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Summary

The mechanistic Target of Rapamycin Complex 1 (mTORCI) complex is central in the 
regulation of many crucial cellular processes including translation, transcription, 
proliferation and autophagy. Deregulation of the complex is evident in a number of 
diseases including Tuberous Sclerosis, Alzheimer’s Disease and cancer. Whilst the 
signalling events leading to activation of mTORCI are well understood, the inhibitory 
phosphatase activity that prevents aberrant signalling has received comparatively 
little attention.

In yeast, phosphatases are an integral part of TORC1 signalling. Poor nitrogen 
supply leads to activation of the phosphatases Pph21/22 and Sit4 and subsequent 
dephosphorylation of TORC1 substrates. Under these conditions, the phosphatase 
negative regulatory protein Tap42 is sequestered by Tip41. In good nitrogen supply, 
TORC1 phosphorylatesTip41 leading to release of Tap42 and subsequent inhibition 
of Pph21/22 and Sit4. This allows the accumulation of phosphorylated TORC1 
substrates.

This thesis investigated the role of Tip41 in mTORCI signalling. Purification of Tip41 
identified direct interaction with PP2Ac (human Pph21/22). As overexpression of 
Tip41 resulted in inhibition of mTORCI signalling, Tip41 is proposed as a bona fide 
positive regulatory subunit of PP2Ac. Further investigation indicated that 
hypophosphorylated PP2A-np4i may directly oppose Rheb-mediated activation of 
mTORCI thus promoting Raptor degradation. In addition, a specific nuclear isoform 
of Tip41 was identified, which may specifically regulate the transcription factor HIF1.

Studies using the adenoviral protein E40RF4 also identified the PP2ABa complex in 
regulation of mTORCI signalling. The data in this thesis show that PP2ABa acts 
downstream of the TSC1/2 complex to inhibit mTORCI. Results also indicate that 
PP2ABa may be negatively regulated by ubiquitin-mediated proteasomal degradation 
of Ba in an mTORCI-specific manner. Therefore PP2ABa may be subject to an 
mTORCI feedback mechanism that is required for activation of downstream 
substrates. These data indicate that phosphatase activity is critical in regulation of 
mTORCI, reflecting the mechanism in yeast.
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CHAPTER 1 - INTRODUCTION

1.1 Phosphatases

1.1.1 General introduction

Phosphorylation events are central to the transduction of signals through the cell. 

Whilst kinases are responsible for phosphorylation of substrates, their action is 

opposed by a variety of phosphatase complexes. Phosphatases are divided into two 

families, based on their ability to remove phosphate groups from serine/threonine or 

tyrosine residues. Three families of serine/threonine phosphatases exist. 

Phosphoprotein phosphatases (PPPs) are oligomeric enzymes including a catalytic 

subunit with one or more regulatory subunits (Cohen, 2002). The protein 

phosphatase magnesium/manganese dependent (PPM) family, consisting of PP2C, 

is monomeric with two structural domains (Lu & Wang, 2008). Thirdly, 

dephosphorylation of RNA polymerase II is controlled by the transcription factor II F 

interacting carboxyl terminal domain phosphatase family (Ghosh et al., 2008). The 

PPP family includes protein phosphatase 1 (PP1), PP2A, PP4, PP6, PP2B 

(calcineurin), PP5 and PP7. PP2A represents the major Ser/Thr phosphatase in 

mammalian cells. It is involved in almost every cellular process hence deregulation 

can result in diseases such as cancer, Opitz syndrome (OS) and Alzheimer’s 

disease (AD). The enzyme evidently has a large number of substrates, and 

specificity is achieved by interaction with a number of regulatory and scaffold 

subunits.

1.1.2 The PP2A holoenzyme

1.1.2.1 The catalytic subunit

The core PP2A enzyme consists of the dimeric complex (PP2AD) containing the 

36kDa catalytic subunit (PP2Ac) and the 65kDa structural A subunit. PP2Ac is 

encoded by two genes, PPP2CA and PPP2CB, which encode the PP2Aca- and p- 

isoforms, respectively. Both PP2Ac isoforms show functional redundancy as there is 

no difference in activity or substrate binding (Zhou et al., 2003).
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1.1.2.2 The A subunit

The A subunit also has two isoforms (a and p), with 87% amino acid sequence 

identity (Hemmings et al., 1990). The a-isoform is more abundant than the p-isoform 

and has 6-fold increased affinity for PP2Ac (Ruediger et al., 2001(b)). The A subunit 

is C shaped with double layered a helices (Xu et al., 2006). It contains 15 tandem 

Huntingtin-Elongation-A subunit-TOR (HEAT) repeats consisting of 39 amino acids, 

which mediate interaction with PP2Ac. The A subunit binds PP2Ac via HEAT 

repeats 11 to 15 that induces structural rearrangement within the A subunit (Xing et 

al., 2006, Xu et al., 2006). Hydrogen bonds within HEAT repeat 11 lead to pivoting 

within the A subunit around HEAT repeat 13 resulting in conformational 

rearrangement. An adjacent proline residue possibly confers the ability to bend (Xu 

et al., 2006). Flexibility of the A subunit may allow binding to the many regulatory 

subunits of PP2Ac.

1.1.2.3 The B subunit

The PP2A holoenzyme is formed following interaction of PP2Ad with one of a 

number of B regulatory subunits (Figure 1.1). Four subfamilies of regulatory subunit 

exist: B (PR55), B’ (B56 or PR61), B” (PR72) and Bm (PR93/PR110). Although 

there is no homology between the subfamilies, domains within B’ that bind the A 

subunit contain residues conserved within B and B” (Li & Virshup, 2002). The B 

subunits may therefore share a common core structure and mode of interaction with 

the A subunit. The B (PR55) subfamily has four members, denoted a, p, y and 8, 

each encoded by a distinct gene. These contain a high level of sequence similarity, 

with the Ba and Bp sharing 86% and the Ba and By sharing 81% protein sequence 

homology (Mayer et al., 1991, Zolnierowicz et al., 1994). Although Ba and B6 are 

ubiquitously expressed (Strack et al., 1999), both Bp and By are found exclusively in 

the brain (Strack et al., 1998). Studies using subdissected brain tissue uncovered 

individual tissue and intracellular distribution, as well as differential expression 

dependent on developmental stage for each isoform (Strack et al., 1998). Whereas 

the levels of Bp decrease sharply after birth, expression of By markedly increases.

In addition, Bp is predominantly cytosolic whereas By is associated with the 

cytoskeleton.
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Figure 1.1: The PP2A holoenzym e. The classical PP2A trimeric enzyme consists of a catalytic ‘C ’ subunit, regulatory ‘B’ 
subunit and scaffold ‘A ’ subunit. The A subunit bridges interaction between the B and C subunits. Four families of B 
regulatory subunit exist, namely B, B’, B” and B”’. These are involved in substrate recognition.



Structurally, the B regulatory subunit contains a 7 bladed p propeller, each with 4 

anti-parallel strands (Strack et al., 2002, Xu et al., 2008). Interaction with PP2AD 

occurs via the A subunit. In addition, electrostatic bonds between residues within the 

B subunit and HEAT repeats 3 to 7 of the A subunit confer specificity of binding (Xu 

et al., 2008). Acidic substitution of By residues RR165EE prevents interaction with 

PP2Ad, which is rescued by RR100EE substitution within the A subunit (Strack et al., 

2002). The Ba subunit makes few interactions with the C subunit making the 

PP2ABcx complex structurally loose, and appears to confer substrate specificity to the 

PP2A holoenzyme by controlling access to the active site of PP2Ac via close 

proximity to the catalytic site of PP2Ac (Xu et al., 2008).

1.1.3 Regulation of PP2A

1.1.3.1 Methylation

The PP2A holoenzyme is regulated in a number of ways. Firstly, methylation of the 

catalytic subunit at L309 appears to specifically regulate binding of the Ba subunit. 

Deletion of this residue prevents interaction with Ba and demethylation of PP2Ac 

reduces the amount of co-immunoprecipitated Ba (Yu et al., 2001, Wei et al., 2001, 

Longin et al., 2007). Methylation of PP2Ac is controlled by the activity of 2 enzymes 

in human cells: Leucine Carboxylmethyltransferase 1 (LCMT1) and Protein 

Phosphatase Methylesterase 1 (PME1), which methylate and demethylate PP2Ac, 

respectively. Stability of the PP2ABa holoenzyme relies on methylation of PP2Ac, 

and demethylation results in separation of the complex into PP2Ad and Ba (Tolskyth 

et al., 2000, Wu et al., 2000). Loss of PP2Ac methylation results in destabilisation, 

where LCMT1 knockdown causes degradation of Ba and eventually apoptosis 

(Longin et al., 2007). Studies in yeast have shown that loss of methyltransferase 

PPM1 results in reduced binding of cell division cycle 55 (cdc55 - yeast Ba) to 

Protein phosphatase 21 (Pph21 - yeast PP2Ac) (Wei et al., 2001). Demethylation, 

and hence destabilisation of PP2Aea, is controlled by PME1. Following 

demethylation, and displacement of Ba, PME1 also inactivates PP2Ad by 

rearrangement of the catalytic site of PP2Ac (Xing et al., 2008). Within PME1, S156 

is essential for methylesterase activity and mutation of this residue results in 

aberrant binding to methylated PP2Ad (Longin et al., 2008).
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Cellular localisation of PP2A may also be controlled by PME1, which contains a 

nuclear localisation signal and therefore accumulates in the nucleus, along with 

demethylated inactive PP2AD (Longin et al., 2008). Demethylated PP2A is also 

associated with the mitotic spindle during cytokinesis (Longin et al., 2008). PME1 

may therefore be used to stabilise PP2Ad within the nucleus to ensure successful 

mitosis.

PME1 also sequesters inactive PP2Ad to prevent the accumulation of premature 

PP2A holoenzyme. Incubation with LCMT1 does not result in activation of the 

PP2Ad-PME1 complex (Longin et al., 2004). Instead, reactivation requires and 

additional protein, Phosphotyrosyl Phosphatase Activator of PP2A (PTPA). Studies 

in yeast have shown that PTPA binds unmethylated PP2AD via the C terminus of 

PP2Ac, but that activation requires binding of PME1 (Hombauer et al., 2007). Thus 

PME1 may stabilise inactive PP2AD in preparation for activation by PTPA. Binding 

of PTPA to PP2Ad-PME1 results in dissociation of PME1 from the complex (Jordens 

et al., 2006). PTPA then activates PP2AD via its peptidyl-prolyl isomerase (PPIase) 

activity and by activation of PP2Ac catalytic activity. PTPA binding to PP2AD occurs 

via a highly conserved hydrophobic groove and mutation of this groove yields 

inactive PTPA (Leulliot et al., 2006). Studies in yeast specifically identified Asp205 

(Asp213 in mammalian PTPA) as essential for PP2Ac activation. This lies within the 

PP2Ad binding site and mutation reduces PPIase activity (Leulliot et al., 2006).

Within PP2Ac, P190 is the target for PTPA PPIase activity as mutation of this Proline 

residue prevents interaction and activation by PTPA (Jordens et al., 2006). Studies 

in yeast identified the conserved W202 within PTPA as the residue that interacted 

with Pro190 within PP2Ac (Leulliot et al., 2006). In addition to PPIase activity, PTPA 

appears to stabilise metal ion binding within the PP2Ac catalytic site. Pph21 mutant 

H59S that is defective for metal ion binding show increased binding to Ypa1 (yeast 

PTPA) compared to wild type. In addition, metal ions were not tightly bound to the 

active site on deletion of Ypa1/Ypa2 in yeast (Fellner et al., 2003).

1.1.3.2 Phosphorylation

Phosphorylation of PP2Ac is also used as a method for regulation of PP2A activity. 

This occurs at T304 and Y307 and results in an 80% reduction in PP2A activity in 

vitro (Guo & Damuni, 1993). Phosphomimetic T304E prevents Ba binding thereby
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reducing activity via displacement of the regulatory subunit (Longin et al., 2007). 

Studies in yeast have shown that Pph21 phosphomimetic mutants reduce cdc55p 

binding with a subsequent phenotype indicative of reduced Pph21-cdc55 activity 

(Gentry et al., 2005). In human cells, phosphomimetic mutation Y307D results in 

reduced binding of the Ba subunit (Nunbhakdi-Craig et al., 2007, Wei et al., 2001). 

This indicates that Y307 phosphorylation prevents Ba binding (Chung et al., 1999). 

Interestingly, mutation of Y307 and L309 resulted in co-purification of Alpha4 with 

PP2Ac (Chung et al., 1999). This indicates that phosphorylation and methylation of 

PP2Ac prevents Ba binding thus allowing interaction of PP2Ac with Alpha4.

Phosphorylation of PP2Ac at Y307 is implicated in breast cancer incidence. The 

Human Tyrosine Kinase-Type Cell Surface Receptor, Type II (HER-II) Receptor 

Tyrosine Kinase (RTK) is constitutively active in 20 to 30% of breast cancers and is 

the target for the drug Herceptin. HER-II results in activation of Phosphoinositide 3 

Kinase (PI3K) and Mitogen-Activated Protein Kinase (MAPK) cascades and mutation 

is associated with poor prognosis and an aggressive phenotype. Activation of HER- 

II in breast cancer cell lines results in phosphorylation of Y307, with inhibition 

resulting in the opposing effect. In HER-II positive tumours Y307 phosphorylation 

was increased. Thus constitutive activation of HER-II in breast carcinoma results in 

increased phosphorylation of PP2Ac at Y307 and thus reduced phosphatase activity 

that may be associated with aggressive phenotype in some patients (Wong et al., 

2009).

Phosphorylation of the B regulatory subunit is also a method of PP2A regulation.

For example, Extracellular Signal-Regulated Kinase (ERK), a member of the MAPK 

family, phosphorylates B’ following growth factor stimulation, resulting in dissociation 

of B’ from PP2A and inactivation of the phosphatase complex (Letourneux et al., 

2006). This prevents PP2A mediated dephosphorylation and inactivation of ERK. 

Therefore, phosphorylation of B’ is critical in the ERK mediated growth factor 

response.

1.1.3.3 Degradation

Another mode of PP2A regulation may be through proteasomal degradation 

following ubiquitination of PP2Ac. OS is caused by mutation of MIDI, which 

encodes the ubiquitin ligase M idlinel. Yeast two hybrid analysis of Midlinel
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revealed in vitro interaction with Alpha4 (Trockenbacher et al., 2001). Further 

investigation revealed co-localisation of GFP-Alpha4 with Midlinel on microtubules 

(MTs). Whilst no ubiquitination of Alpha4 itself was detected, proteasome inhibition 

resulted in the accumulation of ubiquitinated PP2Ac. In addition, OS derived 

fibroblasts contain hypophosphorylated Microtubule Associated Proteins (MAPs). 

Therefore it is possible that in order to activate MAPs, Midlinel binds Alpha4 in order 

to ubiquitinate PP2Ac, resulting in PP2Ac degradation and hyperphosphorylation of 

MAPs. In the case of OS, this regulation is removed by dysfunctional Midlinel 

resulting in hypophosphorylation of MAPs which may be key in the pathogenic 

phenotype of the disease.

1.1.3.4 Interaction with regulatory subunits

Binding of the B regulatory subunit to PP2AD can also present a method of PP2A 

regulation. MAPKs transmit mitogenic stimuli from G protein coupled receptors and 

RTKs in order to promote cell growth. Kinase Suppressor of Ras (KSR) facilitates 

signal transduction within the MAPK cascade, and is constitutively bound to PP2Ad. 

Following growth factor stimulation, Ba binds PP2AD thus activating phosphatase 

activity resulting in dephosphorylation of KSR and promoting MAPK activity (Ory et 

al., 2003).

1.1.3.5 Translation

PP2A activity may also be regulated via selective degradation of B subunit mRNA. 

This is associated with both hepatic cell and lung carcinoma. Microarray analysis of 

miRNA levels within murine lung cancer showed an increase in miRNA31 within 

these cells (Liu et al., 2010). Knockdown of miRNA31 resulted in reduced growth 

and tumorigenicity, which was concurrent with an increase in Ba expression. The 

pattern was mirrored in human lung cancer tissue. Therefore, it appears that 

miRNA31 levels are reduced in lung cancer, resulting in degradation of Ba mRNA 

and reduced Ba protein, ultimately leading to hyperphosphorylation of PP2Abq 

substrates.

Another miRNA involved in the control of Ba mRNA levels is miRNA222. Increased 

levels of miRNA222 are associated with advanced hepatic cell carcinoma (HCC) and 

reduced patient survival (Wong et al., 2010). Knockdown of miRNA222 in hepatic 

cells leads to a reduction in Akt signalling and decreased cell motility. In HCC,
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increased miRNA222 results in reduced levels of Ba, therefore PP2ABa, which may 

cause a more aggressive phenotype.

1.1.3.6 Oxidation status

The oxidation status of PP2Ad may also regulate activity of the complex (Foley & 

Kintner, 2005). Nucleoredoxin (NRX) is an oxidoreductase within the nucleus. 

Immunoprecipitation studies using PP2Ac as substrate showed binding between 

NRX and PP2Ad and incubation of the proteins doubled the activity of PP2A in vitro 

(Lechward et al., 2006, Foley et al., 2007). Two residues within PP2Ac, C269 and 

C272, may be targeted by NRX for disulphide bond formation although it is unclear 

how this may alter PP2A activity as the redox state of PP2Ac does not appear to 

affect regulatory subunit binding (Foley et al., 2011). However, these data suggest a 

role of PP2A in redox sensitivity within the cell.

1.2 Target of Rapamvcin

A screen in yeast for gene mutations that cause resistance to the drug rapamycin 

revealed the existence of two proteins, Target of Rapamycin 1 (TOR1) and TOR2 

(Heitman et al., 1991). The two proteins share 67% sequence identity and are 

redundant in response to rapamycin-induced signalling. Two TOR complexes exist 

in yeast: Target of Rapamycin Complex 1 (TORC1) and TORC2.

1.2.1 TORC1

The rapamycin sensitive TORC1 contains either TOR1 or TOR2 along with 

Kontroller of Growth 1 (KOG1) and Lethal with Sec Thirteen 8 (LST8) (Leowith et al., 

2002, Wedaman et al., 2003). Interaction analysis within TORC1 revealed close 

proximity between the Raptor N Terminal Conserved (RNC) domain of KOG1 (which 

recognises TOR substrates) and the catalytic domain of TOR, placing substrates in 

the ideal location for phosphorylation (Adami et al., 2007). The same study placed 

the FK506 Binding Protein (FKBP)-Rapamycin binding site within this area of the 

TORC1 complex. Given that rapamycin does not disrupt interaction between TOR 

and KOG1, FKBP-Rapamycin likely inhibits TORC1 by either stearic hindrance with 

substrate binding or by inhibiting phosphotransfer activity, or both.
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1.2.2 TORC2

T0RC2 is composed exclusively of TOR2 with Adheres Voraciously 1 (AV01),

AV02, AVO 3 and LST8 (Leowith et al., 2002, Wedaman et al., 2003). Regulation of 

this complex is insensitive to rapamycin and plays an additional role in regulation of 

the actin cytoskeleton. AV01 and AV03 bind TOR2 at the N terminus. Both are 

phosphorylated by TOR2 and modulate integrity of the TORC2 complex. AV02 

binds TOR2 via AV01 and AV03. LST8 was shown to bind independently at the C 

terminus or TOR2. In addition to modulating integrity of the TORC2 complex, LST8 

enhances TOR2 kinase activity (Wullschleger et al., 2005).

1.2.3 TORC1 and regulation of transcription

1.2.3.1 Nitrogen Catabolite Repression

Glutamine Metabolism 3 (Gln3) is a transcription factor that is activated on inhibition 

of TOR leading to the expression of nitrogen-regulated genes (Beck & Hall 1999, 

Cardenas et al 1999, Duvel et al 2003). In the presence of good nitrogen supply, 

such as glutamine, Gln3 is phosphorylated by TOR and sequestered in the 

cytoplasm by its repressor Ureidosuccinate Transport 2 (Ure2). Ure2 is also 

phosphorylated by TOR to mediate formation of the complex with Gln3 (Cardenas et 

al 1999, Hardwick et al., 1999, Bartram et al 2000). Rapamycin treatment or poor 

nitrogen supply, such as proline, decreases the amount of Gln3-Ure2 causing 

translocation of Gln3 to the nucleus thus leading to expression of Nitrogen Catabolite 

Repression (NCR) sensitive genes including permeases and enzymes required for 

the degradation of poor nitrogen sources (Cardenas et al 1999, Bartram et al 2000, 

Komeili et al., 2000, Crespo et al., 2002).

1.2.3.2 Stress Response Element

TOR also regulates other nutrient-responsive transcription factors. Multi-copy 

Suppressor of SNF1 Mutation 2 (MSN2) and MSN4 bind to the Stress Response 

Element (STRE) of responsive genes following inactivation of PKA (Protein Kinase A) 

(Gorner et al., 1998). In yeast, signal transduction involving both PKA and TORC1 

leads to the co-ordinated control of the nutrient stress response. TORC1 indirectly 

activates PKA by phosphorylating the Akt homologue SCH9 (Soulard et al., 2010).

In response to stress including carbon or nitrogen limitation (Crespo et al., 2002), 

inhibition of PKA (via TOR) results in the nuclear localisation of MSN2 and MSN4.
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Genes regulated by the STRE include HSP12 which is involved in stabilisation of the 

plasma membrane during cellular stress (Welker et al., 2010).

1.2.3.3 Metabolic genes

The transcription factors Retrograde Regulation 1 (RTG1) and RTG3 are also 

regulated by TOR to control expression of genes involved in the TCA cycle and other 

metabolic pathways that promote glutamine synthesis (Liao & Butow, 1993,

Hardwick et al., 1999, Liu & Butow, 1999). Again, poor nitrogen supply (Pro) or 

rapamycin treatment results in inhibition of TOR and the localisation of RTG1 and 

RTG3 to the nucleus (Hardwick et al., 1999, Komeili et al., 2000, Crespo et al., 2002). 

Thus in the absence of a rich nitrogen supply, glutamine synthesis is enhanced.

1.2.4 Phosphatases in TORC1 signalling

Phosphatases are an integral component of TOR signalling (Figure 1.2). The PP2A- 

like phosphatases in yeast include Pph21, Pph22 and Suppressor of Initiation of 

Transcription 4 (Sit4). Two A Phosphatase-Associated Protein of 42kDa (Tap42) 

regulates the PP2A catalytic subunits Pph21 and Pph22 and Sit4. Activation of 

TORC1 signalling leads to phosphorylation and activation of Tap42, which inhibits 

Pph21/22 and Sit4 (Jiang & Broach 1999) allowing the expression of STRE genes 

(Schmidt et al 1998, Duvel et al 2003). On inhibition of TOR, a feedback mechanism 

results whereby Tap42 is dephosphorylated by Pph21/22 (Jiang & Broach 1999).

This leads to the dissociation of the inhibitory Tap42-phosphatase complex and in 

the case of Pph22/21, allows interaction with the regulatory subunits tRNA 

processing deficient 3 (Tpd3 -  the yeast A subunit) and cdc55, leading to formation 

of an active phosphatase complex (Como & Arndt 1996, Yan et al 2006).

Sit4 activity on repression of TORC1 is regulated by Sit4 associating protein (SAPs) 

(Luke et al., 1996). Specifically, deletion of SAP190 results in rapamycin resistance, 

indicating that SAP190 regulates Sit4 activity downstream of TORC1 (Jablonowski et 

al., 2009). Hyperphosphorylation of TORC1 substrates is also observed in strains 

lacking SAP185, indicating that this regulatory subunit may also control Sit4 activity 

downstream of the kinase (Rohde et al., 2004), although this result was later 

disputed (Jablonowski et al., 2009).
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Studies with deletion mutants of Sit4 and rapamycin resistant mutants of Tap42 have 

implicated Sit4 and PP2A activity as necessary for the expression of Gln3 

responsive genes. Wang et al (2003) used a series of Sit4 mutants defective in 

Tap42 binding and showed that whereas wild type Sit4 was capable of 

dephosphorylating Gln3, Tap42 binding mutants did not. Although this shows that 

Sit4 dephosphorylates Gln3, a discrepancy arose as to why Tap42 was necessary 

when the Sit4-Tap42 complex was previously shown to dissociate on activation of 

TOR. The authors postulated that Tap42 may therefore direct Sit4 towards 

substrates but disrupts phosphatase activity until dissociation following TOR 

activation.

Phosphatase regulation in TORC1 signalling is specific to the pathways inhibiting 

TORC1. Gln3 dephosphorylation in response to rapamycin, but not amino acid 

insufficiency, requires Sit4. Sit4 activity is not responsive to nitrogen supply and 

deletion of Sit4 did not prevent dephosphorylation of Gln3 in proline-grown cells 

(Tate et al., 2006). Therefore whilst Sit4 may dephosphorylate Gln3 in response to 

certain TORC1 inhibitory conditions, it is not the principal means of control in 

response to nitrogen supply. This indicates that distinct phosphatase complexes 

may act on TORC1 signalling in response to each stimulus.

1.2.4.1 Tip41

The inhibition of Sit4 by Tap42 is controlled by Tap42 interacting protein of 41kDa 

(Tip41) (Figure 1.2). Initially identified as a Tap42 interaction protein by yeast two 

hybrid analysis, Tip41 was found to antagonise Tap42 activity under TORC1 

inactivating conditions (Jacinto et al., 2001). Rapamycin treatment resulted in 

decreased Tip41 phosphorylation via a feedback loop involving Sit4, and the 

interaction between Tip41 and Tap42 increased. As the dissociation of Sit4-Tap42 is 

prevented in ATip41 cells treated with rapamycin, it is thought that Tip41 removes 

Tap42 from Sit4 under such conditions. Active Sit4 then dephosphorylates Gln3. In 

cells depleted of Tip41, Gln3 remains within the cytoplasm, an indication of Sit4 

inhibition, thus implicating Tip41 with a role in the activation of Sit4.

In Saccharomyces pombe, PP2A activity increased 7 fold in tip41+ cells 

(Fenyvuesvolgyi et al., 2005). In this study, induced expression of Tip41 slowed cell
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cycle transition following nitrogen starvation, which was overcome by deletion of 

PP2A. Tip41 therefore appears to regulate phosphatase activity in fission yeast in a 

mechanism analogous to that in budding yeast.

1.3 The mTORCI complex

The mTORCI complex is composed of mTOR along with Regulatory Associated 

Protein of mTOR (Raptor) and mLST8 . Additional subunits have recently been 

identified. Proline-Rich Akt Substrate of 40kDa (PRAS40) and DEPTOR are 

inhibitory subunits of mTORCI. In addition, the E3 ligase Cullin4-DNA Damage 

Binding Protein 1 (CUL4-DDB1) and scaffold proteins Telomere Maintenance 2 (Tel2) 

and Tel2 Interacting Protein 1(Tti1) are required for mTORCI activity.

1.3.1 mTOR

As a large 2549 amino acid protein, mTOR was the first mammalian member of the 

PI3K related kinase (PIKK) family to be cloned. PIKKs share a catalytic domain that 

contains an ATP binding site, catalytic loop and activation loop. The catalytic 

domain has two lobes, the N terminal lobe consists of a five-stranded p sheet flanked 

by three a-helices, along with a larger C terminal lobe. The ATP binding residues 

are found in the linker region between the two lobes (Walker et al., 2000). Within the 

C terminal lobe is the activation loop which confers substrate specificity of the kinase 

(Walker et al., 1999). The catalytic domain is surrounded by the FAT (named after 

FRAP, ATM and TRAP which all contain the domain) and FATC (an additional FAT 

domain at the extreme C terminus of the protein) domains. These domains may 

form a structural scaffold or be involved in protein-protein interactions (Bisotti & 

Isacchi, 2000). The large number of HEAT repeats at the N terminus of the protein 

are also involved in protein-protein interactions (Andrade & Bork, 1995, Keith & 

Schreiber, 1995). As in yeast, mTOR acts in two complexes, namely mTORCI and 

mTORC2.

1.3.2 Raptor
Raptor, the mammalian homologue of yeast KOG1 (Table 1.1) (Leowith et al., 2002, 

Wedaman et al., 2003), interacts with mTOR to form a stochiometric complex and is 

required for phosphorylation of mTORCI substrates. The protein consists of a highly
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Yeast Human orthologue

Pph21/22 PP2Ac

Tpd3 PP2A A subunit

Cdc55 PP2A B subunit

Sit4 PP6c

Tap42 Alpha4

Tip41 Tip41

TOR mTOR

KOG1 Raptor

LST8 mLST8

AV01 Rictor

Table 1.1: Yeast proteins and human orthologues relating 
to TOR/mTOR signalling.
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conserved RNC domain that contains three blocks with high sequence similarity 

within species that is predicted to have a high propensity to form a helices. 

Overexpression of Raptor S391Q to PA mutant within the RNC results in dominant 

negative inhibition of mTORCI activity and prevents phosphorylation of eukaryotic 

Initiation Factor 4E Binding Protein 1 (4EBP1) and ribosomal S6 Kinase 1 (S6K1) 

(Dunlop et al., 2009). Thus the RNC domain is critical in Raptor mediated mTORCI 

substrate recognition. Control of interaction between mTOR and Raptor via the RNC 

domain is highly sensitive, as point mutations within the domain prevented 

interaction with mTOR and inhibited mTORCI kinase activity (Kim et al., 2002).

Following the RNC, Raptor contains HEAT repeats followed by seven WD40 repeats 

at the C terminus (Kim et al., 2002). Concurrent with mutation of the RNC domain, 

point mutation within the WD40 domain also prevents interaction with mTOR (Kim et 

al., 2002). Whereas the HEAT repeats of mTOR are critical for the interaction with 

Raptor, multiple regions within Raptor are therefore required for interaction with 

mTOR.

Inhibition of mTORCI signalling by removal of upstream stimulation inhibits 

association between mTOR and Raptor to prevent phosphorylation of downstream 

targets (Kim et al., 2002). Raptor is itself phosphorylated by mTOR at a number of 

rapamycin sensitive sites including S863. Mutation of S863 to alanine reduced 

mTORCI activity towards 4EBP1 and S6K1 showing that Raptor phosphorylation is 

critical for mTORCI signalling (Wang et al., 2009, Foster et al., 2010). In addition, 

mutation of the six identified activating phosphorylation sites inhibited mTORCI 

activity in vitro, indicating that Raptor phosphorylation acts as a ‘biochemical 

rheostat’, regulating mTOR activity in response to upstream signalling (Foster et al., 

2010).

1.3.3 mLST8
There is conflicting evidence regarding the requirement of mLST8 for activity of the 

mTORCI complex. In one study, ml_ST8 was shown to bind the kinase domain of 

mTOR via its WD40 repeats resulting in increased activity of mTORCI. Nutrient 

sensing by mTORCI was also shown to require mLST8 , as without mLST8 , low
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amino acid conditions did not change the activity of mTOR-Raptor (Kim et al., 2003). 

More recently, a murine study concluded that mLST8 was not essential for mTORCI 

activity, as mLST8-/- MEFs had no change in S6K1 or4EBP1 phosphorylation. In 

addition, the mTOR-Raptor complex still immunoprecipitated from these cells, and 

phosphorylated S6K1 in vivo (Guertin et al., 2006).

1.3.4 DEPTOR

DEPTOR is a newly identified member of the mTORCI complex. Through 

interaction with mTOR, DEPTOR inhibits phosphorylation of S6K1. Activity of 

DEPTOR is controlled by degradation which occurs under mTORCI activating 

conditions. Serum stimulation of cells results in post-translational modification of 

DEPTOR, as shown by gel retardation of the protein, eventually resulting in loss of 

protein. Reduction of DEPTOR levels is controlled by mTORCI, as the high level of 

DEPTOR found in TSC2-/- MEFs is reduced by inhibition of mTOR. Serum 

starvation conversely increases levels of the protein (Peterson et al., 2009).

1.3.5 Tel2 and Tti1

Recently stability of the mTORCI complex has been shown to require Tel2 and Tti1. 

Tel2 contains HEAT repeats and preferentially binds new proteins (Takai et al., 

2010). Tti1 constitutively binds mTOR, and knockdown results in reduced 

phosphorylation of mTORCI substrates (Kaizuka et al., 2010). Both are required for 

the formation of stable mTORCI.

1.3.6 PRAS40

PRAS40 is an inhibitory subunit of mTORCI. Knockdown of PRAS40 increases 

4EBP1 binding to mTORCI, implicating PRAS40 as a competitive mTOR inhibitor.

In addition, PRAS40 inhibits mTOR autophosphorylation required for activation 

(Thedieck et al., 2007). Raptor binds PRAS40 via the TOR Signalling (TOS) motif, 

FVMDE, and interaction is inhibited by stimulation with insulin (Wang et al., 2007). 

Thus under mTORCI inactivating conditions, PRAS40 interacts with Raptor to 

prevent substrate binding and inhibits phosphorylation of downstream mTOR 

substrates such as S6K1. Activation of mTORCI by insulin stimulation results in 

phosphorylation of PRAS40 by mTOR at S183, S212 and S221, and allows 

activation of mTORCI (Oshiro et al., 2007, Sancak et al., 2007, Wang et al., 2008).
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Following mTORCI phosphorylation, PRAS40 is released and sequestered by 14-3- 

3 protein (Fonseca et al., 2007, Wang et al., 2008). PRAS40 may also constitute a 

method of direct mTORCI regulation by Akt, as Akt phosphorylates PRAS40 leading 

to dissociation from mTORCI (Kovacina et al., 2003).

1.3.7 CUL4-DDB1

Ubiquitination has been shown as essential for mTORCI signalling. DDB1 serves 

as an adaptor for the E3 ubiquitin ligase CUL4 (Angers et al., 2006). CUL4-DDB1 

has been shown to interact with Raptor, and this interaction is required for 

phosphorylation of 4EBP1 and S6K1 by mTORCI. CUL4-DDB1 regulates 

polyubiquitination-mediated proteasomal degradation (Jiang et al., 2011) therefore 

degradation of an unknown CUL4-DDB1 substrate appears to be involved in 

mTORCI signalling (Ghosh et al., 2008).

1.3.7.1 Ubiquitination

Ubiquitination is a post-translational modification resulting in the addition of a large 

8kDa ubiquitin molecule to a lysine residue within the target protein. The process of 

ubiquitination classically involves 3 enzymes in a multi-step reaction. Firstly, a 

glycine residue within the free ubiquitin molecule is activated by an E1 ubiquitin- 

activating enzyme. Activated ubiquitin is then transferred to the E2 ubiquitin- 

conjugating enzyme. Finally, an E3 ubiquitin ligase transfers the ubiquitin molecule 

from E2 to the target protein (reviewed in Bhat & Greer, 2011).

1.3.7.1.1 Polyubiquitination

Tethering of ubiquitin via K48 within the ubiquitin molecule results in proteasomal 

degradation of the target protein and typically involves polyubiquitination. 

Degradation is carried out by the 26 Svedberg (26S) proteasome. This is a 2.3MDa 

complex consisting of a 20S core with a 19S regulatory particle at one or both ends. 

The 20S core is a hollow cylindrical structure and is responsible for proteolytic 

degradation. Once targeted to the proteasome, ubiquitin molecules are removed 

from the substrate by deubiquitinating enzymes (DUBs) to prevent clogging of the 

proteolytic chamber. Degradation results in the release of peptides of between 8-12 

amino acids in length (reviewed in Bhat & Greer, 2011). Thus ubiquitination provides 

a means in which to remove proteins that are no longer required by the cell.
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Ubiquitination via K63 has diverse consequences within the cell and can either take 

the form of mono- or poyubiquitination. Protein-protein interaction can be mediated 

by polyubiquitin which provides a binding platform for complexes thereby resulting in 

activation of signalling cascades. Interaction with binding proteins takes place via a 

hydrophobic patch near the C terminus whereas ubiquitin binding domains (UBDs) 

within signalling proteins mediates binding to ubiquitin (reviewed in Chen & Sun,

2009, Winget & Mayor, 2010).

Polyubiquitin provides a binding platform for proteins involved in signalling to Nuclear 

Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-kB). Upstream of NF- 

kB, lnterleukin-1 p (IL-ip) simulates activation of the E3 ubiquitin ligase, Tumour 

Necrosis Factor (TNF) Receptor-Associated Factor 6 (TRAF6), resulting in 

ubiquitination of Transforming Growth Factor p-Activated Kinase 1 (TAK1) via K63 

within ubiquitin (Ninomiya-Tsuji et al., 1999, Deng et al., 2000, Sorrentino et al., 2008, 

Fan et al., 2010). This provides a binding platform forTAKI Binding Protein 2 (TAB2) 

and TAB3 which bind polyubiquitinated proteins (Takesu et al., 2000, Kanayama et 

al., 2004, Kishida et al., 2005). TAB2 and TAB3 then mediate interaction of TAB1 

which stimulates autophosphorylation of TAK1 required for activation (Shibuya et al., 

1996, Sakurai et al., 2000).

Tip41 has recently been identified as a ubiquitin binding protein involved in TAK1 

activation. In this capacity, Tip41 acts as a TAB and binds polyubiquitinated TAK1 to 

trigger autophosphorylation. A Phe254-Pro255 motif within Tip41 is essential for 

ubiquitin binding and is identical to the motif required by TAB2 and TAB3 for 

interaction with ubiquitinated TAK1. For this reason Tip41 was assigned a new 

name, TAB4 (Pirckett et al., 2008). Active TAK1 then phosphorylates Inhibitor of NF- 

kB (IkB) Kinase (IKK), leading to phosphorylation and subsequent ubiquitination- 

mediated proteasomal degradation of IkB (Wieteck & O’Neill, 2007).

DNA repair also relies on polyubiquitin as a binding platform. K63-linked 

polyubiquitination by the E3 ubiquitin ligase Ubiquitin Conjugating 13 (Ubc13) is 

critical in providing a binding platform for proteins involved in double strand break 

repair following activation of ATM at the damaged site (reviewed in Chen & Sun, 

2009).
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Polyubiquitination via K63 is also required for Akt activation. Following growth factor 

stimulation, Akt is polyubiquitinated at K8 and K14 within the Pleckstrin Homology 

(PH) domain by TRAF6 . A TRAF6-/- mouse showed reduced Akt ubiquitination and 

phosphorylation and phosphorylation of Glycogen Synthase Kinase 3p (GSK3P). 

Ubiquitinated Akt may serve as a platform for adaptors of Akt resulting in membrane 

recruitment therefore allowing activation. The cancer-associated Akt mutant E17K 

within the PH showed increased ubiquitination and activation, thereby implicating 

ubiquitination in oncogenic Akt activation (Yang et al., 2009, Yang et al., 2010).

Thus polyubiquitination via K63 within ubiquitin has alternative consequences to 

proteasomal degradation.

1.3.7.1.2 Monoubiquitination

Monoubiquitination has diverse functions including roles in protein trafficking, DNA 

damage repair and alteration of cellular localisation. The epidermal growth factor 

receptor (EGFR) is monoubiquitinated provoking internalisation on ligand binding 

leading to membrane recycling of the receptor rather that lysosomal degradation 

(reviewed in Acconcia et al., 2009). Ubiquitination also allows protein sorting in the 

early endosome. Monoubiquitinated proteins within early endosomes are sorted into 

intraluminal vesicles (ILVs) thereby generating multivesicular bodies (MVBs). 

Ubiquitinated proteins within the early endosomes are recognised by Endosomal 

Sorting Complexes Required for Transport (ESCRTs). These include ubiquitin 

binding proteins which separate ubiquitinated from non-ubiquitinated proteins within 

the early endosomes ending in scission and formation of an ILV (reviewed in 

Acconcia et al., 2009).

Within the Fanconi Anaemia pathway involved in DNA repair ubiquitination provides 

a binding platform recruiting proteins to the damaged site (reviewed in Chen & Sun, 

2009).

Ubiquitination can also modulate cellular localisation. Mdm2 is an E3 ligase that 

regulates both the transcription factor Forkhead Box Protein 04 (FOX04) and the 

tumour suppressor p53 (Kubbutat et al., 1997, Lai et al., 2001). Whereas multiple
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mono-ubiquitination of p53 results in degradation, single mono-ubiquitination of 

F0X04 leads to nuclear translocation. In response to oxidative stress, this results in 

activation of F0X04 transcriptional activity (van der Horst et al., 2006, Brenkman et 

al., 2008).

1.4 Processes regulated by mTORCI

1.4.1 The TOS motif

The mTORCI complex controls many essential processes in the cell by regulating a 

number of substrates and effectors (Table 1.2). Two of the best characterised 

mTORCI substrates are the 4EBP1 and S6K1, which are involved in translation 

initiation (Figure 1.3 and 1.4). Both contain a five amino acid sequence known as 

the TOS motif that is essential for binding to Raptor and subsequent phosphorylation 

by mTOR following stimulation by upstream signals (Schalm et al., 2003, Wang et al., 

2003). Within 4EBP1 this sequence is found at the C terminus encompassing 

residues Fn4 EMDI. Overexpression of F114A mutant results in decreased cell size 

and complete abrogation of Raptor binding and mTOR phosphorylation, highlighting 

the importance of this residue within the motif (Nojima et al., 2003, Schalm et al., 

2003, Lee et al., 2008,). Within S6K1, mutation of the N terminal TOS motif F5DIDL 

to ADIDL prevented amino acid signalling downstream of mTORCI (Schalm & Blenis,

2002). Both substrates are essential mediators of cap-dependent translation. Other 

proteins containing a TOS motif include PRAS40, which is phosphorylated by mTOR 

(Oshiro et al., 2007, Sancak et al., 2007, Wang et al., 2008), and the transcription 

factors Hypoxia Inducible Factor 1 (HIF1) and Signal Transducer and Activator of 

Transcription 3 (STAT3) which are also regulated by mTORCI (Yokogami et al.,

1999, Land & Tee, 2007).

1.4.2 Regulation of translation

1.4.2.1 Translation in eukaryotes

Translation in eukaryotes is a multi-factorial process that requires interaction of 

transcribed mRNA with ribosomes and a multitude of initiation factors. It occurs in 

three steps. Firstly, initiation entails the assembly of the ribosome with the initiator- 

methionyl-transfer-RNA (Met-tRNAiMet) in its peptidyl site at the start codon of the 

mRNA. Polypeptide synthesis follows and constitutes the elongation step. As the
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Category
Substrate/

effector Detail

Translation
4EBP1 Inhibition by mTOR allows elF4E interaction with elF4G

S6K1 Phosphorylates rpS6, elF4B, SKAR and eEF2K

Transcription

HIF1 Activates hypoxic response including glycolytic genes

STAT1
m TORCI inhibition activates STAT1 and IFNy-responsive 

genes

STAT3 Cell-type specific effects

YY1 Activates mitochondrial genes

SREBP Promotes lipogenesis

GLI3 Activates genes involved in cell cycle regulation

Proliferation SGK1 Inhibits p27 to allow cell cycle progression

Autophagy
ULK1 Phosphorylated by m TORCI to inhibit autophagy

Atg9 Phosphorylated by m TORCI to inhibit autophagy

LC3 Phosphorylated by m TORCI to inhibit autophagy

Table 1.2: mTORCI effectors and substrates. ‘Category’ relates to the general cellular 
process in which the effector/substrate is involved.
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Figure 1.3: Insulin signalling to mTORCI. Insulin binds it’s cognate receptor 
leading to phosphorylation of IRS-1 and subsequently PI3K. Active PI3K then converts 
PIP2 to PIP3 providing a binding platform for the PH domain-containing proteins PDK1 
and Akt at the plasma membrane. PDK1 then activates Akt which phosphorylates 
TSC2 at a number of Serine residues. TSC2 phosphorylation leads to inactivation of 
the GAP domain, allowing accumulation of active GTP-Rheb. This allows activation of 
mTORCI and phosphorylation downstream substrates including S6K1 and 4EBP1. 
HIF1 is also activated in the nucleus, as m TORCI promotes the accumulation of 
HIF1a.
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Figure 1.4: Signalling inputs and outputs of mTORCI. The m TORCI complex is a 
central regulator of a number of processes and is itself regulated downstream of a 
number of signalling pathways. Insulin an growth factor activation of m TORCI takes 
place via Akt which phosphorylates and inactivates the inhibitory TSC1/2 complex.
This then allows accumulation of GTP-Rheb and activation of m T O R C I. Amino acids 
activate mTORCI via a number of mechanisms and result in localisation of the 
complex to membrane structures where Rheb resides. AMP accumulation, autophagy 
and hypoxia all inhibit m TORCI in order to switch the growth-enhancing effect of the 
complex. When activated m TORCI enchances transcription and translation to 
enhance growth, and also increases proliferation by regulation of p27. The coJORCt 
complex also inhibits autophagy which is only required on energy deprivaUQfk
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ribosome reaches the stop codon, the completed polypeptide is released leading to 

termination of translation.

Initiation is itself achieved in four subsequent steps (reviewed in Preiss & Hentze,

2003). The first results in formation of the 43S Pre-Initiation Complex (PIC) 

consisting of the 40S ribosomal subunit, initiation factors and Met-tRNAiMet. 

Physiological conditions favour formation of the 80S ribosome, hence the first step in 

initiation is dissociation into the 40S and 60S subunits by eukaryotic Initiation Factor 

3 (elF3) and elF1A (reviewed in Dong & Zhang, 2006). Dissociated 40S binds Met- 

tRNAiMet which is delivered to the subunit by elF2. As elF2 is a G protein, activation 

requires GTP binding mediated by the GEF elF2B. Activation of elF2B is regulated 

by Akt via GSK3. In nutrient deprived cells, GSK3 is active and phosphorylates 

elF2B at S535 thereby inhibiting translation (Wang et al., 2001, Wang et al., 2002). 

Insulin stimulation promotes Akt phosphorylation of GSK3 leading to inactivation of 

the kinase (Mora et al., 2002, Mora et al., 2005, Mariappan et al., 2008). This leads 

to the accumulation of hypophosphorylated, and active, elF2B. The ternary complex 

(TC) consisting of elF2, elF2B and Met-tRNAiMet is then delivered to the 40S subunit 

aided by elF1, elF1 A and elF3. This constitutes the 43S PIC.

The second step in initiation involves the recruitment of 43S to the capped 5’ end of 

the mRNA. This is again mediated by elF3 which stimulates binding of 43S to 

mRNA (reviewed in Hinnebusch, 2006). Residing at the 5’ end of the mRNA, elF4E 

resembles a cupped hand and its concave surface contains a hydrophobic groove 

for insertion of the mRNA (reviewed in Merrick, 2010). The convex surface binds 

elF4G, a subunit of elF4F, and serves to enhance binding of elF4F to the 5’ end of 

the mRNA. Also at the 5’ end is the RNA helicase, elF4A unwinds the secondary 

structure, a process made more efficient by the presence of elF4F and elF4B. The 

4EBPs act as competitive inhibitors of elF4G as they block the elF4G binding region 

of elF4E. Phosphorylation by kinases such as mTOR removes them from elF4E 

thus allowing binding of the elF4F complex at the 5’ cap of the mRNA.

Scanning of the untranslated region for the AUG start codon constitutes the third 

phase of initiation, followed by recruitment of the 60S ribosomal subunit to form the 

complete 80S ribosome. This results in release of the initiation factors and requires
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GTP hydrolysis of elF2. This marks completion of the initiation phase, allowing 

elongation and finally termination to take place.

1.4.2.2 4EBP1

Phosphorylation of 4EBP1 is sensitive to mTORCI activation and inhibition (Brunn et 

al., 1997, Hara et al., 1997). When hypophosphorylated, 4EBP1binds elF4E thus 

inhibiting cap-dependent translation. There are a number of mTORCI sensitive 

phosphorylation sites within the protein, which are phosphorylated in sequence. 

Firstly, T37/46 is phosphorylated, followed by T70 then S65 (Gingras et al., 2001). 

This results in removal of 4EBP1 from elF4E thus allowing translation (Brunn et al., 

1997, Schalm et al., 2003, Eguchi et al., 2006). A dominant negative 4EBP1 mutant 

that constitutively binds elF4E results in decreased cell size, concurrent with 

inhibition of mTORCI signalling (Fingar et al., 2002). Additional 4EBP1 

phosphorylation sites include S101 and S112. These are constitutively 

phosphorylated and are required for phosphorylation at S65 and release from elF4E 

(Wang et al., 2003).

In relation to mTORCI signalling, 4EBP1 contains an additional motif at the N 

terminus termed the RAIP motif after the four residues it encompasses. Mutation 

I15A within the RAIP motif was shown to reduce Raptor binding and phosphorylation 

by mTORCI (Lee et al., 2008). However, alternative studies have failed to show any 

effect on phosphorylation at T37/46 or T70 following mutation of the same residue 

(Eguchi et al., 2006). The T37/46 phosphorylation sites of 4EBP1 are insensitive to 

rapamycin, in contrast to phosphorylation of S65 and T70 which are potently 

inhibited by the drug (Gingras et al., 2001, Wang et al., 2005).

1.4.2.3 S6K1
S6K1 is activated by mTORCI following direct phosphorylation at T389. Kinase 

dead mutants of mTOR result in reduced phosphorylation at this site, whereas 

rapamycin resistant mTOR mutants results in rapamycin resistance of S6K1 (Brown 

et al., 1995). An additional R409SPRR motif within S6K1 at the C terminus appears 

to regulate activity of the kinase. Phosphomimetic T389E mutation of the S6K1 TOS 

mutant F5A only partially rescues catalytic activity of the kinase, whereas complete 

rescue is achieved by additional mutation of an RSPRR motif (Schalm et al., 2005).
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The authors postulated that the RSPRR motif may provide a binding site for an 

unknown inhibitor of S6K1 activity, PP2A being the prime suspect due to an already 

identified interaction with the kinase (Westphal et al., 1999). Thus mutation of the 

RSPRR motif prevents binding of the inhibitor allowing full rapamycin resistant 

catalytic activity on combination of mutated F5A and phosphomimetic T389E. 

Following mTORCI activation, S6K1 enhances translation through a number of 

mechanisms.

1.4.2.3.1 Ribosomal protein S6

The first identified substrate of S6K1 was the ribosomal protein S6 , after which it was 

named (reviewed in Fenton & Gout, 2011). Activation of S6 requires 

phosphorylation of several residues at the C terminus including S235, S236, S240, 

S244 and S247 (Kreig et al., 1988, Ferrari et al., 1991, Bandi et al., 1993). S6K1 

can phosphorylate all of these sites leading to full activation of S6 . Numerous 

mouse studies have concluded that the primary role of S6 lies in control of cell 

growth. Mutation of S6 phosphorylation sites to Alanine within a mouse model 

results in smaller rodents due to stunted growth (Ruvinsky et al., 2009). Cultured 

MEFs from this model are also smaller and the size is not decreased further by 

treatment with rapamycin, indicating that S6 is the principle method of control of cell 

growth by mTOR (Ruvinsky et al., 2005). S6K1 deficient mice are also smaller and 

have reduced levels of phosphorylated S6 (Pende et al., 2000, Pende et al., 2004).

1.4.2.3.2 elF3-PIC

S6K1 activates translation through interaction with the elF3-PIC. elF3 is composed 

of 13 subunits and tethers the PIC (including the 40S ribosomal subunit) to the 5’ cap 

of mRNA via interaction with elF4F. The complex blocks premature binding of the 

60S ribosomal subunit and enhances binding of the ternary complex GTP-elF2- 

MettRNA (reviewed in Peterson & Sabatini, 2005). Binding of elF3-PIC with S6K1 is 

regulated by amino acids and rapamycin. S6K1 mutants F5A and T389A are both 

constitutively bound to elF3-PIC, indicating that following phosphorylation by 

mTORCI, S6K1 dissociates from elF3-PIC. Following dissociation, S6K1 

phosphorylates S6 and elF4B (Shahbazian et al., 2006). Phosphorylated elF4B can 

then bind the elF3-PIC. Phosphorylation of elF3 is essential in regulating 

association with the elF3-PIC as phosphomimetic S422D (the elF4B phosphorylation
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site) is constitutively bound to elF3-PIC whereas S422A is unable to associate (Holz 

et al., 2005). Activation of mTORCI also results in increased association of elF4G 

with elF3 (Harris et al., 2006).

1A.2.3.3 SKAR

Another mechanism by which S6K1 regulates translation is through the novel S6K1 

interacting protein S6K1 Aly/REF-like target (SKAR). This was discovered following 

a two hybrid screen using S6K1 as bait, and was subsequently found to be an S6K1 

substrate. The exon-junction complex (EJC) is a multi-subunit protein recruited to 

mRNA following intron splicing, which functions to eliminate mRNAs with premature 

termination codons (PTCs). Following the first round of translation, the EJC is 

removed from the mRNA (Ishigaki et al., 2001). On discovery of a PTC however, the 

EJC is not removed triggering nonsense mediated decay of the mRNA (reviewed in 

Lejeune & Maquat, 2005). SKAR binds to mRNA via the EJC. Following interaction 

with the RNA recognition motif (RRM), S6K1 phosphorylates SKAR at S383 and 

S385 at the C terminus of the protein. Phosphorylation of these sites is sensitive to 

insulin and rapamycin and to knockdown of S6K1, implicating SKAR as a target of 

S6K1 downstream of mTORCI (Richardson et al., 2004). Following phosphorylation, 

S6K1 remains bound to SKAR and increases the translation efficiency of spliced 

mRNAs (Ma et al., 2008). Knockdown of SKAR reduced the amount of S6K1 bound 

to mRNA and reduced phosphorylation of mRNA binding proteins (Ma et al., 2008). 

Therefore S6K1 binds SKAR in order to localise phosphorylation of mRNA 

associated proteins.

1A.2.3A eEF2K

S6K1 also regulates the elongation phase of translation by phosphorylating 

eukaryotic Elongation Factor 2 Kinase (eEF2K). Elongation constitutes addition of 

amino acids (in the form of aminoacyl-tRNA) to the nascent polypeptide, mediated by 

the ribosome. Correct codon-anticodon interactions between mRNA and tRNA 

respectively result in conformational changes within the ribosome leading to peptide 

bond formation and extension of the peptide (Doudna & Rath, 2002, Ramakrishnan

2002). Elongation factors mediate this stage of translation. Whereas eEF1 delivers 

aminoacyl-tRNA to the ribosome, eEF2 aids translocation of the nascent polypeptide 

within the ribosome to allow accommodation of subsequent aminoacyl-tRNAs (Li et
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al., 2005, Taylor et al., 2006). Phosphorylation of eEF2 by eEF2K prevents binding 

to the ribosome and inhibits elongation (Lie et al., 2005). Activate S6K1 

phosphorylates and inhibits eEF2K at S366 allowing the accumulation of 

dephosphorylated eEF2 and activation of elongation (Wang et al., 2001). Thus 

mTORCI is a powerful regulator of eukaryotic translation at both the initiation and 

elongation phases.

1.4.3 Regulation of transcription

1.4.3.1 HIF1

Transcription factor activation also comprises the mTORCI mediated response to 

hypoxia, which involves the transcription factor HIF1. HIF1 activates the expression 

of Vascular Endothelial Growth Factor (VEGF) in order to promote angiogenesis 

(Kim et al., 2001). In addition, HIF1 activates genes to promote glucose uptake and 

glycolysis (Semenza et al., 1994, Chen et al., 2001). This allows the hypoxic cell to 

upregulate anaerobic metabolism in the absence of a plentiful supply of oxygen.

