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Abstract

Acute myeloid leukaemia (AML) is a heterogeneous clonal disorder o f haematopoietic 
cells that primarily affects the elderly. Previously, our laboratory identified y-catenin as 
significantly overexpressed in AML. y-Catenin shares close structural and functional 
homology with the more intensively studied /3-catenin. Both catenins have dual roles in 
cell adhesion complexes and in transcription. Their transcriptional role is regulated by 
Wnt signalling which is critical for normal development and is one o f the most 
frequently dysregulated processes in AML. In spite o f this, little is known regarding the 
specific role o f y-catenin in normal haematopoiesis or AML pathology. This study 
devised an intracellular flow cytometric staining assay to characterise the expression o f 
y-catenin in normal haematopoietic subsets. y-Catenin exhibited a similar expression 
profile to /3-catenin. Expression was relatively high in haematopoietic stem/progenitor 
cells (HSC/HPC) and showed increased expression in myeloid differentiated cells 
(granulocytes and monocytes) while expression was lower in lymphoid cells and 
undetectable in red blood cells. Studies o f  subcellular distribution by confocal imaging 
showed reciprocal localisation o f catenins in CD34+ cells, with /3-catenin predominantly 
nuclear translocated and y-catenin nuclear excluded. Conversely, in granulocytic and 
monocytic cells nuclear y-catenin levels were relatively high whilst nuclear /3-catenin 
levels were reduced. A small subset o f the CD14+ monocyte population exhibited 
heavily nuclear translocated y-catenin. Subsequent knock-down studies of y-catenin 
showed this protein to be required for normal haematopoietic development in vitro, 
evidenced by the inhibition o f macrophage differentiation and apparent reprogramming 
o f committed monocyte progenitors for granulocytic development. In AML patients, y- 
catenin mRNA expression conferred a reduced complete remission rate arising from 
resistant disease, however discordance was found between mRNA and protein level, 
implying post-translational control o f y-catenin expression in AML. In primary AML 
blasts (undifferentiated) y-catenin was aberrantly localised to the nucleus suggesting a 
transcriptional role in AML pathology. A correlation was identified between y- and (3- 
catenin protein expression in primary AML blasts and an association between nuclear 
levels o f  these proteins. To determine whether this association was causal, y-catenin was 
ectopically expressed in normal human CD34+ haematopoietic progenitor cells but had 
no significant influence on /3-catenin expression or localisation even following 
subsequent differentiation. In contrast, overexpression o f y-catenin in leukaemic cell 
lines stabilised /3-catenin protein and promoted its translocation to the nucleus 
suggesting that the influence o f y-catenin on /3-catenin is a feature o f leukaemic cells but 
not normal cells. Phenotypically, overexpression o f y-catenin had little effect on normal 
progenitor cells but was able to block agonist-induced differentiation o f AML cell lines, 
probably via stabilisation o f /3-catenin. In summary, this study indicates a role for y- 
catenin in the regulation o f  normal haematopoietic development and that its nuclear 
translocation is strictly regulated independently o f  /3-catenin in normal haematopoiesis. 
In leukaemic cells, however, this control is dysfunctional allowing y-catenin to promote 
the stabilisation and translocation o f /3-catenin. This relationship may represent a 
pathological mechanism active in AML blasts to block myeloid differentiation and 
promote a leukaemic phenotype.
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1 - Introduction
1.1 Normal haematopoiesis

1.1.1 Overview of human haematopoiesis

Haematopoiesis is the life-long co-ordinated process o f  creating and maintaining all the 

cells that constitute blood. In the human embryo, the yolk sac is the main site for 

haematopoiesis up to 6 weeks gestation, before the liver and spleen take over for the 

following 6-7 months o f  foetal life (Hoffbrand et al., 2005a). The bone marrow (BM) 

then becomes the most important site, and represents the only source o f new blood cells 

in healthy childhood and adult life. Alternative sites o f haematopoiesis such as the liver 

and spleen have been reported in adults but are generally only prevalent in times o f

haematopoietic stress or injury (Wilson and Trumpp, 2006). Otherwise, it is estimated
1 0that around 1x10 blood cells are turned over daily in the healthy human body (Ogawa, 

1993), with critical functions in host immunity (innate and adaptive), oxygen transport, 

blood coagulation and tissue repair.

Overwhelming evidence suggests the haematopoietic system is organised as a 

hierarchical structure, whereby rare pluripotent haematopoietic stem cells (HSC) with 

high potential for self-renewal, give rise to increasingly mature progeny with decreased 

self-renewal capacity but raised potential for differentiation {Figure 1.1). Although 

there remains some debate as to the intricate details o f  this organisation (reviewed by 

Rosenbauer and Tenen, 2007), the overall concept is a clear one: Increasing 

commitment to a particular lineage, leads to more restricted developmental capacity 

such that progeny eventually terminally differentiate into a single cell type with 

specialised function, structure and biochemical properties. For example, the small, 

smooth, enucleate, bi-concave morphology o f the erythrocyte, and the high expression 

o f haemoglobin, allows both maximum retention o f oxygen and augmented navigation 

o f the fine capillary networks to which it is delivered. Also, granulocytes (consisting o f 

neutrophils, basophils and eosinophils) are able to fulfil their function o f destroying 

pathogens and priming the adaptive immune system, through an extensive arsenal o f
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lysosomal granules, and a flexible, hyper-segmented nucleus that permits trans- 

endothelial migration through blood vessels into affected tissues.

Normal steady state haematopoiesis is regulated by a host o f intrinsic and environmental 

influences. A complex network o f signalling pathways, transcription factors, cytokines 

and growth factors synergise to influence the lineage fate, differentiation, proliferation 

and function o f developing haematopoietic cells (see 1.1.3). Although this process is 

tightly regulated, it must also adapt to the changing physiological demands o f  the body. 

In particular, erythropoiesis has been well studied in this context. For example, at times 

o f haematopoietic injury, tissue hypoxia stimulates the secretion o f  erythropoietin 

(EPO) from the peritubular interstitial cells o f  the kidney. The presence o f EPO in the 

BM biases developing HSCs down an erythroid path o f differentiation. However, 

influencing the lineage fate o f primitive HSC alone cannot solely replenish the 

haematopoietic system since more rapid responses are required. Rather, proliferation 

and apoptosis are are also critical regulators o f a primed reservoir o f  more committed 

haematopoietic progenitors (De Haan et al., 1996). Once again studies in erythropoiesis 

have demonstrated that a committed pool o f erythroid progenitors reside in the bone 

marrow which can either; A) be rapidly induced by EPO to proliferate and terminally 

differentiate upon haematopoietic stress, or B) readily apoptose at times o f excess 

during steady state erythropoiesis (De Maria et al., 1999). The production o f  leukocytes 

is susceptible to similar regulatory mechanisms and can also be influenced by 

physiological demand, as evidenced by the increased pool o f circulating neutrophils and 

lymphocytes prevalent during parasitic or viral invasion.



Introduction C h a p te r  1

Self-renewal

CFU-GEMM

megakaryocyte

monocyte

platelets macrophage

Figure 1.1 - The hierarchical arrangement of human haematopoietic development.

The rare pluripotent HSC with increased capacity for self-renewal (curved arrow), 
gradually gives rise to mature progeny with reduced capacity for self renewal and 
increased differentiation potential (straight arrows). Eventually, cells terminally 
differentiate, where their morphology and physiology is adapted to their biological 
function. Abbreviations: HSC = haematopoietic stem cell; HPC = haematopoietic 
progenitor cell; CMP = common myeloid progenitor; CLP = common lymphoid 
progenitor; CFU-GEMM = colony forming unit -  granulocyte-erythrocyte-monocyte- 
megakaryocyte; CFU-GM = colony forming unit -  granulocyte-macrophage; NK cell = 
natural killer cell. Adapted from http://dalev.med.harvard.edu.

http://dalev.med.harvard.edu
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1.1.2 Haematopoietic stem cells and the microenvironment

1.1.2.1 HSC properties 

HSCs represent the most intensively studied and accurately characterised stem cells in 

human biology. They are rare cells, estimated to contribute between 0.01-0.15% of adult 

human and mouse BM cellularity (Spangrude et al., 1988; Beerman et al., 2010), and 

are seldom present in normal peripheral circulation. HSCs can be broadly classified into 

long-term HSC (LT-HSC) which have long-term capacity to reconstitute all blood 

lineages (months-years), and short-term HSC (ST-HSC), which have a more finite 

potential (days-weeks) to replenish the haematopoietic system (Morrison and 

Weissman, 1994; Guenechea et al., 2001; Christensen and Weissman, 2001). 

Characterisation o f the exact immunophenotype o f HSC remains incomplete although 

the use o f human SCID-repopulating cells (SRC) with the capacity to repopulate sub- 

lethally irradiated nonobese diabetic-severe combined immunodeficient (NOD-SCID) 

mice has allowed the broad immunophenotypic classification o f human HSC 

(Larochelle et al., 1996; Bhatia et al., 1997; Guenechea et al., 2001). LT-HSC are Lin' 

CD34+CD38 , ST-HSC are Lin'CD34+CD38+, and overwhelming evidence suggests an 

even more primitive Lin'CD34'CD38' HSC exists in human BM that can generate all 

subsequent HSCs (Osawa et al., 1996; Goodell et al., 1997; Bhatia et al., 1998; Zanjani 

et al., 1998; Nakamura et al., 1999).

It is imperative that HSC are able to satisfy the enormous demand for mature blood cells 

throughout human life, without completely exhausting the comparatively small pool o f 

pluripotent HSC. One stem cell can generate around 106 mature blood cells after 20 cell 

divisions, whilst preserving an exact copy (daughter) o f itself. This considerable 

amplification is only achievable through a critical balance between self-renewal and 

differentiation. A number o f models have been proposed to explain how HSCs co­

ordinate this balance, and are summarised in Figure 1.2 (reviewed by Roeder and 

Lorenz, 2006, Wilson and Trumpp, 2006 and Schroeder, 2007). It is likely that all 

models outlined are active to some degree during normal HSC division. The 

heterogeneity within this population make it probable that differentiation is a multi-step 

process where HSCs gradually lose their ‘stem-ness’. This process is largely governed

4 | P a g e
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by the transcription factors and the supporting network of cytokines, growth factors, 

signalling cascades described further in section 1. 1.3.

Figure 1.2 - Theoretical models of HSC division.

The two main models o f stem cell division that have been proposed to explain the 
inherent ability o f HSCs to continually replenish populations o f mature cells whilst 
preserving the pool o f uncommitted cells. A) The rigid asymmetric model whereby one 
HSC always generates one stem and one differentiated daughter cell. The probability of 
generating each type is fixed and ensures a continuous reservoir o f stem cells. However, 
such a process is unlikely to represent the only type of division since a more dynamic 
expansion of the HSC pool is required at times o f haematopoietic injury or 
myeloablation B) The more dynamic symmetrical or ‘stochastic’ theory where the HSC 
is able to produce either two identical stem daughter cells or two identical differentiated 
daughter cells according to physiological demand. Abbreviations: S = stem cell; D= 
differentiated cell. Adapted from Roeder and Lorenz, 2006.

1.1.2.2 The HSC niche 

The instinctive ability o f HSCs to home to the BM allowed the finding that stem cells 

are not randomly distributed through the marrow cavity, but instead occupy specialised 

niches close to blood vessels and the endosteum o f the trabecular bone (Kopp et al., 

2005; Kiel et al., 2005). The concept of a ‘HSC niche’ was originally coined by 

Schofield in 1978 following studies o f colony forming units (CFU) in the spleen 

(Schofield, 1978). Earlier studies by Shackney had identified a development gradient in 

the BM whereby primitive cells were located along the endosteum, with developing 

cells moving towards the highly vascularised cavity (Shackney et al., 1975). The BM 

niche itself (Figure 1.3) is composed o f osteoblasts, osteoclasts, and various stromal 

cells including adipocytes, fibroblasts, reticulum cells, endothelial cells and 

macrophages, all enriched with a dense micro-vascular network. Stromal cells are able 

to generate an extracellular matrix by secreting molecules such as collagen,
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glycoproteins (fibronectin and thrombospondin) and glycosaminoglycans (hyaluronic 

acid and chondroitin derivatives).

There is increasing genetic and functional evidence indicating a complex molecular 

cross-talk between HSC and components o f the BM niche. Typically proteins involved 

with signalling, adhesion, migration or homing have been implicated, and are 

summarised in Figure 1.4. Most o f these interactions are relevant to the osteoblastic 

niche, and human osteoblasts have been shown to support haematopoietic progenitor 

cells in vitro (Taichman et al., 1996; Taichman et al., 2001). This relationship was 

formally demonstrated in vivo through the pioneering studies o f Zhang et al. (Zhang et 

al., 2003), and Calvi et al. (Calvi et al., 2003), who both increased osteoblast frequency 

through different means in mice, to the ultimate effect o f increasing HSC number. This 

concept was reaffirmed by the reverse experiment by Visnjic et al. where conditional 

ablation o f osteoblasts led to loss of normal haematopoiesis including a decline in HSC 

number (Visnjic et al., 2004).

Since this discovery, much work has been undertaken to identify the specific signalling 

proteins active in the niche and many receptor/ligand relationships have been 

characterised between osteoblasts and HSC including; stem cell factor (SCF)/c-kit, 

Jagged-1 (JAG-l)/Notch, Angiopoietin-1 (Ang-1)/ tyrosine kinase receptor 2 (Tie2) and 

Wingless-type MMTV integration site family (Wnt)//3-catenin. SCF has been found 

secreted and expressed from the osteoblast surface, and signalling through c-kit receptor 

expression in HSC is well known to promote the proliferation and survival o f  this cell 

type. Interestingly, this relationship has also been proposed to contribute an adhesive 

function (Kinashi and Springer, 1994). The apparent haematopoietic failure in mice 

caused by loss o f SCF from the supporting environment would indicate a crucial 

function o f this signalling axis in the niche (Bernstein et al., 1991). Similarly, Notch 

receptors are expressed on HSC which can be bound by JAG-1 expression from 

surrounding stromal cells to expand the HSC pool (Calvi et al., 2003). Another well 

characterised interaction is that between Ang-1 (expressed on osteoblasts) and Tie-2 

(expressed on HSC) which has been formally demonstrated to maintain LT-HSC in a 

quiescent state (Arai et al., 2004).

6 | P a g e
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A host o f adhesion molecules have been implicated in maintaining HSC interaction with 

the niche including N-cadherin(N-cad)//3-catenin, vascular cell adhesion molecule-1 

(VCAM-l)/integrin, osteopontin (OPN)/j31-integrin and Ca2+-sensing receptor (CaR) 

(reviewed by Yin and Li, 2006). O f particular interest, the adhesive interaction between 

N-cad and /Lcatenin has been previously demonstrated in a stem cell context within 

Drosophila (Song and Xie, 2002; Yamashita et al., 2003). Both proteins have also been 

found symmetrically localised at the interface between HSCs and the osteoblastic niche, 

implying a heterotypic interaction maybe active in anchoring HSCs to the local stroma 

(Zhang et al., 2003). Curiously this interaction may not be restricted to adhesion, and 

may instead negatively regulate /3-catenin-mediated transcription o f  Wnt target genes. A 

study by Reiss et al. showed that N-cad cleavage by a disintegrin and metalloproteinase- 

10 (ADAM-10) leads to /3-catenin redistribution to the cytoplasm thus increasing the 

pool o f signalling competent /3-catenin available to the nucleus (Reiss et al., 2005). A 

similar re-localisation o f /3-catenin was observed upon cleavage o f E-cadherin (E-cad) 

(Ito et al., 1999). Despite the associated role o f y-catenin with cell adhesion (see 1.3.5.1) 

no such role has ever been implicated for this molecule within the HSC BM niche.

Finally, a number o f proteins crucial to the homing o f HSCs to the niche are present 

within the BM microenvironment including stromal derived factor-1 (SDF-1), FGF-4, 

E- and P-selectins, integrins, very late antigen-4 (VLA-4) and lymphocyte function- 

associated antigen-1 (LFA-1) (Wilson and Trumpp, 2006). The most well characterised 

o f these molecules, SDF-1 (also known as CXCL12), is constitutively released from 

endothelial and osteoblastic cells o f the niche and the receptor, CXC chemokine 

receptor 4 (CXCR4) is present on the surface o f HSCs (Peled et al., 1999; Lapidot et al., 

2005; Kortesidis et al., 2005). This chemokine is involved in the mobilisation, 

migration and retention o f HSCs, and expression from stromal cells can be induced 

upon haematopoietic injury or myeloablation (Ponomaryov et al., 2000; Ara et al., 

2003). Such properties have been exploited in modem BM transplant procedures.
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Figure 1.3 - The HSC bone marrow microenvironment.

Haematopoietic stem cells are immobilised in highly specialised BM niches. Two types 
of niche are believed to exist: the osteoblastic niche located near the endosteal bone and 
the vascular niche located on the endothelium o f the sinusoidal vessels (reviewed by 
Yin and Li, 2006). Mesenchymal stem cells are located throughout the 
microenvironment and are able to continually replenish the stromal components of the 
niche (featured in right-hand legend box, reviewed by Uccelli et al., 2008). Numerous 
adhesion and growth factors are responsible for anchoring and regulating the self­
renewal/differentiation o f HSC within the niche. A gradient o f blood cell development 
is active in the BM. Primitive HSC, of which only 3.8% are estimated to be proliferating 
at any given time (Kiel et al., 2005), are located near the endosteum. These gradually 
give rise to increasingly differentiated progeny with reduced self-renewal capacity, that 
are eventually released into the vasculature network upon terminal differentiation. This 
process is believed to be augmented by a co-increasing gradient o f oxygen and growth 
factors. Abbreviations: MSCs = mesenchymal stem cells; HCSs = haematopoietic stem 
cells; ECM = extracellular matrix. Adapted from http://www.bioscience.org 
/2007/vl 2/af72440/figures.htm.

http://www.bioscience.org
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Figure 1.4 - The multitude of adhesion, signalling and homing molecules present in 
the endosteal HSC bone marrow niche.

The complexity o f molecular cross-talk proposed to be active between HSC and niche 
components. Abbreviations: ANG1= angiopoietin-1; BMI1= polycomb repressor; 
BMP= bone morphogenetic protein; BMPR1A= BMP receptor 1A; CSL= CBF1 
suppressor of Hairless and LAG1; CXCL12= CXC chemokine ligand 12; CXCR4= 
CXC-chemokine receptor 4; FAK= focal adhesion kinase; HOXB4= homeobox B4; 
HSC= haematopoietic stem cell; ICAM1= intercellular adhesion molecule 1; LFA1 = 
lymphocyte function-associated antigen-1; LRP= low-density-lipoprotein-receptor- 
related protein; MAPK= mitogen-activated protein kinase; OPN= osteopontin; PI3K= 
phosphatidylinositol-3 kinase; PLC= phospholipase C; PKC= protein kinase C; PPR= 
PTH/PTH-related protein receptor; PTH= parathyroid hormone; SCF= stem-cell factor; 
SMADS= mothers against decapentaplegic-related homologue; SNO= spindle-shaped 
N-cadherin-expressing osteoblast; TIE-2= tyrosine kinase receptor 2; VCAM-1= 
vascular cell-adhesion molecule 1; VLA4= very late antigen 4; *?’ = molecules and/or 
interactions for which only indirect or contradictory evidence is available. Adapted from 
Wilson and Trumpp, 2006.
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1.1.3 The transcriptional control of haematopoiesis

The determination o f lineage fate and subsequent differentiation o f haematopoietic cells 

is primarily under the control o f transcription factors (TF). TFs are a group o f proteins 

that recognise and bind specific DNA sequences o f a gene with the net effect o f 

activating or suppressing gene expression. Generally, TFs are classified according to the 

type o f DNA binding domain they harbour (e.g. the zinc finger domain carried by such 

TFs as specificity protein 1; SP-1), and typically genes that share a similar pattern o f 

regulation share common regulatory elements (Latchman, 1997). TFs mediate their 

effects on gene activity through interaction with components o f the basal transcriptional 

complex (RNA polymerase II, transcription factor for polymerase II (TFII) A-H, 

chromatin remodelling complexes and histone acetylases) thus influencing the ability o f 

this complex to transcribe primary gene messenger RNA (mRNA) from DNA. TFs are 

able to govern lineage development in normal haematopoiesis by transcribing the 

specific genes necessary to develop the distinct morphological and biochemical 

phenotype o f each lineage. This is achieved by promoting gene expression associated 

with one lineage whilst suppressing genes relevant to an alternative lineage (see below). 

The importance and intricate regulation o f TFs in normal haematopoietic development 

is affirmed by the prevalence o f TF abnormalities in haematological malignancies such 

as AML (see section 1.2.2).

A plethora o f TFs have been identified for their role in directing lineage-specific 

commitment (reviewed by Shivdasani and Orkin, 1996 and Tenen et al., 1997) and 

some o f the best characterised are outlined in Table 1.1. O f particular interest for 

myeloid development, is the complex relationship between GATA-binding protein 1 

(GATA-1) and PU.l (also known as spleen focus-forming virus proviral integration 

oncogene-1; Spi-1) which govern the transcriptional ‘check-point’ between erythroid 

and myeloid commitment respectively. GATA-1 is a zinc-finger domain transcription 

factor that is able to bind and repress PU.l in order to suppress myeloid differentiation 

and promote erythropoiesis (Nerlov et al., 2000). Consistent with this GATA-1 

expression is up-regulated in erythroid cells and concomitantly suppressed in committed 

myeloid precursors (Sposi et al., 1992). Furthermore, loss o f GATA-1 expression both 

in vitro (Weiss et al., 1994; Pevny et al., 1995; Weiss and Orkin, 1995), and in vivo 

(Pevny et al., 1991; Simon et al., 1992) leads to a loss o f erythropoiesis. GATA-1 is
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able to mediate erythropoiesis through transcription o f genes indispensable for red cell 

development, such as the upregulation o f globin proteins (Orkin, 1992) and the EPO 

receptor (Zon et al., 1991). Interestingly, GATA-1 is able to maintain these 

developmental stimuli on a continuous automated feedback loop through self­

transactivation o f its own promoter (Tsai et al., 1991).

For HSCs to commit to myeloid development the converse is the case; GATA-1 

expression is suppressed whilst PU.l is upregulated (Lee et al., 1991; Sposi et al., 1992; 

Voso et al., 1994; Pevny et al., 1995). Consistent with this, enforced expression o f 

GATA-1 in multi-potent progenitor (MPP) cells leads to a block in myeloid 

development (Kulessa et al., 1995). PU.l is a member o f the Ets family o f  TFs (Klemsz 

et al., 1990) and its elevated expression is observed in various myeloid cells including 

monocytes, macrophages and granulocytes (Chen et al., 1995b). Loss o f PU.l itself 

causes haematopoietic deficiencies in vivo, and mice die shortly before birth with a lack 

o f monocytes and granulocytes (Scott et al., 1994). Like GATA-1, PU.l is able to 

positively regulate its own expression, and thus that o f other myeloid-specific genes, 

through its ability to transactivate its own promoter (Chen et al., 1995a). PU.l is in 

transcriptional control o f  a number o f  genes critical for early myeloid differentiation 

cues including the receptors for macrophage - colony stimulating factor (M-CSF) 

(Zhang et al., 1994a), granulocyte macrophage - colony stimulating factor (GM-CSF) 

(Hohaus et al., 1995), and granulocyte - colony stimulating factor (G-CSF) (Smith et 

al., 1996), as well as markers o f  mature myeloid cells such as CD14 (Zhang et al., 

1994b), C D llb  (Pahl et al., 1992) and the macrophage scavenger receptor (Horvai et 

al., 1995). Therefore, the interaction between GATA-1 and PU.l represents a well 

characterised mechanism o f how transcriptional activation and suppression are 

necessary for haematopoietic lineage-commitment and development. A summary o f this 

concept encompassing the influence o f growth factor signalling is shown in Figure 1.5.
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Table 1.1 - Characterised transcription factors involved in lineage commitment.

Erythroid

Myeloid (monocyte and macrophage) 
and lymphoid

Myeloid (granulocytes)

Myeloid

Erythroid

B-cell lymphocytes

B-cell lymphocytes

Myeloid (granulocytes)

Megakaryocytic

Lymphoid

Myeloid and lymphoid

Lymphoid

1.1.3.1 Cytokines and growth factors

Haematopoietic growth factors (GF) and cytokines are soluble or membrane-bound 

glycoproteins that direct TFs in mediating proliferative and developmental changes in 

cells. They are also vital to the continued functionality o f terminally differentiated cells. 

It was generally appreciated that GFs and cytokines played a supplementary role to TFs 

in mediating lineage selection, however, emerging evidence suggests these proteins are 

also capable o f initiating lineage fate in otherwise uncommitted cells (Rieger and 

Schroeder, 2009; Schroeder, 2010). GFs and cytokines are predominantly secreted from 

stromal cells and many types o f mature and primitive leukocyte, except for EPO and 

thrombopoietin (TPO) which are produced in the kidney and liver, respectively. These
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proteins are able to mediate their effects through specific receptors on target cells at 

very low concentrations in a para-, endo- or auto-crine fashion. For example, stem cell 

factor (SCF) and FMS-like tyrosine kinase 3 ligand (FLT-3L) act predominantly on 

pluripotent HSCs, CMP’s and CLP’s to mediate proliferation o f these subsets 

(Hoffbrand et al., 2005a). GFs and cytokines are also capable o f working synergistically 

with one another in order to generate effects on target cells. An example o f this would 

be the ability o f G-CSF and TPO to augment the effects o f  SCF, FLT-L, and GM-CSF 

on the survival and proliferation o f MPPs. GFs and cytokines mediate their effects on 

transcription via signalling cascades.

1.1.3.2 Overview o f  cell signalling pathways in haematopoiesis

Signal transduction is an evolutionary conserved mechanism allowing an immediate 

genetic response to changes from the external environment. Invariably, a common 

mechanism is shared between pathways whereby transmembrane receptor and ligand 

interactions result in the phosphorylation and conformational change o f downstream 

cytosolic proteins, with the ultimate effect o f DNA binding by TFs. In haematopoiesis, 

the pathway by which GFs and cytokines mediate their developmental effects has been 

well characterised (Robb, 2007). Typically, these proteins bind the extracellular domain 

o f class-I or class-II cytokine receptors resulting in a conformational change. The 

alteration in the intracellular domain o f the receptor causes activation o f bound tyrosine 

kinases, like the janus associated kinase family (JAK). JAK then phosphorylate 

members o f  the signal transducer and activator o f transcription (STAT) family, resulting 

in dimerisation and nuclear translocation, where they serve as TFs for lineage-specific 

genes. Alternatively, receptor tyrosine kinases such as FLT-3 and c-kit (SCF receptor) 

exist which are capable o f directly phosphorylating downstream targets such as 

phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) 

(reviewed by Doepfner et al., 2007) when bound to the relevant ligand. JAK family 

members may also induce anti-apoptotic and proliferative responses. For example, JAK- 

mediated activation o f  protein kinase B (PKB), results in an anti-apoptotic response 

through phosphorylation and inactivation o f BAD (pro-apoptotic) protein. Alternatively, 

JAKs also initiate a proliferative response by stimulation o f Rat sarcoma (RAS), RAF 

and MAPK to induce myelocytomatosis oncogene (myc) and FBJ murine osteosarcoma 

viral oncogene homo log (FOS) TFs (Hoffbrand et al., 2005a).
13 | P a g e
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Aside from JAK/STAT signalling, additional well-established pathways and their 

effector molecules have been implicated in the normal development o f haematopoietic 

cells. These include Wnt, Notch, Sonic hedgehog (SHH), mothers against 

decapentaplegic-related homologue (Smad) and epidermal growth factor (EGF) 

signalling pathways and have been reviewed by others (Rizo et al., 2006; Blank et al., 

2008; Campbell et al., 2008). Components within these cascades communicate in much 

the same manner as previously described but utilise distinct TFs to activate/suppress 

target genes. Typically, these pathways can autoregulate themselves either positively by 

transcribing promoter molecules, or negatively by transcribing inhibitory molecules. 

These signalling cascades regulate important processes in haematopoietic cells 

including survival, proliferation, self-renewal and differentiation. Specifically, the Wnt 

pathway has been shown to be important for the self-renewal o f  HSCs (Reya et al., 

2003), whilst SHH signalling appears to be vital for lymphoid differentiation (El et al., 

2006). The regulation o f haematopoietic cells by signalling pathways is complicated by 

the finding that several pathways can interact to mediate a developmental phenotype. 

Such molecular cross-talk was identified between the Wnt and notch pathways which 

could converge to maintain the HSC pool (Duncan et al., 2005). The overall importance 

o f signal transduction networks in normal haematopoietic development is underlined by 

the observation that so many, like runt-related transcription factor 1 (RUNX-1), are 

dysregulated in haematological malignancies such as AML (Majeti et al., 2009) (see 

also section 1.2.2.1).



Introduction C h a p te r  1

1
Activation of 
transcription 

factors

/  \  
2

Increased 
expression 
of specific 

CSF 
^  receptors ^

3
Transcription 

factor and 
CSF induced 
maturation

Cell 
signalling

IISC/HPC

f  G -C S F  R

pathways G-CSF

C/EBPa /  ceil 
G M - C S F R )  y r  -----------  (  ‘ ignal'i"R

G-CSF?

PU.l

p a th w a y s,^

Myeloid

Granulocyteprecursor 
(  M-CSK R

precursor
PU.l M-CSF

Monocyte precursor

* Neutrophil

Cell 
signalling

Gata-I

O Cell 
signalling 
pat hways

Epo
Erythrocyte

Figure 1.5 - The m olecular control o f haem atopoiesis.

Schematic summarising the factors involved in haematopoietic development, as 
exemplified by myeloid differentiation. Lineage fate is primarily driven by powerful 
intrinsic transcription factors such as GATA-1 or PU.l which can direct erythroid or 
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1.2 Acute myeloid leukaemia

1.2.1 Overview

AML is a heterogeneous clonal disorder of HSC and haematopoietic progenitor cells 

(HPC) with a UK prevalence o f 3.4 cases per 100,000 (Milligan et al., 2006). It 

represents the most common malignant myeloid disorder in adults, and the median 

presentation age o f 65 years makes it predominantly a disease o f the elderly (Dombret et 

al., 2008) (Figure 1.6A). The disease is characterised by the rapid accumulation in the 

BM and peripheral blood o f dysfunctional ‘blasts’, which are developmentally arrested 

during myeloid differentiation, and thus prevented from generating functionally mature 

myeloid cells {Figure J.6B and Q . The acute onset o f this disease means, if left 

untreated from diagnosis, death would occur in less than a year through anaemia (lack 

o f erythrocytes), infection (lack o f immune cells such as neutrophils), bleeding (lack o f 

platelets) or major organ infiltration. AML is typically diagnosed through a range of 

clinical tests including full blood counts, blood cell morphology, cytogenetic analyses 

(chromosomal arrangement), flow cytometric measurements (of surface marker 

expression) and polymerase chain reaction (PCR) assessment o f molecular 

abnormalities (such as DNA mutations). AML can be further subdivided using two 

different classification systems (see 7.23.2).

Risk factors for AML acquisition include exposure to benzene, ionising radiation and 

cytotoxic chemotherapy (Estey and Dohner, 2006). Indeed Japanese survivors o f the 

atomic bombs (Nakanishi et al., 1999), workers in the nuclear industry (Cardis et al., 

1995) and flight crews o f commercial aircraft (Gundestrup and Storm, 1999), have all 

been associated with an increased susceptibility to AML. Genetic predisposition is a 

further risk factor for AML that is beyond human control. AML can either be primary 

{de novo) or secondary, developing through existing haematological disorders (e.g. 

myelodysplastic syndrome; MDS) or through previous chemotherapeutic treatment o f 

cancer (10-15%). Current treatment strategies in AML (see 1.2.4.1) generally involve 

the infusion o f cytotoxic agents with the aim o f achieving a complete remission (CR) 

through reduction o f the blast count, and restoration o f normal circulating neutrophils 

and platelets.
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A) The incidence o f AML in the UK according to age group, illustrating this 
malignancy is primarily a disease of the elderly. Sourced from the Leukaemia and 
Lymphoma Research (LLR) website. B) The cellular morphology o f normal BM by 
cytochemical staining shows a range o f different blood cell lineages at varying stages of 
maturation. C) The BM o f an AML patient exhibits the domination of dark staining, 
dysfunctional, developmentally perturbed blasts. Images obtained from 
http://pathology.wustl.edu/~yaseenlab/?page=180.
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1.2.2 Pathophysiology of AML

Given that more people have been exposed to AML risk factors, than have actually 

developed the disease suggests a genetic predisposition is necessary. Evidence for this 

exists with the genetic variation prevalent in the genes o f benzene detoxifying enzymes 

such as the cytochrome P450 family or NAD(P)H quinine oxidoreductase 1 (NQOl) 

(Smith, 1999; Bowen et al., 2003; Barragan et al., 2007). Indeed, the accumulation o f 

genetic lesions throughout a lifetime, combined with the reduced capacity to rectify 

them, is believed to explain the increased prevalence o f AML in the elderly.

Since Knudson’s original ‘2-hit’ hypothesis which suggests multiple genetic mutations 

are required for cancer development (Knudson, Jr., 1971), Kelly and Gilliland have 

extended this further proposing multiple types o f genetic lesion are also required for 

leukaemogenesis (Kelly and Gilliland, 2002). In AML, it is thought that an initiating 

event, often a chromosomal translocation, occurs in primitive HSC/HPC. A 

translocation such as t(8;21) (leading to the generation o f the RUNX-1/ETO fusion 

protein, see section 1.2.2.1) can perturb normal differentiation programmes but is 

insufficient to generate leukaemia in vivo (Downing, 2003). Instead, this initiating event 

confers the necessary advantages required for a pre-malignant clone to acquire the 

further genetic lesions required for transformation. Such additional genetic mutations 

include those capable o f constitutively activating intracellular signalling such as RAS, 

or receptor tyrosine kinases like FLT-3, which provide the survival or proliferative 

stimuli necessary for the malignant clone to dominate.

There is overwhelming evidence supporting the above proposed pathophysiology o f 

AML. The very existence o f MDS is a testament to the requirement o f multiple genetic 

lesions in AML. MDS is generally regarded as a ‘pre-leukaemic’ syndrome, which 

displays many o f the same haematopoietic abnormalities and symptoms, albeit with 

slower evolution. Should the patient survive long enough, this condition often develops 

into AML which is generally attributed to the acquisition o f further transforming genetic 

mutations. The requirement for an early initiating event in AML is evidenced by the 

detection o f chromosomal translocations in haematopoietic cells which remain stably 

retained no matter what the treatment outcome (remission or relapse). The RUNX-
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1/ETO fusion transcript is one such abnormality that has been frequently detected in 

haematopoietic cells o f  patients even in long-term remission (Nucifora et al., 1993; 

Miyamoto et al., 2000). Further studies o f clonal evolution in acute lymphoblastic 

leukaemia (ALL) by the Greaves lab have shown that whilst the intiating genetic lesion 

like ETS variant gene 6 (ETV-6)/RUNX-l remains stably expressed in all malignant 

clones, the prevalence o f additional gene mutations such as deletions o f paired box 

protein 5 (Pax-5) and B-cell translocation gene 1 (BTG-1) remain variable between 

subpopulations o f the malignant clone (Anderson et al., 2011). Finally, the requirement 

for co-operating mutations in leukaemogenesis is clear from the observation that many 

AMLs harbouring a core binding factor1 (CBF) abnormality also frequently co-express 

additional mutations such as c-kit (Care et al., 2003; Valk et al., 2004; Cammenga et 

al., 2005; Cairoli et al., 2006; Schnittger et al., 2006). Despite the overwhelming 

evidence described above clearly this is not the limit o f  complexity in AML 

pathophysiology given that 50% o f de novo AML patients present with an otherwise 

normal karyotype (Grimwade et al., 1998).

1.2.2.1 Frequent genetic aberrations in AML

Frequent gene mutations involving transcriptional/signal transduction components have 

been identified in AML (reviewed by Ravandi et al., 2007 and Dohner and Dohner, 

2008), with the most frequent including Nucleophosmin-1 (NPM1), FLT-3, CEBPa, c- 

kit, neuroblastoma RAS viral oncogene homolog (NRAS), Wilms tumour 1 (WT1), 

brain and acute leukaemia cytoplasmic (BAALC), mixed-lineage leukaemia (MLL) and 

ecotropic viral integration site 1 (EVI1). The mutational status o f many o f these genes 

is now routinely assessed due to the prognostic influence in normal karyotype AML 

(section 1.2.3.3) and some have even become a therapeutic target given their 

pathological role in AML.

1 CBFs are a group of heterodimeric transcription factors composed of a DNA-binding RUNX-1, RUNX-
2 or RUNX-3 subunit (CBFa), and a non-DNA-binding CBF/3 subunit. CBFs are required for both 
effective embryonic and adult haematopoiesis, and are frequently dysregulated in leukaemia (De Bruijn 
and Speck, 2004). Disruption of CBF genes as seen in the chromosomal translocations t(8;21)(q22;q22) 
or inv(16)(pl3;q22) perturbs normal haematopoietic differentiation, and can co-operate with further 
mutations to promote proliferation.
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O f particular note, NPM1 mutations represent the most frequent and well characterised 

molecular aberration in AML occurring in approximately 35% o f AML cases but not 

reported in any other cancer (Falini et al., 2005). NPM1 is a nuclear chaperone protein 

that resides in the nucleoli o f  cells and can regulate the ARF-p53 tumour suppressor 

pathway. However, a mutation in exon 12 o f the gene leads to its cytoplasmic 

mislocalisation in AML blasts (Dohner and Dohner, 2008). Also o f relevance in AML 

are the frequent internal tandem duplications (ITD) mutations (20-30%) observed in the 

FLT-3 gene (Gilliland and Griffin, 2002). Such mutations lead to constitutive activation 

of tyrosine kinase activity and subsequent activation o f downstream signalling pathways 

responsible for proliferation and survival.

Chromosomal abnormalities like inversion o f chromosome 16 (inv(16)), or reciprocal 

translocations between chromosomes 15 and 17 (t(l 5;17)), and 8 and 21 (t(8;21)), have 

also been well characterised in AML. For example the t(8;21) CBF abnormality leads to 

fusion o f the RUNX-1 gene on chromosome 21, with the eight twenty one (ETO) gene 

on chromosome 8 generating the RUNX-1/ETO fusion protein. This abnormality is 

present in 10-15% o f de novo AML and 40% o f the FAB M2 subtype. The RUNX-1 

portion o f the protein can bind DNA and heterodimerise with CBF/3 as normal, but lacks 

the transcription activation domains which are replaced with transcriptionally repressive 

sequences o f ETO (Meyers et al., 1993). This suppressive complex recruits additional 

nuclear receptor corepressors (N-CoR), paired amphipathic helix protein (Sin3A) and 

histone deacetylases (HDAC) which lead to the deacetylation o f  histones and chromatin 

remodelling (Wang et al., 1998; Amann et al., 2001). Therefore, normal transcriptional 

regulation by RUNX-1 in haematopoiesis is disturbed leading to reduced expression o f 

some developmentally significant genes such as myeloperoxidase (MPO), the receptor 

for colony-stimulating factor 1 (CSF-1R), and the subunits o f the T-cell antigen receptor 

(TCR) (Downing, 1999). Interestingly, this fusion protein has also been associated with 

transcriptional activation (Klampfer et al., 1996).

It is becoming increasingly apparent that epigenetics also plays a role in AML 

pathology. Epigenetics is the alteration o f gene expression unrelated to changes in the 

DNA sequence. One example o f epigenetic change is DNA methylation which is
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frequently dysregulated in tumourigenesis (Baylin and Herman, 2000). The addition o f 

a methyl group to a cytosine-phosphate-guanosine (CpG island) stretch o f DNA, often 

within the promoter region o f a gene, renders that gene (typically tumour suppressors) 

permanently silenced. Methylated promoters o f various Wnt signalling inhibitors (e.g. 

dickkopf-1; DKK1) have been discovered in AML no doubt contributing to the 

dysregulation o f this pathway observed in this disease (Griffiths et al., 2010).

Finally, the relatively recent and rapid emergence o f microRNAs (miR) as important 

mediators in AML pathology must also be briefly considered. miRs are short (~22 

nucleotides) regulatory non-coding RNAs that are abundantly expressed in the human 

genome and conserved across multiple species (reviewed by Zhao et al., 2010). miRs 

are able to specifically repress gene expression through their incorporation into the 

RNA-induced silencing complex (RISC) and subsequent guidance to the target mRNA, 

which is degraded through mRNA cleavage or translational repression. Such regulation 

is vital to normal haematopoietic processes such as differentiation, proliferation and 

apoptosis, but deregulation is often observed in AML. For instance, Garzon et al. has 

reported the upregulation o f miR-107 in acute promyelocytic leukaemia (APL), which 

specifically targets nuclear factor I/A (NFI-A), a gene important to normal CEBP- 

mediated granulocytic differentiation (Garzon et al., 2007).

1.2.2.2 Leukaemic stem cells

Over the past two decades much excitement and controversy has surrounded the 

proposed existence o f leukaemic stem cells (LSC) in AML. LSCs have historically been 

described as a rare subset o f leukaemic cells which, through significant genetic damage, 

have acquired the sufficiently dysregulated self-renewal capacity necessary to both 

establish and maintain a malignant clone. They are typically defined by a primitive 

HSC-like phenotype (i.e. CD34+) with the ability to initiate leukaemia when 

xenografted into immuno-suppressed mice. Despite the seemingly detailed 

characterisation o f LSCs conflicting evidence exists over the origin, function and 

therapeutic potential o f  these cells in AML.
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Evidence for the existence o f  an LSC population in AML was initially provided through 

the experiments o f Lapidot and Dick in the 1990’s which demonstrated that only 

specific subsets o f the bulk AML clone (Lin‘CD34+CD38‘ and not Lin'CD34+CD38+) 

could successfully re-establish the disease when infused into sub-lethally irradiated 

mice (Lapidot et al., 1994; Bonnet and Dick, 1997). However this work has since been 

challenged by the findings o f  Taussig and colleagues who showed that the CD38 

antibodies used to purify such populations can in fact hinder the engraftment potential 

o f these cells (Taussig et al., 2008). Indeed, when such inhibitory factors were removed, 

the CD34+CD38+ fraction o f AML samples was found to contain most, if not all, 

leukaemia intiating cells (LIC).

There are also limitations to the murine xenograft model as a system for assaying LSC 

activity. Indeed, rather than an assessment o f LIC capability, this model could merely 

assess the ability o f  certain cells to engraft mice. In support o f this it has been found that 

APL blasts, and indeed a significant proportion o f other AML samples, fail to engraft at 

all, suggesting this system cannot efficiently model all LIC subsets (Bonnet and Dick,

1997). Interestingly, the vast majority o f melanoma cells engraft this model (Quintana et 

al., 2008). Whilst this could reflect a higher number o f LSC/LIC in different tumours, 

this could also represent the variability in different cell types to engraft this model. 

Furthermore, the engraftment potential o f  certain cells can be influenced by the dose 

and site o f inoculation (Yahata et al., 2003; Wang et al., 2003; Chabner et al., 2004; Liu 

et al., 2010).

Further work from the Dick lab has proposed that LSCs are analogous to normal CD34+ 

HSCs (quiescence, high self-renewal potential, residence in the BM niche, phenotype) 

and hence are likely derived from them. Tracking o f human LSCs in NOD-SCID mice 

showed heterogenous self-renewal potential leading the author to conclude that AML, 

similar to normal haematopoiesis, is organised hierarchically with self-renewing LT- 

LSCs with high LIC capacity, giving rise to leukaemic progeny with reduced self­

renewal potential and LIC capability (Hope et al., 2004). Although stem cell 

characteristics are indispensible for leukaemogenesis, it is not necessarily CD34+ HSC 

themselves which represent the transformed LIC population. This is evidenced by the
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fact intiating mutations such as the t(8;21) translocation have been observed in non- 

leukaemic cells (Miyamoto et al., 2000; Downing, 2003). Also a substantial number o f 

AML cases (including most NPM1 mutated AML) exhibit very little or no CD34 

positivity suggesting the LSC/LIC population must contain considerably more 

heterogeneity than originally defined. Indeed much evidence now exists showing LIC 

capability at the level o f  committed myeloid progenitors (Jamieson et al., 2004; 

Goardon et al. 2011). CD34+CD38+ granulocyte-macrophage progenitors in chronic 

myeloid leukaemia (CML) demonstrate greater self-renewal capacity than their normal 

counterparts and also expand more significantly than the CD34+CD38" HSC pool during 

disease progression (Jamieson et al., 2004). Furthermore the t(15;17) abnormality 

encoding the pro myelocytic leukaemia/retinoic acid receptor alpha (PLM/RARo) fusion 

product in APL has been detected in CD34'CD38+ cell populations and not in the HSC 

enriched CD34+CD38‘ subset (Turhan et al., 1995) potentially explaining this subtype’s 

failure to engraft.

The emergence o f the LSC concept has provoked much optimism into the potential for 

therapeutic targeting in AML. Indeed the failure o f current therapeutic regimens to fully 

eradicate LSC or LIC populations still represent the best explanation as to why so many 

patients relapse following CR or BM transplantation. However, clonal evolution 

experiments by Mel Greaves (see above 1.2.2) have demonstrated that this strategy may 

be more difficult than first anticipated. These studies show that although the founding 

genetic mutation is stably retained throughout the malignant clone, differing selective 

(Darwinian) pressures within the leukaemic environment can lead to genetically and 

phenotypically distinct LIC subpopulations. Such clonal evolution means that if LSCs 

truly exist then they are likely to represent an elusive, continually moving target, rather 

than a fixed entity (Greaves, 2010).
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1.2.3 Diagnosis, classification and prognosis in AML

1.2.3.1 Diagnosis

Traditionally, a diagnosis o f  AML was made upon presentation o f BM containing 30% 

blasts in the BM or peripheral blood, using cytomorphological techniques o f  the FAB 

classification system (Estey and Dohner, 2006). The more recent World Health 

Organisation (WHO) classification lowers the threshold to 20% provided the AML blast 

population exhibits myeloid origin (CD13+CD33+) or is present with atleast one known 

cytogenetic abnormality (see 1.2.3.2 below).

1.2.3.2 Classification

Although AML is generally referenced as a single disease, it is heterogeneous and better 

resembles a collection o f myeloid malignancies. In acknowledgement o f this, two 

classification systems exist to address the distinct genetic, biochemical and 

morphological subsets o f this disease.

The first and oldest FAB classification {Figure 1.7A) uses cytochemical techniques such 

as May-Grimwald-Giemsa staining to subtype AML according to blast morphology. 

AML is then classified by the extent o f myeloid differentiation exhibited by the bulk 

blast population, with MO representing the most undifferentiated blasts, through to the 

extensive megakaryocytic differentiation exhibited by the M7 variant. This system 

remains popular with developmental haematologists attempting to model the disease in 

vitro, since it provides information on the extent o f differentiation prior to 

transformation.

This system has now been largely superseded by the recently updated 2008 WHO 

classification o f AML which now incorporates all available clinical information 

including the cytogenetic, immunophenotypic, morphological and molecular properties 

o f the disease (Vardiman et al., 2009). From this it defines four major categories o f 

AML as shown in Figure 1.7B. This allows a more accurate diagnosis o f  the subtype o f
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AML which has become increasingly vital given the emergence o f  genetically tailored 

therapeutics.

1.2.3.3 Prognosis

Major prognostic factors in AML include response to initial treatment, age, cytogenetic 

status, WBC count, secondary disease (e.g. from MDS, which results in more 

aggressive and resistant disease), and serum albumin, bilirubin and creatinine level 

(Estey and Dohner, 2006).

Performance status is a highly relevant predictor o f  therapy-related death. Using the 

Zubrod scale, the general patient health prior to induction is assessed on a 6-point scale 

from 0 (unaffected health), through to 4 (bed-bound) and 5 (death) (Estey and Dohner, 

2006). Unsurprisingly, higher performance status scores are associated with a higher 

rate o f treatment-related mortality.

Age is powerful predictor o f resistant disease in AML. Despite significant progress in 

the survival o f  young adults (<60 years old) with AML, relatively little progress has 

been made in the last 40 years for elderly patients. Data from the UK Medical Research 

Council (MRC) AML trials {Figure 1.8), shows around 50% o f young patients achieve 

a long-term ‘cure’ (>5 years), which halves for patients between 60-69 years and is less 

than 10% for patients 70 years or older. Major obstacles to CR in elderly patients 

include more aggressive and resistant disease (due to higher frequencies o f acquired 

chromosomal aberrations and DNA mutations), and poor tolerance o f intensive 

treatment regimes.

