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Abstract

Introduction: The cornea is the clear window at the front of the eye. Its transparency is 

due to the special arrangement of collagen fibrils, which constitute most of the cornea. 

The precise regulation of the size and spacing of the fibrils is attributed to the 

interactions between proteoglycans and collagen fibrils. Proteoglycans consist of 

glycosaminoglycan chains attached to a protein core and in the cornea there are two 

main types of chain: keratan sulphate and chondroitin/dermatan sulphate. Much 

evidence has shown that these proteoglycans play different vital roles in the comeal 

extracellular matrix in order to maintain the architecture of the cornea.

Hypothesis: The hypothesis of this research is that changes in the sulphation patterns of 

the glycosaminoglycans are directly related to changes in ultrastructure, and hence 

transparency of the cornea.

Aims: The aims of this research were to investigate glycosaminoglycan sulphation 

patterns and collagen fibril ultrastructure from central to peripheral regions of the 

cornea, and to gain a greater understanding in the effects of keratan sulphate and its 

reliance on oxygen supply.

Methods: The bovine comeal extracellular matrix composition and collagen fibril 

parameters (fibril diameter and interfibrillar spacing) were biochemically and 

biophysically evaluated. This involved taking measurements of comeal thickness and 

hydration, as well as the amount of hydroxyproline and sulphated glycosaminoglycan. 

Immunolocalization of proteoglycan protein cores (lumican and keratocan) and specific 

glycosaminoglycans, particularly their sulphation distribution were studied using 

specific antibodies. Sulphation patterns of keratan sulphate were also quantified using 

specific antibodies. Transmission electron microscopy coupled with synchrotron small 

angle x-ray fibre diffraction was also employed to gain a greater understanding of the 

corneas’ collagen fibril architecture and its interaction with glycosaminoglycans across 

the depths of the cornea.



Results: The bovine cornea is thicker in the outer peripheral regions of the cornea and 

accordingly an increased amount of hydroxyproline is found at this region of the tissue. 

Keratan sulphate is predominantly found in the bovine cornea and is particularly 

heavily sulphated across the cornea. The degree of sulphation of keratan sulphate 

decreases at the outer peripheral regions of the cornea, which, interestingly, is where a 

transition of collagen fibrils occurs in that fibrils become less uniformly arranged, 

changes in fibril diameter are seen, and interfibrillar spacing values alter. Depth- 

profiled synchrotron microbeam analyses show that at different radial positions, from 

the comeal centre outwards, fibril diameter is greater superficially than in deep stromal 

regions. This does not include Bowman’s layer which is below the spatial resolution of 

the analysis. The mid-depth stroma has higher interfibrillar spacing than is seen in 

posterior regions of the stroma, where fibril spacing appeared more compact. Previous 

work has pointed to a link between glycosaminoglycan content and oxygen availability. 

Work presented here indicates that in rabbit corneas, after 24 hr in 2% atmospheric O2 , 

the glycosaminoglycan sulphation pattern changes significantly, with a significant 

increase of the high sulphated epitope of keratan sulphate.

Conclusion: My data reveal that collagen fibrils in the central regions of the cornea are 

more closely packed and uniform in diameter than those in the outer peripheral cornea, 

and this may have potential implications for the transparency of the tissue. Stromal 

architecture is likely governed by sulphated proteoglycans, and changes in the types 

and sulphation patterns of comeal glycosaminoglycans from the comeal centre to 

periphery might be linked to differences in collagen ultrastructure. Moreover, the 

findings of differences in collagen fibril ultrastructure with depth through the cornea 

are possibly linked to biochemical alterations in proteoglycans. Finally, it is 

hypothesised that detrimental conditions, such as hypoxia after contact lens wear, might 

have an effect on the type and sulphation status of glycosaminoglycan synthesized and 

in vitro evidence for this is presented and discussed.
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Chapter 1: Introduction



Chapter 1: Introduction

1.

This thesis is concerned with the nature of glycosaminoglycan chains on proteoglycans 

and their possible roles in the corneal stroma. In this chapter a brief description of the 

cornea and its relationship to the other ocular tissues will be presented. This will then 

be followed by a detailed description of the structure of the corneal stroma, which will 

outline the structure and function of collagen and the importance of proteoglycan 

interactions.

Vitreous humor

Retina

Cornea
Choroid

FoveansPupil

Iris Nerve

Sclera
Ciliary body and muscle

Figure 1.1 The anatom y of th e  eye (h ttp://w w w .eyecare-for-you.com /anatom y-of-the-eye.php, 2009).

The adult human eye is approximately 2.5 cm in diameter (Forrester et al., 2002). At 

the posterior end of the eye, approximately 85% is covered by the sclera, a white, 

dense, opaque protective coat that is not directly involved in the visual process (Figure 

1.1). The cornea covers the remaining portion (anterior) of the eye, which is a uniquely 

transparent tissue with a high refractive power (Berman, 1991). Its posterior surface is 

bathed by the aqueous humor and is secreted by the ciliary epithelium.

When an object is observed, light passes through both the cornea and the lens (a 

transparent tissue), both of whose functions are to focus light rays onto the retina 

(Forrester et al., 2002). The light rays then pass through the vitreous, a transparent, 

viscous gel, which occupies approximately 90% of the total volume of the eye. Once 

the light rays are focused onto the retina, they are absorbed by the photoreceptors
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(specialized cells located on the retina) and converted into electrical impulses, which 

are then transmitted through the optic nerve to the brain, and translated to a visual 

image (Berman, 1991).

1.1. The anatomy and physiology of the eye

The cornea and the sclera together form the outer covering of the eye and can withstand 

both internal and external forces to maintain the shape of the eyeball and to protect the 

contents from mechanical injury (Maurice, 1957; Komai and Ushiki, 1991). Unlike 

other connective tissues, including sclera, the cornea is transparent. Anything that alters 

the underlying structure of the cornea, such as external damage or swelling resulting 

from the intraocular pressure exerted by fluid in the eye, can affect the mechanical and 

optical properties and affect the function of the eye (Huang and Meek, 1999).

The cornea is a dome-shaped tissue that covers the iris, pupil and the anterior chamber. 

It has a refractive index greater than air and is responsible for a large part of the optical 

power of the eye. Typically the cornea accounts for 2/3 of the focussing of the eye; the 

lens produces the remaining optical power (Forrester et al., 2002). The adult human 

cornea is approximately 11 mm in diameter (vertically), 0.52 mm thick at its central 

portion, increasing slightly at the outer-peripheral-limbal region (0.67 mm) (also known 

as corneoscleral junction; the region where the cornea meets the sclera) (Forrester et al., 

2002).

The central third of the cornea is also referred to as the optical zone (Waring, 1989) and 

provides the majority of the cornea’s refractive function. The near-spherical optical 

zone forms the foveal image (central vision) through the pupil and is often known as 

the prepupillary cornea (Boote et al., 2003). The remaining peripheral part of the cornea 

is less curved and serves mainly as a refractive surface for peripheral vision (Figure 

1.2).
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Limbus
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Periphera l  c o rn e a

P re pup i l la ryco rnea

l lm m  9m m  3mm

HP 10mm -V
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Figure 1.2 A diagram showing th e  different surface zones in the human cornea (an terior corneal 
surface). Diagram adapted from (Boote e t al., 2003;
http://www.nlm .nih.gov/m edlineplus/ency/presentations/100206_2.htm , 2010).

1.2. The structure and composition of the corneal stroma

The cornea comprises 5 layers: epithelium, Bowman’s, stroma, Descemet’s membrane 

and the endothelium (Figure 1.3) and the structure and function is summarized in Table 

1. 1.

Bowm an's layer D escem et's  m em brane

Epithelium Stroma

Figure 1.3 The structure of the cornea and its constituen t layers. Diagram adapted from 
(http://w w w.im ages.m issionforvisionusa.org/anatom y/2005_10_01_archive.htm l, 2005; 
http://w w w .eyecare-for-you.com /anatom y-of-the-eye.php, 2009).

Endothelium
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Composition Structure Role
layer_____________________________________________
Epithelium 5-6 cell layers  t h a t  c o v e r  t h e  surface

of  th e  c o r n e a

5 0 -6 0 p m  th ick  in m a n

Filled w ith  t iny  n e rv e  e n d in g s  t h a t  
m ak e  t h e  c o r n e a  e x t r e m e ly  sensit ive 
to  pain w h e n  r u b b e d  o r  sc ra tc h e d

Bowman's 8-12|am th ick  in a d u l t  h u m a n  The role of  B ow m a n 's  layer  rem ains  unclear , bu t  it has
b e e n  h y p o th es ised  to  a c t  t o  m aintain  corneal  

T ra n s p a re n t  s h e e t  o f  t i s s u e  s t ru c tu ra l  integrity  o r  as  a barr ier  agains t  viral
p e n e t r a t io n

Consists o f  fine, r a n d o m ly  a r r a n g e d  
p ro te in  f ib res  (collagen; t y p e  I, III, V 
and  VII -  an c h o r in g  f i la m e n ts  a iding 
n e tw o rk  o f  f i la m e n ts  a d d in g  
epithelial  ad h es io n )

__________________________________________ (Komai a n d  Ushiki, 1991, W ilson jm d_H ong, 2000 ) __
Main layer  of  th e  c o r n e a  T he  t r a n s p a r e n c y  of  t h e  c o rn e a  is closely assoc ia ted

w ith  t h e  regu la r  spacing  of  t h e  collagen fibres 
Primarily c o m p o s e d  of  co l lagen  (interf ibillar d is tance),  w hich  in tu rn  is regu la ted  by
f ibres o r i e n ta te d  parallel t o  t h e  g lycosam inog lycans  a n d  p ro teog lycans  forming
cornea l  sur face  b r idges  b e t w e e n  t h e  collagen fibrils

B e tw een  th e  collagen f ibres ,  lay 
k era to cy te  cells an d  a re  c o n n e c t e d  
by gap  junc t ions  t o  th e i r  
ne ighbour ing  cells a n d  a re  a r ra n g e d
in a co rkscrew  p a t t e rn  (Muller , Pels a n d  V rensen ,  1995; Fo rres te r  e t  al.,

2002 )    ................

Contains  f ib ronect in ,  t y p e  IV, T h e se  pa r t icu la r  cells a re  e ssen t ia l  in mainta in ing  th e
collagen a n d  laminin h o m e o s ta s i s  o f  fluid a n d  ions (e.g. Na+ a n d  Cl") within

t h e  s t r o m a  a n d  a q u e o u s  h u m or ,  which a re  crucial to  
Type VIII collagen is also p r e se n t ,  t h e  c o rn e a l  d e h y d ra t io n  a n d  t r a n sp a re n c y
w hich  fo rm s  a hexagona l  la t t ice

Thin layer c om pr is ing  of  
g lyco p ro te in 's  (e.g. f ib ro n e c t in  a n d  
laminin), co llagen a n d  e n d o th e l ia l
cells (4 -6pm )  (B erm an ,  1991, B e u e rm an  a n d  Pedroza,  1996)

Stroma

Descemet's 
membrane and 
endothelium

Block th e  passage of foreign m ater ia l  (e.g. dust ,  w a te r  
and bacteria) into t h e  eye

Provide a s m o o th  surface  to  a b s o rb  oxygen and  cell 
nu tr ien ts  f rom  te a r s  a n d  t h e n  d is t r ibu te  t h e s e  
n u tr ien ts  to  t h e  rest  of  th e  co rn ea

Serves as  a fo unda t ion  on  which th e  epithelial cells 
o rganize and  an ch o r  th e m se lv e s  by a b a s e m e n t  
m e m b r a n e  com plex  to  a B ow m an 's  m e m b ra n e

The  a t t a c h m e n t  of t h e  epithelial cells t o  t h e  b a s e m e n t  
m e m b r a n e  is t h o u g h t  t o  be  m e d ia te d  by 
h e m id e s m o s o m e s  th ro u g h  anchoring  f i laments  and  
a dhes ive  g lycopro te in 's  (e.g. laminin and  f ibronectin)

(Berm an, 1991; F o rres te r  e t  al., 2002)

Table 1.1 A summary table of the different layers of the cornea.

From the forgoing description of the 5 distinct layers of the cornea, the corneal stroma 

is the main layer (-500 pm thick, -90% of the thickness of the cornea) and its ground
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substance mainly consists of water (~78%), but its main structural components include 

collagen fibrils (—12-15% wet wt of tissue) and proteoglycans (~l-3% wet wt of tissue) 

(Baum, Maurice and McCarey, 1984; Berman, 1991). Other components found in the 

stroma include glycoprotiens, soluble proteins, lipids and keratocytes (Berman, 1991).

The cornea is avascular, but nerve axons and their associated Schwann cells are 

occasionally observed in the anterior and mid stroma (Jalbert and Stapleton, 2005). The 

stroma consists numerous bundles or lamellae (over 200 lamellae in man), of collagen 

fibres. In the stroma, the lamella traverses a complete arc of the cornea and in each 

lamella the collagen fibres are parallel and equidistant from each other. Transparency of 

the cornea depends particularly on the degree of spatial order of its collagen fibrils 

which are narrow in diameter and closely packed in a regular manner (Maurice, 1957). 

The lamellae are denser, narrower (0.5-30 pm), thinner (0.2-1.2 pm) (Komai and 

Ushiki, 1991) and more intertwined (McTigue, 1967) in the anterior third of the stroma, 

compared to the posterior two thirds, where lamellae are wider (100-200 pm) (Komai 

and Ushiki, 1991), more parallel, orthogonally aligned (Meek and Quantock, 2001) and 

can be up to 4 pm thick (McTigue, 1967; Komai and Ushiki, 1991). The collagen fibrils 

themselves are weak scatterers, as their fibril diameters are less than the wavelength of 

light, and fibril refractive index is close to that of the ground substance (Goodfellow, 

Elliott and Woolgar, 1978). The stromal keratocytes are irregularly found between 

neighbouring lamellae and are designed to scatter minimal light.

1.3. Stromal collagen

Collagen is the most abundant protein in connective tissues. The maintenance of 

structural strength of most connective tissues is controlled by collagen molecules, 

which form the fibrillar elements found in the extracellular space of such tissues. 

Currently, there are 28 different collagen types identified, which are encoded by at least 

40 different genes (Prockop and Kivirikko, 1995; Fitzgerald and Bateman, 2001; Boot- 

Handford et al., 2003; Gordon and Hahn, 2010) and exhibit characteristic tissue- 

specific patterns of expression. Several of these collagens have been found in the eye 

(Table 1.2). All collagens possess one or more triple helical domains. These domains 

are made of three polypeptide a  chains wrapped around each other into a right-handed
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triple helix so that the final structure is a “rope-like rod” (Prockop and Kivirikko, 

1995). This characteristic in collagen gives rise to a common feature in all collagen 

types, where glycine is on every third amino acid generating a repeating (Gly X-Y)„ 

pattern, where X is often alanine or proline, and Y, hydroxyproline. Collagens are also 

rich in lysine and some in hydroxylysine residues, which participate in intramolecular 

and intermolecular cross-linking. In addition collagens have non-triple-helical regions, 

which are present at the ends of the molecule, but may additionally be interspersed, 

between triple- helical regions. Based on their structure and function, collagens have 

been classified into different groups:

• Fibril-forming collagens (e.g. types I, II, III, V, XI collagen)

• Fibril-associated (fibril-associated collagen with interrupted triple helices, 

FACIT) collagens (e.g. types IX, XII, XIV, XVI, XIX collagen)

• Collagens that form structures unrelated to fibril

• Short chain collagens (e.g. types VIII, X collagen)

• Basement membrane collagen (e.g. type IV collagen)

• Anchoring fibrils (e.g. type VII collagen)

• Microfibrillar (e.g. type VI collagen)

• Other collagens (e.g. types XIII, XV, XVII, XVIII, XX, XXI, XXII, XXIII, 

XXIV, XXV, XXVI, XXVII, XXVIII collagen)
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Collagen
type

Corneal sites Notes

Ep B S D En
1 X X Structural  f ibres

II a
X

a
X Struc tura l  fibres

III X Limits fibril d ia m e te r  and  repairs  f ibres

IV X X N etw o rk  a n d  scaffolding fo rm ing  collagen

V X Limits fibril d ia m e te r  and  cell sh a p e

VI X B e a d e d  f i la m e n t  fo rm ing  collagen for  ad hes ion

VII X A n ch o rs  fibrils fo r  ad h es io n

VIII X F o rm s scaffolds

IX a
X C o -d is t r ib u te s  w ith  ty p e  II collagen an d  regu la tes  fibril d ia m e te r

XII X X X X A d h es io n

XIII

XIV a
X

X

a
X

F o und  t w o  th i rd s  o f  t h e  s t r o m a  an d  cons is ts  o f  a t r a n s m e m b r a n e  
d o m a in
R e g u la te s  f ibri l logenesis  a n d  m atr ix  a s sem b ly

XVII

XVIII

a
X

X X

a
X K now n as  t h e  bu llous p em p h ig o id  a n t ig e n  2/BP180; localised to  

ep i th e l ia ;  a n  epi thel ia l  a d h e s io n  m olecu le ;  e c to d o m a in  c leaved  by 
ADAM p r o t e in a s e s
A sso c ia ted  w i th  b a s e m e n t  m e m b r a n e s ;  e n d o s t a t in  is 
p ro teo ly tica l ly  r e le a s e d  f ro m  th e  C - te rm inus  of  collagen XVIII; 
im p o r t a n t  fo r  re t ina l  vascu lo g en es is

Table 1.2 The collagen family: ocular d istribu tion  found  in v e r te b ra te  corneas. Table modified from 
(Michelacci, 2003). EP = epithelium, B = Bowman's layer, S = strom a, D = D escem et's m em brane and EN 
= endothelium . xa = found during chick em bryonic developm ent.

1.3.1. Structure and function o f ocular collagens

The characteristics of different extracellular matrices (ECMs), whether it is in cartilage 

or in cornea for example, are determined by the synthesis, assembly, deposition of 

collagen molecules and their organization into unique macromolecular structures. 

Fibrillar collagen molecules are organized into fibrils, that are organized into tissue- 

specific macroaggregates such as regular layers (cornea and bone), cables (tendons and 

ligaments), or irregular layers (dermis, sclera). At each level of this hierarchy the 

collagen fibrils have tissue specific characteristics, i.e. fibril diameter, packing and 

organization. As previously mentioned, the corneal stroma has small, uniform diameter 

fibrils that are regularly packed and organized into orthogonal layers (lamella). These 

characteristics permit this tissue to be strong and transparent. In contrast, the Bowman’s
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layer has very small diameter fibrils with irregular packing, organized as a fibrillar 

weave at the interface between the epithelial basement membrane and the comeal 

stroma.

The comeal stroma itself mainly consists of type I collagen (75%) and low proportions 

of type V (8%) and type VI collagen (17%) (Kem, Menasche and Robert, 1991). Type 

II collagen is found during comeal development (Gelse, Poschl and Aigner, 2003; 

Michelacci, 2003) while type III collagen is found during would healing, inflammation 

and several pathological conditions (Nakamura, 2003).

1.3.2. Biosynthesis o f collagen

Like all proteins, collagen biosynthesis is a multi-step process that starts with the 

transcription and translation of the individual collagen gene. The type of collagen to be 

formed is characterized by the presence of a large number of co- and post-translational 

modifications, many of them being unique to collagens or collagen-like proteins 

(Prockop and Kivirikko, 1995). The fibril-forming collagens (also referred as striated 

collagen) are synthesized as procollagens (where each of the 3 polypeptide chains has a 

globular domain at the N- and C-termini) on the ribosomes located on the rough 

endoplasmic reticulum (RER) in cells and is illustrated in Figure 1.4. Briefly, the 

procollagen molecule is secreted into the ECM where specific proteases at the cell 

surface remove the N- and C-terminal non-helical, globular ends. The resulting 

collagen molecules can then associate in a staggered array to form collagen fibrils of 

various lengths and diameters. Lysyl oxidase then converts the amino groups on some 

of the lysine residues in the collagen polypeptide chain to aldehydes that react with 

amino groups on lysines in other chains to form covalent crosslinks.
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Collagen gene

I
RNA processing 

+
mRNA

Pre pro collagen chain

i
Cleavage of signal peptide 

1
Procollagen a  chain

•Hydroxylation 
•Glycosylation 
• Di s ul fi de bo nd fo rmati on 
•Helical formation 
•Secretion

i
Procollagen molecule

Pro-collagen processing

Packing of molecules

Fibril

Figure 1.4 Fibril forming collagen synthesis. The collagen precursor chains are co-translationally 
translocated into th e  endoplasmic reticulum (ER) lumen, w here specific post-translational modifications 
occur. Three collagen a-chains associate specifically via their C-terminal domains (Khoshnoodi e t al., 
2006) to  form heterotrim ers or homotrimers.. The helical collagens are trafficked via the Golgi network 
to the plasma m em brane, and secreted into the extracellular space. The fibril-forming collagens are 
secreted as precursor forms, called procollagens, with N- and C-terminal non-collagenous domains. 
These domains are rem oved by the  action of specific p roteases, and th e  collagens are assembled into 
dense fibrils with a characteristic D-periodicity. The fibril is stabilized by covalent lysine- and 
hydroxylysine-derived crosslinks. Diagram adapted from (Kadler e t al., 1996).

The type of collagen to be formed is partially determined by the kinds of post- 

translational modifications that occur to the triple helix as well as the degree to which 

the chains are hydroxylated. In the fibril forming collagens (types I, II, III, V), and 

similarly in some other types, large portions of the non-helical N- and C-terminal 

peptides (extension peptides) are removed by the catalytic action of peptidases enzymes

N-proteinase C-proteinase

o o
Telopeptide

N-propeptides v C-propeptide

300 nm

Cl ea vag e  o f p ropeptides

•Fibriltogenesis 
•Collagen fibril self assembly

D-period

Nucleus RNA polymerase

PolypeptideCytoplasm

Polypeptide synthesis

Ribosomes

Rough endoplasmic reticulum (RER)

COOH
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after transport out of the cell (Whikehart, 1994). The remaining structure is now known 

as a collagen molecule (tropocollagen).

1.3.3. Fibril forming collagen

A fundamental feature of fibril forming collagens is that they are synthesized as soluble 

procollagens (Figure 1.4), which are converted into collagens by specific enzymatic 

cleavage of terminal propeptides by the procollagen metalloproteinases. Without these 

proteinases the synthesis of collagen fibrils would not occur (Ihanamaki, Pelliniemi and 

Vuorio, 2004). Fibril forming collagens are easily recognized by transmission electron 

microscopy (TEM) as this due to the striking 67 nm axial banding pattern they posses 

(known as the Z)-periodicity) (Figure 1.4) and collectively are the most abundant 

collagens in vertebrates. They can also co-assemble with other collagen fibril forming 

types (e.g. type III and V collagen) creating heterotypic fibrils (Birk et al., 1988).

1.3.3.1. Type I  collagen

Type I collagen was the first to be characterized, and is present in many connective 

tissues such as skin, tendon, and is predominantly abundant in the corneal stroma 

(Forrester et al., 2002). Type I collagen molecules are long (300 nm), thin (1.5 nm 

diameter) proteins that consists of three coiled subunits, designated as [al(I ) ] 2  [a2(I)] 

(Whikehart, 1994). Each chain contains 1050 amino acids wound around each other in 

a right-handed triple helix structure. They form the Z)-periodic striated fibrils in the 

extracellular space, giving the tissue their:

• Mechanical strength

• Biomechanical scaffold for cell attachment (e.g. platelets and fibroblasts)

• Anchorage of macromolecules (e.g. integrins, fibonectin, fibromodulin and 

decorin) (Hulmes and Miller, 1981).

In addition, type I collagen molecules are (in vivo) normally incorporated with other 

collagen molecules such as type III collagen (in skin and reticular fibres) (Fleischmajer 

et al., 1990) or type V collagen (in bone, tendons and corneal stroma) (Niyibizi and 

Eyre, 1989a; Michelacci, 2003).

19



Chapter 1: Introduction

1.3.3.2. Type V collagen

Type V collagen is a minor fibrillar collagen present in tissues where type I collagen 

co-assemble as heterotypic fibrils (Figure 1.5). This heterotypic collagen molecule can 

form very small diameter fibrils, where the NH2 of type V collagen epitopes are 

exposed, and triple helical epitopes are masked by the fibril structure (Birk, 2001). The 

most common isoform of type V collagen found in the cornea is [a l(V )2  a2(V)] (Birk, 

Fitch and Linsenmayer, 1986; Birk et al., 1988; Birk et al., 1990). However, other 

isoforms; a(V )3  homotrimer and [a l(V ) a2(V) a3(V)] have been reported (Sage and 

Bomstein, 1979; Madri, Foellmer and Furthmayr, 1982; Niyibizi, Fietzek and van der 

Rest, 1984). Type V collagen a  chains also form heterotypic molecules with type XI 

collagen a  chains (Niyibizi and Eyre, 1989b; Mayne et al., 1993), however, the 

distribution functional roles of these isoforms remains unclear.

Type I collagen

Type V collagen

Figure 1.5 A m odel of type l/V heterotypic fibril. Type I and V collagens co-assem ble to form a striated 
fibril. This co-assembly requires tha t the NH2-term inal dom ain of type V collagen project through the 
gap region and be exposed on the  fibril surface. The triple helical portion of the  type V molecule is 
packed with the  type I molecules so th a t it is internalized. The NH2-terminal domains on the fibril 
surface increase as assembly proceeds and e ither alone and /o r in conjunction with other 
macromolecules alters the  properties of th e  fibril surface (Birk, 2001).

In the cornea, the tightly packed and highly organized fibrils are composed of types I 

and V collagens, and contain the largest relative amount of type V collagen (Tseng, 

Smuckler and Stem, 1982). The presence of type V collagen is one of the factors 

influencing fibril diameter, which has been proposed to contribute to comeal 

transparency (Birk et al., 1990). In vitro studies (Birk et al., 1990) have demonstrated 

that when small amounts (2-5%) of type I collagen are added, numerous striated fibrils 

are formed. Type I collagen alone formed fibrils with a broad range of diameters. In the
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presence of increasing amounts of type V collagen the mean diameter progressively 

decreased. Furthermore, when the NF^-terminal domain of type V collagen was 

removed, a high concentration was needed to produce a measurable decrease in fibril 

diameter. It was suggested that the NH2 domain of the type V collagen is responsible 

for the regulatory effects of this collagen on fibril diameter. Comeal abnormalities, 

including flattened corneas and micro corneas, due to abnormal fibrillogenesis have 

been reported to result from type V collagen gene mutations both in mice 

(Andrikopoulos et al., 1995) and in human (Nicholls et al., 1996; Giunta and 

Steinmann, 2000).

1.3.4. Filamentous collagen

Filamentous collagens can be subdivided into pericellular and matrix collagens. They 

sometimes form loosely aggregated fibrils with little or no periodicity but they are 

frequently thinner than fibril forming collagen fibrils.

1.3.4.1. Type VI collagen

Type VI collagen, is a member of the subfamily of short chain filamentous collagens. 

These collagens occur in the vicinity of fibril forming collagen fibrils, but are absent 

from the fibrils themselves, and are located to a fine filamentous network associated 

with the striated fibril bundles (Figure 1.6) (Abedin, Ayad and Weiss, 1982; von der 

Mark et al., 1984). Type VI collagen is a rod-like molecule whose triple helical portion 

is approximately 105 nm long (von der Mark et al., 1984; Kadler et al., 2007). Each of 

the three different chains of the type VI collagen protein contains a short triple-helical 

domain, and of large N- and C-terminal globular domains (Prockop and Kivirikko, 

1995) making up more than half of the molecular weight of the collagen molecule 

(Bishop, 1996). Collagen type VI exploits disulphide bonds to form anti-parallel coiled 

dimers, and these are assembled both linearly (to form beaded filaments) and laterally 

(to form open networks) via their globular terminal domains (Knupp and Squire, 

20012005).
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In skin, type VI filaments are highly concentrated around endothelia basement 

membranes and form a loose sheath around the blood vessels, as well as nerves and fat 

cells. A study by Burgeson (1988) has suggested that the loose sheath of type VI 

collagen filaments serves to separate blood vessels, nerves, and fat cells from bundles 

of striated fibrils which make up tissue compartments; this also provides free 

movement between striated fibril bundles and cellular elements (Burgeson, 1988).

Intracellular

M onom er Dimer Tetramer

Figure 1.6 A schem atic diagram of type VI collagen. The individual collagen helices are not secreted as 
m onom ers but assemble intracellularly into antiparallel overlapping dimers (two triple-helical collagen 
VI molecules), which then align to form te tram ers  (four triple-helical collagen VI molecules) (Kadler et 
al., 2007). Collagen VI is secreted as te tram eric structu res of four collagen VI molecules tha t aggregate 
end-to-end to  form long thin periodically beaded  microfibrils. Scale bar 100 nm.

In cartilage and in the eye small amounts of type VI collagen microfibrils are found and 

these are thought to serve a function in stabilizing different fibrillar structures 

(Marshall, Konstas and Lee, 1993; Thomas, Ayad and Grant, 1994; Bishop, 1996). In 

the vitreous, type VI collagen microfibrils have been suggested to contribute to the gel 

structure by linking together the heterotypic collagen fibrils or by linking the 

heterotypic fibrils to the hyaluronan network (Bishop, 1996; Bishop, 2000).

1.3.5. Other ocular collagens

New collagen types are continuously being discovered and some of these are found 

within the corneal stroma, whilst others have been found within the cornea itself. For 

example collagen type XII is found within the comeal stroma. It is distributed
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periodically along collagen fibrils (periodicity of 150-200 nm) (Wessel et al., 1997) and 

is thought to stabilize the collagen fibril arrangement by bridging the fibrils (Keene et 

al., 1991) through the interactions of proteoglycans (Koch et al., 1995). In addition it is 

also thought that collagen type XII may play an important role in the morphogenesis of 

corneal scar tissue and healing (Zhan, Burrows and Cintron, 1995; El-Shabrawi, Kublin 

and Cintron, 1998).

1.3.6. Organization o f  collagen fibrils in the corneal stroma

Corneal fibrils are D-periodic (axial periodicity of collagen fibrils, where D ~ 65 nm) 

and uniformly narrow (~ 30-35 nm in diameter (mammals)). The D-periodicity of the 

fibril arises from side-to-side associations of triple-helical collagen molecules that are ~ 

300 nm in length (i.e. the molecular length = 4.4D) and are staggered by an axial 

distance D (Figure 1.7. A) (Scott, 1988 ). The staggering of collagen molecules 

produces alternating regions of protein density in the fibril, which explains the 

characteristic gap and overlap appearance of fibrils negatively contrasted from 

transmission electron microscopy (TEM) (Figure 1.7 B).

300 nm

O verlap zo n e 

G ap zone

Packing of collagen molecules

C ollagen fibril

Figure 1.7 Axial packing arrangem en ts of collagen m olecules in a fibril (A), as derived from analysis of 
th e  negative (B) and positive (C) staining p a tte rn s . (B) Collagen fibril negatively stained with sodium 
phosphotungstic acid (1%, pH 7). The fibril is from reconstituted from acetic acid soluble calf-skin 
collagen. The repeating broad dark and light zones are produced by preferential stain penetration into 
gap regions. (C) Fibrils positively stained with phosphotungstic acid (1%, pH 3.4) and the uranyl acetate 
(1%, pH 4.2). The darkly staining transverse bands are th e  result of uptake of electron-dense heavy 
metal ions from the  staining solutions on to  charged residue side groups of collagen (Kadler et al., 1996).
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Between comeal collagen molecules and collagen fibril exist another level of 

organization, the microfibrils. The microfibrils have a lateral spacing of approximately 

4 nm and a tilt of 15° to the fibril axis (Holmes et al., 2001 ). This tilting may lead to 

the reduced axial periodicity in the cornea compared with tendon tissue (Meek and 

Boote, 2004).

Examination in the electron microscope, using positive staining, discloses the 

distribution of charged amino acid residues. In the case of collagen, each D-period 

displays five staining zones labelled a to e (Figure 1.7 C). These zones are further 

subdivided at a higher resolution, leading to 12 so-called positive staining bands, al to 

e l (Hodge and Schmitt, 1960). The bands are often used to describe the axial position 

along a collagen fibril; al and a l  are in the gap zone, a3 is at the gap/overlap junction, 

a4, bl, b l and cl are in the overlap zone, c l  is at the gap/overlap junction and c3, d and 

el are in the gap zone (Chapman, 1974; Meek, Chapman and Hardcastle, 1979).

The diameter of collagen fibril is highly uniform, and has been measured by both 

microscopically and diffraction techniques. Electron microscopy studies have showed 

that the diameter of collagens varies according to the experimental preparation 

employed (Meek and Leonard, 1993; Craig, Robertson and Parry, 1996; Meek and 

Fullwood, 2001). For example, in rabbit comeal stromas, the mean fibril diameters 

range from 17.8 to 40.6 nm (Cintron et al., 1978; Craig and Parry, 1981; Yamabayashi 

et al., 1991; Freund et al., 1995; Connon et al., 2000; Hirsch, Prenant and Renard, 

2001). This variation alternatively could be due to the differences between rabbits (i.e. 

inter-sample differences that might be related to age, gender or breed), or regional 

differences in the actual fibril dimensions (i.e. intra-sample variations between the 

anterior to posterior aspects of the comeal stroma.

Early electron microscopy studies on human cornea have showed that the interfibrillar 

spacing of collagen fibrils decreased with age and the fibril diameter remained constant 

(Kanai and Kaufman, 1973). However, using x-ray diffraction, a number of studies 

have shown that the diameter of human comeal collagen is approximately 31 nm and 

increases to approximately 34 nm with age (Meek and Leonard, 1993; Daxer et al.,

1998). The spatial arrangement of the collagen fibrils in the cornea is thought to be of
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major importance for the tissue’s transparency (Maurice, 1957). Such difference in 

results may have been due to the preparations of the experiment (discussed later in 

Chapter 2).

3-D reconstruction from micrographs taken over a range of tilt angles, Sandler (1974) 

revealed that corneal collagen fibrils are not entirely parallel within the lamella. Some 

are relatively straight, others are oblique, and others appear to wave (Sandler, 1974). 

These results were also indicated in x-ray diffraction analysis (Goodfellow et al., 1978), 

where collagen fibrils did not pack in a lattice formation within the corneal stroma, but 

instead a short-range order occurs (Sayers et al., 1982). However this short-range order 

is thought to be sufficient to allow corneal transparency (Farrell and McCally, 2000). 

Within each lamella the collagen fibrils run in the same direction, and are parallel to the 

corneal surface, however, the fibril direction in adjacent lamellae varies (Komai and 

Ushiki, 1991). Wide angle X-ray diffraction experiments on human corneas indicated 

two preferred orientations for the lamellae and their component fibrils in the plane of 

the cornea at its centre that are 90° apart: a temporal-nasal and a superior-inferior 

orientation (throughout the width of the cornea) (Meek et al., 1987; Boote et al., 2005). 

This may be linked to the eye muscles and the biomechanical stability (Boote et al., 

2005; Meek and Boote, 2009). At the limbus region, in the human cornea, collagen 

fibril orientation becomes circumferential (Newton and Meek, 1998; Meek and Boote, 

2004).

1.4. Extracellular matrix components - Proteoglycans

Proteoglycans (PGs) are glycoprotein which consists of a core protein with one or more 

covalently attached glycosaminoglycan (GAG) chain attached to the core protein. They 

have since also been grouped into families based homologous sequences of amino acids 

in their core protein that confer a particular activity and now they are named and 

grouped according to the type of GAG chain attached to the core protein. Most PGs fit 

into one of 3 categories:

• Intercalate into plasma membranes

• Bind to hyaluronan

• Modulate collagen fibril formation
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Hyaluronan is a GAG but it is not attached to a core protein and is usually found in 

synovial fluid, vitreous humor, and in the ECM of loose connective tissues.