HIF1 is a heterodimeric complex consisting of HIF1a and HIFip, which are encoded 

by separate genes (Iyer et al., 1998). HIF1a contains a number of domains that 

regulate the protein. The PER-ARNT-SIM (PAS) motif constitutes the HIFip binding 

site at the N terminus. The two transactivation domains (TADs) bind cofactors and 

increase transcriptional activity. Finally, the oxygen dependent degradation (ODD) 

domain mediates inhibition under normoxic conditions (reviewed in Semenza, 2001). 

HIF1a also contains a TOS motif at the N terminus, implicating the protein as a bona 

fide substrate of mTORCI (Land & Tee, 2007).

Whereas H IFip is constitutively expressed, HIF1a expression is induced in hypoxic 

conditions. Under normoxic conditions, HIF1a is hydroxylated at a number of proline 

residues within the ODD domain and TAD that are recognised by von-Hippel Lindau 

protein (VHL) (Bruick & McKnight, 2001, Epstein et al., 2001, Lando et al., 2002). 

Binding of VHL mediates interaction of HIF1a with an E3 ligase, resulting in 

ubiquitination within the ODD domain and TAD and proteolytic degradation (Mason 

et al., 2001). Under hypoxic conditions, hydroxylation is inhibited leading to 

accumulation of HIF1a and subsequently HIF1 complex.
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HIF1a expression is activated by mTORCI (Laughner et al., 2001). Under hypoxic 

conditions, rapamycin decreased HIF1a expression in PC3 cells, which was 

reversed on expression of a rapamycin resistant mutant mTOR (Hudson et al., 2002). 

TSC2-/- MEFs have increased HIF1 activity, which is reduced by rapamycin 

(Burgarolas et al., 2003, Land & Tee, 2007). In addition, Raptor interacts with HIF1a 

WT but not a TOS mutant form of the protein (Land & Tee, 2007). Recently, HIF1a 

activation was shown to require S6K1 downstream of mTORCI. Knockdown of 

S6K1 in Phosphatase and Tensin Homologue (PTEN) null cells reduced the high 

levels of HIF1a expression seen in these cells, as a result of decreased 

accumulation of the protein (Tandon et al., 2011). Previous studies have shown 

mTORCI mediates the effect on HIF1a via the ODD domain (Hudson et al., 2002). 

Still, the exact mechanism of mTORCI mediated activation of HIF1 remains unclear.

1.4.3.2 STAT1

Interferon-7 (IFN-y) stimulates STAT1 dimerisation, nuclear translocation and 

activation of target genes. Recently, this was found to be mediated by mTORCI. 

Inactivation of mTORCI following treatment with rapamycin increased mTORCI - 

STAT1 interaction and nuclear translocation. Therefore inactivation of mTORCI 

mediates STAT1 activation and expression of IFN7  responsive genes (Fielhaber et 

al., 2009).

1.4.3.3 STAT3

STAT3 is activated in response to cytokines and growth factors and promotes cell- 

type specific activation of transcription. Both serine and tyrosine phosphorylation are 

required for full activation of transcription factor function (Wen et al., 1995). 

Phosphorylation of Y705 by the MAPK c-Jun N terminal Kinase (JNK) is required for 

nuclear translocation and DNA binding, whereas S727 phosphorylation increases 

transcriptional activation by possibly increasing interaction with cofactors. Activation 

of STAT3 has diverse consequences, including proliferation of B lymphocytes and 

growth arrest in monocytes. Transformation resulting from expression of 

constitutively active STAT3 has lead to identification of the transcription factor as an 

oncogene (reviewed in Levy & Lee, 2002).
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Phosphorylation of S727 was found to be mediated by mTORCI, as a peptide 

containing the S727 site was phosphorylated by mTORCI (Yokogami et al., 1999). 

Interestingly, mTORCI was also found to promote Y705 phosphorylation of STAT3 

in neuronal progenitor cells as phosphorylation of both S727 and Y705 were 

sensitive to rapamycin. Differentiation of the progenitor cells was reversed by 

rapamycin, implicating mTORCI in neuronal differentiation. A direct interaction 

between mTORCI and STAT3 was also discovered, indicating STAT3 may be a 

substrate for mTORCI (Wang et al., 2008). STAT3 activation mediated by mTORCI 

also increased tumorigenicity of breast cancer cells, providing further evidence for 

the role of STAT3 as an oncogene (Zhou et al., 2007).

1.4.3.4 YY1

The transcription factor Yin Yang 1 (YY1) is so called due to its dual action as a 

transcriptional activator and repressor. For example, YY1 may activate or repress 

the adenoviral-associated virus P5 promoter depending on the presence of 

adenoviral E1A protein (Shi et al., 1991). YY1 may also repress or activate IFNp as 

dictated by cofactor binding. Repression of transcription can occur by YY1 

competing with activating cofactors or by interaction with repressors. On the other 

hand YY1 can directly activate transcription, or indirectly activate by removal of 

inhibitory function via cofactor recruitment thus unmasking the activating N terminus 

of the protein.

Activation of transcription by YY1 can also occur by recruitment of co-activators, 

such as peroxisome-proliferator-activated receptor co-activator 1a (PGC1a).

PGC1a controls mitochondrial function through interaction with transcription factors. 

The potential role of mTORCI in mitochondrial function was investigated following 

data showing rapamycin reduces mitochondrial membrane potential, oxygen 

consumption and ATP generation. In addition, mTORCI was found to localise to 

mitochondria (Schieke et al., 2006). Thus is appears that mTORCI may have a 

positive regulatory role within mitochondrial function. Later studies found that 

rapamycin reduces expression of mitochondrial genes encoded by PGC1a. YY1 

binding motifs were enriched in mitochondrial genes regulated by PGC1a, and rather 

than modulating PGC1a directly, mTORCI was found to modulate activity of YY1.
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PGC1a was therefore identified as a co-activator of YY1 to activate transcription of 

mitochondrial genes. YY1 binds both Raptor and PGC1a, and whilst mTORCI-YY1 

interaction remains unchanged by rapamycin treatment, PGC1a binding is prevented 

Thus mTORCI controls YY1 activation of mitochondrial genes by mediating binding 

with the co-activator PGC1a.(Cunningham et al., 2007). This may allow the cell to 

activate mitochondrial function to provide energy following a plentiful supply of 

nutrients.

1.4.3.5 SREBP

Although mTORCI promotes cell growth through activation of translation resulting in 

protein biosynthesis, this does not complete the story. Recently, mTORCI has been 

implicated in lipid biosynthesis, thus providing a second point of cell growth 

augmentation. The transcription factor sterol regulatory element binding protein 

(SREBP) controls fatty acid and sterol synthesis, which are the major lipids found in 

eukaryotic membranes. SREBP is synthesised as an inactive precursor and is 

anchored in this state at the endoplasmic reticulum bound to sterol cleavage 

activating protein (SCAP). Low cholesterol levels result in translocation of 

SREBP/SCAP to the golgi resulting in proteolytic cleavage and release of the DNA 

binding domain. This then shuttles into the nucleus to activate genes with sterol 

regulatory elements (SREs) in the promoter region, which are involved in cholesterol 

and fatty acid synthesis (reviewed in Powers, 2008). SREBP has been identified as 

a target of mTORCI downstream of Akt. Activation of Akt results in increased cell 

size, which is prevented by knockdown of SREBP. The downstream effector of 

SREBP was identified as mTORCI as rapamycin inhibits the Akt induced nuclear 

accumulation of SREBP (Porstmann et al., 2008). Thus Akt mediated activation of 

mTORCI can promote nuclear accumulation of active SREBP, providing a link 

between mTORCI and lipogenesis.

1.4.3.6 GLI3
In the absence of activating signals, the transcription factor Glioma-Associated 

Oncogene Family Zinc Finger 3 (GLI3) is subject to proteolytic cleavage, followed by 

nuclear translocation of the N terminal peptide resulting in transcriptional repression. 

Activation of GLI3 genes follows activation of upstream signalling pathways, leading
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to the nuclear translocation of the full length protein and activation of cyclin D1 and 

other responsive genes (KrauG et al., 2008). Inhibition of mTORCI with rapamycin 

was found to promote the nuclear translocation of active GLI3 and transcription of 

the cyclin D1 gene (KrauR et al., 2008). This implies that mTORCI negatively 

regulates GLI3 and therefore the transcription of cyclin D1.

1.4.4 Regulation of proliferation

A link between mTORCI signalling and proliferation has long been recognised since 

the discovery that rapamycin inhibits cell cycle progression by binding mTOR kinase 

(Brown et al., 1994, Sabatini et al., 1994). Cell cycle progression is controlled by 

Cyclin-Dependent Kinases (Cdks) that are activated by cyclin binding and inhibited 

by Cdk inhibitors, including p27 (reviewed in Sherr & Roberts, 1999). By regulating 

Go to S phase transitions, p27 binds Cdks and acts as a tumour suppressor. 

Following contact inhibition, loss of focal adhesion, activation by the growth inhibitory 

signal TGFp or UV radiation, p27 inhibits cyclin D-Cdk complexes that mediate 

progression from Go to Gi. During Gi, p27 can inhibit Cdk2 complexes that control 

the expression of proteins required for Gi to S transition (reviewed in Chu et al.,

2008).

Control of p27 is achieved by cellular localisation and accumulation. Phosphorylation 

of p27 at T187 results in ubiquitination and proteolytic degradation of the protein 

(reviewed in Woods, 2010). In order to inhibit Cdks, p27 must first localise to the 

nucleus. Phosphorylation at T157 occurs downstream of Akt and results in cytosolic 

shuttling of p27. Overexpression of a constitutively active Akt mutant resulted in 

complete cytosolic translation of p27, whereas a T157A mutant of p27 was 

constitutively nuclear and caused a reduction in cell proliferation (Liang et al., 2002, 

Shin et al., 2002, Viglietto et al., 2002).

Whilst rapamycin inhibits p27 accumulation and TSC2-/- MEFs contain exclusively 

cytoplasmic p27, a link between mTORCI and p27 in order to execute cell cycle 

progression was investigated (Nourse et al., 1994, Soucek et al., 1998). Recently 

the link between mTORCI and p27 has been identified as serum- and 

glucocorticoid-inducible kinase 1 (SGK1), a member of the AGC kinase family 

named after three members therein; protein kinase A, G and C (reviewed in
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Peterson & Schreiber, 1999). SGK1 was found to be an inhibitor of p27, 

phosphorylating the protein at T157 resulting in cytosolic accumulation following 

activation by m TO R CI Overexpression of mTOR resulted in phosphorylation at 

T157 and cytoplasmic shuttling of p27 which was prevented by knockdown of SGK1. 

Following immmunoprecipitation studies, SGK1 was identified as a Raptor 

interacting protein.

Although a putative TOS motif is found within SGK1, mutational analysis showed 

that this is not required for the interaction. The mTORCI phosphorylation site within 

SGK1 was identified as S422, which is hyperphosphorylated in TSC2-/- MEFs and 

sensitive to rapamycin (Hong et al., 2008). In summary, mTORCI controls cell cycle 

progression by phosphorylating SGK1, which in turn phosphorylates p27 resulting in 

cytoplasmic shuttling of p27. This in turn allows activation of Cdks, by removing the 

inhibitory effect of p27, and cell cycle progression.

1.4.5 Regulation of autophagy

Macroautophagy (hereafter autophagy) is a non-selective process whereby the 

contents of a portion of the cytosol are degraded to provide macromolecules during 

periods of nutritional stress (reviewed in Xie & Klionsky, 2007, Pattingre et al., 2008, 

Longatti & Tooze, 2009, Mizushima, 2010). The process begins with the formation 

of an isolation membrane or phagophore which expands to form a double-membrane 

bound vesicle, the autophagosome. These then fuse with lysosomes resulting in 

degradation of the contents and release of the resulting macromolecules into the 

cytosol for recycling. A number of proteins localise to the isolation membrane and 

thus the autophagosome. These include, among others, the Unc51-like kinase 1 

(ULK1) complex, the transmembrane protein Autophagy Related 9 (Atg9) and 

microtubule-associated protein 1 light chain 3 (LC3). Evidence suggests that 

mTORCI regulates each of these components.

1.4.5.1 ULK1

Initially cloned in murine cells (Yan et al., 1998), ULK1 has subsequently been 

shown to localise to autophagosomes and promote their formation. ULK1 acts as a 

kinase within an intricately regulated complex with Atg13 (Autophagy-related 13), 

Focal Adhesion Kinase Family Interacting protein of 200kDa (FIP200) and Atg101
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where Atg13 mediates the interaction between ULK1 and FIP200/Atg101 (Hara et al.,

2008, Jung et al., 2009). Atg13 and FIP200 are both substrates of ULK1 (Jung et al.,

2009) and their depletion by shRNA reduces ULK1 kinase activity and localisation to 

autophagosomes (Ganley et al., 2009). Thus ULK1 requires Atg13 and FIP200 for 

full activation. In addition, ULK1 appears to undergo autophosphorylation following 

activation (Jung et al., 2009). Atg101 was identified as an Atg13 binding protein 

essential for Atg13 and ULK1 stability and autophagosome formation (Mercer et al.,

2009, Hosokawa et al., 2009). Therefore, Atg101 is another essential component of 

the ULK1 complex in the induction of autophagy.

1.4.5.2 Atg9

The mTORCI complex phosphorylates ULK1 and Atg13 in vitro (Hosokawa et al., 

2009, Jung et al., 2009) and in vivo studies show that rapamycin leads to 

dephosphorylation of the proteins (Ganley et al., 2009). Following activation of the 

pathway, ULK1 and Atg13 are phosphorylated by mTORCI resulting in inhibition of 

autophagy. Following mTORCI inhibition, by cell starvation or rapamycin treatment, 

ULK1 kinase is activated resulting in autophosphorylation, in addition to 

phosphorylation of Atg13 and FIP200. This allows migration of the ULK1 complex to 

autophagosomes and promotes autophagy. Thus is appears that mTORCI 

negatively regulates ULK1 and Atg13 in order to inhibit autophagy.

The exact mechanism of ULK1 mediated promotion of autophagy is not clear. 

Currently the only known function of ULK1 is in the redistribution of the 

transmembrane protein Atg9 from the trans-golgi network to peripheral endosomes 

that are positive for GFP-tagged LC3 (Young et al., 2006). Knockdown of ULK1 

prevents Atg9 shuttling under nutrient starvation. Thus the ULK1 complex, and by 

extension mTORCI, may regulate autophagy via the shuttling of Atg9 from the trans- 

golgi network to autophagosomes.

1.4.5.3 LC3
The mTORCI complex also appears to regulate autophagy via phosphorylation of 

LC3. Cytosolic LC3-I is converted to LC3-II following conjugation to 

phosphatidylethanolamine (PE) which localises to autophagosomal membranes. 

Rapamycin reduces phosphorylation of LC3 which allows recruitment of the protein 

to autophagosomes and thus induces autophagy (Cherra et al., 2010).
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Phosphorylation of LC3 therefore appears to act as an additional regulatory 

mechanism for the protein.

In summary, regulation of autophagy by mTORCI appears to comprise of three 

principle mechanisms: (1) phosphorylation and localisation of the ULK1 complex to 

the phagophore, (2) localisation of Atg9 via the ULK1 complex, and (3) 

phosphorylation of LC3. As mTORCI is controlled downstream of a number of 

signals relating to the nutritional status of the cell, including amino acid availability, 

the AMP/ATP ratio and growth factor signalling, it is well placed as a sensor for the 

requirement of autophagy.

1.4.6 Hierarchical phosphorylation of substrates

In contrast to the expected outcome, cap dependent translation is only marginally 

inhibited following treatment of cells with rapamycin (Choo et al., 2008). After 24h 

rapamycin treatment, following initial dephosphorylation, 4EBP1 becomes 

hyperphosphorylated and resistant to treatment with an additional dose of rapamycin. 

Interestingly this revived activity of 4EBP1 requires mTORCI and is not due to 

initiation of the negative feedback loop as wortmannin inhibition had no effect. On 

the other hand, inhibition of protein synthesis using cyclohexamide did prevent 

hyperphosphorylation of 4EBP1 (Choo et al., 2008). The reason for the revival in 

4EBP1 phosphorylation may be due to hierarchical binding of mTORCI substrates, 

which places 4EBP1 as the most favoured substrate. Binding of 4EBP1 to mTORCI 

is strong and withstands minor structural rearrangement of the kinase, such as 

occurs on FKBP12/rapamycin binding. Conversely, S6K1 binds relatively weakly, 

and is difficult to purify with mTORCI from cell lysates. The hyperphosphorylation of 

4EBP1 that follows long term treatment with rapamycin may be as a result of 

incomplete inhibition of mTORCI mediated 4EBP1 phosphorylation by rapamycin. 

Rapamycin inhibition may completely abrogate phosphorylation of weaker mTORCI 

substrates leaving 4EBP1 as the sole substrate for the kinase (Choo & Blenis, 2009).

1.5 Signalling inputs to mTORCI

1.5.1 The TSC1/2 complex
The 140kDa Tuberous Sclerosis Complex 1 (TSC1) and 200kDa TSC2 proteins 

interact via coiled coil domains to form a large heterodimeric complex at the plasma
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membrane (Plank et al., 1998, van Slegterhorst et al., 1998). The stability of TSC2 

relies on TSC1. Overexpression of TSC1 increases levels of endogenous TSC2 in 

vivo. It is known that free TSC2 is highly ubiquitinated and thus unstable while TSC1 

bound TSC2 is not (Benvenuto et al., 2000). The reliance of TSC2 stability on TSC1 

is explained by later findings that TSC1 prevents interaction of the ubiquitin ligase 

Homologous to E6-AP Carboxy Terminus and Regulator of Chromosome 

Condensation 1 (HERC1) with TSC2 (Chong-Kopera et al., 2006). In support of this, 

disease causing mutations in TSC2 that cause destabilisation of the protein do so by 

allowing HERC1 binding in the presence of TSC1 (Benvenuto et al., 2000, Chong- 

Kopera et al., 2006).

1.5.2 Rheb

The principal role of the TSC1/2 heterodimer relies on the presence of a GTPase 

activating protein (GAP) domain within TSC2 which increases the intrinsic GTPase 

activity within the GTP binding protein Ras homologue enriched in brain (Rheb) 

(Figure 1.4). TSC2, therefore, serves as a negative regulator of the Rheb protein 

(Tee et al., 2003(a), Inoki et al., 2002). The fact that patient derived TSC2 GAP 

mutants failed to inactivate Rheb in vivo demonstrates the clinical importance of this 

GAP domain (Inoki et al., 2003, Garami et al., 2003, Tee et al., 2003(a), Zhang et al.,

2003). In unstimulated cells, TSC1/2 is found at endoplasmic membranes, with 

TSC2 in an active and hypophosphorylated state. Following activation of upstream 

regulatory signalling pathways, TSC2 is phosphorylated at a number of sites causing 

its release from TSC1 into the cytosol, thus relieving Rheb of its GAP mediated 

inhibition. Cytosolic phosphorylated TSC2 is sequestered by 14-3-3 protein to 

provide protection from proteasomal degradation (Li et al., 2002, Shumway et al., 

2003, Cai et al., 2006). The use of patient derived mutations of TSC2 also identified 

the mTORCI signalling pathway as an effector of TSC1/2 signalling, as such 

mutations resulted in aberrant phosphorylation of mTORCI substrates (Tee et al., 

2003(1)).

Rheb binds mTORCI via mTOR and mLST8 independently of guanine nucleotide 

which only serves to increase mTORCI activity when in the triphosphate rather than 

diphosphate state (Long et al., 2005, Smith et al., 2005, Sato et al., 2009). 

Overexpression of Rheb increases phosphorylation of S6K1 and 4EBP1, and
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expression of the constitutively GTP bound Rheb mutant Q64L further promotes 

phosphorylation of these mTORCI substrates (Tee et al., 2003(b), Sato et al., 2009).

Rheb acts upstream of mTORCI to activate downstream signalling events.

Activation of mTORCI substrates caused by overexpression of Rheb is sensitive to 

rapamycin and is blocked by expression of a dominant negative mutant of mTOR 

(Inoki et al., 2003). The cellular localisation of Rheb is also important in activating 

mTORCI signalling as a farnesyl-binding mutant stimulated S6K1 phosphorylation 

less effectively than wild type Rheb (Tee et al., 2003(b)).

1.5.3 Rheb-mediated mTORCI activation

1.5.3.1 FKBP38

It is not clear exactly how Rheb activates mTORCI, although it may be attributable 

to an increase in substrate binding. When GTP-Rheb binds mTORCI, a subsequent 

increase in substrate binding is observed (Avruch et al., 2009, Sato et al., 2009). 

Recently, FKBP38 was shown to bind both Rheb and mTOR, and the possibility that 

FKBP38 provided the link between Rheb and mTORCI was investigated. FKBP38 

overexpression inhibited phosphorylation of S6K1 and the non-hydrolysable GTPyS 

Rheb showed increased binding to FKBP38 compared to GDP-Rheb. Thus a model 

was put forward where active GTP-Rheb displaces inhibitory FKBP38 from mTOR 

and allows signalling of downstream substrates (Bai et al., 2007, Ma et al., 2008). In 

support of this, studies in vitro showed inhibition of purified mTORCI by FKBP38 

(Dunlop et al., 2009). Conflicting evidence from further studies failed to show 

interaction between Rheb and FKBP38, nor did FKBP38 potently inhibit mTORCI 

(Wang et al., 2008, Uhlenbrock et al., 2009).

1.5.3.2 PLD1
Phospholipase D1 (PLD1) was also proposed to link Rheb with mTORCI. Rheb 

binds PLD1 specifically when GTP bound. Overexpression of Rheb activates PLD1 

whereas TSC2 overexpression had the reverse effect. Finally, knockdown of PLD1 

inhibited phosphorylation of S6K1 (Sun et al., 2008). Therefore, PLD1 appears to 

bind active Rheb in order to activate downstream mTORCI phosphorylation events.
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1.5.3.3 TCTP as a Rheb GEF

Although TSC2 has been identified as the GAP for Rheb, the counteracting guanine 

exchange factor (GEF) that promotes the accumulation of active GTP-Rheb has not 

been conclusively found. A Drosophila study identified translationally controlled 

tumour protein (TCTP) as a potential Rheb GEF. A dTCTP knockout had reduced 

phosphorylation of dS6K1, and dRheb co-immunoprecipitated dTCTP from cell 

lysates. Studies in vitro showed enhanced GDP/GTP exchange of dRheb on 

addition of dTCTP, which was mirrored in human cells where knockdown of TCTP 

reduced the levels of GTP-Rheb (Hsu et al., 2007).

1.5.3.4 An mTORCI-independent function of Rheb

In addition to activity towards PLD1, Rheb also inhibits B-Raf and C-Raf within the 

ERK pathway, possibly mediating a negative feedback loop to prevent aberrant 

activation of MAPK. Overexpression of Rheb reduces B-Raf activity by reducing 

phosphorylation and heterodimerisation with C-Raf. This is rapamycin resistant so 

appears to be an mTORCI-independent function of Rheb (Karbowniczec et al., 2004, 

Karbowniczec et al., 2006).

1.5.4 Amino acids

Activity of mTORCI is sensitive to a number of upstream signals. Activation in 

response to amino acids activation provides a foundation for further activation by 

other stimuli. Amino acid withdrawal results in loss of 4EBP1 and S6K1 

phosphorylation which is unresponsive to insulin. As this does not alter insulin 

stimulation of RTKs, PI3K, Akt or MAPK, this appears to act directly on the mTORCI 

complex (Hara et al., 1998). S6K1 phosphorylation at T389 is sensitive to amino 

acid withdrawal in TSC2-/- MEFs, indicating that amino acid activation of mTORCI is 

independent of insulin stimulation (Smith et al., 2005).

Amino acids activate mTORCI by a number of pathways, which result in localisation 

of the complex to endomembranes. Therefore localisation of mTORCI, rather than 

kinase activity per se, appears central to activation in response to amino acids.

Rheb still binds mTORCI when not guanosine nucleotide-bound (Smith et al., 2005). 

As Rheb similarly localises to membranes, via the farnesylated residue, it is thought 

that mTORCI localisation permits Rheb-mediated activation of the complex.
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Therefore localisation to the membrane with Rheb initiates the first stage of 

mTORCI activation, followed by inhibition of Rheb GAP activity by removal of 

TSC1/2.

Localisation of yeast TOR1 to endosomes and golgi requires LST8, raising the 

possibility that mLST8 plays a similar role in mTORCI (Chen & Kaiser, 2003). This 

may explain why purified mTOR-raptor complexes, without mLST8, actively 

phosphorylate mTORCI substrates (Guertin et al., 2006). Mammalian LST8 may 

therefore be required for membrane localisation of mTORCI in response to amino 

acids.

1.5.4.1 hVps34

The class III PI3K human vacuolar protein sorting 34 (hVps34) forms part of a 

complex with its associated kinase hVps15 and is involved in endosome to golgi 

retrograde transport (Burda et al., 2002). Activity of hVps34 is sensitive to amino 

acid availability. In response to amino acid stimulation PIP3, the product of active 

hVps34, increases staining as punctuate spots on addition of amino acids to growing 

cells. This is reduced by both the PI3K inhibitor wortmannin and amino acid 

withdrawal (Nobukuni et al., 2005). Insulin does not alter the activity of hVps34, 

although the protein is sensitive to glucose stimulation and energy status of the cell 

via 5' Adenosine Monophosphate-Activated Protein Kinase (AMPK) (Byfield et al.,

2005).

The link between hVps34 and mTORCI activity was established following evidence 

that overexpression of the hVps34 associated kinase hVps15 increased S6K1 

phosphorylation at T389 (Byfield et al., 2005). Following this, knockdown of hVps34 

was found to reduce phosphorylation of 4EBP1 and S6K1 in response to amino acid 

stimulation (Byfield et al., 2005, Nobukuni et al., 2005). A direct link between 

mTORCI and hVps34 was found in discovery that the two proteins interact (Gulati et 

al., 2008). Amino acid withdrawal blocks S6K1 phosphorylation independent of 

TSC1/2 activity (Byfield et al., 2005, Nobukuni et al., 2005).

The hVps34 mediated mTORCI response to amino acids appears to be sensitive to 

intracellular Ca2+ levels. On amino acid stimulation intracellular Ca2+ levels increase,
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leading to activation of calcium modulated protein (CaM), which binds and activates 

hVps34. This process is essential for mTORCI activation by hVps34, as expression 

of hVps34 mutants that don’t bind CaM results in S6K1 immunity to activation by 

amino acids (Gulati et al., 2008).

1.5.4.2 Rag GTPases

The Ras-related Small GTP-Binding Protein (Rag) GTPases, of which there are four, 

act as heterodimers consisting of RagA/B along with RagC/D (Schurmann et al.,

1995, Hirose et al., 1998, Sekiguchi et al., 2001). In response to amino acid 

stimulation, GTP bound Rag GTPase dimers accumulate and bind to Raptor, and 

are essential for amino acid stimulated activation of mTORCI (Sancak et al., 2008). 

Expression of constitutively GTP-bound RagB (GTPRag) activates mTORCI and is 

insensitive to amino acid deprivation, whereas dominant negative constitutively GDP 

bound RagB (GDPRagB) prevents amino acid stimulated S6K1 phosphorylation at 

T389 (Kim et al., 2008, Sancak et al., 2008).

After binding the mTORCI complex, active Rag dimers aid translocation of mTORCI 

from the cytosol to vesicles and perinuclear regions. In the absence of amino acids, 

mTORCI accumulates in the cytosol. Under the same conditions, GTP-bound RagB 

expression promotes mTORCI accumulation at perinuclear regions and vesicles.

As kinase activity of mTORCI is not stimulated by GTPRagB in vitro, localisation 

appears to be key in this process (Sancak et al., 2008).

1.5.4.3 RalA

A second G protein involved in amino acid signalling to mTORCI is RalA, a member 

of the Ras superfamily. RalA is involved in exocytosis, cell adhesion, membrane 

dynamics and cell migration and is critical in Ras-induced tumorigenesis of human 

cells (Ohta et al., 1999, Moskalenko et al., 2001, Lim et al., 2005). Activation of RalA 

requires Ral Guanine nucleotide dissociation stimulator (RalGDS) which binds the 

Ras binding domain to promote GTP-binding of RalA (Gonzalez-Garcia et al., 2005, 

reviewed in Ferro & Trabalzini, 2010). On amino acid stimulation, GTP-RalA 

accumulates allowing mTORCI mediated phosphorylation of S6K1. Knockdown of 

RalA and RalGDS abolish mTORCI directed phosphorylation of S6K1 in response to 

amino acids. RalA-induced mTORCI activity acts in parallel or downstream of Rheb,
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as an overactive Rheb mutant fails to stimulate S6K1 activity on knockdown of RalA 

(Maehama et al., 2008). RalA localises to internal membranes (perinuclear and 

vesicular) which is critical for its effects within the cell (Shipitsin & Feig, 2004, Vitale 

et al., 2005). As RalA does not directly bind to or activate mTORCI, it may act in a 

similar way to hVps34 and the Rag GTPases by localising mTORCI from the cytosol 

to internal membranes.

1.5.5 Growth factor and insulin signalling

Growth factor and insulin-mediated activation of mTORCI is mediated by a PI3K/Akt 

cascade stimulated by RTK activation (Figure 1.4). PI3K activation by RTKs may 

occur through direct binding or via adaptors such as insulin receptor substrate 1 

(IRS-1) in the case of insulin signalling. IRS-1 is phosphorylated at a number of 

tyrosine residues at the C terminus following insulin binding to the insulin receptor 

(IR) and is required for signalling events downstream of insulin (Mendez et al., 1996, 

Stenkula et al., 2007, reviewed in Boura-Halfon & Zick, 2009). This provides a 

docking platform for PI3K, which converts PIP2 within the plasma membrane to the 

second messenger PIP3 (Chung et al., 1994, Mendez et al., 1996, Maehama & 

Dixon, 1998, Aoki et al., 2001). PI3K is a heterodimer consisting of a p85 regulatory 

subunit and p110 catalytic subunit. Proteins containing PH domains bind PIP3, 

recruiting them to the membrane where they are activated (Engelman et al., 2006).

Akt and PIP3-Dependent Protein Kinase 1 (PDK1) both contain PH domains. 

Recruitment to the membrane allows PDK1 mediated phosphorylation of Akt at T308 

(Alessi et al., 1997). Full activation of Akt then requires phosphorylation at S473 by 

mTORC2. PDK1 association with Akt alone is sufficient to promote phosphorylation 

of downstream targets, indicating that PIP3 merely serves as a docking messenger 

to co-localise Akt and PDK1 (Ding et al., 2010).

Recent studies indicate PDK1 bypasses Akt in response to amino acid stimulation 

and directly phosphorylates PRAS40 and mTOR leading to activation of S6K1. 

Amino acid stimulation results in activation of mTORCI without activation of Akt and 

PDK1 knockout mice abrogated the activation of S6K1 by amino acid sufficiency 

(Ding et al., 2010). This provides another mechanism for activation of mTORCI in 

response to amino acid sufficiency.
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Activated Akt phosphorylates a number of downstream substrates including mTOR, 

PRAS40 and TSC2 (reviewed in Manning & Cantley, 2007, Canedo et al., 2010). 

Phosphorylation of mTOR at S2448 may result in increased activity of the kinase 

(Scott et al., 1998, Nave et al., 1999, Reynolds et al., 2002), although studies have 

shown this is redundant for phosphorylation of 4EBP1 and S6K1 (Sekulic et al., 

2000).

Phosphorylation of TSC2 at a number of serine residues, including S939, S981 and 

S1462, affects both binding and therefore stability of TSC1/2 and cellular localisation 

of the complex. Mutation of Akt phosphorylation sites within TSC2 increases stability 

of the TSC1/2 complex, and inhibits signalling to S6K1 and 4EBP1, indicating that 

Akt phosphorylation promotes TSC1/2 instability (Dan et al., 2002, Inoki et al., 2003, 

Potter et al., 2003).

Phosphorylation also results in translocation of TSC1/2 from membranes to the 

cytosol. Phosphorylation of TSC2 at S939 and S981 doesn’t alter GAP activity of 

TSC2 but results in translocation from the membrane to the cytosol where it is 

sequestered by 14-3-3. As Rheb is membrane-associated, this prevents the 

inhibitory activity of TSC1/2 (Cai et al., 2006). Evidence therefore suggests that Akt 

phosphorylation of TSC2 does not alter GAP activity but instead prevents interaction 

with Rheb.

Finally, phosphorylation of PRAS40 results in dissociation of the inhibitor from the 

mTORCI complex allowing activation of mTORCI (Kovacina et al., 2003). Active 

Akt therefore promotes mTORCI activity by relieving upstream inhibition and 

possibly activating the mTOR kinase itself.

1.5.6 Mitogenic stimuli

1.5.6.1 PA

The lipid second messenger phosphatidic acid (PA) is created by PLD1 and provides 

an additional path to mTORCI activation induced by mitogenic stimuli. Cdc42 is 

involved in regulation of the cell cycle. Induced activation of Cdc42 stimulates PLD1 

activity and increases phosphorylation of S6K1. Expression of a Cdc42 mutant,

42



which is deficient in PLD1 binding, reduces S6K1 phosphorylation, which is 

overcome by addition of extracellular PA (Fang et al., 2003). Accumulated PA binds 

the FKBP12-Rapamycin Binding (FRB) domain of mTOR and competes with 

FKBP12 to activate mTORCI. As the catalytic activity of mTORCI is unchanged by 

PA in vitro, this competition may provide the principle mechanism of PA induced 

S6K1 and 4EBP1 activity (Fang et al., 2002). Alternatively, PA binding to mTOR 

may localise mTORCI to the membrane thus promoting binding to Rheb (Sun et al., 

2008). PLD1 synthesises PA and, as discussed in Section 1.5.3.2, interacts with 

Rheb in order to activate mTORCI. Rheb activation may therefore stimulate PLD1 

to produce PA which, due to its localisation to membranes, then binds and activates 

mTORCI.

1.5.6.2 MAPK

MAPK activity has also been shown to stimulate mTORCI. Five families of MAPKs 

exist, one of which is the ERK1&2 family. G-protein coupled receptors, RTKs and 

phorbol esters such as phorbol 12-myristate 13-acetate (PMA) transmit signals to 

ERK via Raf followed by MAPK/ERK kinase (MEK). Activated ERK then 

phosphorylates a number of substrates including p90 ribosomal S6 kinases (RSKs) 

and MAPK interacting kinase (MNKs) (reviewed in Roux & Blenis, 2004). Activation 

of the classical Raf/MEK/ERK cascade by PMA promotes phosphorylation of S6K1 

and 4EBP1. Further investigation identified TSC2 and Raptor as MAPK targets. 

Overexpression of TSC2 reverses PMA-induced S6K1 phosphorylation. The 

inhibitory effect of TSC2 is removed by RSK1 by phosphorylation at S1798, and 

S1798A mutation prevents PMA-induced S6K1 phosphorylation (Roux et al., 2004).

RSK activation takes place via MEK/ERK as inhibition of either results in reduction of 

S6K1 and 4EBP1 phosphorylation induced by PMA (Roux et al., 2004, Rolfe et al.,

2005). The finding that Akt activity was unaffected by PMA indicated that activation 

of mTORCI by MAPK is independent of insulin signalling (Roux et al., 2004, Rolfe et 

al., 2005).

MAPK also induces phosphorylation of Raptor and S719, S721 and S722 by RSK. 

Knockdown of RSK1 or 2 results in reduced Raptor phosphorylation. Although 

Raptor phosphorylation had no effect on mTOR-Raptor-substrate binding, mTOR
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kinase activity was reduced by mutation of the three phosphorylation sites to alanine. 

Thus, mTORCI activity is also activated by MAPK via Raptor phosphorylation 

(Carriere et al., 2008), providing a dual mechanism for activation of translation by 

ERK.

MAPK also activates mTORCI effectors independently of the complex. Both rpS6 

and elF4E are phosphorylated in response to ERK activation, reiterating the 

importance of translational control by MAPK (Rolfe et al., 2005, Roux et al., 2007).

1.5.6.3 AMPK

On depletion of ATP, mTORCI must be inhibited in order to preserve energy within 

the cell. Accumulation of AMP results in activation of the AMPK by Liver Kinase B1 

(LKB1) mediated phosphorylation of T172 (Shaw et al., 2004). AMPK inhibits 

mTORCI signalling to S6K1 and 4EBP1 to inhibit the high energy input process of 

translation (Bolster et al., 2002, Krause et al., 2002, Kimura et al., 2003). This is 

achieved through two known mechanisms.

Firstly, AMPK phosphorylates TSC2 at T1227 and S1345 leading to activation of 

TSC1/2 and inhibition of mTORCI by GDP-Rheb accumulation. Knockdown of 

TSC2 prevents the reduction in S6K1 phosphorylation resulting from accumulation of 

AMP. Inhibition of S6K1 is restored by expression of WT TSC2 but not an AMPK 

phosphorylation site mutant of the protein, indicating that AMPK mediated 

phosphorylation at T1227 and S1345 is critical in AMPK mediated mTORCI 

inhibition (Inoki et al., 2003).

Another mechanism of AMPK-mediated inhibition of mTORCI occurs by direct 

phosphorylation of Raptor. As TSC2 deficient cells retain energy sensitivity, a 

screen for AMPK substrates discovered Raptor phosphorylation sites at S792 and 

S722 were sensitive to AMPK. Mutation of these sites prevented AMPK mediated 

inhibition of mTORCI. Inhibition appears to result from binding of Raptor within the 

complex to 14-3-3 in the cytosol (Gwinn et al., 2008).

A further link between mTORCI activation and AMPK occurs via Akt. In addition to 

activating mTORCI by phosphorylation and inhibition of TSC1/2, Akt also inhibits
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AMPK by maintaining cellular ATP levels by increasing glycolysis and oxidative 

phosphorylation. Knockdown of Akt results in depletion of ATP followed by 

activation of AMPK and inhibition of mTORCI (Hahn-Windgassen et al., 2005).

1.5.6.4 Wnt

Canonical Wnt signalling leads to activation of T cell factor transcription factors. In 

the absence of upstream signals GSK3p, in complex with adenomatous polyposis 

coli, axin and PP2A, phosphorylates p catenin leading to its ubiquitination and 

degradation. Binding of the Wnt ligand to its receptor leads to inhibition of GSK3p by 

Dishevelled leading to accumulation of p catenin, which interacts with T cell factor 

transcription factors to activate transcription from promoters with TCF sites (reviewed 

in Smalley & Dale, 1999). Wnt signalling positively regulates mTORCI. In the 

absence of the Wnt ligand, GSK3P was found to phosphorylate TSC2 at the 

activating residues S1337 and S1341, leading to inhibition of mTORCI. Inactivation 

of GSK3p following activation of canonical Wnt signalling lead to activation of 

mTORCI due to the absence of these TSC2 phosphorylation events (Inoki et al., 

2006).

1.5.7 Hypoxic input

1.5.7.1 REDD1

Although expression of hypoxia-induced genes is controlled by mTORCI via HIF1, 

chronic hypoxia inhibits mTORCI signalling. Hypoxia results in inhibition of S6K1 

and 4EBP1 phosphorylation independent to the activation status of Akt, AMPK and 

HIF1 (Arsham et al., 2002). Two methods of mTORCI inhibition during hypoxia 

have been uncovered. Regulated in development and DNA damage responses 1 

(REDD1) expression is induced by hypoxia and inhibits mTORCI by activating 

TSC1/2. Cells lacking REDD1 fail to reduce S6K1 phosphorylation during hypoxia, 

including head and neck squamous cell carcinoma which frequently lack expression 

of the protein (Brugarolas et al., 2004, Schneider et al., 2008). In addition, knockout 

of TSC2 prevents hypoxia-induced inhibition of mTORCI, as does disruption of the 

TSC1/2 complex (Brugarolas et al., 2004).
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Inhibition of TSC2 occurs by sequestering the protein in the cytosol by 14-3-3 as 

active TSC1/2 is located at membranes (Cai et al., 2006). REDD1 binds 14-3-3 to 

remove TSC2 and allowing localisation of TSC2 to membranes. Mutation of the 14- 

3-3 binding domain of REDD1 prevents hypoxia-induced inhibition of mTORCI by 

maintaining interaction between 14-3-3 and TSC2 in the cytosol (DeYoung et al.,

2008). During recovery from hypoxia, mTORCI inhibition is removed by 

proteasomal mediated degradation of REDD1, induced by ubiquitination (Katiyar et 

al., 2009).

1.5.7.2 Bnip3

By inhibiting accumulation of GTP-Rheb, Bcl-2/adenovirus E1B 19kDa interacting 

protein 3 (Bnip3) also inhibits mTORCI in response to hypoxia. Rheb is tethered to 

membrane structures via farnesylation (Tee et al., 2003(b)). Bnip3 targets Rheb by 

localising to the same membranes via the transmembrane domain. Deletion mutants 

of Bnip3 without the transmembrane domain fail to interact with and inhibit Rheb, 

and do not inhibit S6K1 or 4EBP1 phosphorylation in response to hypoxia. Bnip3 

inhibits Rheb by activating GTPase activity, as wild-type but not transmembrane 

deletion mutant Bnip3 reduced GTP-Rheb accumulation (Li et al., 2007). Thus in 

response to hypoxia, Bnip3 localises with Rheb at endomembranes and activates 

GTPase activity resulting in inhibition of mTORCI.

1.5.8 Autophagic input 

1. 5.8.1 ROS

A number of upstream pathways have been shown to inhibit mTORCI in order to 

activate autophagy. Reactive oxygen species (ROS) have been shown to activate 

Ataxia-Telangiectasia Mutated (ATM), which in turn activates AMPK. As an 

inhibitory pathway upstream of mTORCI, AMPK activation subsequently activates 

autophagy. Thus ROS positively regulate autophagy via mTORCI inhibition 

(Alexander et al., 2010). The purpose of this mechanism is not well understood, but 

may be a method of releasing macromolecules to replace those damaged by high 

levels of ROS within the cell.

1.5.8.2 ULK1 and AMPK
AMPK has also been shown to activate autophagy by inhibition of mTORCI. AMPK 

is known to interact and phosphorylate ULK1 at S317 and S777, which further

46



activates ULK1 and enhances autophagy (Egan et al., 2011, Kim et al., 2011). 

Activated ULK1 then phosphorylates Raptor, leading to inhibition of mTOR substrate 

binding (Dunlop et al., 2011). Therefore activation of ULK1 in response to nutrient 

limiting conditions promotes a negative feedback loop towards mTORCI thus 

inhibiting protein synthesis.

SV40 Small T Antigen (ST) induces tumorigenicity in cells by inhibition of PP2A.

Cells infected with the antigen have increased activity of AMPK, which is further 

increased by glucose depletion, and rely on autophagy induction by AMPK mediated 

mTORCI inhibition as a nutrient source on cell starvation (Kumar & Rangarajan,

2009). Inhibition of AMPK in these cells results in rapid cell death. Thus ST appears 

to induce autophagy as an alternative energy source for cancer cells on nutrient 

deprivation.

1.5.9 Inhibitors of mTORCI

1.5.9.1 PI3K inhibitors

Wortmannin and LY294002 are two specific Phopsphatidylinositol-3-Kinase (PI3K) 

inhibitors with an IC5o of 4.2nM and 1.4|xM respectively. Both bind the ATP binding 

site and act as a competitive inhibitor for the enzyme. Wortmannin irreversibly 

inhibits PI3K as it results in conformational rearrangement of the active site due to 

covalent attack on the ATP binding site. There is a high degree of complimentarity 

between PI3K and wortmannin, and the inhibitor binds more deeply in the ATP 

binding pocket than ATP itself. Inhibition by LY294002 on the other hand is not 

irreversible, as interaction takes place mainly via hydrogen bonds (Walker et al., 

2000).

Although useful in research, neither is a suitable drug to treat diseases caused by 

aberrant PI3K activity. Wortmannin is unstable and LY294002 is a relatively weak 

inhibitor. In addition, both display a number of off-target effects. For these reasons, 

wortmannin and LY294002 have instead provided a useful starting point for the 

development of the PI3K inhibitor GDC-0941 that is now in use in clinical trials 

towards breast and lung carcinoma (O’Brien et al., 2010, Soria et al., 2010).
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Both wortmannin and LY294002 inhibit 4EBP1 phosphorylation and mTOR 

autophosphorylation in vivo, indicating inhibition of mTOR (Brunn et al., 1996). 

Staurosporine is a general kinase inhibitor and has a variety of affinities ranging from 

nanomolar to micromolar.

The IC50 for PI3K by staurosporine is 9pM (Walker et al., 2000). Implications in vivo 

include broad spectrum inhibition of kinases resulting in a number of off-target 

effects. Previous studies indicate that staurosporine does not inhibit mTOR directly 

(Tee & Proud, 2001).

1.5.9.2 Rapamycin

The drug rapamycin inhibits mTORCI and mTORC2 by binding FKBP12, which 

interacts with mTOR at the FRB domain (Chen et al., 1995, reviewed in Foster & 

Toschi, 2009). PA is generated by PLD1 in response to mitogenic stimuli and 

activates mTORCI and mTORC2 by binding the FRB domain of mTOR (Fang et al., 

2001, Hornberger et al., 2006). This results in increased association of mTOR with 

Raptor and Raptor-Independent Companion of mTORC2 (Rictor) and increased 

phosphorylation of the respective substrates S6K1 and Akt (Toschi et al., 2009). It is 

thought that rapamycin inhibits the complexes by competing with PA-mTOR 

interaction. Competition with PA provides a reason for the higher concentration of 

rapamycin required to inhibit mTORC2 as opposed to mTORCI. Higher 

concentrations of rapamycin are required to compete with mTORC2-PA binding than 

PA binding to mTORCI (Toschi et al., 2009). Although a potent inhibitor of mTOR, it 

does not inhibit all mTORCI phosphorylation events and resultant processes, 

including some phosphorylation sites within 4EBP1 such as the priming sites, T36 

and T45 (Choo et al., 2008).

1.5.9.3 Torinl
The effectiveness of mTORCI inhibition could be improved with the use of catalytic 

inhibitors rather than rapamycin based therapy (reviewed in Efeyan & Sabatini,

2010). Thoreen et al. developed the mTOR ATP-competitive inhibitor, Torinl. 

Whereas rapamycin only resulted in a modest induction of macroautophagy, Torinl 

resulted in intense formation of autophagosomes which was mirrored by a depletion
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of Raptor protein using siRNA (Thoreen et al. 2009). Torinl also reduced 

phosphorylation of all 4EBP1 phosphorylation sites.

1.5.10 Feedback inhibition

1.5.10.1 Feedback to IRS-1

A negative feedback loop attenuates PI3K signalling in response to insulin induced 

mTORCI activation via IRS-1 down regulation (reviewed in Manning, 2004, 

Carracedo & Pandolfi, 2008, Grant, 2008). This occurs by direct phosphorylation by 

mTORCI and S6K1 at a number of serine residues. Active mTORCI and S6K1 

phosphorylate IRS-1 at S636/639 and S1101, respectively (Veileux et al., 2010). 

Knockdown of mTOR, Raptor or S6K1 or treatment with rapamycin reduces the 

insulin induced phosphorylation of IRS-1 at these residues, providing further 

evidence for the existence of a feedback loop.

Serine mediated phosphorylation of IRS-1 results in attenuation of signalling to PI3K 

and therefore Akt. Studies in vitro showed direct binding between IRS-1 and Raptor, 

and phosphorylation of IRS-1 by purified mTORCI (Tzatsos & Kandror, 2006). The 

residues surrounding S636/639 are composed of a common mTORCI 

phosphorylation motif and fall within the binding site of the p85 regulatory subunit of 

PI3K. Thus serine phosphorylation of IRS-1 may prevent interaction with PI3K 

causing a reduction in downstream signalling.

Direct phosphorylation of IRS-1 by mTORCI appears to be controlled by PP2A 

(Hartley & Cooper, 2002). The rapamycin induced decrease in IRS-1 

phosphorylation was reversed by okadaic acid treatment, but inhibition of S6K1 

phosphorylation was still observed. Thus a PP2A complex may inhibit mTORCI 

phosphorylation of IRS-1 independently of S6K1.

Further evidence for the role of mTORCI in an insulin induced negative feedback of 

PI3K signalling comes from studies in adipocytes and neuronal cells. Rapamycin 

prevents the insulin induced phosphorylation of IRS-1 in 3T3-L1 adipocytes leading 

to rescue of PI3K activity (Haruta et al., 2000, Veileux et al., 2010). On studying the 

effect of hyperinsulinaemia on neuronal cells, Mayer & Belsham similarly discovered
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that rapamycin reversed the S6K1 mediated phosphorylation of IRS-1 in an 

immortalised hypothalamic cell line (Mayer & Belsham, 2010).

Amino acid activation of mTORCI also results in negative feedback via IRS-1 

phosphorylation. Amino acid stimulation increases S6K1 mediated phosphorylation 

of IRS-1 at S1101 and mutation of this residue maintains Akt activation in response 

to stimuli (Tremblay et al., 2007). Activation of the feedback loop again results in 

reduced binding of the PI3K p85 regulatory subunit thus reducing activity of PI3K by 

70% (Tremblay & Marette, 2001). This feedback mechanism was prevented by 

treatment with rapamycin.

IRS-1 phosphorylation downstream of mTORCI results in depletion of IRS-1 which 

similarly reduces PI3K signalling. Phosphorylation of IRS-1 at S312 results in 

ubiquitination mediated proteasomal degradation of IRS-1 (Zhande et al., 2002, 

Greene et al., 2003). Proteasome inhibitors prevent IRS-1 degradation and maintain 

signalling to Akt (Haruta et al., 2000).

Loss of the inhibitory TSC1/2 complex also results in negative feedback via IRS-1. 

IRS-1 levels are depleted in TSC1'Aand TSC2~/~ MEFs (Harrington et al., 2004, Shah 

et al., 2004). As a result cells are unresponsive to IGF-1. Over-expression of a 

catalytically active PI3K p110 subunit in these cells increases Akt activation 

indicating that the same feedback loop is active. In addition, IRS-1 mRNA is 

reduced in T S C 1 and TSC2'A MEFs (Harrington et al., 2004, Shah et al., 2004). 

Thus chronic hyperactivation of mTORCI reduces both IRS-1 stability and 

transcription. This reduces signalling through PI3K to Akt and provides a 

mechanism by which tumours lacking TSC2 are predominantly benign. TSC2+/' mice 

develop slow growing tumours due to inactivation of Akt signalling. PTEN 

haploinsufficiency restores Akt signalling a greatly enhances their severity (Manning 

et al., 2005).

1.5.10.2 PDGFR
An alternative negative feedback loop following mTORCI hyperactivation results in 

downregulation of Platelet-Derived Growth Factor Receptor (PDGFR). TSCf7'and 

TSC2'/' MEFs are defective in PI3K signalling in response to serum, PDGF, EGF and
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insulin due to reduced levels of PDGFRp (Zhang et al., 2003). This occurs via 

reduced transcription or mRNA half-life and is rescued by treatment with rapamycin 

(Zhang et al., 2007). Deregulation of mTORCI therefore reduces PI3K signalling by 

attenuating IRS-1 and PDGFRp.

1.5.10.3 S6K1 and GSK3

Two additional feedback mechanisms involving S6K1 and elF4E exist independent 

of those discussed above. On hyperactivation of mTORCI, the resulting decrease in 

Akt activity is overcome by the ability of S6K1 to phosphorylate GSK3 (Zhang et al.,

2006). In cells and tumours lacking TSC1 orTSC2, GSK3 phosphorylation is 

sensitive to rapamycin. Following knockdown of S6K1, GSK3 becomes 

hypophosphorylated. Thus S6K1 is the direct kinase of GSK3 following Akt 

inactivation induced by the negative feedback loop following hyperactivation of 

mTORCI.

1.5.10.4 elF4E

The translational initiation factor elF4E also exerts a negative feedback loop to 

control translation, again following mTORCI activation. Following induced 

expression of elF4E, 4EBP1 and S6K1 phosphorylation was reduced, whereas Akt 

phosphorylation remained unchanged (Khaleghpour et al., 1999). Thus active elF4E 

appears to induce a negative feedback loop downstream of Akt to downregulate 

translation.

1.5.10.5 PP2ABp and PDK1

Silencing of the PPP2R2B gene, which encodes the Bp subunit of PP2A, is present 

in over 90% of colon cancers (Tan et al., 2010). PP2ABp was subsequently found to 

regulate a novel mTORCI feedback loop resulting in Myc activation in these cancers 

Loss of PPP2R2B is sufficient to promote cellular transformation, and re-expression 

in colorectal cancer cells reduces cell proliferation. PP2ABp was shown to 

dephosphorylate S6K1 downstream of mTORCI, and appears to act in response to 

rapamycin inhibition as re-expression of Bp in colorectal cancer cells sensitised the 

cells to the drug. Loss of PP2ABp by silencing of the gene resulted in induction of 

Myc phosphorylation following rapamycin treatment, which was abolished by re-
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expression of Bp. As knockdown of PDK1 prevented rapamycin-induced Myc 

phosphorylation, the effect of Bp silencing was found to be mediated by PDK1. 

Indeed Bp was shown to interact with PDK1 and prevent membrane localisation 

following treatment with rapamycin. This provides a novel feedback mechanism 

where, in the absence of PP2ABp regulation, rapamycin results in membrane 

recruitment of PDK1 which promotes phosphorylation of Myc (Tan et al., 2010).

1.5.10.6 Feedback following chronic inhibition

Chronic mTORCI inhibition also results in upregulation of Akt via an IRS-1-PI3K 

independent mechanism. Rapamycin increases phosphorylation of Akt, as does 

Raptor knockdown (Wang et al., 2008, Chen et al., 2010). This is not abrogated by 

IRS-1 orTSCI depletion, indicating a mechanism independent of the relief IRS-1 

mediated feedback, although inhibition of IGF-IR reversed the effect (O-Reilly et al., 

2006, Wan et al., 2007). Thus chronic mTORCI inhibition appears to induce 

additional signalling cascades to increase signalling to Akt.

1.6 Phosphatase regulation of mTORCI

1.6.1 PP2A

The role of PP2A as the phosphatase within the mTORCI signalling pathway is well 

documented. Studies in vitro have shown decreased PP2A activity on insulin or 

Insulin-Like Growth Factor 1 (IGF-1) stimulation which is increased following 

treatment with rapamycin (Liu et al., 2010, Peterson et al., 1999, Begum & Ragola, 

1996). Overexpression of a rapamycin resistant mTOR mutant prevented the 

rapamycin induced increase in PP2A activity (Liu et al., 2010). In addition, PP2A 

inhibition using calyculin A increased phosphorylation of S6K1 under amino acid 

starved conditions or following treatment with rapamycin (Peterson et al., 1999, 

Bielinski & Mumby 2007). Therefore a PP2A complex appears to be directly 

controlled by mTORCI A direct interaction between PP2Ac and S6K1 has been 

observed and the S6K1 binding region within PP2Ac mapped to between the 88th 

amino acid and the C terminus of the protein (Yamashita et al., 2005, Peterson et al., 

1999). This indicates that PP2A acts directly on mTORCI substrates.
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The exact method of PP2Ac regulation employed by mTORCI is unclear. PP2Ac is 

phosphorylated by mTORCI in vitro (Peterson et al., 1999). Activity of the 

catalytically inactive S6K1 TOS mutant (F5A) is rescued by additional 

phosphomimetic mutation of the mTORCI phosphorylation site T389 and the 

putative PP2A binding motif RSPRR. This S6K1 mutant is also resistant to inhibition 

with rapamycin (Schalm et al., 2005). This points to a model where active mTORCI 

binds to and phosphorylates S6K1 thus displacing PP2A from the RSPRR motif. 