Cytogenetics provide a reliable predictor o f treatment outcome in AML, such that 

established abnormalities can be categorised as adverse, intermediate or favourable for 

prognosis {Figure 1.7C). Approximately 60% o f AML patients present with a 

karyotypic abnormality prior to treatment (Mrozek et al., 2001), and large-scale AML 

patient studies by Grimwade et al have characterised the clinical relevance o f  such
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abnormalities (Grimwade et al., 1998; Grimwade et al., 2001). For example, AML 

harbouring a CBF abnormality such as t(8;21) or inv(16) are highly responsive to 

chemotherapy and yield higher CR rates with longer overall survival. However patients 

with a complete deletion o f chromosome 5 (-5) or chromosome 7 (-7), or complex 

karyotypes o f multiple aberrations are linked with poor response to treatment, and often 

present in old age. Curiously, the largest cytogenetic group in AML is a normal 

karyotype (intermediate risk). In this instance, specific molecular mutations (such as 

those described in section 1.2.2.1) are highly predictive o f  outcome. Indeed the NPM1 

and CEPBa mutations carry such accurate prognostic power (higher CR rate, longer 

survival, and improved event-free survival; (Frohling et al., 2004; Dohner et al., 2005) 

that they have been recently included as a provisional entity in the WHO classification 

o f AML (see Figure 1.7B). The presence o f multiple molecular mutations can 

complicate the prognosis in AML. For example the otherwise favourable prognosis o f  

an NPM1 mutation is all but abrogated when present with a FLT3-ITD (Dohner et al., 

2005; Thiede et al., 2006). Furthermore, some o f these individual gene mutations are 

capable o f conferring a worse prognosis in otherwise favourable cytogenetic risk 

groups, as exemplified by the c-kit mutation in t(8;21) leukaemias (Schnittger et al., 

2006; Paschka et al., 2006).
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FAB subtype Description
M0 Undifferentiated
Ml Myeloblastic without maturation
M2 Myeloblastic with maturation
M3 Promyelocytic
M4 Myelomonocytic

M4Eo Myelomonocytic with bone
marrow eosinophilia

M5 Monocytic
M6 Erythroleukaem ic
M7 Megakaryocytic

B )
A cute m yeloid leukaem ia and related neoplasm s

A cute m yeloid leukem ia w ith recurrent genetic  
abnorm alities
AML with t(8;21Xq22;q22); RUNX1-RUNXIT1 
AML with inv(16)(pl3.1q22) or t( 16; 16 )(p l3.1 ;q22); 
C BF B -M YH ll
APL with t( 15; 17)(q22;q 12); PML-RARA
AML with t(9;l I)(p22;q23); MLLT3-MLL
AML with t(6;9)(p23;q34); DEK-NUP214
AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPNJ-
EVI1
AML (megakaryoblastic) with t( 1 ;22)(pl3;q 13); RBM15- 
MKLl
Provisional entity: AML with mutated NPM1 
Provisional entity: AML with mutated CEBPA

A cute m yeloid leukem ia with m yelodysplasia-related  
changes

T herapy-related  m yeloid neoplasm s

A cute m yeloid leukem ia, not otherw ise specified
AML with minimal differentiation 
AML without maturation 
AML with maturation 
Acute myelomonocytic leukemia 
Acute monoblastic/monocytic leukemia 
Acute erythroid leukemia 

Pure erythroid leukemia 
Erythroleukemia, erythroid/myeloid 

Acute megakaryoblastic leukemia 
Acute basophilic leukemia 
Acute panmyelosis with myelofibrosis

Risk Group Abnormality Comment

Favourable t(8;21) Alone or
t( 15; 17) with other
inv( 16) aberrations

Intermediate Normal Cytogenetic
+8 abnormlities
+21 not classified
+22 as favourable
del (7q) 
del (9q)

or adverse

Abnormal Lack of
1 lq23 additional
All other favourable or
structural and adverse
numerical cytogenetic
abnormalities changes

Adverse -5 Alone or in
-7 conjunction
del(5q) with
Abnormal 3q intermediate-
Complex risk or other 

adverse-risk

Figure 1.7 - The classification of AML subtype and prognostic cytogenetics.

A) The FAB classification of AML which defines eight subtypes o f disease based on the 
blast morphology. Adapted from Tenen, 2003. B) The updated 2008 WHO 
classification of AML which defines four main categories o f AML on the basis o f 
morphological, immunophenotypic, molecular and clinical characteristics o f the disease. 
Adapted from Vardiman et al., 2009. C) The favourable, intermediate and adverse 
cytogenetic risk groups of AML. Adapted from Grimwade et al., 1998.
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A) MRC AML Trials: Overall Survival 
Age 15-59

B )

C)

100
1970-79
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Figure 1.8 - The overall survival of different AML patient age groups.

Kaplan-Meier survival curves showing the overall survival rates of AML patients 
enrolled in the UK MRC AML trials since 1970 (courtesy of Professor Alan Burnett). 
Significant progress has been demonstrated in the A) younger patient cohort (15-59 
years), however the prognosis remains poor for older patients of B) 60-69 years or C) 
70 years plus.
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1.2.4 Treatment for AML

1.2.4.1 Current treatment strategies

The standard treatment for AML in the UK involves the use of chemotherapeutics with 

the aim o f reducing the bulk leukaemic blast population and inducing a long-term CR 

(defined as <5% blasts in a bone marrow displaying maturation o f other lineages; (Gale 

et al., 2005)). Typically, these cytotoxic agents are non-specific in action and target 

specific cellular process (e.g. DNA replication) active in both blasts and normal cells. 

This leads to the considerable toxicity and side-effects associated with chemotherapy 

including alopecia, nausea, vomiting, immune-suppression and infertility. An example 

of such an agent includes the anthracyclines, which are a class o f  eukaryotic antibiotics 

with broad anti-tumourigenic activity. They work by intercalating DNA preventing its 

replication and subsequent transcription, thus inducing apoptosis in targeted cells (Pratt 

WB and Ruddon RW, 1994).

The induction therapy for most AML patients (except the acute promyelocytic M3 

variant) over the last two decades has been the standard ‘3+7’ regimen (Appelbaum et 

al., 2001). This involves a combination o f the anthracycline daunorubicin (45mg/m 

intravenously for 3 days) with the anti-metabolite cytarabine (AraC; lOOmg/m 

continuous infusion over 7 days). This regimen has been capable o f inducing CR rates 

o f 65-75% in adults aged 18-60 years (Tallman et al., 2005). Patients failing to achieve 

a CR, or relapsing shortly after, may be considered for an autologous (self) or allogeneic 

(matched donor) bone marrow transplant. This procedure involves sub-lethal 

obliteration o f the existing BM followed by infusion o f normal CD34+ HSCs. The 

instinctual ability o f these cells to home to the bone marrow niche should reconstitute a 

new healthy haematopoietic system. However, in reality, this procedure is met with 

frequent relapse, and the severe toxicity and potentially morbid effects o f graft versus 

host disease (GVHD), restrict this option only to the fittest patients.

The lack o f progress in survival rates from elderly patients with AML over the last 40 

years (Figure 1.8C), has led many experts to conclude that current chemotherapeutic 

regimens have reached ‘the end o f the road’ in terms o f treatment efficiency. The
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genetic and molecular heterogeneity exhibited in AML means a more targeted approach 

to specific aberrations within the patient is now required. The Wnt signalling pathway is 

one such target that has rapidly accumulated interest o f late because o f its frequent 

dysregulation in AML.

1.3 Wnt signalling

1.3.1 Overview

Wnt signalling is an evolutionary conserved pathway critical for normal developmental 

processes in both the embryo and adult, including cell growth and differentiation. The 

human genome encodes for a total o f  19 Wnt genes, which are all members o f a lipid- 

modified family o f  secreted glycoproteins (Clevers, 2006). All are capable o f  activating 

the multiple pathways which comprise Wnt signal transduction when bound to their 

cognate receptor complex, with the net result o f downstream Wnt target gene activation. 

At least three different intracellular signalling pathways are recognised to emanate from 

a Wnt stimulus. These include the well characterised canonical pathway, and the lesser
O i

understood planar cell polarity (PCP) and Wnt-Ca non-canonical pathways (Staal et 

al., 2008). Only the canonical pathway will be described further here given the central 

involvement o f catenin molecules, which have particular relevance to this study.

In the absence o f a Wnt signal, the canonical Wnt pathway is maintained in a state o f 

suppression (Figure 1.9A ) through continual degradation o f  the central mediator, /3- 

catenin. In this state, /3-catenin is bound by a catenin destruction complex (CDC) 

consisting o f casein kinase 1 (CK-1), glycogen synthase kinase 3 beta (GSK-3(3), axis 

inhibition protein 1 (Axin-1) and adenomatous polyposis coli (APC). This complex 

phosphorylates /3-catenin on Serine 45 (Ser) by CK-1 and then on Ser33, Ser37 and 

Threonine 41 (Thr) by GSK-3jS, generating recognition sites for the /Ttransducin- 

repeat-containing protein (/3-TRCP) (Aberle et al., 1997; Orford et al., 1997). This 

protein tags /3-catenin with ubiquitin molecules ultimately targeting it for proteasome- 

mediated degradation in the cytoplasm (Salomon et al., 1997; Kitagawa et al., 1999; 

Hart et al., 1999). In the nucleus, the transcription factor TCF suppresses Wnt target 

gene activation by forming a repressor complex with members o f the groucho (GRG)
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family o f  transcriptional repressors, C-terminal binding protein (CtBP) and HDACs 

(Rooseefa/., 1998).

The canonical pathway is activated {Figure 1.9B) upon binding o f a Wnt ligand, such as 

Wnt3A, to a transmembrane receptor complex consisting o f the frizzled (FZ) family o f  

G protein-coupled receptors, and the low density lipoprotein receptor-related protein 

(LRP) family o f multifunctional endocytic receptors. Activation o f this complex leads to 

the recruitment o f dishevelled (DVL) which in turn assists CK-1 and GSK-3/3 in the 

phosphorylation o f LRP5/6 (Zeng et al., 2005; Zeng et al., 2008). The phosphorylated 

residues o f LRP5/6 provide ‘docking’ points for Axin-1 which subsequently dissociates 

from the CDC, and re-locates to the plasma membrane. This ultimately causes the 

failure o f all CDC components to assemble (through a mechanism that is incompletely 

understood) and so /3-catenin is not phosphorylated or degraded. Instead the cytoplasmic 

pool o f signalling competent 0-catenin accumulates, culminating in its eventual 

translocation to the nucleus through a largely unknown mechanism. Here, jS-catenin is 

able to activate Wnt target genes by displacing groucho repressors on DNA and binding 

the high-mobility group (HMG) family o f nuclear proteins TCF and LEF in a complex 

also requiring B-cell CLL/lymphoma-9 protein (BCL-9) and pygopus (Kramps et al., 

2002; Thompson, 2004; Townsley et al., 2004a; Townsley et al., 2004b). The 

architectural TCF/LEF transcription factors serve to physically bend DNA and permit 

the association o f the DNA-protein complexes necessary for gene transcription. Well 

characterised gene targets o f TCF/LEF-mediated Wnt//3-catenin signalling include c- 

myc (He et al., 1998), cyclinDl (Shtutman et al., 1999), survivin (Zhang et al., 2001; 

Kim et al., 2003a), CD44 (Wielenga et al., 1999), and TCF-1 (Roose et al., 1999).

The canonical pathway is also negatively regulated at varying stages o f  the cascade. The 

binding o f Wnt ligand to the FZ and LRP activation receptors is antagonised by the 

presence o f soluble decoy proteins in the extracellular matrix (Kawano and Kypta, 

2003). Inhibitory proteins such as DKK1, Wnt inhibitory factor (WIF), soluble frizzled- 

related protein (sFRP), and norrin are capable o f binding, but not transducing, a Wnt 

stimulus. Within the nucleus, /5-catenin mediated transcription is inhibited by 

sequestration o f /3-catenin from TCF/LEF complexes by the /3-catenin-interacting
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protein (ICAT) (Daniels and Weis, 2002). Finally, alternative splicing o f the TCF gene, 

in particular TCF-1, can also regulate the sensitivity o f the cell to Wnt signals. Longer 

forms o f the transcription factor harbour the amino-terminal required to bind catenin, 

whilst shorter forms lack this domain and subsequently function as endogenous 

transcriptional repressors (Van de Wetering M. et al., 1996).
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Figure 1.9 - Overview of the canonical W nt signalling pathway.

A) In the absence of a Wnt ligand, /3-catenin is bound by the CDC, phosphorylated, and 
targeted for degradation in a ubiquitin/proteasome-dependent manner. Wnt signalling is 
further inhibited by soluble antagonists such as DKK-1, or binding o f nuclear /3-catenin 
by ICAT. Wnt target gene expression is suppressed by recruitment of co-repressors such 
as GRG/TLE (Groucho/transducin-like enhancer), CTbP and HDACs. B) Wnt 
signalling is activated upon binding o f a lipid-modified Wnt ligand FZ/LRP receptor 
complex. DVL initiates the sequestering of Axin-1 from the CDC by phosphorylation of 
LRP, leading to the dissolution of this complex. Failure of this complex to degrade /5- 
catenin causes its accumulation and nuclear translocation where it binds TCF/LEF 
promoters on DNA to activate Wnt target genes. Additional co-factors such as legless 
(LGS; also known as BCL-9) and Pygopus (PYGO), CBP/p300, brahma and MED 12 
are recruited to facilitate transcription. Adapted from Staal et al., 2008.
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1.3.2 Wnt signalling in normal haematopoiesis

The Wnt pathway is known to regulate the fate and function o f many different cell types 

(reviewed by Clevers, 2006 and Cadigan and Peifer, 2009), and evidence over the last 

15 years has established that this pathway is also active in normal haematopoiesis (Staal 

and Luis, 2010). A number o f studies have indicated that haematopoietic cells can both 

receive, and respond, to various Wnt stimuli under normal homeostatic conditions.

Initial studies by Austin et al found various components o f the Wnt pathway expressed 

early in murine haematopoiesis including FZ receptors and the Wnt proteins, Wnt5A 

and Wnt 10B (Austin et al., 1997). Furthermore the in vitro culture o f HSCs in W ntl, 

Wnt5A and W ntl0B conditioned medium lead to the substantial expansion o f these 

cells, suggesting the Wnt pathway conferred survival and proliferative advantages to 

this population. Subsequent investigations from Van den Berg et al characterised the 

expression o f various Wnt genes active in human haematopoiesis (Van den Berg et al.,

1998). Wnt2B, Wnt5A, and Wntl0B were found expressed in bone marrow stroma and 

variably in multiple haematopoietic lineages including lymphocytes, myeloid and 

erythroid cells. Interestingly, only Wnt5A was expressed in the Lin'CD34+ HSC/HPC 

population, which was once again significantly expanded in the presence o f Wnt- 

producing stroma. These primitive cells were also found to express atleast 6 members o f 

the FZ family o f Wnt receptors. Since these initial studies further reports have 

confirmed both the expression and influence o f various Wnt components on normal 

haematopoietic cells (Reya et al., 2000; Hackney et al., 2002; Murdoch et al., 2003; 

Willert et al., 2003; Wagner et al., 2005; Dosen et al., 2006; Congdon et al., 2008; 

Sercan et al., 2010; Gallagher et al., 2010). In particular, much interest has surrounded 

the influence o f Wnt signalling within the HSC niche.

Although not completely characterised, there is much evidence to support active Wnt 

signalling within the BM niche. Indirectly, it is likely to affect HSC regulation through 

its role in maintaining mesenchymal tissue, such as osteoblasts (Guo et al., 2004; Day et 

al., 2005). Fleming and colleagues demonstrated a direct relationship in vivo through 

targeted expression o f the Wnt pathway inhibitor dickkopf-1 (DKK1) in the niche 

(Fleming et al., 2008). Loss o f Wnt signalling arising from DKK1 overexpression
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caused increased cell cycling and reduced regenerative capacity o f HSC following 

transplant, leading the authors to conclude that Wnt signalling in the niche regulates 

HSC quiescence and reconstitution function. Kim et al. used a different approach to 

demonstrate Wnt importance in the niche (Kim et al., 2009). Enforced expression o f /?- 

catenin in the surrounding stromal cells promoted HSC self-renewal in a contact- 

dependent manner, whilst direct stabilisation in HSC led to loss o f this population. 

Indeed, both Wnt receptors and /3-catenin were expressed more highly in the BM stroma 

than haematopoietic cells, and could be further induced through stimulation with 

Wnt3A. Notch ligands were also enriched in Wnt//3-catenin activated stroma leading to 

downstream activation o f Notch signalling in HSCs suggesting cross-talk between these 

pathways within the niche.

Evidence for a direct role o f Wnt signalling in haematopoietic cells is strengthened by 

recent functional studies into various components o f the pathway (reviewed recently by 

(Staal and Luis, 2010)). For example, Wnt signalling is likely to be important for 

lymphopoiesis given thymic T-cell development is perturbed upon overexpression o f 

the Wnt inhibitors ICAT (Pongracz et al., 2006) and sFRP (Staal et al., 2001). 

Conversely, the proliferation o f  B-cells appears to be negatively regulated by the Wnt 

signalling agonist, Wnt3A (Dosen et al., 2006). Inhibition o f the Wnt CDC constituent 

GSK-3/3 has been shown to promote the self-renewal and reconstitution capacity o f 

HSCs in vivo indirectly through its influence on /3-catenin level (Trowbridge et al., 

2006; Holmes et al., 2008). The downstream transcriptional activators TCF/LEF have 

also demonstrated relevance in a normal haematopoietic setting. Repression o f the 

downstream Wnt transcriptional activator, LEF-1, was shown to inhibit proliferation 

and induce apoptosis in CD34+ progenitor cells (Skokowa et al., 2006). Mice deficient 

in TCF-1 demonstrate severe thymocyte abnormalities with a reduction in overall 

thymocyte number, and a block in differentiation between transition from immature 

CD8+ precursors to more mature CD4+CD8+ T-cell lymphocytes (Verbeek et al., 

1995). Finally, the manipulation o f differing exogenous Wnt proteins is capable o f 

altering the course o f haematopoietic development. Depletion o f  Wnt3A reduced the 

number and repopulation capacity o f HSC/HPC, whilst further reducing the frequency 

o f myeloid progenitors (Luis et al., 2009). Furthermore, loss o f  Wnt 11 caused the 

domination o f vacuolated macrophages during in vitro culture o f HPC, at the expense o f



Introduction [ Chapter 1

red cells and monocytes (Brandon et al., 2000). These lineages were rescued by re­

addition o f  Wntl 1 and Wnt5A, and can actually stimulate the reverse phenotype when 

over-concentrated, implying that a fine balance o f exogenous Wnt proteins is required 

for normal haematopoiesis.

Arguably the most disputed function o f a Wnt signalling component in normal 

haematopoiesis is that o f the central mediator (3-catenin. A host o f studies have 

demonstrated Wnt//3-catenin signalling is vital in mediating the survival and self­

renewal o f  HSC (Reya et al., 2003; Willert et al., 2003; Jamieson et al., 2004; Zhao et 

al., 2007; Holmes et al., 2008; Kim et al., 2009; Nemeth et al., 2009). However, other 

studies have contradicted these findings by demonstrating that constitutively activated 

/3-catenin in HSC impairs multi-lineage differentiation and completely exhausts the 

HSC pool (Baba et al., 2005; Baba et al., 2006; Kirstetter et al., 2006; Scheller et al.,

2006). To further complicate the picture, the constitutive deletion o f /3-catenin, and or 

the close homologue y-catenin, in HSC did not affect the ability o f  these cells to fully 

reconstitute a normal haematopoietic system when transplanted into irradiated mice 

(Cobas et al., 2004; Jeannet et al., 2008; Koch et al., 2008). Interestingly, TCF/LEF 

activation remained intact in these cells suggesting the existence o f other catenin-like 

molecules that can also bind these transcription factors and even compensate in the 

absence o f catenin. The disparate results arising from these many investigations has 

been suggested to arise from the considerable variation in the experimental approaches 

adopted to generate them (Staal and Luis, 2010). Although the precise role o f  

individual Wnt signalling components requires further elucidation, it seems undeniable 

that Wnt signalling and its strict regulation are indispensible for normal, healthy 

haematopoiesis.

1.3.3 Dysregulated Wnt signalling in AML

The importance o f Wnt signalling to normal development makes this pathway an ideal 

target during malignant transformation. Indeed, its dysregulation has been reported in 

many epithelial cancers (reviewed by others (Polakis, 2000; Giles et al., 2003)) and 

there is much evidence, although some still controversial, pointing to its dysregulation 

in AML.
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A landmark study by Majeti et al compared the gene expression profiles between 

normal BM HSCs and AML LSCs and identified the Wnt signalling pathway as 

aberrantly regulated (Majeti et al., 2009). It must be noted however that very small 

patient numbers were used (<10 per comparison), and CD34 positivity was adopted as 

the only LSC marker which remains controversial (as previously discussed 1.2.2.2). A 

recent study by Wang et al identified the Wnt//3-eaten in axis to be vital in mediating the 

self-renewal and survival o f  murine LIC (Wang et al., 2010). In particular, activation o f 

Wnt//3-catenin signalling was suggested to represent the mechanism by which certain 

oncogenes can transform even committed progenitors. However, caution must be 

exercised when comparing this to human AML-initiating cells since the oncogenes used 

in this murine model (Meis homeobox la  (M eisla) and homeobox A9 (HoxA9)) are 

rarely implicated in human AML.

Further dysregulation o f Wnt signalling components has been reported in myeloid 

leukaemias including the soluble Wnt proteins Wntsl/2B/3A (Simon et al., 2005; 

Kawaguchi-Ihara et al., 2008), FZ-4 receptor (Tickenbrock et al., 2008), GSK-3/3 (De 

Toni et al., 2006; Abrahamsson et al., 2009) LEF-1 (Li et al., 2004; Petropoulos et al., 

2008) and TCF-4 (Siti Sarah Daud et al., 2010). Using Western blotting or 

immunohistochemical techniques, many studies have demonstrated the variable 

expression o f the central mediator /3-catenin in primary AML blasts (Chung et al., 2002; 

Serinsoz et al., 2004; Simon et al., 2005; Ysebaert et al., 2006; Xu et al., 2008; Chen et 

al., 2009). The studies o f Ysebaert, Xu and Chen et al were all able to further verify (3- 

catenin expression as a prognostic indicator o f poor survival in AML patients. Despite 

these findings, many o f the above mentioned studies are hampered by relatively small 

cohort sizes (typically <  80) which are too small to be definitive in such a 

heterogeneous disease as AML. The study o f  Xu et al investigated another possible 

level o f /3-catenin dysregulation in AML; namely the inappropriate nuclear localisation. 

The detection o f non-phosphorylated nuclear /3-catenin (the only form which should 

theoretically enter the nucleus) was detected immunohistochemically in nearly half o f 

all AML samples examined, implying aberrant transcriptional activity in AML. 

However this study is once again hampered by small sample numbers and does not 

declare how nuclear localisation compares with that o f normal HSC/HPC. Given the 

associated role o f /3-catenin with self-renewal in normal HSC, it is conceivable that /3-
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catenin would be expected in the nucleus o f a HSC/HPC disorder. This concept was 

taken further by the research o f Simon et al, who proposed aberrant /3-catenin 

transcriptional activity in AML given the finding that leukaemic cells demonstrated 

higher outputs from the TOPFLASH reporter (internal measurement o f TCF/LEF 

activity). However, the authors do not show how /3-catenin correlates with TCF/LEF 

activity, which becomes important given that TOPFLASH is non-specific for catenin- 

TCF/LEF activation and other molecules are also capable o f activating these 

transcription factors. Furthermore this paper compares /3-catenin protein level in AML 

blasts with that o f  normal progenitors which have been cultured in vitro for 6  days. Such 

a comparison may be inappropriate given the lack o f exogenous Wnt factors present in 

culture medium which may influence /3-catenin level within a normal in vivo setting. 

Finally, methylation o f  Wnt negative regulators, such as WIF-1, DKK and sFRP have 

also been identified in AML which would be predicted to elicit uncontrolled Wnt 

signalling (Chim et al., 2006; Valencia et al., 2009; Griffiths et al., 2010). 

Unfortunately these studies mainly focus on the gene status o f these Wnt inhibitors in 

AML blasts and do not formally demonstrate inhibition at the protein level, or 

hyperactivity o f the Wnt pathway through /3-catenin or TCF/LEF measurement. All 

three studies are in agreement however, that methylation o f Wnt negative regulators is 

associated with an adverse prognosis in AML.

Well established gene mutations in AML such as FLT3-ITD may also mediate their 

pathogenic effects through perturbation o f Wnt signalling. Tickenbrock et al discovered 

the FLT3-ITD mutation can induce expression o f the FZ-4 receptor and /3-catenin, 

which could enhance the sensitivity o f these cells to Wnt signal transduction 

(Tickenbrock et al., 2005). The study by Simon et al, also noted high TCF/LEF output 

in FLT3-ITD+ AML but this did not reach significance given the high levels observed in 

most patient samples regardless o f FLT-3 status (Simon et al., 2005).

Finally, an additional Wnt signalling component has recently been identified as 

dysregulated in AML (Zheng et al., 2004; Muller-Tidow et al., 2004; Tonks et al.,

2007). y-Catenin, a close structural and functional homologue o f /3-catenin, was 

originally identified as dysregulated in AML by its overexpression (at mRNA and
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protein level) in the presence o f common AML translocation products such as RUNX- 

1/ETO (Zheng et al., 2004; Muller-Tidow et al., 2004). Indeed these fusion proteins 

were shown to be directly capable o f activating the y-catenin gene promoter, and y- 

catenin mRNA levels were significantly higher in fusion protein-positive primary AML 

BM blasts. More extensive AML patient microarray studies from our laboratory 

identified y-catenin mRNA expression as higher across the majority o f AML FAB 

subtypes, regardless o f  fusion protein status, in comparison to normal CD34+ progenitor 

cells (Tonks et al., 2007). The highest levels of y-catenin expression were observed in 

patients with a CBF abnormality (t(8;21) or inv(16)). Collectively, these data suggested 

that CBF abnormalities in AML mediate their pathogenic effects in part by disrupting 

Wnt signalling through y-catenin activation. Such reports were the first to implicate y- 

catenin within a haematopoietic context.

1.3.4 y-Catenin

y-Catenin (aka plakoglobin, junction plakoglobin (JUP)), is a close structural and 

functional homologue o f /3-catenin and is a member o f the armadillo protein family, an 

evolutionary conserved group o f proteins critical to normal physiological processes such 

as cell signalling, adhesion and motility. Armadillo was originally discovered as a 

segment-polarity gene vital for proper axis formation during Drosophila embryogenesis 

(Peifer and Wieschaus, 1990). The identification o f human y-catenin through immuno- 

precipitation with cadherin protein showed it shared close amino acid sequence 

homology with both Drosophila Armadillo (63%) and Xenopus /3-catenin (6 8 %) 

(McCrea and Gumbiner, 1991; Knudsen and Wheelock, 1992; Peifer et al., 1992). 

Further work has shown that y-catenin protein is highly conserved amongst mammalian 

species with mouse (Mus musculus), rat (Rattus norvegicus), cow (Bos taurus) and dog 

(Canis familiaris) all sharing >98% amino acid sequence homology with the human 

form2. Complete sequencing has shown it to span 745 amino acids, with a predicted 

molecular weight o f 82kDa (Franke et al., 1989). The y-catenin gene (CTNNG) is 

located on chromosome 17q21 (Aberle et al., 1995), and is subject to alternative 

splicing. Nine different transcripts have been identified to date (see Sanger Ensembl

2 http://www.genecards.org/cgi-bin/carddi sp.pl?gene=JUP

http://www.genecards.org/cgi-bin/carddi
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website ), nearly all o f  which are protein coding. Three o f the transcripts encode the 

full-length 745 amino acid sequence, with the rest encoding short variants (<300 amino 

acids) with no known functional significance. O f note, an alternatively spliced form o f 

y-catenin has been identified harbouring a 1 2 0 bp deletion leading to loss o f the fourth 

armadillo repeat and prevents its binding with protein partners such as APC and E- 

cadherin (Ozawa et al., 1995a; Ozawa et al., 1995b). y-Catenin protein is known to be 

regulated through the same post-translational modifications as are active for /3-catenin 

protein (see below).

In addition, to the main constituents o f the armadillo protein family (a-, /3- and y- 

catenin) a further subfamily o f armadillo repeat containing proteins have been described 

including p i20 catenin and 5-catenin. However, these proteins as yet have no known 

relevance to haematopoiesis and consequently will not be discussed further (for review 

see McCrea and Park, 2007).

Armadillo proteins share a common structure including a highly conserved central 

armadillo domain flanked by amino- (NH2) and carboxy (COOH) -termini (Hatzfeld,

1999). The central domain consists o f  12 armadillo repeat regions (consisting o f 45 

amino acids each) that exhibit considerable sequence homology (-85%) between y- and 

/3-catenin molecules {Figure 1.10A). Crystallographic analysis has revealed this ‘arm’ 

repeat motif can fold into a tertiary structure composed o f densely packed a-helices that 

form a superhelix with a positively charged groove spanning the entire arm region 

(Huber et al., 1997). This groove has been proposed to mediate the binding o f many 

common protein partners including Qf-catenin, cadherin, APC, Axin and TCF/LEF 

transcription factors (Ben-Ze'ev and Geiger, 1998). The amino-termini of y- and /3- 

catenin share only modest similarity {Figure 1.10A), but both contain the crucial GSK- 

3/3 consensus site necessary for the phosphorylation and subsequent degradation o f the 

molecules (Aberle et al., 1997). Indeed, y-catenin is also known to interact with many o f 

the same degradation components also active in the maintenance o f /3-catenin protein 

stability (see 1.3.1) including APC and Axin (Rubinfeld et al., 1995; Miller and Moon,

3 http://www.enscmb1.org/Homo sapiens/Gcne/Suinmarv?db=corc;g=ENSG00000173801 ;r=l 7:39910856-39943183

http://www.enscmb1.org/Homo


Introduction j Chapter 1

1997; Kodama et al., 1999; Sadot et al., 2000). The NH2-terminus o f /3-catenin has also 

been identified to carry functional significance by housing transcriptional activation 

domains. In particular these activation domains have been found important for binding 

and stimulating LEF-1 mediated transcription in epithelial cells, however no such 

function has yet been ascribed to the corresponding region o f y-catenin (Simcha et al., 

1998; Hsu et al., 1998; Kolligs et al., 1999). The COOH-termini o f catenins {Figure 

1.10A) share the least homology and the function o f this domain is incompletely 

resolved. They are also believed to assist transcriptional function (Orsulic and Peifer, 

1996; Simcha et al., 1998; Hsu et al., 1998; Hecht et al., 1999), but substantial evidence 

also implicates this terminal with regulating the specificity o f  catenin binding with 

various adhesion and transcriptional partners including the desmosomal and classical 

cadherins (see 1.3.5.1 below) (Wahl et al., 1996; Palka and Green, 1997; Wahl et al., 

2000), LEF-1 (Zhurinsky et al., 2000a) and TCF-4 (Solanas et al., 2004). O f particular 

note, the studies by Wahl et al confirmed the COOH-terminus o f y-catenin to be 

important for interactions with desmosomal cadherins, and furthermore, through 

chimaeric modelling, showed such COOH-terminal specificity can explain the exclusion 

o f /3-catenin from these adhesion structures. Also o f interest, Zhurinsky et al, showed 

that the COOH-, and indeed NH2-termini, o f y- and /3-catenin are not required for actual 

binding to LEF-1-DNA complexes, but are required for subsequent transcriptional 

activation. The molecular similarity between y- and /3-catenin has led many to 

hypothesise, or demonstrate, that they share considerable functional overlap.

1.3.5 Functions of y-catenin

y-Catenin shares many common protein partners with /3-catenin and, as a consequence, 

assumes many o f the same functions within the cell, however, important differences 

also exist.

1.3.5.1 Cell adhesion

The best characterised function o f y-catenin is in cell adhesion. Like /3-catenin, it is 

located within adherens junctions (AJ) between cells, where it anchors classical 

cadherins (i.e. N- or E-cadherin) in the membrane, to the actin cytoskeleton, via a-
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catenin {Figure 1.10B). The presence o f additional protein binding sites in the NH2- and 

COOH-terminal domains, enable y-catenin to function as a scaffold protein for these 

multi-protein assemblies (Aberle et al., 1994; Nagafiichi et al., 1994). Such types o f 

adhesion are critical for maintaining tissue integrity within an epithelial context such as 

the skin or gut. Unlike /3-catenin, it can also be found as a constituent o f desmosomal 

plaques {Figure 1.1 OB), where it anchors the desmosomal cadherins desmocollin and 

desmoglein, to cytosolic intermediate filaments through desmoplakin and plakophilin 

(Schmidt et al., 1994; Co win and Burke, 1996). These strong adhesion structures are 

tissue-specific and limited to organs undergoing constant physical stress such as the 

heart. The is affirmed by the finding that y-catenin-deficient murine embryos die early 

in development from severe cardiac defects resulting from improper formation o f 

desmosomes (Bierkamp et al., 1996; Ruiz et al., 1996). Understandably, much 

knowledge o f y-catenin’s adhesive function has arisen from experiments conducted 

within an epithelial context, given that adherence is not a feature o f haematopoietic cells 

which exist in single-cell suspensions. Although homotypic interactions (between same 

cell types) are rare, heterotypic interactions (between different cell types) may be 

relevant within a haematopoietic context, particularly within the BM niche. The 

interaction between N-cad and /3-catenin has been proposed to regulate the interaction 

o f HSC with the local BM stroma (see 1.1.2.2). However the questionable N-cad 

expression on HSC (see 3.5.2), and the ability o f double-catenin knockout (KO) HSC to 

fully reconstitute immunosuppressed mice (Cobas et al., 2004; Jeannet et al., 2008; 

Koch et al., 2008), would challenge this concept.

1.3.5.2 Transcription

The functional role of y-catenin as a transcription factor for the Wnt signalling pathway 

is more contentious. y-Catenin is regulated in the same manner as /3-catenin within the 

cell, being degraded by the same machinery (see above 1.3.1) in the absence o f  a Wnt 

signal, and stabilised then translocated in the presence o f Wnt ligand {Figure 1.10B) 

(Bradley et al., 1993; Papkoff et al., 1996; Kim et al., 2011). Within an epithelial 

context, y-catenin has previously been shown to effectively bind TCF/LEF transcription 

factors (Huber et al., 1996; Simcha et al., 1998; Hecht et al., 1999; Kolligs et al., 2000; 

Zhurinsky et al., 2000a; Miravet et al., 2002) and y-catenin transcriptional activity has 

also been reported in /3-catenin-null epithelial backgrounds (Conacci-Sorrell et al.,
42 | P a g c
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2002; Maeda et al., 2004; Kim et al., 2011). y-Catenin is further capable o f 

transforming R3KE epithelial cells in a TCF/LEF dependent mechanism where it 

activates c-myc expression more extensively than /3-catenin (Kolligs et al., 2000). 

However, in general, its affinity for forming ternary complexes with DNA, and resulting 

transcriptional power, has been demonstrated as inferior to that o f /3-catenin (Simcha et 

al., 1998; Zhurinsky et al., 2000a; Maeda et al., 2004). Furthermore y-catenin is unable 

to compensate for the loss o f /3-catenin in KO mice (Haegel et al., 1995; Huelsken et al.,

2000). The study by Huelsken et al shows the failure o f y-catenin to compensate the 

Wnt signal required for proper axis formation results in the death o f /3-catenin-deficient 

embryos.

There is a small quantity of evidence to suggest that y-catenin could have transcriptional 

relevance within a haematopoietic context. Experiments by Miiller-Tidow et al, have 

shown that induction of y-catenin by AML fusion proteins, such as RUNX-1/ETO, in 

U937 cells lead to the increased frequency o f y-catenin/LEF-1 complexes (Muller- 

Tidow et al., 2004). They were further able to show that y-catenin was found bound 

directly to the promoter region o f the well characterised Wnt target gene c-myc. It must 

be mentioned however that the frequency o f /3-catenin/LEF-l complexes also increased 

with fusion protein induction in these cells making it more difficult to ascribe /3-catenin 

independent TCF/LEF activation by y-catenin. Work from our laboratory has also 

involved the analysis o f  gene expression profiles between normal human CD34+ 

HSC/HPC and those overexpressing y-catenin (Liddiard, unpublished data). Although 

global differences in gene expression were fairly unremarkable, a few noteworthy 

examples were observed including the positive induction o f myc-target protein 1 {myc- 

T1). Finally, following the demonstration of y-catenin-mediated transcriptional control 

over survivin expression on a /3-catenin deficient background (in epithelial NCI-H28 

cells), Kim et al were further able to identify a correlation between y-catenin and 

survivin expression in blast crisis CML patients (Kim et al., 2011).

1.3.6 The functional relationship between y- and /3-catenin

The close structural and functional homology shared between y- and /3-catenin has 

provoked interest into the degree o f competition, compensation, and synergy exhibited

43 | P a g e
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between these two proteins. Salomon et al employed tumour cell lines (HT1080 and 

SVT2), which express /3-catenin and N-cadherin but not y-catenin, to demonstrate that 

exogenous y-catenin was capable o f displacing /3-catenin from the AJ, augmenting its 

degradation by the proteasome (Salomon et al., 1997). As well as promoting /3-catenin 

degradation, this study also demonstrated how the ubiquitin-proteasome system can 

become overwhelmed by the extra-junctional /3-catenin leading to nuclear translocation 

o f /3-catenin. Similar findings have been observed in Xenopus embryos where 

exogenous y-catenin has been proposed to increase the cytoplasmic pool o f signalling 

competent /3-catenin, by saturating the degradation and CDC components (Miller and 

Moon, 1997; Klymkowsky et al., 1999). Simcha et al also observed similar findings in 

an epithelial MDCK cell line, where /3-catenin was identified as the primary driver of 

LEF-1 mediated transactivation (Simcha et al., 1998). Despite the interdependence o f y- 

and /3-catenin on the same regulatory components, the balance o f  protein 

expression/activity is likely to be dependent on the setting. For example in primary 

CML patient samples y- and /3-catenin level were found to inversely correlate, though it 

must be noted that only mRNA was assessed (Kim et al., 2011). Lack o f correlation 

between y- and /3-catenin protein levels has also been observed in primary tumour 

samples o f brain, lung and breast (Toyoyama et al., 1999; Bukholm et al., 2000; Amitay 

et al., 2 0 0 1 ).

As well as competition for structural and regulatory constituents, y- and /3-catenin may 

also compete for the same nuclear partners with consequences for Wnt signal 

transduction. For example, Miravet et al have shown that TCF-4 contains distinct 

binding sites for both /3- and y-catenin and, although both proteins may bind 

simultaneously, interactions with the latter antagonises the transcriptional activity o f the 

complex in epithelial cells (Miravet et al., 2002). Further evidence from experiments in 

cardiac and lung cells have also highlighted y-catenin as an inhibitor o f /3-catenin- 

TCF/LEF-mediated transcription (Winn et al., 2002; Garcia-Gras et al., 2006).

Compensatory mechanisms have also been described between y-and /3-catenin. 

Upregulation of y-catenin has been found to partially compensate for the loss o f (3- 

catenin in adult cardiomyocytes (Zhou et al., 2007), although it is unable to fully
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compensate for the loss o f /3-catenin in the developing murine embryo (see 1.3.5.2 

above). Similarly, /3-catenin compensates for the loss of y-catenin in early Xenopus 

development (Kofron et al., 1997), yet cannot functionally compensate in the 

desmosomes o f y-catenin-null murine embryos (Bierkamp et al., 1999). These results 

indicate that y- and /3-catenin probably serve distinct functions, and the nature o f 

interplay between them is likely to be highly context-dependent.

The finding that both o f these proteins are dysregulated in disease, and both specifically 

in AML, warrants further investigation into how the balance o f expression can affect the 

pathology o f the disease.
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Figure 1.10 - The structural and functional homology between y- and /3-catenin.

A) y-Catenin shares close molecular homology (red numbers) with /3-catenin, with most 
identity shared between central armadillo domains and the least between the COOH- 
termini. Adapted from Solanas et al., 2004. B) y-Catenin (Pg) shares close functional 
homology with /3-catenin (/3). Both proteins are located in adherens junctions (AJ) 
where they mediate cadherin anchoring to the actin cytoskeleton via ocatenin (a), y- 
Catenin (and /3-catenin) can also translocate to the nucleus through an unknown (?) 
mechanism where it can interact with TCF/LEF complexes to activate Wnt target genes 
such as c-myc. Like /3-catenin, y-catenin is also subject to the same mechanism o f 
proteasomal degradation as /3-catenin. Additionally, a unique role for y-catenin is 
observed in desmosomes (DES) where it anchors desmosomal cadherins to intermediate 
filaments (IF) via desmoplakin (Dsp) and plakophilin (Pip). Adapted from Zhurinsky et 
al., 2000b.
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1.3.7 y-Catenin in development and disease

The role o f y-catenin in development and disease has been more extensively 

characterised within an epithelial context. This partially reflects the greater 

understanding of how y-catenin functions in these tissues, namely through its most 

characterised function o f cell-adhesion. As described previously, y-catenin is a vital 

component of multiple adhesion complexes, and thus defines tissue integrity, mediates 

specific cell-cell recognition, determines epithelial cell polarity and sequesters many 

signalling molecules to cell adhesion sites, thereby also regulating signal transduction 

(Barth et al., 1997; Behrens, 1999; Steinberg and McNutt, 1999). With this considered, 

it’s hardly surprising that most solid tumours are actually associated with a loss o f y- 

catenin, and as such are often associated with a worse prognosis presumably due to the 

increased risk o f metastasis. Loss of y-catenin expression has been described in large 

scale cohorts o f patients with cancer o f the breast (Aberle et al., 1995), prostate (Shiina 

et al., 2005), kidney (Breault et al., 2005), lung (Winn et al., 2002) and skin (Tada et 

al., 2000). Indeed these observations, and the finding that y-catenin restoration in highly 

tumourigenic cells can suppress their tumourigenicity, has led to the proposition that y- 

catenin actually serves as a tumour suppressor within this context (Simcha et al., 1996; 

Charpentier et al., 2000).

Mutations o f CTTNG have been described in human disease. Naxos disease is an 

autosomal recessive disorder characterised by arrhythmogenic right ventricular 

cardiomyopathy (ARVC) and abnormalities o f hair and skin (Protonotarios et al., 1986). 

This condition has been described to arise from a 2 base pair deletion o f CTTNG, which 

renders the y-catenin protein unstable and thus disturbs the integrity o f cardiac tissue 

(McKoy et al., 2000). A slightly different dominant mutation o f CTNNG has been 

identified in familial ARVC. This mutation inserts an extra Ser residue at position 39 in 

the NLh-terminus o f y-catenin resulting in the ubiquitination o f the protein and its 

preferential translocation from membrane to cytoplasm (Asimaki et al., 2007). This 

ultimately reduces the frequency o f desmosomes within cardiac tissue leading to its 

overall weakening. Interestingly, only one mutation of y-catenin has ever been 

identified in human cancer (Caca et al., 1999). This was a missense mutation o f Ser 28 

found in gastric cancer, depriving the molecule o f a potential phosphorylation site. Lack 

of phosphorylation can protect the molecule from degradation and this study further
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identified increased TCF transcription when this mutation was modelled in vitro. 

Similar mutations have been described for the /3-catenin gene (CTTNB) in human 

epithelial cancers, albeit with much higher frequency (reviewed by Polakis, 2000). 

Missense mutations or in-frame deletions o f the NH2-terminus deprive the molecule o f 

its GSK3-/3 consensus site and render it resistant to degradation. These types o f 

mutation have been shown to constitutively activate LEF/TCF-dependent transcription 

in cancer o f the colon (Korinek et al., 1997; Morin et al., 1997), skin (Rubinfeld et al., 

1997), uterus (Fukuchi et al., 1998), liver (Miyoshi et al., 1998), and brain (Zurawel et 

al., 1998).

No literature exists regarding the function, or even expression, of y-catenin in normal 

human haematopoietic cells. An in vivo study o f murine haematopoiesis using Western 

blotting showed y-catenin (and /3-catenin) was ubiquitously expressed across all murine 

haematopoietic tissues analysed, including bone marrow, thymocytes and splenocytes 

(Koch et al., 2008). However this study, and others, have shown that the deletion o f y- 

catenin (and/or /3-catenin) in HSC/HPC did not effect the long term reconstitution 

ability o f  these cells in vivo (Cobas et al., 2004; Jeannet et al., 2008). Although these 

studies would initially suggest a redundant role for catenins in haematopoiesis, a 

number o f issues must first be considered (discussed in more detail in 5.5.1). Briefly, 

these studies were tailored to assess a small aspect o f haematopoiesis; namely the 

repopulating capacity o f y/p-catenin KO HSC/HPC in mice only. Consequently, the 

endpoints focus on absolute numbers o f cell lineages, rather than the intricate 

morphological, functional and immunophenotypic development o f specific 

haematopoietic lineages. The lack of knowledge regarding y-catenin expression and 

function in normal human haematopoiesis will continue to hinder any understanding o f 

a pathological role in haematological malignancy.

In AML, and indeed all haematological malignancy, only a few studies exist examining 

the pathological role of y-catenin (mentioned previously in section 1.3.3). On a 

functional level Miiller-Tidow et al, showed that overexpression o f y-catenin in murine 

HPC and myeloid 32D cells promoted their growth and proliferation (Muller-Tidow et 

al., 2004). This phenotype was however relatively weak and was only demonstrated in
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murine cells. Injection o f the y-catenin-induced 32D cells into irradiated mice 

accelerated the development o f leukaemia in vivo, albeit with long latency (~60days) 

considering this was a cell line. A study by Zheng et al showed similar findings 

whereby y-catenin induction accelerated the cell cycle progression o f murine HSCs and 

preserved an immature phenotype (Zheng et al., 2004). These cells were also capable o f 

accelerating myeloid leukaemia development when transplanted into irradiated mice. 

However, these phenotypes were again relatively weak with only 2 out o f 4 mice 

developing leukaemia after very long latency periods o f 9 and 12 months. Unpublished 

data from our laboratory also indicates a very modest drive o f self-renewal in y-catenin 

transduced human CD34+ primary cells. However this phenotype was considerably 

weaker than the self-renewal driven by the RUNX-1/ETO fusion protein (Tonks, 

unpublished data). It should be noted that none o f aforementioned studies assessed the 

co-expression o f /3-catenin level. Previous evidence has shown y-catenin induction to be 

capable o f co-stabilising /3-catenin and thus the self-renewal phenotypes observed may 

simply arise from indirect stabilisation o f /3-catenin. Indeed, such a phenotype has 

commonly been associated with /3-catenin in these cell types (see 1.3.2). Finally y- 

catenin expression has been found elevated in blast crisis CML patients, which further 

correlated with survivin expression implying a transcriptional role in CML (Kim et al., 

2011). However, this correlation was only identified at the mRNA level and cannot be 

assumed to reflect the protein level given the post-translational modifications active in 

y-catenin regulation (see 4.5.1).

Collectively, these findings justify further investigation into the potential pathological 

roles and relationship, o f y- and /3-catenin, in AML.
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1.4 Aims of the study

The main objective o f this study is to gain an understanding o f the role o f y-catenin in 

normal haematopoiesis and in AML. This will be achieved through the following aims:-

1) To determine the expression and cellular localisation of y-and P- catenin 

during normal human haematopoiesis.

Any pathological role for y-catenin in AML cannot be established without first 

understanding its role in normal haematopoiesis. Analysis o f y-catenin expression 

level in different human haematopoietic developmental subsets will allow 

identification o f stages o f normal haematopoiesis where y-catenin potentially has a 

role. These studies will be supported by subcellular localisation assays which will 

provide correlative evidence o f function within these cell lineages. A comparison 

with the close homologue /3-catenin will be necessary to identify whether there is the 

possibility for interaction/interdependence o f function between these catenins

2) To determine if y-catenin expression is dysregulated in AML.

Analysis o f y-catenin protein level and localisation in primary AML patient blasts 

will allow the identification o f any aberrant expression, when compared to normal 

primary haematopoietic cells. As for aim 1, comparison with /3-catenin will be made 

to assess whether interplay between these catenins is altered in the malignant 

context compared with that established in normal haematopoietic cells.

3) To determine the functional significance of y-catenin dysregulation on 

haematopoeitic development.

The role o f y-catenin in normal haematopoiesis and AML will be investigated 

through genetic manipulation (overexpression and silencing) o f y-catenin using 

primary human progenitor cells and myeloid leukaemia cell lines to respectively 

model the consequences o f change in y-catenin expression level in normal and 

malignant haematopoiesis.
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2 - General Materials and 
__________ Methods_________
2.1 General chemicals and reagents

Unless otherwise stated all chemicals and reagents were obtained from Sigma-Aldrich 

(Dorset, UK). Isopropanol, ethanol (EtOH), methanol (MeOH), 

tris(hydroxymethyl)aminomethane (Tris), sodium chloride (NaCl), sucrose, potassium 

hydroxide (KOH), magnesium acetate, ethylenediaminetetraacetic acid (EDTA), 

ethyleneglycoltetraacetic acid (EGTA), sodium ortho vanadate (NaV), triton detergent 

(TX-100) and sodium azide (NaAz) were obtained from Fisher Scientific 

(Loughborough, UK). Hanks balanced salt solution (HBSS), sodium bicarbonate 

(NaHCCb) and phosphate buffered saline (PBS) were purchased from Invitrogen 

(Paisley, UK). Foetal bovine serum (FBS) and horse serum were obtained from Biosera 

(Sussex, UK). Human Transferrin was supplied by Roche Diagnostics (Burgess Hill, 

UK).

Gentamicin (Amdipharm, Essex, UK), heparin (Wockhardt, Wrexham, UK) and sterile 

water (Fresenius Kabi Ltd, Cheshire, UK) were supplied from pharmacy, University 

Hospital o f  Wales, Cardiff, UK.

2.2 Tissue and cell culture

2.2.1 General cell culture conditions

All tissue culture work was performed in a Micro flow Class II biological safety cabinet 

(Bioquell, Andover, UK), where all surfaces had been pre-sterilised with 70% (v/v) 

EtOH. Cultures were incubated in a Hera Cell humidified incubator (DJB Labcare) at 

37° Celsius (C) supplied with 5% carbon dioxide (CO2) in air.
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Dulbecco’s Modified Eagle’s Medium (DMEM), Iscove’s Modified Dulbecco’s

Medium (IMDM), Roswell Park Memorial Institute - 1640 (RPMI-1640) were obtained 

from Sigma-Aldrich. L-Glutamine, human interleukin-3 (IL-3), human interleukin- 6  

(IL-6 ), granulocyte macrophage-colony stimulating factor (GM-CSF) and FMS-like 

tyrosine kinase 3 (FLT-3) were supplied by Invitrogen. Granulocyte-colony stimulating 

factor (G-CSF) and stem cell factor (SCF) were supplied by Amgen (Cambridge, UK).