PGs are found in all connective tissues, extracellular matrices and on the surface of 

many cells. These functions are often due to the interaction of proteins with the 

glycosaminoglycan (GAG) chains, which can have variable affinity, and specificity, 

dependant on charge interactions (Kjellen and Lindahl, 1991).

PG core proteins range in size from 20-450 kDa and regions of the core protein often 

show homology to motifs contained in globular type proteins. In cornea, there are four 

PGs in the adult comeal stromal ECM; decorin (Li et al., 1992), lumican (Blochberger 

et al., 1992; Kao et al., 2006), keratocan (Corpuz et al., 1996; Chakravarti, 2006) and 

mimecan (Funderburgh et al., 1997). The GAG side chains are repeating disaccharides 

with sulphate esters and can be as large as 70 kDa. In many species, the predominant 

comeal GAG side chains include; chondroitin sulphate/dermatan sulphate (CS/DS), 

keratan sulphate (KS) and small amounts of heparan sulphate (HS) (Hassell, Kimura 

and Hascall, 1986). Each GAG is a polymer of a disaccharide, in KS N- 

acetylglucosamine (GlcNAc) and galactose (Gal) and in DS A-acetylgalactosamine 

(GalNAc) and glucuronic/ iduronic acid (GlcA/IdoA). GAG carbohydrates are 

sulphated to various degrees (Figure 1.8).

The core protein is synthesized in the RER and the GAG side chains are added to the 

core protein in the Golgi body. The PGs are then secreted into the ECM. Comeal PGs, 

like most other PGs, interact strongly with other components in the ECM and can only 

be quantitatively extracted and in an intact by denaturing solvents (Rada, Comuet and 

Hassell, 1993).
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GalNAcGIcA

C h o n d ro it in  s u lp h a te

Ser

GalNAc IdoA
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GlcNAcIdoA
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J Fucose (Fuc)

N-acetyl-D-glucosamine (GlcNAc) 

M annose (Mann)

^  G alactose (Gal)

Variable capping structure 

Neuraminic acid (NeuAc) 

D-Glucuronic acid (GIcA)

J N-acetyl-D-galactosamine (GalNAc) 

L-lduronic acid (IdoA)

I Xylose

Figure 1.8 The chemical com position of proteoglycans and its d ifferent glycosaminoglycan chains 
attached .

1.4.1. Glycosaminoglycans (GAGs)

Structurally, GAGs are unbranched chains of repeating disaccharide units where one of 

the monosaccharides is an amino sugar, and one or both monosaccharides contain a 

sulphate or carboxylate group (Kjellen and Lindahl, 1991; Gandhi and Mancera, 2008). 

Corneal PGs belong to the small leucine-rich protein (SLRP) family and their 

polysaccharide chains typically consist of repeating disaccharide motifs, with 

alternative residues of hexosamine and uronic acid (either D-GlcA or Z-IdoA) or sugar 

(either GlcNAc or GalNAc) and are often sulphated. At physiological conditions, the 

sulphate and uronic groups are charged and it is this that provides the GAG chains with 

a very high negative charge density (Gandhi and Mancera, 2008). The linkage of GAGs
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to the protein core involves a specific trisaccharide composed of two galactose residues 

and a xylose residue (GAG-GalGalXyl-0-CH2-protein) (Funderburgh, 2000).

Due to the negative charge of the sulphate groups in the GAG chains, PGs can make 

ionic interactions with conveniently located arginines (Arg), lysines (Lys), and 

histidines (His) on the surface proteins. In addition, GAGs are thought to assume 

extended conformations in water so that their sulphated groups can maximize their 

hydrophilic interactions with water molecules (Imberty, Lortat-Jacob and Perez, 2007). 

The negatively charged GAGs swell in solution to increase their conformational 

entropy. Repulsion of the GAG charges and Donnan osmotic pressure, which is a 

consequence of the positively charged ions gravitating around the GAG chains, can 

contribute to tissue swelling (Scott, 2003).

1.4.1.1. Keratan sulphate (KS)

KS PGs are major components of the cornea and are also found in cartilage and brain. 

A high concentration of these molecules have been found in the cornea and because of 

this, their biological function has been extensively studied and found to include 

maintenance of corneal extracellular matrix structure (Funderburgh et al., 1991b; 

Comuet, Blochberger and Hassell, 1994; Connon et al., 2004). Corneal KS PGs consist 

of PG core proteins, such as lumican, keratocan, and mimecan, carrying KS GAGs in 

an AMinked manner (Funderburgh, 2002). KS was first identified by Suzuki (1939) in 

extracts of the cornea (Suzuki, 1939) and has been characterized as linear polymer of 

lactosamine, 3Gaipi-4GlcNAcpi, sulphated at the C6 of both hexose (N- 

acetylglucosamine (GlcNAc) and galactose (Gal)) moieties (Meyer et al., 1953) (Figure 

1.9). Synthesis of KS GAG chains on PGs is processed by glycosyltransferases and 

sulfotransferases localized in the Golgi body, and matured KS PGs are secreted into the 

extracellular matrix. Elongation of the carbohydrate backbone of the GAG chain is 

catalyzed by enzymes of two glycosyltransferases (P1-3-N- 

acetylglucosaminyltransferase (P3GnT) and P1,4-galactosyltransferase (P4GalT) and 

sulphation of the chain is catalyzed by two carbohydrate sulfotransferases (Kitayama et 

al., 2007).
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-34 d iascch aride repeats j10-12 d iascch aride repeats

( P |  G alactose (Gal) |  6 -sulphatedJ F u c o se (F u c )

M an n ose(M an n ) N euram inic acid (N euA c)

^ P  N -acety lg lu cosam in e (G lcN A c) ^ P  Variable capping structure

Figure 1.9 A simplified diagram  of corneal kera tan  su lphate (KSI) structure. The disaccharide structure 
of KS can either be mono-, di- or un- su lphated  on th e  repeat disaccharide units. Disulphated structures 
occur towards the non-reducing term inal, m onosulphated  disaccharides towards the middle of the 
structure and unsulphated disaccharides occur tow ards the  linkage region of the  chain. Diagram 
adapted from (Funderburgh, 2000).

Over the decades, KS has been divided into two classes (KSI and KSII) to distinguish 

KS from cornea (KSI) and that of cartilage (KSII) (Figure 1.10). The corneal KS is N- 

linked to asparagine (Asn) residues in the core protein, with the KS extending one 

branch and sialic acid terminating the second branch (Nilsson et al., 1983). Cartilage 

KS chains are shorter than KS of cornea (5-11 disaccharides) and are highly sulphated, 

consisting of disulphated monomers interrupted occasionally by single mono-sulphated 

lactosamine monomers (Nieduszynski et al., 1990). KSII are O-linked to serine (Ser) or 

threonine (Thr) residues (Funderburgh, 2000).

KS has also been implicated in motility of corneal endothelial cells, a single layer 

epithelium that lines the posterior surface of the cornea. These cells normally display a 

mosaic distribution of KS at their apical surface, but after wounding the KS is reduced 

or absent on migrating cells. KS returns in abundance to the cell surface when the cells 

cease migration (Davies et al., 1999).
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Figure 1.10 The structural differences b e tw een  corneal KS (KSI) and cartilage KS (KSII). The major 
difference betw een the  two KS is based upon th e  protein linkage: KSI are N-linked to  Asp amino acids 
via N-acetylglucosamine and KSII are O-linked to  specific Ser/Thr amino acids via N-acetyl galatosamine. 
The diagram also illustrates the  synthesis of th e  tw o KS. GlcNAc6ST = GlcNAc-6-sulfotransferase, Gal6ST 
= Gal-6-sulfotransferase. Diagram adapted  from (Funderburgh, 2000; Brown, Crawford and Esko, 2007).

The degree of sulphation is a major component to GAGs and results from its synthetic 

pathway. Corneal KS sulphation is neither uniformly nor randomly distributed along 

the linear GAG chain (Quantock, Young and Akama, 2010). In bovine and human 

corneal KS, studies have indicated that the carbohydrate chain length has 

approximately 14 (Plaas et al., 2001; Quantock et al., 2010) to 32 (Tai, Huckerby and 

Nieduszynski, 1996; Tai et al., 1997) disaccharide repeat units (-4% unsulphated, 

-42% monosulphated, and 54% disulphated disaccharides). The sulphation in GAGs is 

an important and has implications for corneal extracellular matrix structure, for 

example collagen interfibrillar spacing, mechanical stability between individual fibril, 

hydration content and tissue transparency.

KS is found to be more abundant in the corneas of animals that have thick corneas, and 

this predominantly may be due to the high presence of the over-sulphated terminal 

domain of KS (Scott and Bosworth, 1990). Comparative studies between KS and

Poly-N-acetyl 
lactosam ine 
synthesis and  
GlcNAcSST

10-12 diasccharide repeats

8-34 diasccharide repeats

—I-
10-12 diasccharide repeats

Poly-N-acetyl 
lactosamine 
synthesis and 
GlcNAc6ST, 
Gal6ST
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CS/DS, have indicated that the amount of CS/DS in the cornea is lower if the amount of 

KS is higher, as this may be due to the fact that the synthesis of KS requires no oxygen, 

while CS/DS is synthesized in the presence of oxygen (Scott and Haigh, 1988b). 

Interestingly, these findings by Scott and Haigh (1988b), have suggested the possibility 

that the longer oxygen diffusion paths in thicker corneas of larger animals increase the 

probability of oxygen being consumed before reaching all regions of the cornea.

The main comeal extracellular matrix PGs belong to the SLRPs (Table 1.3). Some 

members of this family are known to regulate collagen fibrillogenesis (Michelacci, 

2003). Most SLRPs have been grouped into three different classes on the basis of gene 

organization, amino acid sequence similarity, number of leucine-rich repeat, and the 

spacing of Cys residues in the N-terminal segment. A cDNA clone encoding the 

lumican core protein of a chick comeal KS PG (Blochberger et al., 1992) was obtained, 

and the bovine (Funderburgh et al., 1993) and human (Chakravarti et al., 1995) lumican 

core proteins were cloned later. Two other KS PGs, keratocan and mimecan (or 

osteoglycin), were cloned from the bovine cornea (Corpuz et al., 1996). Although 

expressed in other tissues, lumican, keratocan, and mimecan are glycosylated only in 

the cornea with sulphated KS chains.

1.4.1.2. Importance o f  KS

Macular comeal dystrophy (MCD) is a common comeal disease, it is an autosomal 

recessive condition, in which progressive comeal opacification is initiated at an early 

age. The disease phenotype has been biochemically and genetically linked to defects in 

KS metabolism by keratocytes (Hassell et al., 1980; Nakazawa et al., 1984) and at least 

three biochemical subtypes (types I, IA and II) of the disease have been identified. It 

has been identified that MCD patients have a defective gene, localized at chromosome 

16 and has shown to encode the A-acetylglucosamine-6-sulfotransferase (c- 

GlcNAc6ST) (Lui et al., 1998; Akama et al., 2000), the enzyme that initiates sulphation 

of KS chains on PGs. Cell extracts prepared from MCD type I corneas are unable to 

sulphate GlcNAc residues on exogenously added oligosaccharide acceptors (Hasegawa 

et al., 2000), unlike the normal comeal extracts, suggesting that these types of 

mutations result in the production of non-functional enzymes. MCD is thought to be 

caused by a metabolic defect in the synthesis of KS, particularly with type I Macular
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dystrophy (a subgroup of Macular dystrophy) (Edward et al., 1990). Disruption of KS 

synthesis exerts major effects on comeal clarity. MCD I corneas produce an immature 

form of KS with a smaller protein core (Nakazawa et al., 1984) resulting in progressive 

clouding from reduced interfibrillar spacing and comeal thickness (Quantock et al.,

1990).

Although MCD I phenotype is linked to heritable defects in KS synthesis, more C-6-S 

is found (Klintworth, 1976) and over sulphated CS PGs are reported (Nakazawa et al., 

1984; Meek et al., 1989). In addition, it has been reported (Plaas et al., 2001) that MCD 

type 1, KS chains were significantly reduced to 3-4 disaccharides (-14 disaccharides 

per chain in normal corneas) and chain sulphations were absent. Chondroitin/dermatan 

sulphate chain sizes were also significantly reduced to -15 disaccharides (-40 

disaccharides per chain in normal corneas); however, the contents of 4- and 6-sulphated 

disaccharides were proportionally increased. It was suggested that such changes may 

imply a modified tissue content of individual PGs and/or an altered efficiency of chain 

substitution of the core proteins.

1.4.1.3. Dermatan sulphate (DS)

DS is composed of linear polysaccharides, N- acetylgalactosamine (GalNAc) or GIcA 

joined by p i,4 or 1,3 linkages respectively. The structure of DS and CS are very 

similar, e.g. DS is defined as a CS by the presence of GalNAc. The presence of IdoA in 

DS distinguishes it from chondroitin-4-sulphate and chondroitin-6-sulphate 

(Trowbridge and Gallo, 2002) (Figure 1.11) CS/DS PGs can be structurally diverse, as 

this could be due to the chains having very low to moderate levels (15-64%) of 

sulphated disaccharides, and differing marked levels of 4- and 6- sulphate groups 

(Achur et al., 2004). CS/DS can be significantly long, -40 disaccharides per chain, and 

consists of -64% unsulphated, -28% 4-sulphated, and -8% 6-sulphated disaccharides.
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Figure 1.11 A simplified diagram  of chondro itin  su lpha te  (CS) and derm atan  sulphate (DS) structure.
D ia g ra m  m o d if ie d  f ro m  (E sko , K im a ta  a n d  L in d a h l, 2 0 0 8 ) .

PGs which contain DS are covalently attached via an 0-xylase linkage to serine 

residues of the core protein. The two most extensively studied DS PGs are the SLRPs; 

decorin and biglycan. Both decorin and biglycan have a pro-peptide that is highly 

conserved and may function as recognition signal for xylosyltransferase (the first 

enzyme involved in the synthesis of GAG chains) (Iozzo, 1997). In addition, both 

proteins have a common feature which is the presence of 10 leu-rich repeats (LRRs), 

flanked by Cys-rich regions. These PGs contain an N-terminal domain that is usually 

substituted with either one (decorin) or two (biglycan) CS/DS side chains (Iozzo,

1999).
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Gene
product

Gene Protein 
core mw 
(kDa)

GAG chain 
(number)

Characteristic tissue distribution References

Ocular Other

Decorin DCN 36 CS/DS [1] Sclera, co rn ea , 
tra b e c u la r  
m eshw ork , 
n eu ra l re tina

Cartilage, b o n e , 
skin, co llag en o u s 
m atrices

(Li e t  al., 1992)

Biglycan BGN 38 CS/DS [2] Sclera,
t ra b e c u la r
m esh w o rk

Cartilage, 
in te rstitiu m , cell 
su rfaces

(Iozzo an d  M urdoch , 
1996; W irtz e t  al., 
1997; Rada e t  al., 
2000)

Fibromodulin FMOD 42 KS [4] C ornea , sclera Cartilage, 
te n d o n , skin

(O ld b e rg e ta l. ,  1989)

Lumican LUM 38 KS [1-3] C ornea , sc lera Cartilage, bo n e , 
m uscle , liver, 
skin

(B lo c h b e rg e re ta l.,
1992)

Keratocan KERA 37 KS [3] C o rn ea , sc lera C artilage, skin, 
ligam en t

(Corpuz e t  al., 1996)

Mimecan OGN 25 KS [1] C o rn ea , sc lera C artilage, skin, 
b lood  vessels, 
b rain

(Funderburgh  e t  al., 
1997)

Versican GSPG2 265-370 CS7DS [10- 
30]

V itreo u s  h u m o r,
tra b e c u la r
m e sh w o rk

Cartilage, skin, 
b lo o d  vesse ls , 
brain

(Koga e t  al., 2005)

Aggrecan AGC1 220 CS [ -1 0 0 ]  
a n d  KS

Sclera C artilage, b lood  
vesse ls , brain

(Iozzo an d  M urdoch, 
1996)

Neurocan MNC1 136 CCS [3-7] D evelop ing  
n e u ra l re tin a

Brain, ca rtilag e (Iozzo an d  M urdoch , 
1996)

Syndecan-1 SDC1 45, 53 CS/HS [5] T ra b e c u la r
m e sh w o rk

Epithelial cells (K okenyesi and  
B ernfield, 1994; W irtz 
e t  al., 1997; Jaakkola 
an d  Ja lkanen , 1999)

Perlocan HSPG2 400-467 HS/CS [3- 

10]

T ra b e c u la r
m e sh w o rk

B a sem en t 
m e m b ra n e s , cell 
su rfaces , 
ca rtilag e

(Iozzo an d  M urdoch, 
1996; W irtz e ta l . ,  
1997)

Table 1.3 Different types of proteoglycans. Note: CS = chondroitin sulphate, DS = derm atan sulphate, 
KS = keratan sulphate, ILM = internal limiting m em brane of th e  retina.

1.4.2. Proteoglycan core protein - Lumican

Lumican was initially described as a corneal PG, it is now known to be expressed in a 

variety of tissues, including artery (Funderburgh et al., 1991a), lung (Dolhnikoff et al., 

1998), articular cartilage (Grover et al., 1995) and skin (Chakravarti et al., 1998; 

Chakravarti et al., 2000). Corneal lumican is normally expressed by stromal 

keratocytes, however during the early phase of corneal wound healing it is transiently 

expressed by the corneal epithelium (Saika et al., 2000).
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The core protein of lumican consists of a 338 amino acid residue sequence (37 kDa). Its 

KS chains are highly sulphated, consists of 2-3 KS attachment sites (Funderburgh et al., 

1997) and a single Tyr site adjacent to the acidic resides Glu/Asp, which may be a 

signal for post-translation addition of further KS chains (Carlson et al., 2003).

Lumican KO mice studies (Chakravarti et al., 1998; Chakravarti et al., 2000) have 

shown that these mice display skin laxity, fragility (resembling certain types of Ehlers- 

Danlos syndrome) and mice developing bilateral comeal opacification. These 

underlying causes are thought to be due to the deregulated growth of collagen fibrils 

with a significant proportion of abnormally thick collagen fibrils and abnormal 

architecture in the skin and cornea (posterior region of the stroma). In addition, the 

lumican core protein itself has been shown to inhibit in vitro collagen fibrillogenesis, 

suggesting this function to be entirely core protein mediated (Rada et al., 1993).

1.4.3. Proteoglycan core protein - Keratocan

The keratocan core protein has a molecular weight of 38 kDa and when bound to 

sulphate chains, it has a molecular weight of 200 kDa (Corpuz et al., 1996). Keratocan 

is also expressed by keratocytes and is abundant in the cornea and sclera but is also 

found to a lesser degree in non comeal tissues, such as skin, ligament and cartilage 

(non-sulphated glycoprotein). It has been proposed that lumican and keratocan may be 

structurally similar. For example their core protein is composed of Leu-rich motifs 

which are coiled in a spiral and are stacked in a parallel p-sheet array (Figure 1.12). 

The location of the first 10 LRR of lumican and keratocan are located in the central part 

of the spiralled coil which bend into a horseshoe-like structure, whereas the putative p- 

sheet is found at the top surface of the coiled domain (Dunlevy et al., 2000).

Figure 1.12 A three-dim ension m odel of keratocan. The model was based on a theoretical structure of 
the acid-labile subunit (ALS) of a serum  insulin-like growth factor (Lehmann et al., 2001).
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Keratocan-null mice have been reported to have normal comeal transparency, however, 

subtle abnormalities in collagen fibril organization such as increased fibril diameter, 

thinned stroma, and a smaller comea-iris angle of the anterior segment (Liu et al., 

2003). Similarly, human mutations in the keratocan gene (KERA) cause comeal 

flattening and a consequent decrease in visual acuity (Pellegata et al., 2000).

1.4.4. Proteoglycan core protein - Mimecan

Mimecan was initially isolated from bovine bone and later isolated in bovine cornea as 

a minor KS PG. This comeal KS PG is a 25 kDa and the product of the gene producing 

osteoglycin. Mimecan carries KS GAG chains in human, chick and bovine cornea, but 

not in the murine cornea (Funderburgh et al., 1997). Northern blotting analysis has 

revealed three distinct size classes of mimecan mRNA that vary in abundance 

depending on the tissue source, the smallest 2.4 kilobase (kb) form is predominant in 

comeal and scleral tissue. Such heterogeneity can arise as a result of alternative splicing 

of RNA or an alternate usage of polyadenylation sites (Funderburgh et al., 1997).

Corneal KS PGs lumican or keratocan have a lesser sequence homology to mimecan. 

However, comparison of structural domains among all three proteins indicates 

molecular feature conservation, such that each protein contains one or more Tyr resides 

adjacent to acidic amino acids in the N-terminal region; consensus sites for Tyr 

sulphation (Funderburgh et al., 1997).

Mice lacking mimecan have displayed no significant changes in the comeal clarity and 

comeal thickness. However, ultrastructural analysis revealed that the average collagen 

fibril was thicker than the mimecan-null mice. Collagen fibrils from the cornea of 

mutant mice showed an average diameter of 31.84+/-0.322 nm, versus 22.40+/-0.296 

nm in their wild type litter-mates. As a result it was concluded that mimecan may have 

a role in regulating collagen fibrillogenesis in vivo (Tasheva et al., 2002). Furthermore, 

Beecher and co-workers showed (using x-ray diffraction) no significant changes in 

centre-to-centre collagen fibrillar spacing, when compared to corneas of wild-type 

mice. From these results, it was suggested that mimecan may have a lesser role in the 

control of the architecture in mouse comeal stroma (Beecher et al., 2005).
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1.4.5. Proteoglycan core protein -  Decorin

Decorin belongs to a growing family of SLRPs that mediate fundamental cellular 

processes, including regulation of the orderly assembly of ECMs, comeal transparency, 

tensile strength of skin and tendon, viscoelasticity of blood vessels, and tumour cell 

proliferation (Vogel, Paulsson and Heinegard, 1984; Hedbom and Heinegard, 1993; 

Kresse, Hausser and Schonherr, 1993; Iozzo, 19981999). The biological functions of 

decorin include the formation and/or organization of collagen (Scott, 1992c) and 

modulation of cell adhesion mediated by fibronectin and thrombospondin 

(Winnemoller et al., 1992). Decorin also modulates the activity of growth factors, such 

as transforming growth factor-(3-independent (TGF-p) effects on the cell proliferation 

and behaviour (Iozzo et al., 1999; Hakkinen et al., 2000).

Mammalian decorin contains a protein core and a single CS/DS GAG chain, attached to 

a serine residue near the N-terminus and is the best characterized member of the 

SLRPs, by having a domain of tandem leucine rich repeats, flanked on either side by 

clusters of conserved Cys residues (Scott et al., 2004). To date, the structure of decorin 

remains unclear, although, evidence suggests that decorin may be a dimer (Figure 1.13) 

(Scott et al., 2003; Scott et al., 2004; McEwan et al., 2006) and it dimerizes through the 

concave surfaces of the leucine-rich repeat domains. However, Goldoni and co-workers 

suggested that decorin is monomeric and that the dimerization is artifactual (Goldoni et 

al., 2004).

Figure 1.13 Crystal structure of th e  d im eric pro tein  core of decorin, th e  archetypal small leucine-rich 
repeat proteoglycan (M c E w a n  e t  a l .,  2 0 0 6 ) .

37



Chapter 1: Introduction

The core proteins and not their GAG side chains, of lumican and decorin have been 

shown to inhibit collagen fibril formation and reduce collagen fibril diameter using the 

in vitro collagen fibril-forming assays (Rada et al., 1993). Decorin and lumican made as 

recombinant products have been shown to act on different phases of fibril growth, 

interact with different regions of the collagen molecule and serve to stabilize the 

collagen fibril once formed (Sini et al., 1997; Neame et al., 2000). Other studies using 

chick and mouse tendons have suggested that decorin may delay individual collagen 

molecule fusion (Vogel et al., 1984; Vogel and Trotter, 1987; Birk, Nurminskaya and 

Zycband, 1995; Birk et al., 1996).

Its been found that the synthesis of non-glycosylated decorin in avian cornea leads to 

the disruption in lamellar organization, suggesting that DS PGs are not involved in the 

regulation of collagen fibril diameter, but are more important to fibril-fibril spacing and 

lamellar cohesiveness (Nakazawa et al., 1995). Furthermore, in corneal explants from 

embryonic chicken, an increase synthesis of KS PGs and a decrease synthesis of DS PG 

was detected, which coincided with the onset of tissue transparency, suggesting a 

correlation between PG composition and corneal transparency (Nakazawa et al., 1995). 

In addition, studies (Bredrup et al., 2005; Rodahl et al., 2006) have shown that human 

congenital stromal corneal dystrophy, where cloudy corneas develop shortly after birth, 

is associated with a mutation in the gene for decorin. Thus in summary, the co­

ordinated synthesis of different collagen types and core proteins of PGs as well as post- 

translational modifications of the collagens and PG are required to produce collagen 

fibrils with the size and spacing needed for corneal stromal transparency.

1.5. Collagen and PG associations

The first evidence of collagen-proteoglycan interaction was by Smith and Frame 

(1969). Using alkaline lead citrate and uranyl acetate staining, Smith and Frame 

showed 4 nm diameter filaments interconnecting the collagen fibrils and postulated that 

these were PGs (Smith and Frame, 1969). Further studies have been carried out since 

then and specific staining of GAGs has been developed using cationic dyes (alcian 

blue, cuprolinic blue, cupromeronic blue) in a critical electrolyte concentration (CEC) 

(Scott, 1985). Electron histochemical studies (Scott and Haigh, 1985) have shown that 

PGs generally associate with collagen fibrils at the a, c, d and e bands within the 65nm
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D-period, and that KS PGs occupy the a and c bands, with CS/DS PGs at the d and e 

bands (Figure 1.14) (Scott and Haigh, 1985; Meek, Elliott and Nave, 1986; Scott and 

Haigh, 1988a). The histochemical data obtained by Scott (1988) revealed that the 

GAGs bridge and link adjacent collagen fibrils (Scott, 1988).

CS/DS PG KSPG

A.

Banding pattern
B

e  d c  b a

Figure 1.14 Mapping of binding sites of PGs along th e  collagen fibril. The packing of collagen molecules 
are arranged in a quarter staggered m anner (A). —► = N term inal; 0 =  C term inal. The a-e banding
patterns within the D-period of collagen type I fibril (B). Cupromeronic blue staining showing PG 
filaments at the  surface of the  fibril dem onstra ted  4 PG binding sites, in th e  a, c, d and e bands (Scott, 
1988 ). In corneas of large animals all 4 are  occupied by CS/DS or KS. In small animals (e.g. mouse) there  
is little or no KS and the  a and c bands carry no PGs.

In addition, Scott and Haigh (1988a) found that different species (mouse, rat and rabbit) 

have different GAG staining patterns (Scott and Haigh, 1988a). Negligible amounts of 

KS were detected in mouse, but considerable amounts in rat and rabbit stroma. Mouse 

comeal stroma PG filaments were located predominantly at the gap zone of the 

collagen fibrils, mainly at the d band, with few at the a and c bands. However PG 

filaments from rat and rabbit cornea, were located at the a and c bands, as well as the d 

and e bands. These findings support the proposal that the a and c bands are specific 

binding sites for KS PG (Scott and Haigh, 1985). In addition to Scott and Haigh’s 

findings, studies on the cornea and cartilage suggested that KS, rather than CS is 

produced in 02-lack conditions (discussed further in Chapter 5).

1.6. Collagen and Proteoglycan interactions

Electron microscope measurements from bovine corneas showed that stained CS/DS 

PGs are -70 nm long, whereas KS PGs are -40 nm long (Scott, 1992a). The protein 

cores of PGs were thought to attach to collagen fibrils with their GAG chains free to
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interact with other components of the extrafibrillar matrix. Given that PGs occupy the 

ECM, the interactions between PGs and collagen fibril models have been proposed, one 

of which illustrated that six PGs, attached to the collagen fibrils, are connected to a 

central collagen fibril with six neighbouring fibrils thus securing a regular spacing of 

the collagen fibrils (Maurice, 1962). By the late 1960’s Farrell and Hart suggested that 

PG GAG chains formed bridges between adjacent collagen fibrils (Farrell and Hart, 

1969). Recent studies by Muller and co-workers (2004) re-modified Farrell and Hart’s 

model which also featured PG bridges between collagen fibrils (Figure 1.15). This new 

model was based on transmission electron microscopy data, where GAG chains 

connecting three adjacent fibrils in longitudinal views were observed. The proposed 

model illustrated hexagonal arranged collagen fibrils are interconnected at regular 

distances with their next-nearest neighbours by groups of six PGs. These are attached 

orthogonally to the circumference of the fibrils, forming a ring-like network 

enwrapping the collagen fibrils at regular distances along their full length; PG 

complexes do not form bridges between adjacent fibrils but between next nearest 

neighbouring fibrils, thus accounting for the size of some PG complexes that are seen to 

be longer than the average interfibrillar spacing (Muller et al., 2004).

Figure 1.15 A schem atic diagram  of M uller e t al. (2004) proposed  m odel on th e  organization of the 
collagen fibrils and proteoglycans. Six core proteins of PGs are attached to the  hexagonal arranged 
collagen fibrils. The GAG of the PGs is connecting to  th e  next nearest neighbour collagen fibrils to form 
a ring-like structure around each collagen fibril (Muller e t al., 2004).

However, other models of PG-collagen interaction have showed that the core protein of 

PGs lies along the length of the collagen fibril, to which it is non-covalently attached, 

and that highly charged hydrophilic GAG chains protrude outwards from the fibril to 

regulate collagen spacing. Scott (1991) proposed that GAGs of neighbouring collagen
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fibrils interact with each other to form a duplex, which serves to maintain collagen 

fibril separation (Scott, 1991al992a) (Figure 1.16). In support of this, Rada et al. 

(1993) reported that PGs bind to collagen fibrils with their GAG chains extending into 

the interfibrillar space (Rada et al., 1993).

KS duplexes

C S/D S duplexes

Figure 1.16 A proposed model of collagen in teractions seen in corneal strom a. P = protein core of PG. 
It is proposed tha t observed GAG filam ents contain at least 2 glycan chains side-by-side. The small PGs 
frequently contain 2 glycan chains, which are suggested to  lie at 180° to  each other, thus giving an 
image tha t som etim es extends in a straight line across 3 or m ore fibrils. The gaps betw een th e  centres 
of fibrils are approximately the  sam e size as a CS/DS GAG chain; com patible with the tangential 
arrangem ent is visible in th e  tissue. KS GAG chains a re  shorter than those of CS/DS. KS duplexes may 
circumvent the  fibrils, as well as bridge th e  interfibrillar gaps, since each step  along this route is of equal 
length (Scott, 1992a).

Hirsch and co-workers visualized the ultrastructue of the corneal stroma, using ultra- 

rapid-freezing (frozen onto a copper block cooled by liquid helium or liquid nitrogen), 

deep-etching freeze-fracturing (deeply etched for 8-10 min) and rotary replication with 

platinum-carbon. The data collected showed that both human and rabbit stromal 

matrices were similar (Figure 1.17). Both in human and rabbit corneal stroma had 8-12 

nm interfibrillar bridging filaments, frequently ornamented with globular domains, 

which they suggested were PGs joining neighbouring collagen fibrils like steps to a 

ladder (Hirsch et al., 2001).
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Figure 1.17 Electron m icrographs of d eep -e tched , ultra rapidly-frozen hum an (glutaraldehyde-fixed) 
(A) and rabbit (non chemically-fixed) (B) corneal strom a. A = m a g n if ie d  x l8 5  0 0 0 , s c a le  b a r  0 .1 p m . B = 

m a g n if ie d  x l l 5  0 0 0 , s c a le  b a r  0 .2 p m .  (H irs c h  e t  a l.,  2 0 0 1 ) .

More recently, studies within the author’s lab have used electron tomography of 

cupromeronic blue-stained cow (Lewis et al., 2010) and mouse (Parfitt et al., 2010) 

corneal stromas to produce three-dimensional reconstructions, which revealed the 

interactions between collagen fibrils and stained PG filaments. The reconstruction 

model indicated that the core proteins of the PGs are attached to the collagen fibrils and 

that these PGs can interact via their GAG chains with other PGs on nearby fibrils 

forming anti-parallel multiplexes (Figure 1.18). However, no systematic six-fold 

arrangement of PGs around collagens are found, there are bridges that connect all 

adjacent fibrils at different axial positions, with the overall effect that a pseudo- 

hexagonal arrangement of fibrils are obtained. This arrangement is thought to be 

sustained by the balance of two opposing forces (repulsive force - osmotic pressure, 

attractive force -  thermal motion) created by the PGs.
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Figure 1.18 CS/DS and KS in teraction  b e tw e en  collagen fibrils. Panel (A) and (C) - Keratanase treatm ent 
to  remove KS GAG chains, leaving CS/DS chains. Panel (E) and (G) -  chondroitinase ABC treatm ent to  
remove CS/DS GAG chains, leaving KS chains. Collagen fibrils are indicated by arrowheads and PGs by 
arrows. Panel (B) and (D) are  ste reo  pairs from  longitudinal and transverse 3D reconstructions of 
keratanase-treated specimens. The collagen fibrils are coloured in blue, th e  CS/DS chains in red. Long 
CS/DS chains are seen to  in teract with a 65nm  axial periodicity with several collagen fibrils. Panels (F) 
and (H) are reconstructions from chondroitinase ABC-treated specim ens, with collagen depicted in blue 
and KS chains in orange. Here, KS chains form axially periodic bridges betw een collagen fibrils. Scale 
bars = 100 nm (Lewis e t al., 2010).

1.7. Transparency

The transparency of the cornea results from the fact that normal cornea does not absorb 

visible light and light scatter is minimal. Maurice (1957) suggested that the basis of the 

transparency of the cornea is the uniform diameter and regular spacing of the corneal 

stroma collagen fibrils, which lie parallel to each other within layers (lamellae), which 

themselves stack parallel to the surface of the cornea. It was also suggested that the 

collagen fibrils of the comeal stroma are arranged regularly in a lattice and that 

scattered light is eliminated by destructive interference so that only forward travelling 

light can be permitted (Maurice, 1957). However, factors involved in maintaining 

collagen fibril spacing and size remains unclear. It has been suggested collagen fibril 

spacing is probably thought to be a function of PG-collagen interaction (Komai and 

Ushiki, 1991) and that minor collagens (such as type V collagen) may control the 

molecular aggregation of the collagen fibril diameters, whilst PGs, are thought to 

prevent fibril growth by fusion (Meek and Leonard, 1993). Reduced comeal 

transparency occurs with age, due to the three dimensional growth of collagen fibrils in 

the stroma (Daxer et al., 1998).
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Recent studies investigating comeal light transmission as a function of position across 

in human (Doutch et al., 2008) and bovine (Doutch, 2009) comeal stroma, have 

indicated that in both human and bovine, light transmission gradually decreased from 

the central to peripheral regions of the comeal stroma. This may be caused by the 

changes in fibril diameter and interfibrillar spacing found in the peripheral regions of 

the cornea (Borcherding et al., 1975; Boote et al., 2003)

Keratocytes have been largely ignored as a potential hindrance to stromal transparency 

but recent clinical evidence suggests that they may play a major role in the 

development of comeal haze (Moller-Pedersen, 2004). Keratocytes have a compact cell 

body with numerous cytoplasmic lamellipodia, this gives them a dendritic-like 

morphology, and they are interconnected in a three dimensional network by these 

lamellapodia (Poole, Brookes and Clover, 1993). The compact cell body minimizes the 

surface area of the keratocyte exposed to light and this may serve to reduce light 

scattering while their processes provide the cell-cell communications. The corkscrew­

like circular arrangement of keratocytes as described by Muller and co-workers, 

suggested that they may be involved in maximising stromal transparency as this 

organization creates equal chances for minimization of light scattering over the entire 

cornea (Muller et al., 1995).