PP2Ac activity relies on regulatory subunit binding, therefore the key to uncovering 

PP2Ac activity in mTORCI signalling lies in discovering the relevant regulatory 

subunit involved.

1.6.2 Alpha4 

1.6.2.1 General introduction

Alpha4, the human homologue of yeast Tap42 (Table 1.1), is a regulatory subunit of 

PP2Ac that plays a critical role in controlling many signalling events in the cell. In 

fact, deletion of the Alpha4 gene leads to cell death by induction of apoptosis (Kong 

et al., 2004). Alpha4 is intrinsically unstructured as a monomer (Smetana et al.,

2006). However, Alpha4 becomes structured upon substrate binding allowing high 

specificity on interaction with other proteins (Smetana et al., 2006). The function of 

Alpha4 is executed by interaction with PP2Ac via amino acid residues 198 to 202, 

where Alpha4 both stabilises and inhibits the phosphatase (Nanahoshi et al., 1998, 

Chen et al., 1998, Nanahoshi et al., 1999). Inhibition of PP2Ac is allosteric, as 

Alpha4 does not obstruct the active site of PP2Ac (Prickett & Brautigan, 2004, 

Prickett & Brautigan, 2006). Furthermore, Alpha4 binds independently of the A and B 

subunits of PP2A thereby acting as an independent regulatory subunit (Prickett & 

Brautigan, 2004, Chung et al., 1999).

1.6.2.2 Functions

1.6.2.2.1 Regulation of mTORCI

Much conflicting data exists as to the role of Alpha4 in complex with PP2Ac. Whilst 

Alpha4 acts as an activating PP2Ac subunit to direct phosphatase activity towards 

the mTORCI substrates 4EBP1 and S6K1 (Nien et al., 2007), over-expression of 

Alpha4 also leads to a decrease in 4EBP1 and S6K1 phosphorylation (Nanahoshi et 

al., 1998, Grech et al., 2008). Therefore whether Alpha4 is an activating or inhibitory
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PP2Ac subunit is not clear. Studies in vitro indicate that Alpha4 inhibits PP2Ac 

activity (Chung et al., 1999, Prickett & Brautigan, 2004, Prickett & Brautigan, 2006). 

There is also conflicting data as to the regulation of PP2AAiPha4 in response to 

mTORCI, with some studies observing reduced interaction on inhibition of mTORCI 

(Murata et al., 1997, Yamashita et al., 2005), and others seeing no change 

(Nanahoshi et al., 1998, Nanahoshi et al., 1999, Yoo et al., 2008). It is therefore 

clear that although a great deal of investigation into the role of Alpha4 towards 

PP2Ac has been done, there is much left to ascertain.

PP2AAiPha4 positively regulates STAT1 in complex with mTOR. Inactivation of mTOR 

amplifies the induction of IFNy stimulated genes. In fact, rapamycin increases 

mTOR binding to STAT1, mediated by PP2Ac-Alpha4, leading to nuclear 

accumulation of the complex (Fielhaber et al., 2009). In support of this, dominant 

negative PP2Ac mutation L119A prevented the rapamycin induced nuclear 

translocation of STAT1. This is analogous to the regulation of the stress response 

proteins MSN2 and MSN4 in yeast, which are subject to TORC1 mediated nuclear 

translocation without phosphorylation (Crespo et al., 2002). Interestingly, Alpha4 

translocates to the nucleus following post-translational modification with O-linked p- 

N-acetylglucosamine, mediated by O-p-N-acetylglucosaminyltransferase (OGT) 

(Dauphinee et al., 2005). The reason or function of this post-translational 

modification is currently unknown but likely is necessary for the nuclear translocation 

of Alpha4.

1.6.2.2.2 Independent regulation of STAT1

PP2AAiPha4 also negatively regulates signal transducer and activator of transcription 1 

(STAT1) activity without altering phosphorylation of the protein. Cytokines such as 

IFNy secreted by activated T lymphocytes and natural killer cells activate STAT1 by 

causing dimerisation of their cognate receptors. This leads to phosphorylation of the 

receptor associated Janus kinases and tyrosine kinases and finally tyrosine 

phosphorylation at the C terminus of STAT1. Phosphorylated STAT1 then 

translocates to the nucleus to bind promoters of IFNy responsive genes (reviewed in 

Kramer & Heinzel, 2010). Alpha4 over-expression decreases STAT1 activity by
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promoting binding to its inhibitor Protein Inhibitor of Activated STAT1 (PIAS1) (Nien 

et al., 2007).

1.6.2.2.3 Apoptosis

The protective role of Alpha4 towards PP2Ac is key in preventing apoptosis in 

response to stress stimuli (Prickett & Brautigan, 2006). PP2A complexes are 

sensitive to such stimuli, where stress signals can lead to their disintegration.

Alpha4 then sequesters inactive PP2Ac, thus protecting it from proteasomal 

degradation and ensuring its availability to dephosphorylate stress-induced 

phosphorylation events following removal of upstream signals (Kong et al., 2009). In 

support of this theory, studies show that heat shock increases PP2AAipha4 complex 

formation and over-expression of Alpha4 leads to an increased rate of reversal of 

stress induced phosphorylation events (Kong et al., 2009).

A ubiquitin interacting motif (UIM) encompassing amino acids 46 to 60 within Alpha4 

is essential for the protective role of Alpha4 towards PP2Ac (LeNoue-Newton et al.,

2011). The UIM was shown to be necessary for monoubiquitination of Alpha4 and 

also to block the interaction of the E3 ubiquitin ligase Midi with PP2Ac (McConnell et 

al., 2010). In these studies, over-expression of wild-type, but not a UIM mutated 

Alpha4, reduces PP2A polyubiquitination and degradation of the phosphatase 

(McConnell et al., 2010). This indicates that Alpha4 sequesters PP2A in an 

inhibitory state and prevents proteasomal degradation. Following removal of stress 

signals, Alpha4 then acts as a regulatory subunit directing PP2Ac phosphatase 

activity towards stress induced phosphoproteins. For example, Alpha4 binds MEK3 

and directs dephosphorylation by PP2Ac thus reducing MAPK p38 activation 

following Tumour Necrosis Factor a (TNFa) stimulation (Prickett & Brautigan, 2007). 

Similarly, Alpha4 directs dephosphorylation of the stress-activated transcription 

factors c-Jun and p53 (Kong et al., 2004, Saleh et al., 2005,).

1.6.2.2.4 Memory and learning

Alpha4 is also implicated in memory and learning, with a specific form of the protein 

expressed exclusively in the brain and testis (Maeda et al., 1999). Knockout of 

murine Alpha4 specifically in the central nervous system reduced learning ability and
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impaired memory (Yamashita et al., 2006). In this instance, PP2AAipha4 mediated 

dephosphorylation of calcium-calmodulin-dependent protein kinase II (CaMKII) was 

implicated as playing a key role in such processes.

1.6.3 Tip41

1.6.3.1 General introduction

The role of Tip41 within the PP2AAiPha4 complex is less well understood. While Tip41 

has been identified in complex with Alpha4 and PP2Ac, the exact nature of the 

interactions taking place has not been conclusively shown, and the question as to 

whether Tip41 binds Alpha4, PP2Ac or both remains (Smetana & Zanchin, 2007). 

Tip41 has also been identified as a negative PP2Ac regulator in vitro and interaction 

between Tip41 and PP2Ac is insensitive to treatment with rapamycin (McConnell et 

al., 2007). Further investigation is therefore required into the role of Tip41 within the 

PP2AAiPha4 complex. Tip41 contains a putative TOS motif and shares considerable 

sequence identity with the yeast counterpart, although the protein is smaller with a 

molecular weight of 32kDa, making the protein an ideal target for phosphatase 

regulation in relation to mTORCI signalling (Figure 1.5)

1.6.3.2 Functions

Although studies into the role of Tip41 within the PP2AAipha4 complex are 

inconclusive, other roles for Tip41 have been identified within the ATM/ATR and NF- 

kB signalling pathways.

1.6.3.2.1 ATM/ATR

Ataxia-talengiectasia (A-T) is an autosomal recessive disorder with phenotypic 

characteristics ranging from lymphoid tumours to radiosensitivity, cell cycle 

checkpoint defects and insulin-resistant diabetes. The disease is caused by a 

defective ATM gene. ATM is a member of the PIKK family of S/T kinases and is 

involved in DNA damage response. DNA double strand breaks (DSBs) result in 

ATM association with the MRE11-RAD50-NBS1 (MRN) complex at the damaged site
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Figure 1.5: Sequence alignment of mouse, human and yeast Tip41. Protein sequence alignment shows 33% sequence 
identity maintained between yeast and mammalian (both human and murine) Tip41, and 95% sequence identity between the 
sequences of human and mouse Tip41. Critically, the ‘FEDEL’ TOS motif is conserved and is highlighted in green.



(Carney et al., 1998, Varon et al., 1998, Stewart et al., 1999, reviewed in Lavin,

2008).

Full activation of ATM requires post-translational modification via phosphorylation 

and acetylation. Inactive ATM forms homodimeric complexes where the kinase 

domain is bound to an internal domain of another ATM molecule (Bakkenist & 

Kastan, 2003). Following ionising radiation and thus formation of double strand 

breaks (DSBs), one ATM molecule within the complex phosphorylates the other at 

S1981 leading to dissociation and activation of the protein. Autophosphorylation 

appears to be negatively regulated by PP2A (Goodarzi et al., 2004). Okadaic acid 

leads to an increase in ATM S1981 phosphorylation and in non-irradiated cells ATM 

associates with the A subunit of PP2A. Thus, PP2A appears to maintain ATM in an 

unphosphorylated state and DSBs result in dissociation of PP2A allowing 

autophosphorylation of ATM. Acetylation at Y3016 is also required for dissociation 

of ATM homodimers (Sun et al., 2007). Mutation of this residue prevents ATM 

upregulation, and reduces phosphorylation of ATM substrates. The activation of ATM 

results in phosphorylation of up to 700 proteins involved in DNA replication, DNA 

repair and cell cycle regulation (Matsuoka et al., 2007), but the principle substrate 

appears to be p53 (Canman et al., 1998, Moyal et al 1998).

ATM and RAD3-related (ATR) is activated in response to single strand DNA breaks 

(reviewed in Cimprich & Cortez, 2008) and shares many biochemical and functional 

similarities to ATM. Replication protein A (RPA) coats most ssDNA within the cell to 

prevent hairpin formation and protects ssDNA from nucleases (reviewed in Fanning, 

Klimovich & Nager, 2006), and is recognised by ATR-interacting protein (ATRIP)

(Ball et al., 2007). ATR and ATRIP are functionally co-dependent, and loss of 

expression of either protein leads to complete abrogation of expression and function 

of the other (Cortez et al., 2001). Full activation of ATR requires the activator 

topoisomerase-binding protein 1 (TOPBP1), which is recruited by the Rad9-Hus1- 

Rad1 (9-1-1) complex (Parrilla-Castellar et al., 2004, Kumagai et al., 2006, Delacroix 

et al., 2007, Lee et al., 2007, Mordes et al., 2008). Activated ATR phosphorylates 

Checkpoint Homologue 1 (Chk1) which is released from chromatin leading to 

transmission of DNA damage signals and cell cycle arrest (Smits et al., 2006). ATM 

appears to partially regulate ATR (Yoo et al., 2007). In response to DSBs in
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Xenopus, ATM phosphorylates T0PBP1 at S1131 and strongly enhances interaction 

of TOPBP1 with ATR. Mutation of S1131 prevents phosphorylation of Chk1 in 

response to DSBs showing that ATM-mediated phosphorylation of TOPBP1 is 

required for full activation of ATR. The activation of ATR is therefore closely related 

to that of ATM.

1.6.3.2.2 mTORCI and ATM/ATR

There are a number of potential links between ATM/ATR signalling and the mTORCI 

pathway. Analysis of ATM responsive phosphorylation events revealed an 

enrichment for substrates within the IGF-1 pathway, including IRS2, TSC1 and 

4EBP1 (Matsuoka et al., 2007). Additional evidence comes from studies using ATM  

Amice, which provide a mammalian model for A-T (Barlow et al., 1996). Thymocytes 

derived from ATM*'mice showed increased phosphorylation of 4EBP1 as a 

consequence of reduced PTEN activity. (Kuang et al., 2009). Of interest, c-Myc was 

upregulated in these thymocytes as a consequence of increased mTORCI signalling. 

Inhibition of mTORCI with rapamycin attenuates c-Myc expression and reduces the 

development of lymphomas. This finding infers a model where ATM deregulation 

results in increased mTORCI mediated c-Myc expression resulting in malignant 

thymic lymphomas. Similarly, activation of ATM in breast cancer cell lines decreases 

4EBP1 phosphorylation and reduces cap-dependent translation (Braunstein et al.,

2009). Regulation of mTORCI, therefore, appears to play a crucial role in signalling 

downstream of ATM.

Although a direct link between mTORCI and ATR signalling has not been identified, 

inhibition of Akt has been shown to activate DNA damage repair via Chk1. Xu et al. 

found reduced association of ATR and RPAto chromatin, and reduced Chk1 

phosphorylation, in late G2 arrested cells following radiation-induced DNA damage. 

Depletion of Akt restored radiation induced Chk1 phosphorylation, whilst a PTEN'1' 

cell line showed attenuation of Chk1 phosphorylation under the same conditions. 

These data show that Akt activation suppresses ATR mediated Chk1 activation, and 

may indicate a role for mTORCI upstream of ATR.

1.6.3.2.3 Tip41 and ATM/ATR
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The precise role of Tip41 within ATM/ATR signalling is unknown, but an unidentified 

33kDa substrate of ATM/ATR showed reduced phosphorylation on knockdown of 

Tip41 (McConnell et al., 2007). As okadaic acid treatment increased 

phosphorylation of this substrate, Tip41 appears to sequester PP2A to regulate 

dephosphorylation towards the unknown protein component within this pathway. 

Further investigation is clearly necessary to identify the protein and elucidate the role 

of Tip41 within this pathway.

1.6.3.2.4 NF-kB

The NF-kB family of transcriptional regulators is involved in a number of processes 

including immunity and inflammation (reviewed in Wietek & O’Niell, 2007). There are 

five members within the family that homo- and hetero-dimerise to form a variety of 

complexes that recognise specific motifs within various genes. One such dimer, 

namely p50-p65, is activated in response to IL-1 p. Without activating signals, p50- 

p65 is sequestered in the cytosol in an inactive state by IkB. On binding of IL-1 p to 

the IL-1 Receptor (IL-1 R), IKK phosphorylates IkB at specific sites resulting in its 

ubiquitination and degradation. Following release from the inhibitor, p50-p65 

activates target genes (Wieteck & O’Neill, 2007).

Activation of IKK involves a complex formation based on polyubiquitin binding. 

Following stimulation by IL-1 p, TRAF6 polyubiquitinates TAK1 leading to the 

subsequent activation of IKK (Ninomiya-Tsuji et al., 1999, Deng et al., 2000, 

Sorrentino et al., 2008, Fan et al., 2010). TAB1 binds to and triggers 

autophosphorylation of TAK1 required for activation (Shibuya et al., 1996, Sakurai et 

al., 2000). Other members of the complex include TAB2 and TAB3, which mediate 

binding between TAK1 and TRAF6 by binding polyubiquitin chains (Takesu et al., 

2000, Kanayama et al., 2004, Kishida et al., 2005). PP6c is required for inactivation 

of the complex, which dephosphorylates TAK1 (Kajino et al., 2006). Interestingly, 

recent findings indicate that whilst TAB2 and TAB3 are redundant in the activation of 

TAK1, TAB2 plays an additional role in deactivation of TAK1 by recruiting PP6 to the 

complex (Broglie et al., 2010).

1.6.3.2.5 mTORCI and NF-kB
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A link between mTORCI signalling and the NF-kB pathway is implicated in the 

development of insulin resistance due to obesity. Two modes have been identified. 

Firstly, IKK directly phosphorylates TSC1 at the inactivating sites S487 and S511 

resulting in activation of mTORCI by removal of the inhibitory TSC1/2 complex (Lee 

et al., 2007). This results in angiogenesis and is associated with increased tumour 

progression in breast cancer patients. The same mechanism results in insulin 

resistance due to induction of the negative regulatory feedback downstream of 

mTORCI. Here, IKK mediated activation of mTORCI results in phosphorylation of 

IRS-1 at S307 and S636/639, preventing interaction with PI3-K thus rendering 

downstream proteins resistant to stimulation by the insulin receptor, which lies 

upstream (Hartley & Cooper, 2002, Lee et al., 2008). The second link between NF- 

kB and insulin resistance stems from the ability of IKK to directly phosphorylate IRS- 

1 at S312 (Gao et al., 2002). This results in proteasomal degradation of IRS-1 

following ubiquitination (Zhande et al., 2002, Greene et al., 2003).

IKK also binds mTOR directly and appears to act both up- and downstream of the 

mTORCI complex. In PTEN null prostate cancer cells, IKK associates with mTOR 

and knockdown of IKK results in a decrease of mTOR activity (Dan et al., 2007). 

Thus IKK appears to activate mTOR downstream of Akt. In the same cell line, the 

interaction between mTOR and IKK results in IKK and subsequent NF-kB activation 

(Dan et al., 2008). In addition, rapamycin inhibits NF-kB activation, providing further 

evidence for a role of IKK downstream of mTOR. Thus IKK binds mTOR leading to 

activation of mTORCI activity, whilst also resulting in activation of the protein itself.

1.6.3.2.6 Tip41 and NF-kB

Tip41 has recently been renamed TAB4, due to its identification as a novel member 

of the TAK1 activation complex (Prickett et al., 2008). On expression of HA-Tip41, 

autophosphorylation of FLAG-TAK1 (but not endogenous) is induced resulting in 

increased activation. Mutation analysis showed that Tip41 binds ubiquitinated TAK1 

via conserved Phe254Pro255 motif, also found in TAB2 and TAB3. Interestingly, 

although Tip41 directly binds TAK1, an overlay assay showed that binding was 

dependent on the phosphorylation state of TAK1. A ‘Hit and Run’ model was 

hypothesised, where Tip41 binds inactive (dephosphorylated) TAK1 to cause 

autophosphorylation of TAK1 and subsequent release of Tip41 from the complex

61



(Prickett et al., 2008). It is important to note that in this study, overexpressed HA- 

Tip41 failed to influence NF-kB activation in the absence of co-expressed FLAG- 

TAK1. ThusTip41 overexpression does not affect endogenous NF-kB signalling 

when expressed alone.

1.6.4 Ba

1.6.4.1 Inhibition by E40RF4

DNA tumour viruses have historically been useful in uncovering mechanisms of 

phosphatase regulation in the cell. As viruses must overcome checkpoints to 

facilitate replication, this often means inhibiting regulatory phosphatase activity. For 

example, the SV40 small T antigen binds and forms a stable complex with PP2Ac 

leading to release of the regulatory B subunit and enhanced cell survival (reviewed in 

Branton & Roopchand, 2001). The adenovirus is able to maintain protein synthesis 

within the cell even in PBS (O’Shea et al., 2005(b)). Two proteins encoded by the 

virus achieve this, namely Early Region 4 Open Reading Frame 1 (E40RF1) and 

E40RF4. As a master regulator of translation, mTORCI is targeted by both these 

viral proteins, as expression of E40RF1 and E40RF4 result in increased 

phosphorylation of S6K1 and 4EBP1, and rapamycin inhibits viral replication 

(O’Shea et al., 2005(a), Li et al., 2009). The method of E40RF1 action is relatively 

simple, as it binds and activates PI3K to increase GTP-loading of Rheb (O’Shea et 

al., 2005(a)). E40RF4 on the other hand interacts with both the Ba regulatory 

subunit of PP2Ac and cellular Sarcoma (c-Src).

1.6.4.2 Functions

1.6.4.2.1 Regulation of mTORCI

As E40RF4 binds Ba resulting in enhanced phosphorylation of mTORCI substrates, 

it was proposed that PP2ABa may be involved in attenuation of mTORCI signalling 

on removal of stimulatory signals. E40RF4 is a small 114 residue polypeptide and 

deletion of even small portions reduces stability indicative of considerable tertiary 

structure (reviewed in Branton & Roopchand, 2001). As E40RF4-bound PP2Aea still 

retains catalytic activity towards the peptide substrate, modulation of PP2Ac activity 

may take place by inhibition of substrate interaction (Li et al., 2009).
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Binding of E40RF4 to Ba does not alter Rheb GTP-loading and mutants that don’t 

bind Ba (A359 and L51/54A) don’t induce phosphorylation of S6K1 and don’t 

associate with PP2Ac. E40RF4-mediated activation of S6K1 is sensitive to 

rapamycin. Therefore, E40RF4 appears to act in a parallel pathway to PI3K, 

upstream of mTORCI (O’Shea et al., 2005(a)). This notion is backed up as both 

E40RF1 and E40RF4 are required for full activation of S6K1 (O’Shea et al., 

2005(a)). Whereas E40RF1 is required for Rheb-induced activation of mTORCI, 

PP2ABa may act within the amino acid induced activation of mTORCI which does 

not alter Rheb loading but localises mTORCI to membranes where it may be 

activated by Rheb (O’Shea et al., 2005(a)). Studies using E40RF4 have therefore 

convincingly implicated PP2ABain inhibition of signalling to mTORCI

A little understood function of E40RF4 inhibition of PP2ABa also results in 

downregulation of cellular Myelocytomatosis (c-Myc) protein and transcription (Ben- 

Isreal et al., 2008). The transcription factor c-Myc is activated by growth factors via 

the Ras/MEK/ERK pathway and activates genes involved in proliferation, survival 

and angiogenesis (reviewed in Wolfer & Ramaswamy, 2011). As mTORCI is known 

to activate translation of c-Myc, inhibition by E40RF4 appears contradictory and 

therefore requires further investigation (West et al., 1998).

1.6.4.2.2 Cdk1

An additional role of Ba in cell cycle regulation was also uncovered using E40RF4. 

The cell cycle is controlled by cyclin-Cdk complexes, and different cyclins are 

associated with different phases of the cell cycle. For example, the G1 phase is 

controlled by cyclin D whereas DNA replication in the S phase is controlled by cyclin 

A and cyclin B. Mitosis is controlled by cyclins B and A. Mitotic exit requires 

ubiquitination of cyclin B which is achieved by the E3 ligase anaphase promoting 

complex (APC). This is activated on the onset of anaphase. APC recognises 

substrates via the subunits Cdc20 and Cadherin 1 (Cdh1) which are activated by 

Cdk1. When all chromosomes are positioned on spindle microtubules Cdc20 is 

activated leading to degradation of the seperase inhibitor securin. This allows 

seperase-mediated cleavage of sister chromatids and exit from mitosis. Following 

mitosis, APC interacts with Hypertrichosis 1 (Htc1) which is inhibited by Cdk1. This
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ensures that on onset of the following cell cycle, APC is inhibited until its activity is 

required again (reviewed in Murray, 2004).

On over-expression of E40RF4, Cdk1 activity is increased and knockdown of Ba 

resulted in cell cycle arrest at G2 to M transition (Li et al., 2009). E40RF4 therefore 

activates Cdk1 by inhibiting PP2Abcx in order to control the cell cycle. During mitosis, 

Ba is phosphorylated at S167 resulting in reduced binding to the A and PP2Ac 

subunits. This reduces PP2Aea activity towards Cdk1 phosphorylated substrates 

(Schmitz et al., 2010). On exit of mitosis, PP2Asa dephosphorylates Cdk1 substrates 

downstream of Cdc20, which is required for mitotic exit (Manchado et al., 2010).

In yeast, E40RF4 affects the spindle assembly checkpoint by binding APC and 

recruiting the Pph21/22-Cdc55 complex (Kornitzer et al., 2001). PP2ABa may 

therefore control mitotic exit by dephosphorylating the activating Cdc20 and Cdh1 

subunits of APC thus inhibiting Cdk1 activated mitotic exit. This role of PP2ABa is 

concurrent with a role of nuclear PP2Asa in a cellular checkpoint induced by ionising 

radiation. Ionising radiation decreases PP2Asa trimer in the nucleus, which is 

prevented in ATM deficient cells (Guo et al., 2002). Loss of PP2ABa may therefore 

trigger a cell cycle/DNA damage checkpoint.

1.6.4.2.3 Wnt signalling

PP2ABa is also implicated in inhibition of canonical Wnt signalling. Without upstream 

stimuli, GSK3p in complex with adenomatous polyposis coli, axin and PP2A 

phosphorylate p catenin leading to its ubiquitination and degradation. Binding of the 

Wnt ligand to the cognate receptor leads to inhibition of GSK3p by Dishevelled 

leading to accumulation of p catenin, which interacts with T cell factor transcription 

factors to activate transcription from promoters with TCF sites (reviewed in Smalley 

& Dale, 1999). Knockdown of PP2Ac or Ba increases p catenin phosphorylation at 

S552 and S675, highlighting an activating role of P P 2 A bcx in canonical Wnt signalling 

(Zhang et al., 2009). Thus PP2ABa may be involved in p catenin dephosphorylation 

allowing accumulation of the protein and transcription of TCF genes.
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1.6.5 B’

More recently, another PP2Ac regulatory subunit has been implicated in regulation of 

S6K1 activity downstream of mTORCI Flies with mutated B’ regulatory PP2Ac 

subunit developed a phenotype indicative of defective insulin signalling (Hahn et al.,

2010). Tissue staining showed elevated S6K1 phosphorylation with no alteration to 

Akt or 4EBP1 phosphorylation. Investigations using HeLa cells mirrored these 

results, as cells with mutated PPP2R5D (human B’) had higher levels of S6K1 

phosphorylation with no change in the phosphorylation status of 4EBP1. Direct 

interaction between S6K1 and B’ was also demonstrated. It is probable that B’ acts 

as the regulatory PP2Ac subunit directing phosphatase activity towards S6K1 

downstream of mTORCI.

1.6.6 Bp

PP2ABp has also been implicated in regulation of substrate phosphorylation 

downstream of mTORCI, as discussed in Section 1.5.10.5.

1.6.7 PP6c

The potential role of PP6c in mTORCI signalling has not been investigated 

extensively. Calyculin A is a general PP2A and PP1 phosphatase inhibitor. 

Treatment with the drug has been shown to increase S6K1 phosphorylation, 

therefore a role for the other PP2A family members, such as PP6 , cannot be 

discounted (Bielinski & Mumby, 2007, Peterson et al., 1999).

1.6.7.1 Structure
PP6c was discovered as the functional homologue of yeast Sit4 (Table 1.1), with a 

role in cell cycle regulation (Bastians & Ponstingl, 1996, Stefansson & Brautigan,

2007). Later, a number of regulatory and scaffold subunits were identified to 

comprise the PP6 holoenzyme. The scaffold subunits of PP6 include PP6 regulatory 

subunits 1 (PP6R1), 2 and 3. These are orthologues of the Sit4 associated proteins 

(SAPs) in yeast which constitutes the regulatory subunits of the phosphatase.

PP6R2 and PP6R3 expression in yeast can rescue the phenotype observed in 

knockout of all SAP proteins (Morales-Johansson et al., 2009). Preliminary data 

indicate the role of PP6 R proteins to be as a scaffold, connecting PP6c to the
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regulatory subunits. Analysis of PP6 R sequences predicts that a high degree of 

alpha helix formation allows presentation of residues required for protein-protein 

interaction within the PP6 holoenzyme (Guergnon et al., 2009).

The regulatory subunits of PP6c include three ankyrin repeat proteins, Ankrd28, 

Ankrd44 and Ankrd52. The three proteins share extensive sequence identity 

although they derive from separate branches of the phylogenetic tree. Ankrd28 was 

found to mediate the function and specificity of PP6c, and interacts with all three 

PP6 R proteins in addition to PP6c. As the C terminus of PP6R1 bound Ankrd28 but 

not PP6 , this provided evidence for the role of PP6 R proteins as scaffold subunits 

(Stefansson et al., 2008).

1.6.7.2 Functions

1.6.7.2.1 NF-kB

PP6 is involved in attenuation of signalling to NF-kB. Activation of NF-kB requires 

phosphorylation and subsequent degradation of its inhibitor IkB by IKK. Activation of 

IKK involves the TAK1 complex. PP6 associates with TAK1 and knockdown of PP6 

reduced IL-1 induced activation of TAK1 measured by phosphorylation atT187 

(Kajino et al., 2006). PP6 is therefore involved in reducing signalling to NF-kB on 

removal of cytokine signals. Knockdown of PP6R1 and Ankrd28 prevented the 

TNFa induced degradation of IkB, indicating that both subunits form part of the PP6 

complex involved in TAK1 dephosphorylation, supporting the evidence of these 

subunits in a PP6 holozyme (Stefansson et al., 2008).

1.6.7.2.2 DNA repair

The identification of PP6 as a binding protein of DNA protein kinase (DNA-PK) 

following ionising radiation implicated PP6 in repair of DSBs. Repair of DSBs can 

take place via non-homologous end joining (NHEJ) or homologous repair. In the 

case of NHEJ, DSBs are detected by the Ku70/80 heterodimer which leads to the 

recruitment of DNA-PK. Like mTOR, DNA-PK is a PIKK. DNA-PK binds to broken 

DNA ends where kinase activity is activated. One DNA-PK binds at each free end of 

DNA at the break. Interaction between the DNA-PKs via HEAT repeats is required 

to align the two strands for repair.
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Autophosphorylation of DNA-PK leads to conformational change and dissociation of 

DNA-PK allowing other DNA repair proteins to access the damaged site. H2AX is 

also a substrate for DNA-PK. Phosphorylated H2AX acts as a recruitment platform 

for other proteins involved in the DNA damage response (reviewed in Dobbs et al., 

2010).

Ionising radiation induces DSBs which promotes translocation of DNA-PK to the 

nucleus. PP6c, PP6R1, PP6R2 and PP6R3 bind to DNA-PK, and translocate to the 

nucleus with DNA-PK following ionising radiation. In cells lacking DNA-PK, the level 

of PP6 in the nucleus is reduced. PP6 appears to be required for the activation of 

DNA-PK as knockdown of PP6R1 or PP6 reduces activation of DNA-PK following 

ionising radiation (Mi et al., 2009). Phosphorylation of H2AX is sustained on 

knockdown of PP6 or PP6R1 following ionising radiation (Douglas et al., 2010). PP6 

therefore appears to translocate to the nucleus with DNA-PK on DSB formation and 

locate to the site of DSB, where it may be involved in dephosphorylation of DNA-PK 

substrates following repair of the DSB.

1.7 mTORC2

1.7.1 The mTORC2 complex

The mTORC2 complex consists of mTOR along with Raptor Independent 

Companion of mTORC2 (Rictor), mLST8 and mammalian Stress-Activated Protein 

Kinase Interacting Protein 1 (mSinl). Protein Observed with Rictor (Protor) and 

Heat Shock Protein 70 (Hsp70) have also been observed in complex with mTORC2. 

Similarly to mTORCI, mTORC2 is activated by PI3K via an unknown mechanism, 

although in contrast, activity is unaffected by amino acids (Pearce et al., 2007). The 

principle substrate of mTORC2 is Akt, which is phosphorylated at S473 in response 

to mTORC2 activation (Sarbassov et al., 2005). Full activation of Akt requires 

additional phosphorylation at T308 by PDK1. Phosphorylation of the hydrophobic 

motif of Akt by mTORC2 provides a docking site for PDK1 to phosphorylate the 

activation loop. Thus mTORC2 phosphorylation of Akt primes the kinase for full 

activation by PDK1 (Bondi, 2004). Concurrent with this, pre-incubation of Akt with 

mTORC2 in vitro boosts PDK1 mediated activation (Sarbassov et al., 2005).
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Dephosphorylation of Akt may be mediated by protein phosphatase 1 (PP1) (Gupta 

et al., 2009).

1.7.1.1 Rictor and mSinl

Rictor and mSinl are exclusive members of the mTORC2 complex. Substrate 

binding may be mediated by mSinl, which binds Akt directly and is required for 

phosphorylation at S473 (Jacinto et al., 2006). Five mSinl isoforms exist due to 

alternative splicing, although only isomers 1,2 and 5 bind mTORC2. Knockdown of 

mSinl results in reduced phosphorylation of Akt, highlighting the importance of 

mSinl in mTORC2 kinetics.

The three mTORC2-binding isoforms of mSinl form individual complexes. Isoforms 

1 and 2 form complexes that are responsive to insulin and PI3K signalling, whereas 

mTORC2 complexes containing isoform 5 are not. Activation of mTORC2 in 

response to upstream signals may therefore be controlled by response from mSinl. 

The activation of mTORC2 containing mSinl isoform 5 is unknown, but may involve 

localisation of mTORC2 mediated by PIP3 in order to phosphorylate Akt (Frias et al.,

2006).

1.7:1.2 mLST8

Although ml_ST8 is also considered a member of the mTORCI complex, studies 

using mouse models implicate a more central role in mTORC2 activity. The ml_ST8 

knockout mouse has a similar phenotype to the Rictor but not Raptor knockout 

model. In addition, knockdown of ml_ST8 prevents interaction between mTOR-Rictor 

and results in a mobility shift of Rictor (Guertin et al., 2006). An explanation for this 

may therefore be that knockdown of mLST8 may result in accumulation of free Rictor 

resulting in targeting for proteasomal degradation by ubiquitination.

1.7.1.3 Protor
Protor is a novel component of mTORC2 with a currently unknown function (Pearce 

et al., 2007).
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1.7.1.4 Hsp70

Hsp70 has been implicated in the mT0RC2 signalling pathway. Heat shock proteins 

are induced in response to a wide variety of stressors including temperature, 

oxidative stress and UV radiation. They are grouped according to molecular weight, 

with the best characterised group being Hsp70. Both soluble and membrane bound 

forms of the protein exist, and many functions have been ascribed including assisting 

in protein folding, preventing aggregation and membrane transport (Shin et al., 2003, 

Arispe et al., 2004, Horvath et al., 2008).

Immunoprecipitation studies identified a temperature sensitive interaction between 

Rictor and Hsp70. Further studies found that knockdown of Hsp70 reduced Akt 

phosphorylation at S473, the mTORC2 phosphorylation site (Martin et al., 2008), and 

that mTORC2 mediated Akt phosphorylation is also sensitive to heat shock (Oehler- 

Janne et al., 2008). Hsp70 therefore appears to positively regulate mTORC2 

phosphorylation of Akt, in a temperature sensitive manner.

1.7.2 Functions of mTORC2

1.7.2.1 Actin remodelling

Disruption of mTORC2 signalling interferes with actin remodelling via PKC along with 

the GTPases Rho and Rac. Knockdown of Rictor results in morphological defects 

due to F-actin defects. Normal filamentous (F) actin is distributed throughout the 

cytosol and at the cell corex. Following Rictor knockdown, thick actin fibres are 

present in the cytosol with few at the cell cortex. In addition paxillin phosphorylation 

is reduced and is present at the ends of the thick F-actin fibres rather than at focal 

adhesions. Knockdown of PKC results in a similar phenotype to Rictor knockdown 

indicating that the defect in F-actin seen on knockdown of Rictor may be caused by 

defective PKC activation (Sarbassov et al., 2004). Although similar, the phenotype is 

not identical indicating that mTORC2 has other substrates involved in actin 

remodelling.

The Rho and Rac GTPases regulate actin assembly and disassembly. Knockdown 

of Rictor results in decreased GTP-bound Rho and Rac whereas constitutively active 

Rho and Rac relieve the defect in F-actin seen on knockdown of Rictor (Jacinto et al., 

2004). This suggests that mTORC2 leads to the accumulation of GTP-bound Rho
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and Rac resulting in F-acting remodelling. By controlling remodelling of the 

cytoskeleton, mTORC2 promotes cell migration.

1.7.2.2 Angiogenesis

Prostaglandin E2 (PGE2) promotes angiogenesis in endothelial cells, partly by 

inducing cell migration, and also induces activity of Rac via mTORC2. Knockdown 

of Rictor prevented endothelial cell migration induced by PGE2, and reversed PGE2 

induced Rac activity (Dada et al., 2008). Angiogenesis is therefore another process 

positively regulated by mTORC2.

1.7.2.3 Akt

Other processes downstream of mTORC2 are mediated by activation of Akt, which 

has numerous substrates in the cell. Although the best characterised substrate is 

GSK3, phosphorylation is not activated by mTORC2 (Guertin et al., 2006).

Substrates of Akt that are phosphorylated in response to mTORC2 activation include 

the FOXO transcription factors. Akt phosphorylates F0X01, F0X03a and F0X04 

in the nucleus leading to 14-3-3 binding and translocation to the cytosol. This 

prevents the transcription of pro-apoptotic genes (reviewed in Manning & Cantley,

2007). As an activator of Akt, the mTORC2 complex is well-placed to encourage 

tumorigenesis. Indeed glioma have a high incidence of Akt activation. In glioma cell 

lines and primary tumour cells, Rictor mRNA and protein levels are elevated, 

concurrent with increased mTORC2 activity and increased anchorage dependent 

growth (Masri et al., 2007).

1.7.3 Regulation of mTORC2

1.7.3.1 Feedback from mTORCI

A negative feedback loop between mTORCI and mTORC2 places Rictor 

downstream of S6K1. Phosphorylation of Rictor at T1135 reduces phosphorylation 

of Akt at S473 and promotes Rictor binding to 14-3-3. Expression of Rictor mutant 

T1135A prevents inhibition, indicating that the phosphorylation event is inhibitory to 

mTORC2 (Dibble et al., 2009). This therefore provides a method of downregulating 

Akt in response to mTORCI activation to prevent aberrant activation of Akt signalling

1.7.3.2 TSC1/2
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Although the inhibition of mTORCI by TSC1/2 is well documented, recent evidence 

shows that the complex activates mTORC2. TSC2-/- MEFs have reduced activity of 

mTORC2, without any defect in mTOR-Rictor binding, which is unresponsive to 

insulin. Raptor knockdown did not restore mTORC2 activity therefore inhibition of 

mTORC2 activity appeared to be a direct consequence of TSC2 loss, not due to a 

negative feedback loop involving mTORCI. Overexpression of a TSC2 GAP mutant 

had no effect on mTORC2, indicating the effect of TSC1/2 is independent of the 

GTPase activating function of TSC2. In addition, mTORC2 was found to bind 

directly to TSC2. Thus the TSC1/2 complex is required for activation of mTORC2, 

mediated by direct binding, providing another mechanism for activation of Akt 

(Huang et al., 2008). These findings may partly explain why TSC1 and TSC2 are not 

associated with malignancy in human cancer.

1.8 PP2A and disease

The extensive nature of PP2A regulation indicates the importance of the protein 

within the cell, and indeed dysregulation is implicated within many pathologies. For 

instance, alteration of PP2A function has been found within many cancer types, 

usually resulting in a removal of PP2A function leading to hyperphosphorylation of 

oncoproteins.

1.8.1 Genetic disease

1.8.1.1 Opitz Syndrome

OS is an X-linked syndrome caused by mutations in the MIDI gene. The disease is 

characterised by diverse symptoms including cleft palate, heart defects and mental 

retardation. By mediating interaction between Midlinel and PP2A, Alpha4 plays a 

crucial role in some cases of OS. Mutations of Midlinel that prevent interaction with 

PP2AAipha4 result in the microtubule destabilisation that underlies the pathogenic 

phenotype of the disease (Trockenbacher et al., 2001). In support of this, Alpha4 

expression in the developing mouse embryo coincides with tissues affected by OS, 

such as the heart and brain (Everett & Brautigan, 2002). In addition, Midlinel protein 

that is deficient in Alpha4 binding could not move along MTs and permanent 

phosphorylation of S96 within Midlinel had the same effect (Aranda-Orgilles et al.,

2008). OS patient mutations within the Alpha4 binding site may therefore be 

pathogenic due to reduced migration of Midlinel along MTs.
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1.8.2 Neurological disease

1.8.2.1 Alzheimer's Disease

The implication of PP2A in the pathogenesis of AD is also well documented. Within 

the AD brain reside a number of extracellular senile plaques made up of amyloid p- 

peptide (Ap - a fragment of amyloid precursor protein) along with 

hyperphosphorylated Tau leading to the formation of neurofibrillary tangles within 

neurons. In healthy brain tissue, Tau stabilises MTs and is regulated by 

phosphorylation, which decreases with age. In the AD brain Tau is abnormally 

hyperphosphorylated. Tau phosphorylation is controlled by GSK3p and PP2A, 

where GSK3p phosphorylates Tau within its MT binding domain and prevents 

interaction with MTs leading to their decreased stability (Martin et al., 2009). An 

unidentified PP2A complex dephosphorylates GSK3p in order to maintain kinase 

activity (Qian et al., 2010).

Tau phosphorylation is controlled by PP2Abq and dysfunction of the protein is 

implicated in AD progression. PP2ABa dephosphorylates Tau in vitro and the PP2A 

binding site within Tau has been uncovered (Xu et al., 2008). The expression of 

PP2Ac L309A defective in methylation and therefore Ba binding results in MT 

destabilisation, as does knockdown of Ba, indicating a crucial role of PP2ABa in AD 

pathogenesis (Evans & Hemmings, 2000, Nunbhakdi-Craig et al., 2007). Within the 

pR5 mouse model of AD, expression of methylation deficient PP2Ac L309A 

exacerbated the formation of neurofibrillary tangles (Deters et al., 2009). In addition, 

within rat brain slices PP2A was found to reduce Tau phosphorylation directly at 

several phosphorylation sites (Qian et al., 2010).

The identification of AD as a state of insulin resistance within the brain has led to the 

term Type III diabetes’ being used to describe the disease (Castri et al., 2003, Gupta 

et al., 2011,). The two presenting pathologies of AD are linked via the insulin 

signalling pathway which, when active, results in inactivation of GSK3p. Ap prevents 

GSK3p inactivation via Akt by acting as an insulin antagonist where the peptide 

binds the receptor and interferes with its autophosphorylation (Townsend et al., 2007, 

Lee et al., 2009, Hernandez et al., 2010,). Further evidence for the role of insulin
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signalling in AD comes from cultured mouse neurons where inhibition of 

PI3K/mTORC1 signalling with LY294002 increased PP2A and GSK3p activity 

towards Tau (Meske et al., 2008). Insulin stimulation had the reverse effect. In 

addition the AMPK-activating drug metformin reverses the neuropathological change 

seen in an AD model and induces Tau dephosphorylation by PP2A via inhibition of 

mTORCI signalling (Gupta et al., 2011, Kickstein et al., 2010). Thus hyperactive 

insulin signalling is critical in the development of AD.

Activation of insulin signalling also increases translation of Tau via mTORCI. 

Analysis of AD brains showed higher phosphorylation of eEF2 and 4EBP1 than in 

control samples, indicating that mTORCI is hyperactive is AD. As one theory for the 

formation of neurofibrillary tangles is that they develop due to increased translation 

of Tau, this provides evidence that increased activity of mTORCI may cause this 

phenomenon (Li et al., 2005). Therefore the development of neurofibrillary tangles 

may be caused by increased translation of Tau, caused by hyperactivation of 

mTORCI

PP2A is also central in acting between Ap interference at the cell surface and the 

hyperphosphorylation of Tau within neurons. The presence of Ap reduced PP2Ac 

methylation and therefore activity of the PP2ABa holoenzyme was observed within 

human and murine brain samples (Zhou et al., 2008). In addition to studies with 

E40RF4 (O’Shea et al., 2005(a)) this provides evidence that PP2Abcx acts within the 

insulin signalling pathway, as PP2ABa is also affected by Ap and contributes to Tau 

hyperphosphorylation.

1.8.3 Cancer
Mutations within the A subunit of PP2A appear to be particularly common in 

cancerous cells, being implicated in melanoma along with breast, lung and colon 

cancers. Cancerous mutations to the A subunit result in an inability to bind the B’ 

regulatory subunit (Calin et al., 2000, Reudiger et al., 2001(a), Esplin et al., 2006) 

whilst those found in lung and colon cancer prevent binding of the B” or C subunits 

(Wang et al., 1998, Calin et al., 2000, Takegi et al., 2000, Ruediger et al., 2001(b)).
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All of these result in removal of PP2A activity and thus hyperphosphorylation of 

target proteins.

A pathogenic mutation within the A subunit of PP2A of particular importance to 

mTORCI signalling is the mutation resulting in defective binding to RalA. Growth 

factor activation results in the accumulation of active GTP-RalA which promotes 

receptor mediated endocytosis, secretion and the formation of filopodia (Feig, 2003). 

RalA activates mTORCI signalling to S6K1 (Maehama et al., 2008) and it’s activity is 

controlled via dephosphorylation by PP2A. Cancer-associated mutations in the A 

subunit of PP2A reduce binding to RalA, resulting in constitutive activation of RalA 

and downstream signalling, including mTORCI, and cellular transformation (Sablina 

et al., 2007).

Alteration to B regulatory subunits within cancerous cells is thought to occur due to 

changes in miRNA levels. Within lung and hepatic cell carcinoma levels of miRNA31 

and miRNA222, both of which degrade Ba, are increased leading to lower availability 

of the regulatory subunit and finally hyperphosphorylation of PP2Aea targets (Liu et 

al., 2010, Wong et al., 2010). The increased availability of both these miRNAs was 

associated with increased tumorigenicity and reduced life expectancy, highlighting 

the importance of PP2A regulation within the cell.

Mutations to PP2Ac are less frequently encountered within cancer, although a short 

nucleotide polymorphism has been found that increases the risk of breast cancer 

(Dupont et al., 2010). This is probably due to the essential nature of PP2Ac within 

the cell, and loss of function mutation would almost certainly result in cell death.

1.9 Diseases and mTORCI

1.9.1 Genetic disease
1.9.1.1 Tuberous Sclerosis Complex
Mutations of TSC1 and TSC2 that affect interaction between the proteins are found 

in patients with the disease Tuberous Sclerosis Complex (TSC) (Hodges et al.,

2007). TSC is characterised by the development of hamartomas in the brain, heart, 

skin and kidneys. Mental retardation, autism and epilepsy are common
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manifestations of the disease, in addition to the diagnostic markers including facial 

angiofibromas and calcified retinal hamartomas.

Familial TSC is caused by mutation of TSC1 or TSC2 in equal measures, as 

opposed to sporadic TSC in which TSC2 mutation is five times more common. 

Although no link between the point of mutation and severity of the disease has been 

documented, increased severity of TSC is associated with mutations within TSC2. 

Increased risk is possibly due to a higher rate of secondary hits in the TSC2 gene as 

it is larger. TSC patients carry a mutation in a single copy of either the TSC1 or 

TSC2 gene. Tumour development is thought to arise following a second hit event 

resulting in loss of heterozygosity.

1.9.1.2 Lymphangioleiomyomatosis

LAM is a TSC-associated disease and develops in approximately 30% of women 

with TSC. It is characterised by proliferation of abnormal smooth muscle cells and 

cyst formation in the lungs (reviewed in Inoki et al., 2005, Tee & Blenis, 2005,

Rosner et al., 2008).

1.9.1.3 von Hippel-Lindau disease
The VHL protein mediates the degradation of HIF1. Mutation of VHL occurs in the 

namesake von Hippel-Lindau disease, resulting in aberrant accumulation of HIF1 

and deregulation of HIF1 responsive genes. The disease is characterised by tumour 

formation in the brain, retina, kidneys and pancreas (reviewed in Inoki et al., 2005, 

Tee & Blenis, 2005, Rosner et al., 2008).

1.9.1.4 PTEN syndromes

Activity of PI3K is counteracted by PTEN which converts PIP3 to PIP2 (Maehama & 

Dixon, 1998). PTEN-hamartoma syndromes include Cowden syndrome, Bannayan- 

Riley-Ruvalcaba syndrome, Proteus syndrome and Lhermite-Duclos disease. All are 

autosomal dominant and are caused by loss of tumour suppressor function of PTEN. 

The site of tumour formation varies widely, but hyperactivation of Akt provides a 

common feature (reviewed in Inoki et al., 2005, Tee & Blenis, 2005, Rosner et al.,

2008).

75



1.9.1.5 Peutz- Jeghers syndrome

Peutz- Jeghers syndrome (PJS) is caused by mutation in the LKB1 gene and results 

in formation of hamartomas in the gastrointestinal tract, along with clinical features 

overlapping with those of TSC. This is unsurprising as loss of inhibitory MAPK via 

LKB1 loss of function removes mTOR repression in response to AMP accumulation 

(reviewed in Inoki et al., 2005, Tee & Blenis, 2005, Rosner et al., 2008). Both TSC 

and PJS tumours therefore comprise deregulated mTORCI.

1.9.2 Neurological disease

Dysregulation of proteasomal degradation and autophagy are becoming increasingly 

recognised in the development of neurological diseases. This is often due to 

accumulation of aggregated proteins, leading to neuronal cell death. As an inhibitor 

of autophagy, inhibition of mTORCI may be of therapeutic benefit for the treatment 

of such diseases by upregulating degradation of accumulated proteins.

1.9.2.1 Parkinson's disease

Parkinson’s disease arises due to mutation of the a-synuclein gene, associated with 

an increase in the intracellular concentration of both mutant and wild type a- 

synuclein. This is caused by the inability of the cell to degrade mutant a-synuclein, 

as the protein cannot translocate into lysosomes. Instead mutant a-synuclein binds 

to lysosomal membrane receptors, thus blocking the receptors and preventing 

interaction with other proteins, including wild type a-synuclein (reviewed in Pan et al.,

2008). As rapamycin has been shown to result in degradation of a-synuclein in cell 

models (Webb et al., 2003), inhibition of mTORCI could provide a potential therapy 

for Parkinson’s disease.

1.9.2.2 Huntington Disease

An autosomal dominant disorder, Huntington disease (HD) is caused by 

polyglutamine expansion at the N terminus of huntingtin protein. The N terminal 

repeats are cleaved from huntingtin and aggregate with a number of proteins within 

the cell, including transcription factors, leading to dysregulation of transcription 

(reviewed in Rubinsztein, 2002). Rapamycin may provide a potential therapy for HD 

as a derivative of the drug was found to enhance clearance of aggregated 

polyglutamine within the cell by upregulation of autophagy (Ravikumar et al., 2004).
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1.9.3 Intractable epilepsy

Cortical dysplasia (CD) in children is associated with development of intractable 

epilepsy, which is unresponsive to antiepileptic medication and instead requires 

surgery to remove abnormal cells. Although a variety of abnormal cell types have 

been observed in CD, increased cell size provides a common link between them. As 

mTORCI controls cell size via S6K1 (Ruvinsky et al., 2005), CD cells were analysed 

for activation of mTORCI substrates and indeed S6 was found to be 

hyperphosphorylated (Ljungberg et al., 2006). Inhibition of mTORCI could therefore 

be used as a therapy to treat intractable epilepsy in children.

1.9.4 Type II diabetes

Activation of the negative feedback loop is at the root of insulin resistant Type II 

diabetes. Initial insulin resistance is met with an increase in insulin production by 

pancreatic p-cells resulting in hyperinsulinaemia. Type II diabetes occurs when this 

fails to rescue the uptake of glucose in adipose and muscle tissue. Skeletal muscle 

biopsies from patients with Type II diabetes showed reduced association between 

IRS-1 and PI3K concurrent with increased phosphorylation of IRS-1 at S636 

(Bouzakri et al., 2003). Further evidence stems from studies using S6K1V' mice, 

which remain sensitive to insulin due to reduced serine phosphorylation of IRS-1 

(Urn et al., 2004). These mice are also resistant to IRS-1 phosphorylation at S1101 

induced by high fat diet (Tremblay et al., 2007).

In human L6 muscle cells, chronic activation of mTORCI using amino acids reduced 

IRS-1 protein and reduced glucose uptake in response to insulin (Tremblay & 

Marette, 2001 & Priola et al., 2003). Berg et al. also found that in 3T3-L1 adipocytes, 

rapamycin rescues the insulin induced increase in Akt phosphorylation, resulting in 

improved glucose uptake. Thus hyperactivation of mTORCI results in IRS-1 

phosphorylation and degradation leading to the reduced glucose uptake 

underpinning Type II diabetes.

In addition, chronic activation of mTORCI leads to reduced membrane translocation 

of the Glucose Transporter 4 (GLUT4) (Taha et al., 1999, Gaster et al., 2001, 

Garcia-Souza et al., 2008). This is associated with glucose-mediated tissue damage
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observed in patients with Type II diabetes. Therefore dysregulation of insulin 

signalling underpins the pathological phenotype of Type II diabetes due to the 

inability of the cell to respond to insulin.

1.9.4.1 Hsp70 and diabetes

Hsp70 has been shown to interact with mTORC2. Expression of Hsp70 is altered in 

patients with Type II diabetes, although there is deliberation as to whether levels are 

higher or lower (Kurucz et al., 2002, Bruce et al., 2003, Chung et al., 2008, 

Nakhjavani et al., 2010). Recent murine and primate studies have found that 

increased serum Hsp70 is associated with a reduction in insulin resistance (Chung et 

al., 2008, Kavanagh et al., 2011). In addition, SNPs within Hsp70 (Bouassida et al., 

2004) and its regulatory region (Marucci et al., 2009) are associated with increased 

risk of developing Type II diabetes, with the latter reducing mRNA stability.

Two explanations exist as to why Hsp70 may be involved in the development of 

Type II diabetes. The first involves the membrane protein ectonucleotide 

pyrophosphatase phosphodiesterase 1 or plasma cell membrane glycoprotein-1 

(ENPP1 or PC-1), an inhibitor of insulin signalling. Knockdown of ENPP1 increases 

insulin sensitivity and glucose tolerance in a mouse model, whilst mutating the 

pyrophosphatase/phosphodiesterase domain prevents inhibition of insulin signalling 

in HEK293 cells (Chin et al., 2009, Zhou et al., 2009). Therapeutic intervention of 

ENPP1 is therefore being explored as a method of controlling Type II diabetes.

Hsp70 binds the 3’UTR of ENPP1 mRNA thus stabilising the transcript and 

increasing levels of ENPP1 protein. This in turn reduces IR and IR-1 

phosphorylation (Marucci et al., 2009). Hsp70 therefore appears to negatively 

regulate insulin signalling by increasing levels of ENPP1.

The second explanation for the association between Hsp70 and Type II diabetes 

involves the more typical role of Hsp70 in protein folding. Misfolding of the islet (3- 

cell peptide human amylin into oligomers is linked with the pathogenesis of Type II 

diabetes. This is prevented by Hsp70, which can seemingly detect misfolded human 

amylin (Chien et al., 2010). Thus in conflict with the first role, Hsp70 in this instance 

appears to prevent pathogenesis of Type II diabetes.
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1.9.5 Cancer

Upregulation of mTORCI is observed in a number of human cancers. Upregulated 

S6K1 is a marker for mTORCI activation. Therefore in order to uncover whether 

mTORCI is upregulated in cancer cells, S6K1 activity is assayed. Indeed, analysis 

of breast cancer biopsies showed upregulation of S6K1. This was associated with 

poor prognosis, indicating that upregulation of mTORCI in breast carcinoma results 

in aggressive phenotype of the disease (Barlund et al., 2000). Therefore mTORCI 

may play an important role in the progression of breast cancer. Indeed 

phosphorylation of mTOR itself is associated with poor prognosis in colon cancer 

(Slattery et al., 2010).

f. 9.5.1 TSC1/2

Mutations in TSC1 and TSC2 have been correlated with a number of human cancers. 

