
On-Demand Transmission Model
Using Image-Based Rendering

for Remote Visualization

A thesis submitted in partial fulfilment

of the requirement for the degree of Doctor of Philosophy

Asma Al-Saidi

July 2011

Cardiff University
School of Computer Science & Informatics

UMI Number: U585481

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585481
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Summary
Interactive distributed visualization is an emerging technology with numerous ap
plications. However, many of the present approaches to interactive distributed
visualization have limited performance since they are based on the traditional po
lygonal processing graphics pipeline.

In contrast, image-based rendering uses multiple images of the scene instead
of a 3D geometrical representation, and so has the key advantage that the final
output is independent of the scene complexity, and depends on the desired final
image resolution. These multiple images are referred to as the light field dataset.

In this thesis we propose an on-demand solution for efficiently transmitting vi
sualization data to remote users/clients. This is achieved through sending selected
parts of the dataset based on the current client viewpoint, and is done instead of
downloading a complete replica of the light field dataset to each client, or remotely
sending a single rendered view back from a central server to the user each time
the user updates their viewing parameters. The on-demand approach shows stable
performance as the number of clients increases because the load on the server and
the network traffic are reduced. Furthermore, detailed performance studies show
that the proposed on-demand scheme outperforms the current local and remote
solutions in terms of interactivity measured in frames per second.

In addition, a performance study based on a theoretical cost model is presen
ted. The model was able to provide realistic estimations of the results for different
ranges of dataset sizes. Also, these results indicate that the model can be used as
a predictive tool for estimating timings for the visualization process, enabling the
improvement of the process and product quality, as well as the further develop
ment of models for larger systems and datasets. In further discussing the strengths
and weaknesses of each of the models, we see that to be able to run the system
for larger dataset resolution involves a trade-off between generality of hardware
(the server and network) and dataset resolution. Larger dataset resolution cannot
achieve interactive frame rates on current COTS infrastructure.

Finally, we conclude that the design of our 3D visualization system, based
on image-based rendering coupled with an on-demand transmission model, has
made a contribution to the field, and is a good basis for the future development of
collaborative, distributed visualization systems.

Acknowledgment
I would like to thank all those who have made this thesis possible. First and

foremost, I would like to thank my supervisor Professor David Walker for his
understanding, encouragement and guidance. I want also thank him for giving
me the space to experiment with my own ideas. I also want to thank my second
supervisor Professor Omer Rana for his constructive comments.

Thanks also goes to the staff of the Cardiff School of Computer Science and
Informatics, especially Mr. Robert Evans and Dr. Rob Davis for their technical
help, even late at night and at weekends.

I would like also to thank my office colleagues for their support and fruitful
discussions: Wan S Wan Awang, A. Elwaer, and H. Lenando.

I am indebted to many of my friends, Laila al Urimi, Haya Almagwashi, Iman
Al-Kindi, Sonia Benghida and Fatimah Al-Rasbi for their encouragement and true
caring from the start till the end of my PhD studies.

Finally, I want to thank my family for their constant support and care throu
ghout my life.

i

Contents

Contents i

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Introduction... 2
1.2 Research Problem and M o tiv a tio n ... 6
1.3 Research Objectives.. 10
1.4 Research H y p o th esis ... 11
1.5 Scope of the Research .. 12

1.5.1 Applications Context .. 12
1.5.2 Targeted U s e r s ... 12

1.6 Research Contributions.. 13
1.7 Organization of the th esis ... 14
1.8 Chapter Summary ... 16

2 Background and Literature Survey 17
2.1 Introduction... 18
2.2 Scientific and Information v isu a liza tio n ... 19
2.3 Stand-alone Visualization S y stem s.. 19

2.3.1 V isit.. 20
2.3.2 Para V ie w .. 20
2.3.3 VTK ... 20
2.3.4 A m ira ... 21

2.4 Remote Visualization S y s te m s ... 21
2.4.1 Specialized systems ... 23

2.4.1.1 Specialized h a rd w a re .. 23
2.4.1.2 Specialized N e tw o rk s .. 23

2.4.2 Web-based V isualization.. 24

CONTENTS ii

2.4.3 Grid Computing ... 25
2.4.3.1 The Grid Globus Toolkit....................................... 25

2.4.4 Modular Visualization Environments (M V E s).................... 27
2.4.5 Video and Data C o n ferencing .. 28
2.4.6 Desktop S h a r in g ... 28

2.4.6.1 V N C .. 28
2.4.6.2 Microsoft N etM eeting... 29

2.4.7 General-purpose Visualization S y s te m s 29
2.4.7.1 Resource Aware Visualization Environment . . 30

2.4.8 Summary of Current Distributed Visualization Systems . . 31
2.4.9 Interactivity Rate Measured in F ram es/S eco n d 31

2.5 Common Geometrical Rendering T ech n iq u es 32
2.5.1 Limitations to V isualiza tion .. 33

2.6 Image-Based Rendering... 34
2.6.1 QuickTime V R ... 36
2.6.2 Light Field R en d e rin g .. 37

2.7 Image-Based Rendering in Distributed Environm ents................... 40
2.8 Transmission Models for Distributed G raphics................................ 41

2.8.1 Local R endering .. 41
2.8.2 Remote R endering .. 41
2.8.3 An intermediate so lu tio n .. 42

2.9 Chapter Sum m ary.. 45

3 Light Field Rendering for Remote Visualization 46
3.1 Light Field Rendering S y s te m .. 47

3.1.1 Data Acquisition P h ase .. 48
3.1.2 Rendering P h a s e .. 49
3.1.3 Viewing p h a s e ... 50

3.2 Real Life Application D om ains.. 51
3.3 On-Demand Transmission Model Using Image-Based Rendering

for Remote V isualization.. 54
3.3.1 System A rch itec tu re ... 55
3.3.2 Client Module ... 56
3.3.3 Cache Replacement.. 57
3.3.4 Network... 58
3.3.5 Server M o d u le ... 58
3.3.6 Implementation.. 59
3.3.7 Network... 61

3.3.7.1 T C P .. 61
3.3.7.2 cURL ... 62

3.3.8 Running and Synchronization .. 62

CONTENTS iii

3.4 The Programming L an g u ag e .. 64
3.4.1 Q t/C + + .. 65

3.5 Chapter Sum m ary... 66

4 Experimental Results and Discussion 68
4.1 O bjectives.. 69
4.2 Testbed Environm ent.. 70

4.2.1 Experimental P ro ce d u re .. 71
4.3 Effect Of Different Interpolation S ch em es.. 71
4.4 Effect Of Different Transmission Models 76
4.5 Interactivity Rate Measured In Frames Per Second............................ 78
4.6 Effect Of The Number Of Concurrent Visualization Clients 82

4.6.1 Rendering Tim e.. 83
4.6.2 Communication Time ... 83
4.6.3 Total T i m e .. 84

4.7 Chapter Sum m ary... 85

5 Theoretical Cost Comparison for Different Transmission Models 88
5.1 Performance M odel.. 90
5.2 Queuing A nalysis .. 90

5.2.1 Queuing P aram eters .. 92
5.3 General Performance M o d e l .. 94

5.3.1 Local Rendering Model .. 95
5.3.2 Remote Rendering M o d e l ... 96
5.3.3 On-Demand Rendering M o d e l.. 97

5.4 R esults.. 99
5.4.1 Performance model comparison with experimental results 101
5.4.2 Remote Rendering for One C l i e n t .. 101
5.4.3 Local Rendering for One C l i e n t ..103
5.4.4 On-Demand Rendering for one c l i e n t104
5.4.5 Remote Rendering for 32 Concurrent C lie n ts108
5.4.6 Local Rendering for 32 Concurrent C l ie n ts 108
5.4.7 Arrival Rate A .. 112

5.5 Performance Model P red ic tion ..112
5.5.1 Different Dataset Size ..114

5.5.1.1 Remote Rendering... 114
5.5.1.2 Local R endering.. 116

5.5.2 Different Network B a n d w id th .. 116
5.5.2.1 Remote R endering... 116
5.5.2.2 Local R endering .. 119

5.6 Possible Causes for Experimental V a ria tio n119

CONTENTS iv

5.7 Conclusions...121
5.8 Future W o rk ..122
5.9 Chapter Sum m ary.. 122

6 Conclusions 124
6.1 S um m ary .. 125
6.2 Critical E v a lu a tio n ... 125
6.3 C ontributions... 128
6.4 Conclusions.. 129
6.5 Limitations of the w o rk ...130
6.6 Chapter Sum m ary... 132

7 Future Work 133
7.1 Enhancing Performance .. 134

7.1.1 Data Partitioning and Parallelism .. 134
7.1.2 Viewpoint Prediction... 134
7.1.3 Dataset Compression... 135

7.2 Experimental Extendibility... 135
7.3 Enhancing Accessibility ...135
7.4 Enhancing Reliability ..136
7.5 Include Dynamic Live D a ta ... 136
7.6 Enhance the Collaboration E xperience..136

7.6.1 Video and chat utility .. 136
7.6.2 Collaboration S c e n a r io s .. 137

7.7 Enhancing S ecu rity ..138
7.8 Final R e m a rk ... 139

Bibliography 140

Publications 150

V

List of Figures

1.1 Geometry-based versus Image-based R endering 6

2.1 Visualization pipeline of Haber and McNabb 22
2.2 The plenoptic fu n c tio n .. 35
2.3 4D Light Field representation in terms of an array of images taken

at different positions in the (u, v) p lane .. 38
2.4 Sequence diagrams for different sce n a rio s .. 44

3.1 System Overview. In the Data Acquisition phase a 4D dataset
is created. The Rendering phase performs interpolation across
multiple images. In the Viewing phase viewpoint queries are sent
and the received output frame buffers are loaded for display 47

3.2 Real object viewer .. 48
3.3 Synthesized object viewer .. 49
3.4 Independent v ie w e rs ... 51
3.5 The architecture of an on-demand transmission m odel.................... 55
3.6 Server monitoring s c re e n ... 60

4.1 The rendering time for ten different v ie w p o in ts 74
4.2 The rendering time for different interpolation schemes 76
4.3 The effect of interpolation scheme on image quality: (a) without

interpolation; (b) nearest-neighbour in (s , t) and bilinear in (u , v)\
(c) bilinear in (u , v) and nearest-neighbour in (s, t)\ (d) quadrili-
near. The inset in the lower left corner of each image shows an
enlarged portion of the iliac crest from the righthand side of the
skeleton. This shows in more detail the differences in image qua
lity for the four interpolation s c h e m e s ... 77

4.4 The percentage of time spent by each client in rendering and com
munication .. 80

4.5 Frames per second for different scenarios 82
4.6 Time for different numbers of viewers for (a) 128 x 128 and (b)

256 x 256 dataset s iz e s ... 84

L IST OF FIGURES vi

4.7 Time for different numbers of viewers for (a) 512 x 512 and (b)
640 x 640 dataset s iz e s ... 85

4.8 Total time for different dataset sizes for the remote (R), on-demand
(O), and local (L) scenarios... 86

5.1 Local rendering system architecture and parameters for single ser
ver q u e u in g ... 97

5.2 Remote rendering system architecture and parameters for single
server queuing.. 98

5.3 On-demand rendering system architecture and parameters for single
server queuing...100

5.4 Remote rendering model and measured timing results for one vi
sualization client .. 103

5.5 Local rendering model and measured timing results for one visua
lization client ...105

5.6 On-demand rendering: model and experimental timing results for
one visualization client and a random navigation m o d e l...................106

5.7 On-demand rendering: model and experimental timing results for
one visualization client and a coherent navigation m o d e l107

5.8 Queuing time model and measured timing results for remote ren
dering ... 109

5.9 Queuing time for local rendering model and measured results for
32 c l i e n t s ...110

5.10 Server response times in seconds for different arrival rates for re
mote re n d e r in g ... 113

5.11 Estimated performance for remote rendering for different datasets
resolutions...115

5.12 Estimated performance for local rendering for different dataset
resolutions...117

5.13 Remote rendering for different networks b an d w id th s118
5.14 Local rendering for different networks bandwidths120

7.1 Multiple controllers sce n a rio ... 138
7.2 Multiple viewers and a single c o n tro lle r ... 138

vii

List of Tables

2.1 Comparison of local and remote rendering 43

3.1 Java/Swing compared with C ++/Q t... 64

4.1 Dataset size in bits ... 70
4.2 The amount of time spent by each client in rendering and commu

nication ... 79
4.3 Frames per second for different scenarios .. 81

5.1 Parameters descriptions.. 93
5.2 Parameter v a lu e s ...100
5.3 Theoretical model estimates and measured timing results for one

remote vizualization c l i e n t .. 102
5.4 Table of theoretical model timings and measured timing results

for one local visualization c l i e n t .. 104
5.5 On-demand rendering: model and experimental timing results for

one visualization client and a random navigation m o d e l...................106
5.6 On-demand rendering: model and experimental timing results for

one visualization client and a coherent navigation m o d e l107
5.7 Queuing time for remote rendering model and measured results

for 32 clients .. 109
5.8 Queuing time for local rendering model and measured results for

32 c l i e n t s ...110
5.9 Server response times in seconds for different arrival rates for re

mote re n d e rin g ... 112
5.10 Estimated performance for remote rendering for different datasets

resolutions...115
5.11 Estimated performance for local rendering for different dataset

resolutions...116
5.12 Table of estimated remote rendering performance for different

network bandwidths...118

L IST OF TABLES viii

5.13 Table of estimated local rendering performance for different net
work bandwidths ..119

1

Chapter 1

Introduction

Overview

Scientific visualization performs a key role in the exploration phase of large da

tasets, and facilitates their understanding and analysis. However, the increasing

complexity of datasets often exceeds the rendering capabilities of the local pro

cessor. Moreover, recently in e-Science, an increasing demand has arisen among

researchers to collaborate remotely through a geographically distributed environ

ment. The focus of this thesis is to present and investigate an interactive remote

visualization system which provides a highly interactive remote 3D visualization

solution for large numbers of users using Image-Based Rendering (IBR).

This chapter introduces the work presented in this research. It discusses the

main motivations behind the work and the intended research contributions. Fi

nally, the structure of the thesis is outlined on a chapter by chapter basis.

1.1 Introduction 2

1.1 Introduction

Nowadays we are witnessing a revolution in a wide range of technologies. Moore’s

law has successfully defined the trend of processor technology growth over the

last half century, by predicting that processing capabilities double every two years

[77]. Another version of the law called Butter’s law says that the amount of data

coming out of an optical fiber is doubling every nine months. Such growth has led

to the emergence of new areas of research to investigate and explore.

While scientific visualization plays a key role in the exploration phase of large

complex datasets and facilitates the understanding and analysis of such datasets

[75], providing an effective visualization solution is challenging to achieve due

to the fact that the increasing complexity of datasets often exceeds the rendering

capabilities of local processors. Such challenges had previously limited visuali

zation to only local access on powerful machines, or remote access to powerful

machines via dedicated high throughput networks.

Furthermore, with recent advances in e-science applications, an increasing de

mand has arisen among researchers for a means to share data and perform analysis

remotely. Consequently, visualization systems have started to evolve from stand

alone systems to distributed systems, both to exploit remote resources and to serve

geographically remote users, thereby allowing them to collaborate and share vi

sualizations.

The current widespread use of video and audio sharing sites such as YouTube,

Yahoo Video [21], and flickr [15], over networks (particularly by the Internet)

allows users to see video clips that have been uploaded by other users. Video-

based visualization has two major drawbacks:

1.1 Introduction 3

• The fixed camera path.

• The restriction to linear navigation along the video’s time line.

Tan et al. [100] has classified the use of visualization into three categories:

search to locate an object, gain knowledge, and inspection to maintain a particu

lar view of the object. The above drawbacks shared among all 2D visualizations

systems, limit the degrees of freedom of a user’s 3D navigation experience in exa

mining and analyzing datasets. The disadvantages of linear navigation becomes

even worse for highly complex datasets and when users share their viewpoints

with others.

In the past, the visualization of large datasets was limited to local users with

powerful processing hardware, or remote users with dedicated networks. With the

recent development of high-performance local area networks, a variety of distribu

ted applications have emerged. However, current distributed visualization systems

have either not provided a generic solution or have experienced a performance

bottleneck in terms of the size of the dataset, and/or the number of concurrent

users.

To construct an interactive remote visualization system two key challenges

must be met and overcome. First, to ensure smooth navigation the distributed

visualization system must be capable of delivering between 10-15 frames/second

to each user connected to the system [32]. Such a high interactive frame rate is

generally difficult to achieve for systems with low to mid range rendering hard

ware. The second issue is the limitation of the network resources, such as low

bandwidth and high latency. In order for distributed visualization systems to work

efficiently under conditions of high user interactivity, which places a heavy load

IA Introduction 4

on the communication infrastructure, careful performance characterization and

tuning are required.

Current visualization systems require a traditional graphics pipeline, which

uses 3D geometrical rendering to produce a 2D frame buffer that is then sent over

the network. Once datasets become sufficiently complex the number of polygons

*is too large to fit into the memory of a Graphics Processing Unit (GPU), and

must be paged in from the main system memory. Once the dataset is larger than

the local system memory, then these data must in turn be paged in from local disk.

Furthermore, mobile devices, such as smart phones, are becoming more wi

dely used. These devices have less memory and weaker processing capabilities

than desktop and laptop computers, and cannot accommodate modem GPUs be

cause of chip size, cost, and power consumption considerations. There is, the

refore, a need to investigate ways to provide interactive remote visualization so

lutions without requiring powerful processing hardware, and this is addressed by

the on-demand approach proposed in this research.

An alternative to the traditional polygon rendering approach is the emerging

area of Image-Based Rendering (IBR), which uses stored images of the 3D scene

instead of its geometrical representation. IBR has received increasing attention

recently due to the prospect of providing a more realistic representation of very

complex scenes. In addition, by using IBR techniques the final output is made

independent of scene complexity and depends only on the final image resolution

[29], thereby reducing the overall computational cost of rendering the scene. The

refore, with IBR the rendering time is independent of scene complexity, enabling

'In 3D computer graphics, polygonal modeling is an approach for modeling objects by repre
senting or approximating their surfaces using polygons.

1.1 Introduction 5

constant frame rates if network bandwidth can be guaranteed. This thesis focuses

on Light Field (LF) tendering [70] which is one of the most well-known IBR

representations. The LF approach essentially involves looking at 2D slices of

4D datasets. The light field can be represented as L (u ,v , s , t) where (u,v) are

camera views and (s, t) are pixel positions in each view. The 4D LF dataset is

generated for a targeted object in a pre-processing data acquisition phase using

either a multi-array camera [6] or a moving camera gantry [9] for real objects, or

by creating a synthetic scene using a modified ray tracing algorithm (see Fig. 1.1).

In addition to reducing the overall computational cost of rendering a scene, the

discrete nature of the LF dataset, in which each image has a distinct representation,

maps well to a hybrid solution which can overcome the performance drawbacks

identified above. Instead of downloading a complete copy of the LF dataset to

each client, or remotely sending a single rendered LF view back from a central

server to the user each time a user updates their viewing parameters, our strategy

combines both approaches. In response to a viewing query, initially the client

cache is checked for the required images; if an image is not available it is retrie

ved from the server, and interpolated. The client cache is updated by storing the

most recently used images. User navigation behaviour can be studied for random

or orderly scenarios. For orderly exploration, in which user navigation follows a

coherent pattern, it is possible to predictively pre-fetch the desired images, and

this will further help to hide latency and improve client-side performance. Ap

plying such a method will better utilize the rendering capability of the clients and

minimize the server load, which will reduce the overall network traffic. Further-

2Method for generating new views from arbitrary camera positions by combining the input
images which are images for the object from surrounding 6 directions.

1.2 Research Problem and Motivation 6

Geometry-based Rendering

Model
| Conceptual ' Construction

World j"

3D Object

Geometrical n
Rendering 2D Image I1

m TTZj%

^ Image-based Rendering |

f ' Image
I Acquisition

Real World , »

Figure 1.1: Geometry-based versus Image-based Rendering.

more, the excessive use of storage is avoided by using the on-demand download

of the required partial datasets. We also present a performance study of the ef

fect of deploying an on-demand transmission model. The design provides a novel

combination of light field techniques and a transmission model which provides a

general-purpose interactive solution for distributed collaborative visualization.

1.2 Research Problem and Motivation

Interactive distributed visualization is an emerging technology with numerous ap

plications such as distance education and research collaboration. The main moti

vations for building an interactive remote visualization system can be summarized

as:

basedImage
Rendering

Light Field Data-Set

1.2 Research Problem and Motivation 1

• The continuous increase in dataset size generated in a wide a range of scien

tific fields, e.g., satellites or space stations (Terabytes/day) and medical

scans dataset (100s of MB to a few GB). In view of the fact that auto

mated algorithms have not provided a comprehensive solution to explore

and understand such datasets, human visualization and interaction is still an

essential component of many scientific and engineering disciplines.

• Geographically distributed experts. Experts from various scientific fields

are located in geographically distributed places and need to collaborate and

share datasets.

• Need for interactive photorealistic scenes. One of the primary goals of com

puter graphics is to create interactive photorealistic scenes. Achieving both

interactivity and photorealism are contrasting goals. Creating photorealis

tic images involves the simulation of light propagation through an environ

ment. To do this we must model the geometry of the objects in the envi

ronment. Modeling a real world with this process is exceedingly difficult

because of the complexity of the geometry of the real world objects, and

simulating the transport of the light cannot be done in a reasonable amount

of time. On the other hand, interactive graphics has focused on hardware

implementation of the rendering algorithm. In order to achieve interactive

frame rates these systems use a comparatively low level of geometrical de

tail instead of global illumination. While the complexity of the scene that

can be rendered by interactive systems is continually increasing, they are a

still long way from producing photorealistic images.

• Scalability in terms of datasets and number of collaborative users. With the

1.2 Research Problem and Motivation 8

increasing demand from large numbers of users, in particular researchers

looking for a means to share data and perform analysis in remote mode,

the ability to scale systems to handle the increasing size of datasets and

number of users in a cost-effective way is essential for present and future

visualization systems.

• Recent developments in high-performance local area networks and wide

area networks in terms of throughput and error rate, combined with the

continuous increase in the number of computers connected to networks, has

resulted in the emergence of a variety of distributed systems applications.

However, existing distributed visualization systems have either not provided

a generic solution or have experienced a performance bottleneck in terms of

the size of the dataset or the number of concurrent users.

• Generic solution. For non-dedicated hardware and networks interactive per

formance is challenging. The design should leverage individual components

of existing systems while making important innovations in other areas to

provide a general-purpose visualization solution.