Over the years, developmental studies of the cornea have showed the various events for 

the onset of transparency. For example chick embryo comeal development studies have 

suggested that the glycosylation is very important for the comeal transparency process 

(Comuet et al., 1994). Lumican with non-sulphated KS side chains was detected as 

early as day 7 of embryonic development in chicken, but sulphated GAG side chains 

were detected only on day 15, when transparency started to increase. In embryonic 

mice, sulphated KS PGs only appeared after the eyes opened (Ying et al., 1997). In 

addition, during rabbit (Gregory et al., 1988) and chick (Dunlevy et al., 2000) comeal 

development, studies have shown sulphation alterations or changes in the fine structure 

of KS chain PG (lumican, keratocan and mimecan). Therefore from these animal 

studies, it is thought that the structure of GAG chains in KS PGs may be important for 

the development of corneal transparency, possibly leading to organization of the 

comeal tissue (Michelacci, 2003).
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The level of comeal hydration is an important factor in comeal transparency. 

Physiologically, comeal hydration is maintained at approximately 78%. During edema, 

light scattering increases and transparency is reduced due to the disruption of the 

collagen matrix. The collagen fibrils themselves swell very little and most of the 

additional water enters the interfibrillar spaces, where the PGs absorb the water and this 

causes collagen fibril aggregation and disorganization, producing extra scattering and 

absorption of light and consequently a reduction in comeal transparency (Meek et al.,

1991).

1.8. Summary and objectives

Structural changes occur at a molecular level in diseased corneas, and these can affect 

the transparency of the cornea. It is thought that the structural organization of the 

cornea, in particular the uniform size and the spacing of its constituent collagen fibrils, 

is a major factor responsible for its transparency. It is already known that PGs play an 

important role in collagen fibril organization however the exact role still remains 

unclear. The high degree of collagen organization found in the cornea compared with 

Other connective tissues makes this tissue a unique model for investigating collagen- 

proteoglycan interactions. Furthermore, light transmission studies across the human and 

bovine stromal cornea, indicated that light transmission decreases in the peripheral 

regions of the cornea (Doutch et al., 2008; Doutch, 2009). Studies have suggested that 

this may be due to the changes in fibril spacing and diameter found in the peripheral 

regions of the cornea, as revealed in electron microscopic studies (Borcherding et al., 

1975) and x-ray studies (Boote et al., 2003). To date, however, limited experimental 

data have been provided to link comeal biochemistry and stromal fibril ultrastructure as 

a function of position, i.e. looking at the sulphation patterns of GAG from central to 

peripheral regions in the bovine cornea, in relation to collagen fibril architecture.

Hypothesis: The hypothesis of this research is that changes in the sulphation patterns of 

GAG’s are directly related to changes in ultrastructure, and hence transparency of the 

cornea.

Aims: The aims of this research were to investigate:
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• The biochemical sulphation patterns of GAG chains across the cornea as a 

function of position

• The biophysical structure across the cornea as a function of position

• The effects of GAG sulphation in normal and hypoxic conditions

Bovine (in Chapters 3 and 4) and rabbit (in Chapter 5) corneas were used for this 

project instead of human corneas, as this was because both latter animals were more 

easily accessible than human corneas. The bovine cornea may be larger anatomically 

and thicker than in human and rabbit corneas (which are very similar in size), the 

structural layers of the cornea are very similar, however rabbit corneas, they lack the 

Bowman's layer, but overall they are similar. Ultrastructurally, the hydroxyproline 

content are very similar to both animal models, contain large quantities of highly 

sulphated KS and lesser amounts of CS/DS (Scott and Bosworth, 1990). Therefore 

overall, making both the latter animal models good analogues to gain a greater 

understanding on the structure of the cornea, hence would be essential for 

understanding the function and consequently explaining how the transparency of the 

cornea is mediated. In the future this may provide new insights for the development of 

novel therapeutic approaches, optimize refractive surgeries and comeal dystrophies.
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2 .

This particular chapter focuses mainly on the experimental procedures employed 

throughout the project. This consists of corneal preparations, the biochemical, 

molecular experiments, and finally the biophysical experiments. Because, unlike the 

human eye (Figure 1.2), no terminology exists for the different regions across the 

bovine cornea, the bovine corneal regions were categorised for the purposes of this 

thesis as shown in Figure 2.1.

Centre

Mid periphery 

Outer periphery/limbus

-15-12 -9 -6 -3 0 3 6 9 12 15

Position (mm)

Figure 2.1 A diagram showing th e  d ifferen t corneal surface regions in th e  bovine cornea (anterior 
corneal surface). T h e  im a g e  o f  t h e  b o v in e  e y e  w a s  k in d ly  g iv e n  b y  D r S ally  H a y e s  (C a rd iff  U n iv e rs ity ) .

2.1. Corneal preparation

Whole adult bovine eye globes were obtained from a local abattoir and transported on 

ice to the laboratory. Healthy eyes with clear/transparent corneas were selected, whole 

and 3 mm x 3 mm pieces of corneal tissue were cut from the centre of the cornea 

outwards (outer periphery/limbus region (9-12mm)) (Figure 2.2). Prior to excising the 

comeal stroma, the cellular layers, such as the epithelium and endothelium comeal 

layers were removed using a scalpel and blotted to remove excess wet weight. Tissues 

were weighed, freeze dried, weighed again, after which hydrations was calculated using 

the following formula (Equation 1).

Inner periphery
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E quation  1: H y d ra tio n  = (w e t w t -  dry w t) /  dry w t

mam ►

1 Corneas were d issected  with 
a 2 mm sclera rim attached 
around the cornea

2. Corneas were cut across the 
central anterior surface 
(longitudinally, 3 mm strip)

3. Comeal strips were halved 
and 3 mm biopsies were cut 
(from the centre of the cornea 
to sclera)

Figure 2.2 A simplified diagram  show ing how  th e  corneal tissue (bovine) w as prepared for the  
biochemical experim ents.

glycine which breaks down collagen and core protein structures but leaves GAG chains 

intact (Figure 2.3). A papain digest would yield single polysaccharide chains (i.e. GAG 

chains) attached to peptide of ~5 amino acids.

Note: this particular enzymatic digestion would not be suitable for analyzing the 

polypeptide profile of the collagen types. However, the amount of collagen can still be 

quantified using the hydroxyproline assay, since highly concentrated HC1 is used to 

hydrolyse the protein samples into amino acids, prior to the hydroxyproline assay.

2.1.1. Papain digest

Papain is a cysteine protease that cleaves peptide bonds of basic amino acids; leucine or

R O R 0 Pepsin  digestion:
R and R1 = Leu, Phe, Trp and Tyr

Papain digestion:
R and R1 = Lys, Arg, His, Leu and Gly 
R1 * Val

Polypeptide P olypeptide frag ments

Figure 2.3 Chemical process of papain  and  pepsin digestion.
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2.1.1.1. Papain protocol

Comeal biopsies (n = 10) at specific regions were papain digested. Briefly, the samples 

were papain digested for 17 hr at 60°C with 1 mg/ml papain (SIGMA-Aldrich, UK) in 

0.05 M sodium acetate buffer (pH 5.6), containing 0.025 M EDTA and 5 mM cysteine 

HC1. The enzyme was then inactivated at 100°C (30 min), and the digests were stored at 

-20°C until further analysis.

2.1.2. Pepsin digestion

Pepsin is a member of the aspartyl protease family and is a non-specific endopeptidase, 

produced in an inactive precursor form (pepsinogen) in the mucosal lining of the 

stomach of vertebrates. Pepsin has broad substrate specificity. It cleaves proteins 

preferentially at carboxylic groups of aromatic amino acids (e.g. phenylalanine, 

tryptophan and tyrosine). It will not cleave at bonds containing valine, alanine or 

glycine, thus will be ideal for collagen extraction (Figure 2.3).

2.1.2.1. Guanidine extraction and pepsin digestion protocol

Note: in some studies, a guanidine extraction is initiated prior to the digestion as this is 

because ECM molecules such as collagen and PGs are closely associated within their 

tissues in a naturally occurring native state. In order to isolate various collagen fibrils 

and PGs, they must be dissociated from their surrounding environmental tissue. By 

doing this, the tissue can be extracted by Guanidine-HCl. In cartilage, the standard PG 

extraction involves 4 M Guanidine HC1 (a chaotropic agent), which acts to dissociate 

PG aggregates by breaking any non covalent bonds and removing them from their 

native environment into solution (Hascall and Sajdera, 1969; Sajdera and Hascall, 

1969; Heinegard and Sommarin, 1987). 4 M Guanidine HC1 has also been used to 

facilitate the extractions of SLRPs from comeal extracellular matrices (Gregory et al., 

1988; Comuet et al., 1994; Young et al., 2005).

Prior to optimizing the amount of GAG chains, a guanidine extraction was employed 

followed by a papain digest and in another study a pepsin digestion was also carried 

out. Briefly, once the comeal stroma was obtained, the tissue was finely chopped and
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extracted in 4 M Guanidine HC1 in the presence of protease inhibitors (0.05 M sodium 

acetate, 0.01 M disodium EDTA, 0.1 M 6-amino hexanoic acid, 0.005 M benzamidine 

HC1 and 0.5 mM PMSF [pH 5.8-6.8]), overnight at 4°C, to remove PGs and non- 

collagenous proteins. Samples were then centrifuged at 14,000 rpm for 30 min at 4°C 

and the supernatant was collected (this will contain solubilized GAGs and possibly 

some collagen) and the pellet/residue was subjected to digestion. However the data 

presented in this project only shows the papain digestion method, as greater amounts of 

GAG was obtained compared to pepsin digestion.

Although pepsin digestion was not employed for this particular study, as part of 

preliminary studies, digesting the corneal tissue with pepsin was employed. Briefly, 1 

ml of pepsin (0.5 mg/ml in 0.5 M acetic acid) per 50 mg of wet wt tissue was added, 

incubated overnight at 4°C, with continuous mixing. The supernatant was removed via 

centrifugation at 13,000 rpm for 30 min at 4°C and the residue was further pepsin 

digested. Pooled supernatant was then subjected to dialysis and stored at -20°C.

2.2. Determining matrix content

2.2.1. Hydroxyproline assay

A hydroxyproline assay was employed to quantify the amount of collagen extracted 

from the corneal tissue. The hydroxyproline stabilizes the collagen triple helix by 

forming hydrogen bonds, and is commonly used to quantify collagen as a control 

marker specifically to collagenous sequences (Edwards and O'Brien, 1980).

2.2.1.1. Hydroxyproline assay protocol

Comeal extracts that were papain digested from individual corneas were hydrolyzed by 

using equal volumes of 11.7N HC1 to supernatant at 110°C overnight. Specimens were 

then lyophilized. Dried hydrolysates were reconstituted in their starting volume of dH20 

and centrifuged at 7000 rpm (10 min) to remove particulate material. Hydroxyproline 

residues were assayed against known standards (L-Hydroxyproline, Sigma-Aldrich, 

UK) and read at 540 nm after 10-20 min incubation at 70°C.
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Hydroxyproline residues were assayed in 30 pi of sample against known L- 

hydroxyproline (SIGMA-Aldrich, UK) concentrations (30 pi) (0 pg/ml, 2 pg/ml, 4 

pg/ml, 6 pg/ml, 8 pg/ml and 10 pg/ml) into triplicate wells on a 96 well plate. 70 pi of 

diluent (67% propan-2-ol) and 50 pi of oxidant (0.7 g chloramine T, 10 ml dH20 and 

50 ml stock buffer (0.42 M sodium acetate trihydrate, 0.13 M sodium citrate dehydrate, 

26 mM citric acid and 4% (v/v) propan-2-ol)) was added to the plate wells and placed 

onto a plate shaker at room temperature for 5 min. 125 pi of colour reagent (7.5 g 

dimethylamino benzaldehyde, 11.25 ml perchloric acid (60%) (or 9.46 ml perchloric 

acid (70%) and 1.61 ml dH20) and 62.5 ml propan-2-ol) was added to the plate wells, 

mixed on a plate shaker, incubated at 70°C for 15 min and an absorbance (A540) 

reading was recorded.

2.2.2. Dimethylmethylene blue (DMMB) assay

The dimethylmethylene blue (DMMB) (also known as 1,9-dimethylmethylene blue) 

dye-binding technique is widely used for the quantification of sulphated GAG and PGs. 

This assay is a spectrophotometric assay for PGs based on the metachromasia resulting 

when DMMB is used to stain sulphated GAGs on PGs. This method can be used as a 

quantitative assay procedure without prior precipitation of the GAGs (de Jong et al., 

1989). Binding of the cation dye with sulphated GAGs results in the formation of a 

complex with an absorption maximum at A525 (Stone et al., 1994).

2.2.2.1. DMMB assay protocol

Briefly, 40 pi of sample was assayed against 40 pi of chondroitin sulphate C (sodium 

salt from shark cartilage (SIGMA-Aldrich, UK) as known concentrations (0 pg/ml, 10 

pg/ml, 20 pg/ml, 30 pg/ml and 40 pg/ml), onto a 96 well plate. 200 pi of DMMB 

solution (DMMB stock solution: 32 mg DMMB, 1.5 L dH20, 20 ml ethanol, 59 ml 1M 

NaOH, 7 ml 98% formic acid) was added to the wells and an absorbance (A525) 

reading was recorded. A standard curve of the known concentrations was plotted and 

the unknown samples were calculated.
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2.2.2.2. Hydroxyproline and sulphate GAG quantification

The hydroxyproline standard curves were generated using known amounts of 

hydroxyproline and unknown amounts of hydroxyproline from the bovine corneal 

extracts were deduced. The amount of hydroxyproline was calculated by reading across 

the absorbance (Y axis) compared to known hydroxyproline pg/ml (X axis) on the 

standard curve and then multiplied by the dilution factor and units were expressed in 

mg per mg dry weight (dry wt).

Note: the total amount of collagen can deduced by the fact that hydroxyproline 

constitutes 14% of type I collagen, thus the amount of collagen can be extrapolated by 

multiplying the hydroxyproline content by 7.46 (Woessner, 1961). However in the case 

of this project, the total amount of hydroxyproline was presented.

The sulphated GAG content in the bovine corneal extracts was also deduced the same 

way, but using its respective standard curve. The units were expressed in pg/mg dry wt.

2.3. KS quantifications using antibodies

2.3.1. Antibodies (Ab)

Antibodies (Ab) are essentially immunoglobulins (Igs) (glycoproteins), which bind 

very tightly to their target antigen (Ag). They are produced in vertebrates as a defence 

against infection. Abs exists as one or more copies of Y-shaped unit, composed of four 

polypeptide chains (Figure 2.4 A). Note, although different Ig can differ structurally, 

they all are built from the same basic units.
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Antigen binding sites
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Figure 2.4 The structure of a typical an tibody  (IgG) and th e  different antibody isotypes.

2.3.1.1. Antibody isotypes

In mammals, antibodies can be divided into five isotypes or classes: IgG, IgM, IgA, 

IgD and IgE, based on the number of Y units and the type of heavy chain. Heavy chains 

of IgG, IgM, IgA, IgD, and IgE, are known as y, p, a, 5, and s, respectively (Figure 

2.3). The 2 antibody isotypes of interest for this particular work are IgG and IgM. Ig’s 

can also be classified by the type of light chain that they have. Light chain types are 

based on differences in the amino acid sequence in the constant region of the light 

chain: k  and X.

IgG - accounts for approximately 80% of all Ig’s in humans, synthesized and secreted 

by plasma B cells. IgG antibodies are large molecules of about 150 kDa composed of 4 

peptide chains. It contains 2 identical heavy chains of about 50 kDa and 2 identical 

light chains of about 25 kDa, thus tetrameric quaternary structure. The two heavy 

chains are linked to each other and to a light chain each by disulfide bonds. The 

resulting tetramer has two identical halves which together form the Y-like shape 

(Figure 2.4 A). Each end of the fork contains an identical antigen binding site. The Fc

chain
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regions of IgGs bear a highly conserved N-glycosylation site. The N-glycans attached 

to this site are predominantly core-fucosylated diantennary structures of the complex 

type. Additionally, small amounts of these N-glycans also bear bisecting GlcNAc and 

a-2,6 linked sialic acids residues (Stadlmann et al., 2008).

IgM - antibodies are the largest antibody in the human circulatory system and are 

primarily found in serum. It is produced after an animal has been exposed to an antigen 

for an extended time or when an animal is exposed to an antigen for the second time. 

IgM form polymers where multiple Igs are covalently linked together with disulfide 

bonds, to form a pentamer or hexamer shape (Figure 2.4 B). They have a molecular 

mass of approximately 900 kDa (pentamer form), as each monomer has two antigen 

binding sites, a pentameric IgM has 10 binding sites. Typically, however, IgM cannot 

bind 10 antigens at the same time because the large size of most antigens hinders 

binding to nearby sites.

2.3.1.2. Monoclonal antibodies versus polyclonal antibodies

Monoclonal antibodies are typically made by fusing myeloma cells with the spleen 

cells from a mouse for example, which has been immunized with the desired antigen. 

These cells are cultured with cells from a myeloma, a cancer of the plasma cells, to 

create a hybridoma which will endlessly replicate itself. The replications can be tested 

to find the cells which are producing the desired antibody or antibodies, these cells can 

be cloned and used to develop a large store of monoclonal antibodies. This mixture of 

cells is then diluted and clones are grown from single parent cells on microtitre wells. 

The antibodies secreted by the different clones are then assayed for their ability to bind 

to the antigen (with a test such as ELISA or Antigen Microarray Assay) or immune- 

dot-blot. The most productive and stable clone is then selected for future use. 

Polyclonal antibodies are antibodies which have been derived from multiple B cells or 

cell lines, that recognize different epitopes and have different degrees of specificity on 

the antigen. In contrast, the antibodies in a monoclonal preparation are derived from 

one clonal type and recognize the same epitope with the same degree of specificity.
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2.3.2. Antibodies and pre-enzyme treatments used in this study

The antibodies used for this project are summarized in Table 2.1 and in Figure 2.5 

(Chondroitinase ABC, Endo-P-Galactosidase, Keratanase, and Keratanase II) illustrate 

where different enzymes digest definitive sites of specific GAG chains.

Anti body  R ecogn ition A dditional n o te s R eferences
5D4

1B4

BKS-1

R ecognizes th e  a n tig e n ic  
d e te rm in a n t  lin e a r  p e n ta - s u lp h a te d  
s e q u e n c e  o f  N -a c e ty l- la c to sa m in e  
d isa c c h a r id e  o f  KSPGs w ith  b o th  
GalNAc a n d  Gal s u lp h a te d

Have an  affin ity  f o r  l in e a r  te t r a -  
su lp h a te d  s e q u e n c e s  o f  N - ace ty l-  
lac to sa m in e  d isa c c h a r id e  o f  KSPGs 
Specifically re c o g n iz e s  a K e ra ta n a s e  
g e n e ra te d  n e o -e p i to p e  {N- ac e ty l-  
g lu c o sa m in e -6 -su lp h a te  [GlcNAc-6- 
S]) a t  th e  n o n -re d u c in g  te rm in a l  o f 
c o rn ea l an d  sk e le ta l KS GAG c h a in s

A m o u se  m o noclonal an tib o d y  

(IgG)
Raised ag a in s t KS on  th e  co re  
p ro te in  o f h u m an  a rticu la r 
ca rtilag e  PG
H ave sh o w n  to  have  no  
re sp o n se  w ith  o th e r  GAG such 
a s  CS/DS.
A m o u se  m o n o clo n a l an tib o d y  
(IgG)

A m o n o c lo n a l a n tib o d y  (IgM) 
P re - tr e a tm e n ts  n e e d e d  p rio r 
to  u sag e : K era tan ase  a n d /o r  
K era ta n a se  II to  reveal n e o ­
e p ito p e

(C aterson  e t  al., 
1985; M e h m e t e t  al., 
1986)

(M eh m et
1986)

e t  al.,

(Young e t  al., 2007a; 
A khtar e t  al., 2008b)

3B3

-o
o

. a

2B6

1B5

LUM-1

KER-1

Anti c h o n d ro itin -6 -su lp h a te  
R eacts w ith  a n o n -re d u c in g  
te rm in a l-su lp h a te d  6 -4 ,5 -
u n sa tu ra te d  g lu cu ro n ic  ac id  
re s id u es  a d ja c e n t to  N -acety l 
g a la c to sa m in e -6 -su lp h a te  
Anti c h o n d ro itin -4 -su lp h a te  
R ecognizes 6 -u n s a tu r a te d
d isa cch arid e s o f C-4-S g e n e r a te d  
a f te r  c h o n d ro itin a se  ABC d ig e s tio n  
o f PGs co n ta in in g  C-4-S/DS 
Anti ch o n d ro itin -O -su lp h a te  
R ecognizes 6 -u n s a tu r a te d
d isa cch a rid e s  o f u n su lp h a te d  
ch o n d ro itin  g e n e ra te d  a f te r  
c h o n d ro itin a se  ABC d ig e s tio n  

R ecognizes th e  c o re  p ro te in  o f  
lum ican

R ecognizes th e  c o re  p ro te in  o f 
k e ra to c a n

R aised  a g a in s t p r e - tr e a te d  
c h o n d ro itin a se  ABC to  
g e n e ra te  n e o e p ito p e  "s tu b "  
P re - t r e a tm e n ts  n e e d e d  p rio r 
to  u sa g e : C h o n d ro itin a se  ABC

R aised  a g a in s t p r e - tr e a te d  
c h o n d ro it in a se  ABC to  
g e n e r a te  n e o e p ito p e  "s tu b "  
P re - t r e a tm e n ts  n e e d e d  p rio r 
to  u sa g e : C h o n d ro itin a se  ABC 
R aised  a g a in s t p r e - tr e a te d  
c h o n d ro it in a s e  ABC to  
g e n e r a te  n e o e p ito p e  "s tu b "  
P re - t r e a tm e n ts  n e e d e d  p rio r 
to  u sa g e : C h o n d ro itin a se  ABC 
P re - t r e a tm e n ts  n e e d e d  p rio r 
to  u sa g e : E ndo-P-
g a la c to s id a se , K era tan ase ,
K e ra ta n a se  II, C h o n d ro itin ase  
ABC
A m o n o c lo n a l a n tib o d y  (IgM) 
Light ch a in  w ith  specific ity  fo r  
p ro te in  e p ito p e  o n  k e ra to c a n  
P re - t r e a tm e n ts  n e e d e d  p rio r 
to  u sa g e : E ndo-p-
g a la c to s id a se , K era tan ase ,
K e ra ta n a se  II, C h o n d ro itin ase  
ABC

(C ate rso n  e t  al., 
1985; B artold, 1992; 
Y oung e t  al., 2005)

(C ate rso n  e t  al., 
1985; B arto ld , 1992; 
Young e ta l . ,  2005)

(C ate rso n  e t  a I.,
1985; M e h m e t e t  al., 
1986; B arto ld , 1992; 
Young e t  al., 2005)

(Gealy e t  al., 2007)

Table 2.1 A table showing the specificities of antibodies used during the project.
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MNCOCHjNHCOCHj

HNCOCHjNMCOCH3
NMCOCH,

K eratanase Keratanase IIEndo-p-Galactosidase.

Ser J  Fucose (Fuc) 

■  M annose (Mann)

[ N-acetylg!ucosamine 
(GlcNAc)

| Galactose (Gal)

Neuraminic acid 
(NeuAc)

f Xylose (Xyl)

| Galactose (Gal)

|  Glucuronic acid (GIcA)

j  N-acetylgalactosamine 
(Gal N Ac)

m  Iduronicacid(ldoA) 

f  6-sulphate

I Vanable capping structure
f  4-sulphate

Figure 2.5 A simple diagram illustrating th e  cleavage sites of th e  enzym es used in experim ents. (A) KS-
degrading enzymes: Endo-|3-galactosidase cleaves at (3-1-4 galactosidic linkages w here both the 
galactose and the  GlcNAc residues are no t su lphated  galactosyl residues (grey arrows). Reaction 
products: oligosaccharides containing GlcNAc -  Gal structure . It can also cleave at the sam e sites as 
Keratanase but at a much lower reaction. K eratanase cleaves a t |3-l-4-galactosidic linkages in which 
unsulphated galactose and sulphated N-acetyl glucosam ine (GlcNAc) residues participate (red arrows). 
Reaction production: Gal, GlcNac - Gal. K eratanase II cleaves at |3-l-3-glucosaminidic linkages to 
galactose w here the disaccharide structu re  can be e ither mono- or disulphated (yellow arrows). 
Reaction products: Gal -  GlcNA6S, Gal6S -  GlcNAc6S. On cleavage, the enzyme requires the  sulphate at 
6-0-position of the participating glucosam ine, but acts independently of the sulphate at 6-0-position of 
the galactose linked to  the  glucosam ine. Diagram adapted  from (Funderburgh, 2000). (B) CS/DS- 
degrading enzyme: Chondroitinase ABC cleaves N-acetylhexosaminide/N-acetylgalactosaminide 
linkages in chondroitin su lphate A, chondroitin sulphate C, chondroitin sulphate B (iduronic acid units in 
derm atan sulphate), chondroitin and hyaluronic acid, yielding mainly disaccharides with 6-4-hexuronate 
a t the non-reducing ends. Diagram adap ted  from (Esko e t al., 2008).

Chemical structures adapted  from  (http://w w w.seikagakubb.co.jp/bio/cgi- 
b in/search/edetail.php?code=100330, 2007; http://www.seikagakubb.co.jp/bio/cgi- 
bin/search/edetail.php?code=100455&PHPSESSID=be9a860cee56252ae8cf473a40d84bl4, 2007; 
http://w w w .seikagakubb.co.jp/bio/cgi-bin/search/edetail.php?code=100810, 2007; 
h ttp ://w w w .seikagakubb.co.jp/bio/cgi-bin/search/edetail.php?code=100812, 2007).
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2.3.3. Immunohistochemical microscopy

Immunohistochemistry (IHC) was employed to localize specific antigens (e.g. PGs and 

GAG chains) across the bovine cornea.

2.3.3.1. IHC protocol 

The protocol of carrying out immunostaining was as followed:

Tissue samples were transferred to an embedding mould, which was filled with O.C.T 

(optimal cutting temperature), and then it was rapidly submerged into isopentane that 

was cooled with liquid nitrogen. After the material was frozen, the samples were 

wrapped in aluminium foil and stored at -80°C until needed.

1. OCT tissue blocks were placed into the cryostat chamber at -20°C for 10-20 min 

and then mounted onto the cryostat. 8 pm sections were cut and recovered onto 

AES-coated slides and finally air-dried for 1 hr.

2. A water repellent area was drawn (using ImmEdge (PAP) pen (Vector 

Laboratories, UK)) around the specimen, rehydrated with phosphate buffered 

saline (PBS) and 0.1% Tween for 10 min, removed and fixed with 70-90% 

Ethanol (-20°C) - to fix the cellular layers of the tissue for 15-20 min and 

rehydrated again with PBS-0.1% Tween for 5 min (x3). Excess PBS from the 

slides was removed before transferring to the humidity chamber.

Note: if using antibodies that needed pre-enzyme treatment (see Table 2.2 for enzyme 

preparation), the specific enzyme(s) were applied onto the tissue sections prior to the 

fixation. The pre-enzyme treated sections were incubated for 2 hr at 37°C. After 

incubation, tissue sections were washed with PBS-0.1% Tween (5 min/wash (x3)) and 

fixed as described as above.

1. Specimens were blocked in 5% goat serum (alternatively, IT Signal Enhancer 

can be used) (Invitrogen, UK) for 20 min, followed by the incubation of the 

primary antibody for 1 hr at room temperature (or overnight at 4°C).

Note: blocking the tissue section prevents the nonspecific binding of the antibodies. 

Otherwise, the antibodies (primary or secondary) or other detection reagents may bind 

to any epitopes on the sample, independent of specificity. Excess blocking agent is 

usually added to saturate (block) any non specific binding sites that the antibodies may 

bind to. Then when the primary antibody is added, it only binds to its specific antigen.
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Due to the fact that the blocking step is non-specific binding, separate blocking for 

primary or secondary antibodies is not needed.

2. Slides were then washed in PBS-0.1% Tween (5 min/wash (x3)) and then 

incubated with the secondary antibody (Alexa Fluor 488 goat anti-mouse IgG 

Fab fragments (Invitrogen, UK) for 1 hr.

Note: with storage, protein aggregates tend to form in the secondary antibody stock 

solution which can obscure fluorescence images and can cause high background. To 

avoid this problem, pellet any antibody aggregates by centrifugation of the working 

solution for 10 min at 7000 rpm.

3. Two negative controls were prepared, in replacement of the primary antibody: 

a) Negative Control Mouse IgG 1 (Dako Cytomation, Denmark); b) just PBS (as 

this would show the specificity of the primary antibody and the non specific 

binding of the secondary antibody, respectively).

4. Slides were washed thoroughly with PBS-0.1% Tween (5 min /wash (x3)) and 

finally mounted with Prolong Gold containing DAPI (Invitrogen, UK) to each 

specimen and covered with a cover slip. Slides were stored overnight at -20°C 

in slide tray and wrap in foil to prevent light exposure (fluorescent probes are 

light-sensitive).

5. Slides were thawed to room temperature before analyzed using an Olympus 

BX61 microscope and F-View digital camera.

Enzyme Unit/ml Buffer reconstitution
•  Chondroitinase ABC -  From Proteus 0.4 50 mM Tris (pH 8) and Sodium

Vulgaris (SIGMA-Aldrich, UK): ace ta te
• Endo-P-galactosidase -  From Bacteroides 0.002 20 mM Tris-HCI (pH 7.5)

fragilis (SIGMA-Aldrich, UK):
• Keratanse -  From Pseudomonas sp. 0.4 10 mM Tris-HCI (pH 7.5) containing

(Seikagaku, Japan) 0.1% bovine serum  albumin (BSA)
• Keratanase II -  From Bacillus sp. 0.004 10 mM Tris-HCI (pH 7.5) containing

(Seikagaku, Japan) 0.1% BSA

Table 2.2 Preparation  of enzym es used fo r IHC. Note: if using in com bination of chondroitinase ABC 
with e ither/bo th  end-p-galactosidase and K eratanase enzym es, a 0.1 M Tris ace ta te  (pH 6.8) buffer was 
used.
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2.3.4. Enzyme-linked immunosorbent assay (ELISA)

Enzyme-linked immunosorbent assays (ELISAs) combines the specificity of antibodies 

with the sensitivity of simple enzyme assays, by using antibodies or antigens coupled to 

an easily-assayed enzyme, in which provides a useful measurement of antigen (e.g. the 

amount of KS) or antibody concentration. Unlike Western blots, which use 

precipitating substrates, ELISA procedures utilize substrates that produce soluble 

products.

There are two main variations on this method: the ELISA can be used to detect the 

presence of antigens that are recognized by an antibody or it can be used to test for 

antibodies that recognize an antigen. Either way, both methods require the preparation 

of a calibration curve during the assay. For this particular study, the competitive ELISA 

method was employed and a basic systematic illustration of this method is shown in 

Figure 2.6.

1 the protein is coated on the solid 
su rface  and blocked

antigenTO

secondary antibodyprimary antibody

sample

2. the reaction mixture of enzyme 
labelled antibody and protein

3. the protein here co m p etes  with 
the immobilized protein fo r  the 
antigen-binding site. Enzyme 
labelled antibody react with the 
immobilized protein; free  protein 
and labelled antibody are w ashed 
off

4. secondary antibody is added to 
the  mixture; free  secondary 
antibody were w ashed off

enzyme substrate

t t

5. immobilized enzyme catalyzes 
substra te  developed colour. The 
higher the intensity of absorbance, 
the more of the enzyme was 
immobilized.

Figure 2.6 A simple diagram showing how  com petitive ELISAs work.

2.3.4.1. ELISA protocol

The general outline of the protocol was as followed:

1. 96 well plates (Titretek, Alabama, US) were coated with bovine corneal stroma 

antigen (chondroitinase ABC treated) in 20 mM NaCC>3 buffer (pH 9.6) (100 

pl/well) and incubated overnight at 37°C.

2. The coated microtiter plates were washed with 280 pl/well in Tris saline azide 

(TSA) (x3) and then blocked with the addition of 1% (wt/v) BSA in TSA, and

60



Chapter 2: Materials and methods

incubated for 1 hr at 37°C, as this prevented non specific binding. After 

incubation, the blocked microtiter plates were washed, air dried and then stored 

at 4°C until microplates were needed.

3. Known concentrations of bovine competing antigen were serial diluted to 

generate a standard curve. Bovine comeal biopsy digests were also serially 

diluted and both

4. Standards and samples were incubated with an equal volume of KSmAb, before 

adding them to the ELISA plate. Note: mAbs were initially prepared double the 

concentration. Both the known samples and samples were incubated for 1 hr at 

37°C.

5. Plates were washed in TSA (280 pl/well) (x4) and bounded antibody/antigen 

complexes (100 pl/well) added to the antigen coated wells. Bovine antigen 

competes with plate-bound bovine antigen for primary antibody binding, so that 

higher tissue levels of bovine KS result in less antibody binding to the plate 

bound antigen. Unused wells were then blocked using 100 pi 1% BSA in TSA. 

Plates were incubated at 37°C under parafilm for 1 hr.

6. Plates were washed in TSA (280 pl/well) (x6) to remove unbounded antibody 

competing with plate bound antigen. In competitive ELISA, the higher the 

original antigen concentration, the less antibody binding to plate bound bovine 

antigen, and weaker the final signal. A goat anti-mouse (H+L) alkaline 

phosphatise conjugated secondary antibody (Promega, UK) specific to the 

murine primary antibody was added, 2 pg in 100 ml 1% BSA in TSA, 100 

pl/well. This secondary anti-mouse antibody is couples to a phosphatase 

enzyme, which is used to create a colour signal representing KSmAb binding to 

the ELISA plate-the inverse of competing antigen concentration plates were 

covered in parafilm and incubated for 1 hr at 37°C.

7. Plates were washed in TSA (280 pl/well) (x6) to remove unbounded secondary 

antibody, before adding alkaline phosphatase substrate (p-nitrophenyl 

phosphate) tablets (x2) in DEA buffer (0.126 mM MgC^, 1 M diethanolamine, 

pH 9.8) 100 pl/well. Plates were covered in parafilm and incubated for 1 hr at 

37°C. Adding phosphatase substrate causes a metachromatic shift reaction, 

which is used to measure the amount of KS in this case in the sample with a 

spectrophotometer.
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8. Colour development was quantified on a plate reader (Lab Systems, Multiscan 

MS plate reader) at 405 nm. From this read out, KS was quantified against a 

standard curve of known competing antigen.

2.3.4.2. ELISA - Determining antibody concentration

The KS antibody concentrations were determined using a “shot gun titre” approach. 

The 96 well plates were prepared as described in section 2.2.4.4.I. A 1:3 serial dilution 

of antibodies were prepared, starting with a 1:50 dilution. No unknown samples were 

prepared at this point. Figure 2.7 shows how the KS antibodies, 5D4 and 1B4 

concentrations were determined. The antibody dilutions were determined at a half way 

point of which the curve emerged to decrease exponentially. For this particular project, 

~1:6000 (5D4) and ~1:150 (1B4) antibody dilution was deduced and used in 

subsequent inhibition ELISA assays.