All plasticware including tips, serological pipettes (Greiner Bio-One, Stonehouse, UK), 

culture flasks (Nunc, Rochester, USA), multi-well culture dishes, Falcon tubes

(Scientific Laboratory Supplies, Nottingham, UK) and universal containers (UC),

Sterilin, Caerphilly, UK) were purchased in a pre-sterilised condition. All contaminated 

waste was soaked in Precept Mini Haz-Tabs (Guest Medical, Kent, UK) for 24 hours 

prior to disposal, or disregarded into sharps bins or autoclavable waste bins if 

appropriate. If the culture work involved contact with retrovirus, then the strength o f  the 

Precept was doubled accordingly.

2.2.2 Culture of transformed cell lines

The commonly used cell lines and their culture requirements are summarised in Table

2.1 (Drexler, 2001). Unless otherwise stated, all cell lines were maintained at a density 

o f 1 x 1 0 5- 2  x l06/ml by serial passage every 48 hours.
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Table 2.1 - Commonly used cell lines and their specific growth requirements.

Human Chronic 
Myeloid 

Leukaemia

European 
Collection of 
Cell Cultures 

(ECACC)

(Ref. 89121407)

RPMI-1640, 10% (v/v) 
FBS, 2mM (v/v) L- 
Glutamine, 20/ig/ml 

(v/v) Gentamicin

24-30

Human
Monocytic
Leukaemia

ECACC 

(Ref. 88081201)

RPMI-1640, 10% (v/v) 
FBS, 2mM (v/v) L- 
Glutamine, 20/ig/ml 

(v/v) Gentamicin

34-40

Human
Erythroleukaemia

ECACC 

(Ref. 92111706)

RPMI-1640, 10% (v/v) 
FBS, 2mM (v/v) L- 
Glutamine, 20/ig/ml 

(v/v) Gentamicin

24-36

Human
histiocytic
lymphoma

American Type 
Culture 

Collection 
(ATCC)

(Ref. CRL- 
1593.2)

RPMI-1640, 10% (v/v) 
FBS, 2mM (v/v) L- 
Glutamine, 20jiig/ml 

(v/v) Gentamicin

24-30

Murine 
haematopoietic 
progenitor cell 

line

Prof. Tony 
Whetton, 

University of 
Manchester, UK.

IMDM, 20% (v/v) 
horse serum, 10% (v/v) 

WEHI conditioned 
medium (IL-3 source), 

4mM (v/v) L- 
Glutamine, 20/xg/ml 

(v/v) Gentamicin.

24-30

Murine 
Retrovirus 

producing cell 
line

Prof. Gary 
Nolan, Stanford 

University, 
California, USA.

DMEM, 10% FBS 
(v/v), 4mM (v/v) L- 
Glutamine, 20/ig/ml 

(v/v) Gentamicin.

24-36

2.2.3 Primary material

Neonatal cord blood (CB) was obtained from healthy full-term pregnancies at the 

Maternity Unit of University Hospital o f Wales (Cardiff) following informed consent. 

Samples were taken into a 50ml falcon tube containing 500 international units (IU) (v/v) 

of bacteriocide-free heparin to prevent blood clot formation. Normal bone marrow (BM) 

was obtained from the Welsh Bone Marrow Donor Registry, Spire Private Hospital
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(Cardiff) following informed consent. Bone Marrow was sampled into EDTA coated 

Vacutainer* tubes (Becton Dickinson, Oxford, UK).

2.2.4 Estimation of cell number

Cell enumeration was performed using an improved Neubauer haemocytometer 

counting chamber (Hawksley, Sussex, UK), and an Eclipse TS100 light transmission 

microscope (Nikon, Surrey, UK). An 8/d aliquot of cells to be counted were removed 

from culture aseptically and pipetted directly under the cover slip on the counting 

chamber. For enumeration of primary cell material, (CB or BM cells), ZAP- 

OGLOBIN™ Lytic Reagent (Beckman Coulter, Buckinghamshire, UK) was added to 

the cell aliquot (2//1 per 200/d) to lyse contaminating erythrocytes. Cellularity per ml 

was ascertained by counting the cells residing in each o f the four comers o f the counting 

square (which has a known volume of 0.9/d) and multiplying the average by 1 xlO4.

2.2.5 Cryopreservation and thawing of cell lines and primary cells
6 8For freezing, 1x10 -10 cells were collected by centrifugation at 200 x g  for 5 minutes 

and resuspended in the relevant growth medium (see section 2.2.2) before being added 

drop-wise to an equal volume o f freezing medium (50% IMDM, 30% FBS (v/v), 20% 

(v/v) dimethylsulphoxide (DMSO)). Cells were aliquoted into 1.8ml cryopreservation 

vials (Nunc) and immediately placed in a controlled refrigeration container (using 100% 

isopropanol as the thermal interface). After 24 hours at -80°C the tubes were transferred 

to cryovats in liquid nitrogen (LN2) for long-term storage.

Cryopreserved cells were recovered from LN2 by rapidly thawing in a 37°C water bath 

in the presence o f 900/d 0.45//m-filtered FBS and 200/xg sterile DNase I. Freezing 

medium was slowly diluted and osmotic balance restored by the drop-wise addition o f 

an equal volume o f magnetic-activated cell sorting (MACS) buffer (1 x PBS, 0.5% (v/v) 

bovine serum albumin (BSA), 5mM (v/v) MgCb) over 3 minutes. This dilution by 

dropwise doubling o f volume was repeated twice more followed by centrifugation at 

200 x g  for 10 minutes. Cells were resuspended in the relevant growth medium (see
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section 2.2.2) and seeded in tissue culture flasks for 24 hour recovery at 37°C gassed 

with 5% (v/v) CO2 in air.

2.3 Subcloning of Plasmid DNA

2.3.1 General subcloning

All restriction endonucleases, reaction buffers, BSA and DNA ladders were supplied by 

New England Biolabs (Massachusetts, USA). Molecular grade water was obtained from 

Roche. QIAquick™ Gel Extraction, QIAprep® Mini and Maxi-prep kits were obtained 

from Qiagen (Sussex, UK) and used according to manufacturer’s instructions (see 

Appendices). All DNA was quantified using a Nano Drop® ND-1000 spectrophotometer 

(NanoDrop Technologies, Delaware, USA) as per manufacturer’s guidelines and stored 

at -20°C.

2.3.2 Assessment of restriction digested DNA by agarose gel 

electrophoresis

To analyse DNA fragments generated from restriction digests, a 0.8% agarose gel was 

prepared in Tris-Borate-EDTA (TBE) buffer with 0.5/ig/ml (w/v) Ethidium Bromide 

(EtBr, Promega, Hampshire, UK). DNA was prepared for electrophoresis by 

resuspending up to 250ng o f restriction digested DNA in 10/d o f deionised water 

(dH2 0 ), and making up to a 12/d volume using loading buffer (0.25% Bromophenol 

Blue, 0.25% Xylene Cyanol, 30% Glycerol). A 1 kilobase (kb) DNA ladder was 

prepared in a similar fashion by ensuring a 1:10 dilution. The prepared samples were 

loaded onto the wells o f the gel (submerged in TBE buffer containing 0.5/ig/ml EtBr) 

and electrophoresed at 80V for 45-60 minutes followed by digital image acquisition 

using the LAS-3000 digital scanner. A raw FujiFilm data file was acquired after the gel 

was exposed to the digital sensor for 0.03-0.5 seconds.
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2.3.3 Composition of medium for growing E.coli cells

Luria Bertani (LB) medium, required for the culture o f competent E.coli cells, was 

made up to 1 litre from 950ml deionised water, lOg bacto-yeast extract, 5g tryptone 

peptone (BD) and lOg sodium chloride. To ensure sterility, the medium was autoclaved 

immediately using standard laboratory procedure. LB agar was made with the addition 

o f 15g Bacto-agar (BD) for every litre o f LB medium. The LB agar was heated to 100°C 

before adding ampicillin (University Hospital o f  Wales Pharmacy) to the concentration 

o f 50/jg/ml. To pour a plate, 30ml o f ampicillin supplemented agar medium was used 

per 90mm Petri dish plate. The plates were cooled (avoiding condensation and dust to 

ensure sterility) and used immediately.

2.3.4 Transformation of competent E.coli cells with plasmid DNA

In order to identify, isolate and amplify plasmid DNA o f interest transformation o f 

bacteria was necessary. As well as containing essential coding elements for gene 

expression in mammalian cells, retroviral plasmids also contain the necessary 

components for plasmid replication in prokaryotic (bacterial) cells. One such vital 

component is that which encodes ampicillin resistance, allowing the identification of 

bacteria transformed with, and expressing, the vector o f interest. Ampicillin resistance is 

encoded by the bla gene, which enables the bacterium to translate a protein (/3- 

lactamase) capable o f hydrolysing the /3-lactam ring structure (critical for ampicillin 

stability) rendering the antibiotic ineffective and the bacteria resistant.

Each DNA to be amplified by transformation was thawed on ice alongside one 50fi\ vial 

o f One Shot® TOP 10 Chemically Competent E.coli (Invitrogen). For each DNA sample 

6 /d was aseptically transferred directly into the respective vial o f competent cells and 

tapped gently to mix, followed by 30 minutes incubation on ice. Following this, the 

cells were placed at 42°C for 30 seconds, without agitation, before replacing on ice and 

adding 250/d o f pre-warmed S.O.C medium (Invitrogen) to each vial to maximise 

transformation efficiency (Hanahan, 1983). All vials were secured in a shaking 

incubator at 37°C for exactly 1 hour at 225 revolutions per minute (rpm). Once the 

incubation had elapsed, potentially transformed bacteria were spread onto pre-warmed
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ampicillin-containing LB agar plates using plastic spreaders to generate a film o f 

bacterial growth, and left at 37°C overnight. The process o f identifying bacterial 

colonies harbouring the DNA plasmid o f interest, and the expansion o f these relevant 

colones, is described in sections 3.3.1.6-3.3.1.9.

2.4 Purification of human CD34+ cells

2.4.1 Isolation of mononuclear cells from whole human cord blood or 

bone marrow

Whole human CB/BM was diluted 1:1 with HBSS containing 25mM 4-(2- 

hydroxyethyl)-l-piperazine-ethanesulfonic acid (HEPES), 20/zg/ml gentamicin and 

lOIU/ml bacteriocide-free heparin. This preparation was then layered over Ficoll- 

Paque™ (GE Healthcare, Hemel Hempstead, UK) in 50ml falcon tubes at a ratio o f 8:5 

(Blood:Ficoll) before centrifuging at 400 x g  for 40 minutes with slow acceleration and 

the brake disengaged. Following centrifugation the mononuclear cells formed a visible 

interface between plasma and Ficoll, and were subsequently aspirated into a UC 

containing 15ml o f wash medium (RPMI-1640, 5% FBS, 20fig/ml Gentamicin,

1 OlU/ml). The cells were centrifuged at 200 x g  for 10 minutes and further washed in 

the same way until the supernatant was free o f platelet contamination as determined by 

visual inspection o f the supernatant clarity. Mononuclear cell number was estimated as 

described in section 2.2.4 before resuspending in RPMI-1640 with 10% FBS (v/v), 

aliquoting at 5x107 mononuclear cells/vial and cryopreserving in LN2 (section 2.2.5).

2.4.2 Isolation of human CD34+ haematopoeitic progenitor cells from 

isolated mononuclear cells

CD34+ haematopoietic progenitor cells were purified (from previously isolated 

mononuclear cells, see section 2.4.1) using a magnetic-activated cell separation 

(miniMACS™) kit (Miltenyi Biotec, Bergisch Gladbach, Germany). Briefly, following 

recovery from LN2 (section 2.2.5), 1x10s mononuclear cells were resuspended in 150/xl 

MACS buffer before incubation at 4°C for 15 minutes with 50fi\ hapten-conjugated 

monoclonal CD34 antibody (clone QBEND/10) per 108 cells, in the presence o f  FcR
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blocking agent. Next, 5ml o f MACS buffer was added to stop the reaction and the cells 

pelleted by centrifugation at 200 x g  for 5 minutes. Washed cells were resuspended in 

MACS buffer and incubated at 4°C with the addition o f 50/d o f anti-hapten microbeads 

(per 108 cells) for a further 15 minutes. After repeating the previously described wash 

step, mononuclear cells were resuspended in MACS buffer and applied to a magnetised 

(MS) column. Once the flow through had ceased, the column was removed from the 

magnet and the magnetically-labelled CD34+ cells were eluted with 1 ml MACS buffer. 

This fraction was next passed through a second column to maximise purity. Once flow 

through had stopped, CD34+ cells were eluted as before and cell number estimated 

(section 2.2.4). For larger or smaller starting densities o f  mononuclear cells the relative 

volumes o f the protocol were adjusted accordingly.

To assess the CD34+ purity o f the eluent, lxlO4 cells were resuspended in staining 

buffer (SB) (1 x PBS, 0.5% (v/v) BSA, 0.02% (v/v) NaAz) and combined with 2.5jUg/ml 

R-PE-conjugated anti-human CD34 monoclonal antibody (Clone 8G12, BD). After 30 

minutes at 4°C, cells were washed in 1ml o f staining buffer and pelleted by 

centrifugation at 200 x g  for 5 minutes. Cells were then analysed by flow cytometry as 

described in section 2.7.

2.5 Retroviral transduction

2.5.1 Principles of retroviral transduction

Retroviral transduction represents a highly efficient system for transferring genes o f 

interest into haematopoietic cells. This may be for the purpose o f overexpressing or 

silencing (through shRNA mechanisms described further in section 5.3.1.3) a particular 

protein within cells. Most transforming retroviruses used to transduce haematopoietic 

cells are derived from the Moloney Murine Leukaemia Virus (MMLV), except they are 

replication deficient; that is the coding regions o f their gag, pol and env genes have been 

replaced with genes o f interest (Morgenstem and Land, 1991). The absence o f such 

critical genes means a packaging cell line such as Phoenix (see proceeding section 

2.5.2) is necessary to provide the full spectrum o f retroviral proteins required for proper

virus formation. Retroviral vectors are typically designed to express two exogenous
58 | P a g c
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genes, one being the gene o f interest and the other being a selectable marker such as 

drug resistance or green fluorescent protein (GFP). Once the infected cells have been 

‘selected’ using the appropriate marker, one can be sure any resulting phenotype is 

almost exclusively due to the introduced gene. Genetically engineered retroviruses 

exploit many o f the features that allow the wild type (wt) virus to efficiently infect host 

cells. The viral envelope recognises and interacts with the specific host cell surface 

receptors permitting cellular entry o f the virion. The viral core, including the reverse 

transcriptase protein, is then essential for the conversion o f single-stranded viral RNA 

(including the engineered gene o f interest) into double-stranded DNA, which is 

randomly integrated into the host genome with the assistance o f viral integrase (see 

Stanford university website4). This unique property allows stable, long-term expression 

(from powerful retroviral promoters) o f desired genes within target cells and all their 

subsequent progeny.

2.5.2 Generation of Amphotropic retrovirus

Phoenix amphotropic packaging cell lines are adapted to yield high titre retroviral 

virions by providing the full complement o f viral polypeptides necessary for RNA 

packaging including the gag (viral core), pol (enzymes required for integration o f RNA

into host genome) and env proteins (protein capsid). Phoenix cells were seeded at 6 . 8  x
6 210 cells per 80cm tissue culture flask using the conditions specified in Table 2.1. The 

following day, the medium was aspirated and replaced with 15ml o f fresh medium, after 

which calcium-phosphate mediated transfection of plasmid DNA was performed. 

Firstly, 45fig o f  the relevant plasmid DNA was combined with 125mM (v/v) Calcium 

Chloride (CaCh) and made up to a total volume o f 450/xl in sterile water. This mixture 

was then added drop-wise to 450/d HEPES-buffered saline, under gentle ‘bubbling’ 

using a 1ml serological pipette. The mixture was then briefly vortexed and allowed to 

incubate undisturbed at room temperature (RT) for 20 minutes. When CaCb, DNA and 

a phosphate-containing buffer are combined at a neutral pH, a visible precipitate is 

generated consisting o f calcium-phosphate-DNA complexes (Okayama H and Chen C, 

1991). This sediment can then be actively incorporated from the surface o f the cell by 

endocytosis. Approximately 5 minutes before completion o f the incubation, 25/dVI

4 http://www.stanford.edu/group/nolan/tutorials/tutorials.htm 1

http://www.stanford.edu/group/nolan/tutorials/tutorials.htm
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chloroquine was applied to all phoenix cultures to be transformed. Chloroquine 

promotes the uptake o f the foreign DNA by neutralizing the pH within lysosomal 

vesicles which prevents DNases destroying plasmid DNA. Once the incubation had 

elapsed, the lull 900/d o f calcium-phosphate-DNA precipitate was pipetted gently onto 

the cells, gassed with CO2 , and returned to 37°C. The following morning, the medium 

was aspirated from every culture and discarded (to minimize the toxic side effects o f 

chloroquine exposure) before replacing with 8 ml o f fresh medium, gassing with CO2, 

and incubating at 33°C for optimal retrovirus production. On the final day, the 

retrovirus-containing medium was harvested by pipetting and centrifuged at 2 0 0  x g  for 

10 minutes. The retroviral-containing supernatant was then distributed into 1ml 

cryovials aliquots, snap frozen in LN2 , and stored at -80°C until further use. DNA 

transfections with the PINCO retroviral vector permitted a second retroviral harvest the 

following day given the presence o f the Epstein Barr Virus (EBV) origin o f replication 

and EBV nuclear antigen 1 (EBNA-1) gene. These components allow the construct to 

be episomally replicated within mammalian cells which maintains retroviral titre 

(Grignani et al., 1998).

2.5.3 Retroviral transduction procedure

The required number o f wells o f  a sterile, untreated 24 multi-well plate were coated 

with 25//g o f retronectin (Takara-Bio, Shiga, Japan) and incubated at RT for 2 hours. 

The retronectin was then aspirated and replaced with 250/d o f PBS containing 1% BSA 

(w/v) for 30 minutes at RT. Meanwhile, the relevant viruses were prepared by rapidly 

thawing at 37°C, adding 320/zg o f polybrene, and incubating at 37°C for 20 minutes. 

Polybrene is a positively charged molecule that increases the efficiency o f retroviral 

transduction by neutralising the negative charge o f cell surfaces. This allows the viral 

glycoproteins to more efficiently bind their receptors on the target cell surface, by 

reducing the repulsion between sialic acid-containing molecules (Davis et al., 2002). 

Once the incubation with 1% BSA (w/v) had elapsed it was removed from each well in 

turn and immediately replaced with 1 ml o f the relevant retrovirus, before centrifugation 

o f the multi-well plate for 90 minutes at 3,200 x g  in a double sealed carrier. High speed 

centrifugation is required to rapidly purify and concentrate the retroviral particles to the 

plate surface thus allowing the increased frequency o f retrovirus-target cell interactions.
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Incidentally, the use o f polybrene also assists this process by providing a vehicle with 

which retroviral particles may sediment (Landazuri et al., 2006).

During the centrifugation, cell lines or primary haematopoietic progenitor cells (isolated 

as described in section 2.4) were prepared by counting (section 2.2.4) and resuspending 

at a density o f  1 x 1 0 5/ml in the relevant continuation cell culture medium (refer to 

section 2.2.2). Upon completion o f retroviral sedimentation, the supernatant was 

removed from all wells and replaced with 1 ml o f non-specific, serum-containing 

medium to wash off any residual polybrene. This medium was aspirated after 5 minutes 

and substituted with 1 ml (i.e. 1 x 1 0 5) o f the relevant cells, followed by an overnight 

incubation at 37°C in 5% (v/v) CO2 in air. The following day, a second round of 

infection was carried out. The cells o f each well were carefully harvested to a separate 

UC and maintained at 37°C in the same conditions, whilst the plate was centrifugally 

loaded with a second round o f virus (as above). At the end o f retroviral sedimentation, 

the cells were returned to the appropriate well for the second round o f retroviral 

transduction overnight.

2.6 Determination of protein expression by Western blot

2.6.1 Generation of protein homogenate from whole cells

For extraction o f protein from whole cells, approximately lxlO6 cells were collected 

and washed twice in Tris-buffered Saline (TBS) (H2O, 20mM Tris, 135mM NaCl) by 

centrifugation for 10 minutes at 200 x g. Following the removal o f supernatant, cell 

pellets were snap-frozen by placing directly into LN2 and stored at -80°C until required. 

Cell pellets were recovered from storage by thawing on ice, in the presence o f 1 mg/ml 

DNase I. Once thawed, 50/d o f homogenisation buffer (0.25M sucrose, lOmM HEPES- 

KOH pH7.2, ImM Magnesium acetate, 0.5mM EDTA, 0.5mM EGTA, lOmM beta- 

mercaptoethanol (BME)) containing one complete mini EDTA-free protease inhibitor 

tablet (Roche), ImM activated sodium ortho vanadate (pH 10) and 1% TX-100 (v/v), was 

added per lxlO6 cells and incubated on ice for 30 minutes with occasional vortexing to 

promote cell lysis. Following incubation, the cell homogenate was transferred to a pre­

chilled eppendorf tube, before centrifuging at 16,000 x g  for 5 minutes in a Biofuge 

(Heraeus) pre-cooled to 4°C to pellet insoluble cellular components. The supernatant,
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containing the isolated cellular proteins, was transferred to a fresh eppendorf tube and 

immediately assessed for protein concentration.

2.6.2 Generation of fractionated cytosolic and nuclear homogenate
f\ 7Either 2x10 transformed cells or 1x10 primary cells were fractionated using a 

nuclear/cytosol fractionation kit (Biovision, California, USA). Briefly, cells were first 

washed twice with 20ml washes o f TBS followed by centrifugation at 200 x g  for 10 

minutes. Following washing, cells were fully resuspended in 200/d CEB-A (Cytosol 

extraction buffer) containing ImM dithiothreitol (DTT) and 1 X protease inhibitor 

cocktail (PIC). This suspension was then transferred to a clean, pre-chilled eppendorf, 

vortexed for 15 seconds and returned to ice for 10 minutes. Once the incubation had 

elapsed, l l / d  o f CEB-B was added to the cells followed by a brief 5 second vortex 

before resuming incubation on ice for 1 further minute. Cells were again vortexed for 5 

seconds before undergoing centrifugation at 16,000 x g  for 8  minutes in a pre-chilled 

(4°C) micro centrifuge. The supernatant, representing the cytoplasmic extract, was 

carefully removed to a fresh mini-eppendorf tube and held on ice for the remainder o f 

the protocol. The residual pellet (now containing mostly nuclei) was washed free o f 

cytosolic contamination by carefully applying 500/d o f pellet wash (1 x PBS, 5mM 

MgCE) and centrifuging as above for 3 minutes. After removal o f supernatant, nuclear 

cell pellets were submerged in LN2 to begin the process o f nuclear destruction. Semi- 

lysed nuclear pellets were then rapidly thawed on ice in the presence o f 1 mg/ml DNase, 

before being resuspended in 100/d o f NEB (Nuclear Extraction Buffer) also containing 

ImM DTT and 1 X PIC. This suspension was then vortexed maximally for 15 seconds 

before being returned to ice, a process repeated every 10 minutes during a 40 minute 

incubation. After the final vortex, eppendorfs were centrifuged for 15 minutes at 16,000 

x g  to pellet insoluble material, before finally isolating the supernatant (nuclear extract) 

to a separate tube. The cytosolic and nuclear homogenate was then either immediately 

measured for protein concentration (see section 2.6.3 below) or stored at -80°C.

2.6.3 Quantification of protein in cell homogenate

Protein concentration o f  cell lysates was determined using the Bradford protein assay 

(Bradford, 1976). Firstly, protein calibration standards ranging from 0, 10, 40, 70 and

lOOpg/ml BSA were diluted in lysis buffer. 10/d o f each protein standard, and 10/d o f
62 | P a g e
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each cell lysate was placed into the well o f a 96-well microtitre plate (all samples were 

run in duplicate) and 190/d o f Bradfords working solution (Bradford’s stock 1:1 with 

ultra pure water) applied to the samples. The absorbances o f the samples were read at 

590nm using an ASYS Hitech Expert plus spectrophotometer (Biochrom, Cambridge, 

UK). For estimation o f protein concentration see Equation 2.1 below:

Protein ( p g / m l )  =  A s q o -  c  

m

Where;

A590 = the absorbance o f the sample at 590nm 
c = the value at which the standard curve intersects the y-axis 
m = the gradient o f the standard curve

Equation 2.1 - Linear equation for a straight line used to calculate the protein 
concentration within cell homogenate

2.6.4 Resolution of proteins by SDS-PAGE electrophoresis

Western blotting was completed using the NuPAGE® Pre-Cast Gel System 

(Invitrogen). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

involves the separation o f proteins within a gel matrix under the influence o f an electric 

field. Denaturisation and reduction o f sample proteins is necessary to linearise proteins 

and dissociate polypeptides from each other. Protein lysates were removed from -80°C, 

thawed on ice, and then a sufficient volume o f lysate was used so that all samples were 

normalised in terms o f cell equivalents. In general, 50pl of cell homogenate was 

prepared with 50nM NuPAGE® sample reducing agent (DTT), 1 X NuPAGE® lithium 

dodecyl sulphate (LDS) sample buffer and made to volume with dEEO. Once well 

mixed, these samples were denatured by incubation at 70° C for 10 minutes, and then 

returned to ice.

Pre-cast NuPAGE Novex 4-12% bis-Tris gels were rinsed with water, and the wells 

washed with 1 x NuPAGE® MOPS-sodium dodecyl sulphate (MOPS-SDS) running 

buffer, before being secured into an XCell SureLock™ Mini Cell electrophoresis tank. 

The inner chamber o f the tank was filled with 200ml o f running buffer containing 500/xl
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NuPAGE® anti-oxidant, and the reduced samples loaded onto lanes o f the gel alongside 

a MagicMark™ XP Western Standard protein ladder (Invitrogen). The outer chamber of 

the tank was filled with running buffer, and electrophoresis was performed at 200V 

(400mA) over 50 minutes. Resolved proteins within the gel were next transferred onto a 

nitrocellulose membrane.

2.6.5 Transfer of separated proteins onto a nitrocellulose membrane

Following electrophoresis the gel was removed from the tank and released from its 

plastic holding. One surface o f the gel was moistened with transfer buffer (dt^O, 10% 

MeOH, 1 X NuPAGE® Transfer Buffer, 1ml antioxidant) before layering a piece of 

pre-soaked Whatman 3M filter paper on the gel. Any air bubbles were removed by 

rolling out trapped air. The other gel side was also wetted with transfer buffer, before 

layering a pre-soaked nitrocellulose membrane (0.45 pm pore size) complete with an 

additional piece o f filter paper on top o f the gel surface ensuring all trapped air bubbles 

were removed. The gel/membrane was sandwiched between pre-soaked blotting pads as 

shown in

Figure 2.1 and inserted into an XCell II™ Blot Module. The blot module was filled to 

the top o f the pads with transfer buffer and the outside o f the tank filled with distilled 

water, before completing the transfer over 1 hour at 30V (400mA).
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Blotting Pad 

Blotting Pad 

Filter Paper 

Transfer Membrane 
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Cathode Core (-)

Figure 2.1 - Assembly of components during Western blot transfer.

The pre-soaked nitrocellulose membrane was placed immediately against the gel, and 
this arrangement sandwiched between two soaked pieces of filter paper with all trapped 
air bubbles removed. This assembly was then laid on top of 2 saturated blotting pads 
located closest to the cathode core within the blot module. A further 2 saturated blotting 
pads were aligned on top of the membrane sandwich, or enough so that adequate tension 
was placed on the assembly when then module was sealed together.

Upon completion of electroblotting the membrane sandwich was removed from the blot 

module and the nitrocellulose membrane rinsed twice with ultra-pure water, followed by 

two further water washes of 5 minutes on a rotary shaker. To check for efficient transfer 

of proteins, 30ml o f Ponceau S solution was incubated with the membrane for 30 

seconds with gentle agitation. Inaccurate loading and transfer errors could be noted at 

this point. A further two washes with water of 5 minutes were necessary to remove 

excess Ponceau S stain. The membrane was then ready blocking and detection stages.

2.6.6 Detection of transferred proteins by chemiluminescence

The visualization of transferred proteins present on the membrane was assisted using the 

Amersham ECL™ Advance Western Blotting Detection Kit (GE Healthcare). The

+
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membrane was placed in 10ml o f blocking solution (5% ECL advance blocking reagent 

in TBS supplemented with 1% (v/v) Tween20 (Invitrogen) (TBS-T)) on the shaker for 1 

hour at RT. Following blocking, a fixed wash method o f 15 minutes in TBS-T followed 

by three short washes o f 5 minutes, was performed. Primary antibodies to the relevant 

antigen (see individual relevant chapters) were prepared to the appropriate concentration 

in 10ml o f 5% (w/v) blocking solution. This primary antibody diluent was added to the 

membrane overnight at 4°C under gentle rotation, and the following day the wash steps 

were performed as above. During washing, a horseradish-peroxide conjugated anti­

mouse or -rabbit secondary antibody (GE Healthcare) was prepared in 10ml o f 2% (w/v) 

blocking solution at a dilution o f 50,000-fold, and then added to the membrane for 1 

hour at RT under gentle shaking. Following incubation, the wash steps were again 

performed.

Chemiluminescent detection was performed according to the manufacturer’s instruction. 

Briefly, ‘solution A’ and ‘solution B’ were combined at RT in a 1:1 working solution 

(10ml per full size membrane 1 0x 1 0  cm) and protected from the light. The membrane 

surface was blotted dry using filter paper and flooded with 4ml o f the combined 

chemiluminescent substrate. The reaction developed over 5 minutes, after which the 

excess substrate was blotted away, and a piece of clean acetate placed over the 

membrane with all trapped air pockets smoothened out. A digital image of the 

chemiluminescent reaction was captured over a 1-30 minute exposure using a LAS- 

3000 digital scanner (FUJIFILM UK Ltd, Bedfordshire, UK).

2.6.7 Analysis of protein using densitometry

Captured images were analysed semi-quantitatively using post-acquisition software 

(Advanced Image Data Analyzer (AIDA) software version 4.26.038, Raytek Scientific, 

Sheffield, U.K)) and protein intensity measured using pixel-based densitometric 

analysis. This software utilises the intensity o f pixels to quantitate the amount o f protein 

present on the blot. Using the raw data files, a region of interest (ROI) was constructed 

around the desired band(s) with which a histogram of peak intensity was produced. 

From this histogram, a baseline of background (noise) pixel intensity was set which was
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established from the surrounding area o f the protein band within the ROI. Following the 

establishment o f the background baseline, the area under the curve was calculated to 

give an arbitrary intensity value, from which estimates o f fold-overexpression and 

under-expression o f protein were calculated.

2.7 Flow cytometry

2.7.1 Principles of flow cytometry

Flow cytometry is capable o f analysing multiple characteristics o f  a single cell through 

light scattering or fluorescence emission. This makes flow cytometry particularly useful 

for analysing heterogenous mixtures o f cells such as blood within a short time-frame. 

The general configuration o f a standard flow cytometer is illustrated in Figure 2.2A. 

Hydrodynamic focusing is pivotal to the technology, since this generates a laminar flow 

o f single-cells in sheath fluid that passes through a flow cell allowing multi-parameter 

analysis o f  individual cells. Cells are typically exposed to a light source (usually a laser) 

at an interrogation point within the flow cell. The ability o f a cell to scatter light when 

hit directly with a laser allows the measuring o f physical properties such as size or 

internal complexity (see Figure 2.2B below). The ability o f fluorescent dyes or 

compounds (section 2.7.2) to emit light when excited by varying wavelengths o f laser 

light provides a further parameter for measuring distinct biochemical features such as 

DNA content or antigen expression (Brown and Wittwer, 2000). Scattered or emitted 

light from analysed cells is collected by optical detectors and directed through a series 

o f filters and dichroic mirrors, to isolate light o f a particular wavelength. 

Photomultiplier tubes (PMT) are then responsible for converting the collected light from 

an analogue to a digital signal that is usually displayed as 2D plots or histograms on 

computer software.

2.7.2 Concept of fluorescence

A fluorescent molecule (or fluorophore) is any which becomes excited to a higher 

energy state upon light absorption and subsequently emits a higher wavelength o f light 

upon returning to resting (ground) state (.Figure 2.3A). The fluorophore only emits light 

o f a given wavelength (or colour) when absorbing light o f a particular optimal
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wavelength for its initial excitation. This property has resulted in a large range o f 

fluorophores (or fluorochromes) being utilised in flow cytometry (and other 

fluorescence technologies such as confocal microscopy) to provide additional 

parameters for detecting biochemical features o f cells. Commonly, these fluorochromes 

are conjugated to an antibody targeted to a particular antigen o f interest allowing its 

specific detection upon exposure to the correct light wavelength. Some frequently used 

fluorochromes include synthetic compounds such as fluorescein isothiocyanate (FITC), 

or naturally occurring fluorogenic molecules such as R-Phycoerythrin (R-PE) or 

allophycocyanin (APC). Alternatively, fluorescent dyes exist which only emit when 

bound in a particular confirmation such as TO-PRO-3 which only fluoresces when 

bound to nucleic acid. All such fluorochromes have distinct excitation and emission 

spectra (Figure 2.3B), which can be satisfied by the many configurations o f lasers and 

filters present in the cytometer. A precise knowledge o f the excitation/emission spectra 

o f experimental fluorochromes is necessary so that; A) the correct laser line is employed 

for excitation, B) the correct filters are applied for collection o f a specific wavelength o f 

emitted light, and C) additional fluorochromes present in the sample sharing spectral 

overlap may be appropriately ‘compensated’ for.

The heterogeneity o f flow cytometry experiments undertaken in this project means no- 

one single protocol is appropriate to cover all, so please consult individual chapters for 

detailed outlines o f the flow cytometric methods and analyses performed.

2.8 Statistics

Significance o f difference was tested using the Student’s t-test. For additional specific 

statistical tests performed see individual chapters. GraphPad Prism version 5.01 

(GraphPad Software, California, USA) was used for all analyses.
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A)

B )

Figure 2.2 - The principles of flow cytometry.

A) The configuration of a standard benchtop flow cytometer. Cells are 
hydrodynamically focussed in sheath fluid to a single-cell suspension which are 
analysed individually at an interrogation point within the flow cell. Resulting scattered 
or emitted light is directed by optics and dichroic mirrors, through specific filters, onto 
PMTs (1-4). The collected analogue signal is digitised and displayed on a connected 
computer. Adapted from Brown and Wittwer, 2000. B) The measuring of physical 
properties o f cells through the ability of individual cells to scatter direct laser light. The 
amount of forward scatter generated is proportional to the cell size, whilst the amount of 
side scatter is relative to the internal complexity of the cell (e.g. granularity). Adapted 
from http://probes.invitrogen.com/resources/education/tutorials/4Intro Flow/player.html.

Filters

Forward
Light

Sheath

Dichroic
Mirrors

Single Cell 
Suspension

Flow
Cell

Collection
Optics

Argon-Ion 
Laser Electronic 

Amplication 
A to D 

Conversion

Computer
Analysis

and
Display

Scatter
Detector

Side s c a t te r
F orw ard  s c a t te r

http://probes.invitrogen.com/resources/education/tutorials/4Intro


G eneral M aterials and  M ethods

A ) Energy State Diagram

I Chapter 2 

Fluorescence

Excited s ta tes

Exci ta t ion Em iss ion

Absorbed light E m itted  ligh t
G round sta te

Excitation, Emission and Stokes shift
Stokes shift

I-------------------------1
E xci ta t ion

E m is s io n

— ■ ■ ■—

4 5 0  5 0 0  5 5 0
Wavelength (nm)

Figure 2.3 - The concept of fluorescence.

A) Schematic showing the definition of fluorescence. A fluorescent molecule becomes 
excited to a higher energy state upon absorption o f a particular light wavelength and can 
consequently emit light of a higher wavelength when it returns to ground state. Adapted 
from http://probes.invitrogen.com/resources/education/tutorials/4Intro Flow/plaver.html. B) 
Example o f the excitation/emission spectra of a fluorophore. This particular molecule 
absorbs optimally at ~450nm and emits maximally at ~550nm. Stokes shift represents 
the difference in wavelength (nm) between the peak excitation and emission 
wavelengths. Adapted from http://www.advancedaquarist.eom/2006/9/aafeature.
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3 - Characterisation of y-Catenin 
and /3-Catenin Expression in 

Normal Haematopoiesis
3.1 Introduction

Wnt signalling is an evolutionary conserved signalling pathway critical to normal 

development, and its dysregulation has been frequently identified in disease (Clevers, 

2006; Klaus and Birchmeier, 2008). Previously, expression of the Wnt signalling 

protein y-catenin has been identified as abnormal in AML (Zheng et al., 2004; Muller- 

Tidow et al., 2004; Tonks et al., 2007), however the role it plays in the disease 

pathology remains unclear. The understanding o f any pathological function will remain 

elusive given the lack o f knowledge of y-catenin’s role in normal haematopoietic 

development. The full characterisation o f a protein’s normal role often aids in the 

identification o f any aberrant function in disease. For example the delineation o f FLT- 

3’s (Fms-like tyrosine kinase 3) role within normal haematopoiesis, allowed it’s 

identification as a potent mediator o f survival and proliferation in AML blasts, and has 

allowed potential targeted therapies such as CEP701 to be developed (Gilliland and 

Griffin, 2002).

The role o f y-catenin expression in normal haematopoiesis is currently not well 

understood, and although /3-catenin expression has been demonstrated in HSC and 

progenitor cells (Reya et al., 2003; Jamieson et al., 2004; Simon et al., 2005; Holmes et 

al., 2008), it’s involvement in latter stages of haematopoiesis remains largely unknown. 

Studies have been published attempting to decipher the roles o f y- and /2-catenin in 

normal haematopoiesis; however, the variety o f experimental models and techniques 

used has produced contrasting and contradictory results, as summarised recently (Staal 

and Luis, 2010). The fact that these catenins have dual roles in cell adhesion and 

transduction o f Wnt signalling (see section 1.3.5) suggests a multitude of potential 

functions within haematopoietic cells. This chapter sought to fully characterise y- and /?-
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catenin expression in haematopoietic development. To this end, assays were developed 

that could accurately detect intra-cellular y- and /3-catenin expression in discrete 

developmental subsets o f haematopoiesis at a single-cell level using flow cytometric 

and confocal microscopy. Such methods for y-catenin measurement have not been 

previously reported and therefore required optimisation.

3.2 Aims

In order to establish a better understanding of the role of y- and /3-catenin in normal 

haematopoiesis the aims o f this chapter were:

1) To optimise and validate a flow cytometric protocol capable o f  accurate and 

specific detection of intracellular y- and /3-catenin protein.

2) To use the above assay to determine the y- and 0-catenin expression level in 

discrete developmental subsets o f human cord blood (CB) and bone marrow 

(BM).

3) To optimise and validate a confocal immunofluorescence protocol that could 

accurately and specifically identify the sub-cellular localisation of y- and (3- 

catenin protein in haematopoietic cells.

4) To use the above assay (point 3) to identify the sub-cellular localisation of y- and 

/3-catenin protein within specific haematopoietic lineages o f human CB and BM.
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3.3 Materials and Methods

3.3.1 Establishment of y-catenin overexpression system

In order to establish the expression level and subcellular localisation o f both y- and p- 

catenin in developmental subsets o f normal human haematopoiesis, a specific flow 

cytometric assay was optimised using K562 cells overexpressing both these catenins 

(3.3.4). A K562 cell line overexpressing /3-catenin was already available (see 3.3.4.2). 

For y-catenin it was necessary to create an expression vector based on the retroviral 

vector pBabe-Puro (Morgenstem and Land, 1990) which gave stable expression o f y- 

catenin and conferred resistance to the antibiotic puromycin (the mechanism o f which is 

described in detail in section 3.3.2). The following section describes the creation o f this 

vector.

3.3.1.1 Excision o f  human y-catenin cDNA from PINCO plasmid

The PINCO retroviral vector (illustrated in Figure 3.1) was used as a source o f human 

y-catenin cDNA and was excised using a BamWMEcoKX double restriction digest 

(Figure 3. IB). PINCO-y-catenin DNA (10/xg) was mixed with IX EcoRl buffer 

(recommended buffer for optimal enzymatic activity o f both restriction endonucleases), 

100U each o f BamHl and EcoRl, lOO/jg/ml BSA, and the reaction volume made up to 

100/zl with molecular grade water. A control tube was also set up containing the above 

mixture minus the restriction endonucleases to ensure the PINCO-y-catenin vector was 

free o f contaminating nucleases. The reaction mixture was incubated at 37°C for 60 

minutes.
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A)
-gill 

Bam HI
5'LTR

Amp

CMVoriP lindlll
PINCO
12.7 kb GFP

Nod3'LTR

EBNAI pUC

B )
Human y-catenin cDNA (2.2kb)

CMV C l  P

MCS

BamWX fc o R l 
2.2kb 4.6kb

(Not to scale)

Figure 3.1 - An endonuclease enzyme restriction map of the PINCO vector from 
which y-catenin was excised.

A) Key restriction enzyme recognition sites of the PINCO retroviral expression vector 
(adapted from Grignani et al., 1998). B) Human y-catenin cDNA was originally 
subcloned into the multiple cloning site (MCS) of the PINCO expression vector (Zheng 
et a l 2004). The strategy used to excise y-catenin cDNA from PINCO plasmid is 
illustrated. Indicated are the restriction enzymes used and the distance of the recognition 
sites from the start of the 5’LTR sequence expressed in kb. Amp: Ampicillin resistance 
gene; OriP: origin of replication; EBNAI = EBV nuclear antigen 1 gene which promotes 
episomal replication o f DNA; PURO= Puromycin resistance gene driven by PGK1 
promoter; pUC= prokaryotic control sequence; LTR= Moloney Murine Leukaemia 
Virus (MMLV) Long Terminal Repeats; ¥ =  Retroviral RNA packaging signal 
sequence; CMV= Cytomegalovirus promoter; GFP= Enhanced Green Fluorescent 
Protein gene.
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3.3 A .2 Preparation o f  pBabe-Puro vector for ligation o f  excised human y- 

catenin cDNA

The pBabe-Puro vector (see Figure 3.2A) was prepared for ligation o f human y-catenin 

cDNA by also performing a BamWMEcoBA double restriction digest {Figure 3.2B) 

generating heterologous ‘sticky ends’ (5’ or 3’ overhangs o f DNA generated following 

digestion by restriction endonucleases). pBabe-Puro DNA (5/zg), including control, was 

prepared for digest as described above for PINCO-y-catenin (section 3.3.7.7), except 

that the total reaction volume was 50/d. Undigested control pBabe-Puro DNA was also 

processed, using the same digestion conditions. The efficiency o f the aforementioned 

restriction digests were assessed by agarose gel electrophoresis as described in section

2.3.2.
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Figure 3.2 - An endonuclease enzyme restriction map of the pBabe-Puro retroviral 
vector into which y-catenin was subcloned.

A) The enzyme restriction map shows key restriction enzyme recognition sites and 
essential coding sequences. Adapted from www.addgene.org. B) Illustration of the 
BamW\ and EcoRAdouble restriction digest used to linearise the pBabe-Puro vector. The 
restriction enzyme recognition sites, within the MCS, are shown as a distance in base 
pairs (bp), from the start of the 5’LTR. Like PINCO, the LTR are based on that of 
MMLV. The retroviral RNA packaging signal sequence (XP) is flanked by a mutant 
splice donor (MSD) and a truncated gag (A gag) sequence to boost the retroviral titre. 
Transduced cells are selected by drug resistance encoded by the puromycin gene 
(PURO) driven by the Simian Virus 40 (SV40) promoter.
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3.3.1.3 Purification o f  y-catenin andpBabe-Puro DNA

Once established that the restriction digests had successfully excised human y-catenin 

cDNA from the PINCO expression construct, and that the pBabe-Puro vector had been 

linearised, it was necessary to purify these fragments from contaminating DNA. A IX 

Tris-acetate gel with 1% SeaKem GTG (Lonza, Basel, Switzerland) was prepared and 

cast in a gel tank in the absence o f EtBr. A well comb was applied which could generate 

one continuous well across the width o f the gel and this was submerged in Tris-acetate- 

EDTA (TAE) buffer. Into this one well all the restriction digested PINCO-y-catenin 

DNA and opened pBabe-Puro plasmid were combined (each 100/xl with 25[i\ loading 

buffer) and electrophoresed as above. Following electrophoresis, gels were stained (20 

minutes) for migrated DNA fragments using fresh TAE buffer containing 0.5jLtg/ml 

EtBr. Following de-staining in molecular grade water for 20 minutes, the gel was then 

exposed to an ultra violet (UV) lamp on a long wavelength setting for no longer than 

one minute (to prevent damage o f DNA) to view the migrated DNA bands on the gel. 

This provided enough time for the 2.4kb migrated band (corresponding to human y- 

catenin cDNA) and the 5.2kb band (corresponding to the linearised pBabe-Puro DNA) 

to be accurately sliced from the gel in the thinnest pieces possible using a fresh scalpel 

for each gel. The DNA contained within the gel was then extracted and purified using a 

QIAquick™ gel extraction kit according to the manufacturer’s instructions (see 

Appendix 7).

3.3.1.4 Ligation o f excised human y-catenin cDNA into pBabe-Puro

To maximize the efficiency of human y-catenin cDNA (insert) ligation into the pBabe- 

Puro vector, an insert to vector molecular ratio o f 10:1 was used. Given that the 

molecular weights o f the y-catenin and pBabe-Puro DNA were 2.35kb and 5.17kb 

respectively, a molecular ratio of 10:1 actually corresponds to a weight ratio o f 4.5:1. 

Thus, for a 10/xl ligation reaction, 113ng o f y-catenin DNA was combined with 25ng o f 

pBabe-Puro DNA, 200 cohesive end units//ri T4 DNA ligase and IX T4 DNA ligase 

reaction buffer (New England Biolabs). To estimate the level o f  background ligation 

(mainly due to self-ligation of the linearised pBabe-Puro plasmid) a ‘background’ 

reaction tube was also set up as above, but lacking y-catenin DNA. A ‘transformation

control’ was also used containing 25ng of undigested pBabe-Puro DNA. All reaction
77 | P a g e
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volumes were incubated over 1 hour at 16°C then stored at -20°C until transformation o f 

competent E.coli.

3.3.1.5 Transformation o f  competent E.coli with ligated DNA

Each vial o f  ligation reaction (3 in total as outlined in section 3.3.1.4) was thawed on ice 

and used for bacterial transformation as described in 2.3.4 .Following transformation 

75-225/d o f competent cells were spread onto pre-warmed LB agar plates using plastic 

spreaders to generate a film o f bacteria. Plates were incubated at 37°C overnight.

3.3.1. 6  Amplification o f E.coli colony DNA

Following an overnight incubation, 12 ampicillin-resistant colonies were randomly 

picked from the plate containing pBabe-Puro-y-catenin transformants. Single, isolated 

bacterial colonies were isolated from the agar surface using a sterile loop, and each 

transferred into a UC containing 5ml o f pre-warmed ampicillin-containing LB medium. 

These UCs were incubated at 37°C under vigorous agitation (approximately 300rpm) 

for 16 hours. At this point, an aliquot from each bacterial culture was taken for long­

term freezer storage by preparing 800/d o f confluent, transformed, ampicillin-resistant, 

bacterial culture into 200/d sterile glycerol and storing at -80°C in cryovials. From the 

remaining culture, bacterial cells were collected by centrifugation at 6,800 x g  for 3 

minutes in a microcentrifuge (Biofuge), and the DNA extracted using a QIAprep® 

Miniprep kit and the manufacturer’s protocol (see Appendix 2).

3.3.1.7 Identification o f  E.coli colony harbouring pBabe-Puro-y-catenin DNA

To identify colonies transformed with pBabe-Puro-y-catenin, BamHl/EcoRl double 

restriction digests were performed, as described previously (section 3.3.7.7), on all 

DNA isolated from colonies transformed in 3.3.1.5. Figure 3.3 shows the expected 

restriction sites and resulting fragment sizes generated should the colony contain pBabe- 

Puro-y-catenin DNA. Restriction digested DNA was visualised as described in section

2.3.2.
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Figure 3.3 - Strategy for identification of colonies containing pBabe-Puro-y-catenin 
vector.

A) Cartoon of BamHl and EcoRX restriction sites of newly formed pBabe-Puro-y- 
catenin vector with the location of restriction enzyme recognition sequences. Values 
represent the distance from the 5’LTR in bp. B) The predicted fragment sizes obtained 
from pBabe-Puro-y-catenin following a BamHl/EcoRl double restriction digest.

3.3.1.8 Confirmation o f correct orientation o f human y-catenin cDNA within the 

pBabe-Puro vector

The correct orientation of insert within the pBabe-Puro vector was confirmed using a 

Sma\ endonuclease digest which should generate the fragments illustrated in Figure 

3.4. The fragments obtained from a potentially incorrect insertion are also shown in this 

diagram. A lOpl reaction included 350ng of colony DNA, 100U Sma 1, NEB buffer 4 

and the remainder molecular grade water. Digested fragments were assessed as 

described previously (section 2.3.2).
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Figure 3.4 - Strategy to confirm correct orientation of y-catenin cDNA within 
pBabe-Puro vector.

