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Summary

Sexual dimorphisms are seen in healthy individuals and in disorders. Recent research in model 

systems has challenged the dogma that sexual dimorphisms in the brain arise solely from sex 

differences in gonadal hormones; such studies have suggested that products encoded by sex- 

linked genes may act direcdy on the brain, interacting with or independently of gonadal 

hormones, to contribute to aspects of neural sexual dimorphism.

In this thesis, two mouse models were used to determine the extent to which gonadal hormones 

and sex-linked genetic mechanisms underpinned aspects of behaviour.

The first of these models, the XO mouse, enables us to identify brain processes influenced by X- 

monosomy (i.e. lack of an X chromosome), or X-linked genomic imprinting (i.e. the parental 

origin of the single X chromosome). The second of these models, the Four Core Genotypes 

(FCG) cross allows a dissociation between brain and behavioural effects due to the action of the 

Y-linked gene Sry (either direct brain effects, or indirect effects on gonadal hormone secretion) 

and of other sex-linked genes.

Data from the XO mouse model suggested an X-monosomy effect on the acquisition of two 

biconditional discriminations, but no effects on response conflict, as measured by a novel murine 

version of the ‘Stroop task’; the X-monosomy effect was not due to non-specific effects on 

physiology or behaviour. Data from the second model suggested iYy-dependent effects on 

anxiety (as indexed by the elevated zero maze) and on initial acquisition of a stimulus-reinforcer 

contingency in a two-way visual discrimination paradigm, but not on reversal learning. Assays of 

systemic testosterone levels and S y  brain expression in FCG mice and wildtype males indicated 

that the anxiety phenotype may be primarily due to testosterone, whilst the acquisition effect was 

more likely to be due to Sry expression in the brain.

These data highlight the importance of direct effects of sex-linked genes on brain and behaviour. 

They may be of relevance to understanding the mechanisms underlying neuropsychological 

abnormalities in disorders, such as Turner syndrome (X-monosomy) and XYY, and sexual 

differentiation of the brain in mammals.
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Chapter I 

General Introduction

Chapter I

1.1 Sex differences in behaviour

There is a large body of scientific literature which shows that males and females of many diverse 

species (including mammals) behave differently. In mammals, these differences may manifest in 

terms of sexual behaviour (Pardridge et al, 1982; Swaab, 2007), early postnatal behaviours (for 

example, suckling, sibling rivalry, mother-offspring interactions; Lonstein & De Vries, 2000; Lee 

& Moss, 1986), locomotion (Cho et al., 2004), emotion (for example, aggression, anxiety, 

motivation; Kring & Gordon, 1998; Cahill et al., 2004), feeding and drinking behaviours (Asarian 

& Geary, 2006; Butera, 2010), and cognition (Halpern, 1997; Kimura, 2002; Overman, 2004; 

Sommer et al., 2004; Koscik et al., 2009; Rushton & Ankney, 2009). In this first section, I 

examine evidence for sex differences in healthy individuals (focussing on data related to 

cognitive and emotional phenotypes in humans and rodents) and how sex may influence 

susceptibility to, and the course of, certain neuropsychiatric and neurodegenerative disorders. In 

this thesis, I consider ‘sex differences’, specifically referring to the variations in biology between 

men and women, rather than ‘gender differences’, which refer to the differences in both biology 

and self-representation as male or female as shaped by the environment (Cosgrove et al., 2007).

1.1.1 H ealthy individuals

Extensive data from humans and rodent models provide evidence for behavioural differences 

between the sexes across a range of emotional and cognitive domains. A small selection of these 

is summarised in Table l.l.li. Briefly, there are developmental differences in language between 

boys and girls; girls tend to learn to speak earlier and gain a larger vocabulary than boys (Kimura, 

2000; Wallentin, 2009), and adult females were shown to have better spelling and grammar 

(Berninger et al,!, 2008). In humans, men have been shown to perform better than women in 

some spatial tasks, such as navigation (Woolley et a l 2010) and 3D mental rotation, while 

women outperformed men in spatial memory (Silverman et a l 2007); similarly, male rodents 

have been found to exhibit an advantage over females in some measures of spatial ability and 

working memory (Jonasson, 2005). With regard to emotion, women have been shown to be
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Chapter I

more emotionally expressive and to score more highly on measures of anxiety than men (Kring 

& Gordon, 1998; McLean & Anderson, 2009); however, on various animal tests of anxiety, 

female rodents were found to be less anxious than males (Johnston & File, 1991). In both 

humans and rodents, females were more sensitive to pain than men (Wiesenfeld-Hallin, 2005).

Table l.l.li Data from human and rodent studies that provide evidence for sex differences in various 

aspects of behaviour.

Species Behavioural
measure Psychology Details of sex difference Reference

Human EEG study 
with verbal 
creativity task

Verbal ability During original responses, women with 
higher verbal ability showed stronger 
increases in alpha power than women 
with lower ability; this pattern was 
shown to be reversed in men.

Fink &
Neubauer,
2006

Human 3-D mental 
rotation and 
object location 
memory test

Spatial ability 
and memory

Men outperformed women in 3-D 
mental rotation while women were 
better at spatial, object location 
memory.

Silverman et 
al, 2007

Human Assessment of 
emotional 
response after 
watching films

Emotion Women were more emotionally 
expressive than men in response to 
emotional films. Men displayed greater 
skin conductance reactivity (SCR) 
towards fear and anger films, whereas 
women showed greater SCR towards 
sad and disgust films.

Kring & 
Gordon, 1998

Human Review of 
various 
behavioural 
measures

Fear and 
anxiety

Self report studies indicated great 
number and severity of fears in women 
than men. Women also scored more 
highly on other anxiety-related factors, 
such as trait anxiety, worry and 
rumination.

McLean & 
Anderson, 
2009 (review)

Human Purdue 
Pegboard test

Motor skills 
and dexterity

Women outperformed men, indicating 
higher degree of motor dexterity.

Hall &
Kimura, 1995

Human
&
rodents

Review of 
various 
behavioural 
measures

Pain sensitivity For humans, rats and mice, females 
were found to be more sensitive to 
noxious stimuli than males. Oestrous 
cycle affected pain sensitivity in female 
rodents. Endogenous opioid systems 
underlying pain sensitivity might differ 
between male and female rodents.

Wiesenfeld- 
Hallin, 2005

Rats Performance 
on elevated 
plus ma2 e

Anxiety Females spent more time in the open 
arms than males, suggesting that females 
were less anxious than males.

Johnston & 
File, 1991
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Rats Performance 
on Morris 
water maze

Spatial ability 
and memory

Generally males and females did not 
differ from each other in the time spent 
to find submerged platform. However, 
spatial learning (but not spatial memory) 
was affected by oestrous cycle of 
females.

Healy et al, 
1999

Rats Performance 
on Y maze

Reversal
learning

Females outperformed males in reversal 
learning, but no difference in initial 
acquisition.

Guillamon et 
al, 1986

Rats & 
mice

Performance 
on water maze 
and radial maze

Spatial ability 
and memory

In the water maze, male rats exhibited a 
large significant advantage, but with 
mice, females showed a small advantage 
instead. With the radial maze, both 
male rats and mice exhibited larger 
advantages in working memory than 
female animals, but in mice, the sex 
difference was smaller.

Jonasson,
2005

When interpreting data regarding sex differences between healthy individuals one must exercise 

caution, as in some cases data are controversial with studies showing contradictory results within 

and between species (Wallentin, 2009; Jonasson, 2005). This may be due to small tme effect 

sizes (difficult to detect reliably), differences in experimental paradigms used and/or fluctuating 

hormonal status due to oestrus cycle which could affect female behaviour substantially (Lacreuse, 

2006; Sherwin, 2003; Wiesenfeld-Hallin, 2005; Healy et al, 1999).

1.1.2 Sex differences in disease states

In addition to the presence of sexual dimorphisms in behaviour between healthy individuals, sex 

differences are also apparent in a variety of neuropsychiatric and neurodegenerative disorders in 

humans (Holden, 2005), which may be manifest in terms of incidence, developmental course, 

underlying neurobiology, response to therapy and prognosis (Table 1.1.2i). For example, sex 

differences are observed in many aspects of schizophrenia; whilst no sex differences were 

observed in prevalence of the disorder (Saha et al., 2005), male incidence1 is generally higher than 

that o f females (McGrath et al, 2004). A comprehensive review by Leung and Chue (2000) has

1 Prevalence measures the proportion of people who have the disorder at a particular point in time; it is calculated 

by dividing the number of people with the disorder at a particular time point by the total number of people 

examined. Incidence measures the rate of occurrence of new cases of the disorder; it is calculated by dividing the 

number of new cases in a specific time period, usually a year, by the size of the population under consideration who 

are initially healthy (Crichton, 2000).
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outlined sex differences in symptomatology, cognitive dysfunction, neurobiological and 

neurochemical abnormalities, treatment response and course of illness. Briefly here, males have 

an earlier age of onset by around three to five years than females; additionally, early-onset 

schizophrenia (first psychotic episode before age of 21) is associated with more severe 

symptomatology than late-onset schizophrenia, which is more frequent and more severe in 

women than in men (Hafner et al, 1998). Males with schizophrenia generally exhibit more 

negative symptoms (e.g. social withdrawal, blunted affect, alogia and motivation), while females 

suffer from more affective symptoms (e.g. dysphoria, depression, impulsivity and sexual 

delusions) and auditory hallucinations (Castle & Murray, 1991). With regard to cognitive 

dysfunction, males who have been ill for five years or longer displayed greater deficits on verbal 

tasks (suggestive of a left hemisphere dysfunction), Wisconsin Card Sorting Test, and tests of 

attention, verbal memory and executive function, than females. There is less evidence suggesting 

greater cognitive impairment in women; some studies have shown that cognitive deficits might 

affect social functioning of females more than males. Regarding neurobiological abnormalities, 

males have shown larger ventricular-brain ratios, suggesting increased ventricular volume, than 

females (Nopoulos et al, 1997). The reduced size of the temporal lobes (especially that of the 

left temporal lobe) is more prominent in males than in females (Crow, 1990), and whilst the 

corpus callosum has consistently shown abnormalities, the pattern of results has not always been 

consistent. Females have better short and middle term outcomes than males, but this advantage 

reduces over time, in the long term; this might be due to the loss of protective effects of 

oestrogen in females (Castle & Murray, 1991; Leung & Chue, 2000).

As with data from healthy individuals, it is important to be aware of the potential caveats 

associated with reported sex differences in neuropsychiatric and neurodegenerative disorders. 

There are conflicting results in some of the sex differences examined, which might be due to a 

range of confounding factors such as small number of subjects and different methodologies; 

there is also a need to take into account sexual dimorphic brain development, which might 

further confound results (Mahone & Wodka, 2008). Another major problem is that of 

ascertainment bias, whereby one sex may be preferentially diagnosed; for example, the lower 

referral rates to clinics might be due to a neglect of the problems seen in girls with ADHD 

and/or the nature of difficulties in girls (e.g. more learning problems, rather than the more 

disruptive and apparent conduct problems seen more often in boys; Gaub & Carlson, 1997). A 

similar problem might be present in the determination of prevalence of autism, in that there 

might be a ‘hidden horde’ of autistic children who remain undiagnosed due to the lack of 

obviously debilitating symptoms (Blaxill, 2002).

4
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Table 1.1.2i Sex differences in a variety of neuropsychiatric and neurodegenerative disorders.

Disorder Measure (and 
psychology) Details of sex difference Reference

Schizophrenia Incidence and 
prevalence

Median incidence rate is 15.2 per 100,000 and 
male incidence is generally higher than females 
(McGrath et al, 2004). However, no sex 
differences in prevalence are found (Saha et al, 
2005).

McGrath et al, 
2004; Saha et 
al, 2005

Schizophrenia Age of onset, disease 
course, prognosis

Males have earlier age of onset than females. 
Early onset schizophrenia has more severe 
symptoms and less favourable prognosis. Late 
onset schizophrenia is more frequent in 
females than males, and oestrogen might offer 
protection to females.

Hafner et al., 
1998

Schizophrenia Neurobiology Male sufferers have significandy larger 
ventricles than male controls, but female 
sufferers did not differ significandy from 
female controls. Male and female patients 
have similar pattern of structural brain 
differences, but males have a greater number 
of significant abnormalities than females.

Nopoulos et 
al., 1997

Schizophrenia Symptoms, cognitive 
impairments, 
response to therapy

Males have more negative symptoms and 
cognitive impairments, while females show 
more affective symptoms and auditory 
hallucinations. Pre-menopausal females 
respond to antipsychotics more effectively but 
with more side effects.

Leung & Chue, 
2000

Unipolar
depression

Prevalence Unipolar depression is more common in 
females than males by a factor of about 2.

Maier et al., 
1999

Unipolar
depression

Neurobiology, 
response to therapy

Some evidence that hippocampal volume 
increases in females, but decreases in males. 
Female responders to antidepressant treatment 
have larger hippocampal volume than female 
non-responders, but no pattern seen in males. 
Females have smaller amygdalae but this is not 
observed in males. Some evidence for a 
reduction in medial orbitofrontal cortex in 
males only.

Lorenzetti et 
al., 2009

Unipolar
depression

Symptoms Females report more vegetative symptoms (e.g. 
increased appetite), anxiety and anger than 
males. Self report of depressive symptoms is 
more severe in females than males. There 
were no sex differences in disease course and 
response to treatment.

Scheibe et al., 
2003

ADHD Prevalence, cognitive 
impairment

ADHD occurs primarily in males, with 
prevalence varying from 9:1 to 6:1. Females

Gaub & 
Carlson, 1997
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have lower hyperactivity, fewer conduct 
disorder diagnoses, fewer externalising 
behaviours (e.g. aggression, hyperactivity), but 
greater intellectual impairment, than males. It 
is not known whether referral bias plays a part 
in these differences (see text).

ADHD Neurobiology Some evidence that whilst males show a 
difference in right-left caudate asymmetry, 
females did not show this difference in 
asymmetry; instead there was a difference in 
left caudate volume and total caudate volume.

Castellanos et 
al, 2001

ADHD Neurobiology,
cognitive
impairments

Boys with ADHD exhibited a less right- 
lateralized frontal alpha asymmetry than 
control boys, whereas girls with ADHD 
displayed a more right-lateralized asymmetry 
pattern than control girls. Motor development 
and oculomotor control show sex differences 
between boys and girls with ADHD. Boys and 
girls with ADHD are best classified using 
different D-KEFS2 tests; boys and girls are 
best classified with tests involving speed and 
efficiency of responding, and visuospatial 
planning, respectively.

Mahone & 
Wodka, 2008

Parkinson’s 
disease (PD)

Prevalence, 
symptoms, response 
to treatment

Prevalence is higher in males than in females. 
Oestrogen appears to provide protective effect. 
Women with PD have reported greater 
disability and reduced quality of life than men, 
though reported quality of life correlates 
poorly with disease severity. Levodopa, the 
standard treatment for PD, is metabolised 
differently between males and females.

Shulman, 2007

Alzheimer’s 
disease (AD)

Prevalence There is evidence that prevalence is higher in 
females than in males (however incidence does 
not show a gender difference).

Compton et al., 
2002

Alzheimer’s 
disease (AD)

AD pathology A higher level of AD pathology is found in 
females. The association between AD 
pathology (neuritic plaques and neurofibrillary 
tangles) and clinical AD is stronger in females 
than in males. AD pathology is more likely to 
be expressed clinically as dementia in women.

Barnes et al, 
2005

2 Delis—Kaplan Executive Function System (Trail Making, Verbal Fluency, Color-Word Interference, Tower) 

cognitive test

6
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1.2 Mechanisms of sex differences

1.2.1 Brain differences

The proximal cause of sex differences in behaviour in healthy individuals (and in disease states) is 

sex differences in brain structure and function. Traditionally, sex differences in brain structure 

were determined post mortem through histological examination; more recendy, brain structure may 

be investigated through in vivo imaging methods such as computed tomography (CT) and 

magnetic resonance imaging (MRI). CT creates 3-D images from many 2-D X-ray images, and 

MRI detects the rotating magnetic field in (usually) hydrogen atoms which has been aligned with 

a large magnetic field and altered by radio frequency; MRI images provide much better contrast 

than those from CT. Sex differences in brain function may be examined using positron emission 

tomography (PET), single photon emission computed tomography (SPECT), or functional MRI 

(fMRI); both PET and SPECT use radioactive tracers and detect gamma rays released during 

radioactive decay of compounds, whilst fMRI measures blood oxygen level dependence (BOLD), 

i.e. the changes in the oxygenation of haemoglobin in blood (Cosgrove et al, 2007). Function 

may also be measured using electroencephalography (EEG), which records electrical activity on 

the scalp, produced by firing of neurons within the brain, as an index of activity. Additionally, 

neural tracts and connectivity may be examined using diffusion tensor imaging (DTI), which 

measures the restricted diffusion of water between brain regions.

1.2.1.1. Structural and functional differences

There is accumulating evidence, from both healthy humans and rodents (Table 1.2.1.11) and 

humans with neuropsychiatric and neurodegenerative disorders (Table 1.2.1.lii), for sex 

differences in structure and function of certain regions of the brain using the techniques 

described above. Briefly, whole female brains have been shown to be smaller in volume than 

male brains (Courchesne et al., 2000), however, not all brain regions in females are proportionally 

smaller than males; there are specific brain regions which are bigger in females than in males 

(Brun et al., 2009). Differences in brain activation in humans have been observed during a 

multitude of cognitive tasks, such as working memory (Goldstein et al, 2005) and emotion 

recognition tests (Lee et al., 2002; Hall et al., 2004). Both structural and functional brain sex 

differences have been shown in a range of neurobiological disorders, ranging from panic 

disorders (neuropsychiatric; Asami et al., 2009), to autism (neurodevelopmental; Bloss & 

Courchesne, 2007) and to multiple sclerosis (neurodegenerative; Antulov et al., 2009, Pozzilli et al, 

2003). Additionally, brain symmetry has been changed differently between males and females in

7
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bipolar disorder (Mackey et al, 2010), and in humans with Alzheimer’s disease, it would appear 

that males can compensate for neurodegeneration better than females (Perneczky et al., 2007). 

These changes are likely to be of causal relevance to the behavioural differences reviewed above. 

Sex steroid receptors are likely to play an important role in establishing sex differences in the 

brain; Goldstein and colleagues (2001) have found greater sexual dimorphisms in particular 

human brain areas that coincide with analogous regions showing greater levels of sex steroid 

receptors in animal studies. Once again, however, data can be controversial in some cases; for 

example, whilst some- studies have noted similar percentages of grey matter in both human 

females and males (Courchesne et al., 2000), others have not replicated this finding and instead 

observed higher percentages in females than in males (Cosgrove et al., 2007).

Table 1.2.1.1i Details on a selection of structural and functional brain sex differences in healthy humans 

and rodents.

Species Technique Brain region Details of sex difference Reference

Human MRI Intracranial 
space, whole 
brain

Intracranial space and whole brain, across 
the ages 19 months to 80 years, is about 
10% and 12% smaller in females than in 
males, respectively.

Courchesne et 
al, 2000

Human MRI Temporal, 
parietal and 
occipital lobes, 
anterior cingulate

The following brain regions are 
proportionally larger in females than in 
males: left temporal, left parietal and left 
occipital lobes, left and right superior 
temporal gyri, anterior cingulate. Males 
have proportionally larger left superior 
lateral fasciculus than females.

Brun et al., 
2009

Human fMRI Thalamus, 
occipital, 
temporal, 
frontal, lentiform 
regions

Activation when viewing happy faces 
differ between males and females; while 
bilateral frontal and left parietal activation 
is observed in both sexes, females show 
left thalamic, right occipital and right 
temporal activation which is not seen in 
males. During viewing of sad faces, males 
demonstrate bilateral frontal, right 
temporal and right lentiform activation, 
whereas the female subjects show left 
parietal, left lentiform and right occipital 
activation, without activation of frontal 
regions.

Lee et al., 
2002

Human fMRI Prefrontal,
parietal,
cingulate, insula 
regions

During an auditory working memory task 
(with the performance of a simple 
attention task as baseline), women 
activated right orbitofrontal cortex, right 
Broca’s area and left dorsolateral

Goldstein et 
al, 2005

8
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prefrontal cortex (PFC) more than males. 
Performance of males and females on 
these cognitive tasks do not differ from 
each other.

Human DTI and
myelin
water
fraction
(MWF)

Corpus callosum 
(CC)

Males exhibit higher MWF in the CC than 
females, suggestive of increased myelin 
content and fibre density. With DTI, 
there is increased FDi3 in females 
compared to males in the genu of CC.

Liu et al., 2010

Human PET Primary auditory 
cortex (PAC)

Activation of the PAC is examined while 
subjects are listening to music, noise, or 
no auditory stimuli. The PAC is more 
activated by music than noise in both 
males and females, but this increase in 
activation is much higher in males than in 
females. Comparing activation by noise 
with baseline, the female PAC is activated 
more than male PAC. Furthermore, 
males display a deactivation in the right 
PFC, which is not seen in females, 
suggestive of sex differences in auditory 
attention.

Ruytjens et al, 
2007

Human PET Frontal cortex, 
limbic system

While recognising emotion in faces, 
females show bilateral frontal activation 
and males show right frontal activation 
only. If auditory emotional stimuli are 
added, males show left frontal activation, 
and females no longer display frontal 
activation, instead, they showed greater 
limbic activation.

Hall et al., 
2004

Rat Post mortem Sexually 
dimorphic 
nucleus in the 
preoptic area 
(SDN)

The SDN is several folds larger in males 
than in females. Treating gonadectomised 
neonatal females with testosterone 
increased the SDN size, while 
gonadectomised males display decreased 
SDN size; however, the decreased size is 
still bigger than normal females, 
suggestive of genetic factors partially 
influencing SDN size.

Dohler et al., 
1982

Mouse MRI Whole brain,
posterior
hypothalamic
area, CC,
hippocampus,
cerebellum,
hypothalamus

Male whole brains are larger than female 
brains. Shape distortion between the 
sexes has been noted in the posterior 
hypothalamic area, CC, hippocampus, 
cerebellum and whole brain structure. 
For the following, the male region is 
larger than that of females: thalamus, 
primary motor cortex, posterior

Spring et al., 
2007

3 Fibre density index, which is related to the total number of white matter tracts in the region
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hippocampus, and females are larger than 
males in posterior hypothalamic area, 
entorhinal cortex and anterior 
hippocampus.

Mouse MRI Lateral ventricle, 
amygdala

Females have larger lateral ventricles and 
smaller amygdala than males. Lateral and 
third ventricles have sexually dimorphic 
developmental pattern with a reduction in 
sizes in males. Males display a lateralised 
enlargement in left amygdala which is not 
seen in females.

Koshibu et al, 
2004

Table 1.2.1.1U Details on a selection of structural and functional brain sex differences in humans with 

neuropsychiatric and neurodegenerative disorders; additional sex differences in neurobiology of other 

disorders can be found in Table 1.1.2i.

Disorder Technique Brain region Details of sex difference Reference

Panic
disorder

MRI Amygdala, 
superior temporal 
gyrus (STG), 
insular cortex, 
lateral
occipitotemporal 
gyrus, PFC, 
thalamus, parietal 
cortex, cerebellar 
vermis

Males show reduced right amygdala, 
bilateral insular cortex and left lateral 
occipitotemporal gyrus volumes 
compared to females. Females have 
greater right STG volume reduction 
than males. Females have reduced 
grey matter in bilateral dorsolateral 
and ventrolateral PFC, thalamus, 
parietal cortex and right cerebellar 
vermis than female controls, while 
male patients do not show this 
region-specific reduction.

Asami et al., 
2009

Bipolar
disorder

MRI Frontal, temporal, 
parietal, occipital 
lobes

Males with bipolar disorder tend to 
have larger left frontal, left temporal, 
right parietal and right occipital lobes 
when compared to control males, 
whereas females with the disorder 
tend to have smaller volumes in the 
above regions than healthy females. 
Brain asymmetry is also affected, 
with male patients displaying a more 
symmetric brain compared to control 
males, and female patients have 
more asymmetric brains than control 
females.

Mackey et al, 
2010

Autism MRI Temporal lobe, 
cerebellum

Females show enlargement in 
temporal white and gray matter 
volumes and reduction in cerebellar 
gray matter volume, when compared 
to males. Females, not males, display

Bloss &
Courchesne,
2007
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an age-structure size relationship, in 
which age and white matter volumes 
are positively correlated.

Parkinson’s
disease

SPECT Caudate nucleus,
putamen
(striatum)

Females showed 16% higher striatal 
[123I]FP-CIT binding than men at 
symptom onset and throughout the 
course of the disease, suggesting that 
critical threshold of dopamine 
depletion at which symptoms emerge 
is 16% higher in females than in 
males.

Haaxma et al, 
2007

Alzheimer’s
disease

PET Inferior frontal, 
superior temporal 
and insular 
cortices, 
hippocampus

Using 18F-FDG PET imaging, 
glucose metabolism in right inferior 
frontal, superior temporal and insular 
cortices, and hippocampus was 
reduced in males, when compared to 
females, at the same disease stage. 
This suggests that males can 
compensate for neurodegeneration 
better than females.

Perneczky et 
al., 2007

Multiple
sclerosis
(MS)

MRI Grey matter, white 
matter, lateral 
ventricles

Males showed less peripheral and 
total grey matter and more advanced 
central atrophy than females. White 
matter volume is lower in females 
than in males. This suggests males 
and females tend to have more 
severe grey and white matter atrophy 
respectively. In relapsing-remitting 
MS male patients, there is higher 
lateral ventricle volume.

Antulov et al., 
2009

Multiple
sclerosis
(MS)

MRI Whole brain Males have lower number of 
contrast-enhancing lesions but 
higher number of lesions evolving 
into black holes than females; this 
suggests that males are less prone to 
inflammatory lesions in the brain, 
but the lesions they do develop 
might be more destructive.

Pozzilli et al., 
2003

1.2.1.2 Neurochemical and molecular differences

Sex differences in brain structure and function in healthy subjects (and in humans with 

neuropsychiatric or neurodegenerative disorders) may be caused, or modulated by, sex 

differences in neurochemistry and gene expression. Neurochemistry may be measured in vivo by 

microdialysis or by receptor autoradiography (for example, a radioactive ligand specific to a 

neurotransmitter receptor might be injected and detected by PET or SPECT). The
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neurochemistry of a particular patient group may also be inferred from their response to drugs 

targeting the brain, for example, specific serotonin reuptake inhibitors, SSRIs. Table 1.2.1.2i 

describes well established sex differences in neurochemistry in healthy humans and rodents; for 

example, serotonin (5-HT) displays sexual dimorphic activity in specific brain regions, in terms 

of concentration, synthesis rates, receptor binding, and transporter availability. Female rats have 

been shown to have higher 5-HT levels than males in a range of brain regions (ventromedial 

PFC, amygdala, insular cortex and dorsal hippocampus), whilst male rats displayed increased 

metabolite levels and turnover ratios in the same brain regions than females, which might signify 

general higher functional activity of 5-HT in males (Duchesne et al, 2009); however, the result 

from this study might not reflect pure sex differences alone, as animals were subject to mild 

stress experience (not acute stress), and appears to be inconsistent with human imaging studies, 

which found healthy males to have a mean 56% higher synthesis rate than females through the 

brain (Nishizawa et al, 1997). Women showed increased 5-HT1A receptor binding potential in 

various brain regions, such as dorsal raphe, amygdala and anterior cingulate, than men (Parsey et 

al., 2002); this might be due to sex steroids such as oestradiol, as it has been shown to modulate 

receptor binding potential (Biegon & McEwen, 1982). Brainstem 5-HT transporter availability 

was found to be significantly higher in women than in men (Staley et al., 2001); again, this result 

might be due to sex steroids such as estradiol (McQueen et a l, 1997). The SDN has been 

consistently shown to be several folds larger in males than in females (Dohler et al, 1982); male 

and female rats display sexual dimorphic distribution of serotonin-immunoreactive (ir) fibres in 

the SDN, with a larger region of low serotonin-stained fibre density in males compared to 

females (Simerly et al, 1984).

Table 1.2.1.2i Details on a selection of sex differences in neurochemistry in healthy humans and rodents.

Species Technique Brain region Details of sex difference Reference

Human [123I](3 -CIT 
SPECT and MRI

Striatum, 
diencephalic, 
brain stem

Females show significantly higher 
availability of striatal dopamine (DA) 
and diencephalic and brainstem 
serotonin (5-HT) transporters than 
males.

Staley et al, 
2001

Human PET Ventral
striatum,
anterior
putamen,
anterior and
posterior
caudate nuclei

Males display greater DA release in 
ventral striatum, anterior putamen, and 
anterior and posterior caudate nuclei 
than females.

Munro et al, 
2006
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Human PET Striatum Females displayed lower D2 receptor 
affinity than males in the left striatum; 
this lower affinity suggests an 
increased endogenous striatal 
dopamine concentration in females.

Pohjalainen et 
al,1998

Human PET Dorsal raphe, 
amygdala, 
anterior 
cingulate, 
cingulate body, 
medial PFC, 
orbital PFC

Females display higher 5-HTia binding 
potential than males in all of the brain 
regions on the left.

Parsey et al., 
2002

Human PET Whole brain The rate of synthesis of 5-HT is rather 
uniform throughout the brain. Males 
were found to have a 56% mean 
increase on the rate of 5-HT synthesis 
than females.

Nishizawa et 
al, 1997

Human PET Striatum Females have higher [18F]fluorodopa 
uptake than males in the striatum; this 
difference is higher in the caudate than 
in the putamen. Higher 
[18F]fluorodopa uptake shows higher 
striatal presynaptic DA synthesis 
capacity.

Laakso et al, 
2002

Human Magnetic
resonance
spectroscopy
(MRS)

Cortex Females have higher cortical y- 
aminobutyric acid (GABA) levels than 
males.

Sanacora et al, 
1999

Human PET Amygdala,
thalamus,
cerebellum

Females show higher mu-opioid 
receptor binding than males in 
amygdala, thalamus, and cerebellum 
(significant differences remain after 
accounting for multiple comparisons).

Zubieta et al, 
1999

Rats Ligand binding 
and
autoradiography

Cerebral cortex Density of 5-HT2A receptors in the 
cerebral cortex is higher in proestrous 
females than in males and diestrous 
females.

Fink et al, 
1998

Rats Post mortem Ventromedial 
PFC, amygdala, 
insular cortex,

Females and males show major and 
complex differences in levels of DA, 
DOPAC4, 5-HT and 5-HIAA5.

Duchesne et 
al, 20096

4 DOPAC: Dopamine’s major metabolite, 3,4-dihydroxyphenylacetic acid.

5 5-HIAA: Serotonin’s major metabolite, 5-hydroxyindole acetic acid.
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dorsal
hippocampus

Briefly, in the ventromedial PFC, 
females have higher levels of DA and 
5-HT, and males have higher levels of 
DOPAC and 5-HIAA. In the 
amygdala, females have higher levels 
of 5-HT, while males show higher 
levels of DOPAC and 5-HIAA. In the 
insular cortex, females have higher 
levels of DA and 5-HT. Lastly, in the 
dorsal hippocampus, females have 
higher levels of 5-HT and 5-HIAA, 
with males having higher levels of 
DOPAC.

Rats Post mortem Striatum Male DA Di and D2 receptor densities 
increase significantly more than that of 
females between 25 days of age and 
onset of puberty. The decline of 
receptor densities is also larger in 
males than in females.

Andersen & 
Teicher, 2000

There are sex differences in neurochemistry that have been reported in various neuropsychiatric 

and neurodegenerative disorders. Using SPECT, males with schizophrenia have shown a 

significant left side asymmetry in the concentration of striatal dopamine D 2 receptors, when 

compared with male controls; this pattern of results was not seen in females with schizophrenia 

(Acton et al., 1997). In a PET study with bipolar disorder (BD) patients, males with BD were 

found to differ from male controls in 5-HT1A binding affinity in a large range of brain regions, 

including anterior cingulate, amygdala, dorsolateral PFC, hippocampus, orbitofrontal cortex and 

temporal cortex, whilst females with BD did not differ from female controls in any of these 

regions (Sullivan et al, 2009). N ot all subjects for this study were antidepressant naive and so 

this finding might reflect a sex-specific effect by antidepressants on 5-HT1A binding. The large 

increase and decrease of the DA receptor density in striatum of male rats (Andersen & Teicher,

2000) might contribute to the sex differences in ADHD; the male-specific large increase of 

receptor density up to puberty mirrors the onset of motor symptoms in ADHD and the pruning 

of striatal dopamine receptors coincides with the 50-70% remission rate in ADHD, both at 

adulthood. Increased frontal monoaminergic activity has been observed in Parkinson’s disease; 

using [18F]fluorodopa(Fdopa)-PET, women with Parkinson’s disease displayed 87% higher

6 Note that the animals in this study had stressful experiences (e.g. via handling and restraint) during the experiment. 

The animals were sacrificed at least three hours after the last stressful experience, so the results reported here are 

likely to reflect intrinsic sex differences and repeated stress experience, rather than pure sexual dimorphisms.
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Fdopa values in the right dorsolateral prefrontal cortex than men with the same condition, whilst 

there was no significant differences between male and female control subjects (Kaasinen et al,

2001). As Parkinson’s disease is characterised by a loss of dopaminergic activity in the striatum, 

this observed increase in frontal monoaminergic activity is rather paradoxical, and might reflect 

compensatory mechanisms; additionally, it is worth noting that Fdopa uptake is not specific to 

the dopamine system and might reflect an increase in serotonergic and noradrenergic activity 

instead. The sex difference in frontal monoaminergic activity might underlie other clinical sex 

differences, such as higher risk for comorbidity with depression in females with Parkinson’s 

disease.

Gene expression is typically measured from post mortem tissue samples. The availability of 

microarray platforms has made it possible to assay the expression of many different genes in 

parallel, and thus to determine pathways which may give rise to sex-specific neuroanatomy and 

function in healthy (Table 1.2.1.2ii) and disease states. Differences in gene expression could 

exist in grey matter (Lopes et al., 2006), whole brain (Yang et al, 2006) or in specific brain regions 

(e.g. Vawter et al, 2004, Zhang et al, 1999). Some gene expression differences are determined by 

the sex chromosome complement rather than by gonadal hormones (see Section 1.2.2 and 1.2.3 

for more details; Xu et al, 2008b), and it is important to remember that even though gene 

expression differences exist does not mean this difference will be apparent at the protein level 

(Xu et al, 2006). If the difference disappears at the protein level, then arguably, there might be 

no differences between males and females functionally (though downstream effects at the gene 

level could still lead to differences in the levels of other affected proteins).

Table 1.2.1.2ii Details on a selection of sex differences in brain gene expression in healthy humans and 

rodents.

Species Brain region Details of sex difference Reference

Human Anterior cingulate, 
dorsolateral PFC, 
cerebellar cortex 
(post mortem samples)

Using Affymetrix oligonucleotide microarray 
and confirmed with in situ hybridisation, the 
genes DBY, SMCY, UTY, RPS4Y, and USP9Y, 
from the Y chromosome, are expressed more 
highly in the three brain regions in males than in 
females. The gene XIST  on the X chromosome 
is expressed more highly in the three brain 
regions in females than males. DBX, UTX, 
SMCX, RPS4X, the X homologues, were not 
expressed differentially between males and 
females, suggesting that they do not escape X 
chromosome inactivation.

Vawter et al, 
2004
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Human Grey matter PCDH11X expression is up to 2 fold higher in 
females than in males.

Lopes et al., 
2006

Rat Hypothalamus, 
amygdala, 
hippocampus, 
ventromedial 
hypothalamic nuclei

5-HTia receptor mRNA expression is higher in 
hypothalamus and amygdala, and lower in 
hippocampus, in males compared to in females. 
5-HT2A receptor mRNA expression is lower in 
ventromedial hypothalamic nuclei in females 
compared to in males.

Zhang et al., 
1999

Rat Amygdala,
ventromedial
hypothalamus

Males have reduced methyl-CpG-binding 
protein 2 (Mecp2) mRNA (and protein) than 
females in the amygdala and ventromedial 
hypothalamus on postnatal day 1. By postnatal 
day 10, this sex difference has disappeared and 
males have more mecp2 mRNA than females.

Kurian et al 
2007

Mouse Whole brain Microarray study has found 612 genes that are 
expressed in a significantly sexual dimorphic 
manner in the brain. The authors examined 
gene expression in a range of tissue, including 
liver and adipose tissue, and found sexually 
dimorphic genes were expressed in a tissue 
specific manner.

Yang et al 
2006

Mouse Cortex, striatum,
suprachiasmatic
nucleus,
paraventricular
nucleus,
hippocampus, dentate 
gyrus, habenula

The gene Utx from the X chromosome is 
expressed more highly in these brain regions in 
females than in males. Utx escapes X 
chromosome inactivation. The sex difference in 
expression appears to be dictated by sex 
chromosome complement rather than gonadal 
status, as XX animals display higher expression 
than XY animals regardless of gonadal status.

Xu et al., 
2008b

Mouse Cortex, hippocampus,
paraventricular
nucleus

The X-linked gene Eif2s3x escapes X 
chromosome inactivation. Eif2s3x mRNA 
expression is higher in females than in males; 
however, this sexual dimorphic expression is 
restricted to mRNA only, at the Eif2s3x protein 
level, there is no difference between sexes, 
suggesting a possible regulation of the Eif2s3x 
protein translation independent of mRNA 
expression.

Xu et al., 2006

Mouse Preoptic area (POA) Authors found sex-specific parent-of-origin 
allelic expression in the brain. Preferential 
expression of the paternal allele of the gene 
Mrp/48 was found in the female POA, but not in 
the male POA. The gene 1118 was found to be 
preferentially expressed from the maternal allele 
in the female, but not in the male mPFC.

Gregg et al., 
2010a
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There are fewer studies and less evidence on sexual dimorphic gene expressions in the brain with 

regard to neuropsychiatric and neurodegenerative disorders. A recent study on Parkinson’s 

disease has found different patterns of deregulation between men and women (Simunovic et al., 

2010); using post mortem brains and microarrays, downregulation of several genes from the 

PARK gene family was observed in males with PD only, and with pathway-enrichment and gene 

cluster analyses, it appeared that there was dysregulation of gene expression in PD-affected DA 

neurons in a sexually dimorphic manner, suggesting a male bias towards PD. Reduced 

expression of the gene .Methyl-CpG-binding protein 2 (MeCP2) is implicated in autism, and in 

healthy rats, mecp2 mRNA expression appeared to be sexually dimorphic in amygdala, a region 

typically found to be aberrant in autism, during brain development, suggesting that lower MeCP2 

expression in males might underlie the biased risk in autism and other neurodevelopmental 

disorders (Kurian et al., 2007). 1118’s sex-specific parent-of-origin expression might be linked to 

multiple sclerosis, a sexual dimorphic neurodegenerative disease (Gregg et al., 2010a).

1.2.2 The gonadal horm one dogm a

1.2.2.1 Effects of gonadal hormones and their actions at receptors

The sexual differentiation of mammalian brain is largely determined by gonadal hormone 

secretions, i.e. from the male testes and the female ovaries. Hormonal effects in sexual 

dimorphism have been first demonstrated by Lillie (1917), who noted that in the cases of 

freemartins7, the mixing of placental blood of male and female calves produced a more 

masculine and sterile female, leading to the suggestion that certain chemicals in the blood, such 

as ‘sex hormones’, can influence sex differentiation. Female guinea pigs were given testosterone 

prenatally and were found to display masculinised adult behaviour pattern (Phoenix et al., 1959). 

Jost (1970) has suggested that the default developmental path for gonads, genital tract and brain 

is set for a female type, and masculinising agents and/or gonadal hormones would need to exert 

their effects at different phases in order to cause the developmental direction to deviate towards 

a masculine type.

The gonadal hormone that most obviously differentiates the two sexes is testosterone; in rats, it 

is actively produced in foetal Leydig cells within the testes by 15.5 dpc, with postnatal production

7 “A condition occurring in the female offspring of dizygotic twins in a mixed sex pregnancy, usually in cattle. [...] 

When placental fusion between the male and the female foetuses permits the exchange of foetal cells and foetal 

hormones, testicular hormones from the male foetus can androgenise the female foetus producing a sterile XX/XY  

chimeric ‘female’.” (Quoted from National Library of Medicine)
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continuing in adult Leydig cells that are distinct from foetal Leydig cells and arise from 

undifferentiated mesenchymal precursor cells. Lutenizing hormone is critical in the maturation 

o f Leydig cells and maintenance of testosterone production (Wu et al!, 2007). In the brain, 

testosterone is either metabolized by aromatase to oestradiol or by 5a-reductase to 

dihydrotestosterone (DHT); oestradiol and DHT then act at oestrogen or androgen receptors 

respectively to contribute to sexual differentiation of the brain, in an organisational (i.e. during 

development) and activational (i.e. continuously during postnatal life) manner (Davies & 

Wilkinson, 2006). Note that normal fluctuations in oestrogen levels during the oestrus cycle in 

females can affect brain function and produce transient sex differences that may exist over and 

above persistent sexual dimorphisms. Table 1.2.2.H outlines some o f the sex differences that 

are influenced by changed in testosterone or oestrogen levels.

Table 1.2.2.1i shows that a variety of behaviours, including cognition, can be influenced by changes in 
gonadal hormone levels (testosterone or oestrogen). More studies can be found in Table 6.1i.

Hormone manipulations Effect on neurobiology Reference

Female humans; oestrogen 
replacement in menopausal 
women

Discrepancy exists between studies; it would 
appear that oestrogen has a protective effect on 
memory if it was administered immediately 
following surgical or natural menopause, but no 
effect if it was administered later.

Sherwin,
2006;
Genazzani et 
al., 2007

Male rhesus monkeys; testosterone 
administration

Supraphysiological testosterone levels in males 
impaired performance on the delayed 
nonmatching-to-sample test.

Lacreuse et 
al, 2009

Male rats; gonadectomised (GDX) 
and gonadectomised with estradiol 
(GDX-E) or testosterone 
propionate (GDX-TP) 
replacement

GDX and GDX-E performed worse in response 
alternation and light/dark discrimination than 
control and GDX-TP animals. GDX animals 
showed impaired performance in the Differential 
Reinforcement of Low Rates of Responding task, 
compared the other groups. No effect of 
gonadectomy and hormone replacement on 
match-to-position and nonmatch-to-position 
tasks.

Kritzer et al, 
2007

Male rats; GDX, GDX-E, GDX- 
TP

GDX-E displayed enhanced acquisition of the 
delayed matching-to-position spatial task. GDX- 
TP performed better than GDX and GDX-E 
when the intertrial delay and working memory 
load was increased.

Gibbs, 2005

Male rats; GDX, with testosterone 
metabolite replacement

Androsterone is one of testosterone’s metabolite 
and does not bind well with ER(3. 3a-diol 
decreased anxiety in the elevated plus maze and 
light/dark transition, and increased cognition in 
Morris water maze, while 3(3-diol improved 
cognition in Morris water maze, but had no effects

Osborne et 
al, 2009
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on anxiety behaviour, compared to control or 
androsterone. This suggests that actions at ERfI 
might underlie anti-anxiety and cognitive effects.

Female rats; GDX and GDX-E In the active avoidance task, GDX-E performed 
better than GDX animals after five weeks of 
hormone replacement. After 28 weeks, 
performance from GDX animals was impaired 
compared to control animals. GDX-E continued 
to perform better than GDX females and also 
displayed accelerated rate of learning. Choline 
acetyltransferase activity was decreased in the 
hippocampus of GDX animals, but not in GDX- 
E females, after five weeks. High-affinity choline 
uptake reduced in both frontal cortex and 
hippocampus in GDX animals, but no change was 
observed in GDX-E females.

Singh et al., 
1994

The two types of oestrogen receptors (ER), ERa and ER(3, are intracellular and present in the 

human and rat brain from early prenatal stages to adulthood in a distinctive spatial and temporal 

pattern (human: Gonzalez et al., 2007; rat: Perez et al., 2003; Kritzer, 2002, 2006), suggesting that 

the two receptor subtypes are involved in different and complimentary roles in brain 

development. ER[3 is more highly expressed in the adult human hippocampus, neocortex and 

archicortex, supporting the suggestion that ER(3 might be more involved in the function of the 

adult hippocampus, than ERa (Gonzalez et al., 2007). In addition to the hippocampus, both ERs 

are expressed in the frontal lobes, suggesting a role for oestrogen in higher cognitive functions 

(Sherwin, 2006; Genazzani et al., 2007). ERs are ligand-activated protein transcription factor, 

which modulate specific gene expression by binding onto DNA sequences (Green, 1990); the 

ER comprises of six domains, with the regions A /B (the constitutive transcription factor 1 

[TAF-1] binds onto this region), ligand-binding (LBD) and DNA-binding domains (DBD) being 

the three functional domains. An agonist can bind onto the LBD, resulting in dimerisation of 

the ER; the dimer then binds onto oestrogen response element (ERE) within a DNA sequence, 

via the DBD, activating transcription (Cano & Hermenegildo, 2000). ERa and ER(3 have been 

shown to work in antagonistic, synergistic and sequential fashion when activating transcription 

(Cano & Hermenegildo, 2000) and when mediating aspects of cognition such as spatial learning 

(Rissman, 2008).

