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A bstract

The paradigm Black-Scholes model for risky asset prices has occupied a central place in asset- 

liability management since its discovery in 1973. While the underlying geometric Brownian 

motion surely captured the essence of option pricing (helping spawn a multi-billion pound 

derivatives industry), three decades of statistical study has shown th a t the model departs 

significantly from the realities of returns (increments in the logarithm of risky asset price) 

data.

To remedy the shortcomings of the Black-Scholes model, we present the fractal activity 

time geometric Brownian motion model proposed by Chris Heyde in 1999. This model 

supports the desired empirical features of returns including; no correlation but dependence, 

and distributions with heavier tails and higher peaks than  Gaussian. In particular, the 

model generalises geometric Brownian motion whereby the standard Brownian motion is 

evaluated at random activity time instead of calendar time.

There are also strong suggestions from literature th a t the activity time process here is ap­

proximately self-similar. Thus we require a way to accommodate both the desired distribu­

tional and dependence features as well as the property of asym ptotic self-similarity. In this 

thesis, we describe the construction of this fractal activity time; based on chi-square type 

processes, through Ornstein-Uhlenbeck processes driven by Levy noise, and via diffusion- 

type processes. Once we validate the model by fitting real data, we endeavour to  state a 

new explicit formula for the price of a European option. This is made possible as Heyde’s 

model remains within the Black-Scholes framework of option pricing, which allows us to  use 

their engendered arbitrage-free methodology.

Finally, we introduce an alternative to  the previously considered approach. The motivation 

for which comes from the understanding th a t activity time cannot be exactly self-similar. We 

provide evidence th a t multi-scaling occurs in financial data  and outline another construction 

for the activity time process.
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Chapter 1

Introduction

W ith many modern finance applications such as; derivative pricing, systematic trading and 

risk control, risky asset modelling has become an extremely popular task. The growing 

interest largely stems from the complexities found in real-life data, and is shared by both 

theorists in academia and practitioners in industry. Such price movements over time appeal 

to those who crave a sense of order in a financial world where there are a convolution of 

industrial, economic and political factors. In recent years, many elaborate models have been 

built to overcome these challenges. As a result, there now exists a vast and rapidly expanding 

literature, in the field of M athematical Finance, dedicated to  the topic of building, validating 

and developing suitable models for risky assets.

An asset is said to be risky if it has an uncertain future (unlike a bank account, for example, 

where a fixed interest is added each year). They can come in many different forms; a stock 

traded a t some exchange, a quoted interest rate, a foreign exchange ra te  etc, and can be 

sampled a t many different frequencies; monthly, daily, intra-daily etc. The main focus of 

M athematical Finance, however, is not these prices themselves, but their random changes 

over time. If one denotes P ( t ) , t  > 0, as the price of a risky asset a t tim e t , the so-called 

returns X T(t), at time t and scale r  is simply the relative variation of the price from t — r  

to £,

X r(t)  =  P W ~ P ( t ~ r ) _
T

If r  is small enough, one has approximately,

X T(t) — log-P(t) — log P (t  — t ).

For consistency with the statistical studies of past and present papers in M athematical 

Finance, we set r  =  1 in this thesis, and use the (one-period) returns process X {t)  = X \ ( t )
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exclusively. These fluctuations are convenient to model because the resulting time series has 

the attractive statistical properties of stationarity  and ergodicity.

Most academics would agree th a t the field of M athematical Finance dates back to the be­

ginning of the 20th century. Indeed, it was Louis Bachelier’s dissertation, “The Theory of 

Speculation” [10], first published in 1900, which provided us with; many concepts of stochas­

tic analysis, the first model of the stochastic process known today as Brownian motion and 

a theory for the valuation of options. Unfortunately however, Bachelier was not recognised 

for his immense contribution, as he died in 1946 relatively unknown. In fact, it wasn’t until 

the late 1950’s, th a t his achievements were identified.

The first person to rediscover and promote Bachelier’s pioneering work was M.F. Maury 

Osborne. The paper Osbourne (1959) [104] began to address some of the imperfections of 

the Brownian motion model in [10] i.e. negative stock prices, and a more appropriate model 

was suggested. Almost simultaneously with Paul Samuelson, the first economist to win the 

Nobel prize, Osborne then successfully employed a “geometric Brownian motion” (GBM) 

to model risky assets. First coined geometric or, in Samuelson (1965) [113], “economic” 

Brownian motion, it gave the underlying price process an exponential form. Their argument 

eventuating from the attractive property th a t the price of a risky asset appeared to follow 

a log-normal distribution.

A few years later, Fisher Black, Myron Scholes and Robert C. M erton dem onstrated how 

to analytically obtain the price of a European option based on the GBM model. Most 

significantly, Black and Scholes (1973) [26] and Merton (1973) [100] were able to bring the 

GBM model to the attention of the finance community. Their option pricing formula and 

the elegant theory which had engendered, gave people a new and improved understanding 

of financial data  plus an early statistical description of asset price changes. One part in 

particular, the arbitrage-free methodology, still occupies a central place in asset-liability 

management, theory and practice. Movement from a risky to  a non-risky financial world 

meant we could approximate real market. It was an essential building block for Black, 

Scholes and Merton, and one th a t led to option prices being calculated using palatable 

statistical techniques.

The timing of the “Black-Scholes formula” coincided with the advent of tradable listed 

options. The largest options exchange, with an annual trading volume now of around one 

billion contracts - the Chicago Board Options Exchange, was established just one month 

prior to  the release of Black and Scholes (1973) [26]. Many people at th a t time suggested it
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was created so th a t the US Securities and Exchange Commission would sanction exchange- 

regulated options trading. The au thor’s simplistic approach was perfectly in tune with 

something regulators could understand and accept.

In the decades th a t followed, investment bankers have had the idea th a t simple agreements 

such like derivatives would be a more efficient way of transferring risk than actually buying 

and selling assets. Thus, traders everywhere began using the Black-Scholes formula, along 

with its ensuing comprehensive theory. Considered then by most as the best model available 

to price an European option, it is still regarded as a powerful tool today. Investors will often 

use it as the starting point for their option valuations.

Undoubtedly, Black, Scholes and Merton captured the essence of option pricing with their 

formula, however recently, the suitability of the underlying stochastic process to model the 

price of risky assets has been under scrutiny. Ever since large sets of financial data  became 

more widely available, intensive investigations of GBM (see for instance, Heyde and Liu 

(2001) [67], and Cont (2001) [36]) have been prom pted. These have shown th a t the model 

departs from the realities of risky asset price and risky asset returns data  in quite a number 

of im portant ways. The empirical characteristics of returns, which are now universally 

accepted, include; no correlation but some dependence, and a higher peak and heavier tails 

than the Gaussian distribution.

In order to  find a model which incorporates all the empirical realities of risky assets, an 

alternative to the GBM model is required. One idea is to generalise GBM by replacing 

the standard Brownian motion with a Levy process (Eberlain and Raible (1999) [44] or 

Schoutens (2003) [116]). In turn, this would allow for: flexible non-Gaussian marginals for 

returns, the use of discontinuous processes i.e. the hyperbolic Levy motion, and the ability 

to  derive a comparison to  the Black-Scholes pricing formula. W hilst a Levy process is a clear 

and sensible generalisation with rich theory and many attractive properties, their increments 

are independent by definition.

One may instead consider fractional Brownian motion as a replacement to  standard Brow­

nian motion in the GBM model. F irst introduced by M andelbrot and Van Ness (1968) [97], 

fractional Brownian motion also has many attractive properties which give a good descrip­

tion of asset price movements. Such models can incorporate heavy tails and dependence. 

However, this could also lead to correlated returns which also violates one of the observations 

of the typical returns time series. In addition, it is im portant to  note th a t fractional Brow­

nian motion is not a martingale, nor a semi-martingale, so the standard stochastic calculus
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is lost and arbitrage opportunities would exist (Rogers (1997) [109]). This has particular 

implications when we look to price financial derivatives. S tarting with the idea of Cheridito 

(2001) [34], Mishura (2008) [101] looks to address this problem by considering risky assets 

guided by a mixed model of both a fractional and a standard Brownian motion. This process 

is arbitrage-free without any restriction on dependence of components, so for this case, an 

competing form of the Black-Scholes pricing formula could possibly be deduced.

Another way to generalise Brownian motion is by changing the time variable at which 

Brownian motion is evaluated to  a random process. Over the years, there have been various 

ways in which this idea has been used to model time series. Notably, Feller (1966) [48] 

introduced a construction using a Markov process and a “randomized operational time” 

process with independent increments i.e. Poisson process. Mandelbrot and Taylor (1967) 

[96] was another early study of the concept of changed time, or in their words, “trading time” . 

However, it was the work of Clark (1973) [35] which established time-changed Brownian 

motion into a finance setting. Here the author wrote down a risky asset model driven by a 

standard Brownian motion evaluated a t some “activity tim e” . In this thesis, we will promote 

this concept of changed time as it has the feature of explicit modelling the unobserved but 

natural time-scale of the returns process.

Furthermore, Madan, Carr and Chang (1998) [88] provides us with the theory for using 

Levy processes for the random time. Similarly with the generalisation of Brownian motion 

to a Levy process, however, this will result in independent returns which we will later show 

is not reflected in risky asset returns data. M andelbrot et al (1997) [95] argues instead 

th a t fractional Brownian motion evaluated at a random process should be used where the 

random time is a process with non-decreasing paths and stationary (but not independent) 

increments. Additionally, this process was thought to  be a m ultifractal process defined on a 

set of restrictions of the process’s moments as the timescale of observations changes. Calvet 

and Fisher (2002) [29] shows empirical evidence to support this idea. In this case though, 

we cannot escape the fact th a t returns may be correlated and arbitrage opportunities exist. 

For some clarity, the m ajority of the models discussed will be continuous-time models. They 

are predominantly used by statisticians in M athematical Finance, whereas discrete-time 

models such as the ARCH (Engle (1982) [47]) and the GARCH (Bollerslev (1986) [27]) and 

moving average models are predominantly used by econometricians. Using discrete-time is 

popular because most financial data  are observed a t fixed discrete time points and recorded 

a t low frequency, making it a good candidate to be modelled in discrete-time. However, we
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say th a t although the data  is discrete, the underlying process is continuous and a discrete 

approximation of a continuous model can deal appropriately with discrete d a ta  if the data  

set is large enough.

So far we have only suggested models which fail to capture the features of financial data  

significantly well enough. As a result, we have do not have the ability to derive pricing 

formulae for any financial derivatives. In this thesis, we propose th a t we can achieve this by 

using an approach first introduced in Heyde (1999) [63]. Further developed in Heyde and 

Leonenko (2005) [66], we will successfully generalise the GBM model, and remain in a simple 

enough form to provide an elegant alternative to  the Black-Scholes pricing formula. Chris 

Heyde’s model is distinctively different from previously mentioned models, in its recognition 

of approximate monofractal (self-similar) scaling and the associated dependence structure. 

The results of this thesis are quantitatively similar to those which are obtained for stochastic 

volatility models of Barndorff-Nielsen and Shephard (2001) [16] (for a discussion of pricing 

formulae see Nicolato and Venardos (2003) [102]), bu t w ith im portant quantitative differ­

ences. Both models provide a convenient basis for risky calculations when specific distribu­

tional assumptions are made. Carr et al (2003) [33] used subordinated processes to  construct 

stochastic volatility for activity time, however, the activity tim e process is again assumed to 

be Levy processes. One other recent model to  mention is the paper Bender and M arquardt 

(2009) [18] which offers a construction where activity tim e is modelled as a convolution 

between a Levy subordinator and a deterministic kernal. While initially this construction 

seems to  have many desirable features, there is no specification of the marginal distribution 

of returns.

Our investigations to  build a model for risky assets have been heavily influenced by the 

authors mentioned in this introduction, and their findings. A special mention must also 

go to  Andrey Kolmogorov, Paul Levy, Wolfgang Doeblin and Kiyoshi ltd , as their huge 

contributions, in particular; advances in stochastic processes, stochastic calculus, and mea­

sure theory, has equipped us with many of the tools which we need. The financial market 

has so many effects acting on it th a t we argue for probability theory as best suitable to 

assess the uncertainties. In Bachelier (1900) [10], he states, “the determ ination of these 

fluctuations depends on an infinite number of factors; it is, therefore, impossible to aspire 

to  m athem atical prediction of it” .

In the next chapter, we will illustrate some of the empirical findings th a t contradict GBM, 

plus some details on the features of risky asset returns. We will then introduce Heyde’s
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alternative to GBM which incorporates dependence structure and desirable marginal distri­

butions of the returns process as described in Heyde and Leonenko (2005) [66]. Notably, 

it is a subordinator model which gives asset prices as GBM driven by some nondecreasing 

stochastic “activity time” process based on fractal activity time, which endeavors to  encom­

pass all empirically found characteristics of real data. We will refer to this model from now 

as the “fractal activity time geometric Brownian motion” (FATGBM) model.

In chapter 3, we present three different constructions of the fractal activity time th a t leads to; 

a given marginal distribution, a flexible dependence structure and asymptotic self-similarity. 

C hapter 4 is devoted to  param eter estim ation and hypothesis testing, to validate the FAT­

GBM model. In chapter 5, we state the competing formula for the price of a European call 

option which was first proposed by Heyde and Gay (2002) [58]. To do this we will follow 

the classical framework of Black, Scholes and Merton.

All work up to  this point, uses the asymptotical self-similarity nature of fractal activity time 

found in Heyde and Liu (2001) [67]. In chapter 6 we consider an alternative multifractal 

approach and also a new construction for the activity tim e process. We first give a short 

description of the main features of multifractals in a finance setting, and then provide empir­

ical evidence th a t m ultifractality exists for real financial data, along with the methodology 

to support. Section 7 concludes the thesis.

The real financial data  sets, which we will employ for all statistical studies in this thesis, are 

exchange rates from United Sates Dollar to currencies: Australian Dollar (AD), Canadian 

Dollar (CD), Deutsche Mark (DM), Euro (EUR), French Franc (FF), Great British Pound 

(GBP), Japanese Yen (JY) and New Taiwan Dollar (NTD), and stock indices CAC40 and 

FTSE100. In to tal we have 10 data  sets where an observation has been taken at the close 

of every trading day. Figure 1.1 shows the asset price over time for each d a ta  set, with 

the corresponding returns process given in Figure 1.2. To keep the main body of the text 

clean throughout, only the empirical findings from GBP and FTSE100 d a ta  will be found 

in support of the theory. Please find the pictures generated using the remaining 8 data  sets 

in Appendix A.
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Chapter 2

M otivation and the M odel

“Not all that is beautiful in science need also be practical. . .  but here we have both. ” (Robert 

C. Merton).

The paradigm GBM model for the price of a risky asset was first introduced to us by 1997 

Nobel prize winners in Economic Sciences Myron Scholes and Robert C Merton, and Fisher 

Black (who contributed much but was ineligible for the  nobel prize as he had died two 

year previously). The papers by Black and Scholes (1973) [26] and Merton (1973) [100], 

provided people with an early quantitative insight into financial markets. Most significant 

of all, these authors were able to derive an explicit form for the price of an European Call 

Option. This helped spawn the multi-billion pound derivatives industry we have today, and 

as a consequence, the subject area of M athematical Finance gained substantial prestige and 

recognition.

Even with these achievements and accolades in the mind, it has become clear in recent times, 

th a t this risky asset model lacks some of the characteristics of real data. In particular, 

we will show in this chapter th a t both normality and independence conditions for returns 

(increments in log-price) do not hold in reality. Through empirical work, this will lead us to 

the invalidation of the GBM model. Thus, we will introduce the alternative FATGBM model 

for the price of risky assets which can incorporate a more flexible marginal distribution for 

returns than  Gaussian and a dependence structure. Also in this chapter, we will determine 

whether the efficient market hypothesis holds for the proposed model, and investigate the 

scaling properties of the fractal activity time process.
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2.1 Invalidation of the G BM  m odel

Under the GBM model, the price Pt of a risky asset a t time t is,

Pt = PQe ^ aW{t\  t > 0, P0 >  0, (2.1)

where drift param eter /i e  K and volatility param eter a > 0 are fixed constants, and 

W (t),  t  > 0 is a standard Brownian motion (Wiener process). The corresponding returns 

(or log returns) process X t is thus given by,

X t = n + a (W (t)  -  W ( t  -  1)), t = 1 ,2 , . . .  (2.2)

From (2.1)-(2.2), we have the following hypothesis which we would like to test:

H 0 - The returns X t , t =  1, 2 , . . .  are i.i.d Gaussian random variables with mean fi and <r2.

All features now discussed are commonly found across all types of risky asset and all sampling 

frequencies.

2.1.1 T esting norm ality o f th e m arginal d istribution

Under the null hypothesis Ho, we should expect;

•  the coefficient of skewness 71 =  to be 0 ,

•  the coefficient of kurtosis 72 =  — 3 to be 0, 

where fik =  E ( X  — fi)k , k =  2 ,3 , . . .  and H\ =  (j,.

To investigate the equality to  zero for 71 and 72 , we will assume fi and a 2 are unknown and 

employ the m ethod of moments to estim ate the skewness and excess kurtosis of the marginal 

distribution of the returns,

N k N
where / 4 (iV) =  £  ] T  ( x t -  , k = 2 ,3 ,4  and X ^  =  £  ^ X ^  Table 2.1 contains

i =  1 i = 1
the number of observations N ,  and estimates of the mean, variance, coefficient of skewness, 

and coefficient of excess kurtosis for our 10 risky assets.

From Cramer (1946) [38], and under Ho for k = 2 ,3 ,4 , we can use,

/ i* ;^  fJ'k, N  —> 00 , (consistency)
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y/~N ( j i k ^  ~  N(0, b%), (asymptotic normality)

where b\ =  (i2k ~  n l  ~  ^Mfc-iAOfc+i + k2fj,2lA-i^ to formally test the following:

1. For the estim ate of skewness,

£ * < ">  =  71 +  O ( i )  . V a r f t™  =  |  +  O ( )  ,

where c\ — — 12/z2M3Ms — +  9 / ^ 4  +  35/AlA + ^ l A ) / ^ f A  assuming

moments exist, so

V N  ( ^ \ {n) -  7 i )  N (0 ,6), AT —> oo. (2.3)

2. For the estim ate of kurtosis,

£ 7 2< "> = 7 2 +  o ( 1 ) ,  W W) =  | + 0 ( ^ ) .

where c2 =  (/x|/z8 — 4/x2/X4/X6 — 8̂ 2M3Aa5 H-4yu| — +  I6/X2M3M4 + 16>u|>u§)//x§ assuming

moments exist, so

y /N  ( i 2(N) -  72)  ^  N (0 ,24), 00. (2.4)

Both these statem ents are derived from asym ptotic norm ality and consistency of the empir­

ical moments.

Using (2.3) and (2.4), and for large AT,

P{ |N (0 ,1 )| < u €} =  l  —e,

P { | N ( 0 , l ) | < u e} =  l - c .

where e (decimal) is the significance level and ue can be obtained from statistical tables. 

Here we fix e =  0.05, u e =  1.96. From Table 2.2 we retain the hypothesis th a t 71 =  0 a t a 

5% significance level for data  sets AD, CAC40, CD, DM and GBP, but reject 71 =  0 a t a 

5% significance level for data  sets EUR, FF, FTSE100, JY  and NTD. From Table 2.3 we 

reject the hypothesis th a t 72 =  0 at a 5% significance level for all 10 d a ta  sets. Thus, we 

reject the null hypothesis H q for all 10 d a ta  sets, since either skewness or excess kurtosis (or 

both) are significantly different from zero.

19



Under an independence assumption, there are several statistical methods to test the normal­

ity of data  i.e. the D’Agostino’s K-squared test, the Anderson-Darling test, the Cramer-von 

Mises criterion etc. In addition, the popular Chi-Square goodness-of-fit test is available 

to  us. Table 2.4 shows th a t for each of our d ata  sets, the Chi-Square statistics are very 

much higher than corresponding critical values (given in statistical tables). Thus, we can 

reject Ho for all 10 cases, which again further supports the idea th a t returns data  are not 

well-modelled by a Gaussian distribution.

Furthermore, in Table 2.2 there is some evidence to  suggest th a t any distribution used to 

explain risky asset returns must allow for occasional skewness. Specifically, when 71 ^  0 (or 

not sufficiently close enough to  zero) then 71 <  0 for the m ajority of our d ata  sets, indicating 

th a t the returns are slightly negatively skewed. One explanation for this is th a t traders tend 

to react more strongly to  negative information rather than  positive information (Rydberg 

(2000) [112]).

From Table 2.3, we can also see th a t 72 >  0 for all d a ta  sets so any distribution we use to 

fit the d a ta  must be leptokurtic with (high peaks and) heavy tails. The light tails of the 

Gaussian distribution has been proven by many to  be insufficient a t covering the number of 

large variations of risky asset returns. The actual tailweight of risky asset returns has been 

a strongly debated subject in recent years. From Eugene Fam a and Benoit Mandelbrot in 

the 1960s up to the present day, many authors have considered this issue (see Heyde and 

Kou (1994) [65] for a detailed review).

M andelbrot suggested to  use symmetric stable distributions which contain both Gaussian 

and a continuum of distributions with attractive properties such as Paretian tails. This 

family of distributions could sacrifice interm ediate range for higher peaks and heavier peaks, 

with tails decaying by power law in comparison to  the rapid exponential decay of Gaussian. 

However, the argument against this idea rests on the fact th a t the second moment of risky 

asset returns ceases to exist by definition. Even though the number of moments is too a 

keenly debated topic, it is widely accepted in modern times th a t the variance is finite. One 

example of a distribution which has heavy tails of Pareto-type th a t decays by power law, 

but can also operate fine with a finite second moment, is the S tudent’s i-distribution. The 

suitability of S tudent’s t  to model risky asset returns was first advocated by Praetz (1972) 

[107].

For this thesis, we state th a t tail behaviour of returns is a power function a t least asymp­

totically. However, to claim th a t all returns decay exact by exactly by power law would be
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too strong a statem ent. This is because estim ating the subsequent power index has proven 

a historically problematic task (see Fung and Seneta (2007) [56]). We propose, therefore, 

to extend the study to the class of hyperbolic distributions. This class can be thought of 

having semi-heavy tails, in the sense they have an exponential term  as well as a power term. 

In summary, the three distributions which we have chosen to analyse and believe fit returns 

data  sufficiently well are the Variance Gamma, the Normal Inverse Gaussian and the Stu­

dent’s ^distribution. As it is hard in reality to distinguish between them, we will avoid any 

controversy of selecting a preference by investigating the suitability of all three distributions 

going forward.

2.1.2 T esting th e independence assum ption

Another im portant testable property ensues from the formulation of Black, Scholes and 

Merton. Under Ho, we should also expect:

•  {X t } , t =  1, 2 , . . .  are uncorrelated (and so independent because of Gaussianity).

To calculate the sample autocovariance baaed on the returns d a ta  X t , t — 0 ,1, . . . ,  N  — k, 

we will use,

R (N)(k) =  ^  E  ( X‘ -  * <N))  ( * ‘+* -  jf<A,)) >
t = 1

where the corresponding sample autocorrelations,

dm (k) =
i t m (  o ) ’

are calculated by normalizing at zero.

From Figure 2.1 the sample autocorrelations of real returns diminish rapidly and are sta­

tistically insignificant. In fact, there is little or no autocorrelation present in returns past 

one or two lags (nearly white noise). We see th a t the returns of all kinds of risky assets 

show hardly any serial correlation but, importantly, this is not enough to  say th a t they are 

independent. To study the correlation structure, it is necessary not to  ju st study the returns 

themselves, but also an appropriate function of the returns. In this context, “appropriate” is 

related to  the variance, i.e. an appropriate function is a function which reveals information 

about the variance of the asset prices.

The most widely used function is the quadratic function, which does reveal more information 

about the serial correlation of the variance, since it enlarges large returns and diminishes
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small ones. Another appropriate function for returns is the absolute value. The absolute 

value will compare the returns size-wise, and a strong correlation between first lags will 

then, like the use of the squared returns, reveal any accumulation of big movements of risky 

asset price.