A) Plasmid map of pBabe-Puro-y-catenin with the newly formed Sma\ recognition sites 
and B) the 2.8, 2.1 and 2.6kb fragment sizes expected upon correct y-catenin orientation 
within pBabe-Puro. C) The predicted Sma\ recognition sites with an incorrectly 
orientated y-catenin within pBabe-Puro and D) the 1.6, 3.3 and 2.6kb fragments 
expected following a single Smal restriction digest.
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3.3.1.9 Plasmid preparation ofpBabe-Puro-y-catenin

Upon identification o f a correctly orientated pBabe-Puro-y-catenin positive colony it 

was necessary to generate suitable amounts o f DNA (at least 45/xg) for retrovirus 

production. A glycerol stock, derived from the positive colony (as prepared in 3.3.1.6), 

was streaked onto an LB agar plate. The next day, a single colony was inoculated in 5ml 

LB medium, which was incubated for 8  hours at 37°C under vigorous agitation 

(approximately 300rpm). Next, 150/d o f this culture was transferred to 150ml fresh LB 

medium and incubated as before for a further for 12 hours. Bacteria were then pelleted 

by centrifugation at 6000 x g  for 15 min at 4°C. DNA was isolated from the pelleted 

bacteria using a QIAprep® Maxiprep kit and the manufacturer’s guidelines (see 

Appendix 3).

3.3.2 Generation of y-catenin overexpressing leukaemic cell lines

Amphotropic pBabe-Puro control (empty vector) and pBabe-Puro-y-catenin retroviruses 

were generated as described in section 2.5.2. K562, U937, HEL, THP-1 and FDCP mix 

cell lines were retrovirally transduced with each virus as described in section 2.5.3. 

Following transduction, puromycin was used to select for y-catenin expressing cells.

The pBabe-Puro retroviral construct contains a puromycin selection cassette. Puromycin 

is an aminonucleoside antibiotic produced by Streptomyces alboniger which inhibits the 

growth o f both prokaryotic and eukaryotic cells by specifically inhibiting peptidyl 

transfer on ribosomes (Vara et aL, 1985). Transfection with the pBabe-Puro vector leads 

to expression o f the pac gene which in turn encodes the enzyme Puromycin N-acetyl- 

tranferase (PAC) which inactivates puromycin by N-acetylation (Lacalle et al., 1989; de 

la Luna S. and Ortin, 1992).

The day immediately following round two o f retroviral transduction, puromycin 

(2/xg/ml) was added to the medium o f cells lines transfected with pBabe-Puro, and 

pBabe-Puro-y-catenin. A ‘mock transduced’ (i.e. cultured in the presence o f conditioned 

medium o f phoenix cells and thus no contact with any retrovirus) control was included.
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Selection was adjudged to be finished when over 99% o f this culture was dead, as 

approximated by light microscopy. Viable cells were then washed free o f puromycin by 

centrifugation at 200 x g  for 5 minutes and resuspended in fresh medium. Finally, cells 

were assessed for y-catenin expression (below in section 3.3.3).

3.3.3 Analysis of y- and /5-catenin protein expression in transfected cell 

lines

In order to assess the level of endogenous and ectopic y- and /5-catenin expression 

driven by the respective retroviral vectors, protein levels were assessed from control and 

catenin transfected cells by Western blotting. Whole cell protein lysates o f control and 

y- or /5-catenin transfected cells from each cell line were prepared and immuno-blotted 

as described in section 2.6. The normalisation o f protein lysates from each cell line to 

equal weight allowed any differences in catenin expression to be identified. A mouse 

monoclonal antibody was used for the detection of y-catenin (Clone 15, BD) at 

250ng/ml, whilst a rabbit monoclonal (Clone 6B3, Cell Signalling, Massachusetts, 

USA) was deployed for /5-catenin detection at lng/ml. The detection o f /5-actin (Clone 

mAbcam 8226, Abeam, Cambridge, UK), was achieved using a mouse monoclonal at 

2 0 ng/ml, to provide an assessment for equal protein loading.

3.3.4 Optimisation of intracellular catenin staining

3.3.4.1 Optimisation o f  y-catenin staining

For the optimisation o f intracellular y-catenin detection by flow cytometry, the K562 

pBabe-Puro control and y-catenin overexpressing cell lines created in section 3.3.2 were 

utilised since these showed both high endogenous and exogenous y-catenin expression.

Detection o f intracellular expression o f y-catenin was optimised using 1 x 106 each o f 

the K562 pBabe-Puro control and y-catenin cells. These cells were washed in 20ml o f 

serum-free (SF) RPMI-1640 and centrifuged at 200 x g  for 10 minutes. Cells were 

resuspended in 200pi SF RPMI-1640 and fixed in an equal volume o f 4%
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paraformaldehyde for 20 minutes under gentle agitation from a rotary shaker. Cells 

were subsequently washed with 1ml SF RPMI-1640 and centrifuged at 200 x g  for 5 

minutes. Cell membranes were permeabilised by resuspending the cells in 1ml 0.1% 

TX-100 detergent for 5 minutes with occasional agitation. The TX-100 was completely 

removed from the cells by 2 consecutive washes o f 5ml staining buffer (SB, see section

2.4.2 for composition) each followed by centrifugation at 200 x g  for 5 minutes. Cells 

were subsequently resuspended in 200/d SB and half were incubated with the primary 

anti-y-catenin antibody at concentrations o f 1, 3, 10, 30 or 60/xg/ml, whilst the other half 

was incubated with the corresponding isotype-matched (IgG2a or IgG2b) antibody at the 

same concentrations. Three different clones of y-catenin primary mouse monoclonal 

antibody were tested; Clone 15 (IgG2a, BD), PG 5.1 (IgG2b, AbD Serotec, Kidlington, 

UK) and M i l l  (IgG2a, AbCam). Primary antibody incubations o f 30, 45 and 60 

minutes at RT were tested, after which, the cells were washed in 1ml SB by 

centrifugation as above. Stained cells were resuspended in SB, and detected using 

secondary labelling step, where 1.5/ig/ml R-PE conjugated rat-anti-mouse (RAM) 

IgG2a+b antibody (Clone X57, BD) as incubated for 30 minutes in the dark at RT. The 

cells were washed as above and resuspended in 100/d FACSFlow™ (BD) prior to flow 

cytometric acquisition (see 3.3.6).

3.3.4.2 Optimisation o f  /3-catenin staining 

Detection o f intracellular expression o f P-catenin was optimised using the K562 cell 

line expressing a mutant form o f  p-catenin. This amino (NH2)-terminally truncated form 

o f /3-catenin, encoded within the pPOLYPOZ retroviral plasmid (/3-catAN89, kind gift 

by Prof. Dale, originally constructed by Polakis et al. (Munemitsu et al., 1996)), has a 

89 amino acid sequence missing from the NH2-terminus, thus depriving the molecule o f 

its Casein Kinase a  (CKa) and Glycogen Synthase Kinase 3/3 (GSK3/3) phosphorylation 

sites (serine 45, and threonine 41, serines 33 and 37, respectively (Liu et al., 2002)). 

The absence o f phosphorylation means the protein is not ubiquitinated and targeted for 

degradation by the proteasome leading to constitutive accumulation o f /3-catenin in the 

cytosol. The K562 pBabe-Puro transduced cells were used again as the control line.
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Cells were processed as described above (section 3.3.4.1) using a primary mouse 

monoclonal /3-catenin antibody (Clone 14, IgGl, BD) conjugated directly to FITC. The 

immuno-reactivity o f this antibody was also raised to an epitope in the COOH-terminus 

o f /3-catenin so was not affected by the Nth-terminal truncation. Primary antibody 

concentrations were optimised by incubation o f 1, 3, 10 and 30jiig/ml as above for 30 

minutes in the dark. Detection o f the primary labelling stage was achieved by flow 

cytometry (see 3.3.6).

3.3.4.3 Cross reactivity o f  y- and (3-catenin antibodies

Given the high degree o f molecular homology shared between these armadillo proteins 

(Hatzfeld, 1999), it was necessary to ensure that the respective antibodies did not cross- 

react under assay conditions. Therefore, K562-AN89-/3-catenin cells were stained for y- 

catenin (using optimised staining conditions), whilst the K562 pBabe-Puro-y-catenin 

cell line was immuno-stained with the optimal conditions for the /3-catenin primary 

antibody in each case employing K562 pBabe-Puro cells as controls. Assessment of 

cross-reactivity was measured using flow cytometry (3.3.6). It was also necessary to 

determine whether there was cross-reaction as determined by Western blotting (see 

below section 3.3.3).

3.3.5 Detection of intracellular catenin expression in normal human 

haematopoietic cells

3.3.5.1 Isolation o f  normal human haematopoietic cells from  cord blood/bone 

marrow

In order to assess the expression o f y- and /3-catenin in haematopoietic lineages 

(including developmental subsets) human CB or BM was obtained as described in 

section 2.2.3. A buffy coat containing total leukocytes, as shown in Figure 3.5, was 

isolated by centrifuging 15ml o f whole CB or BM under high speed centrifugation at 

2,500 x g  for 15 minutes. Under these conditions a pale film o f white blood cells forms 

between the red cell and serum layers, which was carefully removed using a Pasteur 

pipette. A degree o f red cell contamination was inevitable with this aspiration, but also
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desirable (provided it was not excessive) given these cells were also relevant for the 

analysis. Leukocytes were washed in 15ml of SF RPMI-1640 and centrifuged at 200 x g  

for 10 minutes, after which total leukocyte number was estimated as described in 

section 2.2.4.

Plasm a
(55% of total blood)

Buffy Coat
leukocytes & platelets 
(<1% of total blood)

Erythrocytes 
(45% of total blood)

Figure 3.5 - The fractionation of leukocytes by centrifugation of whole cord blood 
or bone marrow.

The percentages stated for each fraction represent those obtained from centrifugation of 
peripheral blood. The method was the same for human CB or BM although the relative 
percentage of leukocytes was higher in BM.

3.3.5.2 Preparation and pre-labelling o f haematopoietic cells prior to staining

Prior to intracellular staining of catenin, pre-labelling of cells with cell-surface markers 

was required in order to allow haematopoietic cell subset analysis by flow cytometry. A 

panel of antibodies specific for myeloid, lymphoid, erythroid or haematopoietic stem 

cell/progenitor populations were applied.

Total leukocytes (lxlO7) were resuspended in 100/d of staining buffer (SB) and 

subjected to the relevant panel o f cell surface anti-human antibodies (each at 10/zg/ml) 

for 30 minutes at 4°C. The threshold for cell surface staining was ascertained by also 

incubating cells with the isotype- and manufacturer-matched irrelevant control
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antibodies conjugated to the same fluorochromes. The panel of mouse monoclonal 

antibodies (including clone and manufacturer) used in conjunction with y-catenin and (3- 

catenin immune-stained cells are shown in Table 3.1 and Table 3.2, respectively. These 

differed primarily because of the different fluorochromes used to label y- and /?- 

catenins. Following the incubation, 1ml o f SB was added to all tubes which were 

subsequently centrifuged as above for 5 minutes. Cells were next resuspended in 200/d 

of SF-RPMI-1640 and assayed for intracellular catenin staining as below.

Table 3.1 - The panels of specific cell surface antibodies used in the identification 
of haematopoietic subpopulations (y-catenin analysis).

CD34-PerCP/Cy5.5 4H11 Bio legend 
(California, 

USA)

CD38-APC HIT2 Bio legend

CD45-FITC HI30 Bio legend

CD15-FITC W6D3 Bio legend

CD14-APC HCD14 Bio legend

CD45-PerCP MEM-28 AbCam

CD3-FITC UCHT1 Bio legend

CD19-APC HIB19 Bio legend

CD45-PerCP MEM-28 AbCam

GlyA-FITC YTH89.1 AbD Serotec

CD45-PerCP MEM-28 AbCam
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Table 3.2 - The panels of specific cell surface antibodies used in the identification 
of haematopoietic subpopulations (/3-catenin analysis).

Clone ManufacturerLineage Panel Antibodies and 
conjugated 

fluorochrome

Haematopoietic
Stem/Progenitor

Cell

CD34-PE 8G12

Bio legendCD38-APC HIT2

CD45-PerCP AbCamMEM-28

Bio legendMyeloid lineages CD15-PE W6D3

CD14-APC HCD14 Bio legend

CD45-PerCP MEM-28 AbC am

CD3-PELymphoid
lineages

Bio legendCD19-APC HIB 9

CD45-PerCP MEM-28 AbCam

GlyA-PE JC159Erythroid
lineages

DAKO 
(Cambridgeshire, 

UK)

CD45-PerCP MEM-28 AbCam

3.3.5.3 Intracellular staining o f y- and (3-catenin

Pre-labelled haematopoietic cells already suspended in SF-RPMI-1640 were stained for 

intracellular y- and /3-catenin using the protocol optimised in section 3.3.4.1. These 

optimised conditions involved using the primary catenin, and appropriate isotype, 

antibodies at a concentration of 10/zg/ml for 30 minutes.

3.3.5.4 Intracellular staining o f y- and (3-catenin in erythrocytes

Owing to the fragile structure of mature erythrocytes, the staining method outlined 

above was modified to ensure enough red cells survived the lysis stage and were present 

in the final analysis. Cells pre-stained with the erythroid panel of antibodies received a 

longer (30 minute) fixation to increase cross-linking of proteins. For permeabilisation,
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timings and washings remained the same, however erythroid labelled cells were 

permeabilised with 100% methanol, a gentler permeabilising agent than the triton TX- 

100 used in the above section. Finally, upon resuspension in 100/d FACSFlow™ just 

prior to flow cytometric analysis (below 3.3.6), erythroid cells were stained with 165nM 

TO-PRO®-3 iodide (Invitrogen). This nuclear stain was an important parameter in 

discriminating mature anucleate red cells from nucleated cells.

3.3.6 Analysis of total y- and /3-catenin expression by flow cytometry

Six-parameter flow cytometric analyses o f total catenin expression in haematopoeitic 

cells were performed using a FACSCalibur™ cytometer (BD) with CellQuest™ 

software version 3.3 (BD). Cells to be analysed were resuspended in 100/d 

FACSFlow™ in mini-flow tubes (Greiner Bio-one) and kept on ice in the dark until 

flow cytometric analysis. Given the presence of low-frequency developmental sub­

populations within CB/BM, such as CD34+ cells (0.05-3%), a minimum o f 5x105 events 

were collected for each panel o f cells stained. The homogenous nature o f cell lines 

meant acquisition o f only 1 x 104 events was necessary. Debris was excluded from the 

analyses on the basis o f forward- and side-scatter characteristics, whilst specific 

individual sub-populations were identified using the gating strategies outlined in results 

section 3.4.2.1. Flow cytometric data were analysed using WinMDI version 2.8 (Joe 

Trotter, Pharmingen, California, USA) and the mean fluorescence intensity (MFI) of y- 

and /3-catenin within discrete developmental subsets and cell lines were calculated using 

Equation 3.1 below:

Mean fluorescence intensity (logged arbitrary units) = CFI -  BFI

Where;

CFI = Intensity o f catenin fluorescence (given by y- or /3-catenin antibody)
BFI = Intensity o f background staining (given by iso type matched control antibody on 
same population)

Equation 3.1 - Calculation used to generate the mean fluorescence intensity of 
catenin within subpopulations of cord blood.
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3.3.7 Analysis of subcellular localisation of y- and jS-catenin by CLSM

3.3.7.1 Principles o f  CLSM

The ability o f Confocal Laser Scanning Microscopy (CLSM) to accurately resolve 

different compartments o f a single cell make it ideal for analysing the subcellular 

distribution o f intracellular proteins such as catenin. CLSM is able to deliver such high 

resolution images, unlike conventional wide-field fluorescence microscopes, through its 

unique configuration (see Figure 3.6). A laser light source is passed through a narrow 

aperture and focussed, by an objective lens, onto a small focal volume within a tissue 

specimen. Fluorophores (see 2.7.2) targeted to specific proteins and DNA within the 

pre-treated sample become excited and emit fluorescence o f  a higher wavelength that is 

re-collected by the objective lens and directed towards a beam splitter. This beam 

splitter is capable o f separating the re-collected light by allowing reflected laser light to 

pass through whilst directing collected fluorescent light wavelength o f interest through a 

small pinhole onto a PMT detector. The PMT converts light signals into an electrical 

one as described previously for flow cytometry (2.7.1) allowing a digital read-out 

(imaging) on a computer. The pinhole aperture thus excludes all out-of-focus light not 

originating from the focal point allowing a very sharp, resolved, thin area o f focussed 

tissue to be examined as the laser scans over the plane o f interest (Z-plane). 

Furthermore, the specimen stage can be adjusted vertically allowing fluorescence data 

to be collected from multiple focal planes (Z-stacks). These Z-stacks can eventually be 

compiled by intricate CLSM software into 3D information on protein expression 

throughout a single cell.
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Figure 3.6 - The standard configuration of CLSM.

Schematic of a CLSM optical set-up showing the light laser source which is directed 
through pinhole apertures and the objective lens onto a focal plane within the specimen. 
Emitted fluorescence from within the sample is subsequently redirected back through 
the lens, and reflected by a dichromatic mirror through a pinhole aperture onto a PMT. 
Adapted from www.olvmpusfluoview.com/theorv/confocalintro.html.

3.3.7.2 Validation o f CLSM as a technique for subcellular localisation analysis

Before this technique could be routinely used for the analysis of primary haematopoietic 

cells, it was first validated by Western blotting. It was necessary to establish whether the 

intracellular staining protocol previously described could be used in conjunction with 

CLSM to detect shifts in the localisation of catenin between the cytosol and nucleus of 

individual cells.

To this end, the K562 pBabe-Puro control and y-catenin overexpressing lines previously 

established (see section 3.3.2) were intracellularly stained as outlined in section 3.3.4.1 

but for the exceptions listed in points 4) and 5) of section 3.3.7.3. CLSM image 

acquisition and post-acquisition analysis were completed as described in sections

3.3.7.4 and 3.3.7.5, respectively. To validate the distribution of y-catenin obtained from 

CLSM, cells from the respective K562 cultures were fractionated into cytosolic and 

nuclear homogenate using the method in section 2.6.2, and Western blotted as in

http://www.olvmpusfluoview.com/theorv/confocalintro.html
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sections 2.6. 3-2.6. 7. The primary catenin antibodies used in section 3.3.3 were again 

deployed at the same concentration. To assess both the purity o f each fraction and the 

amount relative amount o f protein loaded, /3-actin (for cytosolic protein) was used, 

again as described in 3.3.3, whilst a histone HI (for nuclear protein) mouse monoclonal 

(Clone AE-4, AbD serotec) was used at 0.5/zg/ml.

3.3.7.3 Preparation and intracellular staining o f  haematopoietic cells

The lineages o f CB/BM exhibiting the highest levels of y- and /5-catenin expression 

were further analysed by CLSM to ascertain the subcellular location o f catenin 

expression. Cells to be analysed were prepared and immuno-stained similarly to that 

described for the flow cytometric analysis (section 3.3.5), but for a number of 

fundamental differences;

1) The starting number o f cells to be analysed was never more than 2x106 since 

fewer cells were required for confocal analysis.

2) Due to the relative infrequency o f CD34+ HSC/progenitor cells within CM/BM, 

their prior purification before intracellular staining was required using the 

MACS technique outlined in section 2.4.2.

3) The limited fluorescence channels for CLSM analysis meant that just one 

fluorochrome (R-PE) was available for the pre-labelling o f target subsets 

described in section 3.3.5.2. Thus, for HSC/progenitor cells and granulocytes, 

the CD34 and CD 15 antibodies, respectively, described in Table 3.2 were used. 

An R-PE conjugated CD14 monoclonal antibody (Clone HCD14, Bio legend) 

was used for the detection o f monocytes.

4) Given the relative lack o f efficiency o f R-PE as a confocal fluorochrome, both y- 

and /3-catenin were labelled with FITC for optimal detection. The immuno - 

staining o f /3-catenin (section 3.3.4.2) was thus unaffected (due to direct FITC 

conjugation), whilst y-catenin immuno-detection required a different RAM 

secondary antibody (Clone LO-MG2a-9, AbD Serotec) used exactly as above 

(section 3.3.4.1).



Characterisation of y-Catenin and /3-Catenin Expression in Normal
Haematopoiesis Chapter 3

5) All cells to be analysed by confocal microscopy were stained just prior to 

analysis with 165nM TO-PRO®-3 iodide upon final re-suspension in 100/xl 

FACSFlow™. This allowed the nuclei o f  cells to be confidently discriminated.

3.3.7.4 CLSM data acquisition

Cells to be analysed by CLSM were resuspended in 100/d FACSFlow™ containing 

165nM TO-PRO®-3 iodide and kept in the dark on ice until analysis (<1 hour). At the 

time o f analysis, a 30/d aliquot o f the cells o f interest was slowly and evenly pipetted 

onto a clean 22 x 22mm coverslip (Fisher) which was secured onto the adjustable Z- 

stage o f the DMIRBE2 upright light microscope (Leica, Buckinghamshire, UK) and 

allowed to settle for approximately 5 minutes prior to focussing.

Confocal immunofluorescence was achieved using the resonant scanning head o f  a 

Leica TCS SP2 confocal laser microscope with a 63x objective NA 1.32 (HCX-PL- 

APO) assisted by Leica™ Confocal Software (LCS) version 2.61 (Leica Microsystems, 

Heidelberg, Germany). For each lineage a minimum o f 50 cells were imaged using the 

strategy outlined in Figure 3 .7. The threshold for catenin fluorescence was ascertained 

by imaging approximately 2 0  cells per lineage immuno-stained with the isotype- 

matched irrelevant control antibodies. Throughout image acquisition only whole 

nucleated cells were captured as determined by TO-PRO®-3 iodide staining. A fixed 

path o f field navigation was adopted (Figure 3.7A ), whilst a concerted effort was made 

to include as many cells o f interest per field as possible. All cells scanned with a single 

Z-plane were imaged with the focal plane dissecting as close to the centre o f the cells as 

possible (shown in Figure 3 .7B), ensuring representative areas of membrane, cytosol 

and nucleus were observed for each cell. For each field, a light transmission image was 

captured, along with membrane fluorescence, nuclear fluorescence (TO-PRO®-3), and 

catenin fluorescence (y or P) in the order exemplified in Figure 3 .7C. This ensured that 

the necessary post-acquisition analysis could be conducted as described in the 

immediately proceeding section. For each lineage, representative Z-stacks (image 

series) were constructed o f single cells which demonstrated exemplary catenin 

localisation, the principle o f  which is illustrated in Figure 3 .7D.
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Figure 3.7 - Strategy used to acquire images by CLSM.

A) The fixed direction of movement adopted to navigate through the multiple fields of 
immunofluorescence to avoid selection bias. B) 3D cross section through a cell 
demonstrating the correct (green) and incorrect (red) focal planes used for imaging. 
Targeting the correct focal plane ensures a single image is captured which fairly 
represents the actual nuclear to cytoplasmic ratio of the target cell. C) Demonstration of 
sequential fluorescence images captured for each cell and D) visual illustration of how a 
confocal image series (Z-stack) is compiled by the CLSM.
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3.3.7.5 CLSM post-acquisition analysis

Raw fluorescent images with no post-acquisition contrast enhancement or manipulation 

were used for quantitation using LCS Lite™ analysis software version 2.61 (Leica 

Microsystems). The strategy adopted for analysing cells o f interest is demonstrated 

sequentially in Figure 3.8. Firstly, for each cell within a given field, immunophenotype 

was ascertained by observation of membrane fluorescence (e.g. CD34-PE identifies 

haematopoietic progenitor cells) as seen in Figure 3.8A. Cells expressing the relevant 

cluster o f differentiation (CD) marker were viewed using the corresponding light 

transmission image to construct a region o f interest (ROI) around the entire 

circumference o f the cell (.Figure 3.8B), before using the TO-PRO®-3 fluorescence to 

compose a nuclear ROI (Figure 3.8C). The number and intensity o f catenin 

fluorescence pixels (on a linear scale from 0-255) contained within each ROI Figure 

3.8D) was visualised by histograms in Leica Lite™ {Figure 3.8E) and raw values were 

exported into a Microsoft Excel spreadsheet. From here, total cell catenin fluorescence 

and total nuclear catenin fluorescence for each cell captured could be calculated using 

Equation 3.2.
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Figure 3.8 - Analytical technique used to quantify fluorescence emitted from whole 
cell and nuclear regions of individual haematopoietic cells.

A) Lineages o f interest were first identified by immunophenotyping given by membrane 
fluorescence (red) before using the light transmission image (B) to draw an ROI around 
the entire cell circumference. C) TO-PRO-3 staining (blue) assisted in composing a 
nuclear ROI. D) Catenin fluorescence (green) was quantified within each ROI and used 
to generate histograms (E) of fluorescence intensity.
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Total cell/nuclear fluorescence = X (PFI x FPI)

Where;

PFI = Fluorescence Intensity o f Pixel (0-255)
FPI = Frequency o f Pixels at given Intensity

Equation 3.2 > Equation used to generate total cell or nuclear fluorescence for each 
cell of given lineage.

Once catenin fluorescence values were obtained for the total cell and nuclear ROIs (and 

the background subtracted from each using the ROI values obtained from the isotype- 

stained cells), the relative proportion o f fluorescence emitted from the cytosol and/or 

membrane could be calculated using Equation 3.3 below:

%  Cytosol/Membrane fluorescence of cell = 100 -  ([NF/TCF] x 100)

Where;

NF = Nuclear fluorescence 
TCF = Total cell fluorescence

Equation 3.3 - Equation used to deduce the fluorescence emitted from cytosol and 
membrane regions of cell.

Use o f the above equation meant that a Nuclear:Cytosolic/Membrane (N:C/M) ratio o f 

catenin fluorescence could be compiled for each cell within a lineage data set (minimum 

o f 50 cells). It should be noted that this ratio represents the distribution o f catenin across 

a single central Z-plane o f a cell and is not representative o f the entire cell. Each lineage 

was assayed 3 times each for y- and /3-catenin localisation, after which, an average 

N:C/M ratio, (with standard deviation (SD)), o f y- or /3-catenin per cell was calculated.
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3.4 Results

3.4.1 Optimisation of intracellular y-catenin detection assay

3.4.1.1 The generation o f a y-catenin retroviral expression vector

To overexpress human y-catenin, cDNA was subcloned from the PINCO construct into 

the pBabe-Puro retroviral vector. Using a double restriction digest (see 3.3.1.1) the 

expected fragments sizes o f 2.4kb (corresponding to y-catenin sequence) and 12.7kb 

(corresponding to PINCO sequence) were generated (Figure 3.9B).

The recipient pBabe-Puro vector was linearised using the same restriction digest as 

mentioned above and Figure 3.9C confirms the efficiency o f digestion by the generation 

o f a 5.2Kb DNA fragment that corresponds to the full length pBabe-Puro sequence. 

After transformation o f E. coli cells with the newly ligated pBabe-Puro-y-catenin it was 

necessary to identify potential colonies expressing the plasmid (Figure 3.9D). Of 12 

ampicillin-resistant colonies (c) isolated, 3 were identified (c2, c5 and c8 ) as potentially 

expressing the relevant DNA. This is shown in Figure 3.9D whereby c2 and c5 exhibit 

the DNA fragment sizes predicted in Figure 3.3.

Correct insert orientation was confirmed using a Smal restriction digest which produced 

the predicted fragment sizes (Figure 3.4) that corresponded to a correct orientation as 

illustrated in Figure 3.9E.
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Figure 3.9 - Subcloning of human y-catenin cDNA from PINCO into pBabe-Puro.

A) Range o f molecular weights indicated by the lkb DNA ladder used on all agarose 
gels (adapted from NEB website). B) Successful excision of y-catenin from PINCO 
using BamHX/EcoRX double digest as shown by generation o f 12.7kb and 2.4kb DNA 
fragments. C) Successful linearization o f pBabe-Puro using the same double digest as 
given by 5.lkb and otherwise undetectable 24bp DNA fragment. D) Representative 
agarose gel showing the range of ampicillin-resistant colonies (c) BamHMEcoRX 
restriction digested to test for the presence o f pBabe-Puro-y-catenin DNA. Presence of 
5.2kb and 2.4kb DNA fragments in c2 and c5 (c8  not shown) identified them as 
potential colonies harbouring the plasmid o f interest. E) Correct orientation of y-catenin 
cDNA within pBabe-Puro as shown in c2, 5 and 8  by generation o f 2.1, 2.6 and 2.8kb 
DNA fragments from a single SmaX restriction digest.
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3.4.1.2 The overexpression o f  y-catenin protein in transformed cell lines

Five haematopoietic cell lines were retrovirally transduced with pBabe-Puro-y-catenin 

(and the pBabe-Puro control), purified by puromycin selection, and cultured for up to 10 

days before immuno-blotting for y-catenin.

Figure 3.10 demonstrates how all cell lines overexpressed y-catenin protein albeit to 

varying degrees. Interestingly, the y-catenin detected in most o f the cell lines exhibited a 

multiple banding pattern, the significance o f which was further investigated in Chapter 

5. Given that the multiple banding was a feature of both the endogenous and ectopically 

expressed y-catenin made it unlikely that this phenomenon was due to non-specific 

binding. It should be noted that no discernible differences in growth or morphology 

were observed between control and y-catenin transgenics o f each cell line, with the 

exception o f FDCP mix (see Appendix 4).

These data confirmed that the pBabe-Puro-y-catenin vector was capable of ectopic 

expression of y-catenin in all cell lines tested. The transgenic K562 line was 

subsequently employed for optimisation o f y-catenin staining because o f a high 

induction of y-catenin relative to endogenous levels.
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Figure 3.10 - Overexpression of y-catenin protein in transformed cell lines.

Western blotting reveals the pBabe-Puro-y-catenin retroviral vector (‘y-Cat’) is capable 
of stable ectopic expression of y-catenin in comparison to pBabe-Puro controls (‘Cont’). 
Green numerals indicate the fold overexpression of y-catenin versus controls that was 
achieved in each cell line as determined by densitometric analysis. Immunoblotting for 
/3-act in indicates relative protein loading.

3.4.1.3 The optimisation o f a primary y-catenin antibody

As can be observed in Figure 3.11A, B and C, all monoclonals tested in a flow 

cytometric assay were able to detect the overexpression of y-catenin in K562 cells to 

varying degrees. Optimal working concentration for all clones examined appeared to be 

10/zg/ml. However, clone Ml 11 {Figure 3.11C) demonstrated the greatest efficiency of 

staining detecting a 9.7 fold overexpression of intracellular y-catenin from control level. 

The specificity o f this detection is validated by the fact it closely matched the 10.3 fold 

overexpression of y-catenin present in the K562 cells as shown by Western blotting in 

Figure 3.1 ID. Furthermore, the broad range of fluorescence detected by the M i l l  clone 

(as demonstrated in the histograms) most accurately reflects the heterogeneity of protein 

overexpression often generated by the random process of retroviral-mediated gene 

integration. To ensure that incubation time was not a limiting factor in y-catenin 

detection a range of primary antibody incubation times were attempted (30, 45 and 60 

minutes all at RT) with the Mi l l  clone. Figure 3.1 IE  illustrates that the 30 minute 

incubation was optimal.
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Figure 3.11 - Optimisation of y-catenin intracellular staining in K562 cells.

Histograms of fluorescence obtained from cells stained with y-catenin primary 
antibodies. The primary clones A) 15, B) PG5.1 C) Mi l l ,  at the concentrations 
indicated, were used to stain: K562 pBabe-Puro (open black histograms); K562 pBabe- 
Puro-y-catenin (red fdled); or isotype-control cells (green). Numerals (red) represent the 
fold overexpression of y-catenin detected in overexpressing versus control K562 cells as 
given by cytometric analysis. D) The fold overexpression of y-catenin protein (in green) 
present in the K526 pBabe-Puro-y-catenin cell line at the time of intracellular staining 
optimisation as deduced by western blotting. E) Optimisation of antibody incubation 
time using the optimal primary y-catenin antibody clone (Ml 11) at times of 30, 45 and 
60 minutes.
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3.4.1.4 The optimisation o f a primary (3-catenin antibody

y-Catenin has close fimctional parallels with 0-catenin suggesting these molecules may 

act in tandem, therefore the expression profile for /3-catenin in normal haematopoiesis 

was also determined. The intracellular staining protocol for /3-catenin detection also 

required optimisation and validation. This process was quicker for /3-catenin given:

1) K562 cells overexpressing /3-catenin were already available (section 3.3.4.2).

2) The optimal mouse monoclonal primary antibody for /3-catenin detection was 

already established within the field (Clone 14).

As the optimal incubation time was deduced from y-catenin staining it was only 

necessary to ascertain the optimal working concentration. As observed in Figure 3.12A. 

a working concentration o f 10/*g/ml was optimal. This detection most closely resembled 

the overexpression o f /3-catenin that was present in these cells as deduced from Western 

blotting {Figure 3.12B).

The results o f sections 3.4.1.3 and 3.4.1.4 demonstrated that the intracellular staining 

assay could accurately detect levels o f both y- and /3-catenin which were reflective o f 

levels present in K562 cells as determined by Western blotting.
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Figure 3.12 - The optimisation of p-catenin intracellular staining in K562 cells.

A) Histograms of fluorescence obtained from staining with primary P-catenin antibody 
(clone 14) on: K562 pBabe-Puro cells (open black histograms); K562 P~CatAN89 cells 
(red filled); and isotype-control stained cells (green) at the indicated concentrations. 
Numerals (red) represent the fold overexpression of p-catenin detected in 
overexpressing versus control K562 cells as given by cytometric analysis. B) Western 
blot shows the fold overexpression of mutant P-catenin protein present in pPOLYPOZ 
p-CatAN89, versus wt protein in control cells, at the time of intracellular staining 
optimisation. Note the mutant form migrates at a molecular weight of 75kDa whilst the 
wt migrates to around 90kDa.
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3.4.1.5 Lack o f  cross-reactivity between primary y- and (3-catenin antibodies

Given the degree of homology between y- and /3-catenin molecules (see Figure 1.1 OA) it 

was necessary to check cross-reactivity o f the selected antibodies using the K562 cell 

lines used in the previous two sections {3.4.1.3 and 3.4.1.4).

To fully assess cross-reactivity, the y-catenin antibody (clone M i l l )  was tested on the 

K562 /3-CatAN89 cells (i.e. where there was an abundance o f /3-catenin protein), whilst 

the /3-catenin antibody was tested on the K562 pBabe-Puro-y-catenin cells (i.e. where 

there was abundance of y-catenin protein). As can be observed in Figure 3.13, clone 

Ml 11 was able to detect the overexpression of y-catenin within the K562 pBabe-Puro-y- 

catenin cells, with no discemable shift in fluorescence (over background) when K562 /3- 

CatAN89 cells were stained. Western blots reveal the true level o f respective proteins 

being expressed at the point of the assay {Figure 3.13C and D). Similarly for Clone 14, 

Figure 3.13B shows the detection of exogenous mutant /3-catenin in K562 /3-CatAN89 

cells, whilst no significant increase in fluorescence was observed when K562 pBabe- 

Puro-y-catenin cells were stained.

These data suggested that no detectable cross reactivity was occurring between the 

optimal y- and /3-catenin antibody clones.
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Figure 3.13 - The degree of cross-reactivity between y- and |3-catenin antibodies.

A) y-catenin primary antibody (Clone Mi l l )  staining of: K562 pBabe-Puro-y-catenin 
cells (red filled histogram); pBabe-Puro controls (black); K562 /3-CatAN89/3 cells 
(green); isotype-control stained cells (open red histogram). B) Reciprocal reactivity of 
the /3-catenin primary antibody (Clone 14): K562 /3-CatAN89 cells (red filled 
histogram); K562 pBabe-Puro cells (black) K562 pBabe-Puro-y-catenin cells (green); 
isotype-control stained cells (open red histogram). Red and green numerals represent the 
fold overexpression o f the respective proteins in each K562 cell lines as given by 
cytometric analysis. C) The degree of y-catenin and D) /3-catenin overexpression present 
in respective K562 cell lines at the time of flow cytometric assessment as determined by 
Western blotting. Green numerals represent the fold overexpression o f catenin relative 
to the pBabe-Puro control line.

Clone 14
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3.4.1.6 CLSM can detect nuclear translocation o f catenin

The total expression level of y- and /3-catenin would only provide limited scope for 

understanding the function o f these proteins in haematopoietic cells. Knowing the sub- 

cellular localisation potentially indicates function. It is not uncommon for proteins to 

shuttle between membrane, cytosol and nucleus during development, and catenins in 

particular have been frequently documented to change localisation given their dual 

structural and transcriptional roles (see 1.3.5). It was important to establish whether the 

intracellular staining protocol optimised above was capable o f detecting shifts in the 

intracellular distribution of catenin by CLSM.

To investigate this, the K562 pBabe-Puro and pBabe-Puro-y-catenin lines established 

previously (sections 3.3.2) were again utilised. Both cell lines were fixed, permeabilised 

and immuno-stained as described in methods section 3.3.7.3 before being analysed by 

CLSM as described in section 3.3.7.4.

As can be observed from Figure 3.14 the y-catenin expression in control K562 cells 

appeared to be almost entirely cytosolic (although some membrane associated y-catenin 

cannot be ruled out). This figure and further examples of y-catenin localisation in K562 

pBabe-Puro controls can be viewed within the Chapter 3 section on the supplementary 

disc within Folder 7, Fields 1.1-1.3. Also present in this folder (Field 1.4) is a 

representative image o f the level of background fluorescence obtained from K562 cells 

as determined by the isotype matched control antibody. This image demonstrates that 

non-specific fluorescence was virtually undetectable.

The analysis of K562 pBabe-Puro-y-catenin cells, exemplified in Figure 3.15, 

demonstrated a clear increase in fluorescence intensity indicating the expected higher 

expression of y-catenin. As observed for control cells, y-catenin expression was 

primarily cytoplasmic, however, a greatly increased nuclear signal was frequently 

observed, an observation not made in control K562 cells. This nuclear fluorescence was 

confirmed by the fact that TO-PRO-3 (nucleic acid stain) signal was also present in the
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same region. This figure and further examples of y-catenin localisation in K562 pBabe- 

Puro-y-catenin cells can be observed on the supplementary disc within Fields 2.1-2.5 

located in Folder 2.

These data indicate that CLSM was capable of detecting changes in the level of y- 

catenin in distinct subcellular locations.
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Figure 3.14 - Subcellular localisation of y-catenin in K562 control cells by CLSM.

Representative confocal Z-sections of K562 pBabe-Puro control cells showing y-catenin 
subcellular localisation with A) phase contrast, B) y-catenin (green), C) nuclear TO- 
PRO-3 (blue) and D) merged images.
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Figure 3.15 - Subcellular localisation of y-catenin in overexpressing K562 control 
cells by CLSM.

Representative confocal Z-sections of K562 pBabe-Puro-y-catenin cells showing y- 
catenin subcellular localisation with A) phase contrast, B) y-catenin (green), C) nuclear 
TO-PRO-3 (blue) and D) merged images.
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To provide more objective evidence as to whether the assay was capable o f detecting 

shifts in catenin subcellular localisation, the average N:C/M ratio per cell was calculated 

following the analysis o f individual cells from each K562 line. As viewed in Figure 

3.16A, K562 pBabe-Puro cells exhibited an average nuclear localisation o f  12±8% 

(1SD; n=50) giving a N:C/M ratio of 12%:88%. K562 pBabe-Puro-y-catenin cells 

exhibited a significantly higher average nuclear localisation o f 29±9% (1SD; n=50), 

PO.OOl, giving a N:C/M ratio o f 29%:71%. These figures suggested that the 

intracellular staining protocol in combination with CLSM was capable o f detecting at 

least 2.4-fold shifts in nuclear catenin translocation.

To validate the above findings, both K562 cell lines were fractionated into nuclear and 

cytosolic homogenate and Western blotted using methods described in section 2.6. 

Figure 3.16B illustrates how Western blotting confirmed an approximate 2.2-fold 

nuclear shift in y-catenin localisation within K562 pBabe-Puro-y-catenin cells relative to 

pBabe-Puro controls. The apparent N:C/M ratios obtained from this method were very 

different to that obtained from CLSM, with 1.6%:98.4% for control K562s versus 

3.5%:96.5% for y-catenin overexpressing K562 cells. This arose because Western 

blotting gave rise to a ratio based on total amounts o f y-catenin in each compartment, 

whereas CLSM compared area-intensity measurements in each compartment. To 

convert these CLSM measurements to total protein in each compartment it was 

necessary to take into account the relative volumes o f each compartment. Therefore, by 

modelling individual K562 cells as two concentric (or eccentric) spheres, total protein in 

each compartment could be estimated by adapting the volume o f a sphere (see Appendix 

5). The resulting CLSM N:C/M ratios (6.5%:93.5% for controls versus 15.0%:85.0% 

for y-catenin overexpressing) remained different to Western blot values (although the 

variation had approximately halved), but still validated the approximate 2 .2 -fold nuclear 

shift in y-catenin observed between the two K562 cell lines.

Taken together, these data confirm that the intracellular catenin detection assay could be 

used in conjunction with CLSM to detect shifts in catenin subcellular localisation within 

haematopoietic cells.
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Figure 3.16 - Direct comparison of CLSM and Western blotting techniques in the 
detection of subcellular y-catenin.

A) The average localisation of y-catenin protein per K562 cell summarised from the 
analysis o f cells (n=50) from control and y-catenin overexpressing K562 cells, 
*JP<0.001. Black numerals give the percentage localisation of y-catenin within that 
fraction relative to the total y-catenin present. Error bars represent SD from each data 
set. B) Western blot demonstrates y-catenin protein present in nuclear and cytosolic 
lysates from control and y-catenin overexpressing K562 cells. White numerals represent 
the percentage of y-catenin contained within each fraction relative to the total amount of 
y-catenin detected. Probing for actin and histone HI confirmed the purity of each 
fraction.
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3.4.2 The expression of y- and 0-catenin in normal haematopoiesis

3.4.2.1 y-Catenin expression level is highest in CD34+ and myeloid cells

In order to identify the haematopoietic cell types expressing y-catenin, it was necessary 

to analyse the expression, at a single-cell level, throughout haematopoietic 

development. To assess this accurately, normal human CB and BM was examined 

which contains all haematopoietic lineages and also cells at different stages of 

maturation. To resolve the different cell lineages multi-parameter flow cytometry was 

used. Haematopoietic lineages at differing states o f differentiation can be identified on 

the basis o f  cluster o f differentiation (CD) markers (see 5.3.1.1).

Figure 3.17 through to Figure 3.20 illustrate the hierarchical gating strategy used to 

resolve populations o f HSC, haematopoietic progenitor cells, granulocytes, monocytes, 

lymphocytes and erythrocytes, and show representative histograms of the y-catenin 

expression detected from each lineage.
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Figure 3.17 - Strategy used to measure catenin expression in haematopoietic stem cells 
and progenitor cells.

Representative flow cytometric plots showing the sequential strategy used to gate and 
measure catenin in haematopoietic stem cells and progenitor cells. A) Firstly, red cells, 
debris and cell aggregates were excluded using FSC versus SSC parameters. B) High SSC 
and CD45bngh* cells were excluded from analysis followed by C) gating on CD34+CD45low 
events. These events were further re-gated on FSC and SSC parameters to exclude 
remaining debris and doublets (not shown). D) CD34+ events were divided into CD38 ' 
using a threshold obtained from isotype staining for CD38 on the CD34+ population. 
Representative histograms showing y-catenin (red filled) and isotype (open black) staining 
obtained from E) CD34+CD38' HSCs and F) CD34 CD38+ progenitor cells. Red numerals 
indicate the representative MFI of y-catenin staining obtained for the indicated subset.
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k ^ * iŜ !:>̂ ^ C D 45+SSChi,? 1

£3 “U

C)
CD14'owCD15+

I04 10°
FSC-H CD45

1 C C D  15 
10 s

( 1 ) 1 4

D) E)
CD14,owCD15+ 8 CD14CD15low

Monocytes

]MFI=110MFI=120

10
Ganim a-Catenin G am m a-C atenin

Figure 3.18 - Strategy used to measure catenin expression in granulocytes and 
monocytes.

Representative flow cytometric plots showing the sequential strategy used to measure 
catenin in granulocytic and monocytic cells. A) Firstly, red cells, debris and cell 
aggregates were excluded using FSC versus SSC parameters. B) Gating o f CD45+ cells 
with high side scatter allowed identification of granular myeloid cells, which were re­
gated on a C) CD 14 versus CD15 plot to allow the resolution o f granulocytes 
(CD14lowCD15+) and monocytes (CD14+CD15low). Representative histograms showing 
y-catenin and isotype staining obtained from D) granulocytes and E) monocytes. Red 
numerals indicate the representative MFI of y-catenin staining obtained for each subset.
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Figure 3.19 - Strategy used to measure catenin expression in lymphocytes.

Representative flow cytometric plots showing the sequential strategy used to measure 
catenin in lymphoid cells. A) Firstly, red cells, debris and cell aggregates were excluded 
using FSC versus SSC parameters. B) Gating on low side scatter CD45bright cells allowed 
identification of the total lymphocyte pool. C) CD3 versus CD 19 plot allowed the 
separation o f T-cells (CD3+CD19) and B-cells (CD3'CD19+). Representative 
histograms showing y-catenin and isotype staining obtained from D) T-cells and E) B- 
cells. Red numerals indicate the representative MFI of y-catenin staining obtained for 
each subset.
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Figure 3.20 - Strategy used to measure catenin expression in erythrocytes.

Representative flow cytometric plots showing the sequential strategy used to measure 
catenin in erythroid cells. A) Erythroid cells were identified, and debris excluded, by 
gating on GlyA+ events. B) Erythroid cells were further resolved into nucleated red cells 
(GlyA+TO-PRO-3+) and enuclueated red cells (GlyA+TO-PRO-3 ). Representative 
histograms showing y-catenin and isotype staining obtained from C) enucleated 
erythrocytes and D) nucleated erythrocytes. Red numerals indicate the representative 
MFI of y-catenin staining obtained for each subset.
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The relative expression level o f y-catenin detected in haematopoietic cells o f  normal 

human CB and BM is summarised in Figure 3.21. y-Catenin expression was high in the 

most primitive cell type analysed; the CD34+CD38' HSC. A mean MFI o f 52±13 was 

detected in HSC from CB (n=4), whilst a mean MFI o f 84±27 was ascertained from BM 

samples (n=3). A very slight increase (1.2 fold) in y-catenin expression was detected in 

CD34+CD38+ committed haematopoietic progenitor cells (MFI 60±32) but this failed to 

reach statistical significance in CB samples. The same modest 1.2 fold increase in y- 

catenin expression was detected in BM-derived progenitor cells (MFI 100±31) which 

did reach statistical significance in these samples (P<0.05).

To address whether y-catenin expression remained constant or was more dynamic in 

haematopoietic development expression was assessed in more differentiated 

haematopoietic populations, beginning with those of myeloid origin. A significant 

increase in y-catenin expression (2.2 fold from HSC level, P<0.05) was observed in 

CD14,owCD15+ CB granulocytes (MFI 115±45), a trend also observed in granulocytes 

from BM (1.5 fold from HSC level, MFI 125±22). An increase in y-catenin expression 

was also found in CD14+CD15low monocytes from CB (1.8 fold from HSC level, MFI 

90±51) and BM (1.4 fold from HSC level, MFI 115±12) although these were more 

modest compared to the increases seen in granulocytes. Interestingly, it was observed in 

the fluorescence histograms from monocytes (of which Figure 3.18E is an example) 

that a distinct ‘shoulder’ of higher y-catenin expression was frequently present, the 

significance o f which is raised later in this chapter.

Cells of lymphoid origin were also included in the analysis and generally demonstrated 

a low expression of y-catenin. CD3+CD19" T-cell lymphocytes exhibited a significant 

down-regulation of y-catenin from HSCs both in CB (0.5 fold, MFI 27±18, P<0.05) and 

BM samples (0.4 fold, MFI 38±14, P<0.05). CD3*CD19+ B-cell lymphocytes also 

demonstrated lower levels of y-catenin expression compared to HSCs, with a 0.8 fold 

reduction in CB B-cells (MFI 44±21) and significantly lower 0.5 fold reduction in BM 

B-cells (MFI 43±14, P<0.05). Interestingly also, B-cells had consistently higher levels 

of y-catenin expression than T-cells in both CB (PO .O l) and BM (P<0.05).
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Finally, erythroid cells were also analysed using a modified permeabilisation method as 

described in section 3.3.5.4. Using this technique, mature erythrocytes (GlyA+TO-PRO- 

3 ) demonstrated virtually no y-catenin expression from CB (MFI 1±0.6, P<0.01) or BM 

(MFI 1±0.6, P<0.05). Unfortunately, even this adapted protocol was unable to 

consistently preserve the immature red cell population (GlyA+TO-PRO-3+) as illustrated 

in Figure 3.20A and B. From a few examples where analyses were possible, it appeared 

that y-catenin expression was present within this immature subset albeit at low levels 

(MFI=30±8, n=2 for CB, MFI=28±6, n=2 for BM).

Taken together, these data present a clear expression profile for y-catenin throughout 

haematopoietic development. Expression starts relatively high in primitive HSC and 

committed progenitor cells, before increasing for subsequent granulocytic and 

monocytic differentiation. Expression is lower in both types o f lymphocytes, with B- 

cells harbouring slightly higher levels than T-cells, and expression is altogether lost in 

mature red cells.