• Cost effectiveness. All users should be able to obtain a high quality and

highly interactive visualization without the need for expensive hardware.

• Location transparency, where applications can be run independently of the

location of both the researchers and resources. Remote visualization is an

example of location transparency that provides access to geographically re

mote hardware resources.

1.2 Research Problem and Motivation 9

Considering the above motivations, building such a visualization environment

would experience an overall performance bottleneck. The two main sources for

such a bottleneck are the actual rendering process, and limitations on the network

resources. Current visualization systems require 3D geometrical rendering, and

as datasets become increasingly complex the number of polygons is too large to

fit into the memory of the Graphics Processing Unit (GPU), and must be paged in

from the main system memory. Although, memory densities are increasing rapidly

in line with M oore’s law, the fact that datasets are keeping pace or overtaking

these increases exacerbates the problem. Alternative approaches must therefore

be investigated. The bottlenecks studied in this thesis match two of the most

significant visualization challenges that were identified in 1999 by Hibbard [60]

and revisited recently by Charters [39]. Although researchers in visualization

have paid increasing attention to addressing these challenges, unfortunately some

of them still remain unresolved. Our research focuses on two of these challenges.

The first one is bandwidth flexibility. The wide variation in different network

capabilities means that the visualization architecture should be able to adapt to

network conditions. The second challenge is prediction algorithms, and addresses

the need to deploy a prediction and pre-fetching mechanism that allows images to

be rendered remotely and cached on a local client.

Our aims are centred on investigating an alternative method using Image-

Based Rendering (IBR) which uses multiple images of the scene instead of a

3D geometrical representation. A key advantage of the use of IBR techniques

is that the bandwidth required is independent of scene complexity and is there

fore predictable, given knowledge of the desired final image resolution. IBR uses

stored images of the object instead of the 3D geometry, thereby reducing the ove-

1.3 Research Objectives 10

rail computational cost of rendering a scene, as the rendering cost depends only

on the final image resolution. Therefore, final rendering is now independent of

scene complexity, enabling constant frame rates if bandwidth can be guaranteed.

Furthermore we are aiming to enhance the performance of rendering by using a

hybrid rendering method which combines local and remote rendering. The cor

responding images of a view are sent to the client for interpolation as more view

queries are made. The old images are updated in the cache. This scenario will be

studied for the random and orderly navigation cases [30].

1.3 Research Objectives

Based on the problem and motivations described in the preceding section, the

objectives of the research described in this thesis are as follows:

• To deploy and investigate an image-based rendering solution in a gene

ric 3D remote visualization environment for a large number of concur

rent users. The purpose of this system is to seek solutions to problems

found in current 3D visualization systems, namely the fluctuation in the

frame rate due to its dependence on scene complexity, the tradeoff between

generality in terms of hardware requirements and achieved performance,

and the degree of user expertise needed in using a system. Some systems

use dedicated hardware in order to achieve high performance, while others

are designed for specialist users and may have a steep learning curve.

• To study the interactivity and stability of the overall system perfor

mance. We aim to investigate the effectiveness of the image-based ren

1.4 Research Hypothesis 11

dering approach in terms of interactivity and the number of users (or visua

lization clients). Furthermore, we intend to address questions relating to the

stability of the system in terms of the delivered frame rate for a complex

dataset. The purpose of these analysis studies is to learn how to efficiently

handle large datasets and increasing numbers of concurrent users.

• To investigate different distributed light field rendering transmission

models. The purpose of this investigation is to seek a solution to problems

associated with the current remote rendering approach, which sends the out

put image for each rendering request from the server to the requesting client,

and the local rendering approach in which all the data are sent to the clients

initially. We also aim to investigate an on-demand method to transmit data

effectively in order to enhance the system performance by reducing the ser

ver load and utilizing client rendering capabilities.

• To enable user-controlled viewpoints for both real and synthetic data.

Visualization is used in many areas, which requires the user to access dif

ferent kinds of datasets - either real or synthetic. Real datasets are typically

produced from multiple camera views, and synthetic datasets are usually

created using a given scene geometry and light sources using a ray-tracing

algorithm.

1.4 Research Hypothesis

3D collaborative visualization environments, created by distributed light field ren

dering techniques with tunable performance parameters, provide a generic, highly

1.5 Scope o f the Research 12

interactive, remote 3D visualization solution fo r large numbers o f users, enabling

user controlled viewpoints for both real and synthetic data.

1.5 Scope of the Research

1.5.1 Applications Context

In general, the visualization system could be used for any static or time dependent

field. To exemplify the category of applications we have selected the medical

education field, where proving physicians and students with an accessible 3D ex

ploration and analysis for medical data could makes a significant contribution to

improve medical care in general and it can also provide an extra dimension to the

learning process diagnosis, procedures training, and collaborative research. Our

system can be applied also to non-medical domains and could cover various field

such as geologists and engineers wishing to view a large, complex model (such

as an oil drilling platform), or any user of visualization wishing to view complex

datasets that would otherwise overwhelm a single graphics processor.

1.5.2 Targeted Users

In general, mainstream visualization systems target computationally intensive pro

blems for high-end users. Such visualization is usually carried out on a high per

formance computing, data-storage and network infrastructures. As an alternative,

in this research we investigate an affordable approach to support low-end users

and devices. The system is generic and provides a visualization framework for:

• Low end users without any previous expertise or training requirements. One

1.6 Research Contributions 13

of the primary motivations of this work is to provide an opportunity for users

to perform interactive visualization without the burdens typically associated

with the remote visualization process. Most current visualization systems

require skills in distributing/Grid computing, visualization skills and know

ledge in particular scientific areas. This presents a steep learning curve for

users to master all this knowledge. Our research aims to provide different

ways to access visualization for different kinds of users and avoid this steep

learning curve for users.

• Low end devices with insufficient rendering capabilities, e.g., Personal Di

gital Assistants (PDAs) or smart phones. Also high-end devices with gene

ral purpose network connections

Any higher performance devices could also join the remote visualization.

1.6 Research Contributions

The contributions of this thesis are as follows:

• The design and implementation of a remote visualization system using light

field rendering. We shall focus on building a collaborative visualization

environment for distributed users that involves complex datasets, but with

static geometry and static illumination. The design provides a novel combi

nation of light field techniques and a transmission model which provides a

general-purpose interactive solution for distributed collaborative visualiza

tion.

i.7 Organization o f the thesis 14

• An on-demand transmission model for transmitting datasets based on the

user/client viewpoint parameters. In this model excessive use of storage is

avoided by downloading only partial datasets.

• A performance study for system behaviours for three different transmis

sion models under different viewpoints, datasets sizes and viewers. We also

present a performance study of the effect of deploying a streaming mecha

nism.

• A theoretical cost model for local rendering, remote rendering, and on-

demand rendering. This model will provide a comparison with experimental

results which enables validation of these results. The models will be used

to determine which approach is most cost effective in each situation. Fur

thermore, the models will be used to provide a predictive tool to estimate

the computation and communication costs in scenarios where parameters

are different from those presented.

1.7 Organization of the thesis

This thesis is organized as follows:

Chapter 2 - Background and Literature Survey

Presents a review of the relevant literature related to the current work areas which

we cover and interrelate: remote visualizations systems, Image-Based Rendering

with particular focus to Light Field rendering, and transmission models for distri

buted graphics.

1.7 Organization o f the thesis 15

Chapter 3 - Light Field Rendering for Remote Visualization

Describes the design of the developed system architecture. It discusses the dif

ferent phases and the potential applications for this system. Furthermore, it dis

cusses the three possible transmission models with particular focus on the on-

demand transmission model.

Chapter 4 - Experimental Results and Discussion

Illustrates the various experimental results from the system with different perfor

mance metrics. It also presents an analysis of experimental benchmarks and the

scalability of the system.

Chapter 5- Theoretical Cost Comparison for IBR for Remote Visualization

Evaluates the system using a theoretical cost model for local rendering, remote

rendering and on-demand rendering. This model provides a comparison with the

experimental results presented in Chapter 4 which enables validation of these re

sults. These models are used to determine which approach is most cost-effective

for each situation. An overview of the lessons learned during the development of

the system is also included.

Chapter 6 - Conclusions

Concludes this thesis with a review of the original research contributions based on

the main findings of the research.

1.8 Chapter Summary 16

Chapter 7 - Future Work

Briefly examines some of the future directions that the work could be expanded

into.

1.8 Chapter Summary

This chapter has giving an overview of this thesis. We also presented the main

aims of our research and the major contributions which we have achieved through

this research.

17

Chapter 2

Background and Literature Survey

Overview

This chapter presents an overview of the basic concepts and terminology used

throughout the thesis. In addition, it surveys the current key state-of-the-art tech

nologies associated with the three areas we are aiming to bridge between: Image

Based Rendering, distributed visualization systems, and transmission models for

distributed graphics.

This chapter is organized as follows. First, in Sections 2.1 and 2.2 we intro

duce the basic concepts. Secondly, we review different stand-alone visualizations

systems in Section 2.3, and different remote visualization systems in Section 2.4.

Then we discuss Image-Based Rendering in general in Section 2.6 and then focus

on the Light Field rendering approach used throughout this thesis in Section 2.6.2.

Section 2.8 gives an overview of the different transmission models and their clas

sification, and we describe the related work for each of the techniques. Finally,

Section 2.9 summarizes the main points of this chapter.

2 .1 Introduction 18

2.1 Introduction

To understand the existing visualization solutions and contributions three basic

questions need to be answered.

What is visualization? The term visualization is ambiguous and has been used

differently in different areas (science, design and art, business, etc.). Several at

tempts have been made to define this field. Generally, visualization can be defined

as the process of representing abstract objects as concrete images perceivable by

the eyes and brain. Scientific visualization is applying the ability to visualize abs

tract things to help improve our understanding of arbitrary concepts and pheno

mena, and is often based on data sets gathered by various instruments or generated

by software simulations[67].

Why use visualization? The goal of visualization is simplification and inter

pretation, ultimately to allow scientists to more easily understand and share their

data. It is much easier to understand a visual image than a plain ASCII text file

containing thousands of data points. Thus, visualization supports simulation and

collaboration.

So What? The importance of visualization is that it leads to efficient scienti

fic research. Whether this visualization occurs in your own head or occurs on

a computer screen, or other device, visualization is vital to understanding many

scientific problems.

2.3 Stand-alone Visualization Systems 19

2.2 Scientific and Information visualization

Information visualization is the interdisciplinary study of “the visual represen

tation of large-scale collections of non-numerical information, such as files and

lines of code in software systems, library and bibliographic databases, networks

of relations on the internet, and so forth" [47].

In contrast, scientific visualization studies numerical data. Scientific visuali

zation aims to allow users to gain insights into the data and a deeper understanding

of it, especially the increasingly large datasets which can be generated from simu

lations or experiments. By transforming numeric data into graphics, visualization

provides scientists with an opportunity to discover unseen features and relation

ships hidden in the data. For the scientific community, visualization has became a

very important method for scientific discovery and research. In 1998 McCormick

et al. even claimed that "in many fields it [visualization] is already revolutionizing

the way scientists do science" [75].

2.3 Stand-alone Visualization Systems

Stand-alone visualization systems, sometimes refereed to as single-user environ

ments, allow users to visualize and analyze a dataset on a single machine. Such

systems normally require an expensive graphics workstation that may not avai

lable to many organizations or users. Examples of such systems are discussed in

the following subsections.

2.3 Stand-alone Visualization Systems 2 0

2.3.1 Visit

Visit [20] is a free interactive parallel visualization and graphical analysis tool for

viewing scientific data on Unix and PC platforms. Users can quickly generate

visualizations from their data, animate them through time, manipulate them, and

save the resulting images for presentations. Visit contains a rich set of visualiza

tion features so that users can view their data in a variety of ways. It can be used

to visualize scalar and vector fields defined on two- and three-dimensional struc

tured and unstructured meshes. Visit was designed to handle very large data set

sizes in the terascale range, and yet can also handle small data sets in the kilobyte

range.

2.3.2 Para View

Para View [23] is an open-source, multi-platform data analysis and visualization

application. Para View users can quickly build visualizations to analyze their data

using qualitative and quantitative techniques. The data exploration can be done

interactively in 3D or programmatically using Para View’s batch processing capa

bilities. ParaView was developed to analyze extremely large datasets using distri

buted memory computing resources. It can be run on supercomputers to analyze

terascale datasets as well as on laptops for smaller data.

2.3.3 VTK

The Visualization Toolkit (VTK) is an open-source, freely available software sys

tem for 3D computer graphics, image processing and visualization. VTK consists

of a C++ class library and several interpreted interface layers including Tcl/Tk,

2.4 Remote Visualization Systems 2 1

Java, and Python. VTK supports a wide variety of visualization algorithms in

cluding: scalar, vector, tensor, texture, and volumetric methods; and advanced

modeling techniques such as: implicit modeling, polygon reduction, mesh smoo

thing, cutting, contouring, and Delaunay triangulation. VTK has an extensive

information visualization framework, has a suite of 3D interaction widgets, sup

ports parallel processing, and integrates with various databases on GUI toolkits

such as Qt and Tk. VTK is cross-platform and runs on Linux, Windows, Mac and

Unix platforms [12].

2.3.4 Amira

Amira is software platform for visualizing, manipulating, and understanding Life

Science and bio-medical data coming from all types of sources and modalities.

It exploits the latest graphics cards and processors and it has an intuitive user

interface [3].

2.4 Remote Visualization Systems

Distributed visualization allows different parts of the visualization pipeline to be

run on different machines. Therefore, we can optimize the use of different hard

ware resources in order to achieve a good visualization result. As classified by

Haber and McNabb [57], usually a complete visualization process involves four

types of steps with distinctive characteristics: Data, Filter, Map, and Render. We

illustrate the distributed visualization by using an example visualization pipeline

(see Fig. 2.1). In this pipeline, the Data step is a simulation which provides large-

scale raw data every time step and also requires high computational capability on

2.4 Remote Visualization Systems 22

the machine where it is run. The Filter step can reduce the size of the data by

applying some refining algorithm. Therefore, in the distributed visualization as

the data needs to be transferred between different locations, the Filter step can si

gnificantly reduce the time cost for data transfer. Computational capability is also

essential in the Map step, which is the process of converting data into a geometric

representation. To gain high quality graphics at the Render step, powerful graphi

cal processing hardware is needed. For end-users, a high resolution display screen

will be important in order to have a clear view of the visualization result. Howe

ver, without the distributed visualization, it is difficult and expensive to build up a

machine which meets all the requirements for this example visualization pipeline.

3Dr "i

Filtering
Data

M annin/i
Object

Rendering
image £ j

nil d p p i n y

*L 1
L L A 1------ -J

• l i l

Figure 2.1: Visualization pipeline of Haber and McNabb.

Taking advantage from their modular features, most Modular Visualization

Environments (for example, IRIS Explorer, AVS, etc.) enable users to distribute

different modules onto different machines. More details and examples of these

systems will be presented in Section 2.4.4.

Remote visualization refers to the interactive viewing of three-dimensional

scientific data sets over the network. Because scientific data sets are in the giga

byte size range (or larger), it is difficult to send the entire data set over the network

sufficiently quickly. Extraction, processing, network latency and rendering times

add up and make the proposition of near real-time interactive visualization a chal-

2.4 Remote Visualization Systems 23

lenge. Moreover, the client may have a limited amount of memory and CPU power

for viewing and interacting with the data.

2.4.1 Specialized systems

Despite the fact that advances in computer graphics rendering techniques, such

as ray tracing [49], are able to generate highly realistic images, they are still too

slow to be used for 3D real-time applications using local desktop systems and

limited network bandwidth that cannot support the transfer of large datasets where

interactive frame rates are essential.

2.4.1.1 Specialized hardware

A parallel processing version of a ray tracer 1 using a large number of processors,

such as a 60-CPU Silicon Graphics Origin 2000 [81], can provide a real-time

solution for large computerized tomography scan datasets [82]. Another example

is the Visapult system which utilizes specialized hardware [34], and performs a

high speed parallel rendering process for a massive dataset (l-5Tb).

2.4.1.2 Specialized Networks

A different approach is to focus on minimizing communication effects by exploi

ting dedicated networking, such as ATM [68], to ensure low latency and high

throughput. Unfortunately, such powerful systems are only accessible by a few

*Ray tracing algorithm describes a method for producing visual images constructed in 3D
computer graphics environments, with high photorealism. It works by tracing a path from an
imaginary eye through each pixel in a virtual screen, and calculating the color of the object visible
through it (for more details refer to section 2.5).

2.4 Remote Visualization Systems 24

users, and are mainly targeted at a limited class of datasets, such as volumetric

datasets.

In the approach of Jin et al. [64] shared network storage is used, by placing

multiple network buffers close to the clients. This approach allows the concurrent

download of data, and provides fast access to large data sets. However, such

infrastructure requires the installation of the network buffers for each client, which

requires some technical skill and places a burden on general users.

2.4.2 Web-based Visualization

Cactus [13] provides web-based visualization by streaming the data to the user’s

desktop through an HTTP connection. This approach does not scale well with the

larger datasets often created by high-performance computing applications.

The Cactus project a little out of place here as it is actually a problem-solving

environment that consists of many modules. However, Cactus is designed for easy

parallel work and collaborative development, and integration with Globus and the

Grid has reached a mature stage. Additionally, Cactus provides for code deve

lopment in a number of variants of C and Fortran, and supports cross-platform

code development and execution. Cactus provides an abstract layer above the

Grid middleware through its provision of ‘thorns’ (Cactus components) that im

plement different execution methodologies on the Grid [31], for example an MPI

thorn. I/O is handled in basically the same way. Cactus can also link to visualiza

tion products such as Amira [3] to produce high-quality graphics. Using Cactus’

socket-based data streaming capabilities, remote visualization of live computa

tions can be performed. The collaborative environment is enabled through the

2.4 Remote Visualization Systems 25

ability of Cactus to send a data stream to multiple clients simultaneously [62]. A

number of additional tools have been developed for Cactus on the Grid, including

checkpointing of distributed simulations and remote application steering, as well

as in developing portals to access Grid services.

2.4.3 Grid Computing

Following a different line, Grid computing promises a high performance distri

buted infrastructure that may be used for high-end visualization. For example,

gViz [105] provides a middleware layer between a Grid-based environment and

the IRIS Explorer [22] dataflow visualization software.

2.4.3.1 The Grid Globus Toolkit

The Globus Toolkit [4, 45] is a collection of software components designed to

support the development of applications for high-performance distributed compu

ting environments, or Grids [61]. The aim of the Globus Toolkit is not to provide

application developers with a monolithic system, but rather a collection of stan

dardized and standalone services. Each service provides a basic function such

as authentication, resource allocation, information, communication, fault detec

tion, and remote data access. The toolkit forms the heart of many approaches,

but it is not a silver bullet. In [72] Lu et al. discuss the shortcomings and inef

ficiencies of Globus. Here, inefficiency arises on many levels, but stems mainly

from the GRAM protocol. (1) File transfer is inefficient, as jobs cannot share

file instances, which are subsequently transferred multiple times. (2) Authentica

tion must be performed for each submission and file transfer, even when the same

2.4 Remote Visualization Systems 26

action is repeated multiple times. (3) Job descriptions must be modified for use

with Globus. Condor-G, for example, requires a significant amount of extra me

tadata in comparison to a standard job submission. (4) Once the job is submitted

to Globus it may then also be converted into a multi-request RSL (Resource Spe

cification Language) job description. For example, if in a Condor submit script,

queue = 10 (meaning submit 10 instances of this job) this will create ten Globus

jobs rather than a job with an arity of 10. (5) As there is no resource broker, there

are no means to perform load balancing. (6) Submit machines become perfor

mance bottlenecks because of the file replication process. (7) All clusters are seen

as homogeneous. Although Globus implementations are improving new versions

are often not backward-compatible and require significant changes to the core

implementation of an adopted approach. From the perspective of running very

domain-specific jobs with well-defined and rigid requirements of the operating

environment, Globus is not a good candidate.

Grid systems have proven to give high performance to high-end users with ac

cess to high-end devices. Users employ dataflow techniques to define modules to

run on remote machines, allowing better allocation of Grid resources and conse

quently better performance. At the user level, gViz requires Grid development

skills. Shalf and Bethel [91] concluded that the current state of visualization soft

ware is not well-suited for exploiting the Grid, and that a new Grid-aware frame

work is needed for distributed visualization.

2.4 Remote Visualization Systems 27

2.4.4 Modular Visualization Environments (MVEs)

Modular Visualization Environments (MVEs) are simply defined as modular blocks

of routines which perform certain functions linked in an interactive visual pro

gramming style to build a visualization program [38]. Although widely used for

post-processing simulation data, these systems are also interesting for computa

tional steering because they allow the scientist to interact with the simulation code

itself. Examples of this type of environment are IRIS Explorer [22], SciRun [24],

and Paraview [23]. These systems are typically designed to be used by a single

user at one location and are limited by the types of resources they execute on and

the size of dataset they can manipulate.

The COVISA system [106] is a collaborative visualization environment built

on top of IRIS Explorer. It has a master node that steers the visualization process

and sends any changes in the data to the slave nodes. The slaves nodes act as

viewers and may also have a local viewpoint. It is assumed that every slave node

has a rendering capability (i.e., graphics hardware).

The ARTE environment [73] presents a hybrid approach whereby a full bit

map or geometry may be transmitted, but runs as a single server on a single plat

form and does not make use of remote resources. The system restricts the users

to one view. Commercial visualization solutions are available, such as OpenGL

VizServer [7] which extends OpenGL to work remotely, on the assumption that

participating machines have no rendering capability. VizServer performs the ren

dering process and transmits the resulting frame buffer to the other machines in

the system. This system restricts the users to one view.

2.4 Remote Visualization Systems 28

2.4.5 Video and Data Conferencing

Video and data conferencing systems offer an effective solution to enable distri

buted collaborative teams to communicate and share ideas and images [84]. Al

though video-conferencing facilitates a form of face-to-face meeting experience,

viewing and exploring data and models remains an essential requirement for col

laborative teams [48]. Video-based visualization inherits two major drawbacks

from 2D visualization: the fixed camera path and the restriction to linear naviga

tion along the video’s time line.

2.4.6 Desktop Sharing

2.4.6.1 VNC

The Virtual Network Computing (VNC) system [89] uses desktop sharing to pro

vide remote visualization without moving the data to the clients. This approach

supports high performance for complex datasets by sending the whole desktop

screenshot at interactive rates. VNC consists of a server part and a client part.