Androgen receptors (AR) primarily exist as intracellular nuclear receptors; while some 

immunoreactivity has been detected in the cytoplasm, indicating the presence of cytosolic 

receptors, antibody staining has displayed the highest immunoreactivity in the nucleus (Clancy et
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al., 1992). Concentration of cytosolic AR tended to be higher in female than in male rats, while 

nuclear AR levels are higher in males than in females (Roselli et al, 1989); it would appear that 

AR mRNA expression and protein level are dependent on androgen levels (Lu et al, 1998; Lee & 

Chang, 2003). Nuclear AR were found in a wide range of rat brain regions, with the highest 

levels in the ventromedial nucleus of the hypothalamus and medial amygdala and lower levels in 

medial preoptic nucleus, periventricular preoptic area, anterior hypothalamus, periventricular 

anterior hypothalamus, lateral septum, and parietal cortex (Roselli et al, 1989). This pattern of 

results largely matches that of AR mRNA expression, which also exhibited high levels in 

hypothalamus and in limbic regions that project heavily to the hypothalamus; these regions have 

been known to underlie copulatory behaviours (Simerly et al, 1990). AR is a ligand dependent 

transcription factor, and upon binding onto androgens such as testosterone and 5a- 

dihydrotestosterone, the receptor undergoes two conformational changes, allowing the highly 

conserved DBD to bind onto androgen response elements (ARE) of target genes and activating 

transcription (Brinkmann et al, 1999). Aside from the LBD and DBD, ARs are also composed 

of a variable NH2-terminal domain, which contains polyglutamine (CAG) repeats whose length is 

inversely proportional to transcriptional activity in vitro (Lee & Chang, 2003). Longer CAG 

repeats in exon one of the AR gene has been associated with increased impairment of cognitive 

functioning in older men (Yaffe et al, 2003), whilst 20 or fewer CAG repeats have been 

associated with increased AD risk in men but not in women (Raber, 2008). There is also 

increasing evidence that AR activity plays a role in hippocampal function (Raber, 2008).

I.2.2.2 Sex-determining region on the Y  chromosome (Sty)

Seminal work in the 1990s showed that the Y-linked gene SKY/Sry (sex-determining region on 

the Y chromosome), encoding the testis-determining factor, is critical to gonad differentiation. 

In mice, the bipotential indifferent gonads are indistinguishable between the sexes until around 

12 days post coitum (dpc; Wilhelm & Koopman, 2006), even though the differentiation of the 

gonads has already begun at 10.5 dpc, when SRY is transiently expressed for a few hours in the 

Sertoli cell precursors between 10.5 dpc and 12.5 dpc, with peak levels over the entire gonad at

II.5 dpc (Sekido & Lovell-Badge, 2009). In humans, SRY expression in normal males begins at 

around six to seven weeks in gestation (Davies & Wilkinson, 2006). Sry is a single exon gene 

(Clepet et al., 1993) and encodes a high-mobility group (HMG) protein that acts as a transcription 

factor. The HMG box contains several functional motifs, such as nuclear localisation signals and 

calmodulin-binding site (Sekido & Lovell-Badge, 2008), and can bind to and bend DNA; aside 

from the HMG box, there is little structural conservation between species (Wilhelm &
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Koopman, 2006). In mice, the SRY protein sets off the testis-determining pathway by direcdy 

binding, along with steroidogenic factor 1 (SF1), onto several elements within the Sox9 enhancer 

to allow Sox9 expression; afterwards, SOX9 and SF1 proteins bind to the same enhancer to 

maintain Sox9 expression in a positive feedback manner, even after Sry expression has ceased 

(Sekido & Lovell-Badge, 2008).

In females, in the absence of Y chromosome and thus SRY, the ovarian-determining pathway 

will initiate in the bipotential gonads. Siy alone is sufficient to create a male phenotype, as 

demonstrated in a study by Koopman and colleagues (1990), in which mice with a female 

karyotype (XX) but an autosomal S y  transgene developed as phenotypic males. As the testes are 

primarily responsible for the biosynthesis and secretion of testosterone (see above), S y  may be 

considered as a factor which indirectly influences brain masculinisation via initiation of testes 

differentiation and subsequent testicular secretion of gonadal hormones.

In males, SRY initiates a complex series of molecular events which culminate in testes 

development and the abrogation of female reproductive organs (Wilhelm and Koopman, 2006), 

which is briefly summarised in Figure 1.2.2.2a.

1.2.3 Non-gonadal hormone mechanisms

Whilst gonadal hormones undoubtedly play a major role in 

generating sex differences in brain structure and function (see 

above), new evidence from avian and mammalian models has 

emerged to suggest that hormone factors are not the sole 

mediator.

Arnold (1997) showed that while masculine development pattern 

can be induced in female zebra finches (ZW) with oestrogen, it 

was not possible to induce female development patterns in male 

zebra finches (ZZ) with anti-oestrogens and oestrogen synthesis 

blockers. A similar study in gynandromorphic chicken, has 

recently demonstrated a similar phenomenon; for example, wattle 

growth has been shown to be sensitive to testosterone, but as 

shown in Figure 1.2.3a, the size of the wattle is determined by 

cellular composition of the tissue, with the left side being 

comprised of more ZZ-containing cells (Zhao et al., 2010). An 

indication that a similar scenario may be relevant to mammals

Figure 1.2.3a A
gynandromorphic chicken, 
with the left side showing a 

larger wattle.

(Taken from Zhao et al., 
2010, with permission)
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has come from data in rodents. Neurons in mice that were harvested before the production 

onset of gonadal hormones have been shown to undergo sexual differentiation according to the 

sex of the animal (Carruth et al., 2002) and Dewing and colleagues (2003) found over 50 genes 

which were expressed in a sexually dimorphic manner in the mouse brain before the onset of 

gonadal hormone production. Together these data suggest that both the genetic sex of the brain 

cells and the surrounding hormonal milieu could potentially specify their function.

Figure 1.2.2.2a

a  Development of w te n u l  g en lu tu b  Formation of the eorte-genltel- Mdge- 
mesonephros region

H in d g u t

Urorectal

1 E M H  H
v n j»

14 .5 - 1 8

Wolffian duct
Mullerian ductep ithe lium

C Testis and genital tract differentiation

1J-17.5  Seminal vesicle

Testicular cords

Distal urethral 
epithelium
Penile urethra

e  Development of brain dimorphisms d TestkuLar descent

Rete test

1st phase 2nd phase

Figure 1.2.2.2a (a) At 10.5dpc, external genitalia appear as a swelling, (b) at 11.5dpc, males and 
females cannot be distinguished from each other morphologically, but in males, Try expression 
induces a gene expression cascade, leading to differentiation o f  the genital ridge into testes, (c) and 
(d), steps o f  testes differentiation, (e) the brain develops sexual dimorphisms, caused by gonadal 
hormones and genetic factors. (Diagram taken from Wilhelm & Koopman, 2006, with permission)

Additional work in mice, using an experimental system known as the ‘Four Core Genotypes’ 

(FCG) model, in which the effects of sex chromosome complement (Try-independent) and 

gonadal hormones (Try-dependent) on brain and behavioural measures may be dissociated (see 

section 1.2.4.2 for more details), has strengthened the notion that the mammalian brain too may 

be sensitive to both genetic sex and gonadal hormone effects. Briefly, this model generates XX 

animals with a Try transgene (i.e. phenotypically male, but genetically female) and XY animals 

with Try deleted from the Y chromosome (i.e. phenotypically female, but genetically male). 

Using this mouse model, to date, sex chromosome complement (i.e. Try-independent) effects
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have been described on measures as diverse as nociception (Gioiosa et al., 2008), vasopressin 

immunoreactivity in lateral septum (De Vries et al, 2002), habit formation (Quinn et al., 2007), 

number of tyrosine hydroxylase (TH)-ir neurons in mesencephalon from embryonic day 14.5 

(Carruth et al., 2002), social interaction style (McPhie-Lalmansingh et al., 2008), aggression and 

pup retrieval (Gatewood et al., 2006), prodynorphin (Pdyn) expression in striatum (Chen et al., 

2009) and outcome devaluation (Barker et al., 2010), while gonadal hormone (i.e. My-dependent) 

effects have been shown on various measures such as progesterone receptor immunoreacdvity 

(Wagner et al., 2004) and cortical thickness (Markham et al., 2003). Both sex chromosome 

complement and gonadal hormone effects have been observed in immune response (Palaszynski 

et al., 2005). To date, there is limited evidence for sex chromosome complement effects in 

cognitive measures from the FCG model.

1.2.3.1 Sex chromosome mechanisms in mammals

Data from mice have shown that the brain gene expression profiles of males and females differ 

at 10.5dpc, prior to gonad differentiation and gonadal hormone secretion (Dewing et al., 2003). 

This suggests that the brain structure and function of the sexes may be different early in 

development, independent of gonadal hormone action. Unsurprisingly, several of the genes 

whose expression levels differed between the sexes are located on the sex chromosomes (i.e. the 

X or Y; Dewing et al., 2003), highlighting a possible fundamental role for genes on these 

chromosomes (and their downstream effectors) in mediating sexually dimorphic brain 

phenotypes.

In mammals, males possess two sex chromosomes, an X (always inherited from their mother) 

and a Y (always inherited from their father). In contrast, females possess two X chromosomes 

(one inherited from their mother, and one from their father). The X chromosome is relatively 

large (~ 155Mb in humans, ~ 166Mb in mice; Ross et al., 2005; Mueller et al., 2008) and rich in 

genes associated with cognitive function (Nguyen & Disteche, 2006a, 2006b); in 2004, from the 

1237 gene entries for ‘mental retardation’ in the Online-Mendelian Inheritance in Man, 27% 

mapped to the X chromosome (Zechner et al, 2001; Skuse et al., 2005), whilst the Y 

chromosome is much smaller (~60Mb in humans, ~95Mb in mice; Skaletsky et al., 2003; 

Bergstrom et al., 1998) and is enriched for genes involved in spermatogenesis (Lahn & Page, 

1997;). The two chromosomes recombine exclusively at sites towards their telomeres within 

pseudoautosomal regions (PARs; Ellis, 1998), where there exist X-Y homologous gene pairs 

(Heard & Dietsche, 2006); the remainder of the genes on the X and Y chromosome are located 

in the non-recombining region of the X (NRX) and non-recombining region of the Y (NRY)
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respectively. Genes on the sex chromosomes may influence brain phenotypes via three possible 

genetic mechanisms:

(i) Y chromosome effects

Brain-expressed genes within the NRY lack functional homologues on the X chromosome and 

are unique to males (Xu et al., 2002), hence have the capacity to influence male brain 

development and function specifically (Kopsida et al., 2009). O f particular note here is SRY/Sry, 

the testis-determining gene referred to earlier in section I.2.2.2. In addition to being expressed 

in the gonads during development and in adults, Sry is expressed in the mouse embryonic whole 

brain and postnatal midbrain, diencephalon and cortex (Mayer et al., 2000), and in the substantia 

nigra of adult rats (Dewing et al., 2006). In humans, SR Y  is expressed in the hypothalamus, 

frontal and temporal cortex (Mayer et al., 1998). In rodents, there is some evidence that the Sry 

transcript is processed differently during development; circular transcripts are detected in the 

embryonic whole brain, but linear transcripts are produced in the postnatal brain (Mayer et al., 

2000). The functional significance of circular transcripts is not known; however, it has been 

suggested that the formation of circular RNA might reflect translational control, as very few 

circular Sry transcripts are loaded onto polysomes for translation (Capel et al., 1993). 

Furthermore, this translation control of Sry in mice appears to be specific to tissue and 

developmental time points, and does not reflect a general switch from circular to linear 

transcripts, as Sry transcripts in the genital ridge are linear, but non-polyadenylated circular 

transcripts are detected in the adult testes (Capel et al., 1993; Jeske et al., 1995). Similar 

translation control has not been shown in humans; Sry transcripts exist as a linear, 

polyadenylated RNA in the adult human testes (Clepet et al., 1993), and circular transcripts might 

not be possible in humans as there is no repeat structure around the Sry locus to allow for the 

formation of a stem loop structure and subsequent splicing to result in circular transcripts (Capel 

et al., 1993).

In vitro and in vivo work has shown that Sry may act as a transcriptional activator at the promoters 

of genes encoding the enzymes TH (TH, Milsted et al., 2004) and monoamine oxidase A 

(MAOy4, Wu et al., 2009). TH is the rate-limiting enzyme in dopamine biosynthesis (Cave & 

Baker, 2009), whilst monoamine oxidase A catalyses the oxidative deamination of a variety of 

monoamines including serotonin, adrenaline and dopamine (Shih et al., 1999). Hence, Sry may 

have profound downstream effects on male-specific behaviours via influencing the 

catecholamine systems. SRY has also been shown to act as a transcriptional activator for 

members of the AP-1 transcription factor family, such as fos-related antigen 1 (Fra-1), by
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binding onto fra-1 HMG-box response element and activating fra-1 transcription in 

cotransfection studies (Cohen et al., 1994). It is possible that Sry binds to the promoter regions 

of numerous other brain-expressed genes which remain to be identified. In rats, Sry - in 

particular, the Sry3 locus8 - has also been shown to regulate gene expression in renin-angiotensin 

system (Milsted et al., 2010). A recent study in rats, in which expression of Sry was specifically 

downregulated in the substantia nigra region of the brain through oligonucleotide infusion, has 

provided data that brain-expressed Sry may directly influence neurochemistry and behaviour 

(Dewing et al., 2006). In substantia nigra, where Sry gene expressed was downregulated, showed 

reduced levels of TH (which is consistent with the notion of Sry acting as an activator for TH  

transcription) but no alteration in neuronal number, whilst downregulation of Sry was also 

associated with motor deficits on the akinesia and limb-use asymmetry tests. The range of 

neurobiological parameters influenced by Sry may be amenable to testing using this rat 

knockdown model system.

Besides Sry, there are a number of other genes on the Y chromosome which are expressed in the 

brain (Kopsida et al., 2009), such as Sts (Salido et al., 1996), Ddx3y (also known as Dbxly), Ubely, 

Kdm5d (also known as Smcy and Jaridld), TLif2s3y, Uty and Usp9y (Xu et al., 2002), which could give 

rise to sex differences. Many of these have homologues on the X chromosome, but there is 

evidence that in many cases, the X and Y homologues are expressed to differing extents and/or 

in different brain regions; for example, whilst Utx is expressed highly in the amygdala, Y-linked 

paralogue Uty is expressed highly in paraventricular nucleus of the hypothalamus (Xu et al, 2008).

(ii) X-linked gene dosage effects

Differential X-linked gene dosage between males and females can also underlie sexual 

dimorphism (Xu & Diestche, 2006). In mammals, females have two X chromosomes while 

males only inherit one; in order to balance this large potential imbalance in gene dosage between 

the sexes, one of the two X chromosomes in females is epigenetically modified and 

transcriptionally silenced through X chromosome inactivation (XCI; Valley & Willard, 2006). An 

important regulatory locus for XCI is the X inactivation centre (Xic), from where the noncoding 

gene X ist is expressed; Xist acts in cis to trigger silencing of the X chromosome (Heard & 

Disteche, 2006), with the downstream Tsix regulating its expression. X ist and Tsix are initially 

both expressed from the Xic; in differentiating female stem cells where XCI begins, Tsix RNA 

ceases to be expressed from one of the X chromosomes, leading to an accumulation of Xist

8 There are multiple Sry gene copies in rats (Turner et al., 2007), while m ost mammals only have one.
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transcripts on that X chromosome, which becomes the inactive X (Willard & Carrel, 2001). The 

inactive X loses the histone modifications associated with active chromatin, and gains those 

linked with inactivity, such as hypoacetylation of histones H3 and H4 and methylation of H3 

(Heard & Disteche, 2006). However, XCI is not complete; all genes in PARI (on the short tip) 

and most genes in PAR2 (on the long tip) escape XCI (Heard & Disteche, 2006). In humans, an 

estimated 15-20% of X-linked genes consistendy escape inacdvation, with a further 20% 

inactivated in some but not all cells (Carrel & Willard, 2005); the mechanism of inactivation 

escape might arise from failures to initiate or to maintain silencing (Brown & Greally, 2003). In 

mice, XCI is much more extensive, with only 13 genes known to escape XCI; these genes are not 

clustered together like in the case of humans (Yang et al, 2010). Furthermore, eight of these 

genes also escape in human, suggesting a level of conservation. These escapees could potentially 

contribute to a gene dosage imbalance between the sexes, given that there are no functional 

homologues on the Y chromosome in males expressed in the similar manner as the X-linked 

homologue, i.e. comparable levels and pattern of expression in RNA transcripts, and additionally, 

similar functional homology in proteins, in the case of protein-coding genes (Figure 1.2.3.1a; 

Heard & Disteche, 2006).

Although the majority of X-linked genes that escape XCI have Y homology (Carrel & Willard, 

2005), there is evidence indicating sex differences in expression levels of genes escaping XCI. 

Nguyen & Disteche (2006a) have noted a varied female-to-male ratio of 0.10 to 2.94 for 27 genes 

examined, suggesting differences do exist and may have functional consequences. In humans, 

the functional X-Y gene pair PCDHX  (which escapes XCI; Lopes et al, 2010) and PCDHY, in 

the cadherin gene superfamily and protocadherin subfamily, has slightly different amino acid 

sequences to each other, which might give rise to proteins with large differences in structure. 

PCDHX  is predominantly expressed in the cerebellum and heart, whereas PCDHY transcripts 

are found in the kidney, liver, muscle, and testis; these different expression patterns in the brain 

and body suggest this gene pair might contribute to differences between the sexes (Blanco et al., 

2000). Xu and colleagues (2002) have examined six X-Y homologus gene pairs in mice and 

showed that in five instances, the expression of the Y homologue was not sufficient to 

compensate for the higher expression from the X homologue. Out of the six gene pairs, four 

have been known to escape XCI in either human or mouse (Usp9x/y, Kdm5c/d, PLif2s3x/y, Utx/y) 

and display higher mRNA expression in female than in male mice; additionally, some gene pairs 

were expressed in different spatio-temporal patterns (Xu et al, 2002). Whereas Usp9x/y (Xu et al, 

2005) showed sexual dimorphic expression in both mRNA and protein levels, the sex differences 

in Pif2s3x/y mRNA levels were not preserved at the protein level (Xu et al, 2006); in the same
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vein, the sex differences of Kdm5c/d (Xu et al., 2008a) and Utx/y (Xu et al., 2008b) mRNA 

transcripts might not carry over to the protein level.

Figure 1.2.3.1a
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L i t
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In order to balance the 
single gene dosage from 
the X chromosome in 

males, one o f the two X 
chromosomes in females is 
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The expression from both 

sexes is equal.
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Figure 1.2.3.1a Schematic diagram explaining the possible gene dosage differences between the 
sexes in the case when an X-linked gene escapes XCI. Xa (pink): activated and expressed X  
chromosome; Xi (black): inactivated X  chromosome.

Additional evidence for X-linked gene dosage effects can be seen in studies with sex 

chromosome aneuploidies, such as Turner Syndrome (TS) in humans. TS is a chromosomal 

disorder affecting approximately 1 in 2500 live female births, in which there is partial or 

complete loss of one X chromosome, and manifests a range of symptoms, for example, 

reproductive abnormalities, short stature and various neuropsychological deficits such as 

attentional problems, visuospatial processing impairments and social cognition problems (Lynn 

& Davies, 2007). The physiological and neuropsychological abnormalities are likely to be the 

result of haploinsufficiency (i.e. lacking of gene dosage) for one or more products of X-linked 

genes that normally escape XCI (Zinn & Ross, 1998). X-Y homologous gene pairs are good 

candidates for X-linked gene dosage effects; by definition, these gene pairs exist on both the X 

and Y chromosome in the male, and therefore the gene dosage for the male is two. Assuming 

that the gene dosage in the female is the same as that in the male, this will mean the X-linked 

gene will escape XCI, and in cases of chromosomal disorders such as TS, this X-linked gene 

could serve as a candidate for X-linked gene dosage effects. For example, the gene SHOX, 

located in PARI and thought to underlie bone growth and development, escapes XCI and its 

haploinsufficiency has been implicated in short stature in TS females (Ellison et al., 1997; Rao et
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a l, 1997; Ross et al, 2001). The X-Y homologous gene pair RPS4X  and RPS4Y  has also been 

suggested to underlie abnormalities in TS; interestingly, RPS4X  is located in the long arm of the 

X chromosome, near the Xic, and is the only gene in the region to escape XCI in humans. The 

two genes encode isoforms of a ribosomal protein, whose aberrant levels might cause some of 

the specific physiological abnormalities observed in TS (Fisher et al., 1990). It has been 

postulated that haploinsufficiency in Z F X  could contribute to the abnormalities seen in Turner 

Syndrome; Z F X  escapes XCI and is the X-linked homologue of the functional ZFY, and both 

genes encode a zinc finger protein (Burgoyne, 1989). As mentioned above, XCI in mice is far 

more extensive than that in humans, and both KPS4X  and ZFY, while escape XCI in humans, 

are subject to normal inactivation in mice (Zinn et al., 1991; Ashworth et al., 1991). This 

difference in XCI between species could help explain the phenotypic differences between human 

TS and X-monosomy in mice (39,XO); the 39,XO mouse (an animal model for aspects of TS, 

see section 1.2.4.1 for more details) are morphologically grossly normal and fertile, in contrast to 

human TS females who might display physiological and fertility problems (Lynn & Davies, 2007).

(iii) X-linked genomic imprinting effects

A third genetic influence on sexual dimorphism comes from X-linked genomic imprinting. 

Genomic imprinting is the epigenetic mechanism in which alleles are expressed and silenced 

depending on their parental origin; a maternally expressed imprinted gene will be expressed from 

the allele inherited from the mother and the paternally inherited allele will be silenced, and vice 

versa for a paternally expressed imprinted gene (Davies et al., 2005b). Many imprinted genes are 

expressed in the brain (Davies et al., 2006b) and therefore might play a significant role in 

cognition; a comprehensive table detailing brain-expressed imprinted genes can be found on the 

Behavioural Genetics Group website9. Recently, a study by Gregg and colleagues (2010b) found 

1308 candidate imprinted loci using a genome-wide analysis of mouse brain tissues, and observed 

a preferential maternal expression of imprinted alleles in the developing brain and preferential 

paternal expression in the adult brain. Additionally, there are imprinted genes present on the X 

chromosome, with the potential to lead to sex differences (Davies et al., 2006a). Sexual 

dimorphism arise as a consequence of the fact that males always inherit their single X 

chromosome maternally (as the Y chromosome must be inherited paternally, i.e. XmYp), whilst 

females inherit one X chromosome paternally and a second maternally (i.e. XmXp). Therefore, a 

maternally expressed X-linked imprinted gene may be expressed in both males and females (both

9 http://www.bgg.cardiff.ac.uk/im printed_tables/brain_table.htm l
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possess Xm) whereas a paternally expressed X-linked imprinted gene may only be expressed in 

females, as they possess Xp but males do not (Davies et al., 2006a). Furthermore, a maternally 

expressed X-linked imprinted gene may be expressed at a higher level in males than females, if 

the gene is subject to XCI (for example, Xlr3b\ Davies et al., 2005a); in females, the Xm, and 

therefore the maternally expressed X-linked imprinted gene, will be silenced 50% of the time 

(assuming non-skewed XCI). Another factor that can influence sex differences contributed from 

X-linked imprinted genes is the presence of functional Y homologue in males. Table 1.2.3.1i 

details the theoretical gene dosage for X-linked imprinted genes in males and females.

Table 1.2.3.1i shows theoretical gene dosages for X-linked imprinted genes in males and females, taking 

into account the direction o f  imprinting, XCI status and possibility o f  a functional Y homologue (adapted 

from Davies et al, 2006a) Blue and pink cells are males and females respectively.

Escapes XCI Subject to XCI

Imprinting direction Functional Y 
homologue

N o functional Y 
homologue

Functional Y  
homologue

N o functional Y 
homologue

Paternally expressed
X«Yp =  1 X -Y p = 0 X mYP = 1 XmYp = 0

X mXp = 1 X mXp = 1 X mXP = 0.5 X mXP =  0.5

Maternally expressed
X“Yp =  2 XmYP = 1 XmYP =  2 X mYP = 1

XmXP =  1 X mXP =  1 XmXP = 0.5 X“Xp =  0.5

While there is evidence of X-linked genomic imprinting in humans, no genes have been formally 

identified (Davies et al., 2006a). Effects of X-linked genomic imprinting have been shown in a 

seminal study on TS individuals by Skuse and colleagues (1997), in which it was demonstrated 

that 45,Xm performed worse than 45,Xp and 46,XX females on the Same/Opposite World task, 

which indexes behavioural inhibition. Regarding neuroanatomy, it has been shown in a MRI 

study that 45,Xm females showed a larger right hippocampal volume than 45,Xp subjects (Cutter 

et al., 2006), which might contribute to the impaired memory retention of visuospatial 

information observed in 45,Xp females when compared to 45,Xm and 46,XX individuals in a Rey 

figure recall task (Bishop et al. , 2000). Kesler and colleagues (2003) has found larger right and 

left superior temporal gyrus volume in 45,Xm subjects than in 45,Xp and 46,XX females; the 

superior temporal gyrus is important in complex auditory stimuli and language processes, and it 

has been shown that 45,Xp females display superior verbal skills than 45,Xm individuals (Temple

29



Chapter I

et al., 1996; Skuse etaL, 1997). In functional neuroanatomy, there was preliminary evidence from 

a fMRI study that 45,Xm females displayed significantly more activation than 45,Xp subjects in 

the right superior and middle frontal gyrus (Tamm et al., 2003).

In contrast to the lack of identified human X-linked imprinted genes, murine X-linked imprinted 

genes have been found (Davies, 2010). Xlr3b, Xlr4b and Xlric were found to be a cluster of X- 

linked imprinted genes (Raefski & O ’Neill, 2005), with the maternally expressed imprinted gene 

Xlr3b postulated to be the candidate gene underlying parent-of-origin effects on cognition; 

39,XmO, 39,XpO and 40,XX mice (i.e. animals generated from the 39,XO mouse model, see 

section 1.2.4.1 for more details) were tested on a 2-choice visual discrimination task with 

reversal, in which 39,XmO animals specifically performed worse than 39,XpO and 40,XX females 

during reversal (Davies et al., 2005a). Davies and colleagues tested the XO mouse model on this 

particular 2-choice visual discrimination task with reversal, because Skuse and colleagues (1997) 

had observed poorer performance in behavioural inhibition (from the Same-Opposite World 

task) from 45,Xm Turner Syndrome girls, compared to 45,Xp and 46,XX girls. However, in 

Skuse’s study, there was a possible confound of cryptic mosaicism in the Turner Syndrome girls; 

this particular confound was eliminated with the use of XO mouse model (see Section 1.2.4.1), 

Xlr3b was expressed throughout the brain, including frontal cortex and hippocampus, which 

suggests a possible role in cognition; however, the exact brain function of the gene is unknown. 

Rhox5 is another X-linked imprinted gene in mice and is a member of a HMG cluster that is 

predominantly expressed in reproductive tissues, and thus Rhox5 might have a role in the 

development of these tissues. Interestingly, whilst it was expressed from paternally inherited 

allele prior to embryonic day 7.5 at the blastocyte stage, its expression switched to that from the 

maternally inherited allele thereafter, and finally, biallelic expression was observed in adult brain 

(Kobayashi et al, 2006; Davies, 2010). Recently, another X-linked imprinted gene, FthU7, has 

been found; this gene is expressed from very early on in development, at the 2-cell stage, from 

the paternally inherited allele (Kobayashi et al, 2010). Fthll7 gene possesses a metal-binding 

motif, but exact function is unknown.

1.2.4 U tility ofm ouse m odels

In general, mice represent a good experimental system for modelling human brain conditions as 

a large number of matched subjects can be tested in a controlled environment and the 

behavioural and drug history of subjects can be carefully regulated. The physiology (and 

specifically neurobiology) of mice can be intimately examined, making it particularly amenable 

for investigating the brain and underlying cognition, and the mouse genome has been extensively
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mapped and may be readily manipulated to create mutant and transgenic mice. Furthermore, a 

large number of behavioural assays exist for mice, including those that test complex cognitive 

constructs (Humby & Wilkinson, 2006; Isles et al., 2003). The degree to which gene content and 

order in man and mouse is considerably conserved, with substantially detailed comparative maps 

between the two species (Carver & Stubbs, 1997); however, the mouse chromosomes have 

undergone many genomic rearrangements over evolutionary time and are subject to different 

evolutionary pressures, and so caution will need to be taken when comparing between man and 

mouse. For example, the X-linked imprinted gene in mouse, Xlr3b, does not have a human 

orthologue (Raefski & O ’Neill, 2005) and so findings regarding its imprinting status and 

associated cognitive effects would need to be majorly reinterpreted for the case of humans. Also, 

there is a large discrepancy in the number and identity of genes that escape XCI between man 

and mouse (Yang et al., 2010).

1.2.4.1 39,XO mouse model

Turner Syndrome can be used to investigate the effects of X-linked imprinting and gene dosage 

on brain and behavioural phenotypes, and in the same vein the 39,XO mouse model could also 

shed light on these imprinting and haploinsufficiency effects. Using two separate crosses, 39,XO 

mice could be engineered such that they inherit their single X chromosome either maternally or 

paternally, resulting in the karyotypes 39,XmO and 39,XpO, respectively. Furthermore, the 

39,XO mouse model does not have some of the confounds which are inherent when examining 

TS females; for example, cryptic mosaicism (i.e. where one of the X chromosome might be 

partially, rather than wholly, lost, and additionally Y chromosome material might be present) is a 

potential confound in human TS studies. The 39,XO mice are generally healthy with no gross 

morphological abnormalities and are fertile, so that any neurobiological or behavioural findings 

are unlikely to be confounded by growth or hormonal problems. It would appear that the 

39,XO mouse model can recapitulate some of the phenotypes observed in TS females, in that 

the animals do show some minor abnormalities reminiscent of TS, including high frequency 

hearing loss and aberrant cochlear architecture (Hultcrantz et al., 2000) and reduced thyroid 

activity and body temperature (Deckers & Van der Kroon, 1981; Deckers et al., 1981). Moreover, 

39,XpO mice are developmentally retarded relative to their 40,XX siblings early in development 

(Thornhill & Burgoyne, 1993), whilst both 39,XpO and 39,XmO groups exhibit some degree of 

postnatal growth retardation (Burgoyne et al., 2002). With regard to behavioural phenotypes, 

both 39,XO mice and TS individuals exhibit deficits in fear reactivity (Rovet & Ireland, 1994; 

Isles et al., 2004), attention (Romans et al., 1998; Davies et al., 2007) and behavioural inhibition
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(Skuse et al., 1997; Davies et al., 2005a). The above data would suggest that the 39,XO mouse 

model has a reasonable level of face validity in modelling aspects of TS.

However, there are disadvantages with the 39,XO mouse model. It is possible that, as a 

consequence of the more extensive XCI of the mouse X chromosome (i.e. fewer X-linked genes 

escape XCI in mice), with only 13 genes currendy known to escape XCI (Yang et al., 2010), X- 

monosomy effects observed in man (with less extensive XCI) would be absent or substantially 

less severe and therefore cannot be readily modelled in the mouse. There are also differences 

between human and mouse in terms of gene content (e.g. Xlr3b is only present in the mouse and 

not in man, Raefski & O ’Neill, 2005).

Another issue is the fact that, unavoidably, two separate crosses (details below) were required to 

generate the 39,XmO and 39,XpO (and 40,XX littermates) animals (Burgoyne & Evans, 2000; 

Evans & Phillips, 1975), and thus, any behavioural differences found between 39,XmO and

39,XpO mice might be influenced by differential pre-weaning matemal-offspring and/or 

offspring-offspring interactions. A further possible confound arises from the presence of the Paf 

mutation in the father utilised in 39,XmO generating cross, which is not present in the mother in 

the 39,XpO generating cross; this would result in different littermates (some are Paf 

heterozygotes, some not) and possibly different inter-littermates interactions. In order to help 

control for this, the Paf mutation was introduced in the mother in the 39,XpO cross, so that both 

crosses produce Paf heterozygote littermates, 40,XXP̂  (from the 39,XmO cross) and 40,XP<?/X 

(from 39,XpO cross). This strategy tackles the possible confound to a degree; however, in

40,XXP<?/, the Paf mutation is inherited paternally whereas in 40,XPâ X, the mutation is inherited 

maternally, and so there is a possibility that the two Paf heterozygote littermates are not identical 

due to unanticipated Paf parent-of-origin effects.

(i) Generation of 39,XmO mice

39,XmO mice may be generated at an efficient rate (~40% of female offspring are 39,XmO) using 

the cross described by Burgoyne and Evans (2000). This cross involves the mating of male mice 

of karyotype 40,XP,?/Y* with female mice of karyotype 40,XX. Paf (Patchy fur) is a semidominant 

X-linked mutation which maps close to the distal end of the murine X chromosome, near the 

pseudoautosomal region (PAR; Lane and Davidsson, 1990), and Y* is a variant Y chromosome 

with a compound PAR, flanked at the distal end by an X PAR boundary and other X-specific 

material (including the wild type Paf allele). The Y* variant retains its Y centromere, which is 

inactive.
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During male gametogenesis, two types of recombination orientations, ‘parasynapsed’ and 

‘staggered’, are possible. The parasynapsed recombination orientation can lead to formation of 

large dicentric and acentric chromatids, which are subsequendy lost in anaphase II, resulting in 

sex chromosome-null (or ‘O ’) gametes. These gametes may fertilise a normal female gamete to 

produce 39,XmO female progeny. The parasynapsed orientation may also produce gametes 

containing a non-recombinant XP̂  chromosome which may fertilise a normal female gamete to 

produce 40,XXP̂  female offspring. Lastly, gametes containing Y* products might be formed 

which may fertilise a female gamete to lead to XY* male progeny.

In the staggered formation, male gametes containing either the Xp<̂  or Y*x chromatids may be 

formed to fertilise maternal gamete to produce 40,XXP<̂  and 40,XY*x female offspring. 

Additionally, male progeny may be produced by fertilisation of maternal gametes with sperm 

containing XP<9Y* or Y* chromatids.

The presence of the Paf mutation increases the crossing over in the parasynapsed orientation and 

hence, increases the rate at which 39,XmO mice are produced. Technical details of the 39,XmO 

generating cross are found in Figure 1.2.4.1a.

(ii) Generation of 39,XpO mice

39,XpO mice may be generated from the cross described by Evans and Phillips (1975). This 

cross involves the mating o f normal 40,XY male mice with female mothers that are hetero2 ygous 

for a large paracentric chromosomal inversion In(X)lH. However, the cross used to produce 

offspring for the research of this thesis was slightly modified; mothers of karyotype 

40,In(X)lH/Xp̂ were used (instead of the 40,In(X)lH/X used in the Evans and Phillips cross). 

The Paf mutation on the second X chromosome is not necessary for the production o f the 

39,XpO offspring, but it was introduced into this cross to address the fact that the generation of 

the 39,XmO mice involved the introduction of the Paf mutation and generated 40,X X ^  

littermates, whereas the generation of the 39,XpO cross, if unmodified, would produce 40,XX 

siblings (see caveats described earlier).

The large In(X) inversion promotes crossing over between the chromosomes during 

gametogenesis in the mother. In the situation where the crossing over occurs within the 

inversion, dicentric and acentric chromatids may be produced, resulting in ‘O ’ gametes after the 

subsequent loss of these chromatids in anaphase II. ‘O ’ female gametes may be fertilised by a 

male gamete containing either a single X or a single Y chromosome to generate 39,XpO and 

39,OY offspring. 39,OY offspring dies prenatally. Additionally, X.Paf chromatids may be
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produced, and when fertilised by a male gamete containing either a single X or a single Y, 

40,XPafX and 40,XP<9Y (latter not tested in this thesis) may be generated respectively.

In the alternative situation where the crossing over occurs between the Paf mutation and the 

inversion, a recombinant X product may result, and when fertilised by a male gamete containing 

either a single X or a single Y, 40,XX and 40,XY (latter not tested in this thesis) may be 

generated respectively. A Xp̂  chromatid product may be generated, which will produce 40,XP<?/X 

and 40,XP<9V offspring as in the first crossing over situation. Technical details of the 39,XpO 

generating cross are found in Figure 1.2.4.1b.

34



Chapter I

Parasynapsed orientation Staggered orientation

x iV

Y Paf Y* -y^Paf -yrV afi*

Y *x y *

I
Y

Anaphase II loss o f  

these recombinants;

40,XXiV 1 40,XXPa/ 40,XY*X

39,XmO

|  X  chromosome 

^  X centromere 

|  Y  chromosome 

Q  Y centromere (inactive) 

9  Paf mutation 

|  PAR

Figure 1.2.4.1a There are two orientations in which 

chromatids can recombine during male gametogenesis in 

40,XP‘?Y*. The parasynapsed orientation can result in a 

dicentric (D) or an acentric Y Paf  chromosome (functionally 

acentric due to inactive Y centromere). Subsequent loss o f  

these chromosomes during anaphase II may result in sex 

chromosome-null or ‘O ’ gametes. A non-recombinant X Pfl/  

chromosome may also be produced. In the staggered 

formation, XPa/  chromosomes, along with Y*x chromosomes, 

may be generated. I f  an O, Xpf  Y*x sperm fertilises a normal 

gamete from a 40,XX mother, the following offspring, 

39,XmO, 40,XX*V, 40,XY*X, may be generated respectively. 

N ote that the diagram does not show the rarer recombinant 

chromosomes, and only displays female offspring that was 

utilised in this thesis.
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Crossing over between the Pa/m utation 

and In(X)lH  inversion

Crossing over within the In(X)lH

inversion

In(X) X  In(X)^¥ Xp*f

co•aits

<L>

In(X) D A X p*f

M l 1 i 1
)

r Y I

40,XX 40,X^VX
Anaphase II loss o f  

these recombinants;
40,Xp4X

39,XpO

|  X  chromosome 

0  X  centromere 

•  Paf mutation 

|  PAR

In(X) inversionI

Figure 1.2.4.1b During gametogenesis in In (X )lH /X Pfl/  mothers, if  

the crossing over occurs between Paf mutation and the inversion, 

recombinant X  or XPaf  chromosomes may be generated. I f  crossing 

over occurs within the inversion, a large dicentric (D) or an acentric 

(A) chromosome may be formed; the subsequent loss o f  these 

recombinants may result in sex-chromosome null or ‘O ’ gametes. A  

non-recombinant XPaf  chromosome may also be produced. I f  an O, 

X or XPaf  egg is fertilised by a paternal X-containing sperm, the 

following offspring, 39,XpO, 40,X X  , 40,XiVX, may be generated 

respectively. Note that the diagram only displays female offspring 

that were utilised in this thesis.
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The Paf heterozygotic littermates were identified at seven to nine days of age, at which time the 

Paf animals sport the most pronounced patchy fur phenotype and appear nude; as the animals 

become older, this phenotype diminishes and so the Ptf/'littermates might not be distinguishable 

from 39,XmO and 39,XpO females at a later time point. At weaning, the Paf heterozygotes were 

housed separately from other littermates.

1.2.4.2 Four Core Genotypes mouse model

The Four core genotypes (FCG) mouse model can be used as a means to dissociate gonadal 

hormone and/or brain effects o f Y-linked Sry gene from effects due to other sex-linked genes. 

The FCG model involves the generation of four genotypes, 40,XX, 40,XX3>y, 40,XY- and 

40,XY-J7y, all of which can be produced in one litter, eliminating possible maternal-offspring 

and offspring-offspring confounds. Briefly, Sry is introduced as an autosomal transgene in 

40,XX5>y and 40,XY-Sry animals, resulting in gonadal males, while 40,XY- possess a Y- 

chromosome deleted for Sry and are therefore gonadal female (more details below). Different 

comparisons between the different genotypes can highlight Sty -independent and -dependent 

effects; by comparing [40,XX and 40,XX3V)/] with [40,XY- and 40,XY-3Vy], any differences 

between these two meta-groups could be influenced by 3Vy-independent effects (i.e. other genes 

on the X and Y chromosome, except Sty), as these two meta-groups differ in their sex 

chromosome complement. On the other hand, by comparing [40,XX and 40,XY-] with 

[40,XX5Vy and 40,XY-Sry\, JYy-dependent effects might underlie any differences between the two 

meta-groups, as these groups vary in the presence or absence of Sry, iYy-dependent effects can 

point to (1) gonadal hormone differences, as it was explained above that Sry plays a crucial role 

in gonad differentiation and therefore, subsequent production of gonadal hormones such as 

testosterone, and/or (2) brain effects of Sry, as it has been shown that Sry is expressed in the 

brain and therefore might influence behaviour and cognition. Figure 1.2.4.2a describes the two 

comparisons.

Whilst undoubtedly useful, this model is not without its caveats; while normal 40,XX females are 

generated within the model, normal 40,XY males cannot be produced. 40,XY-3Vy animals might 

superficially resemble normal 40,XY males, but it has been shown that 40,XY and 40,XY-Sry 

males are not identical in some aspects of behaviour and neurobiology, such as latency to thrust 

in mating test, total visits and number of visits to a male stimulus animal in social exploration test, 

and the number of TH-ir neurons in the anteroventral periventricular nucleus of the preoptic 

region (De Vries et al., 2002).
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Karyotypic
sex

Female |  | Female j j

Gonadal sex Female ^ Male S

Karyotypic
sex

Male |  | Male |  |

Gonadal sex Female ^ Male (^)

"X
A difference between 

these two meta-groups 

suggested dry-independent 

effects (factor SEX 

CHROMOSOME 

COMPLEMENT in the 

ANOVA)

A difference between these two meta­

groups suggests dn'-dependent effects 

(factor GONADAL SEX in the 

ANOVA)

Figure 1.2.4.2a Diagram outlining the possible differences within the FCG mouse model and the 

associated effects, either dry-independent or dry-dependent. The statistical design o f  Two Way 

A N O V A  utilised in the experimental chapters with Between Subject factors o f SEX  

CHROMOSOME COMPLEMENT (Sry-independent) and G O NADAL SEX (dry-dependent) was 

used to reveal any differences.

The Y- chromosome possessed by some animal in the FCG model is a variant of Y129 derived 

from the mouse strain 129, deleted for the testis-determining gene dry (Td/"1 mutation, Lovell- 

Badge and Robertson, 1990). XYtdyml males (referred to as XY-dry males in this thesis) were 

originally generated on an MF1 background at MRC National Insitute for Medical Research, UK 

in the laboratory of my collaborator Dr Paul Burgoyne (Mahadevaiah et al., 1998), by 

introducing an dry transgene derived from the transgenic line C57BL/6Ei-YAKR/JTgN(Sry- 

129)2Ei into pronuclear stage embryos from XYtdyml females (referred to in this thesis as XY- 

mice); Ytdyml is a 14kb deletion in the short arm of the Y chromosome which removes dry 

(Lovell-Badge & Robertson, 1990; Gubbay et al, 1992). dry is introduced as a fully penetrant 

transgene inserted onto an autosome; the location of the insertion and the copy number of the
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transgene is currently not known. Parents of the cross possessed the so-called ‘uniform X’ 

chromosomes in an attempt to reduce variability in the data; the uniform X chromosome stock 

was bred by mating a wild type male to an XO female, both from a random bred MF1 strain 

background, in order to generate an XO daughter with a paternal X (Figure 1.2.4.2b). This 

particular XO daughter was mated back to the father so that the XX females (uniform X 

chromosome females) produced would possess two identical X chromosomes which both 

originated from the father. The uniform X chromosome was introduced into the present FCG 

cross by mating males (XY-Sry) to uniform X chromosome females, resulting in XY-Sty progeny 

which possessed the uniform X chromosome, and those animals were in turn bred with uniform 

X chromosome females to produce the FCG cross (Figure 1.2.4.2b).