118 | P a g e



M
ea

n 
Fl

uo
re

sc
en

ce
 

In
te

ns
ity

 
(M

FI
) 

of 
y-

ca
te

ui
n

Characterisation of y-Catenin and /3-Catenin Expression in Normal , »
. . I C h ap te r 3

H aem atopoiesis 1

■ Cord Blood (n=4)

■ Bone Marrow (n=3)
160

140

CD34+CD38- CD34+CD38+ Granulocytes Monocytes B-Cell T-Cell Erythrocytes
Hncnintopoictic Haematopoietic Lymphocytes Lymphocytes

Stem Cells Progenitoi-s Lineage

Figure 3.21 - The relative expression level of y-catenin throughout normal 
haematopoiesis.

The expression level of y-catenin within discrete developmental subsets of normal 
haematopoietic development as determined by the average MFI obtained from normal 
cord blood (blue bars, n=4) and bone marrow (green bars, n=3) samples. Data 
represents mean ± 1SD obtained from each data set.

119 | P a g e



Characterisation of y-Catenin and /3-Catenin Expression in Normal
Haematopoiesis Chapter 3

3.4.2.2 /3-Catenin expression level is similar to that o f  y-catenin in normal 

haematopoiesis

To establish whether y-catenin has distinct or similar expression in haematopoiesis to its 

close homologue /3-catenin, a direct comparison was performed. Using the same 

protocol as for y-catenin analysis, (but incorporating a slightly different pre-labelling 

strategy; 3.3.5.2\ an expression profile was established for /3-catenin as illustrated in 

Figure 3.22.

Like y-catenin, /3-catenin was also expressed highly within CD34+CD38' primitive HSC 

of CB (MFI 212±124, n=6 ) and BM (MFI 873±460, n=3). The committed progenitor 

population (CD34+CD38+) demonstrated a small (1.3 fold) but significant (P<0.05) 

increase in /3-catenin expression from HSC level within cord blood samples with an 

MFI o f 279±174. This increase was not, however significant within BM samples (MFI 

912±327).

In the CD14,owCD15+ granulocytic population /3-catenin exhibited an increase in 

expression from HSC level that was more pronounced than that observed for y-catenin. 

In CB granulocytes a 4.2 fold increase in expression was observed relative to HSC level 

(MFI 1182±568, .P<0.05), whilst BM derived granulocytes exhibited a 3.3 fold up- 

regulation o f /3-catenin (MFI 3042±635, ^<0.05). Unlike y-catenin, /3-catenin did not 

demonstrate a significantly increased expression level within the CD14+CD15low 

monocyte population compared with CD34+ progenitor cells.

A significant down-regulation of /3-catenin from HSC level was present in CD3+CD19‘ 

T-cell lymphocytes from both CB (0.3 fold, MFI 56±34, ,P<0.05) and BM (0.3 fold MFI 

297±74, P<0.05). B-cells also consistently harboured a significantly higher level o f /3- 

catenin expression than T-cells in both CB (P<0.05) and BM (P<0.05), an observation 

also previously made for y-catenin.
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Finally, analysis o f  mature erythrocytes (GlyA+TO-PRO-3') confirmed that, like y- 

catenin, /3-catenin expression was completely absent in this terminally differentiated 

subset (MFI 9±5, P<0.05 in CB and MFI 25±19, P<0.05 for BM). As mentioned 

previously, analysis o f immature (GlyA+TO-PRO-3+) red cell populations was 

problematic, however a few analyses suggested that /3-catenin expression was present 

within this subset, although at low levels (MFI 47±15, n=3 for CB).

In summary, these data imply that /3-catenin assumes a very similar expression profile to 

that of y-catenin throughout haematopoietic development. The only differences being a 

more marked increase in expression within the granulocytic population and the lack o f 

any increased in expression associated with monocyte maturation.
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Figure 3.22 - The relative expression level of /3-catenin throughout normal 
haematopoiesis.

The expression level o f /3-catenin in discrete developmental subsets of normal 
haematopoietic development as determined by the average MFI obtained from normal 
CB (blue bars, n=6) and bone marrow (green bars, n=3) samples. Data represents mean 
± 1SD obtained from each data set.
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3.4.3 The subcellular localisation of y- and /3-catenin in haematopoietic 

cells

The expression profile of y- and /3-catenin in haematopoietic development has shown 

expression of both proteins to be highest in HSC/progenitor, granulocyte and monocyte 

populations. Therefore these subsets were analysed for the subcellular localisation of 

expression using CLSM.

3.4.3.1 y-Catenin is nuclear excluded in CD34+ haematopoietic progenitor cells

CD34+ cells were purified before staining for intracellular y-catenin as previously 

described (see section 3.3.7.3). Figure 3.23 clearly shows that y-catenin was almost 

entirely nuclear-excluded within this sub-population of cells. The merged images (D) 

demonstrate how the y-catenin signal (green) fails to overlap with the nuclear TO-PRO- 

3 signal (blue) suggesting nuclear exclusion. Although the y-catenin fluorescence does 

appear to be cytosolic, membrane forms cannot be ruled out. These images, plus further 

examples of y-catenin nuclear exclusion in CD34+ HSC/progenitor cells can be found 

on the supplementary disc Chapter 3 section within Folder 3, Fields 3.2-3.7. Field 3.1 

gives a representative example of the low level of background fluorescence obtained 

from these cells as determined by the matched isotype staining.

Figure 3.24 consists o f a Z-stack series whereby multiple Z-planes of a CD34+ cell 

captured by CLSM are compiled to provide a cross-section through a single cell. This 

figure can be found in movie form on the supplementary disc as Z-Stack 3.1 within 

Folder 3. It illustrates clearly how y-catenin is nuclear excluded throughout the entirety 

of a CD34+ cell and not just on a given single plane.
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A)

B)

C)

D)

Figure 3.23 - The subcellular localisation of y-catenin expression in CD34+ 
progenitor cells.

Pair of representative CLSM images of y-catenin localisation in CD34+ haematopoietic 
progenitor cells with A) phase contrast, B) nuclear (blue), C) y-catenin (green), and D) 
merged images.
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A)

m r . f r - : - .

Figure 3.24 - The subcellular localisation of y-catenin throughout a CD34+ 
progenitor cell (overleaf).

Representative CLSM Z-stack series showing A) y-catenin localisation throughout an 
entire CD34+ progenitor cell, and the B) identified nuclear region as given by TO-PRO- 
3 staining.
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3.4.3.2 (3-Catenin is nuclear localised in CD34+ haematopoietic progenitor cells

In contrast to y-catenin, Figure 3.25 illustrates how /3-catenin expression was 

predominantly nuclear localised within CD34+ cells. This is particularly emphasised 

when viewing the merged images (D) where there is a considerable degree of overlap 

between the (yellow) /3-catenin signal and (blue) nuclear region. Interestingly, mid-field 

in Figure 3.25, there appeared to be a CD34+ cell in the final stages of cell division (two 

nuclei sharing a single cytoplasm) where the /3-catenin remained mostly nuclear. 

Another interesting observation seen also in Figure 3.25 was the presence of multiple 

foci o f intense /3-catenin staining. These images, plus further examples o f /3-catenin 

localisation in CD34+ cells can be browsed in Fields 4.2-4.5 o f Folder 4 on the 

supplementary disc within the Chapter 3 section.

As before for y-catenin, Figure 3.26 provides a CLSM Z-Stack series though a single 

CD34+ HSC/progenitor, which clearly demonstrates that /3-catenin distribution is 

ubiquitous through the nucleus of the cell and not just localised on a single Z-plane. A 

movie form of this Z-Stack series and others can be viewed in Z-Stacks 4.1-4.3 o f 

Folder 4 on the supplementary disc.
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Figure 3.25 - The subcellular localisation of /3-catenin expression in CD34+ 
progenitor cells.

Pairs of representative CLSM images of /3-catenin localisation in CD34+ haematopoietic 
progenitor cells with A) phase contrast, B) nuclear (blue), C) /3-catenin (yellow), and D) 
merged images.
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Figure 3.26 - The subcellular localisation of /3-catenin throughout a CD34+ 
progenitor cell.

Representative CLSM z-stack series showing A) /3-catenin localisation throughout an 
entire CD34+ progenitor cell, and the B) identified nuclear region as given by TO-PRO- 
3 staining.
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3.4.3.3 y-Catenin translocates to the nucleus o f CD15+ granulocytes

Granulocytes exhibited the highest levels of y-catenin observed in haematopoietic 

development and interestingly, although y-catenin remained for the most part cytosolic, 

increased levels of nuclear y-catenin were observed. It should be noted that there are 3 

types o f granulocyte, and CD 15 surface expression mainly identifies neutrophils and 

eosinophils, but not basophils. Also, of the total granulocyte pool present in normal 

peripheral blood, neutrophils make up over 90% (Hoffbrand et al., 2005b), making it 

likely that the wide range of maturity and morphology observed using this stain 

belonged to the neutrophil pool. However to be technically correct the term granulocyte 

will still be used for the remainder of this chapter. Figure 3.27 provides a representative 

picture of the varying states of granulocytic maturation encountered in the analysis. The 

immature form represented in Figure 3.27A, demonstrated a strong cytosolic expression 

of y-catenin but also showed an increased level of nuclear y-catenin compared to that 

observed in CD34+ cells. The part-differentiated (bi-lobed nucleus) granulocytic form in 

Figure 3.27B also harboured higher levels of nuclear y-catenin that are exemplified in 

the merged image (IV). Even in the terminally differentiated, hyper-segmented 

granulocytes seen in Figure 3.27C there remained a nuclear presence of y-catenin, as 

seen by the ‘grainy’ y-catenin signal observed in the TO-PRO-3+ nuclear regions.

Further examples of y-catenin localisation in granulocytic cells can be viewed in Fields 

5.2-5.7 o f disc Folder 5 in the Chapter 3 section. Also within this folder a number o f Z- 

Stack series (5.7-5.5) can be viewed in movie form, which demonstrate that y-catenin is 

ubiquitous throughout the granulocyte nuclei and not just localised on a single Z-plane.
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Figure 3.27 - The subcellular localisation of y-catenin expression in CD15+ 
granulocytic cells.

Representative CLSM images of y-catenin localisation in granulocytes with I) phase 
contrast, II) nuclear (blue), III) y-catenin (green), and IV) merged images. A) Example 
of undifferentiated, B) partially differentiated with bi-lobed nucleus and C) terminally 
differentiated granulocytes.
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3.4.3.4 (3-Catenin is localised similarly to y-catenin in CD 15+granulocytes

The levels o f /3-catenin were at their highest in granulocytic cells with enhanced 

intensity of /3-catenin staining in this subset of cells which correlated well with the high 

fluorescence levels detected from flow cytometry {Figure 3.22). As illustrated 

previously for y-catenin, a wide range of granulocyte morphology was examined 

{Figure 3.28A and B). Despite the increase in overall expression, the intracellular 

distribution mirrored that of y-catenin, that is; the expression was predominantly 

cytoplasmic but with some nuclear localisation, particularly in the undifferentiated 

granulocytes. As with y-catenin however, nuclear /3-catenin was still present in the 

terminally differentiated granulocytes. Interestingly, the foci o f /3-catenin staining seen 

in CD34+ cells were no longer frequently observed in these mature cells. For further 

images and Z-Stack series of /3-catenin localisation in granulocytes consult Folder 6 of 

the supplementary disc.
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Figure 3.28 - The subcellular localisation of /3-catenin expression in CD15+ 
granulocytic cells.

A) and B) Representative CLSM images o f /3-catenin localisation in granulocytes with
I) phase contrast, II) nuclear (blue), III) /3-catenin (yellow), and IV) merged images. 
Mixed fields containing examples of undifferentiated, partially differentiated and 
terminally differentiated granulocytes are shown.
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3.4.3.5 y-Catenin localisation is heterogenous in CD14+ monocytes

Although not as pronounced as the rise in expression observed from granulocytes, an 

increase in overall y-catenin expression was also observed in the monocyte population. 

The CD14+ immuno-stain identified a morphologically diverse subset and the y-catenin 

localisation was also heterogeneous. Figure 3.29A shows an example of low y-catenin 

expression (frequently observed in monocytes). Image Figure 3.29B shows monocytes 

where y-catenin was almost entirely nuclear excluded, whilst image Figure 3.29C 

exhibits a partial nuclear localisation (similar to the distribution observed in mature 

granulocytes). Interestingly, hyper-lobulated monocytes frequently displayed the 

distribution observed in images B and C.

Figure 3.29D, E and F  represent the most striking examples of y-catenin localisation in 

CD14+ monocytes (and indeed of any haematopoeitic cell observed in this study). 

Figure 3.29D represents an example whereby y-catenin expression appeared to be 

completely ubiquitous through the cell with no discrimination between cytosolic or 

nuclear regions. Figure 3.29E  and F  were representative of a small subset of monocytes 

(<10%) whereby the y-catenin was intensively nuclear localised. Curiously, it was 

nearly always the undifferentiated monocytes or those with a semi-differentiated 

‘kidney bean’ shaped nucleus that demonstrated this degree of nuclear translocation. 

This subset of cells is likely to represent the ‘shoulder’ o f high fluorescence referred to 

in section 3.4.2.1 and consistently observed in the monocyte histograms (see Figure 

3.18E). Further examples of the heterogeneous y-catenin localisation within monocytes 

are given in Folder 7 o f the supplementary disc within the Chapter 3 section.
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Figure 3.29 - The subcellular localisation of y-catenin expression in CD14+ 
monocytic cells.

Representative CLSM images of y-catenin localisation in monocytes with I) phase 
contrast, II) nuclear (blue), III) y-catenin (green), and IV) merged images. A range of 
monocyte morphology and y-catenin expression is indicated. Examples of A) low 
expression, B) nuclear exclusion, C) partial nuclear localisation, D overleaf) diffuse 
distribution and E + F) strong nuclear localisation of y-catenin are shown.
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3.4.3.6 (3-Catenin localisation is also heterogenous in CD 14^ monocytes

Figure 3.30A-F illustrate how the /3-catenin distribution was also heterogeneous in this 

morphologically variable subset. As for y-catenin, representative images of low 

expression, nuclear exclusion, partial nuclear localisation, diffuse distribution and 

nuclear localisation of /3-catenin are shown from Figure 3 .3 0 A -F respectively. 

Although the pattern of distribution corresponds to that of y-catenin there are subtle 

differences seen in Figure 3.30E and F  where the nuclear localisation is not to the same 

intensity as observed for y-catenin within cells of this morphology. This may explain 

why the ‘shoulder’ of high fluorescence observed in monocyte histograms {Figure 

3.18E) was only present for y-catenin staining and not for /3-catenin (data not shown). 

Further images and Z-Stack series of /3-catenin intracellular distribution in monocytes 

are present in Folder 8 of the supplementary disc.
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Figure 3.30 - The subcellular localisation of /3-catenin expression in CD14+ 
monocytic cells (overleaf).

Representative CLSM images of /3-catenin localisation in monocytes with I) phase 
contrast, II) nuclear (blue), III) /3-catenin (yellow), and IV) merged images. A range of 
monocyte morphology and /3-catenin expression is indicated. Examples of A) low 
expression, B) nuclear exclusion, C) partial nuclear localisation, D overleaf) diffuse 
distribution and E + F) strong nuclear localisation of /3-catenin are shown.
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3.4.3.7 y-Catenin is both similarly and differentially localised compared to (3- 

catenin in haematopoietic cells

A summary of the N:C/M ratios of y- and /3-catenin subcellular expression obtained 

from haematopoietic progenitor cells, granulocytes and monocytes are summarised in 

Figure 3.31 A and B. This shows that the degree of nuclear localisation of y-catenin in 

CD34+ cells was significantly lower than observed for /3-catenin in this cell type 

(10%±4 vs 58%±12, P<0.01, n=3). No significant difference in localisation was 

observed between y- and /3-catenin in CD15+ granulocytes (23%±8 vs 27%±9, n=3), this 

conformity apparently arose through opposing translocations of these catenins. 

Compared with CD34+ cells y-catenin demonstrated an increase in nuclear translocation 

in CD15+ cells (10%±4 in CD34+ cells vs 23%±8, .P<0.05) whilst /3-catenin exhibited a 

marked exit from the nucleus in granulocytes (58%±12 in CD34+ cells vs 27%±9 in 

CD15+ cells, i><0.01).

An average nuclear localisation o f 44%±16 (n=3) was observed for y-catenin in CD14+ 

monocytes was not significantly different from the localisation o f /3-catenin, 38%±12, in 

this cell type. As observed for granulocytic development, this apparently arose from a 

marked translocation of y-catenin to the nucleus (10%±4 in CD34+ cells vs 44%±16 in 

CD14+ cells, P<0.001) whilst /3-catenin shifted distribution to the cytosol/membrane in 

monocytes (58%±12 in CD34+ cells vs 38%±12 in CD14+ cells, P<0.05). The 

observation that y-catenin nuclear localisation was more heterogeneous than /3-catenin 

within this cell type is borne out by the larger standard deviation observed for y-catenin 

stained cells (16 vs 12, /*<0.01, n=3).

In summary, this section of data shows that y-catenin and /3-catenin are oppositely 

localised in early haematopoiesis suggesting distinct functions and independent 

regulation o f translocation in CD34+ cells. The distribution of both proteins is similar in 

granulocytic and monocytic differentiation despite reciprocal directions o f translocation. 

A small subset o f monocytes exhibited a unique and strong nuclear localisation of y- 

catenin suggestive of an exclusive role within this context.
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Figure 3.31 - Direct comparison of y-catenin and /3-catenin subcellular localisation 
in haematopoietic cells.

Summary bar graphs of A) y-catenin and B) /3-catenin subcellular localisation in 
haematopoietic cells (n=3 for each cell type). Percentage represents average protein 
localisation in that compartment per cell. Data represents mean ± 1SD obtained from 
each data set.



C haracterisation o f  y-Catenin and /3-Catenin Expression in Normal  ̂ *. . Chapter 3Haematopoiesis

3.5 Discussion

3.5.1 The expression profiles of catenins are similar in normal 

haematopoietic development

This study represents the first comprehensive assessment of catenin expression in 

human haematopoiesis, and has shown that these proteins may have roles beyond that of 

self-renewal in which they have been associated previously. The expression profiles of 

y- and /3-catenin in human CB and BM were very similar, initially suggesting that they 

may have similar functions. Generally, catenin expression was high in HSC/progenitor 

cells. Amongst differentiated cells, expression was highest in granulocytic and 

monocytic cells, lower in lymphocytes and absent in terminally differentiated 

erythrocytes. These data suggested catenins may serve particularly important functions 

in both early haematopoietic development and myelopoiesis. It remains unknown 

whether the coordinated regulation o f these proteins represents predominantly 

transcriptional or post-translational processes. Publicly available gene expression level 

data5 suggests mRNA levels of both y- and /3-catenin are retained during myeloid 

development; implicating post-translational mechanisms in the alteration of overall 

catenin level during development. To investigate the contribution o f post-translational 

mechanisms, of which y- and /3-catenin are known to share (Salomon et al., 1997; 

Aberle et al., 1997; Orford et al., 1997; Kodama et al., 1999; Sadot et al., 2000; Kolligs 

et al., 2000), one could employ inhibitors to key components o f the CDC and monitor 

the levels o f both catenins. Such inhibitors would include Lithium Chloride (LiCl) 

which is known to inhibit GSK-3 and CK-2 (Stambolic et al., 1996; Davies et al., 

2000), or peptide aldehydes (such as MG132) which are capable of inhibiting the 

proteasome (Lee and Goldberg, 1998). Alternatively, these components could also be 

‘knocked-out’ in vivo using transgenic mice to assess the contribution o f each in 

regulating catenin level during normal haematopoiesis.

Studies using murine models null for y- and/or /3-catenin suggest that these proteins 

have redundant roles in both short- and long-term haematopoiesis (Cobas et al., 2004;

5 http://www.ncbi.nlm.nih.gov/Reoprofiles
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Jeannet et al., 2008; Koch et al., 2008). In contrast, current data o f this study would 

argue for important roles in more than one stage of haematopoietic development. The 

shortcomings o f these papers are critically appraised in the more relevant discussion o f 

Chapter 5, however, these experiments focused on the general reconstitution capacity o f 

catenin-deleted haematopoietic progenitor cells, rather than any specific developmental 

abnormalities. This investigation was tailored to analyse catenin expression within 

specific developmental subsets, which was found to be dynamic, rather than 

uniform/absent (which could have been expected from functionally redundant proteins).

Evidence from this study conflicts with studies showing that /3-catenin protein 

expression decreases with development (Simon et al., 2005; Yeung et al., 2010). These 

studies analysed the expression o f endogenous /3-catenin protein using in vitro cultured 

CD34+ human haematopoietic progenitor cells. They showed, by time-course Western 

blotting, that although /3-catenin expression was readily detectable in early 

undifferentiated progenitor cells (in agreement with us), this expression was down- 

regulated and virtually absent in later differentiated cultures (in contrast to the 

upregulation observed in this study). Reasons for this apparent discrepancy may be 

related to sample preparation and the inclusion o f bulk haematopoietic cell populations, 

whereas this analysis was tailored to a specific lineage by flow cytometry. Further, 

similar experiments conducted in this study (featured later in Figure 5.12 o f Chapter 5) 

have shown (at worst) maintenance o f /3-catenin (and y-catenin) expression in later 

differentiated haematopoietic cultures from progenitor cell level.

The finding that /3-catenin expression is high in primitive haematopoietic progenitor 

cells is in keeping with /3-catenin’s well documented role as a transcriptional mediator 

of self-renewal within this cell type (Reya et al., 2003; Zhao et al., 2007; Holmes et al., 

2008; Congdon et al., 2008). Such a role in these cells has not been documented 

previously for y-catenin even though results from this study and others suggest y-catenin 

may have transcriptional activity (Simcha et al., 1998; Kolligs et al., 2000; Williams et 

al., 2000; Zhurinsky et al., 2000a; Muller-Tidow et al., 2004; Maeda et al., 2004; 

Fukunaga et al., 2005). No significant differences in expression o f y- or /3-catenin were
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observed between the two respective types o f primitive CD34+ haematopoietic cell 

(CD34+38'LT-HSC and CD34+38+ committed progenitor cells). If anything a slight rise 

in expression was associated with CD34+CD38+ progenitor cells which would fit with 

the apparent rise in expression associated with myeloid differentiation. These findings 

are in agreement with Jamieson et al. (Jamieson et al., 2004) who, using a similar 

method, detected no discernable differences in /3-catenin expression between HSC and 

committed progenitor cells.

The finding that y- and /3-catenin expression actually increases with haematopoietic 

differentiation is perhaps in contrast to the pattern of expression observed in other 

normal tissues. In the gut, a small pool o f stem cells (termed Paneth cells) reside in the 

intestinal crypts with high self-renewal potential and thus high /3-catenin expression 

(Batlle et al., 2002; Van de Wetering et al., 2002). These cells continually replenish the 

high-tumover o f differentiated villus epithelium which have abrogated self-renewal 

capability and thus low /3-catenin expression (Clevers, 2006).

Lower levels o f catenin protein were identified in lymphocytes, a finding partly backed 

up by Chung et al. (Chung et al., 2002) who noted a low level o f  /3-catenin protein in 

normal peripheral blood T-cells. Furthermore removal of y-catenin seems to have no 

consequences for thymocyte development (Goux et al., 2005). A number of studies 

have implicated canonical Wnt signalling in effective lymphopoiesis (Reya et al., 2000; 

Pongracz et al., 2006; Dosen et al., 2006; reviewed by Staal and Sen, 2008). The 

finding that expression of either catenin was completely absent in terminally 

differentiated erythrocytes is in agreement with a study o f the erythrocyte proteome that 

found no catenins present (Pasini et al., 2006). Indeed, there is little evidence that Wnt 

signalling can influence erythrocytes.

143 | P a g e



Characterisation of y-Catenin and /3-Catenin Expression in Normal
Haematopoiesis Chapter 3

3.5.2 Catenins are both similarly and reciprocally localised in normal 

haematopoietic development

The investigations into catenin subcellular localisation by CLSM were crucial in 

attempting to link function to the overall levels observed in the initial part o f the study. 

Intriguingly, y- and /3-catenin exhibit reciprocal localisation in CD34+ cells suggesting 

distinct functions and independent regulation o f translocation in early haematopoiesis. 

Nuclear exclusion of y-catenin at this early stage o f haematopoiesis would imply a 

structural role in these cells. A function with which y-catenin is known to participate is 

in adhesion both within adherens junctions (reviewed by Takeichi, 1990) and 

desmosomes (Koch and Franke, 1994; Lewis et al., 1997). However, to our knowledge 

such homotypic (same cell to cell) adhesive junctional structures are not present or 

relevant for haematopoietic cells. Heterotypic (joining of two different cell types) 

adhesion has previously been reported for haematopoietic cells (Allport et al., 2000) and 

is known to anchor HSC/progenitor cells within BM stroma. However whether this 

interaction is governed by cadherin-catenin complexes is unresolved and there remains 

considerable debate as to whether cadherins (e.g. N-cadherin) are actually expressed on 

HSC (Kiel et al., 2007; Hooper et al., 2007; Haug et al., 2008; Kiel et al., 2009; 

Hosokawa et al., 2010; Li and Zon, 2010). Irrespective of this the y-catenin signal 

detected in CD34+ cells by CLSM did not appear to be exclusively membranous. It is 

plausible that this cytosolic localisation may represent a primed reservoir o f y-catenin 

that is nuclear translocated upon myeloid differentiation.

That /3-catenin is predominantly nuclear localised in CD34+ cells strongly suggests a 

transcriptional function in early haematopoiesis. This is in keeping with the wealth of 

documented evidence implicating /3-catenin with a role in self-renewal in these cells 

(Reya et al., 2003; Willert et al., 2003; Jamieson et al., 2004; Zhao et al., 2007; Holmes 

et al., 2008; Kim et al., 2009; Nemeth et al., 2009), and this study is not the first to 

image /3-catenin in the nuclei o f HSC by CLSM (Jamieson et a l , 2004; Congdon et al.,

2008). An interesting observation made (but not so much for y-catenin) was the extra- 

nuclear presence of intense foci of/3-catenin staining (as seen in Figure 3.25A and B ). It 

is unknown whether these punctate aggregates represent genuine biological 

phenomenon or staining artefact. Such aggregates have been observed in other studies
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utilising /3-catenin immunofluorescence by CLSM and have been suggested to be 

indicative of genuine biological events. A study by Kim et al. (Kim et al., 2003b) 

concluded that the foci represent cytoplasmic vesicles containing /3-catenin and other 

Wnt signalling components such as Axin and DVL. Alternatively, a study by Dashwood 

et a l (Dashwood et al., 2005) demonstrated that the aggregates contained /3-catenin 

localised within lysosomal vesicles.

The presence of y- and /3-catenin in the nuclei o f differentiated granulocytes in similar 

nuclear/cytosolic (N/C) ratios is particularly interesting for two reasons. Firstly, the 

localisation o f both catenins suggests reciprocal directions o f translocation from 

HSC/progenitor level. That is, y-catenin translocated from cytoplasm to nucleus, whilst 

/3-catenin appeared to have shifted from nucleus to cytoplasm. This implies that a tightly 

regulated mechanism exists governing the nuclear entry or exit o f both catenins in 

normal haematopoiesis, and that this system can act independently for each catenin 

(discussed further below). Secondly, the increased presence o f y-catenin, and retained 

expression o f /3-catenin, in the nucleus would insinuate a potential transcriptional role 

within granulocytes. Although infrequently reported, translocation of y-catenin has been 

observed elsewhere in normal development whereby nuclear localisation of y-catenin 

was found to be important for anterior axis duplication within developing Xenopus 

embryos (Kamovsky and Klymkowsky, 1995; Rubenstein et al., 1997). In granulocytes, 

the highest level o f nuclear catenin was evident in relatively immature CD15+ subsets 

which had just began, but not finished, the process of nuclear segmentation (see Figure 

3.27B). A  study by Serinsoz et al. (Serinsoz et al., 2004) appeared to partly corroborate 

these observations by also noting high /3-catenin expression in immature granulocytic 

cells, albeit by immunohistochemistry rather than CLSM. This finding would suggest 

that any potential transcriptional activity of y- and /3-catenin would be more relevant to 

early granulopoietic development. Such a hypothesis is interesting given that severely 

reduced LEF-1 (of which both catenins are known to bind in order to transduce a Wnt 

stimulus) in granulopoiesis leads to congenital neutropenia (CN; (Skokowa et al., 

2006)). In this study the highest level o f LEF-1 in healthy individuals was present in 

promyelocytes (similar to catenins) and CN arrested promyelocytes exhibited defective 

expression o f the well established catenin target genes cyclinDl (Shtutman et al., 1999),
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myelocytomatosis oncogene (c-myc or myc; (He et al., 1998)) and survivin (Kim et al., 

2003a). However to infer such a connection would be highly speculative, especially 

given that LEF-1 has been shown to have /3-catenin independent activity through the 

transforming growth factor (3 (TGF-/3) (Nawshad and Hay, 2003) and Notch (Ross and 

Kadesch, 2001) pathways, and may be activated by other unknown catenin-like 

molecules (reviewed by Staal and Luis, 2010).

The CD14+ monocytes represented the most morphologically diverse subset analysed 

and the distribution o f catenin was also heterogeneous. O f particular interest were the 

large degrees o f nuclear translocation exhibited by y-catenin within these cells, indeed 

the largest observed o f all the analysed subsets. Specifically, a rare subgroup (<10%) of 

the CD14+ monocyte pool exhibited intense and heavy nuclear localisation o f y-catenin 

(featured in Figure 3.29E  and F). This subgroup is highly likely to represent cells 

responsible for generating the ‘shoulder’ o f  intense fluorescence observed consistently 

in monocyte MFI histograms (example in Figure 3.18E). Although distribution o f (3- 

catenin was similar in monocytes, nuclear localisation to the same intensity was not 

observed suggesting an exclusive transcriptional role for y-catenin within these cells. 

Incidentally, a study by Tickenbrock et al. (Tickenbrock et al., 2006) would agree with 

the distribution of /3-catenin observed in these cells, with their investigations also 

detecting cytosolic and nuclear forms by CLSM.

Initially, it was queried whether this unique monocytic sub-group could represent an 

‘activated’ population following exposure to a stimulus such as bacterial 

lipopolysaccharide (LPS), interferon-y (IFN-y) or tumour necrosis factor-o; (TNF-cv), 

thus implicating y-catenin in a potential immune function. Such a role has been 

implicated for /3-catenin and Wnt signalling previously in monocytes (Monick et al., 

2001; Staal et al., 2008; George, 2008; Otero et al., 2009). However, an overnight 

incubation with IFN-y appeared to not significantly promote the nuclear translocation o f 

y-catenin in isolated human monocytes (data not shown). Alternatively, given the 

consistent nuclear morphology (smooth oval or often kidney-bean shaped) of this 

subgroup, these monocytes could represent a developmental intermediary (as previously
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characterised by (Meuret et al., 1974)), requiring the transcriptional capabilities o f y- 

catenin at this stage o f monocyte/macrophage differentiation. However, recent studies 

have suggested that the make-up of the monocyte population is actually far more 

complex than initially presumed (reviewed by Gordon and Taylor, 2005 and Robbins 

and Swirski, 2010) and therefore these cells could represent a developmental subset 

(though this would have to be substantiated through use o f additional markers). There 

seems to be a degree of consensus amongst a number o f studies that catenins, and more 

general Wnt signalling, contribute to the trans-endothelial migration o f monocytes 

(Sandig et al., 1997; Allport et al., 2000; Thiele et al., 2001; Tickenbrock et al., 2006; 

Lee et al., 2006). Indeed the level o f y-catenin was actually shown to fluctuate within a 

VE-cadherin adhesion complex during this physiological process (Allport et al., 2000). 

One study showed frizzled receptors (which bind a Wnt ligand) expressed on 

monocytes, which no doubt contributed to the Wnt-3A mediated increase o f /3-catenin 

observed in these cells (Tickenbrock et al., 2006). This reaction was shown to increase 

the adhesive properties of monocytes to endothelial layers, although a lack o f Wnt target 

gene expression (c-myc and connexin43) implied this was not a transcriptional-mediated 

effect of /3-catenin. In a similar investigation by Lee et al. (Lee et al., 2006) lithium 

chloride treatment of THP-1 cells (monocytic cell line) enhanced adhesion to 

endothelium, but again this could not be attributed to any transcriptional upregulation o f 

established adhesion molecules. Conversely, Thiele et a l (Thiele et al., 2001) proposed 

that /3-catenin could not be involved with cadherin-mediated adhesion because they 

failed to detect any such molecules on human monocytes, and furthermore failed to 

observe any activation o f the TCF/LEF promoter upon induction o f /3-catenin. An 

adhesive function for y-catenin in this unique subgroup o f monocytes does not seem 

likely from findings o f this study given that y-catenin is intensely nuclear localised. 

Such a function would require y-catenin to be distributed to the membrane as seen for a- 

and /3-catenin during this process (Sandig et al., 1997), though the monocytes in these 

experiments were not in contact with endothelium.
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3.5.3 Multiple mechanisms could regulate the nuclear localisation of 

catenin in haematopoietic development

The movement of proteins (especially those as large as catenin ~85-90kDa) in and out 

of the nucleus is a tightly regulated process. In the case of the classical import pathway, 

a protein’s nuclear localisation sequence (NLS) binds an NLS receptor comprising two 

cytosolic proteins: importin-ce and importing, which subsequently docks the complex to 

a nuclear pore by binding nucleoporins (reviewed by Nigg, 1997). The protein is then 

translocated through the nuclear pore utilising the small soluble GTPaseRan/TC4 

(Melchior et al., 1993; Moore and Blobel, 1993) and plO (Moore and Blobel, 1994; 

Paschal et al., 1996), in an energy-dependent process. Studies have suggested that the 

central armadillo domains of /3-catenin (and hence y-catenin) are sufficiently similar to 

the HEAT6 repeats of the importing central domain to allow nuclear translocation of 

these proteins through direct interaction with nuclear pore proteins (Fagotto et al., 1998; 

Yokoya et al., 1999). However, this has been challenged more recently by a study 

showing /3-catenin cannot associate with nuclear pore proteins (Suh and Gumbiner, 

2003), and it seems unlikely that unregulated entry of /3-catenin would be desirable in 

normal cells. Indeed this study and others (Cong and Varmus, 2004; Krieghoff et al.,

2006), are incompatible with unregulated entry of p and y-catenin and it is doubtful that 

NLS or even nuclear export sequences (NES) exist for either catenin.

Nuclear chaperone proteins have been documented to assist nuclear translocation or 

export of proteins. A wealth o f candidates have been proposed to regulate the nuclear 

localisation o f catenin, including APC (Henderson, 2000; Henderson and Fagotto, 

2002), Axin (Cong and Varmus, 2004; Wiechens et al., 2004), Chibby (Li et al., 2010), 

mothers against decapentaplegic homo log 3 (Smad-3) (Zhang et al., 2010), menin (Cao 

et al., 2009), zinc finger protein 639 (ZASC-1) (Bogaerts et al., 2005), insulin-like 

growth factor-1 (IGF-1) (Chen et al., 2005), Presenilin-1 (Raurell et al., 2006), pygopus 

(Townsley et al., 2004a) and B-cell CLL/lymphoma-9 protein (BCL-9) (Krieghoff et 

al., 2006). Interestingly, TCF-4 (Maeda et al., 2004; Krieghoff et al., 2006) and LEF-1

6 HEAT repeats are tandemly repeated, 37-47 amino acid long modules occurring in a number of 
cytoplasmic proteins, including the four name-giving proteins huntingtin, elongation factor 3 (EF3), the 
65 Kd alpha regulatory subunit of protein phosphatase 2A (PP2A) and the yeast PI3-kinase TORI. HEAT 
repeats form a rod-like helical structure and appear to function as protein-protein interaction surfaces.
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(Behrens et al., 1996; Huber et al., 1996; Simcha et al., 1998) have also been shown to 

translocate y-catenin and /3-catenin to the nucleus. Given that these molecules are the 

target complex for Wnt signalling, and the fact they carry an NLS, raises the intriguing 

possibility o f a ‘piggy back’ mechanism for catenins en route to transducing a Wnt 

signal. The finding that some o f the aforementioned chaperones interact with /3-catenin, 

but not y-catenin, would fit with the apparent reciprocal localisation of /3-catenin and y- 

catenin observed during haematopoietic development. Since none o f the above 

candidate shuttling mechanisms have been examined within a haematopoietic context it 

is difficult to identify which of these potential mechanisms are operating within this 

context.

Post-translation modification o f /3-catenin is also known to affect its translocation. 

Whilst serine/threonine phosphorylation o f the catenin NH2-terminus targets the 

molecule for degradation, phosphorylation (especially of tyrosine residues) has been 

reported to promote it’s nuclear translocation and enhance transcription ( Bonvini et al., 

2001; Piedra et al., 2001; Ilan et al., 2003; Bourguignon et al., 2007; Wu et al., 2008). 

This has also been demonstrated in a haematopoietic context with FLT-3 (Kajiguchi et 

al., 2007). In AML, FLT-3 internal tandem duplication and tyrosine kinase domain 

mutations (FLT3-ITD and FLT3-TKD, respectively) were shown to increase tyrosine 

phosphorylation o f /3-catenin, relative to wt FLT-3 receptor, leading to nuclear 

accumulation.

As well as nuclear import mechanisms, it is likely that nuclear export mechanisms may 

be just as relevant for regulating nuclear levels of y- and /3 -catenin in normal 

haematopoietic subsets. Many o f the candidate chaperone proteins described in the 

above section have also been linked with transporting catenin out o f the nucleus 

including APC (Henderson, 2000), Axin (Wiechens et al., 2004), and menin (Cao et al.,

2009). Additionally, a novel nuclear /3-catenin binding protein, Ran binding protein 3 

(RanBP-3), was discovered by Hendriksen et al. to antagonise TCF-4 mediated 

transactivation in human cell lines by re-localising active /3-catenin from the nucleus to 

the cytoplasm (Hendriksen et al., 2005). Interestingly, one report has shown that whilst
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APC and Axin enrich /3-catenin in the cytoplasm, and TCF and /3-catenin co-activators 

(BCL9 and Pygopus) increase nuclear /3-catenin, they do not accelerate the export or 

import rate of /3-catenin (Krieghoff et al., 2006). This would suggest that regulation o f 

/3-catenin (and indeed y-catenin) subcellular localisation could represent a dynamic 

balance between shuttling and retention. Thus, it is tempting to speculate that many o f 

the haematopoietic cells exhibiting high nuclear catenin may also harbour high levels o f 

the nuclear binding partners such as TCF4, pygopus and BCL-9.

Finally, in a related theme, junctional proteins (such as cadherin and Q'-catenin) have 

been frequently shown to negatively regulate the nuclear level o f catenin (and hence 

Wnt signal transduction), by sequestering it from the nucleus and to adhesion 

complexes at the cell membrane instead (Fagotto et al., 1996; Simcha et al., 1998; 

Orsulic et al., 1999; van Hengel et al., 1999; Giannini et al., 2000; Gottardi et al., 2001; 

Stockinger et al., 2001; Nelson and Nusse, 2004; Gottardi and Gumbiner, 2004). 

Establishment o f the cadherin expression profile (type and level) for haematopoietic 

cells (of which there is much debate) would first have to be performed before such a 

mechanism could be proposed for the regulation o f catenin localisation observed in 

developmental subsets.

In summary, this chapter has provided the first comprehensive assessment o f the 

expression of y- and /3-catenin in normal haematopoiesis. Most notably, it seems neither 

of the proteins has HSC/progenitor restricted expression and are thus likely to serve 

roles in more developed haematopoietic cells. This study has also raised important 

questions of the precise role y-catenin in myeloid differentiation, and how subcellular 

localisation o f catenin is regulated, issues of which are addressed in Chapter 5. 

However, it is next important to examine if, and how, normal expression o f these 

proteins is dysregulated in acute myeloid leukaemia which is investigated in the 

following chapter.
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4 - Characterisation of y-Catenin 
Expression in Acute Myeloid 
Leukaemia and Implications 

 for Patient Survival
4.1 Introduction

The previous chapter examined the developmental expression of y-catenin and 

determined the subcellular localisation of expression. Such information, however, is not 

available for primary AML blasts. Evidence from this laboratory and others suggests y- 

catenin is dysregulated in AML (Zheng et al., 2004; Muller-Tidow et al., 2004; Tonks 

et al., 2007), particularly in the presence of aberrant translocation products (see 

introductory section 1.3.3% but little is known of its pathological relevance.

It remains to be determined if y-catenin protein is dysregulated in primary AML blasts 

and how this compares with normal levels in haematopoietic progenitor cells. If  protein 

expression is abnormally high (which the mRNA levels would suggest (Tonks et al.,

2007)) then it is necessary to characterise the subcellular location of this protein within 

these malignant cells. Knowledge o f the intracellular distribution provides an indication 

o f the functional significance o f overexpression with a nuclear presence implying a 

transcriptional function. The previous chapter has suggested not only that y-catenin (and 

/3-catenin) is capable o f shifting localisation with development, but that this is a tightly 

regulated process in normal haematopoiesis. How this system is maintained, if at all, in 

AML cells remains unknown.

The inappropriate nuclear translocation o f /3-catenin in colon cancer, arising from 

mutations in the adenomatous polyposis coli (APC) protein (Korinek et al., 1997; Morin 

et al., 1997), is a well characterised pathological mechanism, although there appears to 

be no clear consensus on the prognostic influence (Hugh et al., 1999; Chung et al.,
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2001; Baldus et al., 2004; Wong et al., 2004; Wong et al., 2005; Martensson et al., 

2007; Elzagheid et al., 2008; Horst et al., 2009). Whether y- or /3-catenin have a 

pathological role in AML is not well established, although dysregulated /3-catenin 

expression has previously been identified in AML blasts and linked with an adverse 

prognosis (Ysebaert et al., 2006; Xu et al., 2008). However, for such a heterogeneous 

disease, these studies were very small and thus unlikely to be definitive.

How y-catenin expression (mRNA or protein) contributes to the pathology o f AML is 

thus far unanswered and by no means (despite homology with /3-catenin) predictable. 

Although one study has suggested y-catenin is a mediator of self-renewal in 

leukaemogenesis (Zheng et al., 2004) (supported by unpublished data from this 

laboratory, see Appendix 6), other studies in different disease settings have associated y- 

catenin with a tumour suppressor role (Aberle et al., 1995; Simcha et al., 1996; 

Charpentier et al., 2000; Polychronopoulou et al., 2002; Breault et al., 2005; Misaki et 

al., 2005; Shiina et al., 2005). The large number of patient samples and clinical 

information available through the AML trials will allow this question to be addressed.

Finally, evidence exists (in other contexts) that these proteins are capable o f influencing 

not only total levels of one other, but also their respective subcellular locations 

(Salomon et al., 1997; Miller and Moon, 1997; Simcha et al., 1998; Sadot et al., 2000; 

Zhou et al., 2007; Li et al., 2007). Therefore if the stringent regulation o f /3 and y- 

catenin observed in normal haematopoiesis is lost in AML this could give rise to 

cooperating or even opposing functions in AML. For this reason it is important to 

analyse the expression and location of both these catenins.
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4.2 Aims

In order to establish whether y-catenin expression is dysregulated in AML, and whether 

this has prognostic implications for the patient, the aims of this chapter were:

1) To validate a large cohort of AML patient y-catenin mRNA values, and 

determine the effect o f mRNA expression on patient survival by correlation with 

AML clinical parameters.

2) To establish how y-catenin protein is expressed in AML blasts relative to normal 

haematopoietic progenitor cells.

3) To examine the subcellular localisation o f y-catenin expression in AML blasts 

and compare this with /3-catenin, and then to observations made for normal 

haematopoiesis.

4) To investigate the significance of the subcellular localisation of y- and /3-catenin 

protein on AML patient survival using a similar analysis to above (point 1).

4.3 Materials and Methods

4.3.1 The statistical analysis of the effect of y-catenin mRNA expression on 

AML patient survival

4.3.1.1 The validation o f Affymetrix microarray mRNA values by qRT-PCR

Before a large cohort of patient y-catenin mRNA expression values could be used for 

patient survival analysis it was first necessary to validate these values using an 

alternative mRNA assay. Affymetrix (California, USA) Micro Array Suite version 5 

(MAS5.0)-normalised (as described in Liddiard et al., 2010) y-catenin mRNA values 

from Affymetrix HGU133A GeneChip® hybridization were validated using quantitative 

Reverse Transcriptase - Polymerase Chain Reaction (qRT-PCR).

Patient RNA (of high quality, as assessed by Agilents Bioanalyser 2000 as in (Haferlach 

et al., 2010)) isolated by Trizol lysis and reverse transcribed into cDNA as described
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elsewhere (Tonks et al., 2007; Haferlach et al., 2010), was already available from a 

random selection o f 19 AML patient samples (from the main cohort of 243 patients in 

Table 4.2 below). For each AML sample, a 10/d qRT-PCR reaction was prepared 

containing 50ng cDNA, 1/d FastStart DNA SYBR Green I master mix (Roche), 3mM 

MgCb, 500nM forward and reverse y-catenin or ABL (Abelson murine leukaemia viral 

oncogene homo log 1) primers (Eurofins MWG Operon, Ebersberg, Germany, see Table 

4.1) and made to volume with water. A 40-cycle qRT-PCR was performed on a 

LightCycler 2.0 (Roche) with an annealing temperature of 60°C. The relative level of y- 

catenin mRNA in each AML patient sample was assessed based on the 2'AACt method 

(Schmittgen and Livak, 2008), summarised in Equation 4.1 below. Briefly, the level of 

y-catenin mRNA was normalised between samples by taking the Cj (cycle threshold) 

value (the cycle number whereby the fluorescence detection becomes greater than 

background and exponential) and subtracting the Cj level obtained from a housekeeping 

internal control gene, in this case ABL. The degree o f correlation between the two 

techniques was assessed using Pearson’s correlation coefficient (R) with the software o f 

section 2.8.

Relative mRNA level GOI = C tg o /  -  C t / c g

Where;

Ct = Cycle threshold 
GOI = Gene of interest 
ICG = Internal control gene

Equation 4.1 -  Equation based on 2'AACt method for calculating relative mRNA 
level for a gene of interest

Table 4.1 - Primers used for qRT-PCR validation of Affymetrix microarray.

5 ’-ACTGAACTCC ACCGACCAAC-3 ’ 3’-CACCCTGGAGAGAGAAGCTG-5’

5 ’-CCCAACCTTTTCGTTGC ACTGT-3 ’ 3 ’-CGGCTCTCGGAGGAGACGTAGA-5 ’
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4.3.1.2 The clinical endpoints used in statistical analysis o f  AML patient 

survival

To determine the relevance of y-catenin mRNA dysregulation on AML patient 

prognosis, merged MAS5.0 normalised RNA values previously obtained from 

Affymetrix HGU133A and HGPlus 2.0 GeneChip® hybridisations (Tonks et al., 2007) 

were correlated with available patients survival data for 243 AML patients enlisted in 

the MRC/NCRI AML trials 10 to 15. Demographic and clinical details of the AML 

patient cohort, such as age, sex and French-American-British (FAB) type are featured in 

Table 4.2 below.
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Table 4.2 - Clinical data for 243 AML patients included in y-catenin mRNA survival analysis.
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4.3.1.3 Statistical techniques used to assess AML patient survival

Statistical analyses were kindly assisted by Dr. Robert Hills using a previously 

described statistical model (Gale et al., 2005) and SAS version 9.1.3 software (SAS 

Institute Inc., Buckinghamshire, UK). The Wilcoxon 2-sample test (for continuous 

data), Mantel-Haenszel test for trend (for ordinal data), and the chi-square test (for 

heterogeneity) were used to test for differences in clinical and demographic data by y- 

catenin mRNA level. Kaplan-Meier life tables were constructed for survival data and 

were compared by means o f the log-rank test. Follow-up was up available for the vast 

majority o f  patients, and the small number of patients lost to follow-up were censored at 

the date they were last known to be alive. Analysis o f time-to-event data was performed 

using standard log-rank methods and odds ratio (OR) plots. Univariate analysis was 

used to examine the association between y-catenin mRNA level and CR rate, and 

univariate Cox models were used to analyze OS, DFS, and RR. Univariate models were 

adjusted for known baseline diagnostic variables including age, white blood cell count, 

sex, WHO performance status, de novo/secondary disease and cytogenetic risk group, 

with interaction for each with y-catenin mRNA level tested using Pearson’s correlation 

coefficient (R). Because o f multiple testing, the level o f significance was set at / ><0.05 

for all tests. All P  values are 2 tailed. Odds Ratio (OR) and 95% confidence intervals 

(Cl) are quoted where relevant. In all cases an OR <1 indicates a benefit for patient 

prognoses, whilst OR >1 are indicative o f adverse patient prognoses.

4.3.2 Source of primary AML blasts and normal CD34+ haematopoietic 

cells

Peripheral blood (PB) or bone marrow (BM) was obtained from AML patients enrolled 

in the MRC-NCRI AML clinical trials following informed consent. Mononuclear cells 

(containing AML blasts) were isolated and cryopreserved in the tissue bank according 

to clinical trial protocol as previously described (Pallis et al., 2001). AML samples were 

rapidly thawed (2.2.5) and assessed for a minimum of 75% viability as judged by light 

microscopy prior to use in experiments. Normal human neonatal cord blood (CB) was 

obtained as described in section 2.2.3 and the CD34+ haematopoietic progenitor cell 

population enriched to over 85%, as described in section 2.4.
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4.3.3 The determination of y-catenin protein level in AML blasts versus 

normal CD34+ haematopoietic progenitor cells

To establish whether y-catenin protein expression (like mRNA) was dysregulated in 

primary AML blasts, total levels were compared to that from normal human CD34+ 

haematopoietic progenitor cells. Whole cell protein homogenate was isolated (2.6.1) 

from 54 individual AML blast samples (for patient demographic and clinical details see 

Table 4.3) and CD34+ cells (from 3 separate CB samples) and Western blotted as 

described in sections 2.6.3-2.6.7. To compare y-catenin protein expression (as 

determined by densitometry) from AML blasts and CD34+ cells, all samples were first 

normalised to /3-actin to control for minor differences in protein loading. To control for 

variation in transfer and detection sensitivity between gels, actin-normalised values 

were further normalised to the signal obtained from the 20kDa band on the protein 

ladder. This marker was always derived from the same batch and loaded in the same 

way (2 0 /d) on each gel, thus acting as a marker of consistency on each gel immuno- 

blotted. A K562 lysate served as a positive control for the primary y-catenin antibody, 

as the previous chapter has shown these cells contain high levels of endogenous y- 

catenin.



