun) an equivalent of 

their much respected Zeus [1, 2]. Under the Roman Empire, Jupiter became the deity 

related to the temple, the oasis became a place of banishment [2] and Latin language 

coined the eponym “sal ammoniacus” or “sal ammoniac”, literally “salt of Ammon”, to 

describe the white crystal deposits found in the area of Siwa [3-5]. This accumulation 

of ammonium chloride crystals comes from burning camel dung as fuel source, and 

from sun-heating for many years great amounts of camel dung and urine left behind in 

cesspits by the visitors to the oasis, together with soot and sea salt [3, 5-7].

In full Age of Enlightenment, in 1774, Joseph Priestly isolated “alkaline air” [4, 7, 

8 ] whose composition would be determined to be hydrogen nitride by Claude Louis

2



Chapter 1. Introduction 3

Berthollet in 1785 [4, 7, 9]. In between, in 1782, Torbern Olof Bergman is attributed 

to have devised the name “ammonia” as a bastardisation of the Latin “sal ammoniac” 

[3, 5, 7, 10]. This novel word would enter the English language, to stay, in less than 

two decades since its birth [5].

Ammonia may be the most popular name for NH3, but is not by any means the 

only one: azane, hydrogen nitride, spirit of hartshorn, Nitro-Sil or Vaporole have also 

been used to nominalise this ubiquitous gas of pungent odour [4].

NH3  is naturally released to the atmosphere from the decomposition of animal and 

vegetable matter [4]. Nitrogen compounds are a fundamental part of living organisms 

(e.g. purines, aminoacids, porphirines). At some point in their metabolic lives they may 

be broken into ammonium ion or ammonia, both pernicious in the cellular environment. 

Thus, in animals, an effective mechanism to keep toxic concentrations of ammonium 

ion at bay is achieved by converting ammonia to urea, that is then excreted through 

the kidneys. Ammonia is not only directed to excretion, its basicity can be exploited to 

compensate for severe metabolic acidosis in humans, and is also recycled to anabolise 

several aminoacids [11]. Interestingly, considering the established role of ammonia in 

the biochemistry of living organisms, is only recently that the mechanisms for the 

homoeostasis of NH3  have started to be understood [12, 13].

In 2004, the tentative detection of ammonia in Mars, triggered the hypothesis of 

a biological source of the gas in the Red Planet [14]. More radically, NH3  has been 

proposed as a molecule from which an alternative biochemistry could stem, therefore 

substituting water as the “liquid of life” [15, 16]. This idea is mainly based in the 

existence of ammonia and water analogues (e.g. methylamine and methanol, CH3 NH2  

and CH3 OH) and the likeness of some physico-chemical characteristics (e.g. ability 

to create hydrogen bonds, solvation properties) [16, 17]. The pitfall of this theory is 

found within the latter argument, ammonia has a vaporisation heat and surface tension
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significantly lower than that of water thus, “ammonia based” organisms could not be 

structurally kept together in Earth conditions. Notwithstanding, in planets such as 

Jupiter and Venus, with remarkably different atmospheric conditions and where NH3  

is readily available, metabolism in liquid ammonia could be conceivable [15-17].

At the beginning of the 20t/l century, the increasing world population put on the 

rise the demand for the use of fertilisers to feed the crops [18, 19]. At the time, the 

main source for nitrates was the limited and swiftly vanishing natural resource of the 

Chile saltpetre (NaN03) [4, 18-21]. Fritz Haber and Carl Bosch made possible the 

synthetic fixation of atmospheric nitrogen to produce ammonia in a large scale around 

1913 [18, 21]. Nowadays, the Haber-Bosch process, in equation 1.1 below, is responsible 

for virtually the entire global manufacture of NH3  [23].

N2  (g) +  3H2  (g) ^  2 NH3  (g) AH(298K) -  -22.08 kcal/mol (1.1)

This is a demanding process, taking place at high temperatures (around 500 °C), 

high pressures (100 - 250 atm) and in the presence of an iron catalyst in order to 

overcome the inertness of the nitrogen gas and to tilt the equilibrium as much as 

possible to the formation of NH3  [21-33].

Industrially, ammonia has very diverse uses. It is used as a refrigerant, exploiting 

its large heat of evaporation. Since is very soluble in water, weak solutions of NH3  are 

found as household cleaning products. It is also used in the manufacture of explosives 

such as NH4 N0 3  and HN03. The textile industry uses ammonia for the manufacture of 

synthetic fibres like nylon. It is used in the pharmaceutical industry, e.g. urea is used 

in the production of barbiturates. The rubber industry uses NH3  to avoid premature 

coagulation of natural and synthetic latex. In the mining industry metals such as 

copper, nickel and molybdenum are extracted from their ores using ammonia [19].

Regarding its chemical properties, NH3  has a trigonal pyramidal shape with a exper
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imental geometry of r^//=1.0124 A, H N H  =  106.67° [24]. The “valence shell electron 

pair repulsion theory” (VSEPR) explains that this shape is due to the lone electron 

pair on the nitrogen atom repelling the N-H bonds and pushing them together, hence 

deviating the H N H  angle from that of a regular tetrahedron (the sp3  hybridisation 

of the Nitrogen 2p and 2s orbitals would tend to distribute the electron pairs in a 

tetrahedron). Ammonia is a polar molecule with a dipole moment of 1.42 D, and is 

able to form hydrogen bonds. The acid-base properties of ammonia result largely from 

the self-ionisation reaction:

2NH3  ^  NH+ +  NH2  ALsooc =  [N H +pH j] «  ltT 3 0  (1 .2 )

which make ammonia a strong proton-acceptor enabling most potential proton

donors to act as an acid [23, 25]; it is also extemely soluble in water [25]:

NH3 (aq) +  H20  ^  NH+ +  OH" pKb(25°C) =  4.75 (1.3)

Ammonia has boiling point of -33.4°C and a melting point of -77.7°C. The liquid 

form has a large heat of evaporation (1.37 k j/g  at the boiling point) [25]. An interesting 

property of ammonia is its ability to dissolve alkali metals. The resulting solutions 

are blue and very good electrical conductors. Moreover, when the solution is very 

concentrated the conductivity is as good as that of the free metals. It is believed that 

the metal atoms are ionised in liquid ammonia giving solvated electrons [26].



Chapter 1. Introduction 6

1.2 Intermolecular interactions

Are intermolecular interactions1 important? “If the intermolecular interactions were 

suddenly switched off, the world would disintegrate in about a femtosecond, that is 

a single period of atomic vibration (the atoms simply would not come back when 

shifted from their equilibrium positions). Soon after, everything would evaporate and 

a sphere of gas, the remainder of the earth, would be held by gravitational forces. Isn’t 

it enough?” [34]

Since the concept of “intermolecular” varies with the system being considered, 

we would like to point out, even if is obvious, that in this work, “intermolecular” 

indicates forces between the fragments (i.e. monomers) that constitute a cluster, and 

“intramolecular” will refer to occurrences within the monomer.

The existence of forces between molecules (intermolecular, also called van der Waals 

forces) can be deduced from two macroscopic observations. On one hand, the forma

tion of condensed phases indicate the presence of forces between molecules that are 

strong enough to cause long-term clustering, hence their nature is “attractive”. On 

the other hand, condensed phases resist further compression, this would mean that 

intermolecular forces are weak enough to keep the fragments from reacting with one 

another, preserving the chemical identity of the fragments composing the cluster. This 

resistance manifests the action of a “repulsive” force [27, 28].

The range of these forces depends on the distance between the fragments, so, in

tuitively, we can say “long distance” when the fragments are infinitely apart and do 

not “feel” each other, and “short distance” when the separation of the monomers is at 

equilibrium. At long distances the contribution to the energy can be divided in three 

components with robust physical meaning: electrostatic, induction and dispersion ef-

*1 have consulted the following references in the writing of this section[27 32, 34]. I have also used 
my own work, previously presented in my MSc dissertation.
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fects. At very short distances the largest contribution to the energy is repulsive and 

its component is the exchange effect.

1.2.1 Electrostatic forces

This effect arises from the interaction between the static charges of the interacting 

monomers. The overall charge distribution of a molecule is represented by its non-zero 

multipole moments, which are used to describe electrostatic interactions. The outcome 

of the interaction can lead to attraction or repulsion depending on the orientation and 

geometry of the molecules.

M ultipole moments

Considering a molecule as a spatial distribution of charges, it can then be described 

in terms of a multipole expansion, a series in which each term is a “moment” of the 

distribution of charges, the first term being the monopole moment, second term dipole 

moment, third term is the quadrupole moment, then octupole moment and so on.

The monopole Q, or zeroth moment, is the net charge of the distribution of charges:

<? =  ! >  (1-4)
t

where is the charge of atom i, summation is taken over a configuration of point 

charges. For a charge density distribution (p(x , y, z) = p(r)), Q is expressed as:

Q = J  p(r)dr (1.5)

the first moment of the multipole expansion is the dipole (//), which describes the 

symmetric arrangement of positive and negative charges separated by a vector r. This 

vector is represented as pointing from the negative to the positive charge. For a static
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point charge distribution we have:

P =  Qlf>l
i

where f  is the vector position of the ith particle with respect to some origin. For a 

charge density distribution the dipole becomes:

p  = J  rp(r)dr (1.7)

equation 1.7 indicates that the dipole moment is the average of the position of all 

charged particles (given by r) over the spatial charge distribution p(x, y, z).

The simplest representation of a quadrupolar charge distribution is given by four 

alternating charges of equal magnitude and opposite sign placed at the corners of a 

square. For a continuous distribution of charge, the quadrupole moment is the set of 

averages of all pairs of the type x2, xy, xz, y2, yz and z2 over the charge distribution 

P•

The presence of multipole moments in a molecule is determined by its own make

up, in terms of composition and geometry, but can be also determined by the presence 

of a non-uniform electric field such as the one created by the multipole moment of a 

neighbour molecule. In fact, dipole moments can be divided in two (non-excluding) 

types: permanent and induced. A permanent dipole moment occurs when a charge 

separation is always present in a molecule, whereas an induced dipole is a charge 

separation arising only in the presence of an electric field [29].

In the following sections we introduce dispersion and induction forces. These are 

also electrostatic in the sense that they derive from the Coulombic interaction of 

charged particles, but they separate from the notion of “static” because they account 

for the reordering of the charge distribution when a molecule is exposed to an electric
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field.

1.2.2 Dispersion

They are also called London forces, or “induced dipole-induced dipole interactions” , 

and they are common to all molecules.

Dispersion can be conceptually explained by considering the motion of electrons in 

the environment of a neutral molecule. The electronic motion causes the charge to be 

continuously redistributed. This fluctuation can lead to an asymmetric distribution of 

electron density, creating a transient dipole, which gives rise to transient electric field. 

The transient field will affect the charge distribution of molecules nearby, resulting in 

the generation of an induced dipole in the neighbouring molecules.

Electron motion is correlated in such a way that favours lower energy configura

tions, the induced dipole will be aligned in such a way that it always has a favourable 

interaction with with the first (transient dipole) one. This favourable interaction is 

always maintained even if molecules move around, because the fluctuations leading to 

the formation of transient and induced dipoles are very rapid processes compared to 

the rate at which molecules move due to thermal motion.

Conversely, the orientation of permanent dipoles is ruled by the thermal motion 

of the molecules, meaning that they are not always aligned in such a way as to have 

an attractive interaction. In fact, when averaged across the sample the interaction 

between permanent dipoles is usually much less than the dispersion interaction.

Polar molecules also have instantaneous (or transient) dipoles, so they also interact 

via dispersion. In this case the time average of each transient dipole does not vanish, 

but corresponds to the permanent dipole. Hence, polar molecules interact through 

their permanent dipoles and the instantaneous fluctuations in them [32].
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1.2.3 Induction

The ease with which the electron distribution can be distorted from its normal shape 

by an electric field is called polarisability (a). This susceptibility to respond to an 

external electric field determines the strength of the dispersion interaction. The more 

polarisable a molecule is, the bigger is the separation of charges (hence, its induced 

dipole), and the stronger is the dispersion interaction.

The dipole induced on an atom (jlind) by a uniform, infinitesimal electric field (E) 

can be written as:

jlind = aE  (1.8)

equation 1.8 shows a linear relationship between jlind and E, this is the case for 

small (infinitesimal) fields. For large fields, jlind may depend on higher powers of 

E  (fii,ind = &E +  a2E 2 +  a3E3 +  . . . )  [29], when expanded as a series, the term 

hyperpolarisability must be applied. In addition, jlind and E  do not have to point in 

the same direction, a more general representation of the induced dipole would be:

3

A W  =  y :  U-ijEj (i , j  = x,y, z)  (1.9)
j=i

equation 1.9 indicates how the components of the dipole moment are affected by the 

direction of the electric field, introducing the concept of polarisability as a tensor. The 

polarisability is the induced dipole moment per unit of applied electric field [29]; it can

also be expressed as polarisability volume (o'), where e0  is the vacuum permittivity:
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1.2.4 Exchange

Exchange is a purely quantum effect, however, a physical picture of the exchange 

phenomenon can be given considering the situation in which molecules come close 

together. In this situation, the space available for electron motion is extended to 

both molecules, and when two electrons of the same spin attempt to occupy the same 

region of the space, Pauli exclusion principle forces a redistribution of the charge. The 

exchange effect controls the steepness of the repulsion interaction.

1.2.5 Hydrogen bond

When the hydrogen atom bonds an electronegative atom, a polarised bond is created 

in which the latter has partial negative charge and the hydrogen has a partial positive 

charge. This allows the hydrogen to interact with another electronegative atom (to 

which is not “formally” bonded) to create the hydrogen bond.

The strength of the hydrogen bond covers a wide and continuous energy scale from 

around 0.5 kcal/mol to nearly 40 kcal/mol [37]. It contains energy contributions from 

electrostatic, induction and dispersion interactions, as well as some degree of covalent 

interaction [38].

For maximum stability the hydrogen donor pair and the acceptor tend to form a 

linear structure in species like (H2 0 ) and (HF)2. However, this is not observed in 

ammonia, where after some debate, is now accepted that a deviation from linearity is 

preferred.
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1.2.6 P otentia l Energy Surface (PE S)

Graphically, the combination of attractive and repulsive interactions between two 

atoms or molecules as a function of the distance separating them, has the following 

form:

4

3

2

1

0

-1

-2

-3

-4

-5
2  5 3 4.54 5

Figure 1.1: 1-D potential energy surface along atom-atom distance coordinate, r.

The range of the interaction is defined by the dependence of the potential energy, 

V (r), on the separation r. Moreover, the span of the interaction of an n-pole with an 

m-pole can be predicted by [27, 32]:

v/(r ) ° c ^ r r  (1 U )

where V(r) is the potential energy in terms of the distance and n and m are the 

order of the multipole moments on which the interaction operates (n — 1 for monopole, 

77 = 2 for dipole, n = 3 for quadrupole and so on). Thus, for example, dipole-dipole 

interaction falls off as r -3, dipole-quadrupole as r “4 and quadrupole-quadrupole as 

r -5. From this sequence it can be seen that the interaction energy falls more rapidly
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the higher the order of the multipole. We will also mention that dispersion interaction 

decays as r~6, but we will not go into the details of the calculation.

Figure 1.1 is a one dimensional representation of a Potential Energy Surface (PES). 

More accurately, the PES is a hvpersurface defined by the potential energy of a collec

tion of atoms over all possible atomic arrangements. Important points in the surface 

are local minima, corresponding to optimal molecular structures; and saddle points, 

which are related to the concept of “transition state” since they represent lowest energy 

barriers on paths connecting minima [40].

For a given collection of atoms, the PES provides complete information about all 

possible chemical structures and isomerisation pathways connecting them. However, a 

complete PES for polyatomic molecules is very hard to visualise because of the many 

dimensions they involve (the PES involves 3N — 6 coordinate dimensions, where TV > 3; 

for practical purposes dimensionality can be reduced by defining the degrees of freedom 

with respect to internal coordinates). Therefore, the PES is normally presented as a 

“slice” involving a single coordinate (e.g. atom-atom distance, r, as in figure 1.1) or 

two [40].

A typical model to describe the empirical intermolecular potential (e.g. figure 1.1) 

is that by Lennard-Jones:

where e is the well depth and r0 is the distance at which Vl j {t ) = 0. The mini

mum interaction energy occurs at r e — 21//6r0. r e being the equilibrium intermolecular

of the intermolecular forces (left hand side of the minimum in figure 1.1), and the sec

ond term accounts for the attractive forces (right hand side of the minimum in figure

( 1 .12 )

distance. The first term in brackets in equation 1.12 accounts for the repulsive term

1.1). The 6th power was adopted following London’s work on dispersion forces, while
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the 12th power was thought to be mathematically convenient for describing the speed 

of the repulsive potential. It is now known that an exponential function (i.e. e~ar) 

is closer to the description of the exponential decay of atomic wavefunctions at large 

distances, and hence to the overlap that is responsible for repulsion [32].

1.3 M ethodology

1.3.1 Introduction  

The Schrodinger equation

In order to determine the electron structure of atoms and molecules, one has to solve 

the Schrodinger equation. We will be concerned with it’s time-independent form only2:

FW = EV (1.13)

E  is the energy of the atomic or molecular system being investigated. 4' is the 

wavefunction containing the full description of the system, this is, all the properties 

of the system that are open to experimental determination (observables). H is the 

Hamiltonian operator corresponding to the total energy of the system, which in turn is 

the sum of a kinetic energy and a potential energy operators acting on all the particles 

of the system. For a single particle (e.g. electron) of mass m, with a position vector 

r =xi+yj+zk, under the influence of a field V  (e.g. the electrostatic potential due to 

the nuclei of a molecule) [40], we can write:

h2
/  v 2 4- V}*(r) = EV(r) (1.14)

2m
2To write this section I have consulted references[38, 40 42, 50]. The following sections contain 

my own work, previously presented in my MSc dissertation: “Practical considerations”, “Basis Set 
Superposition Error’’, “Supermolccular approach” and “Manv-body effects”.
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In equation 1.14, h is Plank’s constant divided by 2tt and V2 is the Laplacian 

operator. V is the potential energy operating on the system.

In order to solve Schrodinger’s equation values of E and 4* have to be found such 

that when the energy Hamiltonian operates on the wavefunction it returns the wave- 

function multiplied by the energy [40]. Exact solutions for the Schrodinger equation 

cannot be obtained for any molecular systems; hence, for iV-particle systems, such as 

the clusters in this work, approximation techniques are needed.

T he in terp reta tion  of 'I'

The relationship between the wavefunction and the particle location it describes is

probabilistic in nature[41]. Born suggested that the probability that a particle will be

found in the volume element dr (dr = dxdydz) at the point r is proportional to |^ |2.

|4 f  = 4^* (1.15)

wThere 4'* is the complex conjugate of 4*. Born’s interpretation means that |4>|2 is 

a probability density, and also implies normalisation. It is said that a wavefunction is 

normalised if:

J\<b\2dT = l (1.16)

In other words, given that if we multiply 4/ by a constant in both sides of equation

1.13 the equality would still be obeyed, we would like to find a constant that ensures 

that the probability of finding the electron in the space volume is 1.
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The variational principle

One approach to the solution of Schrodinger’s equation for a many-body system of 

a known Hamiltonian, is to build an approximation to the problem wavefunction, 

'f'approx- This will return an approximate value of the energy of the system, Eapprox. 

The variational principle applies the Rayleigh ratio (equation 1.17) to the evaluation 

of F̂a p p r o x •

p____ _ ('kapprox | ̂  | 'kapprox) /.,approx
\ * approx | ^ approx /

The variational principle states that the energy calculated from an approximation 

to the true wavefunction, Fapprox? will always be greater than the true energy, Ecxact

[40]-

âpprox ^  Ecxact (T18)

The significance of this principle is that the optimum wavefunction will be the one 

for which the energy of the Rayleigh ratio is a minimum, because it will be the closest 

we can get to the true energy of the system. ^ apProx is typically expressed in terms 

of one or more adjustable parameters that are varied until equation 1.17 is minimised

[42].

Born-O ppenheim er approxim ation

For a svstem of N  nuclei and n electrons we can write the Hamiltonian as:

f - 2  _ n  ± 2  N  n  N  r y  2  -I n  n  2  N  N  r /  r?

h  =  :L r v 2_ _ V v 2 - W — + - V V — V "  A B
2 m e ^ - f  * 2 M n  V  A (»r iA 2 t 4lT(or ij a b ^ a 47!(° R a i3

(1.19)
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where me and Ma are the electron and nuclear masses respectively and e and 

Z  are the electron and nuclear charges, respectively. The first term is the kinetic 

energy operator for the electrons; the second term is the kinetic energy operator for 

the nuclei; the third term is the electron-nucleus Coulombic attraction; the fourth term 

is the electron-electron repulsive interaction and the fifth term is the nucleus-nucleus 

repulsive interaction.

The rationale behind the Born-Oppenheimer approximation is the great difference 

in masses between the nuclei and the electrons (the resting mass of the lightest nucleus, 

the proton, is 1836 times heavier than the resting mass of the electron [40]). This 

difference implies that the electrons can respond almost instantaneously to any changes 

in the positions of the nuclei [40, 42]. Therefore, the motion of nuclei and electrons can 

be decoupled, meaning that the nuclei can be considered fixed (or clamped) in their 

positions in a particular instant, giving rise to a static electric potential “felt” by the 

electrons. In this situation, the Hamiltonian can be simplified to:

t 2 n n N  ry 2 1 n n 2 N  N  r? r?

i u ^ R )  = - ± -  V v? - T ,  £  +1 T ,  £  + £  £  T ^ i r -
V ' T 47rC°r i-4 2 i v t B>A ° AB

( 1.20)

Heiec(R)i is the electronic Hamiltonian that depends on all the nuclear positions, 

/?, at once. Now\ the problem at hand is to solve a Schrodinger equation that involves 

only the electronic degrees of freedom (R denoting the dependence on the particular 

configuration of the nuclei):

H c U R ) * c \ c c ( R )  =  H c l e c ( R ) E c U R )  ( 1 .2 1 )

When approximate solutions to equation 1.21 are computed without the use of 

empirical parameters the calculation is known as “ab initio'\ meaning “from the be-
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ginning” . Once equation 1.21 has been solved, the Hamiltonian for the nuclei, / /N, can

be written by adding the nuclear kinetic energy (left out from equation 1.20) to the 

electronic energy', Ec]cc(R):

Hence, the Schrodinger equation for the complete system, which would return the

In this thesis we will be concerned with electronic energy calculations, hence with 

equation 1.21, from here onwards we will drop the subscripts.

M olecular O rbital approxim ation

Even with the Born-Oppenheimer approximation, Schodinger’s equation remains very 

difficult to solve for an TV-particle system. The evaluation of the electron-electron 

potential energy is particularly difficult because it depends on all possible and simulta

neous pairwise interactions between electrons (fourth term in equation 1.19). To avoid 

dealing w'ith this, it is further assumed that any one electron moves in an average po

tential due to the other electrons and the nuclei, (which is to say that electrons behave 

independently from each other, hence, electron correlation is neglected). The electronic 

Hamiltonian is rewritten as a sum of the one electron operators:

( 1.22)

energy including contributions from the electrons and the nuclei would be:

# NvkN =  N (1.23)

71
(1.24)

where /?* is known as “core Hamiltonianv
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(L25)

Equally, tin; wavefunction is then taken to be a product of one-electron wave- 

functions:

* (n, r2 ... r„) = ■ ■ ■ r n(r„) = n"=1t/’;(rj) (1.26)

equation 1.26. also called “Hartree product” , does neither fulfil the Pauli principle 

nor take into consideration the antisymmetry of the electronic wavefunction. Fock 

suggested that, in order to satisfy both of these requirements, equation 1.26 should be 

re-written as a Slater determinant:

=
y/nJ

V'i(n) 0i(n) V’2(n)--- v-nnin)
0’i(r2) W\{r2) 0 2  (r2)--- 0 n/2 (n)

(1.27)

0 i (rn) 0 i (r„) 02(r„)--- 0 „/2(r„) 

where ^7= ensures normalisation of the wavefunction, n! being the number of terms

in the determinant: 0 i ( n )3 is electron 1 in orbital 01 with q spin, while 0 i (ri), is 

electron 1 in orbital 0x with (3 spin. The columns in a slater determinant are the single

electron wrave-functions (orbitals) and along the rows are the electron coordinates.

H artree-Fock m ethod

From now on we will assume a closed-shell system, this is a system with all electrons 

spin paired (e.g. NH3), the method is then called “Restricted Hartree-Fock” (RHF). In 

the HF method the Rayleigh ratio (equation 1.17) is minimised respect to 0 in order

3To introduce the electron spin, the one electron wavefunctions (■!/’) are multiplied by spin orbital 
functions (a or /3). Thus, t/’(r) x a  =  ty(r) and ip(r) x J =  >̂(r)
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to find a set of one-electron wave functions that obeys the expression:

(1.28)

where /  is the Fock operator for a closed-shell system with n electrons in n/2

orbitals:

n/ 2

/  — hi 4- 2 Jj — Kj (1.29)

the first term is the "core Hamiltonian”, seen in equation 1.25. The second term, 

Jj, is the “Coulomb operator”, representing the Coulombic interaction of an electron

which takes into account the spin effects, but has no physical meaning.

If equation 1.28 is solved for each electron in turn, a set of orbital energies is 

obtained:

Note that for any solution found for one electron, the solutions of the other electrons 

in the system will be affected. Hence, the strategy to solve these equations is to set 

a trial of one-electron wavefunctions by using the variation method. These are used 

to calculate the Coulomb and exchange operators. Then the HF equations are solved 

giving a second set of solutions which are used again in the same fashion. This is 

the Self Consistent Method (SCF) that gradually refines the one-electron solutions. 

Energies lower with each iteration. The process is repeated until the results for all the 

electrons are unchanged (or the change is an acceptably small quantity), when they 

are said to be “self-consistent”.

In order to solve the HF equations for molecules, Roothaan and Hall, independently,

in orbital i with and electron in orbital j. The third term is the “exchange operator”,

n/ 2

(1.30)
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suggested using a linear combination of known basis functions with which to expand 

the one-electron orbitals. In this way the HF equations are reduced to a matrix problem 

and facilitate its solution:

K

ipi = ^ T c vi(t>v (1-31)
V =  1

where 0* represents a molecular orbital, and 0r represent an atomic orbital with an 

associated coefficient cvi. The coefficients represent the contribution of different atomic 

orbitals (0) to the molecular orbital (0 ). The use of a linear combination like that in 

equation 1.31 in the HF equations leads to the expression:

FC = SCe (1.32)

where F is a KxK squared matrix called the Fock matrix, C is a KxK matrix

containing the coefficients c^, e is a diagonal matrix containing the orbital energies

and S  is the overlap (between different basis 0 ) matrix. The solution of equation 1.32 

is also an iterative process. The total energy for the ground state is given by:

n n /2  n /2

e  = - K* ( J-33)
i=i t=i j=i

1.3.2 M 0ller-Plesset m ethod

The method that Moller and Plesset proposed to address the problem of electron 

correlation is based in the Rayleigh-Schrodinger perturbation theory. In this theory, 

the true or exact Hamiltonian, //, is considered a small perturbation of a “zeroth order” 

Hamiltonian, for which a set of molecular orbitals can be obtained [40].