XX

XX

XO XY

•  ■

Generation o f  uniform 

X  chromosome 

females — yellow shading

XY YO
Not
viable _

XO XY

XY-Sry
•  ■
XX

Uniform X  
hromosome 

females

XY YO
Not
viable

XO

XY-

■
XXSry XY-Sry

Generation o f  Four 

Core Genotypes mice 

red shading

XX
Uniform X 

chromosome 
females

XX XY- XXSry

Four Core Genotypes

XY-%
_____________ _ ______________ _ _ _

Figure 1.2.4.2b Details o f  uniform X  chromosome females and Four Core Genotypes generation 

crosses. Black filled circles and squares denote gonadal females and males respectively.

One advantage of the FCG model is that all four genotypes are produced within any one litter, 

thus negating the possibility of inter-litter effects: 40,XX (gonadal females, karyotypic females),
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40,XY- (gonadal females, karyotypic males), 40,XX3Vy (gonadal males, karyotypic females) and 

40,XY-i>y (gonadal males, karyotypic males); hereafter referred to as XX, XY-, XXSVy and XY- 

Sry respectively. Subjects were first distinguished by external genitalia (gonadal sex), housed 

according to their gonadal sex, and then genotyped according to the methods described in 

Chapter II, 2.9.2.

1.3 Aims of the thesis

The main aim of the thesis is to address the extent to, and the specificity with which, Sty- 

dependent and ^-independent mechanisms might influence aspects of brain function and 

behaviour using two well-characterised mouse models. JVy-dependent mechanisms comprise 

direct effects of S y  expression on the brain, or indirect effects of Sry expression on gonadal 

differentiation and subsequent gonadal hormone secretion, ^-independent mechanisms consist 

of expression of Y-linked genes (excluding Sry), X-linked gene dosage and X-linked genomic 

imprinting. Specific aims of the thesis are:

•  Basic phenotyping of the XO mice in my hands, from an animal model in which the effects 

of X-monosomy and X-linked imprinting could be assayed, and which may recapitulate 

aspects of the developmental disorder Turner syndrome.

•  To investigate the performance of XO mice on a novel task of frontal cortex function 

(biconditional discrimination learning and response conflict), given previous data suggesting 

altered frontal cortex function in these mice and in humans with Turner syndrome. One 

might tentatively predict that there might be an X-linked imprinting effect in the response 

conflict part of the task (given the findings from Davies et al!, 2005a and Skuse et al!, 1997).

•  Basic phenotyping of the Four Core Genotypes mouse model in my hands, in which i n ­

dependent and -independent effects on brain and behaviour could be dissociated.

•  To investigate performance of the FCG mouse model on a second assay of frontal cortex 

functioning (two-way visual discrimination with reversal), based on previous data indicating 

sex differences in this task and X-linked imprinted gene effects on reversal learning (Davies 

et al., 2005a). The aim of this task was to see the extent of gonadal hormones and sex 

chromosome complement contributes to task performance, given that both gonadal 

hormones and sex chromosome mechanisms have been shown to play a role in reversal 

learning.
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•  To investigate whether any identified JVy-dependent effects on brain function and behaviour 

were likely to be direct or indirect (i.e. hormonally-mediated) through assaying Sry gene 

expression in the brain and systemic testosterone levels.

•  To describe the possible relevance of experimental findings to sex differences in brain and 

behaviour in rodents and man, and to sex chromosome disorders such as Turner syndrome.
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Chapter II 

General Materials and Methods

This chapter describes routine procedures that were carried out during the course of research for 

this thesis and descriptions of any experimental apparatus used. All procedures involving Jive 

animals were performed in accordance with the guidelines and requirements set out in the U.K. 

Animals (Scientific Procedures) Act (1986) and in the Home Office Project Licence granted to 

Professor Lawrence Wilkinson (PIL 80/1937). Work was performed under the Home Office 

Personal Licence granted to Phoebe Lynn (PIL 30/7662).

2.1 Subjects

2.1.1 X O  m ice

XO mice on a MF1 random bred albino background were generated at the MRC, NIMR, Mill 

Hill, London by my collaborator D r Paul Burgoyne using the crosses as described in the General 

Introduction (Burgoyne & Evans, 2000; Evans & Phillips, 1975; additional details of the crosses 

are given in Experimental Chapter III, 3.2.1). Experimental groups of XO mice, together with 

their female siblings, were transported to Cardiff at age of five months and kept in isolators for 

treatment of Pasteurellapneumotropica infection and then housed in the animal house of the School 

of Psychology, Cardiff University at 2-4 mice per cage.

2.1.2 Four Core G enotypes m ice

The Four Core Genotypes mice (FCG) used in this thesis were originally created by my 

collaborator Dr Paul Burgoyne in the MRC, National Institute for Medical Research (NIMR) 

Mill Hill London on a MF1 random bred albino strain background using the crosses as outlined 

in the General Introduction (Lovell-Badge and Robertson, 1990; Mahadevaiah et al, 1998; 

additional details of the crosses are given in Experimental Chapter V, 5.2.1). A colony was 

established at the Babraham Institute, Cambridge, UK when the Behavioural Genetics Group 

was located there (prior to 2007). For the experiments in this thesis, the lines were established at 

Cardiff from animals transported from the Babraham Institute to the animal house in the School
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of Psychology, Cardiff University. For the purposes of housing, male and female mice were 

defined according to gonadal status and were group housed separately, with 2-5 mice per cage.

2.1.3 X Y  w ildtype m ice

Additionally, for the generation of wildtype 40,XY males (hereafter referred to simply as wildtype 

XY), a separate cross was set up in the animal house at the School of Psychology, Cardiff 

University with wildtype MF1 males and wildtype MF1 females with uniform X chromosome 

(see General Introduction for more information on uniform X chromosome and Chapter VI,

6.2.1 for details of the wildtype XY generating cross). All female progeny of the cross were 

culled. Wildtype XY males were housed together with littermates in groups of 2-5.

2.2 General animal husbandry

All experimental animals were group housed in environmentally enriched cages (with cardboard 

tubes) in a temperature and humidity controlled holding room (21±2°C and 55+10% 

respectively), with a 12-hour light-dark cycle (0700 lights on/1900 lights off). Standard mouse 

chow (rodent maintenance feed, SDS, U.K.) and water were available ad libitum unless stated 

otherwise (in some cases restriction schedules were used to motivate performance in behavioural 

tests, see later). During the course of an experiment, the home cages were cleaned by the 

experimenter once a week at the same time and on the same day of the week, in order to 

minimise any disruption to the experiments.

All experimental animals were regularly monitored for signs of ill health; any mice which 

appeared unwell were immediately assessed by the NACWO animal technician and the vet. 

Weights were measured routinely and on a more frequent basis during restriction schedules. 

Sentinel mice housed in the holding room were regularly assayed for pathogens at Harlan, U.K.

2.3 Handling and body weight measurement

Imported animals were allowed at least two weeks to habituate to the new holding room 

environment at Cardiff University. All animals were handled once every day for two weeks 

(approximately two minutes per animal per day) prior to behavioural testing. Body weights were 

measured regularly, and weights were recorded at the same time each day (around 1700, 

following behavioural testing, and if animals were on water restriction, following two hours of 

free access to water).
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2.4 Determination of oestrous

Vaginal smearing was perform ed w ith a co tton  w o o l swab, to determine the oestrus status o f  the 

animal. Cells were smeared o n  cleaned slides and stained in 0.05%  cresyl v io let solution for 

around seven minutes. This quick procedure o f  vaginal smearing did not appear to cause the 

m ice any discom fort. Smearing w as perform ed daily for ten days, before the start o f  behavioural 

testing, in  order to establish an oestrous cycle pattern. T he procedure was then repeated at 

particularly im portant stages o f  behavioural testing and after the com pletion  o f  testing. Smears 

w ere exam ined under the lOx m agnification o f  a light m icroscope; stage o f  oestrous (dioestrous, 

proestrous or oestrous) could be determ ined based upon the m orphology o f  cells in the sample 

(Figure 2.4a; Murr et al., 1973).

© ©

%

Figure 2.4a
A: diestrous stage, characterised by a mucosal discharge containing small, dense leucocytes. 

B: proestrous stage, characterised by larger, nucleated epithelial cells.

C: oestrous stage, characterised by many large cornified cells with degenerate nuclei.

Bar =  10pm. Photos courtesy o f  Dr William Davies

2.5 Altered home cage water availability protocol

Anim als were placed on  a water restriction protocol tw o w eeks before the start o f  any 

behavioural testing that utilised a liquid reward as a task reinforcer. This was done as a w ell 

established m eans within the laboratory o f  m otivating perform ance in the tasks (Isles et al, 2004; 

D avies et al., 2005a). T he m ice were allowed access to  hom e cage water for four hours per day 

during the initial two days o f  the protocol, and then tw o hours per day thereafter and throughout 

the testing period. For the initial seven days o f  water restriction, water bottles were w eighed at 

the start and end o f  water access to ensure that animals were drinking sufficiently during that 

period. Anim als were given a full 24  hours o f  free water access at least once every four w eeks 

and then placed back on  the restriction schedule until the end o f  testing. B ody w eights o f
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animals were routinely monitored to ensure that subjects remained above 85% of their free- 

drinking weight. Any subjects with weights below 80% of their free-drinking weight and/or 

showing signs of dehydration were immediately given ad libitum water access for at least 12 hours. 

Standard mouse chow was available ad libitum during the water restriction protocol.

2.6 Reinforcer (reward) preference test

Prior to any behavioural testing, and following the stabilisation of body weight on the water 

restriction schedule, the animals were habituated, where appropriate, to the liquid reinforcers 

(rewards) used in many of the appetitively motivated behavioural tasks, which was either 10% 

condensed milk (Nestle, U.K.), 20% sucrose, or 10% grape-flavoured maltodextrin, solutions. 

This general test was necessary in order to exclude the possibility that there were pre-existing 

differences in the basic reactivity of the different mouse lines to the various reinforcers used in 

the behavioural tests. The reinforcer preference test took place outside the home cage 

environment in eight test cages (285 x 130 x 120mm, one mouse per cage) during daily 10- 

minute sessions over a period of six consecutive days. These test cages contained no sawdust 

bedding and had two Velcro squares glued to the bottom of the cage, onto which two small 

containers (diameter 25mm) containing liquid could be affixed. The containers were weighed 

before and after each session to assess fluid consumption. For the initial two days, both 

containers held water; this was to habituate animals to the test environment and to measure 

general water consumption. For the remaining four days, one container held water while the 

other held the reinforcer. The positions of the containers were switched between days to avoid 

positional response bias. In all cases, the mice were provided with excess volume of fluids. 

Reinforcer preference was defined as the amount of reinforcer consumed as a percentage of the 

total amount of liquid when given the choice between water and reinforcer over the four days of 

testing.

Note that the general procedure outlined above was for testing one reinforcer against water. 

Due to task design, for the biconditional discrimination testing with XO animals, two reinforcers 

were used in the experimental paradigm. The above general procedure was slightly modified for 

this purpose and full details are outlined in Chapter IV, 4.2.3.
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2.7 Behavioural apparatus

2.7.1 Rotarod

The basic motoric competence of the subjects was 

tested on the rotarod (Ugo Basile, Italy), which 

consisted of a rotating bar with a non-slip surface 

(25mm in diameter). The rotating speed and 

acceleration of the bar could be changed. The bar was 

separated into five segments (each 55mm wide) with 

rotating partitions (120mm in diameter). One mouse 

was put on a given segment and a lever underneath 

was raised to start a time counter. When the mouse 

fell and hit the lever down, the counter was stopped 

and the time spent on the bar was recorded.

2.7.2 Locom otor activity boxes

Locomotor activity was measured using clear Perspex boxes 

made in-house (each measuring 215 x 360 x 200mm, width X 

length X height); testing was performed in a battery of 12 

boxes, with one subject run in each box. Two infra-red 

beams spanned each box, located at 30mm from each end of 

the box and 10mm from the floor of the box. Air holes were 

present on the top side of the box. Infra-red beam breaks 

data were recorded by a computer with custom written BBC 

BASIC V6 programmes (Cambridge Cognition Ltd., 

Cambridge, U.K.).
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2.7.3 E levated zero m aze

Fear reactivity was measured using the elevated zero maze 

(Shepherd et al., 1994; Cook et al, 2002). The maze (600mm 

in diameter), elevated 500mm above the floor, was 

constructed with silver painted metal, which was subsequently 

covered with black tape for Ethovision tracking purposes. 

The maze comprised of two open quadrants and two closed 

quadrants with an open roof and high walls (220mm high), 

and was illuminated by a 40W red light giving an overall light 

intensity of ~5 lux. Subjects were tracked using the 

Ethovision tracking system (Noldus, U.K.).

2.7.4 Biconditional discrimination and (Stroopf tasks

The biconditional discrimination and ‘Stroop’ tasks (which were carried out sequentially using 

the same basic apparatus with different stimuli configurations) were conducted in a standard 

operant chamber (Figure 2.7.4a; Med Associates Inc., U.S.A.). The operant test chamber 

(140mm X 160mm x 120mm, length x width x height) consisted of two nose poke response 

apertures, two stimulus lights and a food magazine at the right wall, and set into the left wall

were a loudspeaker (2900Hz, 65dB) and a house light (2.8W). The bottom of the chamber was

either a grid floor (19 stainless steel rods, 48mm in diameter) or a smooth Perspex floor, over a 

removable litter tray. Behind each nose poke response hole (13mm in diameter, 10mm in depth) 

was set a yellow LED with an infra-red beam, which detected nose poke responses when the 

animal’s nose was 6.4mm into the aperture. The stimulus lights (7.9mm in diameter) above the 

nose poke holes were bright yellow LEDs. The food magazine (51mm X 51mm, height x width) 

had a hole in the bottom, through which a small stainless steel cup attached onto the dipper arm 

could deliver the reinforcer (20% sucrose solution or 10% maltodextrin solution, 0.01ml in 

volume). The chamber was installed within a melamine high density wood cubicle to block out 

external noise; additionally, a fan provided ventilation and constant background noise. A 

computer running custom written programmes with the MED-PC IV software (Med Associates 

Inc., U.S.A.) on Windows XP platform was used to operate the chamber and record data.
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Figure 2.7.4a

1: test chamber. 2: dipper for transferring 

reinforcer into the food magazine. During a 

session, it rested within a reinforcer-fiUed 

container. 3: chamber floor, either smooth 

Perspex or a grille (as shown in diagram).

4: house light. 5: loudspeaker. 6: stimulus 

lights. 7: nose-poke apertures; behind each 

were a stimulus light and a vertical infra-red 

beam. 8: food magazine, with a hole to 

enable the delivery o f  the reinforcer by the 

dipper and spanned by an infra-red beam.

2.7.5 Simple visual discrimination and reversal learning task

T he sim ple visual discrim ination and reversal learning task utilised a sem i-autom ated 8-arm radial 

arm m aze (Tech11*, Babraham Institute, U .K .), w hich had been configured to w ork  as a Y  m aze  

(Figure 2.7.5a). T he Y  m aze consisted  o f  a transparent Perspex start arm and tw o opaque 

Perspex goal arms (black and w hite), o f  equal dim ensions (345m m  x  51m m  x  81m m , length x  

w idth X height). T he arms were rem ovable and slotted in to  p osition  o n  the m aze. The arms 

were arranged in a Y  shape, extending from a central arena. Infra-red sensors (R.S. com ponents, 

U.K .) w ere located on  the arms at 20, 70 and 280m m  from  the centre o f  the maze; these tracked 

the activity o f  the m ouse as it m oved  w ithin the m aze, providing inform ation on the subject’s 

arm choice and latencies on  various measures. Furthermore, the infra-red sensors were linked to  

m otors (Amerang Ltd., U .K.) that controlled the opening and closing o f  Perspex guillotine doors 

around the central arena. A t 320m m  from  the centre o f  the m aze, there was a food  w ell into  

w hich the reinforcer (10% condensed  milk solution, N estle , U .K .) could be placed and the
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reinforcer could not be seen from the centre of the maze. The whole maze was elevated at lm  

above the ground. The test room was consistendy and dimly illuminated with two 60W light 

bulbs, positioned next to the two choice arms facing away from the maze. An Acorn RISC 

computer running a programme with custom written software (Arachnid, Cambridge Cognition 

Ltd., U.K.) was used to operate the maze and record data.

Figure 2.7.5a 1: start arm. 2: two goal arms (one black, one white), 

examples o f  infra-red sensors located in different parts o f  the maze, 

transparent guillotine doors for entry into goal arms.

3: central choice arena. 4 /5 /6 :  

7: Y-shaped choice space. 8:

2.8 Culling protocol

At the end of the experiment (or if the animal was severely unwell) the subjects were culled 

through cervical dislocation. The femurs of progeny from the XO generating crosses were 

removed for bone marrow karyotyping. From the Four Core Genotypes animals, the brain and 

testes were dissected and trunk blood samples were taken.

2.9 Karyotyping and genotyping protocols

2.9.1 Karyotyping XO  m ice using bone marrow metaphase spreads

Immediately after culling, the femurs were dissected out of the animal and flushed with 0.5ml of 

RPMI medium (Invitrogen, U.K.) and demecolcine (Sigma-aldrich, U.K.) solution (0.1ml of 

0.04% w /v demecolcine stock in 50ml RPMI medium) per leg using a syringe into a 2ml round- 

bottomed eppendorf tube. The cells were incubated at 31 °C for 15 minutes, and then pelleted at 

lOOOg for 5 minutes, resuspended in 2ml 0.56% w/v solution of potassium chloride in water and 

left at room temperature for 20 minutes. The cells were pelleted again at lOOOg for 5 minutes, 

after which they were washed by fresh fixative (3:1 methanokglacial acetic acid) five times, with 

centrifugation in between each wash. After the final wash, the cells suspended in fixative were
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dropped on to  cleaned slides (cleaned w ith 2% concentrated hydrochloric acid in  98% absolute 

ethanol) and stained w ith 4% G iem sa stain in pH 7.4  PBS buffer for 15 m inutes. I f  m etaphase 

chrom osom es were n o t w ell spread on  the slide, cells were washed w ith fixative and again. 

Slides were view ed at lOOx m agnification using an oil im m ersion lens. T he karyotype 39,X O  was 

determ ined by the presence o f  39 chrom osom es in  four separate spreads. T he parental origin o f  

the single X  chrom osom e in the 39,X O  animal was indicated from  the generating crosses. The  

karyotype 40,X Y *x was determ ined by the presence o f  the small Y *x chrom osom e (see Figure 

2.9.1a).

Figure 2.9.1a
A: 40,XX; the chromosome spread clearly showed 40 chromosomes.

B: 39,XO; there were only 39 metaphase chromosomes in this spread.

C: 40,XY*X; the arrow showed the small Y*x chromosome.

Bar = 2pm. Photos courtesy o f  Dr William Davies.

2.9.2 Genotyping o f Four Core Genotypes m ice

2.9.2.1 D N A  extraction

Tail biopsies from  the F C G  m ice were taken for D N A  extraction at w eaning, and for purposes 

o f  double-checking genotypes, at post mortem. T he tail sam ple was incubated w ith 2 0 0 pi lysis 

buffer (lOOmM Tris-H C L pH 8.5 , 5m M  E D T A , 0.2% SD S, 200m M  NaC l) w ith Proteinase K  

(0 .05m g per m l lysis buffer) at 55°C overnight. T he tail lysis m ixture w as centrifuged at 

13000rpm  for 10 m inutes at 4°C , after w hich the supernatant was retained. 200pl ice cold  

isopropanol was added to the supernatant to precipitate the D N A  and was left for 30 minutes. 

T he resultant solution was spun at 13000rpm  for 10 m inutes at 4°C , after w hich the supernatant 

was discarded and the D N A  pellet left to  air dry. T he pellet was then resuspended in 20pl T E  

buffer.
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2.9.2.2 Genotyping by polymerase chain reaction (PCRJ

The genotypes of the FCG mice could be determined by using a combination of gonadal 

phenotype information and results from agarose gel electrophoresis of PCR products for the 

genes Ssty and Myog. Ssty is a Y-linked gene, whilst Myog is an autosomal gene that serves as an 

amplification control.

The following quantities of solutions were added together for the PCR mastermix for a single tail 

sample; 17.75pl sterile water, 2.5pi 1 0 x buffer, lpl 5mM dNTPs, lpl 10pM Ssty forward primer 

(5 ’CT GGAGCT CTACAGTGAT GA3’), lpl lOpM Ssty reverse primer

(5 ’CAGTTACCAATCAACACATCAC3’), 0.25pl 10pM Om1a primer

(5TTACGTCCATCGTGGACAGCAT3’), 0.25pl lOpM Om1b primer

(5’TGGGCTGGGTGTTAGTCTTAT3’), 0.25pl Taq DNA polymerase (HotStarTaq, Qiagen, 

U.K.). Note that Om1a and Om1b are primer pairs for the gene Myog. lpl of genomic DNA 

solution was added to each reaction. The mixture was transferred to a PCR machine (MJ 

Research Inc., U.S.A.) and subject to the following conditions: 94°C for 15 minutes in 

initialization step, 94°C for 45 seconds in denaturation step, 61°C for 45 seconds in annealing 

step, 72°C for 45 seconds in elongation step, 72°C for 5 minutes in final elongation step. 

Denaturation, annealing and elongation steps were repeated for 35 cycles. PCR products were 

visualised on a 1.5% ethidium-bromide stained agarose gel using a camera (Hamamatsu, U.S.A.) 

and UV transilluminator (UVP Inc., U.S.A.) and on a computer running the Labworks software 

(UVP Inc., U.S.A.).

Gonadal males in which both the Ssty and Myog genes are amplified must be XY-iVy, gonadal 

males in which only the Myog gene is amplified must be XXiVy, gonadal females in which both 

Ssty and Myog genes are amplified must be XY-, and gonadal female mice in which only the Myog 

gene is amplified must be XX (T a b le  2 .9 .2 .2 i and F igu re 2 .9.2.2a).

Gonadal males Gonadal females

Figure 2.9.2.2a The agarose gel, visualized under UV light, shows 2 distinctive bands, confirming the 
presence o f  the genes Ssty and Myog, with product sizes 343bp and 245bp respectively.
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Table 2.9.2.2i shows how each genotype group corresponds uniquely to a combination of external 

genitalia phenotype and presence of Ssty band. The Myog band should be present in each sample to 

demonstrate that DNA amplification has occurred during PCR.

Genotype External genitalia Presence of Ssty band Presence of Myog band

XX Female No Yes

XY- Female Yes Yes

xx% Male No Yes

XY-Sry Male Yes Yes

2.10 Hormone level determination in blood with ELISA in Four Core Genotypes animals

After the FCG animals were culled via cervical dislocation, trunk blood samples were taken and 

transferred to blood collection tubes (BD Microtainer tubes, gold; BD, U.S.A.). The microtainer 

tubes contained a Clot Activator and Gel for serum separation. After the serum had separated, it 

was transferred to a fresh eppendorf tube and frozen at -20°C.

A testosterone ELISA kit (DRG Instruments GmbH, Germany) was used to assay the level of 

testosterone in the serum samples. The samples were defrosted immediately prior of assaying. 

Micro titer wells, coated with a mouse monoclonal anti-Testosterone antibody, were affixed to 

the microtiter plate reader and 25pl of each serum sample, standard (solutions with testosterone 

at concentration of 0, 0.2, 0.5, 1.0, 2.0, 6.0 and 16ng/ml, as per provided in the kit) and control 

(distilled water) solutions were added to the wells. 200pl enzyme conjugate (Testosterone 

conjugated to horseradish peroxidase) was added to each well and mixed thoroughly, after which 

the wells were left to incubate for 60 minutes at room temperature. The contents of the well 

were shaken out and the wells were rinsed three times with 400pl wash solution per well. 200pl 

substrate solution was added to each well and left to incubate for 15 minutes at room 

temperature. lOOpl stop solution was added to each well and the optical density was read at 

450±10 nm with Sunrise, a microplate calibrated reader (Tecan Group Ltd, Switzerland), running 

on the program XFluor4 (Tecan Group Ltd, Switzerland).

Using SigmaPlot (SYSTAT, U.S.A.), the optical densities of the standard solutions were plotted 

on a standard curve graph (x axis: testosterone concentration ng/ml; y axis: optical density /
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absorbance). With the Regression Wizard function, the standard curve was modelled using the 

‘Hyperbola 2 decay’ model shown below (<a and b are constants to be found).

ab 
b + x

The equation and the optical density readings of serum samples were then used to solve for the 

sample concentrations of testosterone. The assay dynamic range of the ELISA kit was 0 — 

16ng/ml, with minimal cross reactivity with other substances (cross reactivity with testosterone 

was 100, and highest cross reactivity with other substances was 0.9 with androstenedione). 

Analytical sensitivity of the assay was 0.083ng/ml.

2.11 Tissue dissection

After behavioural testing, FCG animals were culled via cervical dislocation and their brains were 

dissected immediately for use in quantitative (real-time) polymerase chain reaction (qPCR) 

analyses. All brain dissections were performed with a razor blade on a pre-cooled metal plate in 

order to minimise RNA degradation and allow the tissue to be dissected more easily.

All regions were dissected out from the left hemisphere of the brain (Figure 2.11a). The 

olfactory bulbs were removed by cutting down in front, and underneath, of the frontal cortex, at 

around Bregma 2.45mm. The frontal cortex was dissected from Bregma 1.045mm, at an angle 

down to Bregma 3.245mm to the front of the brain. The angle of cutting avoided the underlying 

striatum, and the dissection of the frontal cortex contained prelimbic, infralimbic, cingulate and 

orbitofrontal cortices, together with overlying motor and premotor cortex. The midbrain was 

dissected from a coronal slice of 1mm, at Bregma -3.28mm to -4.28mm, and included the 

regions of ventral tegmental area and substantia nigra. Testes were dissected out of the scrotum 

using forceps and razor blades, and weighed immediately. Dissected brain regions and testes 

were frozen rapidly in dry ice, and stored at -80°C. After each dissection, the razor blade was 

discarded and all equipment was cleaned with 75% ethanol to prevent RNA contamination.
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Figure 2.11a
Coronal slices from
Bregma (mm):

+3.245

Key for brain dissection:

The frontal cortex was cut, at an 
angle, from 1.045mm, down to 
3.245mm. The dissected tissue 
comprised o f  the following regions, 
as shown on the left:

Motor and premotor cortex

□  Anterior cingulate

Prelimbic cortex

1 1  Orbitofrontal cortex

Infralimbic cortex

m  Olfactory bulb (removed)

The midbrain section was dissected 
out from a 1mm coronal slice at 
Bregma -3.28mm. The area taken 
included the midbrain, ventral 
tegmental area and substantial nigra, 
as indicated on the left:

Midbrain reticular nucleus

Ventral tegmental area

Substantial nigra

2.12 Additional general control measures

Care was taken to minimise sources of experimental noise. In many cases, where practicable, the 

researcher was blind to factor genotype or karyotype. For the behavioural work, testing was 

done at the same time of day (between 0700 and 1900 hours) in order to minimize circadian 

effects and other factors were kept constant, such as access to water following testing and 

general testing room conditions. The running order of subjects in experiments was 

pseudorandomised to minimise order effects. To reduce cage and litter effects, all animals were 

housed in groups and subjects were taken from as many cages as possible. In maze-based tasks 

where subjects were tested sequentially one after another, males were tested before females in
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order to minimise disruption to the performance of males due to female scent that might remain 

despite cleaning of the apparatus after every trial. At the beginning of each behavioural test 

session, subjects were taken to the test room in their home cages and allowed to habituate to the 

testing room environment for at least 15 minutes. The testing room was air-conditioned and its 

temperature was maintained at around 22°C, with approximately 50% humidity. The room was 

lit by fluorescent ceiling lights, 60 watts desk lamps or a 40 watts red light, depending on the 

behavioural test being carried out at the time. Overall light intensity ranged from 5-10 lux. 

Computer and electronic equipment provided constant background noise. The room was 

cleaned thoroughly once a week.

For the post-mortem analyses (blood hormone determinations, brain and testis dissections) 

procedures were carried out in a single batch at the same time of day. In all cases, animals were 

placed back on free home cage water for at least one week prior to culling.

A number of controls were included in the experiments using the mouse lines to account for 

more specific litter, maternal and cross effects. These are described in detail in the relevant 

experimental chapters.

2.13 Data presentation and statistical methods

All quantitative data were presented as mean values + /-  standard error of the mean (SEM) 

unless stated otherwise. All statistics were analysed using SPSS (version 17, SPSS Inc., IBM, 

U.S.A.). Data were analysed by ANOVA (if normally distributed as indicated by Levene’s test) 

or where appropriate, Repeated Measures AN OVA. For data not normally distributed, a 

relevant Kruskal-Wallis Test was used; in the case of a Repeated Measure design, data not 

normally distributed was analysed using Friedman Test. Where significant main effects and 

interactions were identified in the main ANOVA, post hoc testing (Tukey HSD and Least 

Significant Difference tests, respectively) permitting specific pair-wise comparisons was carried 

out (see individual experimental chapters for details). Huynh-Feldt and Greenhouse-Geisser 

corrections were applied as necessary in Repeated Measures ANOVA, and adjusted degrees of 

freedom are provided. Chi-square test for goodness of fit was carried out on non-parametric 

data. For all comparisons, p values of <0.05 were regarded as significant. See individual 

experimental chapters for specific factors used in the statistical comparisons of data and for non­

standard statistical design.
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Chapter III 

Initial physiological and behavioural 

phenotyping of the XO mouse model

3.1 Introduction

The experiments in this chapter were concerned with (i) establishing the basic physical and 

behavioural competence of the XO mouse model and (ii) recognising a number of potential 

confounds in the interpretation of data obtained with this model stemming from the way in 

which the 39,XmO and 39,XpO mice were created. Although there have been published reports 

of the use of the XO model in behavioural studies (Davies et al., 2005a; Isles et al, 2004), it was 

still important to establish their general competency before moving on to the more complex, and 

time-consuming, behavioural assays described later in the thesis. This was important not just in 

terms of whether the mice could perform the tasks in the first place but also in terms of potential 

confounds in the interpretation of the behavioural data obtained from the more complex 

behavioural and cognitive assays. For example, an apparent effect on learning may be due to 

more fundamental and simple (though subtle) effects on sensory, motor or motivational 

processes. Also, previous reports had covered work done in Cambridge, whereas this work was 

carried out in Cardiff with different researchers and a completely new generation of mice.

The behavioural battery of tests used in this experimental chapter included physiological 

evaluation of body weight and oestrous cycle, and behavioural assessment of subjects’ 

performance on the rotarod, in locomotor activity boxes and on the elevated zero maze. Briefly, 

the rotarod apparatus tests the subject’s motoric competence and stamina by looking at its ability 

to stay on a rotating rod (Jones & Roberts, 1968; Crawley et al, 1999; Fujimoto et al, 2004), while 

the locomotor activity box measures animals’ general movement and locomotor behaviour 

(Wahlsten et al, 2003). The elevated zero maze allows subjects to freely explore a circular 

platform, which consists of ‘closed’ areas that have high walls on either side and of ‘open’ areas 

without the walls. By examining the frequency and duration in which animals venture into the 

more anxiogenic ‘open’ areas, one can assess the general fear reactivity of the subject (Shepherd
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et al., 1994; Cook et al., 2001; Cook et al., 2002). These behavioural tests are well established in 

my laboratory (Davies, 2003, Ph.D thesis; Relkovic, 2009, Ph.D thesis).

As introduced in the General Introduction, the XO mouse model allows dissociations between 

effects due to the parental origin of the single X chromosome and X-monosomy effects. 

Differences between 39,XmO and 39,XpO animals could point to a genuine X-linked parent-of- 

origin effect. However, it is important to be aware of the fact that the 39,XmO and 39,XpO 

animals were generated by two separate crosses with different mothers and littermates (specific 

details of the XO generating crosses are described in the General Introduction, and summarised 

again in Section 3.2 below). Whilst it was unlikely, a priori, that these general factors could have 

impacted in any major way on the data obtained in the XO mice, it was considered necessary to 

control for the possibility by testing 40,X X ^ and 40,XP<?/<X animals (i.e. the resulting female 

littermates with the normal XX karyotype of the two generating crosses) alongside the 39,XmO, 

39,XpO and 40,XX animals. If a difference in behaviour between 39,XmO and 39,XpO animals 

(possibly contributed by X-linked parent-of-origin effects) coincides with a difference between 

females from the 39,XmO-generating cross (40,XX7̂  and females from the 39,XpO-generating 

cross (40,XX and 40,Xft?/X), this may suggest that the possible X-linked parent-of-origin effect 

might have been confounded by maternal and littermate influences. This ‘cross’ confound does 

not apply to where X-monosomy effects are detected, since in that case, effects are common to 

both 39,XmO and 39,XpO animals. Therefore, the data from the 40,X X Pajr, 40,XPaJX  comparisons 

(the Paf comparison) were only presented in the Results section when there was an apparent 

parent-of-origin effect in the XO comparison. Given that the animals from the XO mouse 

model have displayed no gross morphological abnormalities (Lynn & Davies, 2009) and no 

significant differences were found in motoric competence and reactivity to novelty (Davies, 

Ph.D thesis, 2003), I would not expect to find differences between the XO mice in the rotarod 

and the elevated zero maze tasks. However, X-monosomy and X-linked imprinting effects in 

fear reactivity have been observed in the elevated plus maze (Davies, Ph.D thesis, 2003; Isles et 

al., 2004), and therefore I would expect to see behavioural differences in the XO mouse model 

on the elevated zero maze.

57



Chapter III

3.2 Materials and methods

3.2.1 Generation o f  X O  m ice

The XO mice used in this and subsequent experimental chapters were generated using two 

separate crosses. Full details of the cross particulars are described in the General Introduction. 

Figure 3.2.1a presents a simple overview of the two crosses I used. Briefly, in the generation of 

39,XmO animals, there is a possibility of chromosome loss in male gametes during chromatid 

recombination in male gametogenesis; this possibility is increased by the presence of the Paf 

mutation. Fertilisation of a normal female egg with a sex chromosome-null male sperm will 

result in 39,XmO female offspring. In the generation of 39,XpO animals, the large paracentric 

chromosomal inversion In(X)lH in the mother promotes crossing over between chromosomes 

during gametogenesis and chromosome loss in female gametes may occur. Fertilisation of the 

sex chromosome-null female gamete with a normal male gamete will result in 39,XpO female 

offspring. Note that the P^/mutation is not necessary in the production of 39,XpO animals; this 

mutation is introduced in the mother so that both 39,XmO- and 39,XpO- generating crosses will 

produce female littermates with a Paf mutation (40,XX7̂ and  40,XP<?/X animals, respectively). As 

explained in the General Introduction, whilst this serves to help reduce gross littermate effects, 

this strategy does not remove confounds completely as parent-of-origin Paf effects may still be 

present.

Figure 3.2.1a

39,XmO generating cross

Father ------   Mother

(chromosome loss 

can occur during 

gametogenesis)

39,XpO generating cross

Father ------   Mother
S'

(chromosome loss 

can occur during 

gametogenesis)

iiKi c

Figure 3.2.1a Breeding strategies for generating 39,XmO and 39,XpO animals. The diagram only 
includes the female offspring generated and used in this thesis.
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3.2.2 Subject num bers and anim al husbandry

In this experimental chapter, animals from the XO mouse model (39,XmO, 39,XpO and 40,XX) 

and associated female littermates (40,XXP̂  and 40,XP,?/X) were subject to various physiological 

and behavioural tasks. Animals were aged from six to 1 2  months old. Table 3.2.2i shows the 

number of subjects tested in the various tasks used in this chapter. General housing, handling 

and behavioural testing conditions were as described in Chapter II, 2.2 and 2.3.

Table 3.2.2i Numbers o f  subjects (n) tested in the various physiological and behavioural tasks.

Test Karyotype and ‘n’

39,XmO 39,XpO 40,XX 40,X X ^ 40,X/VX

Body weight 15 1 2 9 15 1 0

Oestrus cycle 
length 14 12 9 15 9

Rotarod 15 12 9 14 10

Locomotor
activity 14 11 8 11 10

Elevated zero 
maze 15 12 9 1 2 1 0

3.2.3 Physiological assessm ents

3.2.3.1 Body weight measurements

As the mice were born and housed initially at MRC, NIMR (Mill Hill, London), it was not 

possible to determine the developmental weight measurements. For this study, stable body 

weights were determined when animals were five months old, and again at 1 1  months old. 

Animals had ample time for habituation to housing environment and were accustomed to daily 

handling. Animals were weighed at the same time every day for five days. A d  libitum access to 

food and water was available.

3.2.3.2 Oestrous <ycle

Vaginal smearing was performed as described in Chapter II, 2.4. The data presented in this 

chapter was from an initial assessment in mice aged six months.
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3.2.4 Behavioural assessm ents

3.2.4.1 Rotarod

Subjects were tested on the rotarod apparatus (described in Chapter II, 2.7.1) to test their motor 

function and balance under conditions of accelerating and constant rotation speed. On day One 

of testing (accelerating speed block), animals received a total of five trials, each of five minutes 

duration, on the rotarod, with speed accelerating uniformly from 5 to 50 rpm in the five minute 

trial. The first three trials were given consecutively, and if an animal fell off the rotarod during 

the first ten seconds, it was put back on immediately. Following these initial trials there was an 

interval of two hours to ensure that the animals did not suffer from fatigue, after which a further 

two ‘probe’ trials were administered. The speeds at which a subject fell off the apparatus during 

the two probe trials were recorded. On day Two of testing (constant speed block), animals were 

given a total of eight trials; two trials for each of the four constant rotation speeds, 15, 25, 35 and 

45 rpm. Each trial lasted a maximum of 60 seconds, and the latency to fall off the apparatus was 

recorded.

3.2.4.2 Locomotor activity

Movements in, exploration of, and habituation to a novel environment by subjects were tested in 

the locomotor activity boxes, described in Chapter II, 2.7.2. For three consecutive days, subjects 

were put into the clear Perspex boxes for two hours daily. Animals were run in the dark at the 

same time of day. The number of infra-red beam breaks and the number of runs (when both 

beams located at either end of the activity box were broken consecutively, which signified the 

animal running across the cage) were recorded by a computer every five minutes for two hours 

every day (over 24 bins) with custom written BBC BASIC V6  programmes on the ARACHNID 

system (Cambridge Cognition Ltd., Cambridge, U.K.). The distinction between beam breaks and 

runs revealed different types o f motor behaviour, beam breaks indexing general movement and 

runs, where the animal had to make successive beam breaks at either end of the testing box, 

indexing more global locomotor activity. The boxes were thoroughly cleaned with 1% acetic 

acid after each animal. Animals were tested for three consecutive days to access habituation to 

the novel environment.

3.2.4.3 Elevated %ero ma%e

Fear reactivity was assessed using the elevated zero maze, described in Chapter II, 2.7.3. 

Animals were transferred in their home cages to the testing room, lit with a 40W red light bulb,
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15 minutes before start of testing, so that animals could habituate to the testing environment. 

All animals started the trial in the right closed quadrant on the zero maze. The animals were 

then allowed to explore the maze freely for five minutes, after which the maze was cleaned 

thoroughly with 1% acetic acid. If an animal fell off the maze, it was immediately put back on 

the apparatus. The subjects were tracked using the Ethovision tracking system (Noldus, U.K.); 

the maze arena was separated into four zones: two open zones (top and bottom) and two closed 

zones (left and right). The closed zones were designated to be hidden because the high walls 

prevented the detection of the albino animals. The main measures indexing fear reactivity were 

time spent in the open parts of the maze and entries into the open areas.

3.2.5 Statistical analyses and additional control m easures

Statistical data were analysed using SPSS software (version 17, SPSS Inc., IBM, U.S.A.). I 

performed two comparisons, each of which was subject to One Way ANOVA. As noted in the 

introduction section to this chapter, Comparison 2 was only performed where an X-linked 

parent-of-origin effect was apparent in Comparison 1. The Paf control data from Comparison 2 

were included in the results in this case.

Comparison 1: ‘XO comparison’ (Between Subjects factor KARYOTYPE): 39,XmO, 39,XpO, 

40,XX. The purpose of this main comparison was to check for effects of X-monosomy and X- 

linked parent-of-origin effects.

Comparison 2: ‘Paf comparison’ (Between Subjects factor GENOTYPE): 40,XX, 40,XXft?/, 

40,XP<?/X. An additional comparison was made between females from the 39,XmO-generating 

cross (40,XXPl?/) and females from the 39,XpO-generating cross (40,XX and 40,XP<?/X). The 

purpose of this second comparison was to check for gross cross effects only where differences 

between 39,XmO and 39,XpO mice were found.

Repeated Measures ANOVA was used when appropriate; additional factors specific to the 

analysis were defined in the relevant Results section, and furthermore, Greenhouse-Geisser 

(epsilon of 0.75 or lower) or Huynh-Feldt (epsilon of 0.75 or higher) corrections were applied to 

degrees of freedom if the Mauchly’s Test of Sphericity was violated in Repeated Measure tests. 

When initial ANOVA revealed a significant effect, Tukey HSD Test was performed for post hoc 

comparisons. For all comparisons, p values of <0.05 were regarded as significant.
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3.3 Results

3.3.1 Physiological data

3.3.1.1 Body might

Average body weight measured over five days from 39,XmO, 39,XpO, 40,XX in animals aged five 

months did not differ significandy (Figure 3.3.1.1a; effect of KARYOTYPE, F233 — 2.851, n.s.). 

Later on at 11 months old there were still no weight differences between 39,XmO, 39,XpO, 

40,XX animals (Figure 3.3.1.1b; effect of KARYOTYPE, F233 = 2.333, n.s.).

Figure 3.3.1.1a

3 20

39.X mO 39,XpO 40 XX

karyotype

Figure 3.3.1.1b

3  20

39XmO 39XpO 40 XX

karyotype

Figure 3.3.1.1a The baseline body weight o f  the XO  comparison at five months old, with ad libitum 
food and water. Data are presented as mean values with ±  SEM.

Figure 3.3.1.1b The baseline body weight o f  the XO comparison at 11 months old, with ad libitum 
food and water. Data are Dresented as mean values with ±  SEM.

3.3.1.2 Oestrous cycle

Repeated Measures ANOVA, with the Within Subject factor STAGE (diestrous, proestrous and 

oestrous), revealed no significant differences in the cycle length between 39,XmO, 39,XpO and 

40,XX animals generally across the three cycle stages (Figure 3.3.1.2a; effect of KARYOTYPE, 

F232 — 1.9, n.s.). However, there was a STAGE x KARYOTYPE interaction (F3 025,4.3399 = 2.182, 

p<0.02), and post hoc comparisons revealed a difference between 39,XmO and 39,XpO subjects in 

diestrous (longer in 39,XmO) and oestrous (longer in 39,XpO) stages, and a difference between 

40,XX and 39,XpO females in oestrous (longer in 39,XpO) stage. There was also a significant 

general difference in the cycle lengths between diestrous, proestrous and oestrous stages (effect
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o f  ST A G E , =  52.744, p < 0 .001), w ith proestrous being shorter than diestrous and

oestrous stages across all karyotype groups.

In the Paf com parison (F igu re 3 .3 .1 .2b) there was no  difference betw een 40,X X , 40 ,X X Pâ and 

40 ,X P#X in cycle length (effect o f  G E N O T Y P E , F2>30 =  6.670, n.s.) and, unlike the X O  

com parison above, no ST A G E  x  G E N O T Y P E  interactions (F460 =  1.183, n.s.). A s before, 

there were general effects o f  stage o f  oestrous, w ith proestrous shorter than diestrous and 

oestrous stages (effect o f  ST A G E , F2>60 =  59.761, p < 0 .001).

Figure 3.3.1.2a Figure 3.3.1.2b
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Figure 3.3.1.2a Total length o f  oestrous cycle and length at each stage (diestrous, proestrous and 
oestrous) in the XO comparison as determined by vaginal smears from female mice aged six 
months. Data are presented as mean values with ± SEM. * p<0.05

Figure 3.3.1.2b Total length o f  oestrous cycle and length at each stage (diestrous, proestrous and 
oestrous) in the Paf comparison as determined by vaginal smears from female mice aged six 
months. Data are presented as mean values with ± SEM.