Antibody dilution 5D4: Mean optical 
A«05

1B4: Mean optical
Â >5

4.00

1:50 3.587 3.219 3.50

■ 1:150 3.480 1 494 3.00

1:450 3.587 0 524 2.50
1:1350 3.199 0.134 j  2.00
1:4050 1.781 0.054 1.50

1:12150 0.849 0.038
1.00

1:36450 0.320 0.010
0.50

1:109350 0.150 0.022
0.001:328050 0.141 0.024

■1B4 

• 5D4

10 100 1000 10000 100000 

Antibody dilution

Figure 2.7 Determining 5D4 and 1B4 an tibody  concen tra tion  used for quantifying th e  unknown 
am ounts of KS con ten t in th e  bovine corneal ex tracts . The antibody dilutions w ere determ ined a t a 
halfway point of which the curve em erged to  decrease  exponentially.

2.3.4.3. Keratan sulphate quantification

Standard curves were generated from the optical absorbance of known bovine KSPG 

extracts for each plate, and the bovine corneal extract were read from the standard 

curve as shown in Figure 2.8. The amount of KS was calculated from reading across 

from the % absorbance compared to ng/ml antigen on the standard curve and then
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multiplied by the dilution factor and units were expressed in ng relative to per mg dry 

weight.

ng/ml antigen Mean optical A«„ % of ng/ml 
com peting 

antigen

100000 0 043 1 64

33333.33 0244 9 22

1111111 0719 27 23

370370 1 622 61 42

1234.57 2247 85 07

411 52 2.547 96 43

137 17 2.772 104 96

45 72 2.902 109 90

15.34 2799 105 99

0 2.641 100

120.00 j

100.00

op 8 0 .0 0  "

6 0 .0 0  "

4 0 .0 0  - -

20.00

0.00

1 10 100 1000 10000 100000

ng/m i an tigen

Figure 2.8 An example of a 5D4 standard curve calculation from optical density. KS conten t of bovine 
corneal extracts was deduced by reading across from  % absorbance com pared to  ng/ml antigen on the  
standard curve.

2.4. Transmission electron microscopy (TEM)

Transmission electron microscopy (TEM) uses a focused beam of highly energetic 

electrons to examine objects at high magnifications. For this project, TEM was 

employed, as this would give rise to visual information on collagen orientation and 

more importantly fibril diameter for example.

2.4.1. General preparation for TEM analysis

Prior to TEM analysis, fresh whole bovine eye globes (with small incisions at the 

sclera) were fixed in 4% paraformaldehyde in 0.1 M phosphate buffer overnight at 4°C. 

Corneas were dissected out with a 2-3 mm scleral rim attached and further fixed for 1 

hr at room temperature. Fixed corneas were then cut in the same way as shown in 

Figure 2.2.

Biopsies of corneal tissue was post-fixed in 1% osmium tetroxide for 1 hr, then 

contrasted in 0.5% aqueous uranyl acetate (UA) for a further 1 hr. Sections were then 

dehydrated to remove all water from the sample through wash steps of increasing 

ethanol (70%, 90% and 100% (x2)) each for 15 min. Specimens were further immersed
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in two changes of propylene oxide for 30 min and infiltrated with a 3:1 mix of 

propylene oxide and unpolymerized Araldite resin. Tops were left off specimen vials in 

a fume hood, so that the concentration of the resin increases. Following one more 

change in fresh resin, infiltrated specimens were placed in TEM embedding moulds 

filled with fresh resin. Polymerisation treatment was carried out at 60°C for 72 hr. After 

72 hr, corneal resin blocks were left at room temperature, ready for ultra-thin 

sectioning.

2.4.1.1. Positive and negative staining o f collagen

Although secondary fixation in osmium tetroxide provides some areas of electron 

density, this is usually not sufficient to provide high contrast, high definition images. A 

number of staining techniques are available to enhance the contrast of areas of interest. 

These fall into two major categories, positive staining and negative staining. Cationic 

and anionic stains the positive and negative amino acid, respectively. Positive staining 

is when the stain is washed off, leaving the bound stain, however if the stain is buffered 

to neutrality and not washed off, and settles in the gaps without binding, this is referred 

as negative staining.

In negative staining, only excess heavy metal staining solution is drained off, leaving a 

thin layer of stain around the specimen, outlining it and filling the internal voids with 

electron dense contrasting medium. The internal structure that can be seen is dependent 

on the size of the heavy metal staining molecule and the extent to which it can 

penetrate. In collagen fibril the interstices in the gap zones are large enough for 

penetration, giving the characteristic alternation of dark (gap) a light (overlap) zones 

along the negatively stained fibrils (Chapman and Hulmes, 1984). In negative stain 

microscopy, the electron beam primarily interacts with the stain. When the stain is 

added to the sample, the stain surrounds the sample and excludes the volume occupied 

by the sample; hence the use of the term ‘negative staining’ (i.e. the protein is not 

stained and appear white when scanned). When the electron beam passes through the 

specimen, the electrons are deflected upon interaction with the stain, yielding 

contrasted images. However, negative staining only shows surface detail and imposes a 

limit on the resolution. This is because of stain movement during imaging, variable
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flattening of the 3D structure by dehydration, and artefacts may arise, if the stain is 

uneven; since the pattern of the stain deposition is dependent on the structure of the 

particle (Chen, Roseman and Saibil, 1998; Ruprecht and Nield, 2001). The advantages 

of negative staining methods are that they are rapid and provide high contrast images 

with data typically to ~20A resolution (Goodhew, 1975). Phosphotungstic acid (PTA) 

used at neutral pH is a common negative stain for collagen.

Positive staining is when a stain containing charged ions (positive or negative) interacts 

with the collagen and unbound stain is washed off. The banding pattern in positively 

stained collagen fibrils thus reflects the axial distribution of charged amino acid 

residues along a fibril. Collagen fibrils that are doubly stained with PTA and uranyl 

acetate (UA) allow anionic stain to bind onto the positively charged residues, and vice 

versa for the cationic stain. The uptake of phosphtungstate ions are thought to bind onto 

positively charged side chains of Arg, Lys, hydroxylysine, and His along the collagen 

molecule, whereas uranyl ions can bind to both charges, even though it is cationic ion. 

This result arises because UA is a weak electrolyte in aqueous solution, and acetate ions 

are for the most part associated with the uranyl ions, which interact with both carboxyl 

and amino groups. It is these charges that participate in binding reactions with all the 

charged residues on complexes such as collagen and the relative uptake on negatively 

charged and positively charged side chains are dependant on concentration and pH 

(Chapman and Hulmes, 1984).

The formulation of lead citrate, introduced by Reynolds (1963) is most widely used to 

increase contrast of membrane and other tissue components. It is at its most effective 

and stable at high pH (12-13) (Reynolds, 1963). Membrane staining results from lead 

interacting with previously bound acidic osmium molecules, which have an affinity for 

positive dye ions such as lead. Glycogen staining is a result from the attachment of lead 

to the hydroxyl groups of carbohydrates by chelation, and then additional lead 

accumulates around the primarily attached lead. Proteins with large numbers of 

sulfhydryl group are stained with lead complexes with negatively charged phosphate 

groups Lead is strongly chelated with citrate, reducing its tendency to form lead 

carbonate upon interaction with air. The basic mechanism of anionic staining sites have 

greater affinity for lead cations than does the citrate portion of the solution, while, at the 

same time, CO2 and O2 have less affinity for the lead (Dykstra and Reuss, 2003).
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2.4.1.2. Cupromeronic blue staining for GAG chains

Cupromeronic blue is an intense blue cationic dye developed specifically for electron 

microscopic localization and characterization of PGs and sulphated GAGs (keratan, 

dermatan, and chondroitin sulphates) and hyaluronan (hyaluronic acid). Hence this was 

approached in the project.

This cationic dye belongs to the group of reagents which includes; alcian blue and 

cetylphridinium, and can be used as a critical electrolyte concentration (CEC) method 

to differentiate between polyanions according to the type of anion (caboxylate, 

phosphate ester or sulphate ester) without the complication of non-ionic binding to 

nucleic acid bases. The isomeric cuprolinic blue was designed to have high affinity for 

nucleic acids, whereas the cupromeronic blue was designed to have no special affinity 

for nucleic acids, other than as polyphosphates. This cationic dye acts like intercalating 

dyes but its unique steric hindrance, due to methyl group placement, prevents the dye 

from intercalating into the stacked base pairs (Scott and Haigh, 1988a). Thus, this 

cationic dye can bind onto to GAG chains of PGs, as they are highly sulphated making 

them to have a negative net charge.

CEC is referred to the characteristic concentration of salt at which a given polyanion 

ceases to stain with a given dye. The higher the CEC, the fewer substrates are stained 

(i.e. the specificity of the reagent is increased). The structures that are strongly stained 

with this dye may represent binding to sulphated polyanions because they have a high 

CEC. The CEC method of cupromeronic blue staining of tissue polyanions require that 

staining be carried to an optical equilibrium. The specificity of cupromeronic blue for 

polyanions is primarily due to underlying specific ion effects. Thus staining with this 

dye is controlled by the ionic character of the predominant tissue polyanions e.g. KS, 

CS and DS in corneal matrix and phosphate DNA. At a critical concentration of an 

electrolyte, the dye is displaced form its complex by the substrate. This displacement is 

due to the cations of electrolyte compete with the cationic (isothiouronium) groups on 

cupromeronic blue for binding to the negative sites on the polyanions. The 

concentration of MgCb is essential to the stain for accomplishing this displacement. 

Such mechanism of MgCh is explained on the basis of Mg2+ competing with 

cupromeronic blue for binding sites on mucopolysaccharides (i.e. GAG chains). As the
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concentration of Mg2+ increases, more binding sites are blocked from access to the 

cupromeronic blue. Thus, when using staining at a CEC would ensure that only the 

substrate (in this case GAG chains) are stained.

2.5. X-ray diffraction of collagen

X-ray diffraction allows structural, quantitative data to be gathered in a close to natural 

tissue state, without the need for lengthy tissue preparation, e.g. electron microscopy. 

X-ray diffraction patterns are obtained by focussing a monochromatic beam of x-rays 

through the specimen. Some x-ray passes straight through the specimen and is absorbed 

by a lead backstop behind the sample, whilst others are absorbed by the specimen itself. 

The remaining x-rays are scattered by the constituents of the sample and for a pattern 

on a detector placed behind the specimen.

A fibril placed vertically in an x-ray beam causes x-rays to be scattered both parallel to 

the fibril axis to form a meridional reflection and at right angles to the fibril axis to 

produce an equatorial reflection (Figure 2.9). In cornea, collagen fibrils within lamellae 

lie in all directions within the plane of the tissue causing both equatorial and meridional 

reflections to appear as a series of concentric circles. Due to the fact that equatorial 

reflections are broader than meridional reflections, the two can be easily distinguished 

and behave differently when tissue hydration increases (Meek and Quantock, 2001).

Meridional x-ray reflections

Incident x-ray beam

Equatorial x-ray reflections

Lead beam  sto pCollagen fibrils (enlarged) x-ray detector

Figure 2.9 A schem atic diagram  show ing how  an array  of fibrils held vertically in an x-ray beam  gives 
rise to  meridional reflections in a d irection  parallel to  th e  fibril axes equatorial reflections in a 
direction perpendicular to  th e  fibril axes (M eek and Quantock, 2001).
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The angle through which the x-rays are scattered is called scattering angle; the greater 

the scattering angle, the greater the radial distance of the reflection (R) from the centre 

of the pattern. When the x-rays are scattered at large angles (> 2 degrees) high-angle 

patterns are recorded using a short specimen to detector distance (~ 15-20 cm); when the 

x-rays are scattered through small angles (< 2 degrees) low-angle patterns are recorded 

using a much larger specimen to detector distance of several metres (Meek and 

Quantock, 2001).

Small-angle meridional reflections produced by collagen are caused by the 65 D- 

periodicity along the fibril axis, whilst wide angle equatorial reflections arise from the 

lateral packing of the molecules within the stromal collagen fibrils. As collagen 

molecules are aligned roughly parallel to each other and scatter x-rays at right angles to 

the direction of their long axis, the orientation of the molecules can thus be said to 

represent the direction of the collagen fibrils at that position with the corneal stroma. 

The intensity of the reflection provides quantitative information regarding the number 

of molecules lying in a certain direction, thus regions of higher scattering intensity on 

the x-ray diffraction pattern indicate more collagen travelling in a particular direction. 

The cornea can produce a small-angle equatorial pattern and wide-angle equatorial 

pattern (from lateral packing of collagen molecules) and small-angle meridional pattern 

(from D-periodicity of collagen). The small-angle equatorial reflection is caused by the 

uniformity of fibril diameters and the regular spacing of collagen fibrils (over a short 

range), with each lamella of the corneal stroma. The small-angle equatorial reflection 

comprises 2 patterns:

• The interference function, which is caused by the scattering from an array of 

collagen fibrils and is thus dependent on the position of the collagen fibril 

centre.

• The fibril transform, the scattering of a single fibril and is dependent upon the 

fibril radius (Goodfellow et al., 1978).

The concentric ring pattern from the cornea when the x-ray beam is passed along the 

direction of the optical axis indicates the collagen fibrils are orientated in all directions 

equally in the plane of the cornea. The width of the ring is related to the range of 

interfibrillar spacing’s present in the cornea. Quantitative data was calibrated using x- 

ray diffraction patterns from rat tail tendon, the known axial periodicity of 67 nm
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means sample interfibrillar spacing and diameter may be calculated (Goodfellow et al., 

1978; Sayers et al., 1982).

2.5.1. X-ray diffraction preparation

Fresh whole bovine eye globes (with incisions made at the sclera) were fixed with 4% 

paraformaldehyde in 0.1 M phosphate buffer over night at 4°C. Whole corneas (with a 

2-3 mm scleral rim attached) were removed and further fixed for 1 hr at room 

temperature. Fresh tissue samples were also prepared and both conditions were 

carefully and tightly wrapped in Clingfilm (Tesco, UK) (to minimize dehydration and 

associated structural changes), freezed at -20°C and at -80°C and then transported on 

dry ice to SPring-8 (Super Photon Ring). Note: fresh and fixed bovine corneal tissues 

were prepared as this was due to cautions of corneal dehydration during preparations of 

the x-ray experiments.

2.5.2. Small angle X-ray scattering data collection

All small angle x-ray experiments were carried out in beamline BL40XU at the Spring- 

8, a synchrotron radiation facility located in Japan. The facility consists of a storage 

ring containing an 8 GeV electron beam. The beam is extracted and run through 

undulators to produce synchrotron radiation with energies ranging from soft x-rays 

(300eV) to hard x-rays (300 KeV). At the beamline, the corneas were gently thawed 

and the tissue samples were further cut in strips (as shown in Figure 2.10) under a light 

microscope. Tissue samples were immediately placed between a single layer of 

Clingfilm to limit dehydration during exposure of the x-ray beam. Samples were then 

secured onto a Myler (with a clear plastic cell window) sheet and mounted in the path 

of the beam that was focussed along the central anterior surface of the cornea 

(epithelium facing the x-ray beam) (Figure 2.10, Experiment 1). In another experiment 

the x-ray beam was focussed in a horizontal orientation with the cut edge perpendicular 

to the incident beam direction (Figure 2.10, Experiment 2). The plastic cell was placed 

in the x-ray beam (X= 0.83A) (measuring 25 pm in diameter) so that the x-rays passed 

through the whole tissue. Diffraction patterns were recorded on 640 x 480 pixel 

detector, with a lead backstop between sample and detector to stop any undeviated rays.
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Average x-ray intensity during data collection was recorded by an ion chamber between 

the incident beam and specimen. A series of sequential micrometer steps and sub 

second exposure time of x-ray was obtained along the corneal optical axis and 

vertically across the through the centre of the specimen, traversing its entire thickness.

Experiment: 1 Experim ents

1. A 5 mm com eal strip w as cut along the 
central optical axis and w as further cut 
from the com eal centre

Beam direction
 -►

X-ray beam

2. Comeal strip w as p laced onto the 
Myler sheet and mounted in the path of 
the beam  that w as focu ssed  along the 
optical axis of the cornea (from centre to 
outer periphery/limbus direction).

Comeal depth section

90° 90°

3 A com eal strip (<1 mm) w as cut and mounted onto 
X-ray holder in the path of the X-ray beam  in a vertical 
orientation with epithelium perpendicular to the 
incident beam  direction

X-ray beam

CD

Tii
4 A series  of sequential horizontal X-ray b eam s w as 
X-rayed through the d epths (from anterior to posterior) 
of the centre to the outer periphery/limbus of the 
com ea l tissue .

Figure 2.10 A simplistic diagram showing how  th e  co rneas w here  prepared  for x-ray analysis.

Details of the parameters topographically and across the depths of the cornea are shown 

in Chapter 4, Section 4.4.1, Table 4.1. X-ray patterns were recorded with sub-second 

exposure times on a cooled CCD camera (ORCAII-ER, Hamamatsu Photonics) - 

framing rate of 290/sec, coupled with an x-ray image intensifier (V5445P, Hamamatsu 

Photonics) 3 m behind the specimen. A fresh piece of rat tail tendon (vertically 

positioned) was used to calibrate (which has known 67 nm D-periodicity) against the 

tissue samples. To account for any spatial variation in the sensitivity of the detector a 

single detector response pattern from 420 mins exposure to the radioactive source 

(Fe55) was also recorded. Once the data was collected, the x-ray patterns were 

electronically analyzed in Cardiff.
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2.5.2.1.Small angle x-ray scattering data analysis

The x-ray patterns were analyzed using UNIX based image analysis software (Fit2d, 

produced by Dr A. Hamersley, ESRF, Grenoble, France) and a Windows based 

statistics (Microsoft Excel and StatSoft Statistica) package was used to obtain values for 

the fibril diameter and the interfibrillar spacing of the corneas studied.

To account for the beam current decay during the collection of each data file, they were 

normalized against the appropriate ion chamber reading. The detector response pattern 

was then subtracted from each normalised image to account for any spatial variation in 

the sensitivity of the detector. A vertical transect was taken through the centre of the 

pattern (Figure 2.11). As x-ray scattering patterns are intrinsically symmetrical, the 

pattern was folded at the centre in half to produce an average intensity profile of the 

two halves, thereby increasing the signal to noise ratio. At this stage the intensity 

distribution is described as a function of radial position (R) from the centre of the 

pattern. The scattering angle and R are inversely related to the size of the structure 

causing the scattering. This parameter, the reciprocal space co-ordinate, is designated 

by the symbol Q. The intensity distribution is given by Equation 2.
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Low-angle equatorial 
reflection from regularly 
sp a ce d  collagen fibrils
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Figure 2.11 Small angle x-ray scattering p a tte rn  from  a mid central region of a bovine cornea (A). A
vertical transect (dashed red line) was taken  through th e  cen tre of the  pattern  to  form an intensity 
profile of the x-ray pattern  (B). The data was then  folded abou t th e  centre to  produce an average 
intensity profile of the  two halves (C).

2.5.2.2. Calculation o f  the intensity distribution from the equatorial 

scatter component:

Equation 2: I (Q) = F2(Q) E(Q) + B(Q)

l(Q) = th e  integrated intensity distribution

F2 = the fibril transform  (which ta k es th e  form  o f  a first order Bessel function)

E(Q) = the fibril in terference function
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B = the background sca tter  from  o th er  tissu e com p on en ts

The interference function E(Q) contains information about the average centre to centre 

spacing of the collagen fibrils. It was calculated by first rearranging Equation 2 in the 

form of Equation 3 and then following the sequence outlined in Steps 1-4.

Equation 3: E(Q) = (l(Q) -  B(Q)) /  F2(Q)

2.5.2.3. Step 1 - Removal

tissue components

The scatter intensity (I) was multiplied by R to accommodate for the use of a linear 

scan across a circular x-ray pattern, thereby taking into account the fact that a small 

sample of the pattern was used to produce the integrated intensity distribution profile. A 

linear background (LOGBK) was generated for the natural log graph of I against R 

(Figure 2.12 A). The linear background was then anti-logged (BACK) and subtracted 

by the intensity profile (I_BACK). This removes the diffused x-ray scattering from the 

stromal matrix components and leaving small angle x-ray reflections of the fibrillar 

collagen (Figure 2.12 B).

8000

7000

6000

2  5000

Data after background subtraction

t 4000

-  -  BACK 
 I_BACK

a 3000

2000 Calculated background

Data after background subtraction
1000

-1000
-50 0 50 100 150 200 250 300

9.0

7.0

60 1 3 52 4

Log of radial position. R (pixels) R a d is , p o i t io n , R (pixe |8)

Figure 2.12 Linear background g en e ra tio n  (LOGBK) against radial position (LOGR) (A). The background 
scatter (BACK) was rem oved from  th e  profile of scattering intensity against radial position (I) to  leave 
th e  small angle reflections of th e  cornea (l_Back) (B).
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2.5.2.4. Step 2 -  Removal o f fibril transform (F2)

Since the collagen fibrils are cylinder shaped, small angle equatorial x-ray diffraction 

from a corneal lamella can be approximated as the fibril transform (scattering from a 

single fibril), multiplied by the interference function (derived from the ordered 

arrangement of the cylinders) (Worthington and Inouye, 1985). A theoretical fibril 

transform was fitted to the experimental data by varying two parameters: the fibril 

radius and an arbitrary scaling factor. The fibril transform, takes the form of a first 

order Bessel function (BESSEL). The transform has a maximum that produces a low, 

broad peak near the 3rd order of the collagen meridional reflection (i.e. the 1st subsidiary 

maximum of the experimental data). The Bessel function was fitted to this peak in the 

image profile (I_BACK) (Figure 2.13), as this is because this peak is derived entirely 

from the fibril transform, with no significant contribution from the interference function 

(Worthington and Inouye, 1985). The interference function E(Q), was obtained by 

dividing the image profile by the fibril transform. This interference function represents 

the probability of finding a fibril centre at a given distance from another fibril centre. 

This rises to a peak corresponding to the average nearest neighbour centre to centre 

spacing of the collagen fibril then oscillates at about the value of 1 (short range order). 

In order to determine the Bragg interfibrillar spacing, R must be calibrated.

Low-angle equatorial reflection 
from regularly sp a ce d  collagen 
fibrils

1.8E5 

1.6E5 

1.4E5

|  1'2B 
t  1E5
J
o» 80000 

1
60000 

40000 

20000 

0
0 40 80  120  160 200 240

Radial d istan ce , R (p ixels)

Figure 2.13 The fibril tran sfo rm  (BESSEL) fitted  to  th e  profile of th e  scattering intensity (collagen) 
multiplied by radial position  (RI_BACK). The scattering intensity profile is then divided by the fibril 
transform to produce the interference function.

RI_BACK (data after background subtraction) 
BESSEL (Theoretical fibril transform)

3"* o rder co llagen 
meridional reflection

1*1 subsidiary 
m axim a due to the 
B essel function
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2.5.2.5. Step 3 - Calculating the interfibriilar Bragg spacing (IFBS) 

o f corneal collagen

In rat tail tendon, collagen fibrils represent approximately 90% of the dry wt and are 

organized into three-dimensional quasi-crystals, parallel to the tendon axis (Hulmes et 

al., 1981), forming well-defined diffraction patterns that can be used for calibration. 

The meridional reflections obtained from the native collagen of the rat tail tendon 

exhibit an axial periodicity of 67 nm. When the x-ray diffraction pattern from cornea 

are calibrated against those meridional x-ray reflections from rat tail tendon collagen, 

the mean centre-to-centre collagen fibril Bragg spacing can be determined.

The interfibriilar Bragg spacing (IFBS) was deduced as shown in Figure 2.14. 

B, corresponds to the position of the sample and A of the detector. AC = y represents 

the distance from the centre to the peak corresponding to the Bragg spacing, on the 

linear scan of the rat tail tendon. Similarly, ACj = yi is that distance on the linear scan 

of the bovine cornea. 0 is the half the scattering angle of the rat tail tendon and 0i half 

the scattering angle of the bovine cornea sample.

The wavelength used at the beamline is X = 0.83 nm and the order of the equatorial 

peak from cornea is n = 1. For rat tail tendon the interfibriilar Bragg spacing is d = 67 

nm (1st order, n=l). From the figure (Figure 2.14), tan20i = yi/AB and tan20 = y/AB. 

Due to the long (8 metre) camera-detector distance used, and the scattering angle was 

low, it can be assumed that sin0 = tan0 = 0, so this equates to 20i = yi/AB or 0i = 

yi/AB, and 20 = y/AB or 0 = y/2AB.

c

y

A

c,

Figure 2.14 Diagram show ing th e scattering of a sam ple (rat tail tendon or bovine cornea).

75



Chapter 2: Materials and methods

For rat tail tendon, Bragg’s law (Equation 4) can be arranged as:

Equation 4: nA = 2d sin 6

Rearrange equation: sin 0  = nA/2d

Since n = 1 => sin 0  = A/2d

For small angles sin0 = 0  (in radius)

=> 0 = A/2d

In rat tail ten d on  w e  sh o w ed  that:

0 = y/2A B  

Therefore A/2d = y/2A B

Rearrange equation: AB = 2dy/2A

Since d = 67 => AB = 67y/A

For th e cornea, Bragg's law m ay be w ritten  as follow :

0 i = n\/2d!

d i = corneal Bragg spacing to  be d eterm in ed , but from  ab ove: 

0 ! = yi/2A B  

Therefore n \ /2 d i=  yi/2A B

Rearrange equation: A B = 2d iy i/2n A

Since n = 1 for cornea

AB = d iyi/A  

T herefore 67y/A = d iyi/A

Or d i = 6 7y /y !

The IFBS of the bovine cornea can be defined as (Equation 5):

Equation 5: Interfibriilar Bragg spacing = 6 7 y /y i

In relation to the software used for the analysis, the radial distance was calibrated using 

the position of the sharp meridional 1st order x-ray reflection and known 67 nm D- 

periodicity of rat tail tendon (Figure 2.15). The IFBS of comeal collagen was calculated 

by dividing the position of the 1st order reflection of rat tail tendon (Figure 2.15 B) by 

the position of the low-angle equatorial reflection of the comeal collagen (after the 

removal of background scatter and division by the fibril transform) and then 

multiplying the resulting number 67 (the D-period of rat tail tendon). Bragg spacing can
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be converted to actual interfibriilar spacing using a multiplication factor of 1.12, based 

on the assumption that the cornea has a liquid-like packing arrangement (Worthington 

and Inouye, 1985).

A. B.
3000

_  25003<
£  2000

| 1500

500

0

1*'order meridional 
reflection of ret tail 
collagen

3rd order meridional 
reflection of rat tail 
collagen

100 150 200

Radial distance (pixels)

Figure 2.15 Small angle x-ray intensity profile pattern  of a rat tail tendon (A). The intensity profile was 
folded around the centre point to  produce an average intensity profile (B).

2.5.2.6. Step 4 -  Calculating fibril diameter 

Assuming that individual collagen approximated as infinitely long cylinders. Scattering 

from such cylinders takes the mathematical form of a 1st order Bessel function. The first 

subsidiary maximum of the fibril transform (BESSEL function) is related to the fibril 

diameter (2r) as shown in Equation 6 (Worthington and Inouye, 1985) and 7:

E q u atio n  6: 2r = 5 .14/tiM

2r = fibril d iam eter

M = Reciprocal sp ace position  o f  1st subsidiary m axim um  (n m 1)

M can be calculated using a calibrant (in th is ca se  th e  rat tail ten d on ) via:

E q u atio n  7* M -  _________ 1st subsidiary maximum position (i.e. "position" in Bessel file in pixels)
1st o rder m eridional idional peak position of calibrant (pixels) x D-period of
calibrant (nm)
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Chapter 3: Biochemical studies o f  the ECM across the bovine cornea

3.

3.1 Introduction

Comeal transparency is of fundamental importance of eyesight. Previous studies 

(Doutch et al., 2008; Doutch, 2009) have shown that comeal transmission (both in 

human and in bovine) gradually decreases from the central to the outer peripheral 

regions of the cornea. It was suggested that the reduction in transparency towards the 

periphery could be due to the increased comeal thickness, increased fibril diameters or 

an increased fibril disorder or an increase in the mismatch between the refractive 

indices of the fibrils and the ECM (Doutch et al., 2008). The increase in light scatter 

found towards the outer periphery is thought to be due to the larger fibrils and 

interfibriilar spacing found at this region, as previous studies have shown, using TEM 

(Borcherding et al., 1975) and x-ray analysis (Boote et al., 2003). Doutch and co­

workers also acknowledge the refractive indices could also influence the ratio between 

fibrils and the interfibriilar substance. However, to date there has been limited studies 

as to whether the type of PG changes at the outer peripheral regions of the cornea. Early 

studies (Borcherding et al., 1975) have shown that the topographic distribution of GAG 

molecules from comeal centre to the outer periphery (in human) is more uniform, 

changing only at the outer periphery-limbus region, where KSPG is reduced relative to 

DSPG (Borcherding et al., 1975). However, these studies were based on hexosamine 

and uronic acid assays to quantify the content of KS (containing glucosamine and 

galactosamine) and CS/DS (containing glucuronic acid), respectively. The aim of this 

particular study was to extend these early finding by Borcherding et a l (1975) and 

Doutch et al. (2008, 2009) by investigating the sulphation patterns of GAGs across and 

tissue depths in defined regions of the cornea.
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3.2 Methods

A summary plan is present in the figure below:

-Obtain c o m e a l strom a  
-take b io p s ie s  o f  t is s u e  -  
cen tre -to -lim b u s(3m m  x 3m m  )

, 1 1 
C o lla g en

I
Hydration m e a su r e m e n ts

1
P a p a in  d ig estio n

* *
hydroxyproline co n ten t s u lp h a te d G A G a n d  hydroxyproline con ten t

▼

K S quantification  an d  localization

Figure 3.1 Summary plan of experim ents.

3.2.1 Corneal thickness measurements

Fresh bovine eyes with clear/transparent corneas (n = 10) were selected and assessed by 

pachymetry for corneal thickness of each tissue region: centre (0-3 mm zone), 

periphery (3-6 mm zone), outer periphery (6-9 mm zone) and limbus (9-12 mm zone). 

Using a Ultrasonic Pachymeter (DGH Technology Inc, USA) each measurement was 

recorded as an average of 15 readings.

3.2.2 Sample preparation fo r  biochemical studies

Fresh bovine corneal stromas were excised as described in Chapter 2, section 2.1. The 

wet weights of the set of corneal biopsies were individually measured, the tissues were 

then freeze dried and finally stored until needed at -20°C. Hydrations of the biopsies 

were calculated.

Proteoglycan
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3.2.2.1 Papain digestion

Comeal biopsies (n = 10) were papain digested as described in Chapter 2, Section 

2 . 1. 1. 1.

3.2.3 Hydroxyproline assay

The amount of hydroxyproline was quantified using a hydroxyproline assay (Blain et 

al., 2006) as described in Chapter 2, Section 2.2.1.1.

3.2.4 DMMB assay

The total sulphated GAG content on papain digest samples was measured using a 

DMMB assay as described in Chapter 2, Section 2.2.2.1.

3.2.5 Immunohistochemistry

Full thickness comeal biopsies (3 mm strips from corneoscleral rim to corneoscleral 

rim) were mounted for immunohistochemistry as described in Chapter 2, Section 

2.3.1.1. Table 3.1 shows the primary antibodies used for this particular study.

A ntib o d y GAG ch a in  d e te c t io n P re - t r e a tm e n t D ilution

5D4 R ecognize lin ear p e n ta - s u lp h a te d  KS w h e re  b o th  GlcNAc - 1:100

1B4
an d  Gal a re  s u lp h a te d
R ecognize le s se r  s u lp h a te d  KS s e q u e n c e s  o f  N -acety l _ 1:50

BKS-1
lac to sa m in e  d isa c c h a r id e s  
K era tan ase  g e n e ra te d  KS n e o -e p ito p e K era tan ase  II 1:20

3B3 R ecognize c h o n d ro itin -6 -su lp h a te C h o n d ro itin ase  ABC 1:20

2B6 R ecognize c h o n d ro itin -4 -su lp h a te C h o n d ro itin ase  ABC 1:20

1B5 R ecognize c h o n d ro itin -O -su lp h a te C h o n d ro itin ase  ABC 1:20

A nti-co llagen

C o llagen  d e te c t io n

R ecognize th e  n a tiv e  (helical) fo rm  o f co llag en  ty p e  1 _ 1:100

ty p e  1

Table 3.1 A summary of th e antibodies used for this experiment.
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3.2.6 KS quantification

Competitive ELISAs were used to quantify penta-sulphated hexasaccharides and tetra- 

sulphated hexasaccharides in small linear KS chains, which were recognized by the 

monoclonal antibodies 5D4 and 1B4, respectively (Caterson, Christner and Baker, 

1983; Mehmet et al., 1986). 96 well EIA microtiter plates (MP Biomedicals, UK) were 

coated with 0.05 pg chondroitinase ABC bovine corneal stroma antigen (kindly 

provided by Professor Bruce Caterson, Cardiff University) in 20 mM NaCC>3 buffer 

(pH 9.6), and incubated for 2 hr at 37°C, followed by and overnight incubation at 4°C. 

The coated microtiter plates were washed with TSA buffer and the enacted sites were 

blocked with the addition of 1% (wt/v) BSA in TSA buffer, and incubated for 2 hr at 

37°C. After incubation, the blocked microtiter plates were washed, air dried and then 

stored at 4°C until needed.

Papain digests of corneal tissue were serially diluted (1:3 serial dilution) and allowed to 

bind with an equal volume of 5D4 (1:6000 final dilution in 1% BSA/TSA) or 1B4 (1: 

150 final dilution in 1% BSA/TSA) and incubated to compete against the 

chondroitinase ABC treated bovine corneal antigen. A standard curve was generated 

from serial dilutions of chondroitinase ABC treated bovine corneal antigen/5D4 or 1B4, 

respectively. The plates were then washed with TSA before incubation with alkaline 

phosphatise -  conjugated goat anti-mouse antibody (1:5000 dilution; Promega, 

Madison, WI). The plates were again washed before alkaline phosphatase substrate (p- 

nitrophenyl phosphate, 1 mg/ml) was applied in DEA buffer (pH 9.8). Colour 

development was quantified on a plate reader (Multiskan MS; Labsystems, Helsinki, 

Finland) at 405 nm, to determine the inhibition of binding.

Note: for all data analysis a statistical significance was ascertained by using statistical 

tests for the data groups: one-way ANOVA with post-hoc Tukey HSD.

3.3 Results -  Biochemical studies

Figure 3.2 shows results for the changes across the bovine cornea in corneal thickness, 

hydration, hydroxyproline and sulphated GAG content. For all calculations see 

Appendix 1, Tables # 1-4. The corneal thickness increased from 844.70 ±8.10 pm
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(central region) to 1021.00 ± 5.42 pm (limbus region) (P = <0.01). For such change in 

thickness across the cornea may be due to various factors, one being a minor change in 

hydration. For example hydration across the bovine cornea increased from 3.67 ± 0.50 

(central region) to 4.28 ± 0.71 (outer periphery-limbus region), however this change 

was not significant (P = 0.171). Furthermore, this increase in thickness in the outer 

periphery may also be explained by the changes in the amount of collagen; the amount 

of hydroxyproline present in the centre of the cornea (expressed as proportion/dry wt: 

0.06 ± 0.01 mg/mg dry wt) increased to 0.12 ± 0.01 mg/mg dry wt at the outer 

periphery. The data obtained from the DMMB analysis revealed no significant changes 

across the cornea, which may indicate that the sulphation of GAGs across the cornea 

remains relatively constant.
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Figure 3.2 M easurem ents of thickness, hydration, hydroxyproline and sulphated GAG content across 
the bovine cornea as a function of position. 0-3mm = centre, 3-6mm = inner periphery, 6-9mm mid 
periphery, 9-12mm ou te r periphery/lim bus. One-way ANOVA and post-hoc Tukey HSD tests were 
employed to  identify th e  significant differences betw een the  groups. *,* P = <0.01. *,*, ,*,* P = <0.001. 
For all calculations, please see  Appendix 1, Tables # 1-4.
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3.4 Results -  Immunohistochemical analysis

Findings from the immunohistochemical studies, as expected, indicated that type I 

collagen was found throughout the cornea, as shown in Figure 3.3. The attempts to 

locate KS appeared uniformly as a function of tissue depth, this was seen throughout 

the depth of the cornea from the centre to the peripheral regions (Figure 3.4-6). 