We compute the sample autocorrelations for the absolute and squared values of the returns 

(\Xt \,t — 0 , 1 , . . . ,  N  — k) and (Xt2, t = 0 , 1 , . . . ,  N  — k), respectively, in the same way 

as for the returns themselves. Interestingly, however, the figure does show some strong 

persistence in autocorrelations for the absolute and squared values of returns. The upper 

and lower bounds (black dotted lines) in Figure 2.1 are included for illustrative purposes to 

provide a reference for the magnitude of sample autocorrelations. These bounds correspond 

to the levels of ± 2 /y /N  and are based on the asymptotics of the sample autocorrelations 

if independence assumption were satisfied. W ith this in mind, there is strong evidence to 

suggest the autocorrelations of \X t \d, where d is an integer, declines slower as lag increases, 

with the slowest decline for d =  1 (an effect described in the literature as Taylor effect.) 

This empirical evidence matches the observations of Heyde and Liu (2001) [67] and Cont 

(2001) [36], and supports the “stylized facts” outlined in Granger (2005) [60]. Most authors 

now view the empirical features of risky asset returns d a ta  to be a critical step for setting 

the foundations on which reliable models can be built. Also included in Figure 2.1 are 

the autocorrelations for the square root value of returns (or d = \ ) .  Prom our empirical 

investigation, we find th a t there is even more persistence in this case for significantly large 

lags. This additional \X t \% case requires further discussion.

Many authors also suggest th a t returns are long-range dependent. By definition, a stationary 

process displays long-range dependence (long memory, strong memory or strong dependence) 

if its autocorrelation function decreases so that,

In contrast, a series whose autocorrelation is integrable in R may display short-range de­

pendence (short memory, weak memory or weak dependence).

p(t) oc - p  t e  M,

for 0 <  a <  1. Therefore the autocorrelation is not integrable,
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Equivalently, for the discrete case, the process displays long-range dependence if the auto­

correlation series is non-summable,
OO

5^ |p (fc)| =  oo.
— OO

Recent models have claimed th a t long-range dependence exists for risky asset data  (see 

Heyde and Yang (1997) [69] and references therein), however, this is not an universally 

accepted view. One way to  distinguish between whether we have strong or weak depen­

dence for our d a ta  sets, is to  estim ate Hurst param eter. For now, Hurst param eter can 

be considered as a direct link between the intensity of dependence of a given process and 

its self-similar scaling nature. In Appendix B, we will describe two methods of estimating 

Hurst param eter. However, for this thesis, we will avoid stating the strength of dependence 

for risky asset returns going forward and refrain from using either short-range or long-range 

dependence exclusively.

2.2 The FATGBM  m odel

The FATGBM model for risky assets was first proposed by Heyde (1999) [63] and further 

developed upon by Heyde and Liu (2001) [67], Heyde and Leonenko (2005) [66], and Finlay 

and Seneta (2006) [50]. This model generalizes classical GBM model by using a random sub- 

ordinator, as opposed to time, to evaluate the standard Brownian motion. For a discussion 

of subordinator models see Rachev and M ittnik (2000) [108].

Under the FATGBM model, the price Pt of a risky asset a t tim e £ is,

Pt = p oe(*t+eTt+*w(Tt), t >  0? p Q >  o, (2.5)

where drift param eter // € M, asymmetry param eter 6 G R and volatility param eter a  >  0 

are fixed constants, and W ( t) , t  > 0 is a standard Brownian motion (W iener process) inde­

pendent of “activity tim e” {Tt }. {Tt , t  =  0 , 1, 2 , . . . , 7 b  =  0} is a positive, non-decreasing 

stochastic process w ith stationary but not necessarily independent increments. The incre­

ments over the unit time are,

Tt — Tt — Tt- 1, £ =  1, 2 , . . .

In a financial context, this “activity time” process {Tt } can be interpreted as time over 

which market prices evolve, and is often associated with trading volume or the flow of new 

price-sensitive information (Howison and Lamper (2001) [68]). The more frenzied trading
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becomes, or the more information is released to the market, the faster the activity time flows. 

The calender time t plays a secondary role. Note th a t if Tt = t, then equation describes 

classical Black-Scholes model.

The corresponding returns are given by,

X t = n  +  6rt 4- t = 1 , 2 , . . .  (2.6)

We will now show th a t {Tt } plays a crucial role in our model, determining both the distri­

bution of {At} and their correlation structure.

2.2.1 D istribution  theory for th e m odel

Prom (2.6), the conditional distribution of X t , given r t =  V-, is Normal with mean fi +  OV 

and variance cr2V. Therefore the conditional distributions of X t are normal mixed or the 

so-called generalized hyperbolic distributions.

Furthermore,

E X t  =  fi +  6,

E ( X t -  E X t )2 = v 2 + 02M 2,

E ( X t -  E X t )s =  3&t2M 2 +  63M 3,

E ( X t -  E X t )4 =  3a 4(l + M 2) + 6a262{M2 +  M 3) +  04M A,

for any £, where M* =  E (r t — E r t ) \  i — 2,3,4,  assuming these moments exist.

So the skewness coefficient of the distribution of X t is,

3 Bg2M 2 +  93 M 3 
71 ~  (a2 +  02M 2) i  ’

and i t ’s kurtosis coefficient becomes,

_  3<x4(1 +  M 2) +  6a 2e2{M2 +  M 3) +  64M 4 
72 “  (a2 + Q2M 2)2

Note th a t if 6 =  0, we have a symmetric model, otherwise we have a skewed model ( 6 ^ 0 ) .  

Case I: The Student model
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If rt follows an inverse Gamma distribution, the distribution of X t will be Student. Specifi­

cally, if rt is distributed as RY{v,  5), v, S >  0, its density is,

/ r t {x ) =  f ( y ) x ~ l' ~ l e ~ 6 / X' x > 0 - ( 2 -7 )

The characteristic function of r t is,

<t>Rr(u) =  E [eiUTt] =  2(~ ^ )2 M i ) ,  u € R,

where K u is modified Bessel function of the th ird  kind, or McDonalds function (see Appendix 

C at the end of the thesis or Kotz, Kozubowski and Podgorski (2001) [80]).

The moments of order k of exist when v > k, (for example, when u < 2, Var(rt ) = oo):

£
E r t =  - ,  v > 1 ,

v  — 1

62
M 2 =  7------- 7T27------- V >  2 ,{ v -  l ) 2( i / - 2 )

4d3
M 3 =  7 TT37-------- ^ 7 ---v  >  3,(1/ -  1)3(^ -  2)(i/ -  3)

SS4(u + b)
4 (*/ -  l)* (^  -  3)(^ -  4) ’ "  > '

The density of the marginal distribution of X t is Student. W hen 9 = 0, the density of the 

distribution of X t is,

r x r (v + h )  1f s ( x ) — —  ----------------------------------------------r ,  x  G M.
y /2 a 25 ^ T { u )  /  ,  x 2 X ^ + 2

+ (  A A J

If 6> ^  0,

,  [ 2 ( v - \ y e ^  (  e2 / |0 |^ 2 f o 2  +  ( x _ /i)2^

These expressions of densities above were given by Sprensen and Bibby (2003) [24].

If X t has a symmetric Student distribution, then,

P ( \X t \ > x) ~  const(8,v,G)x~2v,

where f ( x )  ~  g (x ) means th a t limx_ 00 f ( x ) /g ( x )  =  1.
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The characteristic function of the distribution of X t is,

n l  — u / 2 p ifj.u „ __________________
<l>s(u) =  J  (S(a2u2 -  2 iQ u )Y K u(y/26(a2u2 -  2idu)). 

We will use the notation S(/j,,9,a2,u,S)  for the Student model.

Case II: The Variance Gamma (VG) model

If instead rt follows a Gamma distribution, the conditional distribution of X t is VG. Specif­

ically, if Tt  is distributed as T(a,/3), where a ,/3  >  0, its density is,

f r ( x )  =  i C } * a “ 1<r'3x> x  > °- (2-8)

The characteristic function is,

<t>r(u) = , u  G R,

and the moments of the process rt in this case are,

„  a  a  2a  3 a (a  +  2)
E r t — p , M 2 — ^  > ^ 3  — p 3 > M 4 —

The density of the marginal distribution of X t is then given by,

f  Cxi [2 e ~ <x« ^ 0 (  \ x - n \  ( \ x - l A \ / 6 2 + 20<j'2\
fva{x) = n ^ f W { ^  + 20c>)  K° - A  ^ --------)'

where X a_ i  is the modified Bessel function of the th ird  kind with index a  — \  (Appendix 

C).

If X t has VG distribution, then as x  —» 00 ,

P {\X t \ > x) ~  const(a ,/?, a )x a~ 1e~x^ 2̂ ^(j2.

The characteristic function of X t is,

(}>vg(u) = etflu(l  -  ^  +  ^0 a2u2) ~ a > w G M. (2.9)

We will use the notation VG(/i, 0, a 2, a , (3) for the VG model.

Case III: The Normal Inverse Gaussian (NIG) model

Alternatively, we may consider r t th a t follows an inverse Gaussian distribution, where the 

resulting distribution of X t will be NIG. Specifically, if r t is distributed as IG (6 ,7 ), S >
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0 ,7  >  0> density is,

f I a (x) - x > 0. (2.10)

The characteristic function of IG (6 ,7 ) is,

4>ig(u) = e v /  , u G R,

and the moments are

^ ,  =  2 , Mj  =  £ ,  M 3 =  | ,  M 4 =  M h .

The density of the marginal distribution of X t is then given by,

w * >  =  ^  t /  ^ + * v ) ( * v  +  (* - M m
cr tt y  a  ) 2 +  (x — n) \  u )

where /G  is the modified Bessel function of the th ird  kind with index 1 (see Appendix C). 

If X t has NIG distribution, then as x  —> 00 ,

P ( \X t \ > x) ~  const(8 ,^ ,( j)x  3//2e ax.

Note th a t the behaviour of the tails of the VG and NIG distributions is different from that 

of the Student distribution. When fi = 9 =  0, Student distribution has heavy tails which 

decay by power law, while VG and NIG have semi-heavy tails which contain both a power 

and an exponential factor.

The characteristic function of the distribution of X t is,

<t>NIG(u) = c<M«+7*-7V^ua-20iu+*»} W £ R.

We will use the notation N I G ( n ,6 ,a 2,6 ,7 ) for the NIG model.

2.2.2 D ependence structure o f the m odel

We will next express some properties of the covariance structure of the process { X t } in 

term s of properties of the process {rt }, assuming finiteness of moments as necessary. For 

integer k > 1, we have,

C ov{Xt , X t+k) = Cov{dTt +  aT ? W i( l) ,0 T t+k + aT*+kW 2( 1) ,

=  92(ETtTt+k -  ETtE r t+k),

=  e2Cov(Tt ,Tt+k),

, x  e  R,
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where Wi  and W2 are independent Brownian motions. When 0 =  0, C ov(X t , X t+k) =  0.

In the general case \i = 0 ^  0, we have,

C ov(X ? ,X ?+k) = Cov(([i +  0rt +  or?  W i(l))2, (fi +  drt+k +  ar^+kW 2( 1)|)2) ,

-  {a4 +  402n 2 +  46n a2)Cov(Tt , rt+k) +  04C ov(tf ,  r 2+fc)

+ (0 2cr2 +  203ii)(Cov(T?,Tt+k) +  Cov{rt ,T?+k)) , (2.11)

which for 6 = 0 reduces to,

C m > (Xl X 2+k) =  <r4Cov(r„ Tt+k), (2.12)

irrespective of the value of fi. From (2.11) and (2.12), it is clear th a t structural dependence 

properties expressed by the autocovariances for {rt } imply those for the squared returns

{*?}•

For n = 6 = 0, we also have,

Cov(\Xt \, \Xt+k\) =  Coo(\<rr}w,(l)\MT$+kW2(l)\) , 

=  ^ a 2Cov(Tt , T̂ +k)-

For {rt } with dependence structure, {Xt } also displays conditional heteroscedasticity, i.e. 

time dependent conditional variance. Let T  = a ( { W (u ) ,u  < Tt }, { T (u ) ,u  < t}), which can 

be thought of as information available up to  time t. Then,

V a ^ X t l E t - , )  = E ( X 2|^ ,_ ,)  -  ( E ( X t \Et- i ))2 ,

=  e2E (T2\Et- l ) +  (a2 +  2/i0 )£ ( r t |.F,_1)

-(2fi$E(Tt \Tt- i )  + e2(E (r t \ r t - l ))2) ,

Under the restricted model of 0 = 0, the above expression reduces to  (see Heyde and Liu 

(2001) [67]),

V a r (X t \Et. { }  = a 2E (  t , ^ - , ) .
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2.2.3 The efficient market hypothesis and the subordinator m odel

The notion of efficient market was first introduced by Fama (1970) [49]. This developed into 

what is now a central idea in modern finance. The premise is a hypothesis th a t risky asset 

prices are always “right” , and so therefore, no one can divine the m arket’s future direction. 

For prices to be right, we assume th a t the people who set them  must be both rational and 

well informed. They must be confident arbitrageurs who never pay more or less than the 

true value.

If we consider (2.5), the definition of weak efficiency by Campbell, Lo and MacKinlay (1997) 

[31] implies th a t {Pt } is a m artingale with respect to the cr-algebra of events reflecting 

information available up to  time t. Since {B (T U), u =  1 ,2 , . . .  } is a martingale with respect 

to T u defined in the previous subsection, we have,

E[B{Tt ) |^ _ i ]  =  B(Tt_ 0 ,

almost surely.

When 9 — 0 , C o v(X t , X t+k) =  0 , the efficient m arket hypothesis holds, but when 6 ^  0 , the 

covariance of X t and X t+k is not zero if Cov(Tt ,Tt+k) /  0. However,

^ _______^  X 02Cov(Tt ,Tt+k) n2 C orr{Tt ,Tt+k) „ _ f_ ^  a2Var{Tt )
C o rr(X t , X t+k) =  <  e  -g  V ar(r t ) < 6 — j - ,

when corr(rt ,Tt+k) > 0.

For the FATGBM model, it is natural to interpret as the volatility a t tim e t, and hence 

the process {ay/rt}  is stochastic volatility process.

2.2.4 A sym p totic  self-sim ilarity

Another im portant feature of the FATGBM model is th a t of asym ptotic self-similarity. 

The origin of this property comes from the paper of Heyde and Liu (2001) [67], in which, 

they investigate the fractal activity time process acting on the belief th a t it should exhibit 

dependence.

A flexible dependence structure is usually suggestive of self-similar scaling. This behaviour 

occurs when the structure of parts is the same as the structure of the whole time series. In 

fact, it has long been observed in the statistical analysis of financial tim e series th a t many 

series have this property (see Embrechts and Maejima (2002) [46] for a detailed review). By 

definition, a stochastic process Y ( t ) , t  > 0, is self-similar if for each a > 0 there exists b such
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that,

where “= ” denotes equality of finite dimensional distributions. Furthermore, Lamperti 

(1962) [82] showed th a t if Y{t)  is self-similar and stochastically continuous a t t =  0 then 

there exists a unique H  > 0 such th a t for all a > 0,

{F (ai)}  i  {aHY (t)} .  (2.13)

This so-called Hurst param eter H  is named after the British engineer Harold Hurst (1880- 

1978) whose work on Nile river d ata  played an im portant role in the development of self­

similar processes.

From definition (2.13) we can show how self-similar scaling can be linked with a flexible 

dependence structure. In Appendix B, we illustrate the im portance of Hurst parameter H . 

Indeed, if H  can be estim ated then it can be used to  gauge the strength of dependence, and 

even determine whether or not long-range dependence exists.

If the process in (2.13) also has stationary increments, then it must have 0 < H  <  1 and 

y (0 ) = 0  a.s. (almost surely). If it has finite mean and H  =  1 then it is the degenerate 

process Y  (t ) =  t Y  for some random variable Y .  If it has finite mean and 0 < H  <  1 then 

E Y ( t )  =  0.

The most im portant and most basic self-similar processes are derived from the so-called 

fractional Brownian motion. When a process is //-self-sim ilar and has a finite variance its 

covariance structure is completely determined. It follows that,

E Y ( t ) Y ( s )  =  i{ B [ y (S)]2 +  £:[FW ]2 - B [ r ( « ) - r ( s ) ] 2}

=  ^ W (»)]2 +  E [Y ( t )}2 -  E [Y ( t  F (0)]2}

=  i { £ [ y ( s )]2 +  E [Y ( t )]2 -  E [Y ( t  -  s)]2}

=  \ { \ s \ 2H + \t\™ - \ t - s \ 2H} E Y ( l f  .

Since the mean-covariance structure completely determines the finite-dimensional distri­

butions a t a Gaussian process there is only one Gaussian if-self-similar process for each 

H  e  (0,1). This process is known as fractional Brownian motion B n { t ) , t  € M. As an 

example, standard Brownian motion is self-similar with H  =  | ,

{B(at)}  =  {y/aB{t)}, a > 0, t > 0.
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From the investigation of fractal activity tim e {Tt } in Heyde and Liu (2001) [67], we will 

state that, to  a good degree of first approximation, the process {Tt — £} is asymptotically 

self-similar, i.e.

Tct - c t &  cH{Tt -  £), 0 < H  <  1, (2.14)

for positive c, meaning th a t, for c =

Tt i t  + t H (T i -  1).

In [67] the authors check for approximate self-similarity via a crude estimation of Hurst 

param eter H , over a wide range of time scales. They then claim (to a good degree of first 

approximation) th a t the process {Tt —t} is asymptotically self-similar with index \  < H  < 1. 

Exact self-similarity of {Tt — £}, on the other hand, is not possible when T  is said to be 

non-decreasing (Heyde and Leonenko (2005) [66]). I t is stated th a t if,

T c t - C l i  cH(Tt -  t),

holds for all t > 0 and c > 0, then for any 0 <  A <  1,

Tj+a - T t - A  =  7 A - A  =  A " ( J i  -  1),

and,

P (T t+A -  Tt <  0) =  P ( A h T i < A h  -  A) =  P (T i < 1 -  A 1" ^ )  >  0.

The concept of self-similarity paves the way to the development of fractal geometry (see 

Mandelbrot et al (1997) [95] and references therein). This means th a t it is sensible (and 

progressive) to  consider the case where {Tt — t}  is taken to  be a m ultifractal process. The 

kind of m ultifractal behaviour which might be expected is a relationship of the form,

T c t - c t i  M(c)(Tt - 1),

for positive c, where M  and T  are independent random functions, where we can reduce to 

a self-similar behaviour if M (c) is of the form cH .

We will see later in C hapter 5 how asymptotic self-similarity can be used to  evaluate the 

call price of an European Call option expiring a t time t by taking the expectation of the 

Black-Scholes pricing formula evaluated a t Tt . In Chapter 6 , we will study the more general 

m ultifractal approach to  model risky assets.
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Figure 2.1: Empirical autocorrelation of X  and \X \d for d =  1 ,2 ,3 ,4
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N A «72 7i 7 2
AD 5000 -0.000035478 0.000037468 -0.044491933 4.508451210

CAC40 5000 -0.000158399 0.000201881 0.023217466 4.882744979
CD 1700 0.000079553 0.000009673 -0.093129341 2.651642996
DM 6333 -0.00014255 0.000043734 -0.035213296 5.289831117

EUR 5000 -0.000049583 0.000025993 -0.265827877 3.355937792
FF 6429 0.000001850 0.000042848 0.320116571 14.08034788

FTSE100 5000 -0.000167101 0.000134436 0.097352885 6.357003965
GBP 4510 -0.000138866 0.000064435 -0.001525777 2.720264185
JY 4510 -0.000281808 0.000072120 -0.414678054 5.611152007

NTD 1200 -0.000042921 0.000020132 -0.265079853 2.106045092

Table 2 .1: Estim ates p,, a 2, 71 and 72

N 7i ^ \ l \ \

0II

AD 5000 -0.044491933 1.284371475 < 1.96 Retain
CAC40 5000 0.023217466 0.670230512 < 1.96 Retain

CD 1700 -0.093129341 1.567600399 < 1.96 Retain
DM 6333 -0.035213296 1.144025741 <  1.96 Retain

EUR 5000 -0.265827877 7.673789817 > 1.96 Reject
FF 6429 0.320116571 10.478623683 > 1.96 Reject

FTSE100 5000 0.097352885 2.810335718 >  1.96 Reject
GBP 4510 -0.001525777 0.041831526 < 1.96 Retain
JY 4510 -0.414678054 11.369037463 >  1.96 Reject

NTD 1200 -0.265079853 3.748795232 > 1.96 Reject

Table 2 .2 : Testing the hypothesis 71 =  0
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N 72 X /I i l7 2 | 72 =  0
AD 5000 4.508451210 65.073887993 >  1.96 Reject

CAC40 5000 4.882744979 70.476353200 > 1.96 Reject
CD 1700 2.651642996 22.316901252 > 1.96 Reject
DM 6333 5.289831117 85.929231975 > 1.96 Reject

EUR 5000 3.355937792 48.438789690 > 1.96 Reject
FF 6429 14.08034788 230.451466947 > 1.96 Reject

FTSE100 5000 6.357003965 91.755448761 > 1.96 Reject
GBP 4510 2.720264185 37.290115946 > 1.96 Reject

JY 4510 5.611152007 76.919186779 >  1.96 Reject
NTD 1200 2.106045092 14.891987660 >  1.96 Reject

Table 2.3: Testing the hypothesis 72 =  0

n X 1 statistic Good Fit?
AD 5000 327.718 >62.725 Reject

CAC40 5000 515.213 >55.758 Reject
CD 1700 425.847 >38.885 Reject
DM 6333 527.045 >55.758 Reject

EUR 5000 327.718 >55.758 Reject
FF 6429 373.276 >62.725 Reject

FTSE100 5000 439.991 >55.758 Reject
GBP 4510 • 340.177 >38.885 Reject
JY 4510 402.841 >40.113 Reject

NTD 1200 398.265 >37.652 Reject

Table 2.4: Chi-Square Goodness of F it of the Gaussian distribution
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Chapter 3

A ctiv ity  Tim e

“In a strict sense, there wasn’t any risk - i f  the world had behaved as it did in the past. ” 

(Merton Miller).

We have shown so far th a t the FATGBM model has the capability to allow for the empirical 

realities of risky asset returns. Such suitability to  the data, however, is heavily reliant on the 

fractal activity tim e process {Tt } being flexible enough to  encompass im portant attributes. 

In particular, we require a process {Tt } to have pre-specified unit increments with either 

gamma or reciprocal gamma or inverse Gaussian distribution, a dependence structure, and 

a self-similar limit as t —► oo.

In order to incorporate these characteristics, we will present three separate constructions 

of activity time. They include; a process involving the use of chi-squared processes, the 

superposition of diffusion-type processes (each driven by standard  Brownian motion), and 

lastly, the superposition of Ornstein-Uhlenbeck processes (each driven by Levy noise).

3.1 M ethod I: Chi-Squared processes

This is a continuous approach first introduced by Heyde and Leonenko (2005) [66], which can 

be adapted to  allow for gamma or reciprocal gamma processes resulting in VG or Student 

returns respectively. Indeed it was Heyde and Leonenko (2005) [66] who advocated the use 

of the reciprocal gamma construction to  promote their S tudent model. They show th a t 

the resulting activity time process has a flexible correlation structure and converges to  a 

self-similar process when appropriately normalized (standard Brownian motion for weak 

dependence and Rosenblatt-type process for long-range dependence). We will now provide
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the details of this construction. For a full discussion on the gamma construction leading to 

VG returns see Finlay and Seneta (2006) [50].

3.1.1 The construction o f unit increm ents (I)

To begin we first need to  define a stationary chi-squared process

x l ( t )  = ^(r)lit) +  • • • +  rfc(t)), t £ M, (3.1)

where r/i(£),. . . ,  r}u{t), t £ E  are independent copies of a stationary Gaussian process

r](t), t £ R  w ith zero mean, unit variance and continuous monotonic correlation function

pv (s) > 0 ,  s £ R.

From Heyde and Leonenko (2005) [66] and references therein, we see th a t the strictly sta­

tionary chi-square process has many elegant properties:

1 ) From (3.1),

and,

E{xl{t)} = Var{xl(t)} =

C o v (x l ( t ) ,  x l ( t  +  s)) =  - p l ( s ) ,  s £ R .