3.3.2 Behavioural data

3.3.2.1 Inactivity to handling

D uring the initial handling o f  the subjects, all animals show ed  m ild signs o f  distress, w hich  

included urination and fecal deposition. A fter three days o f  handling, these signs had subsided in 

m ost animals. There did not appear to be an obvious effect o f  karyotype or the Paf mutation, on  

the degree o f  initial distress and habituation. Vaginal sm earing led to som e signs o f  distress in  

fem ales, including urination and faecal deposition, but again, m ost signs subsided after three days 

o f  habituation to the procedure.
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indexed by infra-red beam breaks obtained over three days of testing. 39,XmO, 39,XpO and 

40,XX animals did not vary in activity (Figure 3.3.2.3a; effect of KARYOTYPE, F2 30 = 1.624, 

n.s.), and showed significant decrease in activity across DAY, indicating habituation to the novel 

testing environment (F1 775(53264 = 13.402, p<0.001); post hoc tests revealed significant differences 

between Day One and Two, and between Day One and Three. No interaction between DAY 

and KARYOTYPE was noted (F3551i53j264 = 0.45, n.s.). In concordance with the infra-red beam 

breaks data, activity data indexed by number of runs (Figure 3.3.2.3b) also showed that 39,XmO, 

39,XpO and 40,XX did not vary in activity (effect of KARYOTYPE, F230 = 2.123, n.s.). Activity 

decreased significantly over DAY as animals habituated to the environment (F181154342 = 4.911, 

p<0.02), with a significant difference between DAY One and Three as revealed by post hoc tests. 

No interaction between DAY and KARYOTYPE was noted (F3 623,54.342= 0.916, n.s.).

Figure 3.3.2.3a
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Figure 3.3.2.3a Locomotor activity, as indexed by the number o f infra-red beam breaks, over 
three consecutive days o f  testing in the XO comparison. Data are presented as mean values + 
SEM.

Figure 3.3.2.3b Locomotor activity, as indexed by the number o f runs, over three consecutive 
days o f  testing in the XO comparison. Data are presented as mean values ± SEM.

(ii) Five-minute bin data over Day One:

The number of infra-red beam breaks and runs on the session on Day One of testing, over 24 

bins of five minutes each, were analysed by Repeated Measures ANOVA with Within Subject 

factor of BIN (i.e. Bin 1-24). Only Day One was analysed as I would like to look at the initial 

habituation behaviour of subjects within a session. As the session proceeded, 39,XmO, 39,XpO 

and 40,XX animals showed significantly reduced activity as indexed by beam breaks (Figure
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3.3.2.3c; effect of BIN, F6 4192006 = 52.598, p<0.001), which was expected as subjects habituated 

to the novel environment over time. Activity over the session did not differ between subject 

groups (effect of KARYOTYPE, F2>3o = 1.121, n.s.), and there was no interaction between BIN 

and KARYOTYPE (F128192006 = 1 .598, n.s.). With regard to activity as indexed by runs (Figure 

3.3.2.3d), 39,XmO, 39,XpO and 40,XX again showed significantly decreased activity over the 

session (effect of BIN, F5988179638 = 51.150, p<0.001), but there was no difference between 

groups (effect of KARYOTYPE, F230 = 2.789, n.s.). There was also no interaction between BIN 

and KARYOTYPE (F11976179638 = 1.086, n.s.) in the run data.

Figure 3.3.2.3c
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Figure 3.3.2.3c Number o f infra-red beam breaks over the session o f  Day One o f  testing in the 
XO  comparison. The session was separated into 24 bins o f  5 minutes each. Data are presented as 
mean values with an overall standard error o f  difference o f  the means (SED).

Figure 3.3.2.3d Number o f  runs over the session o f  Day One o f testing in the XO comparison. 
The session was separated into 24 bins o f  5 minutes each. Data are presented as mean values with 
an overall standard error o f  difference o f  the means (SED).

3.3.2.4 Elevated. %ero ma^e

The duration in the open and enclosed parts of the elevated zero maze was calculated as ratios of 

open quadrant duration to total duration on the maze. The means and SEM of the durations 

spent in open quadrants of the maze were 24.96s±7.17 for 39,XmO, 15.00s±3.51 for 39,XpO, 

and 10.04s±2.02 for 40,XX animals. All animals spent most of the trial exploring the closed 

rather than open quadrants of the maze, which suggests that the animals did find the open 

quadrants to be anxiety-inducing (as shown in Figure 3.3.2.4a, with ratios lower than 0.5). 

39,XmO, 39,XpO and 40,XX did not vary significantly in the ratio of open quadrant duration to
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total duration (Figure 3.3.2.4a; effect of KARYOTYPE, F233 = 1.050, n.s.), nor in number of 

open quadrant entries (Figure 3.3.2.4b; effect of KARYOTYPE, F233 = 0.482, n.s.).

Figure 3.3.2.4a Figure 3.3.2.4b
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Figure 3.3.2.4a Ratio o f  duration spent exploring open quadrant to total time in the ma2e in
39,X mO , 39,X pO  and 40,XX animals. A ratio o f  0.5 signifies equal duration spent in open and 
closed quadrants. Higher ratios indicated less fear reactivity. Data are presented as mean values ±  
SEM.

Figure 3.3.2.4b Number o f entries into the open quadrant made by 39,X mO , 39,X pO  and
40,XX animals. Data are presented as mean values ±  SEM.
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3.4 Discussion

This chapter was concerned with the basic physiological and behavioural characterisation of the 

animals from the XO mouse model (39,XmO, 39,XpO and 40,XX; along with 40,XXP<̂  and 

40,XR?/X), using a standard, well established battery of tasks (body weight measurements, oestrous 

cycle determination, and testing on rotarod, locomotive activity boxes and elevated zero maze). 

It was important to establish the physical and behavioural competence of the animals in my 

hands before embarking on the more complex and time consuming behavioural and cognitive 

tasks. Additionally, due to the fact that 39,XmO and 39,XpO animals were unavoidably 

generated using two separate crosses, it was necessary to note any potential confounds that could 

influence the interpretation of any data obtained from the more complex behavioural and 

cognitive tests in subsequent experimental chapters. Litter sizes of the 39,XmO- and 39,XpO- 

generating crosses could not be examined as the animals were bred at MRC, NIMR (Mill Hill, 

London) rather than in the animal house at Cardiff University.

There was a X-linked parent-of-origin effect on oestrus stage; specifically, 39,XpO showed a 

longer oestrous stage length than 39,XmO and 40,XX animals, and 39,XpO also showed a longer 

diestrous stage length than 39,XmO animals. This parent-of-origin effect was unlikely to be 

confounded by cross effects as there were no differences between 40,XX, 40,X X ^  and 40,XP<?/X 

animals. These differences in oestrous cycle lengths might be contributed by hormonal 

variations (Hawkins & Matzuk, 2008) as well as genetic influences, as demonstrated in a study 

comparing cycle lengths in different inbred mouse strains (Nelson et al., 1992). An X-linked 

imprinted gene in sheep has been found to affect ovulation rate (Davis et al., 2001), which is 

interesting in the light of the parent-of-origin effect on cycle length found in this chapter. In 

humans, Turner Syndrome (TS) is characterised by infertility and hypogonadism, but there has 

been no known research into altered cycling and parental origin of the single X chromosome in 

TS girls. The fertility problems present in human TS girls are absent in the XO mouse model 

(even though there was a difference in cycle lengths between the animals, 39,XmO and 39,XpO 

animals have not stopped cycling altogether and are fertile) which might be due to differences in 

the degree of X chromosome inactivation between human and mouse; around 15% of the 

human X-linked genes escape X inactivation (Heard & Disteche, 2006), whereas the mouse X 

chromosome is more extensively inactivated with fewer genes escaping X inactivation, so that in 

humans, X-monosomy poses to be a greater problem than in mice. It would be interesting to 

measure pituitary hormones (follicle stimulating hormone and luteinizing hormone) and gonadal 

hormones such as oestrogen and progesterone in 39,XmO, 39,XpO and 40,XX animals to
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investigate whether the cycle length variations were due to differences in hormone levels, or due 

to the parental origin of the X chromosome.

There were no body weight differences between 39,XmO, 39,XpO and 40,XX animals both at 

five months or at 11 months. Burgoyne and colleagues (2002) have previously shown an initial 

growth deficit in both XO groups, which could not be corrected by introducing a Y*x 

chromosome. However, adding a Y chromosome lacking Sry removed the deficit, which 

suggests that the weight deficit observed was due to one (or more) X-linked gene which escapes 

X inactivation and has a functional Y homologue. This reported weight deficit in XO animals 

appears to disappear by age of five months, as shown in this chapter.

There were no gross group effects in motoric competency as indexed by performance on the 

rotarod, and no effects in exploratory behaviour and general movement as shown in their 

locomotive activity. No group differences were found in anxiety as indexed by animals’ 

behaviour on the elevated zero maze, suggesting that there were no significant confounds which 

could affect the interpretation of data from subsequent cognitive assays. The lack of behavioural 

differences on the elevated zero maze somewhat conflicts a previous study reporting increased 

anxiety on the elevated plus maze in both 39,XmO and 39,XpO, when compared to 40,XX, 

animals (Isles et al, 2004). The discrepancy might be due to the use of different apparatus; while 

the study by Isles et al utilised the plus maze, the present study used the elevated zero maze. The 

plus maze contains a central area and dead ends for the open and closed arms, whereas the zero 

maze provides uninterrupted exploration and removes the more ‘ambiguous’ central area (as it is 

debatable what sort of behaviour is indexed by time spent in the central area), arguably providing 

a more sensitive tool to measure anxiety-related behaviours (Shepherd et al., 1994; Cook et al, 

2002). There was a difference in age between the animals tested; subjects were aged 12 months 

in the current study whereas subjects were aged 12 weeks in the Isles study. General 

experimental set up could contribute to the discrepancy in the results as the Isles study was run 

in low level white and red light, and the present study was run exclusively in red light. There is 

also the possibility of floor effects in the results obtained from the present experiment; animals 

across all karyotype groups did not spend a lot of time in the open quadrants at all (ratios of time 

spent in open to closed quadrants were much lower than 0.5) and so any potential group effects 

might not appear. One might consider repeating the elevated zero maze with a lower level of 

background noise and longer period of habituation in the testing room to reduce anxiety, so that 

animals might be more inclined to explore the maze and hence, reducing potential floor effects. 

Other behaviours within the maze, such as rearing and stretch attend, could be further useful
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indicators of anxiety; for example, stretch attends reflect ‘risk assessment’ behaviour and the 

animal’s reluctance to move from the present position for exploration, and a high number of 

such behaviour would suggest higher levels of anxiety (Blanchard et al, 2001; Waif & Frye, 2007). 

It was problematical to monitor such behaviours in the current study, as the closed quadrants 

were flanked by high walls, making it impossible for Ethovision to track the behaviour of 

subjects within closed quadrants and it was difficult for the researcher to monitor behaviour 

without standing too close to the maze and potentially affecting the animals’ behaviour on the 

maze.

Work detailed in this experimental chapter has established the general competency of animals 

from the XO mouse model, allowing further, more complex, cognitive and behavioural assays. 

There were no gross group effects found in a wide range of physiological and behavioural tasks.

3.5 Summary

•  There were no significant body weight differences at both five months and 11 months of 

age between 39,XmO, 39,XpO and 40,XX animals.

•  There were subtle parent-of-origin effects on oestrous stage length, with 39,XpO having a 

longer oestrous stage length than 39,XmO and 40,XX animals. 39,XpO also had a longer 

diestrous stage length than 39,XmO animals.

•  There were no significant differences in the performance on the rotarod between 39,XmO,

39,XpO and 40,XX animals.

•  There were no significant differences in locomotor activity between 39,XmO, 39,XpO and

40,XX animals.

•  There were no significant differences in the behaviour on the elevated zero maze between 

39,XmO, 39,XpO and 40,XX animals.
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Chapter IV 

Biconditional discrimination and response 

conflict in XO mouse model

4.1 Introduction

This experimental chapter examined the possibility of X-monosomy and/or X-linked parent-of- 

origin effects on biconditional discrimination learning and response conflict with the use of the 

XO mouse model. Previous work with the XO mouse model had shown an X-linked parent-of- 

origin effect in reversal learning (in both behavioural perseveration and acquisition of new 

stimulus-reinforcer contingencies), whereby 39,XmO female mice committed more perseverative 

and reacquisition errors than 39,XpO and 40,XX animals following reversal (Davies, Ph.D thesis, 

2003; Davies et al, 2005a). This increased perseverative responding in 39,XmO mice could be 

mediated by effects of one or more X-linked imprinted genes, with Xlr3b being a strong 

candidate gene, in the brain (Davies et al., 2005a; Raefski & O ’Neill, 2005). Neural substrates 

that have been shown to underlie reversal learning include orbitofrontal cortex (Dias et al, 1996), 

mediodorsal nucleus of the thalamus (Chudasama et al, 2001) and hippocampus (Murray & 

Ridley, 1999). Additionally, there is some preliminary evidence that tissue dopamine levels are 

lower in the medial prefrontal cortex of 39,XO mice than of 40,XX animals, with dopamine 

levels being higher in the orbitofrontal cortex of 39,XmO mice than of either 39,XpO or 40,XX 

female mice (Davies, Ph.D thesis, 2003). The above findings using the XO mouse model 

recapitulated the parent-of-origin effects in behavioural inflexibility and social cognition in 

Turner Syndrome (TS); Skuse and colleagues (1997) have shown that, using a same-opposite 

word task, that 45,XmO females performed worse than 45,XpO and 46,XX females, and this 

impairment might mediate the poorer social cognition observed in 45,XmO subjects.

Since the XO mice appear to display some cognitive deficits also seen in TS females, it was of 

interest to examine whether other TS cognitive impairments might be observed in the XO 

mouse. In addition to problems in social cognition (Skuse et al, 1997) and behavioural inhibition 

(Romans et al, 1998; Ross et al, 2002), TS females suffer from deficits in a range of
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cognitive]domains, notably visuospatial skills and working memory (Buchanan et al, 1998; 

Bishop et al, 2000), facial affective recognition (Lawrence et al, 2003; Skuse et al, 2005) and 

memory (Murphy et al, 1994; Murphy et al, 1997), and executive function (Ross et al, 1995; 

Temple et al, 1996; Romans et al, 1997; Kirk et al, 2005). In terms of executive function, TS 

females took longer to respond in the Stroop task (Temple et al, 1996) and in a similar 

contingency naming test (which eliminates the confound of varying reading levels; Kirk et al, 

2005). The human Stroop test requires subjects to read the colour of the ink in which a colour 

word is written; for example, the stimuli ‘BLUE’ and ‘GREEN’ will have ‘blue’ and ‘red’ as 

correct answers. Whilst the congruent stimulus ‘BLUE’ does not involve response conflict (i.e. 

both ink colour and word meaning are ‘blue’), the incongruent stimulus ‘GREEN’ requires the 

subject to inhibit the prepotent and incorrect response of ‘green’, because humans, due to 

practice effects, tend to say the word meaning rather than the ink colour. One can index 

behavioural inhibition by measuring response time to congruent and incongruent stimuli. 

Furthermore, TS girls showed impaired performance on the Rey-Osterrieth organisational and 

Tower of Hanoi tests, with higher levels of impulsivity, compared to control subjects (Romans et 

al, 1997). TS females have also shown abnormal prefrontal cortex function during response 

inhibition in a functional magnetic resonance imaging study (Tamm et al, 2003).

The purpose of this chapter is to utilise the XO mouse model to examine the possibility of any 

X-monosomy and/or X-linked parent-of-origin effects on performance on a biconditional 

discrimination and response conflict task modified for rodent use, which mimicked some aspects 

of response competition seen in the Stroop test. The rationale for the use of this task is: (i) there 

is an element of behavioural inhibition, and the role of orbitofrontal cortex has been implicated 

(S2 atkowska et al, 2007), in both this task and the previous reversal learning study (Davies et al, 

2005a) in which an X-linked parent-of-origin effect was found, (ii) in many ways this task is 

analogous to the human Stroop test in which TS females have shown impaired performance and

(iii) this task involves executive function, and TS females have shown aberrant prefrontal cortex 

functions which might underlie certain deficits in executive functions. In this task, mice were 

required to learn two instrumental biconditional discriminations, one auditory and one visual, in 

two different contexts. At test, subjects were presented with audiovisual stimulus compounds in 

each of the two training contexts; these compounds were comprised of either training stimulus 

elements that both dictated the same instrumental response during training (i.e. congruent), or of 

training stimulus elements that dictated different instrumental responses (i.e. incongruent). In 

the incongruent situation, the subject would need to use the contextual cues to disambiguate the 

conflicting stimulus elements. Congruent and incongruent types were analogous to situations in
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the Stroop test where the subject received ‘BLUE’ and ‘GREEN’ stimuli, respectively, with the 

latter involving a response competition. The biconditional discrimination task is non-spatial, 

which suits my present purposes as I would like to examine specifically biconditional 

discrimination learning and response conflict without the need for spatial ability, as TS females 

(and therefore the XO mice might) display visuospatial impairments given the possibility of X- 

monosomy effects on visuospatial function (Buchanan et al., 1998; Bishop et al, 2000) which 

could confound the interpretation of results.

Biconditional discrimination and response conflict tasks in rats have been published upon 

previously (Haddon & Killcross, 2005, 2006a, 2006b; Haddon et al, 2008; Marquis et al, 2007); 

however, this task has not been published using mice. It has been shown with normal rats that 

they could acquire the two biconditional discrimination pairs successfully, and at test, to use 

contextual cues to dictate their responses correctly. Animals could successfully complete both 

congruent and incongruent trial types, achieving significandy more correct than incorrect 

responses; however, the difference between correct and incorrect responses was smaller in the 

incongruent trials due to interference between the two stimulus-response associations that were 

competing for two different responses (Haddon et al, 2008). Various task manipulations have 

been shown to affect performance; for example, using differential training between contexts, 

animals could successfully complete the incongruent trial types in the overtrained context but 

not in the undertrained context, suggesting that interference from the overtrained context was 

negatively affecting performance in the undertrained context (Haddon & Killcross, 2006b). 

Numerous neurobiological factors underlying performance on the biconditional discrimination 

and response conflict have been identified using lesion studies in specific brain regions; large 

lesions to the prefrontal cortex, encompassing prelimbic and anterior cingulate cortices, led to 

animals failing to respond correctly in incongruent trials (Haddon & Killcross, 2005, 2006a). 

Further examination and work into prefrontal cortex lesions have found that when the prelimbic 

cortex was specifically damaged, animals were impaired on incongruent trials, suggesting the 

prelimbic cortex allows for the use of task-setting cues to guide goal directed behaviour (Marquis 

et al, 2007). In cases when the anterior cingulate cortex was lesioned, animals were impaired 

during the first ten seconds of the incongruent trials, which suggests the anterior cingulate cortex 

is involved in the detection of response conflict (Haddon & Killcross, 2006a). Lesions of the 

hippocampal formation in rats, surprisingly, resulted in better performance in incongruent trials; 

however, whilst these animals showed an influence of specific reinforcer devaluation on 

instrumental performance (indexed by lever presses), they did not on Pavlovian performance 

(indexed by magazine approaches; Haddon & Killcross, 2007).
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As introduced in Chapters I and III, the XO mouse model allows dissociations between effects 

due to the parental origin of the single X chromosome and X-monosomy effects. Differences 

between 39,XmO and 39,XpO animals could point to an X-linked parent-of-origin effect, whereas 

differences between 39,XO and 40,XX animals could point to an X-monosomy effect. Given 

that 39,XmO mice and 45,Xm TS females had been shown to perform worse in tasks taxing 

response conflict (Davies et al, 2005a) and behavioural inhibition (Skuse et al, 1997) respectively, 

one might predict that the 39,XmO mice would perform worse than 39,XpO and 40,XX animals 

in the response conflict task.

However, the 39,XmO and 39,XpO animals were generated using two different crosses with 

different mothers and littermates, and thus it was considered necessary to control for the 

possibility by testing 40,X X ^ and 40,XP<?/X animals (i.e. the resulting female littermates with the 

normal XX karyotype of the two generating crosses) alongside the 39,XmO, 39,XpO and 40,XX 

animals. As explained in Chapter III, this possible confound stemming from two different 

generation crosses does not apply to where X-monosomy effects are detected, since in that case, 

effects are common to both 39,XmO and 39,XpO animals. Therefore, the data from the 40,XXft?/, 

40,XP<?/X comparisons (the Paf comparison) were only presented in the Results section when 

there was an apparent parent-of-origin effect in the XO comparison.
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4.2 Materials and methods

4.2.1 Subjects and anim al husbandry

In this experimental chapter, animals from the XO mouse model (39,XmO, 39,XpO and 40,XX) 

and associated female littermates (40,X X ^  and 40,XPâ X) were subject to biconditional 

discrimination testing. Subjects were aged six months at the start of testing. Table 4.2.1i shows 

the number of subjects tested in this task. XO generating crosses were detailed in the General 

Introduction and in Chapter III, 3.2.1. General housing, handling and behavioural testing 

conditions were as described in Chapter II, 2.2 and 2.3.

Table 4.2.1i Numbers o f  subjects (n) tested in the biconditional discrimination task across the training 

phases. Numbers in parentheses referred to the total number o f  animals tested, including those 

subsequently excluded as they progressed through the training from reinforcer preference to probe 

sessions at the end o f  the experiment (see 4.2.5 for exclusion criteria).

Test Karyotype and ‘n’

39,X”0 39,XpO 40,XX 40,X X ^ 40,X ^

Reinforcer preference 15 12 9 14(15^ 10

Magazine training 15 11 (12) 9 15 10

Nose poke training 15 12 9 15 10

Biconditional 
discrimination training 13 (15) 10 (12) 7(9) 11 (15) 7 (10)

Probe sessions 13 (15) 10 (12) 5(9) 11 (15) 6(10)

h one subject was excluded from the final maltodextrin vs. sucrose preference analysis due to being an outlier; the 

subject was included in previous maltodextrin vs. water and sucrose vs. water analyses.

4.2.2 B ody weight and oestrus status

The body weights of subjects were monitored regularly for signs of ill health and dehydration. 

This was particularly important as subjects were placed on the home water restriction schedule 

(see Chapter II, 2.5) for the duration of the experiment. The oestrus status of female subjects 

was determined by vaginal smearing. Smearing was performed after testing, on the first seven 

days of both biconditional discrimination training and probe testing. Details of the procedure 

can be found in Chapter II, 2.4.
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4.2.3 Reinforcer preference test

In advance of testing on the main biconditional discrimination task all the subjects were tested 

for their reactivity and preference to the liquid reinforcers used to motivate performance in the 

task. Two weeks prior to the reinforcer preference test subjects were placed on the home water 

restriction schedule (Chapter II, 2.5) and then habituation to, and preference for, the reinforcers, 

10% maltodextrin solution (flavoured with grape; w /v 0.05% Kool-Aid flavouring, Kraft Foods 

Inc.) and 10% plain sucrose solution, was assessed. General information about this procedure 

can be found in Chapter II, 2.6. For preference testing of 2 distinct reinforcers, the procedure 

was slightly modified from that described in Chapter II. Animals were tested for a period of 10 

days. On the first 2 days, animals were habituated to the testing environment and exposed to 

only water. For the next 6 days, animals were given 2 containers, one filled with water and the 

other with either maltodextrin or sucrose in a pseudorandomised order, so that animals were 

exposed to each of the reinforcer for 3 days. For the last 2 days, animals were exposed to both 

maltodextrin and sucrose solutions (no water was present). Percentages preference for 

maltodextrin vs. water, sucrose vs. water and maltodextrin vs. sucrose were calculated.

4.2.4 B iconditional discrim ination task

Upon completion of the reinforcer preference testing, animals began the biconditional 

discrimination task using the apparatus described in Chapter II, 2.7.4. The task consisted of the 

following phases: (1) magazine training, (2) nose poke training, (3) biconditional discrimination 

training, and (4) probe sessions.

4.2.4.1 General experimental design of the task

Mice were trained on two biconditional discrimination tasks (one auditory, one visual) in two 

different contexts (Cl and C2), with two different reinforcers (R1 and R2). In each of the two 

biconditional discrimination tasks, there were two auditory (Al and A2) or two visual (VI and 

V2) cues (Table 4.2.4.1i). In C l, when auditory cue Al was presented, mice were reinforced 

when they made the response of nose poke NP1 (but not reinforced when they made the nose 

poke NP2) and when auditory cue A2 was presented, nose poke NP2 would result in 

reinforcement (but not nose poke NP1). Animals in Cl were rewarded with reinforcer Rl. In 

C2, when visual cue VI was presented, nose poke NP1 would result in reinforcement (but not 

nose poke NP2) and when visual cue V2 was presented, animals were reinforced after nose poke 

NP2 (but not after nose poke NP1). Animals in C2 were rewarded with reinforcer R2. The 

usage of a particular reinforcer in each context helped to strengthen the contextual learning in
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subjects. Animals were trained on both contexts each day; one context in the morning and the 

other in the afternoon. In order to control for possible differences in motivation between the 

morning and afternoon sessions, there was at least a four-hour gap between the two sessions.

Table 4.2.4.1i Experimental design o f  the biconditional discrimination task, and specific stimulus 

elements, contexts and reinforcers used in the current experiment. N ose  poke responses outlined in the 

training phase columns are the correct and reinforced response. N ose poke responses outlined in ‘Probe 

trials’ columns are the correct responses given the particular congruent and incongruent stimulus 

compounds. The yellow highlighted stimulus elements within the incongruent stimulus compounds are 

those that dictate the context-appropriate responses.

Context
N ose  

poke NP1
N ose  

poke N P2
Reinforcer Coilgruent Incongruent

Cl A l A2 R1
A1V1 ->NV\ A1V2 ^ N P l

A2V2 -»N P 2 A2V1 ^ N P 2

C2 VI V2 R2
A1V1 NP1 A 1V2 -*N P 2

A2V2 -> N P2 A2V1 ->NP1

Specific stimulus elements, contexts and reinforcers used in this experiment

Contexts Grid floor and smooth floor

Auditory Tone and buzz

Visual House and stimulus lights

N ose poke 
responses

Left and right nose pokes

Reinforcer 10% grape-flavoured maltodextrin and 10% plain sucrose solutions

After animals had reached criterion performance (see details below) on the two biconditional 

discrimination tasks, subjects were put through probe trials (done in extinction) in which they 

were presented with audiovisual compound cues, in each of the contexts Cl and C2. These 

audiovisual compounds could be made up of either training stimulus elements that were linked 

to the same reinforced nose poke response in the training phase (i.e. A1V1, both linked to NP1 

response for reinforcement and A2V2, both linked to NP2 response for reinforcement), or
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training stimulus elements that were linked to different reinforced nose poke responses (i.e. 

A1V2 and A2V1). These were termed congruent and incongruent stimulus compounds 

respectively. As the incongruent stimulus compounds were linked to conflicting nose poke 

responses, animals would need to use context to guide behaviour. For example, if the subject 

was presented with an incongruent compound A1V2 in context Cl, then the context-appropriate 

response would be NP1, because during the training period in context C l, subjects would have 

been reinforced on the NP1 response following an Al stimulus cue. All subjects were 

counterbalanced across all the elements within the task.

4.2.4.2 Magazine training

Subjects were trained to retrieve the reinforcer from the magazine. Animals received two 

training sessions on one day, one in the morning (with context Cl and reinforcer Rl) and one in 

the afternoon (with context C2 and R2). A single training session was 40 minutes long. 

Reinforcer was available on a RI-60 (random interval) schedule (i.e. animals were given an 

reinforcer on average every 60 seconds). There was an IRI (inter-reinforcement interval) of 60 

seconds (i.e. there is at least 60 seconds in between each availability of reinforcement). During 

each training session, there were no visual (house/stimulus) or auditory (tone/buzz) stimuli, and 

no nose poke lights. The number of magazine entries, the total duration of the magazine entries 

and the number of reinforcers drunk were noted.

4.2.43 Nose poke training

Subjects were trained to nose poke the nose poke aperture when its light was on. Either the left 

or the right nose poke aperture light was on at any one time, and the animal was required to 

poke into the illuminated aperture (a correct response) in order to receive reinforcement. 

Sessions were twice daily, one in the morning (with context Cl and reinforcer Rl) and one in the 

afternoon (with context C2 and reinforcer R2). Each session lasted for 26 minutes and consisted 

of eight trials (four left and four right nose poke illuminations, lit in a pseudorandom order10). 

Each trial consisted of 10 seconds of pre-CS period (CS: conditioned stimulus, i.e. nose poke 

lights), followed by a 120 second of nose poke light illumination and reinforcement period.

10 The pseudorandom order was such that neither left nor right nose poke light would be illuminated more than 

three times in a row.
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There was a variable ITI (inter-trial interval11) before beginning with 10 seconds of pre-CS 

period on the next trial.

During the reinforcement period, subjects were initially reinforced on a CRF (continuous 

reinforcement) schedule, in which every time a correct response was made, the animal was 

reinforced. As training progressed, the schedule was moved to RI-5, RI-10 and finally RI-15 

(RI-X schedule: reinforcement was provided for the first correct response after an average of X 

seconds since the last reinforcement) where the reinforcement schedule remained for the rest of 

the biconditional discrimination task. Before moving onto a next leaner schedule, animals were 

required to fulfil a nose poke training performance criterion of making enough correct nose poke 

responses to receive a total of 30 or more reinforcements daily (total reinforcement for the two 

sessions), to ensure that they had learnt to nose poke correcdy at a competent rate.

4.2.4.4 'Biconditionaldiscrimination training

Upon completion of nose poke training, biconditional discrimination training began. During the 

training, both nose poke lights were illuminated. Subjects were required to make the correct 

nose poke response based on the auditory or visual stimulus cue in a particular context, in order 

to receive reinforcement (Table 4.2.4.li). Two sessions per day were given, one in the morning 

(with context Cl and reinforcer Rl, exposed to either auditory or visual stimulus cues) and one 

in the afternoon (with context C2 and reinforcer R2, exposed to the stimulus cues previously not 

trained in the morning). Each session lasted for 26 minutes and consisted of eight trials (four 

tone and four buzz stimulus cues, or four house light and four stimulus lights stimulus cues, 

presented in a pseudorandom order12). Each trial consisted of a 10 second pre-CS period, 

followed by a 120 second of presentation of stimulus cues and reinforcement on a RI-15 

schedule after the animal had made correct nose poke responses. There was a variable ITI 

(inter-trial interval13) before beginning with 10 seconds of pre-CS period on the next trial 

(Figure 4.2.4.4a),

Subjects’ performance was indexed by CS’ (CS prime) values and their derivatives. CS’ correct 

values indicated the number of correct nose poke responses made before any reinforcement was 

given at the start of a trial within a session; likewise, CS’ incorrect values were the number of

11 The ITI was randomly chosen from this list o f durations: 40, 45, 50, 50, 55, 55, 60, 60 seconds.

12 The pseudorandom order was such that none o f the stimulus cues would be presented more than twice in a row.

13 The ITI was randomly chosen from this list o f durations: 40, 45, 50, 50, 55, 55, 60, 60 seconds.
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incorrect nose poke responses made before reinforcement within a trial. The CS’ measure was 

an unbiased index of discrimination performance (as opposed to CS correct /  incorrect measure, 

which was the total correct /  incorrect nose poke responses throughout the trial, not restricted 

to the first non-reinforced period as indexed by CS’), as after a reinforcement had been given, 

the subject could ‘track’ the reinforcer, that is, repeating the nose poke response it made before 

reinforcement, without truly learning the discrimination rules14. CS’ measure would remove the 

confounding ‘tracking’ behaviour which might otherwise be present in the CS measure. CS’ 

correct and CS’ incorrect values for the four stimulus cues (house light, stimulus lights, tone and 

buzz) over the relevant trials in a given session were averaged to give mean values of CS’ correct 

and mean CS’ incorrect, and discrimination ratio was calculated following the formula:

. . . mean CS’coirectDiscnmma tion ratio = --------------------------------------------------
mean CS'coirect + mean CS'incorrect

The four discrimination ratios for each of the stimulus cues were averaged over five sessions, 

and then averaged over the four stimulus cues to give a single value. In order for subjects to 

successfully complete biconditional discrimination training, the final discrimination value would 

need to be 0.63 or higher. For further confirmation that the subjects had learnt the relevant nose 

poke response for each of the four stimulus cues, the average CS’ correct and CS’ incorrect 

values of each stimulus cues for the five criterion sessions were examined to ensure that CS’ 

correct was consistently higher than CS’ incorrect for each stimulus cues over the five sessions.

4.2.4.5 Compound stimuli probe sessions

After animals had acquired the biconditional discrimination, they were given eight days of probe 

sessions. There were two sessions daily (a total of 16 probe sessions were given), one in the 

morning and one in the afternoon. A single probe session consisted of 12 trials, which were a 

combination of four probe trials which were done in extinction and eight normal reinforced 

trials (identical to those given in biconditional discrimination training); this was to avoid animals

14 For example, at the start o f each trial, the animal could be responding left, right, left, right, and so on. 

Reinforcement was given after an average o f 15 seconds (RI-15 schedule) and a correct response (e.g. left) from the 

animal. The animal then realized the correct response was left because it was just reinforced on it, and continued to 

respond left for the rest o f the trial w ithout learning that e.g. a house light stimulus cue required a left nose poke 

response.
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becoming de-motivated by the lack of reinforcement and disconcerted due to the sudden 

appearance of probe trials. The trials were presented in a pseudorandom order.13

ITI

Pre-CS period 
[10 seconds]

Start of 
the next 

trial

i
House light

NP1 NP2

L I
RI-15 + 0

Presentation o f  stimulus 
cue

(120 seconds)

Visual Auditory

i I I I
0 + 0

Animal continued to 
respond until 120 

seconds had elapsed

either ^ ^either JL

Stimulus Tone Buzz
lights

1 1
NP1 NP2 NP1 NP2 NP1 NP2

I  I
0

Figure 4.2.4.4a Schematic diagram showing the event flow within a trial in a biconditional 

discrimination training session. After a 10 second pre-CS period, there was a 120-second 

presentation of the stimulus cue during which a subject responded continuously to obtain 
reinforcement at a RI-15 schedule. Following this, there was a variable ITI after which another trial 

began. + symbol signifies reinforcement after a correct response while 0  indicates no 

reinforcement after an incorrect response.

The four probe trials within the session consisted of two congruent and two incongruent trials 

(see above, section 2.4.1), which were either (1) tone & stimulus lights, (2) tone & house light, (3) 

buzz & stimulus lights and (4) buzz & house light. Whether these stimulus cue compounds were 

congruent or incongruent depended on the training contexts and the current contexts in which 

the animals were probed. Probe trials were 30 seconds in length and no reinforcement was given

15 Such that there would not be more than two probe trials in a row, and normal trials would not have any of the 

stimulus cues presented more than twice in a row.
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during the period. These probe trials are analogous to the ‘Stroop’ test in humans; the 

incongruent trials in this present study are similar to the situation with a colour word that is 

written in a different ink colour to its meaning (e.g. RED, correct answer would be ‘blue’), as 

there is a response conflict between answering ‘red’ and answering ‘blue’.

The CS correct and incorrect values of the congruent and incongruent trials (i.e. number of 

correct and incorrect nose poke responses made during the 30 seconds period of the probe 

session) were used to examine how well animals cope with response conflict. The CS’ correct 

and incorrect values were the performance index for the normal reinforced trials, as in the 

biconditional discrimination training described previously.

4.2.5 Exclusion criteria, sta tistical analysis and additional control m easures

Subjects were excluded from biconditional training analyses if they did not achieve the 

performance criterion (final discrimination ratio, averaged over five days, of 0.63 or higher) 

within 60 training sessions. The performance criterion of 0.63 was determined after a pilot study 

conducted by myself using another batch of XO animals; 0.63 was deemed to be stringent 

enough to ensure animals have learnt the biconditional discriminations to a satisfactory degree, 

while allowing a sufficient number of animals to progress through to the probe sessions. 

Animals were excluded from the probe session analyses if their average CS’ incorrect values were 

larger than the average CS’ correct values (i.e. the opposite pattern of results expected), taken 

from normal reinforced trials within the probe sessions. The normal reinforced trials in the 

probe sessions indicated the general capability to perform the discrimination task, and if the 

subject was failing the simple discrimination, it was unlikely that the results on the congruent and 

incongruent trials would reflect properly the subject’s ability to deal with response conflict. Data 

points which were deemed extreme outliers (on a box plot, data points that lay 3 times the 

interquartile range from the hinges were extreme outliers), as calculated by SPSS, were excluded.

Statistical analyses were performed using SPSS software (version 17, SPSS Inc., IBM, U.S.A.). 

Data were subject to One Way ANOVA. As noted in Chapter III, 3.2.5, two comparisons were 

made, with Comparison 2 only performed where an X-linked parent-of-origin effect was 

apparent in Comparison 1.

Comparison 1: ‘XO comparison’ (Between Subjects factor KARYOTYPE): 39,XmO, 39,XpO, 

40,XX. The purpose of this main comparison was to check for effects of X-monosomy and X- 

linked parent-of-origin effects.
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Comparison 2: ‘Paf comparison’ (Between Subjects factor GENOTYPE): 40,XX, 40,XX7̂ , 

40,XP'?/X. An additional comparison was made between females from the 39,XmO-generating 

cross (40,XXP<9) and females from the 39,XpO-generating cross (40,XX and 40,XP,?/X). The 

purpose of this second comparison was to check for gross cross effects only where differences 

between 39,XmO and 39,XpO mice were found.

Repeated Measures ANOVA was used when appropriate; additional factors specific to the 

analysis were defined in the relevant Results section, and furthermore, Greenhouse-Geisser 

(epsilon of 0.75 or lower) or Huynh-Feldt (epsilon of 0.75 or higher) corrections were applied to 

degrees of freedom if the Mauchly’s Test of Sphericity was violated in Repeated Measure tests. 

When initial ANOVA revealed a significant effect, Tukey HSD Test or Dunnett T3 Test (in the 

cases with unequal variances) was performed for post hoc comparisons, and when a significant 

interaction was revealed, Least Significant Difference adjustment was used for post hoc pairwise 

comparisons. Kruskal-Wallis One Way ANOVA and Friedman test (non parametric repeated 

measures test) were used for data not normally distributed. One sample t-test was used when 

comparing a set of data against a hypothetical value. For all comparisons, p values of <0.05 were 

regarded as significant.
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4.3 Results

4.3.1 Reinforcer preference test

The preference for 10% grape flavoured maltodextrin solution reinforcer (Figure 4.3.1a) over 

water and preference for 10% plain sucrose solution reinforcer over water (Figure 4.3.1b) both 

increased over the testing period. Data on percentage preference for reinforcer over water were 

subject to Repeated Measures ANOVA with Between Subject factor of KARYOTYPE (i.e. 

39,XmO, 39,XpO and 40,XX) and Repeated Measures factor of DAY (i.e. first, second and third 

day of exposure to maltodextrin). The 39,XmO, 39,XpO and 40,XX animals did not differ 

significantly from each other in terms of their percentage preference for maltodextrin over water 

over the three days of maltodextrin exposure (effect of KARYOTYPE, F233 = 2.62, n.s.). As 

expected, the preference for maltodextrin increased significantly over the three days of exposure 

(effect of DAY, F266 = 49.085, p<0.001) and there were no interactions between KARYOTYPE 

and DAY (F466 = 0.993, n.s.).

Figure 4.3.1a
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water maltodextrin solution vs water water maltodextrin solution vs water water maltodextrin solution vs water

Figure 4.3.1a Total fluid consumption, as a proportion of 10% grape flavoured maltodextrin 
solution reinforcer over water intake in the XO comparison. Preference for maltodextrin (light 
bars) over water (dark bars) increased over this period. Note that on days 1 and 2, only water was 
available. Data were presented as mean values.

Similarly, 39,XmO, 39,XpO and 40,XX animals did not differ in their preference for sucrose 

solution over water during the three days of exposure to the reinforcer (effect of KARYOTYPE, 

F233 = 2.675, n.s.; Figure 4.3.1b). The preference increased significantly over the testing period 

(effect of DAY, F266 = 12.625, p<0.001) and there was no interaction between KARYOTYPE 

and DAY (F466 = 0.432, n.s.).
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Figure 4.3.1b
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water sucrose solution vs water water sucrose solution vs water water sucrose solution vs water

Figure 4.3.1b Total fluid consumption, as a proportion o f 10% plain sucrose solution reinforcer 
over water intake in the XO comparison. Preference for sucrose (light bars) over water (dark 
bars) increased over this period. Note that on days 1 and 2, only water was available. Data were 
presented as mean values.

In an additional manipulation at the end of the reinforcer vs. water choice assay, the relative 

preference for maltodextrin and for sucrose was assessed by presenting both reinforcers together 

(i.e. no water present). Percentage preference under these conditions from the last two days of 

exposure were averaged and the preference ratio of maltodextrin to sucrose (i.e. sucrose 

preference + maltodextrin preference) was calculated (Figure 4.3.1c). As the data were not 

normally distributed, Kruskal-Wallis One Way ANOVA was used for analysis. Figure 4.3.1c 

suggests that 39,XmO animals appeared to prefer sucrose over maltodextrin solution more than 

39,XpO and 40,XX animals; however, animals did not differ in their preference significantly (H2 

= 5.294, n.s.). As an additional analysis, the preference ratio of maltodextrin to sucrose was 

compared to the 1 (i.e. equal preference for maltodextrin and sucrose) to examine the possibility 

of reinforcer preference biases in a particular group of animals, by conducting a simple one- 

sample t-test for each of the karyotype groups. No significant differences between the reinforcer 

preference ratio and the ratio of 1 were observed in any of the karyotype groups (39,XmO: t14 = 

1.87, n.s.; 39,XpO: tn = -0.104, n.s.; 40,XX: t8 = -1.333, n.s.).
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Figure 4.3.1c
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Figure 4.3.1c Preference ratio o f  
sucrose to maltodextrin in the XO  
comparison. A  ratio o f  one 
indicates an equal preference for 
maltodextrin and sucrose. Ratios 
o f  >1 and <1 indicate preference 
for sucrose and preference for 
maltodextrin respectively. Data 
are presented as mean values ±
SEM.
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4.3.2 M agazine training

(i) Total number and total duration of magazine entries:

Data on the single day of magazine training (Figure 4.3.2a) were subject to analysis by Repeated 

Measures ANOVA, with Between Subject factor of KARYOTYPE and Repeated Measure 

factor of TIME (i.e. AM and PM sessions). For 39,XmO, 39,XpO and 40,XX animals, the total 

number of magazine entries and the total duration of the entries increased significantly in the PM 

session compared to the AM session (magazine entries, effect of TIME, F132 = 17.867, p<0.001; 

duration, effect of TIME, F132 = 28.621, p<0.001), suggesting the animals had successfully 

acquired the association between the magazine and reinforcer delivery. In the second magazine 

training session in the PM, animals were making on average 100 -  150 magazine entries, which 

was an excellent rate of response. Furthermore, there was no group differences in the 

acquisition of this association, as indicated by non-significant effect of KARYOTYPE in both 

magazine entries (F232 = 0.248, n.s.) and duration (F232 = 0.140, n.s.), and no interaction between 

KARYOTYPE and TIME in magazine entries (F232 = 1.254, n.s.) and duration (F232 = 1.69, n.s.).
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Figure 4.3.2a
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Figure 4.3.2a [A] Total number o f  magazine entries, [B] total duration in magazine and [C] total 
number o f  reinforcers received during the two magazine training sessions in the XO comparison. 
Data are presented as mean values ±  SEM.

(ii) Total number of reinforcers received:

For 39,XmO, 39,XpO and 40,XX animals comparison, there were no group differences in the 

number of reinforcers received (Figure 4.3.2a; effect of KARYOTYPE, F232 = 2.069, n.s.) and 

no interaction between TIME and KARYOTYPE (F232 = 0.413, n.s.). The reinforcers were 

delivered on a RI-60 schedule on both AM and PM sessions and so there was a cap on the 

quantity of reinforcers received, and there were no differences in number of reinforcers received 

between AM and PM sessions (effect of TIME, F132 = 1.586, n.s.), i.e. in the presence of similar 

number of reinforcers, animals were responding more in the PM than AM which indicates that 

they had been successfully trained.

4.3.3 N ose poke training

The total number of sessions taken to complete nose poke training (Figure 4.3.3a) did not differ 

significantly between the 39,XmO, 39,XpO and 40,XX animals (effect of KARYOTYPE, F233 = 

2.518, n.s.). Figure 4.3.3.b shows the numbers of sessions taken in reaching CRF, RI-5, RI-10 

and RI-15 reinforcement schedule stages, as the animals progressed through training. The 

karyotype groups took similar number of sessions to complete each stage, with the CRF stage 

taking most number of sessions, reflecting the initial formation of association between nose poke 

aperture illumination and nose poke response, in order to receive reinforcement. As these data 

were not normal, a Repeated Measures ANOVA was not computed and instead a non- 

parametric Friedman test was used to analyse the data, with Repeated Measures factor of
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SCHEDULE (i.e. CRF, RI-5, RI-10 and RI-15 reinforcement schedule) only, as the Friedman 

test is not capable of analysing data with two factors. The analysis indicated that there was a 

significant difference in the number of sessions taken to complete each reinforcement schedule 

stage (x \=  54.991, p<0.001) which was likely to be due to the substantially higher number of 

sessions required to finish the CRF stage.