In a sample of pancreatic cancers, 57% were negative for TSC2 expression, which 

was associated with a more aggressive phenotype and poor survival rate (Kataoka 

et al., 2005). Loss of TSC2 was seen in 13% of endometrial carcinomas in one 

study, and in the remaining samples phosphorylation of TSC2 at S939 was observed. 

This indicates that activation of mTORCI is a key step in the development of 

endometrial carcinoma (Lu et al., 2008). Mutation of TSC2 was also associated with 

colon cancer specifically (Slattery et al., 2010). The level of TSC2 mRNA was lower 

in breast cancer biopsies as opposed to normal tissue. This was associated with 

poor survival and recurrence of the disease, as was reduced expression of TSC1. 

Hypermethylation of the TSC1 promoter was associated with reduced levels of TSC1 

mRNA in these biopsies, whereas hypermethylation of the TSC2 promoter was seen 

less frequently (Jiang et al., 2005). TSC1 haploinsufficiency is also correlated with 

bladder cancer (Knowles et al., 2003).

1.9.5.2 Rheb

The farnesyl transferase inhibitor SCH66336 (Lonafarnib) was designed to treat such 

tumours containing active Ras. Although the drug inhibited growth of tumours in 

preclinical studies, it was found not to abrogate prenylation (and therefore activation) 

of Ras or Raf as predicted. Instead, Lonafarnib was found to inhibit tumour growth 

by preventing prenylation of Rheb, indicating the importance of Rheb activation in

79



cancer cells. Further study noted increased Rheb mRNA transcript levels in cancer 

cell lines, and expression of a prenylation-deficient Rheb mutant prevented 

Lonafarnib induced cell death (Basso et al., 2005). This implies that Rheb activation 

is a critical inducer of carcinogenesis in human cancer. Indeed Rheb mRNA and 

protein levels are positively correlated with aggressive phenotype of prostate 

cancers (Kobayashi et al., 2010).

1.9.5.3 SGK1

Hyperactivation of mTORCI can promote carcinogenesis by inactivation of p27. By 

inhibiting cyclin D-Cdk complexes, p27 inhibits cell proliferation (reviewed in Sherr & 

Roberts, 1999). Therefore progression of the cell cycle requires inactivation of p27. 

This is achieved by SGK1, which phosphorylates p27 at T157 resulting in cytosolic 

accumulation. SGK1 is activated downstream of mTORCI, and may be a direct 

substrate of the complex (Hong et al., 2008). Therefore mTORCI promotes cell 

cycle progression by activating SGK1, which in turn inhibits p27 allowing activation of 

cyclin D-Cdk complexes. Inactivation of p27 is associated with a number of human 

cancers (Rosner et al., 2006). A low level of nuclear p27 was associated with poor 

survival rate in breast cancer sufferers, particularly in patients less than 45 years old 

(Alkarain et al., 2004). A direct link between mTORCI and carcinogenesis promoted 

by inactivation of p27 was found in a sample of human bladder tumours. In this 

study, mutations in TSC1 were associated with suppression of p27 activity (Adachi et 

al., 2003).

1.9.5.4 Ras

The oncogene RAS activates mTORCI signalling via the Raf/MEK/ERK cascade 

(reviewed in Roux & Blenis, 2004). Activating mutations in RAF are found in over 60% 

of malignant melanomas and in many tumours of the colon, thyroid and lung 

(reviewed in Shaw & Cantley, 2006). In addition, mutation of the Ras GAP, 

Neurofibromatosis 1 (NF1), results in accumulation of active Ras which is at the root 

of the disease NF (reviewed in Inoki et al., 2005). Ras promotes cell proliferation by 

inhibition of apoptosis through inactivation of TSC2 by phosphorylation at S1798 

(Roux et al., 2004, Freilinger et al., 2008). To inhibit apoptosis, TSC1/2 triggers 

phosphorylation of Bcl-2 Associated Agonist of Cell Death (BAD) and upregulation of 

the proapoptotic heterodimerisation of BAD/BCL-2 and BAD/BCL-XL (Freilinger et al.,
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2006). Therefore tumours containing active Ras or Raf are resistant to apoptosis by 

preventing the inhibitory activity of TSC1/2.

1.9.5.5 PLD1

Increased expression of PLD1 has been associated with breast cancer. In the MDA- 

MB-321 breast cancer cell line, PLD1 expression was 10 fold higher than in another 

breast cancer cell line, MCF-7. Rapamycin inhibits mTORCI and mTORC2 by 

competing with PA binding which is required for mTOR-Raptor and mTOR-Rictor 

interaction (reviewed in Foster & Toschi, 2009). Breast cancer cells displaying high 

levels of PLD1 expression, and therefore PA accumulation, were highly resistant to 

rapamycin, which was reversed by inhibition of PLD1. In contrast, elevating PLD1 

activity in MCF-7 cells leads to rapamycin resistance (Chen et al., 2003). This 

reveals that PLD1 expression may be an indicator of rapamycin resistance in breast 

cancer.

1.9.5.6 Feedback loops -  and therapeutics

The mTORCI negative feedback loop has implications for mTORCI inhibition in 

cancer therapeutics. Inhibition of mTOR with the rapamycin analogues temsirolimus 

and everolimus has resulted in modest success in clinical trials. In fact, temsirolimus 

increased the rate of disease progression in patients with advanced pancreatic 

cancer (Javle et al., 2010). It is likely that this effect is due to inadvertent activation 

of PI3K signalling by abrogation of the negative feedback loop.

Biopsies post-treatment showed that everolimus increased IRS-1 protein and Akt 

activation in human liver, colon and breast carcinoma (O’Reilly et al., 2006). In 

tumour cell lines this was reversed by IGF-IR inhibition. Everolimus also increased 

signalling within the MAPK pathway, as indicated by enhanced ERK phosphorylation 

in post-treatment breast and colon carcinoma biopsies (Carracedo et al., 2008). In 

tumour cell lines, ERK and Akt phosphorylation induced by everolimus or rapamycin 

was inhibited by LY294002 and wortmannin, indicating activation via IRS-1 and PI3K 

(Sun et al., 2005).

Combination treatment with everolimus and the MEK1/2 inhibitor PD0325901 

reduced proliferation and increased apoptosis of tumour cell lines to a greater

8 1



degree than treatment with either drug alone. This provides evidence that 

combinatory treatment may be required to inhibit mTORCI whilst preventing PI3K 

signalling via the negative feedback loop. In human neuroendocrine tumour cell 

lines, everolimus in combination with the PI3K inhibitor NVP-BEZ235 prevented 

feedback activation of Akt induced by everolimus alone (Zitzmann et al., 2010).

Combination therapy may also be of use in the treatment of Acute Myeloid 

Leukaemia (AML), a disease in which the PI3K/Akt and mTORCI pathways are 

frequently activated. Blast cells from bone marrow samples taken from AML patients 

showed increased Akt activation following incubation with everolimus (Tamburini et 

al., 2008). Akt phosphorylation decreased when a combination of everolimus and 

the PI3K inhibitor IC87114 was used. Therefore, although inhibition of mTORCI 

increases PI3K/Akt signalling via prevention of the negative feedback loop, this can 

be overcome by combination therapy with PI3K inhibitors.

1.10 Project aims

Although the kinase events leading to activation of mTORCI are well understood, 

the phosphatase regulation that is required to prevent aberrant signalling has been 

granted little attention. Although the role of PP2A in mTORCI signalling has been 

documented (Peterson et al., 1999, Schalm et al., 2005, Yamashita et al., 2005, 

Bielinski & Mumby, 2007), the key to uncovering phosphatase regulation lies in the 

identification of target regulatory subunit(s). This project aims to analyse a number 

of regulatory subunits that potentially control PP2A activity within the mTORCI 

signalling pathway.

In budding yeast, phosphatases are essential in regulating TORC1 substrate 

phosphorylation in the absence of stimulatory signals. The transcription factor Gln3 

activates expression of nitrogen-regulated genes (Beck & Hall, 1999, Cardenas et al., 

1999, Duvel et al., 2003). In response to good nitrogen supply, TORC1 

phosphorylates Gln3 to promote its binding to the repressor Ure2 in the cytosol. 

Conversely, TORC1 inhibition by limited nitrogen supply leads to dephosphorylation 

of Gln3 by Sit4 and Pph21/22, resulting in nuclear translocation and activation 

(Cardenas et al., 1999, Bartram et al., 2000, Komeili et al., 2000, Crespo et al.,
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2002). Inhibition of Pph21/22 and Sit4 is required to prevent activation of nitrogen- 

responsive genes in the presence of sufficient nitrogen supply. This is achieved by 

the inhibitory subunit Tap42, which prevents Pph21/22 and Sit4 binding to regulatory 

subunits (Wang et al., 2003). During repression of TORC1 signalling, Tap42 is 

sequestered by Tip41, allowing Pph21/22 and Sit4 activation. Yeast TORC1 

promotes Tap42-mediated repression of phosphatase activity by phosphorylating 

Tip41 (Jacinto et al., 2001). Phosphorylation of Tip41 causes dissociation of Tap42 

from Tip41, which allows free Tap42 to then sequester and inhibit Sit4 and Pph21/22

Mammalian Tip41, with a molecular weight of 32kDa, shares much sequence identity 

with the yeast counterpart and, crucially, the TOS motif is conserved. As a TOS 

motif is required for optimal phosphorylation by mTOR, I hypothesise that Tip41 

might be regulated by mTORCI in a similar manner to that in yeast. In addition, 

Tip41 was shown to purify with the mammalian Tap42 and Pph21/22 orthologues 

Alpha4 and PP2Ac respectively (McConnell et al., 2007). Studies of Alpha4 indicate 

conflicting roles in relation to mTORCI, where it has been placed as both an 

activating and inhibitory PP2A subunit towards mTORCI substrates (Nanahoshi et 

al., 1998, Nien et al., 2007, Grech et al., 2008). Nevertheless, PP2AAiPha4 has been 

shown to regulate phosphorylation of mTORCI substrates. These pieces of 

evidence poised human Tip41 as a potential functional homologue of the yeast 

counterpart. Human Tip41 inhibits PP2Ac in vitro but a role in the regulation of 

mTORCI substrates has not been investigated (McConnell et al., 2007). This 

project set out to explore the role and regulation of Tip41 in mTORCI signalling.

As the functional homologue of yeast Sit4, PP6c is perfectly placed to play a role in 

mTORCI signalling in human cells (Bastians & Ponstingl, 1996). In addition, Tip41 

binds PP6c although the functional relevance of this remains unknown. As the role 

of PP6c in mTORCI has not been investigated, this project also contains a brief 

study into the role of this PP6c phosphatase in relation to mTORCI substrates. The 

decision to concentrate on the catalytic rather than regulatory subunits of PP6c was 

taken. The rationale for this was that, in contrast to PP2Ac, no data has been 

published linking PP6c with mTORCI signalling. Therefore, this project conducted 

some preliminary experiments to determine whether PP6c indeed impacted on 

mTORCI activity.
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Classically, PP2Ac requires regulatory and scaffold subunits for dephosphorylation 

of substrates. The regulatory, or B, subunit can be one of at least 20 proteins that 

can be further sub-grouped into four families based on sequence similarity. These 

regulatory subunits control substrate specificity of PP2Ac. The A scaffold subunit 

functions to bridge the interaction between the B regulatory subunit and PP2Ac.

DNA viruses often inhibit PP2A activity in order to promote replication in the absence 

of stimulating signals. The adenoviral protein E40RF4 is no exception, and was 

found to activate mTORCI by inhibiting a PP2A complex specifically containing the 

Ba regulatory subunit. Rather than inhibiting catalytic activity, E40RF4 acts as a 

non-competitive inhibitor preventing substrate recognition by Ba (Li et al., 2009).

The exact substrate of PP2ABa was not found, although E40RF4 did not alter Rheb 

GTP-loading and its resulting activation of S6K1 was sensitive to rapamycin (O’Shea 

et al., 2005(a)). Therefore PP2ABa was proposed to inhibit mTORCI signalling in a 

parallel pathway to that of insulin/growth factor signalling. The role of PP2ABa was 

explored in relation to mTORCI indirectly using the E40RF4 protein in this project. 

This project also sets out to study the regulation and role of PP2ABa directly in 

relation to mTORCI signalling.
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CHAPTER 2 - MATERIALS AND METHODS

2.1 Suppliers

Consumables and equipment used in this study were purchased from the following 

companies.

Abeam, Cambridge, UK

AbGene Surrey, UK

Applied Biosystems, Cheshire, UK

ATCC, Middlesex, UK

Bibby Sterilin, Staffordshire, UK

Binder, Venrey, Netherlands

BioRad Laboratories Ltd., Hertfordshire, UK

Cambridge Bioscience, Cambridge, UK

Calbiochem, Nottingham, UK.

Cell Signalling Technologies, Danvers, USA

Corning Costar, Amsterdam, Netherlands

Enzo Life Sciences, Exeter, UK

Eurofins MWG Operon. Ebersberg, Germany

FujiFilm UK Ltd, Bedfordshire, UK

GE Healthcare, Buckinghamshire, UK

Helena Biosciences Europe. Gateshead, UK

Hoefer, Holliston, USA

Invitrogen Life Sciences Ltd. Paisley, UK

Konica Minolta, Basildon, UK

Lonza Vervieres, Cambridge, UK

Millipore, Edinburgh, UK

National Diagnostics, Atlanta, USA

New England Biolabs Ltd., Hertfordshire, UK

Perkin Elmer, Massachusetts, USA

Promega, Southampton, UK

Qiagen, West Sussex, UK

Roche Diagnostics, West Sussex, UK.

85



R & D Systems, Minneapolis, U.S.A.

Santa Cruz Biotechnology Inc., California, UK

Sartorius, Epsom, UK

Sigma-Aldrich Company Ltd. Dorset, UK

Starlabs, Milton Keynes, UK

Ted Pella Inc., California, USA

Thermo Fisher Scientific, Surrey, UK

VWR International. Leicestershire, UK

2.2 Materials

2.2.1 Chemicals

Analytical grade Ethanol and Methanol were obtained from Thermo Fisher Scientific. 

All other chemicals were obtained from Sigma Aldrich Company Ltd unless 

otherwise indicated.

2.2.2 Plasmid details

The pcDNA3-(HA)3-Tip41 and pcDNA3-(HA)3-Tip41(F156A) were produced by Dr A. 

Tee. Site directed mutagenesis was used to create (HA)3-Tip41 mutants D71L, 

Y79H and M196V (Smetana & Zanchin, 2007). The pcDNA3-FLAG-Alpha4, pKH3- 

(HA)3-PP2Ac and pKH3-(HA)3-PP2Ac(E42A) were kind gifts from Prof. D. L. 

Brautigan at the University of Virginia (Prickett & Brautigan, 2004). Prof. J. Blenis at 

Harvard University kindly supplied pcDNA3-GST-4EBP1, pGEX-GST-4EBP1 and 

pcDNA3-Myc-4 EBP1, which were used to create pcDNA3-GST-4EBP1(F114A) and 

pcDNA3-Myc-4EBP1(F114A) by Dr. E. Dunlop using site directed mutagenesis. Dr. 

S. Schalm of Harvard University donated pRK7-HA-S6K1 (Schalm et al., 2005). The 

pRK5-Myc-mTOR and pRK5-HA-Raptor vectors were provided by Dr. D. Sabatini at 

the Whitehead Institute, and Raptor mutants as detailed here (Kim et al., 2002) were 

created by Dr. E. Dunlop using site directed mutagenesis. Mutants are detailed 

below in Table 2.1.
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Raptor Mutant Mutation Domain

1 194YDC196 to AAA RNC

2 261DLF263 to AAA RNC

3 3i 3NWIF3i6 to AAAA RNC

4 39lSQ392 to PA RNC

7 733SLQN74i to PAAA Uncharacterised

9 1191RVYDRR1196 to DAAAADD WD40

Table 2.1: Raptor mutant details

Prof. C. Walker at the MD Anderson Centre kindly supplied pcDNA3.i-FLAG-TSC2 

which was used to create pDEST27-GST-TSC2 using the Gateway Cloning system 

by Dr E. Dunlop. The pRK5-Myc-Rictor vector was obtained from Addgene (plasmid 

11367). The pcDNA3-HA-E40RF4, -HA-E40RF4(L51/54A) and -HA-E40RF4(A359) 

plasmids were kindly provided by Dr. D. Stokoe (University of California). The pRK7- 

GST-Rheb and pRK7-GST-Rheb(Q64L) were kindly provided by Dr. E. Dunlop. The 

HIF1a luciferase reporter was purchased from Promega UK Ltd. (Cat. No. LR0128). 

As detailed in Materials and Methods, unless specified otherwise above, genes were 

subcloned into the pDEST27-GST and pcDNA3.i-nV5DEST vectors using the 

Gateway Cloning system (Invitrogen) as described in manufacturer’s protocol. All 

shRNA clones were obtained from Sigma Aldrich Company Ltd., and are cloned 

within the pLK0.1-puro vector. Non-coding shRNA, also purchased from Sigma 

Aldrich Company Ltd., was used as a negative control in all shRNA experiments. 

Clone sequences are detailed in Table 2.2.

2.2.3 Primers
Primers used for QPCR of VEGF expression were of the sequences 5’- 

ACTCCAGGGCTTCATCGTTA-3’ (reverse) and 5 ’-GGAGAGCAGAAGTCCCATGA- 

3’ (forward) were used (Garcia et al., 2009). Other primers were obtained from 

Sigma with catalogue numbers as follows: p-actin QT01680476, Tip41 QT00035497, 

Ba QT00024500 and PP6c QT00015666.
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For site directed mutagenesis of Tip41, the following primers were used. The 

forward primer used to generate V5-Tip41(D71L) was 5’-GA ATT GAG TTC AAT 

GCT ACA CTT GCG TTA AGA TGT GTA AAC-3’ and the reverse 5’-GTT TAC ACA 

TCT TAA CGC AAG TGT AGC ATT GAA CTC AAT TC-3\ The forward primer used 

to generate V5-Tip41(M196V) was 5’-GAT GGG GTG CTT ATC AGA GTG AAT 

GAC ACG AGA CTT TAC-3’ and the reverse 5’-gta AAG TCT CGT GTC ATT CAC 

TCT GAT AAG CAC CCC ATC-3’. To generate V5-Tip41(Y79H) the forward primer 

used was 5’-G TTA AGA TGT GTA AAC AAC CAC CAA GGA ATG CTT AAA G-3’ 

and the reverse primer 5’-C TTT AAG CAT TCC TTG GTG GTT GTT TAC ACA TCT 

TAA C-3\ Nucleotides outlined in bold indicate mutations in comparison to wild type 

sequence.

2.2.4 Antibodies

Tip41 antibody was obtained from Cambridge Bioscience. Santa Cruz 

Biotechnology supplied Alpha4 antibody. Ubiquitin antibody was obtained from Enzo 

Life Sciences. Antibody directed to HA was obtained from Roche. Anti PP6c was 

obtained from Millipore. Anti Ba and IKKp were obtained from Abeam. Secondary 

antibodies were purchased from Sigma Aldrich Company Ltd. All other antibodies 

were purchased from Cell Signalling.

2.2.5 Molecular biology and cloning

Phusion DNA Polymerase was purchased from Thermo Fisher Scientific. Dpn1 was 

purchased from New England Biolabs. All Gateway cloning products were 

purchased from Invitrogen along with One Shot OmniMAX 2-T1 and One Shot 

TOP10 Chemically Competent E coli. QIAprep Spin Miniprep Kit and HiSpeed 

Plasmid Maxi Kit wereboth purchased from Qiagen.

2.2.6 Cell culture
Human Embryonic Kidney 293 (HEK293) were purchased through ATCC. TSC2-/- 

(p53-/-) MEF cells were kindly donated by Dr D. Kwaitowski at Harvard University. 

Dulbecco’s Modified Eagle Medium (DMEM) was obtained from Lonza Vervieres 

whilst Fetal Bovine Serum (FBS), penicillin/streptomycin and Trypsin 0.25% with 

EDTA 4Na were obtained from Invitrogen
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shRNA Clone Sequence

Tip41

CCGGGCCTT GTTTAT GTACAG ATTT CTCGAGAAAT CT GTACAT A 
AAC AAGGCTTTTT G

CCGGCCT AAT G AAAT ATCCCAGT AT CT CGAG AT ACT GGG AT AT 
TT C ATT AGGTTTTT G

CCGGCGAGAAT ATACGT C ACG AG AACT CGAGTT CT CGT G ACG 
TATATT CT CGTTTTT G

CCGGACCTAAT G AAAT AT CCCAGT ACT CG AGTACT GGGAT ATT 
TCATTAGGTTTTI IG

CCGGGT GG AGAAATT AGCCGAT GAACT CGAGTT CAT CGGCTA 
ATTTCTCCACTTI I IG

Ba

CCGG AG AAAC AC AAAGC G AG AC AT ACTC G AGTATGTCTCGCTT 
T GT GTTT CTTTTTT

CCGGGAT CCCAGTAAC AGGT C ATTT CTCGAGAAAT G ACCT GTT 
ACT GGGAT CTT! I I

CCGGT CCT GCTT AGTT GAGATAGTT CT CGAG AACT AT CT C AAC 
TAAGCAGGATTTTT

CCGGGTAGAT GAT GAT GTAGCAGAACT CGAGTT CT GCT ACAT C 
ATCATCTACI I I  I I

CCGGGCAAGT GGCAAGCGAAAGAAACTCGAGTTT CTTTCGCTT 
GCCACTT GCTTTTT

PP6c

CCGGG AGT C AAAT GTT CAGCC AGTACT CGAGTACTGGCT G AA 
C ATTT G ACT CTTTTT

CCGGCCAGAACGACAACGCCAT ATT CTCGAGAAT AT GGCGTT 
GT CGTT CT GGTTTTT

CCGGCCAAAGTTATTCCGGGCAGTTCTCGAGAACTGCCCGGA  
AT AACTTTGGTTTTT

CCGGGCTT CG AT CAT GGT CTT C AAACT CG AGTTT GAAG ACC AT 
GATCGAAGCTTTTT

CCGGGCTT ATTT ACT GGT CT GGG AACT CGAGTT CCC AG ACC AG 
T AAAT AAGCTTTTT

Table 2.2: Sequences of shRNA clones. Each shRNA is cloned in the pLK0.1-puro vector as 
supplied by Sigma Aldrich.
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2.2.7 Transfection and cell lysis

Lipofectamine 2000 was obtained from Invitrogen.

2.2.8 Protein purification, cell fractionation and associated techniques

Protein G Sepharose 4 Fast Flow beads and GST SpinTrap columns were 

purchased from GE Healthcare. All radioactive chemicals were obtained from Perkin 

Elmer. The Catch and Release Kit v2.0 was purchased from Millipore, as was 

Inactive Akt. Qiagen supplied the Qproteome Cell Compartment Kit.

2.2.9 SDS PAGE

NuPAGE Novex 4-12% Bis-Tris, 3-8% Tris-Acetate and 4-12% Bis-Tris Zoom Gels 

(1.0mm) were purchased from Invitrogen along with NuPAGE LDS Sample Buffer 

(4X). ProtoGel reagents (30% ProtoGel) were purchased from Fisher Scientific, 

including Protein Loading Buffer Blue (2X).

2.2.10 Isoelectric Focussing, electrotransfer and western blotting

NuPAGE Sample Reducing Agent (10X) was purchased from Invitrogen. Immobilon- 

P PVDF Transfer Membrane was purchased from Millipore. GE Healthcare supplied 

the Amersham ECL Western Blotting Detection Reagents along with the 2D Clean- 

Up Kit and 7cm Immobiline Drystrip pH3-10 NL used for IEF. FujiFilm Super RX 

supplied by FujiFilm UK Ltd. was used to visualise results.

2.2.11 Gel staining and Mass Spectrometry
Colloidal Blue Staining Kit was purchased from Invitrogen. Trypsin was purchased 

from Promega UK Ltd.

2.2.12 mRNA extraction and quantitative PCR

Extraction of mRNA and Q-PCR reagents were purchased from Qiagen, including 

the RNeasy Mini Kit, QIAshredders, QuantiTect Reverse Transcription Kit and 

QuantiTect SYBR Green PCR Kit.

2.3 Equipment

2.3.1 Plastics and glassware
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Sterile Gilson pipette tips were supplied by StarLab. Sterile 5ml, 10ml and 25ml 

stripettes were from Corning CoStar. Microcentrifuge tubes were supplied by Sigma 

Aldrich Company Ltd. Plastic strip tubes (0.2ml), 96 well Thermo-fast skirted 

detection plates and adhesive PCR sealing sheets were from ABGene. Sterile 

universal tubes were obtained from Sterilin. Glassware was purchased from VWR 

International Ltd. and Thermo Fisher Scientific. Optilux 96 well luminometer plates 

were purchased from VWR international. Tissue culture flasks and plates were 

purchased from Helena Biosciences. Nunc CryoTube vials used for cell storage in 

liquid nitrogen were supplied by Thermo Fisher Scientific.

2.3.2 Molecular biology and cloning

A Horizon 11.14 gel tank (Invitrogen) was used for DNA electrophoresis.

Visualisation of gels was attained using a BioRad GelDoc XR transluminator. Power 

packs were supplied by BioRad. The GeneAmp PCR System 9700 was supplied by 

Applied Biosystems.

2.3.3 Cell culture
The CB Series C02 incubator was supplied by Binder. The Motic AE30 microscope 

was supplied by Ted Pella Inc.

2.3.4 SDS PAGE and electrotransfer

The XCell Surelock Minicell was supplied by Invitrogen, and the Consort EV261 

Electrophoresis Power Supply was obtained from Sigma. The Hoefer miniVE 

Electrotransfer Unit, used for electrotransfer of NuPAGE gels, was supplied by 

Thermo Fisher Scientific. The omniPAGE Maxi Vertical Unit, used for SDS PAGE of 

4EBP1 and subsequent electrotransfer in order to visualise mobility shift, was 

obtained from VWR International Ltd. The Konica Minolta SRX-101A Film Processor 

was obtained from Konica Minolta. The Model 583 Gel Drier was purchased from 

BioRad.

2.3.5 Mass Spectrometry
A 4800 MALDI TOF/TOF Analyser was purchased from Applied Biosystems.

2.3.6 Luciferase assays
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The TR717 Microplate Luminometer was obtained from Applied Biosystems.

2.3.7 Q-PCR

The Applied Biosystems GeneAmp 9700 was used for real-time Q-PCR.

2.3.8 General equipment

The Hereaus Pico 17 Centrifuge, the Jenway 3510 pH Meter, the Eppendorf 

Thermomixer Compact and the Stuart Mini Orbital Shaker SSM1 were supplied by 

Thermo Fisher Scientific. The NanoDrop 8000 used to quantify DNA, RNA and 

protein was obtained from Thermo Fisher Scientific. Sartorius supplied the B1200 

balance.

2.3.9 Software

ImageJ v1.44 was used for densitometry analysis. The MASCOT Database search 

engine v2.1 used for MS/MS queries was obtained from Matrix Science Ltd and the 

Global Proteome Server Explorer software v3.6 was obtained from Applied 

Biosystems. Tropix WinGlow software was used for collecting luminescence data. 

Statistics and graphing was carried out using Microsoft Excel and Minitab 15.

2.4 Methods

2.4.1 General reagents

Solutions were made in MilliQ water and autoclaved at 15lb/sq.in. at 121°C for 40 

minutes where necessary.

2.4.2 Buffers and solutions

3x mTOR Kinase Buffer. 75mM HEPES pH 7.4, 60mM KCI, 30mM MgCI2.

Blenis Lysis Buffer. 10mM KP04, 5mM EGTA pH 7.2, 10mM MgCh, 50mM p- 

Glycerophosphate.

Buffer A - S6K1 Kinase Assay. 1% Nonidet P-40, 0.5% Sodium Deoxycholate, 

100mM NaCI, 1mM EDTA.

Buffer B - S6K1 Kinase Assay. 10mM Tris pH 7.2, 0.1% Nonidet P-40, 0.5% 

Sodium Deoxycholate, 1 M NaCI, 1mM EDTA.
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Cross-Linking Buffer A: 40 mM Hepes pH 7.5, 120 mM NaCI, 1 mM EDTA, 50 mM 

NaF, 50 mM p-Glycerophosphate, 0.3%(w/v) CHAPS.

GTP Loading Buffer. 25 mM HEPES pH 7.4, 5 mM EDTA , 0.5 mg/ml BSA. 

HEPES/KCL Wash Buffer. 25mM HEPES pH 7.4, 20mM KCI.

High Salt Wash Buffer. 40mM HEPES pH7.4, 2mM EDTA, 10mM p- 

Glycerophosphate, 400nM NaCI.

Low Salt Wash Buffer. 40mM HEPES pH 7.4, 2mM EDTA, 10mM p- 

Glycerophosphate, 150mM NaCI, 0.3% CHAPS.

Luciferase Reagent 50mM Tricine pH 7.8, 15mM MgS04, 15mM KH2P04, 4mM 

EGTA, 2mM ATP, 1mM LuciferinCell Culture.

Luria Agar (1L): 10g Tryptone, 5g Yeast Extract, 10g NaCI, 1g Glucose, 1g 

Anhydrous MgCI2. Adjusted to pH 7.0 before adding 15g Agar, 2ml of 1M NaOH 

and autoclaving.

Luria Broth (1L): 10g Tryptone, 5g Yeast Extract, 10g NaCI, 1g Glucose, 1g 

Anhydrous MgCI2. Adjusted to pH 7.0 and autoclaved.

MgCI2 Loading Buffer. 25 mM HEPES pH. 7.4, 5 mM MgCI2. 

mTOR/Raptor Lysis Buffer. 40mM HEPES pH 7.4, 2mM EDTA, 10mM p- 

Glycerophosphate, 0.3% CHAPS.

NP-40 Lysis buffer. 20mM Tris pH 7.4, 150mM NaCI, 1mM MgCI2, 1% Nonidet P-40, 

10% Glycerol, 1mM DTT, 50mM p-glycerophosphate, 50mM NaF.

Radiolabelling Buffer A: 50 mM HEPES pH 7.4, 100 mM NaCI, 10 mM MgCI2, 1 

mg/ml BSA, 1 mM DTT, 1% Trition.

Radiolabelling Buffer B: 50 mM HEPES pH 7.4, 100 mM NaCI, 10 mM MgCI2, 0.1% 

Triton.

Raptor Lysis Buffer. 50 mM B-Glycerol Phosphate, 1 mM ETDA, 1 mM EGTA, 1% 

Triton X-100.

Rehydration Buffer. 7M Urea, 2M Thiourea, 2%(w/v) CHAPS.

Rheb Lysis Buffer. 40mM HEPES pH 7.4, 10mM p-Glycerophosphate, 5mM MgCI2, 

0.3% CHAPS.

Rheb Storage Buffer. 20mM HEPES pH 8.0, 200mM NaCI, 5mM MgCI2.

Rictor Lysis Buffer. 40mM HEPES pH7.5, 120mM NaCI, 1mM EDTA, 10mM 

pyrophosphate, 10mM p-glycerophosphate, 50mM NaF, 0.3%(w/v) CHAPS.

Running Buffer 10X (1L): 144.07g Glycine, 30.285g Tris-Base, 10g SDS.
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ST Buffer - S6K1 Kinase Assay: 50mM Tris-HCI pH 7.2, 5mM Tris, 150mM NaCI. 

Start Buffer. 25mM HEPES pH 7.4, 10mM MgCI2.

TAE Buffer 40 mM Tris acetate, 1 mM EDTA.

TBS-7 (1L): 2.42g Tris-base, 8g NaCI adjusted pH to 7.6 followed by addition of 

0.1 %(v/v) Tween-20.

Western Transfer Buffer 10X (1L): 144.07g Glycine, 30.285g Tris-Base, 2g SDS.

2.4.3 Molecular biology

2.4.3.1 PCR

DNA primers were synthesised by Eurofins MWG Operon. Genes required for 

cloning were amplified by PCR for 23 cycles under the following conditions:

Denaturation 98°C, 30s

Annealing 52°C, 30s

Polymerisation 72°C, 3mins

PCR product was treated with 1pl Dpn1 for 1h at 37°C, and purified as per Gateway 

Technology with Clonase II protocol.

2.4.3.2 Agarose gel electrophoresis

Electrophoresis was carried out on an agarose gel (1%(w/v) agarose in TAE, 5ng/ml 

ethidium bromide) at 100V.

2.4.3.3 Cloning

Gateway cloning was used for GST- and V5-tagging using the Gateway pDEST27 

and pcDNA3.14iV5-DEST vectors respectively. The pENTR221 vector was used 

with the BP Clonase Enzyme Mix to create an entry vector using the purified PCR 

product in the initial cloning stage. The LR Clonase II Enzyme Mix was then used in 

the second recombination step.

2A.3.4 Transformation and selection of competent cells

Following Gateway cloning One Shot® OmniMAX™ 2-T1 E. coli were transformed 

as detailed in manufacturer’s protocol. To replenish vector stocks, One Shot TOP10 

Chemically Competent E. coli were used as detailed in manufacturer’s protocol. 

Successful transformants were selected by growing the cells overnight on
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LB/1.5%(w/v) agar plates with the appropriate antibiotic at 37°C. Isolated colonies 

were then grown overnight in a shaking incubator in LB containing the appropriate 

antibiotic.

2.4.3.5 Plasmid DNA preparation

For small scale purification, the QIAprep Spin Miniprep Kit was used as per 

manufacturer’s protocol. Following large scale plasmid amplification, the HiSpeed 

Plasmid Maxi Kit was used according to manufacturer’s protocol. If verification that 

cloning had been successful was required, DNA was sent for sequencing at Eurofins 

MWG Operon.

2.4.3.6 Site-directed mutagenesis

Site-directed mutagenesis was used to create mutations within clones. The PCR 

reaction was set up as detailed in Section 2.4.3.1. The following PCR cycle was 

used to amplify product.

Initial denaturation 98°C for 5min

Then 18 cycles of:

Denaturation 98°C for 1min

Annealing 52°C for 1min

Polymerisation 72°C for 15min

Then a final polymerisation 72°C for 18min

PCR products were then treated as in Section 2.4.3.1 and used to transform One 

Shot® TOP10 Chemically Competent E. coli as in Section 2.4.3.3. Successful 

mutagenesis was determined by sequencing carried out by Eurofins MWG Operon.

2.4.4 Cell culture
HEK293 and TSC2'7' MEF cells (as indicated) were cultured in 75cm2 flasks using 

DMEM supplemented with 10%(v/v) FBS and 1%(v/v) penicillin/streptomycin. Flasks 

were incubated at 37°C, 5%(v/v) CO2.

Cells were regularly passaged to avoid problems associated with over-confluency. 

Firstly, cells were washed twice in Trypsin 0.25% with EDTA 4Na which was
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aspirated before incubating the flask for 5 minutes at 37°C. Cells were then diluted 

in DMEM and transferred to a new flask or plate as required.

Cells required for storage were resuspended in FBS supplemented with 8%(v/v) 

DMSO and frozen in liquid nitrogen.

2.4.5 Transfection

2.4.5.1 CaCh precipitation transfection protocol

Transfection of cells in 100mm or 150mm plates was achieved using CaCI2 

precipitation. Cells were plated and transfected 4 hours later after ensuring cells 

were adhered. The transfection mixture was prepared with the volume of DNA 

diluted in the required volume of water as detailed in Table 2.3. CaCI2 was then 

included followed by dropwise addition of 2xBES whilst aerating the mixture using a 

drawn-out glass Pasteur pipette.

100mm plate 150mm plate

DNA 10pg 40pg

dH20 450jnl 1.8ml

CaCI2 5 0 jlxI 200pl

2xBES 500pl 2ml

Table 2.3: Preparation of DNA for 
CaCI2 transfection.

2.4.5.2 Lipofectamine 2000 transfection

Transfection of cells in 60mm plates and smaller used Lipofectamine 2000 

transfection reagent according to manufacturers protocol. Following optimisation, a 

5:2 ratio of Lipofectamine 2000 (jal) to DNA (pg) was used, where 60mm plates were 

transfected with 5pg DNA and 35mm plates with 2.5pg.

Using the standard protocol, cells were seeded on day one and transfected on day 

two, and the media changed 4h post-transfection. Cells were lysed on day three.

For transfection of shRNA, the reverse transfection protocol was used in 35mm 

plates. Transfection mixture was added to plates prior to cell seeding on day one. 

The media was then changed 4 hours post-transfection. If additional transfection of
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other plasmids was required, standard transfection protocol was used on day three. 

Cells were lysed on day four.

2.4.6 Cell treatments

Cells were serum starved overnight, as indicated, by washing and subsequently 

placing the cells in DMEM supplemented with 1%(v/v) penicillin/streptomycin .

Insulin treatment took place 30 minutes prior to lysis, using 10pg/ml. Rapamycin 

treatment (50nM) took place 1 hour prior to lysis unless otherwise stated. HIF1a 

luciferase reporter assays required overnight treatment with both insulin and 

rapamycin if required. Treatment with 50|aM MG132 took place 2 hours prior to lysis.

2.4.7 Standard cell lysis

Plates were placed on ice and washed with chilled PBS before resuspension in the 

appropriate lysis buffer with protease inhibitors (10pM leupeptin, 2|uM antipain, 1mM 

benzamidine, 1pg/ml pepstatin, 0.1 mM PMSF, 1mM Na3V04 and 1mM DTT (not 

added prior to GST purification)). Cells were harvested by scraping and placed on 

ice for 20 minutes before centrifugation at 13000rpm for 8 minutes at 4°C. The 

supernatant was then used for subsequent analysis or experimentation.

2.4.8 Immunoprecipitation

Cell lysates were prepared as Section 2.4.7. The resulting supernatant was diluted 

to 1ml in the corresponding lysis buffer then rotated for 2h at 4oC with 0.4%(v/v) of 

the required antibody. Protein G Sepharose beads (40pl) were then added in a 

50:50 slurry in the appropriate lysis buffer and incubated for 1h again at 4°C on a 

rotator. The beads were then washed 3 times in lysis buffer before eluting in sample 

buffer diluted to 1x in lysis buffer.

2.4.9 GST purification
Cells were lysed in Rheb Lysis buffer as described in Section 2.4.7. Following 

centrifugation, the supernatants were applied to a GST column, which had been 

prepared by placing 0.5ml Rheb Lysis buffer through the column and aspirating the 

buffer through. Columns were then incubated at 4°C for 2h, followed by three 

washes in chilled Rheb Lysis buffer and one wash in chilled Rheb Storage buffer.
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Each wash consisted of applying lysis buffer to the column, inverting the tube three 

times, and aspirating the buffer away. Following the final wash, columns were 

subjected to pulse centrifugation at 4°C to remove all buffer. Proteins were then 

eluted in Rheb Storage buffer supplemented with 10mM glutathione.

2.4.10 Catch and release

HEK293 cells were lysed in NP40 lysis buffer and the Catch and Release v2.0 

immunoprecipitation carried out as per manufacturer’s protocol using aTip41 

antibody.

2.4.11 Cell fractionation

HEK293 cells were scraped in media into a universal tube prior to centrifugation at 

2500rpm at 4°C for 10 minutes. The Qproteome Cell Compartment Kit was then 

followed as per manufacturer’s instructions in order to generate nuclear, cytoplasmic, 

membrane and cytoskeletal fractions.

2.4.12 Cross-linking with DTBP

HEK293 cells were transfected with pRK5-Myc-Raptor and the required ‘substrate’ in 

600mm plates as detailed in Section 2.4.5.2. Cells were lysed in 300pl Cross- 

Linking Buffer A supplemented with 0.5mg/ml DTBP and 0.3%(w/v) CHAPS at room 

temperature, and incubated for 30 minutes. The cross-linking reaction was 

subsequently quenched by adding 75pl 1M Tris-HCI pH7.4 and incubated on ice for 

30 minutes. Lysates were then cleared by centrifugation at 13000rpm for 8 minutes 

at 4°C. Immunoprecipitation using aMyc antibody was then carried out as detailed in 

Section 2.4.8, with two washes taking place in Cross-Linking Buffer A supplemented 

with CHAPS and once in Cross-Linking Buffer A without CHAPS. DTBP was then 

cleaved from proteins by adding sample buffer diluted in Cross-Linking Buffer A 

supplemented with 250mM DTT.

2.4.13 In vivo radiolabelling
pDEST27-GST-Tip41 was transfected into 100mm plates as detailed in Section

2.4.5.1. Dr A. Tee then assisted in the remaining experimentation. On the day of 

lysis, cells were incubated in 5ml phosphate free medium containing 0.5mCi [y-32P]-
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ATP for 3 hours. Cells were lysed in Radiolabelling Buffer A. GST-Tip41 was 

purified as detailed in Section 2.4.9, with two washes using Radiolabelling Buffer A 

and two using Radiolabelling Buffer B.

2.4.14 S6K1 assay

Cells were transfected with pRK7-HA-S6K1 (and other vectors to express proteins 

as required) in 60mm plates as detailed in Section 2.4.5.2. Cells were then lysed in 

Blenis Lysis buffer as in Section 2.4.7 and HA-S6K1 immunoprecipitated using aHA 

antibody as detailed in Section 2.4.8. Immunoprecipitates were washed once in 

Buffer A, followed by Buffer B and finally ST Buffer.

S6K1 kinase activity was measured towards a recombinant GST-S6 peptide 

encompassing the final 32 amino acids of the protein, with the assistance of Dr A. 

Tee. The recombinant GST peptide was purified as detailed in Section 2.4.9.

Purified HA-S6K1 was split into two, with one sample used for radioactive assay and 

the other for control purposes. HA-S6K1 intended for radioactive assay was 

incubated with GST-S6 peptide in solution containing 20mM HEPES, 10mM MgCI2, 

50mM ATP, 5mCi [y-32P]-ATP (radioactive samples only), 3ng/ml PKI at pH7.2 for 

12 minutes at 30°C. Reactions were quenched with addition of sample buffer.

2.4.15 Luciferase reporter assay

Using the standard transfection protocol with Lipofectamine 2000 as in Section

2.4.5.2, HEK293 cells were transfected with HRE Luciferase Construct in a 2:1 ratio 

with pcDNA3.1-nV5-Tip41(ie. 2pg Luciferase construct, 1pg expression vector) in 

triplicate. Negative control cells were transfected with empty vector in place of 

pcDNA3.1-nV5-Tip41. After overnight incubation in 1% 0 2, cells were lysed in Blenis 

Lysis buffer as detailed in Section 2.4.7. A 20pl aliquot was taken of each sample (in 

triplicate) and placed in a 96 well plate. Luciferase activity was measured by 

luminosity, where 50jnl Luciferase Reagent was injected into each well. 

Luminescence was measured 10 seconds later.

Luminescence was adjusted to total protein levels using Bradford reagent. Total 

protein within each sample was measured against a standard curve produced using 

known concentrations of BSA. This was measured three times in each lysate, and
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luminescence adjusted by dividing average luminescence by average total protein. 

Results are averaged from three separate experiments.

Normal distribution was tested using the Anderson-Darling test, and equal variances 

were verified using Levene’s test. A two-sample T-test was used to assess 

significant differences. Error bars represent standard deviation.

2.4.16 mTORCI kinase assay
2.4.16.1 Purification of mTOR/Raptor complex

HEK293 cells in 100mm plates were transfected with pRK5-Myc-mTOR and pRK5- 

HA-Raptor as detailed in Section 2.4.5.1 and treated with insulin prior to lysis. One 

plate provided sufficient complexes for three assays. Cells were lysed in 

mTOR/Raptor Lysis buffer as detailed in Section 2.4.7. Purification with aMyc was 

carried out as detailed in Section 2.4.8. Following incubation with Protein G 

Sepharose 4 Fast Flow (GE Healthcare) beads, lysates were washed once in Low 

Salt Wash buffer, followed by two washes with High Salt Wash buffer and a final 

wash in HEPES KCI Wash buffer.

2.4.16.2 Purification of GST-Rheb

HEK293 cells were transfected with pRK7-GST-Rheb in 100mm plates as detailed in 

Section 2.4.5.1. Cells were then lysed as detailed in Section 2.4.7 using Rheb Lysis 

buffer, and GST-Rheb purified as in Section 2.4.9. Purified Rheb was loaded with 

GTP by combining 10pl GTP Loading buffer with 10pl purified Rheb and 2pl GTPyS, 

and incubating for 5 minutes at 37°C with agitation. Radiolabelled assays contained 

100pCi [a-32P]GTP in place of GTPyS. The reaction was quenched by the addition 

of 20pl MgCI2 Loading buffer.

2.4.16.3 Substrate purification
pcDNA3-GST-4EBP1, pcDNA3-GST-4EBP1(F114A) and pDEST27-GST-Tip41 were 

transfected into HEK293 cells (10mm plates) as in Section 2.4.5.1 and purified as in 

Section 2.4.9. Protein concentration was then quantified using Bradford reagent, 

measured against a BSA standard curve, to ensure equal amount of substrate was 

added to each assay.

2.4.16.4 Assay preparation
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Purified mTOR/Raptor complexes were divided into the required number of samples 

and supernatant removed. Following this, 10pl 3x mTOR Kinase buffer and 5p GTP- 

loaded Rheb was added in addition to 150ng of substrate. The assays were then 

equalised to 30pl with dh^O. The FKBP12/rapamycin complex was generated by 

incubating 30mM rapamycin with FKBP12 for 5min in the dark, and was added to the 

reaction mixture 5 minutes before commencement. In order to start the reaction, 

Start buffer (lOpl/reaction) was mixed with 500pM ATP (and 0.2|iCi [y-32P]ATP for 

radioactive kinase assays) and added to each sample, which were subsequently 

incubated at 30°C for 30 minutes with gentle agitation. The reaction was quenched 

with 13.3pl NuPAGE LDS Sample Buffer.

2.4.17 mTORC2 kinase assay

Method was followed as outlined in Sarbassov et al., 2005. GST-tagged Tip41 and 

4EBP1 were purified separately as outlined in Section 2.4.9. HEK293 cells were 

transfected with pRK5-Myc-mTOR and pRK5-Myc-Rictor in 100mm plates as 

outlined in Section 2.4.5.1. Cells were lysed in Rictor Lysis buffer, and incubated on 

ice for 20 minutes prior to centrifugation at 13000rpm for 8min at 4°C. 

Immunoprecipitation of Rictor using aMyc antibody was achieved using the protocol 

detailed in Section 2.4.8. Purified Rictor complexes were then resuspended in 15 îl 

Rictor kinase buffer supplemented with 500ng inactive Akt, GST-4EBP1 or GST- 

Tip41 along with 500pM ATP and 0.2pCi [y-32P]ATP. The FKBP12/rapamycin 

complex was generated by incubating 30mM rapamycin with FKBP12 for 5min in the 

dark, and was added to the reaction mixture 5 minutes before commencement. The 

reaction mixture was incubated at 37°C for 20min, and quenched by the addition of 

8pil sample buffer.

2.4.18 SDS PAGE
For standard western blotting, precast gels were used according to manufacturer’s 

protocol. Samples were prepared using NuPAGE LDS Sample Buffer (4X) and 

incubated at 70°C for 10 minutes.

To visualise mobility shift of 4EBP1, the 30% ProtoGel system was used to create a 

12% gel as per manufacturer’s protocol. Samples were prepared in Protein Loading
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Buffer Blue (2X) before incubation at 95°C for 5 minutes. SDS PAGE Running buffer 

was used during electrophoresis.

2.4.19 Electrotransfer

Proteins within precast gels were transferred to PVDF transfer membrane in Transfer 

buffer for 2h at 25V. ProtoGels were transferred overnight at 25V and 4°C.

2.4.20 Western blot analysis

Following electrotransfer, the PVDF membrane was blocked in TBST with 5%(w/v) 

non-fat milk powder for 1h. The membrane was then incubated with primary 

antibody diluted in TBST with 2%(w/v) BSA overnight at 4°C. Membranes were 

subsequently washed 3 times in TBST followed by incubation with the appropriate 

secondary antibody diluted 1:10000 in TBST. After the incubation period, 

membranes were washed 4 times in TBST before 1 minute incubation in ECL 

detection reagents set up according to manufacturer’s protocol. Proteins were 

visualised using FujiFilm Super RX and the Konica Minolta SRX-101A Film 

Processor. Image J (v1.44) software was used for densitometry analysis. Unless 

otherwise stated, densitometry was calculated by averaging absolute signal intensity 

between three separate experiments. These were then converted to relative 

intensities as a percentage using the highest signal intensity as 100% as detailed in 

2.4.20. Error is indicative of standard deviation. All western blot results presented 

are representative of three separate experiments. Densitometry analysis similarly 

averaged data from three separate western blots.

2.4.21 Staining, fixing and drying polyacrylamide gels

Polyacrylamide gels were firstly fixed in 50%(v/v) methanol, 10%(v/v) acetic acid for 

10 minutes on an orbital shaker, then stained using the Colloidal Blue Staining Kit as 

per manufacturer’s protocol.

2.4.22 Mass Spectrometry
GST-Tip41 was purified and resolved by SDS PAGE. Purified proteins were 

identified with Colloidal Blue staining, and gel plugs (1.5 mm diameter) were 

manually excised and placed in a 96-well plate. Preparation and MS were then 

carried out by Cardiff University CBS Proteomics Service using the following protocol.
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Peptides were recovered following trypsin digestion using a slightly modified version 

of the Shevchenko et al. (1996) method. Sequencing grade modified trypsin was 

used at 6.25 ng/jJ in 25mM NH4HCO3 and incubated at 37°C for 3 hours. Finally the 

dried peptides were resuspended in 50%(v/v) acetonitrile in 0.1%(v/v) trifluoroacetic 

acid for MS analysis and an aliquot corresponding to 10% of the material (0.5\x\) was 

spotted onto a 384 well MS plate. The samples were allowed to dry and the overlaid 

with a-cyano-4-hydroxycinnamic acid (CHCA) prepared by mixing 5mg matrix with 

1ml of 50%(v/v) acetonitrile in 0.1%(v/v) TFA.

Mass spectrometry was performed using a MALDI TOF/TOF mass spectrometer with 

a 200 Hz solid state laser operating at a wavelength of 355nm (Medzihradszky et al., 

2000; Bienvenut et al., 2002; Gluckmann et al., 2007; Brennan et al., 2009). MALDI 

mass spectra and subsequent MS/MS spectra of the 8 most abundant MALDI peaks 

were obtained following routine calibration. Common trypsin autolysis peaks and 

matrix ion signals and precursors within 300 resolution of each other were excluded 

from the selection and the peaks were analysed with the strongest peak first. For 

positive-ion reflector mode spectra 800 laser shots were averaged (mass range 700- 

4000 Da; focus mass 2000). In MS/MS positive ion mode 4000 spectra were 

averaged with 1 kV collision energy (collision gas was air at a pressure of 1.6 x 10-6 

Torr) and default calibration.

Combined PMF and MS/MS queries were performed using the MASCOT Database 

search engine v2.1 (Perkins et al., 1999) embedded into Global Proteome Server 

(GPS) Explorer software v3.6 on the Swiss-Prot database. Searches were restricted 

to the human taxonomy with trypsin specificity (one missed cleavage allowed), the 

tolerances set for peptide identification searches at 50 ppm for MS and 0.3 Da for 

MS/MS. Cysteine modification by iodoacetamide was employed as a fixed 

modification with methionine oxidation as a variable modification. Search results 

were evaluated by manual inspection and conclusive identification confirmed if there 

was high quality tandem MS (good y-ion) data for £2 peptides (E value p < 0.05 for 

each peptide; overall p < 0.0025) or one peptide (only if E value was p < 0.0001).

2.4.23 Far western blotting
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Cell lysates containing HA-Raptor were produced by CaCb precipiation transfection 

in HEK293 cells as detailed in Section 2.4.5.1, followed by lysis in Raptor Lysis 

buffer and centrifugation (13000rpm, 8 minutes, 4°C). PVDF membrane was 

incubated with methanol for 1 minute and washed in TBST. 50ng of GST tagged 

purified protein was dotted onto the membranes, which were then blocked in TBST 

supplemented with 5%(w/v) non-fat milk powder for 1 hour. Membranes were then 

incubated with the appropriate lysate diluted in Raptor Lysis buffer supplemented 

with 5%(w/v) non-fat milk powder overnight on an orbital shaker at 4°C. The next 

day, the membranes were washed twice in TBST, then probed with aHA antibody for 

half an hour. The remainder of the protocol was as standard western blotting 

procedure as in Section 2.4.20.

2.4.24 Isoelectric focussing and SDS PAGE

HA-tagged Tip41 was produced using transfection as detailed in Section 2.4.5.2 and 

purified as detailed in Section 2.4.8 with aHA antibody. Samples were cleaned using 

the 2D Clean-Up Kit as detailed in manufacturer’s protocol. Each sample was then 

resuspended in 1ml Rehydration buffer. From this 1 16jlxI was removed for addition to 

Rehydration solution (116pl protein sample in rehydration buffer, 1pl bromophenol 

blue (1%(w/v)), 2pl IPG buffer, 6.25pl 1M DTT) to a total volume of 125pl. HA-Tip41 

in Rehydration solution was then subject to isoelectric focussing using a 7cm 

Immobiline Drystrip under the conditions detailed below.

12hours at 20oC 

500V for 1h 

1000V for 2h 

1000V for 1h 

8000V for 2 hours 

8000V for 8h

Strips were then equilibrated. Firstly, strips were incubated in 5ml Reducing Solution 

(NuPAGE Sample Reducing Agent (10X) diluted in 1X sample buffer) for 15 minutes 

on a rocking incubator. This solution was then removed and replaced with 5ml 

Alkylating Solution (116mg iodoacetate dissolved in 5ml 1X sample buffer), and 

again incubated for 15 minutes. The strips were then placed in individual NuPAGE

Rehydration 

Step and hold 

Gradient 

Step and hold 

Gradient 

Step and hold
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Zoom Gels and subjected to electrophoresis detailed in Section 2.4.18, using MOPS 

Running Buffer. Proteins were then transferred to PVDF membrane as detailed in 

Section 2.4.19 and the western blot protocol followed as in Section 2.4.20.

2.4.25 Q-PCR

HEK293 cells were harvested and mRNA purified under standard mRNA handling 

precautions using the RNeasy Mini Kit according to manufacturer’s protocol. 

Following purification, mRNA concentration was analysed. Contaminating genomic 

DNA (gDNA) was removed and purified mRNA converted to complimentary DNA 

(cDNA) using the QuantiTect Reverse Transcription Kit as per manufacturer’s 

protocol. Samples were placed in a 96 well plate using the required primers and 

QuantiTect SYBR Green PCR Kit. The conditions for Q-PCR are detailed below.

Initial denaturation 95°C for 15min

Then 40 cycles of:

Denaturation 94°C for 15s

Annealing 55°C for 30s

Extension 72°C for 40s

Levels of amplification product were analysed using the delta-delta-CT method and 

standardised to p-actin. Normal distribution was tested using the Anderson-Darling 

test, and equal variances were verified using Levene’s test. A two-sample T-test 

was used to assess significant differences. Standard deviation was calculated and 

represented by error bars. Results are averaged from three separate experiments. 