However, towards the outer periphery/limbus and beyond and at all depths, less KS was 

detected.

The sulphation pattern of CS varied in the bovine cornea overall, such that when 

staining for chondroitin-6-sulphate (C-6-S, using 3B3 antibody), minimal staining was 

detected in the cornea (Figure 3.7, panel A), but was only found in the mid periphery, 

increasing in the outer periphery/limbus and beyond. Furthermore, the immunostaining 

revealed that chondroitin-4-sulphate (C-4-S, using 2B6 antibody) is the main form of 

CS found in the cornea, as a high intensity staining of C-4-S was detected (Figure 3.8). 

C-4-S was found across the cornea and slightly reduced towards outer periphery/limbus 

and sclera. Close observations from the immunostaining of this form of CS, showed 

that in the peripheral regions (inner and mid periphery), a possible gradient change of 

CS was found, where more C-4-S was detected in the posterior stroma (Figure 3.8, 

panel A). Minor traces of chondroitin-O-sulphate (C-O-S, using 1B5 antibody) were also 

detected, but was only found in the inner periphery (posterior stroma) and increased 

with increasing depth in the outer periphery/limbus to sclera (Figure 3.9).
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Figure 3.3 Im m unolocalization of 
type I collagen (green) and 
nuclear stained cells (blue), using 
an ti-type I collagen and DAPI, 
respectively. Panel A, scale bar = 
500pm. Panel B = anterior strom a, 
panel C = mid strom a and panel D 
= posterior. Panel B-D, scale bar = 
200pm.
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Figure 3.4 Im m unolocalization of 
over-sulphated KS (green) and 
nuclear stained cells (blue), using 
5D4 an tibody and DAPI, 
respectively. Panel A, scale bar = 
500pm. Panel B = anterior strom a, 
panel C = mid strom a and panel D 
= posterior strom a. Panell B-D = 
200pm.
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Figure 3.5 Im m unolocalization 
of lesser-sulphated KS (green) 
and nuclear stained cells (blue), b

using 1B4 an tibody and DAPI, 
respectively. Panel A, scale bar =
500pm. Panel B = anterior 
strom a, panel C = mid strom a 
and panel D = posterior strom a.
Panel B-D, scale bar = 200pm.
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Figure 3.6 Im m unolocalization 
of neoep itope a t th e  non­
reducing term inal ends of KS b

(green) and nuclear stained cells 
(blue), using BKS-1 antibody 
and DAPI, respectively. Panel A, 
scale bar = 500pm. Panel B = 
anterior strom a, panel C = mid 
strom a and panel D = posterior 
strom a. Panel B-D, scale bar = c
200pm.
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Figure 3.7 Im m unolocalization 
of chondroitin-6-sulphate 
(green) and nuclear stained cells b 
(blue), using 3B3 antibody and 
DAPI, respectively. Panel A, 
scale bar = 500pm. Panel B = 
anterior strom a, panel C = mid 
strom a and panel D = posterior 
strom a. Panel B-D, scale bar =
200pm.
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Figure 3.8 Im m unolocalization 
of chondroitin-4-sulphate 
(green) and nuclear stained cells 
(blue), using 2B6 an tibody and 
DAPI, respectively. Panel A, 
scale bar = 200pm. Panel B = 
anterior strom a, panel C = mid 
strom a and panel D = posterior 
strom a. Panel B-D, scale bar = 
200pm.
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Figure 3.9 Imm unolocalization 
of chondroitin-O -sulphate and 
nuclear stained cells, using 1B5 
antibody and DAPI, 
respectively. Panel A, scale bar = 
500pm. Panel B = anterior 
strom a, panel C = mid strom a 
and panel D = posterior strom a. 
Panel B-D, scale bar = 200pm.
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-ve control IgG PBS

Figure 3.10 Negative controls for im m unolocalization of specific GAG types. Controls showed negative 
staining to  th e  specific primary antibodies and non random  binding. K'ase II = keratanase II. C'ase ABC = 
chondroitinase ABC. Scale bar = 500 pm

3.5 Results -  KS quantifications

Sulphation patterns of KS GAGs were examined quantitatively across the cornea 

(Figure 3.11, see Appendix 1, Table # 5-6 for calculations). The amount of high- 

sulphated, 5D4-recognizible, KS GAG remained constant between the central (0.65 ± 

0.31 ng/mg dry wt) and the outer peripheral (0.72 ± 0.25 ng/mg dry wt) regions of the 

cornea, P = 0.940. However, using 1B4 antibody, the amount of lesser sulphated KS 

GAG more than doubled in the outer peripheral-limbus region (0.80 ± 0.30 ng/mg dry 

wt) compared to the central region (0.20 ± 0.05 ng/mg dry wt), P = <0.001. 

Furthermore, the data revealed that the high sulphated KS chains are relatively more 

abundant in central regions of the cornea when compared to lesser sulphated chains, 

with proportionally elevated levels of lesser sulphated KS found peripherally.
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Figure 3.11 KS GAG sulphation content across the bovine cornea. 0-3mm = centre, 3-6mm = inner 
periphery, 6-9mm = mid periphery and 9-12m m  ou te r periphery/lim bus. 5D4 antibody was used to  
label higher sulphated KS GAG chains. 1B4 antibody was used to  label lesser sulphated KS GAG chains. * 
P = <0.001, * P = 0.005. For all calculations, please see Appendix 1, Table 5-6.

3.6 Discussion

As previously mentioned, studies (Doutch et al., 2008; Doutch, 2009) have shown that 

comeal transparency (both in human and in bovine) decreases from the central to the 

outer peripheral regions of the cornea. This reduction in transparency towards the 

periphery could be due to many factors such as the increased comeal thickness, 

increased fibril diameters or an increased fibril disorder or an increase in the mismatch 

between the refractive indices of the fibrils and the matrix (Doutch et al., 2008). 

Previous studies (Borcherding et al., 1975; Boote et al., 2003) have found that there is 

an increase in fibril diameter and interfibriilar spacing, which could account for the 

decrease in transparency at the peripheral regions of the cornea. Doutch and co-workers 

(2008) have also suggested that the refractive indices could also change towards the 

periphery, if there was a change in the PG content; however the data obtained here on 

the total sulphated GAG content, showed no changes across the cornea (Figure 3.2). 

Thus, the refractive index ratio would be constant and PGs may not have a role in the 

reduced transparency at this region. The hydroxyproline content from our studies 

(Figure 3.2), revealed a significant increase towards the outer periphery/limbus regions, 

which may contribute the amount or volume and/or size of fibrils and therefore may 

cause the increase of light scatter found towards this region.
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In the cornea, the collagen fibrils are arranged in a pseudohexagonal lattice form, and it 

is believe that this orderly arrangement of collagen fibrils gives rise to corneal 

transparency. It has been long believed that this lattice-like structure is sustained by the 

structural interactions between collagen fibrils and PGs (Bettelheim and Plessy, 1975; 

Borcherding et al., 1975). These PGs are glycosylated with KS or CS/DS and it is these 

GAGs that are thought to be responsible for the orderly interfibrillar spacing of the 

collagen fibrils.

Several studies (Bettelheim and Plessy, 1975; Bettelheim and Goetz, 1976) have shown 

that GAGs in the cornea are largely responsible for the water-binding capacity in this 

tissue. This is due the sulphate groups on their PGs chains which are hydrophilic and 

can therefore interact with water molecules (Bettelheim and Plessy, 1975; Imberty et 

al., 2007). The negatively charged GAGs swell in solution to increase their 

conformational entropy. Repulsion of the GAG charges and Donnan osmotic pressure, 

consequently causes the positively charged ions gravitate around the GAG chains and 

can cause the tissue to swell (Scott, 2003). In the case of GAG types, early studies by 

Bettelheim and collaborators indicated that the hydration behaviour of PGs differs from 

that of the corresponding GAGs. They showed that KS absorbed water two to three 

times more than PGs with CS/DS attached (Bettelheim and Plessy, 1975; Bettelheim 

and Goetz, 1976). This may be an indication as to why, in the present study, the 

hydration remained relatively constant across the cornea, as KS particularly highly 

sulphated KS (Figures 3.11) was relatively constant across the cornea.

It has been alleged (Heldblom, 1961; Bettelheim and Plessy, 1975; Bettelheim and 

Goetz, 1976) that although GAGs are largely responsible for the hydration of the 

cornea, KS plays a different role to CS in the hydration process. Corneal wound healing 

shows reduced KS and increased CS synthesis, and injury to Descemef s membrane and 

the endothelium transforms keratocytes to DS-producing cells (Anseth, 1961; Anseth 

and Fransson, 1969). Furthermore, it has been found that KS is more abundant that 

CS/DS (Bettelheim and Goetz, 1976), particularly in larger animals (Scott and 

Bosworth, 1990), and this may explain why KS was found more abundantly throughout 

the bovine corneas examined here.
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The pattern of KS GAG distribution throughout the depths of the corneal stroma 

appears to alter distinctly during corneal development, whilst in adult corneas of 

different animal species, a KS gradient change is apparent (Scott, Haigh and Ali, 1988). 

During rabbit development, KS has been mainly found in the anterior two thirds of the 

stroma, whereas CS was found throughout the stroma (Cintron and Covington, 1990). 

Observations on chick cornea have showed that, during chick corneal morphogenesis, 

significant matrix deposition of high-sulphated KS epitopes occurred with an 

accumulation of KS proceeding in an anterior to posterior manner (Young et al., 2007b; 

Liles et al., 2010). These findings suggested that KS plays a vital part in the 

development and the maintenance of transparency.

Early studies by Scott and co-workers showed that in bovine corneas, the distribution of 

KS can be unique (Scott et al., 1988). When staining with alcian blue at a low MgCl 

concentration (0.2M), KS was present in the anterior stroma, and with high 

concentrations of MgCl (0.6 M and 0.8 M) in the alcian blue, at which only KS stains 

(Scott and Haigh, 1988a), more KS was found posteriorly. However, after 

chondroitinase ABC digestion and staining with alcian blue in 0.2 M MgCl, KS was 

present throughout the cornea. Scott and co-workers suggested that these differences in 

KS distribution are caused by the O2 tension in the cornea, which play a crucial 

metabolic factor in GAG synthesis (Scott et al., 1988) (See Chapter 5 for more details).

Much of the early studies that have attempted to map the GAG distribution through the 

depths of the corneal stroma (in mature species) by quantifying the 

glucosamine:galactosamine ratio after chromatographic separation (Anseth, 1961; 

Bettelheim and Goetz, 1976), and a gradual increase in the ratio was seen when 

proceeding from the epithelium to the endothelium. The glucosamine:galactosamine 

ratio reflects the KS:CS ratio of GAGs, and it was suggested that a gradient of KS 

content in the cornea increased posteriorly and vice versa for CS (Bettelheim and 

Goetz, 1976). This follows the suggestion that the balance of the two kinds of PG is 

depended on the availability of O2 , which must diffuse into the avascular tissue from 

the atmosphere (see Chapter 5 for more details). Furthermore, early studies (Scott and 

Haigh, 1988b; Balduini et al., 1992; Scott, 1992b) have shown that KS is produced 

more effectively than CS/DS during ambient O2 pressures. Therefore, in this scenario in 

the deeper zones of the comeal stroma, where less O2 is consumed by the cornea, one
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would expect more KS. This would also make sense in that KS PGs not only absorb 

water molecules to a great extent in comparison to the CS/DS PGs but they can also 

transfer water molecules with ease since little is retained by them in the dehydration 

process (Bettelheim and Plessy, 1975). Thus, finding KS at the posterior region, near 

the endothelium, hence near the aqueous humor, may serve a purpose of facilitating the 

movement of water into the cornea via the endothelium (Na+/K+ ATPase transporter 

and NaHC0 3  transporter pump) (Maurice, 1972; Bettelheim and Plessy, 1975; Hodson 

and Miller, 1976). Other studies have shown that in macular comeal dystrophy type I 

corneas, in the posterior regions, the collagen fibril spacing is reduced, large-diameter 

collagen fibrils are found and it was suggested that this may be due to the influence of 

the abundance sulphated KS GAGs/PGs found at this region (Palka et al., 2010).

In the attempts to immunolocalize KS through the depths of the bovine cornea, it 

appeared to be evenly distributed as a function of tissue depth. This was seen 

throughout the depths of the central and the peripheral regions of the cornea. Although 

early studies focussed on the comeal centre, these findings fail to support Anseth et al. 

(1961) and Bettelheim and Goetz (1976) early work, where they quantitatively showed 

more KS was found posteriorly. Other studies involving antibodies, 5D4 and BKS-1, to 

histochemically locate KS in human cornea, also showed strong labelling in all depths 

of the cornea, however, when using immuno-TEM, 5D4 epitopes were found more 

abundant posteriorly (Akhtar et al., 2008b). Such differences found from Anseth et al 

(1961) and Bettelheim and Goetz (1976) early work compared to our studies could be 

due to the fact IHC is based on qualitative observations. Although the aim of our 

studies was to show the location and distribution of the different KS sulphation 

patterns, IHC can face problems in IHC-staining, which may include strong background 

staining, weak target antigen staining and autofluorescence. The orientation of the KS 

associating onto the collagen fibril within lamellae may also be a problem, as this is 

because thin comeal sections were cut, and some KS epitopes may not be fully exposed 

for the specific antibody binding. Therefore, furthermore qualitative observation studies 

would be needed.

Nevertheless, the KS quantification studies (Figure 3.11) revealed that high sulphated 

KS chains were relatively more abundant in central regions of the cornea when 

compared to lesser sulphated chains. However, elevated levels of lesser sulphated KS
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were found peripherally. This data concurs with early corneal studies (human) 

(Borcherding et al., 1975), where the KS.CS ratio decreased towards the periphery, 

suggesting that the sulphation of KS may gradually decrease, and hence may explain 

why more lesser sulphated KS was found in the periphery (Figure 3.11). In addition, 

other studies using immunostaining have also shown high levels of KS are found in the 

human cornea and lower levels in the limbus and sclera (Akhtar et al., 2008b). 

Furthermore, the change in sulphation status found in the cornea from our studies, may 

suggest the change in length of GAG chains, which could have possible implications 

for stromal water binding capacity, differential substitution either on KS PG core 

proteins and/or extracellular matrix architecture.

Early studies by Borcherding et al. (1975) showed that chondroitin was found 

throughout the cornea and becomes more sulphated towards the periphery and into the 

sclera. The data obtained here, indicated a slightly different pattern, such that very little 

chondroitin (C-O-S) itself was found in the central regions of the cornea, but it became 

more detectable in the outer peripheral and limbal regions (Figure 3.9). This would 

seem to indicate that chondroitin molecules become less sulphated in the peripheral 

regions of the cornea. The C-4-S epitope was found throughout the cornea, and 

gradually reducing towards the outer periphery/limbs regions (Figure 2.8). This 

correlates with early findings (Bettelheim and Goetz, 1976), that C-4-S was the main 

CS (40%) whereas only a small amount of DS and C-6-S was reported. Borcherding 

and co-workers also showed that, both CS and DS were found towards the peripheral 

and sclera regions, and as mentioned previously, both CS and DS contain 6-sulphated 

disaccharides. This may explain why C-6-S epitopes were detected towards the 

peripheral and limbal regions of the cornea. Nevertheless, CS/DS PGs can be 

structurally diverse, as this could be due to the chains having very low to moderate 

levels (15-64%) of sulphated disaccharides, and differing marked levels of 4- and 6- 

sulphate groups (Achur et al., 2004). To confirm the differences in sulphation patterns 

of CS it would have been ideal to quantify the sulphation types of CS, by using 

ELISAs, but due to time constraints to the project this was not feasible.

The GAG components of PGs allow them to act as “spacers” between fibrils. The 

sulphation patterns of the GAG components on PGs contribute to this because the 

electrostatic fields they induce permit their aggregation and dissociation. Large CS/DS
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PGs may control the spacing through stabilizing more then two adjacent fibrils, forming 

multimers and regulating the swelling pressure of the tissue through their sulphate 

residues (Lewis et al., 2010). CS contains more disaccharide motifs than KS (Plaas et 

al., 2001) and thus may have more sites for sulphation and a higher proportion of 

hydrophilic regions. This may explain why CS was found throughout the cornea, as it 

may act to control and stabilize the spacing of fibrils, whilst C-6-S detected more in the 

posterior regions of the stroma, where it may aid and regulate the swelling pressure of 

the tissue.

The sulphation status of corneal PGs is thought be based on enzymatic activity (Akama 

et al., 2001 ; Hayashida et al., 2006), changes with development (Quantock and Young, 

2008; Liles et al., 2010) and in corneal diseases such as macular corneal dystrophy 

(Quantock et al., 1990; Akama et al., 2000). Knockout mouse studies on the Chst5 

gene, which lacks the N-acetylglucosamine 6-0 sulfotransferase enzyme, has shown no 

sulphated KS is detected but instead oversulphated CS/DS are found (Hayashida et al.,

2006). A recent study (Parfitt et al., 2011 ) using 3D tomography electron microscopy 

have showed that in the Chst5 knockout mice, greater lengths and thickness of CS/DS 

chains were seen compared to the null mice. Parfitt and co-workers have suggested that 

the overall balance of the electrostatic charges in the C/wf5-null mouse cornea is 

maintained by the increased sulphation of the CS/DS chains in the absence of sulphated 

KS. It was also suggested that the high sulphation of CS/DS may facilitate further 

packing in order to maintain the corneal collagen fibril architecture.

Close observations in the immuno study on KS GAGs, a detection of KS was found on 

the surface of the epithelium. This may be due to lubricin; a mucous glycoprotein that 

consists of KS and CS. Lubricin has been found in articular cartilage and has shown to 

be a boundary lubricant (Jay et al., 2001; Zappone et al., 2007). Therefore, KS found on 

the surface of the epithelium may contain a form of lubricin from the tear film, which 

may act as a lubrication of the surface of the cornea.

Type I collagen is the most predominant collagen type found in connective tissues and 

is the main collagen found in the cornea (Forrester et al., 2002), which we have 

confirmed from immnostaining (Figure 3.3). As stated, previous studies (Borcherding 

et al., 1975; Boote et al., 2003) have shown that the collagen fibril diameter increases
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gradually towards the peripheral regions of the cornea. This may be associated with 

amount of type V collagen present in the collagen fibril. Studies have shown that a 

reduction in type V collagen result in large-diameter fibrils with a broad size 

distribution (Birk et al., 1988; Birk et al., 1990; Marchant et al., 1996b). This suggests 

that the interaction of type V with type I collagen is one mechanism modulating fibril 

diameter and is at least partially responsible for the regulation of collagen fibril 

formation. Thus, one might be expected to find more type V collagen molecules 

concentrated towards the centre of the cornea where collagen fibrils are narrower. 

However, staining for type V collagen is problematic because type I and type V 

collagen co-assemble into heterotypic fibrils. The entire triple-helical domain of the 

type V collagen molecules is buried within the fibril and type I molecules are present 

along the fibril surface. The retained N-terminal domains of the type V collagen are 

exposed at the surface, extending outwards through the gap zones (Birk, 2001). 

Nevertheless studies have overcome this problem, by extraction or enzyme or acid 

treatment on the tissue (Linsenmayer et al., 1983; Fitch et al., 1988; White et al., 1997; 

Bairati and Gioria, 2004). In the current study, attempts were made to use various anti­

type V collagen antibodies to examine its distribution throughout the corneal stroma. 

However, the antibodies were found not to work satisfactory and, due to time 

constraints and lack of more purified antibodies, these experiments were curtailed.
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4.

4.1 Introduction

Optical properties of the cornea can be influenced by the structural collagen changes 

and hence its biomechanical and optical functions. This particular study follows the 

previous chapter and in this present study, the collagen fibril diameter, fibril spacing in 

relation to the GAG chain distribution across the bovine cornea were examined. 

Previous studies (Borcherding et al., 1975; Boote et al., 2003) have investigated on 

human corneas, but there has been no data as to whether other species, such as cow, 

follow a similar fibril diameter and interfibrillar spacing trend across the cornea. As 

mentioned in the previous chapter, structural changes in the peripheral regions of the 

stroma (Borcherding et al., 1975; Boote et al., 2003) may explain the decrease in 

transparency at this region (Doutch et al., 2008). The % of light transmission in human 

corneas decreased approximately linearly up to 3 mm from the central axis and 

decreasing quadratically thereafter to the limbus (Figure 4.1 A). Similar results were 

also seen in bovine corneas (Figure 4.1 B) (Doutch, 2009).
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Figure 4.1 Light transm ission as a function of position  in hum an (n=8) (A) and bovine (n=8) (B) corneal 
strom a a t 550nm (Doutch e t al., 2008; Doutch, 2009).

The cornea has high tissue strength in order to resist the force of intraocular pressure 

and maintain correct surface curvature for optimum light refraction. The tissue strength 

is determined by the diameter of the constituent collagen fibrils, their direction in 

relation to the applied force and the total collagen content (Hukins and Aspden, 1985).
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TEM has been widely used to visualize collagen fibrils. Across a wide range of tissue 

types and species, it has been demonstrated that collagen fibrils have a range of 

diameters depending on the location and presumed function of the fibrils. In light of 

this, human TEM studies (Borcherding et al., 1975), have illustrated an increase in 

stromal fibril diameter (Figure 4.2). However measurements from electron micrographs 

have tended to show considerable variation among studies (Kanai and Kaufman, 1973; 

Borcherding et al., 1975; Craig and Parry, 1981; Freund et al., 1995), which has been 

related largely to tissue shrinkage during specimen preparation (Fullwood and Meek, 

1993).

Cornea Limbus Sclera

Figure 4.2 Electron micrographs of collagen fibrils along th e  cen tral vertical axis from  hum an central 
cornea to  sclera (Borcherding e t al., 1975).

Small angle x-ray diffraction experiments have also been widely used to measure 

collagen fibrillar architecture in many species, particularly in human comeal stroma in 

a number of pathologic conditions, often involving proteoglycan deficiencies 

(Quantock et al., 1990; Meek et al., 2003; Beecher et al., 2005). As mentioned 

previously Boote and co-workers (2003) have showed that the mean fibril diameter 

remained constant across the cornea up to the limbus, whereupon a sharp increase was 

observed. In addition, it was found that the collagen fibrils in the prepupillary cornea 

were more closely packed than in the peripheral cornea, and there was a significant 

increase in spacing from the central cornea (approximately 57 nm) to the edge of the 

limbus (approximately 62 nm), followed by a much larger increase at the limbus itself 

(Boote et al., 2003).

Furthermore, the anterior and posterior stroma differ in specific ways, such that the 

collagen fibrils in the posterior stroma are more ordered (Komai and Ushiki, 1991; 

Freund et al., 1995), and the posterior cornea is more hydrated (Turss, Frient and
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Dohlman, 1971), more easily swollen, and has a lower refractive index (Patel, Marshall 

and Fitzke, 1995) than the anterior stroma. The posterior lamellae are also wider and 

thicker (100-200 pm wide and 1.0-2.5 pm thick) than the anterior (0.5-30 pm wide and 

0.2-1.2 pm thick) (Komai and Ushiki, 1991). In addition, a recent study on small-angle 

x-ray fibre diffraction on the depth of the human corneal matrix, reported that swollen 

human eye-bank corneas showed no significant change in collagen fibril diameter 

throughout the tissue, but a lower collagen interfibrillar spacing in the anterior-most 

stromal regions compared with the ultrastructure of the deeper cornea (Quantock et al.,

2007) (Figure 4.3)
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Figure 4.3 Average collagen fibril d iam eter and m ean cen tre-to -cen tre  collagen fibril Bragg spacing in 
th e  left (solid triangles) and right (open circles) hum an eye-bank  corneas. In th e  anterior regions of 
both corneas a lower fibril spacing is seen (Quantock e t al., 2007).

Two structural techniques were applied; small angle x-ray diffraction and TEM. Small 

angle x-ray diffraction can give representative data on collagen fibrillar ultrastructure 

and orientation as an average throughout the whole stromal thickness or through the 

tissue thickness if a small x-ray beam is used. However, the data represents averages 

throughout the thickness of tissue sampled by the x-ray beam. Therefore, the x-ray 

diffraction analyses were supplemented with TEM studies to visualize the fibrils at 

different tissue depths.
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4.2 Methods

A summary of the experiments carried out are shown in Figure 4.4.

TEM analysis

Collagen fibril diameter measurements

Observations of PGs
- PGs stained with cupromeronic blue stain
- PG-collagen fibril interaction

X-ray diffraction analysis

Collagen fibril diameter and interfibrillar 
Braggs spacing m easurem ents:
-Along the optical axis: comeal centre to 
outer periphery/limbus

Collagen fibril diameter and interfibrillar Braggs 
spacing measurements:
- Depth profile (anteriorto posterior) studies from 
corneal centre to outer periphery/limbus

Figure 4.4 A sum m ary of plan.

4.2.1 Small angle x-ray diffraction

Small angle x-ray diffraction was employed across the stroma (fresh (n = 3) and fixed 

(n= 1) tissue) and across the depth of the stroma (n = 3) as a function of position on 

bovine corneas. Bovine corneal tissue was prepared as described in Chapter 2, Section

2.5.2 and details of the parameters topographically and across the depths of the cornea 

are shown in Table 4.1.

C orn ea l o r ie n ta t io n :  c e n tre  to  o u te r  

p e r ip h e ry /l im b u s

In c re m e n t s te p s  (pm ) E xposu re  t im e  

(m s)

No. o f 

sh o ts

F ront: E x p erim en t 1 100 500 480

F ront: E x p erim en t 2 100 500 600

F ront: E x p erim en t 3 100 100 200

F ront: E x p erim en t 4* 100 100 190

D epth : E x p erim en t 1* 25 500 100

D epth : E x p erim en t 2* 25 500 100

D epth : E xperim en t 3* 25 500 100

Table 4.1 Details of th e  x-ray param eters for th e  d ifferen t tissue preparations. * = corneal tissue was 
fixed prior to  experiment.
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Data analysis was carried out in accordance with protocols described in Chapter 2, 

Section 2.5.2.1. The IFBS and fibril radius was calculated from the interference 

function and the fibril transform, respectively. Both calculations were calibrated from 

the position of the 67 nm meridional reflection from a diffraction pattern of hydrated rat 

tail tendon.

4.2.2 Electron microscopy

Initially, a bovine corneal strip from the x-ray diffraction experiments was brought back 

to the department for TEM analysis. However, during processing of the tissue, the 

Descemet's membrane and the endothelium was detached. Fresh bovine corneas (n = 2) 

were then obtained and prepared as described in Chapter 2, Section 2.4.1.

For visualizing sulphated PGs, another fresh bovine cornea (n = 1) was fixed overnight 

in 2.5% glutaraldehyde in 25 mM sodium acetate buffer (pH 5.7) with 0.1 M MgCl2 

and 0.05% cuperomeronic blue. The corneal tissue was then washed in buffer (x4) 

followed a wash in aqueous 0.5% sodium tungstate in 50% ethanol (15 min), to 

enhance the electron density of the PG-cuperomeronic blue complex (Scott and Haigh, 

1985; Scott and Bosworth, 1990). The tissue was then processed as described in 

Chapter 2, Section 2.4.1.

4.3 Results

4.3.1 Collagen fibril measurements - TEM analysis

The data presented in Figure 4.5-7 illustrates micrographs from the central region of the 

cornea to the sclera, and within each region, the anterior to posterior zones. At low 

magnifications (x2000), the tissue appeared to consist of regularly arranged lamellae of 

collagen fibrils in the anterior of the cornea. The stromal lamellae in the mid and 

posterior regions appeared to be more layered and keratocytes were observed within the 

ECM. Furthermore, when moving towards the outer periphery/limbus and to the sclera, 

between the lamellae, fibroblasts are seen throughout the tissue and melanocytes 

(pigment cells -  melanosomes) were found in the sclera adjacent to the ocular choroid.
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At high magnifications (15K and 20K), as seen in Figure 4.5-7 and from the graph, 

presented in Figure 4.8, the fibril diameter at the anterior stroma from the centre to the 

mid periphery, the fibril diameter remained relatively uniform (centre = 25.07 ± 0.09 

(SEM) nm, mid periphery = 22.35 ± 0.08 (SEM) nm). At the outer periphery/limbus 

regions of the anterior stroma, the fibrils appeared to vary in fibril diameter, but all over 

increased (27.28 ±0 .19  (SEM) nm). This was clearly evident in the anterior sclera, 

where larger fibrils were seen (73.20 ± 0.96 (SEM) nm). This increase in fibril diameter 

from the centre of the cornea to the sclera was also seen in the mid and posterior zones 

of the stroma.

At the centre of the cornea, the collagen fibrils appear to be uniform as a function of 

tissue depth (anterior = 25.07 ± 0.09 (SEM) nm, posterior = 22.99 ± 0.08 (SEM) nm). 

This regularity of fibril diameter was seen at the peripheral regions (inner periphery, 

mid periphery and outer periphery/limbus). Moving towards the sclera the fibril 

diameters were more uniform and smaller in the posterior zone of the tissue (anterior = 

73.20 ± 0.96 (SEM) nm, posterior = 51.92 ± 0.37 (SEM) nm). This is clearly evident in 

Figure 4.5-7.
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Figure 4.8 The mean fibril diameter m easurem ents from transmission electron micrographs at 
different depths across the bovine cornea. 0-3m m  = cen tre, 3-6mm = inner periphery, 6-9mm mid 
periphery, 9-12mm = outer periphery/lim bus and 12-15mm = sclera.

Fresh and fixed bovine corneal tissues were examined using small angle x-ray 

diffraction, as this was due to concerns of dehydration from the fresh tissue during 

processing. Both fibril diameter and collagen IFBS measurements showed similar 

trends overall.

The fibril diameters across the bovine cornea as a function of position are shown in 

Figure 4.9. The results, which are averages throughout the thickness of the cornea at 

each position, showed that in both fixed and fresh tissue, a similar trend was obtained, 

such that the fibril diameter remained relatively constant from the centre (35.74 ± 0.44 

nm) to the periphery (35.81 ± 0.50 nm) of the cornea. However, towards the outer 

periphery and beyond to the sclera, the average fibril diameter increased to 

approximately 8%.

The data presented in Figure 4.9 also shows the centre-to-centre IFBS. The average 

fibril Bragg spacing remained constant from the centre (56.87 ± 1.45 nm) to the 

periphery (56.97 ± 1.55 nm) of the cornea. Towards the outer periphery and beyond the 

cornea, the Bragg spacing between the fibrils increased to approximately 4%.

4.3.2 X-ray diffraction analysis: Collagen fibril measurements 

across the cornea as a function ofposition
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4.3.3 X-ray diffraction analysis: Depth profile studies on 

collagen fibrils

Presented in Figure 4.10 are the collagen fibril diameters from the anterior-to-posterior 

regions at the different positions across the cornea (corneal centre to the outer 

periphery/limbus) and to the sclera. At the centre of the cornea, the collagen fibril 

diameter gradually decreased from the anterior to the deeper zones of the stroma by 

approximately 9%. This reduction of fibril diameters was also seen at the peripheral 

regions of the cornea (10-12% fibril diameter decrease in the depths of the inner to 

outer periphery/limbus). At the sclera, the fibril diameters were significantly reduced 

(19%) towards the posterior regions of the cornea.

Figure 4.10 shows the collagen IFBS from the anterior-to-posterior regions at different 

positions across cornea (corneal centre to the outer periphery/limbus) and to the sclera. 

As can been seen from Figure 4.10, the Bragg spacing in the centre of the cornea 

increased (8%) from the anterior to the mid stroma and gradually decreased (9%) 

towards the posterior regions of the stroma. At the inner peripheral regions to the 

cornea, the Bragg spacing of the fibrils increased approximately 18% from the anterior 

to the mid stroma. However, the spacing of fibrils decreased (19%) towards the 

posterior regions of the stroma and overall the fibril spacing was more compacted than 

in the anterior regions of the mid periphery. Again, at the outer periphery/limbus and 

sclera region, the spacing between the fibril increased (15-20%) from the anterior to the 

posterior regions of the stroma and then gradually decreased (8-15%).

Note: Figures 4.11-12 shows data from the individual measurements of collagen fibril 

diameter (Figure 4.11) and collagen IFBS (Figure 4.12) from 3 experiments.
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cornea. N = 3.
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Figure 4.11 Data from experiments 1-3: collagen fibril diam eters as a function o f tissue depth in 
bovine cornea. All tissues w ere fixed (4% paraform aldehyde in 0.1 M pho sp h a te  buffer) prior for this 
particular experim ent. 0 indicates starting point of th e  scan a t th e  an terio r surface of th e  cornea.
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Figure 4.12 Data from experiments 1-3: collagen IFBS as a function o f tissue depth in bovine cornea.
All tissues w ere fixed (4% paraform aldehyde in 0.1 M pho sp h a te  buffer) prior for this particular 
experim ent. 0 indicates starting point of th e  scan a t th e  an terio r surface of th e  cornea.

4.3.4 TEM analysis -  PGs stained with cuperomeronic blue

Presented in Figure 4.13 are panels of micrographs of bovine cornea prepared with 

cuperomeronic blue stain to demonstrate PGs. Images from centre to sclera are shown 

(left to right) and PGs filaments of electron-dense material are shown both in transverse 

and longitudinal sections. Two prominent populations of cuperomeronic blue stained
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Figure 4.13 Transmission electron m icrographs from  define regions of th e  bovine cornea, stained with 
cuperom eronic blue. Micrograph images w ere taken from  across (central regions of the  cornea to the 
sclera) the depths (anterior to  posterior regions) of th e  cornea. Two different populations of PGs: long 
electron dense filaments (yellow arrow) and short electron dense filam ents (blue arrow) were seen. 
The scale bar for all longitudinal and cross sectional im ages of collagen fibrils = 200 nm and 100 nm, 
respectively.

PGs (yellow and blue arrows) and similar collagen arrangements were seen as in 

previous data (Lewis et al., 2010). PG filaments were seen throughout the cornea, with 

some PGs extending between, or in contact with, two or more collagen fibrils. Long 

electron dense filaments (yellow arrow) were found throughout the corneal stroma, but 

were more apparent in the peripheral regions and in the deeper regions of the corneal 

stroma. Other PGs with shorter electron dense filaments (blue arrow) were also seen to 

occupy the space between adjacent fibrils and was found throughout cornea.

Inner Mid Outer periphery/
C en tre----------------------- periphery   periphery-----  limbus ------------------- Sclera
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4.4 Discussion

The comeal matrix architecture is thought to be governed by the interactions between 

collagen fibrils and PG molecules modified with sulphated GAG side chains. The data 

presented here outline the contribution made by TEM and small angle x-ray scattering 

studies of the cornea to understanding the role of sulphated GAGs in the control of 

collagen architecture in cornea. In addition, we describe the first ever depth profiled 

data from bovine corneas.

Doutch (2009) examined the variation in light transmission across the bovine cornea. 