2) The pdf of x l ( t )  ° f  the form,

p %(x ) =  a : > 0 ’

while the bivariate pdf of the random vector { x l ( t ) , x l ( t  +  s )) takes the form,

P * ( * . » i 7 )  =  ( f )  * 2 ^ ) r ( | ) ( 1i _ 7 ) ^ ^ > ° -

Here 7  =  p^(s), where I \{ z )  is the modified Bessel function of the first kind,

OO -

/A^  =  ^  + k\T(k + X + l)

( f ) A
v ^ r(A  +

2 / I /1  +2\A— 4 ^zt(1 - t )  2e dt.

3) For k = 1 ,2 , . . . ,
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Cov{ek(xl (£)), em(xl(t  +  s))) = E {ek{xl(t))em(xl(t  + « ) ) } -  Eek(xl(t))Eem(xl(t  +  s))
p O O  p o o

=  /  /  efc(u)em(?;)p |(u ,i;,p 2(s))dudv
Jo Jo

-  Eek(xl{t))Eem(xl(t +s))
p oo />oo 00

=  /  /  efc(u)em(u )p - (u )p |(v ) [ l+  ^ p 2j (s)ej (u)ej (u)]dudu
Jo Jo J=1

-  £ e fc(x2(£))£em(x j( t  +  s))

0 0  p C O  p O O

= y Z p 23(s ) /  e fc(u )c j(u)p |(u)du  /  em(u)cj(v)p^(t;)dt;
J=1 Jo Jo

=  ^ p f ( s ) ,  (3.2)

where <5™ is the Kronecker symbol,

and,

are the generalized Laguerre polynomials of index (3 for k > 0. Here we note th a t (3.2) 

follows from the Hille-Hardy formula (see Batem an and Erdelyi (1953) [17], which can be 

w ritten in the form,

pp{x,y-,i) =pp{x)pp{v) , x , y >  0 ,1 + '5 2 , lkek(x)ek (y)
k= 1

with (3 =  i//2, 7  =  p2(s), 0 <  7  <  1.

If we define eo(x) =  1, then {efc(a:)} ^ =0 is a complete orthogonal system of functions in the 

Hilbert space L 2((0 ,oo ),pv(x)dx)  (see Courant and Hilbert (1953) [37] or Leonenko (1999) 

[84]). Thus, if a non-random function,

G(x) e  L 2 ( ( 0 ,o o ) ,  p%(x)dx),

then the following expansion holds:

OO

G(x)  =  £  Ckek (x), (3.3)
k~ 1
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with coefficients,

rOO
c k = J  G (x)ek(x )p» (x )dx ,

{ek(x),eo(x)  =  1} basis in Z/2((0 , o o ) ,p | (x) dx), and,

/•O O  OO , 0 0

^  efc(a:)em(a:)p|(a:)da; =  <5™, Y 1 CZ = J  G 2{x)p%(x)dx < 00, 

where 6™ is the kronecker-delta symbol, and,

e0(x) = 1, e \(x )  = J -  -  2 )  , e2(z) =
2 f v  \  x  — 2( |  +  l)x  +  ( |  +  1) |

L em m a  Note th a t t (£) =  G (x^(t)) with,

G (x ) = “  ! )  ^  G L2 ((0, oo),pv/2( x ) d x ) , (3.4)

there exists a strictly stationary process which has marginal inverse gamma distribution 

RT  ( f , § — l)  (with param eters chosen so th a t E r t =  1) for every integer v  >  1.

If we consider the reciprocal gamma case only, then it follows from (3.3) that,

)

p - ( x ) e k(x)dx00 .
T(t) = J 2 Ck(U)ek(X2M) ,  Ck{u) =  (^  -  1) J

k-°  0

and,

x

e ^ ) - ( i - 0 7  ,fc=0 J

v  , \ 2 f  P%(x)ek(x)dx

0
< 00 , v  > 4.

Thus, we obtain the following properties of the inverse gam m a process (3.4):

2
E r t = 1, V arrt = ------- ,  v  >  4,

v — 4

and,

OO
Cov(rUTt+s) =  ^ C j ^ p ^ s ) ,  v > 4. 

fc= 1

Note th a t p ^ s ) ,  s £ E  is a correlation function of the Gaussian process p(t), t £ M, and,

L ZJ k= 1
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where v > 4, s € M.

L em m a For the gamma case in [50], we instead need to  take the strictly stationary process 

with marginal gamma distribution r ( | ,  | )  (again, with parameters chosen so th a t E r t = 1) 

for every integer u > 1, and consider r{t) — G (x l( t ) )  with,

This construction of {Tt } turns out to be somewhat simpler than in Heyde and Leonenko 

(2005) [66], due to  the fact th a t the consequences of having a gamma distribution for rt are 

easier to  handle than  the consequences of having an inverse gamma distribution.

3.1.2 C onvergence to  a self-sim ilar lim it (I)

We may choose as pv any consistent Gaussian autocorrelation function and so we have 

a fair degree of flexibility in choosing the autocorrelation function of G(Xy{t)). We can 

then obtain the summable correlation function |P r(s )l < °° (short-range dependence),

or correlation function th a t is not summable (long-range dependence), for example, when 

pv (s) =  (1 +  s2)_ t , 0 <  a  <  §.

Both Heyde and Leonenko (2005) [66] and Finlay and Seneta (2006) [50] show th a t the 

process {Tt — E T t } — {Tt — t}  is asymptotically self-similar. When the increments r ( t)  have 

short-range dependence, the fractal activity time, appropriately normalized, converges to 

the Brownian motion, and therefore asymptotic self-similarity holds with H  =  When 

the increments r ( t)  have long-range dependence, the fractal activity time, appropriately 

normalized, converges to  a Rosenblatt-type process. We now aim to  show th a t (Tjnt] — [nt]} 

(appropriately normed) has an asymptotic self-similar limit under both weak and long-range 

dependence, where [•] is the integer part.

T heorem  1 . Suppose . . . ,  r)v (t), t e  M are independent copies o f a stationary Gaus­

sian process r](t), t G M with zero mean, unit variance and continuous monotonic correlation 

function pn{s) > 0 , s e R ,  then the following process,

is asymptotically self-similar.

P ro o f  Reconsider the strictly stationary process r(t)  =  G (x l( t ) ) ,  where G(pc) — — l)

with marginal R T  ( f , f  — l)  distribution and a dependence structure. In our construction

x  e  L 2 ((0 , oo),pl// 2(x)dx)

(3.5)



we have assumed th a t v  is an integer. Denote the density of x l  by p%. If u > 4, the first two 

coefficients of the expansion of function G  w ith respect to generalized Laguerre polynomials 

are,

OO

C o M  = - i )  J p s ( * ) ^  =  i ,

= ( |  -  l )  J P * ( s ) e i ( z ) ^  =  it °.
0

The first generalized Laguerre polynomial is,

e i ( x ) = \ / ! ( 5 “ x) ’

and hence,

e i (x2M )  = — 7 =  J 2 ( r>j(t) -  1),

where . . , rju(t) are independent copies of the stationary Gaussian process r](t) with

zero mean and covariance function pv (s) =  (1 +  s2)- ^ . We will consider both the case of 

weak dependence (a > and the case of long-range dependence (0 <  a  < | ) .

Firstly, for weak dependence,

OO

^2\pv(t)|2 < oo,
t=l

holds. Since the  Laguerre rank of function G is 1, its Hermite rank of is equal to 2, and we 

apply Arcones (1994) [9] which gives,

-  [nt]) -* aW (t) ,  n  —> oo, t >  0,

where a 2 =  VarG(xt(t))-,  and W (t)  is a (self-similar) W iener process.
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For long-range dependence, we begin with,

[nt]

T{nt \ - [ n t }  = $ > ( * ; ( , ) ) - [ n t]
5 =  1

oo [nt]

fc = 0  5 —1 

OO [T it]

= EE Cfcefc(xS(s))
f c = l  S = 1

[nt] oo [nt]

Ckek(x l ( s ))
S =  1 fc =  2 5 =  1

[nt]

5 =  1

Because of orthogonality of Laguerre polynomials, the variance of Tt — t is,

t
V a r ( T , - t )  =  V a r £ ;C ie i ( x J ( s ) )  +  V ar(fl,)

S =  1

t t= EE C 2p2(\s — s*|) 4- V a rR t
S=1 5* = 1

~  C fc (H ) t2H +  V a r R t ,

where H  =  1 — a,  1/2 <  i f  < 1, and c (if) =  (2h - i ) H ' ^  follows from Taqqu (1975) [119], 

Berman (1992) [21] and Leonenko (1999) [84] that, in the case |  <  H  <  1, we have,

-jjj jVarRt  —> 0, t —> oo. (3.6)

Under long range dependence, we have,

/ i Ml r  ln*l \ , 2#
t"a r hrH:( E G( ^ W ) - H ) - J ^ E ei(^(s)) = j ^ 2 H VarRn H " n H ^  " I (nt)'

3 — 1 S =  1 7 v 7
[nt]

1 „  r,^ V a r i ? |nt]

0 , as n  —» oo,

/  [nt]

for all t > 0, and by Slutsky lemma the weak limit of ^  I ^ (x ^ ( s )) — \n A 1 is the same
\  5 =  1 

[nt]

as the weak limit of ei(x ^ (s ))-
5 =  1
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Recall th a t ei(x)  =  — z), C\ =  As a direct result of a proposition in Taqqu

(1975) [119] with H  € (^, 1), we have,

r  M  i ^  /  i  M  \
^ X > i ( x * w )  =  - - E L h E ^ w - 1)

s = l  i = l  \  s = l  J

-  -zEw)’as n  —> oo,
* ;=i..........

where for i =  1, . . . ,  v, are independent (self-similar) Rosenblatt processes (see Appendix 

D) so,

■ \{T [nt] -  [nt]) - -  V 'R i ( t ) ,  as n —> oo. (3.7)
i= l

Note th a t although Heyde and Leonenko (2005) [66] constructed a long-range dependent 

symmetric t-model via a self-similar process {Tt — t}, in which r t was inverse gamma dis­

tributed, the extension to  a skew £-process is trivial. □

The similar construction for the VG model is outlined in Finlay and Seneta (2006) [50]. If 

we again choose pv appropriately to  obtain weak or long-range dependence, then we arrive 

at,

1 1 v
~H (T[nt] -  ln t }) R i W '  aS n 00’

Hence we can also construct a dependent symmetric VG model via a self-similar process 

{Tt — £}, in which rt is gamma distributed. The existence of a Student and VG subordinator 

models for risky asset returns with the desirable empirically supported properties follows. 

Note also th a t the distribution of the random variable R(t)  is not symmetric, as claimed in 

Finlay and Seneta (2006) [50]. The two limit processes for the inverse gamma and gamma 

cases are not in fact distributionally equivalent, (see the correction paper of Finlay and 

Seneta (2006) [51] for details).

3.2 M ethod II: D iffusion-type processes

We now look to promote the use of a fractal activity time construction based on diffusion- 

type processes driven by standard Brownian motion. The standard  Brownian motion is such 

th a t the distribution of the increments of activity tim e can be inverse Gaussian. This allows 

us to  incorporate NIG returns.
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To obtain the desired properties of returns such as a flexible dependence structure, we need 

to  consider the superposition of such diffusion-type processes. We will provide proof of 

convergence when appropriately normalized to  a self-similar process (standard Brownian 

motion for finite superposition and weak dependence). Note here th a t we cannot consider 

reciprocal gamma or gamma increments, since these distributions do not behave well under 

superpositions of diffusion-type processes.

3.2.1 The construction o f unit increm ents (II)

For our construction, we will first recall the background of diffusion-type processes along 

with some im portant properties (see Bibby Skovgaard and Sprensen (2005) [23]).

Consider an interval (l,r),  —oo < I < r < oo, and the process y with the state  space (Z,r) 

th a t satisfies the following stochastic differential equation (SDE) with linear drift:

Here A >  0, p  € (l , r ), W  =  { W ( t) , t  >  0} is a standard Brownian motion and yo is constant

th a t y  is ergodic with invariant density equal to  a preliminary given density function / .  As 

in [23], define the function v  via /  and p  as follows:

Then under some conditions on the density / ,  the solution of (3.8) is a mean-reverting 

stationary process with density function / .  Namely, the following theorem was proved in

T h e o re m  2 . Suppose that the probability density function f  is continuous, bounded, and 

strictly positive on (l , r ), zero outside (l , r ), and has finite expectation p  and finite variance. 

Then the following properties hold:

1. The SDE  (3.8) has a unique Markovian weak solution, and the diffusion coefficient

v(-) given by (3.9) is strictly positive on (l , r ).

2. The diffusion process y that solves (3.8) is ergodic with invariant density f .

3. The function v f  satisfies,

dy(t) = -A (y(t) -  p)dt +  y j  v{y{t))dW  {t), t > 0, y(0) =  y0. (3.8)

or a random variable independent of W. We want to  choose the function v  in such a way

(p -  u ) f (u ) d u / f ( x ) ,  I < x  < r. (3.9)

[23]:

J  v ( x ) f ( x )d x (3.10)
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and,

E (y(s + t)\y(s) =  x)  =  xe~ Xt + p ( 1 -  e~xt) .

I f  the initial condition yo is a random variable with density f , then the process y = 

(y{ t) , t  > 0) is stationary, and i t ’s autocorrelation function is given by,

py (h) =  Corr(y(t), y(t + h)) = e~Xh, t , h >  0. (3.11)

4. I f  — oo < I or r < oo, then the diffusion given by (3.8) is the only ergodic diffusion with 

drift —X(y — p) and invariant density f .  I f  the state space is R, it is the only ergodic 

diffusion with drift —A(y — p) and invariant density f  for  which (3.10) is satisfied.

R e m a rk  When /  has infinite second moment bu t finite first moment, the SDE (3.8) has 

a unique Markovian weak solution with invariant density, bu t (3.10) is not satisfied. The 

condition of the existence of the first moment can not be relaxed because function v  has to 

be well-defined through (3.9).

Consider a stationary diffusion process w ith the IG invariant density, th a t is pdf /  =  fjQ  is 

given by (2.10). This inverse Gaussian diffusion process with ergodic density (2.10) has the 

correlation function (3.11) and satisfies SDE (3.8) with,

and v {x )  =  ^ L e^ » ( _ ^ )  . (3.12)

where,

rx  e —12/2
&(x) =  I ----J^^dt, i G l .

7-00 \/2 tT

is the standard normal distribution function.

The inverse Gaussian diffusion process constructed as a solution of (3.8) satisfies the con­

ditions th a t ensure p-mixing and a-mixing with exponential rate. All definitions of mixing 

required in this thesis are collected in Appendix E, and will be used later to establish the 

asymptotic self-similarity of the activity time in the FATGBM model.

R e m a rk  We consider diffusion processes with inverse Gaussian distributions. These 

distributions have the additivity property in one of the param eters, namely if independent 

random variables X i  and X 2 have IG {8i , ^ )  and IG (82, 7 ) distributions respectively, then 

X i  + X 2 has IG(Si + 82, 1 ) distribution. In addition, the variance of inverse Gaussian

44



distribution is proportional to  the param eter in which the additivity property holds. These 

properties are needed for the construction of superpositions of diffusion processes th a t are 

described in the next section. Note th a t while Gamm a distribution also has these properties 

with respect to its shape parameter, the density is not bounded when the shape parameter 

is less than 1, and the solution of (3.8) is not ergodic. When the shape param eter is 

greater than  1, only finite superpositions th a t correspond to  models for log returns with 

weak dependence and Gamma marginal distribution can be constructed using diffusion-type 

processes. In the case of NIG marginal distributions, processes with either weak and long 

range dependence can be constructed as described below.

Let { r(fc)(£), k > 1} be a sequence of independent processes such th a t each is solution 

of the equation,

d r ^ ( t )  =  - A ^ ( t (A°(£) -  » {k))dt +  y /v (k\ r ( k) ( t ) ) d W ^ ( t ) ,  t >  0 , (3.13)

in which the Brownian motions W ^  are independent and the coefficients in (3.13) are such 

th a t the distribution of r ^  is IG(Sk,'y). In other words, each of the stationary diffusion 

processes r^k\ t )  has given IG marginals. Define the process rt using superpositions of 

stationary diffusion processes, either finite for an integer m,

771
Tm = £ TW (()i

k= 1

or infinite,

OO

Ttoo =  E T<'t)w -  (3-14)
k=l

The construction with infinite superposition is well-defined in the sense of mean-square 

or almost-sure convergence provided < 00 • The marginal distribution of r tm is

I G ( £ Z l i  5k, 7 ) in the case of finite superposition, and the marginal distribution of r t°° is

5k, 7 ) in the case of infinite superposition.

In the case of finite superposition, the covariance function of process r m is,

771
R rm(t) = Cov(T?,T t”l s) =

k= 1 
m  y

E 5k_e- \ ( kh
/■y3 

1 1
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In the case of infinite superposition, the covariance function is,

OO
R r o o ( t )  =  C o v ( t ™ , t % s) = 5 2 y ar(Tik)( t ) ) e - xWt

k=l
oo

Sk \(k)t

k=i T

For infinite superposition, choose 0 <  H  < 1, 5k =  k (1+2(1 and let,

OO ^

a (H) = £  .̂1+2(1 —if) ’ 

be Riemann zeta-function £(z) with z = 1 + 2(1 — H).  Then, with A^  — 1/A:,

L em m a  For infinite superposition, the covariance function of r°° can be w ritten as,

R  (t ) L ®
^ ( 1  - i f ) ’

where L  is a slo w ly  varying a t infinity function, bounded on every bounded interval. 

P ro o f  Set,

*2(1- H ) ~  !
L i t )  ~  3 £  i . l + 2 ( l - i f ) e  k ‘

1 fc=l

We estim ate the sum appearing in the expression for L  as follows:

f ° °  e - £  i  t f ° °  e ~ z

J 1 ^ 1+ 2 (1^ ~ £  ^ 1+ 2 ( 1^ e -  J 1 u l+ 2( l - H )du +  e

Transforming the variables t / u  — s, we get,

f  e - a W - W - ' d s  < L {t) <  [* e - ss2^ - H) - 'd s  +  e~H2^ - H\
Jo Jo

Since,

f  e~ss2('1~H^~1ds —* T(2(l — H )), as t —► oo,
Jo

we have th a t lim ^oo  =  1 for any fixed v > 0 . □

R e m a rk  If h < H  < 1, the process r t°° has long range dependence.
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3.2.2 Convergence to  a self-sim ilar lim it (II)

The activity time process Tt , constructed using the diffusion-type approach, is asymptotically 

self-similar. In the case of finite superposition we will use the notation,

t t  =  X > r >
1 = 1

and Ttm has the Brownian motion as the weak limit as t —> oo. In the case of infinite 

superpositions and |  <  H  < 1, the weak limit is fractional Brownian motion. Namely, let 

D[0 ,1] be Skorokhod space, and for t £ [0,1] consider random functions Tj7̂  and T ^ tj.

T h e o re m  3. For a fixed m  < oo (finite superposition),

— ^ =  ( l $ t| -  E T $ , ( j  -> B (t) ,  t  e  [0,1], as N  -  oo, (3.15)

in fhe sense of weak convergence in D[0,1]. The process B  =  B ( t ) , t  £ [0,1] is Brownian 

motion, and the norming constant cm is given by

f ^ S k l - e - * “ V
^  ^ 7 3 l +  e - ^ ‘V  '

P ro o f  The proof of this theorem uses strong mixing properties of the components of the 

finite superposition. First we check the conditions of Proposition 2.8 and Corollary 2.1 in 

Genon-Catalot et al. (2000) [57] to  show th a t each r ^  satisfies p-mixing mixing condition 

w ith exponential rate. Condition (A4) in [57] requires that,

lim yjiAk\ x ) f ( k\ x )  =  0 , lim y j { x )  f ^ k\ x )  — 0 .

Here / ^  is the IG {8k , l )  density. This condition holds since from (3.12),

lim yjV^k\ x ) f ^ k\ x )  =  lim y j / ( fc)(x)<|>( —Jy /x  — 8 k / Vx).

Condition (A5) in [57] requires th a t the function,

(fc), .  ______ 2y/y (k'>(x)______
^  X v(k)'(x) +  4AW(x — p(fc)) ’

has finite limits as x  —> 0+  and as x  —»• +oo.

In our case,

lim p (fc)( x ) = 0 , lim g(k){ x )=  0 ,
x —>0+ x —»+oo

for each k =  1, . . . ,  m. Therefore if p ^  is the p-mixing coefficient of then,

=  0 ( e " '“ ),
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for some e* >  0 .

Next, we will use the fact th a t p-mixing implies a-mixing (strong mixing) (see Bradley 

(2005) [28]). Denote by a(k\ t )  the strong mixing coefficient of the process r^k\  th a t is 

(A.5) holds in Appendix E, where T t = cr(r^k\ s ) , s  < t), T 1 = a ( r ^ ( s ) , s  > t ) , t >  0. We 

have that, for k — 1, . . . ,  m,

a (k){t) < = 0 (e~€kt),

The finite sum of m  strong mixing processes is also strong mixing [28]. Since all moments
6

exist for IG distribution, and the series ( ^ k\ i ) ) 2(2+S) converges for any S > 0 and

k  =  1 , . . .  ,m,  Theorem 4.2 in Davydov (1970) [39] yields weak convergence in D[0,1].

The norming constant is,
OO

4  =  V ar{T ^)  +  2 c o v ( t r ^ ) ,  (3.16)
1 = 1

where,
m

r j» =  ^ r W(  1).
k=  1

In case when have IG distribution,
m e

K a r ( rD  =  E i .
k= 1 1

and,
m r

C ov(T?,T% 1) = J 2 ^ e - Xik)i-
k = 1 '

The proof is completed by substituting these expressions in (3.16) and computing the norm­

ing constant. □

R e m a rk  The infinite superposition can be approximated as precisely as required by the 

finite superposition, and the asymptotic self-similarity can be used for option pricing as 

discussed in Chapter 5.

3.3 M ethod III: O U -type processes

Thirdly, we will describe a construction of the activity time th a t uses superpositions of 

Ornstein-Uhlenbeck (OU-type) processes. This idea originates from the work of Barndorff- 

Nielsen (2001) [13]. In many ways, this is a direct alternative to  the diffusion-type construc­

tion. The main difference being th a t standard Browinan motion is replaced by Levy noise as
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the driving process. The Levy noise is such th a t the distribution of the activity time can be 

either gamma or inverse Gaussian. This allows for either VG or NIG marginal distribution 

of returns, along with a dependence structure th a t includes asymptotic self-similarity (to 

standard Brownian motion for finite superposition and weak dependence).

3.3.1 T he construction o f unit increm ents (III)

We first recall some definitions and known results on Levy processes (Skorokhod (1991) [118], 

Bertoin (1996) [22], Sato (1999) [114], Kyprianou (2006) [81]) and Ornstein-Uhlenbeck type 

processes (Barndorff-Nielsen (2001) [13], Barndorff-Nielsen and Shephard (2001) [16]) which 

are needed for our construction.

A random variable X  is said to be infinitely divisible if its cumulant function has the Levy- 

Khintchine form,

d f
k x {u )  = ian — - u 2 +  /  (emx — 1 — iux  l[_i,i] (^)) v  (d x ) ,  u e R ,  (3.17) 

2 J R

where a E I ,  d >  0 and v  is the Levy measure, i.e. a non-negative measure on M with,

variable X  ~  A f (a, d), the Levy triplet takes the form (a ,d , 0).

If X  is a self-decomposable random variable, then there exists a stationary stochastic process 

{X ( f ) , t  > 0}, such th a t X  (t) =  X  and,

for all A >  0 (see Barndorff-Nielsen (1998) [12]). Conversely, if { X  (t) , t  > 0} is a stationary 

process and { Z  (t) , t  > 0} is a Levy process, independent of X  (0),  such th a t X  (t ) and Z  (t ) 

satisfy the ltd  stochastic differential equation,

to  be an OU-type process.

The scaling in equation (3.19) is such th a t the marginal distribution of the solution does 

not depend on A, and the law of Levy process is determined uniquely by the distribution of 

X .  From Sato (1999) [114] (Theorem 17.5 and Corollary 17.9), it is known th a t the strong

i/({0}) =  0,

The triplet (a, d, v) uniquely determines the random variable X .  For a Gaussian random

(3.18)

d X  (t ) =  - X X  (t) dt + dZ  (At), (3.19)

for all A ^  th .011 JC is self-decomposable. A. stationary process JC (t] of this kind is said
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stationary solution of this equation exists if Levy measure p of Z ( l )  satisfies,

/OO

(logx) p(dx) < oo. (3.20)
J 2

For our construction, we will take the increments of activity time {rt } to  be an OU-type as 

defined in the above formulations. Here, the marginal distribution of the solution of (3.19) 

is self-decomposable, and so are the marginal distributions we are considering, r(a:,/?) or 

IG (5 ,7 ). As a special case of a more general result we have the following theorem.