H = H {0) +  XV (1.34)
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where A is a parameter that can vary between 0 and 1, when A =  0 there is 

no perturbation and the exact Hamiltonian, H , equals the zeroth-order Hamiltonian, 

//(°); and when A =  1, the perturbation is “on” and H  equals its true value.

In the same way, the wavefunctions, Ik*, and energies, Ei, of the true Hamiltonian 

H can be expanded as a power series in A:

= tf{0) +  Att{1} +  A2tf{2) +  . . .  (1.35)

Ei = E ^  +XEW + \ 2E <12) + . . .  (1.36)

where is the wavefunction of with energy E ^ . The ground state wave

function is then and its energy is Eq*K E ^  is the first-order correction to the 

energy, E ^  is the second-order correction to the energy and so on. The series of equa

tions 1.35 and 1.36 are substituted in H'f/i =  E ^ t, and then terms of the same order 

are collected together:

=  ($ f’)|t f (0)|# f )) (1.37)

£f> =  ( ^ 0)|y |^ ° > ) (1.38)

£f> =  (4><0)| V |^,W) (1.39)

e }3) =  <*|0,| V > (1.40)

In the MP method the unperturbed Hamiltonian is the sum of the one-electron 

Fock Hamiltonians over the total number of electrons n:

# (0) =  £  /< (L41)
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The Hartree-Fock (ground state) wavefunction is a function of the HF (zeroth- 

order, unperturbed) Hamiltonian, H^°\ with an energy value of given by the sum 

of the orbital energies of all the occupied one electron orbitals. This means that the 

sum of (equation 1.31) and Eq1̂ (equation 1.32) corresponds to the HF energy:

£<°> +  =  (S-<,0)|//<0>|'ir<0)) +  ($<0)| V K 0>)

= (4-<0)| H | ^ 0)) (1.42)

Therefore, the first correction to the Hartree-Fock energy is given by the second 

order perturbation theory. This level of theory is called MP2 and involves equation 1.33. 

The higher order wavefunction is expanded as a linear combination of solutions to 

the zeroth-order Hamiltonian, to give:

*<» =  (1.43)

^  _  y K * g l  r K LP (144)0 2 ^  rp(0) r (0)

where 4 ^  includes excitations obtained by promoting electrons into virtual orbitals 

obtained from HF calculation. Also, is a function of with corresponding 

energy

The advantage of MBPT is that is size-consistent, even when a truncated expansion 

is used, such as MP2. However, is not a variational theory, meaning that it can 

sometimes give energies lower than the “true” energy [40].
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Practical Considerations

The level of theory used throughout this work is second order M0ller-Plesset Perturbar 

tion Theory (MP2). The reasoning behind this choice is that ammonia dimer is held 

together partly by dispersion forces, and since this is a correlation effect [36, 38] a 

post-Hartree-Fock evaluation is mandatory. MP2 is also a popular way of accounting 

for electron correlation [40] and it has been shown to be successful when applied to 

many weakly bound and hydrogen bond complexes. For this particular case of ammo

nia, it was found in references [39, 43] that MP2 provides quantitative results for both 

equilibrium structure and interaction energies when compared with MP4, suggesting 

that higher order dispersion components contribute only weakly. This means that MP2 

gives a good compromise between accuracy and performance with no real shortcomings 

over a more expensive MP approach.

Full Configuration Interaction (Cl) is too expensive a method for evaluating am

monia clusters. In addition, the application of Cl would lead to a non size-consistent 

treatment of the systems we are involved with, which is incompatible with the “super- 

molecular approach” also used in this work.

In the 2003 study by Boese et al. [43], a broad representation of Density Func

tional Theory (DFT) functionals were evaluated, and it was concluded that none of 

the density functionals tested in their work contains information to accurately describe 

the structure, or the relative energies, particularly dispersion forces, of the ammonia 

dimer. With “structure” they referred to the bent, i.e. non-linear, hydrogen bond 

displayed by the pair of fluxional putative minima dimers, a feature that an ab initio 

method can reproduce.
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1.3.3 Basis Set

The basis set is a set of known mathematical functions from which the wavefunction 

is constructed. When molecular calculations are performed, molecular orbitals are 

expressed as linear combinations of atomic functions (equation 1.45, again below), 

whose coefficients are determined by the iterative solution of the HF equations.

The basis (atomic) functions first used were the Slater Type Orbitals (STO), but 

it was found that in HF theory they gave rise to integrals that were very difficult 

to evaluate. This problem was bypassed by Boys’ suggestion of replacing STOs by 

Gaussian type orbitals (GTOs), which are easier to handle. However, this is not a one- 

to-one replacement, since this leads to significant errors due to the different properties of 

STOs and GTOs. Roughly, three times as many GTOs are needed to achieve a certain 

accuracy compared with STOs [50], hence, STOs are modelled as linear combinations 

of GTOs. This is to say that each atomic orbital (0 from equation 1.45) is represented 

as a linear combination of GTOs.

L

0u =  ^   ̂dfcm0fc(o;fcm) (1.46)
k=i

where is the coefficient of the “primitive”4 Gaussian function 0*, which has an 

exponent a.km and L is the number of functions in the expansion.

The best representation of a molecular orbital would be given by the use of an 

infinite number of basis sets, the complete basis set (CBS), which when applied to the 

HF method would provide the energy associated to the HF limit. This would mean

4each of the individual Gaussian functions from which the expansion is built. Also, when a basis 
function is defined as a linear combination of GTOs it is said to be “contracted”

K

(1.45)
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that the difference between the HF energy E ^ f and the true energy of the system E  

is the electron correlation E ^ y  [38]:

Ecorr — E — EHF (1-47)

The use of a complete basis set in impractical; hence, in practice, the aim is for 

a finite number of basis sets to approach the HF limit efficiently. Basis sets can be 

constructed using an optimisation procedure in which the coefficients and the exponents 

in equation 1.46 are varied to give the lowest atomic energies. The approach chosen to 

this construction leads to the different “families” of basis sets (e.g. Pople, Dunning).

Practical considerations

Within the framework of this thesis, the choice of basis set is of importance for two 

specific reasons. First, it defines the accuracy of the computed energies required to 

calculate binding energies. Second, the accurate calculation of multipole moments is 

important to us given our interest in decomposing the many-body effect for ammonia 

clusters and the construction of a potential energy surface.

The choice of basis set dealing with small ammonia clusters has been tested in 

the literature [39, 49] and by us in a project prior to this thesis. Dunning’s and 

Pople’s basis set families were tested and compared5. The initial test between the 

two families of basis sets focused on the calculations of monomer properties known 

to play a role in intermolecular interactions (dipole moment, quadrupole moment and 

polarisability, etc.), and we compared this with available experimental data afterwards. 

This comparison was extended to the study of the structures and energetics of the

5The performance of the cheaper Pople’s triple-C basis set family 6-311++G  with increasing polar
isation functions (2d,2p), (3d,3p) and (3df,3pd) were first tested in the small structures (NHa)2 and 
(NH)3 hoping that they could provide a less costly alternative when computing the ammonia PES, 
and so we could extrapolate roughly the MP2 interaction energies
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(NH3 ) 2  and (NH3 ) 3  structures. As a result, we concluded that Dunning’s family of 

basis set provides the best choice of functions for exploring ammonia clusters at the 

MP2 level of theory, as they give a more balanced performance with increasing basis 

set size. Hence, that was our choice to describe the (NH3)4 and (NH3)5 structures in 

our study. The notation for the basis set and level of theory will be the following:

MP2/aug - c c -  p V X Z  (X  = D, T, Q, 5)

Dunning’s basis set can be double (D), triple (T), quadruple zeta (Q), etc. depend

ing on how many basis functions define the valence (V) orbitals (two, three or four, 

respectively). The core is described by six contracted Gaussian primitives. Large basis 

set are used in an attempt to obtain total energies and energy differences close to the 

basis set limit (CBS) [49]. Correlation consistency or “cc” means that regardless the 

function type (s,p,d,f...)  the ones that contribute the same amount of correlation en

ergy are added to the basis set at the same stage [50]. The addition of diffuse functions 

is referred to as “augmentation”, or “aug”, and polarisation functions are represented 

by a “p”. For contraction scheme see reference [50], for polarisation functions included 

in each basis set see “Gaussian98 User Reference 2nd Edition” [46].

Both references [39, 49] and us have concluded that MP2/aug-cc-pVTZ gives the 

best compromise between cost and accuracy for ammonia dimers, and we have used 

the same method for bigger clusters ((NH3)n, n = 4,5).

In this work, the inclusion of diffuse functions is mandatory. On the one hand, 

because they help to define the “tail” of the wavefunction. This “tail” is, in princi

ple, of secondary importance to the total energy [36, 50]; however, it carries useful 

information in describing the multipole values and polarisabilities of molecules, which



Chapter 1. Introduction 28

are both relevant for a faithful estimation of the interaction energy, of particular im

portance in this work. On the other hand, different studies [39, 51, 52] point out the 

necessity of using diffuse functions due to the flat bottom of the ammonia PES dimer. 

Since putative minima structures are separated by small energy differences, not adding 

diffuse functions to the basis set during the optimisation process leads to missing the 

“isolation” of one of them, as one isomer “falls down” into the other [39, 51].

Finally, polarisation functions are necessary in the calculations for monomers and 

clusters to describe electron correlation and the distortion of the atomic orbitals when 

a bond is made or an interaction occurs.

1.3.4 Basis Set Superposition Error

This work has chosen the Boys and Bernardi [44] Counterpoise Correction (CP) ap

proach to tackle Basis Set Superposition Error (BSSE). It is established that for closed- 

shell interactions BSSE can be corrected by applying this method [35], and this proce

dure is also available in the Gaussian98 [46] and Gaussian03 [47] suites of codes which 

have been used to run all calculations in this work.

The aspects of CP correction are neatly summarised in the work by Ponti and Mella

[48], the diagrams and equations shown below are based in their paper.

There are two factors to be considered when tackling BSSE: the basis set of choice, 

and the geometry of the monomers constituting the aggregate.

To illustrate these two points let us consider two free monomers A and B, that 

when interacting change (or “deform”) their geometry to Ad and Bd, in order to form 

a dimer, AdBd.

A B Ai  + Bd AdBi (1.48)
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In the scheme above A£*./, of positive value, is the energy required to bring 

monomers A and B to the dimer geometry is what we will call “deformation energy”, 

A Efef.

A  ", A *  A E d e fA = Em  -  Ea (1.49)

B B* A E ^fB  = E b j  -  Eb (1.50)

A Edef =  (EAd — EA) +  (EBd — Eb ) (1-51)

A E AdBd, in equation 1.48, generally of negative value, is the formation energy of 

the dimer. A first approach to AEAdBd according to the “supermolecular approach” 

adopted in this work and introduced in the following section, is given by:

A EAdBd =  EAdBd — Ea — Eb (1-52)

All values at the right hand side of equation 1.52 can be computed. However, since 

the use of complete basis sets is impractical, the interacting monomers of a cluster will 

use each other’s basis set in order to complete their own basis set and improve their 

own energy. This results in an artificial lowering of the total energy of the complex, or 

overbinding effect. Hence, the formation energy calculated with equation 1.52 carries 

an error, the BSSE, because the complex has been effectively computed with a bigger 

basis than the monomers. In fact, BSSE can be defined as the difference in energy 

between the monomers in the complex geometry structure (i.e. “deformed”) computed 

with the cluster basis set (i.e full basis) and with just their own basis set.
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B SSE  =  -  E idbasis) + ( E $ lba3i3 -  Eg!?*3) (1.53)

Let us note that BSSE vanishes at the Complete Basis Set limit (CBS). Boys and 

Bemardi [44] recipe is to calculate the formation energy of the cluster as follows:

AE ^%  = Em b* -  E%llba3is -  EfBuJlbas'a (1.54)

This means that we subtract from the complex energy the energy of the monomers 

in their cluster geometry calculated with the full basis set. Equation 1.54 does not 

account for deformation energy, AEdef (equations 1.49-1.51), so it has to be added. 

This, however, includes another difficulty, since for the energies to be comparable one 

would have to calculate the non-interacting monomers at the non-deformed geometry 

with the full basis as well. More specifically, the problem appears when defining the 

centring of monomer’s B functions for the computation of monomer A at full basis, and 

vice versa, because the choice of location of monomer’s B basis set functions becomes 

arbitrary. Thus, the deformation energy cannot be unambiguously computed with the 

full basis set. In this situation the Counterpoise corrected formation energy will be 

written as:

A E $ ^  =  E™Bd + E ^ ja + E ^ b (1.55)

which expanded gives:

A E%?b* = ~ E!£ ,ba3i3 -  F l f 1*13'3 +  [(E ^ > 5ia - Ea) +  ( £ $ “"”’ - E B)\ (1.56)

Gaussian suit of codes 98 [46] and 03 [47] provide the Counterpoise corrected energy,
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EgaLssi considering the elements underbraced in equation 1.56. Hence, for calculating 

the interaction energy in this work we use:

AEm b< =  E S L . - E a - E b (1.57)

1.3.5 Supermolecular approach

The interaction energies throughout our work have been calculated by means of the 

“supermolecular approach”. This method considers that the interaction energy of a 

molecular aggregate is defined as the energy difference between the supermolecule (the 

aggregate or cluster) and the free fragments that constitute its whole. Thus, for a dimer 

constituted by fragments A and B the interaction energy would have the following form:

A E  =  Eab — Ea — Eb (1.58)

In the expression above Eab represents the interaction energy of the dimer AB, 

while Ea and EB represent the energy of the fragments A and B, respectively.

A faithful description of the supermolecule interaction depends on how reliably we 

can compute the energies of the aggregate and the monomers. The reliability of the 

numerical values comprises three demands [35], two related to the method of choice 

and one to the basis set. First, our method of choice must provide energies of similar 

accuracy for the cluster and its individual fragments; this implies the election of a 

size-consistent method. Secondly, our method of choice should be able to reproduce 

non-additive effects (e.g. many-body). Finally, it is known that the evaluation of the 

energy of a system is very sensitive to the choice of basis set. Fragments and aggregate 

should be evaluated using the same basis set (basis set consistency) and the BSSE, 

discussed previously, should be taken into account.
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1.3.6 M any-body effects

Let us consider an assembly of N  molecules. A first approximation to the calculation 

of the total energy of the system (E ) would be to take the molecules in pairs:

n n

(159)
t j>i=1

n
In equation 1.59, 53 Ei indicates the summation of the monomer energies, and

t
n

53 Exj accounts for the energy of each pair of molecules. This is the pairwise ad-
j>»=i
ditivity assumption, in which the energies of each pair are calculated as if the other 

molecules were not present. However, they are, and do affect the stability of the pair 

considered. This means that when we consider the binding energy of a cluster, there 

is a many-body correction to be accumulatively added: three-body for a trimer, four- 

body for a tetramer and so on. That said, the many-body correction is usually small 

in magnitude, continuously decreasing upon increasing cluster size.

In this work, we have decomposed the interaction energies into their n-body con

tributions for the pure ammonia clusters up to the tetramer in an attempt to improve 

our understanding of the molecular interactions. The computational strategy for the 

many-body decomposition can be summarised using (NH3)4 as an example, and with 

the help of the energy decomposition described by the following equation:
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' I k -

Figure 1.2: Ammonia tetramer for the calculation of many-body effects.
This is one of the isomeric structures we have isolated for (NH3)4. It can be structurally 

decomposed by considering that it contains six dimers (12,13,14,23,24,34) contributing the 
2-body interaction energy and three sets of trimers (123,134,234) contributing the 3-body 

interaction energy. The 4-body contribution to the interaction energy (1234) is obtained as 
a complement to the total energy value. Image obtained with MOLEKEL [45]

4 4 4 4

E(x i , x 2, x 3, x4) =Y  E '(x>)+ Y  E2(xiXj)+ xkxt)
t=l *<j=l i<j<k=l i<j<k<l=l

(1.60)

where E(xi, X2, x3, x4) is the (NH3)4 interaction energy, Xi is the position of all the 

atoms in the ?th molecule, E 1(x{) is the energy required to distort NH3 from its gas- 

phase structure to the one in the complex, E2(xiXj) is the 2-body interaction between 

two molecules i and j,  and so on. Given an optimised isomer, (either fully relaxed 

or with the intramolecular structure kept frozen to the experimental gas-phase geom

etry), single point calculations were performed on the single monomers, pairwise and 

threewise fashion to evaluate the 1-body, 2-body and 3-body distortion effects. The 

4-body effect is obtained as the complement to the total interaction energy value.
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Chapter 2

Pure ammonia clusters: (N H 3)n

(n =  2 - 5 )

2.1 Introduction

Among ammonia clusters, the dimer is the most studied structure both theoretically 

and experimentally. Up to the publication of the microwave study for (NHa) 2  by 

Klemperer and co-workers [1] in 1985, it was assumed that such a structure would 

feature a classical (i.e. linear) hydrogen bonded structure, just as (H20)„ and (HF)n 

clusters. The idea of “non-linearity” was also supported by the investigation of the 

Fourier Transform Infrared (FTIR) spectra of ammonia in noble gas matrices [2]. It 

was further suggested, based on isotope substitution microwave experiments [3], that 

the ammonia dimer structure would also be quite rigid near the equilibrium structure, 

a finding that was contradicted by the infrared predissociation spectra of reference [4] 

and other subsequent IR experiments [5-8] in which a “floppy” ammonia dimer was 

predicted.

In parallel to the experiments, several theoretical investigations involving ab initio

40
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and model potentials were carried out. Hirao et al. [9] computed the binding energy 

of the ammonia clusters up to the pentamer using Hartree-Fock (HF) and the 6-31G* 

basis set. In contrast with the experimental suggestions, a linear H-bond was found. 

More accurate calculations revised this result [10-16], proposing the existence of two 

stationary points for the ammonia dimer. On one hand, the minimum energy structure 

having Cs symmetry and a H-bond less linear than that predicted by HF calculations. 

On the other hand, a “centrosymmetric” cyclic structure with symmetry, which 

would be the transition state in the hydrogen bond donor-acceptor interchange. The 

barrier high for this process was predicted to be very low (roughly 3.5 cm-1 [14] or 5.9 

cm-1 [16]). The model potential by Olthof et al. [13], in which a model surface was 

fitted to the (NH3)2 infrared spectra [7], supported these ideas and could also explain 

the existing experimental IR data. In conclusion, all modern evidence suggests that 

(NH3)2 is a hydrogen bonded complex with a non-linear H-bond structure with the 

tendency to interchange the donor/acceptor nature of the two molecules easily. In this 

respect, a very recent study by Curotto and Mella [44] performing different quantum 

Monte Carlo simulations on ammonia clusters, has indicated that the “donor-acceptor” 

configuration is visited with the same likelihood as the “acceptor-donor” configuration 

for the ammonia dimer.

Regarding clusters up to the hexamer, the experimental data from references [4- 

6,17, 38], indicate that these structures would have a very small electric dipole moment, 

suggesting a cyclic or ring-like arrangement. However, the presence of a broad IR 

absorption band in the spectrum of the pentamer [5] was interpreted as an indication 

of a less rigid structure than the tetramer and trimer, perhaps suggesting that (NH3)5 

may have a fluxional nature, making structural assignments more difficult. Larger 

species than the hexamer (n =  18,745,1040) were studied by Buck et al. [18] but 

direct structural information was not extracted from the experiment data.
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The ab initio geometry optimisation for (NH3)n (n =  3 — 5) by Hirao et al [9] 

predicted a ring like geometry for the global minima of these isomers, albeit largely 

overestimating their binding energies, most likely due to the lack of BSSE corrections. 

The model potential with polarisable terms of Dykstra and Andrews [33] found that 

the trimer and tetramer are symmetric, cyclic structures. Using a nonpolarisable model 

potential calibrated against Coupled Pair Functional (CPF) results [31], Greer et al.

[32] found, as before, that the trimer and tetramer arranged in cycles, but that the 

pentamer, hexamer and heptamer preferred 3D structures for their global minima. In 

particular, the pentamer was found to display a distorted pyramid conformation. The 

investigation of clusters up to n =  18 by Beu and Buck [25] using a nonpolarisable 

model potential parameterised to the crystal sublimation energy of ammonia by Impey 

and Klein [34], provided the same result, that pentamer and higher isomers tend to 

form 3D isomeric structures that are very close in energy.

As far as we know, three correlated ab initio methods have also been used to in

vestigate clusters larger than the dimer. The work of Slipchenko et al. [38] recently 

studied, both experimentally and using MP2 calculations, clusters up to the tetramer, 

once again predicting cyclic arrangements for the trimer and tetramer global minima 

structures. Kulkarni and Pathak [30] computed interaction energies and equilibrium 

geometries for (NH3)n (n =  3 — 6). They presented and compared cyclic and linear 

arrangements for the clusters, concluding that linear species have smaller binding en

ergies than cyclic ones, as found for neutral and protonated water clusters [19, 20]. 

Finally, Szcz§sniak et al. [21] focused on addressing the decomposition of (NH3)3 in

teraction energy in different components employing symmetry adapted perturbation 

theory (SAPT).

It seems to us that high level calculations on ammonia clusters larger than the 

dimer Eire scarce, particularly indicated by the lack of consensus on the structure of a
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relatively small isomer like the pentamer. Hence, this chapter presents an MP2 study 

of the structure, intermolecular biding energies and harmonic frequencies of (NH3)n 

(n =  2 — 5). Several isomers for each cluster were optimised, and their interaction 

energy decomposed in 2-, 3- and 4-body contributions. Harmonic frequencies were 

computed and used to correct for the nuclear zero-point motion.

2.2 M ethodology

As advanced in the introduction of this thesis, all of the electronic structure calculations 

on (NH3)n (n =  2 — 5) were performed using the Gaussian 98 [27] and 03 [28] ab initio 

suits of codes using second-order M0 ller-Plesset perturbation theory (MP2) with frozen 

core. Also, for the initial optimisation steps for clusters n = 3 and 4, for structural 

aspects only, we found useful the use of the Hartree-Fock (HF) level of theory. BSSE 

was accounted for by means of the Counterpoise (CP) correction procedure [22-24] on 

the optimised structures.

We think it is worth mentioning the optimisation strategy followed throughout this 

work. The first step was to encode each geometrical structure in a Z-Matrix that 

could be used as an input for the geometry optimisation. Possible putative minima 

structures were obtained from previous published results, obtained mostly using model 

interaction potentials [25]; and also from considering molecular arrangements likely to 

have relatively strong hydrogen bonds.

Basis sets were used hierarchically, meaning that the output of an optimisation was 

then used as an input for the following, larger basis set optimisation calculation. We 

used two routes for the optimisation of the (NH3)n n — 2 — 4 structures: on one hand, 

we allowed the whole structure to relax; on the other hand, we kept the intramolecular 

structure of the monomers frozen to the experimental values of gas-phase ammonia
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(tnh  — 1-0124 A, HNH =  106.67°) [29]. The reason for this is, given our goal of 

developing an ab initio based interaction potential between rigid ammonia molecules, 

to see whether for a given isomer the relaxation of the intramolecular geometry has 

any impact on the energetics and structure of the cluster. It can be advanced that 

the adoption of the frozen intramolecular approximation produces negligible changes 

from the results of the “fully relaxed” approach for both energy and structure (for 

comparison Appendix 1 can be seen, it contains BSSE energies for (NH3)n, n =  2 — 5 

keeping intramolecular parameters frozen to the experimental value).

After each optimisation with a different basis set, we performed a single point 

BSSE corrected calculation. If we consider two PES’s, one not accounting for BSSE 

and a second one BSSE corrected, performing a single point correction on the first 

one is equivalent to obtain the ‘Vertical” corrected energy. In addition, a further 

optimisation was performed on the optimised geometry (a “re-optimisation”) including 

BSSE correction. In other words, we allow our “vertical” point energy to find the 

minimum in the BSSE corrected PES.

Also, to improve our understanding of the intermolecular interaction, we proceeded 

to decompose the interaction energies into their n-body contributions for the clusters 

up to the tetramer. The computational strategy for the many-body decomposition was 

explained in the introduction of this thesis using (NH3 ) 4  as an example.

Finally, harmonic frequencies were computed on the fully relaxed clusters as a way 

to introduce zero-point energy (ZPE) correction and to study the effects of vibrational 

motion on their relative stability. We also investigated possible patterns in the N- 

H frequency shifts of the ammonia aggregates that could be used as a spectroscopic 

signature of some structural feature.
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2.3 Results

2.3.1 Structural results and binding energies

Figures 2.1 to 2.4 show the optimised structures for (NH3 )n n = 2 — 5 obtained at the 

CP corrected MP2 /aug-cc-pVTZ level of theory. Tables 2.1 to 2.4 show the energetic 

data, in kcal/mol, for all the isomeric species obtained in this work together with 

previously published ab initio and model potential data. For all tables 2.1 to 2.4 

“BE” is the BSSE uncorrected binding energy for an optimised cluster (i.e. binding 

energy computed using the energy of fully relaxed local minima); “ZPE” is its harmonic 

zero point energy; “BECP” gives its single point CP-corrected (i.e. BSSE corrected) 

binding energy, and “OptCP” gives the BSSE corrected binding energy after structural 

relaxation on the counterpoise corrected surface.

Dimer

All basis set results support the asymmetric isomer (asym, I) as the most stable one, 

with the cyclic species (II) being a transition state (TS). The relative energy difference 

between these two isomers represents the hydrogen donor-acceptor exchange barrier

[14], it amounts to roughly 3 cm- 1  at the CP-corrected MP2 /aug-cc-pVQZ level of 

theory. These results are in good agreement with the work by Lee and Park [14]. 

As expected, introducing single point Counterpoise (i.e. vertical) correction on the 

optimised isomeric geometries reduces the binding energy, but no substantial changes 

are seen in the relative energy of the two isomers. In the same way, only slight changes 

are observed after the structural relaxation on the CP-corrected PES.

Looking at table 2 .1 , we also notice that energy results at the MP2/aug-cc-pVTZ 

level are in very good agreement with those obtained at MP2/aug-cc-pVQZ level of 

theory. Let us stress that MP2 has already been reported to compare well with the



Table 2.1: Energy values for (NH3)2 in kcal/mol.
M&D7P MaTZJ MaQZJ Other

(NH3 ) 2 BE(ZPE) BECP Opt6T BE(ZPE) BEg’̂ Opt°’p BE bect O pt^
asym° 3.624(44.647) 2.735 2.771 3.287(44.777) 3.001 3.011 3.220 3.089 3.090 4.03A
TS“ 3.403 2.735 2.756 3.239 2.999 2.999 3.197 3.082 3.082
asym6 3.623 2.737 3.286 3.000 3.219 3.088 3.138c
TS6 3.404 2.729 3.239 2.995 3.196 3.081 3.130°
asym
asym
dimer

2.923d
3.090°
2.934'

asym 2.784*
a This work; 6 Ref. [14], MP2 /aug-cc-pVXZ, X= D, T; c Ref. [16], W2  result; d Ref. [15], LMP2/aug-cc-pVTZ; e Ref. [31, 32], 
coupled pair functional (CPF); '  Ref. [33], model potential; 9 Ref. [25], model potential; h Ref. [30], MP2/6-31++G(d,p) result; J 
MaXZ (X=D, T, Q) is a shorthand notation for MP2 /aug-cc-pVXZ. BE are the BSSE uncorrected values for an optimised cluster 
(i.e. binding energy computed using the energy of fully relaxed local minima); “ZPE” is the calculated zero point correction; 
“BECP” gives its single point CP-corrected (i.e. BSSE corrected) binding energy, and “Optcp” gives the BSSE corrected binding 
energy after structural relaxation on the counterpoise corrected surface. The “Other” column collects literature values obtained 
using both ab initio calculations and model potentials.
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more expensive MP4 and Coupled Cluster methods [14] for several atomic basis. The 

good agreement between basis sets in our calculations suggests that the MP2/aug-cc- 

pVTZ level may provide an accurate representation for the energetics of the ammonia 

clusters.