The pattern (shown in Figure 4.1 B), was similar to that in humans (Doutch et al., 2008) 

in that transmission decreased moving from central to peripheral cornea. In humans, 

Doutch et al. (2008) modeled this loss of transparency peripherally and explained it by 

the fact that collagen fibril diameters also increased moving from central to peripheral 

cornea (Boote et al., 2003). In the human, the corresponding peripheral increase of 

comeal thickness had only a minor effect on transmission. From the current work it 

seems that, using either TEM or x-ray diffraction, there is a similar peripheral increase 

in fibril diameters in the bovine cornea (Figure 4.8-9), However, in the bovine cornea, 

diameters only start to increase at about 10-12 mm from the centre (Figure 4.9) whereas 

transmission starts to decrease almost continuously away from the centre (Figure 4.1). 

It is possible that this thickness increase plays a more important role in the peripheral 

reduction in transmission than it does in humans, but further modeling studies on the 

bovine cornea would be required to test this hypothesis.

The average size of collagen fibril diameters in the anterior and posterior sclera was 

significantly different compared with those analyzed by x-ray diffraction. Such 

differences in fibril diameter could be due to the techniques employed. As previous 

mentioned, measurements from electron micrographs show considerable variation 

among studies which have been related largely to tissue shrinkage during tissue 

preparation (during aldehyde, osmium and ethanol treatment) (Fullwood and Meek, 

1993). Thus we can use TEM to compare results from different samples or from 

different sites within a sample, where processing has been the same, but cannot 

compare absolute values with those from any other method of preparation or with those
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from x-ray diffraction. In spite of this, both TEM and x-ray analysis confirmed an 

increase in fibril diameter from the central regions of the cornea to the sclera.

Collagen interfibrillar spacing is fairly constant across the bovine cornea until the last 

couple of millimeters before the sclera is reached. Again, this is in contrast to the 

human cornea where fibrils are clearly more closely spaced in the central compared to 

the peripheral cornea. The spacing of fibrils within the cornea is important to maintain a 

balance between transparency and biomechanical strength; more closely packed fibrils 

increase tissue strength but scatter more light. Cow corneas are larger than human 

corneas and are considerably less rigid. It is therefore possible that the size of the 

bovine eye limits the range of fibril diameters and fibril spacings required to maintain 

both tissue rigidity and an acceptable level of tissue transparency, and that the former is 

sacrificed in the cow in order to maintain the latter.

Depth profile studies from the bovine cornea (Figure 4.10) showed that fibril diameters 

fell off, particularly in the posterior layers of the cornea. Small compact collagen fibrils 

were also visualized in the deeper zones using TEM (Figures 4.7). Interfibrillar Bragg 

spacings through the depth of the cornea showed the same trend at all positions across 

the tissue, initially increasing to a depth of about 61-65 microns then falling off in the 

posterior 52-57 microns of the cornea (Figure 4.10). The anterior and posterior 

differences in the interfibrillar spacing are probably due to the differences in the 

lamellar organization in different depths of the cornea. Early studies (Komai and 

Ushiki, 1991; Freund et al., 1995) and in Figure 4.5, show that the lamellae are highly 

interwoven in the anterior stroma and become thicker, more stacked and distinct in the 

deeper regions of the stroma. Swelling properties in the different depths of the cornea 

may also be a cause in the differences between the anterior and posterior regions (Turss 

et al., 1971) One might expect the difference to be related to the GAG composition, 

however our IHC presented in Chapter 3 did not show any obvious correlations with 

respect to the distribution of sulphated GAGs. However, based on Anseth (1961) and 

Bettelheim and co-workers (1975) early work, the GAG distribution may also 

contribute the differences between the depths of the cornea (see Chapter 3 for more 

details), but further studies would be needed to test this hypothesis.
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Other TEM studies have also showed that in the posterior stroma of human and rabbit 

corneas, the fibril diameters were approximately 4% and 15% smaller than in the 

anterior stroma (central region), respectively (Freund et al., 1995). However other 

human comeal studies have reported that the mean fibril diameters were relatively 

similar in all depths of the cornea (central region of cornea) (Akhtar et al., 2008a). 

Interestingly, Akhtar and co-workers (2008a) found that in keratoconus corneas, the 

mean fibril diameters and interfibrillar spacing were significantly smaller than in 

normal human corneas. They also found that the mean fibril diameters in the mid 

stroma were significantly larger than in the anterior and posterior stroma. In the normal 

human corneas, the mean interfibrillar spacing in the anterior stroma was lower than 

that in the middle and posterior stroma. However, compared with the normal corneas, 

in keratoconus, depending on the severity, the interfibrillar spacing frequency increased 

in the lower ranges (<35 nm) and this was particularly evident in the more affected 

corneas (Akhtar et al., 2008a). Furthermore, depth profile studies from human eye- 

bank corneas showed no significant change in collagen fibril diameter throughout the 

central region of the tissue, although a lower collagen interfibrillar spacing in the 

anterior-most stromal regions was found compared with the spacing in the deeper 

cornea. Such differences from the two studies may probably be due the fact that 

swollen human corneas were used in the study (Quantock et al., 2007) as it is known 

that fibril spacing in the cornea is relatively sensitive to the tissue’s water content. 

Previous x-ray scattering studies on corneal stroma have shown that water exclusively 

deposits into or is removed from the interfibrillar spaces, rather than within the fibrils 

themselves (Meek et al., 1991; Fratzl and Daxer, 1993). Therefore, such subtle 

variations in tissue hydration could produce changes in the spacing of the fibrils, 

without affecting their diameter.

In all TEM sections, regular diameters of collagen fibrils were found throughout the 

cornea and uniform interfibrillar spacing was seen within each region. Ultrastructurally, 

the regular compact collagen fibrils found in the centre and the deeper zones of the 

cornea may be associated with amount of type V collagen present in the collagen fibril. 

As studies have shown that when a reduction in type V collagen, it can result in large- 

diameter fibrils with broad size distribution (Birk et al., 1988; Birk et al., 1990; 

Marchant et al., 1996b). This may suggest a possible indication that the interaction of
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type V with type I collagen is one mechanism modulating fibril diameter and is at least 

partially responsible for the regulation of collagen fibril formation.

Interestingly, towards the outer peripheral-limbal and particularly at the scleral region, 

less uniform fibrils (fibril diameter and interfibrillar spacing) were found, particularly 

at the anterior regions, as this may explain the reduced transparency found at the outer 

peripheral regions of the cornea (Doutch et al., 2008). In the comeal centre, the average 

fibril diameter was approximately 17% (anterior), 74% (mid) and 56% (posterior) 

smaller, compared to the sclera. The sclera was also considerably more disorganised 

and showed a greater change in fibril diameter between the anterior and the posterior. 

These differences between the anterior and posterior sclera of bovine eyes may be a 

reflection of variation in collagen-to-GAG chain ratios in the anterior sclera compared 

with the posterior sclera and/or different PG contents found in the sclera.

Comeal transparency is directly related to the ordered collagen fibril architecture that 

the cornea maintains. The core protein and the highly anionic GAG side chains of PGs 

are thought to regulate the collagen organization in the comeal stroma. To understand 

the relationship between PGs and collagen fibrils in the cornea, bovine corneas were 

treated with and without cuperomeronic blue and images where taken at the anterior, 

mid and posterior of the stroma from the comeal centre to the sclera. Both longitudinal 

and transverse sections of collagen were examined. Both longitudinal and transverse 

images displayed the PG organization clearly, yet no distinct regular pattern of PG 

orientation was observed. With close observations, large, electron dense GAG chains 

were seen interconnecting collagen fibrils, and were found throughout the comeal 

stroma, but were more apparent in the peripheral regions and in the deeper regions of 

the comeal stroma. However, these long GAG chain filaments were found to a lesser 

extent throughout the cornea compared to another sub-population of smaller GAG 

chains, which were seen to interconnect neighbouring fibrils. It has been suggested that 

the two PG populations correspond to the different GAG chain types, CS/DS and KS 

(Anseth, 1961). Studies have suggested that small chains connecting adjacent fibrils are 

KS (Scott, 1992a), whereas the CS/DS form longer multimeric chains that extend 

among several collagen fibrils (Lewis et al., 2010). Furthermore, more studies would be 

needed to confirm CS/DS and KS and differentiate the two. This could be achieved by
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using selective enzyme treatments, such as keratanase and chondroitinase ABC, prior to 

cuperomeronic blue staining to identify the CS/DS and KS, respectively.
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5.

5.1 Introduction

The cornea is avascular in nature and is primarily dependent upon the atmosphere for 

its O2 supply, particularly when the eye is opened. Contact lens wear impedes the flow 

of oxygen to the cornea (Fatt and St Helen, 1971); this is particularly important in soft 

lens wear as these lens types are relatively immobile on the ocular surface meaning that 

there is essentially no tear exchange behind the lens (Poise, 1979) which could 

potentially act as a secondary source of oxygenation.

Reduced oxygenation (hypoxia) of the cornea during contact lens wear is known to 

produce comeal swelling and consequently result in comeal edema. This is caused by 

an increase of lactate from anaerobic respiration created by an osmotic load that is 

balanced by an increased movement of water into the comeal stroma from the anterior 

chamber of the eye (Klyce, 1981). Other deleterious consequences of comeal hypoxia 

include:

• Neovascularisation in the peripheral areas of the cornea (Dixon and Bron, 1973), 

which can ultimately cause serious and permanent visual impairment if the new 

vasculature encroaches the pupil region.

• Engorgement of the limbal vasculature (Maldonado-Codina et al., 2004), which is 

cosmetically undesirable; the presence of trapped apoptotic comeal epithelial cells 

(microcysts) potentially leading to reduced vision in extreme cases; the 

development of striae and fold (Sarver, 1971) in the comeal stroma, potentially 

leading to reduced comeal transparency and reduced vision.

• Changes to comeal endothelial histology that can lead to intolerance of contact lens 

wear (Sweeney, 1992).

• An increase in the clinical severity of comeal infection and inflammation.

Contact lenses are held in place by the tears in the eye between the lens and the front of 

the eye. Changes in the cornea caused by contact lenses can be divided according to the 

structures affected (tear film, epithelium, stroma and endothelium) or according to the 

causes (Liesegana, 2002). The major consequence of contact lens wear is chronic 

hypoxia and others include tear film instability, allergy, toxicity, mechanical effects, 

inflammation and infection (Liesegana, 2002). The physiological changes differ among
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the various contact lens materials (polymethylmethacrylate [PMMA], rigid gas 

permeable - RGP, soft hydrogel, silicone, and silicone hydrogel) and among various 

patterns of wear (daily, conventional, extended and overnight).

5.5.1 Low O2  and its biochemical affects

If the O2 decreases below a critical level, the cornea shifts to anaerobic glycolysis using 

the Embden-Meyerhof pathway (Figure 5.1), in which glucose is broken down to 

pyruvate and then to lactate. Lactate does not diffuse rapidly out of the cornea, and can 

cause a decrease in aerobic metabolism and an accumulation of lactate in the stroma. 

Hypoxia thus creates a lower epithelial metabolic rate, an increase in epithelial lactate 

production, and an acidic shift in stromal pH. The degree of stromal acidosis varies, 

depending on the O2 transmissibility of the lens and the build up of CO2 under the lens.
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Phosphorylation CATP hexokinase

ADP
Gl u co se  6-ph osph ate

G lucose-6-phosphate 
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Fru ctose 6-ph osph ate
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Figure 5.1 Embden-M eyerhof pathway 
(EMP) -  glucose degradation. The
pathw ay o p era tes  both  under aerobic 
and anaerobic conditions. Under 
aerobic conditions, this pathway 
functions in conjunction with the  TCA 
cycle in which th e  pyruvate generated  
th rough  th e  EMP is oxidised to  C02 and 
H20 . U nder anaerobic conditions, 
pyruvate is reduced to  lactate or 
ethanol. The pathw ay yields 2 moles of 
pyruvate and 4 ATP/mole of fructose 
d iphosphate  ferm en ted . Of these  1 
m ole o f ATP is used in the 
phosphorylation of glucose and the 
second is utilized for the 
phosphorylation of fructose-6- 
phosphate , th e  net yield is therefo re 
only 2 m oles of ATP/mole of glucose 
ferm en ted .
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Contact lens wear therefore can produce corneal hypoxia and an accumulation of CO2 , 

both of which can cause acidosis (Bonanno, 1996). The pH of the epithelium, stroma, 

and the aqueous humor decreases significantly with contact lens wear when the O2 

permeability/transmissibility (Dk/L) is <100. CO2 accumulation can result in acidosis, 

particularly in anterior layers of the cornea and can cause retardation of the normal CO2 

efflux (Figure 5.2). Corneal acidosis promotes endothelial polymegethism, epithelial 

microcysts, corneal edema, striate lines, infiltrative keratitis, and microbial keratitis. 

After prolonged corneal hypoxia, there is a depletion of the glycogen reserves of the 

cornea, diminished ATP, and ultimately a slowing of the water transport system in the 

endothelium. The combined effect of an accumulation of lactic acid in the stroma and a 

decrease in the pumping action of the endothelium can result in corneal edema.

H * +  H C O 3 H * +  H C O 3

C 0 2  —  P c 0 2 = 38 m  m H gPcCb =0

P o 2 s  55m  m H gP02 = 155m m H g

L a c ta te

S tro m a

E p ith e liu m  E n d o th e liu m

P c o 2 = 0 ♦ C 0 2

P o 2 = 1 5 5 m m H g P02 < 5 5 m m H g

L a c ta te

S tro m a

E p ith e liu m E n d o th e liu m

Figure 5.2 Biochemical effects during contact lens w ear. (A) Normal eye. M etabolic production of 
lacta te and H+ by the  epithelium is a t its basal ra te  because 0 2 is readily available. C02 rapidly diffuses 
down to  a concentration gradient from aqueous to  tears. (B) Open eye with contact lens. Epithelial 
oxygen and possibly aqueous P 02 are reduced, which stim ula tes lacta te  production (osmotically causing 
corneal swelling) and H+ production. Additionally, C 02 efflux from  th e  cornea is im peded, leading to  
higher strom a P 02 which, when hydrated, produces a hydrogen and bicarbonate ion. Thus, th e  effects 
of hypoxia and hypercapnia on stromal pH are  additive. In th e  closed lens-w earing eye, epithelial P 0 2is 
decreased and corneal PC02 is increased fu rthe r because conjunctival P 0 2 < 55mmHg and PC02 > 
38mmHg (Bonanno, 1996).

5.5.2 Low O2 and its affects on collagen

Reduced oxygen tension is observed in many physiological and pathological 

conditions, including high altitude residence, fetal development in the uterus, 

pulmonary fibrosis, wounded tissue, neoplasms (Helfman and Falanga, 1993), 

atherosclerosis (Bjomheden et al., 1999), and scleroderma (Silverstein et al., 1988). 

Under such hypoxic conditions, production and accumulation of collagen molecules are
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active. Exposure of rats to hypoxia (10% oxygen) up-regulated collagen genes, causing 

increases in mRNA levels of procollagens al(I), a l (III) and a2(IV) in peripheral lung 

parenchyma (Berg et al., 1998), in mRNA levels of procollagen al(I) and in 

collagenous protein in heart tissue (Ostadal et al., 1995). In vitro hypoxic culture also 

elevated the mRNA level of procollagen a 1(1) in dermal (Falanga et al., 1993), cardiac 

(Tamamori et al., 1997). The deposition of type IV collagen in mesangial cells (Kim et 

al., 1996) has also been found to increase.

In recent findings (Horino et al., 2002), low O2 culture may cause an acceleration of 

hydroxylation in proline residues of procollagen during collagen synthesis in fetal rat 

lung fibroblasts. More interestingly, cultured human dermal fibroblasts (Falanga et al., 

1991; Falanga, Zhou and Yufit, 2002) exposed to low oxygen (2% O2) for 24-72 hr, as 

compared to standard O2 tension (20% O2) causes an increase of mRNA levels human 

a 1(1) (COL1A1) procollagen gene and peptide synthesis of TGF-pi, an important 

regulator for fibrosis in the ECM. In addition, hypoxia itself can inhibit TGF-pl- 

induced corneal myofibroblast transformation, a-SM actin expression and cause RhoA 

pathway activation.

5.5.3 Low O2 and its affects on GAGs

KS and CS probably fulfil very similar roles in the cornea, keeping collagen fibrils 

apart at the right degree of swelling to permit passage of visible light through the 

cornea without excessive scattering; their functions are thus essential to corneal 

transparency and hence to sight. KS and CS are present in large quantities in connective 

tissues that have a shock-absorber function (e.g. cartilage and intervertebral disc), or a 

rigid shape maintained by turgidity due to GAG swelling pressure (cornea) (Scott, 

1992b).

In the late 1980s the idea of KS biosynthesis was preeminent at tissue locations with 

low oxygen availability (Scott and Haigh, 1988b). The idea was that NAD-dependent 

oxidation of the glucose precursor, uridine diphosphate glucuronic acid, to galactose in 

KS was not oxygen dependent, unlike its conversion to glucuronic acid in the other 

main corneal GAGs; CS and DS (Stockwell and Scott, 1965). Thus, synthesis of CS/DS 

sulphate cannot proceed under hypoxic conditions. NAD; a key molecule for CS and
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KS chain synthesis, is held to inhibit the oxidation step (i.e. NAD may inhibit UDPGlc 

dehydrogenase, resulting CS formation to decrease) (De Luca et al., 1976), and so the 

NADiNADH ratio, as well as the pyruvate:lactate ratio, and cellular O2 levels may 

therefore determine the relative rates of KS and CS/DS synthesized (Scott et al., 1989) 

(Figure 5.3). Thus, synthesis of CS/DS sulphate cannot proceed under hypoxic 

conditions. And it is this that has led to the “oxygen-lack” hypothesis of preferential KS 

production in the cornea as well as in articular cartilage.

o 2 h 2o

NAOH

lipida c e ta te

pyruvate lactate

NAD

UDPGIcUA UDPGlc

CS
glu co se

Glycolytic cycle

Figure 5.3 Diagram of the 0 2-dependent pathway with NAD at the centre, leading to  the synthesis of
KS or CS. The decision for making KS synthesis, depends th e  use of UDPGlc to  m ake UDPGal, w hereas 
UDP glucuronic acid (UDPGIcUA) for th e  use in CS synthesis. The NAD: NADH ratio is thought to  
determ ine w hether CS or KS is m ade. NAD is oxidized to  NADH via respiratory  chain reactions or in lipid 
form ation. Exchange of reducing pow er from  NAD to  lipid occurs via NADPH. NAD:NADH levels are 
reduced by adding lactate, acetaldehyde and o th e r  m olecules th a t use NAD in a dehdrogenase reaction. 
The glycolytic cycle requires NAD, providing th e  basic energy requ irem ent for th e  hypoxic cell (Scott, 
1992b).

In the comeal stroma of large animals, O2 utilization may be inefficient, in which O2 

diffuses over a long distance, and so it would be easier to make KS rather than CS/DS. 

Conversely, CS production in thin small corneas ought to proceed without difficultly, 

since O2 would be easily available along a short diffusion path (Scott and Haigh, 

1988b). For example in mature mice, shrew and frog corneas (70-100 pm thick) 

contained only CS/DS and minimal traces of KS, while bovine, human, porcine and 

other thick corneas contained over 60% KS (Scott and Bosworth, 1990).
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The synthesis of GAG side chains is a post-translational event, but the rate of 

degradation or turnover of GAGs remain unclear, although, early studies have 

suggested that KS turn over is slow, in mature tissue (Davidson and Small, 1963). It has 

also been suggested that a lack of O2 could affect many stages during GAG synthesis. 

The protein cores of corneal and cartilage CS-DS PGs are quite different, as are the 

linkage regions between the protein cores and the GAG side chains. Only the CS chains 

themselves are the same in the relevant cartilage, disc and corneal PGs (Scott, 1989). 

Thus assuming all three tissues operate on the same mechanism, chain elongation and 

completion could be a target of O2 lack. Similarly, KS chain elongation could be a 

target for control by O2 tension.

5.6 Aims

To investigate the effects of KS under normal and low O2 tension in organ cultured 

rabbit corneas. More specifically the goal was to gain a better understanding of the role 

of oxygen tension on the sulphation level of KS produced by rabbit cornea.

5.7 Methods

Figure 5.4 presents an experimental plan that was employed for this particular chapter. 

Note that for this Chapter, all experiments were carried out during a 5 month placement 

at Doshisha University and Kyoto Prefectural University of Medicine, Japan. Note: 

white New Zealand rabbits were used for this particular study, this was because the 

animals were easier to access than fresh bovine eyes and due to animal regulations. The 

different regions across the rabbit cornea were also categorized with the same 

terminology as to the previous bovine studies (Chapter 3, Figure 2.1). However because 

the rabbit eyes itself are a lot smaller than bovine eyes, the rabbit cornea was 

categorized as the following: centre (0-3 mm), periphery (3-6 mm), outer 

periphery/limbus (6-9 mm) and sclera (9-12 mm).
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12hr
Normal m onition

1dy
37°C, 20%  O2

3dy -

5dy_______________
m g n m g m . 7dy

37°C,2% Oj *
-Obtain co m eal strom a immuno-staining
-take b iopsies of t is su e  -  
centre-to-outeperiphery,/lim bus(3m m x 3mm )

Hydration m easu rem en ts

P ap a in  digestion

su lp h a te d G A G a n d  hydroxproline con ten t

i
KS quantification

Figure 5.4 A sum m ary of experim ents th a t w as em ployed.

5.7.1 Sample preparation

Whole rabbit eye globes were obtained from a local abattoir in Kyoto and transported 

on ice to the laboratory. 60 healthy eyes with clear/transparent corneas were selected 

for culturing as described by Crewe and Armitage (2001). Briefly, prior to culturing the 

corneas, 500 ml of culture medium (Eagle’s MEM buffered with HEPES [4-(2- 

hydroxyethyl)-l-piperazineethanesulfonic acid] and containing 26 mM sodium v, 2% 

fetal bovine serum, 2 mM L-glutamine, penicillin, streptomycin and 5% dextran (wt/v)) 

(Crewe and Armitage, 2001) was prepared and 2.5 ml were transferred into each well 

of the 24 well plates (remaining medium was stored at 4°C). The plates were then 

incubated for 1 hr at their respective conditions; 37°C, 20% O2 -  normal atmospheric 

condition and 37°C, 2% O2 -  low oxygen condition. All 60 rabbit eyes dissected, 

corneas with corneoscleral rims (with intact epithelium and endothelium) were excised 

under aseptic conditions and transferred to their respective medium. Comeal samples 

were removed from the organ culture at various time points (Vi day, 1 day, 3 day, 5 day 

and 7 day) and used for KS quantifications and immunohistochemistry. Media was 

changed every 2 days, and prior to changing the media, the media was thawed to room
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temperature (20 min) and then 2.5 ml was aliquot into 24 well plates and incubated in 

respective O2 conditions for 1 hr. The corneas were transferred to the well plates and 

the media was collected. Note: throughout this study, the terminology “control” is 

referred as 0 day incubation, i.e. fresh tissue.

5.7.2 Papain digestion

Papain digestion was carried as described in Chapter 2, Section 2.1.1.1.

5.7.3 Hydroxyproline and DMMB assay

Hydroxyproline and DMMB assay was carried as described in Chapter 2, Sections 2.4.1 

and 2.4.2, respectively.

5.7.4 KS quantification

Competitive ELISAs were employed to quantify KS as described in Chapter 2, Section

2.5.3 and ELISA preparations as described Chapter 3, Section 3.4.6. The colour 

development was quantified on a plate reader multi spectrophotometer; Viento XS, DS 

Pharma Biomedical at 405 nm, to determine the inhibition of binding.

5.7.5 Immunohistochemistry

Immunostaining of corneal tissue was carried out as described in Chapter 2, Section 

2.3.1.1. Immunostained tissue sections were analyzed using a Lecia MD6000B 

microscope and Lecia DFC500 View digital camera. Images were taken at lOx 

magnification. The antibody dilutions are shown in Table 5.1.
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Antibody Detection Pre-treatment Dilution

5D4 R ecognises lin e a r  p e n ta - s u lp h a te d  KS 

w h e re  b o th  GlcNAc a n d  Gal a re  su lp h a te d

" 1:100

1B4 R ecognizes le s se r  s u lp h a te d  KS se q u e n c e s  

o f N -acetyl la c to sa m in e  d isa c c h a r id e s

1:50

BKS-1 K era tan ase  g e n e ra te d  KS n e o -e p ito p e K era tan ase  II 1:100

LUM-1 Lumican c o re  p ro te in K e ra tan ase  II, C h o n d ro itin ase  ABC, Endo- 

(3-galactosidase

1:50

KER-1 K eratocan  c o re  p ro te in K e ra tan ase  II, C h o n d ro itin ase  ABC, 

E n d o -P -g a lac to sid ase

1:50

Table 5.1 Antibody dilutions used.

5.8 Results

For this particular chapter, most of the work was focussed on the central regions of the 

rabbit cornea. For other regions of the cornea, hydration measurements, total sulphated 

GAG content and the immunolocalization were collected.

Note: for all data analysis a statistical significance was ascertained by using statistical 

tests for the data groups: one-way ANOVA with post-hoc Tukey HSD.

5.8.1 Corneal hydration

As previously mentioned, GAG chains are highly sulphated, and due to this hydrophilic 

property, they are thought to occupy the space between collagen fibrils where they aid 

to define the swelling properties of the stroma (Bettelheim and Plessy, 1975). The data 

presented here, illustrated that over the given time period, the whole cornea (centre, 

periphery, outer periphery and sclera) swelled, particularly by the 3rd day. For example 

in the central region, the hydration increased by 30% (normal conditions) to 36% 

(hypoxic conditions). However, when comparing between the conditions for a 

particular day, minor differences was found (Figure 5.5).
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Centre

control >Sdy ldy 3dy 5dy 7dy

Periphery

control Xdy ldy 3dy Sdy 7dy

□  N ormal

Hypoxia
Outer periphery/limbs

control Yt dy ldy 3dy Sdy

Sclera

control Sidy ldy 3dy 5dy 7dy

Figure 5.5 Hydration differences b e tw een  norm al and hypoxic organ cultured corneas from centre  to 
sclera. One-way ANOVA and post-hoc Tukey HSD te s ts  w ere employed to  identify the  significant 
differences between the  groups. * , * , * ,  P = ^0.01. For all calculations, please see Appendix 2, Tables ## 
1-4.
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5.8.2 Results: Sulphated GA G pattern

Under normal atmospheric conditions, the total GAG sulphation showed no significant 

differences throughout the culturing period compared to the fresh tissue (control = 

0.017 ± 0.003 pg/mg dry wt, 7 day = 0.019 ± 0.006 pg/mg dry wt) (Figure 5.6). 

However, after 1 day in low O2 conditions the total sulphated GAG increased 

significantly by 71% (0.029 ± 0.007 pg/mg dry wt). Similar trends were also seen in the 

periphery of the cornea, although, the amount of sulphated GAG, after 24 hr in hypoxic 

conditions was not statistically significant. However, at the outer periphery and sclera 

regions significant differences were found after 24 hr in hypoxic conditions (outer 

periphery: control = 0.014 ± 0.001 pg/mg dry wt, 1 day = 0.030 ± 0.004 pg/mg dry wt: 

sclera: 0.002 ± 0.001 pg/mg dry wt, 1 day = 0.010 ± 0.002 pg/mg dry wt).
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Figure 5.6 Total sulphated GAG differences betw een normal and hypoxic organ cultured corneas from 
centre to sclera. One-way ANOVA and post-hoc Tukey HSD tests  w ere em ployed to  identify the 
significant differences betw een the groups. *,* P = £0.01. For all calculations, please see Appendix 2, 
Tables ## 5-8.
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5.8.3 Results: Immunolocalization o f KS patterns and its core 

proteins

The data presented in Figure 5.7, revealed that KS was found throughout the cornea and 

reducing towards the limbus and sclera regions. More specifically an increase in the 

over-sulphated epitope (5D4 antibody) of KS was found (centre-outer periphery) after 

only 1 day in organ culture at 2% atmospheric oxygen (Figure 5.7). A lesser sulphated 

(1B4 antibody), and thus less hydrophilic, form of KS was essentially unchanged by 

oxygen deprivation (Figure 5.8). Furthermore, BKS-1 which recognizes a single neo­

epitope on KS after keratanase digestion of monosulphated KS disaccharides, showed 

similar staining distribution as to 5D4 antibody (Figure 5.9).

The detection of KSPG core proteins (lumican and keratocan) was also seen throughout 

the cornea. The localization of lumican showed minor differences between normal and 

low O2 organ cultured conditions over the period (Figure 5.10). In spite of this, like in 

the localization of KS GAGs, less staining was found in the limbus and in the sclera 

regions. Interestingly, keratocan showed more staining after 1 day in low O2 tension 

and detection of keratocan was found in limbus and sclera (Figure 5.11).

Negative controls showed negative staining (Figure 5.12).
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lmmunolocalization on oversulphated N-acetyl lactosamine disaccharides o f  KS

C entre (0-3mm)

Normal 0 2
te n s io n

LowOj
tension

Periphery (3-6mm)

Control

Normal 0 2
M l I  M

O uter periphery/Limbus (6-9mm) 

Control

Normal 0 2
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L o w O j
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Sclera (9-12mm) 

Control J4dy 1dy 3dy 5dy 7dy

Normal 0 2 
tension B
LowOj
tension bh B

Figure 5.7 lm m unolocalization of over-su lpha ted  KS disaccharides (green), p robed w ith 5D4 antibody 
and DAPI for cells (nucleus) (blue). Control = fresh tissue. Scale bar = 100 pm.
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Immunlocalization on lesser sulphated N-acetyl lacosamine disaccharides o f  KS
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Figure 5.8 lmmunolocalization of lesser-sulphated KS disaccharides (green), probed w ith 1B4 
antibody and DAPI for cells (nucleus) (b lue). Control = fresh tissue. Scale bar = 100 pm.

138



Chapter 5: The effects o f  keratan sulphate in organ cultured corneas under normal and hypoxic 0 2
conditions

lmmunolocalization o f  KS neoepitopes (N-acetyl-glucosamine-6-sulphate) at the non­
reducing terminal o f  KS (BKS-1 antibody)

Centre (0-3m m ) 

Control

Normal 0 2
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Low 0 2
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Periphery (3-6m m ) 

Control

Normal 0 2

.. -. 0 -
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Control 1/4dy

Normal 0 2
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Low 0 2
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Sclera (9-12m m ) 

Control

Normal 0 2
te n s io n

Lo w 0 2
tension

Figure 5.9 lm m unolocalization of neoepitopes a t the non-reducing term inal ends of KS (green), 
probed w ith  BKS-1 antibody and DAPI fo r cells (nucleus) (b lue). Control = fresh tissue. Scale bar = 100 
pm.
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lmmunolocalization o f  KSPG: lumican
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Figure 5.10 lm m unolocalization of lum ican (green), p robed  w ith Lum-1 an tibody  and DAPI for cells 
(nucleus) (blue). Tissue sections w ere  kera tanase , k era tanse  II and chondroitinase ABC trea ted  to 
remove th e  GAG chains. Control = fresh tissue. Scale bar = 100 |im.
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lmmunolocalization o f  KSPG: keratocan
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Figure 5.11 lm m unolocalization of k era to can  (green), p ro b ed  w ith Ker-1 an tibody  and DAPI for cells 
(nucleus) (blue). Tissue sections w ere  kera tanase , k era tan se  II and chondroitinase ABC trea ted  to 
remove the  GAG chains. Control = fresh  tissue. Scale bar = 100 pm.
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Negative control

-ve control IgG PBS

*5*.

Figure 5.12 Negative con tro ls fo r im m unolocalization  of th e  d iffe ren t su lphation  p a tte rn s  of KS GAGs 
and its core pro teins. Controls show ed negative staining to  th e  specific prim ary antibodies and non 
random binding. K'ase and  K'ase II = k e ra tan se  and  k era tanse  II. C 'ase ABC = chondroitinase ABC. E(3G = 
endo-P-galactosidase. Scale bar = 100 pm.

5.8.4 KS quantification

From the total sulphated GAG content and the immunohistochemistry data it was 

evident that the central regions of the cornea were greatly affected from the low O2 

tension. Therefore the KS content on the central regions of the cornea was quantified 

(Figure 5.13), the results showed an increase of over-sulphated KS within 12 hr 

compared to the fresh tissue (control = 1.028 ± 0.111 ng/mg dry wt, low oxygen level = 

1.570 ± 0.422 ng/mg dry wt, P = 0.034) and in 12 hr of normal atmospheric conditions 

(normal oxygen level = 0.560 ±0.127 ng/mg dry wt, P = <0.001). Most strikingly, a 

significant increase of over-sulphated KS was found after 1 day in low oxygen levels 

(4.009 ± 0.279 ng/mg dry wt) in comparisons to the fresh corneal tissue (control = 

1.028 ± 0.111 ng/mg dry wt, P = <0.001) and in 1 day normal atmospheric conditions 

(0.601 ± 0.096 ng/mg dry wt, P = <0.001). However, by the 3rd day of incubation, the 

amount of KS began to level off and minor differences were seen between the two
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atmospheric conditions. As for lesser sulphated KS (using an epitope to recognize 

lesser sulphated KS regions), an increase of KS was also found after 1 day compared to 

the fresh tissue (control = 1.170 ± 0.204 ng/mg dry wt, 1 day low oxygen level = 1.912 

± 0.142 ng/mg dry wt, P = <0.01). However, minor differences were found between 

normal and low oxygen levels after 1 day of culturing (1 day normal oxygen level = 

1.543 ± 0.277 ng/mg dry wt, P = 1.000).
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Figure 5.13 Sulphation p a tte rn s  o f k e ra tan  su lp h a te  in norm al and hypoxic (2% 0 2 level) organ 
cultured corneas a t th e  cen tra l region. 5 D 4  w a s  u s e d  t o  p r o b e  h i g h e r / o v e r  s u l p h a t e d  KS. 1B 4  w a s  u s e d  

t o  p r o b e  l e s s e r  s u l p h a t e d  KS. O n e - w a y  A N O V A  a n d  p o s t - h o c  T u k e y  HSD t e s t s  w e r e  e m p l o y e d  t o  id e n t i f y  

t h e  s ig n i f i c a n t  d i f f e r e n c e s  b e t w e e n  t h e  g r o u p s .  * , * , *  P = < 0 .0 1 .  F o r  all c a l c u l a t i o n s ,  p l e a s e  s e e  A p p e n d i x  

2, T a b le s  9 -1 0 .

5.8.5 The effects o f  hydroxyproline content in low oxygen levels

The hydroxyproline data (Figure 5.14) also revealed after 1 day in O2 deprivation, an 

increase of hydroxyproline content was found in comparison to the fresh tissue (control 

= 9 pg hydroxyproline/mg dry wt, 1 day low oxygen level = 10 pg hydroxyproline/mg 

dry wt, P = 0.010) and in 1 day normal atmospheric conditions (P = 0.052), suggesting
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that low O2 may play an important factor in collagen fibrogenesis as well as GAG 

synthesis. However, by the 3rd day of incubation in low O2 minor significant changes 

were found between the two conditions.
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Figure 5.14 The hydroxyproline c o n te n t in norm al and  hypoxic atm ospheric  conditions over a tim e 
course. One-way ANOVA and post-hoc Tukey HSD te s ts  w ere em ployed to  identify th e  significant 
differences betw een  th e  groups. *,* P = <0.01. For all calculations, please see Appendix 2, Table 11.

5.9 Discussion

The connection between O2 tension and KS/CS ratio was first noted back in 1960’s and 

later developed into an “oxygen lack” hypothesis (Scott, 1992b), whereby, in every 

ECM that contains significant amounts of KS (e.g. cartilage, cornea, intervertebral 

disc), KS can be a functional substitute for CS in conditions of reduced O2 tension. The 

synthesis of CS includes an oxidative step, in forming glucuronate from glucose, whilst 

the sugars in KS (galactose and N-acetyl glucosamine) are not oxidized. Early studies 

hypothesized that CS synthesis has a net consumer of O2 during the conversion of 

UDPGlc to UDPGIcUA, which is affected during low oxygen than that of KS, which 

does not consume O2 at any stage of synthesis (Stockwell and Scott, 1965). The 

production of uridine diphosphate glucuronic acid is thought to be the key step, which 

is sensitive to hypoxia, lactate and NAD:NADH ratios.