T h e o re m  4. There exists a stationary process r ( t ) , t  > 0, which has marginal T(ct,0) or 

IG (6, 7 ) distribution and satisfies equation (3.19). The process r  has all moments, and the 

correlation function of  r  is given as follows:

where / 0°° max(x, 1 )Q(dx), Q{—00,0) =  0. Since both Gamm a and inverse Gaussian distri­

butions are self-decomposable, measure Q has density w ith respect to  Lebesgue measure,

Further, Levy measure of Z  (i.e. Levy measure of Z(  1)), p , satisfies p{x, 00) =  q(x). For 

both Gamm a and inverse Gaussian cases,

which verifies condition (3.20).

Since k t  is differentiable for u ^  0 and u k t ( u ) —> 0 for u —* 0, u ^  0, the cumulant transform 

of Z (  1) can be w ritten as,

pT(s) = C orr(r( t) ,T ( t  +  s)) =  e As, s > 0 .

Since r  >  0 in (3.18), we can take the cumulant function of r  to  be of the form,

p O O

I  (eiux -  1 )Q(dx)

and this density has the form: Q(dx) — <̂- d x , where function q is decreasing on (0 , 00) 

and is called the canonical function. The explicit forms of function q for T(a,/5) or IG (6, 7 ) 

distribution of y are,

(log x )q (x )d x  < 00,

«z( i)(u) =  log E e tuZ{1) =  u — KT(t){u).
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In the case when r  has Gamma marginals w ith cumulant function,

«*(!,(«) =  u | ; l 0 g  ( l - | )

a u i  f  i u \  1

T V  ~~0 J

= a ( M v )  -  1). (3-21)

where (f)\{u) =  (1 — m //3 )_1 is the characteristic function of a T(l,/3) random variable.

Therefore in the case of Gamm a distribution, Levy process Z ( t ) is a compound Poisson 
N(t)

process Z ( t ) =  Zn , where N (t)  is a homogeneous Poisson process with intensity a:, and
n = 1

Z n are independent identically distributed T(l ,  /3) random variables.

In the case when X  has inverse Gaussian marginals, Levy measure of Z{ 1) is

p{dx) = r £ e^ xl2d x + £ m e~llxl2d*

= pi(dx)  +  p2(dx).

Therefore process Z  can be represented as a sum of two independent Levy processes, Z\  and 

Z^- For the first component,

« z1(i ) W  =  r ^ ,ux -  = r V ' * *  - 1)— d®.Jo Jo x

where function q\ is a canonical function of the IG { | , 7 ) distribution, and process Z\  is a 

Levy process with IG  marginals. The second component Z^ is a compound Poisson process 

(see [72]),

N ( t )

I 2
Z ^  E  W - ’

k= 1

where N ( t ) , t  > 0 is a homogeneous Poisson process with intensity 4^, and VFi, W 2, . . .  are 

independent standard normal random variables (each is T(^,  | ) ) .

These specifications of the Levy processes are im portant for modelling the fractal activity 

times th a t are solutions of equation (3.19). In addition, the transition function of the solution 

is needed for deriving pricing formulae discussed later in Chapter 5.

R e m a rk  We consider OU processes with Gamma or inverse Gaussian marginals. These 

distributions have the additivity property in one of the parameters, namely if independent 

random variables X \  and X 2 have T(ai,/3) and T (a 2,(3) distributions respectively, then
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X i  + X 2 has r(ai  + c*2,/d) distribution. For X \  and X 2 inverse Gaussian IG {8\ , 7 ) and 

IG{&2, l )  respectively X i  +  X 2 has IG {8\ +  ^2, 7 ) distribution. In addition, the variances of 

Gamma and inverse Gaussian distributions are proportional to the param eter in which the 

additivity property holds. These properties are needed for the construction of superposi­

tions of OU processes th a t are described in the next section. Another distribution th a t can 

be considered for the increments of activity time, reciprocal Gamma distribution (leading 

to Student’s ^-distribution of the returns), does not have these properties. For reciprocal 

Gamma distribution of the unit increments of the activity time process, a different construc­

tion th a t uses chi-square processes is available (see [15]). The construction via chi-square 

processes also works for Gamm a distribution of the increments of activity time [50] [52]. In 

contrast to  [50] we do not need any of the param eters to be integers.

We use a discrete version of superposition introduced in [12], to  define the increments of the 

activity time. Let r ( k \ t ) ,  k  > 1 be the sequence of independent processes such th a t each 

r ^ ( t )  is solution of the equation,

d r w ( t )  =  - \ { k ) T W ( t )  +  dZ(fc)(A(fc)£), t  >  0,

in which the Levy processes Z ^  are independent and are such th a t the distribution of r ^  

is either T(ctk,/3) or IG {8k,'y)- In other words, each of processes r^k\ t )  is of OU type with 

given marginals. Define the process rt using superpositions of OU processes, either finite for 

an integer m,
m

Tr  =  E T<fc,w -  <3-22)
fc=i

or infinite,
OO

n“  =  E T<fc)W- (3-23)
k = 1

The construction with infinite superposition is well-defined in the sense of mean-square 

or almost-sure convergence provided th a t YlkL  1 a k < 00 in case of the VG model, and

8k < 00 in case of NIG model. For VG model, the marginal distribution of r tm is

r(X X = i a k-> P) and for NIG model, the marginal distribution of r tm is IG (^J^= l 8k ^ ) .  In 

the case of infinite superpositions the summation in the first param eter goes to infinity.

L em m a  In the case of finite superposition, the covariance function of r m is,
m

R r ” (t) = Cao(T”  t S . )  =  E  Var{r<k\ t ) ) e - x m t . (3.24)
k = 1
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For the VG model, V a r ( r ^ )  =  a k /P 2, and for NIG model V a r ( r ^ )  — 6k / 7 3- In the case 

of infinite superposition, the respective summations are to infinity instead of m, and we 

choose ajt =  in case of VG model, and choose 6k =  k~^1+2^ ~ H^  in case of
OO j

NIG model. Let a ( H ) =  11+2(1- # )  ^ emann zeta-function. Then, with A^
fc— 1

OO -

R r°°(t) =  C £  £ 1 + 2 ( 1 - # )  e  t /fc- 

The constant c equals jp  in VG model, and ^  in NIG model.

L em m a For infinite superposition, the covariance function of r°°  can be w ritten as,

r  m  r°° \ / ^2(1 — #) ’

where L  is a slowly varying a t infinity function, bounded on every bounded interval.

P ro o f  As in the proof for the diffusion-type construction, we set,
OO -

L(t) =  ct2'1-"* £  fcl+2(i

We estim ate the sum appearing in the expression for L  as follows:

f ° °  e ~ ™  00 ̂   ̂ t  /'oo ~ ±

J 1 Ul + 2 ( 1 - H )  d U ~ ^  £ 1+ 2(1  — # )  e  * -  J i  u l + 2 ( l - H ) d u  +  e  t -

Transforming the variables ^ =  s we get,

c f  e~ss2(1~H^~1ds < L(t) < c (  e~ss2 1̂~H^~1ds 4- ce~t t2 1̂~H\
Jo Jo

Since,

f  e~ss2il~H)- 1ds —> T (2 ( l  -  i f ) ) ,
Jo

as t  —> 00, we have th a t lim ^oo =  1 for any fixed v > 0 . □

R e m a rk  If J <  < 1, the process r t°° has long range dependence.

3.3.2 C onvergence to  a self-sim ilar lim it (III)

We will now show th a t the activity time process Tt constructed using the OU-type approach 

is asymptotically self-similar. In the case of finite superposition we will use the notation 

Ttm =  J2l= 1 and in the case of infinite superposition we will use the notation Tt°° =  

E U t ? 0. As before, let D[0 , 1] be Skorokhod space, and for t  e  [0,1] consider random 

functions and .
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T h e o re m  5. For a fixed m  < oo (finite superposition),

B ( t ), £ 6 [0,1], as N  —> oo,

in the sense of weak convergence in D[0,1]. The process B (t),  t G [0,1] is Brownian motion, 

and the norming constant cm is given by,

where V a r ( r ^ )  = otk/ft2 for the VG model, and V a r ( r ^ )  — 5k/7 3 for the NIG model.

P ro o f  The proof of this theorem has two steps. F irst, each OU process in the finite 

superposition is /5-mixing (absolutely regular, see Appendix E) under condition (3.20) [72] 

(Theorem 3.1). Under a stronger condition of existence of the absolute moment of order 

p > 0 of the marginal distribution, there exists a > 0 such th a t the mixing coefficient 

0y (t) — 0 ( e ~ at) ([99], Theorem 4.3). This condition is satisfied for both Gamma and 

inverse Gaussian distributions th a t have all moments.

Second, a finite sum of /5-mixing processes is also /5-mixing [28]. Denote by a^k\ t )  the 

strong mixing coefficient of the process r^k\  i.e. (A.5) holds in Appendix E, where T t =  

a ( r ^ ( s ) ,  s < t), T 1 — a(r^k\ s ) , s  > t), t > 0 . As discussed in [28], (3 - mixing implies 

a-mixing. Since for each k , 2a ^ ( t )  < /5^(£ ) <  Cke~akt, Theorem 4.2 in [39] yields weak 

convergence in D[0,1].

The norming constants for Gamma and inverse Gaussian cases are computed using equation

R e m a rk  The infinite superposition can be approximated as precisely as required by the 

finite superposition, and the asymptotic self-similarity can be used for option pricing as 

discussed in Chapter 5.

(3.24). □
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Chapter 4

D ata F itting

“Life always has a fat tail.” (Eugene F. Fama).

Here we want to  validate our approach for risky asset modelling. To do this, we will estimate

the param eters of suitable marginals to  the best of our ability whilst promoting the use of a 

flexible dependence structure and non-Gaussian marginals for returns. Our chosen method 

will be non-linear least squares to  fit; the Student distribution, the VG distribution and the 

NIG distribution to  the data. The objective will be to  minimise the sum of squared residuals 

(errors). All initial param eter values will first be derived from the method of moments. Thus 

hopefully reducing the number of iterative refinements needed to achieve convergence and 

the best fit possible. Note th a t we cannot use the popular maximum likelihood estimation 

method as the independence assumption for returns does not hold.

We will then focus on the symmetric Student fit only. Here we carry out hypothesis testing 

to determine whether the param eter estimators are good enough. This fit is tested by using 

a brand new expression for the characteristic function of the S tudent’s ^-distribution.

4.1 Param eter estim ation using m ethod of m om ents

From a Chebyshev type argument, we can prove th a t sample moments are consistent esti­

mators of unknown central moments by applying the method of moments. We consider the 

following sample moments:
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t=i t=i

which gives us the sample skewness and kurtosis:

7 i  =  a n d  72  =  7^T2 -  3. (4.1)
(M2)5 ( ^ r

Ideally we would have liked to  use S(fj,,9,a2,v ,6) ,  VG(/i,0,cr2,a,/3) and N I G ( n , 6,cr2, 6, 7 ) 

for any param eter estimation, but is not possible due to the number of unknown parameters 

and the limited number of equations. For the m ethod of moments we will need to  make 

some small simplifications to  obtain some meaningful results. Note th a t for the following 

cases there is no need for any assumptions of the independence of risky asset increments.

Case I: The Student model

Instead of S((j,,$,a2,a ,P ) ,  we will consider the (symmetric scaled) Student’s t-distribution 

S { n ,8,v )  advocated by Heyde and Leonenko (2005) [66] with v  >  0 degrees of freedom. It 

can be defined by the probability density function (pdf)

f s { x )  = c{v,8) -----------   (4.2)

( i  + ( ^ ) 2) 2

where ji € R is location param eter, 8 >  0 is scaling param eter, and

«*,)- w
< V * T (f)’

Thus, a random variable X  ~  T(fi,,8,v )  can be represented by X \ V  ~  N ( / i ,a 2V),  where V  

has an inverse (reciprocal) gamma distribution. The expectation of X  exists when v  >  1, 

the variance when v  >  2 and the n-th  moment when v > n. By using the formula,

r ° °  x* -1 J r(A)rfu-A) „ , , ,
Jo (1 -  x y  -  T ( p )  ’ <  < ( 4-3)

we obtain the following expressions for the central moments of random variable X  ~  

T ( n ,8, v):

E ( X  — m)u =  0 , n = 2k — 1 < v, k = 1 , 2, . . .
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f°°  1
E ( X  -  n )n =  / (x -  fi)nc(S, v ) ------------------- 2± r dx

J—oo / x — u \ 2 l  2

i +  ( X- T )

[! + ( f ) :

=  <5n+1c(5,i/) /    :r± r< k
Jo [1+2] 2
p f n + 1 \ p / u - n \

=  <5n+1c(i/, 5)-----p / y+ i\~ —  , n =  2fc< 1/, fc =  1 ,2 ,. . .  (4.4)
 ̂ v 2  /

From the expression (4.4) and straightforward calculation, we conclude th a t the first two 

even central moments are:

- B v v _  ,2 s2
^  2r m  v -  2

, v >  2, (4.5)

M4 =  £ ( *  -  M)4 =
3<54

( i / - 4 ) ( i / - 2 ) > v  > 4,

with the coefficient of kurtosis 72 ,

(4.6)

72  = ------- 7 , "  > 4.v — 4

Using Chebyshev’s inequality we may prove th a t sample moments give consistent estimators 

for i±2 and fj,4 and thus for 72 . Hence, we may apply the method of moments and get 

consistent estimators,

6
jl = X ,  v — —  + 4 , S — sy/v — 2 

72
(4.7)

Case II: The VG model

If we say th a t the increments of activity time follow a marginal gamma distribution r(o:, a), 

then returns will have a marginal (skew) VG distribution (see Madan et al (1998) [88]) with 

pdf,

[ 2  a ae ( (  \x- f j t \  \ a~* ( \ x -  n\y/Q2 + 2 a a 2 \
f v G { x ) = n ^ r i a r  U » + w J  K °-*  ( — ^ — j  (48)

This distribution was called VG because for random variable X  ~  VG(/i,0,cr2,a )  we can 

consider X \ V  ~  N(fi,cr2V ), where V  has a gamma distribution. The symmetric case in
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which 0 =  0 was first introduced in a financial context by Madan and Seneta (1990) [89] 

and has pdf,

J~2 a a (  \x — / / | ^ a 2 I \x -  fi\V2aa2
f v G { x )  V « r ( a ) ( v w j  K ° - l [  ^  J ' x €

Here K \( .)  is a modified Bessel function of the th ird  kind with index A, given for x  > 0 (see 

Appendix C).

Recall th a t the distribution of T ~  r ( a ,  a) is given by the pdf (2.8), so th a t expectation is 

1, as required in the chi-squared construction and variance is T. For 0 =  0, we have the 

simplified real-valued characteristic function,

<px(u) =  (1  -
o q \ —aa u '
2a

Letting a  —► oo results in ipx(u) — e , so X  has an Af(0,cr2) distribution. 

Consequently, we obtain the following (Madan et al (1998) [88]),

E X  =  n  +  0, (4.9)

02
V a r X  = a 2 +  — , (4.10)

a

E ( X - B X f  = ^  + ^ ,  (4.11)

E ( X  -  E X )*  =  (l + I) + ^  (l + | )  + J  (l + | )  , (4.12)

From this, we can obtain expressions for the coefficients of skewness 7 1  and of kurtosis 7 2 . 

From (4.9)-(4.12), and ignoring term s in 02, 03, 04, we have,

2  30 „ (  ̂ 1
£ X  =  /i +  0, =  a  , 71 =  — , 72 =  3 ( 1 - 1 - - ) .  (4.13)

a a  \  a  J

Thus, if 0 is small, we may successfully obtain approximations to <7, a,  0, and ft:

3 /y'i a d
<7 =  s, a  =  — , 0 =  ■ , p, = X  — 0. (4.14)

72 3

Additionally, these estimators can be simply adjusted for the symmetric case (taking 0 =  0 

in (4.13)).

Case III: The NIG model
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Suppose that the conditional distribution of X  given Z  is N(g, 4- kZ ,Z ) .  If Z  itself follows 

an IG(8, 7 ) distribution with parameters S and 7 , then the resulting mixed distribution is

NIG(n,  k, a , <5), where a  =  y/7 2 +  k2. The pdf of X  is then given by,

f m a ( x )  =  - e s^ - ^ - ^ < j , ( x ) - 4K i (Sa<f>(x) i ) e “ , i  6 R, (4.15)
7T

where 0(x) =  1 +  ( ^ ^ ) 2 and K r (x) denotes the modified Bessel function of the third kind 

of order r evaluated at x.

This distribution is a flexible, four parameter distribution that can describe a wide range of 

shapes. Some properties are summarized using the moments. For further information see 

Barndorff-Nielsen (1997) [11] and Lillestol (2000) [87].

After some work, it can be shown that,

8k 8a2 3 k . 1 +  / Air>\
E X  = n~\----- , At2 =  —3- , 7 i =  . . . n  72 =  3( -  a ). (4.16)

7  7  a(7<5)s h

The moments given in (4.16) have a rather simple form allowing for simple moment estima­

tion. Equating the theoretical moments with their sample counterparts, and solving for the 

parameters one obtains that,

3 . 71S7 2 5 s27 3 „ -
7 = — t = = = s ,  k = , 8 = ^  M =  X  k — .

sy/ 372 -  57? 3 k2 + 7 2 7

Note that, the moment estimates do not exist if 372 <  572. Also, these parameter estimates

can be easily adjusted for the symmetric case by taking k =  0 in (4.16), (??), and (??).

To illustrate the fit to the data, the parameter estimates in Tables 4-2, 4-3 and 4-4 are 

used to plot the Student, VG and NIG probability density curves alongside the inferior 

corresponding Gaussian. In addition to higher peaks than Gaussian distribution (see Figure 

4-1), we observe that typical returns data has heavier tails also (see Figure 4-2). The 

parabolic decay of the tails for the logarithm of Gaussian density is too fast, while the 

hyperbolic decay of the log-Student, log-VG and log-NIG provides a much better fit to the 

data. Whether the semi-heavy tails of the Student distribution are substantial enough to 

model typical returns data is unclear. The heavy tails of VG and NIG may be more suitable. 

As we discussed previously, further study into the actual tailweight of risky asset returns is 

required.
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4.2 Testing the param eter estim ates of the Student model

To directly compare the fits of the symmetric Student distribution with the Gaussian, one 

may consider applying the chi-square goodness of fit test. When testing the goodness-of- 

fit for Gaussian distribution, under the null hypothesis th a t the returns are Gaussian and 

therefore independent since they are uncorrelated in our model. The test provides a valid 

procedure, and the hypothesis of the Gaussian distribution is rejected for all 10 risky assets 

(see Table 2.4). However, the goodness of fit test th a t states th a t the marginal distribution 

of the returns is Student has not been developed. This test will be treated formally under 

the null hypothesis the returns are dependent, and may be even long-range dependent. An 

associated test has been applied formally, under the hypothesis th a t returns are dependent, 

by Finlay and Seneta (2006) [50] for the VG model. However, the development of the 

goodness-of-fit test for dependent data  is ongoing in the literature.

Instead we present a testing procedure based on the characteristic function for the following 

null hypothesis:

4.2.1 T he characteristic function o f th e S tud en t’s t-d istribution

The characteristic function of the Student t-distribution has been a topic of some controversy 

and difficulties in statistical literature for the last 30 years (see Ifram (1970) [71], Pastena 

(1991) [105], H urst (1995) [70] and Dreier and Kotz (2002) [43] for the survey of explicit 

expressions). In this section we focus on the case when fj, — 0, and use notation for 

symmetric Student.

We note th a t when the degrees of freedom v  is an integer n, and <5 =  v — n, the density of 

t -variable Tn is,

For the integer degrees of freedom n  and S =  n, Dreier and Kotz (2002) [43] developed the 

following expression for the characteristic function:

On the other hand, in the more general case of S tudent’s t-variable Tuj  with the density,

H q: v  =  v  and 5 = 5. (4.17)

(4.18)

c\Tl /  h-iTI
f o j t )  = E e itT- ' = /  e - ' fi‘t-2x+W>(x(x + \ t \ ) ) =  dx,  l e R  . (4.19)

1 \n) Jo

(4.20)
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the following elegant expression for the characteristic function is known,

Ku § 21 -^
(4.21)2

r ( | )

where K \(-)  is the Bessel function of the th ird  kind of order A (see Appendix C).

Note th a t the param eter v  >  0 in (4.20) and (4.21) is not necessarily integer while the 

scaling param eter S > 0. The formula (4.21) was derived by Hurst (1995) [70]. Next, we 

will prove th a t the formula (4.19) can be generalized to  the Student t-distribution TUts with 

the density (4.20).

T h e o re m  6 . The characteristic function of the t-variable Tv$ with the density (4.20) can 

be written as follows:

P ro o f  Let X  be a Gamma distributed random variable T (a, 0) with the parameters 

a  =  and (3 =  whose density is given by,

Consider now the random variable Y  independent of X  such th a t ( - Y )  has the same dis­

tribution  as the random variable X .

Finally, we consider the sum Z  =  X  +  Y .  The characteristic function of Z  is,

Thus, the characteristic function of Z  is the density of the ^-variable Tv^  normalized in such 

a manner th a t it is equal to  1 a t 0 .

As in Dreier and Kotz (2002) [43] we will now use the duality theorem for characteristic 

functions of the symmetric distributions and probability density functions (see Appendix 

F). This theorem implies th a t the density of Z  normed such th a t it is equal to 1 at 0 

U r{t)  =  y f(Q<j, t  € M) is the characteristic function of Tv^ .

<5(2x+|t|) (4.22)

and characteristic function,
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The density of Z  is now found as convolution of the densities f x  and /y ,

f z { z )  = f x + Y ( z )  = /  P x { x ) p Y {z -  x ) d x  ,
./R

^  J  e 6xx ’' ^ e s ẑ X\ x  -  z ) ^  dx ,
r ( ^ )

8u+l r°° _i
_  /  g —<5(2x+z) ( x (x  +  z ) ) — d x  , z > 0

JO(r(̂ ))
Since,

f.(0) =  *"+1 r e-^x^dx=(r(H±i))2 J 0 {r(!ii))2 (25)- ’
and due to the symmetry of the characteristic function of the t-variable T„)(5, we arrive at 

the following representation of the characteristic function of the £-variable:

VT{t) =  W )  = W )  l ° ° e~S(2X+m(x (X + 1*1) ) ^  ^  - 4 6  R •

□

Note th a t from (4.22), to  the best of our knowledge, we have obtained a new expression for 

the modified Bessel function of the th ird  kind (see Appendix G).

R e m a rk  The obtained expression is computationally friendly. For v  =  1,

$ t (J) =  c f € M, (4.23)

which is the characteristic function of the Cauchy distribution. For 8 — y/u and u —* 00, we 

obtain,

4>T{t) =  e- ^ ,  t  € R, (4.24)

the well-known expression for the characteristic function of the normal distribution.

4.2.2 H ypothesis testin g  using th e characteristic function

We will use the result from Theorem 1 as our characteristic function of the Student’s t- 

distribution,

cp(u ; v, (5) =  s (u) =  \  [  e~5 2̂x^ u^{x{x  4- lnl))-5- d i  , « e R  . (4.25)
L \ y )  Jo

For a real-valued (and therefore symmetric) characteristic function,

(p(u]u, 8) =  E e zuTl/'5 =  E  cos(uTUj$).