£** V
(a) asym I (b) TS II

Figure 2.1: Equilibrium structures for (Nthi^ obtained with Counterpoise corrected 
MP2/aug-cc-pVTZ optimisations. All images in this work have been obtained and 
visualised using MOLEKEL [26]

Also, our best value for the asymmetric dimer (asym, I) agrees very well with the 

coupled pair functional results reported by Sagarik et al. [31, 32] which is the most 

accurate ab initio data available. Good agreement is also seen with the results of the 

W2 method by Boese et al. [16], the relative energy difference between the asymmetric 

and cyclic dimers is predicted to be roughly 3 cm-1 as in this work. In addition, 

good a agreement is also seen, particularly at the MP2/aug-cc-pVTZ level of theory, 

between this work and the local-MP2/aug-cc-pVTZ data of Staking et al. [15]. On the 

other hand, the BE for for the asymmetric dimer (asym,I) obtained by Beu and Buck 

[25] using the Impey and Klein [34] potential is 2.784 kcal/mol. This represents an 

underestimation of roughly 0.3 kcal/mol respect to the MP2 values, although we found 

that the optimised structure is in good agreement with all of the ab initio results. In 

opposition to this, the equilibrium structure presented by Dykstra and Andrews model 

potential [33] in as the minimum energy structure for the dimer does not match any of 

the stationary points reported in the literature or by this work. This fact has already 

been discussed in the literature [35, 36] and it is thought to be due to the difficulty
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at the time of parameterising properly the nonelectric part of the potential model.

Nonetheless, the interaction energy for this “odd” isomer is 2.934 kcal/mol [33], only 

slightly lower than the ab initio values, perhaps suggesting that induction may play an 

important part in defining the interaction energy.

Trimer

We have obtained two putative global minima for the trimer, which can be seen in figure 

2.2. As seen in table 2.2, the results for all basis set predict the most symmetric isomer 

(“equi”) as the most stable structure, with isomer II (asym) lying 3.4-3.7 kcal/mol 

above isomer “equi” on the BSSE corrected surface. This energy difference is the 

largest to be seen between the BEs of two local minima among all of the cluster sizes. 

It is due to the inverted ammonia in the “asym” ring, which also induces a large dipole 

moment in the structure (3.04 D versus 0 D for “equi”). Kulkarni and Pathak [30] 

provide the only other correlated ab initio result for the most stable isomer “equi” 

using MP2/6-31++G(d,p). Their result is roughly 2.7 kcal/mol more binding than our 

best results, due to the lack of BSSE correction in their calculations.

(a) equi (I) (b) asym (II)

Figure 2.2: Equilibrium structures for (NH3)3 obtained with Counterpoise corrected 
MP2/aug-cc-pVTZ optimisations.



Table 2.2: Energy values for (NH3 ) 3  in kcal/mol
MaDZJ MaTZJ MaQ# Other

(NH3 ) 3 BE(ZPE) BEUF OptuP BE(ZPE) BE0'' Optc'F BE becf Opt6T
equia 11.919(68.806) 9.242 9.326 10.974(69.001) 10.067 10.074 10.747 10.334 10.329* 13.02ft
asym°
equi
equi
trimer

7.827(67.886) 5.775

ol _ j i f T>

5.886 7.182(68.155) 6.439 6.453 6.961 6.633

h d

6.633*

fonl

8.263s
8.439e
9.392̂

result; * CP-corrected MP2 /aug-cc-pVQZ using a geometry obtained with a CP-corrected optimization at the MP2/aug-cc-pVTZ 
level; J MaXZ (X=D, T, Q) is a shorthand notation for MP2/aug-cc-pVXZ. BE are the BSSE uncorrected values for an optimised 
cluster (i.e. binding energy computed using the energy of fully relaxed local minima); “ZPE” is the calculated zero point correction;
uBECPn gives its single point CP-corrected (i.e. BSSE corrected) binding energy, and 
energy after structural relaxation on the counterpoise corrected surface. The “Other’ 
using both ab initio calculations and model potentials.

‘OptCP” gives the BSSE corrected binding 
column collects literature values obtained

3
II
to
I
Cn

CO

Chapter 
2. 

Pure 
am

m
onia 

clusters: 
(N

H
3)n 

(



Chapter 2. Pure ammonia clusters: (NH3)n (re =  2 — 5) 50

Also, table 2.2 shows the model potential results by references [25, 32, 33]. Two 

structures, also labelled “equi” obtained by Beu and Buck [25] and Greer et al. [32] 

are almost identical to our lowest energy isomer. Their resulting interaction energies 

agree well between themselves, data obtained using rigid body pairwise additive po

tentials. However, these values underestimate by roughly 2 kcal/mol our CP-corrected 

MP2/aug-cc-pVQZ value, suggesting that the lack of many-body effects in the model 

potentials may undermine the accuracy to reproduce larger clusters energy landscapes. 

Regarding the data by Dykstra and Andrews [33], similarly to the dimer case, the 

geometry of their trimer shows a cycle of three ammonia molecules that are rotated by 

60° around their C3  axis with respect to our ab initio “equi” structure [35, 36]. Even in 

this case, the energy difference in binding energy when compared to our CP-corrected 

MP2/aug-cc-pVQZ is only 1 kcal/mol.

Tetramer

We obtained three stationary structures for (NH3 ) 4  (figure 2.3). The two most sta

ble isomers (I “boat” and II “planar”) are almost degenerate at the CP-corrected 

MP2/aug-cc-pVTZ level. The estimated binding energy at the aforementioned level of 

theory is roughly 15.5 kcal/mol, the sign and magnitude of the small energy differences 

between the isomers depending on the level of the calculations. Structurally, “boat” 

and “planar” isomers have as a main structural difference the value of the torsional an

gle formed by the four nitrogen atoms, in isomer II (“planar”) they are constrained to 

lie in the same plane. Depending on the calculation level, isomer II “planar”, is either 

a transition state (at MP2/aug-cc-pVDZ) connecting two equivalent “boat” isomers 

through a puckering (rocking or pseudorotation) motion; or a minimum (at MP2/aug- 

cc-pVTZ). Looking at table 2.3 it can be seen that the results by Kulkarni and Pathak

[30], which do not account for BSSE, predict a larger binding energy for the “boat”
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Table 2.3: Energy values for (NH3 ) 4  in kcal/mol.
MaDZ-7 MaTZ7 Other

(NH3 ) 4 BE(ZPE) BECP OptCP BE BECP Opt6'p
boat® 18.523(92.244) 14.304 14.427 17.002 15.515 15.527 2 0 .1 2 /l
planar® 18.52 14.298 14.426 17.009 15.514 15.535
tail®
boat
planar
boat
boat

15.128(91.442) 11.503 11.640 13.786 12.552 12.569
12.632$
12.6135
13.0986
14.119/

° This work; e Ref. [32], model potential; f  Ref. [33], model potential; 9 Ref. [25], model 
potential; h Ref. [30], MP2/6-31++G(d,p) result. J MaXZ (X=D, T, Q) is a shorthand 
notation for MP2/aug-cc-pVXZ. BE are the BSSE uncorrected values for an optimised clus
ter (i.e. binding energy computed using the energy of fully relaxed local minima); “ZPE” is 
the calculated zero point correction; “BECP” gives its single point CP-corrected (i.e. BSSE 
corrected) binding energy, and “OptCP” gives the BSSE corrected binding energy after struc
tural relaxation on the counterpoise corrected surface. The “Other” column collects literature 
values obtained using both ab initio calculations and model potentials.

structure than our results. In addition, model potential results from references [25] and

[32] underestimate our ab initio binding energies by 2.9 and 2.4 kcal/mol, respectively. 

This represents a worsening of the model potentials with respect to the (NH3 ) 3  case, 

in the previous subsection. The model used by Dykstra and Andrews [33] performs 

better, the discrepancy with our ab initio data being only 1.4 kcal/mol.
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(a) boat (I) (b) planar (II)

€
(c) tail (III)

Figure 2.3: Equilibrium structures for (NH3)4 obtained with Counterpoise corrected 
MP2/aug-cc-pVTZ optimisations.

The third isomer (III, “tail”), lies roughly 3 kcal/mol above isomer I (“boat”) 

and is the first time that it is reported, while isomers “boat” and “planar” already 

have equivalents in the literature [25, 32, 33]. The “tail” isomer was built by adding 

an external ammonia molecule to the “equi” trimer. This optimisation strategy was 

used as a way to explore the possibility of an ammonia molecule remaining trapped 

outside the ring. This would be a feasible scenario during the formation of (NH3)4 by 

sequential pick up of ammonia molecules in a dissipating cold environment (i.e. He 

droplets [37]); facilitated by the fact that during the pick up process the cyclic trimer 

might form before the fourth ammonia is added to the droplet and by the compact 

nature and lack of dipole moment of the cyclic trimer. However, recent IR spectra
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of small (NH3 )n in He droplets [38] appeared to provide no support for the presence 

of a “tail” (or 3+1) isomer, a finding that may suggest the possibility of the fourth 

ammonia molecule entering the ring as a consequence of the addition dynamics. This 

event would require the partial opening of the ring, a process that appears to take 

place during the sequential pick-up of water molecules in He droplets [39].

Regarding the structure of the “tail” isomer, the binding of an external ammonia 

molecule to the trimer ring has the consequence of changing the N-N distances with 

respect to those in the cyclic trimer geometry from where the tail is built. Particularly, 

the distance between the coordinating molecule and its H-bond donor in the ring is 

reduced by 0.06 A, whereas the distance between the same molecule and its H-bond 

acceptor counterpart is increased by 0.09A. Parallel changes are also found for the 

harmonic frequencies NH stretches, discussed in the relevant section.

Pentamer

All the putative local minimum we found for (NH3 ) 5  are shown in figure 2.4. Prom 

table 2.4 we can see that the pentamer “tail” isomer is the least stable species, lying 

roughly 2 kcal/mol above all the others, due to the lower number of H-bond contacts. 

On the other hand, we can also see that the energy ranking for the remaining pen

tamer isomers is quite compressed and strongly sensitive to the level of treatment. In 

this respect, uncorrected results using both MP2 /aug-cc-pVDZ and MP2/aug-cc-pVTZ 

favour compact species as the most stable, while CP-corrected values predict the “ring” 

as the most stable one, although marginally. This reversal in energy ranking is due to 

a different magnitude of BSSE correction, which is in turn related to the number of 

H-bond contacts.

As far as we know, only a few structures have been proposed as stationary species 

using model potentials. The binding energies of the two 3D structures described by Beu
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(a) BB1

Figure 2.4: Equilibrium structures for (NH3)s obtained with MP2/aug-cc-pVTZ opti
misations.

(d) pyramid

(f) tail

(c) ring
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Table 2.4: Energy values for (NH3 ) 5  in kcal/mol.
MaDZ-7 MaT 7? Other

(NH3 ) 4 BE(ZPE) BECP OptCjP BE BEcy
BB1° 23.867(115.445) 17.932 18.177 21.377 19.315 16.728®
BB2° 23.706(115.091) 17.886 18.128 20.958 19.077 16.589®
ring0 23.617(115.287) 18.161 18.334 21.287 19.358 25.48'*
pyramid0 24.053(115.608) 17.892 18.181 21.388 19.263
compact0 23.705(115.329) 17.883 18.127 21.260 19.203
tail0 21.532(114.918) 16.359 16.533 18.930 17.286
BB3 16.587®
ring 16.927*

° This work; e Ref. [32], model potential.; 9 Ref. [25], model potential; h Ref. [30], MP2/6- 
31++G(d,p) results;J MaXZ (X=D, T, Q) is a shorthand notation for MP2/aug-cc-pVXZ.BE 
are the BSSE uncorrected values for an optimised cluster (i.e. binding energy computed 
using the energy of fully relaxed local minima); “ZPE” is the calculated zero point correc
tion; UBECP” gives its single point CP-corrected (i.e. BSSE corrected) binding energy, and 
“OptCP” gives the BSSE corrected binding energy after structural relaxation on the counter
poise corrected surface. The “Other” column collects literature values obtained using both 
ab initio calculations and model potentials.

and Buck [25] and Greer et al. [32] are included in table 2.4. By visual comparison these 

structures appear similar to isomer I (obtained optimising the lowest energy structure 

from the work by Beu and Buck [25], hence “BB1”) and isomers “BB2” and “pyramid”, 

respectively. As found before for smaller clusters, the binding energies predicted by 

the model potentials are smaller, by roughly 2.5 kcal/mol, than the ones provided by 

CP-corrected ab initio calculations.

We think this results point to the idea of a very smooth energy landscape for (NH3)5, 

maybe making necessary a higher level of ab initio theory to elucidate the ranking of 

the present isomers.

2.3.2 Many body effects and comparison w ith experiments

We have used the results presented in tables 2.1 to 2.4 to predict molecular evapo

ration energies in order to compare them with other results from the literature, both 

theoretical and experimental. The results can be seen in 2.5. All of the incremen
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tal energy data from this work have been computed using zero point energies at the 

MP2 /aug-cc-pVXZ (X =  D for (NH3 ) 4  and (NH3)5; X =  T for (NH3 ) 2  and (NH3)3) and 

CP-corrected results for the electronic energies obtained using the largest affordable 

basis set and CP corrected optimisation when possible. For each cluster size we list 

only the BE for the isomer with the lowest total energy.

Aside from our data, table 2.5 also presents the thermochemical data for the for

mation of (NH3)n from (NH3)n_i [40], data derived from photodissociation of (NH3)n 

into (NH3)n_i [6 ], photoionisation studies [41] and we also list the evaporation energies 

predicted by reference [32], which are calculated from binding energies that are not 

ZPE corrected.

From table 2.5 we can see that ZPE accounts for a 35%-45% reduction in the BE 

for all cluster sizes. No significant changes were found in the relative energy ranking 

upon introduction of the ZPE correction for all clusters (see Appendix 2 for a more 

detailed account of BE computed with ZPE corrections for all clusters), the only result 

to mention being the increase in stability of the “ring” and “BB2” pentamers. Looking 

at table 2.5 it can also be seen that less energy is required to evaporate an ammonia 

molecule from the pentamer than from the trimer and tetramer, a result supported by 

the less compact structure of the larger size clusters.

We see a reasonable agreement between the experimental A E data and the theo

retical values in table 2.5, especially taking into account the small magnitude of the 

measured quantity and the difficulties measuring it. All the values from this work fall 

in the energy range obtained by the photodissociation experiments from reference [6 ]. 

There is, however, a relatively large discrepancy between theory and experiment in 

the case of (NH3 ) 4  and (NH3)5. In particular, the experiments in references [40] and

[41] provide substantially higher evaporation energies than the theory, this result was 

explained by Greer et al [32] with the suggestion that the concentration of small clus-
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Table 2.5: Binding (BE) and vaporisation (AE) energies for (NH3)n (n =  2 — 5), in 
kcal/mol.

n BEa AE° AE* AEC AE^ AEe
2 3.011(1.651) 1.651 3.090 4.6(5) < 2.85 2 . 8

3 10.074(6.197) 4.546 5.637 3.9(5) 2.85 < AE < 5.72 3.5
4 15.537(10.125) 3.928 4.659 5.5(5) 2.85 < AE < 5.72 5.1
5 19.358(12.612) 2.487 3.828 3.9(5) 5.1

° This work; b Ref. [32], model potential; c Ref. [40], thermochemical measurements; d Ref. 
[6 ], photodissociation experiments; e Ref. [41], ionisation threshold measurements. The first 
column shows adiabatic and ZPE corrected (between brackets) binding energies computed in 
this work using Counterpoise corrected energies and ZPE at the MP2/aug-cc-pVXZ (X = D 
for (NH3 ) 4  and (NH3 )s; X = T for (NH3 ) 2  and (NH3)3) level. AE values from this work are 
computed including ZPE corrections.

ters was overestimated during the thermochemical experiments due to the variation in 

ionisation probability with cluster size.

Table 2.6 presents the many-body decomposition (equation 55, chapter 1 ) of the 

binding energies for clusters up to the tetramer. They were calculated at the CP- 

corrected optimisation MP2/aug-cc-pVTZ level of theory. In order to have values 

of many-body effects that are directly comparable across different cluster sizes, the 

different contributions (i.e. 2-, 3-, and 4-bodies) have been divided by the number 

of possible sub-clusters contained in a particular cluster size (i.e. the total 2 -body 

contribution in a tetramer has been divided by 6 , the number of different dimers it 

contains).

From table 2.6 we can see that the 4-body effect appears to be negligible, whilst 2 - 

and 3-body effects are mandatory for an accurate decomposition of the total binding 

energy for any given cluster. This finding is of importance for the task of building a 

model potential for ammonia, suggesting that one may concentrate only on low order 

many-body effects. In addition, looking at the normalised 2-body effects in table 2.6 

one can see that they decrease with increasing cluster size, the principal reason for
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Table 2.6: Many-body contributions to the binding energy of (NH3)n (n =  2 — 4), in 
kcal/mol.

System 2 -body 3 body 4 body
n= 2 , asym 3.011 3.011
n= 2 , sym 2.999 2.999
n=3, equi 9.053 3.018 1.142 1.142
n=3, asym 6.206 2.069 0.369 0.369
n=4, boat 12.984 2.164 2.632 0.658 0.150
n=4, plane 13.171 2.195 2.441 0.610 0.155
n=4, tail 11.561 1.927 1.150 0.288 0.004

For each n-body contribution, the first column presents the total value; the second column 
shows the total contribution divided by the number of n-body moieties in the cluster.

this trend being the longer distance on average, between pairs of ammonia molecules 

in large clusters. Finally, let us add that in view of the small magnitude of 4-body 

effects in the tetramer, we did not calculate higher many-body contributions for the 

pentamers.

2.3.3 Harmonic frequencies

Ab initio harmonic frequencies were calculated for ammonia clusters on the fully op

timised structures at the MP2/aug-cc-pVDZ level. These were analysed in order to 

extract information on the frequency shift for the N-H stretching modes, in an attempt 

to associate a particular geometrical feature to a range of frequencies [42]. The results 

of our frequency calculations for the N-H stretches are shown in figures 2.5, 2.6 and 

2.7 for the trimers, tetramers, and pentamers, respectively.

Firstly, we observe that all NH stretch frequencies are seen to decrease upon increas

ing cluster size, a common feature present in several H-bonded clusters [42]. Although 

somewhat difficult to quantify due to the complicated dependency on the aggregate 

geometry, we notice that the average frequency of antisymmetric stretches decreases
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by roughly 20 cm- 1  going from the trimers to the tetramers, and by roughly 5 — 10 

cm- 1  from tetramers to pentamers. In the case of symmetric stretches, the frequency 

shifts are found to be larger: roughly 50 cm- 1  going from the trimer to tetramers and 

roughly 1 0  — 2 0  cm- 1  from tetramers to pentamers.

Our analysis also highlighted the presence of two additional overlapping trends, one 

of which is the common occurrence of a lower frequency (roughly 1 0 0 — 2 0 0  cm-1) for the 

symmetric stretches when compared to the asymmetric ones. Moreover, free H atoms 

are always found to participate only in antisymmetric stretches, vibrating at higher 

frequencies (roughly 40—50 cm-1) than H-bonded ones. In the case of antisymmetric H- 

bonded NH stretches, we also found a clear dependency of the frequency on the H-bond 

length (i.e. the N-H...N distance), with the NH involved in long H-bonds (above 2.24 

A) showing a higher frequency ( 2 0  — 40 cm-1) than short H-bonded ones. According to 

our optimised structures, these long H-bonds are present when an ammonia molecule 

acts as a double donor, or double acceptor, a feature shown only by our cage-like and 

“tail” structures. Thus, the presence of the vibrational signature for these long H-bonds 

could be used as an indication of the transition from a planar ring-like structure to a 3D 

one, or for the presence of “docked” ammonia molecules outside a cycle arrangement.

An energetic ordering similar to the one found for antisymmetric stretches is also 

found for the symmetric vibrations. Once again, low-frequency values are associated 

with atoms involved in short N-H...N bonds, whereas high values are representative of 

symmetric stretches involving atoms implicated in long N-H...N bonds for any partic

ular isomer.
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Figure 2.5: N-H stretching frequencies for (NH3)3 and (NH3)4 obtained using MP2/aug- 
cc-pVDZ
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Figure 2.6: N-H stretching frequencies for the BB1, BB2, and compact isomers of 
(NH3)5 obtained using MP2/aug-cc-pVDZ
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Figure 2.7: N-H stretching frequencies for the ring, pyramid and tail isomers of (NH3)s 
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2.4 Conclusions

In this chapter we have presented a high level ab initio study of the structure and 

energetics of small ammonia clusters (NH3)n (n =  2 — 5). We have carried out the 

electronic calculations using MP2 and the aug-cc-pVXZ (X= D, T, Q) family of basis 

sets, and we have accounted for BSSE by means of the Counterpoise procedure [22]. 

The isomeric structures we have obtained, are in good agreement with the experimental 

conclusion that clusters bigger than the dimer should have small dipole moments. 

The only exceptions being trimer “asym”, tetramer and pentamer “tail” , lying 3 — 4 

kcal/mol above their respective most stable structure.

On the other hand, our theoretical calculations predict lower binding and evapo

ration energies than experimental data. This could be due to the lack of higher order 

excitations in the MP2  method; however, previous work on (NH3 ) 2  presented evidence 

that triple and quadruple excitations, as included in MP4 method, did not play an 

important role in defining the electronic binding energy.

We have also compared our ab initio data with the performance of model potentials 

available in the literature. The latter provide isomeric structures in good agreement 

with those from this work, but the binding energy tends to be underestimated with 

respect to our predictions. In this respect, we have seen that the model potential 

including an explicit treatment for the molecular polarisation (reference [33]) provides 

a better agreement with our data. The n-body decomposition shown in table 2.6 

indicates that 2- and 3- body effects are needed for an accurate decomposition of the 

total binding energy, while higher order effects appear to be negligible.

Our calculations suggest that the tetramer and the pentamer have several, almost 

degenerate, isomers. This points at the possibility of a smooth energy landscape, 

and also at the occurrence of fast interconversion between the most stable, same size 

isomers. This compact energy ranking is not significantly altered upon introduction of
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harmonic ZPE correction, which, as seen in neutral water clusters, may not be enough 

for an adequate treatment of quantum motion effects in “floppy” clusters. In fact, 

recent investigations led by Curotto and Mella [43, 44] using Monte Carlo simulations, 

have established that the quantum effects on the binding energy per ammonia molecule 

are large: 42% of the total binding energy of the dimer, 38% of the trimer and 35% of 

the total binding energy for the tetramer and pentamer.
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2.5 Appendix 1

BSSE energies for (NH3)n n =  2 - 5 keeping intramolecular structure frozen to the 

experimental values of gas-phase ammonia (rNn  =  1.0124 A, HNH = 106.67°) [29]

DIMER: aug—cc-pVQZ OPT(CP)

ASYM

C oun terpo ise : c o rre c te d  energy =  —112.960470820965

C oun terpo ise : BSSE energy =  0.000206290483

TS

C o u n terp o ise : c o rre c te d  energy =  —112.960457737844

C o u n te rp o ise : BSSE energy =  0.000183566942

TRIMER: aug—cc—pVTZ(OPT(CP)) /  / aug—cc—pVQZ 

EQUI

C o u n terp o ise : c o rre c te d  energy =  —169.449780047474

C oun terpo ise : BSSE energy =  0.000641702363

ISOS

C oun terpo ise : c o rre c te d  energy =  —169.443889581016

C o un terpo ise : BSSE energy =  0.000500604192
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TETRAMER: aug-cc-pVTZ OPT(CP)

BOAT

C oun terpo ise : c o rre c te d  energy =  

C o u n te rp o ise : BSSE energy =

PLANAR

C o u n te rp o ise : c o rre c te d  energy =  

C ounterpo ise  : BSSE energy =

TAIL

C o u n te rp o ise : c o rre c te d  energy = 

C o u n te rp o ise : BSSE energy =

PENTAMER: aug-cc^>VDZ OPT(CP)

BB1

C o u n te rp o ise : c o rre c te d  energy =  

C o u n te rp o ise : BSSE energy =

BB2

C o u n te rp o ise : c o rre c te d  energy = 

C o u n te rp o ise : BSSE energy =

-225.866920349343

0.002300909277

-225.866918379990

0.002313794820

-225.862191870340

0.001908038378

-282.053416100966

0.008667270387

-282.053337240919

0.008494293937

RING
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C o u n te rp o ise : c o rre c te d  energy 

C o u n te rp o ise : BSSE energy =

PYRAMID

C o u n te rp o ise : c o rre c te d  energy 

C o u n te rp o ise : BSSE energy =

COMPACT 

C o u n te rp o ise : c o rre c te d  energy 

C ounterpo ise  : BSSE energy =

TAIL

C o u n te rp o ise : c o rre c te d  energy 

C o u n te rp o ise : BSSE energy =

-282.053666340281

0.008137552514

-282.053421910139

0.008876060350

-282.053336718090

0.008494678588

-282.050796341986

0.007665106411
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Table 2.7: ZPE corrected binding energies computed in this work using Counterpoise 
corrected electronic energies and ZPE at the MP2/aug-cc-pVXZ (X =  D, T) level

(NH3)2 MaDZ MaTZ
asym 1.279 1.651
(n h 3)3
equi 5.252 6.197
asym 2.732 3.422
(NH3)4
boat 8.493 10.125
tail 6.507 7.960
(NH3)5
BB1 10.619 12.412
BB2 10.923 12.527
ring 10.934 12.612
pyramid 10.460 12.196
compact 10.686 12.416
tail 9.502 10.909

2.6 Appendix 2



Chapter 3

Ammonia potential

3.1 Introduction

Analytical representations for the intermolecular forces between two rigid ammonia 

molecules have been derived from the experimental [1-5] and theoretical [6-9] studies 

on the (NH3)2. The parameterisation of these model potentials have been carried out 

by adjusting atom-atom potential coefficients to microwave data [10], to second virial 

coefficient and lattice energy of the solid [11] or by fitting theoretical results [12, 13].

In chapter 2, we compared our ab initio data to the analytical models of references 

[14] and [27]. We found that these potentials are generally in agreement with the struc

tures of global minima (except for the pentamer), but they invariably underestimate 

the binding energies for ammonia clusters respect to the ab initio data. Motivated by 

the performance of the model potentials available at the time, and by the goal of this 

group of simulating the process of evaporation/condensation of medium size (NH3)n 

we saw necessary the construction of a more accurate model potential. This would im

prove the description for the relative energetics of medium sized (NH3)n, which in turn 

would provide a higher accuracy for the dissociation rates. Also, it could be used to

74
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increase the scarce pool of data [15-18] attempting to accurately reproduce ammonia 

condensed-phase.