Studies by Balduni et al. (1992), Stockwell and Scott (1965), Scott et al. (1987, 1992) 

have suggested the associations of 0 2 tensions can influence the nature of the tissue, 

particularly during KS and CS/DS synthesis and breakdown. The tissue content of a 

given constituent is determined by the rates of biosynthesis and breakdown. In mature,
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healthy tissue the two rates must balance. A change in circumstances leading to 

increased synthesis of KS, for example, must be followed by an increase in the rate of 

break down; otherwise the tissue content of KS would rise indefinitely. If there was a 

short lag before the rates balanced, KS content would increase to a new, stable level. 

This implies a feedback control would be exerted on two molecules, with different 

biosynthetic and catabolic pathways, acting in opposite directions as O2 tension change. 

However, there is little relevant evidence on the rates of degradation or turnover of KS 

compared with CS.

The in vitro data obtained here, suggested that hypoxia does indeed result in a 

significant increase of KS, particularly in the high-sulphated epitope of KS in rabbit 

corneas after only 24 hr in organ culture at 2% atmospheric O2 (Figure 5.13). Thus this 

may suggest that the turnover rate of KS is relatively rapid. However, a lesser sulphated 

KS, and therefore less hydrophilic, form of KS was essentially unchanged by O2 

deprivation. This probably due to the fact that rabbit corneas contain considerable 

quantities of oversulphated KS and very undersulphated CS-DS, similar to bovine 

cornea (Fransson and Anseth, 1967).

The mechanisms for making CS or KS are genetically defined. In the absence of the 

protein core there can be no PG, but conversely, it seems that many tissues contain 

protein cores that are not processed to (KS) PGs (Funderburgh, Caterson and Conrad, 

1987), i.e. the GAG side chains do not grow, and thus it may suggest that the synthesis 

of GAG chains is a post-translational event.

Moreover, during KS synthesis, KS undergoes a series of steps, for example elongation 

and sulphation (Akama et al., 2002). In the absence of Chst5 in KO mice (Hayashida et 

al., 2006) and sulfotransferase in human corneas with macular corneal dystrophy 

(Akama et al., 2000), an immature, truncated GAG and an atypical corneal phenotype 

are found. This may suggest that KS chain length and sulphation are governed by 

tissue-specific factors such as the presence of processing enzymes. The hydrophobicity 

provided by the sulphate may serve to prevent KS GAG chains collapsing during 

elongation and may explain the different sulphation between shorter and longer KS 

chains. The presence of increasing amounts of highly sulphated KS found after 1 day in 

low 0 2 (Figure 5.13) may be due to the substrates for KS GAG production, such as 3
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phosphoadenosine-5-phosphosulphate (PAPS) (Scott, 1992b), may facilitate the 

enhanced production of KS GAGs or KS chain length and/or greater sulphation. 

Coinciding with this, with greater sulphation could equate the allowance of more H2O 

molecules to bind along the chain, thus causing an increase of hydration in the cornea.

The cornea contains approximately 78% water and it can be thought as an elastic gel. 

Although the total concentration of the PGs in cornea is only 2%, there is increasing 

evidence that they are largely responsible for its swelling as well as water retention 

properties (Bettelheim and Plessy, 1975; Bettelheim and Goetz, 1976). The negative 

charge provided by the sulphation on the GAG chains is thought to bind onto water 

fluid, and exhibiting the hydration and swelling for the cornea. The hydration results 

obtained here (Section 5.5.1) showed that the corneas become hydrated over the 

culturing period, this may be due to the length of the KS chain being synthesised (as 

mentioned previously) or an increase production of KS GAGs and/or the depletion of 

ATP to function the water transport system in the endothelium, therefore causing the 

cornea to swell and become opaque.

Comeal swelling can be prevented by the continuous transport activity of the 

endothelial layer. The comeal endothelium governs the solutes (e.g. glucose) and 

nutrients from the aqueous humor to the superficial layers of the cornea, while at the 

same time, actively pumping water in the opposite direction from the stroma to the 

aqueous (known as the “pump-leak hypothesis”). This dual process is due to the 

Na+/K+ATPase and carbonic anhydrase located on the endothelium which they act as 

passive ion exchangers. The bicarbonate ions formed by the action of carbonic 

anhydrase are translocated across the cell membrane, allowing water to passively 

follow (Bonanno, 2003). Therefore, if the endothelium is damaged, the cells in the 

superficial layers of the cornea can become hypertonic with solutes and nutrients and as 

a consequence this can lead to cell apoptosis. This may explain by the 3rd to the 7th day 

of culturing, a low staining of cells was detected from the immuno studies.

Previous culture procedures have resulted in significant comeal swelling, particularly at 

the endothelial layer, which was reduced when corneas were cultured in base medium 

Dulbecco Modified Eagle Media (DMEM) containing 4 mM L-Glutamine and 10% 

Fetal Bovine Semm (FBS). However more recently, a media refinement based on a
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concentration of 5% dextran has been used as a de-swelling agent evaluated to limit 

comeal swelling during long term culture. The thickness of the corneas increased with 

the time in culture, regardless of the type of media used (with or without dextran). Nash 

et al. (2010) showed the ability to successfully culture corneas for 22 days with reduced 

swelling in DMEM media with 5% dextran (Nash et al., 2010). However, Borderie et 

al. (1997) found that the preservation of comeal swelling was moderate at 1-2 day, 

however by the 3-4 day o f incubation, swelling was more severe in media containing 

dextran (Borderie et al., 1997). The data presented here, also show similar results to 

Borderie and co-workers. In spite of this, there was very little difference in tissue 

hydration between the two atmospheric conditions.

Cells that are exposed to physical and chemical stresses from their environment 

undergo changes in expression of ECM genes in order to acclimatise or adapt 

themselves to new situations, resulting in remodelling of the ECM (Horino et al., 2002). 

O2 is a fundamental chemical of the ambient atmosphere and is essential for animals. 

O2 takes part in energy production via oxidative phosphorylation in mitochondria, 

oxygenation of biomaterials for production of physiologically important molecules such 

as steroid hormone, catecholamines, and hydroxyproline in collagenous proteins.

In the case of collagen, recent studies (Horino et al., 2002), have demonstrated low 

oxygen culture may cause the acceleration the hydroxylation of proline residues in 

procollagen during collagen synthesis in fetal rat lung fibroblasts. The data presented 

here, showed an increase in hydroxyproline during low O2 tension, after 1 day, this may 

be due to upregulation in the synthesis of TGF-(31. As studies have showed that the 

synthesis of TGF-pi was upregulated and causing the increase secretion of peptide 

synthesis (Falanga et al., 1991).

It has been speculated that the ratio between KS and CS/DS is determined by rate of 

turnover of these GAG chains. Early studies have investigated the rates of reaction of 

the galactosyl transferase —► KS and glucuronosyl transferase —► CS, which are 

important in determining the balance of the synthesis of KS and CS. The Km of 

galactosyl transferase —► KS for UDPGal was considerably lower than those of 

glucuronosyl transferase. In other words, minor amounts of the galactosyl transferase is 

need to produce KS than glucuronosyl transferase to produce CS and therefore may
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mean that during KS production, galactosyl transferase is able to work optimally than 

glucuronosyl transferase in conditions of restricted supply of O2 for example. The data 

given here showed that turnover rate of KS occurs relatively quickly.

Although our studies here focussed on KS, it would have been an interest in looking at 

the effects of CS in low O2 condition and raise questions as to the whether if KS 

increases, does CS decrease in low O2 and vice versa? Does the KS chain length just 

increase, meaning more sulphate groups on the chain during low O2 conditions while 

CS remain low? Nevertheless, the extracellular spacing with the stromal matrix is 

limited and therefore there may be a feedback mechanism which reduces GAG 

synthesis when interfibrillar pressures become critical.

In summary the data suggests possible structural importance of corneal PGs in 

maintaining the collagenous ultrastructure and hydration status of the comeal stroma. In 

terms of the public health, this may be of interest and clinical importance to contact 

lens wearers.
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6.

6.1. GAGs and collagen fibril organization across the cornea

The comeal matrix architecture is thought to be governed by the interactions between 

collagen fibrils and PG molecules modified with sulphated GAG side chains. The data 

presented in Chapters 3 and 4 is hoped to contribute a greater understanding in the role 

of sulphated GAGs in the control of the collagen architecture in cornea. In addition, for 

the first time ever, depth profiled data from bovine corneas has been examined.

Comeal transparency decreases when moving from the central to the peripheral cornea 

(Doutch et al., 2008; Doutch, 2009). Doutch et al. (2008) modeled this loss of 

transparency peripherally and explained it by the fact that collagen fibril diameters also 

increased moving from central to peripheral cornea (Boote et al., 2003). In the human, 

the corresponding peripheral increase of comeal thickness had only a minor effect on 

transmission. From the data obtained in chapter 4, using either TEM or x-ray 

diffraction, there was a similar peripheral increase in fibril diameters in the bovine 

cornea (Figures 4.8 and 4.9). However, in the bovine cornea, diameters only start to 

increase at about 10-12 mm from the centre (Figure 4.9) whereas transmission started 

to decrease almost continuously away from the centre (Figure 4.1). It is possible that 

this thickness increase plays a more important role in the peripheral reduction in 

transmission than it does in humans, however, further modeling studies on the bovine 

cornea would be needed to test this hypothesis. In addition, my data revealed that the 

hydroxyproline content also increased significantly across the cornea, this increase may 

contribute to the amount and/or volume of collagen fibrils found in the different regions 

of the cornea.

Furthermore, my studies indicated that the refractive index is unlikely to alter across the 

cornea, as my data revealed that the total sulphated GAG content remained constant 

across the cornea. There are other constituents of the interfibrillar matrix that could 

alter, or there may be changes in unsulphated PGs that could change the refractive 

index. Early studies (Borcherding et al., 1975) have showed the possible transition 

change of KSPGs and DSPGs found across the human cornea. The aim of the whole 

project was to further expand on this and see if similar trends were seen in bovine
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tissue. The hypothesis of this research was to investigate whether the changes in the 

sulphation patterns of GAG’s are directly related to changes in ultrastructure, and hence 

transparency of the cornea.

From the whole study, our data showed that there is a direct correlation between the 

type of PG GAG chain and the organization of collagen fibrils from the central regions 

of the cornea to the limbus/sclera regions. In the central region of the cornea, the data 

revealed a uniform distribution of fibril diameters, lamellar arrangement, and of the 

overall amount of sulphated GAG chains. In general, particularly in large animals, such 

as a cow, KS is found to be the predominant (60-70% of total GAG) GAG chain type 

found in the cornea (Anseth, 1961; Borcherding et al., 1975). These authors have also 

found that the in calf and pig corneas, the degree of sulphation are dependant on the 

length of the GAG chain. From the data, it was also evident that KS is the major GAG 

chain component throughout the cornea, particularly oversulphated KS.

From our studies, several significant changes appeared to take place between the outer 

periphery/limbus and the sclera. The amount of hydroxyproline, mean fibril diameter 

and the range of diameters increased greatly. The lamellae throughout this region were 

no longer uniform in either size or orientation. Recent small angle x-ray scattering 

studies also indicated that in human corneas, towards the periphery, the fibril diameter 

increased and appeared to merge with scleral fibres (Boote et al., 2011). This may have 

been due to the change in GAG types and their sulphations. For example the KS 

content from the central to the peripheral regions of the cornea reported here illustrated 

similar trends to Bocherding and co-workers’ early work on human cornea 

(Borcherding et al., 1975). Their studies revealed that KS is found throughout the 

cornea and reduced towards the comeolimbus and beyond. Our study expanded on this, 

and showed that over-sulphated KS was found throughout the cornea, and lesser- 

sulphated KS was found more abundantly in the peripheral regions of the cornea.

The cornea that was stained with cuperomeronic blue for TEM, showed two 

populations of electron dense filaments across the cornea. Studies have suggested that 

small chains connecting adjacent fibrils are KS (Scott, 1992a), whereas the CS/DS form 

longer multimeric chains that extend among several collagen fibrils (Lewis et al., 

2010). From the current studies, large, electron dense chains were seen interconnecting
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collagen fibrils, and were found throughout the corneal stroma, but were more apparent 

in the peripheral regions and in the deeper regions of the comeal stroma. However, 

these long GAG chain filaments were found to a lesser extent throughout the cornea 

compared to another sub-population of smaller GAG chains, which were seen to 

interconnect neighbouring fibrils and was found throughout the depths of the cornea. 

Nevertheless, further studies would be needed to confirm the different types of GAG 

chains.

Interestingly the immunohistochemistry data revealed that C-4-S was mainly present in 

the comeal stroma, with traces of unsulphated chondroitin (C-O-S) from the outer 

periphery onwards. C-6-S first appears in the posterior zone of the inner peripheral 

cornea, but increases such that it is present throughout all depths of the tissue by the 

time the limbus/sclera is reached. Early studies (Scott and Haigh, 1988b) have also 

found different patterns of sulphation in CS/DS GAGs. For example in bovine and 

rabbit corneas very little CS/DS is present, which is the main GAG component in rat 

and mouse corneas. The CS sulphation pattern of both rabbit (Scott and Haigh, 1988b) 

and bovine (Fransson and Anseth, 1967) corneas, was of a highly sulphated KS and low 

or undersulphated CS/DS. A transitional change of GAG chain type was also observed 

in TEM, where long electron dense filaments appeared more towards the periphery and 

posteriorly. In the sclera, the range of fibril diameter extended over 50 nm, however 

from observations it was difficult to observe the GAG chains, such that the fibrils were 

so large that the GAG chains appeared to be buried or squashed between fibrils (Figure 

4.5-7). However, the amount of GAG chains did appear less per unit area on the 

micrograph images.

Early studies have reported (Meier and Hay, 1973; Meier and Hay, 1974a; Meier and 

Hay, 1974b) that both CS PGs and collagen of the primary stroma are produced by the 

embryonic chick comeal epithelium under the inductive influence of collagen from the 

lens basement membrane. Fibroblasts of mesenchylmal origin migrate along the planes 

of the orthogonally arranged stromal “scaffold” and produce the secondary stroma. The 

fibroblasts do not begin to produce KS PG until the formation of the secondary stromas 

is essentially complete. In the human cornea, KS is not produced until the third 

trimester of pregnancy (Breen et al., 1970a). In addition, KS is found during latter 

stages of chick development (E l2 to El 8) (Liles et al., 2010). The evidence above has
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shown that the formation of collagen fibrils of uniform diameter in the cornea does not 

involve KS. Early in vivo and in vitro studies (Wood, 1960; Toole and Lowther, 1968) 

have suggested that the size and orthogonal array of the collagen fibrils may be 

controlled by CS PGs.

The precise regulation of fibril spacing has been shown to be a requirement for 

maintaining comeal transparency (Maurice, 1957). This regular spacing between fibrils 

was demonstrated ultrastructurally using small x-ray diffraction, rather than TEM, 

which involves dehydration and fixation, and can distort in vivo fibril arrangement. 

Thus, measurements of interfibrillar spacing from micrograph images were not feasible, 

and so small angle x-ray diffraction was employed to measure the interfibrillar spacing 

as well as the fibril diameter. Using this technique allowed the tissue hydration to be 

maintained during the x-ray exposure so that processing artifacts could be eliminated. 

Furthermore, x-rays, like visible light, can pass through the entire comeal thickness, 

and the results thus represent averages throughout the comeal tissue, unlike EM, which 

requires considerable selectivity.

Early evidence (Breen et al., 1970b) has indicated that the GAGs containing PG 

surrounding the collagen fibrils of the cornea are covalently bound to the collagen. Due 

to the mutual repulsion of the highly negatively charged KS molecules on the surface of 

the PG subunits, their protein cores would orient perpendicular to the longitudinal axis 

of the collagen fibril. Such an arrangement would create a negatively charged field 

around each collagen fibril which would dynamically maintain precise spatial 

relationships between individual fibrils. Thus KS may serve to fine tune the matrix 

collagen fibril spacing during comeal growth for example (Liles et al., 2010).

6.2. GAGs and collagen fibril organization across the depths of the 

cornea

GAG type distribution across the cornea may influence the fibril orientation and 

organization, so their location at different depths within the cornea may also be an 

important factor. The distribution of KS within the comeal stromal layer remains 

unclear. Early studies on cartilage (Stockwell and Scott, 1965) and cornea (Scott and 

Haigh, 1988b) emphasise the inverse relationship between tissue thickness and KS
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content, and have provided parallel examples of the effects of KS tissue on low nutrient 

supply (e.g. low O2) during normal development. Studies have shown a gradient of KS 

content in the cornea, with KS increasing posteriorly (Anseth, 1961; Bettelheim and 

Goetz, 1976) which follows the decline of O2 tension across the depth of the cornea. 

This would make sense such that KS PGs not only absorb water molecules to a great 

extent in comparison the CS/DS PGs but also transfer water molecules with ease since 

little is retained by them in the dehydration process (Bettelheim and Plessy, 1975). 

Therefore, finding KS at the posterior region, near the endothelium, hence near the 

aqueous humor may serve a purpose of facilitating the movement of water into the 

cornea via the endothelium (Na+/K+ ATPase transporter and NaHCC>3 transporter 

pump) (Maurice, 1972; Bettelheim and Plessy, 1975; Hodson and Miller, 1976). Our 

current IHC studies showed no obvious KS GAG differences in the different depths of 

the stroma, as this may come down to the technique and preparations employed.

6.3. The effects of the cornea in low 0 2

As mentioned previously fibril orientation and arrangement is thought to be tightly 

regulated by the different complements of PGs and their GAG chains. It has been 

hypothesized that the balance of the two kinds of PG is dependent on the availability of 

O2 , which must diffuse into the avascular tissue from the atmosphere (Scott and Haigh, 

1988b). Scott and co-workers used the thickness of the cornea as the example for this 

hypothesis, such that the thicker the cornea the lower the average tissue O2 tension 

would be (Scott and Bosworth, 1990; Scott, 1991b). No O2 would be consumed en 

route from glucose to the constituent galactose and glucosamine residues of KS, 

whereas DS requires O2 in the oxidation of glucose to hexuronic acid. KS would thus 

be a functional substitute for CS/DS in tissues where O2 supplies are low (Scott and 

Haigh, 1988b). Organ cultured experiments have confirmed that the ratio of KS to 

CS/DS increased markedly as ambient O2 partial pressure decreased (Balduini et al., 

1992). Our preliminary in vitro data has suggested that hypoxia does indeed result in a 

significant increase in the high-sulphated KS in rabbit corneas after only 24 hr in organ 

culture at 2% atmospheric O2 . But a lesser sulphated and therefore less hydrophilic 

form of KS was essentially unchanged by O2 deprivation. Such different sulphation 

patterns found in the KS chain may be due the gene expression pattern, which may be 

altered under low O2 tensions and therefore, the production of KSPG would be affected.
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Alternatively, the biosynthesis of KSPG (or KS-GAG) is more efficient under a low O2 

conditions than that under the normal conditions as mentioned previously; therefore the 

substrates for KSPG production such as UDP-GlcNAc and PAPs may be more 

abundant in the cells at the hypoxic condition, leading enhanced KS-GAG production.

6.4. Summary and future work

The techniques used to study GAG chains and the associations with collagen fibrils has 

allowed us for the first time to show the possible changes between the sulphation of 

GAG chains and collagen fibrils across the bovine cornea as a function of position. In 

addition we have also shown the changes in fibril diameter and fibril spacing as a 

function of tissue depth from the comeal centre to the outer periphery/limbus and 

sclera. One might expect these fibril changes would also be associated with the 

different GAG types, or changes in the GAG sulphations, or the different swelling 

properties or different O2 consumption level found in the different depths of the comeal 

stroma. The O2 consumption level by the cornea can affect the type of GAG chain, 

particularly the KS sulphation level. Effectively the PG type and length of KS chain 

produced depend on the comeal thickness (Scott and Haigh, 1988b) and in our case, 

from our current studies, the cornea being deprived of O2 . This O2 consumption level 

by the cornea may be of interest to the biotech industry that produce and manufacture 

contact lenses to contact lens wearers.

A number of challenges lie ahead in the investigation of the interactions of GAG chains 

and their interactions with collagen fibrils from a structural and functional point of 

view. The results of our study have opened other possibilities, for example making 

comparisons with other species or investigating the role of GAGs in pathological 

corneas. One of the aims at the outset of this study was to investigate the collagen types 

that may contribute to the fibril diameter changes that were found in the outer periphery 

regions of the cornea. One would predict more type V collagen molecules found in 

small fibrils than large fibrils, as studies have suggested that the interaction of type I 

and type V collagen may contribute in regulating the diameter of fibrils (Marchant et 

al., 1996a) by limiting the lateral accretion of the heterotypic type I/V fibrils (Birk et 

al., 1988; Birk et al., 1990; Birk, 2001). However, due to the lack of antibodies 

available for type V collagen and the time constraints, it was difficult to carry out this
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study. Furthermore, Fourier transform infrared spectroscopy (FTIR) (Ozaki, Mizuno 

and Kaneuchi, 1992; Belbachir et al., 2009) and liquid chromatography/electrospray 

ionization mass spectrometry (LC/ESI-MS) (Zhang et al., 2006) could be employed to 

investigate the collagen type changes qualitatively and/or quantitatively at their 

chemical composition level, as these techniques have shown specific fingerprint profile 

spectra corresponding to the different collagen types. In addition, these spectroscopy 

techniques could also show the possible changes in chemical composition levels of the 

different GAG types, for example the level of sulphate on the GAG chains may be 

altered as our KS quantification studies have showed.

From our preliminary studies on the effects of KS in low O2 tension, further 

understanding is needed as to how and why the synthesis of KS, particularly highly 

sulphated KS, is influenced by O2 level consumed by the cornea. If the gene expression 

patterns or the substrates for KSPG production are involved, effectively the types 

KSPG or KS-GAG chain length are affected. Therefore further studies involving in 

investigating the mRNA levels expressed of the respective KSPG and assays would be 

needed. Other studies involving corneas cultured in high levels of O2 could also be 

carried out. For example, CS/DS synthesis is dependent on O2 ; therefore if high levels 

of O2 are consumed by the cornea, would the levels of CS/DS increase and KS level 

remain constant or decrease in order to balance the total amount of GAGs present in the 

cornea? Early studies by Anseth (1969) showed that there was a decrease content of KS 

and CS GAGs in the rabbit stromal matrix after reversible edema was induced by 

endothelial cell wounding. Anseth also noted that after recovery from comeal edema, 

there was an increase in GAG content in the corneas (Anseth and Fransson, 1969). 

From our current studies the turnover rate of KS production occurred within 24 hr in 

low O2 conditions, however if the cornea was resorted back to the normal atmospheric 

condition, would the KSPG (or KS-GAG) production resorted back to its original levels 

found in the cornea?
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Appendix 1
Results: Comeal thickness

Sample Centre (0-3mm) 
(mm)

Inner periphery 
(3-6mm) (mm)

Mid periphery (6-9mm) 
(mm)

Outer periphery/Limbus 
(9-12mm) (mm)

A 0.849 0.979 0.991 1.013
B 0.839 0.992 1.012 1.021
C 0.856 0.983 1.003 1.020
D 0.846 0.988 1.003 1.029
E 0.847 0.993 1.008 1.021
F 0.837 0.989 0.999 1.018
G 0.859 0.985 1.000 1.016
H 0.836 0.975 0.997 1.020
1 0.839 0.974 1.001 1.021
J 0.839 0.993 1.020 1.031

Average 0.845 ± 0.008 0.985 ± 0.007 1.003 ± 0.005 1.21 0.006

Table # 1 Corneal th ickness across th e  bovine cornea.

Results: Comeal hydration

Centre (0-3mm)
Wet wt 

(mg)
Dry w t 

(mg)
Hydration Inner periphery (3-6mm) W et wt 

(mg)
Dry wt 
(mg)

Hydration

A 24.0 5.0 3.80 A 25.5 5.5 3.64
B 10.8 2.6 3.15 B 11.2 2.3 3.87
C 14.3 2.9 3.93 C 19.3 4.0 3.83
D 24.2 4.9 3.94 D 23.7 4.7 4.04
E 18.0 4.0 3.50 E 23.0 5.0 3.60
F 21.0 4.0 4.25 F 22.0 4.0 4.50
G 17.0 4.0 3.25 G 18.0 4.0 3.50
H 20.0 5.0 3.00 H 17.0 4.0 3.25
1 20.0 4.0 4.00 1 16.0 4.0 3.00
J 22.0 4.0 4.50 J 25.0 4.0 5.25

Average________________________ 3 .7 3 2 1 0.491  Average__________________________________ 3.847 ± 0.644

Mid periphery 
(6-9mm)

Wet wt 
(mg)

Dry w t 
(mg)

Hydration
Outer periphery/limbus 

(9-12mm)
W et wt 

(mg)
Dry wt 
(mg)

Hydration

A 15.0 3.2 3.69 A 20.9 3.8 4.50
B 11.6 2.3 4.04 B 16.3 3.4 3.79

C 16.6 3.4 3.88 C 13.0 3.0 3.33
D 17.2 2.8 5.14 D 14.2 2.2 5.45

E 17.0 3.0 4.67 E 17.0 3.0 4.67

F 19.0 4.0 3.75 F 18.0 3.0 5.00

G 12.0 3.0 3.00 G 16.0 4.0 3.00

H 17.0 4.0 3.25 H 19.0 4.0 3.75

1 16.0 4.0 3.00 1 17.0 3.0 4.67

J 14.0 3.0 3.67 J 20.0 4.0 4.00
— — — -----------------------

Average 3.809 ± 0.686 Average 4.217 0.770

Table # 2 Corneal hydration  across th e  bovine cornea.
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Results: Hydroxyproline assay
Centre (0-3mm) Average (mg/ml) Hydroxyproline

(mg)
Hydroxyproline/dry wt 

(mg/mg dry wt)
A 1.578 0.316 0.063
B 0.676 0.135 0.052
C 0.747 0.149 0.052
D 1.398 0.280 0.057
E 1.325 0.265 0.066
F 1.335 0.267 0.067
G 1.328 0.266 0.066
H 1.491 0.298 0.060
1 1.172 0.234 0.059
J 1.454 0.291 0.073

Average 0.061 ± 0.007

Inner periphery 
(3-6mm) Average (mg/ml) Hydroxyproline

(mg)
Hydroxyproline/dry wt 

(mg/mg dry wt)
A 2.214 0.443 0.080
B 1.123 0.225 0.098
C 1.256 0.251 0.063
D 1.185 0.237 0.050
E 1.894 0.379 0.076
F 1.394 0.279 0.070
G 1.599 0.320 0.080
H 1.696 0.339 0.085
1 1.639 0.328 0.082
J 1.639 0.328 0.082

Average________________________________________________________0 .0 7 5 1 0.013

Mid periphery 
(6-9mm) Average (mg/ml)

Hydroxyproline
(mg)

Hydroxyproline/dry wt 
(mg/mg dry wt)

A 1.606 0.321 0.100
B 1.245 0.249 0.108
C 1.645 0.329 0.097
D 1.210 0.242 0.086
E 1.595 0.319 0.106
F 1.868 0.374 0.093
G 1.564 0.313 0.104
H 2.043 0.409 0.102
1 1.926 0.385 0.096
J 1.585 0.317 0.106

Average - J -'r 1 ■ -• ■/ 0 .100 ± 0.007

Outer periphery/limbus 
(9-12mm)

Average (mg/ml)
Hydroxyproline

(mg)
Hydroxyproline/dry wt 

(mg/mg dry wt)

A 2.173 0.435 0.114
B 1.993 0.399 0.117
C 1.797 0.359 0.120
D 1.391 0.278 0.126
E 1.883 0.377 0.126
F 1.667 0.333 0.111
G 2.333 0.467 0.117
H 2.433 0.487 0.122
1 1.931 0.386 0.129
J 2.293 0.459 0.115

Average 0.120 0.006

Table # 3 Hydroxyproline c o n ten t across th e  bovine cornea.



Results: Sulphated GAG
Centre (0-3mm) Average sGAG (mg/ml) sGAG (mg) sGAG/dry w t (mg/mg)

A 1.053 0.253 0.051
B 1.301 0.140 0.054
C 1.069 0.153 0.053
D 0.936 0.227 0.046
E 0.891 0.178 0.059
F 1.165 0.245 0.061
G 1.413 0.240 0.060
H 1.217 0.243 0.049
1 1.367 0.273 0.068
J 0.997 0.219 0.055

Average 0.217 ± 0.045 0.056 ± 0.007

Inner periphery (3-6mm) Average sGAG (mg/ml) sGAG (mg) sGAG/dry w t (mg/mg)
A 0.777 0.198 0.036
B 2.186 0.245 0.106
C 0.961 0.185 0.046
D 0.890 0.211 0.045
E 1.055 0.201 0.040
F 1.231 0.271 0.068
G 1.858 0.223 0.056
H 1.471 0.250 0.063
1 1.316 0.211 0.053

J 0.916 0.229 0.057

Average 0.220 ± 0.026 0.058 ± 0.019

Mid periphery (6-9mm) Average sGAG (mg/ml) sGAG (mg) sGAG/dry w t (mg/mg)

A 0.834 0.125 0.039

B 1.171 0.136 0.059

C 1.057 0.175 0.052

D 1.007 0.173 0.062

E 1.178 0.200 0.067

F 1.107 0.310 0.039

G 1.658 0.199 0.066

H 1.246 0.212 0.053

1 0.672 0.108 0.027

J 0.946 0.133 0.044

Average 0.177 ± 0.059 0.051 ± 0.013

Outer periphery/limbus 
(9-12mm)

Average sGAG (mg/ml) sGAG (mg) sGAG/dry w t (mg/mg)

A 0.584 0.122 0.044

B 1.208 0.197 0.058

C 1.739 0.226 0.075

D 0.822 0.117 0.053

E 1.037 0.156 0.078

F 0.921 0.230 0.077

G 1.243 0.199 0.050

H 1.164 0.151 0.038

1 0.558 0.095 0.032

J 0.888 0.107 0.027

Average 0.160 ±0.050 0.053 ± 0.019

Table # 4 S ulphated  GAG c o n te n t across th e  bovine cornea.
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Results: ELISA - KS quantification
Centre

(0-3mm)
Competing 

antigen (ng/ml) 1B4 (ng) lB 4/dry wt 
(ng/mg)

Centre
(0-3mm)

Competing 
antigen (ng/ml)

5D4 (ng)
5D4/dry wt 

(ng/mg)

A 1956.301 1.235 0.247 A 111.671 1.592 0.318

B 2635.853 2.043 0.786 B 184.821 3.506 1.349

C 1518.361 0.628 0.216 C 46.107 2.101 0.725

D 5875.785 0.920 0.188 D 190.202 1.429 0.292

E 659.903 1.246 0.415 E 355.836 1.704 0.568

F 829.242 1.257 0.314 F 720.091 3.448 0.862

G 2553.915 0.951 0.238 G 647.428 2.985 0.746

H 2349.498 0.920 0.184 H 600.618 2.769 0.554

1 5005.085 1.235 0.309 1 514.470 2.057 0.514

J 4113.150 0.822 0.205 J 739.190 2.956 0.739

Average 0.195 ± 0.053 Average 0.651 ±0.313

Inner
periphery
(3-6mm)

Competing 
antigen (ng/ml)

1B4 (ng) lB 4/dry w t 
(ng/mg)

Inner
periphery
(3-6mm)

Competing 
antigen (ng/ml)

5D4 (ng) 5D4/dry wt 
(ng/mg)

A 1098.228 0.693 0.126 A 67.150 3.048 0.554

B 1290.217 0.590 0.256 B 265.290 2.752 1.196

C 1360.318 0.562 0.141 C 52.030 2.371 0.593

D 7651.965 1.198 0.255 D 221.021 1.660 0.353

E 1045.546 1.090 0.218 E 974.872 4.710 0.942

F 2289.604 1.105 0.276 F 822.634 3.974 0.994

G 3042.696 1.469 0.367 G 1431.272 2.926 0.732

H 7924.603 1.269 0.317 H 902.285 1.845 0.461

1 4302.237 0.689 0.172 1 384.936 3.646 0.911

J 6903.992 1.196 0.299 J 318.713 3.019 0.755

Average 0.316 ± 0.126 Average 0.664 ± 0.303

Table # 5 KS co n ten t across th e  bovine co rnea (cen tre  and  inner periphery). Note: 5D4 antibody 
specifically binds to  linear p en ta-su lp h a ted  KS and 1B4 an tibody specifically binds to  lesser sulphated 
KS.
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Results: ELISA - KS quantification
Mid periphery 

(6-9mm)

Competing
antigen
(ng/ml)

1B4
(ng)

lB4/dry w t 
(ng/mg)

Mid periphery 
(6-9mm)

Competing
antigen
(ng/ml)

5D4
(ng)

5D4/dry wt 
(ng/mg)

A 987.368 0.641 0.200 A 62.787 0.937 0.293
B 1469.692 2.208 0.960 B 87.564 1.190 0.518

C 2388.293 1.465 0.431 C 155.449 1.720 0.506

D 13799.925 1.074 0.384 D 257.370 1.611 0.575

E 5098.093 2.329 0.776 E 488.730 2.506 0.835

F 6122.919 2.797 0.350 F 477.720 2.450 0.306

G 5649.874 2.957 0.986 G 384.800 2.028 0.676

H 5955.896 3.117 0.779 H 458.150 2.415 0.604

1 8838.896 0.695 0.174 1 189.891 0.954 0.239

J 14508.549 1.140 0.380 J 473.547 2.380 0.793

Average 0.485 ± 0.210 Average 0.602 ± 0.209

Outer
periphery/limbus

(9-12mm)

Competing
antigen
(ng/ml)

1B4
(ng)

lB 4/dry w t 
(ng/mg)

Outer
periphery/limbus

(9-12mm)

Competing
antigen
(ng/ml)

5D4
(ng)

5D4/dry wt 
(ng/mg)

A 1379.053 0.895 0.320 A 126.747 1.892 0.676

B 1370.476 2.059 0.606 B 185.874 2.527 0.743

C 5031.193 3.087 1.029 C 291.110 3.221 1.074

D 14980.754 1.166 0.530 D 184.648 1.156 0.525

E 9819.479 2.188 1.094 E 276.379 2.268 1.134

F 7995.546 1.781 0.594 F 180.543 1.481 0.494

G 8891.169 5.101 1.275 G 398.416 2.355 0.589

H 6662.544 3.823 0.956 H 571.849 3.380 0.845

1 5676.496 1.525 0.508 1 70.911 1.074 0.358

J 11403.570 3.064 0.766 J 202.366 3.066 0.767

Average 0.805 ± 0.304 Average 0.720 ±0.248

Table # 6 KS co n ten t across th e  bovine co rnea (mid periphery  and o u te r  periphery /lim bs). Note: 5D4 
antibody specifically binds to  linear pen ta-su lpha ted  KS and 1B4 an tibody specifically binds to  lesser 
sulphated KS.
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Appendix 2

Results: Hydration results: Centre (0-3mm)
Control Wet w t 

(mg)
Dry wt 
(mg) Hydration

A 22.00 5.00 3.40
B 24.00 5.00 3.80
C 26.00 6.00 3.33
D 28.00 5.00 4.60

Average 3.783 ± 0.582

Normal Hypoxia

54 dy
Wet wt 

(mg)
Dry w t 
(mg) Hydration 34 dy Wet wt 

(mg)
Dry wt 
(mg)