62



So let be the empirical characteristic function based on the observations of the returns

X \ , X 2, • • •, X n ,

1 N 1 N  
<Pn ( u ) =  e%u Xj  =  n '5 2  cos(uXj )• (4-26)

j = i j= i

T h e o re m  7. Lei X i ,X 2, . . .  ,Xjv be observations o f the returns that follow model (2.5) with 

the activity time increments constructed via (3.5) so that the characteristic function of the 

marginal distribution of the returns is (4.25), and the empirical characteristic function is 

(4.26). Assume that the process 77 has a monotonic correlation function p ^ t )  = where 

L is a function slowly varying at infinity and bounded on every bounded interval. Then we 

have the following:

1. EgfN(u) — (p(u;6), where 9 = {y,8) and <Pn (u) —> <p(u;9) as N  —> 00 almost surely 

and in the mean square for each u g R .  In addition, for a fixed 0 < T  < 00,

lim sup | <Pn ( u ) — <p{u)  | =  0
N-*oo\u\<T

= 1.

2. I f  a  > 1 /2 ,  the empirical characteristic function, appropriately normalized, is asymp­

totically normal. Namely, for any u \ , . . .  , u m , m  > 1, let be the covari­

ance matrix with — Cov{(pN{ui),g)N{uj)), 1 <  i , j  < m , and (<p)v(wi),. . .  ^ ( t tm ) ) ' 

be a vector-column. Then,

( s (iV))  2 [(^V(ui),---<PJ\Kum))' -  (<£(ui;0),...,< /?(um; 0))'] JV(0,7),

where, E ^  =  (£(*0 )* (£(*0 )* .

3. I f 0 < a <  | , the stochastic process,

N a
"j^iV) &[Nt) (u) ~  <p (u ; 9)),  

converges in distribution as N  —> 00 to,

V

i~ 1

where Ri, i — 1 , . . .  , 1/  are independent copies of Rosenblatt process (see Appendix D), 

and a is a constant so that,

2  ______ 1______  C L . . , k „ , o
(1 -  <*)(! -  2a )  _ o Ari! • • • kv \
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P ro o f  The first part of Theorem 9 follows from ergodic theorem for stationary processes. 

The proof of parts 2 and 3 of the theorem  is based on the results of Arcones (1994) [9].

Let be a R evalued  stationary mean-zero Gaussian sequence, i.e. £j = (£j*\ . • •,

Given a measurable function G : Rd —► R 1, Arcones (1994) [9] considers conditions on the 

convergence to  the normal vector,

4 =  E < G f e )  -  E G &i)) ^  N (°. S ), as n  ^  oo, (4.27)
y/n i

where E =
d

Let us assume th a t G(-) e  Z,2(Rd, <f>(x j)  dxj),  where,
i

e~xV 2
\/2n

d
The orthonorm al basis in Z/2(Rd> 4>(xj)dxj) consists of multidimensional Hermite poly-

3  =  1
nomials,

d
eku ...,kd{ x i , . . . , x d) =  Y l H k j (xj),  (4.28)

j =i

where k \ , . . . k d are non-negative integers, and Hk} are one-dimensional Hermite polynomials.
d

A function G(-) G L 2(Rd, 4>(x j)  dxj)  can be expanded,
j =i

00 C
G ( x i , . . . , X d) = ^ 2  ^ 2  k ek u - ,k A x l>---ix d),

m =0 ki +  . . . +k d=m  * ^

where,

f  TTc klt...,kd =  /  G (X !, . . .  ,Xd)eku...,kAx i ’ ■ ■ ■ ’x d) TT (f>(x j ) d x  !•••  d xd.

The function G has a Hermite rank equal to  m, if there is an integer m  > 1, such th a t 

a t least one coefficient C : k\  +  . . .  +  kd =  m, is not zero, and Ckx,...,kd =  0,1  <  

k\  4- . . .  +  kd < m  — 1.

Consider a Gaussian vector £(£) =  (£i(£), • • • €v(t)i€v+i(t)) in R "+1, where the first v  compo­

nents are independent copies of the Gaussian process rj w ith monotonic correlation function 

pv , and the last component £„+i is a sequence of independent 7V(0,1) random variables th a t 

are also independent of the process 77. Then with our construction of the Student process,

Xi  = G ( m )  = G(( i ( t ) , . ..«„(«),6,+i(t)),
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where the non-random function G is given by the following expression:

G(Xi "  + 0 ^  [ i (x 2 +  . .. +  X2), +  '̂  _1_ [1 (X2 +  . . . +  X2),

Then for fixed u  we consider the function,

v+ i
Gu (x i , . . .  ja^X jz+i) =  co s(u G (x i,x 2, . . . ,  x„, x„+i)) € L2(RI/+1, </>(^))-

j = i

We have,

1 N
<Pn (u) — ip(u;0) — —  Y X c o s ju X j )  — E  cos(uXj))

j =i

1 N (
jv £ ( G „ ( e i ( j ) .  • • - ^ y j . ^ + i O ') )  -  ■ . ^ 0 ') .^ + i0 ') )

7 =  1 ^3=

For fixed u  the  function G u can be expanded:
o° ^

(^ 1 , • • • , X y , Xj/-)-! ) ^   ̂ ^   ̂ ^  j ^  ̂&k\,. . . ,ku + 1 (*^11 • • • i ^ v i  *£i/+l) >
m =0 +  ^+1

and,

^(CiCO* • • - ^ ( O ^ + i ^ ) ) — • • • >6 ' ( 0 >6 '+ i(0 ) =
00 p
E E fc • ■. ,6(t))gt,+,fe+ift))-

7 7 1 = 1  f c i + . . . , f c „ + i = m  ^

We separate the term  where ku+1 =  0 and write,

N

N
\ N /  \

J j  E( W' • • • .«-(*)-6 -+1W ) -  S G „ « ,(« ) , . .  .?„(*), & + l(0 ) j =
t = l  '  '

N  0 0  r

^EE E J T T T ° T ei“  UftM.-.frMH
t = l  m —  l f c i H  =777- 27

N  oo

N  5  ,  ^  ^  ^  • • • ^ + i !

A n  +  -Btv

Due to  orthogonality of Hermite polynomials,

N

V a r ( ^ ' p ( a u( U t ) ,  ■ • .,&.(*)■ &.+1W ) -  ■ • ■ U O . W i W ) ) )  =  V a r (A N) +  Kor(Bjv),

and we evaluate these variances below. The variance of the second term  is,

N  oo r ^ 'l

V a r(B „ ) =  £  £  X !N 2 A ^ A ^ A ^  (fci!)2 - - - (fe^+i!)2
t ,s = l  fc„+ i =  l  fc i+ -+ fc „ > 0  v w  v ’
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E&k\,. ..ykv (Cl(0> • • • > (Cl(^)> • • • > C«/(s))x

M fc„+1( ^ + 1(t))^fc,+1( ^ + 1(«))- 

Since C«/+i are i.i.d. N(0,1), the last expectation of the product of Hermite polynomials is 

not zero only when t — s, and so,

C l
V a r (B N ) = ±- - £  £  ......

N  k„+1=1 k1+ - + k u>0 kl1  ■ "  hu +l ]

Since,
oo /̂ <2 r^l

° f c i , . . . , f c „ + i  b l -

lc, I . . . /  V
fc„+i =  lfciH |-fci/>0 k\ , . . .ku+\

CB

b ~ zZ zZ kli...K+l] - zZ k l \ - - - k u+1\

V a r (B N ) N .

In the first term , A n , the summation with respect to  m  can begin at m  — 2, because when 

considered as a function of the first u coordinates, Gu has Hermite rank 2 (it is an even 

function of each of the first v  coordinates). We have,

 ̂ N  oo q 2

V a r { A j s r ) =  ^ Z  ^ Z  ^ Z  ( k  h2 . . .  ( k  |\2 Ĉ1 »• • • >Ci'(£))efci,---,fc.,(Ci(s)» • • • >Ĉ (S))
t ,s = l  m = 2  ki  H \-ku= m   ̂ v

N  oo c l .

t ,s = l  m = 2 fciH-----1-kv = m

-  J. T /  T £j

= 7̂  £  £  £
/ o2 1 N  1 N  oo *o2

k £  2^ t r ^ £ / ( i ‘ - i )  + ^ £ £  £
fciH \-ku=2  t ,s = l  t ,5—1 m =3 fci +  — \-kv = m

W hen a  < b  from Lemma 3.1 in Taqqu (1975) [119],

f X-' '  2/1 i\ 1 IZ(N')
^ 2  ~  SD ~  ~~n2^~

and,

t , s = l  m = 3  ki~\ \-ku= m

Therefore with,

N 2 t l ^ i  ( l - a ) ( l - 2 a)  N 2« ’

o 1 v —> ^ k i  k 0
= ( l - 2 a )( l  - a ) t i + £ ^ f c ^ t ! ’

we have,

T/ n r (  A *r\ — /t^-
N 2a

V a r (A N ) = cr2LJ Z P  (1 +  o (l)), as iV oo.
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Since the variance of B n  is of order ĵ ĵ B n  —» 0 in the mean square if 0 < a  < 

Therefore the limit distribution of — — tp{u\ 6)) is the same as the limit distribution 

of,
NN c

crL(N) N

where Fu (-) = E G u (-,£u+1(t)) so that,

N

h  E ^ ^ w -  • ■ • «-(*)) -  EF « &  (*)• • ■ •& (*))) -

w ) -  w , . . .  « „ « ) ) .
t= i '  '

W hen 0 <  a  < the limit distribution of A n  follows from a multivariate generalization of 

Theorem 6.1 in Taqqu (1975) [119], and from Theorem 6 in Arcones (1994) [9]:

N  A ^ t] ^ i ? i ( t ) ,  as N  -» oo.
a L (N )

2 = 1

W hen a  >  5> the asym ptotic normality of y /N  A n  follows from the result of Arcones (1994) 

[9]. The Hermite rank of function Fu is 2 and,

X  M k ) I2 <  °°-
k= — oo

The asymptotic normality of \ / N B n  follows from the fact th a t £„+i(£) for t — 1, 2 , . . .  are
 2

i.i.d. N(0,1). Therefore when a  > ( ^ ( u )  — ^(w ;9)) N (0 ,1), N  —► oo. □

To carry out the test of hypotheses about the param eters of the t-distribution when a  > \ , 

we need to  compute

r(N) =_ij TV 2

AT A/'

<7;: - =
r = l  s = l

1 AT TV

^ E E  Cov(elUiXr, etui Xs)
r = 1 s = l

1 ,  N  N
—Cov(eiUiXl,e iUjXl) + -—2 5 ^  X )  Cov(eiUiXr,e iu>x •)N  ’ A/-2

r = l  s = l ,s ^ r

1 1 N N . .

= f t  M ui + #) - ¥>(«*; #)} + ^  X X] Cov{eWiXr, elUjX($.29)
r = l  s = l ,s ^ r

R e m a rk  W ithout the second term  in equation (4.29) th a t corresponds to summation 

where r ^  s, we find that,

j j { ( p ( u i  + U j \ 0 )  -  <p(ui;  9 ) ( p ( u j ;  0)},
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may not be positive definite.

Consider the following stationary process,

Yj(u) — cos{uXj), j  — 1 , . . .  N ,  u e R ,  (4.30)

so that,

N  N  1 N  NE C o v ( e ^ x ' , e ^ x -) = E C m (° o e f a X ^ c o e l u j X , ) )
r = l  s = l , s ^ r  r =  1 s = l ,s ^ r

1 N  N

= ^ E E  CoviYrM.YaiUj))
r = l s = l  

1 AT TV

= jyiE E
r — 1 s = l , s / r

=  (4-31>
fc=l

where Ri,j{k) =  Cov(Yt (ui),Yt+k(uj)) — Cov(cos(uiXt ),cos(ujXt+k))- We consistently 

estim ate this covariance with,

N - k

N

1 N - k

X i P W  =  V E ( y‘ (“ ‘) -  ?*(«<))( W « i )  -  ?* (% )).
t=l

Hence,

=  +  ui ’e) ~  ¥>(«*; Y 1  i 1 ~
k = l

k =  1

The last term  converges to  zero almost surely due to  ergodic theorem, and by Slutsky’s 

lemma we have th a t the results on asymtotic distribution for the normalized empirical 

characteristic function stated  in Theorem 7 hold when is replaced with where,

=  - f i M u i  +  Uj ;#)  -  <p(ui ;0)(p(uj ;0) }  +  -  - j ^ ) R $ P ( k ) .
k =  1

Under the assumption of short-range dependence (a  >  ^), we use the last expression to 

carry out the test of the null hypothesis, H q : v  — v  and 5 — 5. For a fixed u, 8 =  (z>, 5) 

and large N, we can compute that,

*LN)0) = j j M 2u-,0) -(p2(u;0)}+ ^  ]T(1 -  ^ ) R {uN)(k),
k =  1
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where,

N —k

k iN)(k) = j f  £  -  YN(u)){Yt+k(u) -  M u )).
t =  1

We have,

P{\(*LN)0))~H<Pn (u) -  <p{u',0))| <  u e} «  P{|N (0,1)| <  u j  =  1 -  e.

Set e =  0.05 so u e =  196,  and test whether the test statistic,

-  (p(u-, 6,i>)\,

is below the critical value of the normal distribution, namely whether,

-<p(u\6,v)  | <  1.96. (4.32)

u =1000 u=600 u =200 w=-200 u=-600 u =-1000
GBP 0.475 0.299 0.184 0.184 0.299 0.475

Table 4.1: Values of the test statistic for the tests of Student distribution parameters for 
GBP

We use the numerical values of the param eter estim ates (see Table 4-2) obtained from 

method of moments as 0 and <5, and present the values of the test statistics for the hypotheses 

tests in Table 4• 1- We see th a t the inequality (4.32) is satisfied for,

u =  (1000,600,200, - 200, -600 , - 1000},

and therefore we retain H q at a 5% significance level. Figure 4-3 is the plot of both theoretical 

characteristic function (4.25) and empirical characteristic function (4.26).

R e m a rk  We carried out the hypothesis test for each of the values of u  listed above 

separately. Using multivariate normal distribution, a single test could be carried out, and 

for our data  it results in retaining the null hypothesis.
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Figure 4.1: Empirical density of X , Gaussian, Student, VG and NIG densities
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Figure 4.2: Logarithm of empirical density of X , Gaussian, Student, VG and NIG densities
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Figure 4.3: Empirical and theoretical characteristic function for GBP
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A 6 V

AD -0.000035478 0.007630623 4.060577205
CAC40 -0.000158399 0.019858306 4.777597123

CD 0.000079553 0.006421377 6.262748043
DM -0.00014255 0.006288023 4.262224676

EUR -0.000049583 0.005931796 4.736966764
FF 0.000001850 0.01043548 4.541499244

FTSE100 -0.000167101 0.016036669 4.994407871
GBP -0.000138866 0.014164796 4.969083328
JY -0.000281808 0.014878115 5.069299137

NTD -0.000042921 0.009880295 6.84894185

Table 4.2: Estimates /x, S, and v  for the Student model

A a e a
AD -0.000038133 0.005988855 0.000002655 0.84605741

CAC40 -0.000196061 0.012933311 0.000037661 0.872473786
CD -0.000076908 0.003110164 -0.000002645 1.131374022
DM -0.000141552 0.006358803 -0.000000998 0.831701019

EUR -0.000013025 0.005117664 -0.000036558 0.947375313
FF 0.000200842 0.006545871 -0.000198992 0.270749622

FTSE100 -0.00019587 0.042539066 0.000028769 1.499993761
GBP -0.000100097 0.007973439 -0.000038769 1.094880615
JY -0.000206056 0.008492358 -0.000075752 1.148918175

NTD -0.000075047 0.0044869 0.000032126 1.424470925

Table 4.3: Estimates /x, <r, 6 and a  for the VG model
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A 7 k S
AD 0.000129091 133.3145319 0.000015789 0.005603404

CAC40 -0.000684482 81.01104609 0.000024876 0.015046163
CD 0.000056844 116.9964824 0.000002544 0.00330816
DM -0.000144536 95.31123022 0.000029843 0.004895101

EUR 0.000207405 128.7901444 0.0000995796 0.005005469
FF -0.000189629 80.23584843 0.000008776 0.003421896

FTSE100 -0.000439758 112.3870192 0.000264433 0.012295845
GBP -0.000137952 169.8717431 0.000055798 0.010523985
JY 0.001196689 135.4103476 0.000054329 0.009415426

NTD -0.000075047 0.0044869 0.000008264 0.004470925

Table 4.4: Estimates /}, 7 , k  and 5 for the NIG model
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Chapter 5

O ption Pricing

“[The GBM model] was of the most elegant and precise models that any of us has ever seen 

. . .  What Mr. Merton and Mr. Scholes did, back in 1973, was to put a price on risk. ” (Gregg 

Jarrell).

We now venture into the heartland of modern finance, where the spotlight here is on the 

pricing of derivatives. Our objective is to  derive a valid alternative to the European Call 

option pricing formula of Black and Scholes (1973) [26] and Merton (1973) [100] based on the 

FATGBM model. This will be done by following the proposed ideas of Heyde and Gay (2002) 

[58] to describe an approach for an option pricing formula using probability density functions 

where no specific assumptions are made on the independence of returns or which distribution 

they follow. An exact approach based on the densities of the finite-dimensional distributions, 

and an approximate approach based on the asymptotic self-similarity of activity time, are 

both considered. We also sketch an alternative approach of Carr and Madan (1999) [32] 

which uses the characteristic function.

Before we sta rt to implement the approach of Heyde and Gay (2002) [58] for option pricing, 

we first need to consider the risk-neutral measures. The overall idea is to  move from a real- 

world model of a stock price process {Pt } and the  associated historical returns, to a risk-free 

model of a discount stock price process {e~rtPt } where r  is the interest rate. Our way is 

to impose param eter restrictions to  ensure th a t {e~rtPt } is a martingale. This will allow us 

to  reduce the pricing of options on the risky asset to calculating the expected values of the 

discounted payoffs. Note th a t the existence of this martingale is related to  the absence of 

arbitrage.
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If B t is the price of a non-risky asset and r  is the interest rate: B t =  Boert, then we need 

to  show th a t {e~rtPt } is a martingale where Pt is the price of a risky asset and e~rt is the 

discounting factor. Consider the cr-algebra T s of the information available up until time s :

T a = <r{{B(u), u < Ts}, {Tu, u <  s}},

and the cr-algebra T* defined as follows:

T+ =  cr{{B(u),u  <  Ts}, {Tu ,u  <  s},T t }, s < t.

We have (Finlay and Seneta (2006) [50]), th a t a.s.,

E{e~rtPt \TS) = p 0E ( e ^ - r)t+e(Tt- Ts+Ta)+eT{B{Tt)- B T̂s)+BiTs))\Ps)

=  Pse ^ - r)t~>lsE E ((e eiTt- T°)+eTiBiTt)- B{Ta))\T*)\Jrs)

= e - rsPse ^ - r)(~t~s)E {e<<e+^ {Tt- Ta)\PS) since T s C T+, 

where we use a moment generating function of normal variable.

If we introduce a sigma-algebra P * t =  cr{{J3(u), u  <  Ts}, {Tu , u < s}, Tt }, s < t , then since

s C 3 t i

E {e~rtPt \Ts) = e - rsPse ^ - r^ t - s)E (e ie+^ 2̂ Tt- Ts)\Fa), a.s., 

where again we used a moment generating function of normal variable.

5.1 M ean-correcting m artingales

In this subsection we review the mean-correcting m artingale approach of Madan, Carr, and 

Chang (1998) [88] and Finlay and Seneta (2008) [53], where the activity time was assumed 

to  have independent and identically-distributed (i.i.d.) increments.

If we use the sigma-algebra introduced above then since T s C T* t , we have,

E {e~rtPt\Ps) = e- rsPse ^ - r)it- s)E (e id+^ 2)(Tt- T°) \PS), a.s.,

where again we use a moment generating function of normal variable. The mean-correcting 

m artingale approach to  pricing is restricting the mean param eter fj, so that,

£ ( e (0+ ^ 2 ) (T t - T s ) I P s )  =  e (r- n ) ( t - 3 )  a _g _ ( 5  ^

We will now show th a t this approach does not always work when the i.i.d. assumption is 

dropped.
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W ith our construction of activity time using superpositions of OU-type processes, the mo­

ment generating function of Tt — Ta can be obtained using the moment generating functions 

of the corresponding Levy processes Z.  Recall th a t in the case of finite superposition,

m  t

I T - I T  =  E E t W W-
f c = l i=s

Using Lemma 2.1 in [102] (proved in [44]), we obtain th a t in the case of finite superposition, 

the moment generating function of Tt — Ts is as follows:
TYl 771 r  /  p t — 5

E e b(Tt - T s ) =  =  J J e  exp( I  f k (u)dZw ( \ {k)u )
k= 1 k= 1 *- 0

where f k (u ) =  be~x<‘k) t̂~s~uK Applying Lemma 2.1 in [102], we have,

E exp (̂ J f k (u)dZik)(Xik)u)^j = e x p ^ A {k) J  Ck( f(u ) )d i? j ,

where Ck is the moment generating function of Z^k\  the Levy process from equation (5.6). 

W hen increments of the activity time have Gamm a distribution (VG model), then Ck{u) =  

akU , and the moment generating function of Tt — Ts is,

lit, /

E eb(Tt - Ts) _  expf a k log
k=l

P - b e ~  A(fc)(*-S) 
P ~ b

W hen increments of the activity time have IG distribution (NIG model), then Ck(u) =  
SkU

. =,  and the moment generating function of Tt — Ts is,
y / J 2 — 2 U

Eeb(Tt- Ts) — ^ 7 ^ ^ - V l 2 — 26 V
k=l ^ L -I'

Thus, the param eter restriction to  satisfy (5.1) for all t > s is not possible, and the “mean- 

correcting m artingale” approach, where a risk-neutral model is obtained from a real-world 

model by restricting the mean param eter, does not work when dependence in the activity 

tim e is introduced through superpositions of OU-type processes.

5.2 Skew-correcting m artingales

An alternative approach to  obtaining a martingale was proposed by Heyde and Leonenko 

(2005) [66] and used in [50]. W ith this approach, param eter restrictions n  — r and 9 =  —\ a 2 

are imposed in the identity,

E{e~rtPt \TS) =  e - raPae ^ - rKt- a)E(eV+la2){:rt- T')\J:8),
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so th a t a.s. E (e~ rtPt \J-s) — e~rsPs as desired. This approach is simple and quite general, as 

it does not in fact depend on the distribution of Tt (distribution of Tt is of course needed when 

one comes to  actually compute the price of the option.) It is somewhat restrictive however, 

in th a t two param eters fi and 9 are constrained. As param eter 9 determines skewness, we 

call the approach “skew-correcting m artingale” .

5.3 Pricing formula using a probability density function

We now look to obtain a pricing formula for a European Call option, denoted by C (Y ,K ) ,  

which gives the holder the right but not an obligation to  buy stock for a fixed (strike) price K  

a t expiry (m aturity) time Y .  Our approach is based on a Black-Scholes type method using 

probability density functions. As we have seen, the original Black-Scholes formula is valid 

for the model th a t suggests th a t the log returns behave according to  a Normal distribution, 

so instead will consider a pricing formula using the FATGBM model.

Let A + =  m ax(A ,0), Z  ~  N ( 0,1), and for a, 6, c >  0 the inequality ae~^°2+cZ > b holds if 

and only if Z  > \ c  — ^ log Then with n  =  r  and 9 =  — \cr2, the price of an European call 

option is,

C ( Y ,K ) = e~rYE{PY -  K)+  

= E ((P 0e - ^ 2TY+(TB{TY) -  K e ~ rY)+)

= E (E ( (P 0e~ _  K e - rY ) l ( Z>_d2))\TY )

= E (P 0E(.l(Z>- dt)\TY ) -  K e - TYE ( l (z>- d2)\TY ))

= E (P 0E ( l ^ <dl)\TY ) -  K e ~ rYE ( l (z<i2)\TY ))

=  B (P 0®(rfi) -  K e - rY$ (d 2)),

where $(•) is a cumulative distribution function of iV(0,1) and,

log § +  r Y  +  ±<r2Ty log §  +  r Y  -  \ a 2TY
di = — —  2 _ — —

are both  functions of TY .