Figure 4.3.3a Figure 4.3.3b
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Figure 4.3.3a Total number o f  sessions taken in order to complete nose poke training successfully 
in the XO comparison. Data are presented as mean values ±  SEM.

Figure 4.3.3b Total number o f  sessions taken to achieve the performance criterion (enough 
correct nose poke responses to receive 30 reinforcements) o f  completing nose poke training at the 
four reinforcement schedule stages (CRF, RI-5, RI-10, RI-15) in the XO comparison. Data are 
presented as mean values + SEM.

4.3.4 Biconditional discrimination training

(i) Total number of sessions to reach performance criterion:

To complete biconditional discrimination training, animals were required to fulfil the 

performance criterion of achieving a final discrimination ratio of 0.63 or higher (see Section 

4.2.4.4). The total number of sessions taken in reaching biconditional discrimination training 

performance criterion (Figure 4.3.4a) differed significandy between 39,XmO, 39,XpO and 40,XX 

subjects (effect of KARYOTYPE, F2>27 = 7.27, p<0.01). There were 2 out of 15 39,XmO, 2 out 

of 12 39,XpO and 2 out of nine 40,XX mice which did not achieve this criterion within 60 

sessions, suggesting that the task, as conducted here, was relatively difficult for mice (Table 

4.2.1i); data from these mice were not included in the above analysis (see exclusion criteria 4.2.5). 

As variances were not equal, the data were subject to the Dunnett T3 post hoc test, which found
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the performance of 40,XX animals to differ significandy from that of 39,XmO (p<0.001) and 

39,XpO (p<0.02) animals; 40,XX animals took significandy fewer number of sessions to 

complete biconditional discrimination training than 39,XmO and 39,XpO animals, whose 

performance did not differ significantly from each other. This result suggests there was an X- 

monosomy effect on the speed of task acquisition; the lack of an X chromosome, regardless of 

its parental origin, was detrimental to task acquisition.

Figure 4.3.4a
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Figure 4.3.4a Total number of sessions 
taken in reaching biconditional 
discrimination training performance 
criterion for 39,XmO, 39,XpO and 40,XX 
animals. Data are presented as mean 
values ± SEM. * p<0.02, ** p<0.001.

(ii) Relative performance in auditory and visual modalities during biconditional discrimination 

training:

In order to see whether the overall slower learning of the biconditional task was due to 

interactions between karyotype and the particular sensory modality used in the learning, the data 

were separated by auditory or visual stimulus modality (i.e. by buzz and tone together and by 

house light and stimulus lights together, respectively) across sessions. The performance was

CS' COTT&Ct
indexed by the discrimination ratio, which was calculated by-----------------------------------. A ratio

CS'correct + CS'incorrect

higher than 0.5 would signify more correct than incorrect responses. Repeated Measures

ANOVA, with Within Subject factor SESSION (sessions 1 to 60 in the 39,XmO, 39,XpO and

40,XX comparison; animals which had completed biconditional discrimination training before

session 60 were given the score of their last discrimination ratio until session 60) and Between

Subject factor KARYOTYPE (comparison of 39,XmO, 39,XpO, 40,XX) was used to analyse the

data.
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Figure 4.3.4c
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Figure 4.3.4c Discrimination ratios for auditory and visual modalities, across sessions, during 
biconditional discrimination training for 39,XraO, 39,XpO and 40,XX animals. Ratios were 
calculated by CS’ correct (CS’ correct + CS’ incorrect). Ratios over 0.5 would signify more 
correct than incorrect responses.

Figure 4.3.4c shows the average discrimination ratios for auditory and visual modalities across 

sessions for 39,XmO, 39,XpO and 40,XX animals. For the auditory modality, subject groups did 

not differ significantly in their performance across the training phase (effect of KARYOTYPE, 

F2>27 — 0.986, n.s.). Performance improved significantly across SESSION (F59 1593 = 5.971, 

p<0.001) which reflects the subjects’ acquisition of the auditory stimulus-response associations 

over time; however, this improvement across session did not vary between karyotype groups 

(SESSION X KARYOTYPE, F1181593 = 0.801, n.s.). Similarly for the visual modality, subject 

groups did not differ significantly in their performance across sessions (effect of KARYOTYPE, 

F2>27 = 1.578, n.s.). Once again, performance improved significantly over SESSION (F591593 = 

7.783, p<0.001), reflecting acquisition of visual stimulus-response associations, and this 

improvement did not vary between groups (SESSION X KARYOTYPE, F1181593 = 1.179, n.s.).

In addition to the ratio data above, terminal response rates for both auditory and visual 

modalities (i.e. CS’ correct and incorrect for each karyotype group at the end of biconditional 

discrimination training) are shown in Figure 4.3.4d. Data were analysed using Repeated 

Measures ANOVA, with Within Subject factor RESPONSE (i.e. correct or incorrect CS’) and 

Between Subject factor KARYOTYPE (i.e. comparison of 39,XmO, 39,XpO, 40,XX). For both 

auditory and visual modalities, there were significantly more correct than incorrect RESPONSES 

(auditory: F1(27 = 36.155, p<0.01; visual: F127 = 11.16, p<0.01). There were no differences 

between 39,XmO, 39,XpO and 40,XX karyotype groups in terms of performance; there were no
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significant main effect of KARYOTYPE in either auditory (F227 = 2.404, n.s.) or visual (F2>27 = 

2.15, n.s.) modalities. Furthermore, there was no significant interaction between KARYOTYPE 

and RESPONSE in auditory (F2>27 = 0.820, n.s.) and visual (F2>27 = 1.917, n.s.) modalities. Taken 

together, the discrimination ratio and terminal response rates data suggest that by the end of 

biconditional discrimination training, all animals were performing equivalently.

Figure 4.3.4d
Auditory Visual
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39XmO 39,XpO
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I CS' incorrect

40 XX 39XmO 39,XpO

karyotype

I CS' correct 
I CS' incorrect

40 X X

Figure 4.3.4d CS’ correct and CS’ incorrect for auditory and visual modalities on the last 
session o f biconditional discrimination training, having achieved performance criterion on this 
session. Data are presented as mean values ± SEM.

4.3.5 Compound stim uli probe sessions

Probe sessions were a mixture of normal reinforced, and probe, trials. As described in detail 

earlier (see sections 4.2.4.1 and 4.2.4.5), the four probe trials within the session consisted of two 

congruent and two incongruent trials which were either (1) tone & stimulus lights, (2) tone & 

house light, (3) buzz & stimulus lights and (4) buzz & house light. Whether these stimulus cue 

compounds were congruent or incongruent depended on the training contexts and the current 

contexts in which the animals were probed. Probe trials were not reinforced as uncontaminated 

responses were desired; this would prevent any influence on the animals’ behaviour due to 

reinforcement, such as motivation and response side biases.

(i) Normal reinforced trials:

The performance in the normal reinforced trials was examined to ensure that during the probe 

sessions, animals were not overly disrupted by the presence of the probe trials and were still 

responding according to the stimulus-response associations that they had acquired during
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biconditional discrimination training. Repeated Measures ANOVA with Within Subject factor 

RESPONSE (i.e. correct or incorrect CS’ values) and Between Subject factor KARYOTYPE (i.e. 

comparison of 39,XmO, 39,XpO, 40,XX) was used to analyse the data.

Figure 4.3.5a Figure 4.3.5b

CS'correct 
1 CS'incorrect

39XmO 39,XpO

karyotype

40 XX

tJi!
8 ° -B

8
+
ts

O) VJ8 O

l|0 2B 8 
8&

r—= 3 = . ----- T-1*

1
--------------1i q u a l  nu m b er

of coirect and
incorrect
responses

39XmO 39XpO

karyotype

40,XX

Figure 4.3.5a CS’ correct and CS’ incorrect values o f  39 ,X mO , 39 ,X pO  and 40,X X  animals 
during normal reinforced trials on 8 days o f  probe sessions. Data are presented as mean values ±  
SEM. **p<0.001.

Figure 4.3.5b Discrimination ratio o f 39,X mO , 39,X pO and 40,X X  animals from normal 
reinforced trials on 8 days o f  probe sessions. Ratios were calculated by CS’ correct + (CS’ correct 
+ CS’ incorrect). Ratios over 0.5 would signify more correct than incorrect responses. Data are 
presented as mean values + SEM.

Two out of seven 40,XX animals were excluded from the probe session analyses, as they showed 

a tendency towards increased CS’ incorrect responding on normal reinforced trials rather than 

the expected tendency towards increased CS’ correct responses averaged over the eight probe 

session days; this may be due to an effect of general task disruption during probe sessions, as 

these animals learned the initial discrimination to criterion. For the remaining 39,XmO, 39,XpO 

and 40,XX animals (Figure 4.3.5a), there were significantly more correct than incorrect 

RESPONSES (F125 — 51.357, p<0.001), and performance did not differ between KARYOTYPE 

groups (F2>25 = 2.968, n.s.). There was no significant RESPONSE x KARYOTYPE interaction 

(F2(25 = 1.268, n.s.). Figure 4.3.5b shows the discrimination ratios for the normal reinforced 

trials. As the previous analysis showed no karyotype differences, the data were grouped together 

and a One Sample t-test was conducted against the discrimination ratio value of 0.5 (i.e. chance 

level). The analysis showed that there was a significant difference between the performance of 

the animals and chance performance (t27 = 11.073, p<0.001). The results of the above analyses 

suggest that all karyotype groups were continuing to respond appropriately and above chance
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level to the various stimulus-context compounds in the normal reinforced trials during probe 

sessions, and that subjects’ performance were not significantly disrupted by the presence of 

probe trials.

(ii) Compound stimuli probe trials:

Probe trials were separated into congruent and incongruent types, based on the individual 

subject’s biconditional discrimination training. CS correct and CS incorrect values from 

congruent and incongruent trial types were analysed by Two Way Repeated Measures ANOVA, 

with two Within Subject factors of TYPE (i.e. congruent or incongruent) and RESPONSE (i.e. 

correct or incorrect) and a Between Subject factor of KARYOTYPE (i.e. comparison with 

39,XmO, 39,XpO, 40,XX, animals).

Figure 4.3.5c
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Figure 4.3.5c CS correct and CS 
incorrect values for congruent and 
incongruent trial types for 39,XmO, 
39,XpO and 40,XX animals. Data are 
presented as mean values + SEM. 
**p<G.001,*p<0.01.

Figure 4.3.5d
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Figure 4.3.5d CS correct 
and CS incorrect values for 
congruent and incongruent 
trial types for 39,XmO, 
39,XpO and 40,XX 
subjects, in a line graph for 
clarity. CSs correct and 
incorrect are represented by 
solid and dashed lines, 
respectively.
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(CS correct) and for the 
dashed lines (CS incorrect).
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For the 39,XmO, 39,XpO and 40,XX comparison (Figure 4.3.5c), most notably, there was a 

significant TYPE x RESPONSE interaction (F1>25 = 21.341, p<0.001); post hoc tests revealed 

significandy higher CS correct than CS incorrect values in both congruent (p<0.001) and 

incongruent (p<0.01) trial types. The magnitude of the difference between CS correct and CS 

incorrect responses was larger in congruent trials than in incongruent trials (Figure 4.3.5d). 

This pattern of results suggests that subjects can perform both the congruent trials and the 

response conflict aspect (as indexed by incongruent trials) of this behavioural task successfully, 

but that, as expected, they had more difficulty with making a correct response when the 

responses dictated by the elements of the compound stimuli conflict i.e. in the incongruent trials. 

Additionally shown in the post hoc, CS correct values in congruent differed from that in 

incongruent trial types (p<0.01); this difference was also seen in CS incorrect values (p<0.01). 

This suggests that both correct and incorrect responses were significantly influenced by trial 

types. Animals performed similarly to each other, irrespective of KARYOTYPE (F2 25 = 2.178, 

n.s.), and there were no significant interactions between KARYOTYPE and either/both Within 

Subject factors (KARYOTYPE x TYPE, F2>25 = 0.479, n.s.; KARYOTYPE x RESPONSE, F2>25 

= 2.913, n.s.; KARYOTYPE x RESPONSE x TYPE, F225 = 2.764, n.s.). There was also a 

significant effect of RESPONSE (F1>25 = 29.791, p<0.001), which reflects more correct than 

incorrect responses from animals generally. Total CS values, irrespective of karyotype, summed 

across (1) congruent and (2) incongruent trials did not differ significantly (effect of TYPE, F1j25 = 

0.007, n.s.). Figure 4.3.5e shows a simple profile plot which explains the pattern of results 

obtained from the above analysis.

Figure 4.3.5e
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The above Two Way Repeated Measures ANOVA did not detect any KARYOTYPE effects, 

however, upon cursory inspection on Figure 4.3.5c, it would appear that 40,XX animals were
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not able to make the correct response on incongruent trials (i.e. the CS correct and CS incorrect 

values were not different on incongruent trials). In the light of this, data were presented as 

discrimination ratios and re-analysed with a Repeated Measures ANOVA, with Within Subject 

factor of TYPE (i.e. congruent or incongruent) and Between Subject factor of KARYOTYPE 

(i.e. comparison of 39,XmO, 39,XpO and 40,XX animals). Similar pattern of results as the Two 

Way Repeated Measures was found; it was confirmed that there was a significant difference 

between the performance on congruent and incongruent trial types (main effect of TYPE, F125 = 

34.222, p<0.001), as animals were significantly better at resolving congruent than incongruent 

trials. Animals performed equivalently between KARYOTYPE groups (F225 = 2.332, n.s.) and 

there was no significant interactions between KARYOTYPE and TYPE (F?^ = 0.778, n.s.). 

The data were then separated by karyotype groups and analysed by One-Sample t-tests, 

conducted against the discrimination ratio value of 0.5 (i.e. chance level; Figure 4.3.5f). For the 

congruent trial type, the discrimination ratios of all three karyotype groups were found to be 

significantly higher than chance level of 0.5 (39,XmO: t12 = 7.930, p<0.001; 39,XpO: tg 9.699, 

p<0.001; 40,XX: t4 = 5.435, p<0.01), suggesting animals were capable to perform on the 

congruent trials. For the incongruent trial type, the discrimination ratios of 39,XmO (t12 = 3.905, 

p<0.01) and 39,XpO (tg = 3.632, p<0.01) were significantly higher than chance level of 0.5, 

suggesting these animals were able to perform correctly in the trials with response conflict. 

However, for 40,XX animals, there were no significant differences between their discrimination 

ratio and chance level of 0.5 (t4 = -0.044, n.s.); it would appear that 40,XX animals were 

performing at chance and were unable to respond correctly on the incongruent trials.

Figure 4.3.5f
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Figure 4.3.5f Discrimination 
ratios for congruent and 
incongruent trial types on probe 
sessions. Ratios were calculated 
by CS’ correct + (CS’ correct +  
CS’ incorrect). Ratios over 0.5 
would signify more correct than 
incorrect responses. Data are 
presented as mean values ±  
SEM.
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4.4 Discussion

In this experimental chapter, XO mice were tested on a novel murine biconditional 

discrimination task; the task required subjects to acquire two biconditional discriminations, one 

auditory and one visual, under two different contexts. After successful acquisition of the 

discriminations, animals were tested with congruent and incongruent audiovisual stimulus 

compounds. The present task examined executive function and response conflict; there is prior 

evidence that TS females are impaired in some aspects of executive function and response 

conflict (Ross et al, 1995; Temple et al., 1996; Kirk et al., 2005), and display abnormal prefrontal 

cortex function (Tamm et al., 2003). Additionally, a previous study with the XO mice (Davies et 

al, 2005a), using a visual discrimination and reversal learning paradigm, has shown X-linked 

parent-of-origin effects on perseveration and re-acquisition of stimulus-reinforcer associations, 

and the orbitofrontal cortex, mediodorsal nucleus of the thalamus and hippocampus have been 

suggested to underlie these aspects of cognition.

The first main finding from this chapter was that both 39,XmO and 39,XpO (i.e. XO) mice learnt 

the two biconditional discriminations more slowly than 40,XX animals, as indexed by a higher 

number of sessions to performance criterion (i.e. an X-monosomy effect). There were no 

significant differences between the karyotype groups in their performance across the sessions in 

both auditory and visual modalities, which suggests that the slower learning in the XO animals 

was more likely to be a general impairment rather than due to dysfunction in one sensory 

domain. Importandy, XO mice showed an equivalent preference to XX mice for the reinforcers, 

suggesting they had similar motivation, and the karyotype groups performed equivalendy in 

magazine and nose poke training, suggesting that the animals had the similar gross cognitive 

abilities. Furthermore, these data are unlikely to be confounded by oestrus status in that XX and 

XO mice have cycles of equivalent overall length (see Chapter III); in Chapter III, there were 

some subtle differences in the lengths of diestrous and oestrous stages of the cycle, in that 

39,XmO had a longer diestrous stage length than 39,XpO, and 39,XpO had a longer oestrous 

stage length than both 39,XmO and 40,XX animals. However, the biconditional discrimination 

training data here showed both 39,XmO and 39,XpO animals showing behavioural deficits 

relative to 40,XX mice; this pattern does not match that of oestrous stage lengths. Furthermore, 

animals were smeared on the first seven days of both biconditional discrimination learning and 

probe sessions, and the distribution of oestrous cycle stage for both time points was not 

different between karyotype groups (data not shown), suggesting that oestrous status is unlikely 

to confound the acquisition difference.
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The second main finding was that while 39,XmO and 39,XpO animals were able to respond 

correcdy on both congruent and incongruent trials in the probe sessions, 40,XX animals were 

only able to perform correctly on the congruent, but not incongruent, trials. All three karyotype 

groups showed a marked difference between correct and incorrect responses during congruent 

trials, and a smaller difference between correct and incorrect responses during incongruent trials 

(as they were more difficult due to response conflict), as expected. The oestrus status of mice 

was determined immediately following probe sessions daily; importandy, there were no gross 

effects of oestrus stage on performance on these probe trials. It was interesting to see that better 

performance from 39,XO mutant animals compared to 40,XX wildtype animals on incongruent 

trials (i.e. a ‘beneficial’ X-monosomy effect). Haddon & Killcross (2007) reported better 

performance on incongruent trials in rats with hippocampal formation lesions compared to sham 

operated rats; additionally, these hippocampal formation lesioned animals were sensitive to 

specific reinforcer devaluation on instrumental (lever press), but not on Pavlovian (magazine 

approach), measure of performance. It is possible that 39,XO mutant mice in my hands might 

have differences in the structure or function of hippocampal formation compared to 40,XX 

animals, caused by the haploinsufficiency of one or more X-linked genes that escapes X 

chromosome inactivation, and in future studies, it would be interesting to look into 39,XO 

animals’ performance in specific reinforcer devaluation and their hippocampal function. It is 

worth noting that the subject number of 40,XX animals was low (n=5), and the low power of 

analysis will increase the probability of a Type II error; therefore, it is important to repeat the 

experiment with a higher number of subjects to ensure the difference in the performance 

between 39,XO and 40,XX animals on incongruent trials was indeed real.

Overall, these data suggest that there were no X-monosomy or X-linked parent-of-origin effects 

on brain processes underlying responses to congruent and incongruent stimuli. Whilst I can be 

relatively confident in excluding the possibility of X-linked parent-of-origin effect (since the 

performance of 39,XmO and 39,XpO animals was equivalent), with the low subject numbers of 

40,XX mice used in the probe trials, it is not possible to discount completely the possibility of an 

X-monosomy effect which might not be apparent given low power of analysis. However, the 

fact that there was little variation within the 40,XX group and the small number of 40,XX mice 

tested performed equivalently to Paf heterozygotes (data not shown) does argue against an X- 

monosomy effect.

Acquisition of the biconditional discriminations requires the animal (i) to learn the stimulus- 

reward or stimulus-response associations (there is some debate as to which exact associative
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structure is important here; Dickinson & De Wit, 2003) and (ii) to select the appropriate 

response given a particular stimulus (Adams et a l .2001). Given that all animals could select the 

response appropriately during both the congruent and incongruent trials, this suggests that the 

slower acquisition observed in 39,XmO and 39,XpO mice is more likely to be a manifestation of 

impaired learning of the stimulus-reward or stimulus-reinforcer contingencies. There have not 

been any brain lesion studies in rats on this version of biconditional discrimination task that 

showed a deficit in the acquisition of the two biconditional discriminations, and therefore it is 

somewhat difficult to propose a candidate brain region which might underlie the current X- 

monosomy impairment. Part of the reason might be due to the different paradigms used in the 

rat and in the present study; with rats, a fixed number of sessions was given rather than testing 

the animals to performance criterion as in this experiment (Haddon & Killcross, 2005, 2006a, 

2006b; Haddon et al., 2008; Marquis et al., 2007).

However, lesion studies in rats using conditional associative learning paradigms, i.e. tasks in 

which the acquisition of only one biconditional discrimination is required (stimulus A nose 

poke left; stimulus B nose poke right), have shown that a particular region of the striatum, the 

caudate nucleus, is important in the formation of stimulus-response associations, while the 

prefrontal cortex is thought to mediate mainly response selection (Winocur & Eskes, 1998; 

Adams et al, 2001; Williams & Eskandar, 2006). Therefore, I might tentatively speculate that 

differences in the structure/function of the caudate nucleus might underlie differences in 

acquisition performance between 39,XO and 40,XX animals.

It is likely that there are one or more X-linked genes, which influence the development and/or 

ongoing function of brain regions mediating task acquisition (possibly including the caudate 

nucleus), and which escape X chromosome inactivation, such that the hypothetical gene dosage 

of these genes in 39,XmO and 39,XpO animals would be one, whereas that in 40,XX females 

would be two. To date, there are only a handful of X-linked genes, for example, Eif2s3x, Jaridlc, 

Utx and Usp9x, which are known to escape X chromosome inactivation in mice (Xu et al, 2005, 

2006, 2008a, 2008b; Brown and Greally, 2003; Yang et al., 2010); however, to my knowledge, 

none of the known murine X-linked gene escapees has been shown to be expressed in the 

caudate nucleus. Follow up experiments could be conducted to examine whether specific lesions 

of the caudate nucleus could affect the acquisition of the two biconditional discriminations in 

this task. The 40,XY*x mice, littermates from the 39,XmO generating cross, might be tested to 

examine if the behavioural effect on acquisition of the biconditional discriminations might be 

due to haploinsufficiency for one or more genes on the small Y*x chromosome, which
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encompasses the pseudoautosomal region and a small X-specific segment (Burgoyne et al, 1998); 

a possible candidate on the Y*x chromosome is the Sts gene which has been shown to modulate 

attentional functioning (Davies et al., 2007).

Prior evidence from TS females suggests that these subjects are impaired with regard to the 

response conflict demands of the ‘Stroop’ task (Temple et al, 1996; Kirk et al, 2005); however, 

the present data did not show any impairment in the performance of the 39,XO mice during 

incongruent trials in which there was a conflict between two instmmental responses (in fact, 

39,XO animals performed better than 40,XX animals on incongruent trials). Indeed, there have 

been instances where impaired performance during response conflict tasks in TS females has not 

been observed (Silbert et al, 1977). This apparent species difference could be due to the 

presence of one or more X-linked genes in humans which influence the neurobiology underlying 

response conflict behaviour and escape X chromosome inactivation; the orthologous genes in 

mice might be autosomal, or might not escape X chromosome inactivation. As mentioned 

previously (see Chapter I), the murine X chromosome is thought to be much more extensively 

inactivated than its human counterpart (Goto & Monk, 1998; Lynn & Davies, 2007; Lopes et al, 

2010).

4.5 Summary

•  There were no general behavioural differences between XX and XO with regard to training 

on the novel biconditional-response conflict task: (i) preference for both maltodextrin and 

sucrose over water increased significantly for every karyotype group across reinforcer 

preference test days, and there were no significant differences between karyotype groups in 

their preference of maltodextrin vs. sucrose, (ii) there were no significant differences 

between karyotype groups in the performance during magazine training, as indexed by 

number and duration of magazine entries, (iii) there were no significant differences between 

karyotype groups in the performance during nose poke training, as indexed by the number 

of sessions taken to reach each performance criterion at reinforcement schedule stages.

•  There was a X-monosomy effect on the initial acquisition of the two biconditional 

discriminations whereby 39,XmO and 39,XpO animals required significantly more sessions to 

acquire the biconditional discriminations to the same performance criterion as 40,XX 

females.

•  39,XmO and 39,XpO animals were capable of completing both congruent and incongruent 

trials, but 40,XX animals could perform correctly only on congruent, but not incongruent,

99



Chapter IV

trials. The difference between correct and incorrect responses was smaller in the 

incongruent (more difficult with response interference) than in the congruent trials, as 

expected.
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Chapter V 

Initial physiological and behavioural 

phenotyping of the Four Core Genotypes 

(FCG) mouse model

5.1 Introduction

In the General Introduction and previous experimental chapters, I considered, using the XO 

mouse model, two possible sex chromosome mechanisms (X-linked gene dosage and X-linked 

imprinting) which influence behaviour. In the rest of the experimental chapters to follow, I used 

a different mouse model in order to further investigate additional sex chromosome effects on 

behaviour; specifically I used the Four Core Genotypes (FCG) mouse model as a means of 

dissociating the brain and behavioural/gonadal hormonal effects of the Y-linked Sry gene from 

effects due to other sex-linked genes.

This chapter is an important pre-requisite to the other experimental chapters in the thesis that 

utilised the FCG animals for three reasons. First of all, although the model has been used 

previously by others in both behavioural (Gatewood et a l, 2006; Quinn et al., 2007; McPhie- 

Lalmansingh et al, 2008) and neurobiological (Carmth et al, 2002; Wagner et al, 2004) studies, 

there has been little systematic study of basic physiological and behavioural phenotypes 

associated with the various genetic manipulations used to alter Sry expression; moreover, some 

of these previous studies were carried out with the manipulations on a different genetic 

background (for example, Gatewood et al, 2006 and McPhie-Lalmansingh et al, 2008 used 

C57BL/6J whereas Quinn et al, 2007 and De Vries et al, 2002 used mice on MF1 background). 

Secondly, it is necessary to determine fundamental issues such as survivability and general health 

of the particular line of animals in my hands. Thirdly, it is important to be aware of any effects 

on basic sensory, emotional and motor processes that may confound interpretation of the data 

from the more complex behavioural analyses carried out later in the thesis.
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A difference between 

these two meta-groups 

suggested Sry-independent 

effects (factor SEX 

CHROMOSOME 

COMPLEMENT in the 

ANOVA)

A  difference between these two meta­

groups suggests iVy-dependent effects 

(factor G O N A D A L  SEX in the 

A NO VA)

Figure 5.1a Diagram outlining the possible differences within the FCG mouse model and the 

associated effects, either ^ -in d ep en d en t or Jry-dependent. The statistical design o f Two Way 

ANO VA with Between Subject factors o f  SEX CHROMOSOME COMPLEMENT (Sry- 

independent) and G O N A D A L SEX (Jry-dependent) was used to reveal any differences.
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The behavioural battery of tests used is well established and similar to that performed with the 

XO mouse model (see Chapter III); briefly, physiological assessment of body weight and 

oestrous cycle was conducted, along with behavioural tests on the subjects’ motor competence 

and stamina on the rotarod, activity in the locomotor activity box and fear reactivity on the 

elevated zero maze. Additionally, in this experimental chapter, testosterone hormone level in 

blood serum was measured; as the Sry gene has been manipulated in the FCG model and Sry 

plays a crucial role in testis determination, it was thought wise to investigate the level of 

testosterone. To my knowledge, published studies on the FCG mouse model have not observed 

any significant differences in the motor competence and stamina, or in locomotor activity, and 

therefore, I would not expect to find baseline behavioural differences in my subjects. There
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have been reports, however, on possible iVy-dependent effects in anxiety, as indexed by 

performance on the one-way active shock avoidance (McPhie-Lalmansingh et a l, 2008); the 

researchers have found gonadal females to be quicker in learning to avoid the mild shock 

compared to gonadal males. It is worth noting that other tests of anxiety, such as elevated plus 

maze, did not detect such an effect. Given the above, it is possible that an effect might be 

observed in the elevated zero maze utilised in this experimental chapter.

As outlined in the General Introduction, the manipulation of the Sry gene allowed four 

genotypes to be produced by a single cross (40,XX, 40,XXJVy, 40,XY- and 40,XY-5>y), and 

differences between these genotypes might be explained by jVy-independent or iVy-dependent 

factors (see Figure 5.1a). A iVy-independent effect would suggest that a difference in sex 

chromosome complement (i.e. sex-linked genes other than Sry) between the animals underlie the 

observed phenotypic difference; this effect would manifest in a difference between 40,XX, 

40rXX5Vy vs. 40,XY- and 40,XY-S?y, animals. A iVy-dependent effect, on the other hand, would 

suggest that 3Vy-dependent testes formation, subsequent testosterone production and hormonal 

variability, or alternatively, from recent data (Dewing et al., 2006), that Sry brain expression, may 

contribute to the phenotypic differences between the animals; this effect would manifest in a 

difference between 40,XX, 40,XY- vs. 40,XXi'ry, 40,XY-3>y, animals.
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5.2 Materials and methods

5.2.1 A dditional technical details concerning generation o f  FCG m ice

An in-depth account of the generation of the FCG mice were given in Chapter I, and a general 

overview of how the FCG mice were generated and genotyped was provided in Chapter II. As 

noted, the FCG mice were generated by crossing an XY-Sry male with an XX female (Figure 

5.2.1a). The Y- chromosome is a variant of Y129 derived from the mouse strain 129, deleted for 

the testis-determining gene Sry (TdjT1 mutation, Lovell-Badge & Robertson, 1990). XYdyml males 

(referred to as XY-Sry males in this thesis) were originally generated on an MF1 background at 

MRC National Institute for Medical Research, UK in the laboratory of my collaborator Dr Paul 

Burgoyne (Mahadevaiah et al!, 1998), by introducing an Sry transgene derived from the 

transgenic line C57BL/6Ei-YAKR/JTgN(Sry-129)2Ei into pronuclear stage embryos from XYtdyml 

females (referred to in this thesis as XY- mice); Ytdyml is a 14kb deletion in the short arm of the Y 

chromosome which removes Siy (Lovell-Badge & Robertson, 1990; Gubbay et al., 1992). Sry is 

introduced as a fully penetrant transgene inserted onto an autosome; the location of the insertion 

and the copy number of the transgene is currendy not known.

m W
XY-Sry XX

Uniform X  
chromosome 

females
r

• k k ■ !
1 XX XY XXSy XY-JVy |

Four Core Genotypes animals

Figure 5.2.1a Details of the Four Core Genotypes generation cross. Black filled circles and 

squares denote gonadal females and males respectively.

By breeding the XY-Try males with XX females with uniform X chromosome (for more 

information on the uniform X chromosome, please refer to the General Introduction), one can 

generate the four genotypes in the FCG cross; it was advantageous that the progeny of the four 

possible genotypes were produced in any given litter: 40,XX (gonadal females, karyotypic 

females), 40,XY- (gonadal females, karyotypic males), 40,XXTry (gonadal males, karyotypic
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females) and 40,XY-3Vy (gonadal males, karyotypic males); hereafter referred to as XX, XY-, 

XXJ'ty and XY-iVy respectively, as shown in the simple breeding strategy diagram (Figure 

5.2.1a). Subjects were first distinguished by external genitalia (gonadal sex), and then genotyped 

according to the methods described in Chapter II, 2.9.2.

5.2.2 Subject num bers and anim al husbandry

Testing was conducted when the majority of the FCG animals were aged from 6 to 12 months 

old. As blood testosterone level determination required trunk blood, the animals were culled 

after all necessary behavioural and cognitive testing was completed. Table 5.2.2i shows the 

number of subjects tested in the various tasks used in this chapter. General housing, handling 

and behavioural testing conditions were as described in Chapter II, 2.2 and 2.3.

Table 5.2.2i Numbers of subjects (n) tested in the various physiological and behavioural tests.

Test Genotype and £n’

40,XX 40,XXJty 40,XY- 40,XY-J7y

Body weight 22 15 12 18

Oestrus cycle 
length 17 N/A 10 N/A

Testosterone level 15 10 8 13

Rotarod 10 9 13 19

Locomotor
activity 14 13 10 15

Elevated zero 
maze 13 11 9 13

5.2.3 Physiological assessm ents

5.2.3.1 Utter sî e, genotype distribution, mortality and general health

Litter si2 e and mortality was determined by counting the number of offspring on postnatal day 

one, and by daily monitoring the number of dead or missing offspring on subsequent days until 

weaning (28 days). Offspring were tailed and genotyped, as described in Chapter II, 2.9.2., at age 

35 days, and genotype distribution within litters was noted. General health of the subjects was 

monitored regularly throughout the testing period.
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5.2.3.2 Body might measurements

Stable body weights were determined when animals were six months old. Animals had ample 

time for habituation to housing environment and were accustomed to daily handling. Animals 

were weighed at the same time every day for five days. A d  libitum access to food and water was 

available.

5.2.3.3 Oestrous cycle

Vaginal smearing was performed regularly during the initial handling and at intervals during the 

experiment.

5.2.3.4 Testosterone levels determination

Testosterone levels were assayed from the blood serum of adult mice, as described in Chapter II, 

2.10.

5.2.4 Behavioural assessm ents

5.2.4.1 Kotarod

Subjects were tested on the rotarod apparatus (described in Chapter II, 2.7.1) to test their motor 

function and balance under conditions of accelerating and constant rotation speed. 

Experimental procedures are as described in Chapter III, 3.2.4.I.

5.2.4.2 ljocomotor activity

Movements in, exploration of, and habituation to a novel environment by subjects were tested in 

the locomotor activity boxes, described in Chapter II, 2.7.2. Experimental procedures are as 

described in Chapter III, 3.2.4.2.

5.2.4.3 Elevated %ero ma%e

Fear reactivity was assessed using the elevated zero maze, described in Chapter II, 2.7.3. 

Experimental procedures are as described in Chapter III, 3.2.4.3.

5.2.5 Statistical analyses

Data were analysed using SPSS software (version 17, SPSS Inc., IBM, U.S.A.). Data were subject 

to Two Way ANOVA with Between Subject factors GONADAL SEX (i.e. the presence or 

absence of testis indexing the presence or absence of Sry) and SEX CHROMOSOME
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COMPLEMENT (i.e. karyotype of the animal being either XX or XY), in order to identify any 

Sry- dependent or independent effects. Additional factors specific to particular analyses related 

to the various tests are defined in the relevant Results section below and were, where repeated 

measures used, analysed by SPANOVA16. Additionally, Greenhouse-Geisser (epsilon of 0.75 or 

lower) or Huynh-Feldt (epsilon of 0.75 or higher) corrections were applied to degrees of 

freedom if the Mauchly’s Test of Sphericity was violated in Repeated Measure tests. Data with 

covariate factors were subject to ANCOVA. When initial ANOVA revealed a significant effect, 

Tukey HSD Test was performed for post hoc comparisons, and when a significant interaction was 

revealed, Least Significant Difference adjustment was used for post hoc pairwise comparisons. 

Chi-square test for goodness of fit was carried out on non-parametric data. For all comparisons, 

p values of <0.05 were regarded as significant.

16 SPANOVA is a Repeated Measures A N O V A  with a two way mixed split-plot design, in which one independent 

variable is repeated measures and the other independent variable consists o f independent groups.
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5.3 Results

5.3.1 Physiological data

5.3.1.1 General health, litter sî e, mortality and genotype distribution

Close monitoring of the FCG animals did not indicate any particular general health problems in 

any of the four genotypes. In this experimental cohort, a total of 16 litters and 109 pups were 

born, with an average litter size of 6.8 (Table 5.3.1.11); pre-weaning mortality was low (2.75%), 

with all but three pups surviving up to weaning. The three pups that died came from the same 

litter. There was no difference in genotype distribution in the remaining 106 offspring (y2 (3, N 

= 106) = 3.057, n.s.). Mortality of adult animals was low (<5%) and did not differ between 

genotype groups.

Table 5.3.1.1i Number of litters and pups surviving up to postnatal day 28 (average age of weaning), 

mortality and genotype distribution of FCG animals. Numbers in brackets refer to the total number of 

litters and pups born, including those that subsequently died before weaning.

Number of litters 15 (16)

Number of pups 106 (109)

Postnatal mortality 2.75%

Mean litter size 6.8

Genotype distribution

XX XX% XY- XY-Sry

Number of pups 26 34 23 23

5.3.1.2 Body weight

Average body weights from adult animals measured over five days were significantly higher in 

the gonadal males (XXi’ry and XY-Sty) than gonadal females (XX and XY-; Figure 5.3.1.2a; 

main effect of GONADAL SEX, F163 = 189.262, p<0.001). There was no effect of sex 

chromosome complement on weight (XXiVy, XX vs. XY-5Vy, XY-; effect of SEX 

CHROMOSOME COMPLEMENT, F163 = 0.115, n.s), and no interaction between the two 

factors (Ft63 = 1.482, n.s). Health was closely monitored over the testing period and it was 

unlikely that any underlying health problems could contribute to this weight variability.
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Figure 5.3.1.2a

XX XXSry XY- XY-Sry

genotype

Figure 5.3.1.2a The baseline body weight 
o f  FCG mice at 6 months old, with ad 
libitum food and water. Data are presented 
as mean values with ± SEM.

5.3.1.3 Oestrous <ycle

Repeated Measures ANOVA was used to analyse the data on oestrous cycle in gonadal females, 

with Between Subject factor of GENOTYPE and Repeated Measure factor STAGE (diestrous, 

proestrous, oestrous). The length of each cycle stage in days was not significandy different 

between XX and XY- females (effect of GENOTYPE, F1>25 = 0.989, n.s.). There was in addition 

no significant interaction between GENOTYPE and STAGE (F1 593)39827 — 0.497, n.s.). As 

expected, there was a main effect of STAGE (F1 593j39827 = 15.035, p < 0.001) reflecting the well 

established mouse oestrous cycle, with a significantly shorter proestrous stage compared to 

diestrous and oestrous stages, which was the case in all animals irrespective of genotype (Figure 

5.3.1.3a),

Figure 5.3.1.3a

II i
J

Diestrous Proestrous Oestrus Total length 

cycle stage

Figure 5.3.1.3a Total length o f  oestrous 
cycle and length at each stage (diestrous, 
proestrous and oestrous) as determined by 
vaginal smears from female mice aged 6 
months. Data are presented as mean values 
with ± SEM.
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5.3.1.4 Serum testosterone levels determination

As expected, gonadal males were found to have significantly higher levels of testosterone than 

gonadal females (main effect of GONADAL SEX, F142 = 5.766, p < 0.05); this was irrespective 

of sex chromosome complement (no main effect of SEX CHROMOSOME COMPLEMENT, 

Fi 42 = 2.876, n.s.; Figure 5.3.1.4a, Table 5.3.1.4i). No interaction between the two factors was 

observed (F142 = 0.677, n.s.). However, simple observation of the data seems to indicate that 

testosterone levels were modulated to some extent by sex chromosome complement 

independently of gonadal sex (in that XXTry males showed reduced levels relative to XY-5Vy 

males, and XX females showed reduced levels relative to XY- females), although there was no 

statistically significant effect of SEX CHROMOSOME COMPLEMENT (see above). This 

issue is discussed further at the end of the chapter.

Figure 5.3.1.4a
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Figure 5.3.1.4a Blood serum hormone 
levels (ng/ml) as determined by ELISA. 
Testosterone concentration values were 
calculated using a standard curve from 
known concentration standard solutions 
and the optical density obtained from 
samples. Data are presented as mean 
values ±  SEM (see also Table 6.3.1.4i).

Table 5.3.1.41 Mean ±SEM values for trunk blood testosterone levels for the four genotype groups 

(BLD: below limits o f  detection; assay sensitivity: 0.083ng/ml).

Genotype XX XXV/)' XY XY-Sty

Mean testosterone 
concentration (ng/ ml) BLD 0.400 0.224 1.031

±SEM BLD 0.098 0.078 0.418

110



Chapter V

5.3.2 Behavioural data

5.3.2.1 Reactivity to handling

During the initial handling of the subjects, all animals showed the typical mild signs of distress, 

which included urination and faecal deposition. After three days of handling, these signs had 

subsided in most animals. There did not appear to be an obvious effect of genotype on the 

degree of initial distress and habituation. Vaginal smearing led to some signs of distress in 

females, including urination and faecal deposition, but again, most signs subsided after three days 

of habituation to the procedure.

5.3.2.2 Rjotarod

Rotarod was used to assay motoric competence. All subjects performed equivalently during the 

accelerating rotation speed trials (no main effect of GONADAL SEX, F147 = 0.018, n.s.; no 

main effect of SEX CHROMOSOME COMPLEMENT, F147 = 1.494, n.s., Figure 5.3.2.2a). 

No interaction between the two factors was observed (F1>47 =0.054, n.s.).

In the subsequent fixed speed trials, 77% of subjects were able to stay on the apparatus for the 

entire duration of the 60 second trial at low 15rpm constant revolution speed. Data from the 

trials at the quicker speeds were subject to SPANOVA, with Repeated Measure factor SPEED 

(25, 35, 45rpm) in addition to the Between Subject factors of GONADAL SEX and SEX 

CHROMOSOME COMPLEMENT. Unsurprisingly, the animals tended to fall off the bar 

sooner as the fixed revolution speed increased (main effect of SPEED, F2 94 = 32.030, p<0.001, 

Figure 5.3.2.2b). Whilst there were no main effects for Between Subject factors (GONADAL 

SEX, F147 = 3.634, n.s.; SEX CHROMOSOME COMPLEMENT, F147 = 0.018, n.s.), there was 

a significant interaction between SPEED and GONADAL SEX (F2 94 = 3.801, p<0.05). Post hoc 

tests showed that gonadal females (XX and XY-) performed significantly better than gonadal 

male (XXSry and XY-i'rj/) subjects on the faster 35rpm and 45rpm revolution speed blocks 

(p<0.05), irrespective of sex chromosome complement. Gonadal females had been shown to be 

significantly lighter in weight as adults than gonadal males (Figure 5.3.1.2a); hence this effect 

may have been something to do with being more agile, in general, on the balancing bar.
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Figure 5.3.2.2a Figure 5.3.2.2b

XXSry XY-Sry

XY-Sry

genotype

25 35 45

speed of rotarod (rpm)

Figure 5.3.2.2a The speed at which subjects fell o ff the rotarod apparatus in the two probe trials 
with accelerating rotation speed. Data are presented as mean values ± SEM.

Figure 5.3.2.2b Time spent on the rotarod in the four fixed rotation speed trial blocks. Data from 
15rpm were not shown. Data are presented as mean values ± SEM. * p<0.05

Whilst this data could imply that Sry influences fine motor performance, it is also possible that 

body weight could influence performance given that I found that gonadal males tended to be 

heavier than their gonadal female counterparts. Data from my laboratory have shown that 

smaller mice tend to perform better on this task than larger mice, irrespective of their genotype 

(e.g. Relkovic, Ph.D thesis, 2009). In the light of this, data analysis (Repeated Measures 

ANOVA with Within Subject factor of SPEED [25, 35 and 45 rpm] and Between Subject factors 

of GONADAL SEX and SEX CHROMOSOME COMPLEMENT) was repeated with an 

additional covariate of weight; this analysis suggested that when weight has been taken into 

account, there was no effect of SPEED (F292 — 0.108, n.s.), and no effect of GONADAL SEX 

(F1>46 = 0.314, n.s.) and SEX CHROMOSOME COMPLEMENT (F1>46 = 0.021, n.s.). Therefore, 

the superior performance of gonadal females at higher speeds on the rotarod is likely to be 

mainly due to their smaller si2 e relative to gonadal males; indeed, during testing the experimenter 

observed that the females (especially those lighter in weight) tended to grip onto the bar and 

rotate with it rather than walking on the bar.

5.3.2.3 ljocomotor activity

(i) Mean breaks across three testing sessions:

There were effects on locomotor activity in that the XX, XXLrj/, and XY-Lrj/ animals showed 

s im ila r activity in terms of mean number of breaks per two hour session over the three days of
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testing, whilst XY- mice were consistently and significantly more active than the other three 

genotype groups. Statistical analysis using SPANOVA, with Repeated Measures factor DAY (i.e. 

day One, Two and Three), supported this conclusion in showing a significant interaction 

between GONADAL SEX and SEX CHROMOSOME COMPLEMENT (F148= 7.835, p<0.01; 

Figure 5.3.2.3a), along with significant main effects of GONADAL SEX (F148= 7.843, p<0.01) 

and SEX CHROMOSOME COMPLEMENT (F148= 11.208, p<0.01). Post hoc tests showed the 

interaction observed was contributed by the consistent, significantly higher activity of XY- 

compared to the other three genotype groups across all three days of testing (p<0.001), i.e. the 

presence of a male karyotype (XY) in combination with the absence of endogenous Sry 

expression resulted in a hyperactivity phenotype. Activity generally decreased across days (main 

effect of DAY, F296 = 4.508, p<0.05), as expected from habituation to a novel environment. 