Specificity of primers was determined by a dissociation step. Agarose gel 

electrophoresis was used to confirm that PCR products were the expected length as 

detailed by Sigma Aldrich Company Ltd.
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CHAPTER 3 -  CHARACTERISING INTERACTIONS OF TIP41

3.1 Introduction

In budding yeast, two TOR complexes exist (Heitman et al., 1991). The rapamycin 

sensitive yeast TORC1 complexes are composed of TOR1 or TOR2 along with 

KOG1 and LST8 (Leowith et al., 2002, Wedaman et al., 2003). KOG1 mediates 

substrate binding allowing phosphorylation of TOR targets (Adami et al., 2007). 

Signalling by yeast TORC1 relies on the heavily regulated phosphatases Sit4 and 

Pph21/22. When yeast TORC1 is active, the negative regulatory phosphatase 

subunit Tap42 is phosphorylated and binds Sit4 and Pph21/22 and prevents 

interaction with substrates (Como & Arndt, 1996, Yan et al., 2006). Tap42 is 

regulated by Tip41. In the absence of stimulatory signals, Tip41 sequesters Tap42 

and allows interaction of Sit4 and Pph21/22 with regulatory subunits resulting in 

dephosphorylation of TORC1 targets (Figure 1.2) (Jacinto et al., 2001).

In mammalian cells, the mTORCI complex is composed of mTOR along with Raptor, 

mLST8 and others. Raptor is the mammalian homologue of KOG1, and similarly is 

essential for substrate recognition and phosphorylation by mTOR. Raptor contains 

an N-terminus RNC domain that is critical for substrate recognition, along with WD40 

and HEAT repeats towards the C-terminus that mediate binding to mTOR (Kim et al.,

2002). Activity of mTORCI is partly controlled by phosphorylation of Raptor, where 

both activating and inhibitory phosphorylation events occur (Gwinn et al., 2008,

Wang et al., 2009). Substrate phosphorylation by mTORCI requires Raptor binding. 

The TOS motif partly mediates this and is essential for binding of the well- 

characterised mTORCI substrates 4EBP1 and S6K1 with Raptor (Schalm et al., 

2003, Wang etal.,2003).

As in budding yeast, phosphatase activity has also been shown as critical within 

mTORCI signalling. PP2A has been identified as the phosphatase responsible for 

mTORCI substrate dephosphorylation, as inhibition of PP2A prevents mTORCI 

substrate dephosphorylation following treatment with rapamycin (Peterson et al., 

1999, Bielinski & Mumby, 2007). In spite of this, the regulatory subunits involved 

remain poorly understood. Alpha4, the human homologue of Tap42, has been 

identified as a PP2Ac regulatory subunit towards mTORCI substrates, although
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whether Alpha4 is inhibitory or activating is unclear (Murata et al., 1997, Nanahoshi 

et al., 1998, Yamashita et al., 2005, Nien et al., 2007, Grech et al., 2008).

Meanwhile, little investigation into the role of Tip41 as a PP2A regulatory protein has 

been undertaken. Whilst in vitro analyses identified Tip41 as a negative PP2Ac 

regulator, the protein interactions of Tip41 with PP2Ac and Alpha4 have not been 

fully explored (McConnell et al., 2007). For instance, it is not know whether 

interactions between Tip41 and Alpha4 or PP2Ac are direct. As Tip41 contains a 

putative TOS motif, this places Tip41 as a promising candidate as a PP2Ac 

regulatory subunit towards mTORCI substrates that is also regulated by mTORCI.

This chapter investigates the potential role of Tip41 in mTORCI signalling. The 

results indicate that whilst Tip41 is a bona fide PP2Ac regulatory subunit, it is not 

regulated directly by mTORCI Instead, Tip41 may regulate phosphatase activity 

upstream or parallel to mTORCI. Regulation of PP2Aijp4i is achieved by 

phosphorylation of Tip41, which does not affect binding to PP2A but may instead 

regulate substrate binding.

3.2 Results

3.2.1 Purification of Tip41 using polyclonal Tip41 antibody

In yeast, Tip41 binds the phosphatase inhibitory subunit Tap42 when TOR signalling 

is inactive allowing dephosphorylation of downstream substrates by the 

phosphatases Sit4 and Pph21/22. To identify potential members of a Tip41 complex 

within mammalian cells, endogenous Tip41 was purified from HEK293 cells using 

polycloncal aTip41 antibody. To determine whether these interactions were 

dependent on the activity of mTOR, purification took place both with and without pre­

treatment with insulin. Purified protein was resolved by SDS PAGE in duplicate and 

stained with colloidal blue or analysed by western blot (Figure 3.1 A). Although Tip41 

was successfully purified, as shown by western blot detection of the 32kDa protein in 

the immunoprecipitated sample, colloidal stain revealed a lot of non-specific protein 

bands that co-purified. All proteins were present in equal quantities both with and 

without insulin stimulation, indicating that interactions were not dependent on activity 

within the insulin signalling pathway.
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Figure 3.1: Purification of endogenous Tip41. A. Endogenous Tip41 was purified 
using aTip41 antibody. Prior to lysis cells w ere serum starved overnight, and 
stimulated with insulin as indicated. Sam ples w ere resolved by S D S  PAG E and 
stained with colloidal blue to visualise purified protein. As many proteins were visible, 
the purification process was considered to be of poor quality and purification of 
endogenous Tip41 using this method was subsequently not used. B. Sam ples of the 
1st wash and the flowthrough w ere taken during the purification and analysed by 
western blot. Much Tip41 was lost in the initial flowthrough (the solution lost after the 
first centrifugation step) indicating that a large am ount of Tip41 was not purified. This 
confirmed ineffective purification of endogenous T ip 41 . All results are representative 
of 3 independent experiments.
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For trouble shooting purposes, samples of the 1st wash and the flowthrough were 

also taken during the purification and analysed by western blot (Figure 3.1B). 

Although the first wash of the purification revealed little Tip41 lost, much Tip41 was 

lost in the initial flowthrough (the solution lost after the first centrifugation step). This 

indicates that a large amount of Tip41 was not purified and confirms ineffective 

purification of Tip41 using aTip41 antibody to purify endogenous protein. Following 

this, it was clear that an alternative method of purification was required in order to 

identify potential Tip41 interacting proteins and deduce whether those interactions 

are dependent on the activity of the mTOR signalling pathway.

3.2.2 Tip41 interacts in complex with PP2Ac and Alpha4

To achieve higher quality purification, human Tip41 was subcloned into in an N- 

terminal GST-tagged vector. GST is of bacterial origin and consequently is not 

expressed endogenously in mammalian cells. This allows for high quality purification 

with little or no non-specific interactions when used to purify exogenous GST-tagged 

protein complexes. HEK293 cells were transfected with GST-tagged Tip41 cultured 

overnight in serum-free media, and prior to lysis were stimulated with insulin with or 

without rapamycin pre-treatment. GST-Tip41 from lysates was purified on 

Glutathione-Sepharose beads in a spin-trap column. After elution, purified sample 

was resolved by electrophoresis, fixed then stained with colloidal blue (Figure 3.2A). 

Although a number of interactions were identified, none of these were altered by 

rapamycin pre-treatment indicating that they may not be dependent on the activity of 

mTORCI. Regardless, samples were taken from each protein band and analysed 

by MALDI TOF/TOF mass spectrometry.

Although some of the protein bands could not be identified, mass spectrometry 

identified Heat Shock Protein 70 (Hsp70), Alpha4 and PP2Ac as potential Tip41 

interacting proteins (Figure 3.2B). GST-Tip41 was also indentified thus confirming 

expression and purification of the protein. Alpha4 and PP2Ac are human 

orthologues of Tap42 and Pph21/22 respectively, which suggests that a similar 

Tip41 complex exists in mammalian cells to that seen in yeast. Hsp70 on the other 

hand is a novel Tip41 interacting protein.

To confirm these interactions with Tip41, western blot was used. Following overnight 

culture in serum free media, cells expressing GST-Tip41 were lysed following pre-
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Figure 3.2: Tip41 interacts with PP2Ac, Alpha4 and Hsp70. A. H EK 293 Cells 
transfected with p D E S T27-G S T -T ip 41  w ere serum starved overnight and prior to lysis 
treated with insulin and rapamycin as indicated. Following purification of G ST-Tip41  
using a spin-trap column, sam ples w ere resolved by S D S  PA G E and stained with 
colloidal blue. Proteins purified w ere visible as distinct bands. Gel plugs from each  
band w ere excised and used for M ALDI T O F /T O F  M S  analysis. B. Analysis of the M S  
data revealed interaction with A lpha4, PP2A c and Hsp70. T he  M S data w as queried  
using M ascot. Tab le  lists the E values (Expected) for the proteins identified. C. G S T -  
Tip41 w as purified as in A and sam ples resolved by S D S  PAG E. Results identifying 
Tip41-interacting proteins from  M S  w ere confirmed by western blot. Results are  
representative of three independent experim ents.
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treatment with rapamycin (as indicated) and stimulation with insulin. One set of cells 

were untransfected for use as a negative control. Purified GST-Tip41 and 

associated proteins were resolved using SDS PAGE followed by western blot (Figure 

3.2C). Protein identification by mass spectrometry was confirmed by detection of the 

Hsp70, Alpha4 and PP2Ac proteins purified by western blot analysis. This raised the 

possibility of a conserved tertiary complex existing between Tip41, PP2Ac and 

Alpha4 in mammalian cells, although interactions did not appear to depend on the 

activity of mTORCI as levels of these co-purified PP2Ac and Alpha4 proteins were 

equal both in the presence or absence of rapamycin. In addition, this work uncovers 

a novel interaction between Tip41 and Hsp70. Of interest, Hsp70 has been 

implicated in the regulation of the mTOR pathway, which will be further discussed in 

discussion.

3.2.3 Tip41 interacts directly with PP2Ac, but not with Alpha4

In yeast, Tip41 binds to Pph21/22 via Tap42. Following the identification of a 

possible tertiary complex between Tip41, PP2Ac (the human orthologue of Pph21/22) 

and Alpha4 (the human orthologue of Tap42) in mammalian cells, it was important to 

further characterise these interactions. As a single E42A point mutation of PP2Ac 

was found to reduce affinity for Alpha4, as much as 80%, this mutant was used to 

further investigate direct protein-protein interactions (Prickett & Brautigan, 2004). As 

less Alpha4 binds to the PP2Ac(E42A) mutant, the amount of Tip41 that co-purifies 

with the E42A mutant (in comparison to wild type PP2Ac) will determine whether 

Tip41 binds directly to PP2Ac, Alpha4 or both. For example, a reduction in Tip41 

purified with PP2Ac(E42A) would indicate a direct protein interaction between Tip41 

and Alpha4 only. By extension the interaction between PP2Ac and Tip41 in this 

model would take place via Alpha4 as is the case in yeast. Conversely, if equal 

levels of Tip41 co-purified with PP2Ac wild-type and mutant E42A, this would 

indicate a direct protein interaction between Tip41 and PP2Ac only, with the 

interaction between Alpha4 and Tip41 seen in Figure 3.2 taking place via PP2Ac.

HEK293 cells were transfected with GST-PP2Ac wild-type or GST-PP2Ac(E42A) 

mutated GST-PP2Ac, along with V5-Tip41. Cells transfected with V5-Tip41 along 

with empty vector was employed as a negative control. Following lysis, GST-PP2Ac 

was purified on Glutathione-Sepharose beads using a spin-trap column (Figure 3.3A).
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Figure 3.3: Tip41 interacts directly with PP2Ac. A. PP2A (E42A ) interacts less 
effectively with PP2Ac. G S T-P P 2A c wild type and E42A mutant w ere transiently 
expressed in H EK 293 cells, purified and interaction with Tip41 and Alpha4 compared. 
Com paratively less Alpha4 purified with G S T-P P 2A c(E 42A ) in comparison to wild type, 
indicating that mutant PP2Ac binds less effectively to Alpha4. Equal levels of Tip41 
purified with both wild type and mutant PP2Ac. B. HA-Tip41 was co-transfected with 
V5-P P 2A c wild type and E42A  mutant and expressed HA-Tip41 purified by 
immunoprecipitation. Levels of co-purified V 5-P P2A c(E 42A ) were equal to wild type, 
whereas comparatively less Alpha4 co-purified with HA-Tip41 and V 5-P P2A c(E42A ).
C. Interaction between PP2Ac and Tip41 was analysed in response to serum  
starvation, insulin stimulation and rapamycin treatment. G S T-P P 2A c was co­
expressed with V 5 -T ip 41 . Cells were cultured overnight in serum free media and 
treated with insulin and rapamycin prior to lysis as indicated. Levels of V5-Tip41  
purified with G S T -P P 2A c were unchanged by the cellular conditions indicated. Results 
are representative of three independent experiments.
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As expected, GST-PP2Ac(E42A) showed reduced binding affinity for Alpha4 in 

comparison to wild-type GST PP2Ac, although this was less marked than previously 

described (Prickett & Brautigan, 2004). Importantly, the level of V5-Tip41 purified 

was equal with both wild-type and E42A mutated GST-PP2Ac. This data indicates 

that Tip41 and Alpha4 do not directly interact. Instead, Tip41 interacts directly with 

PP2Ac.

In order to confirm what was shown by GST purification, a reciprocal experiment was 

set up, where HA-Tip41 was purified with anti-HA antibodies from HEK293 cells and 

association of V5-PP2Ac was determined. Cells were transfected with HA-Tip41 

along with V5-PP2Ac wild-type or E42A mutant. HEK293 cells were also transfected 

with V5-PP2Ac wild-type along with empty vector as a negative control. Less Alpha4 

co-purified with the Tip41/PP2Ac(E42A) mutant protein complex than with 

Tip41/PP2Ac (Figure 3.3B). Both the wild-type and the E42A mutant V5-PP2Ac 

protein co-purified with HA-Tip41 to equivalent levels and again indicate that Tip41 

directly binds to PP2Ac and not Alpha4. These interaction studies show that this 

phosphatase complex in mammalian cells exists as Tip41-PP2Ac-Alpha4 with no 

direct interaction between Alpha4 and Tip41. This is in contrast to the phosphatase 

complex in yeast, where Tip41 binds Pph21/22 via Tap42.

Following the identification of a direct interaction between Tip41 and PP2Ac, the 

nature of that interaction and the conditions under which it took place were of interest. 

As a PP2Ac interacting protein, it is possible that Tip41 acts as a regulatory subunit 

in mammalian cells. Regulatory PP2Ac subunits are thought to control substrate 

interactions and possibly mediate catalytic activity. As the regulation of PP2A is little 

understood, the possible control of PP2AcjiP4i by intra-complex interactions was 

investigated. In order to determine whether the interaction was dependent on the 

activity of the mTORCI signalling pathway, GST-PP2Ac was cotransfected with V5- 

Tip41 in HEK293 cells. Prior to lysis, whilst one set of cells was kept under serum- 

starved conditions, two sets were treated with insulin in the presence or absence of 

rapamycin pre-treatment. GST-PP2Ac was then purified on Glutathione-Sepharose 

beads using spin-trap columns (Figure 3.3C). V5-Tip41 co-purified with GST-PP2Ac 

to equal levels under all conditions. This indicates that the interaction between 

PP2Ac-Tip41 is not altered upon differences of mTORCI signalling. If mTORCI 

signalling affects PP2Ac-Tip41 phosphatase activity in cells, it is possible that this
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phosphatase activity may instead be controlled by post-translational modification, 

cellular localisation, substrate targeting or a combination of these.

3.2.4 PP2Ac interacts with S6K1 in response to mTORCI inhibition

PP2A is known to dephosphorylate mTORCI substrates in response to rapamycin 

treatment (Schalm et al., 2005). Following identification of a direct interaction 

between Tip41 and PP2Ac, regulation in the context of the mTORCI pathway was 

investigated. It is possible that Tip41 may regulate PP2Ac directly towards mTORCI 

substrates. As Figure 3.3C shows no change in the interaction between PP2Ac and 

Tip41 following inhibition of mTORCI, the interaction between PP2Ac and S6K1 

was of interest as regulation of PP2ATip41 may take place via substrate binding 

rather than alteration of interactions within the Tip41-PP2Ac-Alpha4 phosphatase 

complex. Interaction between PP2Ac and S6K1 was investigated. HEK293 cells 

were co-transfected with GST-PP2Ac along with HA-S6K1. A set of cells was 

transfected with HA-S6K1 along with empty vector and served as a negative control. 

Cells were cultured overnight in serum free media and prior to lysis, were treated 

with insulin in the presence or absence of rapamycin pre-treatment. GST-PP2Ac 

was then purified on Glutathione-Sepharose and the interaction of HA-S6K1 

determined. Densitometry figures were calculated by averaging absolute signal 

intensity between three experiments, then converting to % relative intensity taking 

the highest intensity as 100% as detailed in 2.4.20. Error is indicative of standard 

deviation. Significance was calculated using a student’s T test.

Binding between GST-PP2Ac and HA-S6K1 was identified under both mTORCI 

stimulatory and inhibitory conditions, although the interaction was increased 2 fold by 

rapamycin (p=<0.05) (Figure 3.4). These data indicate that a PP2Ac complex binds 

S6K1, and this interaction is increased following inhibition of mTOR by treatment 

with rapamycin. In addition to Figure 3.3C, this shows that rather than interactions 

within the Tip41-PP2Ac-Alpha4 phosphatase complex being regulated by mTORCI, 

it is the interaction with substrates such as S6K1 that are instead modified in order to 

alter phosphorylation and therefore activity downstream of mTORCI.
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Figure 3.4: PP2Ac interaction with S6K1 is increased by rapamycin treatment.
G S T-P P 2A c was transiently expressed along with HA-S6K1, purified and levels of co- 
purified HA-S6K1 analysed by S D S  PA G E and western blot. W hereas low levels of 
HA-S6K1 co-purified with G S T -P P 2A c following insulin treatment, rapamycin 
increased the interaction between the two proteins. Densitometry analysis showed 
that rapamycin treatm ent alm ost doubled the am ount of HA-S6K1 interacting with 
G S T-P P 2A c in comparison to insulin stimulation (p=<0.05). Results are representative 
of three independent experiments. Densitometry figures were calculated by averaging  
absolute signal intensity between three experiments, then converting to %  relative 
intensity taking the highest intensity as 100% . Error is representative of standard 
deviation. A  T  test was used to calculate significance.
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3.2.5 Wortmannin but not staurosporine effectively inhibits mTORCI in vitro

If Tip41 modulates PP2Ac activity towards substrates by altering substrate binding, 

rather than by altering binding with PP2Ac itself, it is important to understand how 

this regulation takes place. As mTOR is a Ser/Thr kinase, an mTORCI assay was 

developed to quantify phosphorylation of substrates under both activating and 

inhibitory conditions. In addition, the specificity of the assay was determined using a 

F114A mutant 4EBP1 substrate that does not bind to Raptor within the mTORCI 

complex. HEK293 cells were transfected with Myc-mTOR and HA-Raptor and 

purified using aMyc antibodies coupled to Protein G-Sepharose. The assay was 

then set up as in ‘Materials and Methods’. GST-4EBP1 wild-type was used as a 

substrate along with an F114A mutant. This F114A mutation falls within the TOS 

motif of 4EBP1 at its extreme C-terminus, which is essential for Raptor binding and 

therefore phosphorylation by the mTORCI complex. A duplicate assay using ERK 

was set up as a positive control, as ERK can also phosphorylate the Proline-directed 

Ser, and Thr residues within 4EBP1 at least in vitro (Schalm et al., 2005). After the 

mTORCI assay, the samples were resolved by SDS PAGE and analysed by 

western blot to determine 4EBP1 phosphorylation. Analysis of 4EBP1 P-Thr36/45 

shows that mTORCI phosphorylated wild-type 4EBP1 but not the F114A mutant 

(Figure 3.5A). This shows that the TOS motif is essential for phosphorylation of 

4EBP1 by mTORCI. As ERK phosphorylated both wild-type 4EBP1 and the F114A 

mutant equally, the requirement for the TOS motif is specific to mTORCI.

To identify an inhibitor that could be used in future assays, and to identify the 

concentration required for inhibition, an mTORCI assay was set up with a panel of 

known mTORCI inhibitors at differing concentrations. The mTORCI assay was first 

set up as described in ‘Materials and Methods’, with GST-4EBP1 wild-type used as a 

substrate in all assays. Inhibitors were added immediately before commencement of 

the assay. These assays were then subjected to SDS PAGE and analysed by 

western blot (Figure 3.5B). 4EBP1 phosphorylation at Thr36/45 showed that the 

FKBP12/rapamycin complex effectively reduced mTORCI activity within the assay 

as shown by a reduction in its phosphorylation. Wortmannin and LY294002 are both 

specific and competitive PI3K inhibitors that prevent ATP binding (Walker et al., 

2000). Both wortmannin and LY294002 reduced mTORCI activity when incubated 

with the assay at 20pM concentration, with wortmannin resulting in a slight decrease
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Figure 3.5: Optimisation of the mTORCI kinase assay. A. The m T O R C I assay 
was optimised using the well-characterised substrate 4EBP1 as an indicator of 
successful purification of active complex. G S T-4E B P 1(F114A ), corresponding to a 
mutation of the T O S  motif, was phosphorylated less effectively than the wild type 
protein. ERK was used as a positive control, and phosphorylated wild type and F114A  
mutated 4EBP1 equally. B. In order to find an effective inhibitor, the assay was  
conducted in the presence of a num ber of known m T O R C I inhibitors at varying 
concentrations. W ortm annin at 20pM virtually abolished the ability of m T O R C I to 
phosphorylate G S T-4E B P 1, and was used in further assays. All results are 
representative of three independent experiments.
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at 1 pM. The broad spectrum kinase inhibitor staurosporine failed to inhibit mTORCI 

activity at the concentrations used within the assay, despite being known to potently 

inhibit mTORCI signalling in vivo (Tee and Proud, 2001). Wortmannin was the most 

effective inhibitor, reducing 4EBP1 phosphorylation to undetectable levels at 20pM, 

and resulting in lower phosphorylation of the substrate when compared to 

rapamycin/FKBP12. These data show that the mTORCI assay specifically 

phosphorylates mTORCI substrates and is effectively inhibited by known mTORCI 

inhibitors.

3.2.6 Tip41 is not directly phosphorylated by mTORCI in vitro

Figure 3.4 shows that the PP2A-nP4i-substrate tertiary complex may be regulated by 

substrate interactions that are specific to the activity of mTORCI In yeast, Tip41 

was shown to be phosphorylated in a TOR-dependent manner. Tip41 

phosphorylation may be involved in regulating PP2Ac-substrate interaction in 

mammalian cells. To determine whether Tip41, as a potential PP2Ac regulatory 

subunit, is phosphorylated directly by mTORCI, the mTORCI assay was used. The 

assay was prepared as described in the ‘Materials and Methods’. Both GST-tagged 

4EBP1 and Tip41 were used as substrates within the assay. 20pM wortmannin, 

which I previously confirmed as a potent inhibitor of mTOR (Figure 3.5B), was 

employed as a negative control. As Tip41 phosphorylation sites are yet to be 

identified, the assay relied on the incorporation of [32P]-radiolabel into Tip41 from y- 

[32P]-ATP to identify substrate phosphorylation. The assay was assembled in 

duplicate to provide samples for total protein analysis. After the mTORCI assay, the 

kinase assay reactions were resolved by SDS PAGE and after fixing, the gel was 

dried down and [32P]-radiolabel incorporation determined by autoradiography (Figure 

3.6). The duplicate assays containing cold ATP only were also resolved by SDS 

PAGE and then analysed by western blot. Autoradiography identified 

phosphorylation of 4EBP1 by mTORCI which was inhibited by wortmannin as 

expected. Phosphorylation ofTip41 was not detected. This indicates that Tip41 is 

not directly phosphorylated by mTORCI in vitro and suggests that Tip41 may be 

regulated by some other mechanism.
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GST Substrate 4EBP1 Tip41
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GST-Tip41

GST-4EBP1

GST-Tip41

GST-4EBP1

32P Incorporation 
(Autoradiograph)

. aGST
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HA-Raptor (aHA)

Figure 3.6: Tip41 is not a direct substrate of m TORCI. G ST-Tip41 was used as a 
substrate in the m T O R C I kinase assay. As no phospho-antibodies are available for 
Tip41, the m T O R C I assay was supplemented with y-[32P]ATP, and incorporation of 
32P into substrates quantified by autoradiography. G ST-4EB P1 was used as a positive 
control. The purified m T O R C I complex robustly phosphorylated G S T-4E B P 1, which 
w as inhibited by 20pM wortmannin. No phosphorylation of G ST-Tip41 was observed, 
indicating that Tip41 is not a direct substrate of m T O R C I. Results are representative 
of three independent experiments.
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3.2.7 Tip41 may downregulate Raptor via proteasomal degradation

Phosphorylation of Tip41 was not detected within the in vitro mTORCI assay. It is, 

however, still possible that mTORCI might phosphorylate Tip41 in vivo due to the 

presence of a conserved TOS motif (Figure 1.5). As the assay is only an in vitro 

indication of activity within the purified complex, mTORCI binding to Tip41 and 

potential phosphorylation should not be ruled out in cells. Within the mTORCI 

complex, Raptor acts as a substrate binding and recognition protein that facilitates 

optimal substrate phosphorylation by mTOR. Substrate recognition by Raptor 

requires the RNC domain, whereas Raptor interaction with mTOR requires multiple 

interactions within the protein (Kim et al., 2002). Substrates of mTORCI contain a 

TOS motif that is critical for Raptor interaction (Schalm et al., 2003, Wang et al.,

2003). Tip41 contains a conserved TOS motif although whether mammalian Tip41 is 

an mTORCI substrate remains to be discovered. To investigate interactions 

between Tip41 and mTORCI, co-immunoprecipitation between Tip41 and Raptor 

was performed. HEK293 cells were co-transfected with Myc-Raptor along with HA- 

tagged 4EBP1, Tip41 and S6K1. One set of cells was transfected with Myc-Raptor 

along with empty vector and serves as a negative control. After lysis, HA-tagged 

substrates were purified using aHA antibodies bound to Protein G-Sepharose beads. 

Samples were then resolved by SDS PAGE and analysed by western blot.

Whilst Myc-Raptor co-purified with HA-4EBP1, co-purification of Raptor was not 

enhanced when either HA-Tip41 or HA-S6K1 was purified from lysates (Figure 3.7A). 

This experiment indicates that the interaction between 4EBP1 and Raptor is robust, 

while Raptor interaction with S6K1, which is a well documented substrate of 

mTORCI and contains a putative and well characterised TOS motif, is a much 

weaker interactor. This result is in line with other research groups who have also 

documented that they are unable to see an interaction between S6K1 and Raptor 

using immunoprecipiation techniques (Schalm et al., 2005). Due to limitation of this 

binding assay, the interaction of Tip41 with Raptor cannot be ruled out in vivo.

Of interest, densitometry analysis revealed that Raptor levels halved when co­

expressed with HA-Tip41 (p=<0.05). Densitometry figures were calculated by 

averaging absolute signal intensity of totalMyc-Raptor between three experiments, 

then converting to % relative intensity taking the highest intensity as 100% as
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Figure 3.7: Raptor-substrate interaction analysis. A. Expressed Myc-Raptor was  
co-purified (aH A  immunoprecipitation) with expressed HA-tagged 4EBP1, S6K1 or 
Tip41. Levels of Myc-Raptor in the immunoprecipitate were then analysed by SD S  
PAGE followed by western blot. Densitometry figures regarding total Myc-Raptor levels 
were calculated by averaging absolute signal intensity between three experiments, 
then converting to %  relative intensity taking the highest intensity as 100% . A  T  test 
was then used to calculate significant differences between total Myc-Raptor when co­
expressed with HA-Tip41 compared to when co-expressed with HA-4EBP1 or HA- 
S6K1. Error is indicative of standard deviation. Whilst HA-4EBP1 co-purified in 
complex with Raptor, concurrent with 4EBP1 as a substrate of m T O R C I, HA-tagged  
S6K1 and Tip41 did not. Co-expression of Myc-Raptor with HA-Tip41 resulted in 
downregulation of Raptor protein. Densitometry analysis showed that levels were 37%  
of those seen in control cells (p=<0.05). B. To investigate the possibility that Tip41 
overexpression was inducing proteasomal degradation of Raptor, HA-Tip41 was co­
expressed with Myc-Raptor and cells treated with the proteasomal inhibitor M G 132 2 
hours prior to lysis. M G 132 equalised levels of Myc-Raptor co-expressed with HA- 
T ip41. Results are representative of three independent experiments. Densitometry 
figures were calculated by averaging absolute signal intensity between three 
experiments, then converting to % relative intensity taking the highest intensity as 
100% .
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detailed in 2.4.20. Error is indicative of standard deviation, and a student’s T test 

was used to ascertain significance. In order to check whether this was due to poor 

co-transfection or co-expression problems, or whether Tip41 may be destabilising 

Raptor, the proteasome inhibitor MG132 was used. If Tip41 leads to Raptor 

degradation via the proteasome, MG 132 should equalise Raptor protein levels upon 

over-expression of Tip41. HA-Tip41 was again co-transfected with Myc-Raptor in 

the presence of MG 132 two hours prior to lysis. Following lysis, samples were 

resolved by SDS PAGE and analysed by western blot (Figure 3.7B). Levels of Myc- 

Raptor in the presence of co-expressed HA-Tip41 were equalised by treatment with 

MG132. This indicates that Tip41 may be inducing Raptor degradation via the 

proteosomal pathway.

3.2.8 Raptor interacts with 4EBP1 but not Tip41

Despite the results of Figure 3.6 and 3.7, the possibility of an interaction between 

Tip41 and the mTORCI complex could not be discounted. A far western technique 

was adopted to examine whether a direct interaction between Raptor and Tip41 was 

possible. To do this technique, GST-purified substrate was dotted onto PVDF 

membrane and incubated with cell lysate containing over-expressed HA-Raptor. 

Interaction between Raptor and the substrates was then determined with aHA 

antibodies. Firstly, this technique was optimised using a series of HA-Raptor 

mutants. Cell lysates were prepared containing over-expressed HA-Raptor wild-type 

or one of the six mutants. Mutants 1,2,3 and 4 all fall within the RNC domain, 

known to be involved in substrate binding. Mutant 7 contains a point mutation within 

an uncharacterised region of Raptor between the RNC domain and WD40 repeats. 

Mutant 9 contains a point mutation within the WD40 repeats. Lysate generated from 

cells transfected with empty vector was also used as a negative control. Purified 

GST-4EBP1 wild-type and F114A were dotted onto PVDF membrane and incubated 

overnight with the cell lysates. HA-Raptor interaction was then visualised using aHA 

antibodies followed by normal western blot protocol (Figure 3.8A).

The results show interaction between wild type HA Raptor and GST-4EBP1 wild-type, 

although no interaction was detected with GST-4EBP1(F114A). This is concurrent 

with results from Figures 3.5 and 3.7 and shows that the TOS signalling motif is 

essential for Raptor binding and therefore phosphorylation by mTOR. HA-Raptor
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Figure 3.8: M ultiple protein-protein interactions occur between Raptor and 4EPB1. A. A series of Raptor mutants containing point mutations within a 
number of domains were analysed for interaction with 4EBP1. Mutants 1 to 4 contan point mutations within the RNC domain. Mutant 4 contains a point 
mutation within an uncharacterised region of Raptor. Mutant 9 contains a point mutation within the WD40 repeats. Purified GST-4EBP1 wild type and 
F114A were dotted onto PVDF membrane and incubated in HEK293 cell lysate containing transiently expressed HA-Raptor wild-type or mutant. The 
presence of HA-Raptor bound to 4EBP1 was then analysed by western blot. HA-Raptor interacted with wild type 4EBP1, as did HA-Raptor mutant 7. GST- 
4EBP1 (F114A) did not interact with wild-type or any mutant Raptor protein. B. The same technique was applied to analyse interaction between HA-Raptor 
(wild type only) and Tip41. GST-Tip41 was dotted onto PVDF membrane along with GST-4EBP1 wild type and F114A mutant, and incubated with HA- 
Raptor containing lysate. HA-Raptor did not interact with GST-Tip41, but as in A interaction was observed with wild-type 4EBP1. Results are 
representative of three independent experiments.



mutant 7 was also shown to interact with GST-4EBP1. This mutation falls within an 

uncharacterised region of Raptor between the HEAT and WD40 repeats, which does 

not appear to interfere with substrate binding (Kim et al., 2002). Binding of Raptor to 

mTOR requires multiple protein-protein interactions as only mutants 4 and 7 interact 

with mTOR (Kim et al., 2002). These data show that interaction with substrates also 

requires multiple interactions, as all but mutant 7 failed to interact with 4EBP1. 

Mutants 1, 2, 3 and 4 all fall within the RNC domain, known to be involved in 

substrate binding. Thus the fact that point mutations within this domain abrogate 

substrate binding is of little surprise. Mutant 9 contains a point mutation within the 

WD40 repeats. Lack of binding of mutant 9 to 4EBP1 is therefore surprising and 

indicates that a range of points within Raptor are required for optimal substrate 

binding.

Following initial optimisation, the far western technique was used to identify possible 

interaction between HA-Raptor and Tip41. GST-4EBP1 wild-type, F114A and GST- 

Tip41 were dotted onto PVDF membrane and incubated overnight with cell lysate 

containing HA-Raptor. Lysate from cells transfected with empty vector was again 

used as a negative control. Membranes were then incubated with a-HA antibodies 

and visualised using the latter part of normal western blotting protocol. Figure 3.8B 

shows that HA-Raptor bound to wild-type but not F114A mutant 4EBP1 or Tip41.

This shows that the TOS motif is critical for 4EBP1 binding to Raptor, in agreement 

with previous research (Schalm et al., 2003, Wang et al., 2003). This indicates that 

Raptor binds to 4EBP1 but not Tip41. Regulation of Tip41 therefore does not appear 

to be via phosphorylation by or interaction with the mTORCI complex.

3.2.9 Tip41 is not involved in mTORC2 signalling

There are two known complexes containing mTOR - mTORCI and mTORC2. 

Whereas mTORCI relies on Raptor as a substrate binding protein, mTORC2 

contains an equivalent protein called Rictor. The mTORC2 complex also contains 

an additional protein, mSinl. Although two TOR complexes also exist in yeast, there 

are two TOR proteins encoded by separate genes -  Tori and Tor2. As mammalian 

TOR is encoded by a single gene, functional redundancy may mean that Tip41 is a 

substrate of mTORC2. In addition, Tip41 purified with endogenous Hsp70 (Figure 

3.2), a component of the mTORC2 complex (Martin et al., 2008). As Tip41 was
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discounted as a substrate of the mTORCI complex, the possibility of Tip41 as an 

mTORC2 substrate was investigated.

An in vitro mTORC2 kinase assay was optimised in order to do this. HEK293 cells 

were transfected with Myc-mTOR and Myc-Rictor and both proteins 

immunoprecipitated using aMyc antibodies. The mTORC2 assay was then set up as 

described in ‘Materials and Methods’. Both purified GST-4EBP1 and Akt were used 

as substrates within the assay in the presence or absence of FKBP12/Rapamycin, 

providing both an mTORCI and mTORC2 substrate, respectively. Following the 

mTORC2 assay, samples were resolved by SDS PAGE and analysed by western 

blot (Figure 3.9). Antibodies against 4EBP1 phosphorylation at Thr36/45 showed 

FKBP12/Rapamycin sensitive phosphorylation of the protein. This shows that some 

mTORCI complex containing endogenous Raptor is purified in our assay. 

Phosphorylation of Akt at S473, the mTORC2 phosphorylation site, was also 

analysed. Purified mTORC2 phosphorylated Akt at this site and confirms the 

presence of this complex within the assay. This was not a FKBP12/Rapamycin 

sensitive phosphorylation event as expected, as mTORC2 is only inhibited in cells 

following rapamycin treatment at high concentrations. These data show that 

although some contaminating mTORCI is purified within the assay, mTORC2 is 

present and able to phosphorylate the substrate Akt.

The assay was then used to investigate the possible phosphorylation of Tip41 by 

mTORC2 and was set up as described above and in the ‘Materials and Methods’. 

Purified GST-4EBP1, inactive Akt and GST-Tip41 were used as substrates. As 

Tip41 phosphorylation sites are yet to be identified, the assay used y-[32P]-ATP to 

identify substrate phosphorylation. The assay was carried out in duplicate to also 

provide cold samples for total protein analysis. [32P]-radiolabelled substrates were 

analysed after being resolved by SDS PAGE, fixed, dried down and subjected to 

autoradiography (Figure 3.9B). The mTORC2 assays carried containing only cold 

ATP were also resolved by SDS PAGE but were analysed by western blot. No 

4EBP1 phosphorylation was detected within the mTORC2 assay indicating that there 

was little to no contamination of mTORCI within the purified mTORC2. Strong 

phosphorylation of Akt indicated the presence of an active mTORC2 complex within 

this assay. No Tip41 phosphorylation was detected showing that Tip41 is not a 

direct substrate of mTORC2 under the conditions of this assay.
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Figure 3.9: Tip41 is not a substrate for mTORC2. A. The mTORC2 kinase assay 
was optimised using Akt as a substrate. Control assays using GST-4EBP1 as 
substrate were also performed as an indicator of contamination of the assay with 
m TORCI. Akt was robustly phosphorylated in the assay, which was 
FKBP12/Rapamycin insensitive, indicating successful purification of active mTORC2. 
GST-4EBP1 was also phosphorylated in the assay, indicating a degree of 
contaminating m TORCI. B. The mTORC2 assay was used to analyse 
phosphorylation of Tip41 by mTORC2. As no Tip41 phospho-antibodies are available, 
the assay was supplemented with y-[32P]-ATP and substrate phosphorylation 
quantified by autoradiography. Akt phosphorylation was measured as a positive 
control. Whereas robust phosphorylation of Akt was observed, no 32P was 
incorporated by GST-Tip41 indicating that the protein is not a substrate of mTORC2.
In addition, no phosphorylation of 4EBP1 was observed indicating low levels of 
contaminating m TO R C I. Results are representative of three independent 
experiments.
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Although the results of Figure 3.9B discount the possibility of Tip41 as an mTORC2 

substrate, it could act upstream of the complex in vivo. To investigate this V5-Tip41 

was over-expressed in HEK293 cells and the phosphorylation of Akt at S473, the 

mTORC2 phosphorylation site, was visualised by SDS PAGE followed by western 

blot. Figure 3.10 shows that Akt phosphorylation at S473 was increased by insulin 

treatment but not affected by the over-expression of V5 Tip41. It therefore appears 

that Tip41 does not influence mTORC2 signalling. Combined with the results of 

Figure 3.9, Tip41 does not appear to act as a PP2Ac regulatory subunit in the 

mTORC2 signalling pathway. Of interest, analysis of total Tip41 levels revealed the 

possibility of post-translational modification of the protein, as evidenced on 

overexpression of V5-Tip41. Due to the small mobility shift apparent, it is possible 

that Tip41 is subject to phosphorylation.

3.2.10 Tip41 phosphorylation is negatively regulated by insulin signalling

Although Tip41 was not directly phosphorylated by mTORCI or mTORC2 in vitro, 

phosphorylation of Tip41 by another kinase within the insulin signalling pathway was 

still possible. The phosphorylation of Tip41 was therefore investigated in response 

to insulin stimulation. Two methods were used to this end; in vivo [32P]-radiolabelling 

and isoelectric focusing. The first investigation involved over-expression of GST- 

Tip41 in HEK293 cells followed by radiolabelling with [32P]-orthophosphate. A set of 

cells was transfected with empty vector as a negative control. Prior to lysis, cells 

were maintained in phosphate free medium for 5 h supplemented with [32P]- 

orthophosphate and stimulated with insulin with and without pre-treatment with 

rapamycin, as indicated. GST-Tip41 was then purified on Glutathione-Sepharose 

using spin-trap columns. Purified sample was then analysed by autoradiography 

after being resolved on SDS PAGE. Densitometry was calculated by averaging 

absolute signal intensity then converting to % setting the highest signal intensity at 

100% as detailed in 2.4.20. Error is representative of standard deviation. Following 

confirmation of equal variances, p values were calculated using a student’s T test. 

Figure 3.11A shows that GST-Tip41 is phosphorylated in vivo. Phosphorylation was 

maximal under serum-starved conditions and was reduced by insulin stimulation as 

shown by a reduction in signal intensity of approximately 20% (p=<0.05)under this 

condition. Rapamycin does not appear to have any effect on phosphorylation as no
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Figure 3.10: Tip41 does not act upstream of mTORC2. V 5-T ip41 w as trans ien tly  
expressed  in H EK 293 ce lls  and phosphory la tion  o f A k t a t S473, the  m TO R C 2 sens itive  
site, ana lysed by SDS PAG E fo llow ed  by w este rn  blot. The  resu lts  show ed tha t V 5 - 
T ip41 overexp ress ion  did no t a lte r phosphory la tion  o f A k t a t S473. R esu lts  are 
rep resenta tive  o f th ree  independen t experim ents.
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Figure 3.11: Tip41 phosphorylation is sensitive to insulin stimulation. A. In vivo 
rad io labe lling  w as used to  ana lyse  phosphory la tion  o f ove rexp ressed  G S T-T ip41. 
C e lls  w ere  kept in phospha te -free  m ed ia  supp lem en ted  w ith y -[32P ]-ATP  fo r 5 hours 
p rio r to lysis. A u to rad iog raphy ind ica ted  tha t T ip41 is hyperphosphory la ted  under 
se rum  starved cond itions, and phosphory la tion  reduced fo llow ing  insulin  s tim u la tion . 
P hosphory la tion  o f T ip41 w as not respons ive  to  trea tm en t w ith  rapam ycin . 
D ens itom etry  figu res  w ere  ca lcu la ted  by averag ing  abso lu te  s igna l in tensity  betw een 
th ree  experim ents , then conve rting  to  % re la tive  in tensity  tak ing  the  h ighest in tensity  
as 100% . E rro r is ind ica tive  o f s tandard  dev ia tion. A  T  tes t w as  then used to ca lcu la te  
p values. A na lys is  show ed th a t insu lin  tre a tm e n t reduced phosphory la tion  o f T ip41 by 
20%  (p=0.02). B. Isoe lec tric  focuss ing  w as  a lso  used to ana lyse  phosphory la tion  o f 
T ip41. C e lls  w ere  trans fec ted  w ith  HA-Tip41 and prio r to  lysis, cu ltu red  ove rn igh t in 
se rum  free  m ed ia  and trea ted  w ith  insulin  and rapam ycin  as ind icated. E xpressed HA- 
Tip41 w as im m unoprec ip ita ted  (aH A ) from  ce lls  and reso lved by isoe lectric  focuss ing  
fo llow ed by SDS PAG E and w este rn  blot. T hese  data a lso show ed tha t Tip41 w as 
hyperphosphory la ted  unde r se rum  sta rved  cond itions, and dephosphory la ted  in 
response  to  insulin, as show n by a sh ift tow ards the  a lka line  te rm inus. Again, 
rapam ycin  tre a tm e n t did no t a lte r app a re n t phosphory la tion . A s ind icated by 
quantify ing  the  num ber o f m igra ting  iso fo rm s fo llow ing m axim a l phosphory la tion , Tip41 
appears to  undergo 4 phosphory la tion  events, tw o  o f w h ich  are  sens itive  to insulin 
s tim u la tion . R esu lts  a re  rep resen ta tive  o f th ree  independent experim ents .
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change in [32P]-radiolabel incorporation was apparent in comparison to that following 

insulin stimulation alone (p=<0.05).

To confirm the phosphorylation of Tip41 in vivo, isoelectric focussing was used. 

Phosphorylation of proteins is detected by a shift towards the acidic (H+) end of the 

isoelectric focussing gel. Similarly, protein dephosphorylation was detected as 

observed as a shift in the position of the Tip41 protein towards the alkaline (OH') end 

of the gel. HEK293 cells were transfected with HA-Tip41 and serum-starved 

overnight. Treatment with insulin and rapamycin took place immediately prior to lysis. 

HA-Tip41 was then purified using immunoprecipitation with aHA antibodies and 

isoelectric focussing carried out as described in the ‘Materials and Methods’. 

Following separation by the second dimension using SDS PAGE, results were 

visualised by western blot analysis. Figure 3.11B shows that insulin treatment 

results in a shift of Tip41 from the H+ to the OH- terminal of the gel. This indicates 

an insulin specific dephosphorylation event occurring towards Tip41. Rapamycin 

treatment did not alter the phosphorylation status as no shift occurred in comparison 

to insulin stimulation alone.

Although difficult to quantify, isoelectric focusing suggests that there may be up to 4 

phosphorylation sites within Tip41. Hyperphosphorylation, where the highest two 

phosphorylation sites are phosphorylated, appears to occur under serum-starved 

conditions. Two of these sites then appear to be dephosphorylated following 

treatment of cells with insulin, leaving two phosphorylation sites still present. This 

remains the case following rapamycin treatment. The results from Figure 3.11 show 

that Tip41 is regulated by phosphorylation. Hyperphosphorylation occurs under 

serum-starved conditions and insulin treatment results in dephosphorylation of 

possibly two of the four phosphorylation sites present within Tip41. This indicates 

that while Tip41 appears to be regulated by insulin signalling via phosphorylation, 

this regulation is not directly via mTORCI as rapamycin has no effect on the 

phosphorylation of the protein. As phosphorylation of Tip41 is reduced on activation 

of the insulin signalling pathway, it appears that Tip41 is subject to an insulin specific 

dephosphorylation event.
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3.3 Discussion

The results presented here show that Tip41 in mammalian cells stably binds PP2A 

independently of Alpha4, and may allosterically regulate PP2Ac activity towards 

substrates. Previous data show that Tip41 purifies as a protein complex with Alpha4 

and PP2Ac, mimicking the Tip41-Tap42-Pph21/22 complex in yeast. Previous 

studies did not determine whether Tip41 bound PP2Ac directly or via Alpha4 (as in 

yeast) (Smetana & Zanchin, 2007). Purification of GST-Tip41 revealed a complex 

interaction with Alpha4 and PP2Ac (Figure 3.2). In order to define the exact 

interactions taking place between Alpha4, Tip41 and PP2Ac, GST-PP2Ac(E42A) 

mutant deficient in binding to Alpha4 was utilised (Prickett & Brautigan, 2004). Tip41 

binds equally to wild-type and E42A mutant PP2Ac, indicating that Tip41 binds 

PP2Ac independently of Alpha4 (Figure 3.3). Whereas purification of GST-PP2Ac 

yielded little difference in Alpha4 interaction between WT and E42A, HA-Tip41 

immunoprecipitation completely prevented Alpha4 interaction when mediated by V5- 

PP2Ac mutant E42A (Figure 3.3B -  compare Alpha4 co-purified). This difference 

may provide further evidence for mutually exclusive binding of Alpha4 and Tip41 with 

PP2Ac.

Whereas immunoprecipitation of HA-Tip41 may provoke further loss of Alpha4 in 

comparison to GST-PP2Ac(E42A) due to indirect binding via PP2Ac, direct binding 

to GST-PP2Ac(E42A) allows the unstable interaction with Alpha4 to be maintained. 

Thus GST-PP2Ac(E42A) may bind Alpha4 less stably than wild-type, resulting in 

increased sensitivity of the interaction during immunoprecipitation indirectly with HA- 

Tip41. In yeast, Tip41 positively regulates Pph21/22 and Sit4 activity by removing 

the inhibitory subunit Tap42 in response to TORC1 signalling. During TORC1 

inhibition, Tip41 sequesters the inhibitory subunit Tap42, resulting in activation of 

Pph21/22 and Sit4. Thus Tip41 is an indirect phosphatase activating protein (Jacinto 

et al., 2001). In contrast, Tip41 in human cells binds PP2Ac directly (Figure 3.3). 

Mammalian Tip41 may therefore be a regulatory subunit of PP2Ac.

Previous studies have shown that Tip41 negatively regulates PP2Ac activity in vitro, 

posing Tip41 as a potential negative regulatory subunit. As no A or B regulatory 

subunit was found in complex with PP2ATiP4i (Figure 3.2), Tip41 may act as a bona 

fide PP2Ac regulatory subunit. In contrast to the role of Tip41, the inhibition of
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Alpha4 by PP2Ac has been extensively investigated. Alpha4 allosterically inhibits 

PP2Ac and binds independently of the regulatory A and B subunits (Chung et al., 

1999, Prickett & Brautigan, 2004, Prickett & Brautigan, 2006). Tip41 may therefore 

have an analogous role towards PP2Ac, binding independently of A and B regulatory 

subunits to regulate activity of the phosphatase. As Tip41 may act as part of a 

complex with Alpha4 and PP2Ac, Tip41 and Alpha4 may have contrasting or 

compounding effects on PP2Ac. As both Alpha4 and Tip41 have been identified as 

PP2Ac inhibitors in vitro, both subunits could be acting in concert to inhibit PP2Ac 

(Chen et al., 1998, Nanahoshi et al., 1998, Nanahoshi et al., 1999, McConnell et al., 

2007). In contrast, the role of Alpha4 as a PP2Ac inhibitor is not certain. For 

instance, studies have shown that Alpha4 can act as a positive PP2Ac regulatory 

subunit in vivo (Kong et al., 2004, Saleh et al., 2005, Nien et al., 2007, Prickett & 

Brautigan, 2007). Although Tip41 has been shown to inhibit PP2Ac activity in vitro 

(McConnell et al., 2007), this role may not translate in vivo. Owing to the unresolved 

regulatory mechanism of Alpha4 with PP2Ac (i.e., inhibitory or activating) a number 

of possibilities for the role of Tip41 exist, where it may also act as an activating or 

inhibitory PP2Ac subunit. For instance, Tip41 may inhibit whereas Alpha4 may 

activate PP2Ac activity, or vice versa. In contrast, both subunits may be inhibitory or 

activating towards PP2Ac. This requires further investigation.

In yeast, Tip41 regulates phosphatase activity downstream of TORC1. Therefore 

the possibility that Tip41 regulates PP2Ac downstream of mTORCI was investigated. 

Raptor mediates mTOR substrate interaction, and Raptor binding is required for 

phosphorylation by mTOR. Binding within mTORCI between Raptor and mTOR has 

been studied using a number of Raptor point mutations. The Raptor mutants were 

numbered 1, 2, 3, 4, 7 and 9. Raptor mutants 1, 2, 3, and 4 contain point mutations 

within the RNC domain critical for substrate recognition (Kim et al., 2002). Mutant 7 

contains a point mutation in the uncharacterised region between the HEAT repeats 

and the WD40 repeats. Mutant 9 contains a point mutation within the fourth WD40 

repeat (Kim et al., 2002). Thus the mutations encompass much of the structure of 

Raptor required for activity. Only mutants 4 and 7 were shown to bind mTOR, 

indicating that multiple interactions occur throughout Raptor sequence between 

mTOR and Raptor (Kim et al., 2002). In order to characterise Raptor-substrate 

binding, these mutants were analysed for their ability to bind 4EBP1. Only Raptor
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mutant 7 interacted with 4EBP1, indicating that substrate interaction with Raptor also 

requires multiple protein-protein interactions (Figure 3.8A). As this mutation falls 

within the uncharacterised region of Raptor, this indicates that interaction takes place 

via the HEAT and WD40 repeats in addition to the RNC domain. Thus multiple 

points within Raptor are required for substrate binding.

Raptor substrate interaction requires a TOS motif within the substrate, which is a five 

amino acid sequence essential for Raptor binding (Schalm et al., 2003, Wang et al., 

2003). The TOS motif within 4EBP1 is present at the C-terminus and comprises 

F1 1 4 EMDI. Whereas interaction between Raptor and wild-type 4EBP1 was observed, 

4EBP1(F114A) did not bind Raptor (Figure 3.8). This highlights the importance of 

the TOS motif in Raptor-substrate interaction. This is in agreement with previous 

findings which identify the TOS motif as a requirement in regulating certain mTORCI 

substrate phosphorylation events via binding to Raptor (Nojima et al., 2003, Schalm 

et al., 2003, Wang et al., 2003, Lee et al., 2008).

As Tip41 contains a putative TOS motif, its role as a potential mTORCI substrate 

was investigated. Firstly, interaction between Raptor and Tip41 was investigated.

No interaction between Tip41 and Raptor was observed in far western blot or on 

immunoprecipitation of Myc-Raptor (Figures 3.7 & 3.8). Interaction of Tip41 with 

Raptor cannot be completely ruled out as results in Figure 3.7 show that S6K1 did 

not interact with purified Myc-Raptor. This is in line with previous findings, where 

purified Raptor did not interact with S6K1 (Schalm et al., 2003). As S6K1 also 

contains a TOS motif and is a well-documented mTORCI substrate, the possibility 

that Tip41 binds Raptor could not be completely ruled out.

In order to further investigate Tip41 as a potential mTORCI substrate, an in vitro 

mTORCI kinase assay was performed. Purified mTORCI phosphorylated wild-type 

4EBP1, but not 4EBP1(F114A) orTip41 (Figure 3.5A). Combined with Figure 3.8, 

this agrees with previous data showing that Raptor interaction is essential for 

phosphorylation by mTORCI as neither 4EBP1(F114A) orTip41 co-purified with 

Raptor (Kim et al., 2002, Nojima et al., 2003, Schalm et al., 2003, Wang et al., 2003, 

Lee et al., 2008). The specificity of the TOS motif in mTORCI signalling was shown 

by the ability of ERK to phosphorylate wild-type and 4EBP1(F114A) equally. This 

provides evidence that mutation of the TOS motif does not alter the structure of
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4EBP1, but is specifically required for Raptor-mediated phosphorylation by mTOR. 

Tip41 was not phosphorylated by mTORCI in vitro. Thus, although Tip41 contains a 

TOS motif, it is unable to be phosphorylated by mTORCI This indicates that other 

protein-protein interactions mediate Raptor binding, and that although the TOS motif 

is required, it is not a key to phosphorylation by mTORCI In support of this, 4EBP1 

also contains a RAIP motif at the N terminus that is essential for Raptor binding (Lee 

et al., 2008). Thus multiple interactions mediate binding between Raptor and mTOR 

substrates. In combination with Figure 3.8, these data indicate that Tip41 is not a 

substrate of mTORCI Regardless, Tip41 may act elsewhere upstream or 

downstream of mTORCI to regulate PP2Ac activity.

In support of this, Tip41, possibly with PP2Ac, may alter Raptor stabilisation and 

therefore may act upstream or parallel to mTORCI. Over-expression of HA-Tip41 

reduced levels of co-expressed Myc-Raptor which was equalised by treatment with 

the proteasome inhibitor MG132 (Figure 3.7). Tip41 may therefore promote Raptor 

degradation via the proteasome, which may be mediated by the phosphorylation 

status of Raptor. Following mTORCI activation, Raptor is phosphorylated at S683 

by mTOR which is required for phosphorylation of 4EBP1 and S6K1 (Wang et al.,

2009). Inhibition of mTORCI by AMPK is mediated in part by phosphorylation of 

Raptor at S722 and S792 which promote Raptor dissociation from mTORCI and 

binding to 14-3-3 (Gwinn et al., 2008). Although some Raptor phosphorylation sites 

are required for mTORCI activation, some are inhibitory and result in Raptor 

dissociation. Binding to 14-3-3 can protect proteins from proteasomal degradation 

(Li et al., 2002, Shumway et al., 2003, Cai et al., 2006). Thus, free Raptor may be 

prone to degradation, and it is conceivable that Tip41 alters the phosphorylation of 

Raptor, mediated by PP2Ac, resulting in dissociation from mTORCI and 

proteasomal degradation. Again in this capacity it is possible that Tip41 acts as both 

a negative and positive PP2Ac regulatory subunit.