Multiple clients may connect to the same VNC server at the same time. The

server specifies what area on the screen is going to be shared and what control

permissions are offered to the connecting clients. VNC does not only share pixels

on the screen amongst users, but also shares the control of the mouse or keyboard

which means clients can also manipulate the items on the shared screen over a

network, relaying the graphical screen updates back in the other direction. There

are various types of VNC, among which the most widely-used VNC systems are

Real VNC [10] and TightVNC [11].

This approach has two advantages: it is application-independent and it does

2.4 Remote Visualization Systems 29

not require changes in the interface. On the other hand, this strategy suffers from

poor interactivity when limited bandwidth connections are used, and performance

is not optimized since it is not tailored for any specific application.

2.4.6.2 Microsoft NetMeeting

Microsoft NetMeeting [16] and its successor, Office Live Meeting [17], share ap

plications among distributed users through a screen sharing approach. However,

low resolution bitmap images and low frame rates make it inappropriate for in

teractive manipulation of large datasets. Other applications, such as VisMockup

[25] provide a real-time, 3D visualization solution that allows users to interact in

a single visual environment. Only limited applications are supported and each of

the users is required to have a local copy of the whole dataset which becomes a

problem for large datasets and for computers with limited capabilities.

2.4.7 General-purpose Visualization Systems

To be able to create a general-purpose visualization system, we need to describe

what characterizes such a system. General-purpose visualization engines are of

many varieties. Domingue et al. [43] has summarized general-purpose visualiza

tion as a way to visualize and to make a good graphical design that may yield

many different representations: text versus graphics, level of abstraction, dis

playing control versus data structures, static versus dynamic visualizations, one

or multiple views, behaviour versus performance, and so forth.

This general aim can be achieved in different ways and requires an effort to

abstract the target entity. Such a visualization system should further enable visua

2.4 Remote Visualization Systems 30

lization sharing and enhance collaboration, which would allow non-constrained

visualization solutions, instead of the existing visualizations solutions which are

specific to groups of people and domains.

2.4.7.1 Resource Aware Visualization Environment

While several of the current remote visualization systems are standalone systems

modified to work on remote resources, the Resource Aware Visualization Environ

ment (RAVE) project is based on a new architecture [52, 54, 53, 55, 56]. RAVE is

a Grid-enabled visualization system that supports heterogeneous machines, from

high capability machines to PDAs, regardless of their underlying architecture. The

RAVE system aims to choose appropriate rendering services, either remotely or

locally, based on the rendering capabilities of the client.

It is increasingly evident that scientific, computational and other users require

access to collaborative visualization resources that are currently unavailable to

them in their own environment. Currently, the National Grid Service (NGS) does

not provide such a service, meaning that any visualization or rendering of datasets

of information must be done locally.

The Resource-Aware Visualization Environment (RAVE) is a distributed, Grid-

enabled collaborative visualization environment that supports automated resource

discovery across heterogeneous machines. Rather than commandeering an entire

machine, RAVE runs as a background process using Web services, thus enabling

resource usage to be optimized and shared between users. RAVE supports a wide

range of machines, from hand-held PDAs to high-end servers with large-scale ste

reo, tracked displays. The local display device may render all, some, or none of the

data set remotely, depending on its capability and present loading. This enables

2.4 Remote Visualization Systems 31

individuals to collaborate from their desks, in the field, or in front of specialized

immersive displays.

RAVE provides a scalable and robust environment on which to create a pro

duction quality service that provides visualization and rendering capabilities to

researchers working collaboratively over geographically dispersed regions.

2.4.8 Summary of Current Distributed Visualization Systems

Distributed visualization at present is often restricted to specific problem domains,

such as volumetric rendering 2, or forwarding a single user viewpoint (usually the

server) to all other users/clients as in OpenGL VizServer software [7]. Visualiza

tion systems that are truly distributed and support generalized rendering (such as

RAVE [54]) have problems with scaling in terms of the number of users and the

size of the dataset. An extensive review of different visualization systems, toge

ther with a visualization taxonomy, has been presented in [56] and and by Brodlie

and coworkers in [36, 37].

2.4.9 Interactivity Rate Measured in Frames/Second

Frame rate is also a term used in real-time computing and gives the number of

consecutive images (or frames) the system or device can produce per second. If

the frame rate of a real-time system is 60 hertz, the system reevaluates all neces

sary inputs and updates the necessary outputs 60 times per second under all cir

cumstances [46]. The designed frame rates of real-time systems vary depending

on the equipment. For a real-time system that is steering an oil tanker, a frame

1 It is a 3D dataset represented as a group of 2D slice images acquired by a CT, MRI, or Mi-
croCT scanner. Usually these are acquired in a regular pattern (e.g., one slice every millimeter).

2.5 Common Geometrical Rendering Techniques 32

rate of 1 Hz may be sufficient, while a rate of even 100 Hz may not be adequate

for steering a guided missile. The designer must choose a frame rate appropriate

to the application’s requirements. There is no reason to show more frames per

second than the viewer can perceive. The exact limit of human motion perception

is still a matter of scientific debate, but it is generally agreed that there is an upper

threshold on the frame rate after which people cannot appreciate any difference.

Apteker et al. [32] concluded that to construct an interactive remote visualization

system it must be capable of delivering between 10-15 frames/second to each user

connected to the system.

2.5 Common Geometrical Rendering Techniques

Traditionally, to render an image one models a scene geometrically to some level

of detail and then performs a simulation which calculates how the light reacts

with that scene. The quality, realism, and rendering time of the resulting image is

directly related to the modelling and simulation process.

1. Isosurfaces are created using a triangulation algorithm that generates a theo

retical hull based on the data points given. Isosurfaces give an impression

of a 3D object and use many thousands of triangles to create surfaces that

interact with the light sources.

2. Volume rendering. During the rendering a 2D projection of a 3D dataset is

displayed. Most commonly 3D data is in RGBA (red, green, blue, alpha)

form, where alpha is the depth value. Each data point is a voxel with a

RGBA value. Different techniques are used to determine the pixel RGB

2.5 Common Geometrical Rendering Techniques 33

value from all of the voxels that are projected to a particular coordinate.

3. Ray tracing. The main idea behind ray tracing algorithm is that physically

correct images are composed by light and that light will usually come from

a light source and bounce around as light rays (following a broken line path)

in a scene before hitting our eyes or a camera. By being able to reproduce

in computer simulation the path followed from a light source to our eye

we would then be able to determine what our eye sees. Essentially, an

imaginary image plane is created for which a ray is cast through each pixel.

Then as the ray travels from the camera to the clipping area (end of volume)

at regular intervals RGBA values are accumulatively calculated.

2.5.1 Limitations to Visualization

As in all areas of science and research there are currently limitations on our ability

to visualize data. Computers give rise to two main limitations:

1. The hardware may be unable to process data fast enough.

2. The software may be unable to provide useful and efficient algorithms.

More complex modeling and simulation leads to higher quality images, howe

ver, they also lead to longer rendering times. Even with today’s most advanced

computer running today’s most powerful rendering algorithms, it is still fairly easy

to distinguish between a synthetic photograph of a scene and an actual photograph

of that same scene.

2.6 Image-Based Rendering 34

2.6 Image-Based Rendering

In recent years, a new approach to computer graphics has been developed: Image-

Based Rendering (IBR). Instead of simulating a scene using some approximate

physical model, novel images are created though the process of reconstruction.

Starting with a database of source images, an image is constructed by querying the

database for information about the scene. IBR has the potential to provide a more

realistic representation of very complex scenes at much faster rates than classical

geometrical rendering. There are a variety of IBR algorithms, however, generally

they can be classified into three main categories depending on the amount of a

priori knowledge of the scene: rendering which requires some geometry of the

scene, rendering with implicit geometry, and rendering with no geometry [93].

Other variations are classified according to how they constrain the view space

of the viewer. These techniques are based on the characterization of the plenoptic

function [28], which is a function that is equivalent to the complete holographic

representation of the visual world. In general this is a 7-dimensional function,

P7(VXiVy,VzA < P , \ t)

representing the intensity of the light observed from every 3D position (Vx,Vy,Vz),

at every possible orientation (6, (p), for every wavelength A, at every time t.

However, applying the 7D plenoptic function for real world scenes involves

very large amounts of data, which makes the data acquisition impractical. As a

result, various techniques have been used to simplify it by limiting the degrees

of freedom. McMillan and Bishop [76] introduced a 5D plenoptic function by

2.6 Image-Based Rendering 35

Figure 2.2: The plenoptic function.

removing the time and wavelength, resulting in

P5(Vx,Vv,V z,0,<p)

Plenoptic modeling employs a 5D parameterization of the radiance in any 3D

scene. However, radiance is constant along a given direction in free space (where

there are no discontinuities due to intersections with objects). Hence radiance is

constant along every direction outside the convex hull of a scene. This relaxes the

dependence of the radiance on the position of the point of interest along the cor

responding ray, and yields a representation of the plenoptic function by radiance

along a four-dimensional set of light rays. The redundancy of the 5D representa

tion is undesirable for two reasons: first, redundancy increases the size of the total

dataset, and second, redundancy complicates the reconstruction of the radiance

function from its samples.

Further restrictions could be applied to the plenoptic function. For example,

2.6 Image-Based Rendering 36

constraining the viewer to a single point in space, resulting in the dimensionality

being reduced to two. This is the principle used in environment mapping where the

view of the environment from a fixed position is represented by a two-dimensional

texture map [51].

2.6.1 QuickTime VR

If environment maps are used at a fixed position but at different orientations, then

such a system approaches Apple’s QuickTime VR system in which a 360-degree

panoramic image, normally of a real scene, surrounds the viewer as a cylindrical

image [40]. VR panoramas are panoramic images which surround the viewer

within an environment (inside, looking out), yielding a sense of place. They can be

“stitched" together from several normal photographs or two images taken with a

circular fisheye lens, or captured with specialized panoramic cameras, or rendered

from 3D-modeled scenes. There are two types of VR panoramas:

• Single row panoramas, with a single horizontal row of photographs.

• multi-row panoramas, with several rows of photographs taken at different

tilt angles. VR panoramas are further divided into those that include the

top and bottom, called cubic or spherical panoramas, and those that do not,

which are usually called cylindrical panoramas.

Apple’s QuickTime VR file format has two representations for panoramic

nodes:

• Cylindrical (consisting of one 360deg image wrapped around the viewer.)

2.6 Image-Based Rendering 37

• Cubic (consisting of a cube of six 90 deg x 90 deg images surrounding the

viewer) [18].

As the camera’s orientation changes, the correct part of the image is retrieved,

warped, and displayed. An alternative is to assume the view is constrained on a

surface, for example the ground, as in the concentric mosaics approach [94].

2.6.2 Light Field Rendering

In the last decade image-based rendering has received increased attention due to

the prospect of providing a more realistic representation of very complex scenes.

The most well-known image-based rendering representation is light field rende

ring [70]. Research using similar approaches has also been carried out indepen

dently at Microsoft, and named Lumigraph [50]. Although, light field rendering

is flexible in the nature of images it can present, it restricts the observer to a re

gion of space free of occluders (i.e., outside the convex hull of the scene), and

it is also not designed to cope with updates in the light field, i.e., the illumina

tion is fixed. The amount of light travelling in a particular direction is measured

in SI units in Watts per steradian per square metre, and usually is referred to as

the radiance. With these constraints the radiance is constant along any ray, and

the light field can be represented by a 4D dataset. All the rays emanating from a

scene can be represented by their intersections with two arbitrary planes, referred

to as the (u, v) and (s, t) planes. With this notation the 4D light field for a scene

may be created by defining a 2D array of camera positions in the (if, v) plane [6],

and generating images in which a pixel position is given by (s, t), as illustrated in

Fig. 2.3. In this case the (s, t) plane is simply the focal plane of the camera. The

2.6 Image-Based Rendering 38

images are sheared perspective views of the scene, and can be used to render a 2D

output image of a 3D scene. By enclosing the scene in a cube, each face of which

is a different (it, v) plane, any viewpoint in free space is supported. Alternatively

a 4D light field for a real scene can also be generated using camera positions on

the surface of a sphere using a moving camera gantry [9]. This results in a more

complex mapping between an image pixel position and (u, v, s, t), and so this ap

proach is not used in this thesis. In addition, the light field for a synthetic scene

can be created using a modified ray tracing algorithm.

u

Figure 2.3: 4D Light Field representation in terms of an array of images
taken at different positions in the (it, v) plane.

The rendering process involves the combining and resampling of the closest

2.6 Image-Based Rendering 39

available images for the given viewpoint, and interpolation algorithms are applied

to create the best estimate of the output image [88]. The simplest interpolation

method is the nearest-neighbor algorithm where a pixel in the output image is

computed as the value of the nearest mapped pixel in the source image. Since

there is little calculation involved in this interpolation method it is the fastest. The

next resampling method is bilinear interpolation where the destination pixel va

lue is computed by combining the linear interpolation along two orthogonal axes.

Although this interpolation method produces smoother results than the nearest-

neighbor method, it tends to require more computation as it involves more data

points from the surrounding neighborhood. In quadrilinear interpolation desti

nation pixels are generated by combining linear interpolation with respect to all

four axes. This approach gives high fidelity results compared with the other ap

proaches, but its higher computation time makes it an appropriate choice only for

highly interactive systems running on high-end devices.

Another extension of the light field approach uses a video camera [104, 103],

although this gives rise to the problem of high storage volumes and requires a

sophisticated data management scheme.

In light field rendering the light field generated consumes a lot of storage

space. Many researchers have presented solutions to these limitations separately,

but unfortunately none of these systems offers an optimal solution that works in

all applications. Different solutions have their strengths and weaknesses, and as a

result the best solution is application-specific. Accordingly, light field rendering

is only now slowly emerging from the research laboratories to be used in real-life

applications [83]. Thus, this thesis focuses on building a collaborative visuali

zation environment for distributed users that involves complex datasets, but with

2.7 Image-Based Rendering in Distributed Environments 40

static geometry and static illumination.

2.7 Image-Based Rendering in Distributed Environ

ments

Image-based rendering is not currently widely used in the area of remote visua

lization. An exception is the work of Jin et al.[64] which uses a shared network

storage infrastructure based on what they call Logistical Networking [33,85]. The

main idea of logistical networking is that placing multiple network buffers close

to the clients shortens the latency on each route of data access. Although this

approach provides an improvement in transmission bandwidth and latency, it re

quires network buffers to be pre-installed which requires technical skills and/or

special software.

Image-based rendering is also used to accelerate remote visualization. Yoon

and Neumann [107] adapt an image-based rendering acceleration method to the

direct rendering of compressed images. The approach is attractive for remote

rendering applications where a client system may be a relatively low-performance

machine and limited network bandwidth makes transmission of large 3D data sets

impractical. The efficiency of the server and client generally increases with scene

complexity or data size since the rendering time is predominantly a function of

image size. This technique uses stored images to accelerate the rendering and

compression of new synthetic scene images. Visapult [34] also employs methods

related to image-based rendering to accelerate remote visualization.

2.8 Transmission Models for Distributed Graphics 41

2.8 Transmission Models for Distributed Graphics

Rendering time is only part of the performance problem as the underlying network

also imposes constraints. Even with the improvements in rendering time gained

by using Light Field rendering [29], the overall performance is still constrained

by the underlying network transmission model. In general, three distinct models

for distributed graphics are in use today (see Fig. 2.4).

2.8.1 Local Rendering

In the local rendering scenario, the entire visualization pipeline is performed by

each individual client machine which uses only local device resources. A copy

of the geometric dataset is replicated and stored locally for access by each client.

Since the rendering task is conducted by participating clients, the frame rate is

determined by the graphics hardware of these clients. Such an approach is feasible

when using the rendering capabilities that exist on high-end clients, or in cases

where the dataset is limited in size. On the other hand, given a combination of

low-end graphics hardware clients, low bandwidth networks, or large dataset size,

the approach will lead to extensive download time and high storage costs, with

potentially non-interactive rendering rates. Moreover, situations exists in which

sharing the data set with remote clients is not advisable for security reasons. Most

existing systems, such as DIVE[58], use this technique.

2.8.2 Remote Rendering

In the remote rendering scenario, the visualization clients interact with 3D objects

and their corresponding requests are sent over the network to the server. Remote

2.8 Transmission Models for Distributed Graphics 42

hardware is used to render the scene. The rendering takes place on the server

and the resulting images are calculated and retransmitted back to the client for

viewing. Remote rendering allows the sharing of expensive hardware via the net

work through a client computer.

In recent years there have been several different approaches to implement this

partitioning strategy. Virtual Network Computing (VNC) [89] uses a client-server

model. The custom client viewer on the local machine interprets any events and

sends them to the VNC server on the remote machine. The server detects screen

updates, processes them, and sends a whole screen update to the client. Other

approaches to remote rendering are presented in OpenGL VizServer [7,19] which

uses a client-server model for remote delivery of hardware-accelerated rendering

without needing to access the entire desktop.

The advantage of a remote rendering system is that there is no requirement

for clients to have high-powered rendering hardware in order to take part in the

visualization, hence even a thin client running on a PDA can join the visualiza

tion process. However, remote rendering has the disadvantage of high network

traffic as each user interaction incurs the cost of transmission of the request and

images. As a result such an approach is not scalable to support a large number

of concurrent users. A comparison of local and remote rendering for a number of

key criteria is given in Table 2.1.

2.8.3 An intermediate solution

It is possible to combine both local and remote rendering approaches. The number

of papers that discuss such an approach is still small (for example, Distributed GL

2.8 Transmission Models for Distributed Graphics 43

Criteria Local Rendering Remote Rendering

Network Traffic Low High
CPU capability High Low
Complexity/Admininstration Less complex High complexity
Storage costs High Low

Table 2.1: Comparison of local and remote rendering.

[41, 92, 101]). Such solutions are particularly applicable to 3D geometrical data

sets, where a simplified version of the geometrical dataset is sent to the clients and

updated each time the user changes the viewing parameters. Whilst present sys

tems using this combined approach show some improvements in performance, for

large complex datasets such a hybrid approach necessarily inherits the drawbacks

associated with both the local and remote rendering approaches outlined above.

It is clear that each of the existing transmission models has several drawbacks,

primarily associated with either the transmission of datasets and/or supporting a

large number of concurrent users which are actively navigating the dataset and

hence generating significant network traffic.

2.8 Transmission Models for Distributed Graphics 44

Viz Client 1---- Local Server

Start connection
ACK

Start download dataset

End download dataset

I
N Select new viewpoint

0 4 ap 3D position
into 4D Space

Run interpolation
algorithm

Project output into
viewing plane

(a) local rendering scenario

Viz Client Remote Server

Start connection
ACK

) Select new viewpoint

; Project output into
viewing plane

Map 3D position
into 4D Space

Calculate required
images

Run interpolation
algorithm

(b) remote rendering scenario

Client Cache r---- Viz Client On-D em and Server 1------- Server Cache

Check for Images

Update

Start connection
ACK

Select new viewpoint

Map 3D position
into 4D Space

I Calculate required
images

Request new Images

Images

) Run interpolation
algorithm

Check for Images

Update
J]

J Project output into
* viewing plane

(c) on-demand rendering scenario

Figure 2.4: Sequence diagrams for different scenarios.

2.9 Chapter Summary 45

2.9 Chapter Summary

This chapter has presented an overview of the basic concepts and terminology

used throughout the thesis. In addition, it has surveyed the current key state-of-

the-art technologies associated with the three areas we are aiming to bridge bet

ween: image-based rendering, distributed visualization systems, and transmission

models for distributed graphics.

46

Chapter 3

Light Field Rendering for Remote

Visualization

Overview

This chapter describes the design and architecture of the remote visualization sys

tem that is the main focus of this thesis. It also demonstrates the use of light field

rendering in remote visualization systems with a real application scenario.

Initially we introduce the three key components of the system. Then we give

examples of the application domains. Following this the implementation of the

three possible transmission models introduced in Chapter 2 is presented, along

with a discussion of the details of creating a practical software solution for a re

mote interactive visualization system. Finally, in Section 3.3, we further focus

on discussing the on-demand approach, where a partial dataset is downloaded to

clients.

3.1 Light Field Rendering System 47

3.1 Light Field Rendering System

We propose a generic distributed visualization system that presents a solution

which is independent of 3D model complexity and relies only on the final out

put image resolution. Our system provides the basis for a distributed collabo

rative environment, where multiple concurrent users visualize a remotely-stored

4D dataset. The developed system applies a multi-user client-server model and

takes advantage of the availability of low-cost network equipment to provide an

inexpensive visualization solution. There are three core phases that comprise our

system architecture, as shown in Fig. 3.1.

40 Dataset

40 DatasetMulti-camera array

: j**SaV Uittv.vw*
Lrivuuttv*
L uuv.v.w

umv.v.w

 Data Acquisition Phase

— N 1

1
1 4 4 1

1
I
I 4 4

1
1

/1 — J

I Dataset |

/ " — V

1
1

4 4 \

1

1

1 4 4
1

1
|

I

V
N
4 4 1

/

_ __/

Local Area
network Viewing Systems

\viewpoint query fl

 ̂ Framebuffer 1

VI
Vk

Viewer 2

Viewer 1

I®
;-.5J

Viewing Phase

I
Rendering Server

—̂| Rendering Phase -

Figure 3.1: System Overview. In the Data Acquisition phase a 4D data
set is created. The Rendering phase performs interpolation across multiple
images. In the Viewing phase viewpoint queries are sent and the received
output frame buffers are loaded for display.

3.1 Light Field Rendering System 48

3.1.1 Data Acquisition Phase

In the data acquisition phase the 4D light field dataset is generated for a targeted

object. The 4D light field dataset is generated in a pre-processing step using either

a multi-array camera [6] or gantry [9] for real objects as shown in Fig. 3.2, or it

is created for a synthetic object using a modified ray tracing algorithm, as shown

in Fig. 3.3. The 4D data should be captured in free space, i.e., in a region free of

occluders.

Figure 3.2: Real object viewer.

This includes the following two situations [70]:

1. Most geometric models are bounded. In this case free space is the region

outside the convex hull of the object, and hence all views of an object from

outside its convex hull may be generated from a 4D light field.

3.1 Light Field Rendering System 49

Image view example - x

Figure 3.3: Synthesized object viewer.

2. If we are moving through an architectural model or an outdoor scene we

are usually moving through a region of free space; therefore, any view from

inside this region, of objects outside the region, may be generated.