Characterisation of y-Catenin Expression in Acute Myeloid
Leukaemia and Implications for Patient Survival Chapter 4

Table 43 - Clinical data for the 54 AML patients included in whole blast y-catenin protein analysis.
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4.3.4 The determination of y- and j3-catenin subcellular location in AML 

blasts

The subcellular localisation o f /3 and y-catenin in AML blasts were assessed by CLSM 

(y-catenin only) and Nuclear/Cytosol (N/C) Western blotting as follows below.

4.3.4.1 The determination o f y-catenin subcellular expression in AML blasts by

CLSM

For subcellular expression analysis by CLSM, cells were pre-labelled with the CD34-PE 

mouse monoclonal antibody featured in Table 3.2 using the associated method of 

section 3.3.5.2. AML cells were then intracellularly stained for y-catenin using the 

optimal conditions highlighted in section 3.3.5.3 with the necessary modifications 

required for CLSM analysis as described in 3.3.7.3. CLSM images were acquired and 

analysed as before in sections 3.3.7.4 and 3.3.7.5, respectively. The blasts of five AML 

patient samples were analysed in total all o f which were FAB type MO or M l.

4.3.4.2 The determination o f  y- and (3-catenin subcellular localisation in AML

blasts by Western blotting

For subcellular analysis o f catenin by N/C Western blotting, 59 AML samples were 

processed as described in methods section 2.6.2. Demographic and clinical details were 

available for 49 patients of this cohort and are featured in Table 4.4. Nuclear and 

cytosolic homogenate were Western blotted and analysed as in sections 2.6. 3-2.6. 7. The 

mouse monoclonal antibodies used to detect y- and /3-catenin by immuno-blotting are 

described in section 3.3.3. The normalisation technique described above (4.3.3) was 

again applied to allow y- and /3-catenin localisation comparisons between AML samples 

blotted on different gels. The correlations between cytosolic/nuclear y-catenin and or 

cytosolic/nuclear /3-catenin, was assessed using Spearman’s rank correlation coefficient 

(R) test and the degree of significance obtained via the Student’s t-test.
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Table 4.4 - Clinical data for 49 AML patients included in N/C fractionated catenin protein analysis
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4.3.5 The correlation of Affymetrix microarray mRNA values with y- 

catenin protein from Western blotting

It was necessary to determine any correlation between y-catenin mRNA and y-catenin 

protein level within AML blasts. To examine this, cytosolic protein values from the 

fractionated AML samples of section 4.3.4 {Table 4.4), were compared with 

corresponding microarray values (obtained from section 4.3.1), where available. The 

degree of correlation between normalised y-catenin mRNA and normalised cytosolic 

protein expression was assessed by means of a Spearman’s rank correlation coefficient 

(R) test and the degree o f significance obtained via the Student’s t-test.

4.3.6 The effect of y- and j8-catenin localisation on AML patient prognosis

To investigate whether the specific localisation of y- or /3-catenin protein to the 

cytoplasm or nucleus had any implications for AML prognosis these values were used 

for survival analyses. Respective, normalised cytosolic and nuclear protein values for y- 

and /3-catenin, were generated from the 49 patients (featured in Table 4.4) o f section 

4.3.4, were each correlated with survival parameters measured within the MRC/NCRI 

AML trials, exactly as outlined above {4.3.1.2 and 4.3.1.3).

4.4 Results

4.4.1 The validation of microarray derived y-catenin mRNA levels by 

qRT-PCR

In order to utilise y-catenin mRNA values from a cohort o f 243 AML trial patients for 

survival analyses it was first necessary to validate these values using qRT-PCR. A 

random selection o f 19 patients from within the bigger cohort featured in Table 4.2 were 

compared for y-catenin expression between microarray and qRT-PCR. A highly 

significant correlation (R=0.85, P<0.001) was found between MAS5.0 normalised RNA 

values from the Affymetrix HGU133A GeneChip® hybridization and the relative y- 

catenin mRNA level obtained from qRT-PCR cycle threshold analysis {Figure 4.1). 

This finding would suggest that the level of y-catenin mRNA detected by microarray 

closely reflects the actual level present within primary AML patient blasts.
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Figure 4.1 - The validation of y-catenin mRNA detection by m icroarray using 
qRT-PCR.

The correlation between Affymetrix microarray and qRT-PCR in the detection o f y- 
catenin mRNA in AML blasts of 19 patients. MAS5.0 normalised y-catenin values from 
each patient by microarray are compared to ABL normalised y-catenin values for the 
corresponding sample obtained from qRT-PCR. Pearson’s correlation coefficient (R) 
gives the degree of correlation between the two techniques,* /*<().0 0 1 .
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4.4.2 y-Catenin mRNA expression is associated with poor prognosis in 

AML

To examine the consequences o f y-catenin mRNA expression on AML patient survival, 

MAS5.0 normalised RNA values previously obtained from Affymetrix HGU133A and 

Plus 2.0 GeneChip hybridisations (Tonks et al., 2007), were correlated with clinical data 

for the same 243 AML patients enlisted in the UK AML trials. It should be noted that 6  

patients that were not intensively treated were removed from the final analysis, in order 

to avoid any survival bias.

Statistical analysis o f AML patient demographic data (median follow up 64 months, 

range 7 months to 17 years) showed that y-catenin gene expression was significantly 

associated (PO .O l) with favourable cytogenetics (chromosomal aberrations indicative 

of a good prognosis including t( 15; 17), t(8;21) and inv(16)). Although not reaching 

statistical significance, there also appeared to be trends for y-catenin gene level to be 

linked with a better WHO performance status (P=0.07) and lower AML patient age 

(P=0.l).

Following adjustment of the clinical data for the known baseline diagnostic variables 

outlined in section 4.3.1.3, statistical analysis o f AML survival data revealed a 

significant reduction in CR rate in association with higher y-catenin mRNA levels (OR 

1.25 per log increase, P<0.05, Cl 1.03-1.51). Importantly, the analysis further 

demonstrated that this lower CR rate appeared to arise from more resistant disease (OR 

1.60 per log increase, P<0.01, Cl 1.18-2.18). No discernible effects on RR, DFS or OS 

for AML patients were observed.

This data imply that although y-catenin mRNA expression is associated with favourable 

prognostic indicators, as a single entity it is associated with an adverse prognosis for the 

AML patient.
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4.4.3 y-Catenin protein level is dysregulated in AML blasts versus normal 

CD34+ haematopoietic cells

To gauge the overall level of y-catenin protein dysregulation in AML blasts, relative 

levels from whole cell extracts of AML patient samples were compared to the levels 

present in normal human cord blood derived CD34+ haematopoietic progenitor cells. 

Owing to the low frequency of CD34+ cells within cord blood and the limited 

availability o f sufficiently large samples, just 3 samples were available from which to 

generate protein lysates. Figure 4.2A shows that y-catenin was abundant within these 

cells (in accord with 3.4.2.1). Further, a similar multiple-banding pattern as previously 

observed for the protein lysates of AML cell lines was also observed {Figure 3.10). 

These samples generated a mean normalised y-catenin protein expression value o f 

10.3±4.9.

Of the 54 AML samples Western blotted 10 were removed from analysis because the 

protein level was too low in concentration to reliably quantitate (y-catenin and (3-actin) 

leaving 44 samples in total. As can be seen from the representative Western blot 

featured in Figure 4.2B, the range o f protein expression and banding observed for y- 

catenin within the AML samples was heterogeneous and because o f this the overall y- 

catenin expression from the AML cohort (mean 32.8, med 2.2, range 0.2-279.0, n=44) 

was not significantly different from values obtained from normal CD34+ progenitor 

cells (mean 10.3, med 11.4, range 5.0-14.6, n=3, P=0.2). However, taking a threshold o f 

2 standard deviations above the normal mean ( X  + 2SD) as a marker for y-catenin 

overexpression, it can be observed from Figure 4.3 that 9 o f 44 AML samples fall into 

this overexpression category. Using the same method but subtracting 2SD from mean ( X  

- 2SD) a similar proportion (8/44) of blasts were found to underexpess y-catenin relative 

to normal CD34+ progenitor cells.

These data show that although the majority o f AML samples express y-catenin within a 

normal range, around 20% of AML patients demonstrate over- and underexpression o f 

the protein.
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Figure 4.2 - The expression o f y-catenin protein in norm al C D 34+ cells and A M L  
blasts.

A) Representative Western blot showing y-catenin protein expression obtained from 
normal haematopoietic progenitor cells (n=3) and B) from AML blasts (n=15). Patient 
samples marked with * indicate an overexpression of y-catenin protein relative to the 
normal CD34+ cells. Actin detection shows relative protein loading between samples.
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Figure 4.3 - Comparison of y-catenin protein expression between normal CD34 
cells and AML blasts.

Normalised protein values obtained from normal human cord blood derived CD34+ 
progenitor cells (n=3) and AML blasts (n=44) as determined from densitometric 
analysis. Black and red solid lines represent respective means from each cohort, whilst 
black dashed line amongst AML values represents the threshold o f X + 2SD obtained 
from normal cells, used to define y-catenin overexpression.
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4.4.4 The subcellular localisation of y- and /3-catenin expression in AML 

blasts

4.4.4.1 y-Catenin is aberrantly localised to the nucleus ofMO/1 AML blasts

To assess whether y-catenin protein localisation in AML was different from that 

observed in normal haematopoiesis, subcellular localisation in normal CD34+ progenitor 

cells (3.4.3.1) was compared to that observed in AML blasts. For a fair comparison, 

AML blasts were required which, developmentally, most closely resembled their normal 

CD34+ progenitor cell counterparts. For this, MO or Ml FAB-type samples were utilised 

since these undifferentiated leukaemias are developmentally most closely matched with 

CD34+ cells.

As described in section 3.4.3.7, normal CD34+progenitor cells demonstrated an average 

nuclear y-catenin localisation of 10%±4 (n=3) (Figure 4.4A). The average nuclear 

localisation of y-catenin in MO/1 blasts was 18%±7 (n=5) which was significantly 

greater (P<0.05). Representative images of CD34^ AML blasts displaying y-catenin 

nuclear localisation are exhibited in Figure 4.4B, and are also present (plus further 

images) in the Chapter 4 section of the supplementary disc, within Folder /, Fields 

1.2-1.8. These images clearly show a ‘hazy’, ‘grainy’ y-catenin signal within the (TO- 

PRO-3 ) nuclear region, which is not apparent in the CD34+ progenitor cells (Figure 

3.23) which lack any discemable nuclear y-catenin signal over background.

These data imply that y-catenin is aberrantly nuclear translocated in MO/1 

undifferentiated AML.



C harac te r isa t ion  o fy -C atcn in  Expression in Acute Myeloid
Leukaem ia and  Implications for Patien t Survival C h ap te r  4

A)

25

£

20

a
*5
Ee.
s
e  15 v
«u

wo
•—

"u3
S
iJ

*

Normal CD34+ Haematopoietic 
Progenitor Cells

MO/1 AML Blasts
Cell Type

Figure 4.4 - The subcellular localisation of y-catenin in MO/1 blasts by CLSM.

A) Summary o f average nuclear y-catenin protein localisation in normal CD34+ 
haematopoietic progenitor cells (n=3) versus MO/1 AML blasts (n=5), as given by 
CLSM. *JP<0.05. Error bars represent SD from each data. B) Various CLSM fields 
(overleaf) showing y-catenin localisation in MO/1 AML blasts with I) phase contrast, II) 
nuclear (blue), III) y-catenin (green), and IV) merged images.
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4.4.4.2 The subcellular localisation o f  y- and (3-catenin protein is dysregulated 

in both undifferentiated and differentiated AML

Once CLSM had identified nuclear y-catenin within a small group o f AML patient blast 

samples it was necessary to expand the number and type o f AML samples analysed. 

N/C Western blotting provided a more time- and labour-effective method for analysing 

multiple AML samples, and its efficacy for detecting nuclear translocation of catenin 

had been validated in section 3.4.1.6.

Figure 4.5A shows the subcellular localisation o f y and P-catenin protein expression in 

normal human haematopoietic cells versus the localisation in undifferentiated (Figure 

4.5B) and differentiated AML blast samples (Figure 4.6A and B). The large cell number 

required for N/C fractionation meant in vitro expansion o f normal CD34+ 

haematopoietic progenitor cells was necessary. Day 5 cultured CD34+ cells are 

predominantly CD34+ blasts while day 13 cells consist largely o f  immature white cell 

precursors.

Figure 4.5A shows how y- and /3-catenin protein is highly expressed in day 5 and day 13 

cultured haematopoietic cells which approximately encompass the range o f 

differentiation seen in M0-M5 AML. As with freshly isolated CD34+ cells this was 

mainly cytoplasmically localised. When compared to the expression observed in 

differentiated and undifferentiated AML blasts (Figure 4.5 and Figure 4.6, respectively) 

a diverse range o f y- and /3 -catenin protein intensity, banding pattern and translocation 

can be observed among all the samples; though again the majority o f catenin expression 

was cytoplasmically localised. Given the lack o f control replicates (and thus no mean or 

standard deviation), an upper threshold o f 5-fold the level o f  catenin obtained from 

normal cells was set as the marker for overexpression in AML cells. This value was 

used because the ‘X+2SD’ overexpression threshold set in the above section (4.4.3) 

actually represented 5-fold the mean obtained from normal CD34+ cells. A similar 

variation was assumed for normal cells in this analysis. Using this cut off, it was found 

that 18 o f 59 AML samples (31%) overexpressed cytoplasmic y-catenin compared to 

normal controls, a proportion not too dissimilar (2 0 %) to that obtained for total catenin
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in the above section (4.4.3). A similar number o f samples (18/59, 31%) were also found 

to have higher levels of nuclear translocated y-catenin. The same analysis for /3-catenin 

expression showed that a similar frequency of AML samples, 17/59 (29%) 

overexpressed the cytosolic form, whilst a higher proportion 22/59 (37%) exhibited 

elevated nuclear p-catenin. An interesting observation made for both catenins (but 

perhaps more accentuated for y-catenin) was the differential migration pattern of protein 

bands between the cytosolic and nuclear fractions. The significance of this multiple 

banding is investigated and discussed further within Chapter 5. A more detailed FAB 

type breakdown (for those patients where clinical data is available (49/59)) of catenin 

overexpression in AML samples is featured in Table 4.5.

Table 4.5 - Breakdown of y- and /3-catenin overexpression between FAB types of 
AML samples N/C fractionated.

9/26 (35%) 3/10(30%) 6/13(46%)

Examples = (Figure 
4.5B, patient lanes 
c, g, h, i, k, 1 and n)

(Figure 4.6A, 
patient lanes c and 

g)

(Figure 4.6B, 
patient lanes b, d, e 

and g)

8/26 (31%) 3/10(30%) 7/13 (54%)

(Figure 4.5B, 
patient lanes h, i, j, 

k and 1)

(Figure 4.6A , 
patient lanes b, c 

and e)

(Figure 4.6B, 
patient lanes c, e 

and g)

2/26 (8 %) 7/10 (70%) 5/13 (38%)

(Figure 4.5B, 
patient lanes g and

j)

(Figure 4.6A, 
patient lanes a, b, e 

and g)

(Figure 4.6B, 
patient lanes d, e 

and g)

5/26 (19%) 6 / 1 0  (60%) 7/13 (54%)

(Figure 4.5B, 
patient lanes h, i, 

and j)

(Figure 4.6A, 
patient lanes b, c, d, 

f  and g)

(Figure 4.6B, 
patient lanes b, c, e 

and g)
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Figure 4.5 - The subcellular localisation of y-catenin and /3-catenin in normal 
haematopoietic progenitor cells versus undifferentiated AML.

A) The subcellular localisation of y- and (3-catenin protein within in vitro cultured and 
expanded primary human haematopoietic cells. CB-derived CD34+ haematopoietic 
progenitor cells were purified and cultured in vitro for the time period indicated. B) 
Representative N/C Western blots showing the subcellular localisation of y- and /3- 
catenin in selected MO/1 AML blasts. Detection of j3-actin and histone HI provide an 
assessment of fractionation purity and loading.
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Figure 4.6 - The subcellular localisation of y-catenin and /3-catenin in differentiated 
AML by N/C western blotting.

Representative N/C Western blots showing the subcellular localisation of y- and /3- 
catenin in selected A) M2 and B) M4/5 AML blasts. Detection o f /3-actin and histone 
HI indicate the level of purity and protein loaded within each fraction.
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4.4.5 The level of y- and /3-catenin protein correlate in AML blasts

During the analysis o f  N/C fractionated samples in the above section (4.4.4.2) a number 

of potential relationships for y- and /3-catenin were observed. Table 4.6 summarises the 

relationships analysed, the degree o f correlation obtained and the level of significance 

for each. As illustrated in Figure 4.7A, a correlation existed between the level o f 

cytosolic y-catenin and the extent o f nuclear translocation within AML blasts (R=0.63, 

PO.OOOl). A similar relationship (although not as strong) also existed for cytosolic and 

nuclear /3-catenin (R=0.56, P<0.001) and is shown in Figure 4 .7B. This would suggest 

that, in contrast to normal haematopoiesis, the level o f cytosolic expression o f both 

catenins determines the degree o f nuclear translocation.

Figure 4.8A indicates an association between the level o f  cytosolic y-catenin and the 

level o f  cytosolic /3-catenin within the same AML samples (R=0.51, P<0.01). No 

significant correlation could be found between the level o f cytosolic y-catenin and the 

corresponding level o f nuclear /3-catenin (R=0.29, P=0.75). However, as shown in 

Figure 4.8B the levels o f  nuclear /3-catenin were significantly higher (P<0.05) when 

comparing the cytosolic y-catenin overexpressing cohort as a whole (mean 13.1±19.2; 

range 0.0-80.0, median 7.3) with the rest o f the cohort (5.6±6.9; range 0.0-26.3, median 

3.9).

The final relationship examined was between the levels o f translocated nuclear y- 

catenin and nuclear /3-catenin within AML samples. This relationship demonstrated a 

modest correlation (R=0.3, ^<0.05). When the cohort was split (as above) and the level 

o f nuclear /3-catenin compared between samples overexpressing nuclear y-catenin 

(18/59) versus otherwise normal/low levels (Figure 4.8C) the AML cohort exhibiting 

normal/low nuclear y-catenin level demonstrated an average nuclear /3-catenin level of 

5.8±6.7 (range 0-26.3, median 4.9) whilst the high nuclear y-catenin group had a 

statistically significantly higher mean of 15.6±22.2 (range 0-80.0, median 8 .6 , P<0.05).
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Overall, the data o f both this section and 4.4.4 above, suggest that both y- and /3-catenin 

protein expression is aberrantly localised in AML when compared to normal 

haematopoiesis. The results further imply that the cytosolic levels of both y- and /3- 

catenin are indicative o f their respective nuclear level. Finally, the data has identified a 

correlation between y- and /3-catenin protein, in both the cytosolic and nuclear 

compartments.

Table 4.6 - The relationships between y- and /3-catenin in AML blasts.

0.63 <0.0001

0.56 <0.001

0.51 <0.01

0.29 0.75 (not 
significant)

0.30 <0.05
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Figure 4.7 - The influence of cytosolic catenin level on nuclear translocation in 
AML blasts.

A) The correlation between the cytosolic level o f y-catenin and the degree of nuclear 
translocation in AML blasts, *P<0.0001. B) The correlation between the cytosolic level 
of /3-catenin and the degree of nuclear translocation in AML blasts, **P<0.001.
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Figure 4.8 - The relationship between y- and /3-catenin protein in AML blasts.

A) The relationship between cytosolic levels of y-catenin and jS-catenin protein within 
AML blasts, *P<0.01. B) The level of nuclear /3-catenin protein associated with AML 
blasts overexpressing cytosolic y-catenin protein versus normal/low cytosolic y-catenin 
protein, **P<0.05. C) The level of nuclear /3-catenin protein associated with AML 
blasts overexpressing nuclear y-catenin versus normal/low nuclear y-catenin, **P<0.05. 
Units are arbitrary.
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4.4.6 y-Catenin mRNA level does not correlate with y-catenin protein level

Although y-catenin mRNA values had been validated by qRT-PCR in AML blasts, it 

remained to be observed whether mRNA level correlated with y-catenin protein level 

within AML blasts. This was by no means a certainty given the high degree o f post- 

translational regulation which catenins (y and p) are subject to in normal homeostasis 

and disease.

To investigate this the 30 AML patient samples for which microarray data was available 

(from the cohort featured in Table 4.4, section 4.4.4.2) were compared with 

corresponding y-catenin protein expression values determined from Western blotting. 

Figure 4.9A shows that no significant correlation (R=0.06) was observed between y- 

catenin protein and mRNA level within AML blasts. Although a correlation could not 

be obtained, it was o f interest to know if higher mRNA levels were generally indicative 

o f higher protein levels. To examine this, the mRNA values obtained from the cohort 

above were divided into two groups based around the median (low mRNA versus high 

mRNA expression) and the y-catenin protein level compared between the two groups by 

means o f a Mann-Whitney test. As seen in Figure 4.9B, the high y-catenin mRNA 

group demonstrated a mean protein expression level o f  10.6±10.7 (range 0.4-34.8, 

median 7.5) which was higher than the mean of the low y-catenin mRNA group 6.6±7.1 

(range 0.9-23.9, median 3.2), but this difference was not significant (P=0.3). It was also 

necessary to examine whether evidence existed in the small patient cohort o f a 

relationship with y-catenin mRNA/protein and the main clinical parameter found to be 

affected in 4.4.2\ CR status. As shown in Figure 4.10A, the 30 patients where 

microarray data was available demonstrated significantly higher (P<0.05) y-catenin 

mRNA in the non-CR (mean 1.5, range 0.6-2.1, median 1.6) compared with the CR 

achieving cohort (mean 1.2, range 0.4-1.9, median 1.2). Figure 4.10B shows a similar, 

but non-significant (P=0 .1 ), difference was observed when analysing the y-catenin 

protein values. Generally, higher y-catenin protein expression was found in the non-CR 

(mean 9.9, range 0.8-34.8, median 6 .8 ) versus CR patient group (mean 5.9, range 0.2- 

24.0, median 3.3).
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Taken together, these data suggest that although higher y-catenin mRNA expression is 

generally associated with a higher y-catenin protein level, the actual degree o f 

correlation is poor. This would mean the survival phenotype obtained in section 4.4.2 is 

not necessarily related to y-catenin protein expression, though the relatively small 

number o f comparisons made could mean that the poor correlation arises from sampling 

error.
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Figure 4.9 - The correlation of y-catenin mRNA with y-catenin protein level.

A) Scatter plot showing the lack of correlation between y-catenin protein (derived from 
Western blotting) and y-catenin mRNA expression (derived from microarray) in AML 
blasts. Red dotted line shows division of cohort analysed in B. B) Box and whisker plot 
showing general level of cytosolic y-catenin protein in low y-catenin mRNA versus high 
y-catenin mRNA group.
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Figure 4.10 - The level of y-catenin mRNA and protein expression associated with 
CR status of N/C Western blotted patients.

A) Box and whisker plot showing the y-catenin mRNA status between patients 
achieving and not achieving CR (P<0.05). B) Similar plot but showing the y-catenin 
protein status between CR and non-CR patient group.
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4.4.7 The expression of y- and /3-catenin protein is not significant for 

prognosis in AML

The lack o f concordance between y-catenin mRNA and protein expression meant that 

the survival analysis performed with 237 patients in 4.4.2 was not necessarily a reliable 

indicator o f y-catenin protein expression. Therefore a survival analysis was necessary 

solely using protein values. To this end, cytosolic and nuclear protein expression values 

obtained from the patients o f section 4.4.4.2 were used in conjunction with clinical data 

where available (49 o f 59 patients, see Table 4.4), using the same strategies outlined in 

4.3.1.3.

The statistical analysis o f  AML patient clinical data (median follow up 64 months, 

range 7 months to 17 years) for fractionated AML blast samples is summarised in Table 

4.7 below. Briefly, cytosolic y-catenin protein values showed no significant relationship 

with any patient survival parameter, however, potential trends (highlighted by orange 

shaded boxes) were identified between higher y-catenin expression and poor CR rate 

and worse OS. No trends or statistically relevant associations could be found between 

nuclear levels o f y-catenin protein and any o f  the clinical parameters assessed. Similar 

trends were also between higher cytosolic /3-catenin protein expression and poor CR 

rate and worse OS. A statistically significant association (red-shaded box) was 

identified between cytosolic /3-catenin and adverse DFS, however the large confidence 

intervals bring into question the reliability o f this relationship. Finally, nuclear /3-catenin 

expression failed to reach statistical significance for all survival parameters, but trends 

were observed between higher nuclear /3-catenin and lower CR rate and increased RD.
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Table 4.7 - Summary of relevant findings from survival analysis of cytosolic and 
nuclear y- and /3-catenin.

OSCR RD DFS

2.11(0.43-10.37) 
P=0.3

1.59(0.60-4.27) 
P=0. 3

NS NS

NS NS NS NS

1.80(0.47-7.00)
P=0.3

1.55 (0.77-3.12) 
P=0.2

NS 12 .2 ( 1.3 8 - 10 8 . 1)
P<0.01

NS NS1.53(0.83-2.79)
P=0.2

1.72(0.74-3.98) 
P= 0.2

Survival param eter

Localised
catenin

C ytosolic
y-catenin
N uclear

y-catenin
C ytosolic
/3-catenin
N uclear

/3-catenin
Clinical parameters include complete remission (CR), overall survival (OS), resistant 
disease (RD), and disease-free survival (DFS). Odds ratios and 95% confidence 
intervals (in parentheses) are listed with associated significance values included below. 
NS = not significant.

4.5 Discussion

4.5.1 y-Catenin mRNA expression confers an adverse prognosis but does 

not correspond with the protein level present in AML blasts

This study sought to characterise y-catenin protein expression in primary AML blasts 

for the first time, and draw comparisons with the expression previously observed in 

normal haematopoietic development (Chapter 3). Aberrant activation o f the 

Wnt/catenin pathway has been implicated in a number o f solid cancers including breast 

(Lin et al., 2000), colon (Korinek et al., 1997; Morin et al., 1997) and liver (Monga, 

2009). Further, whilst there is plenty of evidence suggesting haematological 

malignancies such as AML (Simon et al., 2005; Wang et al., 2010; Yeung et al., 2007), 

chronic lymphocytic leukaemia (CLL) (Lu et al., 2004), chronic myeloid leukaemia 

(CML) (Jamieson et al., 2004; Zhao et al., 2007; Abrahamsson et al., 2009), acute 

lymphoblastic leukaemia (ALL) (Khan et al., 2007; Nygren et al., 2007) mantle cell 

lymphoma (Gelebart et al., 2008) and multiple myeloma (MM) (Sukhdeo et al., 2007; 

Qiang et al., 2009) arise partly due to constitutive activation o f the Wnt//3-catenin 

pathway, it remains to be established whether there is y-catenin involvement in human 

AML. Using a cohort of 243 AML trial patients and associated clinical data, this study 

analysed y-catenin mRNA gene expression for correlation with clinical outcome.
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Despite the association o f y-catenin expression with a good risk sub-type (RUNX- 

1/ETO expression (Zheng et al., 2004; Muller-Tidow et al., 2004; Tonks et al., 2007)), 

analyses o f survival correcting for this bias showed that y-catenin mRNA level was 

significantly associated with a poor CR rate (arising from resistant disease); there was 

no evidence o f any association with age at diagnosis, WBC or sex. These data indicated 

that it may be y-catenin that is primarily dysregulated and prognostic at mRNA level, 

unlike /3-catenin which was not identified as significantly dysregulated in our previous 

microarray studies (unpublished data).

In order to validate the Affymetrix GEP data, y-catenin mRNA was analysed by qRT- 

PCR which confirmed that the micro array did reflect y-catenin mRNA level. However, 

analysis o f  y-catenin protein expression by Western blot or flow cytometry did not 

correlate with mRNA expression. This is not entirely unexpected given the post- 

translational mechanisms which are known to regulate y-catenin protein stability. Lack 

of agreement between mRNA and protein level has been previously reported for both y- 

catenin (Bradley et al., 1993; Kowalczyk et al., 1994; Papagerakis et al., 2004) and /3- 

catenin (Aberle et al., 1997; Ysebaert et al., 2006; Gandillet et al., 2011). The study by 

Ysebaert et al. (Ysebaert et al., 2006) found /3-catenin mRNA level did not correspond 

with protein level and attributed this to the post-translational modifications that are 

active in AML cells. Discordance between mRNA and protein level has also been 

frequently observed in other contexts (Schindler et al., 1990; Ranganathan et al., 1998; 

Gygi et al., 1999; Chen et al., 2002; Greenbaum et al., 2003; Lee et al., 2003; Pascal et 

al., 2008). On the other hand, in model systems concordance o f y-catenin mRNA and 

protein levels has been demonstrated. Miiller-Tidow et al. (Muller-Tidow et al., 2004) 

observed y-catenin overexpression in leukaemic cell lines expressing common fusion 

proteins, such as promyelocytic leukaemia/retinoic acid receptor a  (PML/RARo) or 

RUNX-1/ETO; and in the latter case this has also been demonstrated in primary 

haematopoietic cells (Zheng et al., 2004; Tonks et al., 2007). In this study patients 

expressing RUNX-1-ETO were not distinguished by high y-catenin at the protein level, 

however further AML samples with a CBF abnormality would be needed to be analyse 

this relationship further.
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The lack o f concordance between y-catenin mRNA and protein may indicate that the 

adverse CR phenotype obtained from survival analyses either represents a chance 

finding, or that factors promoting y-catenin mRNA may also influence the expression o f 

an alternative protein impacting on CR rate. Alternatively the lack o f correlation could 

arise from sampling error o f the patients included in the correlation analysis since 

higher protein levels did show a trend towards reduced CR (.Figure 4.1 OB). 

Fundamentally, in comparison with the microarray analysis (243 patients), analysis o f y- 

catenin protein expression and localisation (49 samples) lacked the power to 

significantly demonstrate any association with outcome at the protein level. It is 

estimated at least 1 0 0  additional patients would need to be analysed to establish whether 

the trends observed have biological significance, and this may reflect the heterogeneity 

o f this disease and/or the lack o f any strong influence o f y-catenin protein expression on 

treatment outcome. The lack o f any strong survival influence from nuclear y- or (3- 

catenin has been noted before both in renal cell carcinoma (Aaltomaa et al., 2004) and 

also in colon cancer where cytosolic catenin is instead found to be more prognostically 

significant (Maruyama et al., 2000; Norwood et al., 2010).

The failure to observe any survival effect for nuclear /3-catenin expression is perhaps a

little surprising at first given its associated role with driving self-renewal/proliferation in

leukaemic cells (Jamieson et al., 2004; Zhao et al., 2007;Hu et al., 2009; Abrahamsson

et al., 2009; Wang et al., 2010; Yeung et al., 2010; Siapati et al., 2011). /3-Catenin has

also frequently been reported as overexpressed in primary AML blasts (Chung et al.,

2002; Serinsoz et al., 2004; Simon et al., 2005; Chen et al., 2009) and invariably linked

with poor survival (Ysebaert et al., 2006; Xu et al., 2008). Indeed, Xu et al. found

nuclear /3-catenin protein to be associated with unfavourable cytogenetics (-7/-7q),

lower CR rates, and worse overall survival, whilst Ysebaert et al. (Ysebaert et al., 2006)

found more general /3-catenin expression to be an independent prognostic marker

predicting poor event-free survival and shorter overall survival. However it must be

noted that these AML survival studies featured small patient numbers (<100) which are

too small in such a heterogeneous malignancy to be truly definitive. Regardless,

although these proteins serve essential roles in AML pathology, there is evidence to
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suggest they do not necessarily govern chemo-sensitivity and hence influence the 

survival outcome (Gandillet et al., 2011).

4.5.2 y-Catenin is aberrantly localised in primary AML blasts

From Chapter 3, it was clear that subcellular distribution o f y-catenin may play a role in 

normal haematopoiesis. This study is the first to report nuclear y-catenin expression in 

AML. This study observed an increase in nuclear y-catenin expression when compared 

to normal CD34+ progenitor cells suggesting that nuclear y-catenin expression 

represents an abnormality for FAB type MO/1 (undifferentiated) AML. Since nuclear y- 

catenin is a feature o f more differentiated cells 3.4.3, the same cannot be said o f the 

differentiated AML patients analysed (M2-M5).

Understanding the significance o f this nuclear y-catenin is a more challenging 

proposition. Does it represent a transcriptionally active form ?  y-Catenin’s ability to 

bind and activate TCF/LEF complexes (albeit with less efficiency than /3-catenin) has 

been demonstrated before in other model systems (Simcha et al., 1998; Kolligs et al., 

2000; Williams et al., 2000; Zhurinsky et al., 2000a; Maeda et al., 2004; Fukunaga et 

al., 2005). Within a haematopoietic context, the study o f Muller-Tidow et al. (Muller- 

Tidow et al., 2004) identified direct activation o f the c-myc promoter by increased y- 

catenin expression. Alternatively could its presence in the nucleus represent a 

functionally redundant form that has merely escaped a saturated degradation system? 

Nuclear expression has been linked with suppression o f Wnt mediated transcription 

(Miravet et al., 2002; Garcia-Gras et al., 2006). The former study identified binding 

sites on TCF-4 for both (3- and y-catenin, but demonstrated that interactions involving y- 

catenin actually hindered the transcriptional activity o f the complex in various epithelial 

cell lines.

It was less surprising to observe nuclear forms o f /3-catenin in fractionated AML blasts 

given that nuclear beta catenin has been identified in many haematological malignancies 

including CML (Jamieson et al., 2004; Abrahamsson et al., 2009), myelodysplastic 

syndrome (MDS) (Xu et al., 2008) MM (Sukhdeo et al., 2007), ALL (Khan et al., 2007;
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Nygren et al., 2007) and CLL (Lu et al., 2004). This protein is already known to be 

present and transcriptionally active in nuclei o f  normal HSCs (Reya et al., 2003; 

Jamieson et al., 2004; Scheller et al., 2006; Kirstetter et al., 2006; Holmes et al., 2008; 

Congdon et al., 2008). The data in Chapter 3 also demonstrated nuclear localisation o f 

/3-catenin in progenitor cells. Nuclear /3-catenin has already been identified in AML 

blasts (Simon et al., 2005; Xu et al., 2008; Wang et al., 2010; Gandillet et al., 2011). 

Interestingly, in the study by Xu et al. they reported a similar detection rate o f nuclear 

/3-catenin as this study (22/54 [41%] Vs 22/59 [37%]), albeit by a very different 

immunohistochemical method. Additionally, nuclear beta catenin has also been 

frequently documented within the wider cancer field including colon (Korinek et al., 

1997; Morin et al., 1997; Brabletz et al., 1998; Brabletz et al., 2000; Maruyama et al., 

2000; Kobayashi et al., 2000; Jung et al., 2001) liver (Nhieu et al., 1999), malignant 

melanoma (Rimm et al., 1999) and prostate cancers (Jaggi et al., 2005).

4.5.3 The expression of y- and /3-catenin protein correlate in AML

This study represents the first to identify a positive correlation between y- and /3-catenin 

protein expression in primary AML blasts. The finding that cytosolic y- and /3-catenin 

protein levels correlate should perhaps not be so surprising given that the stability o f  the 

two proteins is regulated by a common process (see introductory sections 1.3.1 and 

1.3.4). Hence, should any o f  these components be dysregulated in AML then a 

concomitant rise in both y- and /3-catenin might be expected. When observing 

expression o f each catenin individually, it was interesting to find that cytosolic level 

determined the nuclear level in AML blasts. This is in contrast, to observations in 

normal haematopoiesis, where nuclear catenin localisation was independent o f increased 

cytosolic expression. This implies whatever mechanism is active in normal 

haematopoietic cells regulating catenin translocation (described in length in Chapter 3 

discussion 3.5.3) is relaxed or dysfunctional in AML. Indeed, loss o f such tight 

regulation would leave the cell vulnerable to the wealth o f candidate molecules (inside 

and outside o f the Wnt signalling cascade) that have been proposed to alter catenin level 

and localisation, including FLT-3 (Tickenbrock et al., 2005; Kajiguchi et al., 2007), 

prostaglandin E2 (PGE2) (Castellone et al., 2005), protein kinase A (PKA) (Hino et al., 

2005), phosphatase and tensin homologue (PTEN) (Persad et al., 2001), Ras-related C3
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botulinum toxin substrate 1 (Rac-1) (Wu et al., 2008), Notch (Hayward et al., 2005), 

Roof plate-specific Spondin 1 (R-spondin-1) (Wei et al., 2007), v-Akt murine thymoma 

viral oncogene homologue (Akt) (Monick et al., 2001) and growth arrest-specific gene 6  

(Gas-6 ) (Goruppi et al., 2001).

A degree o f correlation was also found between y- and /3-catenin expression in the 

nucleus o f AML samples. It is unknown whether this relationship represents an 

inevitable ‘side-effect’ o f  the increased cytosolic levels o f  both proteins in these cells, or 

a co-ordinated re-localisation as has been previously reported for nuclear y- and /3 - 

catenin in other contexts (Simcha et al., 1998; Maeda et al., 2004; Li et al., 2007). This 

issue is investigated further in Chapter 5.

4.5.4 Multiple-banding of y- and /3-catenin is observed upon Western 

blotting of primary AML samples

As observed in the whole cell Western blotting o f AML cell lines in Chapter 3 (see 

Figure 3.10), multiple banding o f y-catenin and (to a lesser extent) /3-catenin was 

exhibited in the N/C fractionated lysates o f AML blasts and normal human 

haematopoietic cells. This type o f multiple banding has been observed previously for 

both y-catenin (Zheng et al., 2004; Muller-Tidow et al., 2004; Tonks et al., 2007) and /3- 

catenin (Chung et al., 2002; Simon et al., 2005; Ysebaert et al., 2006) in haematopoietic 

cells. Indeed, the study by Simon et al. also N/C Western blotted primary AML blasts 

(albeit by a different protocol) and obtained a similar variation in intensity and 

migration o f /3-catenin protein bands. Intriguingly, the migration o f catenin bands in this 

study was often different between nuclear and cytosolic fractions o f the same patient 

samples. It is highly likely that this multiple-banding pattern is indicative o f a key 

mechanism involved in the regulation o f catenins. The fact the patterns are inconsistent 

between AML (N/C) samples implies that this process may be dysregulated in 

malignancy. Exactly what mechanism this could represent is unknown. One possible 

explanation is that these bands correspond to differentially phosphorylated catenin 

molecules (see 3.5.3), as demonstrated previously for catenins in Western blotted
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samples (Ruff et al., 1997; Sukhdeo et al., 2007). This possibility is investigated further 

in Chapter 5.

Mutations in catenin protein are unlikely to be the cause o f the multiple banding, not 

least because only one such mutation has ever been reported for y-catenin in cancer 

(Caca et al., 1999). Furthermore, this was a small missense mutation to a potential 

phosphorylation site in the amino terminus, and is thus unlikely to seriously modify the 

overall protein structure to an extent where it would migrate differently through a gel 

compared to the wt form. No significant isoforms o f y- or /3-catenin exist or have been 

reported in normal human biology either.

Finally, a less exciting possibility is that these multiple migratory forms between 

cytosol and nuclear fractions may actually represent artefact generated by the respective 

lysis buffers o f the N/C fractionation kit. Such a cause is difficult to investigate given 

the manufacturer’s secrecy over the constitution o f these buffers, and is perhaps 

irrelevant given that other studies have observed the same banding patterns using 

alternative lysing techniques.

In summary, this study has shown for the first time that y-catenin protein expression is 

dysregulated in some cases o f  AML. Patient survival data would indicate that y-catenin 

mRNA expression is associated with a worse prognosis in AML, however this clinical 

phenotype could not be substantiated because o f discordance between y-catenin mRNA 

and protein level. Contrary to normal haematopoiesis, y-catenin protein is frequently 

localised to the nuclei o f  undifferentiated AML blasts, and unlike normal cells, 

translocation appears to be influenced by cytosolic accumulation. A correlation between 

y- and /3-catenin has been identified in the cytosol (and to a lesser extent in the nuclei) 

o f AML blasts, suggesting they are co-ordinately dysregulated. The next chapter seeks 

to investigate whether the relationship between y- and /3-catenin in AML blasts 

represents a correlative or causative association and, related to this, whether y-catenin 

contributes individual or combinatory effects to AML pathology.
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5 - Examination into the 
Functional Role of y-Catenin 

in Haematopoietic Cells
5.1 Introduction

Given the limited number o f studies on y-catenin in normal haematopoiesis and AML, 

many o f the results from Chapters 3 and 4 have been observational in nature. Thus, the 

main purpose o f Chapter 5, is to establish the functional roles o f y-catenin in both 

normal haematopoiesis and AML pathology.

The data o f Chapter 3 suggested that y-catenin has a role in both the early and late 

stages o f haematopoietic development. Further, preliminary experiments o f this 

laboratory (Tonks et al., 2007) suggested that ectopic expression of y-catenin in normal 

human CD34+ haematopoietic cells led to modest increases in self-renewal, although no 

significant effect on myeloid differentiation was observed. To complement these 

studies, it was necessary to assess the importance o f y-catenin for normal myeloid 

development by using an shRNA approach to deplete endogenous y-catenin in normal 

human haematopoietic progenitors. Previous studies in mice would suggest that the loss 

of y- and/or /3-catenin has no consequences for normal haematopoiesis (Cobas et al., 

2004; Koch et al., 2007; Jeannet et al., 2008), however, these studies only examined the 

functionality o f these knockout cells in a repopulation assay and did not examine the 

developmental capacity o f these cells. Further, the consequence o f y-catenin 

underexpression in human haematopoietic cells has not been previously studied.

Chapter 4 identified a correlation between the expression of y- and /3-catenin protein in

AML blasts. Although evidence exists suggesting these catenins can influence the level

and subcellular localisation o f one another in other settings (Salomon et al., 1997;

Simcha et al., 1998; Zhurinsky et al., 2000a; Miravet et al., 2003; Maeda et al., 2004;

Fukunaga et al., 2005; Li et al., 2007; Shimizu et al., 2007) no such relationship has
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been reported within a haematopoietic or leukaemic context. To address this, y-catenin 

was ectopically expressed in both normal human progenitors and myeloid leukaemia 

cell lines with the capacity to undergo chemically-induced differentiation (Tsuchiya et 

al., 1982; Hass et al., 1989). Such investigations would explore the inter-dependence 

between y- and /3-catenin proteins and the consequences o f such a relationship for the 

development o f these cells.

The discovery that y-catenin translocation in normal progenitors is apparently tightly 

regulated raises the question o f the mechanisms regulating this process. One such 

mechanism to be assessed is the ability o f y-catenin to respond to a Wnt stimulus. 

Members o f  the Wnt family o f glycoproteins are known to be active throughout normal 

haematopoiesis (Austin et al., 1997; Van den Berg et al., 1998) and capable o f 

stabilising /3-catenin expression (mainly Wnt3A; (Dosen et al., 2006; Kim et al., 2009)). 

Interestingly, Wnt signalling proteins have also been found to be dysregulated in acute 

leukaemias and Wnt-mediated stabilisation (leading to nuclear translocation) o f (3- 

catenin has also been observed within this context (Simon et al., 2005; Tickenbrock et 

al., 2005; Nygren et al., 2007; Tickenbrock et al., 2008; Kawaguchi-Ihara et al., 2008). 

Such a phenomenon has not been reported for y-catenin in haematopoietic cells, and it 

will be interesting to observe whether this could be contributing to the correlation 

between /3- and y-catenin.

Related to the above, is the investigation into the cause o f multiple catenin bands in 

Western blotting which may inform how the level and localisation o f catenins are 

regulated in haematopoietic cells. It is outside the scope o f this study to investigate all 

the potential causes o f  the multiple protein banding, however this chapter seeks to 

investigate one o f the potential causes; differential phosphorylation. There is a wealth o f 

evidence demonstrating that phosphorylation o f catenin is crucial in regulating activity, 

turnover and translocation o f the protein (see 3.5.3 and 4.5.3).
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5.2 Aims

In order to better understand the functional roles of y-catenin in normal haematopoiesis 

and AML pathology, the aims o f this chapter are:

1) To use an established model o f in vitro haematopoiesis, to examine the effects o f 

y-catenin silencing on normal haematopoietic development.

2) To investigate how the modulation o f y-catenin expression affects the level and 

subcellular localisation o f /3-catenin in normal and leukaemic cells.

3) To examine the consequences of y-catenin overexpression/silencing on the 

induced differentiation o f monocytic cell lines.

4) To explore the possible mechanisms regulating the translocation o f y-catenin 

from cytosol to nucleus in haematopoietic cells.

5) To establish the possible causes o f the multiple banding o f catenin protein

observed during Western blotting.

5.3 Materials and Methods

5.3.1 Investigation into the function of y-catenin in normal haematopoiesis

The full strategy o f this experiment and endpoints are outlined in the following sections 

and summarised in Figure 5.1.

5.3.1.1 Modelling haematopoiesis in vitro

The comprehensive characterisation o f the HSC immunophenotype and vastly improved 

purification techniques for their isolation (by fluorescence activated cell sorting (FACS) 

or immunogenic magnetic beads) has permitted developmental studies o f these cells

outside o f the body. Furthermore, pioneering work o f researchers in the 1970’s

identified the medium, growth factors (GF) and cytokines necessary to culture 

haematopoietic cells in vitro (Pike and Robinson, 1970; Iscove et al., 1971; Chervenick

and Boggs, 1971; Metcalf, 1971; Metcalf et al., 1974; Dao et al., 1977a; Dao et al.,
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1977b). Specifically, many o f these studies highlighted the importance o f specific 

soluble colony stimulating factors (CSF) in bringing about the growth and 

differentiation o f  specific haematopoietic lineages. Since these fundamental discoveries, 

many laboratories have optimised combinations and concentrations of growth factors 

necessary to model their particular area o f haematological interest in vitro. In particular, 

pioneering work from this laboratory has resulted in the development o f an effective 

model o f in vitro human myeloid differentiation using such GFs and cytokines as IL-3, 

SCF, GM-CSF and G-CSF (Darley et al., 1997; Darley and Burnett, 1999; Tonks et al., 

2004).

The in vitro differentiation o f HSC into mature progeny such as neutrophils, monocytes, 

and macrophages can be effectively monitored through the cell surface cluster of 

differentiation (CD) expression. Such molecules not only serve important functions for 

the cell (e.g. cell signalling receptors), but also provide accurate information as to the 

cell type, function and stage o f differentiation. The expression pattern o f CD antigens 

on specific developing haematopoietic lineages has been well characterised and can be 

easily detected by fluorochrome-conjugated antibodies using flow cytometry. 

Morphological assessment can be used in conjunction with CD marker expression to 

confirm the extent o f differentiation. The use of cytochemical stains such as May- 

Griinwald-Giemsa allow the differential staining o f cytosol and nucleus, such that the 

morphological changes associated with development can be identified by basic light 

microscopy. Exploiting all o f  the aforementioned parameters, plus the relative ease with 

which HSCs can be retrovirally transduced, means a powerful model is available to 

assess the impact o f single gene changes, such as y-catenin, on normal haematopoietic 

development.

5.3.1.2 In vitro culture o f  normal human primary haematopoietic cells

Normal CB-derived CD34+ HPC were isolated and enriched as outlined in section 2.4. 

Following isolation (designated day 0), CD34+ cells were cultured overnight at a 

density o f 2xl05/ml in supplemented IMDM (containing 1% BSA fraction V, 20% FBS, 

45pM  BME, 360jUg/ml 30% iron-saturated human transferrin, lOOIU/ml penicillin, and
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100/xg/ml streptomycin) containing 50ng/ml huIL-3, huSCF, huFLT-3L and 25ng/ml 

huIL-6 , huG-CSF and huGM-CSF, at 37°C with 5% CO2 . These conditions were 

necessary to stimulate the cell cycle in an otherwise largely quiescent population in 

preparation for retroviral transduction (2.5.3). Once retroviral transduction was 

complete, unless otherwise stated, CD34+ cells were sub-cultured in supplemented 

IMDM containing 5ng/ml huIL-3, huG-CSF and GM-CSF, and 20ng/ml huSCF, and 

maintained at 2x l05/ml as before until day 21 o f in vitro culture. Cells were sub­

cultured every 2-3 days or when cells reached confluence (~ lx l0 6/ml).
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Days 1 + 2
P O K . M M  MBy-Catenin shRNA

Purification of normal human CD34+ 
haematopoietic progenitor cells from 

cord blood

Day 4

Retroviral transduction of progenitor 
cells with control or y-catenin shRNA

1

Day 3

FACS sorting of transduced cells (if required) and 
harvesting of cells into fresh growth factor- and 

cytokine-supplemented medium

Assessment of GFP expression 
(transduction efficiency) by flow cytometry 

and recovery

I
Days 7 ,10 ,14 ,17  and 21 

Cell counts/Cell morphology/Immunophenotypic analysis

Figure 5.1 - Strategy for investigation into effect o f y-catenin silencing on 
haem atopoietic developm ent.