Following identification of a direct interaction between PP2Ac and Tip41 and the 

potential role of Tip41 as a regulatory subunit of PP2Ac, the mechanism of PP2Ac 

regulation was explored. PP2Ac can be regulated by a number of mechanisms 

including post-translational modification, regulatory subunit binding, and regulatory 

subunit phosphorylation. Analysis of PP2Ac purified with Tip41 revealed that the 

PP2AjiP4i interaction is not sensitive to rapamycin (Figure 3.3C), indicating that
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PP2A is not regulated by Tip41 due to changes in interaction. This result indicates 

that if Tip41 acts as a PP2A regulatory subunit, other modes of modification are 

likely in order to allow regulation.

As interaction between PP2Ac and Tip41 is not regulated, the possibility that 

PP2ATiP4i is regulated by Tip41 phosphorylation was investigated. In vivo radio­

labelling and 2D SDS PAGE both showed reduced phosphorylation of Tip41 on 

insulin stimulation, which was not sensitive to rapamycin (Figure 3.11). Although 

difficult to qualify, Tip41 appears to undergo four phosphorylation events on serum- 

starvation of cells (Figure 3.11B). On stimulation with insulin, two of these 

phosphorylation sites are removed. Dephosphorylation of Tip41 in response to 

insulin is unexpected as insulin signalling is associated with a general increase in 

phosphorylation events. Tip41 is not the only protein dephosphorylated in response 

to insulin signalling. In response to insulin, the translation initiation factor elF2B is 

activated by dephosphorylation. This occurs by inhibition of the upstream kinase 

GSK3 by Akt-mediated phosphorylation. Akt phosphorylates and inactivates GSK3 

leading to hypophosphorylation of elF2B (Wang et al., 2001, Wang et al., 2002, 

Mariappan et al., 2008). This is required for progression from initiation to the 

elongation phase of translation. Thus Tip41 dephosphorylation in response to insulin 

may be caused by inactivating phosphorylation of an upstream kinase, such as 

GSK3, resulting in accumulation of hypophosphorylated Tip41. Phosphorylation of 

Tip41 may modify activity of the protein. Indeed phosphorylation of regulatory 

subunits is a documented mechanism of regulation of PP2A holoenzymes 

(Letourneux et al., 2006). Thus depending on its action as a PP2A activating or 

inhibitory subunit, Tip41 activity may be enhanced or hindered by phosphorylation on 

serum-starvation. As phosphorylation of Tip41 is not sensitive to rapamycin, Tip41 

phosphorylation is regulated upstream of mTORCI. This is concurrent with Figure 

3.3C which shows that Tip41 binding to PP2Ac is not sensitive to rapamycin. 

Therefore, mTORCI does not directly regulate Tip41 phosphorylation.

Although PP2ATjP4i may act upstream or parallel to mTORCI, PP2A complexes 

appear to act in multiple points within the pathway. Figure 3.4 shows that PP2Ac 

binds directly to S6K1 in agreement with previous data showing that a PP2A 

complex directly dephosphorylates S6K1 (Peterson et al., 1999, Yamashita et al., 

2005, Hahn et al., 2010). As the PP2Ac-S6K1 interaction increased markedly on
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administration of rapamycin, it appears that PP2Ac activity is negatively regulated by 

mTORCI and that interaction with S6K1 is the specific method of PP2A regulation 

downstream of mTORCI. Thus mTORCI, either directly or indirectly, may regulate 

a PP2A complex thus preventing interaction with S6K1. This agrees with a 

previously proposed model whereby mTORCI binds and phosphorylates S6K1 

thereby displacing PP2A. As the catalytically inactive S6K1 TOS mutant is rescued 

by phosphomimetic mutation of T389 and mutation of a putative PP2A binding motif, 

it was proposed that S6K1 activation requires removal of inhibitory phosphatase 

binding in addition to phosphorylation by mTORCI (Schalm et al., 2005). The data 

in Figure 3.4 indicates a model where rapamycin inhibits mTORCI thereby prevents 

binding to S6K1 allowing PP2A complex to bind and inhibit S6K1. Thus, active 

mTORCI may displace PP2A allowing S6K1 phosphorylation. This also indicates 

that the basal state is PP2A in complex with S6K1, and activation of mTORCI by 

upstream effectors acts to allow mTORCI to remove this inhibitory basal state.

Binding of Tip41 to Hsp70 raised the interesting possibility that Tip41 is involved in 

mTORC2 signalling (Figure 3.2). Hsp70 is required for mTORC2 phosphorylation of 

Akt, and phosphorylation of Akt by mTORC2 is sensitive to heat shock (Martin et al., 

2008, Oehler-Janne et al., 2008). Although the mTORC2 assay contained 

contaminating mTORCI, as shown by the ability to phosphorylate 4EBP1 (Figure 

3.9A), as previous work showed mTORCI did not phosphorylate Tip41 any 

phosphorylation seen in this assay could be assigned to mTORC2. As seen in 

Figure 3.9B, purified mTORC2 phosphorylated Akt but not Tip41. Tip41 is therefore 

not a substrate of mTORC2. Over-expression of Tip41 did not affect 

phosphorylation of Akt at S473, indicating that it does not lie upstream of the kinase 

(Figure 3.10). The role of Tip41 binding to Hsp70 therefore requires further 

investigation as it does not appear to involve regulation of mTORC2. Hsp70 has two 

potential roles within the insulin signalling pathway and contributes to type II diabetes 

potentially through both mechanisms. Firstly, Hsp70 inhibits insulin signalling by 

increasing stability of ENPP1, an inhibitor of insulin signalling (Chin et al., 2009,

Zhou et al., 2009). Secondly, Hsp70 may activate insulin signalling by preventing 

misfolding of human amylin, associated with the pathology of type II diabetes (Chien 

et al., 2010). As Hsp70 is a phosphoprotein and is linked to insulin signalling, Tip41 

may interact with and modify activity of the protein with regard to either of these two



activities by mediating interaction with PP2A thus the phosphorylation status of 

Hsp70 (Cvoro et al., 1999). The role of Tip41-Hsp70 in insulin signalling requires 

further clarification.

In summary, Tip41 appears to act as an independent PP2Ac regulatory subunit and 

regulation of PP2Ajip4i may take place via phosphorylation of Tip41. PP2AriP4i 

interaction is not regulated by insulin or rapamycin. However, it is possible that 

phosphorylation of Tip41 may alter allosteric regulation of PP2Ac or substrate 

binding. Phosphorylation of regulatory subunits is a recognised mechanism of 

PP2Ac regulation (Letourneux et al., 2006). Tip41 phosphorylation is negatively 

regulated by insulin and unresponsive to rapamycin, indicating that phosphorylation 

is mediated upstream of mTORCI and by a kinase that is inhibited following insulin 

stimulation. In addition, as Tip41 does not interact with Raptor, nor is 

phosphorylated by mTORCI in vitro, Tip41 may act upstream or parallel to mTORCI 

to regulate phosphatase activity towards mTORCI substrates.

137



CHAPTER 4 -  TIP41 IN THE mTOR PATHWAY

4.1 Introduction

Activation of mTORCI in response to growth factors is mediated by a PI3K/Akt 

cascade that begins with activation of an RTK. Following ligand binding, RTKs 

activate PI3K, either directly or via IRS-1, leading to accumulation of the lipid second 

messenger PIP3 (Chung et al., 1994, Mendez et al., 1996, Maehama & Dixon, 1998, 

Aoki et al., 2001). This provides a docking site at the plasma membrane for proteins 

containing a PH domain, such as Akt and PDK1 (Engelmen et al., 2006).

Recruitment of Akt and PDK1 to the membrane allows PDK1-mediated 

phosphorylation of Akt at T308 (Alessi et al., 1997). Full activation requires 

additional phosphorylation at S473 by mTORC2. Activated Akt then phosphorylates 

a number of downstream targets including TSC2, PRAS40 and mTOR (reviewed in 

Manning & Cantley, 2007). Phosphorylation of TSC2 results in inhibition of GAP 

activity towards Rheb resulting in accumulation of GTP-Rheb (Inoki et al., 2002).

This allows activation of mTORCI and results in phosphorylation of S6K1 and 

4EBP1, and activation of HIF1.

Activation of mTORCI results is attenuation of upstream signalling via a negative 

feedback loop. When activated, mTOR and S6K1 phosphorylate IRS-1 at S636/639 

and S1101, respectively (Veileux et al., 2010). This prevents interaction with PI3K 

and depletes IRS-1 protein levels. This renders the PI3K/Akt pathway unresponsive 

to upstream signals. An additional feedback mechanism exists triggered by chronic 

mTORCI inactivation. Inhibition of mTORCI by rapamycin results in upregulation of 

Akt through an unidentified mechanism (Wang et al., 2008, Chen et al., 2010). 

Although the upstream activation of mTORCI is relatively well understood, the 

inhibitory actions of phosphatases require further study. PP2A has been implicated 

in the pathway but the regulatory subunits involved have not been conclusively 

identified. As Tip41 has been identified as a PP2A regulatory subunit acting 

downstream of TORC1 in budding yeast (Jacinto et al., 2001), the potential role in 

mTORCI signalling has been investigated in this chapter. These data show that 

Tip41 inhibits mTORCI signalling. In contrast to in vitro assays implicating Tip41 as 

an inhibitor of PP2A, this work indicates that Tip41 activates PP2Ac. As Tip41 over­
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expression was not able to reduce S6K1 phosphorylation in TSC2-A MEFs, it 

appears to act upstream of mTORCI, with TSC2 identified as a potential substrate.

4.2 Results

4.2.1 Over-expression of Tip41 can inhibit or activate mTORCI

To analyse the possible role of Tip41 within the mTORCI signalling pathway in more 

detail, Tip41 was over-expressed in HEK293 cells and the effect on the activity of co­

expressed HA-S6K1 evaluated. V5-Tip41 was co-transfected with HA-S6K1 in 

HEK293 cells and serum-starved overnight. Prior to lysis, cells were treated with 

insulin and rapamycin as indicated. Where the HA-S6K1 assay was performed, HA- 

S6K1 was then purified from lysates by aHA immunoprecipitation, and assays 

carried out as detailed in the ‘Materials and Methods’. The activity of HA-S6K1 

towards the substrate GST-rpS6 was evaluated by incorporation of [32P] using 

autoradiography. Where the HA-S6K1 assay was not performed, HA-S6K1 

phosphorylation was visualised by SDS-PAGE followed by western blot using 

phospho-S6K1 antibodies. Figure 4.1 A indicates low activity of HA-S6K1 under 

serum-starved conditions as shown by low levels of GST-rpS6 phosphorylation 

within the assay. This was then increased by insulin treatment and subsequently 

reduced by rapamycin. Over-expression of V5-Tip41 reduced HA-S6K1 activity 

towards GST-rpS6 , which is particularly apparent following insulin stimulation, as 

shown by a reduction of [32P]-radiolabel incorporation into rpS6 substrate. A portion 

of purified HA-S6K1 was retained for analysis by western blot. Phosphorylation of 

HA-S6K1 at T389 reflected the result seen within the assay. HA-S6K1 

phosphorylation was low following serum-starvation, increased by insulin stimulation 

and subsequently reduced by rapamycin inhibition as expected. Over-expression of 

V5-Tip41 reduced phosphorylation of HA-S6K1, which was apparent following insulin 

stimulation.

While over-expression of Tip41 resulted in a decrease in the activity of mTORCI 

substrates, an increase in activity was occasionally observed. V5-Tip41 was co­

expressed with HA-S6K1 in HEK293 cells and the phosphorylation of HA-S6K1 

observed by SDS PAGE followed by western blot (Figure 4.1B). Phosphorylation of 

HA-S6K1 at T389 was increased under both starved and insulin stimulated 

conditions in the presence of V5-Tip41 in comparison to control cells expressing HA-
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Figure 4.1: Tip41 overexpression can either enhance or inhibit phosphorylation 
ofS6K1. A. V5-Tip41 was co-expressed with HA-S6K1 in HEK293 cells. Following 
overnight serum starvation, cells were treated with insulin and rapamycin as indicated. 
HA-S6K1 was then purified by immunoprecipitation (aHA) and an S6K1 assay 
performed. Incorporation of 32P into the GST-rpS6 substrate indicated that 
overexpression of Tip41 reduced activity of S6K1 towards rpS6 in comparison to 
control cells expressing HA-S6K1 only. Western blot analysis of S6K1 
phosphorylation at T389 was concurrent with this result, as overexpression of Tip41 
also reduced phosphorylation of S6K1 at this site. B. V5-Tip41 was coexpressed with 
HA-S6K1. Prior to lysis, cells were cultured overnight in serum free media and treated 
with insulin and rapamycin as indicated. Phosphorylation of S6K1 was analysed by 
western blot. The results show that overexpression of Tip41 enhanced 
phosphorylation of S6K1 at T389 in comparison to control cells under serum starved 
and insulin treated conditions. Rapamycin abrogated the increase in S6K1 
phosphorylation caused by overexpression of Tip41
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S6K1 only. Rapamycin treatment completely ablated HA-S6K1 phosphorylation in 

both sample sets. This result was in complete contrast to the effect seen in Figure 

4.1A where V5-Tip41 expression reduced HA-S6K1 phosphorylation.

The phosphorylation of another well characterised mTORCI substrate, 4EBP1, was 

also analysed on over-expression of Tip41. V5-Tip41 was co-transfected with Myc- 

4EBP1 and serum-starved overnight. Prior to lysis, cells were treated with insulin 

and rapamycin as detailed. The phosphorylation of Myc-4EBP1 was then analysed 

using a mobility gel shift assay (Figure 4.2A). 4EBP1 contains multiple mTORCI 

phosphorylation sites and resolves as three phospho-isoforms based on the 

phosphorylation status of the protein. The bottom band (labelled ‘a’) represents the 

least phosphorylated species of 4EBP1, while the top band (labelled Y ) represents 

the most phosphorylated species of 4EBP1. Densitometry was used to determine 

the ratio of these different phosphorylated isoforms of 4EBP1 within the assay.

Total signal intensity was calculated for each condition and taken as 100%, with the 

relative intensity of 4EBP1 in each isoform then calculated as %. Overall, V5-Tip41 

expression reduced the phosphorylation of Myc-4EBP1 as shown by a reduction in 

the y-resolved isoform of Myc-4EBP1 and an accumulation of the a-isoform. In the 

absence of over-expressed Tip41, serum-starvation resulted in low levels of Myc- 

4EBP1 phosphorylation, with 29% resolving as the lowest phosphorylated a-isoform 

and 17% resolving as the highest phosphorylated y-isoform. V5-Tip41 expression 

resulted in a further increase in the a-isoform (45%) and a reduction in the y-form 

(7%) indicating a reduction in 4EBP1 phosphorylation. Insulin stimulation in the 

absence of V5-Tip41 resulted in a 30% shift to the highest phosphorylated y-isoform. 

V5-Tip41 expression reduced the y-isoform band to 13% with a resulting 

accumulation of Myc-4EBP1 to the a isoform (36%). In the control cells, rapamycin 

treatment reduced Myc-4EBP1 phosphorylation, as observed by 54% of 4EBP1 

resolving as the a-isoform and only 3% in the y-isoform. This was largely unchanged 

by V5-Tip41 expression. Tip41 therefore appears to act as an inhibitor within the 

mTORCI signalling pathway in a manner analogous to rapamycin, with over­

expression resulting in a decrease in phosphorylation of mTORCI substrates.

Concurrent with the dual effect of Tip41 overexpression on the activation or inhibition 

of HA-S6K1, expression of Tip41 also on occasion enhanced 4EBP1
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phosphorylation. In this instance, HA-Tip41 was co-expressed with Myc-4EBP1 and 

the effect on 4EBP1 phosphorylation observed by SDS PAGE followed by western 

blot and mobility gel shift assay (Figure 4.2B). An observed increase in 4EBP1 

phosphorylation at S65 resulted from expression of HA-Tip41 under starved, insulin 

and rapamycin treated conditions in comparison to control cells expressing Myc- 

4EBP1 only. Mobility gel shift assay also showed a shift in Myc4EBP1 to the y 

hyperphosphorylated isoform of 4EBP1 under all three conditions in comparison to 

control cells. Again this is in direct contrast to the reduction of Myc-4EBP1 

phosphorylation seen in Figure 4.2A. Therefore it appears that the role of Tip41 in 

mTORCI signalling may be more complex than previously thought as these data 

indicated thatTip41 can also activate mTORCI signalling.

4.2.2 Tip41 induces an mTORCI feedback loop, indicative of chronic inhibition, 
via upregulation of Akt

The conflicting nature of the data contained within Figures 4.1 and 4.2 reveals a 

requirement for improved clarity to what role Tip41 plays within the mTORCI 

signalling pathway. As Tip41 expression had both an activating and inhibitory role 

towards mTORCI substrates, the possibility that the protein could be influencing one 

of the feedback loops was considered. Signalling through mTORCI is subject to 

control by a number of regulatory feedback loops that could occur upon prolonged 

Tip41 expression. Following activation of mTORCI signalling, IRS1 is 

phosphorylated at a number of Ser and Thr residues, including S636 and S639, 

resulting in its destabilisation, degradation or relocalisation (Veileux et al., 2010). In 

addition, the transcription of IRS1 is reduced (Zhande et al., 2002, Greene et al., 

2003). As IRS 1 is critical in transmitting signals from the IR to PI3K, a reduction in 

levels attenuates signalling to Akt and therefore the TSC1/2 complex. Regulatory 

feedback loops also exist to counteract chronic inhibition of mTORCI signalling. For 

instance, rapamycin treatment increases Akt phosphorylation and this feedback may 

be responsible for the poor efficacy of mTORCI inhibitors in clinical trials (Javle et al.,

2010).

To examine whether these feedback loops are active, the phosphorylation of 

proteins upstream of mTORCI can be investigated. If feedback involving IRS1 

destabilisation occurs, a reduction in IRS1 phosphorylation would be observed.
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Feedback following mTORCI inhibition would result in increased phosphorylation of 

Akt.

To investigate the true effect of Tip41 over-expression within the mTORCI signalling 

pathway, it was important to deduce whether any of the feedback loops was 

activated. In theory, an initial increase in mTORCI signalling resulting from V5- 

Tip41 expression could result in activation of the IRS-1 phosphorylation feedback 

loop ending with an apparent reduction in mTORCI signalling seen in Figures 4.1 A 

and 4.2A. Samples from each of the three repetitions of Figure 4.1 A, where a 

reduction in HA-S6K1 phosphorylation was observed, were used to analyse whether 

the negative regulatory feedback loop was activated by the presence of V5-Tip41. 

Phosphorylation of IRS-1, TSC2 and Akt were analysed after V5-Tip41 expression in 

comparison to control cells expressing HA-S6K1 only (Figure 4.3A). IRS-1 

phosphorylation at S636/639 was unaffected by the presence of V5-Tip41, as was 

TSC2 phosphorylation at T1462 and Akt phosphorylation at T308. This indicated 

that the negative feedback loop had not been activated.

Next the possibility that the feedback loop involving Akt had been activated in Figure 

4.1 B and 4.2B was investigated. In this instance, the increase in the phosphorylation 

of mTORCI substrates could be explained by V5-Tip41 expression initially reducing 

activity within the mTORCI pathway resulting in activation of a regulatory feedback 

loop via upregulation of Akt. This may then feed into the mTORCI pathway causing 

an apparent increase in the phosphorylation of mTORCI substrates. Samples from 

each of the three repetitions of Figure 4.1B where V5-Tip41 expression resulted in 

an increase in HA-S6K1 phosphorylation were analysed for activation of an 

upstream feedback loop by investigating TSC2 phosphorylation at T1462. As TSC2 

is a direct substrate of Akt, it follows that increased Akt activity would increase its 

phosphorylation. Densitometry figures were calculated by averaging absolute signal 

intensity of TSC2 phosphorylation at T1462 between three experiments, then 

converting to % relative intensity taking the highest intensity as 100% as detailed in 

2.4.20. Error is indicative of standard deviation, and significance was calculated 

using a T test. Western blot showed that indeed an increase in TSC2 

phosphorylation was apparent after expression of V5-Tip41 as compared to control 

cells expressing HA-S6K1 only (p=<0.05) (Figure 4.3B). This indicates that the

144



HA-Tip41 - +
Insulin - + + - + +

Rapamycin - - + - - +

fc *

M l ■ 4 *

m m  *

M l mm m  m n m
■

HA »  4

m mm mm mm <r *

s z S S

B
V5-Tip41 - +

Insulin - + + - + +

Rapamycin - - + - - +

----- ----- — ----- —

Densitometry (%) 38 70 62 83 100 98

Error (%) 7 9 11 13 15 12

IRS-1 P-S636/639 

TSC2 P-T1462 

Akt P-T308 

IRS-1 (alRS-1) 

TSC2 (aTSC2)

Akt (aAkt) 

HA-Tip41 (aTip41)

TSC2 P-T1462 

TSC2 (aTSC2) 

V5-Tip41 (aTip41)

145



regulatory feedback loop was repressed in these samples as observed by an 

increase in Akt activity. Combined with the results of Figure 4.3A, this shows that 

the true effect of Tip41 over-expression is a reduction in mTORCI signalling. In 

certain experiments, this could also lead increased TSC2 phosphorylation via an 

increase in Akt activity, which then feeds into mTORCI. The results therefore 

implicate Tip41 as a negative regulator of the mTORCI pathway.

4.2.3 Overexpression of Tip41 leads to inhibition of HIF1 activity

The activity of the transcription factor HIF1 was also analysed after Tip41 over­

expression. HIF1 is a less well characterised mTORCI substrate and it is not yet 

clear exactly how its regulation within the mTORCI pathway is controlled. HIF1 

activity is increased by insulin treatment and conversely reduced following rapamycin 

inhibition showing that HIF1 is a downstream target within the mTORCI pathway 

(Laughner et al., 2001). To analyse HIF1 activity, V5-Tip41 was co-transfected with 

a HIF luciferase reporter construct. Cells were cultured overnight in serum free 

media, treated overnight with insulin and rapamycin as detailed and were kept under 

hypoxic conditions (1% 02) to stabilise endogenous HIF1. A luciferase reporter 

assay was then carried out to quantify the accumulation of luciferase and 

consequently the transcriptional activity of HIF1 in each sample (Figure 4.4). Raw 

data was converted to % Luciferase Activity by setting 100% as the luciferase activity 

detected in the absence of V5-Tip41 under insulin stimulated conditions.

Under serum-starved conditions, HIF1 activity was 72% in comparison to insulin 

stimulation. Expression of V5-Tip41 reduced activity to 56% and 75%, respectively. 

Rapamycin treatment in control cells reduced activity to 69% which was further 

reduced to 52% by V5-Tip41 expression. These data show that Tip41 reduces HIF1 

activity (p=<0.05) and is concurrent with Figures 4.1 A and 4.2A with Tip41 as an 

inhibitor of mTORCI signalling. Error bars are indicative of standard deviation. 

Overall, Tip41 over-expression reduces the activity of mTORCI substrates. This 

indicates a role of Tip41 as an inhibitor within the mTORCI signalling pathway, 

which may be via a role as a PP2Ac regulatory subunit.

4.2.4 Inactive mutants of Tip41 are underexpressed in comparison to wild-type 
protein
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Figure 4.4: Tip41 negatively regulates HIF1 activity. HIF1 activity was measured 
using a HIF1 luciferase reporter construct, which was co-transfected with V5-T ip41. 
Cells transfected with the reported construct along with empty vector were used as a 
control Cells were serum starved overnight, along with overnight treatment with insulin 
and rapamycin (as indicated) in 1% oxygen. Chem iluminescence was used as an 
indicator of luciferase activity, and by extension the transcriptional activity of H IF1. 
These data show that overexpression of Tip41 reduced HIF1 activity under all 
conditions tested, in comparison to control cells. Comparison between lanes 1 and 4,
2 and 5, and 3 and 6 all showed a significant difference with p = < 0.05. Error bars are 
representative of standard deviation. Results are indicative of three independent 
experiments.
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The TOS motif is essential for substrate binding and phosphorylation by mTORCI 

and mutation of the motif prevents substrate binding and phosphorylation by the 

complex (Figures 3.5 and 3.8). Tip41 contains a TOS motif that is conserved 

between yeast and the mammalian orthologue of the protein (Figure 1.5). Although 

results of Figure 3.6, 3.7 and 3.8 do not indicate a role of Tip41 as a substrate of 

mTORCI, this possibility still cannot be ruled out conclusively. A HA-Tip41 construct 

with a mutation contained within the TOS motif was produced by myself by site 

directed mutagenesis resulting in HA-Tip41(F156A). If Tip41 is indeed a substrate of 

mTORCI, mutation of the TOS motif may result in an ineffective protein that would 

not affect phosphorylation of mTORCI targets.

In order to see whether the F156A mutation would alter the reduction of mTORCI 

substrate phosphorylation seen in Figure 4.1A, HA-Tip41 wild-type and F156A 

mutant were co-expressed with HA-S6K1. HA-Tip41 wild type and F156A mutant 

were expressed in HEK293 cells with HA-S6K1. Cells expressing HA-S6K1 only 

were used as a control. Cells were cultured overnight prior to lysis and treated with 

insulin and rapamycin as indicated. Immunoprecipitation using aHA antibodies was 

used to purify HA-S6K1 for use in an S6K1 assay as described in ‘Materials and 

Methods’. HA-S6K1 activity was analysed by 32P incorporation of the substrate GST- 

rpS6 followed by autoradiography. The results show that HA-Tip41 wild-type 

expression reduces HA-S6K1 activity, concurrent with results in Figure 4.1A, as 

indicated by a reduction in phosphorylation of GST-rpS6 in comparison to control 

samples (Figure 4.5A). HA-Tip41 F156A had no effect on S6K1 activity within the 

assay as indicated by equal levels of GST-rpS6 phosphorylation in comparison with 

control samples. Analysis of total protein levels by western blot indicated that HA- 

Tip41(F156A) expression was lower than expression of wild-type HA-Tip41. 

Therefore, although expression of HA-Tip41(F156A) shows no impact on the activity 

of HA-S6K1, this may be due to a lower expression level of the protein.

In order to try and rectify this problem, HA-Tip41 wild-type and F156A mutant were 

expressed in the presence of the proteasomal inhibitor MG132. As reduced HA- 

Tip41(F156A) levels may be caused by proteasomal degradation, MG132 treatment 

could result in equal levels in comparison to wild-type HA-Tip41. The results show 

that levels of HA-Tip41(F156A) were not improved by treatment with MG132, and

148



A
HA-Tip41 - WT F156A 

Insulin - + - + . +

aHA IP

Total

B
HA-Tip41

MG132
WT F156A

GST-rpS6 P32 Incorporation 
(Autoradiograph)

HA-S6K1 (aHA)

HA-Tip41 (aHA)

HA-Tip41 (aHA)

Figure 4.5: The Tip41 TOS mutant expressed at lower levels than HA-Tip41 wild 
type. A. HA-Tip41 wild type and T O S  mutant F156A  were overexpressed in H EK293  
cells with H A -S 6K 1. Cells were serum starved overnight and treated with insulin and 
rapamycin prior to lysis as indicated. HA-S6K1 was then purified (aH A ) and used in 
an S6K1 assay. Activity of S6K1 was measured against the G ST-rpS6 substrate by 
incorporation of 32P and subsequent autoradiography. The data show that 
overexpression of HA-Tip41 reduced activity of S6K1 as measured by phosphorylation 
of rpS6 substrate, whilst overexpression of H A-T ip41(F156A ) had no effect in 
comparison to control cells. Analysis of total Tip41 levels showed that HA- 
Tip41(F156A ) was expressed at lower levels in comparison to wild type H A -T ip41. B. 
In order to try and equalise levels of HA-Tip41 wild type and F156A  mutant, cells 
expressing the proteins w ere treated with the proteasomal inhibitor M G 132 prior to 
lysis. Treatm ent with M G 132 had no effect on the varying expression levels of wild 
type and F156A  mutant HA-Tip41, indicating that H A-Tip41(F156A ) is not subject to 
proteasomal degradation. Results are representative of three independent 
experiments.
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were still considerably lower than expressed levels of HA-Tip41 wild-type (Figure 

4.5B). This indicates that the reduction in HA-Tip41(F156A) levels is not caused by 

protein instability or targeting of the protein for proteasomal degradation.

4.2.5 Analysis of PP2A-rip4i in mTORCI signalling
The results of over-expression studies (Figures 4.1 A , 4.2A and 4.4) implicating 

Tip41 as a negative regulatory protein within mTORCI signalling pathway in 

combination with results indicating a direct interaction between P P 2A -n P4i and S6K1 

(Figure 3.4) raised the intriguing question as to whether Tip41 acts as a positive 

regulatory PP2Ac subunit within the mTORCI pathway. To investigate this 

possibility, site-directed mutagenesis was used to create three Tip41 mutants that 

had previously been shown not to interact with PP2Ac (Smetana & Zanchin, 2007). 

These mutant proteins could, in theory, be used to confirm whether the effect of 

Tip41 in mTORCI was due to interaction with PP2Ac. GST-PP2Ac purification was 

then used to investigate whether the mutants did not interact with PP2Ac. GST- 

PP2Ac was co-expressed with V5-Tip41 wild-type along with each of the three 

mutants; D71L, Y79H and M196V. These mutants have previously been shown as 

defective in binding to PP2Ac (Smetana & Zanchin, 2007). Following GST 

purification interaction was analysed by western blot.

Figure 4.6A shows that although mutant D71L did not co-purify with GST-PP2Ac, 

mutants Y79H and M196V both interacted with PP2Ac. Levels of purified Alpha4 

were also analysed and showed no change on co-purification of GST-PP2Ac and 

V5-Tip41(D71L). This backs up data from Figure 3.2 and 3.3 indicating a direct 

interaction between PP2AAiPha4 and PP2ATiP4i but not between Alpha4 and Tip41. 

Analysis of total protein however showed that V5-Tip41(D71L) was expressed at a 

lower level than wild-type and mutants Y79H and M196V. Regardless, the lack of 

co-purified V5-Tip41(D71L) still indicates a protein deficient in PP2Ac binding as 

almost none was present after purification.

If the reduction seen in mTORCI signalling (Figures 4.1 A, 4.2A and 4.4) on over­

expression of Tip41 was as a result of Tip41 acting as a positive regulatory subunit 

of PP2Ac, then mutant D71L would be predicted to have no effect on 

phosphorylation of mTORCI substrates. Wild-type V5-Tip41 was co-expressed with
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Figure 4.6: A Tip41 mutant deficient in PP2Ac binding is expressed at a lower 
level than wild type counterparts. A. G S T-P P 2A c was co-expressed with V5-Tip41 
wild type, mutant D71L, Y79H  or M 196V . Following lysis, G S T-P P 2A c was purified 
and levels of co-purified V5-Tip41 analysed by western blot. Whilst V5-Tip41 wild 
type, Y79H  and M 196V  interacted equally with G ST-PP2A c, V 5-T ip41(D 71L) 
interacted with PP2Ac less effectively. Analysis of total protein levels showed that V 5- 
Tip41(D 71L) was expressed at a lower level that V5-Tip41 wild type. B. Co­
expression of V5-Tip41 wild type, D71L, Y79H  and M 196V  mutants with HA-S6K1 was 
used to m easure the result of Tip41 mutant expression on m T O R C I activity. HA-S6K1 
was purified (aH A ) and activity towards the substrate G ST-rpS6 measured by 32P 
incorporation via autoradiography. The  results showed that overexpression of wild 
type V5-Tip41, along with V 5-T ip 41 (Y 79H ) and V 5-T ip41(M 196V ) resulted in reduced 
phosphorylation of G S T-rpS 6 in comparison to control samples whilst expression of 
V 5-T ip41(D 71L) inhibited activity of HA-S6K1. These results were reflected on 
analysis of HA-S6K1 phosphorylation at T389. Analysis of total protein again showed 
reduced expression of V5-Tip41 (D 71L) in comparison to wild type V 5-T ip41 . results 
are representative of three independent experiments.
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HA-S6K1 along with the three mutants (D71L, Y79H and M196V) and serum-starved 

overnight. Prior to lysis, cells were stimulated with insulin as indicated. HA-S6K1 

was then purified by aHA immunoprecipitation and an S6K1 assay set up as detailed 

in ‘Materials and Methods’. GST-rpS6 phosphorylation was analysed by 32P 

incorporation by autoradiogaphy.

Figure 4.6B shows that expression of wild-type V5-Tip41 reduced HA-S6K1 activity 

compared to cells expressing HA-S6K1 only as indicated by a reduction in 

phosphorylation of GST-rpS6 . V5-Tip41(D71L) expression did not affect HA-S6K1 

activity within the assay, whereas the two mutants (Y79H and M196V) that were able 

to interact with PP2Ac also resulted in a reduction of HA-S6K1 activity against GST- 

rpS6 . HA-S6K1A portion of retained purified HA-S6K1 was used for analysis by 

western blot. Phosphorylation of HA-S6K1 at T389 mirrored results of the S6K1 

assay. Wild-type V5-Tip41 reduced HA-S6K1 phosphorylation, as did mutants Y79H 

and M196V. V5-Tip41(D71L) had no effect on HA-S6K1 phosphorylation as 

compared to samples where HA-S6K1 was expressed in isolation. Again V5- 

Tip41(D71L) was expressed at lower levels than wild-type, Y79H or M196V.

4.2.6 MG132 partially rescued expression of Tip41(D71L)

As Tip41(D71L) mutant showed reduced expression in cells in comparison to wild- 

type Tip41 and mutants Y79H and M196V, attempts were made to equalise levels 

using the proteasomal inhibitor MG132. This was based on the principle that V5- 

Tip41(D71L) may be less stable than other V5-Tip41 constructs and therefore 

targeted for proteasomal degradation. V5-Tip41 wild-type, along with mutants D71L, 

Y79H and M196V, were transiently expressed in HEK293 cells. Prior to lysis cells 

were cultured overnight in serum free media and treated with insulin and rapamycin 

as indicated. MG132 treatment took place 2h prior to lysis. Figure 4.7 shows that 

levels of V5-Tip41(D71L) are increased following treatment with MG132 in 

comparison to levels seen in previous experiments (Figure 4.6). Although an 

increase was seen on MG132 treatment, the recovery of V5-Tip41(D71L) expression 

in comparison to other V5-Tip41 constructs was not complete. As MG132 treatment 

increased levels of V5-Tip41(D71L) protein, this indicates that the protein is targeted 

for proteasomal degradation, possibly due to instability or due to lack of function of 

the protein. This finding may therefore point to a possibility of dysfunctional Tip41
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Figure 4.7: MG132 partially rescues levels of V5-Tip41(D71L) in comparison to 
wild type levels. In order to try to increase levels of V5-T ip41(D 71L), V5-Tip41 wild 
type, D71L, Y79H  and M 196V  were expressed in H EK293 cells. Cells were serum  
starved overnight and treated with insulin (where indicated) and the proteasomal 
inhibitor M G 132 prior to lysis. W hilst treatm ent with M G 132 slightly improved levels of 
V5-T ip41(D 71L), levels were not completely equalised. Results are representative of 
three independent experiments.
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being targeted for proteasomal degradation to remove dysfunctional Tip41 from the 

cell.

4.2.7 Tip41 knockdown reduces S6K1 phosphorylation via induction of a 

negative feedback loop
As over-expression of Tip41 resulted in a reduction in mTORCI signalling, with the 

occasional inhibition of the negative feedback loop to IRS-1, the effect of reducing 

endogenous Tip41 levels within the cell using shRNA was investigated. A panel of 

shRNA vectors was tested to find the most effective clone for knockdown of Tip41. 

Firstly, the amount of time between transfection of cells with shRNA and actual 

knockdown taking place was optimised. Cells were seeded in triplicate on day one, 

transfected on day 2 and lysed on either day 3, 4 or 5. Control cells were 

transfected with non-coding shRNA. This showed that effective knockdown of Tip41 

occurred 72h post transfection within cells lysed on day 5 (data not shown). To 

minimise the time between cell seeding and lysis, the reverse transfection procedure 

was attempted. Cells were seeded and transfected in one step on day 1, with cell 

lysis occurring on day 4. This resulted in improved cell condition prior to lysis.

Levels of Tip41 were analysed by western blot. Figure 4.8A shows that following 

reverse transfection and cell lysis on day 4, clone 1 was the most effective at 

reducing Tip41 levels. This clone was then used in all future shRNA experimentation.

Q-PCR was then used to quantify the extent of Tip41 knockdown. Cells were 

cultured overnight in serum free media prior to lysis. Q-PCR procedure and analysis 

was undertaken as detailed in ‘Materials and Methods’. Figure 4.8B shows that 

Tip41 mRNA levels following knockdown were reduced in comparison to control cells 

transfected with non-coding shRNA (p=<0.05) and confirms the result from the 

western blot seen in Figure 4.8A. Error bars are indicative of standard deviation.

Thus Tip41 shRNA reduced Tip41 mRNA levels leading to a subsequent reduction in 

Tip41 protein levels as expected.

As Tip41 over-expression resulted in a reduction in mTORCI substrate 

phosphorylation, the effect of Tip41 reduction in cells was also investigated.

Following shRNA transfection on day 1 (targeted or non-coding), cells were 

transfected on day 3 with HA-S6K1 and serum starved overnight. Prior to lysis on
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Figure 4.8: Optimisation of Tip41 knockdown using shRNA. A. H EK293 cells 
were transfected with a panel of four different Tip41 shRNA vectors and levels of Tip41 
analysed in comparison to cells transfected with non-coding shRNA by western blot. 
Levels of Tip41 indicated that shRNA clone 1 was the most effective at reduced levels 
of T ip41. B. In order to confirm knockdown of Tip41 by shRNA clone 1, Q -PC R  was 
used, using primers directed towards Tip41. Analysis showed that shRNA lowered 
Tip41 levels to approximately 50%  of those seen in control cells. Error bars are 
representative of standard deviation. Results are representative of three independent 
experiments.
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day 4, cells were treated with insulin and rapamycin as indicated. HA-S6K1 

phosphorylation was then analysed by SDS PAGE followed by western blot. 

Phosphorylation of HA-S6K1 at T389 was markedly reduced under both serum- 

starved and insulin treated conditions following knockdown of Tip41 in comparison to 

control cells (Figure 4.9A). There was no difference in HA-S6K1 phosphorylation 

following treatment with rapamycin in either cell sample. As it was deduced from 

Figures 4.1 A, 4.2A, 4.3A and 4.4 that Tip41 acts as an inhibitory protein within the 

mTORCI pathway, this was quite an unexpected result as knockdown of an 

inhibitory protein would be expected to increase mTORCI substrate phosphorylation. 

Instead the reverse result opened up the possibility of a feedback loop acting as 

seen in Figure 4.3.

Following the unexpected reduction in HA-S6K1 phosphorylation after knockdown of 

Tip41 seen in Figure 4.9A, samples from this experiment were used to investigate 

the possibility that a feedback loop had been initiated in cells where Tip41 levels 

were reduced by shRNA. Western blot analysis was used to evaluate the 

phosphorylation status of IRS-1. Densitometry figures were calculated by averaging 

absolute signal intensity of phosphorylated IRS1 between three experiments, then 

converting to % relative intensity taking the highest intensity as 100% as detailed in 

2.4.20. Error is indicative of standard deviation and a T test was used to ascertain 

significance. In the event of activation of the negative feedback loop, IRS-1 

phosphorylation at S636/639 is increased via direct phosphorylation by mTORCI 

(Veileux et al., 2010). Figure 4.9B shows that knockdown of Tip41 resulted in an 

increase in IRS-1 phosphorylation concurrent with activation of the negative 

feedback loop (p=<0.05). Therefore the apparent reduction in HA-S6K1 

phosphorylation seen on Tip41 knockdown is actually due to initiation of a feedback 

loop. Thus initially, knockdown of Tip41 must result in an increase in mTORCI 

activity which phosphorylates IRS-1 resulting in reduced signalling through the 

insulin signalling pathway through to mTORCI. The result is an apparent reduction 

in HA-S6K1 phosphorylation on Tip41 knockdown. This result therefore confirms 

that Tip41 acts as an inhibitory protein within the mTORCI signalling pathway.

4.2.8 Tip41 knockdown increases activity of HIF1
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As Tip41 over-expression resulted in a reduction in the activity of HIF1 as shown 

using a HIF1 luciferase reporter element (Figure 4.4), the effect of Tip41 knockdown 

on activity of the transcription factor was investigated. Following shRNA transfection 

on day 1 (targeted or non-coding in the case of control cells), cells were transfected 

with the HIF1 luciferase reporter element on day 3 followed by overnight serum- 

starvation under hypoxic (1% O2) conditions. Following cell lysis a luciferase assay 

was carried out as described in the ‘Materials and Methods’. Figure 4.10 shows that 

knockdown of Tip41 resulted in an 8 fold increase in HIF1 activity using the HIF1 

luciferase assay (p=<0.05). Error bars are indicative of standard deviation. This is 

concurrent with the result in Figure 4.4 where Tip41 over-expression increased HIF1 

activity in the same assay. Tip41 therefore appears to act as a PP2Ac regulatory 

subunit reducing activity of HIF1.

4.2.9 A novel nuclear isoform of Tip41

The transcription factor HIF1 is found primarily within the nucleus. As Tip41 appears 

to play a role in the regulation of HIF1 activity (Figures 4.4 and 4.10) the presence of 

Tip41 within the nucleus was investigated. The cellular localisation of Tip41 was 

analysed in the presence and absence of rapamycin treatment. Figure 4.11 shows 

the presence of Tip41 at the expected molecular weight (~32kDa) within the 

cytoplasm, and the level remained unchanged by treatment with rapamycin. In 

addition, an isoform of Tip41 resolving at a higher molecular weight (~39kDa) was 

present within the nucleus. Again the level of this remained unchanged by treatment 

with rapamycin. These data raise the possibility that Tip41 is subject to post- 

translational modification resulting in translocation to the nucleus where it may 

control the activity of HIF1. It also shows that Tip41 is not shuttled to the nucleus or 

cell membrane as a method of regulation following treatment with rapamycin.

4.2.10 Tip41 acts upstream of mTORCI

Tip41 appears to act as an inhibitory protein within the mTORCI pathway (Figures

4.1 A, 4.2A, 4.3A, 4.4, 4.9 and 4.10), possibly as a positive regulatory subunit of 

PP2Ac (Figures 3.2 and 3.3). Activation of upstream pathways that positively 

regulate mTORCI results in inhibition of the TSC1/2 complex. This results in the 

accumulation of GTP-Rheb and the subsequent activation of mTORCI. Figures 3.10 

and 4.3 shows that over-expression of Tip41 in the absence of activation of any
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Figure 4.10: Knockdown of Tip41 substantially increases activity of HIF1. After 
initial transfection with Tip41 shRN A  plasmid, the HIF1 luciferase reporter was 
transfected into H EK 293 cells. Prior to lysis cells were placed in 1% 0 2 overnight in 
serum free media. HIF1 transcriptional activity was measured indirectly via 
accumulated luciferase activity. The results, combining data from three distinct 
experiments, showed that knockdown of Tip41 significantly increased activity of HIF1 
(p=<0.05), almost 10 fold, in comparison to control cells that were transfected with 
non-coding shRNA. Error bars are indicative of standard deviation. Results are 
representative of three independent experiments.
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Figure 4.11: Discovery of a distinct nuclear isoform of Tip41. Untransfected cells 
were cultured in full serum m edia and treated with rapamycin prior to lysis where  
indicated. Cytoplasmic (C), nuclear (N ) and m em brane (M ) fractions were isolated by 
use of a kit. The location of Tip41 was analysed by S D S PAG E and western blot. The  
results showed that cytoplasmic Tip41 is of the expected molecular weight of 
approximately 32kD a, whereas a nuclear fraction of Tip41 was isolated at a molecular 
weight of approximately 8kD a more. The distribution of cytoplasmic and nuclear Tip41 
was unaffected by treatm ent with rapamycin. Results are representative of three 
independent experiments.
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feedback loops does not alter phosphorylation of Akt or TSC2. This indicates a role 

of Tip41 within the mTORCI complex downstream of the TSC1/2 complex.

Cells deficient in the TSC2 gene display hyperactive mTORCI signalling that is 

unresponsive to upstream regulatory pathways. For this reason they are an ideal 

candidate for investigating a possible inhibitory role of Tip41 downstream of TSC1/2, 

as the cells are unresponsive to feedback loops involving phosphorylation of TSC2. 

As such TSC2-/- cells are, in theory, immune to Tip41-induced feedback loops when 

analysing targets downstream of TSC1/2. To investigate whether Tip41 acts 

downstream of the TSC1/2 complex in order to inhibit mTORCI signalling, V5-Tip41 

was expressed in TSC2'/' MEF cells. If Tip41 indeed acts downstream of the 

TSC1/2 complex, over-expression of Tip41 in TSC2'/' MEF cells should reduce 

phosphorylation of mTORCI substrates. V5-Tip41 was expressed in TSC2'/' MEFs 

along with HA-S6K1. Following lysis, HA-S6K1 was purified from cell lysates using 

aHA immunoprecipitation and an S6K1 assay carried out as detailed in the ‘Materials 

and Methods’. HA-S6K1 activity was visualised by 32P incorporation of the substrate 

GST-rpS6 .

Figure 4.12A shows that TSC2-/- MEF cells have a high basal level of HA-S6K1 

activity displayed as high levels of GST-rpS6 phosphorylation. Rapamycin is a direct 

mTORCI inhibitor and consequently treatment with the drug reduced HA-S6K1 

activity in comparison to untreated cells. Cells over-expressing FLAG-TSC2 also 

showed reduced HA-S6K1 activity in comparison to control cells. Expression of V5- 

Tip41 had no effect on HA-S6K1 activity as no change in GST-rpS6 phosphorylation 

was apparent in comparison to TSC2'/' MEF cells expressing HA-S6K1 only. These 

data show that Tip41 over-expression is unable to reduce HA-S6K1 activity in cells 

devoid of mTORCI inhibition byTSC2.

Excess purified HA-S6K1 was retained for analysis by western blot. Phosphorylation 

of HA-S6K1 at T389 mirrored results seen in the S6K1 assay. High basal levels of 

HA-S6K1 phosphorylation were observed in the TSC2-,/- MEF cells expressing HA- 

S6K1 only. This was reduced by treatment with rapamycin and expression of FLAG- 

TSC2. V5-Tip41 expression had no effect on HA-S6K1 phosphorylation at T389 in 

comparison to control cells expressing HA-S6K1 only.
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Figure 4.12: Constitutive activation of Rheb confers resistance to the inhibitory 
action of Tip41. A. V5-Tip41 and HA-S6K1 were expressed in TSC2-/ -  M EFs, and 
activity of m T O R C I analysed using an HA-S6K1 assay with G S T-rpS 6 as substrate. 
The results showed that HA-S6K1 activity, m easured by 32P incorporation of G S T - 
rpS6, is high in TSC2-/ -  M E Fs and is sensitive to rapamycin and expression of TSC 2. 
Expression of V5-Tip41 did not induce inhibition of HA-S6K1 activity in these cells. 
Analysis of HA-S6K1 phosphorylation mirrored these results. Analysis of total HA- 
S6K1 protein showed that expression of FLA G -TS C 2 reduced levels of H A -S 6K 1. B.
In order to determ ine whether expression of FLA G -TS C 2 caused destabilisation of HA- 
S 6K 1, HA-S6K1 and FLA G -TS C 2 were expressed in TSC2-/ -  M EFs in the presence of 
the proteasomal inhibitor M G  132 prior to lysis. The results show that M G  132 
treatm ent equalised levels of HA-S6K1 present when co-expressed with TSC 2.
Results are representative of three independent experiments.
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Analysis of total HA-S6K1 levels within the assay showed reduced levels of the 

protein within cells co-expressing FLAG-TSC2. To investigate whether this may be 

due to reduced stabilisation of the protein due to reduced mTORCI signalling 

caused by reintroduction of TSC2 into the cells, the effect of the proteasomal 

inhibitor MG132 on HA-S6K1 expression was investigated. Prior to lysis, cells were 

treated with MG132 for 2 hours. TSC2-A MEF cells were transfected with FLAG- 

TSC2 and HA-S6K1. Figure 4.12B shows that MG132 treatment rescued the levels 

of HA-S6K1 in cells expressing FLAG-TSC2 in comparison to control cells 

expressing HA-S6K1 only. This indicates that TSC2 over-expression in TSC2-/- 

MEF cells results in proteasomal degradation of HA-S6K1.

4.2.11 Tip41 does not interact with TSC2

Figure 4.12 indicated the possibility that Tip41 may be inhibiting mTORCI activity by 

acting on the TSC1/2 complex in a way that does not alter TSC2 phosphorylation at 

T1462. If Tip41 indeed influences TSC1/2 activity directly, it may interact with TSC2. 

To investigate this possibility, GST-TSC2 was expressed in HEK293 cells and 

purified using a GST spin-trap column. Figure 4.13 shows that Tip41 was not 

detected as an interacting protein of GST-TSC2. This indicates that if Tip41 activates 

the TSC1-TSC2 complex to inhibit mTORCI signalling, this may not occur by direct 

interaction with TSC2. Alternatively, interaction between Tip41 and TSC2 may be 

transient.

4.2.12 Tip41 does not inhibit mTORCI via the NF-kB or ATM/ATR signalling 

pathways

Previously published data indicate a role of Tip41 within both the ATM/ATR and NF- 

kB signalling pathways. Mutation of ATM in humans leads to the autosomal 

recessive disease A-T. Following ionising radiation, the resulting double and single 

strand DNA breaks cause activation of ATM and ATR kinases respectively. This 

results in initiation of a signalling cascade that includes substrates such as the 

checkpoint kinases Chk1 and Chk2, culminating in cell cycle arrest. Activation of 

mTORCI signalling has been observed in the thymocytes of ATMy' mice resulting in 

c-Myc deregulation and spontaneous DNA synthesis (Barlow et al., 1996 & Kuang et 

al., 2009). In addition, a number of proteins within the IGF-1 pathway, including
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TSC1 and 4EBP1, undergo phosphorylation events in response to ionising radiation 

(Matsuoka et al., 2007 & Braunstein et al., 2009). Thus mTORCI signalling appears 

to be regulated by the ATM/ATR signalling cascade and is involved in the phenotype 

of A-T. Using ATM/ATR substrate phospho-antibodies, over-expression of Tip41 was 

found to increase phosphorylation of an unidentified 32kDa ATM/ATR substrate 

(McConnell et al., 2007).

To rule out that Tip41 mediated inhibition of mTORCI signalling occurs via activation 

of an ATM/ATR substrate, activity of the kinases on over-expression of Tip41 was 

investigated. Prior to lysis, cells were cultured overnight in serum free media and 

treated with insulin as indicated. V5-Tip41 was expressed in HEK293 cells and 

ATM/ATR substrate phosphorylation analysed by western blot. Figure 4.14 shows 

that expression of V5-Tip41 had no effect on the phosphorylation of any ATM/ATR 

substrates in our hands. This indicates that the inhibition of mTORCI signalling 

caused by over-expression of Tip41 in HEK293 cells is not due to any influence on 

the ATM/ATR signalling pathway.

A role of Tip41 has also been observed within the NF-kB signalling pathway.

Binding of the cytokine IL-ip to its cognate receptor IL-1R results in activation of IKK. 

This requires TAK1 along with a number of TAB (TAK1 activating) proteins. Prickett 

et al (2008) found that Tip41 acts as a novel TAB protein, TAB4, by inducing 

autophosphorylation and activation of TAK1. This results in activation of TAK1 and 

subsequently IKKp. Active IKKp phosphorylates the inhibitory protein IkB, resulting 

in its degradation by the 26S proteasome, and thus activates NF-kB. However, 

over-expression of Tip41 alone had no effect on the pathway, and activation of IKKp 

required co-expression with TAB1 (Prickett et al., 2008). Activated IKKp inhibits 

insulin signalling in response to TNFa via phosphorylation of IRS-1 at S312 (Gao et 

al., 2002). In contrast, IKKp also phosphorylates TSC1 resulting in activation of 

mTORCI, and phosphorylation of IRS-1 at S307 and S636/639 via a negative 

feedback loop (Lee et al., 2008).

In order to determine whether inhibition of mTORCI signalling by Tip41 may be 

caused by activation of NF-kB signalling, the phosphorylation of IKKp at S176/180
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o f th ree  independen t expe rim en ts .

166



was investigated by western blot (Figure 4.14). Expression of V5-Tip41 did not 

increase phosphorylation of IKKp. This shows that the inhibition of mTORCI by 

Tip41 is specific to Tip41 action within the mTORCI pathway. In conclusion these 

data show that the inhibition of mTORCI signalling by Tip41 is specific to the 

pathway and is not due to the influence of Tip41 on certain other pathways within the 

cell.

4.3 Discussion

These data implicate Tip41 as an inhibitor of mTORCI signalling. The true effect of 

over-expression of Tip41 leads to inhibition of S6K1 at T389 and activity towards the 

substrate rpS6 (Figure 4.1 A). Phosphorylation of 4EBP1 is also reduced on 

expression of V5-Tip41 (Figure 4.2A). Four mTORCI responsive phosphorylation 

sites exist within 4EBP1; T37, T46, S65 and T70. Phosphorylation of T37 and T46 

require amino acids, and act as priming sites for S65 and T70 which are responsive 

to other upstream stimuli such as insulin and growth factors (Gingras et al., 2001). 

The numerous phosphorylation sites within 4EBP1 give rise to three isoforms when 

resolved by gel electrophoresis, with the a isoform being hypophosphorylated and 

they-isoform hyperphosphorylated. Over-expression ofTip41 resulted in 

accumulation of the a-isoform of 4EBP1 following serum-starvation and insulin 

stimulation (Figure 4.2A). On over-expression of Tip41, 36% of 4EBP1 was present 

in the a-isoform as compared to 16% in control cells following insulin stimulation. 

Tip41 overexpression also inhibited phosphorylation of 4EBP1 at S65. These data 

implicated Tip41 as an inhibitor towards phosphorylation of the two best 

characterised mTORCI substrates. Transcriptional activity of HIF1 is also activated 

by mTORCI (Laughner et al., 2001). Analysis of HIF1 activity on over-expression of 

V5-Tip41 also showed reduced activity using a HIF1 luciferase assay (Figure 4.2) 

(p=<0.05). As HIFT activity is activated by mTORCI, this is concurrent with Tip41 

acting as a general inhibitor of mTORCI activity.