In the above chain of calculation we have used the fact th a t for a function F  such th a t
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E F ( Z ) < oo, we have,

/ OO

F ( Z  + c )$ (Z ) dZ
-oo-oo

«oo/oo

F (y )$ (y  -  c) dy
-oo

/oo
e - i ‘2+‘yF(y)<b(y)dy

-oo

E { e ~ ^ +cZF{Z)),

where in our case F ( Z ) = 1 z> -d 2 and,

/ OO

F ( —Z ) $ (Z )  dZ  — E F {Z ) .
-oo

Also note th a t we obtain the same expression as in Black-Scholes formula,

- log §  +  r Y  +  \ o 2t  - log §  +  r Y  -  ±o2t
dl ~   ’ *    ^ 7 t --- ' (5'2)

If we assign a distribution to  T y  with pdf fTY (t)i then the call price becomes,

POO

C (Y , K )  =  /  (P0$ (d i)  -  K e ~ TY$(d 2 )) fTr (t) dt. (5.3)
Jo

Given Po, K , Y, r, a , and f o Y > this expectation (5.3) can be numerically evaluated. Note th a t 

we made no assumptions about the distribution of Ty, so as long as our model has the 

subordinator structure and all expectations are finite, then this pricing formula is valid.

5.3.1 V ia  an exact approach

To compute the prices using formula (5.3), the explicit expression for the density of Ty is 

needed. As mentioned in C hapter 3, the transition function of the solution of (3.19) can be 

used.

From Lemma 17.1 of [114] (see also [123, 124]) one can obtain th a t the tem porally homoge­

neous transition function Pt (x ,B )  for the solution of OU-type process satisfies,

J  etzyPt (x, dy) =  exp ^ i z e ~ xtx  +  A J  KZ^ { e ~ Xsz )d s ^  ,

where l) is the cumulant function of Z{  1).

For a Gam m a OU-type process, kZ(i )(z ) is given by equation (3.21). It was shown in [123] 

th a t tem porally homogeneous transition function Pt (x ,B )  =  P(t,y-,x ,  A, a , /3) from x  to
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y(t) < y after time interval t  is 0 if y < e Xtx , P ( t , y ,x ,  A, a , /3) = e Xat if y =  e Xtx, and 

if y > e~Xtx  then,

00 ( \ n / t \ n p ~ ^ a t  r y - e ~ Xtx
P { t , y; x, A, a ,  0)  =  e - Aat + V  ---------  /  /„(u)dti, (5.4)

n! ^0n = l

where

/•oo  p —fiwe*'1
f i ( x )  = f i x ) ,  f n i x ) -  J  ̂ f i y ) f n - i(x  -  y)dy, f i w )  = --------— -------- ,w  > 0 ,

and f i w )  = 0 ,w  < 0. Thus the transition density function (of y(t) from x  to  y after a time 

interval t) of G am m a OU-type process can be expressed as follows:

(A a t)1
p i t , y - x , \ , a , ( 3 )  = e Aa* [<% -  e Xtx ) l y=e-x tx\ +  ^— f - f n i y - e  Xtx ) l y>e-xtx,

n\n = l

where <5(-) represents the probability density function concentrated a t 0 .

For an IGiS,  7 ) case, reference [124] provides the  representation of Yt , namely,

Yt = f  e - X(t~s)d Z i \ s )  
Jo

as the sum of independent IG random  variable and a compound Poisson process. Using this 

representation and the fact th a t,

[  eizyPt ix ,d y)  = E e iz(€ 
J r’R

the transition probability of th e  IG OU-type process can be expressed as follows:

P(t,  y;x,X,y,S)  =  ±  e x p { - ^ ( l  -  e - V ^ ) } ( ^ (1 -  e- V ^ ) ) n

n = 1 711 J °
(5.5)

for y > e~Xtx,  and P ( t , x; y, A, 7 , S) =  0 if y <  e~xtx. Function f i  is the IG density with 

param eters (<5(1 — e_ 1/ 2A*),7 ) and,

pOO
fn iu )  = f n - l i u -  x ) f i x ) d x , 71 > 2 , 

Jo

where,

p - l / 272ii _  - 1/ 272ueAt
/(u )  =  ^ - = = — ------------- , u >  0 .

\/27ru37 (e1/ 2At — 1)

m v
In the case of finite superposition, Ty1 =  EE r ^ i i ) ,  where are independent OU-type

k=1t=1
processes th a t solve equations (3.19). The density of T™ can be computed as a convolution
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of densities of X )ili Each is a  Markov process with transition probability given

by (5.4) in the VG case, and (5.5) in the  NIG case. Therefore,

p  ( V ^ T (fc)(0  <  t t )  =  f  f ( x i \ k ) d x i P ( l ,  dx2]Xi)P(l ,  dx3; x2) .. . P ( l ,  dxY -,xY - i ) ,
\ i = l /  A i + i 2  +  - + i y < i

where /(•; A;)is either r(afc,/3) or IG(5k,  7 ) density for VG or NIG models, respectively.

5.3.2 V ia  an approxim ation  using asym p totic  self-sim ilarity

As suggested in [66], the  density f o Y can be approxim ated using asymptotic self-similarity, 

by taking the density of Y E t\ +  Y H {T\ — E t \) w ith H urst param eter H.

Under the chi-squared construction, the distribution of T\ =  t \  can be either -R r( |,  |  — 1) 

or r(o;, a),  so th a t, E t i  =  1. Therefore, one can use either,

f r y (u) =  Y ~ Hf Rr ( U +  V h ~ Y )  . (5-6)y h

for the Student model or,

A y ( u )  =  Y ~ Hf r
u  +  Y H -  Y

y h

for the VG model, w ith appropriate param eters. The expression for the R T  density is given 

by (2.7), and the gam m a density by (2.8).

For the diffusion-type and the  OU -type construction, the density f r y  can be taken as ap­

proximately the density of Y E t \ +  Y H (T\ — E t \) w ith H  =  | .  In the case of the VG model
m

under the OU-type construction, we take E t \ =  ^ . In the case of the NIG model under
fc=i P

m  ^

either OU-type or diffusion-type construction, we have instead E t \ =  — .
fc=i ^

In the VG model, the  distribution of T f 1 is r ( ^ ^ =1 c*fc, fi). The corresponding distributions 

for the NIG model are IG (Y^k=1 7 )- Therefore an approxim ation to  f r Y {u ), one can use,

l n M , y - > , r ( l ± £ p ^ i y

for th e  VG model or,

,  , n ( u  + E n ( Y h  - Y ) \
St y (u ) = Y  2 f lG  I  T̂T  I ,

for the NIG model, w ith the appropriate param eters. The expressions for the Gamma 

density f r  and I G  density fiG  are given in sections (2.8) and (2.10).
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5.4 The com parison w ith  th e Black-Scholes formula

Modern day investors regularly check for inconsistencies between the financial market prices 

and those calculated using a pricing formula. If prices seem to be in conflict with each 

other, then there might be an opportunity  for arbitrage. We will follow the arbitrage- 

free methodology we have outlined and first engendered by Black, Scholes and Merton. 

Therefore, our goal is to  calibrate a risky asset model such th a t any estimated prices match 

closely with those of the  current market. We will do this whilst comparing our pricing 

formula (5.3) w ith the classical Black-Scholes pricing formula.

We will analyse the mid-prices of European Call options on the S&P500 Index. The S&P500 

Index (ticker SPX) is one of m any options offered on the Chicago Board Options Exchange. 

The prices were taken a t the  close of m arket on 18 April 2002 , where the index closed at 

1124.47 w ith an interest ra te  of 1.9%.

Note th a t a European P u t option can be calculated simply from the price of a Call option 

with the same strike and m aturity, by using the Put-Call parity  relation:

P u t price =  Call price — Stock (risky asset) price 4- Strike price

Here though we analyse the Call option prices only. The dataset can be taken from Schoutens 

(2003) [116], and we will consider the case where m aturity  is one year (T = l) , corresponding 

to an expiry of 18 April 2003.

To begin, the underlying risky asset (in our case the S&P500 Index) is investigated. We 

take a large enough set of historical stock prices (N=2000) a t the close of market up until 

18 April 2002. The corresponding returns tu rn  out to  follow symmetric Student closer than 

VG and NIG, and all necessary param eters were estim ated using m ethod of moments. The 

activity tim e process T y  is given by,

Ty = G(x i (  1)) =  i („2(1) + . . . +  ,,2(1))

from chapter 3 , and the density f r Y can then be approxim ated using asymptotic self­

similarity (5.6). We also find th a t H  «  \  using the m ethods in Appendix B.

This leaves volatilty a  as the only param eter left to  estim ate before we can implement our 

pricing formula (5.3). According to  the Black-Scholes formula, this expected volatility of 

the underlying asset is the key element in pricing an option. The more an asset fluctuates, 

the more likely it is to  rise above the strike price, and so, the higher the price of the option 

becomes.
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Note th a t we are unable to  fix 6 =  — \ o 2 because the symmetric Student case demands 

6 = 0. Instead, we estim ated a  using least squares to  give the prices in Figure 5.1. The 

market prices are denoted by a  circle, w ith the model prices by a square for the GBM model 

and a triangle for the FATGBM model. From this comparison, we can see th a t the FATGBM 

gives us a superior fit to  the m arket price of a European Call option.

5.5 Pricing form ula using a characteristic function

There are two stock price process representations th a t result in VG distributional returns; 

the subordinator model representation (2.5), and the difference of two gamma processes 

representation.

Consider w hat we shall call the  “Difference of Gam m as” process:

log Pt =  log p„ +  n t  +  r  <;> (t) -  r  < > ) ,  (5.7)

where r ” ’(() ~  r (at,b) and T f j l t )  T(ct,d)  denote independent-increment Levy Gamma 

processes for any given t. For each t  the returns or log price increments from Pt have 

characteristic function,

7 7 7  7 7 7

<pDG( u ; ^ a ,b , c , d )  = e ^ ( l  -  y ) - “ (l  +  ~ ) ~ c. (5.8)

Combining (5.8) and (2.9) it is clear th a t  choosing c =  a results with VG distribution with 

param eters a  =  a, 6 = — ^ ), a 2 = | | .  M adan, Carr, Chang (1998) [88] considered this

restricted version as well as Finlay and Seneta (2008) [53].

We drop the  c =  a restriction from the Difference of Gammas and works with the process 

described by C arr and M adan (1999) [32]. This introduces one ex tra degree of freedom 

into the model while still retaining m ost of the properties of the VG model, such as its 

simple characteristic function. This means th a t we can no longer write down a closed-form 

expression for the  pdf of returns. I t  is not a problem for us, however, since for option pricing 

in this m ethod we need th e  characteristic function only.

For construction we also drop the  assumptions th a t Tt has independent increments, and 

instead look a t models to  price options w ith strictly stationary  return  process. For C (Y , K ), 

the price of an European call option w ith expiry Y  (time to  m ature) and strike price AT, 

where k =  log K  as in [32], we define the modified call price as follows:

c (Y ,K )  = e ~ ^ KC(Y,K),

83



for some 7  : E P y +1 < 00 .

The Fourier transform  of c(Y, k) is then given by,

/ OO

eiXKC(Y,K) dn
-O O

/ oo poo
eiXK /  e ^ e ~ r Y (ep -  eK)qY {p) dpdn

OO J  K

/ OO pp

e~rYqy{p) /  (ep+7/t -  e^ )n)eiXK dndp
-O O  J  — OO

/ oo ^ (7 + 1 +i x )p  £>(7+1+i x)p
e~rYQy (p)(------— :------------------ . ..) dp

- o o  7  +  I X  7  +  1 +  I X

_  e~rY(f)y(x -  ( 7  +  l ) i )

7 2 +  7  — x 2 +  ix (2 7  +  1) ’

where for the specific model under consideration, qy{p) is the risk-neutral density of log P y , 

the log stock price a t tim e Y ,LOO
e~rY(ep — eK)qY (p) dp = e~rYE (P y  — k )+ =  C (Y ,«),

and <j)y{x) is the characteristic function of the  log stock price a t tim e Y .  Since C(F, k) is 

real, the real part of ipy(x)  is even while the imaginary p art is odd, so taking the inverse 

transform of Jjy{x) gives,

-7 /t  r o o rOO

C { Y , K ) =  — J
p o o

/  $t{e~iXKi/}y(x)} dx, (5.9)
Jo7T

which can be com puted by numerical integration.

In fact we use a modified version of the  above suggested in Lee (2004) [83] and given by,

- 7 / t  rOO

C ( Y ,K )  =  t f7 +   /  $ t{e- tXKi/jy(x)}dx.  (5.10)
TT Jo

Here the R y term  results from shifting an integral through or across a pole in the complex 

plane, and is given by,

0 for 7  >  0
for 7  =  0

0  for — 1 <  7  <  0 

<t>Y { - i )  ~  for 7  =  - 1
J>y {—i) ~  eK<f>Y(0 ) for 7  <  —1 

The choice of 7  im pacts on the  error generated by the numerical approximation of (5.10).

i ?7 =  <
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Chapter 6

A M ultifractal Approach

“I  conceived and developed a new geometry o f nature and implemented its use in a number 

of diverse fields. It describes many of the irregular and fragmental patterns around us, 

and leads to full-fledged theories, by identifying a family of shapes I  call fractals. ” (Benoit 

M andlebrot).

Since Mandelbrot (in particular 1977, 1982, and 1997) [93] [94] [95] developed and popular­

ized the concept of fractals and m ultifractals, and advocated their use in the explanation of 

observed features of tim e series arising in natural sciences, there has been ongoing interest 

by researchers in a variety of disciplines in widening their application.

In a finance setting, there is already evidence (see for example Schmitt et al (1999) [115] or 

Calvet and Fisher (2002) [29]), th a t through the use of fractals (in particular, multifractals), 

one can remedy some of the empirically established and occasionally puzzling shortcomings of 

the paradigm Black-Scholes option pricing model. We have already seen, from the empirical 

investigation in chapter 2, th a t the GBM model departs from the realities of risky asset 

returns, bu t here we will focus on the scaling nature of returns data. The catalyst for a 

multifractal approach arises from the fact th a t non-decreasing {Tt } in the FATGBM model 

can only be asymptotically self-similar, and not exactly self-similar (see Heyde and Leonenko 

(2005) [66]).

We will begin this chapter by giving a short description of the main features of fractals 

and m ultifractals. The next section will introduce a financial model which can incorporate 

multiscaling. We will equip such a model with a m ultifractal process construction based on 

the products of geometric OU-type processes. In particular, we are going to  discuss a class
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of multifractal models originally introduced by Anh et al (2008) [4], and show they provide 

a useful and flexible family of models for applications.

We then consider some cases of infinitely divisible distributions for the background driving 

process of OU-type processes, along with their Renyi function and dependence structure. 

By including some empirical evidence th a t m ultifractality exists for real financial data, we 

can end by validating this approach by testing the fit of the model (Renyi function) to the 

data.

6.1 Background theory and m otivation

There are two main models for fractals th a t occur in nature. Generally speaking, fractals 

are either statistically self-similar or they are multifractals.

Multifractals were introduced in M andelbrot (1972) [91] as measures to  model turbulence. 

The concept was extended in M andelbrot et al. (1997) [95] to  stochastic processes as a gen­

eralisation of self-similar stochastic processes. The definition of a multifractal is motivated 

by th a t of a stochastic process X t which satisfies a relationship of the form,

{ X(ct )} i  t >  0, (6.1)

for 0 <  c < 1 where M  is a random variable independent of X  and equality is in finite­

dimensional distributions.

In the special case M (c) =  cH , the m ultifractal reduces to a self-similar fractal where the 

param eter 0 < H  < 1 is known as the H urst param eter named after the British engineer 

Harold Hurst (whose work on Nile river d a ta  played an im portant role in the development 

of self-similar processes). For a more detailed review of self-similar processes see Embrechts 

and Maejima (2002) [46].

It is assumed further that,

M(ab) =  M i(a )M 2(b), a, b > 0,

where M i and M 2 are independent random variables with the common distribution of M . 

The definition of a m ultifractal process, as in M andelbrot et al. (1997) [95], is given in terms 

of the moments of the process and includes processes satisfying the following statem ent.

A stochastic process X  =  (X ( t ) 0) is m ultifractal if it has stationary increments and

there exist functions c(q) and r(q) and positive constants q- < q+ and T  such th a t 'iq 6
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[?->«+]>Vi e [0,T],

B (|X ( t) |9) =  c(?)iT(«>+1, q >  0 . (6.2)

Here r(q) and c(q) are both deterministic functions of q. r(q) is called the scaling function 

and takes into account the influence of the tim e t on the moments of order q, and c(q) is 

called the prefactor.

While this definition is the standard  for a m ultifractal process, most processes studied as 

multifractals only obey it for particular values of t or sometimes for asymptotically small t. 

The condition of stationary increments is also quite often relaxed.

Conversely, Taqqu et al (1997) [122] tests the scaling properties of the increments of X ( t )  

instead of the process itself. If this m ethod is used then the subtraction of the mean E ( X  (t +  

1 ) —X (t) )  from X ( t  + 1) — X ( t )  may be required to  ensure a fair investigation, because such a 

stationary process cannot be self-similar or even asymptotically self-similar if it has non-zero 

mean. For our investigation, we have E ( X ( t  +  1) — X ( t ) )  = 0 for each of our data  sets.

It follows from (6.2) that,

\o g E ( \X ( t ) \q) = log c(q) +  (r(q) +  l)lo g  t,

and so X ( t )  is m ultifractal if for each q, logE \X ( t ) \q scales linearly with log t  and the slope 

is r{q) +  1.

To explain the notion of the scaling function r(q), consider the particular case of the frac­

tional Brownian motion - a self-similar process. A fractional Brownian motion, with a Hurst 

exponent H , satisfies,

X ( t )  =  t HX {  1),

which implies th a t,

E ( \X ( t ) \q) = t HqE ( \X ( l ) \q).

Here we obtain the prefactor,

c(q) = E ( \ X ( l ) n

and the scaling function,

r{q) =  Hq -  1.
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So the scaling function is linear if the process is self-similar. Alternatively, the process 

is multifractal if it has the multiscaling properties th a t imply nonlinearity of the scaling 

function.

If we define a log-price process {T (t) =  logP(£) — logP (0 ),0  < t <  T}, where P(t)  is the 

price of a risky asset a t time t, we can study the scaling behaviour of our FATGBM model. 

Firstly, under the GBM model (Black and Scholes (1973) [26]) with zero drift term,

Y (t ) =  a B (t) ,  t > 0,

where a >  0 is a fixed constant and { B ( t ) , t  > 0} is a standard Brownian motion (a self- 

similar process with H  =  ^). By the scaling property of standard Brownian motion,

£ ( |y ( t) |« )  =  t lE ( \o B (\) \> )

=  t* (V 2&>)q----
y/n

Here the scaling function T y ( q )  = § — 1 is linear.

Under the FATGBM model (Heyde (1999) [63]), again with zero drift,

Y ( t )  = a B (T ( t) ) ,  t  > 0, (6.3)

where a  >  0 is a fixed constant, and { B ( t ) , t  > 0} is a standard  Brownian motion (or could 

be extended to fractional Brownian motion, see various authors including Mandelbrot et al 

(1997) [95] and Elliott and Van Der Hoek (2003) [45]), and {T(£)} is our random activity 

time process independent of {B (t)} .  The linearity of the corresponding scaling function will 

be investigated later to  determ ine whether {T(£)} =  (A(£)}, where (A(£)} is a multifractal 

process.

Mandelbrot et al. (1997) [95] showed th a t the scaling function is concave for all multifractals 

with the following argument. Let loi,u)2 be positive weights with uj\ +  u>2 =  1 and let 

<li, <72 >  0 and q =  qitoi +  #2^ 2- Then by Holder inequality,

E \X ( t ) \q < (P |X (£ )|91)W1(P |V (£ )|92)W2,

and hence,

logc{q) + r(q) log t < (w irfa i) +  w2T(g2)) log* +  (u>i logc(gi) 4- uj2 \ogc(q2)).

Letting t go to  zero we have r(q) > uJir(qi) +  o;2r(g 2), so r  is concave. If T  — 00 we can 

let t go to  00 and we get the reverse inequality r(q) < u q r (<71) +  w2r(g 2). It follows th a t 

T  — 00 implies th a t r  is linear and so X ( t )  is self-similar.
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An im portant associated concept is the m ultifractal spectrum. It is the Legendre transform 

of the scaling function r(q) and is given by,

f ( a )  =  in i[qa -  r(q)},
Q

where it is defined. For self-similar processes it is only defined a t H  with f ( H )  = 1. The mul­

tifractal spectrum  plays an im portant role in m ultifractal measures where it represents the 

fractal dimensions of sets where the measure has certain limiting intensities. The analogous 

definition for m ultifractal processes is the dimension of sets with local Holder exponent a  

(see Calvet et al. (1997) [30] for details). However, for multifractal processes the multifractal 

spectrum is only used as a tool for fitting the model to data.

The motivating example of a m ultifractal process is the cascade. They were first introduced 

as measures in M andelbrot (1974) [92] and can be defined on the interval [0,1] as follows. 

Define a sequence of random  measures fin by,

n

Mn(dt) — Af7j1)Tj2)...)7yi (dt),
i = 1

where t has expansion t =  0.771772 . . .  in base b and the are a collection of positive

i.i.d random variables w ith distribution M  where E M  =  1. Kahane and Peyriere (1976) [75] 

showed th a t the almost sure vague limit of / in  exists, denoted as /i. The stochastic process 

X {t)  is defined as X ( t )  =  /x([0, t]). I t is easy to  check th a t (6.2) holds when t — b~n . Of 

course X ( t )  does not fully satisfy the definition of a m ultifractal as equation (6.2) does not 

hold except when t is of the form b~n and X ( t )  does not even have stationary increments. 

Even though cascades do not satisfy the formal definition they remain the prototype model 

for m ultifractal processes.

M ultifractals overcome an im portant lim itation of self-similar stochastic processes which is 

they can be positive and still have finite mean as in the case of cascades. When X ( t )  is 

positive and E X {  1) <  00 equation (6.2) implies th a t t(1 ) =  0.

6.2 The construction  o f the m ultifractal m odel

Models w ith m ultifractal scaling have been used in many applications in hydrodynamic 

turbulence, genomics, com puter network traffic, etc. (see Kolmogorov (1941, 1962) [78] [79], 

G upta and Waymire (1993) [62], Novikov (1994) [103], Frisch (1995) [55], Anh et al (2001) 

[2]). The application to  finance was first investigated by M andelbrot et al (1997) [95], where
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it is established th a t m ost m ultifractal models are not designed to  cover im portant features 

of financial data, such as a trac tab le  dependence structure.

To surm ount these problems, Anh et al (2008) [4] considered multifractal products of stochas­

tic processes as defined in K ahane (1985, 1987) [73] [74] and Mannersalo et al (2002) [98]. 

These multifractals are based on products of geometric Ornstein-Uhlenbeck processes driven 

by Levy motion were constructed, and several cases of infinitely divisible distributions for 

the background driving Levy process are studied. The behaviour of the q-th  order moments 

and Renyi functions were found to  be nonlinear, hence displaying the multifractality as re­

quired. We will replicate th is m ethodology and look to  integrate this construction into the 

model (6.3).

6.2.1 M ultifractal products o f  stoch astic  processes

We begin by recapturing some basic results on m ultifractal products of stochastic processes 

as developed in Kahane (1985) [73] and M annersalo et al (2002) [98]. The following condi­

tions hold:

C l  Let A(i) , t £ R+ — [0, oo), be a  measurable, separable, strictly stationary, positive 

stochastic process with EA(f) =  1.

We call this process the m other process and consider the following setting:

C 2 Let A ^ ,  i =  0 ,1 ,... be independent copies of the m other process A, and A ^  be the 

rescaled version of A ^ ,

A ^ \ t )  = A(i) (£&*), t e  R+, i = 0 ,1 ,2 , . . . ,

where the scaling param eter b > 1.

C 3 For t £ R+, let A(t) =  exp{X (t)} , where X  (t ) is a stationary  process with E X 2(£) <  oo. 