3.1.2 Rendering Phase

The second phase involves the rendering process. During this phase, the nearest

images to the requested view are interpolated to produce the desired view. In order

to be able to view a 3D model on a 2D display the rendering process must create a

2D output image based on the description of the viewers position in 3D space. The

light field is created by sampling from a 2D array of camera positions, represented

by (u, v), and a pixel position (s , t) within the selected image. The rendering in

this case simply combines and resamples the closest available images. Interpola-

3.1 Light Field Rendering System 50

tion algorithms are applied to create the best estimate of the output image [88].The

nearest-neighbor interpolation is the most basic and requires the least processing

time of all the interpolation algorithms because it only considers one pixel - the

closest one to the interpolated point. The next method is the bilinear interpolation

combines the linear interpolation along two orthogonal axes around the interpo

lation point. This results in much smoother looking output than nearest-neighbor

interpolation, but it requires a higher computation time as it performs more num

ber of operations. Quadrilinear interpolation produces noticeably sharper output

than the previous two methods, but it consumes longer computation time which

limits its usage to only a high-end processing hardware.

3.1.3 Viewing phase

The final phase is when 3D viewing takes place. In the viewing scenario visuali

zation participants (clients) run an instance of the viewing process in which their

independent 3D viewing positions are created locally and processed remotely in

the rendering server. Each visualization client or viewer is working independently.

Figure 3.4 shows the concurrent interaction between the server process and the

different viewer processes. As the user runs the viewer process it will connect

to the server process. After the user selects a new viewing parameter set, a new

request is sent to the server where the rendering request is processed. The client

will then receive the updated framebuffer and a new view will be reloaded and

displayed. The server executes the viewer’s viewing requests based on their ar

rival time. Clients send their viewing requests separately to the rendering server.

The rendering server processes the requested views concurrently and sends the

3.2 Real Life Application Domains 51

resulting framebuffers to the clients, as shown in 3.4.

R en d er in g S erv er

Viewer N
 Viz C lients

Viewer 1

Viewer 2

Figure 3.4: Independent viewers.

As already indicated, light field rendering is a pixel-based algorithm, and the

results of tests on real data are similar to the results of experiments on synthesized

objects. While the pre-generation of the data are different in each case, the general

behaviour of the algorithms is similar.

3.2 Real Life Application Domains

The LF system developed could be used for any static or time-dependent distri

buted visualization application. Also the light field approach is categorized as a

type of computational imaging which refers to any image formation method that

involves a digital computer. As a result, listing all applications of light field rende

ring would require surveying all uses of computational imaging - in art, science,

engineering, and medicine. In computer graphics, some selected applications are:

• Medical domain. One application in the medical domain is where trainee

3.2 Real Life Application Domains 52

physicians and surgeons need to develop a deep and detailed understan

ding of the structure and variation of human anatomy. Traditionally this

has been acquired through hands-on experience with a cadaver. In recent

years a number of factors, including strengthening health and safety requi

rements, diversification of curricula, geographical distribution of learners

(from undergraduate through to senior practitioners), and a need to work

with multiple examples to experience variations in anatomy, have made this

increasingly impractical and ineffective. In the future we anticipate exten

ding the system’s usage to encompass diagnosis, medical training, and sur

gery planning using real-time visualization in a distributed environment.

• Virtual reality. The Virtual Light Field project [78, 79,96] is a system that

allows real-time global illumination within a virtual reality system. Glo

bal illumination means that the virtual light that is distributed through the

virtual world gives rise to similar effects to the real world. For example,

different types of shadow, and reflections. There have been computer gra

phics techniques to achieve global illumination for years, but achieving this

within an interactive virtual reality environment is a novel path for virtual

reality. This could change how people respond to virtual environments, as

well as making possible opportunities for new forms of interaction.

• 3D television and 3D displays. By presenting a light field using techno

logy that maps each sample to the appropriate ray in the physical space, one

obtains an autostereoscopic visual effect akin to viewing the original scene.

Non-digital technologies for doing this include integral photography, paral

lax panoramagrams, and holography. Digital technologies include placing

3.2 Real Life Application Domains 53

an array of lenslets over a high-resolution display screen, or projecting the

imagery onto an array of lenslets using an array of video projectors. If the

latter is combined with an array of video cameras, one can capture and dis

play a time-varying light field. This essentially constitutes a 3D television

system [63, 74]. Image generation and pre-distortion of synthetic imagery

for holographic stereograms is one of the earliest examples of computed

light fields.

• Face recognition. Combining the light field and the Lambertain reflectance

model gives an approach that integrates the handling of pose and illumina

tion variation. This treatment of the light field results in an identity signature

that is invariant to illumination and pose [108].

• Geology and engineering. The light field approach is useful when vie

wing a large, complex model (such as an oil-drilling platform), or any large

dataset that would otherwise overwhelm a single graphics processor.

• Glare reduction. Multiple scattering of light inside the camera body and

lens optics reduces image contrast. While glare has been analyzed in 2D

image space [99], it is useful to identify it as a 4D ray-space phenomenon.

By statistically analyzing the ray-space inside a camera, one can classify

and remove glare artifacts. In ray-space, glare behaves as high frequency

noise and can be reduced by outlier rejection. Such analysis can be perfor

med by capturing the light field inside the camera, but it results in the loss

of spatial resolution. Uniform and non-uniform ray sampling could be used

to reduce glare without significantly compromising image resolution [87].

3.3 On-Demand Transmission Model Using Image-Based Rendering for Remote
Visualization 54

3.3 On-Demand Transmission Model Using Image-

Based Rendering for Remote Visualization

In addition to reducing the overall computational cost of rendering a scene, the

discrete nature of the light field dataset, in which each image has a distinct repre

sentation, maps well to a hybrid solution which can overcome the performance

drawbacks identified in 2.8. We use pre-fetching and streaming mechanisms to

efficiently and effectively transmit visualization data to remote users/clients. Ins

tead of downloading a complete copy of the light field dataset to each client, or

remotely sending a single rendered light field view back from a central server

to the user each time a user updates their viewing parameters, our strategy com

bines both approaches. In response to a viewing query, initially the client cache

is checked for the required images(similar to the caching approach of Sisneros et

al. [95]). If an image is not available it is retrieved from the server, and interpo

lated. The client cache is updated by storing the most recently used images. User

navigation behaviour can be studied for random or orderly scenarios. For orderly

exploration, in which user navigation follows a coherent pattern, it is possible to

predictively pre-fetch the desired images, and this will further help to hide latency

and improve client-side performance. Applying such a method will better utilize

the rendering capability of the clients and minimize the server load, which will

reduce the overall network traffic. Furthermore, the excessive use of storage is

avoided by using the on-demand download of the required partial datasets. The

design provides a novel combination of light field techniques and a transmission

model which provides a general-purpose interactive solution for distributed colla

borative visualization.

3.3 On-Demand Transmission Model Using Image-Based Rendering for Remote
Visualization___ 55

3.3.1 System Architecture

The developed system provides a distributed collaborative environment in which

multiple concurrent users visualize a remotely stored 4D dataset. A multi-user

client-server model is used, taking advantage of the availability of commodity-

off-the-shelf (COTS) computer hardware, software and network equipment. The

main reason that our system is implemented only in software is that we targeted a

generic system without the need for any special hardware. Furthermore, we aim

to support for broad range of client-side platforms, ranging from a high perfor

mance desktop to a PDA for field scientists. There are two main components that

comprise our system architecture, as shown in Fig. 3.5.

S e rv e r Module

Network

N e w r e q u e s t

R e q jm a g e s
4D LF

Dataset

Server
Manager
Process

0 — 0 0 0
Server cache

Client Module

Viewer
Process

? c
II

Client
Manager
’rocess

Input images

Framebuffer
Rendering
Process

Client cache

Figure 3.5: The architecture of an on-demand transmission model.

3.3 On-Demand Transmission Model Using Image-Based Rendering for Remote
Visualization 56

3.3.2 Client Module

The basic configuration of the client side of the system has the following compo

nents:

• The Client Manager Process is responsible for dealing with external net

work connections and internal process communication within the client. Its

role can be summarized as follow:

- Send user viewing parameters to the Rendering Process.

- Check if the client cache has the required images.

- Establish a connection port to the server.

- Send a request for the required data image.

- Receive the required image data.

- Place a copy of the image data in the cache.

- Send the images to the Rendering Process.

- Send the resulting framebuffer to be displayed by the Viewer Process.

- Close the connection port after the user closes the Viewer Window.

• The Rendering Process locates the images nearest to the requested view

and performs interpolation to produce the desired view. Given an observer’s

viewpoint, each pixel in the output rendered image of the scene corresponds

to a ray traveling through free space from the scene to the observer. Such

a ray intersects the camera plane (it, v) and image plane (s, t). Interpola

tion on the light field dataset is used to estimate the light field (and hence

the pixel value in the rendered image) for the ray. In our implementation

3.3 On-Demand Transmission Model Using Image-Based Rendering for Remote
Visualization 57

we have used bilinear interpolation in (it, v) and nearest-neighbour inter

polation in (s, t) as this scheme provides a good trade-off between image

quality and computational complexity, compared with other interpolation

techniques, such as nearest-neighbour interpolation in both (u , v) and (s, t),

and quadrilinear interpolation. With this type of bilinear interpolation each

pixel in the output image is a weighted average of pixel values taken from

images corresponding to the four nearest points to the intersection of the ray

with the (u , v) plane.

• The Viewer Process is where 3D viewing takes place. As the user inter

acts with the Viewer Process, a corresponding set of viewing parameters is

sent to the Client Manager Process for rendering. The resulting image is re

ceived from the Rendering Process, mapped onto the projection plane, and

displayed using the Qlmage class of the Qt library [8].

• The Client Cache is filled with images based on recent viewing parameters

within the 3D environment. This can be used to build a resource-aware layer

to reduce the load on the server in order to increase scalability in terms of

the number of participating clients. A further enhancement is to apply a

prediction algorithm to pre-load images by predicting the navigation path

of a user.

3.3.3 Cache Replacement

Theoretically we could assume that the client and server caches can store infinite

items. Practically, given the hardware limitations, we assign an upper limit to

the cache capacity. In this case when the cache is full, a discard process must be

3.3 On-Demand Transmission Model Using Image-Based Rendering for Remote
Visualization 58

applied. We applied the Least Recently Used (LRU) algorithm. We assign the

threshold values in the pre-experiment setup. This threshold may be set based on

the memory resources available. During our experiments we have set this value to

be ten dataset images. The system searches the cache for a required image, and if

it is not found the client replaces the least recently used image.

3.3.4 Network

Network communication for remote and on-demand scenarios is built on connection-

based TCP/IP sockets, which guarantee message delivery and order, while the

cURL library is used for downloading the datasets for the local scenario [14].

3.3.5 Server Module

The server has three main components:

• The Server Manager Process handles new client connections using threads.

When a new view request is sent to the server, the request is parsed, the

viewing parameters are extracted, and the cache is checked. The Server

executes the viewer’s requests based on their arrival time (see Fig. 3.6). The

client-server interaction model for our system represents collaboration in

space and time, since participants could be located in different places at dif

ferent times. Each individual viewer can join or leave the visualization at

any time. Each visualization client or viewer independently controls their

viewpoint requests. Each time a new request is received it checks the avai

lability of the related images in the cache and if not present fetches them

from the dataset and copies them to the cache for possible future requests.

3.3 On-Demand Transmission Model Using Image-Based Rendering for Remote
Visualization 59

The role of the Server Manager Process can be summarized as follow:

- Accept a new connection with the joining visualization clients.

- Receive clients’ data requests.

- Check Server cache for requested images, and if the are found send

them to the client.

- Upload any required images not found in the cache from the light field

dataset and send them to the client.

- Update the Server Cache with the recently requested data images.

• The Light Field Dataset stores the 4D light field images.

• The Server Cache stores in memory the images requested recently by the

visualization clients. In collaborative visualization environments the users

normally explore a section of the 3D scene in which they have a common

interest, generating the same viewpoint for all clients.

3.3.6 Implementation

The Server Manager Process handles new client connections using threads. When

a new view request is sent to the server, the request is parsed, the viewing para

meters are extracted, and the cache is checked. The Server Manager Process

executes the viewers’ requests based on their arrival time. Each individual viewer

can join or leave the visualization at any time, and each visualization client or vie

wer works independently. The client module’s role will vary in accordance with

the following three scenarios:

3.3 On-Demand Transmission Model Using Image-Based Rendering for Remote
Visualization 60

a S E R V E R W I N D O W
C o n n e c t e d c l i e n t s m a n a g e r

■ uuul
~ W m \L T W W II T V - \ - t l \ 3 r n -----------------------------------

N e w v i e w p o i n t r e q u e s t (X, Y, Z) | < 0, 0, 0 . 5) 3

N e w v i e w p o i n t r e q u e s t (X, Y, Z) |(0, o. 0 . 5)
N e w v i e w p o i n t r e q u e s t (X, Y, Z) |(- 0 . 0 2 , - 0 . 0 2 , 0 . 5)
N e w c o n n e c t i o n
N e w c o n n e c t i o n
N e w v i e w p o i n t r e q u e s t (X, Y, Z) | (- 0 . 0 2 , - 0 . 0 2 , 0 . 5)
N e w v i e w p o i n t r e q u e s t (X, Y, Z) |(0, 0, 0 . 5)
N e w v i e w p o i n t r e q u e s t (X. Y, Z) |(- 0 . 0 2 , - 0 . 0 2 , 0 . 5)
N e w v i e w p o i n t r e q u e s t (X. Y, Z) |< 0, 0, 0 . 5)

3N e w v ie w D o in t r e a u e s t (X. Y. 7) l (- 0 . 0 4 . - 0 . 0 4 . 0 . 5)

Q u i t

Figure 3.6: Server monitoring screen.

• In the local rendering scenario, the clients pre-fetch (download) the whole

dataset and proceed with the rendering procedure.

• In the remote rendering scenario, as the user runs the viewer process it will

connect to the server process, and each time the user selects new viewing

parameters, a corresponding request is sent to the server where the rendering

process is performed, and the resulting framebuffer is then sent back to the

client. A new view will be loaded and displayed.

• In the on-demand rendering scenario, as the user interacts with the Viewer

Process, a corresponding viewing parameter set is sent to the Client Ma

nager Process for rendering. The Client Manager Process determines the

images needed for rendering that user viewpoint, and if all the images are

located in the cache then the Rendering Process performs interpolation to

produce the desired view. Otherwise, the missing images will be requested

from the server. The resulting image is received from the Rendering Process

3.3 On-Demand Transmission Model Using Image-Based Rendering for Remote
Visualization 61

and mapped onto the projection plane. The system architecture is illustrated

in Fig. 3.5.

3.3.7 Network

All components communicate via the communication layer network. Although

there are other existing packages used for communication, such as CORBA and

Java Remote Method Invocation (RMI), these add more overhead to our systems.

CORBA and RMI both provide a protocol layer above TCR Since the performance

is still the most important criteria for selecting the communication protocol the

system was implemented using standard TCP/IP.

33.7.1 TCP

The Transmission Control Protocol (TCP) is one of the core protocols of the In

ternet Protocol Suite. TCP is one of the two original components of the suite,

complementing the Internet Protocol (IP) and therefore the entire suite is com

monly referred to as TCP/IP. TCP provides the service of exchanging data re

liably directly between two network hosts, whereas IP handles addressing and

routing messages across one or more networks. In particular, TCP provides re

liable, ordered delivery of a stream of bytes from a program on one computer

to another program on another computer. TCP is the protocol that major Inter

net applications rely on, such as the World Wide Web, e-mail, and file transfer.

Other applications, that do not require a reliable data stream service, use a sister

protocol, the User Datagram Protocol (UDP). This provides a datagram service,

which emphasizes reduced latency over reliability. Network communication for

3.3 On-Demand Transmission Model Using Image-Based Rendering for Remote
Visualization 62

remote and on-demand scenarios is built on connection-based TCP/IP sockets,

which guarantee message delivery and order.

3.3.7.2 cURL

cURL stand for ‘Client for URLs’, although originally it was an abbreviation for

“Client URL Request Library". The cURL project contains two products:

• A free and easy-to-use client-side URL transfer library, supporting FTP,

FTPS, HTTP, TELNET, file transfer resume, http proxy tunneling, and more.

• The libcurl library is highly portable, and builds and works identically on

numerous platforms, libcurl is free, thread-safe, IPv6 compatible, feature-

rich, well-supported and fast.

Since cURL uses libcurl it supports a range of common Internet protocols, cur

rently including HTTP, HTTPS, FTP, TELNET and FILE, libcurl is a reliable and

portable library which provides an easy interface to a range of common Internet

protocols, libcurl is free open-source software.

3.3.8 Running and Synchronization

Experimenting with remotely-accessed graphics resources can be problematic.

The X I1 protocol [90] is a network-transparent client-server system for the dis

play of graphics on remote machines. This is contrary to the design of systems

such as Microsoft Windows, which have not been designed with remote abilities

in mind. The display that is being used runs the X server, and applications that

3.3 On-Demand Transmission Model Using Image-Based Rendering for Remote
Visualization 63

utilize such a display are X clients. The X server maps the abilities of the opera

ting system and graphics hardware that it is running on into the X protocol which

is accessed by a client application through use of the Xlib library.

In order to actually launch a real time remote visualization session, we run a

configuration shell script on the server machine.

The processing engines are hosted on a collection of 32 open-access Linux

workstations representing the visualization clients. The client input represents the

data set variability and different user viewpoints and allows the task sequence to

execute in parallel. Before the processing is carried out an SSH connection is

established to each workstation. This causes each client to establish a connection

with the server machine alsaidi.cs.cf.ac.uk, and initiates a Client process on each

of the workstations cslx01,cslx02,..csl32. Part of the script is as follows:

! / b in / bash

rsh 1

x h o s t +

rsh - n - 1 s c maa l O c s l x O l "DISPLAY= a 1 s a i d i . c s . c f . ac . uk : 0 . 0 ;

e x p o r t DISPLAY ; / home / scm aa 1 0 / D e s k t o p / c l i e n t / c l i e n t "&&

rsh —n —1 scmaal O c s l x 3 2 "DISPLAY= a 1 s a i d i . c s . c f . ac . uk : 0 . 0 ;

e x p o r t DISPLAY ; / home / scm aa 10 / D e s k t o p / c l i e n t / c l i e n t "

3.4 The Programming Language 64

Criteria Java/Swing C++/Qt

Updated Developed in late 90’s
and not updated recently

Active development

Availability Available in Java
installation

Library files need
to be added

2D/3D functions Not available Direct access to
in Java 2D and GL drawing functions

Memory-efficiency Higher memory requirement Lower memory requirement

Runtime-efficiency Tends to run longer than
the equivalent C/C++ code

Shorter running
time than Java

Table 3.1: Java/Swing compared with C++/Qt.

3.4 The Programming Language

The programming language choice is a significant aspect as it has a considerable

impact on overall performance. A common choice is Java, but this has too much

overhead in terms of creating the Java Virtual Machine [42]. Furthermore, Pre-

chelt in his empirical comparison [86] arrives at the conclusion that “a Java pro

gram must be expected to run at least 1.22 times as long as a C/C++ program".

Also he states that on average, and with a confidence of 80%, that Java programs

consume at least 32 MB (or 297%) more memory than the corresponding C/C++

programs.

While Java may be preferable to C++ since it is platform-independent lan

guage, Qt/C++ is a cross-platform toolkit that runs on many platforms. By using

Qt [8] we can now add to the performance and efficacy features of C++, platform -

independence and rich functionality.

3.4 The Programming Language 65

3.4.1 Qt/C++

Qt is a cross-platform application and UI framework. Using Qt, it is possible

to write web-enabled applications once and deploy them across desktop, mobile

and embedded operating systems without rewriting the source code. Qt provides

all the functionality needed to develop advanced GUI applications on desktop

and embedded platforms. Qt uses the native graphics APIs of each platform it

supports, taking full advantage of system resources and ensuring that applications

have a native look and feel.

Features of Qt include:

• Intuitive C++ class library.

• Portability across desktop and embedded operating systems.

• Integrated development tools with cross-platform IDE.

• High runtime performance and small footprint on embedded systems.

• Auto-scaling, font-, language- and screen orientation-aware layout engine.

• Support for anti-aliasing, vector deformation and scalable vector graphics

(SVG).

• Complete UI customizability with style API and widget stylesheets.

• Support for hardware accelerated graphics and multiple displays on embed

ded systems.

• Complete set of controls (widgets) from buttons and dialogs to tree views

and tables.

3.5 Chapter Summary 66

3.5 Chapter Summary

In this chapter we have described the software architecture for using an on-demand

transmission model using light field rendering within a distributed collaborative

environment. The system makes use of commodity networking, hardware, and

software for distributed visualization. We have discussed the existing local and

remote transmission models and compared them with our on-demand model. Fur

thermore, we have discussed the implementation choices for the implementation

of the three models introduced in the last two chapters. This began with an ex

planation of the different phases of the system and how they interact with each

other. Then we explained how we automate the running and synchronization of

the system. Finally we presented the different libraries that have been used.

Our results in the next chapter show that a light field rendering system enables

constant framerates independent of the scene complexity. This is in contrast with

geometry-based visualization, where the framerate depends on the complexity of

the scene for the chosen viewpoint. The comparative efficiency of the light field

rendering system increases as the scene complexity increases. The applicability of

the light field rendering system covers a large number of application areas, where

interactive collaboration could enhance and accelerate navigation and discovery.

Our system currently provides a generic on-demand remote rendering solution

for users to access visualization services using computationally inexpensive light

field rendering, allowing low-end devices, such as PDAs and mobile phones, to

interactively explore 3D objects.

The on-demand approach shows stable performance as the number of clients

increases because the load on the server and the network traffic are reduced. The

3.5 Chapter Summary 67

main performance bottleneck arises from the limited transfer rate across the net

work, which can be improved with the availability of higher performance net

works.

68

Chapter 4

Experimental Results and

Discussion

Overview

In this chapter a performance study of the system described in Chapter 3 is pre

sented in order to understand different factors that influence the performance, to

help determine areas requiring further attention, and clarify where the focus for

major future work should directed.

Performance experiments have been conducted to directly compare the on-

demand model with the local and remote models outlined in Section 3.3.6. In the

following we describe the testbed setup and present the key performance results.

4.1 Objectives 69

4.1 Objectives

In general, there has been little research addressing the fundamental issue of ana

lyzing the effects of different factors on different 3D rendering scenarios. The

problem can be quite data set specific, and it is difficult to draw any general

conclusions that fit the huge variety of datasets and rendering approaches. Ho

wever, image-based rendering provides a constant rendering time that does not

depend on scene complexity, but only the final output dimensions. Factors wor

thwhile investigating include the number of visualization clients, the dataset size,

and interpolation schemes. The impact of these factors is important for both theo

retical and practical purposes.