As an upstream regulator of these mTORCI substrates, Tip41 may have diverse 

consequences in the cell. 4EBP1 is an inhibitor of cap-dependant translation by 

preventing interaction of elF4G with elF4E. Phosphorylation of 4EBP1 results in 

removal from elF4E and allows interaction with elF4G (Brunn et al., 1997, Schalm et

167



al., 2003, Eguchi et al., 2006). S6K1 has numerous positive effects on cap- 

dependent translation, including phosphorylation of ribosomal protein S6 and elF4B 

(Shahbazian et al., 2006). Thus inhibition of phosphorylation of these proteins by 

Tip41 may result in a global inhibition of cap-dependent translation. HIF1 controls 

expression of genes involved in angiogenesis and glycolysis in response to hypoxia 

(reviewed in Semenza, 2001). Tip41 may also act to inhibit expression of these 

genes and thus inhibit the hypoxic response mediated by mTORCI. The placement 

of Tip41 as an inhibitor of mTORCI signalling is analogous to the role of Tip41 in 

yeast. Yeast Tip41 indirectly inhibits TORC1 by sequestering the Pph21/22 and Sit4 

negative regulatory subunit Tap42. When TORC1 is inactive, Tip41 sequesters 

Tap42 allowing dephosphorylation of substrates by Sit4 and Pph21/22 and inhibition 

of downstream signalling. Thus Tip41 could indirectly enhance the 

dephosphorylation of TORC1 substrates (Jacinto et al., 2001).

Studies in vitro have identified Tip41 as a negative regulator of PP2Ac (McConnell et 

al., 2007). In contrast, inhibition of mTORCI by Tip41 over-expression places Tip41 

as a positive regulatory subunit of PP2Ac. A similar situation exists regarding 

Alpha4. Studies in vitro implicate Alpha4 as a PP2Ac inhibitor (Chung et al., 1999, 

Prickett & Brautigan, 2004, Prickett & Brautigan, 2006), whereas Alpha4 over­

expression leads to both a reduction and increase in 4EPB1 and S6K1 

phosphorylation (Nanahoshi et al., 1998, Nien et al., 2007, Grech et al., 2008).

Other studies place Alpha4 as a positive PP2Ac regulatory subunit in vivo (Prickett & 

Brautigan, 2007, McConnell et al., 2010). Therefore, the regulation of PP2Ac by 

Alpha4 is not clear cut. Tip41 may act similarly, resulting in PP2Ac inhibition in vitro 

but mediating dephosphorylation of substrates in vivo. Tip41 may therefore act as a 

positive regulatory PP2Ac subunit within the mTORCI pathway.

In some instances Tip41 over-expression resulted in increased phosphorylation of 

S6K1 (Figure 4.1 B) and 4EPB1 (Figure 4.2B). This prompted further investigation 

into the possibility that Tip41 over-expression was initiating feedback loops. On 

stimulation of mTORCI, negative feedback loops attenuate activation preventing 

aberrant signalling. The principle method of negative feedback is via serine 

phosphorylation of IRS-1 at S636/639 and S1101 by mTORCI and S6K1 (Veileux et 

al., 2010). This results in depletion of IRS-1 by ubiquitination-mediated proteasomal
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degradation (Zhande et al., 2002, Greene et al., 2003). Chronic inactivation of 

mTORCI conversely results in upregulation of Akt via an IRS-1/PI3K independent 

mechanism (Wang et al., 2008, Chen et al., 2010). Akt phosphorylates TSC2 at a 

number of serine residues to inhibit GAP activity, including T1462 (Dan et al., 2002, 

Inoki et al., 2003, Potter et al., 2003). It was necessary to decipher the true effect of 

Tip41 over-expression in relation to mTORCI. In addition to the possibility of Tip41 

activating mTORCI by inhibiting PP2A, Tip41 expression could in theory be causing 

upregulation of Akt induced by chronic inhibition. Conversely, Tip41 inhibition of 

mTORCI substrate phosphorylation could be due to activation of PP2A or a negative 

feedback loop-induced down regulation of IRS-1 filtering down to mTORCI by 

chronic activation of mTORCI.

In samples where Tip41 over-expression resulted in increased phosphorylation of 

S6K1 and 4EBP1, TSC2 phosphorylation at T1462 was enhanced, indicative of 

upregulated Akt (Figure 4.3B). Analysis of samples where a reduction in mTORCI 

substrate phosphorylation was observed showed no change to phosphorylation of 

IRS-1 at S636/639, TSC2 at T1462 or Akt at T308 in comparison to control cells 

indicating no induction of negative feedback (Figure 4.3A). Thus the direct effect of 

Tip41 over-expression is to inhibit mTORCI signalling, and any observed increase in 

phosphorylation of mTORCI substrates was due to the upregulation of Akt as an 

indirect consequence of elevating the negative feedback mechanism from 

mTORC1/S6K1 to IRS-1. This indirect consequence fed into heightened mTORCI 

by phosphorylation of TSC2 on residue T1462 by Akt.

Similarly, knockdown studies using shRNA targeted to Tip41 resulted in inhibition of 

S6K1 phosphorylation at T389 (Figure 4.9A). This is in contrast to the expected 

outcome of increased S6K1 phosphorylation due to removal of inhibitory Tip41 

activity towards mTORCI. Given the long duration of Tip41 knockdown by reverse 

transfection (4 days post-transfection), it is very likely that the cells have adapted 

accordingly by down-regulating the PI3K/Akt pathway. Analysis of IRS-1 

phosphorylation revealed a slight increase in IRS-1 phosphorylation at S636/639, 

indicating activation of the negative feedback loop via S6K1 and mTORCI. The 

poor effect of Tip41 knockdown on S6K1 (and IRS-1) phosphorylation could be due 

to the incomplete knockdown of Tip41 by shRNA of approximately 50% (Figure 4.9B).
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Alteration of Tip41 protein levels within the cell cearly renders mTORCI sensitive to 

feedback mechanisms. The opposing outcome of Tip41 overexpression on 

mTORCI signalling was probably caused by slight variations in the time between 

transfection and lysis. This ultimately would lead to variations in the time that Tip41 

was overexpressed. Although every attempt was made to maintain consistency in 

my work, the exact time of transfection and lysis was in hindsight critical. Tip41 

overexpression over a slightly longer timescale would in theory create opportunity for 

the cells to respond by instigating feedback via upregulation of Akt. Therefore if the 

work was to be repeated, I would ensure that cells were transfected and lysed at 

precicesly the same time in each experiment to ensure consistency. To determine 

whether this theory is correct, and Tip41 overexpression over a longer timescale 

would promote induction of feedback via upregulation of Akt, a transfection to lysis 

time course experiment could be performed. Multiple experiments as in Figure 4.1 

would be set up simultaneously, with single experiments lysed at precisely 45h, 48h 

and 51 h post-transfection. Analysis of HA-S6K1 phosphorylation would, if this theory 

is correct, show initial inhibition in cells lysed 45h post-transfection, migrating to 

enhanced phosphorylation at 51 h. Analysis of TSC2 phosphorylation at T1462 

would also provide a marker for feedback induction. This would then also provide 

confidence in further experimentation, where the exact time of lysis would be known 

to ensure consistent results.

In contrast to the effect on S6K1 phosphorylation, knockdown of Tip41 resulted in a 

10 fold increase in activity of HIF1 (p=<0.05) (Figure 4.10). Tip41 regulation of HIF1 

activity therefore appears more sensitive to Tip41 knockdown that S6K1, which 

indicates that Tip41 regulation of mTORCI may be more central in regulation of the 

hypoxic response downstream of the kinase. In addition, HIF1 was not sensitive to 

the induction of feedback loops initiated by modification of Tip41 levels within the cell.

Tip41 regulation of HIF1 may be explained by the discovery of a higher resolving 

nuclear form of Tip41 (Figure 4.11). Nuclear Tip41 has an apparent molecular 

weight of approximately 39kDa as opposed to 32kDa for the cytoplasmic form. Thus 

nuclear Tip41 may be subject to post-translational modification resulting in the 

apparent shift in molecular weight. Although Tip41 is a phosphoprotein (Figure 3.11),
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the jump in apparent molecular weight is too large to be explained by 

phosphorylation.

Ubiquitin is an 8kDa protein used as a post-translational modification used to modify 

protein stability, protein-protein interactions, activity and subcellular localisation.

Both mono- and polyubiquitination can occur, mediated by an E3 ligase and resulting 

in the transfer of one or multiple ubiquitin molecules respectively. Ubiquitin 

molecules are linked by Lysine residues within both itself and the target protein. The 

shift in molecular weight may therefore be caused by monoubiquitination of Tip41 

which may result in nuclear translocation and ability to regulate HIF1 activity. By a 

similar mechanism, the transcription factor F0X04 is regulated by ubiquitination. 

Ubiquitination of F0X04 by Mdm2 leads to nuclear translocation and transcriptional 

activation (Kubbutat et al., 1997, Lai et al., 2001, van der Horst et al., 2006, 

Brenkman et al., 2008).

A nuclear complex of PP2AAiPha4 with mTORCI has been implicated in activation of 

STAT1 (Fielhaber et al., 2009). Indeed post-translational modification of Alpha4 with 

O-linked p-N-acetylglucosamine is required for nuclear translocation (Dauphinee et 

al., 2005). Thus nuclear translocation for the activity of PP2AAipha4 with mTORCI 

has been documented. Tip41 could similarly translocate with PP2A to the nucleus 

following modification by ubiquitination where it regulates the activity of HIF1. It 

would be of interest to investigate the effect of Tip41 on other mTORCI regulated 

transcription factors including STAT3 and YY1, and see whether Tip41 has 

increased effect on transcriptional rather than translational regulation by mTORCI 

Tip41 is known to bind ubiquitinated proteins (Prickett et al., 2008). It is therefore 

conceivable that ubiquitination of Tip41 provides a platform for protein-protein 

interactions, where Tip41 forms a complex with other proteins to mediate substrate 

interaction, which all bind via ubiquitin. Ubiquitination of Tip41 may therefore allow 

binding of transcription factors or other proteins involved in the inhibition of 

transcription factors. In summary, the possibility of ubiquitination of Tip41 may 

cause nuclear translocation or may result from location in the nucleus to mediate 

complex interaction involved in regulation of transcription factors such as HIF1.
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Of interest in this regard would be the activity of a Tip41 mutant deficient in PP2A 

binding. In contrast to previously published work, mutation of Y79H and M196V 

retained ability to bind PP2A (Figure 4.6A) (Smetana et al., 2007). Although V5- 

Tip41(D71L) did not bind PP2A (Figure 4.6A), it also had a reduced expression that 

was not equalised by inhibition of the proteasome by MG132 (Figure 4.7). Thus 

although Tip41(D71L) had no effect on S6K1 phosphorylation, in contrast to 

inhibition of S6K1 phosphorylation by wild-type V5-Tip41, this could be explained by 

the reduced expression of the mutant. An attempt to equalise expression of wild- 

type V5-Tip41 and V5-Tip41(D71L) resulted in very low expression levels and no 

effect on S6K1 phosphorylation in comparison to control cells. Similar can be said of 

the Tip41 TOS mutant F156A. Expression of HA-Tip41 (F156A) resulted in inability 

to inhibit phosphorylation of rpS6 in an S6K1 assay in comparison to inhibition by 

wild-type HA-Tip41 (Figure 4.5A). Despite this, HA-Tip41(F156A) levels were 

reduced in comparison to wild-type HA-Tip41, which was not equalised by treatment 

with MG132 (Figure 4.5B). Failure of these experiments renders us unable to 

determine that the effects of Tip41 within the pathway are definitely as a result of 

Tip41 binding to PP2A.

On discovery that Tip41 inhibits phosphorylation or activation of mTORCI substrates, 

the point of action of Tip41 within the pathway was investigated. Data on 

investigation of the negative feedback loop (Figure 4.3A) showed that Tip41 did not 

affect phosphorylation of Akt at T308 (Figure 4.3A), S473 (Figure 3.11) orTSC2 

phosphorylation at T1462 (Figure 4.3A). As the two phosphorylation sites on Akt 

were unaffected by Tip41 over-expression, an effect on Akt or upstream of Akt could 

quite confidently be ruled out. TSC2 has a number of phosphorylation sites in 

addition to T1462, so although over-expression of Tip41 did not alter phosphorylation 

of this site, this does not rule out PP2ATjP4i-mediated dephosphorylation of other 

sites. Activity of Tip41 at or downstream of TSC2 was therefore investigated (Li et 

al., 2002, Shumway et al., 2003, Cai et al., 2006).

Phosphorylation of TSC2 at a number of phosphorylation sites including S1462 

results in inhibition of GAP activity allowing the accumulation of GTP-Rheb, 

activating mTORCI (Tee et al., 2001(a), Inoki et al., 2002). Tip41 could inhibit 

mTORCI through PP2A-mediated dephosphorylation of these TSC2
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phosphorylation sites resulting in activation of TSC1/2. To investigate this Tip41 was 

expressed in TSC2-/- MEFs. TSC2-A MEFs have overactive mTORCI If Tip41 

acts downstream of TSC2, over-expression in TSC2-/- MEFs would abrogate S6K1 

phosphorylation. These cells were of particular use owing to the feedback induction 

caused by Tip4 overexpression. Owing to their genetic failings, TSC2-A MEFs are 

resistant to Tip41-induced feedback via phosphorylation of TSC2, in theory, when 

analysing targets downstream of TSC1/2. Overexpression of Tip41 in TSC2-A MEFs 

resulted in no reduction in phosphorylation of S6K1 at T389 (Figure 4.12A). As Akt 

lies directly upstream of TSC2 and Tip41 over-expression didn’t alter Akt 

phosphorylation, this provides evidence that Tip41 may act directly at the point of 

TSC2. If Tip41 were to act as a PP2A regulatory subunit towards TSC2, you would 

expect to see binding between TSC2 and Tip41. As no interaction between the two 

proteins was observed (Figure 4.13), Tip41 may act in a parallel pathway to ensure 

inhibition of mTORCI substrates, possibly by mediating activity of PP2A. 

Alternatively PP2Ajip4i interaction with TSC2 may be transient and therefore was not 

detected. Thus the possibility that PP2ATjp4i dephosphorylates inhibitory TSC2 

phosphorylation events in order to inhibit mTORCI remains.

Tip41 has been shown to act within the ATM/ATR cascade and within signalling to 

NF-kB. ATM is known to inhibit phosphorylation of 4EBP1 and therefore potentially 

inhibits upstream of mTORCI (Barlow et al., 1996, Matsuoka et al., 2007, Braunstein 

et al., 2009). Tip41 was shown to activate phosphorylation of an unidentified 33kDa 

ATM/ATR substrate (McConnell et al., 2007). This result was not reproduced here 

(Figure 4.14) indicating that Tip41 is not acting within the ATM/ATR pathway to 

inhibit mTORCI. Tip41 is also knownas TAB4 involved in activation of NF-kB 

(Prickett et al., 2008). As signalling modules to NF-kB are involved in mTORCI 

activation, the role of Tip41 as TAB4 was unlikely to inhibit mTORCI signalling 

(Hartley & Cooper, 2002, Lee et al., 2008). In addition, the effect of over-expressed 

Tip41 alone did not activate phosphorylation of TAK1, and required co-expression of 

TAB1 (Prickett et al., 2008). In agreement with published findings, Tip41 did not 

increase phosphorylation of IKK (Figure 4.14), indicating that in our cells Tip41 

expression is not activating NF-kB signalling.
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Although Tip41 may mediate dephosphorylation of inhibitory TSC2 phosphorylation 

events by PP2Ac, it may also act to inhibit a parallel pathway feeding into mTORCI 

Activation of mTORCI also occurs in response to amino acids by various 

mechanisms, in addition to via PA and MAPK. Amino acid activation of mTORCI 

relies on localisation of mTORCI complex to membranes and is achieved by hVps34, 

the Rag GTPases and RalA (Gulati et al., 2008, Maehama et al., 2008, Sancak et al., 

2008). Localisation to membranes allows interaction with Rheb and subsequent 

activation of the complex. Tip41 may therefore inhibit any of these processes in 

order to reduce phosphorylation of mTORCI substrates. Tip41 is unlikely to inhibit 

PA-induced mTORCI activity as this occurs downstream of Rheb, and results 

indicate that Tip41 acts upstream of Rheb (Figure 4.12). In addition to Akt, TSC2 is 

also a target of MAPK. In response to MAPK activation, RSK phosphorylates TSC2 

at S1798 which removes the inhibitory effect of TSC2 allowing activation of mTORCI 

(Roux et al., 2004). Tip41 could therefore act via MAPK to remove MAPK inhibitory 

phosphorylation sites of TSC2.

In summary, Tip41 inhibits mTORCI activity upstream or at the point of the TSC1/2 

complex. Alteration of cellular Tip41 levels enhances cell sensitivity to the induction 

of feedback loops via IRS-1 downregulation or activation of Akt. In addition, a 

specific nuclear isoform of Tip41 exists, possibly modified with ubiquitin, which may 

specifically regulate activity of HIF1. Interestingly, it appears that mTORCI- 

regulated activity of HIF1 is resistant to induction of negative feedback loops.

174



CHAPTER 5 -  OTHER PP2A COMPLEXES AND mTOR

5.1 Introduction

Historically, DNA tumour viruses have been used to investigate phosphatase 

regulation within the cell. For example, the SV40 small T antigen enhances cell 

survival by inhibiting PP2Ac binding with the regulatory B subunit (reviewed in 

Branton & Roopchand, 2001). Mechanisms such as this are used by viruses to 

overcome checkpoints to enable replication. The adenoviral proteins E40RF1 and 

E40RF4 activate mTORCI. Whilst E40RF1 activates PI3K, E40RF4 inhibits 

PP2ABa by inhibition of substrate recognition (O’Shea et al., 2005(a)). Thus PP2ABa 

was identified as a phosphatase acting to inhibit mTORCI activity. As E40RF4 has 

no effect on Rheb loading, but S6K1 activation induced by the protein is sensitive to 

rapamycin, it was proposed that PP2ABa may act in a parallel pathway to growth 

factor stimulation of mTORCI.

As the mammalian functional homologue of Sit4, PP6c is well placed as a potential 

phosphatase acting within the mTORCI pathway (Bastians & Ponstingl, 1996). 

Although a member of the PP2A family, PP6c has separate regulatory subunits 

including PP6RPs and Ankrd proteins and is therefore subject to distinct regulatory 

mechanisms (Stefansson et al., 2008). Sit4 controls phosphorylation of substrates 

downstream of TORC1. Despite this, the role of PP6c with regards to mTORCI has 

not been investigated.

In this chapter the role of PP2ABa and PP6c in relation to mTORCI signalling is 

investigated. The data show that PP2ABa acts upstream of mTORCI but is able to 

overcome Rheb-induced activation of the kinase. In addition, mTORCI may control 

PP2ABa directly by ubiquitination via the CUL4-DDB1 ligase, providing a feedback 

mechanism for activation of mTORCI. As PP6c unexpectedly appears to activate 

mTORCI, the potential role of the phosphatase in relation to mTORCI is discussed.
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5.2 Results

5.2.1 E40RF4 activates mTORCI signalling by sequestering the Ba regulatory 

subunit of PP2Ac

The adenoviral protein E40RF4 enhances mTORCI signalling to S6K1 and 4EBP1 

by sequestering the PP2Ac regulatory Ba subunit to the nucleus (O’Shea et al., 

2005(a)). In addition to wild-type E40RF4, two mutants of E40RF4 deficient in Ba 

interaction, E40RF4(L51/54A) (point mutant) and E40RF4(A359) (truncated) were 

obtained as a kind gift from Dr. D. Stokoe and cloned into V5-tagged vectors. In 

order to verify that wild-type E40RF4 protein binds the Ba regulatory subunit of 

PP2Ac, V5-E40RF4 was expressed in HEK293 cells and purified using aV5 

immunoprecipitation. V5-E40RF4(A359) and L51/54A mutant were also expressed 

and purified. Interaction with Ba was then analysed by western blot. Figure 5.1 A 

shows that V5-E40RF4 co-purified with Ba thus confirming interaction between the 

two proteins. Neither of the V5-E40RF4 mutants, A359 or L51/54A, co-purified with 

Ba showing that these mutants are indeed deficient in binding to the regulatory 

subunit of PP2Ac.

In order to verify that E40RF4 increases mTORCI substrate phosphorylation via Ba 

subunit interaction, the ability of wild-type V5-E40RF4 to activate T389 

phosphorylation of S6K1 was compared to the A359 and L51/54A binding mutants. 

HEK293 cells expressing the three V5-E40RF4 protein constructs were cultured in 

serum free medium overnight prior to lysis and treated with insulin and rapamycin as 

indicated. Figure 5.1 B shows that over-expression of V5-E40RF4 wild-type had 

increased levels of HA-S6K1 phosphorylation at T389 in comparison to serum- 

starved (and insulin treated) control cells expressing HA-S6K1 only. This shows that 

V5-E40RF4 enhances mTORCI signalling towards S6K1. Neither of the Ba-binding 

mutants of E40RF (A359 or L51/54A) altered HA-S6K1 phosphorylation in 

comparison to serum-starved control cells. This data indicates that the increase in 

mTORCI signalling towards S6K1 by E40RF4 over-expression is dependent on 

E40RF4 binding to the Ba subunit.

Previous studies revealed that E40RF4 interacts with the Ba subunit (O’Shea et al., 

2005(a)), and this data confirms that this interaction is necessary for heightened
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Figure 5.1: E40RF4 activates mTORCI by inhibition of PP2ABo. A. In order to 
verify that V5-E40RF4 mutants A359 and L51/54A were deficient in Ba interaction, 
pcDNA3.1-nV5-E40RF4 wild type and the mutants A359 and L51/54A were 
transfected into HEK293 cells and the expressed proteins im mu noprecipitated (aV5) 
and analysed for co-purification of Ba. The results showed that mutation of L51/54A 
and A359 mutation of V5-E40RF4 prevented interaction with Ba. B. To qualify that 
the activation of mTORCI by E40R F4 was as a result of Ba inhibition, V5-E40R F4  
wild type and mutants were co-expressed in HEK293 cells with HA-S6K1 and the 
activity of HA-S6K1 analysed. Cells were cultured overnight in serum free media and 
prior to lysis treated with insulin and rapamycin as indicated. The results showed that 
V5-E40RF4(A359) and L51/54A were unable to enhance phosphorylation of HA- 
S6K1, whereas wild type V5-E40R F4 enhanced phosphorylation of HA-S6K1 above 
the level as seen with insulin stimulation. C. A rapamycin time-course experiment 
was used to assay whether E40R F4 could inhibit the ability of rapamycin to promote 
m TORCI substrate dephosphorylation, and by extension whether PP2ABa was 
responsible for mTORCI substrate dephosphorylation downstream of the kinase.
Cells were cultured overnight in serum free media and treated with insulin. Rapamycin 
treatment occurred 0, 5 or 20 minutes prior to lysis, and activity of co-expressed HA- 
S6K1 analysed as a measure of m TORCI activity. Maximal HA-S6K1 phosphorylation 
was standardised for densitometry analysis both with and without V5-E40R F4  
expression to take into consideration the initial increase in HA-S6K1 phosphorylation 
caused by expression of V5-E40RF4. Intensity was calculated by averaging data from 
three independent experiments and taking HA-S6K1 phopshorylation prior to 
rapamycin treatment (with or without E40RF4 expression) as 100%. Significance was 
calculated using a T test. Error is indicative of standard deviation. Densitometry 
analysis of HA-S6K1 phosphorylation showed that expression of V 5-E 40R F4 did not 
significantly alter the ability of rapamycin to promote mTORCI substrate 
dephosphorylation. Results are representative of three independent experiments.
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phosphorylation of S6K1 (Schalm et al., 2005). Rapamycin is thought to activate a 

phosphatase activity that specifically dephosphorylates mTORCI substrates, such 

as S6K1. If Ba acts as a PP2Ac regulatory subunit downstream of mTORCI, 

E40RF4 may prevent rapamycin’s ability to induce rapid dephosphorylation of 

mTORCI substrates. Therefore, I wanted to determine whether E40RF4 over­

expression could reduce the ability of rapamycin to dephosphorylate S6K1. To do 

this, a rapamycin time course experiment was performed upon E40RF4 over- 

expression. HEK293 cells expressing V5-E40RF4 wild-type were treated with 

rapamycin for 5 or 20 min following stimulation with insulin and the phosphorylation 

of co-expressed HA-S6K1 compared to control cells expressing HA-S6K1 only. 

Densitometry figures were calculated by averaging absolute signal intensity between 

three experiments, then converting to % relative intensity taking intensity following 0 

minutes of rapamycin treatment as 100%. In order to take into account the initial 

enhancement of S6K1 phosphorylation caused by overexpression of E40RF4, 100% 

was taken standardised between experimental and control cells.

Densitometry analysis of HA-S6K1 phosphorylation revealed that although E40RF4 

enhanced S6K1 phosphorylation, rapamycin inhibition was equally efficient in 

comparison to control cells, with no significant difference seen between experimental 

and control cells at each time point (Figure 5.1C). Following 5 min rapamycin 

treatment, S6K1 phosphorylation was at 60% maximal levels both with and without 

E40RF4. This provides evidence that the rapamycin induced dephosphorylation of 

S6K1 is dominant with regards to E40RF4 over-expression.

5.2.2 Ba is regulated by ubiquitination in an mTORCI specific manner

A number of studies implicate PP2Ac as the principle phosphatase within the 

mTORCI signalling pathway (Begum & Ragola, 1996, Peterson et al., 1999, Schlam 

et al., 2005, Bielinski & Mumby, 2007, Liu et al., 2010). Regulatory subunits of 

PP2Ac are known to control substrate recognition, localisation or kinetic activity. It is 

therefore essential to identify the subunit regulating PP2Ac along with the method of 

regulation in the context of mTORCI signalling. The results of Figure 5.1 suggest 

that Ba regulates PP2Ac activity towards the mTORCI substrate, S6K1. Regulation 

of PP2Ac activity may take place via interaction between the catalytic subunit and
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the Ba regulatory subunit. It is therefore possible that under conditions when 

mTORCI is inactive , PP2Ac binding to the regulatory subunit involved in targeting to 

mTORCI substrates may increase.

To determine whether interaction between PP2Ac and the Ba regulatory subunit was 

modulated, GST-PP2Ac was transfected into HEK293 cells and purified following 

serum-starvation, insulin stimulation and rapamycin treatment, as indicated. 

Purification of GST-PP2Ac was then achieved using a GST spin-trap column. The 

levels of co-purified endogenous Ba were then evaluated by western blot. Figure 

5.2A shows that Ba purified with GST-PP2Ac under all three conditions. However, 

following insulin treatment, purified Ba resolved at a number of different molecular 

weights in comparison to the blot seen on serum-starvation, and this effect was 

almost completely ablated following treatment of cells with rapamycin. Due to the 

shift in the apparent molecular weight, with bands seen at approximately 8.5kDa 

intervals, it was possible that the Ba subunit was post translationally modified by 

ubiquitination. Following re-analysis of purified sample by western blot using a- 

ubiquitin, a near identical pattern was observed of ubiquitinated protein bands. This 

data reveals that the apparent shift in Ba molecular weight observed in complex with 

GST-PP2Ac following insulin stimulation was due to ubiquitination of the Ba 

regulatory subunit.

As Ba co-purified with GST-PP2Ac under all conditions, interaction between the two 

proteins does not appear to be a method for regulation. Instead, ubiquitination of the 

Ba subunit appears to be used to control activity of the complex, and may be used to 

reduce activity of PP2ABa under conditions when phosphatase activity is not required. 

In this instance, ubiquitination does not appear to result in proteasomal degradation 

of Ba, as levels of the protein seen in total lysate are equal under all conditions of 

purification.

As ubiquitination did not appear to result in proteasomal degradation of Ba, the 

possibility that it may control cell localisation was investigated. In theory, the PP2ABa 

complex may be shuttled to another cell compartment following insulin stimulation to 

remove phosphatase activity when not required, and this may be controlled by
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ubiquitination of the Ba regulatory subunit. In support of this theory, E40RF4 protein 

has been shown to increase HA-S6K1 phosphorylation by sequestering Ba and 

shuttling to the nucleus (O’Shea et al., 2005(a)). Untransfected cells were treated 

with insulin and rapamycin as indicated following overnight serum-starvation. Cells 

were then fractionated into cytoplasmic, nuclear and membrane compartments and 

analysed by western blot.

Analysis with Ba antibody revealed a predominantly cytoplasmic protein with a trace 

found within the membrane compartment (Figure 5.2B). No change was seen in the 

levels of Ba within the cytoplasm or membrane fraction under each of the conditions. 

This indicates that cell localisation is not used as a method of regulation of the Ba 

subunit upon insulin stimulation, or that ubiquitination of the Ba subunit results in any 

change in localisation of the protein. In addition, no Ba was apparent within the 

nuclear fraction. As the shift in apparent molecular weight observed in Figure 5.2A 

was not apparent on analysis of total Ba levels in any of the cell compartments 

fractionated, ubiquitinated Ba may only form a small pool of Ba that is bound to 

PP2Ac and is not apparent when viewing total protein levels. Ubiquitinated Ba 

therefore appears to bind PP2Ac specifically, and may only form a small pool of total 

protein. In summary, ubiquitination of Ba when bound to PP2Ac does not appear to 

influence localisation of the subunit. Therefore ubiquitination of Ba within the 

PP2Abq complex may play an as of yet unidentified role in the regulation of activity.

5.2.3 Depletion of Ba increases S6K1 phosphorylation and activity of HIF1

V5-E40RF4 increases HA-S6K1 phosphorylation in a manner dependent on the 

binding of the Ba regulatory subunit of PP2Ac (Figure 5.1 B). It therefore appears 

that Ba may regulate phosphatase activity within the mTORCI pathway. The effect 

of Ba knockdown on mTORCI signalling using shRNA was investigated. A panel of 

shRNA vectors was tested to find the most effective clone for knockdown of Ba. 

Firstly, the time between transfection of cells with shRNA and observation of Ba 

knockdown was optimised. Cells were seeded in triplicate on day one, transfected 

on day 2 and lysed on either day 3, 4 or 5. This showed that effective knockdown of 

Ba occurred 72h post transfection within cells lysed on day 5 (data not shown). To 

minimise the time between cell seeding and lysis, the reverse transfection procedure

181



was attempted. Cells were seeded and transfected in one step on day 1, with cell 

lysis occurring on day 4. This resulted in improved cell condition prior to lysis.

Control cells were transfected with non-coding shRNA. Levels of Ba were analysed 

by western blot. Figure 5.3 shows that following reverse transfection and cell lysis 

on day 4, clone 5 was the most effective at knocking down Ba levels, which resolves 

at a molecular weight of 55kDa. This clone was then used in all future shRNA 

experimentation.

V5-E40RF4 expression results in an increase in mTORCI substrate phosphorylation 

that is dependent on binding to the Ba regulatory subunit of PP2Ac (Figure 5.1 B).

Ba may therefore regulate mTORCI substrate dephosphorylation via PP2Ac. To 

investigate the effect of Ba knockdown on the mTORCI pathway, following shRNA 

transfection on day 1 (targeted or non-coding), cells were transfected on day 3 with 

HA-S6K1 and serum-starved overnight. Prior to lysis on day 4, cells were treated 

with insulin and rapamycin as indicated and subsequently analysed by western blot. 

Signal intensity under each condition was averaged from three experiments and 

used for densitometry analysis. Maximal phosphorylation taken as 100% was used 

to calculate relative signal intensity. Error is indicative of standard deviation. A 

student’s T test was used to calculate p values comapriing data between 

experimental and control cells. HA-S6K1 phosphorylation at T389 showed a small 

but reproducible increase under serum starved (p=<0.05) and insulin stimulatory 

(p=<0.05) conditions following knockdown of Ba in comparison to control cells 

transfected with non-coding shRNA (Figure 5.4A). There was no difference in HA- 

S6K1 phosphorylation following treatment with rapamycin or under serum starved 

conditions in either cell sample. This indicates that Ba may be acting as a regulatory 

subunit for PP2Ac towards S6K1 as knockdown results in a slight increase in 

phosphorylation concurrent with a reduction in phosphatase activity. This result is 

complicated however as no increase was seen under serum-starved conditions or 

following treatment of cells with rapamycin. Under these conditions it is predicted 

that a phosphatase would be active.

As regulatory subunits of PP2Ac may be involved in substrate recognition, it would 

be expected that a reduction in the level of such a subunit within the cell would result 

in reduced ability of PP2Ac to bind a substrate and therefore result in an increase in
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Figure 5.3: Optimisation of B a  knockdown. A panel of five obtained shRNA clones 
directed to B a w ere transfected into H EK 293 cells and levels of Ba protein analysed  
by western blot in comparison to control cells transfected with non-coding shRNA. The  
results showed that clone 5 w as the most effective at lowering levels of Ba protein and 
was used in subsequent experim entation. Results are representative of three 
independent experim ents.
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Figure 5.4: Knockdown of B a  increases m TORCI activity. A. H EK 293 cells 
transfected with B a shR N A  w ere co-transfected with HA-S6K 1. Control cells were  
transfected with non-coding shRNA. Prior to lysis, cells were cultured in serum free 
medium and treated with insulin and rapamycin as indicated. HA-S6K1  
phosphorylation was m easured by S D S -P A G E  followed by western blot and 
densitometry analysis. Absolute signal intensity was averaged between three 
experim ents and converted to %  using the highest intensity as 100% . Error is 
indicative o f standard deviation. Following test for equal variances, p values were  
calculated using a student’s T  test. T he  data show that on knockdown of Ba a small 
but significant increase in HA-S6K1 phosphorylation is observed following serum  
starvation (p <0 .05) and insulin stimulation (p<0.05). No significant difference was 
observed following treatm ent with rapamycin in cells deficient in Ba compared to 
control cells. B. On transient knockdown of Ba Q -P C R  of V E G F  m R N A  was used as 
a m easure of HIF1 activity. Levels of Ba m R N A  were also analysed to ensure efficient 
knockdown. The data show that knockdown of B a increased expression of V E G F  
m RNA, and by extension activity of HIF1 (p<0 .05) in comaprison to control cells 
transfected with non-coding shRNA. Error bars are indicative of standard deviation. 
Results are representative of three independent experiments.
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substrate phosphorylation under conditions when the phosphatase is activated. As 

Ba knockdown does not alter HA-S6K1 phosphorylation under predicted PP2Ac 

activating conditions, the role of PP2Acbq within the mTORCI pathway may be more 

complicated than previously thought. Alternatively, the extent of Ba depletion may 

not be sufficient to reduce phosphatase regulation. If Ba levels within the cell are in 

excess, only a small pool of the protein may be required to maintain phosphatase 

control over mTORCI signalling. In defence of this notion, only a small pool of Ba, 

bound to PP2Ac, appears to be regulated by ubiquitination (Figure 5.2) as the 

ubiquitinated protein is not detected on analysis of total lysate or following cell 

fractionation.

The transcription factor HIF1 is activated under hypoxic conditions and results in 

upregulation of proteins that are required in order to combat hypoxic stress and 

increase anaerobic metabolism (Semenza et al., 1994, Chen et al., 2001, Kim et al., 

2001). One such target is the VEGF gene. The effect of Ba knockdown on HIF1 

was investigated using RTPCR analysis of VEGF mRNA. Cells were reverse 

transfected with Ba shRNA on day one and were serum-starved and treated 

overnight with insulin and rapamycin as indicated on day 3, under hypoxic conditions 

(1% O2). On day 4 mRNA levels were analysed by Q-PCR. Control cells were 

transfected with non-coding shRNA. The results in Figure 5.4B show increased 

(42%, +/-10.5%) in VEGF mRNA levels under serum starved conditions on 

knockdown of Ba in comparison to control cells. Error bars are indicative of standard 

deviation. As it is predicted that PP2Ac would be active under these conditions, it 

appears that PP2ABa negatively regulates VEGF expression under hypoxic 

conditions. Whilst this may be due to activation of mTORCI and therefore HIF1 

induced by loss of the Ba regulatory subunit, it is important to note that VEGF is also 

regulated by other transcription factors and signalling pathways. Therefore the effect 

of Ba knockdown resulting in enhanced VEGF expression may be due to an effect 

on a parallel pathway that also regulates the growth factor.

Q-PCR was then used to quantify the extent of Ba knockdown. Following 

transfection of HEK293 cells with Ba shRNA vector or non-coding shRNA, Q-PCR 

procedure and analysis was undertaken as detailed in Materials and Methods.
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Figure 5.4B shows that Ba mRNA levels following knockdown were at 33% (+/- 22%) 

of that seen in control cells and confirms the result from the western blot seen in 

Figure 5.3. Thus Ba shRNA reduced Ba mRNA levels leading to a subsequent 

reduction in Ba protein levels as expected (p=<0.05). Error bars are indicative of 

standard deviation.

5.2.4 PP2ABa does not regulate phosphorylation within the PI3K/Akt/TSC2 

pathway upstream of mTORCI

Although Ba knockdown appeared to increase phosphorylation of mTORCI 

substrates, whether it was acting as a PP2Ac regulatory subunit upstream or 

downstream of mTORCI was yet to be determined. To examine this, HEK293 cells 

where Ba levels were reduced using shRNA were analysed by western blot for 

phosphorylation of targets upstream of the mTORCI complex. Akt positively 

regulates mTORCI activity in response to upstream activation of the insulin 

signalling pathway.

Phosphorylation of Akt at T308 was analysed on knockdown of Ba in comparison to 

control cells transfected with non-coding shRNA(Figure 5.5A). This showed no 

change in phosphorylation of Akt in response to Ba knockdown and indicates that 

the increase in mTORCI substrate phosphorylation observed on Ba knockdown was 

not caused by an increase in phosphorylation at or above the level of Akt. This 

shows that PP2ABa does not dephosphorylate Akt directly or influence its 

phosphorylation in order to inhibit the mTORCI pathway.

The TSC1/2 complex lies downstream of Akt in the insulin signalling pathway and 

inhibits mTORCI. Phosphorylation of TSC2 results in inhibition of the complex 

thereby increasing activity of mTORCI. Ba knockdown appears to have no effect on 

TSC2 phosphorylation at T1462 (Cai et al., 2005). This indicates that the increase of 

mTORCI substrate phosphorylation seen on Ba knockdown was not caused by 

inhibition of the TSC1/2 complex caused due to a reduction in PP2Ac activity. This 

again shows that PP2Abq causes dephosphorylation of mTORCI substrates by 

dephosphorylating a target downstream of TSC2 within the mTORCI pathway.

These data indicate that the increase in activity of HIF1 and S6K1 observed in Figure
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5.4 in response to Ba knockdown are the result of upregulation of the mTORCI 

pathway downstream of the TSC1/2 complex. Thus PP2Abq appears to 

dephosphorylate mTORCI substrates at some point downstream of the TSC1/2 

complex.

5.2.5 PP2ABa inhibits mTORCI downstream of the TSC1/2 complex

Ba appears to act as a PP2Ac regulatory subunit within the mTORCI pathway 

(Figure 5.4) but the point of action is still unclear as the results so far could indicate a 

role for the complex both up- or downstream of mTORCI. Although the results in 

Figure 5.5A indicate that PP2ABa decreases mTORCI activity downstream of 

TSC1/2, the exact point of intervention is unclear. The results of Figure 5.4A show 

that knockdown of Ba results in a small but reproducible increase in HA-S6K1 

phosphorylation at T389. In addition, Ba knockdown increases the activity of HIF1 

(Figure 5.4B). Both effects would be apparent whether PP2ABa dephosphorylates 

targets upstream of mTORCI or acts directly on the substrates themselves.

Activation of upstream pathways that positively regulate mTORCI results in 

inhibition of the TSC1/2 complex. This then allows accumulation of GTP-Rheb and 

the subsequent activation of mTORCI. Cells deficient in TSC2, the gene encoding 

TSC2, display hyperactive mTORCI signalling that is unresponsive to upstream 

regulatory pathways. To investigate whether Ba acts downstream of the TSC1/2 

complex in order to inhibit mTORCI signalling, V5-Ba was expressed in TSC2'A MEF 

cells. If PP2ABa indeed acts downstream of the TSC1/2 complex, over-expression of 

Ba in TSC2V' MEF cells should reduce phosphorylation of mTORCI substrates. V5- 

Ba was expressed in TSCZA MEFs along with HA-S6K1. Following lysis, HA-S6K1 

was purified from cell lysates using aHA immunoprecipitation and an S6K1 assay 

carried out as detailed in the ‘Materials and Methods'. HA-S6K1 activity was 

visualised by 32P incorporation of the substrate GST-rpS6 using autoradiography.

Figure 5.5B shows that TSC2-/- MEF cells have a high basal level of HA-S6K1 

activity displayed as high levels of GST-rpS6 phosphorylation. As rapamycin is a 

direct mTORCI complex inhibitor, treatment with the drug reduced HA-S6K1 activity 

in comparison to untreated cells. Cells over-expressing FLAG-TSC2 also showed
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reduced HA-S6K1 activity in comparison to control cells. Expression of V5-Ba 

resulted in a marked reduction in HA-S6K1 activity as shown by a reduction in GST- 

rpS6 phosphorylation in comparison to TSC2V' MEF cells expressing HA-S6K1 only. 

These data show that Ba over-expression reduces HA-S6K1 activity in cells devoid 

of mTORCI inhibition by TSC2. Excess purified HA-S6K1 was retained for analysis 

by western blot. Phosphorylation of HA-S6K1 at T389 mirrored results seen in the 

S6K1 assay. High basal levels of HA-S6K1 phosphorylation were observed in the 

TSC2'a cells expressing HA-S6K1 only. This was reduced by treatment with 

rapamycin and expression of FLAG-TSC2. V5-Ba expression reduced HA-S6K1 

phosphorylation at T389 in comparison to control cells expressing HA-S6K1 only. 

Collectively, this data strengthens the idea that PP2Ac-Ba controls mTORCI 

substrate phosphorylation downstream of the TSC1-TSC2 complex.

As rapid dephosphorylation of mTORCI substrates occurs following treatment with 

rapamycin, the existence of a phosphatase that is activated following mTORCI 

inhibition is likely (Peterson et al., 1999). In order to investigate whether PP2Abq 

may be the phosphatase complex responsible for dephosphorylating substrates in 

response to mTORCI inhibition with rapamycin, a rapamycin time course experiment 

was used. If PP2ABa dephosphorylates mTORCI substrates in response to 

rapamycin inhibition, knockdown of the Ba subunit may reduce rapamycin efficacy. 

To test this, cells were transfected with Ba shRNA on day 1, or non-coding shRNA in 

the case of control cells, followed by HA-S6K1 on day 3. Cells were serum-starved 

overnight. Rapamycin was added to cells at 5 min, 10 min and 30 min prior to lysis, 

following stimulation with insulin. Phosphorylation of HA-S6K1 at T389 was 

analysed by western blot and compared to control cells expressing HA-S6K1 only.

Figure 5.5C shows that in control cells, HA-S6K1 was reduced after 5 min and 

completely ablated 10 min post treatment with rapamycin. Following Ba knockdown, 

although an initial increase in HA-S6K1 phosphorylation at T389 was observed, the 

reduction in phosphorylation post rapamycin treatment was identical, with 

phosphorylation completely ablated 10 min after treatment with rapamycin. These 

data show that Ba knockdown has no effect on the rapamycin-induced 

dephosphorylation of HA-S6K1. PP2Ac-Ba therefore does not appear to be the 

phosphatase complex involved in the rapid dephosphorylation of mTORCI
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substrates that takes place following treatment with rapamycin. Alternatively, as 

observed in the results of Figures 5.3 and 5.4B, the extent of Ba knockdown may not 

be sufficient to completely remove PP2Ac regulation of mTORCI substrates.

5.2.6 PP6c is a PP2A family member with links to mTORCI signalling
TOR signalling in yeast is controlled by the phosphatase Sit4 in addition to Pph21/22 

(Jiang & Broach, 1999). Following inhibition of TOR, Sit4 is activated by removal of 

Tap42 mediated inhibition resulting in dephosphorylation of downstream substrates 

(Schmidt et al., 1998, Duvel et al., 2003). As the human homologue of Sit4 is PP6c, 

a potential role in mTORCI signalling is possible (Bastians & Ponstingl, 1996, 

Stefansson & Brautigan, 2007). In order to investigate a possible role for PP6C 

within mTORCI signalling, knockdown of the PP6c protein using shRNA was used in 

order to evaluate the effect on phosphorylation within the mTORCI signalling 

pathway. A panel of PP6C shRNA vectors was tested to find the most effective 

clone for knockdown of PP6C in comparison to control cells transfected with non­

coding shRNA. Firstly, the amount of time between transfection of cells with shRNA 

and actual knockdown taking place was optimised. Cells were seeded in triplicate 

on day one, transfected on day 2 and lysed on either day 3, 4 or 5. This showed that 

effective knockdown of PP6c occurred 72h post transfection within cells lysed on day 

5 (data not shown). To minimise the time between cell seeding and lysis, the 

reverse transfection procedure was attempted. Cells were seeded and transfected 

in one step on day 1, with cell lysis occurring on day 4. This resulted in improved 

cell condition prior to lysis. Levels of PP6c were analysed by western blot, where the 

protein resolves at a molecular weight of 33kDa. Figure 5.6 shows that following 

reverse transfection and cell lysis on day 4, clone 1 was the most effective at 

knocking down PP6c levels. This clone was then used in all future shRNA 

experimentation.

5.2.7 Depletion of PP6c inhibits mTORCI signalling
As Sit4 dephosphorylates TOR substrates in yeast, the potential role of PP6c in 

mTORCI signalling was explored. If PP6c is involved in the dephosphorylation of 

mTORCI substrates, a predicted increase in mTORCI substrate phosphorylation 

would occur following knockdown due to reduced phosphatase mediated
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Figure 5.6: Optimisation of PP6c knockdown. A  panel o f five  ob ta ined  shR N A  
clones d irec ted  to  P P 6c  w e re  tra n s fe c te d  in to  H E K 293 ce lls  and leve ls o f P P6c protein 
ana lysed by w e s te rn  b lo t in co m p a riso n  to  con tro l ce lls  trans fec ted  w ith non-cod ing  
shR N A. T he  resu lts  show ed  th a t c lo n e  1 w as the  m os t e ffec tive  a t low ering  leve ls o f 
PP6c p ro te in  and  w a s  used in su b se q u e n t expe rim en ta tion . R esu lts  are representa tive  
o f th ree  in d e pe n d e n t e xp e rim e n ts .
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dephosphorylation. To investigate the effect of PP6c knockdown on the mTORCI 

pathway, following shRNA transfection on day 1, cells were transfected on day 3 with 

HA-S6K1 and serum-starved overnight. Prior to lysis on day 4, cells were treated 

with insulin and rapamycin as indicated and subsequently analysed by western blot. 

Control cells were trasfected with non-coding shRNA. HA-S6K1 phosphorylation at 

T389 was markedly reduced on PP6c knockdown in comparison to control cells 

expressing HA-S6K1 only (Figure 5.7A). This reduction was only apparent following 

insulin stimulation as no HA-S6K1 phosphorylation was detected in control cells (or 

following PP6c knockdown) under serum-starved conditions or following treatment 

with rapamycin. This result was unexpected as a rise in phosphorylation of proteins 

would be predicted on knockdown of a phosphatase caused by a reduction in 

dephosphorylation events.

The activity of the transcription factor HIF1 was also analysed upon knockdown of 

PP6 . HIF1 is a less well characterised mTORCI substrate and it is not yet clear 

exactly how its regulation within the pathway is controlled. However HIF1 activity is 

increased by insulin treatment and reduced following rapamycin inhibition so 

appears to be a downstream target within the pathway. The effect of PP6c 

knockdown on activity of the transcription factor was investigated. Following shRNA 

transfection on day 1, cells were transfected with the HIF1 luciferase reporter 

element on day 3 followed by overnight serum-starvation under hypoxic (1% O2) 

conditions. Following cell lysis the luciferase assay was carried out as described in 

the ‘Materials and Methods’. Knockdown of PP6 resulted in a reduction of HIF1 

activity to 57% in comparison to control cells (p=<0.05) (Figure 5.7B). Error bars are 

indicative of standard deviation. This is concurrent with the result in Figure 5.7A 

where PP6c knockdown resulted in a reduction in HA-S6K1 phosphorylation. Again 

this is an unexpected result as knockdown of a phosphatase would cause a 

predicted rise in activity of mTORCI substrates resulting from reduced 

dephosphorylation.

These data therefore give rise to two possibilities. Firstly, that PP6c knockdown is 

resulting in an initial rise in mTORCI signalling, which in turn activates the negative 

feedback loop as was found to be the case in Figure 4.9 while investigating the role 

of Tip41 within the mTORCI pathway. Alternatively the result may indicate that 

PP6c is not acting as a phosphatase within the mTORCI signalling pathway.
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Figure 5.7: Knockdown of PP6c reduces activity of mTORCI substrates. A. HA-
S6K1 w as co -e xp re ssed  in ce lls  tra ns fec ted  w ith  PP6c shR N A  ve c to r and used as a 
m easu re  o f m T O R C I activ ity . C e lls  w e re  cu ltu red  o ve rn igh t in se rum  free  m ed ia  and 
trea ted  w ith  insu lin  o r rapam yc in  im m ed ia te ly  p rio r to  lysis as ind ica ted . T he  resu lts  
show ed th a t in su lin -induced  phosphory la tion  o f H A-S6K1 w as reduced  on knockdow n  
o f P P6c in com pa rison  to  con tro l ce lls  trans fec ted  w ith  non -cod ing  shR N A . B. A ctiv ity  
o f HIF1 on knockdow n  o f P P 6c w as  a lso  ana lysed  using the  H IF luc ife rase  repo rte r 
co n s tru c t as a m easu re  o f HIF1 tra nsc rip tiona l activ ity. C e lls  trans fec ted  w ith  P P 6c 
shR N A  ve c to r on day one  w e re  tra n s fe c te d  w ith  the  HIF1 luc ife rase  repo rte r e le m e n t 
on day th ree. C e lls  w e re  cu ltu red  o ve rn ig h t in se rum  free  m ed ia  on day th ree  in 1% 0 2 
and lysed on day four. T h e  resu lts  show ed th a t knockdow n  o f P P 6c reduced  ac tiv ity  o f 
HIF1 in com pa rison  to  ce lls  tra n s fe c te d  w ith  non -cod ing  sh R N A  (p<0.05). R esu lts  a re  
rep resen ta tive  o f th ree  in d e pe n d e n t expe rim en ts .
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5.2.8 Depletion of PP6c specifically inhibits mTORCI downstream of the 

TSC1/2 complex

Feedback loops act within the mTORCI pathway to prevent aberrant signalling. 

Following activation of the pathway, phosphorylation of IRS1 at a number of serine 

residues including S636/639 results in its degradation or relocalisation. This causes 

a reduction of insulin signalling following through to the mTORCI complex.

Following the unexpected reduction in HA-S6K1 phosphorylation after knockdown of 

PP6c seen in Figure 5.7A, samples from this experiment were used to investigate 

the possibility that the feedback loop had been initiated in cells where PP6c levels 

were reduced by shRNA. In theory, PP6 knockdown may cause an increase in 

mTORCI activity leading to activation of the IRS-1 mediated feedback loop and thus 

an apparent reduction in mTORCI substrate phosphorylation. As a reduction in HA- 

S6K1 and HIF1 activity was observed on PP6c knockdown (Figure 5.7), western blot 

analysis was used to evaluate the phosphorylation status of IRS-1. In the event of 

activation of the negative feedback loop, IRS-1 phosphorylation at S636/639 is 

increased by phosphorylation by mTORCI. Figure 5.8 shows that knockdown of 

PP6c resulted in no change in IRS-1 phosphorylation in comparison with control cells. 

PP6c knockdown therefore appears to reduce phosphorylation of mTORCI 

substrates via another mechanism.

The reduction in mTORCI substrate phosphorylation resulting from PP6c 

knockdown may also be explained by increased activity of pathways that are 

inhibitory to mTORCI and feed into upstream targets such as Akt. To investigate 

whether PP6c knockdown reduces phosphorylation of targets upstream of the 

mTORCI complex, the phosphorylation of Akt and TSC2 were also investigated. Akt 

phosphorylation at T308 was unchanged on PP6c knockdown in comparison to 

control cells, as was TSC2 phosphorylation at T1462. This indicates that the 

reduction of mTORCI substrate phosphorylation resulting from PP6c knockdown is 

not due to increased activity of upstream inhibitory pathways.

PP6c is also involved in NF-kB signalling. To activate this pathway, the cytokine IL- 

ip  binds to its cognate receptor IL-1R resulting in activation of IKKp. This requires
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TAK1 along with a number of TAB (TAK1 activating) proteins that control activation 

of the complex and therefore IKKp. Active IKKp phosphorylates the inhibitory protein 

IkB, resulting in its degradation by the 26S proteasome, and thus activates NF-kB. 

PP6c dephosphorylates and therefore inhibits TAK1 leading to suppression of IKKp 

phosphorylation and signalling to NF-kB (Kajino et al., 2006). Knockdown of PP6c 

may therefore activate signalling to IKKp. As activated IKKp inhibits insulin signalling 

in response to TNFa via phosphorylation of IRS-1 at S312 (Gao et al., 2002) and 

therefore inhibits mTORCI activity, the inhibition of mTORCI seen on PP6c 

knockdown may be due to increased signalling via IKKp.

To examine this possibility, the phosphorylation of IKKp at S176/180 was 

investigated by western blot. Analysis of IKKp phosphorylation showed that PP6c 

knockdown had no effect at S176/180 in comparison to control cells (Figure 5.8).

This indicates that the reduction in mTORCI substrate phosphorylation resulting 

from PP6c knockdown is not caused by activation of NF-kB signalling, which 

negatively feeds into mTORCI thereby reducing substrate phosphorylation. In 

conclusion, these data indicate that the reduction in mTORCI substrate 

phosphorylation caused by PP6c knockdown is due to a specific effect downstream 

of the TSC1/2 complex. As the effect is inhibitory, PP6c is unlikely to play a direct 

role within the mTORCI signalling pathway as knockdown of a phosphatase should 

result in increased signalling. Instead, knockdown of PP6c may be inducing an 

unrelated consequence resulting in inhibition of the mTORCI complex.

5.3 Discussion

These data indicate that adenoviral protein E40RF4 binds the Ba regulatory subunit 

of PP2A in order to activate phosphorylation of mTORCI substrates (Figure 5.1). 

Expression of E40RF4, but not mutants A359 and L51/54A that are deficient in Ba 

binding, increased S6K1 phosphorylation in the absence of serum (Figure 5.1 B).