We denote b y 0  £  0  C Rp,p  ^  1 the  param eter vector of the distribution of the process X  (t) 

and assume th a t there exist a marginal probability density function pe(x) and a bivariate 

probability density function po(xi, x 2; £i -  t 2) such th a t the moment generating function,

M(C) =  Eecx(t),

and the bivariate moment generating function,

M(Ci,C25*i -  t 2) = EeClX(tl)+C2X(t2),

exist.
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The conditions C1-C3 yield,

V arA ^ (t)  =  M (2) — 1 =  a \  <  oo,

C o v ^ t , ) ,  A ^ ( t 2)) =  M (  1, 1; ( t , -  t 2)b<) -  1, 6 >  1. (6.4)

We define the finite product processes,

n

A „ (t)  =  r K 4>W  =  e E S - ° x ( ",‘ ) , (6.5)

and the cumulative processes,

n =  0 , 1 , 2 , . . . , (6 .6)
Jo

We also consider the corresponding positive random  measures defined on Borel sets B  of

Kahane (1987) [74] proved th a t the sequence of random  measures n n converges weakly a.s. 

to a random measure //. Moreover, given a  finite or countable family of Borel sets B j  on R + , 

it holds th a t limn-*,*, fin(Bj)  =  n(Bj)  for all j  w ith probability one. The a.s. convergence 

of A n (t ) in countably m any points of M+ can be extended to  all points in R+ if the limit 

process A  (t ) is a.s. continuous. In this case, limn-Kx, A n (t) = A(t)  w ith probability one for 

all t (E K+ . As noted in K ahane (1987) [74], there are two extreme cases: (i) A n (t) —> A(t) 

in L i  for each given £, in which case A(t)  is not a.s. zero and is said to  be fully active (non­

degenerate) on R_|_; (ii) A n ( 1) converges to  0 a.s., in which case A(t)  is said to  be degenerate 

on R + . Sufficient conditions for non-degeneracy and degeneracy in a general situation and 

relevant examples are provided in Kahane (1987) [74].

The Renyi function, also known as the determ inistic partition function, is defined for t  € [0,1]

R

n — 0 , 1 , 2 , . . . (6.7)

as follows:

lim inf



where I ^  =  [k2~n , (k +  l ) 2~n] , fc =  0 , 1, . . . ,  2n — 1, I ^  is its length, and logb is log to 

the base b.

Mannersalo et al. (2002) [98] presented the conditions for /^-convergence and scaling of 

moments:

T h e o re m  8 . Suppose that the conditions C 1 -C 3  hold.

If, for some positive numbers 5 and 7 ,

e x p { - ^ |r |}  ^  p (r )  =  x 1 ^  | C t | ~ 7 , (6 .8)

then A n (t ) converges in L 2 i f  and only i f

b >  1 +  a \  =  M (2).

I f  A n (t) converges in L 2, then the limit process A(t) satisfies the recursion

Aft)  =  7  /  A(s)dA(bs), (6.9)
6 Jo

where the processes A (t ) and A  (t ) are independent, and the processes A  (t ) and A  (t ) have 

identical finite-dimensional distributions.

I f  A  (t) is non-degenerate, the recursion (6.9) holds, A(  1) E L q for some q > 0, and 

Zn=0 ~n ) < 00 , where c(q ,t) =  E su p sG|0 t] |A9(0) — A9( s ) | , then there exist constants 

C and C  such that

gtq-logbEA*{t) ^  E A<l(t) ^  C t9~loSb EA*{t) , (6.10)

which will be written as

E A q(t) ~  ^ - logbEA90), t €  [0 , 1].

If, on the other hand, A (l) E L q, q > 1, then the Renyi function is given by

R ( q) = q - 1 - lo§6EA<? (t) = q - 1 - los& m (q)-

I f  A f t )  is non-degenerate, A{ 1) E L 2, and A f t )  is positively correlated, then

VarA(t) ^  Var f  A(s)ds.
Jo

Hence, i f  A(s)ds is strongly dependent, then A  (t ) is also strongly dependent.
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6.2.2 M ultifractal products o f O U -typ e processes

We recall the definitions and known results on Levy processes and Ornstein-Uhlenbeck type 

processes from C hapter 3. These are again needed to construct a class of m ultifractal 

processes.

A random variable X  is said to be infinitely divisible if its cumulant function has the Levy- 

Khintchine form (3.17). The resulting trip let (a, d, v) where a € M, d > 0 and v  is the Levy 

measure, uniquely determ ines the random  variable X .

If X  is self-decomposable, then there exists a stationary  stochastic process {X (t ) , t >  0}, 

such th a t X  (t) = X  and (3.18) holds for all A >  0 (see Barndorff-Nielsen 1998). Conversely, 

i f { * «  ,  ̂ ^  d} is a stationary  process and ( t ) , 1 ^  01 is a Levy process, independent of 

X  (0), such th a t (3.19) holds for all A > 0, then X  (t ) is self-decomposable.

A stationary  process X  (t ) of this kind is said to  be an OU-type process. The process Z  (t ) 

is term ed the background driving Levy process corresponding to  the process X  (t ). In fact

(3.18) is the unique (up to  indistinguishability) strong solution to  (3.19) [114]. Moreover, if 

X  (t ) is a square integrable OU process, then it has the correlation function in Theorem 5. 

The following result is needed in the construction of m utifractal processes from OU-type 

processes:

T h e o re m  9. Let X ( t ) , t  G [0,1] be an OU type stationary process (3.18) such that the Levy 

measure v  in (3.17) of the random variable X ( t )  satisfies the condition that for  some range 

o f q e R ,

/  gq(x)u(dx) < oo,
J \ x \ > l

where gq(x) denotes any o f  the functions e2qx, eqx, eqx\x\. Then, for  the geometric OU type 

process Aq(t) :=  eqX(^ \
OO

^ 2 c(q,b~n) < oo,
n = 0

where c(q ,t) =  E su p sG[o t] \Aq{0)q -  Ag(s )« |.

The proof this theorem  is given in Anh, Leonenko and Shieh (2008) [4]. To prove th a t a 

geometric OU-type process satisfies the covariance decay condition (6 .8) in Theorem 8 , the 

following proposition gives a general decay estim ate which the driving Levy processes Z  in 

the next subsection indeed satisfy:

Consider the stationary  OU-type process X  defined by (3.19) which has a stationary distri­
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bution 7r(x) such th a t, for some a > 0,

J  \x\a n(dx) < oo. ( 6 -11)

Then there exist positive constants c and C  such th a t,

Cov (e x ( t) ,e x(0))  <  C e~ct,

for all t >  0 .

M asuda (2004) [99] showed th a t, under the assum ption (6 .11), the stationary process X (t)  

satisfies the /3-mixing condition w ith coefficient P x( t)  =  0 ( e ~ ct) , t  > 0 . Note th a t this is also 

true  for the stationary  process ex ^ \  since the a —algebras generated by these two processes 

are equivalent. Hence,

Pex ( t)  = 0 ( e ~ ct) , t  > 0.

It then follows th a t,

Cov (ex('t\  ex < const x (3ex ( t ) <  C e~ct,

(see Billingsley 1968 [25]).

In this section the  results discussed in the previous sections are used to  construct multifractal 

processes. The m other process of assum ption C l  will take the form,

A(t)  =  exp{X  (t) -  cx ] , (6.12)

where X  (t ) is a s ta tionary  OU type process and c x  is a constant depending on the param ­

eters of its m arginal distribution such th a t E A  (t ) =  1.

All the definitions given in (6.5) - (6.7) and correspondingly all the statem ents of Theorem 

8 are now understood to  be in term s of the m other process (6 .12). At this point however 

it is convenient to  introduce separate notations for the moment generating function of A, 

which we denote by M a(-), and the moment generating function of X ,  which we denote by 

M (-). Thus,

M a (z ) = E exp  (z ( X  (t ) -  cx )) = exp{ - z c x }M (z ) ,

and,

M A (z1, z 2;(ti  -  t 2)) = E e x p { z i ( X ( t i )  -  cx ) + z2 ( X ( t 2) -  cx )}

=  exp {-cx  ( z i  +  z2) } M  {z i , z2 -, ( h  -  t 2) ) ,
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The correlation function of the m other process A then takes the form,

Ma ( 1,1; r) — 1
P ( T )  =  M a ( 2 )  -  1 •

The constant cx  (when it exists) can be obtained as,

c x  =  logE ex ^  =  lo g M (l) .

Accordingly, the Renyi function is obtained as,

v log b J  log b 

Exam ple I: The log-gamma scenario

We will use a s tationary  OU-type process w ith marginal gam m a distribution r ( /? ,a ) ,  which 

is self-decomposable, and, hence, infinitely divisible. The probability density function (pdf) 

of X ( t ) , t  e  R+, is given by,

= f ^ ) x 0 ~ le ~a X l^ ° ° ^ x ^  < * > 0 ,/? > 0 ,  (6.13)

with the Levy trip let of the form (0,0, v), where,

p e~ au
v(du) =  l [ o , o o )  {u)du,u  1

while the  Levy process Z ( t ) in (3.19) is a compound Poisson subordinator,

P(t )

Z ( t )  =  £  z „ ,
7 1 =  1

with the  Z n , n  — 1 , 2 , . . . ,  being independent copies of the random  variable r ( l ,o ; )  and 

P ( t ) , t  >  0 . being a homogeneous Poisson process w ith intensity (3. The logarithm  of the 

characteristic function of Z ( l )  is,

k ( z ) =  logE^e^^^1  ̂ =  - - - - - - , z e K ,
a  — iz

and the (finite) Levy m easure v  of Z ( l )  is,

v{du) — a(3e~ctul\Q,00){u)du.

C 4 Consider a m other process of the form,

A(t) — ex ^ ~ Cx w ith c x  =  log  ----  ̂x and a  > 1,
v a *
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where X ( t ) , t  £ R+, is a stationary  gam m a OU -type stochastic process with marginal density 

(6.13) and covariance function,

r x ( t )  =  t £ R.

From the discussion above it follows th a t Theorem  8 and Theorem 9 can be applied to  this 

setting to  yield the following result:

T h e o re m  1 0 . Suppose that condition C4 holds, and let Q =  {q : 0 < q < a, a  > 2}. Then, 

for  any b > e~2cx (1 — 2 a )_/3, (3 >  0, the stochastic processes A n (t) defined by (6 .6) converge 

in Z/2 to the stochastic process A f t ) as n  —> oo such that, i f  A(  1) 6  L q for  q £ Q,

E A ( t )q ~ t RM +1,

where the Renyi function is given by,

fl(9) =  9(1 +  i lo g ( r ^ ) +  i ^ 6 1° g (1 “ a ) " 1’ q e Q ’

(see Anh et al (2008) [4] fo r  proof).

Exam ple II: The log-inverse Gaussian scenario

We will use a stationary  OU-type process w ith marginal inverse Gaussian distribution 

IG (8 ,7 ), which is self-decomposable and, hence, infinitely divisible. The pdf of X ( t ) , t  £ K+ , 

is given by,

1 / H2 o \ 1
/ ( i )  =  - = - V e " ‘ - +1 , | U |o,oo)(z), <5 > 0 , 7 > 0 , (6.14)

V x  2

with the Levy trip le t of the form (0,0, v), where,

1 S -y2 i t

v{du) =  —=  —  e~ 2 l [0oo)(u )du,
V  Z7T U  2

while the Levy process Z ( t ) in (3.19) has the cum ulant function,

k (z ) = logE e i z i m  = — y zi-   , z e  R,

th a t is, the Levy trip let of Z ( l)  is of the form (0,0, v), and Z ( t ) is the sum of two independent 

Levy processes: Z(t)  =  Z i( t )  +  ^ ( t ) .  Here Z \{ t ) , t  £ R+, is an I G { | , 7 ) subodinator with 

Levy density,

0l(du) =
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which has infinitely many jum ps in bounded tim e intervals, and Z 2( t) , t  G R+, is a compound 

Poisson subordinator:

1 Pit)

' n = l

where the Z n ,n  = 1 ,2 , . . . ,  are independent copies of the standard normal variable and 

, is a homogeneous Poisson process with intensity ^ . The (finite) Levy measure 

v  of ^ 2(1) can be com puted as,

1 S^2 _ -r2t»V2 {du) = 2 1  [0oo)(u)du.

C 5 Consider a m other process of the form,

A(£) =  ex ^ ~ Cx w ith c \  — <5(j — 7 2 — 2) and 7  >  >/2 ,

where X ( t ) , t  € R+, is a stationary inverse Gaussian OU-type with marginal density (6.14) 

and covariance function,

rx { t )  =  t G JR.

From the  discussion above it follows th a t Theorem 8 and Theorem 9 can be applied to  this 

setting to  yield the following result:

2
T h e o re m  11. Suppose that condition C 5  holds, and le tQ  — {q : 0 < q <  \ , ol >  2}. Then, 

fo r  any b > e~2cx+5^~ y / 'y2~4\  the stochastic processes A n (t) defined by (6 .6) converge in 

Z/2 to the stochastic process A (t)  as n  —> 00 such that, i f  A(  1) e  L q for  q e  Q,

E A ( t )q ~ t R{q)+1,

where the Renyi function is given by,

R (q) = ,( i  + log£  2)) + i- L ^ ^ -  j g j - i .

(̂ see Anh et al (2008) [4] for  proof).

Example III: The log-spectrally negative a-stab le  scenario

We propose a stationary  OU-type process satisfying the Ito stochastic differential equation

(3.19), where { Z t , t  > 0} is a cadlag spectrally negative a-stab le  process w ith 1 <  a  < 2 and 

stationary  and independent increments. Due to  the absence of positive jum ps, Patie (2007)
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[106] states th a t it is possible to extend the characteristic exponent of {Z t } on 

imaginary line to  derive its Laplace exponent, ip(z) =  E e ~ zZ^  = ua , u > 0. 

we are interested in the case where there is an absence of negative jumps, the 

the characteristic function of Z(  1) is,

Kz(i)(*) =  log E e tZ{1) =  (i z )a ,

and the (finite) Levy measure u of Z ( l )  is,

p(du ) =  cu~a~ 1l {0tOo)(u)du, c > 0 .

The related logarithm  of the characteristic function of X  is,

/  ̂ i  r  k z ( i ) ( o  (i z )a
Kx(z)  = x h  =

C l  Consider a m other process of the form,

A(t) =  ex ^ ~ cx w ith c x  = —r ,
aA

where X ( t ) , t  e  M, is a stationary spectrally negative a-stable OU-type stochastic process. 

All conditions hold for Theorems 8 and 9, so we can now formulate the following result:

  2a 2
T h e o re m  12. Suppose that condition C l  holds. Then, for  any b > e ~ ^ ~ ^ , A > 0 ,  the 

stochastic processes A n (t) converge in L 2 to the stochastic process A{t) as n  —> 00 such that, 

i f  A{ 1) e  L q for  q 6  Q,

E A ( t ) Q ~ t R{q)+1, 

where the Renyi function is given by,

R(q)  = q ( i  + ~lj q e Q '

In Table 6.1, we have collected all corresponding Renyi functions, and ranges of q for the 

L 2- convergence of A n to  A  for the models discussed in this chapter. For further scenarios 

and a table for ready reference see the papers by Anh et al (2008, 2009a, 2009b, 2010) [4] 

[5] [6] [7].

For q e  Q n  [1,2], the condition A  (I)  e  L q, q >  1 follows from the L 2 convergence; thus the 

above results hold a t least for this range. For q outside this range, the condition is still to

the negative 

However, as 

logarithm of
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be verified for the validity of m ultifractal moment scaling. However, Anh et al (2010) [8] 

illustrates th a t through simulation experim ents th a t convergence to  m ultifractality should 

hold for values of q larger than  2. Hence there is scope for relaxing the condition A{ 1) € L q 

for q — 1, 2 .

6.3 F ittin g  m ultifractal scenarios to  data

We will now compare the estim ate of the scaling function with the Renyi function obtained 

for the scenarios corresponding to the gamma, inverse Gaussian and spectrally negative 

stable d istributions in Table 6.1.

If we first take the activity  tim e process {T(£)} in (6.3) to  be a m ultifractal process {A(t), t > 

0} with scaling function TA (q), then by (6.2),

E (\Y ( t ) \q) = E A ( t )* E ( \vB ( l ) \* )

= cA ( h t r*(i )+1(v/2 ^ ) ‘’ T(' ~ f l \  (6 .1 5 )
2 yjir

The scaling function is thus given by,

ry(q) = ta (^ )  

and this leads us directly to the following empirical test:

•  if the scaling function r(q) is linear then the process is self-similar.

•  if the scaling function r(q) is non-linear then the process is m ultifractal (always con­

cave).

To estim ate the  scaling function, Calvet and Fisher (2002) [29] proposed a m ethod based 

on a partition  function. It allowed them  to successfully detect the m ultifractal properties of 

real financial d a ta  (in their case, the CAC40 stock Index). This partition  function will be 

denoted 7rs(Y,q), and defined by partitioning the series { Y ( t ) }  into n  subintervals of length 

6 for each moment q ,

n

nsiY, q) =  ^ 2  |Tr^  -  y r(i_ 1)51 \q, (6.16)
i =  1
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where [•] is the integer part (ceiling) operator. By allowing this partition function to  be the 

empirical counterpart of E (\Y ( t ) \q) in (6.15), we have,

log 7T« (y , q ) = r A (^ ) \o g S  + \ogT  + const,

where T  =  nS and const =  lo g c ^ ( |) ( \ / 2cr2)g,r ( ^ 5 )/-v/ 7r. Thus by plotting l o g ^ y , q) 

against log5 for various moments q (Figure 6.1), we can obtain T a ( § ) .

In addition, the m ultifractal spectrum  (see Figure 6 .2 ) is estim ated by,

f ( a )  = inf[ga -  f(q)}.
Q

For our empirical work, the values of the increment 6 in the calculation of the partition 

function have been set a t 1,2,3,4,5,6,7,15 and 30 (i.e. first week, two weeks and one month, 

respectively), together w ith the values of moment q ranging from 0 to  8 by 0.5 increments. 

This enables us to  com pute f(q )  for every q and for each d a ta  set.

In Figures 6.3, 6.4, and 6.5 we can show clear evidence of m ultifractality in real financial 

d a ta  based on non-param etric estimates. This supports the theory in this chapter and en­

ables us to  look a t various constructions of m ultifractal processes which can be implemented 

into the risky asset model (6.3).

All param eters of the param etric Renyi functions including the scaling param eter b and 

param eters of the marginal distribution of X ( t ) have been estim ated using non-linear least 

squares. To judge about the applicability of the models discussed, we have compared the 

non-param etric estim ate of the scaling function f(q )  w ith the Renyi function obtained for 

the scenarios of gamma, inverse Gaussian and spectrally negative stable distributions (see 

Figures 6.3, 6.4, and 6.5).

Our aim is to  minimise the mean square error between the scaling function estim ated from 

the d a ta  and the corresponding analytical forms; the data-fitted Renyi function is denoted 

by T^(q). All fitted scenarios seem to  be able to  capture quite well the behaviour of the 

non-param etric estim ate f(q ),  w ith some “distinguo” . The Log-SNS scenario, in particular, 

looks quite ap t for the risky asset modelling problem as it obtains good results for our d ata  

(see the residual sum of squares in Table 6.2).

For a comparison between the Log-Gamma, Log-Inverse Gaussian and Log-Spectrally nega­

tive a-stab le  m ultifractal scenarios, we could formally use the AIC, BIC and SBC criterions 

outlined in Appendix H. These criterions are worth considering as they take into account 

the number of param eters required to  fit the data. The only issue is th a t the underlying
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models are based on the maximum likelihood function. Since we have dependence in all our 

d a ta  sets, the values in Appendix H should only be taken as a guide.

R e m a rk  We have reviewed a class of models based on multifractal activity time and 

have tested their flexibility in applications through the use of risky asset data. M ultifractal 

processes based on products of geometric OU-type processes appear well ap t for varied 

applications as several different scenarios are easily derived by the characteristic function of 

the underlying m other process.
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Figure 6.1: The partition function
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Figure 6.2: Estimation of the multifractal spectrum
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Figure 6.3: Log-gamma scenario of multifractal products of geometric OU-type processes:
Blue (line)- non-parametric estimate of r(q), Red- fitted parametric estimate of r(q), Green-
Brownian motion case
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Figure 6.4: Log-inverse Gaussian scenario of multifractal products of geometric OU-type
processes: Blue (line)- non-parametric estimate of r(q), Red- fitted parametric estimate of
r(q), Green- Brownian motion case
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(a) FTSE100 (a =  3.24, A =  36.11,6 =  10.73)
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Figure 6.5: Log-spectrally negative cm-stable scenario of multifractal products of geometric
OU-type processes: Blue (line)- non-parametric estimate of r(q), Red- fitted parametric
estimate of r(q), Green- Brownian motion case
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Scenario Renyi function ra (q)

L og-r

Log-IG

Log-SNS

<l(l  +  log 6 loS (i_i)/9 ) +  log6 a)
q € Q =  {q : 0 <  q < a ,  a  > 2}

+ 6^ . - ^ .y 27.2) \ +  a 2 2o ivG +  log6 / log6 V ' log6 A’
q e Q  = {q :0 < q  < \ , a  > 2}

o(l +  _J_ _ L )___ L _£l _  i' log6 aA / logb aX
q E Q — {q : 0 < q < a, a  > 2}

Table 6.1: Log-distribution scenarios for m ultifractal products of stationary OU-type pro­
cesses

Scenario Residual Sum of Squares
FTSE100 GBP

Log-T
Log-IG

Log-SNS

0.0607
0.0582
0.0533

0.0256
0.0232
0.0136

Table 6.2: The residual sum of squares after regression
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C hapter 7 

C onclusion

Here we will describe the main results from each chapter in the thesis. We also discuss any 

opportunities for future work.

The introduction sets the scene for the rest of the thesis. We define what we mean by a 

risky asset, but stress th a t the corresponding log-price increments or risky asset returns are 

our prim ary focus. We then describe briefly the history of M athem atical Finance, by listing 

the key contributors and some of their work. The first chapter can thus be used as a handy 

resource, as it provides many im portant references for anyone who wishes to study this topic. 

Inevitably, our approach to modelling risky assets is motivated, in no short measure, by 

the pioneering work of Black, Scholes and Merton. Their ideas surrounding “continuous­

tim e finance” and “risk-neutral option pricing” provide us with elegant theory which is still 

popular w ith both  practitioners and academics. Their paradigm GBM (or Black-Scholes) 

model gave people an early quantitative insight into financial markets and how they moved 

over time.

To Black, Scholes and M erton, price changes in financial m arkets were always considered to 

be random. In fact [26] explicitly states, “We will assume ideal conditions in the m arket for 

the  stock and for the option . . .  The stock price follows a random  walk in continuous tim e.” 

Also the  word “speculative” in [100] is pu t into quotes. We now know this randomness to 

be a shortfall of the  GBM model, as it is universally accepted th a t risky assets behave quite 

differently in real-life.

In C hapter 2, we outline some of the empirical features of risky asset returns which we 

need to  incorporate into our model. Those characteristics include; no correlation but some 

dependence, and a leptokurtic distribution (higher peak and heavier tails than  the Gaussian 

d istribution). In addition to this, we have noticed an ocassional skewness of the distribution
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of real data, and evidence of aggregational Gaussianity when looking a t varying sampling 

frequencies.

For risky asset returns, a decreasing sampling frequency results in the distribution tending 

towards a Gaussian. This would rule out, for example, the stable distributions as models for 

returns, as suitable distributions ought to  be closed under convolution and contain Gaussian 

as a limit. We do not, however, include a study other sampling frequencies to  daily in this 

thesis. Thus, there is an opportunity here for an extension as higher and higher frequency 

d a ta  is becoming widely available. Some time could be spent to  study these more closely to 

check their characteristics.

The distributions we decided to investigate for risky asset returns were the heavy-tailed 

S tudent’s t-distribution, and the semi-heavy tailed Variance G am m a and Normal Inverse 

Gaussian distribtuions. The reason being is th a t there is large am ount of support in the 

M athem atical Finance literature over the suitability of these distributions. In depth studies 

into the controversy of the re tu rn ’s tailweight can be found in [65] [56], where a wide range 

of competing distributions are investigated.

Another area for debate is whether we have weak (short-range) or strong (long-range) de­

pendence. M any papers (see [64] or [41]) have claimed th a t long-range dependence exists 

for risky assets. In this thesis, we follow the lead of [19] and [121] by using H urst param eter 

as an estim ator of the intensity of dependence for returns data. The difficulty lies, however, 

when measuring H urst param eter from the output. From the definitions we m ust focus on 

the high lags where fewer readings are available, and as a result, where the m ajority of noise 

in the d a ta  occurs. To avoid any unnecessary scrutiny, we will only conclude th a t typical 

risky asset returns are not independent and could exhibit long-range dependence.