In the work by Szcz§sniak et al. [19] the relative contribution from several compo

nents of the total interaction energy in (NH3)3 was investigated employing a Symmetry- 

Adapted Perturbation Theory (SAPT) based analysis. This was useful in highlighting 

the relative importance of the several ingredients that would provide a quantitative de

scription of ammonia-ammonia interactions: induction forces account for at least 70% 

of the three-body contribution (roughly 10% of the total two-body component). Also, 

the Heitler-London term was highlighted, but it was found only to be important for 

unusual conformations of the trimer. This led us to think that the underestimation in 

binding energy seen for (NH3)n (n =  3 — 5) may be due to the lack of an explicit treat

ment of induction forces. This idea is also supported by the improvement in accuracy 

provided by the polarisable model built by Dykstra and co-workers [20].

We think that the construction of a more accurate model potential for (NH3)n 

should be based on ab initio energy results. Also, as we have mentioned in the intro

duction and chapter 2, we think MP2 level of theory with aug-cc-pVXZ (X =  D, T, 

Q, 5) basis set and Counterpoise correction for the BSSE provides a good compromise 

between cost and accuracy for the study of ammonia clusters. In addition, we believe 

the model potential should contain the explicit treatment for the many-body induction 

component of the interaction forces. Therefore, high level ab initio calculations have 

been performed to generate an extensive set of interaction energies for (NH3)2 . This 

set of data has been subsequently employed to optimise the parameters of a sensible 

analytical form of the model potential, this being the model potential “C” developed 

by Hinchliffe et al. [12], which was then supplemented with an explicit description of 

induction forces based on the idea of polarisable point dipoles.

Employing the new model potential, minimum energy structures for (NH3)n (n =
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6 — 20) have been optimised in this work and used in the search of putative global 

minima. Also, we compare the model PES results and electronic structure theory 

results for (NH3 )n (n =  3 — 5).

As supplementary information for this chapter, we show in appendixes 1, 2 and 

3 the codes used for the calculation of the intermolecular forces and an example of a 

dimer geometry data file.

3.2 Methodology

All ab initio calculations on the ammonia monomer and dimer were carried out using 

the Gaussian 98 [29] and 03 [30] suit of codes at the MP2/aug-cc-pVXZ (X= D, T, 

Q, 5) with frozen-core level of theory. As before, interaction energies were corrected 

for BSSE using the Counterpoise (CP) procedure proposed by Boys and Bernardi [28]. 

The internal structure of ammonia was kept rigid at the experimental geometry (tnh 

=  1.0124 A, HNH =  106.67°) [31].

The long range behaviour of the intermolecular potential is dominated by the elec

trostatic properties of the monomers, particularly dipole-dipole and dipole-quadrupole 

interactions, decaying as 1/r3 and 1/r4, respectively. In order to test the performance 

of our level of theory, we evaluated the rate of convergence of electrostatic properties 

by running single point calculations on the ammonia monomer with increasingly larger 

basis sets. The results obtained for the dipole and quadrupole moments using the series 

MP2/aug-cc-pVXZ (X =  D, T, Q, 5) axe presented in table 3.1
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Table 3.1: Values of the Dipole (fi) and Quadrupole (0ZZ) Moments for the Ammonia 
Molecule Computed at the MP2/aug-cc-pVXZ, (X =  D, T, Q, 5) Level of Theory0

X H (au) 0ZZ
D 1.5355 -2.12
T 1.5238 -2.09
Q 1.5297 -2.10
5 1.5323 -2.10

From table 3.1 it can be seen that both the dipole fi and 9ZZ have converged to at 

least 99% of their Complete Basis Set (CBS) values at the MP2/aug-cc-pVTZ level. 

When compared with the experimental values (+1.47 au and -2.12 au, respectively), 

the ab inito results appear to overestimate /i and underestimate 6ZZ only slightly, indi

cating the adequacy of the MP2 level with Dunning basis set to estimate the electro

static properties of the ammonia molecule. These findings are also in good agreement 

with the results obtained by Quack and co-workers, who obtained a six dimensional 

representation for the dipole moment as a function of the molecular geometry [32].

We have produced ID scans along the N-N distance, using CP-corrected MP2/aug- 

cc-pVXZ X=D,T level of theory. In choosing the geometries to be explored, we started 

from the four orientations employed by Hinchliffe et al. [12], named “linear” (<7„), 

“parallel” (Czv), “mirror” (D3h) and “orthogonal” shown in figure 3.1. The relative 

orientations were reproduced in MOLDEN [24], using the Z-Matrix application. Images 

of the isomers obtained with MOLEKEL [25].
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(a) Linear (b) Parallel

(c) Mirror (d) Orthogonal

Figure 3.1: Isomer configurations employed to test the model potential.

Also, we have used CP-corrected MP2/aug-cc-pVTZ calculations to generate two 

dimensional cuts of the PES for (NH3)2 as a function of the relative molecular orien

tation. In order to do this, the ID scans along the N-N distance were supplemented 

with a torsional angle to obtain high quality information on the energy barrier for 

the acceptor-donor exchange, the internal rotation of a single monomer and the global 

anisotropy of the interaction energy. Four different scan strategies were tested, they 

are shown in figure 3.2:
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A / C

(a) (b)

Figure 3.2: Reference geometries and coordinates for the two dimensional CP-MP2/aug-cc- 
pVTZ scans. NN indicates the distance between the hydrogen atoms and A indicates the 
angle employed in the scans to explore the energy landscape of specific isomerisation proceses.

We employed the angle formed by the two nitrogen atoms and one of the hydrogen 

atoms on the plane of the paper, in panel a. Also from panel a, we employed the 

dihedral angle formed by the two nitrogen atoms and the two hydrogen atoms on the 

plane of the paper. From panel b, we employed the rotation around the C3 axis of the 

hydrogen donor ammonia molecule. Finally, we employed the angle formed by the C3 

axis of one of the ammonia molecules with the N-N direction (panel c).

3.2.1 T he potentia l

A routine that calculates the potential between a pair of ammonia molecules (ap

pendixes 1, 2 and 3) was built based on the work by Hinchliffe et al. [12]. Their 

working hypothesis was to combine atom-atom potentials and point charges located 

on or about the atoms of two rigid ammonia molecules; the charge distribution being 

defined by parameters 8 and Q. Q (0.462 au) is placed at the site of each hydrogen 

nucleus, and a negative charge of three times Q (-3 Q) is placed on the C3 axis at a
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distance S (0.156 A) from the nitrogen nucleus and towards the hydrogen atoms. The 

model assumes the gas-phase experimental geometry for ammonia (dnh — 1.0124 A, 

HNH = 106.67°) [36].

In this framework, repulsive interactions between like atoms at short distances are 

described by Born-Mayer expressions as:

Vn n (R) = 13615e“2 ™ (3.1)

Vh h ( R )  = 700e~37R (3.2)

The parameters in equations 3.1 and 3.2 were reported to have been obtained by 

fitting to the lattice energy and zero wave vector lattice vibrational frequencies of solid 

ammonia. The units are kcal/mol and A.

Intending to describe the hydrogen bond contribution to the dimer energy, the 

short range attractive interaction between nitrogen and hydrogen atoms was assumed 

to follow a Morse potential:

Vn h { R )  = 0.4e(“4 6(/i~2-5)) -  0.8e(-2'3(/*-2'5)) (3.3)

with the values of the parameters of the expression 3.3 above being obtained by 

fitting SCF dimer calculations. The units are kcal/mol and A.

A SCF approach will neglect correlation, hence dispersion interaction, and possibly 

BSSE; although since an extended basis set is used, Hinchliffe et al. [12] feel confident

that this error is likely to be small and make no attempt to eliminate it on the basis

of the considerable computational effort needed at the time. Dispersion is accounted 

for by adding to the nitrogen-nitrogen atom potential an inverse power series that at 

small distances is corrected by a damping function of the following form:
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/(*) = 4
1 ,R >  R*

( ( R - R * ) 2 \
,R < R '

with R* = 4.7

de = 1230, d8 = 6500, dl0 = 42100

The dispersion parameters de, d8 and dio used above have been use by Hinchliffe 

et al. in previous works [11, 12, 17, 21] and have been obtained by means of ab initio 

calculations [37]. The units are kcal/mol and A.

Through combining equations 3.1 to 3.4, together with different choices of 6 and Q, 

Hinchliffe et al. propose three different model potentials namely “model A”, “model 

B” and “model C”.

“Model A” includes the short range atom-atom potentials of equations 3.1, 3.2 and 

3.3, with point charges fitted to SCF values of /x (1.85 D) and 6 (-2.43 DA), its two 

main drawbacks being the lack of dispersion correction and the fact that SCF polar 

moments are much higher than the experimental values. “Model B” includes the short 

range atom-atom potentials of equations 3.1 to 3.3, plus the dispersion description of 

equation 3.4. Point charges still fitted to SCF values of /x and 6. Finally, “model 

C” includes the short range atom-atom potentials as above (equations 3.1 to 3.3) and 

dispersion (equation 3.4), plus point charges fitted to experimental values of /x (1.47 

D) and 6 (-2.12 DA).

As a first step we reproduced and compared the aforementioned models for each of 

the configurations reported (figure 3.1). The results, in agreement with reference [12],
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can be seen below.
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Figure 3.3: Performance of model potentials A (black), B (grey) and C (orange) on a rigid 
scan over the N-N distance in the linear and parallel configurations.
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Figure 3.4: Performance of model potentials A (black), B (grey) and C (orange) on a rigid 
scan over the N-N distance in the mirror and orthogonal configurations.

As it can be seen from figures 3.3 and 3.4 the (XH3)2 model potential is strongly 

anisotropic. The “mirror” geometry presents a repulsive potential energy curve due
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to the relative orientation of the molecular dipoles. The “linear” geometry shows the 

most favourable interaction due to the presence of a hydrogen bond. The “parallel” 

configuration features a long range potential, likely to be due to favourable dipole- 

dipole and dipole-quadrupole interactions.

Model A always appears to predict configurations more weakly interacting than 

models B and C. Also, one can note that even when the electrical moments used in 

model A come from SCF calculations, which are higher than the experimental ones, 

thus enhancing electric interactions, it does not compensate for the absence of the 

dispersion function. The introduction of (equation 3.4) in model B lowers the po

tential energy; and for this model, together with SCF values for the electrical moments, 

one can see that “parallel” and “linear” configurations are over-bound, whereas “mir

ror” and “orthogonal” configurations are over-repelled with respect to the potential 

energy curves provided by model C. The over-binding effect is particularly obvious for 

the “linear” configuration, which has the most favourable orientation for the interaction 

of multipole moments and which is already very well described by the Morse potential 

of equation 3.3. The best performing potential is then expected to be model C. Taking 

model C as a reference, we then compared its performance with ab initio values. To 

obtain the latter we carried out rigid scans along the N-N distance (2.5A to 5A) for 

all configurations at two levels of theory: MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ 

both with Counterpoise BSSE corrections. The results are shown below.
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Figure 3.5: Performance of model potential C, and ab initio calculations (CP-MP2/aug- 
cc-pVXZ, X = D, T), on a rigid scan oven the N-N distance in the “linear” and “parallel” 
configurations
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Figure 3.6: Performance of model potential C, and ab initio calculations (CP-MP2/aug-cc- 
pVXZ, X = D, T) on a rigid scan over the N-N distance in the “mirror” and “orthogonal” 
configurations.
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From figures 3.5 and 3.6 one can see that MP2/aug-cc-pVDZ and MP2/aug-cc- 

pVTZ curves rim parallel to each other, the former underestimating the binding energy 

for all structures respect to the latter. In general, the model potential tends to overbind 

the “parallel”, “mirror” and “linear” structures. The latter arrangement, close to the 

global minimum is overestimated by ~  0.2 kcal/mol. On the other hand, for the 

“orthogonal” configurations the well depth is underestimated. The model potential 

also delays the onset of the repulsive wall for “mirror” and “parallel” structures, while 

it accelerates it for “linear” and “orthogonal” structures.

Thus, we can conclude that model C, expected to be the best performing model 

potential, is in agreement with the ab initio data, performing particularly well for the 

“linear” configuration. Nonetheless, the model potential is limited by the use of SCF 

calculations, the lack of BSSE corrections and evident shortcomings for the “mirror” 

and “parallel” configurations. Besides, to construct a robust, transferable model, a 

scheme including the many-body contribution to the interaction energy is mandatory. 

In order to do this, the original “model C” is extended with a description of induction 

forces based on the idea of polarisable point dipoles.

3.2.2 Polarisation

The method chosen for introducing the description of polarisability in the ammonia 

potential is the non-iterative (“one-step”) charge-on-spring (COS) model as developed 

by van Gunsteren et al. [22].

COS accounts for the polarisability by modelling the induced point dipoles as a 

variable separation of point charges that are located on selected polarisable centres 

(nitrogen atom in our case), and that are connected by a harmonic spring.

The charges have equal magnitude and opposite sign, the positive charge is fixed 

at the nucleus while the negative charge is allowed to move under the presence of
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a field. An external electric field proportionally displaces the negative point charge 

(“polarisation charge”, q^ ) from its equilibrium position.

The “one-step” approach to the polarisability is based on the approximation that 

the contribution from the permanent charges will dominate the total electric field. 

Then, the effect of other induced dipoles should be weak and it can be added to the 

electric field due to permanent charges as a perturbation. This is to say, that the 

induced dipoles are not themselves polarisable, although they interact with each other. 

Also, the “one-step” method is supported by the fact that more than 95% of the point 

dipole induction energy in water aggregates is obtained after the first iteration [23]

To avoid the complex algebra involved in the evaluation of dipole-dipole forces, and 

to be able to treat them as pointlike dipole interactions, one has to further assume that 

the separation of the polarised charges will be small. This assumption requires the use 

of a large value for the polarisation charge (see equation 3.8 below); while = 8 e 

was used in reference [22], in this work we have opted for the higher value q^i =  16 e.

An expression for the induction energy of non-converged dipoles was derived by

Palmo and Krim [23], which, on the basis of what is explained above, was applied to 

the ammonia potential and added as another contribution to the total potential energy.

As a support to our strategy, the mathematics involved in the description of the 

polarisability is explained next. If the induced dipoles pi of a molecular system with 

polarisable sites i are obtained iteratively one can write

rt   fA°) I f t i1) I ri@) ( o  c \Hi ~  Hi +  Hi +  Hi +  • • • (d.O)

The fully induced dipole at site i (pi) is proportional to the polarisability of the 

polarisable centre and to the electric field at the position f{ of the point dipole:

fU = ai(El0) + Elind)) (3.6)
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where Eff* is the electric field resulting from the permanent atomic charges, and

nd) k  ^  resuiting from the induced dipoles.

The total electric field is given by

Ei =  ( s f 1 + Ejind)) (3.7)

The electric field at polarisable centres is evaluated for a given molecular arrange

ment to estimate the polarisable charge displacement, as given by

rf =  rj +  — B<0) (3.8)
Qpol

The new dipole field E\tnd̂  is computed as a contribution over all induced dipole, 

each written as

3*"° = 2 > 3 j3 f< *  (3-9)
i

being R  the distance between the induced dipoles and ur the unitary vector deter

mining the direction of E\%nd̂ .

The induction energy for the “one-step” approach may be estimated by:

Vtu = -  \  /40) -  \  /40) (3-10)

where E^  is the initial external field experienced by the zth molecule resulting

from the fixed point charges of other molecules; /4°̂  is the dipole induced in the zth

molecule as obtained substituting E-0̂  in equation 3.8, and E\^  is the field experienced 

by the zth molecule due to the induced component of the dipole in other molecules.

Preliminary Monte Carlo simulations revealed that with decreasing distances be

tween atoms of different molecules (less than one bohr), V*nd, at first repulsive, even
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tually becomes large and negative, causing walkers to remain trapped in unphysical 

configurations. This situation persists even when a large number of iterations is per

formed. Therefore, a multiplicative switching function is used to turn off Vind smoothly:

S(r) = i { l  +  tanh[10(r -  1)]}

where r is the distance between any atom in molecule i and the nitrogen atom in 

molecule j.

3.2.3 Re-parameterisation

The optimisation, or re-parameterisation, has been carried out for all free parameters 

of the analytical form with exception of the coefficients in the dispersion energy expres

sion d6, d8 and dio in equation 3.4. Also, for the sake of clarity, it can be advanced that 

the parameters describing the interaction between hydrogen atoms were kept identi

cal to those in reference [12], since their optimisation did not provide any significant 

improvement into the description of the interaction. In addition, the Morse potential 

function (equation 3.3), meant to improve the description of the H-bond interaction 

in the original “model C”, was eliminated once it was noticed that the parameter 

optimisation was making its contribution negligible.

To find the array of parameters providing the lowest error, an optimisation was 

carried out using the Powell method [26], starting from several sets of initial values. 

Initially, this was achieved by minimising the weighted square difference, A(p), between 

the model potential values and the ab initio values and multiplying it by a weight factor 

wi, as:

A (p )  — ( y M P 2 ( R i )  ~  Vpot(Ri,p) )  Wi (3.11)
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where VMP2 (R*) is the ab initio energy, and Vpot{Ri) is the energy from the model 

potential. The weight factor, Wi, allows for different contributions to the total error 

from different regions from the potential. The closer is to 0, the less contribution a 

particular configuration has towards the total error. The weight factor has been chosen 

as w =  1 for energy values between -1 and -3 kcal/mol, (this range of energy embraces 

the m inimum region of the potential energy surface), w =  0.25 for values form -1 to 

0 kcal/mol, w = 0.1 for energy values between 0 and +4 kcal/mol, and w = 0 for 

energies bigger than +4 kcal/mol. So one can see that the regions where less error is 

allowed, the ones with a higher value of Wi, are those most populated and close to the 

lowest energy region. Values above +4 kcal/mol, correspond to dimeric arrangements 

with very small nitrogen-nitrogen distances, dominated by repulsion forces, that are 

not well described by the model potential and that have been observed to affect the 

quality of the fitting in more significant regions of the PES; hence, the low value of Wi.

Since the error in the fitting is defined as the difference between the ab initio and the 

model potential binding energies (as seen in brackets in equation 3.11); a negative error 

value means that the model potential energy curve would lie higher than the theory 

calculation curve, so our model PES underestimates the dimer interaction. Conversely, 

an error with a positive value means that our model potential overestimates the energy 

respect to ab initio data.

Table 3.2 shows the values of three sets of parameters. The first set corresponds to 

the values used by Hinchliffe et al. [12]. The set labelled as model C(pol,Qopt) includes 

as an optimisable variable the charge magnitude located in the hydrogen atoms Q. 

A priori, one would think that this could have a negative effect on the long-range 

interaction description, but as we will see below (panels C and D, vide infra) optimising 

Q will have a favourable impact in the model potential performance. Finally, the set 

called model C(pol,Qfro*en) keeps Q identical as in reference [12].
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Table 3.2: Optmised parameters for the two model potentials, model C(pol,Qopt) and 
model C(pol,Q/ro2en)°

parameters model C[12] model C(pol,Qop<) model C(pol,Q^ro2cn)

ajvN 13165 9162.98329 6903.06545
bNN -2.7 2.63500285 2.35033248
a-NH 0.4 0.427713623 0.247394716
bpfH 2.3 3.60109836 3.66458152
r NH 2.5 2.606558 2.73514533
a-HH 700 700 700
bHH 3.7 3.7 3.7
r* 4.7 4.7 4.7
Q 0.462 0.526420468 0.462
d 0.156 0.156 0.156
d& 1230 1230 1230
d& 6500 6500 6500
dio 42100 42100 42100

° Also shown are the parameters for the original analytical form, model C[12], where the 
analytical form Vijfcj) = [exp(—b{j (r^ — r*j)) — l]2— was used to describe the interaction 
between N and H atoms in different molecules. Several significant figures are reported for 
the optimised parameters to guarantee an accurate reproduction of the new model potentials. 
Units are: kcal/mol for a^; A for rT* , 5 and r*; au for Q. The units of the dispersion parameters 
de,d& and dio are respectively kcal/(mol A6), kcal/(mol A8), kcal/(mol A10)

The following three pictures, figure 3.7, show the 2-D surfaces representing the 

error between the re-fitted “model C” from reference [12], in different parameterised 

forms, and the ab initio values obtained at the CP-MP2/aug-cc-pVTZ level of theory. 

The initial coordinate used in the plots can be seen in figure 3.2 (c). Angle A scans 

over 180° in steps of 5°, starting from 0. Rnn  scanned from 2.5 A to 5 A in steps 

of 0.25 A. In this way, the region around 0 & 0° represents the “N to N” approach 

of the two molecules. Also, this scan sweeps through two meaningful configurations 

from figure 3.1, the so called “parallel” (when 0 «  180°) where the scan ends, and 

most importantly the “linear” arrangement (0 «  80°) , corresponding to the minimum 

region of the potential energy surface.

Figure 3.7a, shows the error between “model C” potential before fitting and the ab 

initio potential energy surface. This error surface shows a considerable error, especially
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at small nitrogen-nitrogen distances. This is true for all configurations but specially 

for the “parallel” and the starting configurations where the model potential overbinds 

by more than 1 kcal/mol. This contrasts with the acceptable description around the 

minimum. One can also notice, that as the distance along R n n  increases the error value 

becomes negative, suggesting that “model C” underestimates the dispersion interaction 

with respect to the ab initio potential.

Figure 3.7b, differs from figure 3.7a, in that now the model potential includes a 

polarisation description (i.e. “model C(pol,<^rozeri)”)- In this situation, the error 

surface seems to increase its value at all N-N distances for the initial configuration 

with respect to figure 3.7a. The region describing the barrier between the initial scan 

configuration and the linear H-bond arrangement is seemingly underestimated with 

respect to the ab initio potential. The linear H-bond configuration itself is fairly well 

described, with a slight decrease of the error respect to figure 3.7a around Rnn of 3.4 A, 

getting a poorer performance upon increasing the distance between the nitrogen atoms. 

No major changes are seen with respect to figure 3.7a for the “parallel” structure.

Panel 3.7c shows the difference between ab initio interaction energies and our model 

potential with polarisation correction and optimisation of the set parameters including 

the charge magnitude Q (i.e. “model C(pol,<5°pt”)).
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Figure 3.7: Signed energy difference between ab initio and model potential interaction en
ergies. From the top, panel a shows “model C” with parameters and analytical form from 
reference [12], panel b shows “model C(pol,C^r°2en)“ and panel c shows “model C(pol,Qop*)”
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This new set of parameters, basically the optimisation of Q, slightly flattens out the 

region of the “linear” configuration respect to figure 3.7b and improves significantly 

the description of the initial configuration along the N-N distance. As before, no 

changes are seen for the “parallel” configuration. Also, one should note that “model 

C(pol,(^opt)”, with re-parameterised Q, appears to preserve the long-range behaviour 

for the intermolecular interaction given by “model C(pol,Qfro2en)”; both models show 

only small deviations from the MP2 values (up to 0.2 kcal/mol).

The most obvious improvement of “model C” comes from the re-parameterisation 

of the charges and some coefficients respect to those used by Hinchliffe et al. [12]. 

However, for a more faithful description of the system and in view of the further 

applications of our model, the inclusion of a polarisation correction is mandatory. Both 

(polarisation and re-parameterisation) refine the description of the geometry around 

the minimum region, and improve in 0.1 kcal/mol the description of the “parallel” 

structure.

In addition, it is fair to acknowledge that the reportedly “heavy emphasis” dedicated 

by Hinchliffe et al. in describing the hydrogen bond interactions for the original “model 

C” resulted in a surprisingly even-handed performance around the minimum region, 

specially considering the lack BSSE correction and polarisation scheme. However, the 

implementation that this work proposes proves to be crucial for dimer orientations 

other than “linear” such as “mirror” and “parallel” .

To conclude, we have observed that the so called “model C(pol,Q°p<)” seems to 

perform better than “model C(pol,Q^rozen)”; so, we would propose the former as the 

potential of choice to describe intermolecular interactions between ammonia molecules.
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3 .3  R esu lts

3.3.1 G eom etry R eproduction  o f ( N H ^

Our model C(pol,Q0p*) was used on the rigid “linear” ammonia dimer in order to

see how its estimations on the geometrical parameters and binding energy compared 

against ab initio values, in particular CP-MP2/aug-cc-pVTZ level of theory. As it can 

be seen in figure 3.8 the analytical form and ab initio values are in good agreement.

distance. On the other hand, “model C(pol,Qopf)” underestimates slightly the binding 

energy respect to the ab initio value (by 0.162 kcal/mol), this is in contrast with the 

original “model C” which had a tendency to overbind the ammonia dimer.

Figure 3.8: Equilibrium geometries for the ammonia dimer obtained using CP-MP2/aug-cc- 
pVTZ and model C(pol,C°pi), in brackets, distances in A.

Minimum energy structures for larger ammonia clusters were optimised employing 

“model C(pol, $***)” as a potential. The geometry optimisation was carried out in 

a similar way to that suggested by Beu and Buck [14], i.e. starting from randomly 

positioned and oriented ammonia molecules inside a cube of side 15-20 A. For every 

(NH3)n (n = 3—20), several thousand structures were optimised by minimising the total 

energy with the Powell method [26], producing a database of local minima for each n.

The model potential overestimates the N H N  angle of the hydrogen bond and the N-N

1603
(1693)

2580 
NH (2 332)

3.3.2 S tructure and E nergetics o f (NH^)n (n =  3 — 20)
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Putative global minima were extracted and their structure is shown in figures 3.9 and 

3.10. In the following subsection we compare the performance of “model C(pol,Qqp<)” 

in reproducing the ab initio data presented in chapter 2 for (NH3)n (n =  3 — 5). The 

results for the larger clusters are successively compared with other studies [14, 27] 

carried out employing different model potentials.

(NH3)« (n = 3 — 5)

The top row of figure 3.9 shows the putative global minima for (NH3)3, (NH3)4 and 

(NH3)5, and their total binding energies are given in table 3.3. In agreement with 

our ab initio data, the trimer and tetramer show a cyclic structure which favours the 

formation of strong hydrogen bonds.

Table 3.3: Total Binding Energy (kcal/mol) for the Putative Global Minima of (NH3)n 
(n = 3 — 5) Computed using “model C(pol, and CP-MP2/aug-cc-pVTZ

n
model

C(pol,Q0pt)
CP-MP2/

aug-cc-pVTZ
CP-MP2/

aug-cc-pVDZ
Beu and 
Buck [14]

model
C

3 9.055 10.067 9.326 -8.258 -9.073
4 14.908 15.515 14.427 -12.628 -13.433

5(cyclic) 19.4464 19.358 18.334
5 (compact) 18.3424 19.203 18.127

5(BB1) 18.2646 19.315 18.177 16.720
5(pyramid) 18.1238 19.263 18.181
5(butterfly) 17.4385 18.45 17.21

One can see that for the trimer and tetramer structures, “model C(pol,Qop<)” 

slightly underestimates the total binding energy respect to ab initio MP2/aug-cc- 

pVTZ data. Notwithstanding, this performance is significantly better than that from 

the previous model potentials available, which underestimate the total binding energy 

for the trimer, and particularly for the tetramer, by substantially more when com

pared to MP2/aug-cc-pVTZ values. On the other hand, looking at table 3.3, “model 

C(pol,(5°p<)” seems to provide a performance similar to that of MP2/aug-cc-pVDZ 

level of theory.
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The original “model C” and “model C(pol,Qopt)” appear to be in agreement in 

what regards the binding energy for the cyclic trimer, not so for the tetramer; which is 

significantly underestimated. In fact, “model C” predicts a more compact, tetrahedral 

isomer as the lowest energy species instead of a ring.