Furthermore, there was no significant interaction between DAY and GONADAL SEX (F296 — 

0.673, n.s.) and between DAY and SEX CHROMOSOME COMPLEMENT (F2>96 = 0.966, n.s.), 

which suggests that all groups habituated to the novel environment at comparable rates across 

the three days.

Figure 5.3.2.3a
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Figure 5.3.2.3a Locomotor activity, as indexed by the mean number o f single infra-red beam breaks 
per two hour session, over three consecutive days o f  testing. Data are presented as mean values ± 
SEM. **p<0.001

Figure 5.3.2.3b Locomotor activity, as indexed by the mean number o f  runs per two hour session, 
over three consecutive days o f  testing. Data are presented as mean values ±  SEM. ** p<0.001
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(ii) Mean runs (consecutive beam breaks, one after the other, which signified the animal running 

across the cage) across three testing sessions:

The data with mean number of runs per two hour session over three days (Figure 5.3.2.3b) 

were also analysed with SPANOVA with the aforementioned factors. A similar qualitative 

pattern of results were obtained with a significant interaction between GONADAL SEX and 

SEX CHROMOSOME COMPLEMENT (F148= 8.205, p<0.01), and significant main effects of 

GONADAL SEX (F148= 8.069, p<0.01) and SEX CHROMOSOME COMPLEMENT (F148 = 

12.489, p<0.01). As before, post hoc tests showed the interaction observed was due to the 

consistent, significantly higher activity of XY- compared to the other three genotype groups 

across all three days of testing (p<0.001), i.e. the presence of a male karyotype (XY) in 

combination with the absence of endogenous Sry expression resulted in a hyperactivity 

phenotype in both the breaks and run data. Again, in general, activity decreased across days 

(main effect of DAY, Ft 712>82179 = 6.486, p<0.01), with no significant interaction between DAY 

and GONADAL SEX (F1712j82.i79 = 2.604, n.s.) and between DAY and SEX CHROMOSOME 

COMPLEMENT (F171282179 = 1.9 66, n.s.).

(iii) Five-minute bin data over Day One:

In order to obtain information on within-session effects, the number of infra-red beam breaks 

and runs on Day One of testing were analysed in terms of 24, five minute bins. The data were 

analysed using a SPANOVA with Between Subject factors GONADAL SEX and SEX 

CHROMOSOME COMPLEMENT and Repeated Measure factor BIN (1-24, five minute bins). 

As shown in Figure 5.3.2.3c all animals showed significandy reduced number of beam breaks 

over a session (main effect of BIN, F5512264584 = 55.396, p<0.001), which was expected as 

animals habituated to the novel environment over time. However, again XY- animals showed 

consistendy more activity throughout the entire session than the other three genotype groups, as 

indicated by the significant interaction between GONADAL SEX and SEX CHROMOSOME 

COMPLEMENT (F148 = 8.073, p<0.01) and additionally, by significant main effects of 

GONADAL SEX (F1>48= 7.995, p<0.01) and SEX CHROMOSOME COMPLEMENT (F148 = 

11.074, p<0.01); these data, reflecting within-session behaviours, confirmed the previous mean 

data obtained across sessions. A similar pattern of effects was seen in the runs data, with again 

the XY- mice showing increased activity within the session (GONADAL SEX x SEX 

CHROMOSOME COMPLEMENT, F148= 9.114, p<0.01; Figure 5.3.2.3d).
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Figure 5.3.2.3c Figure 5.3.2.3d
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Figure 5.3.2.3c Number o f  infra-red beam breaks over the session o f  Day One o f  testing. The 
session was separated into 24 bins o f  five minutes each. Data are presented as mean values.
** p<0.001

Figure 5.3.2.3d Number o f  runs over the session o f  Day One o f  testing. The session was separated 
into 24 bins o f five minutes each. Data are presented as mean values. ** p<0.001

The analyses from beam break and run data also revealed that there was a significant difference 

in the rate of habituation across the session between XY- and the other three genotype groups. 

With beam breaks, the interaction between the factors BIN and GONADAL SEX was found to 

be significant (F5 512>264.584 — 2.682, p<0.05), while the interaction between BIN and SEX 

CHROMOSOME COMPLEMENT was not (F5 512j264584 = 1.827, n.s.). With runs, both 

interactions were found to be significant (BIN X GONADAL SEX, F7 183344787 = 2.186, p<0.05; 

BIN x SEX CHROMOSOME, F7183j344787 = 2.24, p<0.05). These data suggest that the activity 

of XY- animals at the beginning of the session was comparable to that of the other groups; 

however, XY- animals habituated at a slower rate throughout the session and took longer to 

reach the activity plateau near the end of the session than the other groups.

(iv) Five-minute bin data over Days Two and Three:

Given that there was a significant effect in Day One, five-minute bin data over Days Two and 

Three were analysed to see if the behavioural pattern from the XY- animals continued 

throughout testing. Data were analysed as described above in Part (iii). As shown in Figure 

5.3.2.3e, all animals showed significantly reduced number of beam breaks over the session on 

Day Two (main effect of BIN, F4430i212.655 = 22.508, p<0.001), which reflected habituation to the 

test environment over time. As with the five-minute bin data on Day One, XY- animals were
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found to be consistendy more active than other genotype groups throughout the entire session; 

this was reflected in significant main effects in GONADAL SEX (F1>48 = 6.939, p<0.05) and 

SEX CHROMOSOME COMPLEMENT (F148 = 8.963, p<0.01), and in the significant 

interaction between GONADAL SEX and SEX CHROMOSOME COMPLEMENT (F1>48 = 

6.618, p<0.05). Similar pattern of results was obtained for the runs data on Day Two (Figure 

5.3.2.3f), where there was a significant main effects of BIN (F5.548t266.285 = 36.846, p<0.001), of 

GONADAL SEX (F1>48 = 6.873, p<0.05), of SEX CHROMOSOME COMPLEMENT (F1>48 = 

9.477, p<0.01) and a significant interaction between GONADAL SEX and SEX 

CHROMOSOME COMPLEMENT (F1>48 = 6.554, p<0.05). Again, XY- animals were found to 

be consistently more active than other genotype groups throughout the session on the measure 

of runs.

Figure 5.3.2.3e
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Figure 5.3.2.3e Number o f  infra-red beam breaks over the session o f Day Two o f  testing. The 
session was separated into 24 bins o f  five minutes each. Data are presented as mean values.
** p<0.001

Figure 5.3.2.3f Number o f  runs over the session o f  Day Two o f  testing. The session was separated 
into 24 bins o f five minutes each. Data are presented as mean values. ** p<0.001

The same analyses were conducted for data from Day Three. As previously observed on other 

test days, all animals habituated to the testing environment over the session (Figure 5.3.2.3g), 

which was reflected by the significant main effect of BIN in beam breaks (F4 645>222.984 = 10.211, 

p<0.001). In terms of beam breaks, XY- animals were once again found to be more active than 

other genotype groups over the entire session; this was shown in the significant main effects of 

GONADAL SEX (F148 = 7.080, p<0.05) and of SEX CHROMOSOME COMPLEMENT (F1>48 

= 11.535, p<0.01), and in the significant interaction between GONADAL SEX and SEX
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CHROMOSOME COMPLEMENT (F148 = 7.363, p<0.01). Similar pattern of results was 

obtained from the analysis on the runs data on Day Three (Figure 5.3.2.3h); there was a 

significant main effects of BIN (F3-68U76-664 = 18.825, p<0.001), of GONADAL SEX (F148 = 

7.326, p<0.01), of SEX CHROMOSOME COMPLEMENT (F1>48 = 12.966, p<0.01) and a 

significant interaction between GONADAL SEX and SEX CHROMOSOME COMPLEMENT 

(Fj 48 = 7.485, p<0.01). In terms of runs, XY- animals were found to be consistendy more active 

than other genotype groups throughout the session.

Figure 5.3.2.3g Figure 5.3.2.3h
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Figure 5.3.2.3g Number o f  infra-red beam breaks over the session o f Day Three o f  testing. The 
session was separated into 24 bins o f  five minutes each. Data are presented as mean values.
** p<0.001

Figure 5.3.2.3h Number o f  runs over the session o f  Day Three o f  testing. The session was 
separated into 24 bins o f  five minutes each. Data are presented as mean values. ** p<0.001

It is worth noting that the significant difference in the rate of habituation across the session 

observed on Day One was not similarly found in Day Two and Three. In contrast, on Day Two 

and Three, on both measures of beam breaks and runs, there were no interactions between BIN 

and GONADAL SEX17, and between BIN and SEX CHROMOSOME COMPLEMENT18. In 

other words, on Day Two and Three, the XY- animals were more active than the other genotype 

groups throughout the session and there were no differences in the rate of habituation, i.e. at the

17 Beam breaks on Day Two: F4.43.212.655 =  0.823, n.s.; runs on Day Two: F 5.548.266.285 — 1.236, n.s.; beam breaks on 

Day Three: F4.645,222.984 = 1.247, n.s.; runs on  Day Three: F3.681,176.664 =1.044, n.s..

18 Beam breaks on Day Two: F4.43.212.655 = 0.985, n.s.; runs on Day Two: F 5.548,266.285 = 0.725, n.s.; beam breaks on 

Day Three: F4.645.222.984 = 1.429, n.s.; runs on Day Three: F3.681.176.664 =1.231, n.s..
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beginning of the session, the XY- animals were already more active and this continued 

throughout, cf. Day One, in which XY- animals were comparable in activity to other groups at 

the beginning of the session and took longer to reach the activity plateau at the end of the 

session. This pattern of behaviour suggests that additional to XY- animals being slower to 

habituate to a novel environment, these animals also displayed a higher basal rate of activity in an 

environment which was no longer completely novel.

5.3.2.4 Tilevated %ero ma%e

The time spent in the open and enclosed parts of the elevated zero maze was calculated as ratios 

of open quadrant duration to total duration. As shown in Figure 5.3.2.4a, all animals spent 

most of the 5-minute trial exploring the closed rather than the open quadrants of the maze 

indexed by open/total ratios (well below 0.5), a pattern of behaviour consistent with the animals 

finding the open quadrants to be, in general, more fear-inducing.

Figure 5.3.2.4a Figure 5.3.2.4b

"lr— equal amount of time spent in both
open and enclosed quadrants

XX XXSry XY- XY-Sry

genotype

XX XXSry XY- XY-Sry

genotype

Figure 5.3.2.4a Ratio o f  duration spent exploring open quadrant to total time in the maze. Data 
are presented as mean values ±  SEM.

Figure 5.3.2.4b Number o f  entries into the open quadrant. Data are presented as mean values ±  
SEM.

Gonadal male (XXSiy and XY-T/y) animals spent significantly more time in the open quadrants 

than gonadal females (XX and XY-), irrespective of sex chromosome complement, as indicated 

by a main effect of GONADAL SEX (F142 = 5.336, p<0.05) and no main effect of SEX 

CHROMOSOME COMPLEMENT (F142 = 0.177, n.s.; Figure 5.3.2.4a). There was also no 

interaction between the two factors (F142 = 0.210, n.s.). The number of open quadrant entries 

(Figure 5.3.2.4b) did not differ between genotype groups; there were no main effects of
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GONADAL SEX (F142 = 1.265, n.s.), nor SEX CHROMOSOME COMPLEMENT (F142 = 

0.529, n.s.), nor GONADAL SEX x SEX CHROMOSOME COMPLEMENT interaction (F1>42 

= 0.401, n.s.).
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5.4 Discussion

In this experimental chapter, I examined the basic physiological and behavioural phenotypes 

associated with the FCG model, using a standard battery of tests (body weight measurements, 

oestrous cycle determination, blood serum testosterone level assessment and behavioural assays 

of motoric function, locomotor activity and anxiety). This was necessary for several reasons: to 

replicate and extend previous and limited data obtained using this model on a different genetic 

background, to examine survivability and general health of the mice from the FCG model in my 

hands, and to be aware of any potential confounds on sensory, motivational, emotional and 

motor processes relevant to subsequent cognitive tests.

I found there was an equal distribution of the four genotypes of the FCG model, as ascertained 

at weaning, which suggests that there was no disproportionate incidence of in utero or early 

postnatal mortality in any one group. XY-JVy and XX mice from the cross bred readily, 

producing litters of equivalent size to wildtype MF1 mice, and all four groups exhibited low rates 

of mortality. The vast majority of FCG mice appeared healthy with no overt physical 

impairments up to the age of 24 months, when they were culled. Gonadal males were found to 

be significandy heavier in body weight than gonadal females at age of six months. The two 

groups of female mice (XX and XY-) displayed similar oestrus cycle stage lengths at six months 

of age. Blood semm testosterone levels of gonadal males were significandy higher than that of 

gonadal females, which was not surprising as testosterone is secreted primarily from Leydig cells 

in the testis (Wu et al, 2007). However, it would appear that blood serum testosterone levels 

were modulated to a degree by sex chromosome complement independendy of gonadal sex, such 

that XY-J>y had more testosterone than 'XXSry males, and testosterone levels of XY- females 

were higher than that of XX females (although this pattern of results did not reach significance), 

suggesting that the presence of the Y- chromosome (with the absence of Sry gene) is associated 

with a trend towards higher testosterone levels. Y chromosomes from different mouse strains 

have been shown to influence serum testosterone levels (Selmanoff et al, 1977), and the mouse 

Y chromosome carries ten distinct genes with open reading frames that are likely to be 

functional, with roles in testis function (Toure et al., 2004).

The most striking result arising from the behavioural work in this chapter was an effect on 

locomotor activity, whereby XY- females habituated to the novel environment (i.e. Day One) at 

a slower rate and were significandy hyperactive (as shown in data on Day Two and Three), 

compared to the other rhree genotype groups. This observation is consistent with previous data 

comparing activity in the FCG model in an open field test, which also showed that XY- mice
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were the most active of the four genotype groups, although this was not significant (McPhie- 

Lalmansingh et al., 2008). Together these findings suggest that, only in the presence of a male 

XY karyotype, the lack of Sry results in increased levels of activity and slower habituation to the 

novel environment. To explain this complex pattern of results, I speculate that there is some, as 

yet unidentified, interaction between Sry and one or more genes on the Y chromosome which 

might modulate locomotor activity and/or habituation.

A second main finding in this chapter was that gonadal males (XXJry and XY-Siy) spent more 

time exploring the open quadrants of the elevated zero maze than gonadal females (XX and 

XY-), which implies that the former group is less anxious than the latter. Importandy, as both 

groups exhibited similar numbers of quadrant entries, this result cannot be due to activity effects. 

Recent work by McPhie-Lalmansingh and colleagues (2008) using the FCG model also showed 

an effect of gonadal type on the latency to escape a mild shock on the one-way active avoidance 

test, but there was no gonadal effect on behavioural measures on the elevated plus maze; both 

one-way active avoidance and elevated plus maze are tests of anxiety (Handley and McBlane, 

1993). This apparent discrepancy between the present study and the data from elevated plus 

maze in the McPhie-Lalmansingh et al. study may be explained by subde differences between the 

behavioural tasks used (as detailed in the Discussion section in Chapter III), between test 

conditions, by the different strains used (MF1 in the present study vs. C57BL/6J), or by the 

differing ages of the subjects (around 12 months in the present study vs. 4 months). However, 

the finding presented here has since been replicated within my laboratory using the same 

elevated zero maze task and a different group of FCG mice (Eleni Kopsida, pers. comm.), and 

thus appears to be a robust effect. The data suggest that Sry (independentiy of other genes on 

the sex chromosomes) reduces the component of anxiety indexed by the elevated zero maze.

It was also found that whilst performance on the accelerating rotarod was not influenced by 

genotype (consistent with previous data obtained by McPhie-Lalmansingh et al., 2008), 

performance on the higher speed trials of the rotarod (highly motorically demanding) was 

influenced by gonadal sex; specifically, gonadal males fell off the apparatus more quickly than 

gonadal females. However, subsequent data analysis, which included a covariate of weight, 

showed that the heavier body mass of gonadal males contributed to their poorer performance on.

JVy-dependent effects on body weight and on the elevated zero maze could be mediated via two 

possible mechanisms: by Sry acting directly on the brain, or through Sry influencing gonadal 

hormone secretion indirecdy through its effects on testis differentiation. It was shown that, as 

expected, blood serum testosterone levels were higher in mice with a S y  transgene than in mice
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without. These testosterone data from the present study are similar to that obtained by others in 

the FCG model (Gatewood et al., 2006). Hence, the above physiological and behavioural effects 

could have been mediated by the effects of testosterone; indeed there is evidence that 

testosterone increases muscle size in normal males (Bhasin et al, 1996) and in hypogonadal men 

(Bhasin et al, 1997), and provides anxiolytic effects as indexed by the elevated plus maze in 

rodents (Frye et al, 2008a; Frye et al, 2008b). From the present data, I might expect wildtype 

(XY) males to be less anxious than wildtype females as indexed by the elevated zero maze; 

however, published data on sex differences in animal models of anxiety have been variable 

(Johnston & File, 1991; Rodgers & Cole, 1993; Palanza, 2001) and these studies were conducted 

with the elevated plus maze rather than the elevated zero maze as in the present study. 

Additionally, the difference in body weight between the gonadal males and gonadal females 

might reflect motivational differences in their general feeding behaviours; however, this could 

not be verified as their day-to-day feeding patterns were not monitored.

In summary, this chapter has shown that the FCG model is amenable to sophisticated 

behavioural and cognitive testing, but that potential effects on activity, anxiety and body weight 

(influencing motor competence) should be taken into consideration in future analyses. 

Compared to other published studies, genetic background and testing in different laboratories do 

not seem to have major effect on survivability, breeding and health of the FCG mice, although 

there may be subtle effects on some aspects of behaviour.

5.5 Summary

• The four genotypes from the FCG were generated in equal proportion. FCG mice exhibit 

good breeding performance and low levels of mortality.

•  Gonadal males were found to be heavier than gonadal females at six months of age.

•  There was no difference in oestrus cycle in the gonadal females from the FCG model at six 

months of age.

•  As expected, gonadal males were found to have higher blood serum testosterone levels than 

gonadal females.

•  Gonadal males were impaired on the most motorically demanding trials of the rotarod 

compared to gonadal females; this effect is probably due to the larger size of the former 

group.
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•  XY- mice were found to be more active than the other three genotypes in a locomotor 

activity test. The higher activity was observed on all days of testing.

•  Gonadal males spent more time exploring the open quadrants of the elevated zero maze 

than gonadal females, possibly reflecting a lower level of anxiety in the former group.

•  Differences in body weight and elevated zero maze performance between gonadal males and 

gonadal females are likely to be due to group differences in testosterone levels.
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Chapter VI

Simple visual discrimination and reversal 

learning in Four Core Genotypes (FCG) 

mouse model

6.1 Introduction

Sry can theoretically affect brain development and function in two ways: via direct effects on the 

brain, or via effects on gonadal hormone secretion (notably testosterone, in either an 

organizational or activational manner). Table 6-li illustrates how testosterone may influence a 

range of behaviours, especially cognitive behaviours, in man, primates and rodents.

Table 6.11 A selection of the many studies in man, primates and rodents which show the influence of 

testosterone on a range of cognitive behaviours

Species Author(s) Main findings

Man Young et al., 2010
Large changes in testosterone levels did not affect cognition. 
There was an association between increasing testosterone level 
and better mental rotation task performance.

Man Eisenegger et al., 2010
Single dose of testosterone administered sublingually in women 
increased fair bargaining behaviour and social interaction 
efficiency.

Man Moller et al., 2010
Testosterone added to oestrogen treatment in menopausal 
women impaired immediate verbal memory compared to 
oestrogen treatment alone.

Man Matousek & Sherwin, 2010 Significant curvilinear relationship between working memory 
and testosterone level was found in older men.

Primate Morris et al., 2009 Gonadectomy increases prepulse inhibition in postpubertal 
rhesus macques.

Primate Hagger & Bachevalier, 
1991

Female infant rhesus monkeys learnt a concurrent visual 
discrimination task quicker than males. Female androgenisation 
led to performance similar to normal infant males, while male 
gonadectomy resulted in performance similar to normal females.
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Rat Guillamon et al., 1986

In a T-maze discrimination task, there was no sex difference 
between normal males and females on acquisition of the task. 
Females learnt the reversed contingency quicker than males; this 
effect was reversed with female androgenisation and male 
gonadectomy.

Rat Kritzer et al., 2001 Gonadectomy impairs T-maze acquisition in adult male rats.

Rat Sandstrom et al, 2006
Gonadectomy impairs working memory retention at longer, but 
not shorter, retention intervals in a spatial memory task in male 
rats.

Mice Grgurevic et al., 2008

SF-1 KO mice are without gonads and adrenal glands. In the 
absence of sex steroids replacement, adult SF-1 KO mice (both 
sexes) were more aggressive towards stimulus females. 
Following sex steroid replacement, control males were more 
aggressive towards intruders than control females, SF-1 KO 
males and SF-KO females.

Mice Frye et al., 2008a

Aged, intact male mice, when given testosterone metabolites, 
increased anti-anxiety and antidepressant behaviours in open 
field, light-dark transition, mirror maze and forced swim tasks. 
Testosterone metabolites also increased anti-anxiety behaviours 
in elevated plus maze, elevated zero maze and the Vogel task, 
and increased motor behaviour, latency to fall on the rotarod 
and cognitive performance on hippocampally-mediated, but not 
amygdale-mediated, portion of the conditioned fear and 
inhibitory avoidance tasks. Similar patterns were observed in 
young, gonadectomised male mice.

Mice Frye et al., 2008b
Gonadectomised male mice, when given testosterone 
metabolites, displayed reduced anxiety on elevated plus maze 
and increased performance on object recognition task.

Mice Benice & Raber, 2009 Spatial memory retention in the water maze was improved by 
testosterone treatment in aged female mice.

Table 6.1i has shown that testosterone plays an important role in shaping many different 

behaviours and cognition, ranging from prepulse inhibition, anxiety, memory, and more 

interestingly in terms of this thesis, learning in visual discrimination and reversal tasks. In 

addition, as Hagger & Bachevalier (1991) and Guillamon et al. (1986) demonstrated, testosterone 

works independently of sex chromosome complement. Most studies have shown the 

activational effects of testosterone (for example, through gonadectomy); however, the study by 

Grgurevic et al. (2008), with the use of the SF-1 KO mice, investigated the organisational effect 

of testosterone (since these SF-1 KO mice were never exposed to testosterone).

In contrast, data on the influences of sex chromosome mechanisms (see Chapter I, 1.2.3.1) on 

physiology and behaviour are rather sparse. Much of these data have come from rodent models. 

Dewing et al. (2006) found that Sry gene expression in the rat brain, independent of gonadal 

hormones, had a direct effect on behaviour, with downregulation of Sry in the substantia nigra in 

male rats leading to motor deficits. In terms of neurobiology, the number of dopamine neurons
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in rodent mesencephalon or diencephalon (Carruth et al\, 2002) and density of vasopressin- 

immunoreactive fibres in the lateral septum (De Vries et al., 2002), was found to be linked with 

sex chromosome complement. With regard to behaviour, sex chromosome complement was 

found to affect aggression (Gatewood et al., 2006; Canastar et al., 2008), social interactions such 

as grooming and sniffing (McPhie-Lalmansingh et al., 2008) and nociception (Gioiosa et al., 2008a, 

2008b) in mice. The extent to which cognition can be influenced by sex chromosome 

mechanisms remains relatively unexplored; Quinn et al. (2007) found sex chromosome 

complement regulated habit formation in a food-reinforced instrumental paradigm and Barker et 

al. (2010) showed that XY animals formed a response habit for alcohol quicker than XX subjects, 

irrespective of gonadal sex. Further insights into the role of sex chromosome effects on 

physiology, behaviour and cognition in man might come from studying sex chromosome 

disorders such as Turner syndrome (TS) and Klinefelter’s syndrome (KS); for example, short 

stature in TS has been linked to SHOX gene deficiency (Ross et al., 2001) and neurocognitive 

profile in TS girls (e.g. impaired visuospatial abilities) has been associated with distal Xp22.3 

(Ross et al., 2000; Zinn et al., 2007a). Impaired fear recognition in TS has been linked with 

EFHC2 gene locus (Weiss et al., 2007), although this has not been replicated in another study 

(Zinn et al., 2007b). With regard to Klinefelter’s syndrome, 12 genes on the X chromosome, 

which were differentially expressed in KS males, were found to correlate significandy with verbal 

cognitive abilities (Vawter et al., 2007); additionally, it was suggested that the parental origin of 

the extra X chromosome inherited was linked with motor and language problems (Stemkens et al., 

2006).

A seminal study by Skuse et al (1997) in TS subjects showed an X-linked parent-of-origin effect 

on behavioural inhibition; specifically, TS subjects inheriting their single X chromosome from 

their mother (45,Xm) exhibited longer inhibition latencies in the Same-Opposite World task than 

subjects who inherited their single X chromosome from their father (45,Xp). The same study 

also showed that normal males (who inherit their single X chromosome from their mother, i.e. 

46,XmYp) were impaired on the same psychological test relative to females (who inherit one X 

chromosome from each parent, i.e. 46,XmXp). The authors suggested that these data could be 

explained by the presence of one or more imprinted genes on the X chromosome. Subsequent 

work using the 39,XO mouse model (modelling TS in humans), undertaken in this laboratory, 

showed that on a behavioural task which was thought to tax similar psychology to that of the 

Same-Opposite World task (reversal learning), 39,XmO mice were impaired on the main measure 

of behavioural inhibition relative to 39,XpO mice, recapitulating the pattern of human data. A 

novel X-linked imprinted gene Xlr3b was discovered which was hypothesised to be responsible
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for this behavioural effect (Davies et al., 2005a). As X-linked imprinted genes may be expressed 

differently in males and females (in both man and mouse; see Chapter I), the above behavioural 

results may be regarded as being due to sex chromosome complement effects.

In reversal learning tasks, a subject must first acquire two parallel stimulus-reinforcer associations 

(e.g. stimulus A equals reinforcer, stimulus B equals no reinforcer), which are then subsequently 

reversed, such that new and opposite associations must be learned with inhibition of the old 

associations. Reversal learning tasks have been well established and conducted with humans, 

primates and rodents. In monkeys, Dias and colleagues (1996) have found damage to the lateral 

prefrontal cortex and to orbitofrontal cortex leads to inhibitory control loss in attention and in 

affective processing respectively. For humans, Overman (2004) has found sex differences in 

object reversal performance in young children, and Yuan and colleagues (2008), using an ERP 

design, have found gender differences in behavioural control in adult humans. In rats, there is 

some evidence that males and females acquire a simple visual discrimination at the same rate, but 

that upon reversal, females were quicker to learn the new stimulus-reinforcer contingency 

(Guillamon et al, 1986). The authors speculated that this difference was primarily mediated by 

gonadal hormones as female androgenisation/male gonadectomy, on day one after birth, 

reversed the pattern of results.

Hence, it is clear that there is evidence that behavioural inhibition across species may be 

influenced by gonadal hormones and/or sex chromosome complement. The purpose of this 

chapter is to exploit the Four Core Genotypes (FCG) model to determine the extent and 

specificity with which gonadal hormones and sex chromosome complement contribute to the 

acquisition of stimulus-reinforcer associations and to behavioural inhibition processes using a 

simple two-way visual discrimination with reversal task. The reversal learning task employed in 

this study was similar to that used previously (Davies et al., 2005a), and is well established within 

the laboratory. Briefly, a Y-maze design was used, which was set up for a simple two-way non- 

spatial visual discrimination with two goal arms (one black, and one white), with one coloured 

arm consistently baited with a liquid reinforcer; the position of the two arms was 

pseudorandomly switched to prevent the mice from using spatial strategies to solve the task. 

Subjects were required to learn the stimulus-reinforcer contingency to a high degree of accuracy; 

once reaching criterion of over 85% correct for three consecutive sessions, this stimulus- 

reinforcer contingency was reversed so that the previously unreinforced arm was then baited. 

The number of errors committed in reaching a high level of accuracy on this reversed stimulus- 

reinforcer contingency provided an index of subjects’ ability to inhibit pre-potent responses and
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to acquire novel stimulus-reinforcer contingencies (see Methods below). This test allows 

multiple, dissociable measures of initial learning, asymptotic performance, reversal of the learning 

contingencies and subsequent learning of the new contingencies to asymptotic performance.

As detailed in the General Introduction and Chapter V, the FCG mouse model produces four 

different genotypes: 40,XX, 40,XXTry, 40,XY- and 40,XY-Try. Differences between these 

animals might be explained by Try-independent (i.e. sex linked genes other than Try) and Try- 

dependent (i.e. gonadal hormones and/or direct Try effects in the brain) effects. Given the large 

number of published studies on the effects of gonadal hormones on cognition (including reversal 

learning), and the comparatively fewer number of findings on the role of sex chromosome 

complement in behaviours, I would expect any observed effects more likely to be Try-dependent 

rather than Try-independent.

In addition to the FCG mouse model, wildtype XY animals were also tested in this task. All 

published studies to date, with the exception of De Vries et al. (2002), have tested and analysed 

the FCG mouse model as a whole without additional controls (using a Two Way ANOVA 

design, see Section 6.2.6 for more details). However, I wished to test wildtype XV animals 

alongside the FCG mouse model to investigate the extent to which the XY-Try males were 

equivalent to wildtype XY animals, and whether any differences exist between the XY-Try and 

wildtype XY in a cognitive task. De Vries et al (2002) had conducted behavioural and 

neurobiological studies using both FCG mouse model and wildtype XY animals, and had 

observed some interesting differences between XY-Try and wildtype XY males, for example, 

differences in masculine sexual behaviour between XY-Try and wildtype XY males, and lower 

number of TH-ir neurons in the anteroventral periventricular nucleus of the preoptic region in 

transgenic Try animals (XXTry and XY-Try), compared to gonadal FCG females (XX and XY-) 

and wildtype XY males. Note that no cognitive tasks were used in the De Vries study.
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6.2 Materials and methods

6.2.1 Subjects and anim al husbandry

Animals from the Four Core Genotypes (FCG) mouse model (XX, XY-, XXSry, XY-Ary) were 

subject to behavioural testing. Subjects were aged six months at the start o f testing. Details on 

general animal husbandry and handling can be found in Chapter II (2.2, and 2.3), and generation 

cross particulars can be found in Chapter II (2.1.1) and V (5.2.1). The number of subjects tested 

in the simple discrimination and reversal learning task is summarised in Table 6.2.1i.

Table 6.2.1i. Numbers of subjects (n) used in statistical analyses for the three main phases of the task. 

The table also includes the initial arm colour used in the acquisition phase. Numbers in parentheses 

referred to the total number of animals tested, including those subsequently excluded (see 6.2.6 for 

exclusion criteria).

Phase of testing Genotype and ‘n’

40,XX 40,XX% 40,XY- 40,XY-i>y

Reinforcer 
preference test 17 (18) 11 8(10) 14(15)

Acquisition phase 17 (18) 11 9 (10) 15

Reversal/re­
acquisition phase 17 (18) 11 9(10) 15

Colour of arm Initial reinforced maze arm in acquisition phase

black 9 8 4(5) 5

white 8(9) 3 5 10

Wildtype XY male mice used in this thesis were generated by crossing XY MF1 males (Harlan, 

U.K.) with uniform X chromosome females (see Chapter I, for information on uniform X 

chromosome); this was to ensure the X chromosome in the wildtype XY male progeny was the 

same as that in the FCG mice and therefore reducing variability between the two groups of 

subjects. Information on general animal husbandry and handling can be found in Chapter II (2.2, 

and 2.3). Eleven wildtype XY male mice were tested in parallel with the FCG mice.
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6.2.2 B ody w eight and oestrus status

Throughout the experiment the body weights of subjects were monitored regularly and oestrus 

status of female subjects was determined by vaginal smearing. Smearing was performed 

immediately after testing, on the first seven days of both acquisition and reversal/re-acquisition 

phases. Details of the procedure can be found in Chapter II, 2.4.

6.2.3 Reinforcer preference te st

Subjects were placed on the water restriction schedule two weeks prior to reinforcer preference 

test (Chapter II, 2.5). The habituation and preference for the reinforcer (10% condensed milk 

solution, Nestle, U.K.) were assessed. General details of this procedure can be found in Chapter 

II, 2.6. When presented with both water and reinforcer after some exposure, animals usually 

displayed a clear preference for the latter. However, if animals did not at all sample the 

reinforcer during the 6-day testing, they were given a ‘forced’ sampling session on the seventh 

day, in which both containers held the reinforcer in order to force them to sample the milk. On 

the following day, these animals were subject to a session of normal preference testing (one 

water container, one reinforcer container), and the reinforcer preference was recorded.

6.2.4 Sim ple visual discrim ination an d  reversal learning task

Upon completion of the reinforcer preference testing, training in the simple visual discrimination 

and reversal learning task began and the apparatus used is described in Chapter II, 2.7.5. 

Throughout the testing period the mice were maintained on the routine water restriction 

schedule in order to motivate performance in the maze.

6.2.4.1 Habituation to the apparatus

Animals were given a 10-minute habituation session in the apparatus. Subjects were placed in 

the transparent start arm and were free to explore the maze without reinforcement. This 

habituation session was to familiarise the subjects to the maze apparatus and to detect any 

underlying bias in behaviour, for example, a strong preference for a particular arm colour. As 

described in Chapter II, 2.7.5, infra-red beam breaks were recorded to give information on the 

number of entries into, and the amount of time spent in, each of the two goal arms.

6.2.4.2 Acquisition phase

Subjects were given a 10-trial session per day until criterion performance was achieved (see 

below). For each subject, a black or white goal arm was pseudorandomly assigned as the
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‘reinforcer’ arm (detailed in Table 6.2.1i), which food well contained the reinforcer (30pl of 10% 

condensed milk solution). Note that the reinforcer could not be seen from choice space located 

at the centre of the maze. At the beginning of each trial, each subject was placed in the 

transparent start arm, breaking the 280mm infra-red beam and opening all guillotine doors. As 

the subject moved into the central choice space and broke the 20mm infra-red beams at one of 

the two goal arms, the guillotine door to the start arm would automatically drop to prevent 

return. A time limit of two minutes was implemented, after which, the subject was gendy 

nudged into the central choice space and the door to the start arm was manually shut. The 

subject was then required to make a ‘choice’ (see later, section 6.2.5) between the two goal arms; 

there was no time limit for this choice and no intervention was allowed. Finally, the guillotine 

door of the chosen arm to the central choice space was closed when the animal reached the end 

of the chosen arm, broke the 280mm infra-red beam and consumed the reinforcer (if any), after 

which the trial ended and the animal was removed to a holding box until the next trial. During 

the inter-trial interval (ITT; 55 seconds), the maze was thoroughly cleaned with 1% acetic acid 

solution and the reinforcer was placed once again in the reinforcer arm. The position of the 

reinforcer arm was pseudorandomly switched between trials to prevent formation of spatially 

based strategies, but the colour of the reinforcer arm remained unchanged throughout the 

acquisition phase. After the ITI, the animal was re-introduced into the maze at the start arm and 

the next trial began. The acquisition phase continued until the animal achieved an average of 

85% correct per day over three consecutive days (defined as stable, performance criterion). The 

total number of incorrect choices (see section 6.2.5) made to reach acquisition criterion was 

recorded.

6.2.4.3 Probe session to test odour cue usage

By thoroughly cleaning the goal arms with 1% acetic acid after each trial, this should ensure that 

no odour cue strategies were used to achieve performance criterion. To confirm that this was 

the case, a probe session was performed once the stable performance criterion was reached. 

During this probe session, in trials 2, 4, 6, 8 and 10, two completely new, but in all other respects 

identical, goal arms were used to assess usage of odour cues, since performance would be 

predicted to be disrupted (to chance levels) by this task manipulation if odour cues were guiding 

choice behaviour.
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6.2.4.4 Reversal of task contingency

After the olfactory cue probe session, subjects were required to re-achieve performance >90% 

correct on a single session in order to progress to the reversal phase of the task. The stimulus- 

reinforcer contingency was reversed, such that the reinforcer arm in the reversal phase was 

switched to that previously not reinforced in the acquisition phase; i.e. subjects previously 

reinforced in the black arm were now reinforced in the white arm and vice versa. The subject was 

required to learn this new stimulus-reinforcer contingency, as before, to the re-acquisition 

performance criterion which was an average of 85% correct per day over three consecutive days. 

The total number of incorrect choices made to reach re-acquisition performance criterion was 

recorded and separated into ‘below-chance’ ‘perseverative errors’ (where the subject continued to 

choose the once correct but now incorrect goal arm) and ‘above-chance’ errors (which indexed 

the learning of the new contingency) (see section 6.2.5).

6.2.5 D efinition o f  behavioural m easures

Figure 6.2.5a shows details of the maze infra-red beam placements used to define the 

behavioural measures. A choice was defined as the breakage of the 70mm (one body length) 

infra-red beam in one of the goal arms. After a choice has been registered, the guillotine door to 

the arm not chosen would close automatically. A correct choice was defined as breakage of the 

70mm infra-red beam in the reinforced goal arm and incorrect choice was the breakage of the 

infra-red beam in the non-reinforced arm. The following response latencies were recorded. 

Start latency was defined as the time elapsed between the breakage of the 280mm infra-red beam 

in the start arm and the breakage of the 20mm infra-red beam in the start arm. Choice latency 

was defined as the time elapsed between the breakage of the 20mm infra-red beam in the start 

arm and the breakage of the 70mm infra-red in one of the goal arms (i.e. choice). Collect latency 

was defined as the time elapsed between the breakage of the 70mm infra-red beam in the chosen 

goal arm and the breakage of the 280mm infra-red in the chosen goal arm.

Errors committed during the post-reversal phase of testing were separated into below- and 

above- chance errors (Jones Sc Mishkin, 1972; Dias et al, 1996; Chudasama Sc Robbins, 2003). 

Below-chance errors, reflecting perseveration, were defined as the number of errors committed 

below 50% correct response level (i.e. 5 correct responses out of 10 possible responses, at 

chance). If a subject made 3 correct choices, then the below-chance error would be 2 (=5 — 3); if 

a subject made more than 5 correct choices, then there were no below-chance errors. Above­

chance errors, reflecting the formation of a new stimulus-reinforcer association, were defined as
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the number of errors committed above 50% correct response level (i.e. 5 correct responses out 

of 10 possible responses, at chance). If a subject made 7 correct choices, then the above-chance 

error would be 3 (=10 -  7); if a subject made fewer than 5 correct choices, then the above­

chance error would be 5.

Goal arm Goal arm

280mm

280mm

70mm 
0mm

Choice 70mm
20mm

i20mm
i70mm

L i^280mm 

Start arm

Key:

Reinforcer well

Infra-red beams

Perspex guillotine doors

Figure 6.2.5a Schematic diagram o f  the simple visual discrimination and reversal learning apparatus. 

One goal arm was black and the other was white. In the acquisition and reversal learning phases, 

one o f  the reinforcer well contained the reinforcer which could not be seen from the choice arena.

6.2.6 Exclusion criteria and sta tistical analysis

Animals which did not sample the reinforcer during the 6-day reinforcer preference test were 

excluded from the preference test data analyses. Subjects were excluded from all analyses if the 

acquisition and re-acquisition performance criteria were not reached by the 40th and 60th sessions 

respectively. Animals which persistendy did not drink the reinforcer during testing or develop 

side bias responding (defined as >85% responding to one side over eight consecutive days) were 

also excluded.

Learning in the acquisition phase was indexed by total number of errors committed up to 

reaching performance criterion. Perseverative responding and subsequent learning of the new 

contingency was indexed by below-chance and above-chance errors (to performance criterion), 

respectively. Latencies were averaged over the 10 trials to give mean latencies per session for 

each animal, and latencies at criterion were given by latencies averaged over the three criterion
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sessions, for both acquisition and reversal phases. Data points which were deemed extreme 

outliers (on a box plot, data points that lay three times the interquartile range from the hinges 

were extreme outliers), as calculated by SPSS, were excluded.

Statistical analyses were performed using SPSS software (version 17, SPSS Inc., IBM, U.S.A.). 

Data from the FCG mouse model were subject to Two Way ANOVA, with factors of 

GONADAL SEX (i.e. the presence or absence of testis indexing the presence or absence of Sry) 

and SEX CHROMOSOME COMPLEMENT (i.e. karyotype of the animal being either XX or 

XY), in order to identify any Sry- dependent or independent effects. Data from the FCG mouse 

model and wildtype XY animals were analysed with One Way ANOVA, as in De Vries et al, 

(2002). Additional factors specific to particular analyses related to the various tests are defined in 

the relevant Results section below and were, where Repeated Measures used, analysed by 

SPANOVA. Additionally, Greenhouse-Geisser (epsilon of 0.75 or lower) or Huynh-Feldt 

(epsilon of 0.75 or higher) corrections were applied to degrees of freedom if the Mauchly’s Test 

of Sphericity was violated in Repeated Measure tests. Data with covariate factors were subject to 

ANCOVA. When initial ANOVA revealed a significant effect, Tukey HSD test was performed 

for post hoc comparisons, and when a significant interaction was revealed, Least Significant 

Difference adjustment was used for post hoc pairwise comparisons. Kruskal-Wallis One Way 

ANOVA was used for data not normally distributed. For all comparisons, p values of <0.05 

were regarded as significant.
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6.3 Results

6.3.1 Reinforcer preference test

Over the six-day test, the large majority of animals developed an increasing preference for 10% 

milk reinforcer over water. Data were subject to SPANOVA with Between Subject factors 

GONADAL SEX and SEX CHROMOSOME COMPLEMENT, and DAY (i.e. day three to six) 

as the Repeated Measures factor. Preference for milk increased significandy over days (effect of 

DAY, Fv38 = 82.614, p<0.0001; Figure 6.3.1a), however, importandy, this preference did not 

vary between genotype groups (effect of GONADAL SEX, F146 = 0.993, n.s.; SEX 

CHROMOSOME COMPLEMENT, F146 = 0.308, n.s.; GONADAL SEX * SEX 

CHROMOSOME COMPLEMENT, F146= 1.000, n.s.).

Figure 6.3.1a

XY-Sry

1 2 3 4 5

day of testingday of testingday of testingday of testing

Figure 6.3.1a Total fluid consumption, separated into 10% milk reinforcer and water intake, 
over 6 days of testing. Preference for milk (light bars) over water (dark bars) increased over this 
period. Note that on days 1 and 2, only water was available. Data were presented as mean 
values.

Total fluid consumption data (Figure 6.3.1b) were subject to ANCOVA, with the above 

Between- and Within Subjects factors, and covariate of WEIGHT, as weight was likely to 

influence total fluid consumption. The total fluid consumed did not change significandy over 

the 6 days of testing (effect of DAY, F4-681j2ia652 = 1.948, n.s.); however, gonadal males were 

found to drink significandy more than gonadal females (effect of GONADAL SEX, F145 = 

9.085, p<0.01), irrespective of sex chromosome complement (effect of SEX CHROMOSOME 

COMPLEMENT, F145 = 0.008, n.s.). Weight did not significandy affect the total fluid 

consumed by the animals (effect of WEIGHT, F145 = 0.104, n.s.).
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Figure 6.3.1b

Figure 6.3.1b Total fluid consumption 
(including both milk and water) over six 
days of testing. Data are presented as mean 
values ± SEM.

1 2 3 4 5 6

day of testing

A total of four animals were excluded from the reinforcer preference analysis. Two animals (one 

XY-, one XY-Try) were not included as they did not drink the reinforcer during the six day 

habituation. These animals were given a ‘forced’ sampling session (only milk was available) and a 

‘normal’ preference test (milk and water were available) afterwards, in which they displayed a 

strong preference for milk and therefore progressed on to the main maze task. The other two 

animals (one XX, one XY-) were excluded as, whilst they went through reinforcer preference 

testing, they failed to complete the maze task and were therefore excluded from all analyses.