This implicates PP2ABa as a phosphatase complex acting towards mTORCI 

substrates. E40RF4 inhibits PP2ABa by modulating activity towards specific 

substrates rather than inhibiting catalytic activity perse (Li et al., 2009). As E40RF4 

modulates PP2ABa substrate-specific catalytic activity, inhibition of S6K1 

phosphorylation by E40RF4 further implies that PP2ABa specifically targets
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Figure 5.8: Knockdown of PP6c does not alter insulin signalling upstream of 
m TORCI. Hyperactivity of m T O R C I induces a negative feedback loop via IRS-1  
downregulation. To determ ine whether PP6c knockdown was promoting negative 
feedback leading to an apparent reduction in m T O R C I signalling, phosphorylation of 
upstream effectors w as analysed in H EK 293 cells transfected with PP6c shR N A  vector 
in comparison to control cells transfected with non-coding shRNA. T h e  results showed 
that IRS-1 phosphorylation at S 636 /639  was unaffected by PP6c knockdown in 
comparison to control cells, indicating that negative feedback w as not induced. In 
addition, Akt (T308) and T S C 2  phosphorylation (T 1462) was unchanged in comparison  
to control cells. Therefore the effect of PP6c knockdown on m T O R C I activity occurs 
downstream of the T S C 1 /2  complex. As PP6c is known to be involved in signalling to 
N F -kB, the possibility that PP6c w as inhibiting m T O R C I via this pathway was  
investigated via phosphorylation of IKKp. The results showed that phosphorylation of 
IKKp (S 176 /180 ) was unchanged on knockdown of PP6c in comparison to control 
cells. Results are representative of three independent experiments.
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mTORCI signalling, rather than kinase signalling in general. As rapamycin 

effectively inhibited the E40RF4 induced increase in S6K1 phosphorylation, PP2ABa 

appears to act upstream of mTORCI, rather than directly towards S6K1. Further 

evidence for this comes as 4EBP1 phosphorylation has been found to increase on 

expression of E40RF4 (Li et al., 2009). E40RF4 therefore inhibits phosphatase 

activity of PP2Ab<x in a substrate-specific manner upstream of mTORCI.

In order to further characterise the role of PP2ABa in mTORCI signalling, activity of 

mTORCI substrates was analysed on knockdown of the Ba subunit. This resulted in 

a small but significant increase in phosphorylation of S6K1, and enhanced HIF1 

activity induced by hypoxia (Figure 5.4). Thus PP2ABct appears to negatively 

regulate phosphorylation of mTORCI targets. As both S6K1 and HIF1 are affected, 

PP2ABct appears to act upstream of mTORCI in agreement with Figure 5.5. In 

addition, the increase in S6K1 phosphorylation is sensitive to rapamycin, again 

implying that PP2ABct lies upstream of mTORCI (Figure 5.4A).

In using VEGF as a marker of HIF1 activity it is important to consider that other 

transcription factors, and by extension signalling pathways, also regulate the growth 

factor (Arany et al, 2008). Therefore although knockdown of Ba increased 

expression of VEGF, this theoretically could be due to alteration in signalling to 

another pathway that regulates expression of the growth factor. Therefore whilst 

PP2ABa may inhibit mTORCI-mediated HIF1 activity, it may also act on a separate 

pathway that also enhances VEGF expression under hypoxia.

The slight increase in S6K1 phosphorylation and HIF1 activity, as opposed to the 

marked increase caused by expression of E40RF4, may be explained by two 

mechanisms. Firstly, as PP2ABa acts upstream of mTORCI, another phosphatase 

may regulate mTORCI substrate phosphorylation directly downstream of mTORCI 

PP2A inhibition with calyculin A increased phosphorylation of S6K1 under amino 

acid starved conditions and following treatment with rapamycin (Peterson et al., 1999, 

Bielinski & Mumby, 2007). In addition, PP2AB- has been implicated as a direct 

phosphatase towards S6K1 (Hahn et al., 2010). Thus phosphatases may act at 

various points within the mTORCI pathway each targeting their specific substrates.
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This may prevent aberrant signalling on mutation of a single subunit and may give 

the cell greater control over proliferation. As a central regulator of a number of 

processes including transcription, translation, proliferation and the cell cycle, 

extensive regulation of mTORCI is therefore required. As PP2ABa acts upstream of 

mTORCI, the effect of Ba knockdown may be overcome by upregulation of 

downstream phosphatase activity acting directly on mTORCI substrates.

A second explanation is that other isoforms of the B regulatory subunit also target 

PP2Ac towards a target upstream of mTORCI. There are four isoforms of the B 

regulatory subunit and while each is encoded by a single gene, a high degree of 

sequence similarity exists (Mayer et al., 1991, Zolnierowicz et al., 1994). Both Ba 

and B8 are ubiquitously expressed and share 81% protein sequence homology. 

Therefore Ba and B8 may share some functional redundancy, and indeed both 

subunits regulate PP2A activity towards Calcium/calmodulin-dependent protein 

kinase IV (Reece et al., 2009). As E40RF4 binds all isoforms of the B subunit, the 

increase in mTORCI signalling seen on expression of E40RF4 may also be 

mediated by binding to B8 (Branton & Roopchand, 2001). Therefore in order to 

reduce PP2AB activity upstream of mTORCI, knockdown of both Ba and B8 may 

have to be performed. In support of this theory, over-expression of Ba resulted in a 

distinct decrease in S6K1 phosphorylation (Figure 5.5B). Whereas knockdown of Ba 

alone may have not altered S6K1 phosphorylation markedly due to functional 

redundancy with B8, over-expression would not encounter these difficulties. 

Therefore as over-expression of Ba clearly reduces (Figure 5.5B), and knockdown of 

Ba only slightly enhances (Figure 5.4A), S6K1 phosphorylation it appears that 

phosphorylation of mTORCI substrates is negatively regulated by PP2ABa and 

possibly PP2AB8.

The substrate of PP2ABa upstream of mTORCI is unclear. Previous studies have 

shown that PP2A-Ba complex acts in parallel to PI3K/Akt/TSC2 as over-expression 

of E40RF4 had no effect on Rheb-GTP loading (O’Shea et al., 2005(a)). Results in 

Figure 5.5A agree with this as knockdown of Ba had no effect on phosphorylation of 

Akt or TSC2. Intriguingly, results in Figure 5.5B indicate that PP2ABa can overcome
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mTORCI hyperactivation induced by loss of inhibitory TSC2 activity. It follows, 

therefore, that the effect of PP2ABa upstream of mTORCI can overcome the effect of 

GTP-Rheb accumulation. It is possible that PP2Abcx may interfere with a mechanism 

of mTORCI activation in parallel to that induced by Rheb. Two possibilities for this 

exist.

Firstly, PP2ABa may regulate amino acid-induced activation of mTORCI which is 

separate to PI3K signalling and relies heavily on cellular localisation of mTORCI 

rather than activation or inhibition of mTORCI catalytic activity. Rheb localises to 

membranes via a farnesylated residue (Tee et al., 2003(b)). Activation of mTORCI 

by hVps34, RalA and the Rag GTPase proteins on amino acid stimulation results in 

translocation of mTORCI from the cytosol to the membrane (Gulati et al., 2008, 

Maehama et al., 2008, Sancak et al., 2008). This allows interaction with Rheb and 

thus activation of mTORCI. PP2ABa may therefore alter the cellular localisation of 

mTORCI rather than catalytic activity in order to inhibit signalling to substrates.

A second possibility is that PP2ABa acts on an unknown intermediary between Rheb 

and mTORCI. Possible targets include PLD1, which binds GTP-bound Rheb 

specifically and activates phosphorylation of S6K1 (Sun et al., 2008). PP2ABct may 

negatively regulate this or an alternative unidentified Rheb-mTORC1 intermediate 

thus mediating inhibition of mTORCI activity.

Regulation of PP2A activity is often mediated via the regulatory B subunit. Analysis 

of purified GST-PP2Ac complex showed that Ba was ubiquitinated in response to 

insulin treatment (Figure 5.2A). This ubiquitination is prevented by treatment with 

rapamycin. As phosphatase activity towards mTORCI substrates would be 

predicted to drop following mTORCI activation this implies that phosphatase activity 

of PP2A-Ba is likely inhibited by ubiquitination following insulin stimulation. 

Classically, polyubiquitination targets proteins for proteasomal degradation (reviewed 

in Bhat & Greer, 2011) but polyubiquitin can also provide a binding platform allowing 

protein-protein interactions between ubiquitinated substrates and proteins containing 

a UBD. For example, upstream of NF-kB, polyubiquitination of TAK1 provides a 

binding site for TAB proteins required for autophosphorylation and activation 

(Shibuya et al., 1996, Sakurai et al., 2000).
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As total Ba levels were unchanged following insulin stimulation, it is possible that 

ubiquitination does not result in proteasomal degradation of the protein.

Ubiquitination of Ba may therefore provide a binding site for negative regulatory 

proteins. As PP2ABa is inhibited by methylation (by PME1) and phosphorylation of 

PP2Ac, ubiquitin could mediate interaction with proteins involved in these events. A 

second possibility is that ubiquitination of Ba prevents substrate interaction with 

PP2Ab<x. As Ba mediates interaction with PP2Ac substrates, ubiquitin may provide 

steric interference thus inhibiting dephosphorylation. A third, more likely, explanation 

is that the short timescale of insulin treatment did not allow time for degradation of 

ubiquitinated Ba. Analysis of Ba levels following longer-term insulin treatment may 

reveal a decrease in protein levels.

As ubiquitination of Ba is prevented by rapamycin, this indicates that it is mediated 

downstream of mTORCI. The CUL4-DDB1 E3 ligase has been shown as essential 

for mTORCI phosphorylation of S6K1 and 4EBP1. Raptor and mLST8 bind CUL4- 

DDB1 directly, and loss of CUL4 or DDB1 blocks phosphorylation of both mTORCI 

substrates. Thus CUL4-DDB1 binds directly to mTORCI and is required for 

phosphorylation of downstream substrates (Ghosh et al., 2008). The function of this 

E3 ligase activity associated with mTORCI is unknown but results in Figure 5.2A 

indicate that it may ubiquitinate Ba thereby removing inhibitory phosphatase activity 

allowing activation of mTORCI. If this model is correct, how this is prevented by 

rapamycin requires further investigation. Rapamycin weakens the interaction 

between mTOR and Raptor (reviewed in Foster & Toschi, 2009) and CUL4-DDB1 

binds Raptor (Ghosh et al., 2008). It is possible that the intact mTOR-Raptor 

complex may be required for CUL4 E3 ligase activity, resulting in ubiquitination of Ba. 

In summary, although phosphatase activity of PP2A-Ba acts upstream of mTORCI, 

it is regulated downstream of mTORCI by mTORCI itself, possibly via the CUL4- 

DDB1 E3 ligase.

PP6c is a functional homologue of budding yeast Sit4 (Bastians & Ponstingl, 1996, 

Stefansson & Brautigan, 2007). As Sit4 regulates TORC1 activity, PP6c may be 

involved in mTORCI activity in human cells. To assay the role of PP6c in mTORCI
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signalling, S6K1 phosphorylation and HIF1 activity were analysed on knockdown of 

the phosphatase. In contrast to the expected outcome, PP6c knockdown reduced 

phosphorylation of S6K1 and activity of HIF1 (Figure 5.7). Analysis of Akt and TSC2 

phosphorylation showed no change on PP6c knockdown, which may implicate PP6c 

as having a positive regulatory role within mTORCI signalling. This also shows that 

apparent decrease in mTORCI signalling is not due to induction of a negative 

feedback loop.

PP6c could activate mTORCI by removing inhibitory phosphorylation sites within 

TSC2. Only TSC2 phosphorylation at T1462 was analysed (Figure 5.8). TSC2 is 

also activated via phosphorylation by AMPK at T1227 and S1345, leading to 

inhibition of mTORCI (Inoki et al., 2003). PP6c may dephosphorylate these sites 

leading to inhibition of TSC1/2 and activation of mTORCI. This is particularly 

relevant given that AMPK may be active in the cells analysed owing to overnight 

serum-starvation. This would therefore explain why PP6c knockdown results in 

reduced S6K1 phosphorylation and HIF1 activity.

As a control, the effect of PP6c knockdown on IKKp phosphorylation was analysed 

(Figure 5.8). PP6c attenuates IKKp activation upstream of NF-kB by 

dephosphorylating the IKKp activating protein TAK1 (Kajino et al., 2006). Signalling 

modules upstream of NF-kB have been shown to have numerous links with 

mTORCI. For example, IKKp phosphorylates TSC1 at S487 and S511 resulting in 

inactivation and therefore activation of mTORCI (Lee et al., 2007). IKKp can also 

inactive mTORCI signalling by triggering the degradation of IRS-1 (Gao et al., 2002) 

Therefore IKK can activate and inhibit mTORCI. Thus in order to confirm that any 

effects on mTORCI activity caused by knockdown of PP6c were not caused by NF- 

kB activation, phosphorylation of IKKp was analysed. Figure 5.8 showed that IKKp 

phosphorylation was unaffected by PP6c knockdown. Therefore the effect of PP6c 

knockdown on mTORCI activity appears to be specific to mTORCI.

In summary, both PP2ABa and PP6c are involved in regulation of mTORCI.

Whereas PP2ABa inhibits signalling to mTORCI, PP6c is unexpectedly an activating 

phosphatase towards the complex. Although PP2ABa appears to act upstream of
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mTORCI, possibly by altering the ability of amino acids to activate the complex, 

mTORCI directly regulates activity of PP2ABa by ubiquitination and possibility 

proteasomal degradation. Therefore PP2Abq is the subject of an mTORCI feedback 

mechanism. The method of PP6c-mediated mTORCI activation remains elusive.
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CHAPTER 6 -  GENERAL DISCUSSION

6.1 Phosphatases and mTORCI -  selection of targets

The yeast model of TORC1 signalling places phosphatase activity as central in the 

regulation of the pathway. In particular, the regulatory subunit Tip41 is critical in 

allowing dephosphorylation of TORC1 substrates by Pph21/22 and Sit4 in the 

absence of activating signals. This project set out to test the hypothesis that the 

function of Tip41 may be conserved from yeast to mammalian systems, with Tip41 

as a potential phosphatase regulatory subunit in relation to mTORCI signalling. In 

support of this theory, human Tip41 shares extensive sequence similarity with its 

yeast counterpart, including conservation of a TOS motif that in other mTORCI 

substrates is essential for interaction with Raptor. Also, Tip41 has been shown to 

interact with the principle mammalian phosphatises PP2Ac, PP4 and PP6c 

(McConnell et al, 2007). Despite this, little further investigation into the role of Tip41 

in mTORCI signalling had been performed. As the role of a PP2Ac-Tip41 complex 

in mammalian systems is unknown, this project investigated the regulation of the 

complex by cell localisation, phosphorylation of Tip41, alteration of intra-complex 

interactions or changes to substrate binding. This project also investigated the 

impact of PP2ATip4i on mTORCI substrate phosphorylation.

An additional PP2A subununit with links in mTORCI regulation is the Ba regulatory 

subunit. This was identified following studies using the adenoviral protein E40RF4, 

which enhances mTORCI signalling by inhibition of PP2Abq (O’Shea et al, 2005 (a)). 

In contrast to the PP2A complex containing Tip41, PP2Abq is a classical trimeric 

enzyme, with Ba as the subunit involved in substrate recognition. This project set 

out to identify whether PP2ABa was involved in attenuation of mTORCI signalling, by 

dephosphorylating substrates within the pathway. The principle means of 

investigation used shRNA knockdown to ascertain impacts on the loss of PP2ABa on 

mTORCI activity.

Finally, PP6c is the human homologue of yeast Sit4, which is responsible for 

dephosphorylation of TORC1 substrates. Although PP6c has been shown as a 

functional homologue of Sit4, no investigation has been performed into a possible
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role of PP6c in mTORCI signalling. This project tested the hypothesis that PP6c is 

indeed involved in dephosphorylation of mTORCI substrates, using shRNA directed 
to PP6c.

6.2 Principal findings

6.2.1 A PP2ATip4i complex regulates mTORCI activity

Yeast Tip41 interacts indirectly with Pph21/22 via Tap42 (Jacinto et al., 2001). 

Previously, mammalian Tip41 was shown to inhibit PP2Ac activity in vitro, although 

whether Tip41 bound PP2Ac directly or via Alpha4 remained unclear (McConnell et 

al., 2007, Smetana & Zanchin, 2007). In addition, although PP2Ajjp4i interaction was 

shown as insensitive to rapamycin, the role of Tip41 within mTORCI signalling had 

not been investigated (McConnell et al., 2007). This is despite Tip41 in budding 

yeast playing a key role in TORC1 signalling. The data presented in this thesis show 

that Tip41 binds directly to PP2Ac in vivo, as the PP2Ac(E42A) mutant deficient in 

Alpha4 binding purified equal levels of Tip41 in comparison to that of wild-type 

PP2Ac (Figure 3.3). Furthermore, the data shown in this thesis reveals for the first 

time that Tip41 can interact with endogenous PP2Ac and Alpha4 (Figure 3.2A).

As Tip41 purification did not show interaction with other PP2Ac subunits such as 

regulatory B or structural A subunits, Tip41 is proposed as a bona fide regulatory 

subunit of PP2A (Figure 3.2A). Over-expression of Tip41 resulted in inhibition of 

S6K1 and 4EBP1 phosphorylation and activity of HIF1 (Figures 4.1 A, 4.2A and 4.4), 

all of which are regulated downstream of mTORCI. Tip41 therefore appears to act 

as a positive regulatory subunit of PP2Ac towards mTORCI substrates. Previous 

data also implicate Tip41 as a negative regulator of PP2Ac (McConnell et al., 2007). 

Although this conflicts with data showing Tip41 as a positive regulatory PP2Ac 

subunit in relation to mTORCI signalling, an equivalent paradigm exists for Alpha4 in 

the literature. Whilst Alpha4 activated PP2Ac activity in vitro, Alpha4 has been 

shown to inhibit PP2Ac dephosphorylation of S6K1 when expressed in cells (Murata 

et al., 1997, Yamashita et al., 2005). Therefore, the effects of both Alpha4 and Tip41 

on PP2Ac activity must be regarded as substrate specific.

Modulation of Tip41 levels rendered cells sensitive to the induction of feedback loops. 

Over-expression of Tip41 induced feedback via upregulation of Akt (Figure 4.3),
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whereas Tip41 depletion resulted in increased phosphorylation of IRS-1 (Figure 4.9) 

and thus inhibition of mTORCI signalling. Analysis of upstream regulators of 

mTORCI allowed identification of Tip41 as a positive PP2Ac regulatory subunit 

(Figure 4.3 and 4.9). Over-expression of Alpha4 may also induce negative feedback 

towards mTORCI, raising the possibility that abundance of either Tip41 or Alpha4 

may enhance sensitivity of cells to feedback loops towards mTORCI. Over­

expression of Alpha4 has been shown to both increase and decrease 

phosphorylation of mTORCI substrates, as is the case with Tip41 (Nanahoshi et al., 

1998, Nien et al., 2007, Grech et al., 2008). As PP2AMPha4association is reduced 

following mTORCI inhibition, this indicates that Alpha4 is a PP2Ac negative 

regulatory subunit (Murata et al., 1997, Yamashita et al., 2005). Where over­

expression of Alpha4 has reduced phosphorylation of 4EBP1 (Nien et al., 2007), the 

negative feedback loop may be induced via phosphorylation of IRS-1 leading to 

decreased association with PI3K and inhibition of signalling downstream. This may 

account for the opposing published findings of Alpha4, as has been the case with 

findings regarding Tip41 in this project. Therefore, over-expression of Tip41 or 

Alpha4 may render the mTORCI pathway sensitive to induction of feedback loops. 

The reason for this is unclear but may involve other regulatory mechanisms within 

the pathway. Negative feedback loops attenuate mTORCI signalling to prevent 

aberrant signalling. Loss of phosphatase regulation may induce upregulation of 

mTORCI compensatory mechanisms, such as the situation with chronic rapamycin 

treatment.

6.2.2 Tip41 acts in parallel to PI3K/Akt mediated activation of mTORCI

Over-expression of Tip41 resulted in inhibition of mTORCI activity, indicating that 

Tip41 acts as a positive regulatory PP2Ac subunit towards mTORCI, either directly 

or indirectly. As three substrates of mTORCI were affected by over-expression or 

knockdown of Tip41 (4EBP1, S6K1 and HIF), it is likely that PP2ATjp4i either acts 

upstream of mTORCI or modulates direct dephosphorylation of these substrates (or 

both) (Figures 4.1 A, 4.2A and 4.4). Analysis of upstream kinases showed that over­

expression of Tip41 had no effect on phosphorylation of Akt (S473 or T308) or TSC2 

(T1462), narrowing down the list of potential substrates within the cell signal cascade 

above mTORCI (Figures 3.10 and 4.3). To try and identify the PP2ATjP4i target 
upstream of mTORCI, Tip41 was expressed in TSC2'A MEFs (Figure 4.12A). In this
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instance Tip41 over-expression could not overcome the constitutive activation of 

mTORCI achieved by loss of TSC2.

Of interest, Tip41 expression lead to the depletion of Raptor, which was rescued by 

treatment with the proteasomal inhibitor MG132 (Figure 3.7). This indicates that 

PP2AcTip4i may inhibit mTORCI by promoting the proteasomal degradation of 

Raptor. Phosphorylation of Raptor at S863 by mTORCI is induced by Rheb binding 

and is required for phosphorylation of downstream substrates (Wang et al., 2009). In 

addition to mTOR-mediated phosphorylation events of Raptor, AMPK inhibits 

mTORCI by phosphorylation of Raptor at T1227 and S1345. AMPK-dependent 

phosphorylation of Raptor promotes dissociation of Raptor from mTORCI to the 

cytosol, where it is sequestered by 14-3-3 (Gwinn et al., 2008). As binding to 14-3-3 

to Raptor protects from interaction with the 26S proteasome, free Raptor may be 

subject to degradation (Li et al., 2002, Shumway et al., 2003, Cai et al., 2006). As 

Raptor is subject to both activating and inhibitory phosphorylation events, PP2AjiP4i 

may be involved in regulation of Raptor phosphorylation leading to its destabilisation 

(Gwinn et al., 2008). During completion of this thesis, Dr A. Tee’s lab acquired a 

panel of phospho-Raptor antibodies. It would have been of interest to see whether 

Tip41 over-expression could result in Raptor dephosphorylation, interaction with 14- 

3-3 and its destabilisation. Rapamycin is known to cause reduction in Raptor 

phosphorylation that may be accountable for its destabilisation within mTORCI.

Thus Tip41 may inhibit mTORCI by regulating phosphorylation of Raptor, thereby 

leading to accumulation of free Raptor and resultant degradation of the protein 

(Figure 3.7).

On consideration, these data create a clear paradigm - if Tip41 inhibits mTORCI by 

promoting Raptor degradation, how did Tip41 over-expression not overcome 

constitutive Rheb loading caused by loss of TSC2? Although the exact mechanism 

of Rheb-induced mTORCI activation is not known, we do know that Rheb induces 

substrate binding (Avruch et al., 2009, Sato et al., 2009). Therefore it may be more 

accurate to describe Rheb as a modulator of substrate binding rather than an 

activator of mTORCI perse. As Raptor is the mTORCI subunit involved in 

substrate binding, it follows that Rheb may modify Raptor in some way, in a GTP- 

dependent manner. If Rheb is constitutively GTP-bound, as in the TSC2'/_ MEFs, it
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may therefore be permanently bound to membrane-bound mTORCI and 

continuously promote Raptor-substrate binding. In these instances, Rheb may 

prevent PP2ATip4i, or an unidentified intermediate, gaining access to Raptor and 

prevent PP2Ar,P4i mediated dephosphorylation. In line with this evidence, it has 

been shown that Rheb over-expression can induce Raptor phosphorylation. Thus it 

is likely that PP2AijP4i may indirectly oppose Rheb-induced mTORCI activation.

6.2.3 Alpha4 may regulate activity of PP2A-nP4i

Tip41 purification did not show interaction with the regulatory B and structural A 

subunit indicating that PP2ATjP4i is a distinct phosphatase complex to the classical 

trimeric complex (Figure 3.2). In contrast, purified Tip41 also co-purified Alpha4 

(Figure 3.2A). As Tip41 was shown to directly bind PP2Ac (Figures 3.3A and 3.3B), 

this indicates that Alpha4 and Tip41 have individual binding sites within PP2Ac and 

may indeed form a distinct trimeric complex. As Alpha4 has been shown as an 

inhibitor of PP2Ac (Nanahoshi et al., 1998, Grech et al., 2008), and Tip41 appears to 

be an activating subunit of PP2Ac, this could be a unique PP2Ac-containing trimeric 

complex composed of an activating and inhibitory subunit. Whilst both regulatory 

subunits in the classical PP2A heterotrimer are required for catalytic activity, this 

presents Tip41-PP2A-Alpha4 as a potential novel PP2A trimeric enzyme. Tip41 

therefore may have an analogous role to the role in budding yeast. For instance, 

rather than binding Alpha4 to remove inhibitory activity towards PP2Ac, Tip41 

activates PP2Ac directly.

Analysis of the PP2AAiPha4 complex shows reduced association following mTORCI 

inhibition (Murata et al., 1997, Yamashita et al., 2005). This provides further 

evidence for the interesting possibility that Tip41 and Alpha4 provide individual and 

opposing roles towards PP2Ac. Alpha4 may interact with PP2Ac resulting in 

inhibition, whereas these data show that Tip41 is constitutively bound to PP2Ac 

(Figure 3.3C). Activity of PP2A-nP4i may therefore depend on the binding of Alpha4, 

which may interact with PP2ATjP4i during activation of mTORCI. Further research to 

investigate this possibility and characterise the way that Tip41 prevents Alpha4- 

mediated inhibition of PP2Ac is required.
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As Alpha4 has many roles in the cell, it is very likely that Tip41 also has additional 

roles than just to modulate mTORCI signalling. In addition to a role in mTORCI 

signalling, PP2AAiPha4 is also involved in dephosphorylation of Midlinel to allow 

migration along MTs (Aranda-Orgilles et al., 2008). This is required for MT 

regulation and mutations within the Alpha4 binding region of Midlinel lead to the 

disease OS (Trockenbacher et al., 2001). In addition PP2AAiPha4 dephosphorylates 

CaMKII in the CNS which is required for memory and learning (Yamashita et al., 

2006).

6.2.4 PP2Ar,p4i-substrate binding may be regulated by phosphorylation of 
Tip41

Tip41 has been identified as a phosphoprotein in budding yeast that was sensitive to 

treatment with rapamycin (Jacinto et al., 2001). Although interaction with PP2Ac has 

been investigated briefly, regulation of PP2ATjP4i has not been investigated 

extensively. As PP2AnP4i interaction was unaffected by insulin or rapamycin (Figure 

3.3C), regulation of the activity of this complex is not likely achieved by intra-complex 

interactions. PP2Ac was shown to interact with S6K1 in response to rapamycin 

treatment (Figure 3.4), Although the subunit involved in substrate recognition was 

not identified, regulation of PP2Ac with S6K1 may take place via modification of 

substrates binding. As PP2Ac substrate binding is mediated by regulatory subunits, 

it follows that Tip41 regulates PP2Ac substrate binding in relation to mTORCI 

signalling. Regulation of Tip41, and therefore PP2Ajip4i substrate binding, may 

occur via phosphorylation of Tip41. As Tip41 phosphorylation decreases in 

response to insulin, Tip41 appears to be regulated by a kinase that is inhibited in 

response to growth factors (Figure 3.11). If Tip41 acts as an activating PP2A 

subunit to inhibit mTORCI signalling, dephosphorylation following insulin stimulation 

may induce inactivation of Tip41.

The classical Akt kinase substrate GSK3 inhibits elF2B via phosphorylation in 

unstimulated cells. Upon insulin stimulation, GSK3 is inactivated upon 

phosphorylation by Akt leading to accumulation of hypophosphorylated elF2B that 

then promotes translation initiation (Wang et al., 2001, Wang et al., 2002, Mariappan 

et al., 2008). Tip41 phosphorylation may be regulated in a similar manner. If 

indeed PP2ATiP4i is also regulated by binding of Alpha4, this may provide a dual
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mechanism for regulation of the complex. As the interaction between PP2A and 

Alpha4 is modulated upon insulin treatment while the interaction between PP2A and 

Tip41 is constitutive, it is possible that binding of Alpha4 negatively regulates the 

PP2Ajip4i complex in addition to Tip41 phosphorylation in response to insulin. 

Alternatively, phosphorylation of Tip41 may promote binding of Alpha4 to PP2Ac, or 

indeed Alpha4 binding may promote phosphorylation of Tip41. In summary, it 

appears that upon insulin stimulation, Tip41 phosphorylation is impaired that leads to 

inhibition of the PP2ATjP4i complex and mTORCI activation.

6.2.5 PP2Atip4i may oppose Rheb-mediated activation of mTORCI
Analysis of Tip41 regulation and function raises the interesting possibility that Tip41 

in human cells is a direct regulatory subunit of PP2Ac. If this is the case, Tip41 may 

mediate PP2Ac substrate binding. As an inhibitor of mTORCI signalling, one of the 

PP2A substrates that interacts with Tip41 clearly lies within the pathway. PP2A 

activity is regulated by substrate binding, as rapamycin upregulates S6K1 interaction 

with the phosphatase. In the case of PP2ATip4i, substrate binding could be induced 

by hyperphosphorylation of Tip41 in nutrient deprived cells. This may lead to 

dephosphorylation of Raptor resulting in release from the mTORCI complex (Figure 

6.1). Free Raptor may then be subject to degradation by the 26S proteasome. As 

Tip41 over-expression was not able to overcome Rheb-induced mTORCI 

hyperactivation, GTP-Rheb may permanently interact with membrane-localised 

mTORCI thus blocking interaction with Tip41. It is therefore possible that PP2A-nP4i 

opposes the Rheb-induced increase in Raptor-substrate binding by regulating 

phosphorylation of Raptor leading to release and proteasomal degradation. Rheb 

counteracts this by binding mTORCI and enhancing mTOR substrate interaction 

with Raptor. In summary, in unstimulated cells it appears that Tip41 is 

phosphorylated leading to activation of PP2A-nP4iand degradation of Raptor. 

Stimulation with growth factors leads to dephosphorylation of Tip41 and inhibition of 

PP2ATjP4i activity with Raptor. In addition, the accumulation of GTP-Rheb activates 

mTORCI by increasing Raptor-substrate binding.

6.2.6 A specific nuclear isoform of Tip41 may regulate activity of HIF1
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Figure 6.1: Tip41 and Ba are PP2Ac regulatory subunits involved in inhibition of 
mTORCI signalling. Tip41 appears to form part of a trimeric complex with PP2Ac 
and Alpha4, which directly opposes Rheb-mediated activation of mTORCI and 
promotes Raptor degradation. Accumulation of hypopsohrylated Tip41 occurs on 
activation of insulin signalling, and may provide a mechanism of PP2ATip41 inhibition. 
PP2ABc[ may alter membrane localisation of mTORCI thus preventing interaction with 
membrane-bound Rheb. Ubiquitination of Ba, possibly via CUL4-DDB1, may be 
involved in an mTORCI feedback loop resulting in inhibition of PP2ABot. A specific 
nuclear PP2Ac complex with ubiquitinated Tip41 may regulate activity of HIF1.
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The cellular distribution of Tip41 has previously not been investigated. Cellular 

fractionation showed that both nuclear and cytoplasmic forms of Tip41 exist, but that 

the nuclear form of Tip41 is subject to a large, approximately 8kDa, post-translational 

modification (Figure 4.11). This nuclear form of Tip41 is present equally on insulin 

and rapamycin treatment hence is not regulated directly by mTORCI, although of 

interest would be the proportion of nuclear Tip41 on serum starvation as 

phosphorylation of Tip41 is responsive to insulin but not rapamycin. As knockdown 

of Tip41 results in a massive increase in HIF1 activity (Figure 4.10), nuclear Tip41 

could specifically be involved (directly or indirectly) in inhibition of mTORCI 

responsive transcription factors in the nucleus (Figure 6.1). In support of this, a 

nuclear PP2AAIpha4 complex has previously been observed in complex with 

mTORCI, which is involved in regulation of STAT1 (Fielhaber et al., 2009).

The molecular shift caused by post-translational modification of Tip41 is indicative of 

ubiquitination. Both mono- and polyubiquitination occur within the cell, which both 

have diverse consequences for the target protein. Tip41 appears to by 

monoubiquitinated, which could alter its cellular localisation. The transcription factor 

F0X04, for example, is ubiquitinated in response to oxidative stress resulting in 

nuclear translocation and activation of transcriptional activity (van der Horst et al., 

2006, Brenkman et al., 2008). Therefore, Tip41 may similarly either be ubiquitinated 

leading to nuclear shuttling. An alternative is that Tip41 forms part of a complex that 

translocates to the nucleus where it is ubiquitinated. In summary, a nuclear 

ubiquitinated form of Tip41 exists which may be involved in regulation of transcription 

factors downstream of mTORCI. Therefore two pools of Tip41 may be present 

within the cell with distinct biological functions.

6.2.7 PP2ABa attenuates mTORCI signalling

PP2ABa is a classical PP2A heterotrimeric complex consisting of PP2Ac along with a 

structural A subunit and regulatory Ba subunit. Previously PP2Aea has been shown 

to inhibit phosphorylation of S6K1, as indicated by studies with the adenoviral protein 

E40RF4. Although PP2ABa causes dephosphorylation of S6K1 and 4EBP1,

E40RF4 mediated activation of S6K1 is rapamycin sensitive. Furthermore, E40RF4 

was shown not to affect PI3K/Akt activation (O’Shea et al., 2005(a)). It was proposed
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that PP2Ab<x acts in a pathway parallel to insulin/growth factor activation of mTORCI 

Previous data regarding the role of PP2Aea in mTORCI signalling had been mainly 

indirect via studies using over-expressed E40RF4 protein. Thus the role of PP2Aea 

specifically within mTORCI warranted further investigation.

Knockdown of Ba resulted in a small but significant (p=<0.05) increase in S6K1 

phosphorylation and HIF1 activation (Figure 5.4). Again as both mTORCI 

substrates were affected, this implicated PP2Ab<x as acting upstream of mTORCI.

The small effect of Ba knockdown in comparison to the action of E40RF4 may be 

due to functional redundancy of Ba. Ba and B5 are part of the same family and are 

ubiquitously expressed. Although encoded by separate genes, Ba and B5 share 81% 

amino acid sequence homology (Strack et al., 1999). It is therefore conceivable that 

the proteins share some functional redundancy, and indeed both subunits mediate 

PP2Ac regulation of Calcium/calmodulin-dependent protein kinase IV (Reece et al., 

2009). In support of this, E40RF4 binds all isoforms of B regulatory subunit. As 

only Ba and B8 are ubiquitously expressed, the activation of mTORCI may be due 

to inhibition of P P 2 A d in complex with Ba or B6. In contrast to knockdown of Ba, 

over-expression of Ba resulted in inhibition of S6K1 phosphorylation (Figure 5.5B).

This further supports the theory of functional redundancy as whereas knockdown of 

Ba may result in compensatory activity of B8, no such system could exist for an over­

expression.

As well as redundancy between Ba and B5, other unknown and alternative 

phosphatase complexes work downstream of mTORCI (which would also involve 

PP2ATip4i) may be upregulated as a consequence of Ba knockdown. Such 

compensation between phosphatase complexes may mask any effect of Ba 

knockdown towards the phosphorylation of 4EBP1 and S6K1. In support of this, 

other PP2A complexes involved in specific substrate dephosphorylation downstream 

of mTORCI have previously been identified. For instance, PP2AB’ specifically 

dephosphorylates S6K1 but not 4EBP1 (Hahn et al., 2010). Therefore phosphatase 

complexes appear to act at multiple points in the pathway dependent on the 

regulatory subunits.

212



6.2.8 PP2ABa acts downstream of the TSC1/2 complex

As over-expression of Ba inhibits S6K1 phosphorylation in cells lacking TSC2 

(Figure 5.5B), this shows that PP2ABa inhibits mTORCI signalling downstream of the 

TSC1/2 complex, although the exact point of action is unclear. Knockdown of Ba 

had no effect on phosphorylation of Akt or TSC2 (Figure 5.5A) providing evidence 

that the protein acts in a parallel pathway to insulin and growth factors to inhibit 

phosphorylation of downstream mTORCI targets. Amino acids stimulate mTORCI 

activity by altering cellular localisation of the complex. Cytosolic mTORCI is 

translocated to membrane structures in order to interact with active Rheb, which is 

membrane-bound, and facilitates phosphorylation of downstream substrates (Hara et 

al., 1998, Gulati et al., 2008, Maehama et al., 2008, Sancak et al., 2008). This 

translocation event of mTORCI is required as a priming activation of mTORCI and 

is dependent on amino acid sufficiency, as insulin fails to activate mTORCI in the 

absence of amino acids (Byfield et al., 2005, Smith et al., 2005). PP2ABa may 

therefore prevent mTORCI translocation in the absence of amino acids (Figure 6.1). 

Over-expression of Ba may prevent translocation of mTORCI in TSC2'A MEFs, 

which may inhibit activation of mTORCI regardless of the GTP-loading of Rheb 

(Figure 5.5B).

A number of different pathways for mTORCI translocation in response to amino 

acids have been identified. Human Vps34, RalA and the Rag GTPases have all 

been shown to mediate mTORCI membrane localisation (Gulati et al., 2008, 

Maehama et al., 2008, Sancak et al., 2008). PP2Ab<x may therefore inhibit any of 

these proteins in order to inhibit mTORCI signalling. Also in parallel to PI3K- 

mediated mTORCI activation is the response to PA. The lipid second messenger is 

synthesised by PLD1, which is activated by Rheb. It is thought that PA-binding to 

mTORCI may enable membrane localisation. Therefore PP2ABa may interfere with 

Rheb-induced PLD1 activation therefore preventing membrane localisation in this 

manner (Fang et al., 2002, Sun et al., 2008). MAPK also activates mTORCI 

downstream of the TSC1/2 complex. RSK phosphorylates Raptor at a number of 

sites resulting in enhanced mTORCI activity by an unknown mechanism (Carriere et 

al., 2008). This provides an additional point of action for PP2ABa to inhibit mTORCI 

that could involve modulation of Raptor phosphorylation.
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6.2.9 PP2ABa may be downregulated by an mTORCI feedback mechanism 

involving the ubiquitin ligase CUL4-DDB1

Purification of GST-PP2Ac identified Ba polyubiquitination in response to insulin 

treatment that was abrogated by rapamycin (Figure 5.2A). This novel finding 

provides evidence that PP2ABa may be subject to mTORCI-mediated 

polyubiquitination. In addition, this data implies that ubiquitination of the Ba subunit 

may regulate PP2Ac phosphatase activity in an mTORCI dependent manner. As the 

CUL4-DDB1 E3 ligase is required for mTORCI activity, this indicates that CUL4- 

DDB1 may ubiquitinate Ba in response to insulin stimulation thus removing inhibition 

from the phosphatase (Figure 6.1). Polyubiquitination classically targets proteins for 

degradation by the 26S proteasome. Thus the requirement of CUL4-DDB1 for 

mTORCI activity may be to remove the negative regulatory phosphatase activity of 

PP2Ab<x, by targeting Ba for degradation (or inhibition via ubiquitination). Ba total 

protein levels were unaffected upon its ubiquitination, suggesting that ubiquitinated 

Ba is still relatively stable. As the time of treatment with insulin was only 30 min, this 

may not be long enough for proteasomal degradation to occur. It would therefore be 

of interest to investigate the role of extended insulin stimulation on Ba levels within 

the cell to determine whether ubiquitination results in its protein degradation. Given 

that rapid dephosphorylation of mTORCI substrates occur upon treatment with 

rapamycin, it is unlikely that protein degradation of Ba would be the main regulatory 

mechanism.

Alternatively, polyubiquitination of Ba may not target the protein for degradation, as 

polyubiquitination has other known consequences within the cell. These alternative 

roles centre around the ability of ubiquitin to act as a binding platform for proteins 

containing a ubiquitin binding domain or ubiquitin interacting motif. For example, 

signalling to NF-kB requires polyubiquitination of TAK1 in order to allow binding of 

TAB proteins required to activate autophosphorylation of the protein (Shibuya et al., 

1996, Sakurai et al., 2000, Takesu et al., 2000, Kanayama et al., 2004, Kishida et al., 

2005). Also, ubiquitination of Akt is essential for activation and may similarly provide 

a binding site for cofactors (Yang et al., 2009, Yang et al., 2010). If the role of
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polyubiquitination of Ba is not to cause degradation of the protein, then it may 

provide a binding site for unknown inhibitory proteins.

6.2.10 PP6c enhances mTORCI signalling

PP6c is the functional homologue of budding yeast Sit4  (Bastians & Ponstigl, 1996). 

As Sit4 dephosphorylates TORC1 substrates in yeast, a role of PP6c in mTORCI 

signalling was investigated (Wang et al., 2003). On knockdown of PP6c, 

phosphorylation of S6K1 (Figure 5.7A) and activity of HIF1 (Figure 5.7B) were 

reduced, indicating inhibition of mTORCI. This is in contrast to the expected result, 

as knockdown of a phosphatase would be expected to increase phosphorylation of 

substrates. This may indicate that PP6 is involved in dephosphorylation of an 

mTORCI inhibitory protein such as DEPTOR or PRAS40. Post-translational 

modification of DEPTOR is required for activation of mTORCI signalling (Peterson et 

al., 2009). Similarly, PRAS40 is phosphorylated by Akt and mTOR relieving 

inhibition on mTORCI (Oshiro et al., 2007, Sancak et al., 2007, Wang et al., 2008). 

PP6c may dephosphorylate either of these inhibitors to allow mTORCI activation. A 

more intriguing explanation stems from a finding that Tip41 also binds PP6c, in 

addition to PP2Ac (Smetana & Zanchin, 2007). Knockdown of PP6c may relieve 

Tip41 from PP6c binding and allow free Tip41 to bind PP2Ac thus leading to 

increased inhibitory PP2A-nP4i acting towards mTORCI. Higher levels of PP2A-np4i 

complexes in cells as a consequence of loss of PP6c expression would explain the 

observation why the activity of S6K1 and HIF1 activity were reduced upon PP6c 

knockdown. As PP6c knockdown had no effect on phosphorylation of Akt or TSC2 

(Figure 5.8), the role of PP6c appears to mirror that of Tip41, providing further 

evidence for this theory.

6.3 Significance in Relation to Human Disease
6.3.1 Cancer
The raison d’etre of basic science is to increase our understanding of the molecular 

processes underlying human disease. Considering that upregulation of mTORCI is 

strongly associated with a number of human diseases, understanding the inhibition 

of the pathway is a crucial element that has received comparatively little attention. 

This project has identified two phosphatase complexes that negatively regulate
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mTORCI. Both Tip41 and Ba are PP2Ac regulatory subunits that inhibit signalling to 

characterised substrates of mTORCI including 4EBP1, S6K1 and HIF1a (Figures 

4.1 A, 4.2A, 4.4 and 5.5A). As hyperactivation of mTORCI is a hallmark of a number 

of cancers, inactivation of either of these complexes could therefore promote 

carcinogenesis. Indeed a direct link between Ba and carcinogenesis was uncovered 

by miRNA analysis of lung and hepatic cell carcinomas. Increased levels of 

miRNA31 and miRNA222 are found in lung and hepatic cell carcinoma (Liu et al., 

2010, Wong et al., 2010). As these promote degradation of Ba mRNA, 

downregulation of PP2Aea is directly associated with these cancers. In addition, high 

levels of miRNA31 and miRNA222 are associated with increased tumorigenicity and 

reduced life expectancy (Liu et al., 2010, Wong et al., 2010). Theoretically this could 

be due to activation of mTORCI, indicating that deregulation of mTORCI may be 

associated with a more aggressive phenotype in relation to lung and hepatic cell 

carcinoma. S6K1 activity is strongly associated with breast and colon cancer 

(Barlund et al., 2000, Slattery et al., 2010). Therefore inactivating mutations of Tip41 

or Ba could promote tumour growth associated with hyperactivation of S6K1.

Stabilisation of HIF1 is associated with metabolic advantage of solid tumours by 

inducing transcription of genes involved in glycolysis and cell survival, thus allowing 

tumours to progress in the absence of oxygen. Specifically, tumours with loss of 

PTEN or upregulation of Akt are sensitive to transformation by increased 

transcription of HIF1-regulated genes via activation of mTORCI (reviewed in Denko, 

2008). For example, HIF1 activates transcription of a number of glycolytic enzymes 

including GLUT1 and GLUT3, which increases cellular glucose uptake (Chen et al., 

2001). In addition, HIF1 increases transcription of enzymes involved in glycolysis 

(Semenza et al., 1994). Therefore, promotion of glycolysis by HIF1 is a two-winged 

approach, by both increasing glucose uptake and increasing glycolytic enzymes 

required to process with glucose once in the cell in order to generate energy. By 

promoting glycolysis over oxidative phosphorylation, tumours bypass the 

requirement for oxygen allowing growth in the absence of vascularisation. HIF also 

encourages vascularisation, which then feeds the tumour with additional oxygen and 

nutrients. If a specific nuclear isoform of Tip41 exists that specifically regulates HIF1 

(Figure 4.11), Tip41 down-regulation could theoretically promote tumorigenesis
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through this mechanism. Therefore Tip41 could be critical in the regulation of HIF1 

directly in the nucleus, and thus preventing expression of glycolytic genes. Loss of 

nuclear Tip41 activity, by loss of post translational modification that targets Tip41 to 

the nucleus or by mutation, for instance, could prevent regulation of HIF1. This 

could induce transformation of a cell by loss of requirement for vascularisation.

6.3.2 TS

The inherited hamartoma syndrome TS is characterised by the development of 

benign tumours in the brain, kidneys, heart, lungs and skin. Tumours within the 

brain lead to seizures and developmental delay, with many TS patients also being 

diagnosed with autism (reviewed in Inoki et al., 2005, Tee & Blenis, 2005, Rosner et 

al., 2008). Either TSC1 or TSC2 are mutated in patients with TS resulting in 

hyperactivation of signalling to mTORCI. For this reason rapamycin and related 

analogues are undergoing clinical trial for treatment of the disease (Davies et al., 

2008, McCormack et al., 2008). As mTORCI hyperactivation underlies many of the 

phenotypic characteristics of TS, understanding inhibitory networks working within 

the pathway will provide much needed information about the cellular events that 

cause the disease.

Both Tip41 and Ba are PP2Ac regulatory subunits that impact on mTORCI and 

over-expression of either subunit in TSC2'A MEFs provided crucial information about 

how the respective PP2A complexes act within the signalling pathway (Figures 

4.12A and 5.5B). Over-expression of Tip41 did not reduce S6K1 phosphorylation in 

TSC2'a MEFs, indicating that Tip41 acts upstream of mTORCI to inhibit signalling 

(Figure 4.12A). This also implies that cells within TS patients are resistant to the 

inhibitory action of PP2ATip4i- On the other hand, PP2ABa still reduces S6K1 

phosphorylation in the absence of TSC2 (Figure 5.5B). Therefore, deregulation of 

mTORCI by loss of TSC2 is still sensitive to the inhibitory action of PP2ABa. 

Therefore it appears that loss of inhibitory PP2ATiP4i activity also contributes to the 

progression of TS, in addition to hyperactivation of mTORCI. So it appears that two 

mechanisms of mTORCI activation are at work in TS. Firstly, direct activation of 

mTORCI by loss of inhibitory TSC1/2 activity, and secondly through loss of inhibitory 

activity of PP2ATiP4i. Intriguingly, mTORCI activation in TSC2'/" MEFs is still
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sensitive to PP2Abcx regulation. As Ba may be negatively regulated by ubiquitination 

mediated by the CUL4-DDB1 E3 ligase associated with mTORCI, this may provide 

a therapeutic opportunity for treatment of TS. If ubiquitination of Ba could be 

prevented, inactivation of mTORCI by PP2Ab<x could be overcome leading to 

activation of phosphatase regulation and inhibition of mTORCI activity.

6.3.3 Type II diabetes

Activation of a negative feedback loop downstream of mTORCI underlies the 

development of type II diabetes, which is characterised by the failure of 

hyperinsulinaemia to rescue the uptake of glucose in adipose and skeletal muscle 

tissue. Chronic activation of mTORCI leads to phosphorylation of IRS-1 at S636 by 

mTOR and S6K1 leading to reduced association with PI3K (Bouzakri et al., 2003, 

Veileux et al., 2010). This renders Akt insensitive to signalling from PI3K, and by 

extension, insulin. Indeed mice lacking S6K1 are resistant to the development of 

type II diabetes, underlining the importance of mTORCI feedback in the 

development of the disease (Urn et al., 2004, Tremblay et al., 2007). Direct 

evidence for the role of mTORCI feedback was gained by analysis of human 

skeletal muscle biopsies. Patients with type II diabetes showed reduced association 

between PI3K and IRS-1 that was concurrent with increased phosphorylation of IRS- 

1 at S636 (Bouzakri et al., 2003). In addition, chronic insulin-induced mTORCI 

activity leads to reduced membrane translocation of the glucose transporter GLUT4 

(Taha et al., 1999, Gaster et al., 2001, Garcia-Souza et al., 2008). This is thought to 

induce glucose-mediated tissue damage associated with type II diabetes. Therefore 

dissociation of PI3K and IRS-1 is central to the pathological phenotype of type II 

diabetes due to the inability of the cell to respond to insulin. Knockdown of Tip41 

using shRNA resulted in activation of the negative feedback loop by increasing 

phosphorylation of IRS-1 at S636/639 (Figure 4.9B). Therefore activation of 

mTORCI by loss of regulatory PP2A-Tip41 activity results in a phenotype that 

mimics type II diabetes. This indicates that PP2ATjp4i inactivation is required for the 

development of the disease. Therefore loss of PP2ATjP4i activation and/or function 

may be an underlying signalling event in type II diabetes.

6.3.4 AD
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The pathology within the AD brain consists of a number of extracellular senile 

plaques made up of Ap along with hyperphosphorylated Tau leading to formation of 

neurofibrillary tangles. The disease has been associated with a degree of insulin 

resistance and hence the term ‘type III diabetes’ has been used to describe AD 

(Castri et al., 2003, Gupta et al., 2011). In normal brain tissue, the level of Tau 

phosphorylation decreases with age. in the AD brain, Tau is hyperphosphorylated, 

which is thought to result in aggregation and formation of neurofibrillary tangles. 

Phosphorylation of Tau is controlled by GSK3 and PP2ABa, which phosphorylate and 

dephosphorylate the protein, respectively (Martin et al., 2009, Qian et al., 2010). 

Dysfunction of PP2Ab« and mTORCI have individually been associated with 

development of AD (Evans & Hemmings, 2000, Nunbahkdi-Craig et al., 2007, Xu et 

al., 2008, Deters et al., 2009, Qian et al., 2010). Upregulation of insulin signalling, 

with a concomitant increase in mTORCI activity, is associated with AD in both model 

systems and patient tissue (An et al., 2003, Ferrando-Miguel et al., 2005, Griffin et 

al., 2005, Damjanac et al., 2007, Meske et al., 2008). Hyperphosphorylation of Tau 

is directly linked with hyperactivation of mTORCI, as rapamycin inhibits Tau 

phosphorylation (An et al., 2003, Ferrando-Miguel et al., 2005).

Combining this information leads to the interesting conclusion that PP2ABtt may be 

directly inhibited by mTORCI, and upregulation of mTORCI activity in the AD brain 

may lead to inhibition of PP2Abcc and therefore hyperphosphorylation of Tau. The 

data in this thesis present the possibility that PP2Ab<x inhibits mTORCI and is 

negatively regulated by the complex by ubiquitination (Figure 5.2A) via the DDB1- 

CUL4 E3 ligase that is associated with mTORCI (Ghosh et al., 2008). Therefore it 

may be of interest to investigate the level of Ba ubiquitination in the AD brain, and 

could present a therapeutic opportunity for treatment of the disease. Theoretically, 

inhibition of ubiquitination of Ba may prevent neurofibrillary tangle formation by 

suppression of Tau phosphorylation.

6.4 Future directions
Following the results of this project, it is clear that PP2ATip4i is involved in attenuation 

of mTORCI signalling. What is not clear, however, is the exact point of action. 

Results from Figures 4 .3A and 4.12A indicate that PP2ATiP4i acts upstream of the
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TSC1/2 complex, whereas Figures 3.10 and 4.3A show that Akt phosphorylation is 

unaffected by modulation of Tip41 levels. Further insight into this comes from Figure 

3.7, which shows that Tip41 causes proteasomal degradation of Raptor. From this 

arises the interesting possibility that Tip41 modulates Rheb-mediated activation of 

mTORCI. The method of mTORCI activation by Rheb has not been identified, nor 

has the GEF responsible for the GTP-loading of the protein. It is therefore possible 

that identifying the substrate of PP2A-nP4i could concurrently identify either of these 
factors.

Also of particular interest would be to further investigate the role of a specific nuclear 

isoform of Tip41 involved in the regulation of HIF1. As HIF1 has particular 

implications in tumorigenesis, identifying regulatory mechanisms of the protein may 

provide further insight into cancer progression at a cellular level. In addition, the fact 

that a specific nuclear isoform of Tip41 exists reaises the possibility that PP2Ajjp4i is 

involved in regulation of other transcription factors. For example, mTORCI is also 

involved in the regulation of STAT3 and YY1. It wold therefore be of interest to 

investigate whether PP2A-nP4i is involved in attenuation of the activity of these 

additional factors, in addition to HIF1.

Regarding findings on the Ba regulatory subunit of PP2A, the possibility of PP2ABa 

regulation via mTORCI-associated ubiquitin ligase activity to be particularly 

interesting (Figure 5.2A). Clearly this is theoretical, but a small number of simple 

experiments may shed light onto whether CUL4-DDB1 indeed negatively regulates 

PP2ABa through unbiquitination. If this is the case, this would provide another 

mechanism of mTORCI activation, whereby mTORCI itself regulates phosphatase 

activity upstream of the complex.

Finally, the interesting possibility that knockdown of PP6c leads to enhanced 

PP2ATiP4i activity would provide further clarity as to the role of PP2ATjP4i in mTORCI 

signalling. Figure 5.7 shows that phosphorylation of S6K1 is attenuated on 

knockdown of PP6c, which is contrary to the expected result taking into 

consideration that loss of phosphatase ctivity would be expected to enhance 

signalling. As Tip41 has been shown to bind PP6c, in addition to PP2Ac (McConnell 

et al, 2007), loss of PP6c could therefore promote PP2AT,P4i complex formation
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leading to inhibition of mTORCI and substrates. Uncovering whether this theory is 

correct would not only provide further evidence for the inhibitory role of Tip41 

towards mTORCI, but would also clarify that PP6c is not acting to somehow directly 
enhance signalling to the complex.

6.5 Summary

Analysis of phosphatase complexes in the mTORCI signalling pathway has provided 

a degree of clarity regarding regulation of the pathway that may be bypassed in a 

number of pathologies. Further investigation into phosphatase regulation will allow 

greater understanding of the molecular processes underlying diseases such as TS 

and AD, which could provide points of therapeutic intervention. In addition, inhibition 

of HIF1 is a topic where further investigation could lead to the understanding of 

molecular principles underlying cancer progression that affects countless individuals. 

Type II diabetes is attributed to obesity and presents the biggest challenge in health 

to the western world. Therefore, understanding the molecular causes of the disease 

is crucial to providing effective treatment. As loss of PP2A-Tip41 activity mimics the 

molecular features of type II diabetes, loss of Tip41 regulation may play a key role in 

insulin resistance. These discussions show that phosphatase regulation of the 

mTORCI pathway may prove central to understanding the mechanism behind a 

wide variety of disease, from neurological to metabolic, amongst others. Whilst the 

data in this thesis provides further insights into the role of PP2A in the mTORCI 

pathway, further research is required to fully elucidate the regulatory mechanisms 

and the exact point of action. Therefore, whilst specific PP2A complexes acting in 

the mTORCI pathway have been identified, fully appreciating the opposition of 

kinase activity by phosphatases is required and will no doubt lead to important steps 

on the road to our understanding of the molecular causes of disease.
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