The experiments in this chapter explore a prototype interactive remote visua

lization system using image-based rendering which provides a highly interactive

remote 3D visualization solution for large numbers of users. The objectives of the

experiments include:

• To permit many users to access an interactive 3D remote visualization sys

tem based on commodity-off-the-shelf components.

• To investigate the effectiveness of the local, remote and on-demand trans

mission models in term of frames per second.

• To provide users options with different dataset sizes that are appropriate

for their requirements and hardware. The aim is to measure the achieved

interactive performance for each dataset size.

4.2 Testbed Environment 70

4.2 Testbed Environment

Our testbed environment uses commodity hardware consisting of 32 standard PCs

running Linux Fedora 7. Each node has a 2.8 GHz processor, 2 GB of RAM,

and an nVidia Corporation G70 graphics card (GeForce 7800 GS) with 256Mb of

RAM. The server has 2 GB of RAM, and is a 64-bit Intel Pentium Dual CPU ma

chine with a 3.4 GHz processor and an ATI Radeon X I300 graphics card. Com

munication is over a 100 Mb/s local Ethernet network.

The datasets used represent different views of part of a human skeleton. To de

termine the performance of the system we used four different light field dataset

dimensions. These datasets all have a (u, v) array of 16 x 16 camera positions so

there are 256 images for each dataset, and for each position we have image sizes

of 128 x 128, 256 x 256, 512 x 512, and 640 x 640 pixels. These image sizes,

summarized in Table 4.1, reflect the range of image sizes commonly supported by

current camera, scanners and PDAs.

Dataset One Image Whole Dataset

128 x 128

256 x 256

512 x 512

640 x 640

131072

524288

2097152

3276800

33554432

134217728

536870912

838860800

Table 4.1: Dataset size in bits.

4.3 Effect O f Different Interpolation Schemes 71

4.2.1 Experimental Procedure

The navigation path (a sequence of cursor positions) is recorded from human in

teraction with the visualized object to emulate a real-life navigation experience,

and for homogeneity we make sure that these parameters are used in all experi

ments for quantitative results. Such a navigation path is used in ordinary computer

viewpoint animation, and is in fact a form of constrained navigation consisting of

a linear time sequence of camera models [59].

The system is cross-platform as Qt provides a high level of abstraction [8]. All

timings were performed using the Qt time functions (t.start() and t.elapsed()) to

measure time in milliseconds.

4.3 Effect Of Different Interpolation Schemes

As outlined in Section 2.6, given a particular viewpoint the corresponding 2D

output image of the scene is derived from the light field samples at a set of points in

(u , v, s, t). These sampled points are represented as a set of equally-spaced images

in the (it, v) plane with pixel positions in an image denoted by (s, t). Suppose that

a ray from the scene to the observer intersects the (u,v) plane at (tt*,i;*) and

the (s, t) plane at (5*, £*). Interpolation is required to determine the light field at

(it*, i>*, s*, £*) from the set of images in the (it, v) plane.

Let the image at location (Uj, Vk) in the (it, v) grid be denoted by Lj,k. The

grid spacing is Au in the it direction and Ai; in the v direction, and the pixels

are As and A t apart in the s and t directions. This thesis considers four possible

interpolation schemes with our remote visualization system:

4.3 Effect O f Different Interpolation Schemes 12

(a) No interpolation. Let (um,vn) be the point nearest to (it*, u*) in the (u,v)

grid, and let (sp, tq) be the nearest pixel to (s*,£*). Then the interpolated

light field for this ray is:

where LmiriyPjq = Lm,n(sp, tq). Thus, this is a nearest-neighbour interpola

tion scheme in both (it, v ,) and (s, t).

(b) Bilinear in (it, v), and nearest-neighbour in (5, t). Let itm < it* < itm+i and

vn < V* < vn+i, and let (sp, t q) be the nearest pixel to (s*,£*). Then the

interpolated light field for this ray is:

(c) Nearest-neighbour in (it, v), and bilinear in (s, £). Let (umivn) be the point

nearest to (it*, 1;*) in the (it, v) grid, and let sp < s* < sp+i and tq < £* <

tq+i. Then the interpolated light field for this ray is:

L(it*,i;*,s*,£*) — L ; (4.1)

where

t4n = {Um+i ~ Uif)’ Un = AV ^Vn+i ~ V̂

L (i t * , i ; * , s * , £ *) — ' (4.3)

4.3 Effect O f Different Interpolation Schemes 73

where

(- l)i+1 (- l)i+1
&p = (s p + i ~ s *) i T q = { tq + i ~~ t *)

(d) Quadrilinear in (u ,v ,s , t) . Let um < u* < um+1 and vn < *;* < un+i), and

let sp < s* < Sp+i and tq < t* < tq+\. Then the interpolated light field for

this ray is:

L (t l * , V*, S* , U) = Mm*/i< 7i Tg £ m ,n ,p >g + (4 ‘4)

■ 1 1 0 1 r i 1 1 0 O r
' t J'm l/n <Jp T q l j m ,n ,p + l ,q ^ m .n ^ + l .g + l

, , , ,0 , ,0 0 0 r
i ' ’ * ■ f t m n p q ^ m + l ,n + l ,p + l , q + l

The righthand side of this expression can also be written as:

EEEE ll rn l 'n (Jp 'rq I J T n + i,n + j,p + k ,q + t (4-5)
t= 0 j = 0 k = 0 £—0

Figure 4.1 shows the average rendering time for ten different viewpoints (Vx, Vy, Vz)

repeated in five experimental trails representing the user movement in 3D space.

We can observe that the rendering time is the same for all viewpoints. Thus, it does

not matter what viewpoint the user chooses as the rendering times for the different

viewpoints have very close average values with small standard deviation (± 0.8

ms to ± 3.5 ms). This indicates that the scene complexity does not affect the total

rendering time. The navigation path defining the viewpoints used started at (0,0,4)

and then visited the following succession of points: (-0.649806, -0.375056,4), (-

0.649806, -0.388139,4), (-0.675972, -0.357611,4), (-0.702139, -0.361972,4), (-

4.3 Effect O f Different Interpolation Schemes 74

0.767556, -0.379417,4), (-0.815528, -0.388139,4), (-0.828611, -0.388139,4), (-

0.872222, -0.383778,4), (-0.894028, -0.375056,4), and (-0.920195, -0.357611,4).

Note that (x , y) = (0,0) corresponds to the centre of an image.

80

70

60

50

E
« 40
Ei-

3 0

20

10

0
1 s t 2 n d 3 rd 4 th 5 th 6 th 7 th 8 th 9 th 10 th

V ie w p o in ts

Figure 4.1: The rendering time for ten different viewpoints.

Fig. 4.2 plots the rendering times needed when different interpolation schemes

are used for various sizes of FrameBuffer. It is clearly shows that rendering time

increases for larger images and also clearly shows the difference in time required

for the four interpolation schemes. In fact, if we look in more detail at the ren

dering time for one pixel (by dividing the total rendering time by the number of

— 128x128 - ■ - 256x256 - * - 51 2x51 2 — X - 640x640

'

------ --

A*------- *

i i t i i m i I 1

4.3 Effect O f Different Interpolation Schemes 75

pixels) we can conclude that the interpolation time is equal to a small constant,

a , for the interpolation operation times the number of pixels in the output image.

The overall rendering cost will depend only on the number of pixels in the output

image. This helps in predicting the rendering time for any image size within the

upper limit of the memory.

Although producing the output without any interpolation processing is faster,

the resulting output image is of low fidelity and exhibits blurring. The other two

bilinear methods show similar timings, with case (c) having higher timings due to

the bilinear method computation cost. Quadrilinear interpolation produces the hi

ghest fidelity result compared with the other schemes. However, for larger image

sizes its high computation cost makes it an appropriate choice only for high-end

devices: for 512 x 512 images it produces only 3 frames/second, and 2 frames/-

second for 640 x 640 images. We carried out the subsequent sets of experiments

using interpolation that is bilinear in the (w, v) plane and nearest-neighbour in the

(s, t) plane, as this provides a good trade-off between computation time and the

fidelity of the resulting framebuffer.

This thesis focuses on performance in terms of the display rate measured in

frames per second. However, another aspect of performance is the impact of each

interpolation method on the quality of the displayed image. Thus, in general,

it might be expected that using no interpolation would result in a poorer qua

lity image than when quadrilinear interpolation is used. If the variation in image

quality for different interpolation schemes is significant then clearly there is a

trade-off between frame rate and image quality which must be considered. Figure

4.3 shows a rendered image for each of the four interpolation schemes conside

red above, and the quality for no interpolation is discemably poorer than when

4.4 Effect O f Different Transmission M odels 76

500
No interpolation.

- ■ - Bilinear in (u, v), and n eare st-n e ig h b o u r in (s, t)
- * - Nearest-neighbour in (u, v), and bilinear in (s, t)
— * — Quadrilinear

450

400

350

300

u 250

200

150

100

128x128 512x512 640x640256x256

Fram eB ufferSize

Figure 4.2: The rendering time for different interpolation schemes.

quadrilinear interpolation is used.

4.4 Effect Of Different Transmission Models

This experiment studies the relative amounts of time spent in rendering and com

munication. We further subdivide the communication time into actual transfer

time for the data and the queuing time waiting for processing on the server side.

In this experiment 5 1 2 x 5 1 2 datasets are used as it is a typical image size used in

4.4 Effect O f Different Transmission M odels 11

(c) (d)

Figure 4.3: The effect of interpolation scheme on image quality: (a) without
interpolation; (b) nearest-neighbour in (s , t) and bilinear in (u ,v); (c) bili
near in (tt,v) and nearest-neighbour in (s,t); (d) quadrilinear. The inset in
the lower left corner of each image shows an enlarged portion of the iliac
crest from the righthand side of the skeleton. This shows in more detail the
differences in image quality for the four interpolation schemes.

many applications. As seen in Fig. 4.4 and Table 4.2, communication time (trans

fer plus queuing) becomes increasingly important as more clients join the visua

lization. This is a common drawback for all systems based on a central server

4.5 Interactivity Rate Measured In Frames Per Second 78

as the server becomes overloaded and clients need to queue before their requests

are processed. In remote rendering, the queuing time eventually dominates the

overall performance, being 55% for 32 users. While the original components of

the visualization process (rendering and transfer) only occupies 45% of the ove

rall time, the rest is wasted in queuing time. In the case of local rendering, where

the whole dataset needs to be transferred, the queuing time shows an even higher

influence as it takes more than 90% of the total time.

The on-demand case illustrates the effectiveness of this mechanism by redu

cing the queuing time to about 20% of the total time. In the on-demand approach

the communication time and the rendering time do not change much with the

number of viewing clients (once there are more than two), which indicates the

reduction in the server load and the overall reduction in the network traffic com

pared with the remote and local cases, respectively. The lower server load is a

consequence of the use of processing resources on the client side.

4.5 Interactivity Rate Measured In Frames Per Se

cond

As previously mentioned, the frame rate is a major benchmark tool to assess the

whole visualization process. Exporting any stand-alone visualization system into

a distributed computing environment means less performance and more variation

is expected due to the nature of the network. Thus, providing a high and constant

frame rate is difficult to achieve within a distributed computing environment.

Figure 4.5 and Table 4.3 illustrate the performance measured in frames per se-

4.5 Interactivity Rate Measured In Frames Per Second 19

No. Of
Viewers

Rendering
Mode

Rendering
Time(ms)

Comm.
Time(ms)

Remote 19.9 9.6
1 On-Demand 74 37

Local 58 966

Remote 19.6 9.35
On-Demand 73.5 55.75

2 Local 61 905.5

Remote 18.975 9.55
On-Demand 73.5 55.75

4 Local 62 966

Remote 18.5875 39.475
On-Demand 73.125 60.125

8 Local 60 1074.125

Remote 18.8875 110.725
On-Demand 73 51.25

16 Local 60 2388.375

Remote 18.534375 229.875
On-Demand 73.03125 47.28125

32 Local 64 21635.13333

Table 4.2: The amount of time spent by each client in rendering and commu
nication.

cond (FPS). At small resolutions (128 x 128 and 256 x 256) the remote rendering

case shows a higher interactivity rate due to the small time interval taken by the

rendering process (averages of 2.9 ms and 14.2 ms). For a large dataset (512x512

and 640 x 640) remote rendering performs slightly better with one or two viewers,

but on-demand rendering gives better performance for more than two viewers. As

the dataset resolution increases the rendering carried out by the server machine

takes a longer time. The rendering time on the server is also increased as more

clients join and this will eventually overload the server so that rendering requests

from clients must be queued, which causes further delay. The on-demand rende-

4.5 Interactivity Rate Measured In Frames Per Second 80

Rendering Time H Transfer Time Queuing Time

32 viewers <j

r Local
On-Demand

I Remote

16 viewers <j

r Local
On-Demand

I Remote

8 viewers <j

r Local
On-Demand

I Remote

4 viewers j
r Local

On-Demand
I Remote

2 viewers <j

r Local
On-Demand

I Remote

1 viewer <j

r Local
On-Demand

I Remote

I I I I i i i i i i I
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 4.4: The percentage of time spent by each client in rendering and
communication.

ring results show a more constant performance under different client loads. The

maximum standard deviation shown is ±0.7ms for on-demand rendering, ±1.2ms

for remote rendering, and ± 1.7ms for local rendering.

3

Local On-Demand Remote
Number 128 256 512 640 128 256 512 640 128 256 512 640

of viewers X X X X X X X X X X X X
128 256 512 640 128 256 512 640 128 256 512 640

1 1.22 1.22 0.105 0.0820 84.033 24.65 10.32 6.648 178.57 41.32 17.30 10.289

2 1.21 1.18 0.034 0.025 92.59 22.72 10.512 7.021 181.812 40.99 14.50 10.32

4 1.12 1.13 0.051 0.0201 102.04 25 10.087 6.77 182.645 42.15 11.05 6.42

8 1.099 1.0526 0.038 0.012 86.206 24.19 10.39 6.71 182.09 41.48 10.51 4.59

16 0.507 0.19 0.01017 0.0078 73.53 21.27 9.95 6.68 181.41 38.64 8.82 5.36

32 0.06 0.022 0.0058 0.003 89.29 22.43 9.69 6.37 159.92 44.87 7.69 2.62

Table 4.3: Frames per second for different scenarios.

00

4.5
Interactivity

Rate
M

easured
In

Frames Per
Second

4.6 Effect O f The Number O f Concurrent Visualization Clients 82

■ 1 V iew er 1 2 V iew ers ■ 4 V iew ers 1 8 V iew ers 1 1 6 V iew ers 1 3 2 V iew ers

32 Viewers
16 Viewers

^ 8 Viewers
' 4 Viewers

2 Viewers
1 Viewer

Local Rendering On-Demand Rendering Remote Rendering

Figure 4.5: Frames per second for different scenarios.

4.6 Effect Of The Number Of Concurrent Visuali

zation Clients

Initially each client starts a connection with the server. On the server side the

server forks a new thread for each of the individual client connections so that all

the connection requests can be handled concurrently. We have examined the effect

of the number of visualization clients for local rendering, remote rendering, and

4.6 Effect O f The Number O f Concurrent Visualization Clients 83

on-demand rendering.

4.6.1 Rendering Time

Figures 4.6 and 4.7 compare the rendering time for the three scenarios for different

dataset resolutions. It is clear that all of the three scenarios have a constant overall

rendering performance, since all models are using Light Field rendering and the

rendering process is independent of the viewpoint and depends only on the size of

the final resulting framebuffer. Remote rendering has the lowest rendering time

on average. This is due to the fact that rendering is performed on one dedicated

server with higher processing capabilities, while in the on-demand case the ren

dering is performed on different, non-dedicated client machines with a variety of

background activities. The on-demand scenario has a higher rendering time than

in the local rendering case because of the mechanism of checking the cache for

the required images and updating the cache.

4.6.2 Communication Time

An examination of the communication times for the three transmission models

(see Figs. 4.6 and 4.7) shows that the local rendering approach has the highest

communication time (15.7 seconds for the 128 x 128 dataset and 288 seconds for

the 640 x 640 dataset) for 32 concurrent clients, because clients must pre-fetch the

whole dataset before rendering. For the smaller 128 x 128 and 256 x 256 datasets

the remote rendering case has slightly better performance, but as the dataset size

increases then for a larger number of clients (more than two) the on-demand case

has more stable performance.

4.6 Effect O f The Number O f Concurrent Visualization Clients 84

4.6.3 Total Time

The overall impact of the communication time (see Fig. 4.8) varies according to

the dataset size and the number of visualization clients. For the remote case the

communication time is similar to the rendering time for the 1 2 8 x 1 2 8 dataset,

while for the 2 5 6 x 2 5 6 dataset the average rendering time is 14ms and the com

munication time is 10ms. However, for the 5 1 2 x 5 1 2 dataset the rendering time

is 40ms and the communication time rises from 19ms for one client to 91ms for

3 2 clients. At this point the communication time starts dominating the total time.

The on-demand approach overcomes the server queue time by processing the ren

dering at each client, and by building a cache of images.

■ R e m o t e R e n d e r in g ■ R e m o t e C o m m . ■ L o c a l R e n d e r i n g

■ L o c a l C o m m . ■ O n - D e m a n d R e n d e r i n g ■ O n - D e m a n d C o m m .

100000

10000

£ 1000
w
E 100 P

10

1

1 2 4 8 1 6 3 2
N um ber of Viewers

100000

10000

| 1000
at
E 100

10

1

1 2 4 8 1 6 3 2
N um ber of v iew ers

Figure 4.6: Time for different numbers of viewers for (a) 1 2 8 x 1 2 8 and (b)
2 5 6 x 2 5 6 dataset sizes.

(a) 1 2 8 x 1 2 8

4.7 Chapter Summary 85

■ R e m o t e R e n d e r in g ■ R e m o t e C o m m . ■ L o c a l R e n d e r in g

■ L o c a l C o m m . ■ O n - D e m a n d R e n d e r i n g ■ O n - D e m a n d C o m m .

1000000

100000

_ 10000
i/i

E
Z iooo
E
p 100

10

1
1 2 4 8 1 6 3 2

Number of viewers

1000000

100000

~ 10000
E
Z iooo
E
K 100

10

1

1 2 4 8 1 6 3 2
Number of viewers

Figure 4.7: Time for different numbers of viewers for (a) 512 x 512 and (b)
640 x 640 dataset sizes.

4.7 Chapter Summary

This chapter has described the software architecture for using an on-demand trans

mission model using light field rendering within a distributed collaborative envi

ronment. The system makes use of commodity networking, hardware, and soft

ware for distributed visualization. We have discussed the existing local and remote

transmission models, and compared them with our on-demand model.

Our results show that a light field rendering system enables constant frame

(b) 6 4 0 x 6 4 0

(a) 5 1 2 x 5 1 2

Ti
m

e
(m

s)

1000000 ■ 16 Viewers ■ 32 Viewers■ 1 Viewer ■ 2 Viewers ■ 4 Viewers ■ 8 Viewers

100000

10000

1000

128x128 R 128x128 L 128x128 0 256x256 R 256x256 L 256x256 0 512x512 R 512x512 L 512x512 0 640x640 R 640x640 L 640x640 0

FrameBuffer (Pixels)

Figure 4.8: Total time for different dataset sizes for the remote (R), on-demand (0), and local (L) scenarios.

00
O n

4.7
Chapter

Sum
m

ary

4.7 Chapter Summary 87

rates independent of the scene complexity. This is in contrast with geometry-based

visualization, where the frame rate depends on the complexity of the scene for the

chosen viewpoint. The comparative efficiency of the light field rendering system

increases as the scene complexity increases. The applicability of the light field

rendering system covers a large number of application areas, where interactive

collaboration could enhance and accelerate navigation and discovery.

Our system currently provides a generic on-demand remote rendering solution

for users to access visualization services using computationally inexpensive light

field rendering, allowing low-end devices, such as PDAs and mobile phones, to

interactively explore 3D objects.

The on-demand approach shows stable performance as the number of clients

increases because the load on the server and the network traffic are reduced. The

main performance bottleneck arises from the limited transfer rate across the net

work, which can be improved with the availability of higher performance net

works.

88

C h a p t e r 5

Theoretical Cost Comparison for

Different Transmission Models

Overview

This chapter will discuss a simple theoretical cost model for the three image-based

rendering scenarios: local, remote and on-demand. We aim to find a cost model

that provides a reasonable fit to the performance data. These models will provide

a comparison with experimental results presented in the previous chapter which

will enable validation and interpretation of these results. Furthermore, such mo

dels can be used as predicative tools to project performance for computation and

communication time where parameters are different from those measured experi

mentally.

The organization of this chapter is as follows. Section 5.1 discusses the perfor

mance characterization of each of the three transmission models. Section 5.2 pre

sents a brief overview of the basic concepts and parameterization of our queueing

analysis. The results in Section 5.4 compares the estimated model results with the

experimental ones. In Section 5.5 an estimate of the predicted performance for

other situations of interest is presented. Section 5.6 explains different reasons that

4.7 Chapter Summary 89

may result in discrepancies between the models and the measured performance re

sults. Finally the important conclusions and some ideas for possible future work

are highlighted.

5.2 Queuing Analysis 90

5.1 Performance Model

In this chapter we develop theoretical performance models for each of the three

transmission models that been discussed in the previous chapters. For the analysis

we consider each method individually. We examine the performance characte

rization of each model, and compare the theoretical estimated performance with

the experimental results. Furthermore, these models can be used to estimate the

costs of the computation and communication. Theoretical models are abstract,

and hence many assumptions are made in conducting a modeling study. These

assumptions are motivated by simplicity, adequacy of measurements, and ease of

evaluation. Examples of parameters that are variable and may be tuned in the

performance model are the following:

• Type of transmission protocol. We used TCP as it is retransmits the lost

packets and so results in a more reliable service.

• Data-set attributes (image type, size, depth, etc.).

• Number of visualization clients.

• Network bandwidth and latency.

5.2 Queuing Analysis

Before we describe the models in detail, it is apparent that, based on what we have

seen from the results presented in the previous chapter, the server can serve only

one client request at a time. Thus, if the server gets more rendering requests within

5.2 Queuing Analysis 91

a short period time the service delay in the system will also increase. Understan

ding the relationship between congestion and delay is essential for designing an

effective solution to this problem. Queuing Theory provides the tools needed for

such an analysis. In this section we describe the basic queueing model and we dis

cuss some important fundamental relations for this model. Further details on these

methods can be found in standard textbooks on queuing theory [44, 66, 97, 102].

There is a standard notation for classifying queueing systems into different

types proposed by Kendall [1]. This is a shorthand notation to characterize a range

of queueing models. It has a three-part code a/b/c. The first letter (a) specifies the

interarrival time distribution, and the second one (b) the service time distribution.