Let us recall from Chapter 2 that for (NH3)5 five isomers were found to lie within 

2 kcal/mol from the putative global minimum, with four of those isomers lying within 

0.3 kcal/mol from the lowest one. In this challenging scenario, not only “model 

C(pol,^op<)” has predicted the same lowest energy isomer as the MP2/aug-cc-pVTZ 

level of theory, but the difference in energy between these two predictions for the 

same structure is 0.1 kcal/mol. This is a better agreement than for the trimer and 

the tetramer. Considering that “model C(pol,Qop*)” underestimates the energy of the 

dimer by 0.162 kcal/mol and that this effect is likely to be additive, we suspect that 

the improvement in the performance is most likely due to the many-body induction 

term in our energy expression. In addition, “model C(pol,Q0pt)” has produced a novel 

pentamer (“butterfly”) that is shown in figure 3.11.

Prom table 3.3, it can be seen that pentamer isomers “compact” , “BB1”, “pyramid” 

and “butterfly” lie at least 1 kcal/mol over the “cyclic” pentamer. This is at slight 

variance with the MP2 calculations. A possible explanation can be found in figures 

3.7a, 3.7b and 3.7c where it can be seen that “model C(pol,Q^pt)” lies above the MP2 

surface for angles differing from ~  80°, i.e. the linear H-bond geometry. It seems then 

that the model introduces some energy penalty for all isomers whose hydrogen bonds 

deviate from the linearity. This artificial increase in the interaction energy may also 

explain the fact that “model C(pol,Qopt)” produces a cyclic pentamer that is flatter 

than the one obtained using CP-MP2/aug-cc-pVTZ. Overall, “model C(pol,Qopt)” has 

perform consistently, given the compressed energy landscape for (NH3)5, providing 

reasonable energies for the lowest isomers.
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Figure 3.9: Structure of the putative global minima for (NHs)n (n = 3 -  11) optimised using 
“model CCpo!,#0̂ )”

Apart from the pentamer species listed in table 3.3, several other isomers were 

located during the structural search with “model C(pol,Qopt)”, all of them presenting 

a lower number of H-bond contacts than the five lowest minima. A linear species 

was optimised (BE =  14.88 kcal/mol), which was previously reported by Kulkarni and 

Pathak [34] (BE = 18.19 kcal/mol at BSSE uncorrected MP2/6-31+-|-G(d,p) level of 

theory). It was also located an isomer composed of a three member ring connected to 

a two member chain (BE =  15.31 kcal/mol). The latter occurrence may be possible 

inside superfluid He droplets. We tested the stability of this (“3+2”) isomer performing 

optimisations at the MP2/aug-cc-pVDZ level of theory, which revealed the tendency
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of this species to isomerise into one of the compact species previously investigated in 

chapter 2. This finding leaves the four member ring with a single ammonia tail found 

in the previous chapter as the only stable non-compact structure obtained in out search 

for stationary points for (NH3 )5.

(NH3)„ (n =  6 -  20)

Figures 3.9 and 3.10 show the putative global minimum structures for n = 6 — 20. The 

binding energy of the three lowest lying isomers for each (NH3)n, n = 6 — 20 is shown 

in table 3.4. The same table also shows binding energies obtained using different model 

potentials [14, 27]. One can notice that “model C ( p o l p r e d i c t s  larger binding 

energies than the other model potentials, this tendency possibly due to the many-body 

induction term.
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Table 3.4: Total Binding Energy (kcal/mol) for the Putative Global Minima for the 
three lowest energy isomers of (NHs)n (n =  6—20) obtained using “model C(pol,Qopt)”a

n I II III
Beu and 

Buck [14]
Greer 

et al. [27]

6 24.29 24.03 23.77 22.70 22.73
7 30.142 29.993 29.587 28.23 28.53
8 37.311 36.609 35.943 34.12
9 42.042 41.993 41.892 39.48

10 48.786 48.485 48.238 45.59
11 55.211 54.726 54.668 51.22
12 62.231 62.180 60.978 58.41
13 67.881 67.323 67.112 62.97
14 73.373 73.330 73.259 69.06
15 80.924 80.228 80.055 74.92
16 87.045 86.181 86.134 81.51
17 91.040 90.333 89.968 87.46
18 97.958 97.666 97.213 93.73
19 101.634 100.700 100.409
20 111.536 111.009 110.023

° Also shown are the binding energies of the lowest energy isomers found by Beu and Buck 
[14] and Greer e t al. [27]

An alternative representation of the energy results is presented in figure 3.12. The 

molecular evaporation energy is directly related to the relative stability of different 

cluster sizes, it is defined as the energy required to adiabatically detach an ammonia 

molecule from a given cluster (Evap(n) = En -  En- 1 ). Figure 3.12 shows the evapora

tion energy as a function of n for “model C(pol, (?**)”, for the binding energy results 

obtained by Beu and Buck [14] employing the Impey and Klein potential [15] and for 

the classical and quantum simulations of ammonia clusters from reference [33].
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Figure 3.12: Evaporation energy (Evap(n) = En — En- 1, kcal/mol) for (NH3)n computed 
using the total energy of putative global minima. Data obtained using “model C(pol,Qop<)”; 
also showing the results provided in references [14, 33]

One can see that “model C(pol, <3° )̂” presents a rougher behaviour for Evap than the 

one obtained using the pairwise model potential employed in reference [14]. This rough 

behaviour is also reproduced by the path integral simulations, albeit the introduction 

of quantum effects reduces significantly the energy needed to dissociate a monomer 

from the parent species, as well as smoothing the roughed behaviour showed by the 

minimum energy results [33].

It is interesting to note the large evaporation energy that “model C(pol,(3°^” pre

dicts for n = 8,10,12,15 and 20. This tendency possibly suggest that these structures 

have high stability, hence pointing at them as potential magic numbers. The former 

are usually associated with the completion of a shell with a particular symmetry, which 

normally optimises the balance between surface tensions and repulsive interactions [33]. 

As a whole, the different behaviours shown by the evaporation energy as a function of
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the model potential stress the importance of the induction term in defining the relative 

stability of ammonia clusters with different sizes.

The geometries of the lowest minima, showed in figures 3.9 and 3.10, could be 

divided in two classes attending to the “regularity” of their structure. We notice that 

the structure of (NH3 )6 , (NH3)8, (NH3)10 and (NH3)i2 are based on simple geometrical 

shapes or on regular polyhedra, supporting the possible role of n = 8,10 and 12 as magic 

numbers. In the case of the hexamer, the lowest minimum presents a flat structure 

(“book”) which can be described as two fused tetramers, or two fused squares. It also 

features both a double donor and double acceptor ammonia molecules. Alternatively, 

the relative disposition of the nitrogen atoms can be described as deriving from the 

“chair” structure typical of the lowest conformer of cyclohexane. This structure for the 

hexamer is at variance with the results of previous investigations using honpolarisable 

models [14, 27], which suggest a more compact 3D geometry as global minimum. A 

3D structure is, however, obtained for the second lowest isomer (figure 3.11), lying 

only 0.26 kcal/mol above the putative global minimum. This small energy difference 

may prove necessary to use electronic structure calculations to assign conclusively the 

global minimum structure.

Regarding the (NH3)8, both the global minimum and the second lowest isomer 

(figures 3.8 and 3.11, respectively) were found to present structures based on a distorted 

cubic shape that are built starting from two different isomers of the tetramer. In 

particular, the tetramers in the global minimum show an alternate disposition of the 

free H atoms with respect to the ring plane (UDUD, where U and D indicate the 

direction of the free NH bond for an ammonia molecule perpendicular to the plane as 

pointing up or down, respectively). In contrast, the second lowest isomer has the two 

tetrameric moieties showing a UUDD orientation of the free NH bonds. In addition, the 

lowest isomer found has a higher symmetry (D2<*) than the second one, which presents
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a binary axis only. The difference in the relative arrangement of H bonds, is reflected 

in an energy gap of 0.702 kcal/mol between the two species.

The second and third lowest isomers of (NH3)8 are separated by an substantial 

energy gap of 0.666 kcal/mol, a finding that could suggest the possibility that the low 

temperature thermodynamics of the oetamer is likely to be dominated by the global 

minimum, and that it should be expected to present signatures for a phase transition 

in the specific heat as found in the case of [35]. In addition, reference [33] found

that the quantum evaporation energy suggests the possibility of an enhanced kinetic 

stability (i.e. a longer lifetime) for the oetamer, and in the classical heat capacity the 

oetamer has the most prominent melting feature.

A somewhat similar situation is also found for the decamer, (NH3)i0, with sizable 

energy gaps between the lowest three or four isomers. The lowest energy isomer for the 

decamer can be seen as the global minimum for the oetamer with the addition of two 

extra molecules on the same cube face. Being connected with themselves, these two 

molecules also accept and donate hydrogen bonds with molecules on the face, forming 

two three-member rings and leaving a binary axis as the only element of symmetry for 

the structure.

Regarding the dodecamer, (NH3)i2 , Beu and Buck [14] predict an icosahedral geom

etry for the global minimum, separated from the second lowest isomer by 1.8 kcal/mol. 

Differently from this result, our optimisation generated two isomers with completely 

different geometries and extremely close in energy (0.051 kcal/mol). The lowest of the 

two isomers has the same icosahedral structure and evaporation energy found in refer

ence [14], while the second one can be described as the fusion of two cubes on a face 

(figure 3.11). It seems that the explicit description of the electronic induction in our 

model does not play an important role in the relative energetics for the global minimum 

of (NH3)i2 , which may be due to the high symmetry of this species. There is a large
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gap between the two lowest isomers and the third one (1.202 kcal/mol), signalling that 

signatures for a structural transformation may be found in the specific heat of this 

cluster. Also, for the dodecamer, high level ab initio calculations would be needed to 

provide an accurate prediction of the relative energetics for the two low lying species.

In the case of the clusters presenting a less regular disposition of the N atoms, 

the species containing an even number of ammonia molecules seem to present a more 

spherical structure than aggregates composed of an odd number of ammonia molecules. 

The latter opens the possibility of a non zero dipole moment of the cluster. This seems 

likely, given the usually low internal temperature of the clusters and the substantial 

energy gaps between low lying isomers. Hence, even and odd numbered clusters could 

be separated by means of a non-uniform electric field. The exception to this rule would 

be (NH3)13, whose geometry is closely related to the shape of the dodecamer, as it 

may be obtained by “squashing” the thirteenth ammonia molecule onto the edge of 

(NH3)i2. This finding differs from the prediction of the pairwise model potential[14].

3.4 Conclusions

The implementation of a new model potential describing the interaction between am

monia molecules has been presented and discussed in this chapter. Its analytical form 

is partially based on a previous suggestion by Hinchliffe et al. [12]. Additionally, the 

model presents an explicit many-body description of the induction energy at the level of 

dipole polarisability, a feature that was not previously available in other semiempirical 

forms. The term describing the effect of induction has been implemented using the non

iterative “charge-on-spring” scheme proposed by van Gunsteren and co-workers [22], 

assuming an isotropic polarisability for NH3. The free parameters of the new model 

have been obtained by minimising the least square error with a set of CP-MP2/aug-
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cc-pVTZ interaction energies computed over configurations relevant for the low energy 

dynamics of the ammonia dimer. As a consequence of this optimisation, two improved 

models have been obtained, both describing the interaction between two ammonia 

molecules with a higher accuracy than the original parameterisation of the analytical 

form.

Employing the most accurate model, namely “model C(pol,Qopt)”, a search for the 

global minimum structure of the NH3 (n = 3 — 20) was carried out. Energy results for 

n — 3 — 5 were used to test the transferability of the model PES against ab initio data, 

suggesting that this potential has provided a substantial improvement in accuracy. A 

new low energy isomer was found for (NH3)5; for larger clusters, our model potential 

predicts larger binding energies than suggested by previous investigations employing 

pairwise potentials. Our data also indicate a rougher behaviour of the evaporation 

energy as a function of the number of ammonia molecules in the cluster, a feature 

suggesting the presence of magic numbers for n = 8,10,12,15 and 20.
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3.5 Appendix 1: R outine calling potential

Routine reading data shown in Appendix 3, and calling the subroutine shown in Ap

pendix 2. While one of the ammonia molecules remains fixed, the second one is dis

placed 600 steps of 0.05 size each.

program p e p i t a s _ i n _ a c t i o n

im p l i c i t  none

ch a r ac t e r  a t _ s ( l : 8 )

rea l  *8 x x ( l : 8 ) , y y ( l : 8 ) , z z ( l : 8 ) ,  pot

i n t e g e r  i

o p e n (2 , f i l e  = ’d a t a . x y z ’) 

do i = l , 8

read (2 , * ) ,  a t _ s ( i ) ,  x x ( i ) ,  y y ( i ) ,  z z ( i ) 

enddo 

c l o s e (2)

ca l l  subpe p i t a s  ( at_s ,xx , yy , zz , p o t )

w r i t e ( * , * )  ’P o t e n t i a l ’ 

wr i t e  (* ,*) pot

s top

end
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3.6 Appendix 2: Potential

Subroutine calculating the total sum of the interaction forces.

sub rou t i ne  s u b p e p i t a s  ( at_s , xx , yy , zz , p o t )

* / /  xyz input  c o o r d i n a t e s  must be in Angstrom

* / /  they are order ed  so t h a t  one has the  f i r s t

* / /  ammonia molecule (N,H,H,H)

* / /  then fol lowed by t he  second one ( aga in  (N,H,H,H))

* / /  pot  is ou tpu t  in kca l /mo l

i m p l i c i t  none

ch a r ac t e r  a t _ s ( l : 8 )

r e a l *8 x x ( 1 : 8 ) , y y (1:8)  , z z ( 1 : 8 ) , r_nh (1:3)  , r_hh (1:9)  , 

a t d i s t . n n  , a t d i s t _ n 2 h  (1:3)  , a t d i s t . n l h  ( 1 :3) , 

d i s t . h h  (1:9)  ,

q d i s t _ n 2 h ( l : 3 )  , q d i s t _ n l h ( l : 3 )  , q d i s t . n n  , 

d e l t a  , Coulomb_n2h (1:3)  , seis  , ocho , diez , dos , 

qh , qn , Coulomb_nn , coul , Coulomb_nlh (1:3)  , 

Coulomb_hh ( 1 :9) ,

V_nn , V_hh (1:9)  , V _ n l h ( l : 3 )  ,V_n2h( l :3)  , Vdisp_nn , 

damp, f , b ra  ,

SumaCoulomb_n2h , SumaCoulomb_nlh , SumaCoulomb.hh , 

SumaV_nlh,

SumaV_n2h , SumaV_hh , to ta l suma , ami (1:3)  , 

am2 (1:3)  , am3 (1:3)  ,

vecqlx , vecqly  , vecqlz  , modvecql , vecnlx , 

vecnly , vecn l z  , am4( l : 3 )  , am5( l :3 )  , am6( l :3)  ,
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vecq2x , vecq2y , vecq2z , modvecq2 , vecn2x , vecn2y , 

vecn2z , pot

i n t e g e r  g , h , i , j , 1 , m , n , p , q , u , w

parameter  ( coul  =  1.11265d—10*ld —10)!J^ —1*C~2*a n g s t r o m s 1

parameter  (qh =  0 .462*(1.602d —19)) !C

parameter  ( qn= —3*0.462*(1.602d —19))!C

parameter  ( de l t a= 0 .1 5 6d 0 )  ! angst roms

parameter  (damp=4.7d0) ! angst rom

C VECTOR TO DEFINE CHARGE DISPLACEMENT OF N1

do i =2,4 

g=g+l

aml(g)  =  (xx( i ) - x x ( l ) )  

am2(g) =  (yy ( i ) —yy (1))  

am3(g) =  ( z z ( i ) - z z ( l ) )  

enddo
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vecqlx==aml(3)+aml(2)+aml (1) 

vecqly=am2(3)+am2(2)+am2( 1) 

vecqlz=am 3(3)+am 3(2)+am 3( 1)

modvecql=sqrt  ( ( vecqlx**2)  +  ( vecqly **2) +  ( vecqlz  **2))

vecnlx =  ( (vecqlx/modvecql  )* d e l t a ) + x x ( l )  

vecnly =  ((vecqly/modvecql  )* d e l t a ) + y y  (1) 

vecnlz  =  (( vecq l z /modvecql  ) * d e l t a ) + z z ( l )

C VECTOR TO DEFINE CHARGE DISPLACEMENT OF N2

h=0

do i =6,8 

h=h+l

am4(h) =  (xx( i ) —xx (5))  

am5(h) =  ( y y ( i ) - y y ( 5 ) )  

am6(h) =  (zz ( i )  —z z ( 5 ) )  

enddo

vecq2x==am4(3)-fam4(2)+am4( 1) 

vecq2y=am5(3)4-am5(2)+am5(l) 

vecq2z=am6(3)+am6(2)+am6( 1)

modvecq2=sqrt  (( vecq2x**2) +  ( vecq2y**2) +  ( vecq2z **2))
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vecn2x =  ((vecq2x/modvecq2)* d e l t a )+ x x ( 5 )  

vecn2y =  ((vecq2y/modvecq2)* d e l t a ) + yy  (5) 

vecn2z =  ( (vecq2z/modvecq2)* d e l t a ) + z z  (5)

C CALCULATE N-N DISTANCE

dos =  ( ( ( x x ( 5 ) - x x ( l ) ) * * 2 )  +  ( ( y y ( 5 ) - y y  (1) )**2)

+  ((zz(5) — zz ( 1 ) )* * 2 ) )  

a t d i s t _ n n = s q r t  (dos)  

qd i s t _nn=sq r t  ( ( (  vecn2x—v e c n l x ) **2)

+  ( (vecn2y—v e c n l y ) **2)

+ ( (vecn2z—v e c n l z ) **2))

C CALCULATE N-N COULOMB POTENTIAL ( J)

Coulomb_nn=qn**2/(coul  *( q d i s t . n n  ))

C CALCULATE N-N POTENTIAL ( k c a l / m o l , ang s t r oms )

V_nn =  13615.d0*exp( — 2 . 7 d 0 * a t d i s t _ n n )

C CALCULATE N-N DISPERSION 

C POWERS OF R

s e i s = ( d o s ) * ( d o s ) * ( dos)  

o c h o = ( s e i s ) * ( d o s )  

d i ez=(ocho)* (  dos)

C BRACKET DIVISIONS

bra  =  (1230.d0/  s e i s  +6500.d0/ocho+42100.d0 /d i ez  )

C CHOICE OF F(R) DEPENDING ON N-N DISTANCE RESPECT TO
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C DAMPING DISTANCE 

f= l

if  ( a t d i s t . n n  . I t  .damp) then

f=exp( — ((( a t d i s t _ n n —damp)/  a t d i s t _ n n ) * * 2 ) )  

endi f

C EXPRESSION FOE DISPERSION ( in  kea l /mol )  

Vdisp_nn=— f *bra

C N2 TO H’s FROM MOLECULE1:DISTANCE,COULOMB 

C AND H-H POTENTIALS,SUM

n=0

do i=2,4  

n=n+l

a td i s t _ n2 h  ( n ) = s q r t  ( ( (xx(5) — x x ( i ) ) * * 2 )  

+ ( ( y y ( 5 ) - y y ( i  ) )**2)

+  ((zz(5) — zz ( i ) ) **2 ) )  

qdi s t_n2h ( n ) = s q r t  ( ( (  vecn2x—xx( i )) **2)

+  ( (vecn2y-yy(  i ) )**2)

4-((vecn2z—zz ( i )) **2))

enddo

q=0

SumaCoulomb_n2h=0



Chapter 3. Ammonia potential 118

SumaV_n2h=0 

do n = l  ,3 

q=q+l

C o u l o m b _n 2 h( q ) = qn *q h / ( co u l* ( ( qd i s t _n2 h ( n ) ) ) ) !  j ou l e

SumaCoulomb_n2h=SumaCoulomb_n2h

+Coulomb_n2h (q )

V_n2h(q)=0.4d0*exp(— 4.6d0*( a t d i s t _ n 2 h  (n) — 2.5d0))

—0.8d0*exp( — 2.3d0*( a t d i s t _ n 2 h ( n ) —2.5d0)) 

SumaV_n2h=SumaV_n2h+V_n2h(q) ! in kca l /mol

enddo

C N I T O H ’s FROM MOLBCULE2:DISTANCE,COULOMB 

C AND Erl1 POTENTIALS,SUM

m=0

do i =6,8 

m=mfl

a t d i s t _ n l h  (m)=sqr t  ( ( ( x x ( l ) — x x ( i ) ) * * 2 )  

+ ( ( y y ( i ) - y y ( i ) ) * * 2 )

+  ( (zz ( l )  — zz ( i ) )**2 ) )  

q d i s t . n l h (m)=sqr t  ( ( (  vecn lx—xx( i )) **2) 

+  ( (vecn ly—yy( i  ) )**2)

+  ( (vec n l z— zz ( i ) )**2) )

enddo
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w=0

SumaCoulomb_nlh=0 

SumaV_nlh=0 

do m=l ,3  

w=w+l

Coulomb_nlh(w)=qn*qh/ (  coul  *( q d i s t . n l h  (m))) ! j ou l e

SumaCoulomb_n 1 h=SumaCoulomb_n 1 h+Coulomb_n 1 h (w) 

V_nlh(w)=0.4d0*exp ( — 4.6d0* ( a t d i s t . n l h  (m) — 2.5d0))

—0.8dO*exp( —2.3dO*( a t d i s t . n l h  (m) — 2.5d0)) 

SumaV_nlh=SumaV_nlh+V_nlh(w) ! in kca l /mol  

enddo

C ILTI:DISTANCE,COULOMB AND H-H POTENTIALS,SUM 

1=0

do i =2,4 

do j=6 ,8  

1= 1+1

d i s t . h h  ( l ) = s q r t  ( ( ( xx (  j ) —xx( i ) )**2)  

+ ( ( y y ( j ) - y y ( i ) ) * * 2 )

+  ((zz ( j ) - z z  ( i ) )**2) )

enddo

enddo
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SumaCoulomb_hh=0 

SumaV_hh=0 

do 1=1,9 

u=u+l

Coulomb_hh(u)=qh**2/(coul  *( d i s t _hh  ( 1) ) )  

SumaCoulomb_hh=SumaCoulomb_hh+ Coulomb.hh (u )! j o u 1 e 

V_hh(u)=700d0*exp( — 3 .7d0*di s t _hh (1) )  

SumaV_hh=SumaV_hh+V_hh(u) !in  kcal  /mol 

enddo

pot=V_nn+Vdisp_nn

+(SumaCoulomb_n2h

+SumaCoulomb_hh

+SumaCoulomb_nlh) *6.0225d20 *4 .186d0

+SumaV_n2h

+SumaV_nlh

+SumaV_hh

re tu rn

end
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3.7 Appendix 3: D ata file

Example of data file read by routine in Appendix 1.

N 0. 0. 0.114454

H 0. 0.93744 -0.26706

H 0.811846 -0 .46872 -0 .26706 

H -0.811846 -0 .46872 -0.26706 

N 0. 0. 3.364454

H 0. 0.93744 2.98294

H 0.811846 -0 .46872 2.98294

H -0.811846 -0.46872 2.98294



Chapter 4

Protonated am m onia clusters:

N H +(N H 3)„ (n =  1 - 5 )

4.1 Introduction

Studying protonated ammonia clusters can be approached from different perspectives. 

On one hand, they are representatives of “ion-solvent” type of interaction, which is 

relevant to the understanding of atmospherical reactions, nucleation processes and sol

vation chemistry [1-3, 29]. On the other hand, these clusters are molecular aggregates 

with an extra proton susceptible of mobility along the cluster’s hydrogen bond network. 

Ammonia proton wires are thus relevant in organic chemistry, biology and have also 

been investigated theoretically [4-9].

There are a number of papers investigating the electronic energies of NHj (NH3)n 

clusters [10-15], but we feel that an ab initio benchmark data for protonated ammonia 

clusters are still missing. This is because some of the reported data has been super

seded, and in those cases where a post Hartree-Fock method is used, it is matched with 

a Pople’s family basis set. In contrast, this work uses Dunning’s family basis sets. Re

122
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cently, Fouqueau and Meuwly [15] investigated the energetics, structures and dynamics 

of protonated ammonia clusters using DFT and semiempirical DFT methods. These 

are known to underestimate dispersion interactions [15] and, occasionally, to overesti

mate multipole moments. Although dispersion is not a dominant contribution to the 

stability of charged systems, we feel that at least MP2 level of theory is needed because, 

based in our experience with ammonia clusters, is well within computational reach at 

least for small clusters (n < 5), and would provide a more accurate description of the 

clusters at hand. In addition, the basis sets used in reference [15] for exploring the 

clusters were 6-31+G** and 6-31G** for which a substantial BSSE would be expected; 

however, no correction procedure was used.

Since the first detection of protonated ammonia clusters (NHj (NH3)n, (n > 4)) in 

the gas phase by Dawson and Ticker in 1964 [16], a number of experimental studies on 

the ammoniation of NHJ have been published [22-32]. As far as we know, the different 

methods used to experimentally investigate the thermodynamics of the ion-solvent 

molecule interactions in the reaction:

NHj(NH3 )(n_i) +  NH3  ^  NHj(NH3)n

have been, namely, mass spectrometry [22-28], flowing afterglow technique [29, 30] and 

photoionisation [31, 32]. The results provided by mass spectrometry and flowing after

glow are in good accordance, albeit disagreeing in the value of the energy for NHjNH3. 

On the other hand, the photoionisation experiments substantially underestimate the 

absolute values of solvation energies. The reason for this could be due to the fact that 

the appearance potential 1 of ammonium solvation is determined from vibrationally

1 “Appearance Energy (appearance potential), refers to ionisation of a molecule or atom by electron 
collision or photon absorption. In mass spectrometry it has often been reported as the voltage which 
corresponds to the minimum energy of the electrons in the ionising beam necessary for the production 
of a given fragment ion. In photoionisation it is the minimum energy of the quantum of light which 
produces ionisation of the absorbing molecule” [36]
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excited parent clusters generated from neutral ammonia; which could lead to a thresh

old potential corresponding to an upper vibrational ionic state and not to the ground 

state of the ion, thus leading to lower absolute values of the solvation energy [31].