6.3.2 Habituation to m aze apparatus

Figure 6.3.2a indicates that, in general, during the initial habituation session all four groups 

explored the black and white goal arms approximately equally, with ratios of %time in black vs. 

white close to one. The statistical analysis did show subtle, complex effects on choice arm 

preference, whereby there was a significant interaction of GONADAL SEX X SEX 

CHROMOSOME COMPLEMENT (F1>44 = 4.538, p<0.05), but no significant main effect of 

GONADAL SEX (F144 = 0.546, n.s.) nor SEX CHROMOSOME COMPLEMENT (F144 = 

0.302, n.s.). Broadly, this means that in gonadally identical animals, sex chromosome 

complement can have a modulating influence, in that there was a preference for the black arm 

shown by the animals where the Sry transgene was expressed in the XX karyotype (p<0.05) and 

when the S y  transgene was expressed in the XY karyotype, there tended to be an opposite 

direction of effect (without actually spending more time in the white arm; however, post hoc 

pairwise comparison was not significant). Similarly, a significant interaction of GONADAL 

SEX x SEX CHROMOSOME COMPLEMENT was found in the ratio of black arm entries to
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white arm entries (F144 = 5.202, p<0.05), with no significant main effect of GONADAL SEX 

(F144 = 0.712, n.s.) nor SEX CHROMOSOME COMPLEMENT (F144 = 0.585, n.s. Figure 

6.3.2b). Again, the same general explanation applies. A total of three subjects (two XXs, one 

XY-) were excluded from this analysis as they were extreme outliers. Additionally, two animals 

(one XX, one XY-) were excluded from the analysis as they subsequently failed to complete the 

main maze task.

Figure 6.3.2a Figure 6.3.2b

£ is- 
I
C
|  0.8 - 
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£  0 6 H

1  0 .4 -

XX XXSry XY-

genotype

XY-Sry

14 1

XXSiy XY-

genotype

XY-Sry

Figure 6.3.2a Ratio o f  percentage time spent in black arm to percentage time spent in white 
arm. The percentages took in account time spent in the middle choice area and in the start arm. 
Data are presented as mean values ±  SEM. * p<0.05

Figure 6.3.2b Ratio o f  number o f  black arm entries to number o f white arm entries. Data are 
presented as mean values + SEM. * p<0.05

6.3.3 Acquisition o f  the stim ulus-reinforcer contingency (errors)

The total number of errors made in reaching acquisition performance criterion was subject to 

Three Way ANOVA, with Between Subject factors GONADAL SEX, SEX CHROMOSOME 

COMPLEMENT and ARM (i.e. whether the reinforcer arm colour for a subject was black or 

white). The factor ARM was included as there was a possibility of differential learning between 

black and white reinforcer arms. Figure 6.3.3a shows that gonadal male subjects acquired the 

initial stimulus-reinforcer contingency with significantly fewer errors than gonadal females (effect 

of GONADAL SEX, F144 = 5.680, p<0.05), irrespective of SEX CHROMOSOME 

COMPLEMENT (F144 = 0.001, n.s,). The reinforcer arm colour did not influence the number
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of acquisition errors committed (effect of ARM, F144 = 0.001, n.s.). Additionally, there were no 

significant interactions between the 3 factors19.

Figure 6.3.3a

20

XX XXSry XY- XY-Sry

genotype

Figure 6.3.3b
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chance performanceS
cI XX

XXSry
XY-
XY-Sry
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i:e

2

0
20 30 400 10

Figure 6.3.3a Total number o f  errors committed in order to reach acquisition criterion (achieving 
>85% correct every day for 3 consecutive days). Data are presented as mean values ±  SEM.

Figure 6.3.3b Total number o f  errors across sessions during acquisition. Animals achieved 
acquisition criterion at various rates and were given an error score o f  1 once they had completed 
acquisition, in order to keep the number o f  subjects constant across sessions. Data are presented 
as mean values. * p<0.05

Data on acquisition errors made on individual sessions are shown in Figure 6.3.3b. These more 

detailed data were subject to SPANOVA with Between Subject factors of GONADAL SEX and 

SEX CHROMOSOME COMPLEMENT, and Repeated Measures factor SESSION (Session 1- 

37). Importantly, all four groups started at an equivalent level of performance at the beginning 

of training (approximately chance -  50%) and reflecting learning of the task all four groups made 

significantly fewer errors as training progressed (effect of SESSION, Fi 1.154,535.407 = 48.493, 

p< 0 .0 0 1 ); consistent with the overall mean error data above, gonadal males were found to make 

fewer errors than gonadal females (effect of GONADAL SEX, F i48 = 6.739, p<0.05), 

irrespective of SEX CHROMOSOME COMPLEMENT (F148 = 0.023, n.s.). There was no 

interaction between the Between Subject factors (GONADAL SEX x SEX CHROMOSOME 

COMPLEMENT, F i48 = 0.082, n.s.). The rate of learning between gonadal males and gonadal 

females differed significantly across the training sessions (SESSION X GONADAL SEX

*9 p  values for interactions are as follows: SE X  C H R O M O SO M E  CO M PLEM EN T x  G O N A D A L  SEX, F i)44 — 0.032; SEX  

C H R O M O SO M E C O M PLE M E N T  x  ARM , F i ,44 =  2.571; G O N A D A L  SEX  x  ARM, F il44 =  0.064; SE X  C H RO M O SO M E  

C O M PLE M E N T  x  G O N A D A L  SE X  x  ARM , F i>44 =  0.200; all n.s..
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interaction, Fn.15̂ 5.407 = 3.055, p<0.001); the number of errors committed at the beginning and 

end of the acquisition period were similar in all subjects, but differed significantly between 

gonadal males and females between sessions 9 and 14 (p<0.05 by post hoc analysis) with more 

errors being made by gonadal females than males.

6.3.4 Acquisition o f  the stim ulus-reinforcer contingency (latencies)

(i) First three sessions in acquisition:

Latencies to start a trial (averaged across trials), to choose an arm (averaged across trials) and to 

collect the reinforcer (averaged across trials in which a correct choice was made) during the first 

three sessions of acquisition were subject to Two Way ANOVA. For start latencies (Figure 

6.3.4a, left panel) there was a significant GONADAL SEX x SEX CHROMOSOME 

COMPLEMENT interaction (F147 = 4.148, p<0.05); post hoc tests revealed a difference between 

XX and XY- gonadal females, i.e. sex chromosome complement appeared to have a modulating 

effect on start latencies, in the absence of a Sry transgene (p<0.05). There were no significant 

main effects of GONADAL SEX (F147 = 0.334, n.s.) or effect of SEX CHROMOSOME 

COMPLEMENT (F1>47 = 1.062, n.s.).

Figure 6.3.4a
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Figure 6.3.4a (Left to right) Start, choice and collect latencies (ms) at the start o f  acquisition 
phase. Data were averaged from the first 3 consecutive sessions in acquisition. Data are 
presented as mean values ±  SEM. * p<0.05

For choice latencies over the first three sessions of the acquisition stage (Figure 6.3.4a, centre 

panel), there were no significant effects of GONADAL SEX (F147 = 1.656, n.s.) nor SEX 

CHROMOSOME COMPLEMENT (F147 = 1.112, n.s.) nor any interactions between the two 

factors (F1>47 = 0.653, n.s.).
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For collect latencies over the first three sessions of acquisition stage (Figure 6.3.4a, right panel), 

gonadal male subjects collected the reinforcer significandy quicker than gonadal females (effect 

of GONADAL SEX, F147 = 11.814, p<0.005), irrespective of SEX CHROMOSOME 

COMPLEMENT (F147 = 0.588, n.s.). There was no interaction between the two factors 

(GONADAL SEX x SEX CHROMOSOME COMPLEMENT, F1>47= 0.041, n.s.).

(ii) Start, choice and collect latencies on session nine:

Session nine was the first session in which a significant pair-wise difference was observed 

between gonadal males and gonadal females in terms of errors (indexing learning; Figure 6.3.3b), 

therefore I decided to examine the latencies on this session which might give an additional 

measure of learning. All mice were still in the acquisition phase on session 9. As data were not 

normally distributed, the two Between Subject factors GONADAL SEX and SEX 

CHROMOSOME COMPLEMENT were collapsed to give a single factor of GENOTYPE, so 

that latencies to start (averaged across every trial), to choose an arm (averaged across every trial) 

and to collect the reinforcer (averaged across trials in which a correct choice was made) during 

session nine could be analysed using Kruskal-Wallis One Way ANOVA.

Figure 6.3.4b
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Figure 6.3.4b (Left to right) Start, choice and collect latencies (ms) on session nine. Data are 
presented as mean values + SEM.

On session nine, subjects generally displayed longer start and choice latencies, and shorter collect 

latencies, compared to the first three sessions in acquisition phase (Figure 6.3.4b), which 

suggests that subjects were beginning to acquire the stimulus-reinforcer contingency, and 

therefore took longer to deliberate on their choices, and were quicker to collect the increasingly 

expected reinforcer after they had made a correct choice. For start, choice and collect latencies,
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subjects did not vary between each other (start, H3 = 6.795, n.s.; choice, H3 = 1.125, n.s.; collect, 

H3 = 5.232, n.s.).

(iii) Three sessions at stable acquisition performance criterion:

Latencies to start (averaged across every trial), to choose an arm (averaged across every trial) and 

to collect the reinforcer (averaged across trials in which a correct choice was made) during the 

three consecutive performance criterion sessions were subject to Two Way ANOVA. There was 

no effect of GONADAL SEX on start latencies at performance (F144= 1.562, n.s.), nor of SEX 

CHROMOSOME COMPLEMENT (F144 = 3.354, n.s.) and nor was there any interaction 

between the two factors (GONADAL SEX x SEX CHROMOSOME COMPLEMENT, F144 = 

3.46, n.s.; Figure 6.3.4c, left panel).

Consistent with animals learning the task to a high degree of stimulus control, choice latencies at 

acquisition performance criterion were dramatically shorter across all four groups compared to 

the beginning of training (74% average percentage decrease; Figure 6.3.4c, centre panel). 

There was no effect of GONADAL SEX on choice latencies in this phase of the task (F139 = 

2.485, n.s.), nor of SEX CHROMOSOME COMPLEMENT (F1>39 = 3.109, n.s.). There was no 

interaction between the two factors (GONADAL SEX x SEX CHROMOSOME 

COMPLEMENT, F1>39= 2.106, n.s.).

Figure 6.3.4c
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Figure 6.3.4.c (Left to right) Start, choice and collect latencies (ms) at performance. Data were 
averaged from the 3 consecutive sessions in which animals reached acquisition criterion. Data 
are presented as mean values ± SEM.

Collect latencies, like choice latencies, were markedly shorter at performance criterion than at the 

start of acquisition phase across all four groups (54% average percentage decrease; Figure 6.3.4c,
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right panel). The pattern of data at start of acquisition was maintained at performance criterion 

such that gonadal male subjects collected the reinforcer significantly quicker than gonadal 

females (effect of GONADAL SEX, F146 = 7.035, p<0.05). There was no effect of SEX 

CHROMOSOME COMPLEMENT on this measure (F146 = 0.38, n.s.) and no interaction 

between the two factors (GONADAL SEX x SEX CHROMOSOME COMPLEMENT, F146 = 

0.163, n.s.).

6.3.5 Odour usage

At stable performance, a probe session was performed to determine whether subjects were using 

olfactory cues to guide their behaviour. If subjects were using olfactory cues exclusively, one 

would expect their performance on trials where new arms were introduced to be at, or around, 

chance level (i.e. 2.5 correct choices, out of five probe trials). Number of errors made

(maximum of ten, chance performance at five errors) from three consecutive days (pre-probe, 

probe and post-probe) gave an index as to how much disruption the use of ‘new’ arms had on 

performance. As these data were not normally distributed, data were transformed

with Vx + 0.5 for analysis which helped to reduce the skewness. Data from three consecutive 

days (Figure 6.3.5a) was subject to SPANOVA, with Between Subject factors of GONADAL 

SEX and SEX CHROMOSOME COMPLEMENT, and Repeated Measures factor of DAY 

(pre-probe, probe and post-probe days). There was a significant difference in total errors 

between sessions (effect of DAY, F2 96 = 20.245, p<0.001); post hoc revealed an increased number 

of errors committed during the probe and post-probe, compared to pre-probe, sessions 

(p<0.001). Across the 3 sessions, gonadal males made significantly fewer incorrect choices than 

gonadal females (effect o f GONADAL SEX, F148 = 6.775, p<0.05), irrespective of SEX 

CHROMOSOME COMPLEMENT (F1>48 = 0.672, n.s.).

Data showed that all groups made less than one error on average on the five ‘new arm’ probe 

trials, with chance performance on these probe trials being 2.5 errors (Figure 6.3.5b). As the 

number of error made specifically on the probe trials on the probe session day was not normally 

distributed, the data were subject to Kruskal-Wallis One Way ANOVA, with the factors of 

GONADAL SEX and SEX CHROMOSOME COMPLEMENT collapsed to give a single 

Between Subject factor of GENOTYPE. There was no difference in the number of errors made 

between genotype groups (H3 = 1.729, n.s.).

There was a general small increase in errors on (probe) trials 2, 4, 6, 8 and 10 on the probe day 

and on post-probe day (average errors on probe day: 0.75; on post-probe day: 0.7) compared to
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performance on the same trials on the pre-probe day (average error on pre-probe day: 0.3). All 

data considered, I would conclude that there was no usage of odour cues to guide choice 

behaviour, as number of errors made on probe trials (with new arms) was substantially lower 

than chance performance (2.5 errors). The small effects on performance were evident on probe 

day and were carried over to post-probe day. Note that on post-probe day, the usual goal arms 

were used, but effects on performance persisted; if animals were indeed using odour cues to 

guide behaviour, one would expect no effects on performance as animals returned to using the 

odour cues available, and thus, I argue that the effects on performance on probe day were more 

likely to be caused by general task disruption rather than the removal of behaviour-guiding odour 

cues.

Figure 6.3.5a Figure 6.3.5b
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Figure 6.3.5a Total number o f  errors out o f  a maximum ten across three consecutive sessions; 
pre-probe, probe and post-probe. Total o f  five errors would suggest subjects were performing at 
chance. Data are presented as mean values ±  SEM. ** p<0.001

Figure 6.3.5b Total number o f  errors made on probe trials out o f  a maximum 5 within the probe 
session. Total o f  2.5 errors would suggest subjects were performing at chance. Data are presented 
as mean values ±  SEM.

6.3.6 Reversal o f  the stimulus-reinforcer contingency (errors)

(i) Total errors:

As a general index of reversal learning, total errors in obtaining the re-acquisition performance 

criterion (Figure 6.3.6a, left panel) were analysed with Three Way ANOVA, with Between 

Subject factors of GONADAL SEX, SEX CHROMOSOME COMPLEMENT and ARM (i.e. 

whether the reinforcer arm colour for a subject was black or white). The analysis showed 

gonadal males made fewer errors than gonadal females (effect of GONADAL SEX, F144 — 6.481,
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p<0.05) irrespective of SEX CHROMOSOME COMPLEMENT (F144 = 0.241, n.s.); there was 

no significant interaction between GONADAL SEX and SEX CHROMOSOME 

COMPLEMENT (F144 = 3.691, n.s.). However, animals initially trained with the black arm as 

the reinforcer arm in the acquisition phase (reversed to white arm) made significantly more 

errors than those trained with the white arm (reversed into black arm) (effect of ARM, F1>44 = 

12.437, p<0.01). Additionally, there was a significant interaction between GONADAL SEX and 

ARM (F144 = 10.359, p<0.01) and post hoc tests suggest that while arm colour affected 

performance of gonadal female subjects, with more errors committed if the gonadal females 

were initially trained with a black reinforcer arm; arm colour did not affect gonadal male subject 

performance (Table 6.3.6i).

Table 6.3.6i Table detailing the number of errors made in obtaining the re-acquisition performance 

criterion in reversal phase, separated into genotype groups and arm colour. Data are presented as mean 

values ±SEM. a and b denotes the two pairwise comparisons that were revealed to be significant by post 

hoc (p<0.001).

Genotype groups and total errors in obtaining the re-acquisition performance
criterion in reversal phase

Goal arm colour trained 
in acquisition phase

Gonadal females 
(40,XX and 40,XY-)

Gonadal males 
(40,XXAry and 40,XY-5>y)

Black 81.2 ±8.8ab 51.6 ±3.4a

White 43.6 ±3.7b 46.6 ±4.3
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Figure 6.3.6a

Total errors Below-chance errors Above-chance errors

XX XXSry XY- XY-Sry XX XXSry XY- XY-Sry XX XXSry XY- XY-Sry

genotype genotype genotype

Figure 6.3.6a (Left) Total errors to re-acquisition performance criterion (achieving >85%  
correct every day for 3 consecutive days). The number o f  errors could be separated into total 
below-chance (centre) and above-chance (right) errors. Data are presented as mean values ±  
SEM. * p=0.05; ** p<0.05

(ii) Below-chance (perseverative) errors:

In order to gain more information about which specific strategies might be giving rise to the 

effects found in total errors analysis above, total errors were sub-divided into below- (<50%) and 

above-chance (>50%) errors reflecting perseveration (and the attendant requirement to inhibit a 

pre-potent response) and acquisition of a novel stimulus-reinforcer association, respectively. 

With regard to below-chance reversal errors (Figure 6.3.6a, centre panel), animals performed 

equivalendy (effect of GONADAL SEX, F1>44 = 0.051, n.s.; effect of SEX CHROMOSOME 

COMPLEMENT, F1>44 = 0.337, n.s.; effect of ARM, F1>44 = 2.259, n.s.). However, there was a 

significant interaction between GONADAL SEX and SEX CHROMOSOME COMPLEMENT 

(F144 = 6.450; p<0.05) and post hoc tests revealed that XXTry and XY- animals made significantly 

more below-chance errors than XX animals (p=0.05 and p<0.05 respectively).

(iii) Above-chance errors:

Following reversal and re-acquisition of the new stimulus-reinforcer contingency (Figure 6.3.6a, 

right panel), gonadal males committed significantly fewer errors than gonadal females (effect of 

GONADAL SEX, F144 = 8.199, p<0.01), irrespective of SEX CHROMOSOME

COMPLEMENT (F144 =0.182, n.s.). There was no interaction between GONADAL SEX and 

SEX CHROMOSOME COMPLEMENT (F1>44 = 2.224, n.s.). Animals previously trained on the 

black arm during acquisition phase committed significandy more errors than those trained on the
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white arm (effect of ARM, F144 = 12.462, p<0.01); additionally, gonadal females initially trained 

on the black arm made significandy more errors than gonadal females trained on the white arm, 

but this difference was not present in gonadal males (GONADAL SEX x ARM, F 144 = 10.178, 

p<0.01). The particular pattern of results is similar to that in the total errors (see above Table 

6.3.6i); the two pairwise comparisons were significant to p<0.001.

6.3.7 Reversal o f  the stim ulus-reinforcer contingency (latencies)

(i) Three days immediately subsequent to contingency reversal:

All latency measures during the three days subsequent to contingency reversal were increased 

substantially compared to those at performance of the acquisition phase, reflecting the increased 

difficulty of the task, in particular with respect to having to inhibit the well learnt (i.e. pre-potent) 

previously correct response in favour of responding to the now correct but previously incorrect 

choice. Latencies to start a trial (averaged across trials), to choose an arm (averaged across trials) 

and to collect the reinforcer (averaged across trials in which a correct choice was made) during 

the three sessions were subject to Two Way ANOVA. With regard to start latencies (Figure 

6.3.7a, left panel), gonadal males were quicker to leave the start arm than females (effect of 

GONADAL SEX, F145 = 7.749, p<0.01); additionally, animals with a XX karyotype displayed 

shorter start latencies than animals with a XY karyotype (effect of SEX CHROMOSOME 

COMPLEMENT, F1>45 = 5.605, p<0.05). There was no significant interaction between the two 

factors (F145 = 0.784, n.s.).

For choice latencies (Figure 6.3.7a, centre panel), there were no group effects (GONADAL 

SEX, F142 = 0.058, n.s.; SEX CHROMOSOME COMPLEMENT, F142 = 0.048, n.s.) nor 

interaction between the two factors (F1>42 =0.004, n.s.).

For collect latencies (Figure 6.3.7a, right panel), animals with a XX karyotype were quicker to 

collect the reward than XY karyotype animals (effect of SEX CHROMOSOME 

COMPLEMENT, F146 = 4.673, p<0.05), irrespective of gonadal status (effect of GONADAL 

SEX, F146 = 1.863, n.s.). There was a significant interaction between GONADAL SEX and 

SEX CHROMOSOME COMPLEMENT (Flf46 = 7.674, p<0.01) and post hoc tests revealed a 

difference between XY- and XX, and between XY- and XY-Sry (p<0.01).
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Figure 6.3.7a
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Figure 6.3.7a (left to right) Start, choice and collect latencies on the three days subsequent to 
reversal. Data are presented as mean values ±  SEM. * p<0.01

(ii) Three sessions at stable re-acquisition performance criterion:

During the three consecutive sessions in which animals reached re-acquisition criterion in the 

reversal phase, animals regained high performance competency after the reversal of stimulus- 

reinforcer contingencies (Figure 6.3.7b) which was reflected by the shorter start and choice 

latencies compared to those at the beginning of the reversal phase (Figure 6.3.7.a). Animals did 

not differ significantly on any of the three latency measures (Table 6.3.7i).

Figure 6.3.7b
Start latency Choice latency Collect latency

ro 5000

S- 1 0 0 0

XX XXSry XY- XY-Sry 

genotype

XX XXSry XY- XY-Sry 

genotype

XX XXSry XY- XY-Sry 

genotype

Figure 6.3.7b (left to right) Start, choice and collect latencies at performance after reversal. 
Data were averaged from the three consecutive sessions in which animals reached reversal 
criterion. Data are presented as mean values ±  SEM.
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Table 6.3.7i Statistical analysis of performance across three consecutive days at performance after 

reversal of stimulus-reinforcer contingency, as indexed by three different latency measures.

Latency
measures Effect of GONADAL SEX

Effect of SEX 
CHROMOSOME 
COMPLEMENT

Interaction of 
GONADAL SEX X SEX 

CHROMOSOME 
COMPLEMENT

Start
Fl,48

3.500, n.s. 2.364, n.s. 0.408, n.s.

Choice 
Ft,43

0.211, n.s. 0.588, n.s. 0.833, n.s.

Collect 
Ft,47

3.040, n.s. 0.003, n.s. 0.261, n.s.

6.3.8 A dditional data from  X Y  w ildtype m ice

Wildtype XY male MF1 mice were also subject to the simple visual discrimination and reversal 

learning task. I wanted to compare the performance of this genotype group to that of mice 

generated in the FCG cross, to examine how closely the behavioural performance of mice with a 

Sry transgene from the FCG cross (of unknown copy number, and of unknown insertion site) 

resembled that of mice with an endogenous Sry gene (i.e. wildtype XY). Data in this section 

were subject to One Way ANOVA, with the Between Subject factor of GENOTYPE (i.e. XX, 

XXJVy, XY-, XYAVy and wildtype XY subjects). Additional factors particular to the analysis, if 

any, are detailed in the relevant sections below. When initial ANOVA revealed a significant 

effect, Tukey HSD Test was performed for post hoc comparisons, and when a significant 

interaction was revealed, Least Significant Difference adjustment was used for post hoc pairwise 

comparisons. For all comparisons, p values of <0.05 were regarded as significant.

(i) Reinforcer preference test:

Comparing all five groups of animals together, data were subject to Repeated Measures ANOVA 

with Within Subject factor of DAY (i.e. day three to six, during which both reinforcer and water 

were available) and Between Subject factor of GENOTYPE (i.e. XX, XXVry, XY-, XY-Sty, 

wildtype XY), and there was no significant difference in their preference (effect of GENOTYPE, 

F456 = 1.322, n.s.). All genotype groups showed increased preference for the liquid reinforcer 

over water during the testing period (effect of DAY, F3168 = 100.861, p<0.001; Figure 6.3.8a, 

Figure 6.3.1a) and there was no significant interaction between DAY and GENOTYPE (F12168 

= 1.561, n.s.)

148



Chapter VI

Figure 6.3.8a

Figure 6.3.8a T otal fluid 
consum ption , separated  in to  10% 
milk reinforcer and  w ater intake, over 
6 days o f  testing, fo r w ildtype XY 
m ale mice. P reference for m ilk (light 
bars) over w ater (dark bars) increased 
over this period. N o te  th a t o n  days 1 
and  2, only w ater was available. D ata  
w ere presen ted  as m ean values.

F o r data o n  F C G  animals, please 
refer to  Figure 6.3.1a.

day of testing

(ii) Habituation to maze apparatus:

Figure 6.3.8b and Figure 6.3.8c show the habituation data from wildtype XY males next to 

that from the FCG animals; the duration spent in and number of entries into black and white 

arms were calculated as ratios. There were no significant differences between the genotype 

groups in both duration ratio (effect of GENOTYPE, F4 57 — 1.119, n.s.) and entries ratio (effect 

of GENOTYPE, F4 57 = 1.556, n.s.).
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Figure 6.3.8b

1.4

XX XXSry XY- XY-Sry XY wildtype

genotype

Figure 6.3.8c
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Figure 6.3.8b Ratio o f  
percentage tim e spen t in  black 
arm  to  percentage tim e spent in 
w hite arm . T h e  percentages 
to o k  in  account tim e spent in 
the  m iddle choice area and in 
the  start arm. D ata  are 
p resen ted  as m ean  values +  
SEM .

Figure 6.3.8c Ratio o f  num ber 
o f  black arm  entries to  num ber 
o f  w hite arm  entries. D ata  are 
p resen ted  as m ean values +  
SEM .

(iii) Total number of errors made in reaching acquisition performance criterion:

With regard to the total number of errors made in reaching acquisition performance criterion, 

gonadal males (XXTry and XY-Try) committed significantly fewer errors, notably between 

sessions 9-14, than gonadal females (XX and XY-) in the FCG mouse model comparison (see 

section 6.3.3 above). As suggested in Figure 6.3.8d, wildtype XY animals appeared to perform 

comparably to the gonadal females from the FCG mouse model, giving rise to a main effect of 

GENOTYPE (F458 = 2.534, p=0.05). Post hoc test did not reveal any significant pairwise 

comparisons.
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Figure 6.3.8d

Figure 6.3.8d Total number o f  
errors made in reaching 
acquisition performance criterion 
for the FCG mice and wildtype 
XY animals. Data are presented 
as mean values + SEM.

XX XXSry XY- XY-Sry XY wildtype

genotype

Data in acquisition errors on each individual session are shown in Figure 6.3.8e. Wildtype XY 

animals appeared once again to follow the behavioural pattern of gonadal females. As indicated 

by Repeated Measures ANOVA with Between Subject factor GENOTYPE and Within Subject 

factor SESSION, all five groups started at an equivalent level of performance at the beginning of 

training (approximately chance ~50%) and reflecting learning of the task all five groups made 

significantly fewer errors as training progressed (effect of SESSION, F11 303)655554= 59.451, 

p<0.001). Analysis also revealed no significant differences between GENOTYPE (F458 = 2.284, 

n.s.) and no interactions between SESSION and GENOTYPE (F45.211j655.554 = 1.241, n.s.).

Figure 6.3.8e
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Figure 6.3.8e Total number o f  errors 
across sessions during acquisition 
committed by the FCG animals and 
wildtype XY males. Animals achieved 
acquisition criterion at various rates and 
were given an error score o f  1 once they 
had completed acquisition, in order to 
keep the number o f  subjects constant 
across sessions. Data are presented as 
mean values.
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(iv) Errors committed in reaching re-acquisition performance criterion after contingency reversal:

Two Way ANOVA, with Between Subject factors of GENOTYPE and ARM, was used to 

analyse the data with FCG and wildtype XY mice; the factor ARM was included as it was 

previously shown to have an effect in the FCG comparison.

(a) Total errors:

With regard to total errors committed in reaching re-acquisition performance criterion after 

contingency reversal (Figure 6.3.8f, top left), all genotype groups performed equivalendy (effect 

of GENOTYPE, F453 = 2.370, n.s.), and subjects reversing into the white arm (from the black) 

made more errors than those reversing into the black arm (effect of ARM, F153 = 5.096, p<0.05). 

There was also a significant GENOTYPE x ARM interaction (F4 53 = 5.246, p<0.001); post hoc 

comparisons can be found in Table 6.3.8i.

(b) Below-chance (perseverative) errors:

Subjects made equivalent numbers of below-chance errors (Figure 6.3.8f, top right; effect of 

GENOTYPE, F453 = 2.008, n.s.). Arm colour did not affect the number of errors made (effect 

of ARM, F153 = 0.905, n.s.) and there was no significant GENOTYPE x ARM interaction (F4 53 

= 1.174, n.s.).

(c) Above-chance (formation of new stimulus-reinforcer contingencies j errors:

Genotype groups performed equivalendy (effect of GENOTYPE, F4 53 = 2.506, n.s.) in terms of 

above-chance errors (Figure 6.3.8f, bottom left). Similar to the pattern of results in the ‘total 

errors’ analysis, there was a significant effect of ARM (F153 = 5.201, p<0.05) and GENOTYPE 

x ARM interaction (F453 = 5.381, p<0.001). Post hoc analysis yielded the same pattern of results 

as that in the analysis of total errors (Table 6.3.8i).
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Figure 6.3.8f
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Figure 6.3.8f (Top left) Total errors to 
re-acquisition performance criterion 
(achieving >85% correct every day for 
3 consecutive days) for FCG and XY 
wildtype animals. The number of 
errors could be separated into total 
below-chance (top right) and above­
chance (bottom left) errors. Data are 
presented as mean values ± SEM.

Table 6.3.8i Post hoc analysis of GENOTYPE X ARM interaction in total and above-chance errors 

committed in reaching re-acquisition performance criterion. Only significant differences (p<0.05) are 

reported here.

Colour of arm initially reinforced in 
acquisition phase colour of arm 

reinforced after contingency reversal
Significant post hoc differences

Black ■) white Gonadal females (XX & XY-) differed significandy from 
gonadal males (XXJVy, XY-Sry and XY wildtype).

White black XY wildtype animals differed significandy from XX and 
XY-Siy.

Genotype group

XX and XY- For both of these genotype groups, total errors made in 
‘black white’ were higher than that in ‘white black’.
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(v) Blood plasma testosterone level and its correlation with acquisition errors

Testosterone levels of wildtype XY males (n=10) were measured as described in Section 5.2.3.4. 

Results are presented alongside the FCG animals in Figure 6.3.8g. Interestingly, wildtype XY 

males had far higher levels of testosterone than gonadal males from the FCG cross. A sub-set of 

the wildtype XY males (n=4) was also tested on the simple visual discrimination and reversal 

learning task, and their acquisition errors, alongside with the number of errors made by the FCG 

animals, were correlated with their respective testosterone levels (Figure 6.3.8h) Statistical 

analysis using Pearson’s correlation showed there was no significant linear correlation between 

testosterone level and the total number of errors made in reaching acquisition criterion in 

gonadally male mice (r = -0.089, n = 21, n.s.).

Figure 6.3.8g

XXSry XY-Sry XY wildtype

genotype

Figure 6.3.8h

• XXSry
■ XY-Sry
▼ wildtype XY

Figure 6.3.8g Testosterone 
level from blood serum for 
the five genotype groups, 
measured by ELISA. Data 
are presented as mean values 
±  SEM.
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Figure 6.3.8h Correlation 
between total number o f errors 
committed in achieving acquisition 
criterion and testosterone level.
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6.4 Discussion

The purpose of this chapter was to examine iVy-dependent and Sry-independent effects on a 

cognitive task. The task used in the present study was a simple visual non-spatial discrimination 

learning task with reversal, which assayed a subject’s ability to make stimulus-reinforcer 

associations and, following reversal, a subject’s ability to inhibit prepotent responding and create 

novel stimulus-reinforcer associations which were the opposite of that previously acquired. 

There was some prior evidence from several species that gonadal hormones and/or sex-linked 

genes could influence one or more aspects of these psychologies.

The main finding in this chapter from the FCG model was that gonadal males (XXi'ry and XY- 

Sry) acquired the initial stimulus-reinforcer associations with fewer errors than gonadal females 

(XX and XY-); this behavioural difference was particularly marked between sessions 9 and 14. 

Importantly, both groups began at the same level of performance, and eventually reached the 

same level of learning, indicating that gonadal females could learn the task if given sufficient 

training. Moreover, there was no effect of arm colour on this phase of the task. I argue that the 

more rapid task acquisition in gonadal males is likely to reflect enhanced learning in this group, 

rather than altered motivation, anxiety or use of olfactory cues for the following reasons: (i) 

gonadal males and females showed an equal reinforcer preference, (ii) gonadal males and females 

explored the maze equally during habituation, (iii) during odour probe manipulations, whilst 

there were minor task disruption effects, gonadal males and females performed equivalently, (iv) 

gonadal males and females did not differ in their start and choice latencies across the acquisition 

phase (although, admittedly, gonadal males exhibited shorter latencies to collect the reinforcer 

than gonadal females) and (v) the effect was particularly apparent from sessions 9-14 (coinciding 

with general slowed start and choice latencies across all groups, presumably as learning occurs), 

and not across all sessions as might be anticipated if it was due to more basic behavioural 

differences. The hyperactive phenotype in XY- animals observed in Chapter V could not 

sufficiently explain the initial acquisition effect, as both XX and XY- animals required more 

sessions to learn the initial contingency. The iVy-dependent effect on anxiety, as indexed by 

exploration of the open quadrant on the elevated zero maze (Chapter V), is unlikely to underlie 

the initial acquisition effect, as there were no differences in maze habituation and initial 

performance between genotype groups (all animals performed similarly during sessions 1-8). 

Both the gonadal males (average consumption ~2ml on Days 5 and 6) and wildtype XY males 

(average consumption ~ 1.8ml) were shown to drink more in the reinforcer preference test than 

gonadal females (average consumption ~ 1.5ml), but yet the wildtype XY males performed
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equivalently as the gonadal females, which suggests that motivational differences could not 

completely account for the Try-dependent effect in task acquisition. This gonadal sex effect in 

possible enhanced learning suggests that Try-dependent effect underlies the difference, i.e. 

gonadal hormone levels and/ on Sry direct effects on the brain, rather than sex-linked genes other 

than Try; as explained in the Introduction section in this chapter, testosterone has been shown to 

exert effect on a range of cognitive behaviours and so it would not be surprising if testosterone 

were to influence the acquisition of stimulus-reinforcer contingencies as found in this present 

study (see below).

The main measure of behavioural inhibition in the reversal learning task is ‘below-chance’ errors 

(0-50%). On this measure, there were no main effects of gonadal sex or sex chromosome 

complement. However, an interaction between gonadal sex and sex chromosome complement 

(independent of arm colour) were found, whereby XXSry and XY- animals made significantly 

more below-chance errors than XX animals. These data suggest that (i) the presence of an Sry 

transgene with an XX karyotype leads to a higher level of perseverative errors than XX 

karyotype alone and (ii) in subjects with a ‘female’ hormonal profile, the presence of an XY 

karyotype leads to a greater number of below-chance errors than an XX karyotype. To explain 

this complex pattern of results, one might speculate that there is some interaction between Sry 

and X-linked genes that could increase perseveration.

Above-chance errors reflect the ability of an animal to make an opposite stimulus-reinforcer 

association to one made previously. Here, whilst no effects of sex chromosome complement 

were observed, I did find that gonadal males made fewer errors than gonadal females. This 

pattern of data resembles that seen in the acquisition phase. This data should be treated with 

caution as an significant effect o f arm colour was observed, whereby gonadal females who were 

initially reinforced in the black arm and reversed into the white arm, made significantly more 

above-chance errors than both gonadal females reversing into the black arm, and gonadal males 

reversing into either the black or white arms. These effects appear to be due to a particular 

reluctance of the gonadal females to enter the white arm, only once they have been consistently 

reinforced in the black arm (as no gonadal male vs. gonadal female differences in reactivity to the 

arms were obvious in the habituation or initial acquisition). Whilst this pattern of results is 

complex, it might suggest some female-specific interaction between the psychology and/or 

neurobiology associated with reacquisition and anxiety for example. The findings from the 

present study are inconsistent with those of Guillamon et al. (1986). In this previous study, no 

sex differences between male and female rats were seen in the acquisition of the task (whereas
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the current study found an effect of gonadal sex) and quicker reversal learning in females 

compared to males was observed (whereas the current study found an effect of gonadal sex in 

total reversal errors, in which gonadal males committed fewer errors than females). These 

discrepancies between results might be due to species differences between studies, subde 

variations in experimental designs, different acquisition criteria and the fact that the FCG mouse 

model do not produce normal males and so the gonadal sex effects observed in the current study 

might not be comparable to differences between normal males and females. However, in 

agreement with the current data, Davies found that wildtype MF1 male mice learnt the initial 

visual discrimination more rapidly than their wildtype female counterparts (Ph.D thesis, 2003).

As an additional manipulation, wildtype XY male mice were tested alongside the FCG model. 

During the acquisition phase, these mice resembled gonadal females, and interestingly, not Sry 

transgenic males, with regard to the number of errors committed. These data hint at the 

possibilities that (i) S y  introduced as a transgene was not equivalent to the endogenous version 

of the gene (in that wildtype XY mice and XY-iVy mice seem to be behaviourally different) and

(ii) S y  expression from a transgene (but not an endogenous gene) may somehow enhance initial 

learning of the discrimination. No significant effects of genotype between the wildtype XY mice 

and the FCG mice (including XX females) on measures of behavioural inhibition (below-chance 

errors) or reacquisition (above-chance errors) were detected.

Importantly, the findings described above were not confounded by the use of other strategies to 

solve the task (e.g. spatial or olfactory cues). The goal arms were pseudorandomly switched in 

their location to avoid use of spatial strategies, and were also cleaned thoroughly after each 

subject to minimise the use of olfactory cues. Odour ‘probe’ trials were carried out to investigate 

any use of olfactory cues, and the extent of the effect of the probe trial was such that any 

olfactory guided behaviour was likely to be minimal. An advantage of the FCG model is that the 

four genotypes were generated at similar frequency within a single litter, and so one can minimise 

maternal-offspring and litter effects on behaviour, and prenatal and postnatal environment was 

well controlled for the FCG animals. However, the wildtype XY male mice were generated 

using a separate cross. Whilst care was taken to minimise any confounding effects (e.g. mothers 

with a uniform X chromosome were used to breed both FCG animals and wildtype males), there 

remained the possibility of maternal-offspring and litter effects, and differences in prenatal and 

postnatal environment, between the FCG model and wildtype XY males. A possible additional 

confound was the fact that the origin of the Y chromosome was different between males from 

the FCG mouse model and wildtype XY males (129 and MF1 origin respectively); there has been
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evidence indicating that there are strain differences in the Y chromosome that can lead to 

behavioural differences, notably sexual behaviour (Canastar et al, 2008) and aggression (Miczek et 

al, 2001), but to my knowledge, there has been no direct comparison between different Y 

chromosomes from the 129 and MF1 strains and their effects on cognition. However, on the 

majority of behavioural measures in this chapter (milk preference, habituation to the maze, 

below-chance and above-chance errors), XY males performed equivalently to XY-i'ry males 

suggesting no gross effects of generating-cross or Y chromosome origin. Moreover, all five 

genotype groups underwent the same husbandry procedures and were tested in parallel.

The 3>y-dependent effect on acquisition (and above-chance errors, although note caveats above 

with regard to arm colour), whereby FCG gonadal males outperformed FCG gonadal females, 

could be due to gonadal hormone effects, or to direct Sry effects on the brain. It was already 

shown in Chapter V that blood plasma testosterone levels are higher in FCG gonadal males than 

females; therefore, based on the FCG data alone, one could argue that testosterone influences 

acquisition performance, perhaps through organisational and/or activational effects on brain 

regions implicated in initial learning of the discrimination e.g. prelimbic region of medial 

prefrontal cortex (Dailey et a l, 2004; Tran-Tu-Yen et al\, 2009; DeVito et a l, 2010), cingulate 

cortex (Bussey et al, 1996; Ward et al, 1999), hippocampus (McDonald et al, 2007) and amygdala 

(Cador et al, 1989). However, while the gonadal FCG males displayed higher testosterone levels 

and superior performance in the acquisition phase than gonadal FCG females, wildtype XY 

males had even higher testosterone levels than gonadal FCG males (Figure 6.3.8g), and yet, the 

performance of wildtype XY males was on par with that of gonadal FCG females. This suggests 

that there was no simple relationship between testosterone levels and enhanced learning in the 

acquisition phase of the visual discrimination task. Indeed, statistical analysis of the correlation 

between testosterone level and acquisition errors (Figure 6.3.8h) did not detect a significant 

linear relationship between the two variables.

With regard to the below-chance errors data, it appears plausible that there exists some complex, 

and as yet, undefined, interaction between the effects of Sry (either acting directly or indirectly) 

and sex chromosome complement. In terms of putative mechanisms, there is at least one X- 

linked gene {MAOA, monoamine oxidase A) for which Sry is thought to act as a transcriptional 

activator (Wu et al, 2009). MAOA, along with MAOB, are isoforms of MAO (monoamine 

oxidase); MAOA, located on X pll.23, is a key modulatory enzyme in brain biochemistry and 

catalyses deamination of monoamine neurotransmitters such as serotonin, adrenaline and 

dopamine (Shih et al, 1999). Dysfunction in MAOA has been linked with a range of
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neuropsychiatric disorders, such as depression (Thase & Denko, 2008), generalised anxiety 

disorder (Tadic et a l 2003), autism (Chugani, 2002) and attention deficit hyperactivity disorder 

(ADHD; Gizer et al., 2009); additionally it has been linked with posttraumatic stress disorder, 

Parkinson’s disease and aggressive behaviour (Shih et al., 1999).

Interestingly, some of these disorders implicated are sexual dimorphic in their prevalence and 

symptoms; for example, autism and ADHD are more prevalent in males than females, and 

females with major depressive disorders display impaired emotion processing relative to 

unaffected females, whereas male sufferers are not impaired compared to unaffected males (Wu 

et al., 2009). MAOA has been consistently associated with effects on cognitive function 

(including behavioural inhibition) in a variety of species; for example, Fletcher and Davies (1990) 

found injecting a MAOA inhibitor into the dorsal raphe of rats increased their feeding in a dose- 

dependent fashion. The authors argued that the changes induced in serotonergic neurons in the 

dorsal raphe by the MAOA inhibitor might explain why animals were increasingly less capable to 

inhibit their feeding; indeed serotonin has been implicated in behavioural inhibition (Soubrie, 

1986; Crockett et al., 2009). The two gene variants of MAOA, high-activity and low-activity, 

have been associated with differential inhibitory control and impulsivity in normal humans in 

functional magnetic resonance imaging (fMRI) studies (Passamonti et al., 2006; Passamonti et al., 

2008). Paaver and colleagues (2007) found low platelet MAO activity was associated with higher 

levels of impulsivity in normal adolescents, and MAO A and MAOB activity has been linked 

with learned helplessness in a rat study (Schulz et al, 2010). There is also preliminary evidence 

that MAOA might be associated with IQ and general intelligence (Yu et al., 2005). The fact that 

XY- mice appear to perseverate more than XX mice could be explained by increased Xlr3b 

expression in the former group (Davies et al., 2005a); one might speculate that the effects of 

Xlr3b could be attenuated, or even reversed, in the presence of Sry (as XY-Vry mice tend to make 

fewer below-chance errors than XXiVy mice). Both Maoa and Xlr3b are expressed in the regions 

of the brain mediating the ability to inhibit prepotent responses, notably the orbitofrontal cortex 

(Meyer-Lindenberg et al., 2006; Buckholtz et al., 2008).

In this experimental chapter, the FCG animals and wildtype XY male mice were subject to a 

simple two-choice visual non-spatial discrimination task with reversal learning; the main finding 

was that within the FCG mouse model, gonadal males acquired the initial stimulus-reinforcer 

contingencies quicker (i.e. with fewer errors) than gonadal females. The behaviour of wildtype 

XY males, particularly in their performance on acquisition phase, was found to be similar to that 

of gonadal females, and not gonadal males, from the FCG cross; given that testosterone levels of
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wildtype XY males were higher than FCG gonadal males and females, this would suggest that 

there was no simple relationship between testosterone levels and acquisition of the initial 

stimulus-reinforcer contingencies, and direct Sry effects on the brain might contribute to the 

observed iVy-dependent effect on task acquisition (see Chapter VII).

6.5 Summary

•  There was no difference in reinforcer preference over water between the FCG mice; 

however, gonadal males were found to drink significantly more total fluid than gonadal 

females.

•  In maze habituation, there was a significant gonadal sex x sex chromosome complement 

interaction on ratios of duration spent in each arm and of total number of entries.

•  During acquisition phase, FCG gonadal males were significantly quicker to acquire the initial 

stimulus-reinforcer contingencies with fewer errors than gonadal females. The performance 

of the gonadal males and females differed significantly during sessions 9 to 14.

•  There was a significant interaction between gonadal sex and sex chromosome complement 

on below-chance errors (indexing perseveration); pairwise comparisons showed that XX5>y 

and XY- animals made significantly more below-chance errors than XX animals.