For example, for a general distribution the letter G is used, M for the exponential

distribution (M stands for Memoryless), and D for deterministic times. The third

and last letter (c) specifies the number of servers. Some examples are M/M/1,

MZM/c, M/G/l, G/M/l and M/D/1.

We will now categorize our system using this classification notation, based on

the results of the previous chapter, by examining the fundamental parameters: the

arrival rate p, the service time Ts, and the number of servers.

• If the arrival rates stay constant over the time period then the arrivals fol

low a Deterministic distribution (D). If no pattern of distribution applies,

the arrivals follow a General distribution (G). If arrivals occur continuously

and independently of one another, then they follow a Poisson distribution,

thus (a)=M (M stands for memoryless). Further descriptions of the Poisson

classification are based on following points:

- Requests are processed in a sequence. If requests are submitted simul-

5.2 Queuing Analysis 92

taneously, one is done first. Order is not relevant.

- Arrivals can have known peaks, but knowing the time should not allow

the prediction of the number of arrivals.

— The actions at one node (or of one user) should not affect the requests

from other nodes. A user entering data may wait and consider the

effect of an action before making another request but this does not

affect other users’ actions.

In this research we focus on the Poisson distribution as our system fits into

the above description of this category.

• Based on the experiments in the previous chapter, the rendering time, which

corresponds to the service time in the queueing system parameters, is constant

so (b)= D for the Deterministic case.

• A single server is used in the system, therefore, (c)=l.

The description of the queuing system is the M/D/1 queue, where job inter

arrivals are Markovian or Memoryless (M), service times follow a Deterministic

distribution (D), and there is a single server in the system.

5.2.1 Queuing Parameters

The main parameters used by the Queueing System are summarized in Table 5.1.

To model the time spent queuing we make the following assumptions:

• We assume a single queue model, in distinction to other model approaches

that consider situations where there are multiple queues.

5.2 Queuing Analysis 93

Parameters Description

A Parameterizes the arrival rates in terms of
the mean number of arrivals per second

Ts Parameterizes the mean service time for each arrival, i.e.,
the amount of time being served, not counting time waiting in the queue.

p Utilization; fraction of time facility (server or servers) is busy.

Tw Mean waiting time, including items that have to wait and items with waiting
time of zero.

Table 5.1: Parameters descriptions.

• The arrival rate obeys a Poisson distribution, so arrivals occur randomly and

are independent of one another.

• Since the service time Ts (which in our case equals the rendering time)

is constant, the standard deviation is almost zero, and in all the cases the

difference is due the factors explained in the last section of this chapter.

• Items/arrivals have the same priority. No item is discarded from the queue.

• The queueing protocol is First In First Out (FIFO), which is the easiest

queueing system to analyze.

To analyze the queuing time for a certain system, we need to know input pa

rameters such the arrival rate and the service time. We are particularly interested

in finding Tw, the mean waiting time, as it is has a major influence on the perfor

mance time.

5.3 General Performance Model 94

5.3 General Performance Model

In this study, we focus on estimating the response time, which is defined as the to

tal cost, Ttot, for one viewpoint (VX1 Vy,Vz) request to be processed. The total cost

Ttot comprises three components: computation time (Tr), communication time

(Tt), and queuing time (Tq). The computation time (Tr) is the average rendering

time for one viewpoint query, whereas the communication time (Tt) is the time

to transfer one request or result, not counting any queuing time (Tq) which might

occur on the server side. Thus,

where Cr is the rendering cost for each pixel, and F = ST is the number of pixels

in the S x T final image size (i.e., the size of the frame buffer).

The transmission time required to send data, or the output, is Tt :

where 2L is the round-trip latency, D is the data size in pixels, C* is the number

of bytes to store each pixel colour value, and the B is the network bandwidth.

When more clients join the visualization process, clients will experience a

service delay. The queuing time for the (M/D/1) category can be time represented

Ttot — f (Tr 5 Tt , Tq) (5.1)

The rendering time Tr is

Tr = Cr(F) (5.2)

(5.3)

by [97]

5.3 General Performance Model 95

pTs
(5.4)

9 2 (1 - p)

where Ts is the mean service time for each arrival (not counting queueing time),

and p is the utilization.

The utilization p is computed using Little’s law [71],

where A is the arrival rate.

In our system implementation the server assigns a thread each time it receives

a request from a client. All the requests go into one queue and are scheduled

to any available processor. Since our server is a tightly-coupled dual processor,

if threads are not used then all client processing requests would be assigned to

one processor while the other one will be idle. In general, the allocation of client

requests to processors will be different for each execution. In our case, although

we have one machine as server, in our model calculation we assume the arrival rate

per processor is A/(no. of processors) as the client requests are evenly distributed

among the processes (on the assumption that the server machine is a dedicated

machine with no other tasks).

5.3.1 Local Rendering Model

In this scenario the whole dataset is retrieved from the server (see Fig. 5.1). We

make use of the Curl protocol. The dataset size is computed by all have a U x V

array of 16 x 16 camera positions (ST) so there are 256 images for each dataset,

and the transfer time is calculated using the equation:

P = A Ts (5.5)

5.3 General Performance Model 96

A = Ci (UV) (ST) (5.6)

where UV x ST is the dataset size in pixels.

The rendering time Tr is as given in Eq. 5.2, so the overall total execution time

is:

Tlocal 2L +
Ci[UV} [ST]

B
+ Cr (ST) + pTs

2 (1 - p) J
(5.7)

We are using a bilinear interpolation scheme with computational complexity

O(N2), where N = ST is number of pixels in the final image.

5.3.2 Remote Rendering Model

In the remote rendering scenario the viewpoint request (Vx,Vy,Vz) is sent to the

server. The server pushes the resulting images into the TCP socket as quickly as

possible, and each client reads from its TCP socket as quickly as it can. After the

rendering the resulting image is sent back to the client (see Fig. 5.2). The number

of bytes to be transmitted is determined by the final output framebuffer size. Since

is the total number of pixels copied to the final output framebuffer is F = ST, the

rendering time is,

Tr = Q [ST] (5.8)

The overall time is calculated by the following equation

TRemote= 2L + + Cr (ST) + (5.9)

The first term gives the network latency and the second gives the transmission

5.3 General Performance Model 97

Arrivals

2
I

Waiting Queue Dispatching

— ►
Departures

S e rv e r

Waiting Time

Service Time

Client 1

Client 2

 1-------
l

Client N

Download Time

Figure 5.1: Local rendering system architecture and parameters for single
server queuing.

time for all pixels. L is the network latency, S T is the number of pixels, and

B is the network bandwidth. We assume 8 bits per pixel for colour or greyscale

information.

5.3.3 On-Demand Rendering Model

In the on-demand rendering scenario, as the user interacts with the Viewer Pro

cess, changing his/her viewpoint parameter, then a viewpoint query is sent to the

Client Manager Process for rendering. The Client Manager Process determines

the images needed for rendering that user viewpoint, and if all the images are lo-

5.3 General Performance Model 98

Arrivals
Waiting Queue Dispatching

Departures
S e rv e r

*
Waiting Time Service Time

Total Time

4..........

Client 1

Client 2

Client N

■ - 8

Figure 5.2: Remote rendering system architecture and parameters for single
server queuing.

cated in the cache then the Rendering Process performs interpolation to produce

the desired view. Otherwise, the missing images will be requested from the server.

The resulting image is received from the Rendering Process and mapped onto the

projection plane (see Fig. 5.3).

The amount of data that needs to be transferred in the on-demand scenario is

calculated by:

Tt = 2L + Ir(ST)
B

(5.10)

where Ir is the number of images needing to be transferred from the server each

time. The value of Ir varies and depends on how much the current viewpoint

5.4 Results 99

differs from the previous ones, and we have 0 < Ir > 4. For example, initially

the server downloads four images, and then for a new viewpoint it checks for the

required images in the server cache. If the viewpoint has not changed much then

the same four images may be used, but if the viewpoint has changed a lot then

none of the required images may be in the cache. The frequency of cache misses

affects the model through the number of images to be transferred. The overall

time is computed as:

Ondemand 2L +
IrCi(Si x Ti)

B
+ Cr (Si x Ti) + pTs

[2 (1 - p)J
(5.11)

The rendering time is the same in Eq. 5.8. Comparing the on-demand case

with the other two models:

1. In the remote rendering scenario the navigation scheme does not effect the

overall performance as for the remote rendering the user issues a rendering

query to the server for each new viewpoint.

2. In the the local rendering scenario the whole dataset is downloaded so the

client does not have any more contact with the server.

5.4 Results

We now determine the total time for each model mentioned in the last section

for the particular experimental setup used. We first determine the cost for Ci

and Cr. We then analyze the performance for various image sizes (S x T), and

5.4 Results 100

Arrivals
Waiting Queue Dispatching

ii
i

i
i
i
i
i

4
i
i
i
i
i
i
i
i
i

Departures

Server

Waiting Time
Service Time

Client 1
Rendering
Process ■

Client 2
Rendering
Process «

Client N
Rendering
Process ■m <

Figure 5.3: On-demand rendering system architecture and parameters for
single server queuing.

for N vizualization clients. The network bandwidth is estimated based on the

i b m o n i t o r software[27].

B 97.5 Mb/s 1

L 0.675 ms

Cr 1.135790 x 10-4 ms per pixel

Ci 8 bits per pixel 2

Table 5.2: Param eter values.

5.4 Results 1 0 1

5.4.1 Performance model comparison with experimental results

In this section, the estimated costs derived from the formal models and results

from the experiments are described in detail for different number of visualization

clients and different datasets.

Simulation results were validated with an error estimation calculation method

which gives the percentage relative error as|(('K — X) / Y) \ x 100%. Where Y is

the model result and X is the experimental result.

In terms of measuring the accuracy, a large body of experience indicates that

queueing network models can be expected to be accurate to within 5% to 10% for

utilizations and throughputs, and to within 10% to 30% for response times. This

level of accuracy is consistent with the requirements of a wide variety of design

and analysis applications. Of equal importance, it is consistent with the accuracy

achievable in other components of the computer system analysis process, such as

workload characterization [44].

5.4.2 Remote Rendering for One Client

We initially investigate the results for one user, with waiting time Tw set equal to

zero. Then we use these results to get the values for the queueing time when there

are more visualization clients. By using the parameters in Table 5.2 in Eq. 5.9 for

each Si and Tu where S x = Tx = 128, S 2 = T2 = 256, S3 = T3 = 512, and

'Ethernet’s maximum frame size is 1526 bytes (maximum 1500 byte payload + 8 byte
preamble + 14 byte header + 4 Byte trailer). An additional minimum interframe gap correspon
ding to 12 byte is inserted after each frame. This corresponds to a maximum channel utilization
of 1526/(1526+12)T100 % = 99.22%, or a maximum throughput of 99.22 Mbit/s inclusive of
Ethernet datalink layer protocol overhead in a 100 Mbit/s Ethernet connection. The maximum
throughput is 1500/(1526+12) = 97.5 Mbit/s exclusive of Ethernet protocol overhead [35].

2The total number of colours is 28 =256 for our images.

5.4 Results 102

S4 = T4 = 640, then the total cost is :

TftemoteiSuTi) = 2(0.675) +
8 (Si x Ti)

.97.5(1024) _
+ (1.135790 x 10—4) (Si x Ti)

(5.12)

Table 5.3 and Fig. 5.4 show the average experimental time versus the theore

tically estimated time for remote rendering from Eq. 5.9. The percentage diffe

rence between the theoretical model and experimental results is between 3.09%

and 12.7%. Although 12.7% may seem to represent a big gap in reality it is 2.7ms

as for a small dataset the system is unable to measure less accuracy to within less

than 1 ms. Overall the theoretical model is a good estimate of the system per

formance. This performance study has shown that the model was able to provide

realistic estimations of the results even for small (128 x 128) and large (640 x 640)

datasets.

Dataset
Size

Model
Comm, (ms)

Experiment
Comm, (ms)

Total
Model (ms)

Total
Experiment (ms)

Relative
Error

128 x 128 2.63 2.8 5.43 5.6 3.09 %

256 x 256 6.48 9.2 21.48 24.2 12.7 %

512 x 512 21.86 19 60.66 57.8 4.7%

640 x 640 33.40 28.9 101.70 97.2 4.4%

Table 5.3: Theoretical model estimates and measured timing results for one
remote vizualization client.

5.4 Results 103

120

■■ Estimated Total Time

— — Measured TotalTime
100

E
0)
E
i-

640x640128x128 256x256 512x512

FrameBuffer (Pixels)

Figure 5.4: Remote rendering model and measured timing results for one
visualization client.

5.4.3 Local Rendering for One Client

Similarly, initially we test our model for one visualization client, thus the waiting

time/queuing time is zero. To compare the model with the experimental results,

the parameter values from Table 5.2 are substituted into the local rendering mo

deling equation, Eq. 5.7. The total cost is :

5.4 Results 104

Tlocal{Si,Ti) = 2(0.675) +
8[16 x 16] [Sj x Ti]

97.5 (1024)2
+ Cr (Si x Tt) (5.13)

Table 5.4 and Fig. 5.5 show the experimental time in milliseconds and the

theoretical model time for local rendering from Eq. 5.7. Compared with the ex

perimental results, the percentage error is only 1.8% to 7.1%. These percentage

differences from the theoretical model indicate that the theoretical model is a good

estimate of the system performance.

Dataset
Size

Total
Model (ms)

Total
Experiment (ms)

Relative
Error

128 x 128 400.36 415 3.66 %

256 x 256 449.98 482 7.11 %

512 x 512 4731.62 4901 3.58 %

640 x 640 7286.91 7421 1.84%

Table 5.4: Table of theoretical model timings and measured timing results for
one local visualization client.

5.4.4 On-Demand Rendering for one client

For the on-demand rendering scenario, each time the user selects a viewpoint the

client downloads the four nearest data images. As for the other two scenarios, ini

tially we test our model for one visualization client, so the waiting time/queuing

time is zero. To compare the model with the experimental results the parame

ters values from Table 5.2 are substituted into the on-demand rendering modeling

equation, Eq. 5.11. The total cost is :

5.4 Results 105

8000

Estimated Total Time
7000

Measured TotalTime
6000

5000

<3? 4000 |
.§ 3000 -

2000

1000 -

128x128 256x256 512x512 640x640

FrameBuffer (Pixels)

Figure 5.5: Local rendering model and measured timing results for one vi
sualization client.

T o n d e m a n d { S i , T i) — 2 (0 . 6 7 5) +
Ir(S x T)

(5.14)
. 9 7 . 5 (1 0 2 4) 2 .

Table 5.5 and Fig. 5.6 compare the model and experimental timings in for the

on-demand rendering scenario under the assumption of random navigation, whilst

Table 5.6 and Fig. 5.7 show the same timings but under the assumption of coherent

navigation - in this case rotation around the scene.

Although we did not achieve as good an agreement as for the remote and local

T
im

e

(m
s
)

5.4 Results 1 0 6

Dataset
Size

Total
Model (ms)

Total
Experiment (ms)

Relative
Error

128 x 128 10.5 9 14.5 %

256 x 256 25.9 30 15.8%

512 x 512 87.5 73 16.5%

640 x 640 133.6 110 17.7 %

Table 5.5: On-demand rendering: model and experimental timing results for
one visualization client and a random navigation model.

160

Estimated Time
140

Measured Time
120

100

80

60

40

20

0
640x640512x512256x256128x128

Framebuffer (Pixel)

Figure 5.6: On-demand rendering: model and experimental timing results
for one visualization client and a random navigation model.

5.4 Results 107

Dataset
Size

Total
Model (ms)

Total
Experiment (ms)

Relative
Error

128 x 128 10.5 10 5.0%

256 x 256 25.9 31 19.6%

512 x 512 87.5 75 14.2 %

640 x 640 133.6 112 16.2%

Table 5.6: On-demand rendering: model and experimental timing results for
one visualization client and a coherent navigation model.

160

^ — Estimated Time140
— - Measured Time

120

100
l/l

E
<u
E
i-

512x512 640x640256x256128x128

FrameBuffer (Pixels)

Figure 5.7: On-demand rendering: model and experimental timing results
for one visualization client and a coherent navigation model.

5.4 Results 108

rendering scenarios, we still obtained acceptable model estimates that were within

30% of the experimental values. The on-demand model shows less accuracy in

comparison with the local and remote models because of the overhead of cache

checking. In general, the comparison shows satisfactory agreement between the

predictions of the numerical models and the experimental data.

5.4.5 Remote Rendering for 32 Concurrent Clients

To analyze how the performance varies as more concurrent clients join the visuali

zation we need to calculate the average queuing time or, the average waiting time,

of each of the clients. This is estimated as follows:

Tq(i) =
(0 . 1 3 6) T s i

(5.15)
(2 - 0 . 1 3 6)

Table 5.7 and Fig. 5.8 show the average experimental time versus the theo

retically estimated time for remote rendering from Eq. 5.15. The model shows

acceptable results for larger datasets (512x512 and 640 x 640). But for the smal

ler datasets, the relative error for 128 x 128 is 62.17% (which is 0.33 ms), and for

256 x 256 is 83.16% (which is 11 ms). These relative errors correspond to less

than one frame.

5.4.6 Local Rendering for 32 Concurrent Clients

To compute the average waiting time of each client in the local rendering scenario

we use equation Eq. 5.15.

Figure 5.9 shows the experimental time in milliseconds and the theoretically

calculated time for queueing given by Eq. 5.15. The results are also shown in

5.4 Results 109

350

Estimated Queuing Time

300 Measured Queuing Time

250

200l/>
E
«'>
E
H 150

100

128x128 256x256 512x512 640x640
FrameBuffer(Pixels)

Figure 5.8: Queuing time model and measured timing results for remote ren
dering.

Dataset
Size

Total
Model (ms)

Total
Experiment (ms)

Relative
Error

128 x 128

256 x 256

512 x 512

640 x 640

0.53312

13.328

102.36992

317.21252

0.864583333

2.243579545

72.103125

286.24375

62.17%

83.16%

29.56%

9.76%

Table 5.7: Queuing time for remote rendering model and measured results
for 32 clients.

5.4 Results 110

10000000

Estimated Queuing Time

Measured Queuing Time

1000000

t/1

E
Tu
E

100000

10000

512x512128x128 256x256 640x640FrameBuffer(Pixels)

Figure 5.9: Queuing time for local rendering model and measured results for
32 clients.

Dataset
Size

Total
Model (ms)

Total
Experiment (ms)

Relative
Error

128 x 128

256 x 256

512 x 512

640 x 640

22389.25

30202.12

3122574.13

7159261.33

14878.03

44638.72

163717.97

276032.77

33.55%

47.79%

94.75%

96.14%

Table 5.8: Queuing time for local rendering model and measured results for
32 clients.

5.4 Results 1 1 1

tabular form in Table 5.8.

A close analysis of the utilization shows that p = 0.7 ± 0.46 for 512 x 512

images, and p = 1.00 ± 0.46 for 640 x 640 images, which indicates that the server

is close to saturation (i.e., the utilization p is close to 1). The system saturation

may be the result on one of the following factors:

• A high rate of network traffic.

• Long average service time.

Therefore, the clients will experience a long waiting time, and the queue length

with grow without bound. In other words, the system must maintain utilization

less than one. It is noticeable that as the utilization get closer toward 1 problems

arise with congestion and stack overflow. Jeff Atwood and Joel Spolsky [5] have

concluded that the wait times go up quickly as server utilization exceeds 80% -

the system is then “CPU-bound". Furthermore, since the measured response times

are unacceptable, we can assume that the workload intensity is sufficiently high

that the CPU is approaching saturation. This case the illustrates the importance of

performance models in understanding performance data.

When the entire system becomes saturated, no increase in the arrival rate of

client requests can be handled successfully. Thus, the throughput bound is the

smallest arrival rate, A, at which any server saturates. Clearly, the server that

saturates at the lowest arrival rate is a bottleneck since it is the server with the

highest service demand [102].

5.5 Performance Model Prediction 1 1 2

5.4.7 Arrival Rate A

Table 5.9 and Fig. 5.10 clarify the relation between arrival rate A and system satu

ration. In this experimentation we run the synchronization script with an average

arrival rate of 0.136. As the arrival rate increases the response time of the server

increases.

Arrival Rate 128 x 128 256 x 256 512 x 512 640 x 640

Experimental 0.0028 0.014 0.0388 0.0683

1 0.00000784 0.000196 0.00150544 0.00466489

10 0.0000784 0.00196 0.0150544 0.0466489

20 0.0001568 0.00392 0.0301088 0.0932978

30 0.0002352 0.00588 0.0451632 0.1399467

40 0.0003136 0.00784 0.0602176 0.1865956

50 0.000392 0.0098 0.075272 0.2332445

60 0.0004704 0.01176 0.0903264 0.2798934

70 0.0005488 0.01372 0.1053808 0.3265423

80 0.0006272 0.01568 0.1204352 0.3731912

90 0.0006272 0.01568 0.1204352 0.3731912

100 0.000784 0.0196 0.150544 0.466489

Table 5.9: Server response times in seconds for different arrival rates for
remote rendering.

5.5 Performance Model Prediction

Based on the previous analysis, the numerical differences between the model es

timation and the experimental timing data for the three scenarios were generally

small. Therefore, these models could be used to estimate the performance for

5.5 Performance Model Prediction 113

■ 256x256■ 128x128 ■ 512x512 ■ 640x640
0.45

0.35

£ 0.25
F

0.15

0.05

100

Experimental
Arrival Rate (A)

Figure 5.10: Server response times in seconds for different arrival rates for
remote rendering.

other scenarios, for example, with different dataset sizes and network bandwidths.

The performance predictions in this section assume that the restriction of

our system to use general-purpose Commercially-available Off-The-Shelf (COTS)

processing and networking hardware is relaxed.

These types of “what-if' predications are key to answering important perfor

mance questions such as:

5.5 Performance Model Prediction 114

• What is the performance for different ranges of dataset size?

• What is that effect of a different network bandwidth?

• How can we plan any future enhancements to the system?

5.5.1 Different Dataset Size

In this section we estimate the rendering time and communication time for dif

ferent dataset sizes. It worth noting that the large dataset resolution used in this

section would require a larger screen to best visualize the images. 3

5.5.1.1 Remote Rendering

One of objectives of this modeling work is to project the performance for higher

resolution images. As shown in Table 5.10 and Fig. 5.11, these larger resolution

scenarios will not run in at interactive rates as the maximum is 9 frames/seconds

(fps). A comparison of the rendering time and communication time shows that

each has a similar influence on the overall performance. Improving the rendering

time by assigning a more powerfully rendering server, or parallelizing the rende

ring processing, would boost the frame rate in the 768 x 768 to a maximum of 20

fps, but for the higher resolutions cases the communication time would still limit

the frame rate to a maximum of 10 fps. A more powerful network is essential for

interactive frame rates for higher resolutions (1024 x 1024, 1152 x 1152, 1536

and 2048 x 2048).