Summary flow diagram showing the experiments performed and time points used in 
examining the effect of y-catenin knockdown on development of human CB-derived 
haematopoietic progenitor cells.

Day 0
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5.3.1.3 Establishment o f y-catenin silencing system in normal human primary 

haematopoietic cells

In order to repress y-catenin protein expression in normal human primary 

haematopoietic cells and follow the effects o f this loss on growth and differentiation, a 

vector (vPGKpuroU3U6-y-catenin-shRNA) encoding y-catenin short hairpin RNA 

(shRNA) was employed. {Figure 5.2A; kind gift o f Professor Martin Ruthardt, Goethe- 

University o f Frankfurt, Germany (Zheng et al., 2004)).

ShRNA is one o f  the mechanisms exploited by researchers in the last decade to bring 

about gene silencing through RNA interference (RNAi). RNAi is an evolutionary 

conserved biological response in mammalian cells to the introduction o f exogenous 

double stranded RNA (dsRNA) that occurs during viral invasion (reviewed by Hannon 

and Rossi, 2004 and Tomari and Zamore, 2005). Initial discoveries in C. elegans 

revealed that injection of dsRNA resulted in the subsequent repressed expression o f 

genes with complimentary sequences to the dsRNA introduced (Fire et al., 1991; Fire et 

al., 1998). ShRNA are designed as inverted nucleotide repeat sequences containing an 

intra-molecular stem-loop structure. They can be introduced into eukaryotic cells 

through retroviral expression constructs and are continually expressed from RNA 

polymerase II or III (U6 ) promoters. The subsequent hairpin structure produced is 

recognised and cleaved at the ‘loop’ by the enzyme Dicer generating 30bp (or less) 

small interfering RNA (siRNA). These siRNA are then incorporated into the RNA- 

induced silencing complex (RISC) which unwind the double strands (ATP-dependent) 

and use the antisense siRNA to target and continually degrade the complimentary 

mRNA (in this case y-catenin mRNA).

The vector described above utilised puromycin resistance as a selectable marker o f gene 

transduction, which although appropriate for selection in cell lines, is not suitable for 

use in developing primary human haematopoietic cells. This is due to the artefactual 

effects on development arising from drug selection, which could mask any potential 

phenotype generated by a gene of interest (as observed in pilot studies, data not shown). 

To circumvent this problem, the puromycin selection cassette and associated PGK
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promoter were excised from the retroviral backbone and replaced with a PGK promoter 

driving expression o f GFP (originating from pRRLSIN.cPPT.PGK/GFP.WPRE; Figure 

5.2B, kind gift o f  Dr. James Matthews, Cardiff University). The sub-cloning process 

involved is summarised within Figure 5.2, and essentially used many o f the sub-cloning 

techniques fully described in methods section 3.3.1.

Retrovirus encoding y-catenin shRNA (vPGK/GFP-y-catenin shRNA) was generated as 

described in section 2.5.2 and subsequently used to infect normal human CD34+ 

haematopoietic cells on day 1 and 2 o f  in vitro culture as described in section 2.5.3. 

After 2 rounds o f retroviral infection, transduced CD34+ cells were harvested into fresh 

culture medium as in 5.3.1.2 (day 3) and allowed to recover. Cells were analysed by 

flow cytometry to determine infection frequency as below in 5.3.1.5.
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Figure 5.2 - T he rep lacem ent o f  the purom ycin-resistance cassette w ith  G FP as a 
reporter gene for vP G K U 3U 6.
A) The vPGKpuroU3U6-y-catenin-shRNA plasmid contains inverted repeats o f 21 
nucleotides (corresponding to 1862-1882 bp of the human y-catenin gene) separated by 
a 10 nucleotide spacer (Zheng et al., 2004). The associated control plasmid contains 
shRNA to the LacZ gene (not present in the human genome). The puromycin resistance 
cassette was excised using EcoKl and Clal restriction endonucleases (red boxes) by 
first cutting with Clal and blunting with DNA polymerase I large (Klenow) fragment 
and then subsequently cutting with EcoRl to create open vector with heterologous ends 
(EcoRl-blunt). B) PGK/GFP was removed from pRRLSIN.cPPT.PGK/GFP.WPRE 
using a double Sail EcoRl digest (red boxes) by first cutting with Sail and blunting (as 
A) and then subsequently cutting with EcoRl to create ends compatible with the 
processed vector. The EcoRl -blunt PGK/GFP cassette was then ligated into 
vPGKpuroU3U6 with DNA ligase and transformed in competent E.coli. The newly 
created plasmid was designated vPGK/GFP-y-catenin shRNA (or -LacZ-shRNA for 
control).
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5.3.1.4 Fluorescence activated cell sorting o f  developmental subsets o f

transduced cells

In order to isolate discrete subpopulations o f lineage committed haematopoietic 

progenitor cells, a minimum of 2x106 transduced cells (at day 4 in vitro culture) were 

resuspended in PBS (containing 10% FBS) and passed through a 40 pM  cell strainer 

(BD). Cells were then flow sorted between 5,000-10,000 events per second using a 

MoFlo high speed cell sorter (Dako Cytomation), to over 98% GFP positivity. Pre- and 

post-cell sorting analysis o f GFP+ by flow cytometry was performed to validate 

successful cell sorting.

For a more in-depth analysis of discrete developmental sub-populations of transduced 

progenitor cells a more complex day 4 sort strategy was adopted. To achieve this, cells 

were immuno-stained with anti-human CD13-PE (clone TUK4, Dako) and CD36-APC 

(clone CB38, BD) as described in section 33.5.2. These markers are capable of 

discriminating the main myeloid progenitor cells and hence are termed ‘lineage 

discriminators’. The growth o f lymphoid cells is not supported by the culture conditions 

employed and are phenotypically absent from these cultures. Following staining, cells 

were washed and Figure 5.8 shows the flow cytometric gating strategy for cell sorting 

of the target populations identified.

5.3.1.5 Immunophenotypic analysis o f transduced human haematopoietic cells 

Retrovirally transduced CD34+ haematopoietic cells were cultured in vitro for 21 days 

under cytokine conditions favourable for myeloid cell growth. On days 7, 10, 14, 17 

and 2 1 , cultures were analysed for expression o f specific cell surface markers indicative 

of lineage and maturation state. All replicates were stained with the lineage 

discriminator antibodies CD13 (Clone WM15, Bio legend) and CD36 (Clone SMO, 

Ancell, Minnesota, USA), plus one additional PE-conjugated antibody o f the selection 

listed in Table 5.1, which served as specific markers of differentiation. FSC and SSC 

characteristics were also recorded for all cells analysed. Cells were immunostained as 

outlined in section 3.3.5.2. Multi-parameter flow cytometric measurements were 

acquired on the Accuri® C6  flow cytometer in conjunction with CFlow software
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version 7.5 (Accuri Cytometers, Cambridgeshire, UK). Post-acquisition analysis o f flow 

cytometric data was performed using FCS Express V3 (De Novo Software, California, 

USA). Debris was excluded from all analyses on the basis of forward- and side-scatter 

characteristics, whilst specific individual sub-populations were identified using the 

gating strategies illustrated in Figure 5.5.

Table 5.1 - Antibodies used in immunophenotypic analysis of in vitro cultured 
human haematopoietic cells.

IgG-PE (Clone MOPC-21, BD) Non-specific binding

CD15-PE Granulocytes

CD14-PE (Clone TUK4, Dako) Monocytes

CD163-PE (Clone GHI/61, BD) Macrophages

GlyA-PE Erythrocytes

CD34-PE Progenitor cells

5.3.1. 6  Assessment o f cell morphology 

In conjunction with immunophenotypic analysis, morphological assessment of in vitro 

cultured haematopoietic cells also occurred at the fixed time-points identified above 

(5.3.1.5). Approximately 2x104 cells were resuspended in 250/ul of 1 x PBS and 

centrifuged at 60 x g for 5 minutes onto a glass slide using a Cytospin 3 (Thermo 

Shandon, Cheshire, UK). Slides were stained with May-Grimwald-Giemsa using an 

ABX Pentra DX120 automated cell stainer (Horiba Medical Diagnostics, Northampton, 

UK). With this stain, nuclei and basophilic granules appear a dark blue or purple, whilst 

the cytoplasm and eosinophilic granules appear a pale pink/red. The cytospun cells were 

mounted in one drop of Dibutyl Phthalate in Xylene mountant (DPX) and coverslipped. 

Cells were viewed with a Zeiss AXIOSKOP microscope (Carl Zeiss Ltd, Hertfordshire, 

United Kingdom) using 40X and 100X oil immersion objectives.
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5.3.2 The influence of y-catenin expression on /8-catenin subcellular 

localisation

To assess how the level and subcellular localisation of y-catenin protein may affect the 

level and localisation of /3-catenin protein in normal and leukaemic cells, the following 

subcellular fractionation procedures were carried out.

5.3.2.1 In primary cell cultures 

In order to provide ectopic expression of y-catenin protein in CD34+ haematopoietic 

progenitor cells the PINCO vector described in section 3.3.1 {Figure 3.1) was used. CB- 

derived CD34+ progenitor cells were purified and transduced with GFP (control) or y- 

catenin DNA as in sections 2.4.2 and 2.5.3, respectively. Transduced cells were cultured 

up to 5 days in vitro (last day at which cultures were substantially CD34+) and N/C 

fractionated as described in 2.6.2. Cytosolic and nuclear homogenate were immuno- 

blotted (sections 2.6.3-2.6.7), for respective levels and localisation o f y- and /3-catenin. 

The conditions for y-catenin detection are described in section 3.3.3. However a 

different mouse monoclonal to /3-catenin (Clone 14, BD) was used at 250ng/ml. For 

assessment of fraction purity and protein loading /3-actin and histone HI were employed 

as in section 3.3.7.2.

53.2.2 In leukaemia cell lines

Leukaemic cell lines are immortalised, clonal cultures of cells that were originally 

transformed from leukaemia patients. They provide a tractable and unlimited source o f 

haematopoietic cell material for which to analyse the effects of exogenously expressed 

proteins. The background of existing genetic mutations within these cells makes them 

an appropriate model for studying proteins o f interest within a leukaemic context. 

However, given that many these genetic abnormalities remain uncharacterised and are 

extremely heterogeneous between individual cell lines means there are limitations to 

any experimental conclusions which may be drawn from them.
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The following leukaemic cell lines were used:- HEL, THP-1, U937 and K562 pBabe- 

Puro control and y-catenin cell lines (created in 3.3.2, and shown in Figure 3.10). Each 

cell type was N/C fractionated (alongside the respective pBabe-Puro control), and 

Western blotted as outlined above (5.3.2.1). In addition to the above, a K562 cell line 

expressing the original y-catenin silencing construct (vPGKpuroU3U6-y-catenin- 

shRNA, featured in Figure 5.2A) was also processed as above.

5.3.3 The effect of y-catenin and j3-catenin expression on induced 

differentiation of monocytic cell lines

The monocytic cell lines U937 and THP-1 can be induced to differentiate into 

monocytes/macrophages upon addition of phorbol esters such as 1 2 -0 - 

Tetradecanoylphorbol 13-acetate (TPA) (Tsuchiya et al., 1982; Hass et al., 1989). The 

pBabe-Puro control and pBabe-Puro-y-catenin transgenic lines o f THP-1 and U937 

created in section 3.3.2 were again utilised. In addition, THP-1 and U937 cell lines were 

transduced (as in section 2.5) to express y-catenin shRNA (vPGKpuroU3U6-y-catenin- 

shRNA, featured in Figure 5.2A) and the /3-catenin degradation-resistant mutant ((3- 

catAN89) described in 3.3.4.2 (giving a total of 8  cell lines that were studied).

5.3.3.1 Establishment o f cell line morphology and immunophenotype prior to 

TPA treatment

Prior to TPA-induction (see 5.3.3.2 immediately below), 2x106 cells from each cell line 

were N/C fractionated and Western blotted for y- and /3-catenin (as per 5.3.2.1) to assess 

the level and location of each protein at the start of the assay. Cells were cytospun as 

above (5.3.1.6) to establish cell morphology prior to TPA-induction. Each cell line was 

assessed immunophenotypically for monocytic/macrophage cell surface expression 

markers to establish the extent of differentiation before TPA treatment. As described in 

section 3.3.5.2, cells from each cell line were immunostained with anti-human CD 14- 

FITC (Clone TUK4, Dako), CDllb-PE (Clone 2LPM19c, Dako) and CD13-APC. 

Immuno-labelled cells were analysed as above (5.3.1.5) with the threshold for cell 

surface staining set with the isotype- and manufacturer-matched irrelevant control 

antibodies.
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5.3.3.2 TPA treatment o f cell lines 

A total o f 2x106 cells from each transgenic cell line were resuspended in 10ml of the
5 2 •appropriate culture medium (see Table 2.1) at a density o f 2x10 /ml, in a 25cm tissue 

culture flask. All flasks were inoculated with 40nM TPA, mixed well, and cultured 

overnight at 37°C with 5% CO2 . The following day, all TPA treated cell lines received 

the identical morphological, protein, and immunophenotypic assessment that was 

performed pre-TPA-induction (5.3.3.1).

5.3.4 Investigation into the effect of a Wnt stimulus on y-catenin 

expression

To investigate whether y-catenin, like /3-catenin, was capable o f responding to a Wnt 

signal, levels and localisation o f both proteins were observed after treatment with 

recombinant Wnt glycoproteins. Recombinant murine/human Wnt3A (concentration 

unknown) was obtained by harvesting conditioned medium from Wnt3A-transduced 

murine L-cells (generously donated by Dr. Kenneth Ewan, Cardiff University (Willert 

et al., 2003)). Recombinant human Wnt5A was purchased from R&D systems 

(Abingdon, UK). Each test condition is outlined in Table 5.2 below. In each case, wild- 

type K562 cells were resuspended at a density o f 4xl05/ml in the appropriate medium, 

and incubated overnight at 37°C with 5% CO2 . The following day, 2x106 K562 cells 

from each test condition were N/C fractionated and Western blotted as above (5.3.2.1).
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Table 5.2 - The test conditions used on K562 cells to ascertain y-catenin response to 
a Wnt stimulus.

Untreated (control) 5 ml N/A

Wnt3A 2.5ml 2.5ml Wnt3A conditioned 
medium

Wnt5A 5 ml 500ng/ml recombinant Wnt5A

2.5ml Wnt3A conditioned
Wnt3A + Wnt5A 2.5ml medium, plus 500ng/ml 

recombinant Wnt5A

5.3.5 Determination of cause of multiple banding pattern of y-catenin in 

Western blotting

To investigate whether the differential phosphorylation status of y-catenin protein was 

responsible for the multiple banding pattern observed in Western blotting, y-catenin 

protein was immunoprecipitated and then de-phosphorylated.

5.3.5.1 Immunoprecipitation o f y-catenin protein

Whole cell protein homogenate was generated from lxlO6 K562 cells as outlined in 

section 2.6.1, except the homogenisation buffer was replaced with a calf intestinal 

alkaline phosphatase (CIP) extraction buffer (25mM HEPES pH 7.8, 300mM NaCl, 

1.5mM MgC12, 1% Triton® X-100, 0.1 mM dithiothreitol, 1 protease inhibitor tablet) to 

provide optimal conditions for the CIP (New England Biolabs) used in the de­

phosphorylation step below (5.3.5.2). Protein was quantified using the Bradford’s assay 

of 2.6.3.

Immobilised Protein G sepharose beads were washed in 1ml o f TBS with centrifugation 

at 16,000 x g  for 1 minute. Pelleted beads were resuspended in TBS to generate a 50% 

bead slurry prior to ‘pre-clearing’ of the K562 protein lysate. ‘Pre-clearing’ removes the
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non-specific protein binding to the sepharose beads, thus improving the signal-to-noise 

ratio. To achieve this, 100/d of Protein G slurry was incubated with 500/d (containing 

600/xg protein) K562 lysate, under gentle agitation at 4°C for 1 hour.

At the same time, the Protein G bead: y-catenin antibody complex was generated by 

taking 100/d o f Protein G bead slurry and combining with 3.2pg of rabbit polyclonal y- 

catenin antibody (#2309s, Cell Signalling) under gentle agitation for 1 hour at 4°C. 

Upon completion of ‘pre-clearing’, beads were pelleted by centrifugation as above, and 

the cleared lysate supernatant aspirated and split between four Eppendorfs. Three o f the 

cleared lysate tubes each received 33pl o f Protein G bound y-catenin antibody, the other 

remaining free of antibody to serve as a negative control. All tubes were incubated 

overnight under gentle agitation at 4°C. The following day, the three tubes containing 

conjugated beads were washed 3 times with 500/d ice cold TBS each followed by 

centrifugation as above. Pelleted beads were resuspended in 30/d TBS before 

proceeding to de-phosphorylation o f immuno-precipitated protein.

5.3.5.2 De-phosphorylation o f  immunoprecipitated y-catenin protein

Of the three tubes containing bead-bound protein, tube 1 was designated the ‘control’ 

and received 5/d PBS. Tube 2 was designated ‘low-de-phosphorylation’ and received 

10U (1/d) CIP, whilst Tube 3 represented ‘high de-phosphorylation’ and received 100U 

(10/d) CIP. CIP dephosphorylates serine, threonine and tyrosine residues on proteins. 

Tube 4 served as a ‘Cleared lysate’ control and also received 5/d PBS. All tubes were 

incubated at 37°C for 2 hours. The de-phosphorylation reaction was stopped by adding 

200/d TBS to each tube (not tube 4) and pelleting the beads by centrifugation as above. 

CIP contaminating supernatant was removed and discarded before resuspending the 

bound protein in TBS, and Western blotting all tubes as in steps 2.6.4-2.6.7. Purified y- 

catenin was detected using the mouse monoclonal of 3.3.3, whilst efficiency of 

dephosphorylation was assessed using a rabbit polyclonal antibody to phosphotyrosine 

(#T1325, Sigma).
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5.4 Results

C hap te r  5

5.4.1 The function of y-catenin in normal haematopoietic development

5.4.1.1 y-Catenin protein knockdown perturbs human monocyte/macrophage

development

In order to determine the role of y-catenin in normal haematopoiesis it was necessary to 

knockdown endogenous levels of y-catenin protein within a model of in vitro human 

haematopoiesis and examine the consequences for normal development. To optimise 

and validate this approach K562 cells were used because of their tractability and high 

endogenous levels of y-catenin. The time-course Western blot o f Figure 5.3 reveals how 

the y-catenin shRNA retroviral construct (featured in Figure 5.2) was capable o f stable 

knockdown of 76%±5% of y-catenin protein in K562 cells over the 31 days tested.

Day 6 Day 10
A

Day 20
A

Day 28
A

Day 31
A

f  Y  Y Y Y ^
LacZ y-Cat j  LacZ y-Cat [ LacZ y-Cat [ LacZ y-Cat I LacZ y-Cat I

y-Catenin

Actin

W ~  B
♦

Figure 5.3 - The use of y-catenin shRNA to knockdown y-catenin protein 
expression in K562 cells.

Western blotting of K562 whole cell lysates retrovirally transduced with either y-catenin 
shRNA or corresponding LacZ shRNA control. Change in y-catenin protein expression 
in knock-down cultures can be observed compared to mock-transduced control cells. 
Actin was used as a measure of equal protein loading between sample pairs.
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Following successful validation of y-catenin protein knockdown, CD34+ haematopoietic 

progenitor cells were retrovirally transduced with either LacZ control or y-catenin 

shRNA and cultured in vitro for 21 days. Morphological, immunophenotypic and 

developmental assessments were performed at regular time-points throughout the 

experiment as summarised in Figure 5.1. In terms of growth rate, no significant 

difference was observed between control and y-catenin knockdown (y-cat KD) cells 

throughout the entire 2 1  days, as depicted by the cumulative fold expansions featured in 

Figure 5.4 below.

2000 LacZ control shRNA

-*-G ainm a-caten in  shRNA

=  1600 -

=  1200  - 

C L

800 -

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Days in culture

Figure 5.4 - The effect of y-catenin silencing on growth of haematopoietic cells.

Growth curve comparing the cumulative fold expansion of haematopoietic cultures 
retrovirally transduced with either LacZ control (blue line) or y-catenin shRNA (red 
line). Data indicate mean ± 1 SD.
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In order to closely monitor the differentiation of transduced haematopoietic cells, 

specific cell surface marker expression was assessed by flow cytometry. The analytical 

strategy is outlined in Figure 5.5.

Using this strategy a number o f key developmental abnormalities were identified in the 

y-cat KD cells and are summarised in Figure 5.6. At the earliest time-point assessed 

(day 7) there appeared to be negligible differences between the two cultures as deduced 

from all the differentiation parameters previously described (5.3. J. 5). At day 10 a lower 

frequency o f CD13+CD36+ (monocytic) events were present in the y-cat KD culture 

(14.6% versus 25.9%, respectively) as shown in Figure 5.6A. Also identified at this 

time-point, and observable in Figure 5.6A, was an enrichment of erythroid progenitors 

(CD13'CD36+) compared to control cells (34.1% versus 21.2% respectively). 

Unfortunately, further comparison between the erythroid-lineage committed cells o f 

both cultures was not possible after day 1 0  given the requirement for erythropoietin 

(absent from this culture) for further development. The granulocytic lineage 

(CD13+CD36 ) proportion of the culture appeared approximately equal between the two 

cultures at this time-point and indeed remained so for the entirety of the assay.

Given the above observations subsequent analysis at subsequent time-points focussed 

on the development of the CD13+CD36+ monocytic cells. Figure 5.6B shows how the 

proportion of monocytic cells in the y-cat KD culture remained 1.3-2.2-fold lower than 

in the control culture. Immunophenotypic abnormalities were also observed: Figure 

5.6C shows a marked and progressive increase (2.5-3.0-fold higher than controls) in the 

percentage of CD13+CD36+ cells expressing the granulocytic antigen, CD15, from days 

14-21. In contrast, Figure 5.6D shows little difference in the expression o f the 

monocytic marker, CD 14. Finally, it was noted from around day 14 onwards that y-cat 

KD monocytes exhibited lower FSC and SSC (Figure 5.6E and F  respectively), 

suggesting smaller and less granular cells than present in control cultures.
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Analysis of cell morphology by May-Griinwald-Giemsa staining of leukocytes was used 

in conjunction with flow cytometric measurements to assess the differentiation of cells. 

At day 21 of culture, total GFP+ events were FACS sorted from both cultures (nearly all 

CD13+ at this point), cytospun onto glass slides, stained, and examined by light 

microscopy. The morphology, as represented in Figure 5.7A and B, appeared to 

corroborate the immunophenotypic data described above. As anticipated LacZ shRNA 

control cultures (A) were dominated by macrophages with rare mature granulocytes 

(with hyper-segmented nuclei). Conversely, the y-cat KD culture (B) was deficient in 

macrophages instead exhibiting predominantly cells of granulocytic morphology (band- 

from and hyper-segmented neutrophils). The prevalence o f granulocytic cells within this 

culture validates the increase in CD 15 expression (see above) and the lower SSC and 

FSC measurements are in keeping with the predominance of smaller cells in the y-cat 

KD culture. To see further morphology images of both cultures please consult sub­

folder 1 of Folder 1 from the main Chapter 5 section of the supplementaty CD.
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Figure 5.5 - Strategy for immunophenotyping of transduced haematopoietic cells.

Preliminary steps involved A) exclusion of debris and B) gating of GFP positive cells. 
C) Use o f ‘lineage discriminators’ (CD13 and CD36) to identify 3 sub-populations of 
lineage-committed haematopoietic cells: monocytic (mono: CD13+CD36+), erythroid 
(ery: CD13 CD36+) and granulocytic (gran: CD13CD36). D-F) Each of these subsets 
was then gated and examined for cellular characteristics such as size (FSC) and 
granularity (SSC) or for specific cell surface markers of differentiation such as CD 15 or 
CD14.
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Figure 5.6 - The effect of y-catenin silencing on the development of haematopoietic cells.

A) Representative CD13 versus CD36 contour plots from day 10 of culture comparing 
lineage frequency between I) LacZ control and II) y-catenin shRNA transduced 
haematopoietic cells. B) Frequency of CD13+CD36+ events in LacZ control and y- 
catenin shRNA transduced cultures over 21 days. C-F) Differentiation profile of LacZ 
and y-catenin shRNA transduced monocytic cells (CD13+CD36+) showing direct 
comparison of percentage CD 15 and CD 14 cells present in each culture, followed by 
forward and side scatter comparison (n=l for all).
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Figure 5.7 - The effect of y-catenin silencing on differentiation of haematopoietic 
cells.

Representative cell morphology of A) LacZ control shRNA and B) y-catenin shRNA 
transduced haematopoietic cells following 21 days of in vitro culture. Cells were 
cytospun onto glass slides and May-Griinwald-Giemsa stained. Morphology is shown at 
lOOx and 400x magnification. Annotations denote: Mac=macrophage,
Mono=monocyte, Gran=granulocyte, MM=metamyelocyte and BF=band-form 
neutrophil.
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5.4.1.2 y-Catenin deficient monocytes fa il to complete monocytic/macrophage 

differentiation and instead develop granulocytic characteristics

The above data indicated a potential aberration in monocyte/macrophage differentiation. 

To further characterise the nature of this defect, the experiment was repeated but 

focusing specifically on GFP+ monocyte progenitors (CD34+CD13bright) which were 

sorted on day 4 following retroviral transduction (see Figure 5.1). This reduced any 

ambiguity in the interpretation o f the results (e.g. whether the lower frequency o f 

progenitors arising from y-catenin silencing was due to changes in cell survival, 

proliferation or transdifferentiation). Figure 5.8 shows the gating strategy adopted.

Figure 5.9 shows that CD34+CD13bright y-cat KD monocytes displayed a modestly 

enhanced proliferative capacity in the final time-points (days 14-21) o f the assay. These 

differences were relatively small and would not have been observed in the bulk culture 

assessment made in 5.4.1.1. Immunophenotypic analysis again showed a consistent 

reduction (1.1-1.9-fold lower) in the proportion of CD13bnghtCD36+ monocytic cells 

present in y-cat KD cultures, relative to controls {Figure 5.10A). The representative day 

14 contour plot of Figure 5.10B indicates that a loss o f CD13brightCD36+ events in the y- 

cat KD culture is concomitant with an enrichment o f the CD13+CD36' region 

(granulocyte/progenitor compartment). There appeared to be little difference in the 

differentiation profile of CD13+CD36" cells between both cultures. Both cultures 

displayed lower CD13, CD36, FSC, SSC, and CD14 measurements than obtained in the 

CD13bnghtCD36+ region, as would be expected in this ‘granulocytic’ region.

In the CD13brightCD36+ region, a higher proportion of cells expressed the granulocytic 

antigen, CD 15, in y-cat KD cultures from day 7 onwards (starting 4-fold higher, 

peaking at 16-fold higher on day 14, Figure 5. IOC). The identity o f these cells 

remained ambiguous however, as they also maintained high expression o f the 

monocytic marker, CD 14, which was not dissimilar from controls (except for a 1.3-fold 

higher level at day 17, Figure 5.10D). Finally, as also identified in the previous assay 

and demonstrated in Figure 5.10E and F  respectively, FSC and SSC measurements 

were again lower in y-cat KD monocytes particularly at later time-points (days 14-21).
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It should also be noted that no significant retention of CD34 expression, or aberrant 

expression of GlyA (for mature erythrocytes) was detected in either monocyte culture. 

Unfortunately, immuno-staining with CD 163 (a marker of macrophages) failed at each 

of the time-points assayed, despite the presence of macrophages in mature monocyte 

cultures. This was probably due to reagent quality issues. A colony assay was also 

performed immediately after the day 4 FACS sort (not described in methods) to explore 

the developmental fate o f single progenitor cells, however, this assay failed due to a 

preparative error in the media formulation arising from inadequate deionisation of the 

BSA component.

As before, the assessment o f cell morphology appeared to support the 

immunophenotypic data. To observe the full range of developing monocyte morphology 

from day 7 to 21, consult sub-folders 2-6 o f Folder 1 from the main Chapter 5 section 

of the supplementary CD. Briefly, very minor morphological differences between the 

two transduced monocyte cultures were present at day 7 and 10 assessments. The 

morphology observed in Figure 5.11 from day 17 shows that LacZ shRNA control 

transduced cells (A) exhibited classic macrophage or monocyte morphology, as seen in 

previously {Figure 5.7A) and shows that under normal conditions CD13bnght progenitors 

give rise to predominantly cells o f the monocyte/macrophage lineage. Conversely, the 

y-catenin shRNA transduced monocytes (B) was dominated by the presence of cells 

exhibiting a pale ‘macrophage-like’ cytoplasm, but with a ruffled, uneven cell 

membrane and displaying granulocytic (often hyper-segmented) nuclear morphology. 

These cells appeared smaller, less granular and more vacuolated (an indicator of in vitro 

culture physiological stress) than their normal developmentally-matched counterparts. 

These observations confirmed the biphenotypic staining pattern seen above in that the 

cells appeared to have both granulocytic and monocytic features. Taken with the 

previous section, these data would imply that y-catenin expression is important for 

normal monocytic development. y-Catenin deficiency appears to prevent macrophage 

differentiation instead resulting in dysplastic cells with granulocytic/monocytic 

characteristics.
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Figure 5.8 - The isolation and purification of monocytic lineage-committed 
haematopoietic progenitor cells.

The sequential gating strategy adopted using the high speed cell sorter to purify a 
monocyte committed subpopulation of retrovirally transduced CD34+ haematopoietic 
progenitor cells following retroviral transduction (day 4). A) Firstly, cell debris was 
excluded using FSC versus SSC parameters before, B) exclusion o f doublets by use of 
pulse width. C) Retrovirally transduced cells were gated on the basis o f GFP positivity. 
D) Monocytic lineage-committed haematopoietic progenitors were identified by cell- 
high surface expression of CD13 (using the CD13bnghtCD36+ definitive monocyte 
population to set the CD13 threshold (Tjonnfjord et a l , 1996)).
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Figure 5.9 - The effect of y-catenin silencing on growth of monocytic cells.

Growth curve comparing the cumulative fold expansion of day 4 FACS sorted 
CD13bnght(CD36+/') monocytic cells retrovirally transduced with either LacZ control or 
y-catenin shRNA (n=l).
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Figure 5.10 - The effect of y-catenin silencing on the development of monocytic cells.

A) Comparison of percentage CD13brightCD36+ events detected in LacZ control and y- 
catenin shRNA transduced monocyte populations over 21 days. B) Representative 
contour plots from day 14 comparing CD 13 and CD36 expression in day 4 sorted 
differentiating monocyte populations transduced with I) LacZ control and II) y-catenin 
shRNA. C-F) Differentiation profile of LacZ and y-catenin shRNA transduced 
monocytic cells (using CD13bnght gate illustrated in A) showing direct comparison of 
percentage CD 15 and CD 14 cells present in each culture, followed by forward and side 
scatter comparison (n=l for all).
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Figure 5.11 - The effect of y-catenin silencing on differentiation of monocytic cells.

Representative day 17 cell morphology showing differences between A) LacZ control 
shRNA and B) y-catenin shRNA transduced cells. Cells were cytospun onto glass slides 
and May-Grunwald-Giemsa stained. Morphology is shown at lOOx and 400x 
magnification. Annotations denote: Mac=macrophage, Mono=monocyte,
Gran=Granulocytes with hyper-segmented nuclei, MM=metamyelocyte, and 
Vac=vacuolated cytoplasm.
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5.4.2 The influence of y-catenin expression on jS-catenin localisation

The previous chapter identified a potential correlation between the level of y-catenin 

and /5-catenin protein within primary AML blasts. It was thus necessary to examine the 

capacity of y-catenin to influence /3-catenin level and localisation in both normal and 

leukaemic cells.

5.4.2.1 Ectopic y-catenin fails to stabilise or translocate endogenous (3-catenin 

in normal haematopoietic cells

To test the capacity for y-catenin to influence /3-catenin level and localisation in normal 

haematopoietic cells, CB-derived CD34+ progenitor cells were retrovirally transduced 

with a y-catenin overexpression vector and N/C fractionated on day 5 of culture (whilst 

still predominantly CD34+) and also on day 13 day o f culture. Protein extracts were 

prepared and assessed for /3-catenin protein level and subcellular localisation.

Figure 5.12 demonstrates ~3-fold overexpression of y-catenin protein in day 5 and day 

13 haematopoietic cells. Interestingly, overexpression induced a similar pattern of 

multiple banding as in control cells making it unlikely that this banding pattern arose 

non-specifically. In neither day 5 or day 13 cells did overexpression result in increased 

nuclear translocation of y-catenin with these cells. y-Catenin overexpression induced 

slight 1.4- and 1.1-fold increases in (3-catenin cytoplasmic expression, however, further 

comparisons would have to be made to establish the significance o f such minor 

perturbations. As expected day 5 cells contained low but detectable levels o f nuclear /3- 

catenin that were undetectable in day 13 cells. No significant increase in nuclear 

translocation of /3-catenin protein was observed in y-catenin overexpressing cells at 

either time-point.

Examination into the Functional Role of y-Catenin in Haematopoietic
Cells
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Figure 5.12 - The effect of y-catenin overexpression on level and subcellular 
localisation of /3-catenin in normal haematopoietic cells.

Western blot of cytosolic and nuclear homogenate from day 5 and day 13 in vitro 
cultured haematopoietic progenitor cells demonstrating the localisation of y-catenin 
protein and the subsequent localisation of /(3-catenin protein. Arrows and associated 
numerals show the fold-change in expression versus transduced control cells. Actin and 
Histone HI show the purity and loading of each fraction.
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5.4.2.2 Ectopic y-catenin serves mainly to stabilise nuclear (3-catenin in 

leukaemic cell lines

It was also necessary to test the extent to which y-catenin could influence /3-catenin 

level and localisation within a leukaemic setting. To this end, the leukaemic cell lines 

created in Chapter 3 (Figure 3.10) to express ectopic y-catenin were N/C fractionated 

and inspected for /3-catenin level and subcellular distribution. In addition to these, a 

K562 line was also generated expressing y-catenin shRNA (Figure 5.2A). The outcome 

of this experiment is summarised in Figure 5.13. U937 showed a response to y-catenin 

overexpression characteristic of normal progenitors i.e. augmented expression did not 

promote nuclear translocation of y-catenin or /3-catenin. As with normal cells some 

stabilisation o f cytoplasmic /3-catenin was observed which is in keeping with the far 

greater level o f overexpression of y-catenin achieved in these cells. All the other lines 

examined (HEL, THP-1 and K562) displayed an abnormal response where y-catenin 

overexpression was associated with various degrees o f y-catenin nuclear translocation. 

In each case, this was also accompanied by a similar enhancement o f /3-catenin 

translocation which appeared unrelated to the change in cytosolic levels o f /3-catenin 

(e.g. HEL and U937 cells where /3-catenin translocation is independent o f cytosolic /3- 

catenin levels). These data suggest that nuclear translocation o f y-catenin may also 

promote or stabilise /3-catenin in the nucleus. Conversely, the y-catenin shRNA 

construct reduced K562 cytosolic and nuclear y-catenin by 90% but had only a modest 

effect on /3-catenin expression and translocation. However, endogenous levels of 

nuclear /3-catenin were very low in this cell line, making further reductions or fold- 

changes difficult to reliably quantitate. It is also possible that any loss of /3-catenin could 

be fatal for K562 cells and so the cells which have been puro-selected and assayed 

could represent cells were able to maintain /3-catenin expression.

The effect of y-catenin knock-down on /3-catenin expression was also analysed in the 

context of THP-1 and U937 cells (see Figure 5.14 and Figure 5.17 in section 5.4.3 

below). These cell lines expressed much lower levels of y-catenin and so the level of 

knock-down was less pronounced (see also below). In this context there was no 

consistent effect on cytosolic levels of /3-catenin. Nuclear levels o f /3-catenin were 

however reduced, though in all lines the endogenous levels o f nuclear /3-catenin were
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low, making quantification o f fold-changes difficult to accurately determine. 

Interestingly, ectopic expression o f the mutant form o f degradation-resistant /3-catenin 

(/3-catAN89) in these cell lines also lead to the stabilisation and translocation of y- 

catenin {Figure 5.14 and Figure 5.17). This suggests a reciprocal relationship between 

the two catenins within a leukaemic setting, although U937 cells again behaved like 

‘normal’ cells demonstrating limited translocation and weak influence o f catenins on 

one another.

To summarise the two preceding sections o f data, while it would appear that ectopic y- 

catenin expression is incapable o f significantly modulating /3-catenin localisation in 

normal haematopoietic cells, in a leukaemic context y-catenin expression is much more 

influential in regulating both /3-catenin level and localisation. Generally, an increase in 

y-catenin protein frequently led to stabilisation o f /3-catenin protein. More consistently, 

changes in the nuclear translocation o f y-catenin gave rise to corresponding changes in 

the expression in the localisation o f  /3-catenin. Therefore, the independent regulation o f 

translocation that is apparent in normal haematopoiesis (see Chapter 3) is not evident in 

leukaemic cells.
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Figure 5.13 - The effect of y-catenin overexpression on the level and subcellular 
localisation of /3-catenin in leukaemic cell lines.

Cytosolic and nuclear homogenates from various leukaemic cell lines expressing 
ectopic/silenced y-catenin protein or respective controls. Level and localisation of y- 
catenin is shown along with the resulting level and localisation of /3-catenin. Arrows and 
associated numerals show the respective fold-changes in expression versus transduced 
control cells. Red cross represents no fold-change or unquantifiable due to difficulties in 
band detection. Actin and Histone HI show the purity and loading of each fraction.
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5.4.3 The effect of y-catenin expression on induced differentiation of 

monocytic cell lines

The previous two sections of data highlighted that; firstly, y-catenin appeared to be 

important for normal monocytic differentiation and secondly that y-catenin was capable 

of modulating /3-catenin level and localisation in leukaemic cell lines. Since THP-1 and 

U937 are capable of monocytic differentiation upon exposure to phorbol esters 

(Tsuchiya et al., 1982; Hass et al., 1989), such as TPA, the effect of ectopic y-catenin 

expression on this response was examined. In addition to the THP-1 and U937 

transgenic lines used in the above section (5.4.2.2), two more were created for each cell 

line including; y-catenin knock-down (y-cat KD using construct of Figure 5.2), and 

mutant /3-catenin (/3-catAN89, section 53.4.2) overexpressing cells. Each cell line was 

assessed for y- and /3-catenin localisation, plus state of monocytic differentiation (by 

flow cytometry and cell morphology) prior to TPA treatment, and then re-assessed for 

the same characteristics following overnight exposure to TPA.

5.4.3.1 THP-1 cells overexpressing y-catenin fa il to differentiate upon TPA 

induction

Figure 5.14A shows the level and subcellular distribution o f each catenin in each o f the 

THP-1 variants created prior to TPA induction. Level and localisation of each catenin in 

the control and y-catenin overexpressing lines was similar to that described above 

(5.4.2.2). In the newly created THP-1 y-cat KD cells, 70% and 90% reductions in 

cytosolic and nuclear y-catenin protein respectively, resulted in a 60% decrease in 

nuclear /3-catenin but a 3.6-fold increase in the cytosolic form o f /3-catenin. The /3- 

catAN89 THP-1 cell line was capable o f inducing a 10.4-fold, and a more modest 1.2- 

fold, increase in the respective levels of cytosolic and nuclear mutant /3-catenin. 

Interestingly this corresponded to a 3.6-fold stabilisation of cytosolic y-catenin along 

with a 2 .6 -fold increase in nuclear y-catenin.

Figure 5.14B shows the level and localisation of catenin proteins in THP-1 cells 

following overnight treatment with TPA. A subtle TPA-mediated increase in /3-catenin
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protein was observed in THP-1 cells upon treatment, but this did not significantly alter 

the localisation of both proteins as observed in the cell lines prior to treatment.

Figure 5.15 shows the immunophenotypic profile of each THP-1 cell line prior to and 

following TPA treatment. The THP-1 control line, as seen in Figure 5.15A, was found 

to already express the monocytic marker CD 14, which was unaffected upon TPA 

treatment. Cell surface expression of the myeloid protein, CD lib , was at background 

levels on untreated control cells, but was strongly induced (56-fold) following TPA 

treatment. In contrast, CD 14 was not detectable on THP-1 pBabe-Puro-y-catenin cells 

(Figure 5.15B) and was only weakly induced by TPA. Similarly C D llb  could not be 

significantly induced upon phorbol ester treatment. The THP-1 y-cat KD cells, featured 

in Figure 5.75C, differed from control in that these cells expressed C D llb  prior to 

induction a feature also shared by THP-1 /3-catAN89 cells (Figure 5.15D), but in other 

respects both these lines were similar to control cells. CD 13 cell surface expression was 

also examined (data not shown) and could not be induced by TPA in any of the THP-1 

lines assayed.

May-Griinwald-Giemsa staining was used in assistance with flow cytometric data to 

assess the extent of monocytic differentiation in THP-1 cell lines. Figure 5.16A shows 

the normal morphology o f THP-1 cells, which were dominated by dark staining 

monoblasts with a high nuclear: cytosol ratio. After an overnight incubation with TPA 

these cells differentiated into larger, mature monocyte or macrophage looking cells with 

pale cytoplasm and a lowered nuclear: cytosol ratio. The cytosol of these cells also 

appeared vacuolated, an indicator of the physiological stress. The morphology displayed 

in Figure 5.16B, for y-catenin overexpressing THP-1 cells appeared to validate the flow 

cytometric analysis. The culture prior to TPA treatment seemed to contain smaller, very 

dark staining blasts which looked more primitive than the monoblasts present in the 

control culture consistent with the reduced expression o f CD 14. These cells failed to 

differentiate following TPA treatment, and maintained blast-like morphology again 

consistent with the reduced CD14 and absent C D llb  expression. Unlike control cells, 

these cells also failed to become plastic-adherent following differentiation induction.

226 | P a g e



Chapter 5

Although the THP-1 y-cat KD cells appeared different in terms of colour (due to 

differences in uptake of May-Griinwald-Giemsa) the actual morphology was not 

dissimilar to that of control THP-l’s (Figure 5.16C). The THP-1 y-cat KD culture 

appeared to differentiate similarly to the controls, becoming adherent and increasing the 

presence of large vacuolated macrophage-like cells. The final THP-1 cell line 

overexpressing mutant /3-catenin {Figure 5.16D) appeared darker in colour, smoother in 

shape with a higher nuclear:cytosol ratio (untreated). Upon TPA-induction, visible signs 

of differentiation were apparent as before, however, there appeared to be a large number 

of undifferentiated monoblasts still present in the culture. To see the full range of THP- 

1 cell line morphology, pre- and post-TPA induction, please refer to Sub-Folders 1-4 of 

Folder 2 from the main Chapter 5 section of the supplementary CD.

To summarise at this point, it appeared the capacity of THP-1 cells to undergo induced 

monocytic differentiation is inversely related to the extent of nuclear catenin expression. 

Given that the expression of nuclear y- and /3-catenin is interconnected, it is difficult to 

confidently conclude which catenin (or if both) is dominant in driving the differentiation 

block. The case for each catenin being responsible is discussed further in section 5.5.3. 

Also, it seems the y-catenin overexpression/silencing phenotypes exhibited in THP-1 

cell lines are not consistent with the observations in primary haematopoietic cells 

(discussed further in 5.5.4).
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Figure 5.14 - Subcellular localisation of y-catenin and 0-catenin in THP-1 cells 
before and after TPA treatment.

N/C Western blots showing the level and localisation of y- and (3-catenin protein in 
transduced THP-1 cell lines A) prior to and B) after TPA treatment. Arrows and 
associated numerals show the respective fold-changes in expression versus transduced 
control cells, once normalised from the amount of protein loaded on each lane. Actin 
and Histone HI show the purity and loading of each fraction. Note that control is under­
loaded in B so banding intensity does not correspond with corrected fold change values.
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Figure 5.15 - Immunophenotyping of transduced THP-1 cells following TPA 
treatment.

Histograms showing the cell surface expression of CD 14 and CD1 lb on THP-1 cells: 
A) control, B) y-catenin overexpressing, C) y-cat KD and D) /3-catAN89. Black 
histograms represent staining on untreated THP-1 cells, red histograms TPA-treated 
cells, and blue histograms indicate staining from isotype-matched control antibody.
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Figure 5.16 - Cell morphology of transduced THP-1 cells following TPA treatment.

Untreated and TPA-treated THP-1 cells cytospun and May-Griinwald-Giemsa stained. 
Morphology shown for THP-1 cells: A) control, B) y-catenint, C) y-cat KD and D) /3- 
catAN89 DNA. Annotations as in Figure 5.11 except MB=monoblast and Gho=Ghost 
cells (smeared isolated nuclei with no cytosol). Morphology is shown at 400x.
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5.4.3.2 The inability o f catenin to nuclear translocate in U937 cells means 

normal differentiation upon TPA induction

Figure 5.17A shows the level and subcellular distribution o f each catenin in each o f the 

U937 cell lines variants created prior to TPA induction. As with THP-1 cells the level 

and localisation of each catenin in the control and y-catenin overexpressing lines have 

been described previously (5.4.2.2). The U937 cells expressing y-catenin shRNA 

reduced the already very low endogenous y-catenin levels by 40% in both the cytosol 

and nucleus, which also lowered cytosolic and nuclear /3-catenin by 40% and 70% 

respectively. The U937 /3-catAN89 cells induced a 6.3-fold increases in cytosolic (3- 

catenin (which as for y-catenin overexpression) had little consequence for nuclear (3- 

catenin localisation. As expected, the nuclear /3-catenin in all U937 cells always 

migrated to a lower molecular weight (~75kDa) than the nuclear /3-catenin observed in 

control and y-catenin overexpressing variants of other cell lines (~85kDa, see Figure 

5.13). As mentioned later, these truncated fragments are likely to possess limited 

transcriptional capability (5.5.3.1 and 5.5.6).

Following overnight treatment with TPA (Figure 5.17B) no major changes were 

observed in the level and localisation of y-catenin protein across U937 lines, apart from 

the U937 y-catenin overexpressing line where a notable increase in nuclear y-catenin 

was prevalent (from 1.9- to 6 .8 -fold).

Flow cytometric data, as shown in Figure 5.18, were not particularly useful in the 

assessment o f U937 monocytic differentiation upon TP A-induct ion. The 

myeloid/monocytic markers CD14, CD1 lb  and CD13 appeared to be expressed on most 

U937 cell lines assayed, but none seemed to be markedly induced upon TPA exposure. 

The U937 y-cat KD exhibited the largest increases in all three myelo/monocytic markers 

upon TPA exposure as evidenced in Figure 5.18C, which interestingly also harboured 

the lowest level o f nuclear /3-catenin among these cell lines.
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The cell morphology, as given in Figure 5.19, was more useful in interpreting the extent 

of TPA-induced monocytic differentiation in each U937 line. To see the full range of 

U937 cell line morphology, pre- and post-TP A induction, please refer to Sub-Folders 1- 

4 of Folder 3 from the main Chapter 5 section of the supplementary CD. Normal U937 

morphology (untreated image of Figure 5.19A) shows how the majority of the cells are 

monoblasts similar to THP-1 cells except for a slightly lower nuclear: cytosol ratio. The 

morphological differences occurring through TPA exposure are quite subtle but include 

a further lowering o f the nuclear: cytosol ratio and a paler vacuolated cytoplasm. There 

was an increase in the frequency of adherent macrophages and mature monocytes in the 

culture, although not as pronounced as for THP-1 cells. This extent of monocytic 

differentiation generated by TPA treatment appeared to be approximately equal in all 

U937 cultures as depicted in Figure 5.19A, B, C, and D. If anything the U937 y-cat KD 

culture demonstrated a slightly increased frequency of differentiated 

monocytic/macrophage cells, however more replicates and differential morphology 

counts would be required to validate this observation.

To summarise, this section of data shows there is a very clear difference in the 

respective abilities of THP-1 and U937 cells to differentiate upon TPA stimulation. This 

correlates with a clear difference in the abilities of the two cell lines to translocate full- 

length nuclear y-or (3-catenin upon manipulation o f these proteins. This would be 

consistent with the hypothesis that THP-1 cells have a much greater ability to influence 

nuclear catenin levels which in turn influences the differentiation potential. Conversely, 

U937 cells cannot modulate nuclear catenin to the same degree, and hence have reduced 

influence on differentiation potential.
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A) Before TPA treatment U937
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B ) After TPA treatment U937
_________________ A_

Cont y-Cat |  y-Cat KD /8-catAN89
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y-Catenin

Fold change in y-Catenin 25.1 6.8 0.3 0.9 0.1 6.8
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Figure 5.17 - Subcellular localisation of y-catenin and /3-catenin in U937 cells 
before and after TPA treatment.

N/C Western blots showing the level and localisation of y- and /3-catenin protein in 
transduced U937 cell lines A) prior to and B) after TPA treatment. Arrows and 
associated numerals show the respective fold-changes in expression versus transduced 
control cells once normalised from the amount of protein loaded on each lane. Red cross 
represents no fold-change Actin and Histone HI show the purity and loading of each 
fraction.
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Figure 5.18 - Immunophenotyping of transduced U937 cells following TPA treatment.

Histograms showing the cell surface expression of CD14, CDl lb and CD13 on U937 
cells transduced with A) control, B) y-catenin overexpressing, C) y-cat KD and D) (3- 
catAN89. Black histograms represent staining on untreated U937 cells, red histograms 
TPA-treated cells, and blue histograms indicate staining from isotype-matched control 
antibody.
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Figure 5.19 - Morphology of transduced U937 cells following TPA treatment.