•  FCG gonadal males committed significantly fewer above-chance errors (indexing 

reacquisition of reversed contingencies) following reversal than gonadal females, although 

this result may have been confounded by arm colour preference.

•  Wildtype XY males were found (i) to have higher levels of serum testosterone than males 

from the FCG model and (ii) to perform similarly to FCG gonadal females rather than 

gonadal males on initial acquisition of the visual discrimination task. There was no 

significant correlation between testosterone and number of acquisition errors, suggesting 

that there was no simple relationship between serum testosterone levels and enhanced 

learning of the initial contingencies displayed in transgenic Sry males.
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Chapter VII 

S r y  brain gene expression and correlation 

with behaviour in Four Core Genotypes 

(FCG) Mouse Model

7.1 Introduction

A main finding in Chapter VI was that gonadal males from the FCG model (XXVry and XY-Vry) 

acquired a simple two-choice visual non-spatial discrimination more rapidly than gonadal females 

from the cross (XX and XY-); the former group also showed more rapid learning on the re­

acquisition of the new stimulus-reinforcer contingency following reversal (indexed by above­

chance errors), though this latter effect appeared to be influenced by initial reinforced arm colour. 

There were complex effects on perseverative responding (indexed by below-chance errors) 

where gonadal sex and sex chromosome complement interacted, and it was also shown that 

wildtype XY males (from a separate cross) performed similarly to the FCG gonadal females 

rather than the FCG gonadal males.

The clear result on initial learning of the task in the FCG model suggested an i>y-dependent 

effect, which, a priori, could be due to indirect effects of Sry on gonadal hormone secretion or 

more direct effects of Sry expression in the brain. In order to address whether the effects on 

learning were systematically related to gonadal hormone levels, in Chapter VI (see discussion 

section) the performance in the initial learning phase of the task (indexed by the number of 

errors committed in order to reach acquisition performance criterion) was correlated with 

previously obtained serum testosterone concentrations in all five experimental groups (XX, 

XXJVy, XY-, XY-dYy and wildtype XY). This analysis showed that testosterone levels were 

highest in wildtype males, lower (but similar) in XXiVy and XY-Vry, and very low (or 

undetectable) in XX and XY- groups; this suggests that there was no systematic nor simple 

relationship, at the group level, between testosterone levels and this component of behaviour.
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This conclusion was further supported by the fact that there was a lack of correlation between 

the number of acquisition errors and serum testosterone level from individual animals.

In this chapter, I examined the possibility that, rather than being due to group differences in 

testosterone levels, the more rapid learning in the transgenic FCG gonadal males was related to 

levels of Sry expression in the brain. There is some (to my knowledge a single) precedent for 

brain-expressed Sry direcdy affecting aspects of behaviour in rodent models; knockdown of Sry 

expression (specifically in the substantia nigra) in rats has been shown to result in impairments in 

motoric function (Dewing et al., 2006). In the work detailed in this final experimental chapter, 

Sry expression in two brain regions was examined; the frontal cortex, and the midbrain 

(encompassing the substantia nigra and ventral tegmental area). The frontal cortex was chosen 

because it is known to mediate a variety of higher cognitive functions, notably aspects of two- 

choice discriminations and reversal tasks across species (Goldman-Rakic, 1996; Bussey et al., 

1996; Chudasama & Robbins, 2006; Brigman & Rothblat, 2008; DeVito et al, 2010). The 

midbrain was chosen because it is a site of relatively high Sry expression (and when Sry levels 

were manipulated, it resulted in behavioural effects, Dewing et al., 2006); additionally, the 

midbrain is rich in dopaminergic neurons and dopaminergic manipulations have been shown to 

influence learning in a variety of contexts (Berridge & Robinson, 1998; Kruzich & Grandy, 2004; 

Tran et al., 2005; Rinaldi et al., 2007; Bach et al., 2008; Hazy et al., 2010). I also examined Sry 

expression in the testes as a control; firstly, because Sry is known to be expressed in the germ and 

Sertoli cells of the adult testis (Koopman et al., 1990; Rossi et al., 1993) and secondly, because, a 

priori, I did not anticipate the likelihood of expression in testis influencing behaviour. Sry 

expression was assayed using sensitive quantitative polymerase chain reaction (qPCR) methods, 

in order to be able to detect the anticipated relatively low levels in brain tissue (Lahr et al., 1995; 

Mayer et al., 2000), and then expression levels in the two brain regions and testes were correlated 

with performance in the acquisition phase on the visual discrimination maze task, as indexed by 

number of errors committed to criterion. My general hypothesis, given that there was no 

significant or simple correlation between testosterone levels and performance on the acquisition 

of the visual discrimination task, was that brain levels of Siy (but not Sry levels in testes) would, 

to some extent, predict initial learning of the behavioural task.
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7.2 Materials and methods

7.2.1 Subjects and anim al husbandly

Animals from the Four Core Genotype (FCG) mouse model (XX, XY-, XXiVy, XY-Sry) and 

wildtype XY male mice were culled at the end of behavioural testing, aged 24 months old. 

Details on general animal husbandry and handling can be found in Chapter II (2.2, and 2.3), and 

generation cross particulars can be found in the General Introduction, Chapter II (2.1.2 and 2.1.3) 

and V (5.2.1). Wildtype XY animals were produced by mating wildtype MF1 males (Harlan, 

U.K.) with uniform X chromosome females; the production of these females was summarised in 

the General Introduction. The number of subjects used in this experimental chapter is 

summarised in Table 7.2.1.

Table 7.2.1i Numbers of subjects (n) used in gene expression analyses of the various regions of interest 

by qPCR. Numbers in parentheses refer to the total number of animals used, including those 

subsequendy excluded from the statistical analyses (see section 7.2.6 for exclusion criteria).

Region of 
interest Genotype and ‘n’

40,XX 40,XX% 40,XY- 40,XY-Sry 40,XY

Frontal
cortex 0(10) 10 0(6) 11 (12) 8(11)

Midbrain 0(10) 9 (10) 0(6) 11 (12) 10(11)

Testes N/A 10 N/A 10(11) 10 (11)

7.2.2 Tissue removal, d issection  and storage

After culling by cervical dislocation, brain (midbrain and frontal regions) and testes were 

immediately removed, dissected and stored, as described in Chapter II (2.11). The midbrain 

section included regions of ventral tegmental area and substantia nigra. The frontal region 

comprised of prelimbic, infralimbic, cingulate and orbitofrontal cortices, together with overlying 

motor and premotor cortex.

7.2.3 Quantitative polym erase chain reaction

Quantitative polymerase chain reaction, or qPCR, was used here to examine the levels of mRNA 

and thus, gene expression, in the regions o f interest in FCG and wildtype male animals. Briefly, 

as detailed below, it involved the extraction of RNA from the tissue and digestion of DNA
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contaminants. RNA was reverse transcribed to cDNA, and the amplification of cDNA under 

PCR conditions was detected using SYBR green, a dye which intercalates between newly 

synthesised double-stranded DNA and which fluoresces under ultraviolet light.

7.2.3.1 R N A  extraction

The frozen tissue sample and 1ml of TRI reagent (Sigma-Aldrich, U.K.) were added to a Lysing 

Matrix D tube containing ceramic beads (beads diameter 1.4mm; MP Biomedicals). The 

contents were homogenised in the ribolyser machine (Hybaid Ltd., U.K.) twice at the speed 

setting of four, for 15 seconds, in order to avoid overheating. 200pl chloroform was added to 

the tube and shaken for 10 seconds. After centrifugation for 15 minutes at 4000rpm and at 4°C, 

the top clear supernatant was transferred to an eppendorf tube. An equal volume of ice cold 

isopropanol was added and left for 5 minutes, after which the tube was centrifuged for 10 

minutes at 4000rpm and at 4°C. The supernatant was poured off and pellet retained. Next, 1ml 

75% ethanol was added to the tube, vortexed for 10 seconds, and centrifuged for 5 minutes at 

4000 rpm and 4°C. The liquid was drained off and the pellet was air dried. 50pl water was 

added, and the tube was put on the heating block at 50°C for 10 minutes and vortexed for 20 

seconds. NanoDrop (Thermo Scientific, U.S.A.) was used to determine the concentration and 

quality of the RNA; the volume containing lpg RNA was calculated.

7.2.3.2 Digestion of D N A  contaminants

5pl DNAase buffer (lOx) and lp l of DNAase (Ambion, U.S.A.) were added to the tube and was 

put on the heating block at 37°C for 30 minutes. 5.5pl DNA inactivation agent (Ambion, U.S.A.) 

was added, left at room temperature for 15 minutes, and centrifuged for 1 minute at 13000rpm 

and at 4°C.

7.2.3.3 cDNA synthesis from RNA

lpg of DNA-free RNA, made up to 20jul with water, was added to a Sprint RT Complete -  

Random Hexamer tube (Clontech, U.S.A.). The cDNA synthesis involved incubation at 42°C 

for 60 minutes, and then termination of the reaction by heating at 70°C for 10 minutes. 80jll1 

water was added to the 20p! mixture to make up a total of lOOpl.

7.2.3.4 qPCR

The following quantities of solution were added together for the qPCR mastermix (1 OjlxI for a 

single sample): 7.5pl Sensimix, 1.6pl water, 0.3pi forward primers (lOpM), 0.3pl reverse primers
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(lOpM), 0.3(jl1 SYBR Green (double stranded DNA fluorescent dye). 5pi of cDNA mixture was 

added to the mastermix. The procedure was performed using a PCR Setup pipetting robot 

(CAS-1200, Corbett Life Science, Qiagen, U.S.A.) to ensure consistency between qPCR runs and 

to minimise human error in pipetting. Each sample was done in triplicate. The qPCR was run in 

the Rotor-Gene 6000 machine (Corbett Life Science, Qiagen, U.S.A.) under the following 

conditions: 95°C for 10 minutes, [95°C for 15 seconds, 60°C for 20 seconds, 72°C for 15 

seconds], repeating bracketed steps a total o f 40 times. Details on the primers used can be found 

in Table 7.2.3i. Three non-template controls (5pi of water added as sample, instead of cDNA) 

were included in each qPCR run.

Table 7.2.3i Sequences of the forward and reverse qPCR primers used in this chapter.

Gene Primer direction Sequence

Hprt
Forward 5TTGCTCGAGATGTCATGAAGGA3’

Reverse 5AATGTAATCCAGCAGGTCAGCAA3’

18S
Forward 5GTAACCCGTTGAACCCCATT3’

Reverse 5GCATCCAATCGGTAGTAGCG3’

Sty
Forward 5’AGCAGCAGCAGCAGTTCCAT3’

Reverse 5GTGGTGGTGGTGGTGGTCAT3’

7.2.4 H ousekeeping control gen es

The expression of two housekeeping genes was analysed, in order for the expression of my gene 

of interest, S?y, to be relatively quantified. These housekeeping genes are expressed ubiquitously 

in all samples and act as a control, against which the expression of Sry could be measured. The 

control genes used in this study were Hprt (hypoxanthine guanine phosphoribosyl transferase) 

and 18S. Hprt is a gene on the X chromosome expressed in all mammalian cells, coding for an 

enzyme involved in purine interconversion (Stout & Caskey, 1985). 18S, located on murine

chromosome 17, encodes for 18s ribosomal RNA found in ribosomes. Both Hprt and 18S are 

common control genes used frequently in qPCR analyses (Hprt: Mayer et al, 2000; Davies et al, 

2005a. 18S: Bonefeld et al, 2008; Relkovic, Ph.D thesis, 2009). For each sample, CT values 

obtained for Hprt and 18S were averaged to give a single value used for normalisation.
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7.2.5 Relative quantification o f  gene expression: 2  ~AAC1 method

The 2'aact method (Livak & Schmittgen, 2001) is a common method for relative quantification; 

this technique gives the expression of the gene of interest in terms of control gene expression 

(Figure 7.2.5a). The crossing threshold, or CT, value is the number of cycles it takes each 

reaction to reach an arbitrary amount of fluorescence (VanGuilder et al., 2008), and the CT values 

for each sample are set at the earliest cycle possible, at the beginning of the linear phase of the 

reaction.

Figure 7.2.5a

Figure 7.2.5a The 2 AACT method is used 
for relative quantification o f  the expression 
o f  a gene o f  interest, in terms o f  control 
gene expression, through measurements o f  
crossing thresholds ( C t ) .

Diagram taken from VanGuilder et al., 
2008, with permission.

■■•■Control.Control G ene (CG) 

— • Treated, C ontro l Gene  

— Control, Target Gene (T6) 
— Treated, Target Gene

In the example outlined in Figure 7.2.5a, there are two samples (Control and Treated) and the 

Control and Target genes of these two samples are measured, and a CT value is set for each of 

the four reactions. A ACT value was obtained for Control and Treated samples by calculating the 

difference between the CT values of Control and Target genes. A AACT value was calculated by 

subtracting the ACT value of the Control from the ACT value of the Treated sample. The AACT 

value is then fed into the 2'AACT equation to obtain the relative quantity value (RQ).

In the present experiment, FCG and wildtype male mice served as Treated and Control samples 

respectively, and Hprt and 18S were the Control genes with Sry as the Target gene (Figure 

7.2.5b).

Q uantitation by Real-Time qPCR

2'AACT- j  - (Crro * CxfehfWW - (C ttg  * Cx.ea K ootro i

\

Control C,

Control C,

Crossing Threshold

Cycle
Treated CT»  Treated Cw
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Figure 7.2.5b Calculation of AACT.

Control gene:
Ct ^

Hprt, 18S
Control sample:

ACt Y
wildtype XY „Target gene: J

C t
Sty 2-aact _

A A C t  —► Relative

quantity value
Control gene: ^
Hprt, 18S

Treated sample: ! ACt  J
FCG mice

Target gene: „
Sy

7.2.6 Exclusion o f  samples and statisdcal analysis

Samples were excluded from analyses if one of the Control genes gave no amplification on the 

qPCR, or when the Target gene gave no amplification when it was expected (e.g. in gonadal 

males, with the presence of S y  confirmed with PCR). Data points (transformed values, 2'ACT) 

were also excluded if they were deemed to be extreme outliers (extreme outliers were data points 

that lay three times the interquartile range from the hinges, as calculated by SPSS software). 

Graphs were drawn with relative quantity (2 AACT) values, in terms of gene expression of wildtype 

males and relevant error bars (Isles et al.!, 2004)20. Statistical analyses were performed on 

transformed values, 2"ACT, which are linear rather than exponential (as CT values are).

Statistical analyses were performed using SPSS software (version 17, SPSS Inc., IBM, U.S.A.). 

Data were subject to One Way ANOVA, with factor GENOTYPE (i.e. XXJVy, XY-Vry, wildtype 

XY; note that data from XX and XY- gonadal females were not available as there were no 

detectable levels of Sty expression). When initial ANOVA revealed a significant effect, Tukey 

HSD Test, or in the cases of unequal variances, Games-Howell Test, was performed for post hoc 

comparisons. Correlational analyses were performed using the Pearson Correlation Test. For all 

comparisons, p values of <0.05 were regarded as significant.

20While calculating AACt, the linear error from the first ACt was carried over. At the last step when one was 
estimating the final 2 AACT, the lower and upper bound o f 2 AACT would need to be calculated whilst taking into 
account the previously calculated linear errors, and thus, the final error bars would be asymmetrical in the 2 AACr 
graphs.
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7.3 Results

7.3.1 Sry expression in midbrain, frontal region and testes

As expected, gonadal female animals (XX and XY-) did not show any detectable expression of 

Siy in the midbrain region (CT values higher than 40); this was not due to confounds such as 

RNA degradation as expression of both control genes was detected in the same samples. 

Therefore, data from gonadal female animals were not subject to statistical analyses. XXSry, XY- 

Siy and wildtype XY males all showed detectable levels of midbrain Siy expression (ACT values 

of 4.3, 4.8 and 11 respectively). The three groups differed significantly in their Sry expression in 

this brain region (Figure 7.3.1a, left panel; main effect of GENOTYPE, F2 27 = 7.827, p<0.01). 

As variances were unequal, post hoc test was done with the Games-Howell Test; gene expression 

in XXSry (p<0.05) and XY-Siy (p<0.001) were found to differ from that of wildtype XY animals 

(approximately 50-100 times greater expression in the former groups), but XXiVy and XY-5>y 

expression did not differ significantly from each other.

Figure 7.3.1a

Midbrain Frontal regions

***
e  1  100

XX XXSry XY- XY-Sry XY 

genotype

XX XXSry XY- XY-Sry XY 

genotype

Testes

Lit
XXSry XY-Sry 

genotype

Figure 7.3.1a (left to right) Relative Siy gene expression in the midbrain region, frontal region and 
testes in FCG and wildtype XY male animals. Data are presented as relative quantity values, with 
upper and lower change of relative quantity errors. * p<0.05; ** p<0.01; *** p<0.001.

In the frontal region, once again, as expected, there was no detectable expression of Siy in 

gonadal females, and no data from these two genotype groups were subject to statistical analysis. 

XXSry, XY-Vry and wildtype XY males all showed detectable levels of frontal cortex Sry 

expression, although generally expression in this region was approximately 10 fold lower than in
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the midbrain21 (ACT values of 8.5, 7.9 and 14.2 respectively). Again, the three groups differed 

significandy in their Sry expression (Figure 7.3.1a, centre panel; main effect of GENOTYPE, 

F226 = 4.318, p<0.05). Games-Howell post hoc test revealed significant differences between 

XXJVy and wildtype XY (p<0.05) and between XY-Sry and wildtype XY (p<0.01) (approximately 

50-100 times greater expression in Siy transgenic mice), but there was no difference in expression 

between the two transgenic groups.

Although Sry is known to be expressed and influence differentiation of the bipotential gonad 

around 11 to 12 days post-coitum in mice (Hiramatsu et al., 2009), expression of the gene was 

detectable in adult XXiVy, XY-Sry and wildtype XY testes (ACT values of 6.7, 3.9 and 3.6 

respectively). This is consistent with a previous report which found Sry expression in adult 

mouse testes, most likely in the germ cells (Koopman et al., 1990). In contrast to the effects in 

the brain, the three groups did not differ significandy in their Sry expression in this tissue 

(Figure 7.3.1a, right panel; effect of GENOTYPE, F229 = 1.679, n.s.).

7.3.2 Correlations of Sry expression in various tissues

Initially, as an additional analysis to investigate whether Siy expression was regulated in a 

concerted manner across tissues, I examined whether there was any correlation between 

expression levels in the various tissues analysed within individual animals. There was no 

significant linear correlation between Siy levels in the midbrain and frontal region (R = -0.073, n 

= 28, n.s.; Figure 7.3.2a), between S y  levels in the midbrain and testes (R = -0.357, n = 27, n.s.; 

Figure 7.3.2b), or between S y  levels in the frontal region and the testes (R = 0.1, n = 26, n.s.; 

Figure 7.3.2c).

7.3.3 Correlations between brain and testes expression of Sry and acquisition 

performance in the simple visual discrimination task

The expression of S y  in the three tissues was correlated with the number of errors made in the 

acquisition phase of the visual discrimination task. There were no significant linear correlations 

between this behavioural measure and any of the three regions, midbrain (R = -0.041, n = 19, 

n.s.; Figure 7.3.3a), frontal region (R = -0.095, n = 18, n.s.; Figure 7.3.3b) or testes (R = 0.121, 

n = 21, n.s.; Figure 7.3.3c).

21 There were approximately 3 to 4 cycle difference on average between midbrain and frontal cortex, i.e. around 23 

and 24, which is around 8 to 16 fold difference.
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Figure 7.3.2a
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Figure 7.3.3a
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7.4 Discussion

The primary aim of this chapter was to investigate whether S y  expression in the brain predicted, 

at least in part, initial acquisition performance in the visual discrimination task, given that it was 

shown in Chapter VII that there was no simple relationship between serum testosterone levels 

and this behavioural measure. First of all, it was shown that, consistent with previous findings in 

rodents (Lahr et al., 1995; Mayer et al., 2000; Dewing et al., 2006), Sry was expressed in the mouse 

brain, and that it was more highly expressed in the midbrain than in the frontal region. It was 

also shown that Sry was expressed in adult mouse testes (Koopman et al., 1990). Secondly, a key 

main finding from the experiments outlined in this chapter was that in both brain regions 

analysed (midbrain and frontal region), Sry expression was much higher (approximately 50-100 

fold change) in transgenic FCG mice (i.e. XXiVy and XY-iVy) than in wildtype XY males.

These data provide direct confirmation of my previous speculation from behavioural data that 

the Sry transgene is not expressed equivalently in comparison to the endogenous version of the 

gene (see Discussion section in Chapter VI). The difference between the transgenic and 

endogenous versions of the Sry gene might arise due to (i) the Sry transgene has been inserted in 

multiple copies, (ii) insertion site effects; for example, higher expression of the Sry transgene 

might be observed if it was inserted behind a strong ubiquitous promoter and/or enhancer, the 

Sry gene might interact with a cis-acting regulatory element, or the Sry gene might be inserted in a 

region where there is high histone acetylation/low histone methylation, leading to easier access 

to the gene by transcriptional machinery, (iii) the Sry transgene being derived from a strain other 

than MF1, or (iv) a combination of these above factors.

Interestingly, in contrast to brain S y  expression, there were no significant differences in S y  

expression in testes between transgenic FCG and wildtype XY animals; this suggests the S y  

transgene is regulated in a tissue-specific manner. There was a tendency towards lower 

expression in testes in XXJVy animals; given that S y  is expressed in the germ cells of adult testes 

(Koopman et al., 1990) and XXiVy males do not have spermatids (Hacker et al, 1995), this lower 

S y  expression in XX5Vy animals was unsurprising. The fact that some S y  expression was 

detected supports the evidence that in addition to germ cells, S y  is also expressed in the Sertoli 

cells (which XXiVy males do possess), albeit at a lower level (Rossi et al, 1993). The slightly 

lower S y  expression in XY-iVy compared to wildtype XY males might suggest that XY-Vry 

become sterile earlier than wildtype XY males, in concordance to previous observations (Paul 

Burgoyne, pers. comm.). Further evidence for tissue-specific regulation of S y  expression was
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obtained through correlational analyses between tissues, such that within individual mice, there 

was no obvious linear correlation between expression in the frontal region, midbrain and testes.

Overall, looking at the data in a more groupwise fashion, the general pattern of Sry expression in 

the brain (but not in testes) mirrors that of the acquisition errors (see Chapter VI), in that 

animals with the highest levels of brain Sry expression (i.e. X X Sy  and XY-iVy) acquired the initial 

stimulus-reinforcer contingency with a significantly lower number of errors than animals with 

low (wildtype XY), or absent (XX and XY-), levels of brain S y  (Figure 7.4a).

Figure 7.4a
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Figure 7.4a Graph showing the number of errors committed in order to reach acquisition 
performance criterion in relation to Sry expression in midbrain and frontal region. Values are 
presented as genotype group means.

However, these groupwise data need to be considered cautiously, as when the relationship 

between brain Sry expression in both regions and acquisition performance was examined at an 

individual level across the three gonadal male groups (XXSy, X Y -Sy  and wildtype XY; i.e. 

correlating an individual’s S y  expression with its corresponding acquisition errors), no significant 

linear correlations were found between either midbrain or frontal region S y  expression and 

behavioural index of acquisition performance. The lack of correlation might be due to the 

relatively small numbers of mice used in the analyses (hence low power to detect an effect) or, 

more likely, to the fact that there is no obvious linear relationship between S y  brain expression 

levels and behavioural performance and/or intermediary neurobiology (e.g. various 

monoaminergic functions). There was also the issue of dissection crudity, in particular, in the 

dissection of the frontal regions, which might encompass too many specific brain regions for a 

clear and significant correlation to emerge.
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Given the current data obtained, I would suggest that it is possible for brain expression of Sry to 

play a role in acquisition performance in the visual discrimination task. To examine this idea 

further, ideally one would like to test mice with a conditional knockout of Sry, whereby Sry 

deletion is restricted to adult animals and relevant specific brain regions (possibly via a cre-lox 

recombination mechanism), on the visual discrimination task; however, these mice would be 

technically very difficult to generate. An alternative may be to downregulate Sry in the brain 

during performance on the visual discrimination task; in mice, this may be achieved by infusion 

of siRNA into the ventricles (e.g. as previously described for knockdown of the serotonin 

transporter gene expression in the mouse brain; Thakker et al., 2005). However, the small size of 

the mouse brain limits the ability to infuse siRNA precisely and to downregulate Sry expression 

in specific brain regions, and therefore, it may be easier to knockdown Siy expression in specific 

brain regions in the rat using siRNA technology or antisense oligonucleotides (as described by 

Dewing et al, 2006) prior to, or during, an analogous visual discrimination task. If, as I 

hypothesise, brain-expressed Sry is important in mediating acquisition performance on the two- 

choice visual discrimination task, one would predict that rodents with experimentally 

downregulated Sry expression in the brain would display poorer performance, as indexed by 

more errors in acquisition of the task than the control animals.

7.5 Summary

• Sry expression was successfully detected in the brain using qPCR.

•  Sry expression in the midbrain and in the frontal region was significantly higher in XXVry 

and XY-JVy than in wildtype XY males, with no significant differences between the two 

transgenic males. Approximately 50-100 times greater expression was found in XXJVy and 

XY-Sjy relative to wildtype XY males. Sry expression was found to be higher in midbrain 

than frontal region, consistent with previous reports.

•  There were no significant differences in S y  expression in the adult testes between XKSry, 

XY-Sry and wildtype XY males.

•  There were no significant correlations between Sry expressions in any of the three regions 

examined; together, the Sry expression data suggest tissue-specific regulation in Sry transgene 

expression.

•  Whilst there was a groupwise correlation between Sry brain expression and total number of 

acquisition errors to criterion in the two-way visual discrimination task (transgenic males
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with high expression of brain S y  made fewer errors, whilst the remaining groups with low 

levels of brain Sry expression made more errors), there were no significant correlations 

between Sry expression in the three tissues analysed and behavioural performance across 

individual subjects.
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Chapter VIII 

General Discussion

8.1 Aims of the thesis

This thesis aimed to investigate the influence of genes on the sex chromosomes on brain and 

behaviour using two mouse models (the XO mouse and the Four Core Genotypes (FCG) 

model). These models allowed the dissociation between sex-linked genetic mechanisms that 

could influence brain function and behaviour indirecdy (i.e. via gonadal differentiation initiated 

by Siy and subsequent hormone secretion) or directly (i.e. via male-limited Y-linked gene 

expression, X-monosomy effects or X-linked genomic imprinting). It was hoped that the data 

generated in the course of the thesis would provide insights into mechanisms underlying sexual 

differentiation of the brain in rodents, and possibly also in humans.

8.2 Main findings

In Chapter IV, I used a behavioural task taxing biconditional rule learning and response conflict, 

using the XO mouse. This novel task was adapted for use in mice from a similar task used 

previously in rats (Haddon & Killcross, 2005, 2006a, 2006b; Marquis et al.̂  2007); lesions of the 

prefrontal cortex have been shown to impair the ability to perform the response conflict aspect 

of the task in both rats (Haddon & Killcross, 2005, 2006a) and mice (Amy Reichelt, pers. 

comm.). An X-monosomy effect was observed on the acquisition of two separate biconditional 

discriminations (visual and auditory), such that 39,XmO and 39,XpO animals acquired the 

biconditional discriminations with significantly more sessions than 40,XX females; importandy, 

data from Chapter III, which examined the basic physiological and behavioural phenotypes of 

the XO mouse, suggested that this finding was unlikely to be due to non-specific factors, such as 

gross sensory deficits or anxiety in XO mice. All karyotype groups showed high levels of 

discrimination on the congruent trials, and worse performance on the incongruent trials (due to 

the increased difficulty and response interference), as expected. 39,XmO and 39,XpO animals 

were capable of completing both congruent and incongruent trials, but 40,XX animals could 

only perform correctly on congruent, but not incongruent, trials.
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A second main finding from this thesis (Chapter V) was the observation that XY- mice (i.e. 

gonadally female mice with a male karyotype and a lack of the endogenous Sry gene) were 

considerably more hyperactive and habituated to the novel environment (i.e. Day One) at a 

slower rate, than their littermates from the FCG model (XXSry, XY-Sry and XX) as assayed by a 

locomotor activity paradigm. Whilst there is no simple explanation for this finding, it is possible 

that one or more Y-linked genes interact with Sry and modulate locomotor activity and 

habituation. A third main finding (Chapter V) was that FCG mice transgenic for Sry (XXSry and 

XYAVy) tended to spend more time exploring the open quadrants of the elevated zero maze than 

non-transgenic littermate mice (XX and XY-), possibly reflecting a lower level of anxiety in the 

former groups. A fourth main finding of the thesis (Chapter VT) was that FCG mice transgenic 

for Sry (XX5Vy and XY-3ry) acquired a two-way visual discrimination more rapidly than non- 

transgenic littermate mice (XX and XY-). In reversal learning following acquisition of this 

discrimination, the FCG mice transgenic for Sry (XXSry and XY-Sry) also showed fewer above­

chance errors (reflecting reacquisition) than non-transgenic littermate mice (XX and XY-), but 

there were no clear genotype effects in below-chance errors (reflecting perseveration). Again, 

importantly, these behavioural effects were not due to general non-specific differences between 

animals of the FCG model (Chapter V). The i ’ry-dependent effects on anxiety and learning 

(Chapters V and VI) could potentially be explained by Sy effects on gonadal differentiation and 

subsequent testosterone secretion, or by Sry expression in the brain; data on circulating 

testosterone levels and Siy brain expression from Chapter VII indicated that the latter possibility 

was more likely for the learning effects. On the other hand, testosterone levels were more likely 

to underlie the effect in anxiety; a significant correlation between testosterone levels and anxiety 

in individual animals (four genotypes from FCG model and wildtype XY males) has been shown 

(p=0.023).

8.3 Limitations of the models

The main findings described above, whilst interesting, should be viewed with some degree of 

caution and the limitations of the two model systems utilised would need to be taken into 

account.

Whilst the X-monosomy effect on acquisition of the biconditional discrimination task is unlikely 

to be confounded by the 39,XpO and 39,XmO mice being generated in separate crosses (a major 

caveat with this model), there are a number of other potential factors which may possibly 

influence this finding, First o f all, the number of 40,XX mice that acquired the biconditional 

discriminations was relatively low (n = 7), and there was some variability in their data; therefore,
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it is possible that this ‘X-monosomy effect’ is a Type I error. The low numbers of 40,XX mice 

(n = 5) for the response conflict phase of the task could result in insufficient power, leading to a 

Type II error (i.e. detection o f a difference between 39,XO and 40,XX animals when in fact 

there was none). However, 40,XX mice performed equivalendy to Paf heterozygote females on 

these measures (acquisition o f biconditional discriminations and response conflict, data not 

shown), so the possibility of Type I and Type II errors is less unlikely. Ideally, the task would be 

repeated with larger numbers of 40,XX mice to reduce the possibility of Type I and II errors. A 

second potential problem with using female mice is that of oestrus status effects on behaviour. 

Again, I do not believe that oestrus influenced the main finding on acquisition of the 

biconditional task in that 39,XmO, 39,XpO and 40,XX mice had similar oestrus cycle lengths 

(Chapter III) and all groups contained an approximately equivalent spread of oestms cycle stages 

during initial acquisition of biconditional discriminations and response conflict. Finally, there 

was some variability both between and within animals across testing sessions, and animals were 

unable to learn the task to a very high level of discrimination (>0.8); these phenomena could be 

due to inherent mouse biology, to strain effects, to sex effects (whereby males outperform 

females), or to task limitations. There is some preliminary evidence that male C57BL/6 mice 

might be able to acquire the biconditional discriminations with more ease; however, that 

particular study utilised a different performance criterion (Amy Reichelt, pers. comms). I believe 

that the biconditional discrimination and response conflict tasks for mouse still require some 

modification in the paradigm to ensure that it can capture the mouse psychology accurately.

One limitation of the FCG model is that wildtype XY male mice cannot be generated from the 

FCG cross and requires a separate generating cross. Therefore, it is possible that the behavioural 

difference between males of the FCG and wildtype XY males on initial acquisition of the two- 

way visual discrimination task (Chapter VI) is simply a cross-effect; steps were taken to try and 

negate this confound (e.g. using wildtype XY males with a uniform X chromosome). A second 

major limitation of this cross is that the Sry transgene is expressed far more highly than the 

endogenous version of the gene in the adult brain (but apparently not in the testes; Chapter VII); 

higher transgenic than endogenous Sry expression has also been observed at the embryonic 

genital ridge during development (De Vries et al., 2002). One implication of this is that XY-Sry 

and XY mice cannot be regarded as equivalent. A third limitation of the data presented using 

this model, is that only testosterone levels in aged mice was examined (i.e. not during behavioural 

testing); hence, the possibility that testosterone levels correlate to a greater extent with behaviour 

during performance of the task than those measured here in this instance cannot be completely 

excluded. In previous studies using the FCG model, mice have been gonadectomised (Quinn et
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al\, 2007; Gioiosa et al., 2008; Chen et al, 2009; Barker et al., 2010) and in some studies, given 

testosterone-releasing implants to ensure a consistent background hormonal milieu against which 

any genetic effects may be expressed (Gatewood et al., 2006). I opted not to undertake 

gonadectomy for the following reasons: (i) I wanted to examine genetic effects on behaviour as 

mediated by hormones and to correlate behavioural performance with hormone levels, (ii) due to 

the possibility of subgroups of FCG model mice reacting differendy to the surgery (anaesthesia, 

pain etc.) and (iii) due to the inherent limitation of gonadectomy in that it can only normalise 

hormone levels in postnatal mice, and not in in utero subjects (when hormones exert a major 

organisational effect).

8.4 Potential neurobiological mechanisms

Assuming the main behavioural findings o f this thesis can be replicated, it will be interesting to 

investigate their neurobiological underpinnings.

The putative X-monosomy effect on learning in the biconditional discrimination task is 

presumably due to haploinsufficiency for one or more genes on the mouse X chromosome 

which escape XCI; to date there are 13 murine genes which have been identified to escape XCI 

(Yang et al., 2010). Whilst there are currendy no data in rodents suggesting which brain regions 

are important in acquisition of the biconditional discriminations specifically (e.g. lesion studies), a 

recent neuroanatomical analysis, conducted by myself and colleagues from Centro Nacional de 

Biotecnologia, Spain (Drs Marta Nieto and Beatriz Cubelos), has shown that spine density on 

cortical glutamatergic neurons may be sensitive to X-monosomy effects (reduced density in XO 

mice, Figure 8.4a). The extent to which genes escaping XCI influence spine density, and how 

spine density might then influence learning of the biconditional discriminations are questions 

that may be addressed in future work. There is evidence that mutant mice with aberrant NMDA 

receptors display decreased dendritic spine density in CA1 hippocampal neurons and impaired 

corticohippocampal learning and memory (Brigman et al., 2010); however, there has been no 

study to my knowledge that links spine density with the biconditional discrimination task 

specifically. In Chapter IV, I suggested tentatively that differences in caudate nucleus structure 

and/or function may underlie the X-monosomy effect on acquisition of the biconditional 

response; additionally, there is evidence for aberrant caudate nucleus function (Haberecht et al., 

2001) and volume (Murphy et al., 1993; Cutter et al., 2006) in TS females relative to controls. 

Therefore, it may be worthwhile comparing this brain region in more detail in 39,XmO, 39,XpO 

and 40,XX mice.
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The XO mouse may be regarded as a model for aspects of brain development and behaviour in 

individuals with TS, which is most commonly caused by X-monosomy (Lynn & Davies, 2007). 

My present data suggest that TS individuals may be slower to acquire biconditional 

discriminations than normal 46,XX females, and may show other deficits in cognitive functions 

that are dependent upon the same, yet unknown, brain regions as those mediating the 

biconditional discrimination acquisition process. Moreover, it is possible that TS subjects, like 

XO mice, show altered cortical neuron morphology, which may partially explain their 

characteristic behavioural phenotype. There is evidence that aberrant neural pruning might be 

present in TS females, which could contribute to abnormal spine density (Kesler et al., 2003; Rae 

et al., 2004).

Figure 8.4a

40,XX 39,XpO 39,XmO

. £  0,8

® 0 ,4

40,XX

H  39.XpO 

H I  39,XmO Figure 8.4a

(above) Micrographs o f  Golgi-Cox-stained individual dendritic 
spines in cortical neurons in 40,XX, 39,XpO and 39,XmO 
animals. Bar =  1.5 pm.

(left) Quantitative analysis o f  spine density, showing an X- 
m onosom y effect. Data were presented as mean values + SD. 
N  = 10; *p<0.01; **p< 0.001.

The iVy-dependent effect on initial acquisition of the visual discrimination task with FCG model 

seems most likely to be due to a direct effect of brain-expressed Sry. This may act via a defined 

mechanism to influence behaviour, for example, through modulation of the dopaminergic 

and/or monoamine system via transcription activational effects on TH (Milsted et al., 2004) and 

MAOA (Wu et al., 2009) respectively, or through some, as yet, unspecified mechanism. There is 

also evidence that Sry might modulate the expression of many autosomal genes (Wijchers et al., 

2010). Furthermore, the tissue-specific regulation observed in this thesis (i.e. the increased
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expression in the S y  transgene was restricted to brain and not observed in the testes) and the 

developmental time point and tissue -dependent switch from circular (embryonic) to linear (adult) 

Sry mRNA transcripts in the brain (Capel et al., 1993; Jeske et al., 1995; Mayer et al., 2000) lend 

support to the notion that brain-expressed Sry could play an important role in brain function. 

The number of TH-ir neurons in the anteroventral periventricular nucleus of the preoptic region 

has been shown to be lower in transgenic Sry animals (XXiYy and XY-Vry), compared to XX and 

XY- gonadal females and wildtype XY" males (De Vries et al., 2002); this pattern of results is 

similar to that obtained from the initial acquisition of the visual discrimination task, giving more 

support to the idea that TH might mediate the 3Vj/-dependent acquisition effect. If the Sry- 

dependent effects on learning are mediated via effects on TH and/or MAOA levels, I might 

expect pharmacological modulation of the dopamine axis to attenuate or exacerbate this effect.

8.5 Implications for sex differences

The main finding from the XO mouse model suggests the presence of one or more X-linked 

genes that escape XCI enhanced learning of the biconditional discrimination task. Genes that 

escape XCI may, theoretically at least, be more highly expressed in female than in male tissues 

(assuming no functionally equivalent Y homologue, and no interaction with gonadal hormones); 

this X-linked gene dosage effect contributes to sex differences. Hence, I may tentatively predict 

that female mice may show more rapid learning of the biconditional task than male mice.

The data from the FCG model suggest that S y  may reduce anxiety and improve acquisition of a 

two-way visual discrimination. At first glance, this suggests that normal male mice may show 

reduced anxiety relative to female mice, and may show enhanced acquisition in visual 

discrimination tasks. However, given the different levels of brain expression of the S y  transgene 

in the FCG model and of the endogenous gene in wildtype XY males, it may not be possible to 

extrapolate directly findings from the FCG model into predictions regarding sex differences. 

Whilst it was indeed shown that wildtype XY males displayed reduced fear reactivity than XX 

females from the FCG model in a possibly testosterone-related fashion, as indexed by 

exploration of the open quadrants of the elevated zero maze, in Chapter VI it was found that 

wildtype XY males and XX females from the FCG model performed equivalently on the initial 

acquisition of the two-way visual discrimination. The findings with regard to the FCG mouse 

model cast some questions on the validity of the model. A. priori, the FCG mouse model is a 

means to dissociate between effects of sex chromosome complement (i.e. XX vs. XY) and 

effects of S y  (i.e. gonadal type male vs. gonadal type female, and/or brain effects of Sry). 

However, the extremely high level of S y  brain expression found in the transgenic animals would
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suggest that the model is not looking at gonadal type male vs. gonadal type females (i.e. gonadal 

hormone dogma), nor normal brain effects of Sry, but is in fact testing the effects of 

supraphysiological levels of transgenic Sry (at least in the brain) against sex chromosome 

complement effects. In addition, there might be some yet unknown interactions between the 

(supraphysiological) levels of Sry and sex chromosome complement, and therefore, when there is 

an effect of sex chromosome complement found in the analysis, one has to consider whether the 

(supraphysiological) level of S y  has influenced the sex chromosome complement effect to a 

significant degree. Whilst the FCG model might be useful in being able to predict sex 

differences in the normal range to some extent, given the supraphysiological levels of Sry 

transgene expression, it might have more application in clarifying the neurobiological 

mechanisms underlying behavioural abnormalities (e.g. ADHD) in conditions such as 47,XYY in 

which Sry over-expression might occur. Risk genes for ADHD have been mapped to the short 

arm of the Y chromosome (where S y  is located), with evidence that children with ADHD are 

more likely to inherit risk factors from their father rather than mother, and ADHD has been 

shown to be more common in males with 47,XYY karyotype (Milligan et al., 2008).

8.6 Future work

The thesis has generated some exciting data which are worthy of follow-up analyses. One 

important avenue for future work will be to investigate the neurobiological mechanisms that 

differentiate 39,XO mice from 40,XX females, and notably the possible mechanisms underlying 

the X-monosomy learning effect seen in 39,XO mice on the biconditional discrimination task. 

This could be done through a number of approaches, guided by parallel lesion studies in 

wildtype female MF1 mice: (i) the expression of immediate-early genes (e.g. c-Fos) throughout the 

brain could be compared between 39,XmO, 39,XpO and 40,XX mice learning the biconditional 

discrimination task, and 39,XmO, 39,XpO and 40,XX mice not undertaking the task, as an index 

of neural activity; I anticipate that expression would be different in 39,XmO and 39,XpO in 

regions mediating the learning process, (ii) in vivo microdialysis in brain regions of interest in 

39,XmO, 39,XpO and 40,XX mice; given the neuroanatomical data above, it may be particularly 

interesting to examine synaptic levels of glutamate and to perform NMDA receptor-targeted 

pharmacological manipulations and, (iii) to see whether the learning deficits observed in 39,XmO 

and 39,XpO can be rescued through genetic means, for example, by introducing transgenes for 

candidate X-linked loci, or by examining the behaviour of XY*x mice (essentially 39,XO mice 

with a small number of additional genes including the X-inactivation escapees Sts and Midi; 

Davies et al., 2007). In addition to further neuroanatomical studies, it would be useful to
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perform more behavioural analyses using the XO mouse model. These could focus on ‘learning’ 

tasks to see whether the X-monosomy deficit in the biconditional discrimination task is 

generalisable to other tasks, such as those known to be highly dependent upon frontal cortex 

function (e.g. working memory tasks such as delayed non-matching to position; Chudasama & 

Muir, 1997), or tasks that assay psychologies which are known to be altered in Turner syndrome 

(e.g. visuospatial ability).

A second important avenue for future research will be to determine more direcdy whether brain- 

expressed Sry can influence behaviour and cognition direcdy (notably, the acquisition of a two- 

way visual discrimination). This may be done by knockdown of the gene in brain regions known 

to underlie the particular psychology of interest, or by using antisense oligonucleotides or siRNA. 

Alternatively, it may be possible, though technically difficult, to generate mice which express or 

lack the Sry transgene only in certain brain regions or at certain developmental time-points. 

These manipulations could be performed in association with pharmacological manipulations of 

the dopamine system to determine the extent to which the effects of brain-expressed Sry are 

mediated via this neurochemical system. Further work in the FCG model might look at aspects 

of cognition that are known to be sexually dimorphic in healthy individuals and/or individuals 

affected by various disorders. One particular aspect of cognition which may be of particular 

interest is attention, given the preponderance of males with attention deficits, and the increased 

susceptibility of XYY males to ADHD (Milligan et al, 2008). I have tested the same FCG mice 

on the 5-choice serial reaction time task, which assesses visuospatial attentional functioning, 

impulsivity and motivation (Humby et al., 1999; Robbins, 2002), and found that gonadal males 

(XXSVy and 'XY-Sry) showed significantly more premature responses than gonadal females (XX 

and XY-) under the ‘long inter-trial interval (ITI)’ (changing ITIs from 5 seconds at baseline, to 5, 

6, 7, 8 seconds) and the ‘short stimulus duration (SD)’ (changing SDs from 0.8 seconds at 

baseline, to 0.8, 0.5, 0.3, 0.1 seconds), manipulations. The performance of wildtype XY males 

was more similar to gonadal females than gonadal males, recapitulating the pattern of results 

found in the initial acquisition of the visual discrimination task. This Vry-dependent effect on 

impulsivity, which appears to be exacerbated by higher attentional demands, suggests that Sry 

(brain-expressed S y  rather than indirect effects via gonadal hormones, given the performance of 

wildtype XY males) might mediate some aspects of impulsivity directly and help explain the 

higher incidence of AD HD in males.
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