3To best display the resulting frame buffers a 768 x 768 image requires a 15 inch monitor,
1024 x 1024 a 17 inch monitor, 1152 x 1152 a 19 inch monitor, and 1536 x 1536 and 2048 x 204821
a 21 inch monitor.

5.5 Performance Model Prediction 115

Data-Set
Size

Estimated
Rendering (ms)

Estimated
Communication (ms)

Estimated
Overall Time (ms) / FPS

768 x 768 66.99 50.30 117.30/9

1024 x 1024 119.10 98.40 217.50/5

1152 x 1152 150.74 144.00 294.73 / 3

1536 x 1536 267.97 254.27 522.23 / 2

2048 x 2048 476.38 329.56 805.94/ 1

Table 5.10: Estimated performance for remote rendering for different data
sets resolutions.

900

Estimated Rendering Time

Estimated Comm. Time

Estimated Overall Time

800

700

600

^ 500
E
<D
E
p 400

300

200

100

2048x20481536x1536768x768 1024x1024 1152x1152

FrameBuffer (Pixels)

Figure 5.11: Estimated performance for remote rendering for different data
sets resolutions.

5.5 Performance Model Prediction 116

5.5.1.2 Local Rendering

As seen from Table 5.11 and Fig. 5.12 in the local rendering scenario the com

munication costs dominate the overall performance. To enhance this approach a

higher-speed network or a dedicated network, is needed.

Data-Set
Size

Estimated
Communication (ms)

Estimated
Rendering (ms)

Estimated
Overall Time (ms)

768 x 768 11815.38 67 11882.37

1024 x 1024 21005.13 119.1 21124.22

1152 x 1152 26584.62 150.73 26735.35

1536 x 1536 47261.54 267.97 47529.50

2048 x 2048 84020.51 476.38 84496.90

Table 5.11: Estimated performance for local rendering for different dataset
resolutions.

5.5.2 Different Network Bandwidth

In this section we estimate the performance for different network bandwidths (10

MB/s and 1 GB/s) for the different rendering scenarios.

5.5.2.1 Remote Rendering

From the results shown in Table 5.12 and Fig. 5.13, with a 10 MB/s network

connection, it is apparent that for smaller dataset the system can still achieve an

interactive frame rate, which will be useful for PDA or smart phone clients. Ho

wever, with larger datasets the performance degrades, for example, to 2.5 fps for a

640 x 640 dataset. We can broadly conclude that 10 Mb/s and 100 Mb/s networks

will both achieve interactive frame rates for 128 x 128 and 256 x 256 images.

5.5 Performance Model Prediction 117

90000

80000 • Estimated Rendering Estimated Comm. - - - Estimated Overall

70000

60000

2 50000

40000

30000

20000

10000

1536x1536 2048x2048768x768 1024x1024 1152x1152

FrameBuffer(Pixels)

Figure 5.12: Estimated performance for local rendering for different dataset
resolutions.

A 1 Gb/s network will not enhance the interactivity for smaller data-set (128 x

128 and 256 x 256), because although a higher frame rate is achieved this will not

be noticeable to the eye. However, replacing the current 100 MB/s network with

a 1 GB/s network is expected to result in interactive frame rates for 512 x 512 and

640 x 640 images.

5.5 Performance Model Prediction 118

Data-Set
Size

Estimated 10MB
ms /FPS

Measured 100MB
m s/F P S

Estimated 100MB
ms / FPS

Estimated 1GB
ms / FPS

128x128

256x256

512x512

640x640

16.97/59

67.63/ 15

245.28/4

390.16/2.5

5.6 /178 .5

24 .2 /41

57 .8 /1 7

97 .2 / 10

5 .43 /184

21.48/46.5

60.66/ 16

101.70/ 10

4.28 / 234

16.86/59

42.20 / 24

72.85/ 14

Table 5.12: Table of estimated remote rendering performance for different
network bandwidths.

450
Estimated 10 MB/s

— Measured 100 MB/s

— Estimated 100 MB/s

• -Estimated lGB/s

400

350

300 -

17 250
E
«
E
P 200

150

100

512x512 640x640256x256128x128
FrameBuffer (Pixels)

Figure 5.13: Remote rendering for different networks bandwidths.

5.6 Possible Causes for Experimental Variation 119

5.5.2.2 Local Rendering

From the results shown in Table 5.13 and Fig. 5.14, with a 10 MB/s connection,

the clients have to wait a longer period (3 to 63 seconds) before starting to navigate

the dataset. While the 1 GB/s network dramatically enhances the interactivity for

smaller datasets (128 x 128 and 256 x 256, the larger datasets still achieve only

2 to 3 frames per second. Replacing the current 100 MB/s network with a 1 GB/s

network will not produce a interactive rate for 512 x 512 and 640 x 640 images.

As a result, upgrading the network to 1 GB/s will be useful for smaller dataset

viewers, such PDAs and smartphones, but not for larger datasets.

Data-Set
Size

Estimated 10MB
m s/FPS

Measured 100MB
m s/FPS

Estimated 100MB
m s/FPS

Estimated 1GB
m s/ FPS

128x128

256x256

512x512

640x640

3750/0.3

4214.74/0.2

44318.91/0.02

68253.21 /0.01

4 1 5 /2

4 8 2 /2

4901 /0.2

7421 /0.1

3 75 /3

421.47/2

4431.89/0.2

6825.32/0.1

37.5 / 27

42.15/24

443.19/2.3

682.53/1.5

Table 5.13: Table of estimated local rendering performance for different net
work bandwidths.

5.6 Possible Causes for Experimental Variation

The timing value presented for each data point is the average rendering time for ten

different viewpoints, {Vx,Vy,Vz), repeated in five experimental trials representing

the user movement in 3D space. The variance of the results may be due to:

• Interference from other programs or tasks. Other users may compete for

shared resources such as processors, network bandwidth, and I/O band-

5.6 Possible Causes for Experimental Variation 120

80000

— • Estimated 100 MB/s

70000 — Measured 100 MB/s

- - - Estimated 10 MB/s

60000 — • ‘ Estimated 1 GB/s /
50000 S'I/f

E
//

a 40000 //
E /

y¥

✓
30000 ///

y
r/

20000
//

y¥

/✓
y

10000
¥// ____

* I, i T —

AU
128x128 256x256 512x512 640x640

FrameBuffer(Pixels)

Figure 5.14: Local rendering for different networks bandwidths.

width. Note we run our experiments during off-peak times when no other

users are directly logged on. However based, on the fact that these clients

are open access other users may be remotely logged in and there might be

background activities running which effect the overall performance.

• The server processor allocation. The operating system may use either of the

two processors which will affect the repeatability of the execution time.

• Transient delays and variability. The amount of time it takes to send data

5.7 Conclusions 1 2 1

between any two devices will vary over time due to various factors, such

as fluctuations in traffic, router loads, message collision, and so on. Some

of these factors may cause the message to be resent, thereby increasing the

execution time.

5.7 Conclusions

The performance study in this chapter has shown that a model was able to provide

realistic estimations of the results for a range of dataset sizes (128 x 128 to 640 x

640).

These results indicate that the model can be used as a predication tool for

estimating timings for the visualization process, enabling the improvement of the

process and product quality, as well as the further development of models for

larger systems and datasets.

In further discussing the strengths and weaknesses of each of the models, we

see that to be able to run the system for larger dataset resolution involves a trade

off between generality of hardware (the server and network) and dataset resolu

tion. Larger dataset resolution cannot achieve interactive frame rates on current

COTS resources.

The model has inaccuracies for small datasets because the rendering time of 1

to 3 ms is comparable to the timing resolution of 1 ms.

5.9 Chapter Summary 1 2 2

5.8 Future Work

The present results suggest that additional development is necessary to increase

the accuracy for model prediction of the remote visualization system and to model

performance across a broad range of circumstances. Examples of the modifica

tions that need to be added to the current models involve variable service time,

as we have assumed that all users visualize the same dataset, so the service time

is for that particular dataset. Also we could add a multicore-based server which

could be represented by a multi-server approach. Our system currently processes

viewpoint queries from a set recorded by real user navigation. A mechanism for

predicting the future navigation path could be used based on probabilistic predic

tion techniques, such as Kalman filtering [65]. We expect such techniques for

pre-fetching future images would enhance the system performance in terms of

interactivity and frame rates.

New experimental data will need to be acquired to elucidate this matter, and

to provide information for the development of future performance models.

5.9 Chapter Summary

This chapter discussed a theoretical cost model for using the three different rende

ring scenarios in a remote visualization system. This set of models was compared

with the experimental results presented in the previous chapter and enables a va

lidation of these results. Furthermore, the models provide a prediction tool to

estimate the performance in scenarios where some parameters are different from

those examined experimentally. In addition, we have discussed the strengths and

5.9 Chapter Summary 123

weaknesses of each of the models.

124

C h a p t e r 6

Conclusions

Overview

This chapter contains a review of the work that has been detailed throughout this

thesis. An overall critical analysis of the hypothesis presented in Chapter 1 is gi

ven. Furthermore, this chapter provides answers to the research questions investi

gated based on the objectives, and draws conclusions based on the main findings

of the research. Then we summarize the main conclusions of the thesis, and the

limitations of the work are presented.

Section 6.1 presents an overview of the issues involved in the design and eva

luation of the system. Then Section 6.2 presents a critical evaluation of the system.

We summarize the research contributions made in this thesis in Section 6.3, and

describe the limitations of the work in Section 6.5.

6.2 Critical Evaluation 125

6.1 Summary

Interactive distributed visualization has emerged as a discipline with numerous

applications. However, many of the present approaches to interactive distribu

ted visualization have limited performance since they are based on the traditional

polygonal processing graphics pipeline. In contrast, image-based rendering uses

multiple images of the scene instead of a 3D geometrical representation, and so

has the key advantage that the final output is independent of the scene complexity

and depends on the desired final image resolution. Furthermore, the discrete na

ture of the Light Field dataset maps well to a hybrid solution which can overcome

the identified drawbacks. In this thesis we have described a method for efficiently

and effectively transmitting visualization data to remote users/clients. Instead of

downloading a complete replica of the Light Field dataset to each client, or remo

tely sending a single rendered view back from a central server to the user each time

the user updates their viewing parameters, our on-demand strategy sends parts of

the dataset based on the current client viewpoint. The on-demand approach shows

stable performance as the number of clients increases because the load on the

server and the network traffic are reduced.

6.2 Critical Evaluation

The research hypothesis we proposed initially in Chapter 1 was as follows:

3D collaborative visualization environments, created by distributed light field

rendering techniques with tunable performance parameters, provide a generic,

highly interactive, remote 3D visualization solution fo r large numbers o f users,

6.2 Critical Evaluation 126

enabling user controlled viewpoints fo r both real and synthetic data.

The success of the research discussed in this thesis can be measured by the

extent to which the objectives of the research mentioned in Chapter 1 have been

achieved. Therefore, in order to validate this hypothesis we will look to the indi

vidual components/aims.

To fulfill the above hypothesis a system for 3D collaborative visualization was

developed by using distributed light field rendering techniques aimed at the follo

wing:

• Generic 3D remote visualization solution for large numbers of users

In order to accommodate end-users with varying degrees of expertise and

different background knowledge of visualization our system hides many

of the implementation details from the user by providing a high level of

abstraction. Our system provides a 3D visualization environment for clients

through the Viewer Process client module. The simple interface provides

all the functionality necessary to explore the dataset for all viewpoints. The

user can steer the visualization through the control of viewing parameters

using different input devices (mouse/keyboard).

• Platform-independent visualization environment

Most of the current visualization tools that run on multiple platforms are

not truly platform-independent as different versions are provided for each

platform. However, the use of the Qt software makes visualization appli

cations cross-platform. Although Qt is available as freeware for Linux and

Mac platforms, Windows users must pay for a licence. This is could be re

solved by using the free version of Qt [2] to create an open-source software

6.2 Critical Evaluation 127

distribution, or to execute the software as a compiled binary. The software

developed in this thesis is open-source and freely available, thus avoiding

the licensing requirements of other similar tools and commercial products.

• High interactivity and stability

To evaluate our system, we use interactivity metrics as a standard method

to measure the response of the visualization system to user input. As shown

in Fig. 4.5 the overall performance in frames per second for the different

rendering scenarios demonstrates the client-side and server-side capabilities

of the system.

A second aspect of interactivity concerns the the stability of the perfor

mance measured in frames per second. Such knowledge indicates how in

teractivity might change when users explore different viewpoints for com

plex datasets. This information is also useful in predicting the performance

for other dataset sizes. Figure 4.1 demonstrates the stability of image-based

rendering approach.

• Distributed light field rendering techniques The system uses different

distributed rendering transmission models: local, remote, and on-demand.

Figures 4.6 and 4.7 illustrate the system behaviour under different scenarios,

and shows which scenario performs better for a given situation in terms

of enhancing the overall system performance. The on-demand approach

shows higher stability in the performance as the number of clients increases

because the load on the server, and the network traffic, are reduced.

• Enabling user-controlled viewpoints for both real and synthetic data

6.3 Contributions 128

Other sources of image data could be fed into the system. These data could

be generated using either a multi-array camera [6] or a gantry [9] for real

objects, or it is created for a synthetic object using a modified ray tracing

algorithm. Regardless of the source of the input dataset, the system should

work on both real and synthetic data. Figure 3.2 shows the output for a real

object (a dragon statue), and Fig. 3.3 shows the output for a synthetic object

(a skeleton scan).

6.3 Contributions

The contributions of this thesis are as follows:

• The design and implementation of a remote visualization system using

light field rendering. Chapter 3 proposes a design and implementation for

building a collaborative visualization environment for geographically dis

tributed users that involves complex datasets, using a commodity hardware

and software environment. The design provides a novel combination of light

field techniques and a transmission model which provides a general-purpose

interactive solution for distributed collaborative visualization.

• An on-demand transmission model for transmitting datasets based on

the user/client viewpoint parameters. Chapter 3 discusses the details of

the on-demand model in which, instead of downloading a complete copy of

the light field dataset to each client, or remotely sending a single rendered

light field view back from a central server to the user each time a user up

dates their viewing parameters, both approaches are combined. In response

6.4 Conclusions 129

to a viewing query, initially the client cache is checked for the required

images, and if an image is not available it is retrieved from the server, and

interpolated. The benefits of this approach is that excessive use of storage is

avoided by downloading only partial datasets. Furthermore, it better utilizes

the rendering capability of the clients and minimizes the server load, which

will reduce the overall network traffic.

• A performance study for system behaviours for three different trans

mission models under different viewpoints, dataset sizes, and viewers.

Chapter 4 presents a performance study of the effects of deploying an on-

demand transmission model. In addition, it presents a study of the impact

on performance of different factors, including the number of visualization

clients, the dataset resolution, and the interpolation scheme.

• A theoretical cost model for local rendering, remote rendering, and on-

demand rendering. These models are presented in Chapter 5, and provide

a comparison with the experimental results presented in Chapter 4. Fur

thermore, these models models provide a predicative tool to project per

formance in terms of computation and communication time for parameters

are different from those used in the performance experiments presented in

Chapter 4.

6.4 Conclusions

We have described a software architecture for using an on-demand transmission

model using light field rendering within a distributed collaborative visualization

6.5 Limitations o f the work 130

environment. The system makes use of commodity networking, hardware, and

software for distributed visualization. We have discussed the existing local and

remote transmission models, and compared them with our on-demand model.

Our results show that a light field rendering system enables constant frame

rates independent of the scene complexity compared with geometry-based visua

lization, where the frame rate depends on the complexity of the scene for the

chosen viewpoint. The efficiency of the system increases as the scene complexity

increases. The applicability of the system covers a large number of application

areas, where interactive collaboration could enhance and accelerate navigation

and discovery.

Our system currently provides a generic on-demand remote rendering solution

for users to access visualization services using computationally inexpensive light

field rendering, allowing low-end devices, such as PDAs, to interactively explore

3D objects.

The on-demand approach shows stable performance as the number of clients

increases because the load on the server and the network traffic are reduced. The

main performance bottleneck arises from the limited transfer rate across the net

work, which can be improved with the availability of higher performance net

works.

6.5 Limitations of the work

Overall, we believe the design of our distributed visualization system provides a

good basis for future development, particularly in the following areas:

• Centrality. As with all single server systems there is a potential problem

6.5 Limitations o f the work 131

because the server is a single point of failure (SPOF). Any server failure will

stop the whole system from working. One solution to enhance robustness is

to use multiple and/or redundant servers.

• Access control. For collaboration and distributed systems security is one of

the key issues. The identities or credentials used in one organisation might

not be recognized in other organisations. The solution could be that either

all organisations use certificates authorized by the same trusted Certificate

Authority (CA), or a mapping mechanism can be used to map certificates

across different organisations. The security across the boundaries of dif

ferent organisations is outside the scope of the research presented in this

thesis.

• Synchronized Collaboration. In our system each visualization client or

viewer works independently. Clients send their viewing requests separa

tely to the rendering server. The rendering server processes the requested

views concurrently and sends the resulting framebuffers to the clients. This

scenario represents collaboration in space and time (asynchronous collabo

ration) since participants could be located in different places at different

times. In other situations users might want to share the same viewpoint

simultaneously. This requires significant synchronization time between all

processes to ensure that all views are consistent. This mode of use is called

synchronized collaboration.

6.6 Chapter Summary 132

6.6 Chapter Summary

This chapter contains a review of the work that has been presented in this thesis.

An overall critical analysis of the hypothesis presented in Chapter 1 has been

given, together with the main highlights and findings of this research. We then

draw the main conclusions of the thesis, and discuss the limitations of the work.

133

C h a p t e r 7

Future Work

Overview

In this chapter, we briefly examine some of the future directions that the work of

this thesis could be expanded into. These directions could be broadly classified

into enhancing performance, experimentation, accessibility, collaboration expe

rience, and security. A more detailed discussion of these issues is presented in

Sections 7.1 to 7.7. Finally, a summary of the chapter is presented in Section 7.8.

7.1 Enhancing Performance 134

7.1 Enhancing Performance

There are various directions for future research, especially if developers and users

are willing to relax the conditions mentioned in the previous chapter, such as

requiring the use of Commodity-Off-The-Shelf hardware and software.

7.1.1 Data Partitioning and Parallelism

With very large datasets (several GB) performance could be enhanced by partitio

ning the dataset between several PCs and using a master node to store an index of

the location of each part of the dataset. A multiple-node server approach can also

be used within the testbed to distribute the large datasets to multiple machines

within a cluster according to their viewpoints. This will permit further perfor

mance studies to be undertaken for the on-demand approach for comparison with

the current results.

7.1.2 Viewpoint Prediction

Our system currently processes viewpoints queries from a set recorded by real

user navigation. Caching of images can be used to enable a client to download

images into a local image cache for replay. The “momentum" of the camera po

sition associated with interactive user navigation affords the opportunity for the

client to predict, pre-fetch and cache the anticipated images on the server. A

mechanism for predicting the future navigation path could be used based on pro

babilistic prediction techniques, such as Kalman filtering. We expect that the use

of such techniques for pre-fetching future images would enhance the system per

formance in terms of interactivity and frame rate.

7.3 Enhancing Accessibility 135

7.1.3 Dataset Compression

Compression could be used to enhance image data transmission rates. Although

for certain dataset, such as medical dataset images, lossy compression is unde

sirable as every single detail is important, other applications could make use of

such techniques, for example by using the Zlib library. However, other more po

werful compression algorithms, such as [69], are computationally expensive and

unsuitable for real-time computation

7.2 Experimental Extendibility

It would be interesting to enhance the distribution capability of our system by ex

tending the experimental testbed to accommodate approximately 100 concurrent

users. The Linux lab used in the work of this thesis is limited to 32 workstations,

however, Cardiff’s Condor pool could be used to expand the size of the testbed.

One of the challenges in this case would be to overcome the scheduling of Condor

as all the jobs have to processed through the Condor system.

7.3 Enhancing Accessibility

With the increasing number of different datasets and their associated attributes, at

taching a meta-data description layer would efficiently enhance the time to extract

and visualize a given dataset.

7.6 Enhance the Collaboration Experience 136

7.4 Enhancing Reliability

Expanding the model for to use a multi-server approach would add fault tolerant

mechanisms to the current system, and it would be of interest to investigate the

coordination of such a system.

7.5 Include Dynamic Live Data

Professor Takeshi Naemura from the University of Tokyo and Hibachi has pre

sented a system that provides a real-time 3D visual experience by using an array

of 64 video cameras and an integral photography display with 60 viewing direc

tions [80, 98]. The live 3D scene in front of the camera array is reproduced in a

full-colour, full-parallax autostereoscopic display with interactive control of vie

wing parameters. An interesting extension would be to expand our system to a

distributed environment capable of handling and managing data management.

7.6 Enhance the Collaboration Experience

7.6.1 Video and chat utility

As the users may be located at different locations, video streaming and text chat

ting could be added to the visualization system to enhance user interaction. Such

a scheme is be based on AccessGrid [26].

7.6 Enhance the Collaboration Experience 137

7.6.2 Collaboration Scenarios

A useful extension to the system would be to allow collaborators to interact in

synchronized mode. Example of such collaboration are :

• Multiple Viewers and a Single Controller. In this case (see Fig. 7.1) the

general aim is to provide a shared visualization view for all the participants

provided by a visualization controller node. The visualization controller is

the only participant with privileges to select view points. Clients in this

case are passive viewers since they cannot change the viewing parameters.

After selecting a new viewpoint, a request is sent to the rendering server to

be processed, and the resulting framebuffer is multicast to the visualization

clients. This represents space collaboration, where users could be located

in geographically distributed places, and could be included in our system

(where users each have their own viewpoint window) by providing another

window showing the controller visualization. Another way is to check the

availability of the controller; in this case it works as our system scenario.

• Multiple controllers. In this scenario (see Fig. 7.2) all the visualization par

ticipants are of the controller client type, and all have the same privileges to

change the shared viewpoint. After a controller process selects a new view,

this would be sent to all the other controllers. This requires significant syn

chronization between all processes to ensure that all views are consistent. It

is a representation of space collaboration.

7.7 Enhancing Security 138

Controller A

Controller B

Rendering Server

Controller C

Figure 7.1: Multiple controllers scenario.