It is possible to draw common trends in the published experimental data. First, 

attending to the enthalpy values one can see a monotonic decrease from AHi)2 to AH2 ,3  

and AH3 4 . Second, as mentioned, the AH0,i is much higher than the consecutive 

solvation steps, and this value is also the major source of disagreement (up to 7.7 

kcal/mol) between the different measurements using mass spectrometric methods. To 

compare energetic mass spectrometric and flow afterglow data one has to look at the 

measurement of free energy, (i.e. AGo,i) where also differences can be encountered, 

again «  7 kcal/mol. It has been pointed out that this may be due to the dimerisation 

reaction being too quick and exothermic for the gas bath molecules to stabilise it [31]. 

It was also proposed that the high enthalpy formation for NHjNH3  dimer, compared 

to larger clusters, was due to the proton being equally shared by the two ammonias 

(N2 H7  species). However, one has to note that these experiments hold no information 

on the structures of the clusters [28]. Finally, there is a sudden decrease in AH4  5  which 

is invariably attributed to the completion of the first solvation shell of the ammonium 

ion. In this regard, Meot-ner and Speller [28] went further and attempted to establish 

a general quantitative thermochemical criteria for the filling of a solvent shell. Also, 

in this work, it was proposed that in systems such as H3 0 +(H2 0 )n and NH4  (NH3)n, 

in which the formation of outer solvation shells is not sterically blocked, second and 

higher shells could be formed before the first one is completed; also, that a completed 

first solvation shell could coexist in equilibrium with isomers with partially completed 

inner and outer shells. In fact, ab initio investigations from our work and references

[15] and [14] have invariably found several different isomers for a given cluster size 

matching this criteria.
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We can advance that protonated ammonia clusters arrange themselves in two gen

eral configurations, namely, “globular” and “linear”. In the former, the NHj cation is 

placed at the core of the structure and surrounded by the solvating ammonia molecules. 

In the latter, the monomers arrange themselves in a linear chain, the cation always be

ing placed in the inner positions of the chain.

The work from references [14, 15, 18-21, 34, 35] is concerned with the investigation 

of the structure of protonated ammonia clusters. They explored the infrared spectra of 

a varied range of frequencies, attempting to correlate spectral features with structural 

characteristics of the clusters.

Experimentally, different approaches to infrared spectroscopy were used; namely, 

radiolysis [18], vibrational predissociation [19, 34] and photodissociation [21, 35]. Theo

retically, ab initio [14, 19, 20], DFT [14, 21] and molecular dynamic simulations [15] are 

the methods chosen to estimate the vibrational modes and infrared spectra of several 

protonated ammonia clusters.

There is qualitative agreement in the IR spectra data between theory and exper

iments. Two main spectral features are found, those related to the vibrations of the 

ammonium cation and those related to the solvating ammonia molecules [34]. There is 

also consensus on the tetrahedral arrangement of the NHj (NH3 )4 . Quantitatively, the 

calculated harmonic vibrations are consistently higher than the experimental values, 

this work being no exception.

This chapter presents the MP2 study of the structure, intermolecular binding en

ergies and harmonic frequencies of NHj (NH3)n (n =  1 — 5).



Chapter 4. Protonated ammonia clusters: NHj (NH3 )w (n =  1 -  5) 126

4.2 M ethodology

The computational procedure is similar to that previously followed in the study of 

ammonia clusters. The electronic structure calculations on NHj (NH3)n (n =  1—5) were 

performed using the Gaussian 98 [41] and 03 [42] ab initio packages using the Hartree- 

Fock (HF) and second-order Mpller-Plesset perturbation theory (MP2) with frozen 

core, employing Dunning’s family basis sets aug-cc-pVXZ (X=D,T). Counterpoise (CP) 

Basis Set Superposition Error (BSSE) has been accounted for by means of a vertical 

correction on the optimised isomeric structures, and as further relaxation on the CP- 

corrected Potential Energy Surface (PES). All the images in this work and all inter 

and intramolecular parameters have been obtained with MOLEKEL [43].

To name the isomers, we adopted the very convenient nomenclature used by Fouqueau 

and Meuwly [15]. By means of this notation, the connectivity of a cluster is described by 

a four digit label ( n ^ n ^ ) ,  each digit referring to one of the four hydrogen atoms form 

the ammonium cation and their level of complexation by solvating ammonia molecules. 

Thus, three hydrogen atoms from NHj being solvated by one ammonia molecule each, 

will be nominated as isomer 1 1 1 0 ; and three ammonia molecules solvating two hydrogen 

atoms from NH4  will give rise to isomer 2 1 0 0 .

4.3 Results

4.3.1 Structural R esults and Binding Energies 

NH4+(NH3)

For the ammonium-ammonia dimer we have obtained two isomers presented in Figure 

4.1. The structural difference between them lies in the relative position of the ammonia 

molecule, being eclipsed or staggered with respect to N H j. Both species are practically



Chapter 4. Protonated ammonia clusters: NHj (NH3)n (n =  1 — 5) 127

isoenergetic, the sign and magnitude of their energy difference depending on the level 

of the calculations, being «  0.03 kcal/mol at the MP2/aug-cc-pVTZ level of theory, in 

which the structures have been optimised on the CP-corrected PES.

* .........
w

Figure 4.1: Isomer 1000 stag (top) 1000 ecli (bottom)
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Table 4.1: Binding Energies for the clusters NHj (NH3)n n =  2  — 5 in kcal/mol.
isomer aug-cc-pVDZ aug-cc-pVTZ

NH+(NH3) BE® BECi* Optcpc BE BECP OptCP
1000 ecli 26.974 (54.335) 25.188 25.216 26.687 25.983 25.996
1000 stag 26.953 (54.231) 25.213 25.243 26.715 26.010 26.023

NH4 (NH3)2
1100 ecli 47.122 (78.208) 42.742 42.808+ 46.410+ 44.524+ 44.535+
1100 stag 47.116 (78.198) 44.007 44.047 46.409 45.275 45.284

NH+(NH3)3
1110 ecli 63.678 (101.586) 58.879 57.972 62.194* 59.835 60.097
1110 stag 63.678 (101.545) 57.909 57.971 62.215* 59.856 -
2100 ecli 57.077 (101.137) 52.242 52.315 56.902 54.466 54.488
2100 stag 57.966 (101.132) 52.220 52.316 56.882 54.448 54.472

2100 ecliecli 57.986 (101.166) 52.231 52.306 56.884 54.450 -

NH+(NH3)3
1111 77.666 (124.753) 70.514 - 75.567* 72.746 -

2110 73.247 (124.687) 66.185 66.277 71.287* 68.466 -
2200 68.114 (124.305) 61.277 - 66.276* 63.522 63.862
3100 65.860 (124.132) 58.833 58.943 64.036* 61.156 -

3100ring 66.659 (125.004) 59.106 - 64.591* 61.567 -

NH4+(NH3)4
2111ring 86.635 (148.281) 77.811 - 83.919* 80.487 -

2111 86.151 (147.831) 77.766 - 83.531* 80.284 -

2210 82.286 (147.827) 74.130 - 79.841* 76.665 -

3110 80.589 (147.763) 72.315 - 78.166* 74.905 -
3200 76.664 (147.389) 67.581 - 73.361* 70.149 -
4100 72.442 (147.119) 64.194 - 70.167* 66.836 -

° binding energy, in brackets zero point harmonic corrections at the M P2/aug-cc-pVDZ level 
of theory b single point BSSE Counterpoise corrected binding energy, c optimised BSSE Coun- 
tepoise corrected binding energy, * single point calculations using the geometry of M P2/aug- 
cc-pVDZ optimisation. - unavailable values ^isomerisation to 1100 stag

NH+(NH3)2

We initially obtained two isomers, shown in Figure 4.2, the difference between them 

being the staggered or eclipsed orientation of one of the two ammonia molecules with 

respect to the ammonium ion, as before. However, the outcome of the CP corrected 

optimisation at the MP2 /aug-cc-pVDZ level of theory (indicated in table 4.1 as f) 

resulted in the isomerisation of 1 1 0 0  eclipsed into 1 1 0 0  staggered.
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Figure 4.2: Isomer 1100 stag (top) and 1100 ecli (bottom)

The relative energy difference between the two 1100 staggered configurations taken 

at the CP-corrected optimisation MP2/aug-cc-pVTZ level is 0.75 kcal/mol, which is 

quite significant . To try and find a reason for this we had a closer look to the structural 

arrangement of both clusters. We found that the intermolecular and intramolecular 

angles, as well as N-H distances in the ammonia molecules and the non-donating hy

drogens of the ammonium show no significant deviation from each other. However, we 

noticed slight differences in the measurements of two geometrical parameters, namely, 

the N-H distance of the donating hydrogens in the NH4 , and hence in the N-H...N dis

tance; and in the dihedral angle formed between the donating hydrogens from NH4 1 

and the eclipsed and the staggered hydrogens of the NH3 molecules. The isomer first 

isolated as staggered (i.e. the most stable one at the highest level of theory) shows 

a distance of 1.066 A for both of the solvating N-H bonds of the ammonium cation, 

N-H...N distances are 1.671 A and the dihedral angle measured for the aforementioned 

hydrogen arrangement is 0°. In addition, it has a dipole moment of 1.66 D. In con

trast, the isomer that was originally eclipsed shows more imbalanced measurements 

to both sides of the cation, the hydrogen atoms are off plane by -2.5° (plane defined 

by the bonding hydrogen atoms of the cation and one hydrogen atom of each of the



Chapter 4. Protonated ammonia clusters: NHj~ (NH3)n (re =  1 — 5) 130

solvating ammonias, particularly those on the plane of the page, also defining the ” ecli” 

orientation). This structure has a predicted dipole moment of 1 .2 2 D.

NH+(NH3)3

We have obtained two sets of isomers, namely 1110 and 2100. We also found that isomer 

3000 is not a stable structure and it collapses to 2100. This finding is in agreement 

with reference [15].

For the 1110 arrangement (Figure 4.3) all NH3  molecules are in the first solvation 

shell. Whitin this arrangement two different isomers arise, staggered and eclipsed, 

attending to the orientation of one of the solvating molecules with respect to the 

cation.

Isomer 2100 (Figure 4.4) is the smallest arrangement in which an NH3  occupies 

the second solvation shell of the ammonium cation. From the 2100 arrangement we 

isolated three isomers, 2 1 0 0  stag, 2 1 0 0  ecli, and 2 1 0 0  ecliecli.

One can think about the first two structures as originated from 1 1 0 0  stag, seen in 

the previous subsection, with an additional NH3  placed in the second solvation shell. 

The orientation of this incoming ammonia with respect to the cation determines if 

2100 is stag or ecli. The third isomer, 2100 ecliecli, shows an eclipsed ammonia with 

respect to NH4  in the second solvation shell, and in the first solvation shell (on the 

right hand side in the third isomer of figure 4.4). The NH3  that acts as a “linker” is 

always staggered with respect to the ammonium cation.



Chapter 4. Protonated ammonia clusters: NHj (NH3)n [n =  1 — 5) 131

*

Figure 4.3: Isomer 1110 stag (top) and 1110 ecli (bottom)

Figure 4.4: Isomer 2100 stag (top), 2100 ecli (middle) arid 2100 ecliecli (bottom). 

We found that all levels of theory support the more compact arrangements, 1110, as
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a global minima. The chain-like arrangements, 2100, lying roughly 5.6 kcal/mol above. 

For a given isomer, staggered and eclipsed arrangements are shown to be practically 

degenerate in Table 4.1.

NH+(NH3)4

Five different isomers have been isolated, as shown in Figure 4.5. As far as we know, 

Isomer 3100ring has not been previously reported in literature, also we found that 

structure 4000 is not stable, and isomerises to 3100.

V *
/ ..^

 ^  "Q

Y  \  > .....

>  *
v  r '  *

Figure 4.5: Isomer 1111 (top left), 2110 (top right), 3100ring (middle left), 2200 (middle 
right) and 3100 (bottom).

At the highest level of theory in this work, isomer 1111, which has all ammonium 

hydrogens coordinated to ammonia molecules, is the most stable species, followed by
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isomer 2110 (roughly 4.3 kcal/mol above). In order of decreasing stability we found 

next 2200 («  5 kcal/mol) higher than 2110, 3110ring («  2 kcal/mol) higher than 2200, 

and finally 3110 («  0.5 kcal/mol).

In isomer 1111, the first solvation shell of the ammonium molecule is completed 

by the coordination of the four available hydrogen atoms in the cation with ammonia 

molecules. This isomer also represents the most discernible “globular arrangement”, as 

dubbed in reference [15], a description that also applies to 2110. The main structural 

difference between them is that the latter breaks the symmetry of the 1 1 1 1  isomer, but 

more importantly, introduces a coordinating ammonia molecule in the second solvation 

shell. Also, in some way, one could think that the roughly 5 kcal/mol gap in energy 

between 2 1 1 0  and 2 2 0 0  highlights the deviation from a ball-shaped arrangement into 

a “chain-like” organisation (represented by the isomers 2200, 3100ring and 3100 in 

decreasing order of stability).

As expected, the introduction of BSSE corrections lowers the BE energy values, 

a reduction that is bigger upon increasing cluster size. This effect is also higher for 

NHj (NH3)n than for pure ammonia clusters, for example taking isomer 1 1 1 1  (a pen- 

tamer), its BSSE amounts to roughly 7 kcal/mol at the MP2/aug-cc-pVDZ level of 

theory (single point calculation), whereas for ammonia “pyramid” pentamer BSSE 

amounts to roughly 5  kcal/mol at the same level of theory. As in the case of ammo

nia clusters, we have also found that only slight changes in the BE are observed after 

relaxation of the structures on the CP-corrected PES.

NH+(NH3)5

Six isomers have been isolated for this cluster size and are presented in Figure 4.6. To 

our knowledge, two of these isomers are novel structures (2111ring and 4100).
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Figure 4.6: Isomer 2111 (top left), 2111ring (top right), 2210 (second row left), 3110 
(second row right), 3200 (third row), 4100 (bottom)

Isomers 2111 are the most stable species, followed by 2210 which are lying roughly 

3.5 kcal/mol above. As seen before, globular arrangements, i.e. clusters in which the 

hydrogen atoms of the ammonium cation are bonding one ammonia molecule each, 

have higher binding energies than chain-like isomers. Accordingly, 3200 lies roughly
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4.9 kcal/mol higher than 3100.

4.3 .2  M a n y -b o d y  E ffects: S tru ctu ra l analysis

In this section we will be presenting the changes of several structural parameters with 

increasing cluster size. For convenience and clarity the parameters to be monitored are 

defined, in general, according to reference [20]. The chosen nomenclature can be seen 

in figure 4.7 where isomer 2100 is used as a template.

'b r id g e d

Figure 4.7: Structural parameters

In figure 4.7 Rnn is the distance between two Nitrogen atoms, specifically from 

the nitrogen atom in NHj to the nitrogen atom in a first shell solvating NH3. When 

Rnn is measured between the Nitrogen atoms of ammonia molecules, this parameter 

is considered to be the distance between two solvation shells, namely sh1-sh2. R/v...// is 

the hydrogen bond distance, measured for every hydrogen bonding atom, rbridged, is the 

N-H bond distance that is part of the cluster bonding pattern, a parameter measured 

for both NHj and NH3. rf ree is the N-H bond distance that is not part of the cluster
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hydrogen bonding pattern, and as before, is measured both for NHj and N H 3 .

Before describing the structural features of our clusters as mentioned, we are going 

to look at how some of the geometrical data compares across the different levels of opti

misation. This is a step we think useful because we found that upon increasing cluster 

size our computational resources were challenged, and as a result, the optimisation of 

the aggregates could not be carried out in identical fashion for all cluster sizes. To anal

yse if there are any significant changes in the structures across the level of optimisation 

we have chosen to explore three different species ( 1 0 0 0  stag, 1 1 0 0  stag, 2 1 0 0  ecli) for 

which we have available all four possible optimisations (i.e. MP2/aug-cc-pVDZ, CP- 

corrected MP2/aug-cc-pVDZ, MP2/aug-cc-pVTZ, CP-corrected MP2/aug-cc-pVTZ). 

The results of the measured parameters are shown in tables 4.2, 4.3. and 4.4.

Prom tables 4.2, 4.3 and 4.4, we can see that the parameters of interest fluctuate 

depending on the basis set used and the inclusion or absence of BSSE correction. 

However, the differences are consistent and not large, allowing us to think that we 

could extract robust general trends regardless of the level of optimisation. Hence, we 

have chosen to describe the parameters of interest for all structures at the MP2/aug- 

cc-pVDZ level of theory, which is available for all of the structures presented in this 

work.

In addition, in order to draw clearer trends, we have found it useful to group 

the structures we isolated in “families” , attending to a possible rationale for cluster 

formation. In our opinion, the most immediate approach to the formation of protonated 

ammonia clusters is the stepwise addition of free ammonia molecules to each of the four 

hydrogens of an ammonium core, until it is saturated. Thus, we have the sequence:

1000 - >  1100 1110 - >  1111 - >  2111 .

We also notice that three is the minimum number of NH3  that can be distributed 

around the ammonium cation before different structural isomers can be obtained; by
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Table 4.2: Inter and intramolecular lengths ( A )  for optim ised protonated ammonia 
cluster 1 0 0 0  stag"

y ....... NH4  (NH3 ) 3  Isomer 1000 stag

Level of Theory R-na6 r  f r e e
r  d
1 bridged R  N ...H e

MP2 /  aug-cc-p VDZ 2.716 1.024 1.116 1.600
CP-MP2 /  aug-cc-pVDZ 2.743 1.024 1.108 1.635

MP2 /  aug-cc-p VTZ 2.697 1.018 1.118 1.579
CP-MP2 /  aug-cc-p VTZ 2.743 1.024 1.107 1.638

0  optimised geometric parameters obtained at the MP2/aug-cc-pVXZ X =D ,T level of the
ory, CP-MP2 indicates Counterpoise corrected optimisation. b Rtvtv, distance between the 
nitrogen atoms from NH4* and complexing NH 3  molecule. c ryyee, NH4  N-H bond length 
not included in hydrogen bonding pattern with NH3 . cl rbridged, NH4  N-H bond length 
coordinating NH3  through hydrogen bond. e r;v...//, hydrogen bond distance.

Table 4.3: Inter and intramolecular lengths ( A )  for optim ised protonated ammonia 
cluster 1 1 0 0  stag

^  v 
■y y NHJ(NH3 ) 3  Isomer 1 1 0 0  stag

Level of Theory Rjvjv 1 f r e e rbridged R N ...H

MP2 /  aug-cc-pVDZ 2.828 1.023 1.070 1.759
CP-MP2 /  aug-cc-pVDZ 2.853 1.023 1.068 1.785

MP2 /  aug-cc-p VTZ 2.816 1.017 1.066 1.750
CP-MP2 /  aug-cc-p VTZ 2.827 1.017 1.066 1.761
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Table 4.4: Inter and intram olecular lengths ( A )  for optim ised protonated am monia 
cluster 2 1 0 0  ecli

V

A

V

*
N H |(N H 3 ) 3  Isomer 2100 ecli

Level of Theory R / v n r  f r e e r bridged R n . . .h

MP2/aug-cc-pVDZ 2.863 (to 1 ) / 1 . 0 2 2 1.062 1.801
2.744 (to 2)9 1 . 0 2 2 1.097 1.647

slii-sh2/l 3.087 1 . 0 2 2 1.036 2.051
CP-MP2 /  aug-cc-pVDZ 2.863 (to 1) 1.023 1.069 1.739

2.775 (to 2) 1.023 1.090 1.685
shi-sh 2 3.134 1.023 1.035 2.099

MP2 /  aug-cc-pVTZ 2.852 (to 1) 1.016 1.057 1.795
2.727 (to 2) 1.016 1.096 1.630

shi-sh 2 3.065 1.015 1 . 0 2 0 2.035
CP-MP2 /  aug-cc-pVTZ 2.850 (to 1) 1.016 1.060 1.790

2.746 (to 2) 1.016 1.090 1.656
shi-sh 2 3.088 1.015 1.029 2.059

■f “to 1 ” indicates the distance between the NH^ nitrogen atom and the nitrogen atom from 
the single NH3. 9 “to 2” indicates the distance between the NH^ nitrogen atom and the 
nitrogen atom from the first amonia molecule of the solvating two membered chain. h “shi- 
sh 2 ”, “sh” for shell, indicates the distance between the nitrogen atoms of the solvating two 
membered chain.
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this meaning “globular”- or “linear”-like arrangements (i.e. taking NH4  (NH3 ) 3  we 

obtain 1110 and 2100). So, the structure of isomer 2100 allows us to use it as a root 

for growing clusters featuring alternative spatial arrangements. In doing this, three 

different “building” approaches can be considered. First, if on increasing cluster size, 

one chooses to expand the second solvation shell, then third and so on, the following 

sequence will be obtained:

2100 3100 -► 4100 — 5100 ...

Second, if on increasing cluster size the additional ammonia molecule is placed so 

that bonds to the innermost shell available in the 2 1 0 0  isomer, the immediate structure 

generated is 2200. After that, the next incoming NH3  molecules will be used to expand 

one of the solvation chains obtaining the following sequence:

2100 -+ 2200 3200 -+ 4200 -► ...

The third one involves adding an ammonia molecule to one of the two remaining free 

hydrogen atoms of the cation core, generating 2110. After this, one can either follow 

the first “building” procedure explained above (increasing the length of the longest 

ammonia chain), obtaining:

2100 -► 2110 -► 3110 -* 4110 ...

or, one can choose to increase the length of the smallest solvating chain in sequence, 

obtaining:

2100 - ♦  2110 2210 2220 - >  . . .

Following this rationale, we have grouped all of the isomers we have isolated in five 

different families and we have tried to draw trends attending to the changes in the 

geometrical parameters defined in figure 4.7.
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Cluster family 1000 —> 1100 —► 1110 —► 1111 —► 2111

As far as we know, this is the only cluster series for which literature data are available for 

comparison [11, 12, 20] with the whole family. The geometrical parameters obtained 

in this work, as well as the trends we see in our data, are in good agreement with 

previously published results.

As it can be seen in table 4.5, R n n ,  the distance between the nitrogen atom of the 

core cation and the nitrogen atom of the coordinating ammonia molecule(s) increases 

upon increasing cluster size. This is also true for Rjv...h, namely the hydrogen bond 

distance, measured between the coordinating hydrogen from the core cation and the 

nitrogen or the accepting ammonia molecule. The increase is of the same magnitude 

for both parameters and decreases monotonically upon increasing cluster size. This 

trend is seen until the saturation of the first solvation shell. However, when a second 

solvation shell is created (isomer 2 1 1 1 ), R n n  and Rjv...h to the three single coordinating 

NH3  are longer (2.982 A, 1.941 A) than when measured to the ammonia that binds to 

the small two membered chain (2.890 A, 1.836A).

Looking at the small two membered ammonia chain from isomer 2 1 1 1 , in particular 

at the “shi-sh2 ” distance, which represents the separation between two ammonia nitro

gen atoms coordinated in consecutive solvation shells, one can see that shi-sh2  has an 

estimated value of 3.164 A which is longer than the distance between the nitrogen atom 

in NHj and the first ammonia molecule of the two membered chain. In other words, 

this trend could suggest that the separation of the second solvation shell with respect 

to the first one is longer (3.164 A) than that of the first solvation shell to the core 

(2.982 or 2.890 A). This, together with the fact that upon increasing cluster size the 

average binding energy decreases, could support the idea of a preferential elimination 

of the ammonia molecule located in the second solvation shell during an evaporation
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cluster break up for the 2 1 1 1  isomer.

In this work we have measured the N -H  distance of an ammonium cation at the 

MP2/aug-cc-pVDZ level of theory to be 1.027 A. When coordinating to one N H 3  the N- 

H length (rbridged) changes to 1.116 A. After this first elongation, the N H 4+ complexing 

N-H bond (rbridged) reduces its length upon increasing solvation. The shortening is 

maximum for the cluster series when going from 1 0 0 0  stag (1 . 1 1 2  A) to 1 1 0 0  ecli 

(1.066 A). On the other hand, ry^,, remains practically unchanged throughout. In 

isomer 2111, the N -H  bond directed to the three single N H 3  molecules, rbridged, is 

decreased slightly (1.042 A) with respect to that of 1 1 1 1  (1.044 A). Contrarily, x bridged,, 

linked to the second solvation shell (“to 2 ” in table 4.5) is longer (1.054 A) than that 

directed to the free ammonia molecules (1.042 A). Actually, as it will be seen later for 

isomers of the same size (e.g. 2200-3100), the longer the solvating “chain” of ammonia 

molecules the greater the elongation of the ammonium N -H  bond, rbridged-

Cluster family 2100 —> 3100 —» 4100

Isomer 3100ring will not be included in the following comments on the general trends 

as it is structurally quite different from the other members of this group and will be 

dealt with separately.

In table 4.6, we can see that the distance between ammonium and the single am

monia nitrogen atoms increases upon increasing cluster size. So basically, for single 

solvating ammonia (“to 1” in table 4.6) same trends as before apply for RNN and 

. Equally, this decrease (referred to the fact that R n n  is shorter for a chain that 

for single NH3) in R n n  and R n ...h  is also seen for the sequence “to 2”, “to 3”, “to 4”, 

that indicates the distance between the core cation and the NH3  that acts like a link 

for longer solvation chains. As a natural consequence, rbridged increases with cluster 

size.
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Table 4.5: Intermolecular and intramolecular parameters (A) for cluster family 1 0 0 0  

-+ 1 1 0 0  1 1 1 0  -► 1 1 1 1  -» 2 1 1 1

isomer This work4* Literature

R a w 6 r f r e e
d

*bridged R at. . . / /6 R a w 6 T/rec d
1bridged R N ...H e

1 0 0 0  stag 2.716 1.024 1.116 1.600 2.706/ 1 .0 2 0 ' 1 .1 1 2 ' 1.593'
2.732® 1.008® 1.085® 1.647®
2.791/l 1.009* 1.064* 1.727*

1 1 0 0  stag 2.828 1.023 1.070 1.759 2.833/ 1.018' 1.064' 1.769'
2.828® 1.006® 1.051® 1.777®
2.881ft 1.007* 1.041* 1.840*

1 1 1 0  stag 2.903 1 . 0 2 1 1.054 1.849 2.914' 1.017' 1.047' 1 .8 6 6 '
2.902® 1.005® 1.036® 1.860®
2.834*1

COr—HO1“H 1.054* 1.780*
1 1 1 1 2.963 - 1.044 1.919 2.976' - 1.039' 1.938'

2.967® - 1.027® 1.940®
2.862* - 1.039* 1.823*

2 1 1 1 2.982 (to 1,1,1)* - 1.042 1.941 2.991' - 1.036' 1.955'
2.890 (to 2)* - 1.054 1.836 2.904' - 1.047' 1.857'

shi-sh2-* 3.164 1 . 0 2 2 1.031 2.134 3.179' 1.024' 2.155'
2.09*

a Data from this work obtained by optim ising cluster structures at M P2/aug-cc-pVDZ level 
of theory. b R n n , distance between the nitrogen atom  of NH 4  and the nitrogen atom of the 
complexing NH 3  molecule(s). c r /ree, NH 4  non-coordinating N -H  bond length. d rbridged, 
NH4  N -H  bond length involved in coordination through hydrogen bond. e rn ...h , hydrogen 
bond distance, '  Ref. [20], M P2/6-31+G **. » Ref. [12], R H F/4-31G +3S. h Ref. [11], 
SCF/6-31G** for n = l ,  2 ; SC F/3-21G  for n—3, 4, 5. 1 (to X) X = l ,  2 ; distance of the nitrogen 
atom in NH 4  to the nitrogen atom  of the ammonia molecules coordinating the first solvation 
shell, either being a single molecule ( “to  1 ”) or a chain of two members ( “to 2 ”). '  sh i-sh 2 , 
“sh” indicates shell, distance between the nitrogen atoms of the solvating two membered 
chain. Here i f ree refers to the N -H  length of bonds not involved in hydrogen bonds; and 
rbridged, is the N -H  lenght that bridges the solvation shells.
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Table 4.6: Intermolecular and intramolecular parameters (A) for cluster family 2100
-> 3100 -► 4100

isomer This work Literature^

Raw r f r e e rbridged R N ...H RAW * fr e e  r bridged Rat...h
2 1 0 0  ecli 2.863 (to 1) 1 . 0 2 2 1.062 1.801 2.915 (to 1) -  1.037 1.878

2.744 (to 2) 1.097 1.647 2.827 (to 2) -  1.054 1.773
shi-sh2 3.087 1 . 0 2 2 1.036 2.051 3.176 -  1.014 2.162
3100 2.876 (to 1) 1 . 0 2 2 1.058 1.818

2.714 (to 3) 1 . 1 1 0 1.604
shi-sh2 3.005 1 . 0 2 1 1.042 1.963
sh2 -sh3 3.181 1 . 0 2 1 1.030 2.151
4100 2.885 (to 1) 1 . 0 2 2 1.057 1.829

2.699 (to 4) 1.118 1.582
shi-sh2 2.979 1 . 0 2 2 1.044 1.936
sh2 -sh3 3.109 1 . 0 2 1 1.034 2.076
sh3 -sh4 3.218 1 . 0 2 1 1.028 2.190

reference [13]

As first seen in 2111, for a given cluster, the Raw distance is larger if the coordina

tion is to a single ammonia than if is to a chain (i.e. for 3100 see 2.863 A (to 1 ) versus 

2.744 A (to 2 )). This is to say that, the longer the ammoniated “chain” linked to the 

core ammonium cation, the shorter the distance between the core and the ammonia 

located in the first solvation shell. The same is true for the hydrogen bond distance, 

and the opposite for r bridged -

Looking at the separation between solvation shells (i.e. “shi-sh2 ” in table 4.6) mea

sured between the nitrogen atoms of N H 3  molecules, one can see that from the first 

to the second solvation shell there is a decrease upon increasing the ammonia chain 

(i.e. cluster size). In the same fashion, the distance between the second and the third 

solvation shells (i.e. “sh2 -sh3”) also decreases upon increasing the ammonia chain.