Hydration

A 26.00 5.00 4.20 A 26.00 5.00 4.20
B 28.00 5.00 4.60 B 24.00 5.00 3.80
C 30.00 6.00 4.00 C 26.00 5.00 4.20
D 32.00 6.00 4.33 D 20.00 4.00 4.00

Average 4.283 ± 0.252 Average 4.050 ±0.191

1 dy Wet wt 
(mg)

Dry wt 
(mg)

Hydration 1 dy Wet wt 
(mg)

Dry wt 
(mg)

Hydration

A 28.00 5.00 4.60 A 24.00 5.00 3.80
B 24.00 5.00 3.80 B 26.00 5.00 4.20
C 24.00 5.00 3.80 C 28.00 5.00 4.60
D 24.00 5.00 3.80 D 28.00 5.00 4.60

Average 4.000 ± 0.400 Average 4.300 ± 0.383

3 dy
W et wt 

(mg)
Dry w t 
(mg)

Hydration 3 dy
W et wt 

(mg)
Dry wt 
(mg)

Hydration

A 26.00 5.00 4.20 A 30.00 5.00 5.00
B 26.00 4.00 5.50 B 32.00 6.00 4.33
C 30.00 5.00 5.00 C 32.00 5.00 5.40
D 30.00 5.00 5.00 D 34.00 5.00 5.80

Average 4.925 ± 0.538 Average 5.133 ± 0.625

5 dy
Wet wt 

(mg)
Dry w t 
(mg)

Hydration 5 dy
Wet w t 

(mg)
Dry wt 
(mg)

Hydration

A 32.00 5.00 5.40 A 36.00 6.00 5.00

B 36.00 6.00 5.00 B 38.00 6.00 5.33

C 32.00 5.00 5.40 C 34.00 5.00 5.80

D 39.00 6.00 5.50 D 36.00 6.00 5.00

Average 5.325 ± 0.222 Average 5.283 ± 0.379

7 dy
Wet w t 

(mg)
Dry wt 
(mg)

Hydration 7 dy
Wet wt 

(mg)
Dry wt 
(mg)

Hydration

A 30.000 4.000 6.50 A 40.00 6.00 5.67

B 34.000 5.000 5.80 B 38.00 6.00 5.33

C 44.000 6.000 6.33 C 36.00 5.00 6.20

D 32.000 5.000 5.40 D 34.00 5.00 5.80

Average 6.008 ± 0.504 Average 5.750 ±0.358

Table ## 1 Corneal hydration  a t th e  cen tral regions of th e  rabb it cornea th a t w as cultured in normal 
and low 0 2 level.
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Results: Hydration results: Periphery (3-6mm)
Control Wet wt 

(mg)
Dry wt 
(mg) Hydration

A 24.00 5.00 3.80
B 26.00 5.00 4.20
C 30.00 5.00 5.00
D 24.00 4.00 5.00

Average 4.500 ± 0 .600

Normal Hypoxia

K dy
Wet w t 

(mg)
Dry wt 
(mg) Hydration K dy Wet wt 

(mg)
Dry wt 
(mg)

Hydration

A 22.00 4.00 4.50 A 36.00 6.00 5.00
B 24.00 4.00 5.00 B 26.00 5.00 4.20
C 22.00 4.00 4.50 C 24.00 4.00 5.00
D 30.00 5.00 5.00 D 26.00 4.00 5.50

Average 4.750 ± 0.289 Average 4.925 ± 0.538

1 dy
Wet wt 

(mg)
Dry wt 
(mg)

Hydration 1 dy Wet wt 
(mg)

Dry wt 
(mg)

Hydration

A 34.00 5.00 5.80 A 22.00 4.00 4.50
B 28.00 5.00 4.60 B 30.00 5.00 5.00
C 24.00 5.00 3.80 C 28.00 4.00 6.00
D 30.00 5.00 5.00 D 24.00 5.00 3.80

Average 4.800 ± 0.833 Average 4.825 ± 0.925

3 dy
Wet w t 

(mg)
Dry w t 
(mg)

Hydration 3 dy
Wet wt 

(mg)
Dry wt 
(mg)

Hydration

A 30.00 4.00 6.50 A 32.00 5.00 5.40
B 34.00 5.00 5.80 B 32.00 4.00 7.00
C 30.00 4.00 6.50 C 32.00 4.00 7.00
D 32.00 5.00 5.40 D 36.00 5.00 6.20

Average 6.050 ± 0.545 Average 6.400 ± 0.766

5 dy
Wet wt 

(mg)
Dry w t 
(mg)

Hydration 5 dy
Wet wt 

(mg)
Dry wt 
(mg)

Hydration

A 32.00 4.00 7.00 A 30.00 4.00 6.50

B 36.00 5.00 6.20 B 32.00 4.00 7.00

C 36.00 5.00 6.20 C 36.00 5.00 6.20

D 36.00 5.00 6.20 D 38.00 5.00 6.60

Average 6.400 ± 0.400 Average 6.575 ±0.330

7 dy
Wet wt 

(mg)
Dry wt 
(mg)

Hydration 7 dy
Wet wt 

(mg)
Dry wt 
(mg)

Hydration

A 32.000 4.000 7.00 A 36.00 5.00 6.20

B 36.000 5.000 6.20 B 38.00 5.00 6.60

C 42.000 5.000 7.40 C 44.00 6.00 6.33

D 34.000 5.000 5.80 D 34.00 5.00 5.80

Average 6.600 ± 0.730 Average 6.233 ± 0.333

Table ## 2 Corneal hydration  a t th e  periphera l regions of th e  rabb it cornea th a t  w as cultured in 
normal and low 0 2 level.
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ults: Hydration - Outer periphery/limbus (6-9mm)
Control

Wet wt 
(mg)

Dry w t 
(mg) Hydration

A 20.00 4.00 4.00

B 20.00 4.00 4.00

C 24.00 4.00 5.00

D 26.00 5.00 4.20

Average 4.300 ± 0.476

Normal Hypoxia

Xdy W et wt 
(mg)

Dry wt 
(mg)

Hydration Yi dy W et wt 
(mg)

Dry wt 
(mg)

Hydration

A 26.00 5.00 4.20 A 34.00 6.00 4.67
B 26.00 5.00 4.20 B 30.00 6.00 4.00
C 32.00 6.00 4.33 C 28.00 5.00 4.60
D 28.00 5.00 4.60 D 30.00 5.00 5.00

Average 4.333 ± 0 .189 Average 4.567 ± 0.416

1 dy
Wet wt 

(mg)
Dry wt 
(mg)

Hydration 1 dy
W et wt 

(mg)
Dry wt 
(mg)

Hydration

A 28.00 5.00 4.60 A 30.00 6.00 4.00
B 26.00 5.00 4.20 B 28.00 5.00 4.60
C 24.00 5.00 3.80 C 26.00 4.00 5.50
D 26.00 5.00 4.20 D 26.00 5.00 4.20

Average 4.200 ± 0.327 Average 4.575 ± 0.665

3 dy
Wet wt 

(mg)
Dry wt 
(mg)

Hydration 3 dy
W et wt 

(mg)
Dry wt 
(mg) Hydration

A 22.00 3.00 6.33 A 34.00 5.00 5.80
B 26.00 4.00 5.50 B 24.00 4.00 5.00
C 28.00 4.00 6.00 C 36.00 5.00 6.20
D 34.00 5.00 5.80 D 30.00 5.00 5.00

Average 5.908 ± 0.350 Average 5.500 ± 0.600

5 dy
Wet w t 

(mg)
Dry w t 
(mg)

Hydration 5 dy
W et w t 

(mg)
Dry wt 
(mg)

Hydration

A 34.00 5.00 5.80 A 30.00 5.00 5.00

B 36.00 6.00 5.00 B 32.00 5.00 5.40

C 34.00 5.00 5.80 C 32.00 5.00 5.40

D 34.00 5.00 5.80 D 36.00 5.00 6.20

Average 5.600 ± 0.400 Average 5.500 ± 0.503

7 dy
Wet wt 

(mg)
Dry w t 
(mg)

Hydration 7 dy
W et w t 

(mg)
Dry w t 
(mg)

Hydration

A 38.000 5.000 6.60 A 32.00 5.00 5.40

B 32.000 5.000 5.40 B 28.00 4.00 6.00

C 34.000 5.000 5.80 C 36.00 5.00 6.20

D 36.000 5.000 6.20 D 32.00 5.00 5.40

Average 6.000 ± 0.516 Average 5.750 ±0.412

Table ## 3 Corneal hydration  a t th e  o u te r  p erip h e ry /lim b u s  regions o f th e  rabb it cornea th a t was 
cultured in norm al and  low 0 2 level.
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Results: Hydration -  Sclera (9-12mm)
Control Wet wt 

(mg)
Dry wt 
(mg) Hydration

A 20.00 4.00 4.00
B 20.00 5.00 3.00

C 20.00 4.00 4.00
D 22.00 5.00 3.40

Average 3.600 ± 0.490

Normal Hypoxia

Kdy
Wet wt 

(mg)
Dry w t 
(mg) Hydration % dy Wet wt 

(mg)
Dry wt 
(mg)

Hydration

A 32.00 6.00 4.33 A 30.00 5.00 5.00
B 28.00 6.00 3.67 B 24.00 5.00 3.80
C 24.00 5.00 3.80 C 22.00 5.00 3.40
D 24.00 5.00 3.80 D 20.00 4.00 4.00

Average 3.900 ± 0.296 Average 4.050 ± 0.681

1 dy
Wet w t 

(mg)
Dry w t 
(mg)

Hydration 1 dy Wet w t 
(mg)

Dry wt 
(mg)

Hydration

A 30.00 6.00 4.00 A 28.00 6.00 3.67
B 30.00 6.00 4.00 B 26.00 5.00 4.20
C 24.00 6.00 3.00 C 24.00 4.00 5.00
D 24.00 6.00 3.00 D 24.00 6.00 3.00

Average 3.500 ± 0.577 Average 3.967 ± 0.846

3 dy
Wet wt 

(mg)
Dry w t 
(mg)

Hydration 3 dy
Wet wt 

(mg)
Dry wt 
(mg)

Hydration

A 26.00 4.00 5.50 A 32.00 6.00 4.33
B 28.00 5.00 4.60 B 24.00 5.00 3.80
C 34.00 5.00 5.80 C 26.00 5.00 4.20
D 32.00 5.00 5.40 D 28.00 5.00 4.60

Average 5.325 ±0.512 Average 4.233 ± 0.333

5 dy
W et wt 

(mg)
Dry wt 
(mg)

Hydration 5 dy
W et wt 

(mg)
Dry wt 
(mg)

Hydration

A 32.00 6.00 4.33 A 26.00 6.00 3.33

B 32.00 5.00 5.40 B 32.00 6.00 4.33

C 32.00 6.00 4.33 C 32.00 6.00 4.33

D 34.00 5.00 5.80 D 36.00 6.00 5.00

Average 4.967 ± 0.749 Average 4.250 ± 0.687

7 dy
Wet wt 

(mg)
Dry wt 
(mg)

Hydration 7 dy
Wet wt 

(mg)
Dry wt 
(mg)

Hydration

A 34.000 5.000 5.80 A 34.00 6.00 4.67

B 36.000 6.000 5.00 B 30.00 5.00 5.00

C 34.000 5.000 5.80 C 34.00 6.00 4.67

D 34.000 5.000 5.80 D 34.00 6.00 4.67

Average 5.600 ± 0.400 Average 4.750 ± 0.167

Table ## 4 Corneal hydration  a t th e  scleral regions of th e  rabb it co rnea th a t  w as cultured in normal 
and low 0 2 level.
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Results: DMMB assay -  Centre (0-3mm)
Control

Average sGAG 
(mg/ml) sGAG (mg) sGAG/dry wt 

(mg/mg)
A 0.763 0.084 0.017

B 0.727 0.087 0.017

C 0.994 0.129 0.022
D 0.423 0.068 0.014

Average 0.092 ± 0.023 0.017 ± 0.003

Normal Hypoxia

Yi dy
Average sGAG 

(mg/ml) sGAG (mg) sGAG/dry wt 
(mg/mg) K dy Average sGAG 

(mg/ml) sGAG (mg)
sGAG/dry wt 

(mg/mg)
A 0.781 0.102 0.020 A 0.560 0.073 0.015
B 0.604 0.085 0.017 B 0.810 0.097 0.019
C 0.542 0.081 0.014 C 0.615 0.080 0.016
D 0.669 0.107 0.018 D 1.013 0.101 0.025

Average 0.094 ± 0.013 0.017 ± 0.003 Average 0.088 ± 0.014 0.019 ± 0.005

1 dy
Average sGAG 

(mg/ml) sGAG (mg)
sGAG/dry wt 

(mg/mg) 1 dy Average sGAG 
(mg/ml) sGAG (mg) sGAG/dry wt 

(mg/mg)
A 0.640 0.090 0.018 A 0.954 0.115 0.023

B 0.825 0.099 0.020 B 0.933 0.121 0.024

C 0.658 0.079 0.016 C 1.315 0.184 0.037

D 0.969 0.116 0.023 D 1.179 0.165 0.033

Average 0.096 ± 0 .016 0.019 ± 0.003 Average 0 .1 4 6 1 0 0 3 4 0.029 ± 0.007

3 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry w t 
(mg/mg)

A 0.603 0.078 0.016

B 0.675 0.088 0.022

C 0.620 0.093 0.019

D 0.650 0.098 0.020

Average 0.089 ± 0.008 0.019 ± 0.003

5 dy Average sGAG 
(mg/ml)

sGAG (mg)
sGAG/dry wt 

(mg/mg)

A 0.613 0.098 0.020

B 0.727 0.131 0.022

C 0.527 0.084 0.017

D 0.593 0.113 0.019

Average 0.106 ± 0.020 0.019 ± 0.002

3 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry wt 
(mg/mg)

A 0.571 0.086 0.017

B 0.605 0.097 0.016

C 0.647 0.103 0.021

D 0.652 0.111 0.022

Average 0.099 ± 0.011 0.019 ±0.003

5 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry wt 
(mg/mg)

A 0.588 0.106 0.018

B 0.532 0.101 0.017

C 0.595 0.101 0.020

D 0.742 0.134 0.022

Average 0.110 ±0.016 0.019 ± 0.002

7 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry wt 
(mg/mg)

7 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry wt 
(mg/mg)

A 0.888 0.133 0.027 A 0.358 0.079 0.013

B 0.517 0.088 0.018 B 0.452 0.086 0.014

C 0.442 0.097 0.016 C 0.442 0.080 0.016

D 0.438 0.070 0.014 D 0.525 0.089 0.018

Average 0.097 ± 0.027 0.019 ± 0.006 Average 0.083 ± 0.005 0.015 ± 0.002

Table ## 5 Total su lpha ted  GAG a t th e  cen tra l regions of th e  rabb it co rnea th a t  w ere  cultured in 
normal and low 0 2 level.
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Results DMMB assay -  Periphery (3-6mm)
Control

Average sGAG 
(mg/ml) sGAG (mg) sGAG/dry w t 

(mg/mg)
A 1.129 0.136 0.027
B 0.604 0.079 0.016
C 0.590 0.100 0.020
D 0.775 0.109 0.027

Average 0.106 ± 0.024 0.022 ± 0.006

Normal

Yi dy
Average sGAG 

(mg/ml) sGAG (mg) sGAG/dry w t 
(mg/mg)

A 0.815 0.090 0.022
B 0.769 0.092 0.023
C 0.675 0.074 0.019
D 0.538 0.081 0.016

Average 0.084 ± 0.008 0.02.0 ± 0.003

1 dy
Average sGAG 

(mg/ml)
sGAG (mg) sGAG/dry w t 

(mg/mg)
A 0.619 0.105 0.021
B 0.931 0.130 0.026
C 0.681 0.082 0.016
D 0.708 0.106 0.021

Average 0.106 ± 0 .0 2 0 0.021 ± 0 .004

3 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry w t 
(mg/mg)

A 0.642 0.096 0.024

B 0.523 0.089 0.018

C 0.652 0.098 0.024

D 0.521 0.083 0.017

Average 0.092 ± 0.007 0.021 ±0 .004

5 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry w t 
(mg/mg)

A 0.456 0.073 0.018

B 0.638 0.115 0.023

c 0.471 0.085 0.017

D 0.781 0.141 0.028

Average 0.103 ± 0.030 0.022 ± 0.005

7 dy Average sGAG 
(mg/ml)

sGAG (mg)
sGAG/dry wt 

(mg/mg)

A 0.369 0.123 0.013

B 0.375 0.068 0.014

C 0.396 0.083 0.017

D 0.348 0.059 0.012

Average 0.083 ± 0.028 0.014 ± 0.002

Table ## 6 Total su lphated  GAG a t  th e  periphera l 
normal and low 0 2 level.

Hypoxia

K dy
Average sGAG 

(mg/ml) sGAG (mg)
sGAG/dry wt 

(mg/mg)
A 0.606 0.109 0.022
B 0.681 0.089 0.018
C 0.642 0.077 0.019
D 0.652 0.085 0.021

Average 0.090 ± 0.014 0.020 ±0.002

1 dy Average sGAG 
(mg/ml) sGAG (mg)

sGAG/dry wt 
(mg/mg)

A 1.000 0.110 0.028
B 1.077 0.162 0.032
C 0.619 0.087 0.022
D 1.208 0.145 0.029

Average 0.126 ± 0.034 0.028 ±0.004

3 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry wt 
(mg/mg)

A 0.660 0.106 0.021

B 0.608 0.097 0.024

C 0.685 0.110 0.027

D 0.754 0.136 0.027

Average 0.112 ±0.017 0.025 ± 0.003

5 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry wt 
(mg/mg)

A 0.961 0.125 0.021

B 0.669 0.107 0.027

C 0.565 0.102 0.020

D 0.583 0.111 0.022

Average 0.111 ±0.010 0.023 ± 0.003

7 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry wt 
(mg/mg)

A 0.335 0.060 0.012

B 0.400 0.076 0.015

C 0.302 0.066 0.011

D 0.385 0.066 0.013

Average 0.067 ± 0.007 0.013 ± 0.002

of th e  rabb it cornea th a t  w ere cultured in
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Results: DMMB assay -  Outer periphery (6-9mm)
Control

Average sGAG 
(mg/ml)

sGAG (mg) sGAG/dry w t 
(mg/mg)

A 0.608 0.061 0.015

B 0.510 0.051 0.013

C 0.444 0.053 0.013

D 0.523 0.068 0.014

Average 0.058 ± 0.008 0.014 ± 0.001

Normal

Kdy
Average sGAG 

(mg/ml)
sGAG (mg) sGAG/dry wt 

(mg/mg)
A 0.563 0.073 0.015

B 0.629 0.082 0.016

C 0.283 0.045 0.008

D 0.540 0.076 0.015

Average 0.069 ± 0.016 0.013 ± 0.004

1 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry wt 
(mg/mg)

A 0.477 0.067 0.013

B 0.742 0.104 0.021

C 0.558 0.073 0.015

D 0.877 0.114 0.023

Average 0.089 ± 0.023 0.018 ± 0.005

3 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry wt 
(mg/mg)

A 0.600 0.066 0.022

B 0.692 0.090 0.022

C 0.615 0.086 0.022

D 0.473 0.080 0.016

Average 0.081 ± 0 .010 0.021 ± 0.003

5 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry w t 
(mg/mg)

A 0.410 0.070 0.014

B 0.588 0.106 0.018

C 0.440 0.075 0.015

D 0.365 0.062 0.012

Average 0.078 ± 0.019 0.015 ± 0.002.....

7 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry w t 
(mg/mg)

A 0.410 0.078 0.016

B 0.263 0.042 0.008

C 0.350 0.060 0.012

D 0.217 0.039 0.008

Average 0.055 ± 0.018 0.011 ± 0.004

Table ## 7 Total su lpha ted  GAG a t th e  o u te r  
in norm al and low 0 2 level.

Hypoxia

K dy Average sGAG 
(mg/ml) sGAG (mg)

sGAG/dry wt 
(mg/mg)

A 0.342 0.058 0.010

B 0.598 0.090 0.015

C 0.494 0.069 0.014
D 0.429 0.064 0.013

Average 0.070 ± 0014 0.013 ± 0.002

1 dy
Average sGAG 

(mg/ml) sGAG (mg)
sGAG/dry wt 

(mg/mg)
A 1.042 0.156 0.026

B 1.231 0.172 0.034

C 0.996 0.129 0.032

D 1.044 0.136 0.027

Average 0.148 ± 0.020 0.030 ± 0.004

3 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry wt 
(mg/mg)

A 0.581 0.099 0.020

B 0.652 0.078 0.020

C 0.535 0.096 0.019

D 0.552 0.083 0.017

Average 0.089 ± 0.010 0.019 ± 0.001

5 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry wt 
(mg/mg)

A 0.421 0.063 0.013

B 0.538 0.086 0.017

C 0.492 0.079 0.016

D 0.427 0.077 0.015

Average 0.076 ± 0.010 0.015 ± 0.002

7 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry wt 
(mg/mg)

A 0.277 0.044 0.009

B 0.417 0.058 0.015

C 0.331 0.060 0.012

D 0.260 0.042 0.008

Average 0.051 ± 0.009 0.011 ± 0.003

regions of th e  rab b it cornea th a t  w ere  cultured
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Results: DMMB assay -  Sclera (9-12mm)
Control

Average sGAG 
(mg/ml)

sGAG (mg) sGAG/dry wt 
(mg/mg)

A 0.165 0.016 0.004

B 0.096 0.010 0.002

C 0.065 0.006 0.002

D 0.031 0.003 0.001

Average 0.009 ± 0.006 0.002 ± 0.001

Normal

Xdy
Average sGAG 

(mg/ml)
sGAG (mg) sGAG/dry wt 

(mg/mg)
A 0.083 0.013 0.002

B 0.177 0.025 0.004

C 0.100 0.012 0.002

D 0.079 0.009 0.002

Average 0.015 ± 0.007 0.003 ± 0.001

1 dy
Average sGAG 

(mg/ml) sGAG (mg)
sGAG/dry wt 

(mg/mg)
A 0.104 0.016 0.003

B 0.256 0.038 0.006

C 0.129 0.016 0.003

D 0.290 0.035 0.006

Average 0.026 ± 0.012 0.004 ± 0.002

Hypoxia

% dy Average sGAG 
(mg/ml) sGAG (mg)

sGAG/dry wt 
(mg/mg)

A 0.079 0.012 0.002

B 0.215 0.026 0.005

C 0.165 0.018 0.004

D 0.183 0.018 0.005

Average 0.019 ± 0.006 0.004 ± 0.001

1 dy Average sGAG 
(mg/ml)

sGAG (mg) sGAG/dry wt 
(mg/mg)

A 0.415 0.058 0.010

B 0.415 0.054 0.011

C 0.402 0.048 0.012

D 0.315 0.038 0.006

Average 0.049 ± 0.009 0.010 ± 0.002

3 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry wt 
(mg/m g)

A 0.092 0.012 0.003

B 0.098 0.014 0.003

C 0.075 0.013 0.003

D 0.190 0.030 0.006

Average 0.017 ± 0.009 0.004 ± 0.002

3 dy
Average sGAG 

(mg/ml)
sGAG (mg)

sGAG/dry wt 
(mg/mg)

A 0.086 0.014 0.002

B 0.082 0.010 0.002

C 0.136 0.018 0.004

D 0.119 0.017 0.003

Average 0.014 ± 0.004 0.003 ±0.001

5 dy Average sGAG 
(mg/ml)

sGAG (mg)
sGAG/dry w t 

(mg/mg)
5 dy

Average sGAG 
(mg/ml)

sGAG (mg)
sGAG/dry wt 

(mg/mg)

A 0.159 0.025 0.004 A 0.038 0.006 0.001

B 0.113 0.020 0.004 B 0.078 0.012 0.002

C 0.128 0.022 0.004 C 0.059 0.009 0.002

D 0.054 0.009 0.002 D 0.071 0.013 0.002

Average 0.019 ± 0.007 0.003 ± 0.001 Average 0.010 ± 0.003 0.002 ± 0.000

7dy
Average sGAG 

(mg/ml) sGAG (mg)
sGAG/dry w t 

(mg/mg)
7dy

Average sGAG 
(mg/ml)

sGAG (mg)
sGAG/dry wt 

(mg/mg)

A 0.096 0.016 0.003 A 0.055 0.009 0.002

B 0.055 0.010 0.002 B 0.053 0.008 0.002

C 0.061 0.010 0.002 C 0.090 0.015 0.003

D 0.025 0.004 0.001 D 0.036 0.006 0.001

Average 0.010 ± 0.005 0.002 ± 0.001 Average 0.010 ± 0.004 0.002 ± 0.001

Table ## 8 Total su lpha ted  GAG a t th e  sclera regions of th e  rabb it co rnea th a t  w ere  cultured  in 
normal and low 0 2 level.
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Results: ELISA -  5D4: detecting higher sulphated KS

0 dy
Competing 

antigen (ng/ml) 5D4 (ng) 5D4/dry wt 
(ng/mg)

A 230.255 5.847 1.169

B 189.327 4.807 0.961

C 250.430 6.359 1.060

D 181.508 4.609 0.922

Average 1.028 ±0.111

Normal

Kdy
Competing 

antigen (ng/ml)
5D4 (ng) 5D4/dry w t 

(ng/mg)

A 185.927 3.405 0.681

B 140.672 2.576 0.515

C 131.597 2.410 0.402

D 210.151 3.849 0.642

Average 0.560 ± 0.127

ld y
Competing 

antigen (ng/ml)
5D4 (ng) 5D4/dry wt 

(ng/mg)

A 169.168 2.487 0.497

B 248.505 3.653 0.731

C 201.165 2.957 0.591

D 198.633 2.920 0.584

Average 0.601 ± 0.096

3 dy
Competing 

antigen (ng/ml)
5D4 (ng)

5D4/dry wt 
(ng/mg)

A 309.453 6.977 1.395

B 317.266 7.154 1.788

C 293.029 6.607 1.321

D 261.842 5.904 1.181

Average 1.422 ± 0.260

5 dy Competing 
antigen (ng/ml)

5D4 (ng)
5D4/dry wt 

(ng/mg)

A 234.891 2.188 0.438

B 240.602 2.241 0.374

C 282.164 2.628 0.526

D 186.937 1.741 0.290

Average 0.407 + 0.100

7 dy Competing 
antigen (ng/ml)

5D4 (ng)
5D4/dry w t 

(ng/mg)

A 133.777 2.568 0.514

B 223.053 4.281 0.856

C 102.714 1.971 0.329

D 250.717 4.812 0.962

Average 0.665 ± 0.295

Hypoxia

Vi dy Competing 
antigen (ng/ml) 5D4 (ng) 5D4/dry wt 

(ng/mg)

A 295.532 8.777 1.755

B 239.430 7.111 1.422

C 178.916 5.313 1.063

D 274.619 8.156 2.039

Average 1.570 ± 0.422

1 dy
Competing 

antigen (ng/ml) 5D4 (ng)
5D4/dry wt 

(ng/mg)

A 407.862 17.963 3.593

B 473.967 20.874 4.175

C 467.125 20.573 4.115

D 471.738 20.776 4.155

Average 4.009 ± 0.279

3 dy
Competing 

antigen (ng/ml)
5D4 (ng)

5D4/dry wt 
(ng/mg)

A 245.347 6.299 1.260

B 336.510 8.639 1.440

C 236.398 6.069 1.214

D 250.588 6.433 1.287

Average 1.300 ± 0.098

5 dy
Competing 

antigen (ng/ml)
5D4 (ng)

5D4/dry wt 
(ng/mg)

A 166.027 3.500 0.583

B 233.946 4.932 0.822

C 178.916 3.772 0.754

D 160.280 3.379 0.563

Average  0.681 ± 0.127

7 dy
Competing 

antigen (ng/ml)
5D4 (ng)

5D4/dry wt 
(ng/mg)

A 172.562 2.783 0.464

B 265.696 4.285 0.714

C 158.798 2.561 0.512

D 180.563 2.912 0.582

Average 0.568 ±0.109

Table ## 9 O ver-sulphated  KS quan tifica tions a t th e  cen tra l regions of th e  rabb it cornea th a t w ere 
cultured in norm al and low Oz level.



Results: ELISA -  1B4: detecting lesser sulphated KS

0 dy
Competing 

antigen (ng/ml)
1B4
(ng)

lB 4/dry wt 
(ng/mg)

A 5894.755 5.821 1.164

B 5806.113 5.734 1.147

C 5681.088 5.610 0.935

D 7258.672 7.168 1.434

Average 1 .1 7 0 1 0 .2 0 4

Normal Hypoxia

Zi dy
Competing 

antigen (ng/ml)
1B4
(ng)

lB 4/dry wt 
(ng/mg) 34 dy Competing 

antigen (ng/ml)
1B4
(ng)

lB4/dry wt 
(ng/mg)

A 2651.506 3.936 0.787 A 5051.916 4.473 0.895
B 3368.896 5.000 1.000 B 6993.095 6.192 1.238

C 4749.304 7.049 1.175 C 5813.860 5.148 1.030

D 4183.247 6.209 1.035 D 3995.897 3.538 0.885

Average 0 .9 9 9 1 0 .1 6 0 Average 1 .01210.165

ld y
Competing 

antigen (ng/ml)
1B4
(ng)

lB 4 /d ry w t  
(ng/mg)

1 dy
Competing 

antigen (ng/ml)
1B4
(ng)

lB4/dry wt 
(ng/mg)

A 5681.088 7.660 1.532 A 4830.758 9.682 1.936

B 6795.625 9.163 1.833 B 5169.893 10.362 2.072

C 4342.435 5.855 1.171 C 4310.844 8.640 1.728

D 6066.435 8.180 1.636 D 4830.758 9.682 1.936

Average 1.543 1 0.277 Average 1 .91210 .142

3 dy
Competing 

antigen (ng/ml)
1B4
(ng)

lB 4/dry wt 
(ng/mg)

3 dy
Competing 

antigen (ng/ml)
1B4
(ng)

lB4/dry wt 
(ng/mg)

A 5464.679 9.509 1.902 A 4233.189 8.086 1.617

B 3588.056 6.244 1.561 B 4342.435 8.294 1.382

C 4259.076 7.412 1.482 C 4318.795 8.249 1.650

D 4097.703 7.131 1.426 D 5049.129 9.644 1.929

Average 1 .5931 0 .2 1 3  Average 1.645 ± 0.224

5 dy Competing 
antigen (ng/ml)

1B4
(ng)

lB 4 /d ryw t
(ng/mg)

Competing 
antigen (ng/ml)

1B4
(ng)

lB4/dry wt 
(ng/mg)

A 11245.268 5.146 1.029 A 2148.051 5.299 0.883

B 12270.896 5.616 0.936 B 2594.928 6.401 1.067

C 8460.516 3.872 0.774 C 2665.020 6.574 1.315

D 8785.541 4.021 0.670 D 2110.560 5.206 0.868

Average 0 .8 5 2 1 0 .1 6 1  Average 1.033 ± 0.208

7 dy Competing 
antigen (ng/ml)

1B4
(ng)

lB 4/dry wt ? . 
(ng/mg)

Competing 
antigen (ng/ml)

1B4
(ng)

lB4/dry wt 
(ng/mg)

A 2856.482 4.295 0.859 A 2592.389 9.939 1.657

B 4651.448 6.993 1.399 B 2639.131 10.119 1.686

C 3667.286 5.514 0.919 C 1815.348 6.960 1.392

D 2592.389 3.897 0.779 D 2131.766 8.173 1.635

Average 0 .9 8 9 1 0 .2 7 9  Average 1.592 ±0.135

Table ## 10 L esser-sulphated KS quan tifica tions a t th e  cen tral regions of th e  rabb it cornea th a t w ere 
cultured in norm al and low 0 2 level.

189



Results: Hydroxyproline assay
0 dy

Average
(mg/ml)

Hydroxyproline
(mg)

Hydroxyproline/dry wt 
(m g/m g dry wt)

A 0.186 0.037 0.007
B 0.228 0.046 0.009
C 0.247 0.049 0.008
D 0.318 0.064 0.013

Average 0.049 ± 0.011 0.009 ± 0.002

Normal

34 dy Average Hydroxyproline Hydroxyproline/dry wt
(mg/ml) (mg) (m g/m g dry wt)

A 0.270 0.054 0.011
B 0.311 0.062 0.012
C 0.231 0.046 0.008
D 0.297 0.059 0.010

Average 0.055 ± 0.007 0.010 ± 0.002

1 dy
Average Hydroxyproline 
(mg/ml) (mg)

Hydroxyproline/dry wt 
(m g/m g dry wt)

A 0.179 0.036 0.007
B 0.272 0.054 0.011
C 0.202 0.040 0.008
D 0.302 0.060 0.012

Average 0.048 ± 0.012 0.010 ± 0.002

3 dy
Average
(mg/ml)

Hydroxyproline
(mg)

Hydroxyproline/dry w t 
(m g/m g dry wt)

A 0.280 0.056 0.011
B 0.288 0.058 0.014
C 0.291 0.058 0.012
D 0.296 0.059 0.012

Average 0.058 ± 0.001 0 .012 ± 0.001

5 dy
Average
(mg/ml)

Hydroxyproline
(mg)

Hydroxyproline/dry wt 
(m g/m g dry wt)

A 0.177 0.035 0.007
B 0.247 0.049 0.008
C 0.245 0.049 0.010
D 0.211 0.042 0.007

Average 0.044 ± 0.007 0 .008 ± 0.001

7dy
Average
(mg/ml)

Hydroxyproline
(mg)

Hydroxyproline/dry w t 
(m g/m g dry wt)

A 0.205 0.041 0.010
B 0.243 0.049 0.010
C 0.254 0.051 0.008
D 0.259 0.052 0.010

Average 0.048 ± 0.005 0 .010 ± 0.001

Hypoxia

34 dy Average
(mg/ml)

Hydroxyproline
(mg)

Hydroxyproline/dry wt 
(mg/mg dry wt)

A 0.240 0.048 0.010
B 0.295 0.059 0.012
C 0.223 0.045 0.009
D 0.377 0.075 0.019

Average 0.057 ± 0.012 0.014 ± 0.005

1 dy Average
(mg/ml)

Hydroxyproline
(mg)

Hydroxyproline/dry wt 
(mg/mg dry wt)

A 0.426 0.085 0.017
B 0.389 0.078 0.016
C 0.375 0.075 0.015
D 0.346 0.069 0.014

Average 0.077 ± 0.007 0.015 ± 0.001

3 dy
Average
(mg/ml)

Hydroxyproline
(mg)

Hydroxyproline/dry wt 
(mg/mg dry wt)

A 0.328 0.066 0.013
B 0.255 0.051 0.008
C 0.266 0.053 0.011
D 0.296 0.059 0.012

Average 0.057 ±0.007 0.011 ± 0.002

5 dy
Average
(mg/ml)

Hydroxyproline
(mg)

Hydroxyproline/dry wt 
(mg/mg dry wt)

A 0.344 0.069 0.011
B 0.310 0.062 0.010
C 0.327 0.065 0.013
D 0.315 0.063 0.011

Average 0.065 ± 0.003 0.011 ± 0.001

7 dy
Average
(mg/ml)

Hydroxyproline
(mg)

Hydroxyproline/dry wt 
(mg/mg dry wt)

A 0.274 0.055 0.009
B 0.319 0.064 0.011
C 0.335 0.067 0.013
D 0.293 0 059 0.012

Average 0.061 ± 0.005 0.011 ± 0.002

Table ## 11 Hydroxyproline c o n te n t  in th e  cen tral regions of th e  rabb it co rnea th a t  w ere  cultured in 
normal and low 0 2 level.