Rendering Server

Viz Controller

Viz Clients

Figure 7.2: Multiple viewers and a single controller.

7.7 Enhancing Security

For collaboration in distributed systems security is one of the most important is

sues. The identities or credentials used in one organisation might not be recogni

zed in other organisations. The solution could be that, either all organisations use

certificates authorized by the same trusted Certificate Authority (CA), or a map

ping mechanism is used to map certificates across different organisations. The

7.8 Final Remark 139

security across the boundaries of different organisations is outside the scope of

the research presented in this thesis.

7.8 Final Remark

In this chapter, we have briefly examined some of the future directions that the

work could be expanded into. Overall, we believe the design of our visualization

system provides a step forward in the area and is a good basis for future develop

ment. With future development as discussed above, this system would become

more useful, and could be integrated with real users and applications.

140

Bibliography

[1] David George Kendall Home Page, h t t p : / / w w w - g r o u p s . d c s .
s t - a n d . a c . u k / ~ h i s t o r y / B i o g r a p h i e s / K e n d a l l . h t m l , last
accessed April 2011.

[2] Open Source Versions o f Qt, h t t p : / / d o c . q t . n o k i a . com/
l a t e s t / o p e n s o u r c e e d i t i o n . h t m l , last accessed May 2011.

[3] Amira, h t t p : / / h t t p : / /www. a m i r a v i s . com/ , last accessed Octo
ber 2010.

[4] Globus: Fundamental technologies needed to build computational grids.,
h t t p : h t t p : / / www. g l o b u s . o r g ., last accessed October 2010.

[5] The podcast, stackoverflow, episode 39, h t t p s : / / s t a c k o v e r f l o w .
f o g b u g z . c o m / d e f a u l t . asp?W2 902 6, last accessed May 2011.

[6] The Stanford Multi-Camera Array, http: //graphics . Stanford,
edu/pro jects/array/, last accessed June 2010.

[7] SGI VizServer, h t t p : / / w w w . s g i . c o m / p r o d u c t s / s o f t w a r e /
v i z s e r v e r / , last accessed June 2010.

[8] Qt Library, h t t p : / / q t . n o k i a . com/ , last accessed June 2010.

[9] The Stanford Spherical Gantry, h t t p : / / w i n d o w . s t a n f o r d . e d u /
p r o j e c t s / g a n t r y / , last accessed June 2010.

[10] RealVNC Software, h t t p : / / w w w . r e a l v n c . c o m / i n d e x . h t m l , last
accessed Januray 2011.

[11] TightVNC Software, h t t p : / /www. t i g h t v n c . com/, last accessed Ja
nuray 2011.

[12] VTK: the Visualization Toolkit, h t t p : / / www. v t k . o r g / , last accessed
July 2010.

http://www-groups.dcs
http://www.sgi.com/products/software/
http://window.stanford.edu/
http://www.realvnc.com/index.html

BIBLIO G RAPH Y 141

[13] Cactus Computational Toolkit, http: / /www. cactuscode . org/, last
accessed August 2010.

[14] cURL, http: / /curl. haxx. se/, last accessed June 2010.

[15] flickr, http: / / www .flickr.com/, last accessed October 2010.

[16] NetMeeting, http://www.microsoft.com/
downloads/details.aspx?FamilyID=
2 6c9da7c-f7 7 8-4 422-a6f4-efb8abba021e&displaylang=
en#Overview, last accessed Auguest 2010.

[17] Office Live Meeting, http://office.microsoft.com/en-us/
live-meeting/, last accessed Auguest 2010.

[18] Quicktime vr, http://developer.apple.com/legacy/mac/
library/documentation/QuickTime/InsideQT_QTVR/
insideqt_qtvr .pdf, last accessed October 2010.

[19] Virtual Gl Project, http : / /www. virtualgl. org/, last accessed No
vember 2010.

[20] Visit, https://wci.llnl.gov/codes/visit/, last accessed Au
guest 2010.

[21] Yahoo Video, http://video.yahoo.com, last accessed October
2010.

[22] IRIS Explorer, http://www.n a g .c o .uk/visual/IE/iecbb/
Product. html, last accessed March 2010.

[23] ParaView, http://www.paraview.org/, last accessed Auguest
2010.

[24] SciRun, http : //software . sci . Utah . edu/scirun. html, last
access March 2010.

[25] VisMockUP, http://www.softscout.com/software/
Engineering/Computer-Aided-Design-CAD/VisMockUp .
html, last accessed June 2010.

[26] Accessgrid, http : / /www. accessgrid.org/, last accessed February
2011.

[27] ibmonitor Software, http : //ibmonitor . sourceforge . net/, last
accessed June 2011.

http://www.microsoft.com/
http://office.microsoft.com/en-us/
http://developer.apple.com/legacy/mac/
https://wci.llnl.gov/codes/visit/
http://video.yahoo.com
http://www.nag.co.uk/visual/IE/iecbb/
http://www.paraview.org/
http://software
http://www.softscout.com/software/

BIBLIO G RAPH Y 142

[28] E. H. Adelson and J. R. Bergen, The plenoptic junction and elements o f
early vision, Computational Models of Visual Processing (1991), 3-20.

[29] A. Al-Saidi, N. J. Avis, I. J. Grimstead, and O. F. Rana, Distributed colla
borative visualization using light field rendering, CCGRID, 2009, pp. 609-
614.

[30] Asma Al-Saidi, Nick J. Avis, Omer F. Rana, and Abdelhamid Abdesselam,
On-demand transmission model using image-based rendering for remote
visualization, UK e-Science All Hands Meeting, 7th -9th December 2009.

[31] Gabrielle Allen, Werner Benger, Thomas Dramlitsch, Tom Goodale, Hans-
Christian Hege, Gerd Lanfermann, Andre Merzky, Thomas Radke, Edward
Seidel, and John Shalf, Cactus tools fo r grid applications, Cluster Compu
ting 4 (2001), 179-188.

[32] Ronnie T. Apteker, James A. Fisher, Valentin S. Kisimov, and Hanoch Nei-
shlos, Video acceptability and frame rate, IEEE MultiMedia, vol. 2 (1995),
32-40.

[33] Micah Beck, Terry Moore, and James S. Plank, An end-to-end approach to
globally scalable network storage, Proceedings of the 2002 conference on
Applications, technologies, architectures, and protocols for computer com
munications (New York, NY, USA), SIGCOMM ’02, ACM, 2002, pp. 339-
346.

[34] E.W. Bethel, Visualization dot com, IEEE Comput. Graph. Appl. vol. 20
(2000), no. 3, 17-20.

[35] Richard E. Blahut, Algebraic codes fo r data transmission, 1 ed., Cambridge
University Press, July 2002.

[36] K. Brodlie, J. Brooke, M. Chen, D. Chisnall, A. Fewings, C. Hughes,
N. W. John, M. W. Jones, M. Riding, and N. Roard, Visual supercomputing:
Technologies, applications and challenges, Computer Graphics Forum 24
(2005), no. 2, 217-245.

[37] K. W. Brodlie, D. A. Duce, J. R. Gallop, J. P. R. B. Walton, and J. D. Wood,
Distributed and collaborative visualization, Computer Graphics Forum 23
(2004), no. 2, 223-251.

[38] Gordon C., Modular visualization environments: past, present, and future,
SIGGRAPH Comput. Graph, vol. 29 (1995), no. 2, pp. 3-4.

BIBLIO G RAPH Y 143

[39] S. M. Charters, Visualization fo r eresearch: Past, present and future, eRe-
search Australasia, 2008.

[40] S. E. Chen, Quicktime vr: an image-based approach to virtual environment
navigation, SIGGRAPH ’95: Proceedings of the 22nd annual conference
on Computer graphics and interactive techniques (New York, NY, USA),
ACM, 1995, pp. 29-38.

[41] Daniel Cohen-Or and Eyal Zadicario, Visibility streaming for network-
based walkthroughs, Graphics Interface (1998), 1-7.

[42] Matthias Kalle Dalheimer, Qt vs. Java A comparison o f Qt
and Java fo r Large-Scale, industrial-strength gui development,
h t t p : / / t u r i n g . i i m a s . u n a m . m x / ~ e l e n a / P D I - L i c /
q t - v s - j a v a - w h i t e p a p e r . p d f , last accessed October 2010.

[43] John Domingue, Blaine Price, and Marc Eisenstadt, A framework fo r des
cribing and implementing software visualization systems, Proceedings of
the conference on Graphics interface ’92 (San Francisco, CA, USA), Mor
gan Kaufmann Publishers Inc., 1992, pp. 53-60.

[44] G. Scott Graham Kenneth C. Sevcik Edward D. Lazowska, John Zahorjan,
Quantitative system performance computer system analysis using queueing
network models, Prentice-Hall, New Jersey, 1984.

[45] Ian Foster and Carl Kesselman, Globus: A metacomputing infrastructure
toolkit, International Journal of Supercomputer Applications 11 (1996),
115-128.

[46] Frames per second, h t t p : / / www. 10 0 f p s . com/how_many_
f r a m e s _ c a n _ h u m a n s _ s e e . htm, last accessed May 2011.

[47] Michael Friendly, Milestones in the history o f thematic cartography, statis
tical graphics, and data visualization, (2009), h t t p : / / d a t a v i s . c a /
m i l e s t o n e s / .

[48] J. A. Friesen and T. D. Tarman, Remote high-performance visualization and
collaboration, IEEE Computer Graphics and Applications vol. 20 (2000),
no. 4, pp. 45-49.

[49] A. Glassner, An introduction to ray tracing, First edition, Morgan Kauf
mann, 1989.

http://turing.iimas.unam.mx/~elena/PDI-Lic/

BIBLIO G RAPH Y 144

[50] S. J. Gortlet, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, The lumigraph,
Proceedings of the 23rd annual conference on Computer graphics and in
teractive techniques, 1996, pp. 43-54.

[51] N. Greene, Environment mapping and other applications o f world projec
tions, IEEE Computer Graphics and Applications vol. 6 (1986), no. 11, pp.
21-29.

[52] I. J. Grimstead, N. J. Avis, and D. W. Walker, Automatic distribution o f
rendering workloads in a grid enabled collaborative visualization environ
ment, SC ’04: Proceedings of the 2004 ACM/IEEE conference on Super
computing (Washington, DC, USA), IEEE Computer Society, 2004, p. 1.

[53] ______ , Visualization across the pond: how a wireless pda can collaborate
with million-polygon datasets via 9,000km o f cable, Web3D ’05: Procee
dings of the tenth international conference on 3D Web technology (New
York, NY, USA), ACM, 2005, pp. 47-56.

[54] , Rave: the resource-aware visualization environment, Concur
rency: Practice and Experience vol. 21 (2008), no. 4, pp. 415-448.

[55] I.J. Grimstead, D. W. Walker, N. J. Avis, F. Kleinermann, and J. Mc
Clure, 3d anatomical model visualization within a grid-enabled environ
ment, Computing in Science and Engg. 9 (2007), no. 5, 32-38.

[56] I.J. Grimstead, D.W. Walker, and N.J. Avis, Collaborative visualization: a
review and taxonomy, Distributed Simulation and Real-Time Applications,
2005. DS-RT 2005 Proceedings. Ninth IEEE International Symposium on,
10-12 2005, pp. 61 - 6 9 .

[57] R. B. Haber and D. A. McNabb, Visualization idioms: A conceptual model
for scientific visualization systems, Visualization in Scientific Computing.

[58] O. Hagsand, Interactive Multiuser VEs in the DIVE System, IEEE Multi-
Media vol. 3 (1996), no. 1, pp. 30-39.

[59] Wemert E.A. Hanson, A.J. and S.B. Hughes, Constrained navigation envi
ronments, Scientific Visualization Conference, 1997, 1997, p. 95.

[60] B. Hibbard, Top ten visualization problems, SIGGRAPH Comput. Graph.
33(1999), no. 2,21-22.

[61] Carl Kesselman Ian Foster, The grid: Blueprint for a new computing in
frastructure (the elsevier series in grid computing), 1st ed., Morgan Kauf-
mann, August 12 1998.

BIBLIO G RAPH Y 145

[62] J. Harting S. Jha S. M. Pickles R. L. Pinning J. M. Brooke, P. V. Coveney
and A. R.Porter, Computational steering in reality grid, in Proceedings of
the UK e-Science, All Hands Meeting 2003, 2003.

[63] Bahram Javidi, Three-dimensional television, video and display techno
logy, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.

[64] D. Jin, H. Jian, B. Micah, L. Shaotao, M. Terry, and S. Stephen, Remote vi
sualization by browsing image based databases with logistical networking,
2003, 105018534.

[65] R. E. Kalman, A new approach to linear filtering and prediction problems,
Journal of Basic Engineering 82 (1960), no. 1, 35—45.

[66] L. Kleinrock, Queueing systems, vol. I : Theory, Wiley-Interscience, New
York, USA, 1975.

[67] R. Kosara, F. Drury, L.E. Holmquist, and D.H. Laidlaw, Visualization cri
ticism, Computer Graphics and Applications, IEEE 28 (2008), no. 3, 13
-15.

[68] Wim Lamotte, Eddy Flerackers, Frank Van Reeth, Rae Eamshaw, and
Joao Mena De Matos, Yisinet: Collaborative 3d visualization and vr over
atm networks, IEEE Comput. Graph. Appl. 17 (1997), no. 2, 66-75.

[69] Eung-Seok Lee and Hyeong-Seok Ko, Vertex data compression for trian
gular meshes, Proceedings of the 8th Pacific Conference on Computer Gra
phics and Applications (Washington, DC, USA), PG ’00, IEEE Computer
Society, 2000, pp. 225-.

[70] M. Levoy and P. Hanrahan, Light field rendering, SIGGRAPH ’96: Procee
dings of the 23rd annual conference on Computer graphics and interactive
techniques (New York, NY, USA), ACM, 1996, pp. 31^12.

[71] J.D.C. Little, A proof o f the queueing formula I = Xw, Operations Research
9(1961), 383-387.

[72] Lici Lu., Resource management fo r a campus computational grid., Mas
t e r s thesis, University of Adelaide, 2002.

[73] Ioana M. Martin, Hybrid transcoding fo r adaptive transmission o f 3d
content, In Proceedings of IEEE International Conference on Multimedia
and Expo (ICME, Press, 2002, pp. 373-376.

BIBLIO G RAPH Y 146

[74] Wojciech Matusik and Hanspeter Pfister, 3d tv: a scalable system for real
time acquisition, transmission, and autostereoscopic display of dynamic
scenes, ACM Trans. Graph. 23 (2004), 814-824.

[75] B. H. McCormick, Visualization in scientific computing, SIGBIO Newsl.
10(1988), 15-21.

[76] L. McMillan and G. Bishop, Plenoptic modeling: an image-based rende
ring system, SIGGRAPH ’95: Proceedings of the 22nd annual conference
on Computer graphics and interactive techniques (New York, NY, USA),
ACM, 1995, pp. 39-46.

[77] Gordon E Moore, Cramming more components onto integrated circuits,
Electronics Magazine 38 (1965), 4.

[78] Jesper Mortensen, Pankaj Khanna, and Mel Slater, Light field propagation
and rendering on the gpu, Proceedings of the 5th international conference
on Computer graphics, virtual reality, visualisation and interaction in Africa
(New York, NY, USA), AFRIGRAPH ’07, ACM, 2007, pp. 15-23.

[79] Jesper Mortensen, Pankaj Khanna, Insu Yu, and Mel Slater, Real-time glo
bal illumination in the cave, Proceedings of the 2007 ACM symposium on
Virtual reality software and technology (New York, NY, USA), VRST ’07,
ACM, 2007, pp. 145-148.

[80] Takeshi Naemura, The 64-array answer, The Japan Journal 5 (2009), 24-
25.

[81] S. Parker, W. Martin, P.-P. J.Sloan, P. Shirley, B. Smits, and C Hansen,
Interactive ray tracing, In Symposium on interactive 3D graphics, 1999,
pp. 119-126.

[82] S. Parker, M. Parker, Y. Livnat, P. P. Sloan, C. Hansen, and P. Shirley, Inter
active ray tracing for volume visualization, IEEE Transactions on Visuali
zation and Computer Graphics, vol. 5 (1999), no. 3, pp. 238-250, 1077-
2626.

[83] P. Peers, Sampling reflectance functions fo r image-based relighting, Ph.D.
thesis, Katholieke Universiteit Leuven, 2006.

[84] F. Perrin, Manufacturing: The video advantage, first edition ed., Enigma
Publishing Ltd, Autumn 1997, available through http://www.mcb.
c o .uk/portfolio/nac/imds/books.htm.

http://www.mcb

BIBLIO G RAPH Y 147

[85] James S. Plank, Alessandro Bassi, Micah Beck, Terence Moore, D. Martin
Swany, and Rich Wolski, Managing data storage in the network, IEEE
Internet Computing 5 (2001), 50-58.

[86] L. Prechelt, An empirical comparison o f seven programming languages,
Computer 33 (2000), no. 10, 23 -29.

[87] Ramesh Raskar, Amit Agrawal, Cyrus A. Wilson, and Ashok Veeraragha-
van, Glare aware photography: 4d ray sampling fo r reducing glare effects
o f camera lenses, ACM Trans. Graph. 27 (2008), 56:1-56:10.

[88] L.R. Rabiner. R.E. Crochiere, Multirate digital signal processing, Prentice-
Hall, 1983.

[89] T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A. Hopper, Virtual net
work computing, Internet Computing, IEEE 2 (1998), no. 1, 33-38.

[90] Robert W. Scheifler and Jim Gettys, The x window system, ACM Trans.
Graph. 5 (1986), 79-109.

[91] John Shalf and E. Wes Bethel, The grid and future visualization system
architectures, IEEE Comput. Graph. Appl. 23 (2003), no. 2, 6-9.

[92] D. Shreiner, M. Woo, J. Neider, and T. Davis, Opengl programming guide:
The official guide to learning opengl, Addison Wesley, 2007.

[93] H.-Y. Shum, S.-C. Chan, and S. B. Kang, Image-based rendering, First
edition, Springer, September 2007.

[94] H.-Y. Shum and L.-W. He, Rendering with concentric mosaics, SIG-
GRAPH ’99: Proceedings of the 26th annual conference on Compu
ter graphics and interactive techniques (New York, NY, USA), ACM
Press/Addison-Wesley Publishing Co., 1999, pp. 299-306.

[95] R. Sisneros, C. Jones, J. Huang, J Gao, B. Park, and N. Samatova, A multi
level cache model fo r run-time optimization o f remote visualization, IEEE
Transactions on Visualization and Computer Graphics 13 (2007), no. 5,
991-1003.

[96] Mel Slater, The influence o f rendering styles on participant responses in im
mersive virtual environments representing and validating digital business
processes, VISAPP (1), 2007, p. 2.

[97] William Stallings, Snmp, snmpv2, snmpv3, and rmon 1 and 2, 3 ed.,
Addison-Wesley Professional, Massachusetts, USA, January 1999.

BIBLIOGRAPHY 148

[98] Yuichi Taguchi, Takafumi Koike, Keita Takahashi, and Takeshi Naemura,
Transcaip: A live 3d tv system using a camera array and an integral photo
graphy display with interactive control o f viewing parameters, IEEE Tran
sactions on Visualization and Computer Graphics 15 (2009), 841-852.

[99] Eino-Ville Talvala, Andrew Adams, Mark Horowitz, and Marc Levoy, Vei
ling glare in high dynamic range imaging, ACM SIGGRAPH 2007 papers
(New York, NY, USA), SIGGRAPH ’07, ACM, 2007.

[100] Desney S. Tan, George G. Robertson, and Mary Czerwinski, Exploring
3d navigation: combining speed-coupled flying with orbiting, Proceedings
of the SIGCHI conference on Human factors in computing systems (New
York, NY, USA), CHI ’01, ACM, 2001, pp. 418-425.

[101] Bemd F. Tomandl, Peter Hastreiter, Christof Rezk-Salama, Klaus Engel,
Thomas Ertl, Walter J. Huk, Ramin Naraghi, Oliver Ganslandt, Christo
pher Nimsky, and Knut E. W. Eberhardt, Local and Remote Visualization
Techniques for Interactive Direct Volume Rendering in Neuroradiology 1,
Radiographics 21 (2001), no. 6, 1561-1572.

[102] S. Christian Albright Wayne L. Winston, Practical management science, 2
edition ed., South-Western College Publishing, Massachusetts, USA, De
cember 24 2002.

[103] B. Wilburn, High performance imaging using arrays o f inexpensive came
ras, Ph.D. thesis, 2004.

[104] B. Wilburn, M. Smulski, H.-H. K. Lee, and M. Horowitz, The light field
video camera, Proceedings of Media Processors , SPIE Electronic Imaging
2002 (SPIE Electronic Imaging 2002, ed.).

[105] J. Wood, K. Brodlie, and J. Walton, gviz - visualization middleware for
e-science, VIS ’03: Proceedings of the 14th IEEE Visualization 2003
(VIS’03) (Washington, DC, USA), IEEE Computer Society, 2003, p. 82.

[106] J. Wood, H. Wright, and K. Brodlie, Collaborative visualization, Procee
dings of EEEE Visualization 1997 (Washington, DC, USA), VIS ’97, IEEE
Computer Society, 1997, pp. 253-259.

[107] Ilmi Yoon and Ulrich Neumann, Ibrac: Image-based rendering accelera
tion and compression, Eurographics 2000, Vol 19 (2000), 321-330.

[108] Shaohua Kevin Zhou and Rama Chellappa, Illuminating light field: Image-
based face recognition across illuminations and poses, Automatic Face and

BIBLIOGRAPHY 149

Gesture Recognition, Sixth IEEE International Conference on Automatic
Face and Gesture Recognition (FG’04) (2004), 229.

150

Publications

Some of the work described in this thesis has been presented in the following
papers:

• Conferences

- Asma Al-Saidi, Nick J. Avis, Ian J. Grimstead, and Omer F. Rana, Dis
tributed collaborative visualization using light Field rendering, CC-
GRID, 2009, pp. 609-614.

- Asma Al-Saidi, Nick J. Avis, Omer F. Rana, Abdelhamid Abdesse-
lam, On-Demand Transmission Model Using Image-Based Rendering
for Remote Visualization, UK e-Science All Hands Meeting, 7th-9th
December 2009, Oxford ,UK.

• Journals

- Asma Al-Saidi, David W. Walker and Omer F. Rana, “On-Demand
Transmission Model for Remote Visualization Using Image-Based Ren
dering",Concurrency and Computation: Practice and Experience, (sub
mitted)