Within the same ammonia chain, the distance between shells is increased as one 

moves away from the core (for example for 4100 “shi-sh 2 ” , “sh2 -sh3”, “sh3-sh4 ” we have 

2.979 A, 3.109 Aand 3.218 A, respectively). In addition, also looking at isomer 4100, 

it is interesting to note that the shi-sfi2  becomes 2.979 A, which is closer in magnitude
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Table 4.7: Intermolecular and intramolecular parameters (A) for cluster 3100ring
R n n r /r e e r bridged R  N ...H

2.774 (to 1) 1.021 1.075 1.718
shi-sll2 3.262 1.021 1.028 2.234

2.769 (to 1) 1.077 1.709
shi-sh2 3.247 1.021 1.029 2.220
sh2-sh3 3.168 1.023 1.032 2.136

to the Raw between the single ammonia and the NHj (2.885 A) than it is to the Raw 

between the “linker” NH3  and the cation (2.699 A).
To conclude, it would seem that when a new solvation shell is created through the 

elongation of the “ammonia chain” there will be a contraction of the spacing of the lower 

solvation shells with respect to the newly created. However, the incoming ammonia 

molecule responsible for the elongation of the chain will be placed at a distance higher 

than any other shell. This may be due to the polarisation effect of the ion decreasing 

with increasing chain size.

In isomer 3100ring, there are two ammonia molecules in the first solvation shell 

donating a hydrogen bond to a third double acceptor NH3  that also constitutes the 

second solvation shell. In turn, this ammonia coordinates a fourth one through a 

donating H-bond. The measurements can be seen in table 4.7. It should also be 

noticed that differently from all the other isomers we presented so far, the H-bonds 

stemming from the cation deviate from linearity by roughly 8 °.

We can see from table 4.7 that Raw for both ammonia molecules in the first solvation 

shell are very similar. One would be tempted to assume that the three-membered chain 

stems from the NH3  at the shortest distance from the cation (2.769 A), also because 

the N H N  angle between NHj and NH3  is marginally more linear (by 0.5°) when 

compared to the other one. One should remember that if higher level optimisations were 

available for this structures both ammonia molecules from the first shell might become
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Table 4.8: Intermolecular and intramolecular parameters (A) for cluster family 2100
-> 2200 3200

isomer This work Literature^

R n n r fre e rbridged. R n ...h R n n r/ree rbridged R n ...h

2 1 0 0  ecli 2.863 (to 1)/ 1 . 0 2 2 1.062 1.801
2.744 (to 2)f 1.097 1.647

shi-sh2 3.087 1 . 0 2 2 1.036 2.051
2 2 0 0 2.778 1 . 0 2 2 1.083 1.696 2.709 1.098 1.611
shi-sh2 3.107 1 . 0 2 2 1.034 2.073 2.997 1.029 1.968
3200 2.793 (to 2) 1 . 0 2 2 1.077 1.716
shi-sh2 3.116 1.034 2 . 082

2.751 (to 3) 1.092 1.659
shi-sh2 3.029 1.039 1.990
sh2 -sh3 3.191 1.030 2.161

J reference [13]

equivalent. Either way, assigning the chain to any of the two ammonia molecules, the 

general trends we have seen so far apply for the measured parameters. The only novelty 

is the fact that the sh2 -sh3  distance (3.168 A) is decreased with respect to the shi-sh2  

(3.262, 3.247A), most likely due to the fact that the outermost NH3  is a double H-bond 

acceptor.

Cluster family 2 1 0 0  —> 2 2 0 0  —► 3200

The same trends we have seen so far apply to this family of clusters as it can be seen 

from table 4.8. The only two noteworthy comments are, on one hand, that for isomer 

2 2 0 0  we find two structurally equivalent two-membered chains solvating a core cation 

judging by the same measured values for the parameters of interest. On the other hand, 

the Rnn to the two-membered chain for isomer 3200 (2.793 A, “to 2 ”) is increased with 

respect to that of 2 2 0 0  (2.778 A, “to 2 ”), as a result of the expansion of one ammonia 

chain to three members. In the latter, a contraction of the first solvation shell is seen, 

as before.
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Table 4.9: Intermolecular and intramolecular parameters (A) for cluster family 2100
-> 2110 -+ 3110

Isomer This work Literature7

Rnn r /r e e r bridged R N ...H Rnn r/ree  r bridged R N...H

2100 ecli 2.863 (to 1) 1.022 1.062 1.801
2.744 (to 2) 1.097 1.647

shi-sh2 3.087 1.022 1.036 2.051
2110 2.926 (to 1,1) 1.021 1.050 1.877 3.868 (to 1) 1.047 1.821

2.823 (to 2) 1.069 1.755 2.760 (to 2) 1.077 1.684
shj-sh2 3.130 1.022 1.033 2.097 3.040 1.025 2.015
3110 2.935 (to 1,1) 1.021 1.048 1.887

2.798 (to 3) 1.074 1.724
shi-sh2 3.629 1.021 1.037 2.019
sh2-sh3 3.197 1.021 1.030 2.168

i  reference [13]

Table 4.10: Intermolecular and intramolecular parameters (A) for cluster family 2 1 0 0  

2 1 1 0  -*• 2 2 1 0

Isomer This work®

Rnn r /ree rbridged R N ...H

2100 ecli 2.863 (to 1 )' 1.022 1.060 1.801
2.744 (to 2)1 1.097 1.647

shi-sh2s 3.087 1.022 1.036 2.051
2110 2.926 (to 1,1)/ 1.021 1.050 1.877

2.823 (to 2)1 1.069 1.755
shi-sh25 3.130 1.022 1.033 2.097
2210 2.947 (to 1 )/ 1.021 1.046 1.901

2.847 (to 2,2)^ 1.063 1.784
shi-sh2s 3.144 1.022 1.032 2.112

C luster family 2 1 0 0  —► 2110 —» 3110

As it can be seen in table 4.9 same trends apply to this cluster family.

C luster family 2 1 0 0  —► 2 1 1 0  —► 2 2 1 0

Also for this family same trends apply as it can be seen in table 4.10. Let us remark 

the structurally equivalent two-membered ammonia chains in the case of isomer 2 2 1 0 , 

in a similar way as we saw for 2200. Also, to point out how the “sh1-sh2” distance 

increases for the same degree of NHj saturation, when going from 2110 (3.130 A) to 

2 2 1 0  (3.144 A).
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4.3.3 Harmonic Frequencies

Ab initio harmonic frequencies were calculated for NHj (NH3)n (n =  2 — 5) on the 

fully optimised structures at the MP2/aug-cc-pVDZ level of theory. As for ammonia 

clusters, these were analysed in order to extract information on the frequency shift of 

the N-H stretching modes in an attempt to associate a particular geometrical feature to 

a range of frequencies. The results of our frequency calculations for the N-H stretches 

are shown in figures 4.8-4.18.

Out of the 20 minimum energy isomers we have isolated as possible minimum energy 

structures, only 4 featured a complete set of real frequencies (1000 ecli, 1100 ecli, 1100 

stag and 3100ring). Conversely, the 15 remaining structures have a varying number 

of imaginary frequencies: one in the case of 1 0 0 0  stag, 2 1 0 0  ecliecli, 2 1 0 0  ecli, 2 1 1 0  

and 3200; two for 2100 stag, 1 1 1 1 , 2200, 2111ring and 4100; three for 1110 ecli, 1110 

stag, 3100, 2210 and 3110; finally, 2111 had four imaginary frequencies. In principle, 

this finding indicates that we have not found the true minimum structures. However, 

all our clusters are converged to values that are well within the threshold criteria for 

optimisation. In addition, they are in agreement with some structures reported in the 

literature, a fact that makes us confident that the spatial arrangement of the monomers 

correspond to reasonable structures. The most likely explanation to this finding is that, 

because optimisations were carried out using standard optimisation criteria, the clusters 

have geometrical parameter values different to those at the bottom of their PES well, 

thus the rise of unexpected imaginary frequencies. Also, in figures 4.9, 4.10, 4.11 and 

4.12 it can be seen that those isomers whose only difference is the staggered or eclipsed 

orientation of a solvating ammonia molecule with respect to the core ammonium cation 

have practically the same frequency spectra (i.e. 1 0 0 0  ecli and 1 0 0 0  stag; 1 1 0 0  ecli and 

1 1 0 0  stag; 1 1 1 0  ecli and 1 1 1 0  stag; 2 1 0 0  ecli, 2 1 0 0  stag and 2 1 0 0  ecliecli).

The experimental spectra obtained in references [18, 34] for the NHj (NHs)n ag
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gregates is interpreted by considering the clusters as a “loose assemblage” [18] of “es

sentially isolated molecules” [34]. This means that the N-H stretches are considered 

shifted from the monomer (NH3  and N H j) wavenumbers by virtue of the perturbative 

effect of the interactions. With this in mind, it does not come as a surprise that two 

main spectra features arise, those related to the vibrations of NHj cation and those 

assigned to the vibrations of the solvating ammonia molecules.
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Figure 4.8: Vibrational spectra of NH3 (top) and NHj calculated for optimised struc
tures at MP2/aug-cc-pVDZ level of theory
NH3  characteristic peaks are calculated at «  3480 cm - 1  for symmetric N-H stretches, and 
~  3635 cm - 1  for antisymmetric N-H stretches. NH^ shows a characteristic peak at ^  3533 
cm - 1  due to N-H antisymmetric stretches. A symmetric frequency is calculated at «  3378

c n r 1 but is IR inactive due to symmetry.
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Figure 4.9: Vibrational spectra of NH 4 NH 3  calculated for optimised structures at 
M P2/aug-cc-pVDZ level of theory

The characteristic peak of both spectra correspond to the N-H stretch of the proton 
transfer reaction coordinate with umbrella motion of the monomers at «  2 0 2 0  crn-1 .
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Figure 4.10: Vibrational spectra of NHj(NH3)2 calculated for optimised structures at 
MP2/aug-cc-pVDZ level of theory

The characteristic peaks in both spectra correspond to the hydrogen bonded anti and 
symmetric N-H stretch of the cation at «  2684 cm-1 and »  2710 cm-1, respectively.
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Figure 4.11: Vibrational spectra of NHj (NH3)3 calculated for optimised structures at 
MP2/aug-cc-pVDZ level of theory
The first characteristic peak in both spectra correspond to the symmetric stretch of all N-H 
bonds in the core cation at ~ 2943 cm-1. The antisymmetric stretch of all N-H bonds in 

the cations correspond to a double peak seen at ~  2974 cm-1 and ~ 2975 cm-1.
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Figure 4.12: Vibrational spectra of NH4+(NH3)4 calculated for optimised structures at 
MP2/aug-cc-pVDZ level of theory

The characteristic peak that corresponds to the N-H stretch of the NH4 towards the 
(NH3)2 chain is found at «  2264 cm-1 for 2100 ecli, «  2265 cm-1 for 2100 stag and «  2260 
cm-1 for 2100 ecliecli. The N-H stretch from the NH4 to the single NH3 is found at «  2835 

cm-1 for 2100 ecli, «  2832 cm-1 for 2100 stag, «  2830 cm-1 for 2100 ecliecli. The N-H 
stretch between NH3-NH3 is found at «  3280 cm-1 for 2100 ecli, and «  3279 cm-1 for 2100

stag and 2100 ecliecli.
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Figure 4.13: Vibrational spectrum of NHj (NH3)4 calculated for optimised structure at 
MP2/aug-cc-pVDZ level of theory
The characteristic band for isomer 1111 is a triple peak at «  3144 cm-1, corresponding to 
the antisymmetric stretch of all the N-H bonds of NH4 . The peak corresponding to the 
symmetric stretches of the cation is barely IR active at «  3067 cm-1 due to symmetry.
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Figure 4.14: Vibrational spectra of NHj (NH3 ) 4  calculated for optimised structures at 
MP2/aug-cc-pVDZ level of theory

Isomer 3100 (top) has a characteristic peak at «  2064 cm " 1 that corresponds to the 
bending and N -H  stretch of the NH4+ complexing the three membered ammoniated chain. 
The stretch of the N -H  bond that binds the free ammonia molecule of the isomer is found 
at «  2886 cm - 1 . The wavenumber associated with the hydrogen bond between first and 

second, and second and third solvation shells are found at «  3173 cm - 1  and «  3369 cm -1 , 
respectively. Characteristic peaks of 3100ring are found at ~  2555 cm 1 and ~  2648 cm 1 

for the anti and symmetric N -H  stretching modes of NH 4  . A peak at «  3349 cm - 1  

corresponds to a collective vibration of all hydrogen bonds between the ammonia solvating
shells.



Chapter 4. Protonated ammonia clusters: N H | (NH3)n (n =  1 — 5) 156

2000
2110

1800

1600

1400

|  1 2 0 0  

I 10 0 0c
DC

800

600

400

200

2000 2200 2400 2600 2800 3000 3200 3400 3600

freauencies (cm '1)

4000
2200  '

3500

3000

2500
COM
05I 2000c

DC

1500

1000

500

2600 2800 3000 3200 3400 36002200 24002000
frequencies (cm '1)

Figure 4.15: Vibrational spectra of NHj (NH3)4 calculated for optimised structures at 
MP2/aug-cc-pVDZ level of theory

Isomer 2110 (top) has four characteristic peaks, the first located at ss 2706 cm - 1  

corresponding to the stretch of the hydrogen bond between the cation and the 
two-membered ammoniated chain. At roughly 3015 cm - 1  and 3049 cm - 1  are located the 

peaks corresponding to symmetric and antisymmetric N-H stretches binding the free 
ammonia molecules. The hydrogen bond between first and second solvation shell vibrates at 

«  3328 cm- 1 . Isomer 2200 has a peak at «  2448 cm - 1  and another one at «  2518 cm-1 , 
both corresponding to the respectively anti and symmetric vibrations of the hydrogen bond 

between the core cation and the both the two membered ammoniated chains. At ss 3304 
cm - 1  is a double peak corresponding to the vibration between first and second solvation

shells.
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Figure 4.16: Vibrational spectra of NHj (NH3)5 calculated for optimised structures at 
MP2/aug-cc-pVDZ level of theory
Isomer 2111 (top) has a first peak at «  2943 cm-1 , corresponding to the symmetric stretch 

of all N-H bonds in NH^. Antisymmetric modes are found for all N-H bonds at «  3125 
cm-1 , and at «  3190 cm - 1  for N-H  bonds coordinating free NH3  molecules only. At «  3539 
cm - 1  there is one asymmetric N-H  stretch mode from the first shell molecule to the second 
shell one. Isomer 2111ring has peaks at «  3063 cm - 1  and ~  3107 cm - 1  that corresponds, 
respectively, to the symmetric and antisymmetric stretches of all the cation N-H bonds. 
Roughly at 3170 cm - 1  we see a double peak that corresponds to the N-H stretches that 

bind to the free ammonia molecules only. The stretch between solvation shells is double and
calculated at «  3430 cm-1 .
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Figure 4.17: Vibrational spectra of NHj (NH3)5 calculated for optimised structures at 
MP2/aug-cc-pVDZ level of theory

Isomer 2210 (top) features characteristic peaks at «  2799 cm-1 and «  2806 cm-1 , 
corresponding to the anti and symmetric vibration of the hydrogen bond between the cation 
and both the two membered ammonia chains. The N-H stretch from the cation to the free 
NH3 vibrates at «  3087 cm-1 . Hydrogen bond between solvation shells is a double peak at 
«  3341 cm-1 . Isomer 3110 has a peak at «  2610 cm-1 corresponding to the N-H stretch of 
the cation towards the three-membered ammonia chain. Two peaks at «  3038 cm-1 and «  

3077 cm-1 correspond to the vibration of the hydrogen bond between the cation and the 
free ammonia molecules. Vibration of the bonds between first and second, and second and 

third solvation shells are found at ~  3251 cm-1 and ~  3381 cm-1 respectively.
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Figure 4.18: Vibrational spectra of NHj(NH3)5 calculated for optimised structures at 
MP2/aug-cc-pVDZ level of theory

Isomer 3200 (top) has two peaks corresponding to the hydrogen bonds from the 
cation to the three and two-membered ammoniated chains at, respectively, ~  2328 
cm-1 and ~  2570 cm-1. The hydrogen bonds from the first to the second solvation 
shell vibrate at «  3214 cm-1 in the three-membered ammonia chain, and «  3377 

cm-1 in the two-membered ammoniated chain. Another characteristic peak is found 
at «  3469 cm-1 corresponding to the hydrogen bond between second and third 

solvating shells. Isomer 4100 has peaks at «  1953 cm-1 and «  2915 cm-1 
corresponding to the N-H stretches from the cation to the four-membered ammonia 
chain and free ammonia, respectively. Peaks at ~  3138 cm-1, ~  3311 cm-1 and ~  

3396 cm-1 correspond to the hydrogen bond between the first and second, second and 
third, and third and fourth solvation shells respectively.



Chapter 4. Protonated ammonia clusters: NH4 (NH3 )w (n =  1 -  5) 160

NH4 spectral features

Looking at figures 4.8-4.18, we can see how the collective frequencies of the N-H stretch

ing of the solvating ammonia molecules have much less intensity than the core ammo

nium cation. This is also seen in the experiments by Schwarz [18] and the figures from 

references [14, 20, 34]. Thus, the main features of the spectrum for all clusters are 

determined by the strong intensities of the cation vibrational modes. In other words, 

the signature of protonated clusters is mainly given by the vibrating behaviour of the 

ammonium cation.

For protonated ammonia clusters, as also seen in references [14, 15, 18, 20, 34] 

higher frequencies for the N-H vibrational modes of the ammonium cation are found 

upon increasing the cluster size.

Also, for N H j, we find consensus with the literature on the N-H stretching of 

the core cation, in that when is part of an aggregate, is noticeably downshifted with 

respect to the wavenumbers of the cation alone. This can be exemplified looking at 

Figs. 4.8 and 4.13. In the former, a single characteristic peak, corresponding to the 

N-H asymmetric stretching, is seen at ~  3533 cm- 1  for free NHj; while for isomer 

1111 (Fig. 4.13), the same vibrational mode is estimated as a peak shown at ~  3067 

cm-1. The red-shift amounts to «  466 cm-1.

NH3 spectral features

As before, comparing the stretching mode for free NH3  (figure 4.8) and in the cluster 

1111 (figure 4.13) we also find it to be red-shifted (~ 31 cm-1), albeit significantly less 

than NHj. A similar finding is also reported from the experiments in reference [34], 

where the red-shift of the monomers NHj and NH3  in isomer 1111 is attributed to 

the fact that for species with one solvation shell the N-H bonds involved in hydrogen 

bonding are those of NHj. However, ammonia molecules do participate in hydrogen
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bonding when a second or higher solvation shell is formed. Thus, it would be interesting 

to monitor how the N-H stretches of ammonia molecules donating hydrogen bonds shift 

from the free NH3.

Dependence of NH3 spectral features on the solvation shell order

Let us start by considering isomer 2 1 1 1  as an example (figure 4.16). It is interesting 

because it is the biggest “globular cluster” featuring a complete first shell and a single 

NH3  in the second shell, and also because one can recognise three “types” of solvating 

ammonia molecules.

First, there are three free NH3  molecules that are part of the first solvation shell, 

and as such, each accepting a hydrogen bond from the core cation. These are equivalent 

to those seen in isomer 1111, with their N-H asymmetric stretches being red-shifted 

from the free NH3  monomer by the same amount (roughly 30 cm-1).

Second, there is a free NH3  molecule placed in the second solvation shell accepting 

a hydrogen bond from an ammonia molecule on the first solvation shell. In this case, 

the downshift is «  2 0  cm-1, lower than in the previous case, due to the fact that this 

molecule is further away from the core and more loosely bound, and also has no N-H 

bond participating in a hydrogen bond.

Finally, there is one first solvation shell NH3  molecule acting as hydrogen bond 

donor and acceptor. In this case, two out of the three N-H modes axe degenerate. In 

fact, the calculated frequency for the N-H stretches involving only free non hydrogen 

bonding hydrogen atoms, is downshifted with respect to those of the free ammonia 

by 34 cm-1, similarly to other free N-H bonds. The frequency calculated for the 

N-H stretches involved in hydrogen bonding with the second shell is downshifted with 

respect to free ammonia by roughly 95 cm-1, i.e. three times the non-bonding hydrogen 

atoms.
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To summarise these observations, we can say that “free” ammonia N-H bonds in a 

cluster i.e. not involved in a hydrogen bond, vibrate roughly at the same frequencies. 

That is «  20-30 cm- 1  lower than NH3. However, the wavenumbers tend to slightly 

increase with increasing solvation shell order, indicating a decreased red-shift. “En

gaged” or donating ammonia N-H bonds vibrate at lower wavenumbers than “free” 

ones; thus, the difference with respect to free ammonia molecules is larger.

Notice that by looking at how the asymmetric N-H stretch of a free ammonia 

molecule is perturbed when brought to form part of a protonated ammonia cluster in 

the example above (isomer 2 1 1 1 ), we could identify three “types” of ammonia molecules 

located in different environments in the cluster (e.g. first or second shell) and if they 

were involved in a hydrogen bond. Based on this possibility, one could formulate two 

additional questions.

First, what happens to free NH3  molecules in the first solvation shell when the 

latter is not complete (that is, when the cation is not fully complexed)? Also what 

happens to ammonia molecules in solvation shells higher than the second?

To answer the first question we can look at isomers 2110 and 2100. In isomer 

2110, all N-H stretches vibrate at a slightly lower wavenumbers than in isomer 2111, 

translating into insignificantly higher red-shifts with respect to free ammonia molecules 

than those seen for isomer 2111 (e.g. ~  33 cm - 1  for first shell ammonia molecules, «  

23 cm- 1  for second shell ammonia molecule and for first shell linking to second shell 

NH3  molecule, «  35 and «  102 cm - 1  for free N-H bonds and donating hydrogen 

atom, respectively). For isomer 2100, the trend is similar even though N-H stretches 

of ammonia molecules vibrate at slightly lower wavenumbers than in isomer 2110. In 

fact the red-shift for ammonia molecules in isomer 2 1 0 0  compared with free ammonia 

molecules is «  28 cm- 1  for second shell ammonia molecule, «  38 cm- 1  for the single 

free first shell ammonia molecule and for first shell linking to second shell NH3, «  41
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and 113 cm- 1  for free N-H bonds and donating hydrogen atom, respectively.

As for what happens to ammonia molecules in solvation shells higher than the sec

ond, we can look at isomers 3100 and 4100. In isomer 3100 we have two donor/acceptor 

ammonia molecules in shells one and two respectively. The downshift with respect to 

free ammonia molecules experienced by the N-H donating hydrogen atom is «  118 

cm- 1  for the first solvation shell ammonia and «  91 cm- 1  for the NH3  in the second 

solvation shell. For isomer 4100, the red shift experienced by the N-H bond in the first 

shell donor/acceptor NH3  molecule is «  38 and 118 cm-1.

In reference [34], only globular structures are reported. However, we have also to 

consider “linear” clusters such as 2100. This is the smallest isomer featuring a second 

solvation shell, and in it we encounter two types of ammonia molecules complexing 

the cation. First, a free ammonia molecule, as seen for isomer 1111, in which case the 

red shift is 28 cm- 1  with respect to NH3  in gas phase. Second, an ammonia molecule 

involved in a hydrogen bond with the second shell, in which case the downshift is 113 

cm- 1  with respect to the free monomer, i.e. significantly greater and comparable in 

magnitude to the one affecting the cation.

All in all, the evidences above, indicate that the red shift experienced by solvating 

ammonia molecules with respect to free ammonia could be determined by three general 

factors depending on the type of cluster they belong to. The first one is whether or not 

the ammonia molecules are involved in donating hydrogen bonds. As explained above, 

free solvating ammonia molecules have small shifts from the spectrum of the monomer, 

while ammonia molecules involved in linking solvating shells have a remarkable red 

shift. Second, for an ammonia chain the shift is determined by the level of saturation 

of the ammonium cation, thus the less saturated the cation is the bigger is the shift (e.g. 

considering the hydrogen bond between first and second solvation shell in the ammonia 

chain of isomer 4100 the shift is 342 cm-1, while for isomer 2110 the shift amounts to
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190 cm- 1  ). Third, for a given solvation shell the frequency shift varies depending on 

the length of the ammonia chain. Within a chain, the higher the order of solvation 

shell the smaller the shift (e.g. N-H symmetric stretch difference in wavenumbers from 

free NH3  in isomer 4100 in shells 1 - 2  is 342 cm-1, shells 2-3 is 169 cm-1, shells 3-4 is 

94 cm-1).