We do not plan to  answer the question of tailweight for risky asset returns and whether long- 

range dependence actually exists. Instead we just conclude th a t such a risky asset model 

m ust allow for returns with both semi-heavy and heavy tails, along with a dependence 

structure. Flexibility is key here and we look to  incorporate these empirical findings into 

the  FATGBM model introduced in [63].

We feel th a t  th is model we sta te  in chapter 2 captures enough of the  reality of the actual 

processes to  w arrant the more detailed examination of this thesis, w ithout obscuring the 

picture w ith additional sources of possible heavy tails or long-range dependence. In Kerss, 

Leonenko and Sikorskii (in progress) [77], they look to  write a linear stochastic different 

equation for which the risky asset price (2.5) is the strong solution.

110



Before any work started  on this thesis, there was already strong theoretical and empirical 

support of this FATGBM model. The main idea is to  introduce a random  activity time 

process to evaluate the standard Brownian motion, as opposed to  just calender time in the 

GBM model. Some early attem pts of “changed tim e” were noted in the introduction, but 

we claim th a t Heyde’s stochastic model for risky assets is able to  incorporate the properties 

th a t reflect all empirical findings. O ther increasingly elaborate ways to generalise GBM 

can also be found in the M athem atical Finance literature, but many of these are restrained 

by particular assumptions which do not hold in practice. We must emphasise th a t models 

which venture away from the elegant theory of Black, Scholes and M erton are a t risk of 

becoming statistically invalid.

We also study the scaling behaviour of this activity time process. From [66], we note th a t 

our activity tim e cannot be exactly self-similar. However, in [67] we see, a t least to  first 

approxim ation, th a t  we have asymptotic self-similarity. We use this in our constructions 

of activity tim e in chapter 3. In the final chapter, we instead consider a more general 

m ultifractal activity  time, as opposed to the monofractal (asymptotically self-similar) one. 

The three constructions of fractal activity time in Chapter 3, are the prim ary focus of three 

out of the four subm itted  papers using material from this thesis. We look to  successfully 

incorporate the empirical features from Chapter 2. For the FATGBM model, we require a 

fractal activity tim e process to have certain characteristics. In our constructions we need; 

pre-specified unit increments w ith either gamma or reciprocal gam m a or inverse Gaussian 

distribution (for Student, VG or NIG returns respectively), a flexible dependence structure, 

and a self-similar limit.

The first construction we considered was via chi-squared processes. In this thesis, it is the 

only m ethod which constructs the unit increment of a activity tim e process to  give us Student 

d istributed returns. The paper shows th a t the resulting activity tim e process converges to 

a self-similar process when appropriately normalized (standard Brownian motion for weak 

dependence and R osenblatt-type process for long-range dependence).

The remaining two constructions stem from the need to  construct inverse Gaussian unit 

increm ent of a activity tim e process. Here the param eters may also be non-integer. No­

tably, [52] has since presented non-integer param eters for the chi-squared process also. These 

second and th ird  construction which we will consider, both have a self-similar limit when 

appropriately normalised (standard Brownian motion for finite superposition and weak de­

pendence) .
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For both the diffusion-type and the OU-type approach, we take the superpositions. The 

reason being th a t the correlation structure found in risky asset d a ta  decays a t a slower 

rate than  the exponentially decreasing autocorrelation of the processes. We have seen th a t 

superpositions lead to a class of autocovariance functions which are flexible and can be fitted 

to many autocovariance functions arising in applications including finance.

In C hapter 4, we tu rn  our attention again to  fitting real financial data. This time we are 

interested in checking the fit of Student, VG and NIG, and comparing to th a t of Gaussian. 

To do this, any approach based on the maximum likelihood function m ethod would be flawed 

as the necessary independence assumption does not hold for any of our d a ta  sets. Instead, 

we consider the m ethod of moments.

We then move to  consider the symmetric Student case only. This enables us to  outline 

a hypothesis test based on the characteristic function to check the fit of the param eter 

estimates. A brand new derived expression for the characteristic function of the S tudent’s 

^-distribution is derived and used for model validation.

The topic of option pricing was considered in the next chapter. We attem pt to derive 

a pricing formula for a European Call option to  compare with the paradigm Black-Scholes 

pricing formula. To achieve this we outlined our plan to  follow the approach in [26] and [100], 

so we can consider a risk-neutral model with the notion of perfect markets and investors 

who always act rationally.

Similarly for standard  Brownian motion in the GBM model, standard Brownian motion 

evaluated a t our random  activity time {Tt } is a martingale. This is an im portant prop­

erty  for option pricing, but does not hold for most other risky asset models. Alternative 

generalisations of Brownian m otion in GBM such as fractional Brownian motion, are not 

martingales.

One issue we do have when deriving a formula for the price of a European option is the 

uniqueness of the m artingale measure. This uniqueness is required to  move to  the risk­

free sta te  of Black, Scholes and Merton, however for the FATGBM, we have two random 

processes. Thus we choose a  particular param eter restrictions to  enable us to state  such 

a elegant formula which we can directly compare with the classical Black-Scholes pricing 

formula. Note here th a t no assumptions of independence is made for our formula, and if we 

take T y  =  Y  in (5.3) then we reduce to the original Black-Scholes formula.

In C hapter 6 , we move away from any self-similar (monofractal), or any asym ptotically self­

similar assumption. Here, we discuss the possibility of m ultifractal scaling in risky asset
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data, and hence, we look to  construct an alternative multifractal activity time process.

We started  by providing some background theory of multifractal processes. This work in a 

finance application is still being developed, bu t the early results of Mandelbrot are im portant. 

Using this theory, papers such as [29] showed clear evidence of multifractal scaling in risky 

asset data, through the  fitting of the scaling function. We use this method to investigate 

the scaling nature of our risky asset d a ta  sets.

For the m ultifractal model, we investigated the  properties of products of geometric OU-type 

processes. We present th e  general conditions for the L 2 convergence of cumulative processes 

to limiting processes and investigate their q-th  order moments and Renyi functions. We will 

show th a t these Renyi functions are non-linear, and hence display m ultifractality as required. 

We establish the corresponding scenarios for the limiting processes, such as Log-Gamma, 

Log-Inverse Gaussian and Log-Spectrally negative a-stable.

In the papers [4] [5] [6] [7], the  scenarios were obtained for q e  Q n  [1, 2], where Q is a set of 

param eters of m arginal d istribu tion  of an O U-type processes driven by Levy motion. The 

simulation shows for q outside th is range, the  scenarios are still holds (see [8], and Denisov 

and Leonenko (in progress) [40] for a rigorous proof).
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A ppendix  A

A ppendix

For completeness, and to  uphold a logical ordering, we will now present the supplement 

m aterial for the thesis.

A .l  A ppendix A: M ore pictures

Here are the empirical findings of the other 8 d a ta  sets - exchange rates from United Sates 

Dollar to  currencies; Australian Dollar (AD), C anadian Dollar (CD), Deutsche Mark (DM), 

Euro (EUR), French Franc (FF), Japanese Yen (JY) and New Taiwan Dollar (NTD), and 

stock index CAC40.

A .2 A ppendix B: E stim ating th e H urst param eter

We first consider the process {Y(t),£ >  0} which is self-similar i.e. { Y (a t ) , t  > 0} has the 

same finite-dimensional distributions as {aHY ( t ) , t  > 0} for all a > 0 and H  e  (0,1), with 

stationary  increments X t =  Yt — Yt- 1, t =  1, 2 , . . . ,  then it follows th a t Y ( t )  is a finite 

variance process. The covariance between X t and X t+k (k > 0) is equal to,

p(k) = C o v (X t , X t+k)

= C o v (X u X k+1)

l E

( k + i  \ 2 j  k \ 2 I  k \ 2 f k + i  x 2

5 X- * ( S v  -  5 X' -  §"■

\ { E [ (Y k+l -  Y0)2) + E[(Yk_ i -  Vb)2] -  E[(Yk -  Y0)2] -  E[(Yk -  y0)2]} 

° 1  [(* +  1)2" +  ( k  -  l ) 2"  -  2 k 2 H ]  .
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And the correlation between X t and X t+k (k > 0) is equal to,

*>(*) =  \  [(* +  i ) 2"  +  (* -  ! )2"  -  2fc2" ]  ■

We will take,

PW = ( i )  ,

where,

p(x) =  (1 +  z )2H +  (1 -  x )2H -  2.

The asym ptotic behaviour of p(k) then follows by Taylor expansion. Beran (1994) [19] noted 

if 0 <  H  ^  1 ( f l  ^  2 )? the first non—zero term  in the d'aylor expansion of expanded at 

the origin, is equal to  2H (2H  — \ ) x 2. Therefore,

p{k) ~  H (2 H  -  l ) k 2H~2, k  -> oo,

which gives us the following three cases:

1. For 0 < H  ^  2  ̂ the correlations are summsiblc. In fact^

oo

^ 2 = °-
k— — oo

2. For H  — all correlations a t non-zero lags are zero. So X t , t  =  1 , 2 , . . .  are uncorre­

lated.

3. For 5 <  H  < 1, this means th a t the  correlations decay to  zero so slowly that,

OO

p (k) =  °°-
k=—oo

Then X t , t  =  1 , 2 , . . .  has long-range dependence (long memory, strong memory or 

strong dependence).

A variety m ethods to  empirically estim ate H urst param eter H  are discussed in Beran (1994) 

[19], w ith a simulation study to statistically compare the different m ethods in Taqqu et al 

(1995) [121]. Here we will describe ju st a couple of these approaches.

M ethod I: The variance plot
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The m otivation behind this method is found by looking at the returns X \ , X 2, ■..,  X n more 

closely. In a  typical sample path  of the returns; there are relatively long periods where the 

observations tend  to  stay a t a high level, (on the  other hand, there are long periods with low 

levels,) there seem to  be no apparent persisting trend  or cycle, and the overall series looks 

stationary. In addition, we can also observe th a t the variance of the sample mean decays to 

zero a t a slower ra te  th an  n -1 . In good approxim ation, the rate is proportional to  n ~ a for 

some 0 <  a  <  1.

If we let X t be a stationary  process w ith long-range dependence, then from Beran (1994)

[19] we have,
n

V ar ^ 2  x i 
lim i=1 1

n—Kx> cn2H H (2 H  -  1)

So,

V a r (X n ) «  cn 2H~2, 

where c > 0. This suggests the  following m ethod for estim ating H:

1. Let k  be an integer. For different integers k in the  range 2 < k < and a sufficient

num ber (say m k) of subseries of length k , calculate the sample means X \  (k ), ^ ( f c ) , . . . ,  X mk (k ) 

and the  overall mean
m k

m k

1 _m fc

X (k )  = — ' £ x i (k).
3 =  1

2. For each k, calculate the  sample variance of the  sample means X j ( k ) (j — 1 , . . .  ,m k)

1 mk

3. P lo t log s2(k) against log k.

For large values of k , the points in this plot are expected to  be scattered around a straight 

line w ith negative slope 2H  — 2. In the case of short-range dependence or independence, the 

u ltim ate slope is -1.

M ethod II: Periodogram

In order to  investigate the asym ptotic behaviour of the periodogram  for long-memory time 

series, we require the assum ptions tha t; the  second moments are finite and lim p(k) =  0,
k —>oo
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H urst param eter H
Variance plot Periodogram

FTSE100 0.5484 0.5541
GBP 0.5087 0.5137

Table A .l: Estim ates of Hurst param ter

and hence 0 < H  <  1. Under these criteria, the spectral density of the increment process 

X i  can be derived.

The spectral density of X i  is given by,

OO
/(A ) =  2 c /( l  — cos A) ^ 2  |27tj 4- X\~2H~ 1 A e  [ - 7r,7r]

j =  — oo

with Cf =  C f(H ,a 2) — a 2(2n)~1 sin(7rH )r(2H  4- 1) and a 2 — V a r(X i).

The behaviour of /  near the origin follows by Taylor expansion a t zero. Under the assump­

tions we outlined above,

/(A) =  Cf\X\l ~2H +  o(|A|min(3- 2/f’2)).

The approxim ation of /  by C f\\\l ~2H is in fact very good in practice, even for relatively 

large frequencies.

The periodogram  /(A) is the empirical counterpart of the spectral density / (A),  which gives,

t =  1 k = - ( n - 1 )

with Fourier frequencies Aj  =  ^  (j  — 1 , . . . ,  — ^).

If the correlations were summable, then near the origin the periodogram  should be scattered 

randomly around a constant. Instead, for dependence, the  points are scattered around a 

negative slope.

These m ethods will give a decent estim ate for H urst param eter H , and thus, a rough idea 

about whether there is long-range dependence in the d a ta  (see table A .l). We find \  < H  < 1 

for FTSE100 and GBP data, but only slightly. W ith  such small departures from H  =  we 

find it ra ther difficult to  distinguish between weak and strong memory, even for rather large 

sample sizes.
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A .3 A ppendix C: M odified B essel function o f th e third  
kind

In this appendix, a number of results concerning the modified Bessel function of the third 

kind or McDonalds function are collected (see Kotz et al (2001) [80]).

The modified Bessel function of the th ird  kind, w ith index A € R, can be defined by the 

integral representation,

The function K \(x )  is a continuous, positive function of A >  0 and x  > 0. If A > 0 is fixed,

A .4 A ppendix D: R osenb latt P rocesses

Let (fi,./*, P ) be a complete probability space and £(£) =  £ (u ,t)  : fbdR  —> R  be a random 

process in continuous time.

We first list the following relevant assum ptions s ta ted  in Anh and Leonenko (2001) [3]:

A l  The process £(£), t e  R, is a real m easurable m ean-square continuous stationary  Gaussian 

process with mean E £(t) =  0 and covariance function r(t)  =  r ( |t |)  =  C ou(£(0),£(£)), t e  K, 

such th a t r (0) =  1.

A 2 The covariance function r(£), t e l ,  is of th e  form

where L (t) : (0, oo) —> (0, oo) is bounded on each finite interval and slowly varying for large 

values of £; i.e. for each A >  0, \im teoo[L(Xt)/L(t)] =  1.

A 3 A non-random Borel function G  : M —> R is defined such th a t

then for x  in the interval (0, oo), the  function K \( x )  is positive and decreasing. 

If A is fixed then, as x  —> 0+,

K x (x) ~  T(A)2a:, A >  0, K 0(x) ~  lo g ( i) .
x

For A =  r  +  where r  is a nonnegative integer, the function K \(x )  has the closed form,

0 <  a < 1 (A .l)



with

1 _«1 ip{u) — - .— e 2 , u  € IR.
\/27r

The nonlinear function G(u), u £ M can then be expanded in the series

o° />00
G(u) =  ] T  CkH k{u)/k\, Ck = G {u)H k(u)<p(u) du , fc =  0 , 1 , 2 , . . .  (A.2)

k=o

of orthogonal Chebyshev-Hermite polynomials

tffc(u) = ( - l ) fce^~ A: = 0,1,2,...

which form a complete orthogonal system  in H ilbert space L 2(R,ip(u) du).

A 4 There exists an integer m  > 1 such th a t C \ = . . .  = (7m_i =  0 ,C m /  0. The integer 

m  > 1 will be called the Herm itian rank of G.

We sta te  the following non-central limit theorem  due to  Taqqu (1975) [119] (see also Rosen­

b la tt (1987) [111]):

T h e o re m  13. Under assumptions A 1 - A 4  with a  £ (0 ,1 /m ), where m  > 1 is the Hermitian 

rank o f the function G, the finite-dimensional distributions o f the random processes

y"W =  jT T  r W w )  -  c »] ds, t  >  0, (A.3)a{n) Jo

with

d (n ) =  n 1_am/,2L my/2(n),

converge weakly, as n  —> 00, to the finite dimensional distributions o f the random process 

C m ,  ,  \ ,m /2  { 'Vm(i) / :;r; :v <̂>m! Jflj™ 2 (Ai +  . . .  4- Am ) | A i . . . A m | ^

where Cq and Cm are defined by (A.2) and f Rm . . .  is a multiple stochastic integral with 

respect to complex Gaussian white noise W (-) with integration on the hyperplanes A* =  

A j ,  i , j  = 1 , . . . ,  m, i /  j ,  being excluded (see Taqqu (1979) [120], Dobrushin and Major 

(1979) [42] and Major (1981) [90] fo r  the definition and properties o f the multiple stochastic 

integral (A.4)).

For a random process in continuous time, the proof of Theorem 4 may be constructed from 

Taqqu (1979) [120] and Dobrushin and M ajor (1979) [42] by using the argument of Berman 

(1979) [20].
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R e m a rk  The normalising factor d(n) in (A.3) is chosen such that, as n —» oo,

V a r [ f  H m (€ (s))d s ] =  d2(n)ra!c2( ra ,a ) ( l  +  o(l)),
Jo

where

/ \ f 1 f 1 dsdt 2 .c2(ra, a:) =  / / :------ :—  =  —---------- — -------------0 < a  < 1/m .
Jo Jo |s-t|ma (1 - m a )(2 -  ma)

Note th a t E \ Y m ( t ) \ 2  < oo, bu t for m  >  2 the process Y m { t )  have non-Gaussian structure. 

The process T2(£), t  > 0, defined in (A.4) w ith m — 2, is called the Rosenblatt process 

(see Taqqu (1975) [119]) because it first appeared in Rosenblatt (1961) [110]. Some moment 

properties of these distributions can be found in Taqqu (1975) [119] and Taqqu and Goldberg 

(1982) [59]. In particular, the marginal d istribution  of the random  process,

**> -  ™  -  ?«<*■> l  * * o. * <«< ■/»
is called the Rosenblatt distribution. Note th a t,

E R H 1) =  [ £ * « , ) ] ’ £  <  O O , 0 <  «  <  1/2.

From Rosenblatt (1961) [110], Taqqu (1975) [119] and Berm an (1979) [20], we obtain the 

characteristic function of the random  variable,

R  = R ( l) /[ C 2c1(a)/2].

It has the form,

1  ^  ( O * \  3
E  exp {iu R } = ex p { -  ———R^}, u  6 M,

j= 2  3

where,

f  d x i . . .  dxj  „ _ .
=  —#----------------   1-------- , 0 < a < l / 2 .

J l 0 . l V  F l i _ o  \xk-1  -  X k \ a \ X i  -  x-i |a'[0 ,1 ]*  n l = 2  k f c - l  -  X k \ a \ X j  -  X \ \ a

From Leonenko and Taufer (2005) [85], we obtain  the extension to  the joint characteristic 

function of Yn (u i) , . . . ,  Yn (uq), q is an integer, as n —► oo and for 0 <  a  < \  is,

1 ^  f
E e x p { i(u iR ( ti)  +  . . .  +  uqR (tg ))}  =  ex p { -

3=2 3 s 1,...,sJe { l , . . . ,g }

where,

dx  2 . . . dx jrUsi ru°
S a ( j )  =  ■ ■

Jo Jo U k = 2  \Xk - l  ~ X k \ a \Xj  ~ X X\a

This is a generalization of a result of Taqqu (1975) [119] (see Fox and Taqqu (1985) [54] for 

a corrected version).
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A .5 A p p en d ix  E: M ixing definitions

Denote a ^ ( t )  (strong mixing), f t k\ t )  (sometimes w ritten as <ff-k\ t )) and p^k\ t )  (see 

Bradley (2005) [28]) as the following:

a^k\ t )  =  sup \P (A  C\ B ) — P (A )P (B )\, A  £ JFS,B  £ P s+t, (A.5)

P w (t) = sup |P (B /A )  -  P { B ) |, A e  F S,B  e  F a+t,

p(k\ t )  =  sup |C o rr(^ , r?)|, £ £ L 2{Ps),r] € L 2{F s+t),

where T s — c r (£ ^ (s ) , s < t), J*  =  a ( ^ k\ s ) ,  s > t ) ,  t > 0.

A .6 A ppendix  F: D u ality  T heorem

T h e o re m  14. I f  the real-valued characteristic function  if o f random variable satisfies,

<p(t) > 0 ,  /  (p(t)dt <  oo,
J  R

(and so the random variable has bounded continuous density f  that is symmetrical about 0), 

then /(0 )  > 0  and,

w x€R>
is a probability density function  o f the random variable whose characteristic function is,

m  i f »
7 ( o ) ’

For the proof and historical rem arks on its origin, see H arrar, Seneta and G upta  (2006) [61].

A .7 A ppendix  G: N ew  E xpression for B essel Function

We want to  equate (4.21) and (4.22), namely,

K s m m t n w - t  w
r m  r( i/)

r  o o

/  e~5 2̂x+^ { x { x \ t \ ) ) ^ ~  dx
Jo
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Letting /z =  and z =  <J|£|

r(M )(2 i)2“r ^ ) ( 2 i ) ^  r . - ^ - ' M S x  +  z) i  d(Sx)
“ {  > ~  r(2M)2!-<**<• Jo  1 S 2  ' 6

Now set u — Sx

r (/z ) ( 2 ^  r c-2 u - i ,M « + *))>-* du

T(/z)22  ̂ 1 / ,° ° e - 2t2- |z | (u(u +  ^ ) M - ^ u
^0

p o o

r ( 2 P ) I  «'2“(«(“ +  *))' ‘- i <'u , ^ o

r (2/z)21-/i z^

23^ - 1r(/z) e “ |z|

A better expression would be

o3m— izi z"00 
=  j  e - 2'-(u(u + z ) r - U u , ^ > 0 , z e m .

A .8 A ppendix  H: A IC /B IC /S B C  criterion

The Akaike information criterion (AIC) introduced in Akaike (1974) [1], is a measure of the 

relative goodness of fit of a statistica l model. I t is grounded in the concept of information 

entropy, in effect offering a relative m easure of th e  inform ation lost when a  given model is 

used to  describe reality. It can be said to  describe the  trade-off between bias and variance 

in model construction, or loosely speaking between accuracy and complexity of the model. 

Given the param etric fitting of th e  Renyi functions in Figures 6.3, 6.4 , and 6.5, we will now 

look to  provide a comparison of the  Log-Gamma, Log-Inverse Gaussian and Log-Spectrally 

negative a-stab le  m ultifractal scenarios.

The values for the  AIC will be calculated by,

A I C  = N \ o g ( ^ f \ + 2 k ,

where k is the num ber of param eters needed to  fit the  d a ta  and R S S  is the residual sum of 

squares.

One benefit of this citerion is th a t  AIC not only rewards goodness of fit, b u t also includes a 

penalty th a t is an increasing function of the  num ber of estim ated param eters. This penalty 

discourages overfitting (increasing th e  num ber of free param eters in the model improves the 

goodness of fit). Any results, however, should only be trea ted  formally since the AIC is
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based on the maximum likelihood function, and we have clear evidence of dependence in 

our data.

For further testing, we will use both  the Bayesian information criterion (BIC) and Schwarz’s 

Bayesian criterion (SBC). These are also based, in part, on the likelihood function, and it 

is closely related to  AIC. Note th a t  the penalty  term s for overfitting are larger for BIC and 

SBC than  in AIC.

Scenario
Log-r Log-IG Log-SNS

FTSE100
AIC
BIC
SBC

-83.4962
-81.6610
-81.1784

-83.7514
-81.9191
-81.4336

-90.0932
-88.1833
-87.0029

GBP
AIC
BIC
SBC

-98.6057
-99.6611
-96.2879

-96.9892
-97.9342
-94.6715

-99.8854
-101.8866
-96.7650

Table A.2: Results after applying the  AIC, BIC and SBC criterions (the lower the value, 
the better the fit)

W hen comparing two estim ated models, the  model w ith the lower value of A IC /B IC /SB C  

is the one to be preferred. T he criterions are increasing functions of the error variance 

and increasing functions of the  num ber of param ters k. T h a t is, unexplained variation 

in the dependent variable and the  num ber of explanatory variables increase the value of 

A IC /B IC /SB C . Hence, lower values implies either fewer explanatory variables, better fit, or 

both. In table A.2 we see th a t Log-SNS gives us the  lowest value for each of the criterions.
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Figure A.l: Risky asset price P{t)
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Figure A. 7: Estimation of the multifractal spectrum
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Figure A.8: Log-gamma scenario of multifractal products of geometric OU-type processes:
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Figure A.9: Log-inverse Gaussian scenario of multifractal products of geometric OU-type
processes: Blue (line)- non-parametric estimate of r(q),  Red- fitted parametric estimate of
r(q),  Green- Brownian motion case
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Figure A. 10: Log-spectrally negative a-stable scenario of multifractal products of geometric
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