The aforementioned findings have a clear link with the trends seen for the geo

metrical parameters, in particular with the distances between the core cation and the 

first ammoniated shell and with the distances between solvating shells. The trend is 

that the closer the ammonia molecule acting as a linker to the second solvation shell 

is to the core cation the greater is the red shift when compared to the free ammonia 

molecule spectrum. These characteristics are not evident from the spectrum figures 

at first sight because the collective frequencies of the N-H stretching of the solvating 

ammonia molecules have much less intensity than the core ammonium cation. This is 

true for this work, as well as for the experiments by Schwarz [18] and the figures from 

references [14, 20, 34]. Thus, the main features of the spectrum for all clusters are de

termined by the strong intensities of the cation vibrational modes. In other words, the 

signature of protonated clusters is given by the vibrating behaviour of the ammonium 

cation. However, the shifts in (NH3 ) 3  vibrations convey the detailed information to 

discern the clusters’ structures.

A common feature present in H-bonded clusters such as ammonia is that the N-H 

stretch frequencies are seen to decrease with cluster size. This does not seem to be the 

case for protonated ammonia clusters, as seen in this work and references [14, 15, 18, 

20, 34] where higher frequencies for the N-H vibrational modes of the cation are found 

upon increasing the cluster size.

So far we have seen that our data are qualitatively in agreement with the literature 

(e.g. [14, 15, 18, 20, 34]). From a quantitative point of view they are, however,
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significantly blue-shifted compared to the seminal experimental work by Schwarz [18], 

the experimental data obtained by Price et. al [34] and the theoretical work in reference 

[20]. We have found other theoretical data showing this tendency to blue shift with 

respect to the experiments, namely references [14, 19, 21].

Cluster families

As for “globular” clusters, paying attention to the solvation sequence 1000, 1100, 1110 

and 1 1 1 1 , in which the number of ammonia molecules complexing NHj (by accepting 

a hydrogen bond from the cation) is monotonically increased by 1 , a blue shift in the 

characteristic peaks of the spectra is observed upon increasing solvation. The tendency 

of the average frequency of antisymmetric stretches in the solvating NH3  molecules is 

to increase by «  1 2  cm- 1  going from 1 0 0 0  to 1 1 0 0 , by «  6  cm- 1  going from 1 1 0 0  to 

1110 and by ^  3 cm- 1  going from 1110 to 1111. In the same way, the average frequency 

of the symmetric shifts for the solvating NH3  molecules increases by roughly 13 cm- 1  

going from 1000 to 1100, by ^  4 cm - 1  going from 1100 to 1110 and by «  2 cm- 1  

from 1110 to 1111. Upon going from 1 1 1 1  to 2111 the gap in both anti and symmetric 

N-H stretches is roughly two and one wavenumbers, respectively. This lead us to think 

that, in regards to the frequency at which the ammonia molecules vibrate, a plateau is 

reached when the first solvation shell is completed. This would mean that probably a 

further increase in solvating molecules (e.g. 2 2 1 1 ) would produce little or no change in 

the characteristic wavenumbers corresponding to anti and symmetric N-H stretches. 

Analogously, for the same cluster solvation sequence N+-H...H bonds get elongated by 

0.16 A going from 1 0 0 0  to 1 1 0 0 ; by 0.09 A from 1 1 0 0  to 1 1 1 0 ; and by 0.07 A from 

1110 to 1 1 1 1 . Thus, longer hydrogen bonds associate to higher frequencies, a feature 

already seen in ammonia clusters.

Isomer 2111 has a single ammonia molecule placed in the second shell. The forma
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tion of this new layer is reflected in the spectrum for this isomer with the appearance of 

a noticeable peak at «  3539 cm-1. This wavenumber corresponds to the N-H stretch 

from the hydrogen bond from shell 1  to shell 2 .

Something we have noticed in the spectrum that corresponds to isomer 2111 is that 

it agrees with that shown by references [14, 15], but it does not with the figure shown 

in reference [20]. The structure from this work that fits best with the work presented 

by Park [20] is the isomer 2111ring.

Concerning “linear” clusters, we can see from the cluster family 2100, 3100 and 

4100 a pattern in which higher frequency vibrations are associated to the antisymmet

ric stretches experienced by those ammonia molecules that are further apart from the 

ammonium cation. There is also a dependency between the frequency at which the sol

vating molecules vibrate and the distance to the ammonium cation, with the molecules 

of the second and higher solvation shells vibrating at slightly higher frequencies (in 

isomer 4100 4-6 cm1-, 5 cm- 1  third to fourth and second to third solvation shells re

spectively) than first solvation shell molecules. For the latter, the same dependency 

applies, thus the free ammonia molecule, at a higher distance from the core cation 

(~ 0.19 A), vibrates at a higher frequency than the ammonia molecule that links to 

higher solvation shells. Still concerning antisymmetric stretches, it should be added 

that, free H atoms are found to participate only in antisymmetric stretches, vibrating 

at higher frequencies 38 cm - 1  for isomer 4100) than H-bonded ones, as already seen 

for neutral ammonia clusters [40].

Concerning symmetric stretches, lower frequency values are associated to ammonia 

molecules closer to the core cation. However, one has to point out an additional 

underlying trend, arising when an ammonia molecule is a simultaneous hydrogen bond 

donor-acceptor, as it happens in the ammoniated chains. Thus, solvent molecules 

involved in the “ammoniated chain” are associated to lower wavenumbers, the closer
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to the core cation the lower the wavenumber.

In the range of symmetric stretches, a number of normal modes, typically with the 

lowest wavenumbers are related to both symmetric and antisymmetric N-H stretches 

of the ammonium cation, the latter vibrating at the highest wavenumbers within this 

group. It appears that the number of these modes is determined by the saturation 

of the cation, e.g. four modes will describe cation stretches in isomer 1111. These 

wavenumbers have also associated a variable presence of bending, the highest the fre

quency the smallest the presence of the bending.

We found the same vibrating trends as above for isomers 2200, 3200, 2110, 2210 

and 3110.

Clusters featuring a ring: 3100ring, 2111ring

In what regards the isomers presenting a ring, we have to revise the trends above, 

except for the one just introduced describing the N-H stretches of the ammonium 

cation. For the isomer 2111ring, we see that the free hydrogen atoms from the am

monia molecules in the first solvation shell that form the ring vibrate at the highest 

frequencies. Depending on their distance to the core cation, this would be opposite 

to what we have seen for the isomers displaying “ammoniated chains” given that the 

molecules forming the ring are closer (2.909 A and 2.920 A) to the ammonium than 

the other two ammonia molecules in the first solvation shell (2.975 A). Vibration of 

the free hydrogen atoms occurs roughly 6  cm - 1  above the first solvation shell ammonia 

molecules that are not included in the ring, and roughly 15 cm- 1  above the ammonia 

molecule in the second solvation shell. The latter is a double hydrogen bond acceptor, 

and it vibrates at lower frequencies from those expected for an ammonia molecule in 

such position with respect to the ammonium cation.

In isomer 3100 the highest normal modes correspond to the third solvation shell
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ammonia molecule, as seen for isomer 2 1 0 0 ring, the double acceptor ammonia molecule 

vibrates at lower frequencies («  14 cm - 1  in antisymmetric stretches) than the ammonia 

molecules from the first solvation shell.

In what regards symmetric stretches, for both ring isomers, the molecules vibrating 

at the highest wavenumbers are the ones not involved in the ring (ammonia molecule 

in the third solvation shell for isomer 3100ring, and two ammonia molecules in the first 

solvation shell for isomer 2 1 0 0 ring), which are also the ones further away from the core 

cation. All the molecules involved in the ring tend to vibrate collectively at the same 

frequencies, albeit with different strengths.

4.3.4 Comparison w ith experim ents

In the following section, we compare the binding energies and thermochemical data 

estimated by this work and the same values, both experimental and theoretical, found 

in the literature.

Table 4.11 shows binding energies for protonated ammonia clusters for this work 

and those from references [10-15, 17, 38].

We can see from table 4.11 that, across literature data (columns 3 to 14), Pople’s 

basis sets, with different degrees of flexibility, are the most popular choice for any level 

of theory, probably because they are computationally less demanding that Dunning’s 

family.

Three works, apart form this one, deal with protonated ammonia clusters at the 

MP2 level of theory, these are references [13, 14, 17], in columns ten, five and eleven, 

respectively. They all have chosen double-^ basis with diffusion functions in the 

heavy atoms and one d-polarisation functions for nitrogen atoms (references [13, 14], 

columns ten and five, respectively) and one p-polarisation functions for hydrogen 

atoms(reference [17], column eleven). The values provided by Deakyne [13] in col
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umn ten, are remarkably different from those by Wang et. al. [14], in column five. 

The reason for the discrepancy, both using the same level of theory, may be found 

in the fact that is likely that reference [13] corresponds to a single point calculation 

performed on a geometry optimised at HF/6-31+G*, and also to the lack of BSSE and 

ZPE corrections, both included in reference [14]. The need for both the aforemen

tioned corrections is clear after the comparison between the data from the columns five 

and ten, as already predicted in the work by Kassab and Evleth [12]: “Accurate theo

retical estimates of ion-molecule complexation energies require using [....] zero-point, 

thermodynamic, correlation, and basis set superposition error corrections”.

The work by Del Bene et. al [17], in column eleven, at the MP2 level of theory, 

provides a better description of the polarisation with respect to references [14] and

[13] by incorporating polarisation functions in the hydrogen atoms (6-31+G**). In 

addition, the electronic energy is corrected, although only with the value obtained for 

the ZPE calculated for the HF equilibrium structures with 6-31+G*. The value from 

column eleven is the value that better agrees with the dimer from this work. It is 

probably fortuitous (values from reference [17] lack BSSE correction), perhaps due to 

error cancellation, and since no clusters above the dimer are reported, no conclusion 

on the performance of that theoretical approach can be reached with respect to the 

one used in this work.

The works using DFT to investigate protonated ammonia clusters are references 

[14, 15, 38], in columns four, three and seven, respectively. They all choose B3LYP 

as a functional with different double-£ basis sets. The work by Nakai et. al [38], in 

column seven, overestimates the binding energies quite dramatically with respect to 

references [14] and [15]. We think that the reason for this is that the tendency of 

B3LYP to overestimate the binding energy may be enhanced by the choice of cc-pVDZ 

as a basis set. For these data no BSSE or ZPE corrections have been introduced.



Table 4.11: Binding energies for NHj (NH3)n, (n = 2 — 5) in kcal/mol°
Isomer This work0 FM6 WCJLC NGIOT0 KEe D7 BFPy HFNKYh PA*

MP2
aTZ

B3LYP
631**

B3LYP'
631+*

MP277
631+*

HF7
D95

B3LYP77
DZ

HF
431

HF7
631*

MP277
6314-*

MP7
631+**

HF7
321*

HF77
631**

HF
ST03G

1000

1100

26.023(24.433)

45.284(41.406)

29.223

45.702

25.99

43.21

22.83

39.71

25.30

45.83

30.92

55.87

30.6

53.03

26.2

47.1

30.5

54.1

24.35, 23.37, 
23.6

32.20

56.82

26.21

46.82

42.2

74.2

1110
2100

59.856(54.412)
54.488(50.145)

59.009
53.828

56.83
51.98

53.08
47.26

62.61 76.20 71.74
64.3

77.20 97.3

1111
2110
2200
3100
3100ring

72.746(65.471)
68.466(61.252)
63.862(57.036)
61.156(54.502)
61.567(54.041)

68.720
64.770
60.493

unstable

67.37
63.90
59.59

64.27
59.60
54.31

76.42 92.97 87.68 74.4 114.9

2111
2111ring
2210
3110
3200
4100

80.284(71.509)
80.487(71.262)
76.665(67.894)
74.905(66.198)
70.149(60.815)
66.836(58.773)

73.280

70.160
68.397
64.517

unstable

73.83 69.80 96.27 113.98 125.2

a This work, calculated binding energies for the most stable isomers, shown are the best values for each isomer calculated at the MP2/aug- 
cc-pVTZ with vertical Counterpoise correction or optimisation in the CP-corrected PES. In brackets binding energy with ZPE correction, 
calculated at the MP2/aug-cc-pVDZ level of theroy. 6Ref.[15], B3LYP/6-31G**; cRef.[14], 1 B3LYP/6-31+G*, 11 MP2/6-31+G*; dRef.[38]/ 
HF/D95, 11 B3LYP/cc-pVDZ; eRef.[12] HF/4-31G +  3S ; 'Ref.[13]7 MP2/6-31G*, 77 MP2/6-31+G**, 777 MP3/6-31+G**; »Ref.[17] MP2/6- 
31+G**//HF/6-31+G* +  ZPE, MP2/6-31+G**//HF/6-31+G* +  ZPE, MP4SDQ/6-31+G**//HF/6-31+G* +  ZPE, respectively. ^Ref.fll]7 
HF/3-21G, 11 HF/3-21G* ; dRef.[10] HF/STO 3G
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References [14], in column four, and [15], in column three, show values in reasonable 

agreement. Wang et. al [14] correct for BSSE and ZPE and choose in their basis set 

to have diffusion functions and not to include polarisation on the hydrogen atoms (6 - 

31+G*). Fouqueau and Meuwly [15] choose to fully polarise the basis set of choice and 

not adding diffusion functions (6-31G**), which leads them to use a basis set that is 

know to underestimate binding energies, thus potentially benefiting from a cancellation 

of errors when used with B3LYP. This cancellation is perhaps the reason behind the 

reasonable agreement between both set of data. Still, data from reference [14] in column 

four lie above what reported in column three [15], but still below than that presented 

by this work.

Overall, from all the table values and despite differences higher than 1 kcal/mol, 

our data compares best with that presented by Wang et. al. [14], in column five. 

When comparing our data with that of colum five, we can see how the choice of basis 

set affects the discrepancy between the binding energies of both works. As has been 

already mentioned, 6-31+G* is not only smaller than aug-cc-pVTZ, but also does 

not provide a very good description of the polarisation, important in a system that 

includes a charged species. Also, compared to aug-cc-pVTZ, 6-31+G* lacks diffuse 

functions, something that although not conclusive (for a given cluster size this work 

has isolated more isomers), can perhaps be reflected in the worse agreement found in 

isomers featuring ammonia chains, as oppose to “globular” ones. For example, for 

isomer 1 1 1 1  the data in column five lies «  1 . 2  kcal/mol lower than that of this work, 

while isomer 2200 lies ^  2.7 kcal/mol lower than that of this work.

In turn, when comparing the data of this work with that of Wang et. al at the 

B3LYP level of theory (column four), we find that the discrepancy is smaller. This is 

most likely due, as has already been mentioned, to the tendency that B3LYP has to 

overestimate binding energies.
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Table 4.11, can also give us an idea of how many and which of the clusters isolated 

by this work have been reported before in the literature. Clusters 3100, 3100ring, 4100 

and 2111ring from this work appear to be novel structures. Fouqueau and Meuwly [15] 

report isomers 3100 and 4100 as unstable, it is suggested that this could be due to the 

underestimation by DFT of the small energy barrier shuttling of the proton.

To finish with the structural considerations, let us recall that although not included 

in table 4.11, for clusters NHj (NH3)n (n =  1  — 3) we have found pairs of practically 

isoenergetic structures, differing only in the orientation of the hydrogen atoms of the 

ammonia molecules with respect to the ammonium cation (e.g. “eclipsed” and “stag

gered”). We have not found this consideration in any of the papers we have reviewed. 

In fact, all literature presenting the symmetry or figures of the clusters agrees with the 

arrangement of the earliest pictoric model from reference [1 1 ]: “optimum orientation 

of the hydrogens on a NH3  group with respect to the hydrogens of NHJ or another 

NH3  is staggered” [13].

Regarding the spatial arrangement of the ammonium ammonia dimer, our calcu

lations are in agreement with the well established idea that the equilibrium struc

ture for the ammonium ammonia dimer is NHj (NH3) as reported in references. [10— 

15, 17, 38, 39], and not the N2 H7  cation as an early theoretical study [37] first sug

gested. However, we understand that this is not conclusive, since the barrier for proton 

shuttling between the two ammonias is very low, and quantum effects could even make 

the proton delocalised.

All binding energies from table 4.11 have been used to compute thermochemical 

data, as presented in tables 4.12 and 4.13. In these tables only the isomers with the 

lowest total energy are included, the best binding energy data available for each isomer 

presented (i.e. the largest available basis set with Counterpoise corrected optimisation), 

alongside with the the ZPE correction at the MP2/aug-cc-pVDZ level of theory (in
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brackets). It should be noticed that in table 4.11 the energetic ranking of isomers 2111 

and 2111ring is inverted, upon introduction of BSSE and ZPE corrections.

Table 4.12: Binding energies (BE) and vaporisation energies (AE) for NHj (NH3)„, 
(n =  1 — 5) in kcal/mol, comparison with experiments0

n-l,n BE° This work

<1 <1 AE*

KJ<1 AE* A E 9

(0,1) 26.023 (24.433) 24.433 21.5 27.0 24.8 25.4 - 13.8
(1,2) 45.284 (41.406) 16.973 16.2 17.0 17.5 17.3 16.9 6.4
(2,3) 60.097 (54.412) 13.006 13.5 16.5 13.8 14.2 15.1
(3,4) 72.746 (65.471) 11.509 11.7 14.5 12.5 11.8 13.5
(4,5) 80.284 (71.509) 6.038 7.0 7.5 - - 9.6

° The first column shows adiabatic and ZPE corrected (between brackets) binding energies 
computed in this work using Counterpoise corrected energies at the MP2/aug-cc-pVTZ and 
ZPE at the MP2/ aug-cc-pVDZ; AE values for this work are computed including ZPE cor
rections. b Ref. [27], cRef. [24] ,dRef. [25] ,eRef. [33], Ref. [26], 9 [31]

On table 4.12, this work data are compared to the experimental values found in 

the literature for the cluster nucleation enthalpy. It can be seen that the agreement 

with experiments is good, qualitatively and quantitatively, particularly with the mass 

spectrometry experiments from references [24-27, 33]. Also, this work’s data reproduce 

the constant decrease in nucleation enthalpy upon increasing cluster size, as well as 

the characteristic “dip” in energy seen after the completion of the first solvation shell 

with good numerical accuracy.

On table 4.13, from the data estimated from references [14] (columns four and five) 

and [15] (columns three), the experimental trend is qualitatively reproduced. All the 

references showing data for higher clusters than the dimer reproduce a constant de

crease in nucleation energy upon increasing cluster size; as well as the sudden energy 

drop at A(4 ,5 ), in those references in which data for the hexamer is presented. Quanti

tatively, the most accurate values when compared to the experiment, apart from those 

from this work, are those provided by Fouqueau and Meuwly [15] and Wang e t al

[14]. The different approaches into the investigation of protonated ammonia clusters 

by these two papers and how they compare to ours have already been considered. Per-



Table 4.13: Binding energies (BE) and vaporisation energies for NHj(NH3)n, (n = 1 — 5) in kcal/mol, comparison with 
theory0

n-l,n This worka FM6 WCJLC NGIOOTd KEe D7 BFPs HFKY'1 PA1

MP2
aTZ

B3LYP
631**

B3LYP7
631+*

MP211
631+*

HF7
D95

B3LYP77
DZ

HF
431

HF7
631*

MP277
631+**

MP7
631+*

HF7
321*

HF77
631**

HF
ST03G

(0,1) 24.433 25.99 22.83 29.20 23.46 29.70 29.98 26.2 30.5 24.35, 23.37, 23.6 32.20 26.21 42.2
(1.2) 16.973 17.15 16.49 16.46 18.55 24.65 23.06 20.9 23.6 24.63 20.62 32.0
(2,3) 13.006 13.51 13.18 13.29 14.84 17.62 18.69 17.2 20.37 23.1
(3,4) 11.059 10.33 10.74 9.69 11.92 15.15 15.91 10.1 17.6
(4,5) 6.038 6.40 5.61 4.56 8.53

°The first column shows adiabatic and ZPE corrected (between brackets) binding energies computed in this work using Counterpoise 
corrected energies at the MP2/aug-cc-pVTZ and ZPE at the MP2/aug-cc-pVDZ; vaporisation energies from this work are computed 
including ZPE corrections. 6Ref.[15]; cRef.[14]; dRef.[38]; eRef.[12]; 7  Ref. [13] ;sRef. [17] i^Ref. [11]; lRef.[38]
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haps it is worth mentioning the tendency to underestimate the nucleation enthalpy 

(A(3 t4 ) and A(4j5)) in column five by reference [14].
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4.4 Conclusions

In this chapter, we have presented a high level ab initio study on the structure and 

energetics of small protonated ammonia clusters NHj (NH3)n (n =  1 — 5). We have 

carried out electronic calculations at the MP2 level of theory with the aug-cc-pVXZ 

(X=D,T) family of basis sets, and we have accounted for BSSE with the Counterpoise 

procedure. Harmonic frequencies have been calculated at the MP2/aug-cc-PVDZ level 

of theory, to include the ZPE correction and to investigate if particular N-H modes can 

be associated to certain structural cluster features.

Protonated ammonia clusters arrange themselves in two general configurations, 

namely, “globular” and “linear” . For particular configurations of NHj (NH3)n (n =  

1 — 3), we have found sets of practically isoenergetic isomers, differing in the staggered 

or eclipsed orientation of NH3  with respect to NHJ. Also, we have isolated what to 

our knowledge are four novel isomeric structures: 3100, 3100ring, 2111ring and 4100.

In addition, we have monitored the changes in a set of intramolecular and inter- 

molecular parameters (figure 4.7), in order to extract general trends on structural 

changes associated with cluster size and level of NHj coordination. In this regard, 

we have found that the distance between the nitrogen atoms of the NHj and directly 

coordinating NH3  (defined as R n n ),  increases upon increasing cluster size when the 

coordinating ammonia is a single molecule. However, the same distance decreases when 

the core cation coordinates a chain (NH3)n; the longer the chain, the shorter the dis

tance. The hydrogen bond distance, R n ...h , follows the same trends as R n n - Within 

the same ammonia chain, the distance between solvating shells (sh-sh) is increased as 

one moves away from the core cation. It would seem that when a new solvation shell is 

created through the elongation of a (NH3)n chain there is a contraction of the spacing 

of the lower shells, with the new incoming ammonia placed at a distance longer than 

any other shell.
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Regarding the harmonic frequencies calculations, we see that two main features 

arise; those related to the vibrations of NH3  and those related to the vibrations of 

NHj, which show much stronger intensities. In fact, the signature of protonated am

monia clusters is mainly given by the vibrating behaviour of the ammonium cation. In 

agreement with the literature, we have found that higher frequencies for the N-H vibra

tional modes of the NHj are seen upon increasing cluster size; also, the N-H stretching 

of the cation when part of an aggregate is noticeably downshifted with respect to the 

wavenumbers of the cation alone. Regarding the solvating ammonia molecules, we clas

sified them in two “types” ; the single coordinating NH3  are only slightly shifted from 

the spectrum of the monomer, while the NH3  involved in linking solvating shells show a 

significant red shift with respect to the monomer. Within a (NH3)n chain we find that 

the molecules in the second an higher order solvation shells vibrate at slightly higher 

frequencies than first solvation shell molecules. Qualitatively, theoretical calculations 

are typically higher than the results obtained from experiment.

Finally, we have compared the vaporisation energies computed in this work with the 

experimental and theoretical values found in the literature (tables 4.12 and 4.13). This 

work thermal data, in agreement with the literature, reproduces the constant decrease 

in nucleation enthalpy upon increasing cluster size, as well as the characteristic “dip” 

in energy seen after the completion of the first solvation shell.
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Chapter 5

Conclusions and further work

5.1 Aim s and achievem ents of this work

This work has aimed to explore the structures and interaction potential of pure, (NH3 )n, 

and protonated, (NH4+)n, ammonia clusters of small size (n =  2 — 5), using ab initio 

techniques. On pursuing this aim, we have attained an extensive and robust set of data 

that adds to the relatively scarce pool of ammonia studies and that compares well with 

both theoretical and experimental works already published on this topic.

More specifically, chapters 2 and 4 present 13 and 20 isomeric structures for pure 

and protonated ammonia clusters, respectively. For each cluster, we have calculated 

interaction energies, which were further rectified by introducing ZPE and BSSE cor

rections. Our energy data was additionally used to calculate clusters’ vaporisation 

energies. Also, we have calculated the harmonic frequencies for all isomers presented 

and have analysed the N-H vibrations in order to relate its wavenumbers to partic

ular structural features. In the case of pure ammonia clusters, and in view of the 

construction of a model potential, we have also decomposed the binding energy in its 

many-body contributions.
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In chapter 3, we presented the development and completion of an analytical model 

for the potential energy surface of ammonia clusters. Our model included a polarisation 

description and was fitted to ab initio data. This potential was successfully used to 

describe the interaction between ammonia molecules and was applied further in the 

exploration of clusters of n > 5; resulting in the finding of isomeric structures (20 more 

are shown), and the estimation of their interaction energies.

5.2 Further work

We believe that the expansion of the work presented in this thesis rests in the simulation 

tool that is the model potential; its applications laying on the ubiquitous nature of 

ammonia. We present below three possible directions of progress:

First, out potential could carry on being used to study neutfal ammonia clusters, 

to describe intermolecular interactions in Monte Carlo and molecular dynamics simu

lations. This work is underway in our laboratory, Mella and Curotto [1] have explored 

thermal and quantum effects in small and medium size (n =  2 — 11) neutral ammonia 

clusters. Using our model potential in the simulation on bigger clusters could con

tribute to the understanding of the structure and energetics of bulk ammonia, by, for 

instance, looking at processes such as nucleation and freezing. Additionally, our po

tential could be used in the simulation of “electron doped” ammonia clusters, which 

would be carrying an electron excess.

Second, the model potential presented in this this thesis could be applied in the 

field of solvation chemistry. Our model would be the starting point for the generation 

of new interaction potentials between ammonia and other species such as water or 

ions (i.e. Al+3, Be+2, Ca+2, OH~, H+). These new potentials could be exploited to 

obatin the energetics of the clusters; in the simulation of thermal effects on structural
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details; on the relative distrubution of the species constituting the aggregates; in the 

simulation of evaporation processes and the solvent exchange kinetics for ion-ammonia 

or water-ammonia clusters as well as the exchange kinetics of molecules belonging to 

different solvent shells. An example of this approach can be found in the Quantum 

Mechanics/Molecular Mechanics (QM/MM) study of silver in aqueous ammonia solu

tion [2], where a three-body potential has been applied to describe the MM region. 

Other examples are the QM/MM studies on Ca+2 [3] and Mg+2 [4] both, as before, in 

an aqueous ammonia solution.

Thirdly, our model potential could be of use in the field of atmospheric chemistry. 

Pollutants get into the atmosphere as gases, solid particles and/or liquids, the latter 

two forming the so-called areosols, which affect a great variety of atmospheric proceses

[5]. Nitrate aerosols are formed in the atmosphere, their precursors being ammonia and 

nitric oxides coming from natural and antropogenic sources [6]. We think our model 

potential could be used in molecular dynamics simulations of nitrate aerosols, perhaps 

along the same lines as it has been done for water [7]. This approach could provide 

information on the structures and reaction dynamics taking place within the aggegate 

and in the gas/aerosol interface.
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