Untreated and TPA-treated U937 cells cytospun and May-Griinwald-Giemsa stained. 
Morphology shown for U937 cells retrovirally transduced with A) control, B) y-catenin 
overexpressing, C) y-cat KD and D) /3-catAN89 DNA. Annotations as in Figure 5.16.
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5.4.4 y-Catenin accumulates and translocates in haematopoietic cells upon 

an exogenous Wnt signal

It has been previously well documented that stimulation o f the Wnt signalling cascade 

by an external Wnt ligand leads to an increase in the free cytoplasmic pool o f /3-catenin 

which subsequently translocates to the nucleus. Historically, in haematopoietic cells this 

has been demonstrated using Wnt3A. It remains unreported whether an exogenous Wnt 

signal is capable o f influencing the level and subcellular localisation o f y-catenin protein 

within a haematopoietic context. To investigate this K562 cells were incubated 

overnight with recombinant Wnt3A and/or the Wnt antagonist, Wnt5A, and examined 

for y- and /3-catenin protein.

Figure 5.20 shows Wnt3A generated a 15-fold induction o f cytoplasmic /3-catenin 

(relative to untreated cells) which subsequently stabilised a 9.9-fold increase in nuclear 

translocation, as expected. Treatment with Wnt5A failed to influence /3-catenin level or 

localisation. Treatment with both recombinant Wnt factors caused an 18-fold induction 

of cytoplasmic /3-catenin and a 9.9-fold shift in nuclear /3-catenin, which was 

presumably driven by the overriding effects o f the Wnt3A signal.

Wnt3A exposure also stimulated 4- and 2-fold increases in respective levels of cytosolic 

and nuclear y-catenin as also shown in Figure 5.20. Similarly to /3-catenin, cytosolic y- 

catenin was unaffected by Wnt5A treatment whilst nuclear levels actually showed a 

modest 60% reduction. Incubation with both Wnt proteins led to 4- and 2-fold increases 

in cytoplasmic and nuclear y-catenin, respectively. Again, it can be assumed this was 

primarily an overriding effect o f the Wnt3A exposure.

Given that y-catenin can respond and translocate upon exposure to an external Wnt 

stimulus, could this (or any other secreted factor) explain the differential nuclear y- and 

/3-catenin translocation observed between THP-1 and U937 cell lines (see 5.4.2 and 

5.4.3)? To examine this, growth medium from THP-1 control and pBabe-Puro-y-catenin 

cultures was harvested at confluence, mixed equally with fresh medium and incubated
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with U937 control cells overnight. The following day, U937 cells were N/C fractionated 

and inspected for y- and /3-catenin level and localisation. Figure 5.21 shows how an 

overnight incubation o f U937 cells with THP-1 medium did not significantly increase 

the degree of nuclear translocation of y- or /3-catenin proteins.

Taken together, this section o f data shows for the first time that exogenous Wnt signals 

are capable o f influencing the level and subcellular distribution of y-catenin within 

haematopoietic cells. However, this finding cannot explain the discrepancy between the 

respective abilities o f  THP-1 and U937 cells to nuclear translocate y- and /3-catenin 

protein.
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Figure 5.20 - The effect of Wnt3A and Wnt5A on the subcellular localisation y- 
and /3-catenin expression.

Fractionation of K562 cells into cytosolic and nuclear lysates to determine the 
subcellular localisation of y- and /3-catenin protein in response to Wnt stimuli. Arrows 
and associated numerals show the fold-change in expression versus untreated control 
cells. Red cross represents no fold-change or unquantifiable due to difficulties in band 
detection. Actin and Histone HI show the purity and loading o f each fraction.
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Figure 5.21 - The effect of THP-1 conditioned medium on the level and localisation 
of catenins in U937 cells.

Medium from confluent THP-1 pBabe-Puro control and pBabe-Puro-y-catenin cells was 
harvested and mixed 1:1 with fresh RPMI medium, and incubated with U937 pBabe- 
puro-y-catenin cells overnight. Western blot shows cytosolic and nuclear fractions from 
U937 cells from each condition and the respective level and localisation of y- and /?- 
catenin. Detection of Actin and Histone HI provided an assessment o f purity and 
protein loading of each fraction.
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5.4.5 The multiple-banding of y-catenin is unlikely due to differential 

phosphorylation status

It had been frequently observed during this project that Western blotting o f y-catenin 

protein (and /3-catenin to a lesser extent) had exhibited a multiple-banding pattern in 

both normal and leukaemic cells. Knowledge of the cause o f this banding was likely to 

provide insight as to how these proteins are regulated in normal and malignant 

haematopoietic cells. It was hypothesised that differential phosphorylation status o f the 

protein may be responsible for the variations in migratory speed through a gel. 

Therefore, to test this hypothesis, y-catenin protein was immunoprecipitated from K562 

cell lysate (where multiple-banding is known to be present) and de-phosphorylated 

using CIP enzyme.

If the number of phosphate groups present on the catenin molecule was responsible for 

the varying migratory forms, then it was anticipated that removal o f all phosphate 

groups by CIP would lead to a uniform formation of y-catenin protein bands. Figure 

5.22A shows how y-catenin was successfully purified from K562 cell lysate (lane 1 

from lane 4), but how both low (10U CIP, lane 2) and high (100U CIP, lane 3) de­

phosphorylation reactions failed to alter the multiple-banding pattern of y-catenin 

protein when Western blotted. A dose-dependent increase in the intensity o f y-catenin 

protein bands (relative to untreated controls) was observed between protein lanes treated 

with low and high CIP concentrations however the significance of this is unknown. To 

validate the efficacy o f the de-phosphorylation reaction, the immunoprecipitated protein 

was probed with a phospho tyro sine antibody. Phosphorylated tyrosine residues, could 

not be detected around the migratory region of untreated (still phosphorylated) y-catenin 

protein. Faint bands were detected in the CIP-treated lanes, however this is likely to 

represent residual y-catenin protein signal that was remaining from the initial detection 

of purified y-catenin protein. Thus, there is no confirmation that the specific de­

phosphorylation of y-catenin protein actually occurred. However, and shown in Figure 

5.22B and C, phosphotyrosine was detected on an unknown high molecular weight 

protein which had immunoprecipitated with y-catenin. This protein was around 180- 

200kDa in size and exhibited clear phosphotyrosine signal in the untreated lane (1)



Examination into the Functional Role of y-Catenin in Haematopoietic ,
■ nllr *

which became heavily reduced in the high and low CIP-treated lanes. This finding 

would suggest that the dephosphorylation step by CIP was effective.

In conclusion, these data would suggest that differential phosphorylative forms of y- 

catenin molecule are not responsible for the multiple-banding of y-catenin protein 

observed in Western blotting o f normal and malignant haematopoietic cells. However, 

these experiments are unable to decisively confirm whether specific de-phosphorylation 

of y-catenin protein truly occurred.
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Figure 5.22 - The isolation and de-phosphorylation of y-catenin protein.

A) Whole cell lysate Western blots of K562 cells demonstrating immuno-precipitated y- 
catenin protein (lanes 1-3) and otherwise unpurified but cleared K562 lysate (lane 4). 
Lanes 2 and 3 were treated with low (10U) and high (100U) concentrations o f CIP, 
respectively. Control lanes 1 and 4 were treated with PBS only. B) The same Western 
blot but probed with a phospho-tyrosine antibody. The efficiency of the CIP-induced 
de-phosphorylation step was assessed by observation of an unknown, non-specific 
protein band (red box) which is further magnified in C). Phospho-tyrosine residues 
appeared to be undetectable within the migratory region of y-catenin protein.
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5.5 Discussion

5.5.1 y-Catenin expression during normal haematopoietic is indispensible 

for proper monocyte/macrophage development

Knock-down studies o f y-catenin protein in a model o f normal haematopoiesis have 

highlighted a potential novel role for y-catenin in effective monocyte/macrophage 

development. y-Catenin-deficient CD34+ progenitor cells retain the differentiation 

capacity to generate CD13brightCD36+ monocyte-lineage committed progenitors, but fail 

to develop into mature macrophages. These findings support the data in Chapter 3 (see 

3.4.2), whereby (unlike /3-catenin) an increase in y-catenin expression was observed in 

CD14+ monocytes which also exhibit the highest levels of nuclear y-catenin o f all the 

lineages analysed (3.4.3.5 and 3.4.3.7). This would imply that y-catenin has an 

important transcriptional function within these cells that is indispensible for normal 

macrophage development.

The finding that y-catenin deficient monocytes fail to generate macrophages, and 

instead develop granulocytic characteristics is consistent with a transcriptional role in 

lineage fate. It is frustrating that the colony assays failed, as this would have confirmed 

whether any lineage-bias was present at a clonal level. Granulocytic and monocytic 

lineages are closely related and there is evidence that commitment to either lineage 

requires both expression and suppression o f lineage-specific or -irrelevant transcription 

factors, respectively, as evidenced previously in HSC (Hu et al., 1997). A number o f 

transcription factors have been implicated in normal monocyte/macrophage 

differentiation including CCAAT-enhancer-binding proteins (CEBP), PU.l and RUNX- 

1 as reviewed by Valledor et al., 1998. These data would imply that lineage- 

enforcement occurs throughout haematopoietic development, and that y-catenin could 

be involved in this process to promote macrophage development. Catenins have been 

implicated in such a process previously by Baba et al. whereby a constitutively active 

form o f /3-catenin in normal myeloid or lymphoid progenitors generated uncommitted 

progenitors with multi-lineage differentiation potential (Baba et al., 2005). 

Inappropriate gene expression was observed with /3-catenin directly increasing the

expression o f CEBPo; but reducing early B-cell factor (EBF), and paired box protein 5
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(Pax-5) in order to generate myeloid cells from lymphoid progenitors. This would 

insinuate a degree o f plasticity in late haematopoietic development for which there is 

some evidence in monocytic cells (Montanari et al., 2005; Ungefroren et al., 2010). It 

would be tempting to speculate that y-catenin could have an influence on some of the 

aforementioned transcription factors, however such a claim could only be affirmed by y- 

catenin knock-down studies incorporating gene expression profile microarrays. Similar 

studies have been conducted in this laboratory previously albeit using the y-catenin 

overexpression model. In these studies (Liddiard et al., submitted) y-catenin positively 

regulated the activity o f myc-target protein 1 (myc-Tl), which was found to 

preferentially promote monocytic over granulocytic colony formation. This gene 

represents an obvious candidate to monitor in future y-catenin knock-down studies.

These data, and those from Chapter 3, are in conflict with mice studies whereby 

constitutive deletion of y- and or /5-cat enin was o f no consequence to short-term or long­

term haematopoiesis (Cobas et al., 2004; Jeannet et al., 2008; Koch et al., 2008). These 

studies principally focused on the ability of y-//5-catenin knock-out (KO) 

HSC/progenitor cells to reconstitute sub-lethally irradiated mice, rather than analysing 

the developmental capacity o f specific lineages. Also, despite armadillo proteins being 

evolutionary conserved between species it is conceivable that catenins may have 

different functions in a mouse compared to that of a human. The study by Koch et al. 

seemed to concentrate on absolute numbers o f cell lineages, and observed no difference 

in the proportion o f long term-HSC (LT-HSC), short term-HSC (ST-HSC), or multi- 

potent progenitor cells (MPP) between normal and KO mice. However they failed to 

examine the detailed morphological and immunophenotypic changes associated with 

individual lineages as this study did, and such an in vivo model would be incapable of 

detecting macrophage abnormalities, since they do not circulate but normally reside in 

tissues. A similar study by Jeannet et al. also examined the reconstitution efficiency of 

catenin KO cells in mice, with the same limitations as described above. In addition, they 

found the Wnt signalling pathway remained active in the combined absence of y- and /5- 

catenin, and attributed this to the presence o f other ‘catenin-like’ with Wnt transducing 

capability. However, the data o f this study would imply that the specific presence of y- 

catenin is still required for effective macrophage development.
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5.5.2 y-Catenin significantly modulates the level and localisation of /S- 

catenin in cell lines, but not primary human haematopoietic cells

The correlation between y- and /3-catenin in primary AML blasts, revealed in Chapter 4, 

led us to hypothesise that the expression of these proteins may be in some way inter­

connected. Ectopic expression o f y-catenin in leukaemic cell lines has shown this 

protein to be causative in modulating both the level and subcellular localisation of /3 - 

catenin in leukaemic cells. Generally, the effect of stabilising cytosolic and nuclear y- 

catenin in cell lines appeared to be a concomitant stabilisation of cytosolic and nuclear 

/3-catenin respectively. These findings would agree with a number o f other studies in 

differing contexts whereby y-catenin was competent in influencing the level and 

localisation of/3-catenin. (Salomon et al., 1997; Miller and Moon, 1997; Simcha et al., 

1998; Zhurinsky et al., 2000a; Maeda et al., 2004; Li et al., 2007). To our knowledge, 

this study represents the first to demonstrate this process is active in haematopoietic 

cells.

Some of the above studies have postulated that y-catenin may be able to stabilise /3- 

catenin expression by saturating the degradation components (catenin destruction 

complex (CDC) and proteasome) thus increasing the signalling competent pool of (3- 

catenin within the cell. This hypothesis remained applicable to three of the four cell 

lines tested, with HEL cells displaying the only exception o f decreased cytosolic /3- 

catenin in response to ectopic y-catenin. Although the majority of high y-catenin 

expressing AML samples co-express higher /3-catenin (Figure 4.8A), HEL cells may 

represent the AML cases whereby y- and /3-catenin levels do not correlate. Indeed there 

are many other molecules and mechanisms capable of stabilising/degrading /3-catenin in 

leukaemic cells (other than y-catenin) as previously covered in the Chapter 4 discussion 

{4.5.3). This may explain why a higher degree of correlation was not achieved between 

y- and /3-catenin protein expression in primary AML blasts. A study by Solomon et al. 

(Salomon et al., 1997) using an inducible model of y-catenin expression actually 

demonstrated a 3-5 fold decrease in /3-catenin protein which was further attributed to no 

change in RNA levels, but an increased rate o f post-translational turnover instead.

245 | P a g e



Examination into the Functional Role of y-Catenin in Haematopoietic _L.napter s

A consistent observation across all cell lines analysed, was that nuclear y-catenin level 

dictated the degree o f nuclear translocated /3-catenin regardless o f cytosolic level. This 

degree o f correlation was absent in primary AML blasts, although there remained a 

significant association between higher nuclear /3-catenin expression and high nuclear y- 

catenin expressing samples (Figure 4.8C). The enforced translocation of /3-catenin to 

the nucleus upon ectopic y-catenin expression has been previously reported in other 

non-haematopoietic contexts (Simcha et al., 1998; Maeda et al., 2004; Li et al., 2007). 

None of these studies formally demonstrate a mechanism by which y-catenin achieves 

this, but Maeda and Simcha et al. identified LEF-1 as a chaperone of y- and /3-catenin 

nuclear translocation. The reports by Simcha and Li et a l both hypothesised that the 

increase in nuclear /3-catenin was due to y-catenin’s ability to displace membrane- 

tethered /3-catenin from its junctional partners. Indeed, Li et al. strengthened this theory 

by demonstrating a reduction in the amount o f two such partners (N-cadherin and ot- 

catenin) in the nucleus of y-catenin overexpressing cells, thus reducing their capacity to 

sequester /3-catenin from the nucleus. An investigation by Solomon et al. also 

corroborated this hypothesis by showing y-catenin can effectively substitute with /3- 

catenin for N-cadherin binding in adherens junctions. Despite the evidence for this 

mechanism in other contexts, it cannot be assumed such a process is active in 

haematopoietic cells given the degree of uncertainty as to whether such adhesion 

complexes or junctional proteins are relevant in this tissue. Indeed evidence exists to 

suggest that such junctional components are expressed poorly in haematopoietic cells 

but are not functional (Yang et al., 2009).

Whichever mechanism is responsible for co-localising y- and /3-catenin to the nucleus in 

most leukaemic cell lines, it is clearly not active in U937 cells. Despite a large influx of 

cytosolic y-catenin (which in turn stabilised cytosolic /3-catenin), neither catenin is 

significantly translocated to the nuclei o f these cells. In this sense, U937 cells more 

closely resemble the tight control exhibited in normal CD34+ haematopoietic 

progenitors, rather than leukaemic cells where expression level governs the degree of 

nuclear translocation. It is likely that y-catenin-mediated stabilisation o f nuclear /3- 

catenin represents a pathological phenomenon since this relationship was absent in 

normal day 5 or day 13 primary haematopoietic cells. Ectopic expression of y-catenin
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failed to nuclear translocate and did not affect the subsequent localisation of /3-catenin 

protein, suggesting a stringent regulatory mechanism remained functional. This would 

fit well with Chapter 3 CLSM data whereby /3-catenin could be found independently of 

y-catenin in the nuclei o f CD34+ haematopoietic progenitor cells. Clearly there is 

another degree of complexity to this regulatory system however, given that CLSM 

studies also demonstrated y- and /3-catenin appeared to translocate in a reciprocal 

manner upon myeloid differentiation. It is conceivable that a finely tuned balance 

between nuclear catenin import and export mechanisms (discussed in detail in Chapter 

3 discussion section 3.5.3) is present in normal haematopoietic tissues, which is either 

disturbed or lost altogether in leukaemic cells.

Finally, it was observed that ectopic /3-catenin (albeit a truncated stabilised form) could 

also increase y-catenin expression and nuclear translocation in leukaemic cells. Clearly 

this phenomenon must also be context-dependent, given that the studies by Maeda and 

Simcha (Simcha et al., 1998; Maeda et al., 2004) failed to detect any influence of /3- 

catenin on y-catenin level and localisation. In Simcha’s study, they attributed this failure 

to the fact that the MDCK, 293T and SK-BR-3 used in their experiments all express 

desmosomes, which is an exclusive location for y-catenin for which /3-catenin cannot 

substitute (Bierkamp et al., 1996; Ruiz et al., 1996; Bierkamp et al., 1999). These 

structures are absent from haematopoietic cells and so may explain the apparent 

discrepancies between the studies. The finding that /3-catenin induction can also raise 

the level of cytosolic y-catenin is consistent with the concept outlined above. That is, 

ectopic expression of either y- or /3-catenin in the cytosol is capable of saturating the 

degradation components, and causing a concomitant increase in endogenous levels of 

the other catenin. Evidence has been presented showing that y- and /3-catenin levels 

correlate in primary AML blasts, however identifying which of the two catenins is the 

primary abnormality is much more difficult to address. Alternatively it cannot be 

excluded that in primary AML generally high levels o f y and /3-catenins arise from a 

defect in the common degradation machinery; indeed, if the above hypothesis is correct, 

the fact that the degradative mechanism is so easily saturated in leukaemic cells 

(compared with the lack of any significant effect of ectopic y-catenin on /3-catenin levels 

in normal cells) implies that this process is generally compromised in AML.



Examination into the Functional Role of y-Catenin in Haematopoietic ^Lnaprer -

5.5.3 Enforced nuclear translocation of full-length /3-catenin mediated by 

y-catenin is capable of blocking differentiation in leukaemic cells

The experiments o f this chapter have not only shown the correlation between y-and /3- 

catenin may arise from cross-stabilisation in leukaemic cells, but have also provided 

some insight as to how this relationship may contribute to the leukaemogenic process. 

Ectopic expression o f y-catenin in THP-1 cells resulted in significant nuclear 

translocation o f both catenins which subsequently failed to undergo monocytic 

differentiation upon TPA-induction, whilst U937- y-catenin cells (with barely detectable 

nuclear /3 or y-catenin) underwent monocytic differentiation as ‘normal’. If it is truly the 

nuclear contribution o f catenin that dictates this phenotype, then a similar question to 

that raised above is evoked: Is the developmental block a direct consequence o f  heavily 

translocated nuclear y-catenin, or an indirect effect o f  stabilising significant levels o f 

nuclear (3-catenin? There is convincing evidence for both cases:

5.5.3.1 Evidence fo r  nuclear (3-catenin mediating the primary differentiation 

block

The degree of monocytic differentiation achieved in each cell line seemed to be 

inversely proportional to the amount o f nuclear /3-catenin present. Increased capacity for 

self-renewal and loss o f differentiation potential is a commonly reported phenotype of 

nuclear /3-catenin. It has been shown to be a potent mediator of self-renewal in normal 

HSC (Reya et al., 2003; Baba et al., 2006; Zhao et al., 2007; Holmes et al., 2008; 

Nemeth et al., 2009; Yeung et al., 2010) and is strongly believed to do the same in LSC 

(Jamieson et al., 2004; Zhao et al., 2007; Hu et al., 2009; Abrahamsson et al., 2009; 

Wang et al., 2010; Yeung et al., 2010). Simon et al. previously reported a perturbation 

in myelomonocytic differentiation both morphologically and immunophenotypically 

when human primary CD34+ progenitor cells were transduced with a constitutively 

active (S37A mutant) form o f /3-catenin (Simon et al., 2005). Like us, they also 

observed an absence o f normal CD 14 induction and the morphological absence of 

macrophages. A disturbance was noted in CD 14 and C D llb  expression in TPA-treated 

THP-1 cells, not just overexpressing y-catenin, but also the THP-1 line expressing 

mutant /3-catenin (/3-catAN89, which had an increased nuclear presence).
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If nuclear /3-catenin was the primary instigator of the developmental block, then one 

might have expected the y-cat KD or /3-catAN89 to recapitulate the phenotype observed 

in the y-catenin overexpressing line. There were signs that TPA-induced monocytic 

differentiation in these transgenic lines was not as efficient as observed in the control 

line (i.e. lower induction o f CD14/CD1 lb  and the presence o f residual blasts). However 

these cell lines (y-cat KD and /3-catAN89) were incapable of inducing the same quantity 

of nuclear /3-catenin as evident in the y-catenin overexpressing THP-1 cells. The pool of 

nuclear /3-catenin induced by y-catenin was representative of where a full-length, 

transcriptionally active form would be expected to migrate (~85kDa). However the 

nuclear /3-catenin species present in y-cat KD and /3-catAN89 THP-1 cells was less 

abundant and much smaller (~70kDa), and it has been questioned previously whether 

these smaller fragments are even capable o f binding or activating TCF/LEF promoters 

with the same efficiency (see 5.5.6 below). One way to definitively resolve this issue 

would be to transduce the same cell lines with a full-length /3-catenin construct capable 

of inducing large volumes o f full-length nuclear /3-catenin, but not y-catenin, and repeat 

the experiment.

5.5.3.2 Evidence fo r  nuclear y-catenin being the primary initiator o f  

differentiation block

y-Catenin has previously been associated with increased self-renewal capacity when 

ectopically expressed in primary haematopoietic progenitor cells (Muller-Tidow et al., 

2004; Zheng et al., 2004; Tonks et al., unpublished data; see Appendix 6). Specifically, 

the study by Miiller-Tidow showed transduction of y-catenin was able to enhance the 

proliferation and clonal growth o f myeloid 32D cells. The same experiment in primitive 

murine haematopoietic progenitor cells preserved an immature phenotype during colony 

growth, indicative o f enhanced self-renewal. However none o f the above studies 

examined the co-level or co-localisation o f /3-catenin meaning the phenotype could have 

arisen through indirect stabilisation o f /3-catenin. Data of this study would suggest that 

increased y-catenin expression is incapable of significantly translocating /3-catenin in 

these primitive cells, however it is conceivable that a small quantity o f translocated 

nuclear /3-catenin (below the detection threshold) could be responsible for self-renewal.
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Alternatively, the self-renewal phenotype may originate from a relatively small 

subpopulation o f CD34+ with the capacity for more extensive /3-catenin translocation.

Regardless, y-catenin itself has been shown by Miiller-Tidow to directly bind the c-myc 

promoter (in the presence o f RUNX-1/ETO fusion protein, an inducer of y-catenin 

protein), indicating that y-catenin does have transcriptional capability independent of /3- 

catenin (Muller-Tidow et al., 2004). More recently, y-catenin has been shown to directly 

mediate the transcription o f survivin on a /3-catenin null background, by complexing 

with TCF and CREB binding protein (CBP) (Kim et al., 2011). Transcriptional 

independence has also been demonstrated outside of the field of haematology. Kolligs et 

al (Kolligs et al., 2000) employed an epithelial cell line (RK3E) to demonstrate y- 

catenin had TCF-LEF-dependent transforming capability through activation o f c-myc, 

which was independent o f /3-catenin. y-Catenin can bind TCF/LEF complexes in cell 

lines o f malignant mesothelioma (NCI-H28, (Maeda et al., 2004)), human embryonic 

kidney (293T, (Williams et al., 2000; Zhurinsky et al., 2000a)), teratocarcinoma (F9, 

(Fukunaga et al., 2005)) and canine kidney (MDCK, (Simcha et al., 1998)). 

Furthermore y-catenin has shown the capacity to bind and activate the promoters of 

cyclinDl and neuronal cell adhesion molecule (Nr-CAM) genes in /3-catenin-null 

embryonic stem cells (Conacci-Sorrell et al., 2002). However, many of these studies 

acknowledge that y-catenin binds and activates TCF/LEF with less affinity and potency 

than /3-catenin.

5.5.4 Disparities, although explainable, are present between the y-catenin 

knockdown phenotypes observed in primary cells and cell lines

The phenotypes observed from y-catenin overexpression and knock-down were 

inconsistent between primary cells and leukaemic cell lines. y-Catenin overexpression 

appeared to block monocytic differentiation in inducible THP-1 cells, whilst producing 

no detectable phenotype in primary haematopoietic cells. Disparity was also observed in 

y-catenin knock-down which perturbed macrophage development in primary cells, yet 

did not affect the differentiation capacity o f THP-1 and U937 cells. These discrepancies 

can be reconciled as follows. Firstly, ectopic expression of y-catenin is unable to
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detectably influence the expression or localisation o f either catenin in primary human 

haematopoietic cells whereas in leukaemic cell lines the effect of y-catenin cannot be 

separated from its effect on the nuclear translocation o f /3-catenin; indeed the 

differentiation block was only observed where ectopic y-catenin expression promoted 

nuclear translocation o f /3-catenin (i.e. in THP-1 but not in U937). Secondly, the lack of 

effect of y-catenin knock-down in cell lines may arise from the fact that TPA induction 

may override the normal control o f  monocyte/macrophage differentiation. Further, in 

the human primary model, the knock-down phenotype appeared to arise from a lineage- 

bias toward developing granulocytic characteristics over macrophage differentiation. 

THP-1 cells and U937 cells are not known to have the capacity for granulocytic 

development; therefore cues to reinforce monocyte/macrophage development through y- 

catenin may be superfluous.

5.5.5 y-Catenin can respond to a Wnt signal in haematopoietic cells

This study has shown for the first time that y-catenin is capable o f responding and 

translocating upon induction o f a Wnt stimulus in haematopoietic cells. Unsurprisingly 

Wnt3A was shown to mediate this, which is in keeping with its proposed association to 

maintain active Wnt signalling both within normal HSC (Austin et al., 1997; Van den 

Berg et al., 1998; Reya et al., 2003; Willert et al., 2003; Luis et al., 2009; Kim et al., 

2009; Luis and Staal, 2009; Luis et al., 2010) and malignant haematopoietic cells 

(Nygren et al., 2007; Tickenbrock et al., 2008; Kawaguchi-Ihara et al., 2008). Indeed, 

Wnt3A was shown to modulate /3-catenin level and localisation in many o f these 

studies. Subsequent studies from this laboratory have shown that mature differentiated 

haematopoietic cells (22 days o f in vitro culture) also remain sensitive to Wnt signals as 

evidenced by an increase in y-catenin expression, but not translocation, when cultured in 

the presence o f Wnt3A conditioned medium (data not shown).

It is known that other Wnt ligands (other than Wnt3A) are active in normal 

haematopoiesis (Austin et al., 1997; Van den Berg et al., 1998; Brandon et al., 2000; 

Sercan et al., 2010; Gallagher et al., 2010), and it is conceivable that they could also 

influence y-catenin level and translocation. Wntl has been shown in mouse and rat cell 

lines to mediate such an effect on y-catenin (Bradley et al., 1993; Papkoff et al., 1996)
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and WntlOB has been shown to increase the growth of haematopoietic precursors in 

mice through activation o f /3-catenin-mediated Wnt signalling (Congdon et al., 2008). It 

is also likely that members o f this family are dysregulated in AML (Majeti et al., 2009), 

and both Wntl and WntlOB as previously mentioned, plus Wnt2B, have been shown by 

Simon et al. to be constitutively active in primary AML patient blasts (Simon et al., 

2005). It is possible that these Wnt ligands could be contributing to the translocation of 

y-catenin in AML blasts, such as those observed in Chapter 4. It was also unsurprising 

to observe little effect o f Wnt5A induction on catenin level and localisation. The action 

of this Wnt family member has been more closely affiliated with the Ca2+-dependent 

non-canonical Wnt signalling cascade, and its activity has even been shown to inhibit 

the canonical pathway in haematopoietic cells (Liang et al., 2003; Nemeth et al., 2007).

Although Wnt3A promoted y-catenin accumulation and nuclear translocation, a 

question remains over the Wnt-mediated transcriptional capabilities o f y-catenin 

independent of /3-catenin: Is the rise and shift in y-catenin merely a by-product o f  /3- 

catenin induction by Wnt3A? Evidence exists showing Wnt3A-mediated TCF/LEF- 

dependent transcription in F9 cells was dependent on /3-catenin, but not y-catenin 

(Shimizu et al., 2008). This paper acknowledges that y-catenin has transcriptional 

function in F9 cells, as previously evidenced by Fukunaga (Fukunaga et al., 2005), but 

shows it is insufficient for Wnt3A signal transduction. To folly elucidate this issue in a 

haematopoietic context, Wnt mediated stimulation of y-catenin would be required on a 

/3-catenin null background (of which in vivo models exist).

Despite demonstrating Wnt glycoproteins can affect the level and localisation o f both 

catenins, this mechanism did not explain the differing inherent abilities o f THP-1 and 

U937 cells to nuclear translocate catenin. It was initially postulated that perhaps THP-1 

cells, and not U937, secrete an exogenous factor (most likely a Wnt factor) that 

promotes the para- and/or autocrine mediated nuclear translocation of catenin within 

these cells. However, incubation o f U937 cells with THP-1 conditioned medium 

exhibited no significant effect on either catenin. Therefore, there is no evidence to 

support that a soluble factor was responsible for governing nuclear import/export within
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these cells. This leaves an internal mechanism responsible for regulating translocation 

and the many proposed mechanisms have already been discussed in length in Chapter 3

(3.5.3).

5.5.6 The multiple banding of catenin is not due to phosphorylation

Preliminary data from this chapter suggests the cause o f multiple catenin banding 

observed in Western blotting is not due to differing states o f catenin phosphorylation. 

Such a theory (initially postulated in the Chapter 4 discussion, 4.5.4) might have fitted 

well given the documented role o f phosphorylation in regulating catenin translocation

(3.5.3), and the presence o f only specific higher molecular weight bands in the nuclear 

fractions of primary AML blast samples and leukaemic cell lines.

The next most likely cause, backed by substantial evidence, is that these multiple bands 

arise from proteolytic cleavage products. Evidence for such a constitutive process is 

supported by the observation that the pattern o f banding remains the same, and only the 

intensity changes, when y-catenin is overexpressed/silenced in leukaemic cell lines 

(Figure 5.13). Such a theory has been formally demonstrated previously for /3-catenin in 

leukaemic cells (Chung et al., 2002; Hwang et al., 2002) and is highly plausible given 

both y- and /3-catenins association with the ubiquitin-proteasome degradation system 

(Aberle et al., 1997). Indeed, further studies have identified ubiquitinated bands o f y- 

and /3-catenin using Western blotting (Salomon et al., 1997; Kitagawa et al., 1999; 

Sadot et al., 2000; Nilkovitch-Miagkova et al., 2001; Song et al., 2003; Yang et al., 

2006; Asimaki et al., 2007). However data from Simcha et al. would imply that y- and 

/3-catenin’s association with the proteasome is not equivalent given that they observed 

only a modest increase in y-catenin protein (relative to /3-catenin protein) upon 

inhibition o f the proteasome using MG 132 treatment (Simcha et al., 1998). Calpain is 

also known to cleave /3-catenin (Hwang et al., 2002; Li and Iyengar, 2002; Rios-Doria 

et al., 2004; Benetti et al., 2005). In these studies various calpain inhibitors (growth 

arrest specific protein 2 (Gas2), calpastatin, calpeptin) or calpain inducers (thapsigargin, 

ionomycin) were deployed and found to influence /3-catenin level and molecular weight. 

However whether this system is also applicable to y-catenin, or even operational in
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haematopoietic cells, is thus far unknown. Caspases have also been shown to cleave and 

generate multiple bands o f both y- and /3-catenin (Herren et al., 1998; Steinhusen et al., 

2000; Ling et al., 2001; Hwang et al., 2002).

If these bands do represent truncated degradation fragments, it evokes the question of 

why such forms should be permitted nuclear entry in leukaemic cell lines and primary 

AML blasts? What possible survival advantage could be conferred to a malignant cell 

by allowing nuclear import o f  a truncated form o f catenin? Of course these fragments 

may represent an inevitable consequence o f catenin overexpression whereby saturated 

or dysregulated degradation and nuclear import/export systems fail to regulate such 

translocation. Sufficient evidence exists to suggest these smaller fragments are 

transcriptionally inept (Steinhusen et al., 2000; Jeannet et al., 2008). Studies o f Jeannet 

showed these smaller fragments to be functionally-redundant and inefficient at binding 

and mediating TCF/LEF-dependent transcription in mice. Some studies have even 

suggested that the presence o f these truncated catenin forms even act in a dominant 

negative manner to transcription mediated by the full length forms (Munemitsu et al., 

1996; Shimizu et al., 2008). For y-catenin specifically, it is known that truncations of 

the NH2 -termini are sufficient to stabilise the protein however all such mutants are 

inferior to the full length in activating TCF (Kolligs et al., 2000). In this same study all 

large deletions o f the NH2 -terminus, COOH-terminus or armadillo repeat domains 3-8 

rendered wt y- or /3-catenin deficient in binding and activating TCF. Indeed the flanking 

termini o f catenins are known to be crucial for proper function of the molecule (Solanas 

et al., 2004), yet Zhurinsky et al. has shown that removal o f them does not prevent the 

central armadillo domain binding DNA even if transcriptionally inactive complexes 

with LEF-1 result (Zhurinsky et al., 2000a).

Conversely, it may be plausible that a truncated form o f catenin might confer some 

oncogenic potential from which a malignant cell could benefit. Such a truncation could 

deprive the molecule o f its CK1/GSK3-/3 consensus site thus inhibiting its 

phosphorylation-mediated degradation, and leading to constitutive activation. Findings 

by Rios-Doria et al. support this possibility (Rios-Doria et al., 2004). In this study, a
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novel 75kDa /3-catenin fragment was identified in metastatic primary prostate tumour 

samples and cell lines, as well as breast cancer cells. This fragment was shown to 

accumulate in the nucleus where it mediated TCF-dependent transcription and even 

exhibited transforming potential.

In summary, this chapter has provided some valuable insight as to the functional role of 

y-catenin in normal haematopoietic development. Contrary to existing evidence, y- 

catenin expression appears to be relevant for normal haematopoietic development and is 

required for macrophage development. In leukaemic cells, y-catenin can mediate /3- 

catenin expression and its nuclear translocation which may promote the developmental 

block observed in differentiation-inducible leukaemic cell lines. y-Catenin has been 

shown to be sensitive to an external Wnt stimulus in haematopoietic cells, though this 

stabilisation/translocation could have arisen indirectly though stabilisation of /3-catenin. 

Finally, it is unlikely that differential phosphorylation o f y-catenin gives rise to 

multiple-banding in Western blotting.
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6 - Final Discussion
Wnt signalling is an evolutionary conserved pathway critical to normal development of 

blood cells and has been found dysregulated in many haematological malignancies 

including AML (reviewed by Mikesch et al., 2007). Specifically, aberrant 

expression/activity o f the Wnt cascade central mediator, /3-catenin, has been implicated 

in such cancers (Chung et al., 2002; Serinsoz et al., 2004; Simon et al., 2005; Ysebaert 

et al., 2006; Xu et al., 2008; Chen et al., 2009; Siapati et al., 2011). Data from this 

laboratory and others have also identified the close homologue y-catenin to be 

dysregulated in primary human AML (Muller-Tidow et al., 2004; Tonks et al., 2007). 

Furthermore, over-expression o f y-catenin in cell lines and in the human cord blood 

haematopoietic cell model results in increased self-renewal (Tonks, unpublished data), 

suggesting this homologue could have a role in AML pathology. The underlying 

mechanisms o f this phenotype remain poorly characterised, and understanding the 

significance of its dysregulation in AML has been hampered by limited knowledge of y- 

catenin’s expression and function in normal haematopoiesis.

6.1 y-Catenin in normal haematopoiesis

The aim of Chapter 3 was to develop an assay capable o f detecting intracellular catenin

(by flow cytometry or confocal microscopy) within discrete subsets o f normal

haematopoietic development. This allowed a comprehensive assessment of y- and /3-

catenin expression and subcellular localisation throughout normal human

haematopoiesis. The data demonstrated that /3-catenin was highly expressed and

nuclear-localised in normal human primitive CD34+ haematopoietic cells, supporting

the existing evidence that p-catenin mediates self-renewal in these cells (Reya et al.,

2003; Baba et al., 2006; Zhao et al., 2007; Holmes et al., 2008; Nemeth et al., 2009). (3-

Catenin expression in lymphocytes was also confirmed, supporting studies linking

active Wnt//3-catenin signalling within these cells (Reya et al., 2000; Pongracz et al.,

2006; Do sen et al., 2006). This study also showed that y-catenin is highly expressed in

HSC and has a similar expression profile to that o f /3-catenin in subsequent

developmental subsets {Figure 3.21 versus Figure 3.22). Unlike /3-catenin, y-catenin
256 | P a g e



Final Discussion I Chapter 6

was nuclear excluded in this cell type {Figure 3.23 versus Figure 3.25) suggesting 

independent regulation of nuclear translocation in early haematopoiesis. The degree of 

structural homology between these molecules and the many shared protein partners, led 

to the hypothesis that y-catenin translocation within the cell would also be similar to p- 

catenin. However, the independent regulation o f nuclear localisation suggests that these 

catenins have independent transcriptional roles in haematopoietic development. 

Interestingly, this study has also shown that neither catenin has HSC-restricted 

expression, given their previous association with self-renewal. Expression o f both 

catenins apparently increased in granulocytic and monocytic development and their 

nuclear localisation would imply a transcriptional role in these differentiated subsets. 

However independence o f function is also indicated by the apparent reciprocal direction 

of catenin translocation during myeloid development where nuclear /3-catenin levels 

declined whilst nuclear y-catenin increased. Interestingly, a sub-population o f CD14+ 

monocytes expressing almost entirely nuclear translocated y-catenin was observed, 

implying a particular transcriptional relevance for y-catenin within this subset. This 

observation may explain the developmental abnormalities obtained upon y-catenin 

protein knockdown within this lineage in the in vitro model o f haematopoiesis (see 

section 5.4.1 and discussion 6.3).

6.2 y-Catenin in AML

Previously, data from this laboratory identified overexpression of y-catenin mRNA in 

AML patient blasts by Asymetrix gene expression profiling (Tonks et al., 2007). The 

AML Affymetrix gene expression profile data is associated with a highly characterised 

clinical database allowing the analysis and correlation of gene expression with a number 

of clinical parameters including DFS, OS, CR rate etc. Chapter 4 o f this study 

correlated y-catenin mRNA expression with these survival parameters and found a 

significant association with poor patient outcome (reduced CR rate arising from 

resistant disease). These findings, despite using mRNA level, are in keeping with the 

small amount o f survival data regarding the prognostic significance /3-catenin protein 

expression in AML. Ysebaert et al, identified /3-catenin protein expression (by 

immunoblotting) as an independent prognostic marker predicting poor event free

survival (EFS) and shortened OS (Ysebaert et al., 2006). The study o f Xu et al, also
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identified an association o f nuclear /3-catenin (by immunohistochemistry) with a 

reduced CR rate (Xu et al., 2008). Although these studies feature small patient cohorts 

and varied analytical techniques they would generally indicate that catenin expression is 

unfavourable in AML. This highlights the context-dependent nature of these proteins 

given that y-catenin appears to serve a tumour suppressor role in other disease settings 

(Aberle et al., 1995; Simcha et al., 1996; Charpentier et al., 2000; Polychronopoulou et 

al., 2002; Breault et al., 2005; Misaki et al., 2005; Shiina et al., 2005). This is likely due 

to the differing adhesive function y-catenin serves within an epithelial context, where 

loss o f such a protein and overall tissue integrity could promote metastasis in epithelial 

tumours.

Catenins are subject to significant post-translational regulation (Zhurinsky et al., 2000b) 

and therefore the degree o f y-catenin protein dysregulation in primary AML cells was 

also analysed. This study shows for the first time that y-catenin protein is dysregulated 

compared with levels in normal HPC. Interestingly, around 20% of AML blast samples 

overexpress y-catenin relative to normal HPC, with a similar proportion also 

demonstrating under expression o f the protein. However, y-catenin mRNA correlated 

poorly with the level of y-catenin protein, thus compromising the reliability o f the 

mRNA survival data. This observation was not entirely unexpected given the post- 

translational mechanisms active in regulating catenin protein stability, and this study is 

not the first to report such a discrepancy for y-catenin (see Chapter 4 discussion, 4.5.1). 

Despite this, there is some evidence that higher mRNA expression was associated with 

higher y-catenin protein, and a lower CR rate even within the smaller patient cohort. 

Extending these studies into a larger cohort may provide stronger statistical evidence.

This chapter also investigated the subcellular localisation of y-catenin protein in AML 

blasts given that a full localisation profile had been established for normal 

haematopoietic cells. In undifferentiated (FAB M0/1) leukaemic blasts y-catenin was 

found aberrantly localised to the nuclei which is in stark contrast to its nuclear exclusion 

displayed in developmentally matched normal CD34+ HPC {Figure 3.23 and Figure 

4.5A). These observations suggest, again for the first time, that y-catenin may contribute 

an aberrant transcriptional function in AML pathology. Nuclear translocation was also 

prevalent in differentiated M2/4/5 FAB types, however the degree o f dysregulation is

hard to define given y-catenin’s increasing nuclear presence in normal differentiated
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myeloid cells. The specific localisation of y- and /3-catenin protein was found to carry 

no statistically significant prognostic relevance, although sample number was small for 

such a heterogeneous disease (<50 patients). Small patient numbers also prevented 

individual survival analyses of y- and /3-catenin expression within specific 

developmental subsets (FAB types) o f AML. Finally, these data identified a positive 

correlation between the levels o f y- and /3-catenin protein in primary AML blasts. 

Although y-catenin has been shown to be capable o f influencing /3-catenin level in 

epithelial cell lines (Rubinfeld et al., 1995; Salomon et al., 1997; Miller and Moon, 

1997; Simcha et al., 1998; Sadot et al., 2000; Zhurinsky et al., 2000a; Maeda et al., 

2004; Li et al., 2007), no such relationship has been demonstrated in primary human 

tumour samples or haematopoietic cells. These data demonstrate that any association of 

y-catenin protein level with clinical outcome in AML may arise indirectly through its 

stabilisation o f /3-catenin.

6.3 Functional roles of y-catenin

As discussed above (see 6.7), the findings o f Chapter 3 suggested y-catenin expression 

has a role in normal haematopoiesis. Further, given that y-catenin protein and 

subcellular localisation is dysregulated in AML, it was important to establish whether 

this had any consequence on haematopoietic development. To examine this hypothesis, 

y-catenin protein expression was suppressed in preliminary experiments utilising an in 

vitro model o f normal human haematopoietic development. HPC committed to 

monocytic development (CD13bnghtCD36+) failed to undergo macrophage 

differentiation and instead developed bi-phenotypic, dysplastic, granulocytic traits 

(CD 15 surface expression, hyper-segmented nuclear morphology within a pale 

monocytic like cytoplasm). These findings implicated y-catenin in a potential 

transcriptional function with respect to lineage fate, potentially mediating the 

suppression o f pro-granulocytic differentiation genes and/or the activation o f pro- 

monocytic genes. Such a role fits with the increased expression of y-catenin observed 

during normal development o f myeloid cells (Figure 3.21), and the increased nuclear 

localisation observed in granulocytes and monocytes (see Figure 3.31 A). The potential 

genes regulated by y-catenin in this context are unknown, however a few candidates 

may be shortlisted. For example, CEBPof is a transcription factor crucial for



Final Discussion Chapter 6

granulocytic differentiation (Smith et al., 1996; Ford et al., 1996) that is specifically 

upregulated in the granulocytic lineage whilst downregulated in the monocytic pathway 

(Radomska et al., 1998). The Wnt//3-catenin signalling pathway has previously been 

linked with its repression in adipogenesis (Ross et al., 2000; Kawai et al., 2007) and 

furthermore CEBPa is known to be repressed in RUNX-l-ETO+ AML (Pabst et al., 

2001), a context where y-catenin expression is also high. It is tempting to speculate that 

the loss of y-catenin in normal development permits re-expression o f CEBPce in the 

monocytic lineage thus leading to the generation of granulocytic traits. Another target 

which y-catenin is known to positively regulate is myc-Tl which preferentially promotes 

monocytic over granulocytic colony formation (Tonks, unpublished data). Again, loss 

of myc-Tl induction in haematopoietic cells through a lack of y-catenin may reverse this 

phenotype so the bias is shifted towards the granulocytic lineage. Both of these genes 

represent potential candidates to monitor in future y-catenin knock-down studies.

Evidence from this study (Chapter 4) suggested that a correlation exists between the 

levels of y- and /3-catenin protein in primary human AML blasts. Chapter 5 sought to 

investigate whether y-catenin could possibly be causal in influencing the level and 

localisation o f /3-catenin protein in these cells. In normal cells it would appear this is not 

the case; despite the induction of high levels of ectopic y-catenin into CD34+ HPC, the 

protein does not translocate to the nucleus and cannot significantly influence the level or 

localisation o f /3-catenin. This finding supports Chapter 3 data which demonstrated that 

translocation o f catenins are independently regulated during normal haematopoiesis, and 

accumulation o f protein alone does not dictate the level o f nuclear translocation. It was 

also shown that normal human CD34+ HPC transduced with the PINCO-y-catenin 

vector was not a suitable model to investigate y-catenin dysregulation in haematopoietic 

development, given the inability to replicate the degree o f nuclear translocation 

observed in many primary AML blasts. The failure to translocate y-catenin to the 

nucleus may explain the lack o f immunophenotypic or morphological phenotype present 

in the primary haematopoiesis model upon y-catenin overexpression.

In contrast, ectopic y-catenin expression in most myeloid leukaemia cell lines results in

stabilisation o f /3-catenin protein (Figure 5.13). This difference indicates that the
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processes regulating catenin stability are dysfunctional in leukaemic cells. Other studies 

have previously shown this effect within an epithelial context (Salomon et al., 1997; 

Zhurinsky et al., 2000a; Maeda et al., 2004; Li et al., 2007), and have suggested that y- 

catenin overexpression may saturate the catenin degradation machinery thus allowing 

the cytoplasmic accumulation o f signalling competent /3-catenin (Miller and Moon, 

1997; Simcha et al., 1998; Klymkowsky et al., 1999). Another difference observed 

amongst leukaemic cell lines, in contrast to normal cells, is that nuclear translocated y- 

catenin promoted the level o f nuclear localised j3-catenin independently o f overall 

expression level (see Figure 5.13). Again, such an observation has been made 

previously in epithelial settings (Simcha et al., 1998; Maeda et al., 2004; Li et al., 2007) 

yet the mechanism by which it occurs remains unestablished. Indeed it is not even 

known whether such an observation represents an enhanced ability to translocate /3- 

catenin or simply retain it within the nucleus. The many proposed mechanisms which 

regulate catenin nuclear localisation have already been discussed (see 3.5.3), yet none 

suggest an ability of y-catenin to directly nuclear localise /3-catenin. Whichever 

mechanism is responsible, it likely represents a pathological feature of leukaemic cells 

given the strict and independent regulation o f catenins observed in normal blood cells. 

This relationship could also explain the differentiation block observed in y-catenin 

overexpressing THP-1 cells where substantial levels of nuclear /3-catenin are indirectly 

stabilised (5.4.3).

Chapter 5 also examined whether y-catenin expression could be influenced by

exogenous soluble Wnt factors such as Wnt3a (as shown in other contexts (Bradley et

al., 1993; Papkoff et al., 1996)). Although this study represents the first to report y-

catenin induction by a Wnt signal in haematopoietic cells (Wnt3A, see Figure 5.20), it

is unable to confirm its independent ability to transduce this signal in the nucleus given

the interdependence with /3-catenin. It is also unlikely that exogenous Wnt factors are

the mechanism responsible for translocating catenin in some cells (e.g. THP-1) and not

others (e.g. U937), since the localisation o f catenins in U937 cells remains unaffected

despite overnight culture in THP-1 conditioned cell medium. The wealth o f catenin

regulatory molecules that reside inside the cell, probably means a dysregulated internal

mechanism is responsible for the aberrant catenin localisation in leukaemic cells. The

dysregulated component is likely to constitute either part of the machinery responsible
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for catenin degradation (see 1.3.1) or part of the mechanism directly responsible for 

catenin localisation (see 3.5.3).

Finally, Chapter 5 also aimed to investigate one of the potential causes o f the multiple 

y-catenin banding observed in Western blotting throughout this project; 

phosphorylation. Preliminary data from this study would suggest this is not the source 

leaving proteolysis as the next most likely cause. A number of systems have been linked 

with the degradation o f  catenin including the well established ubiquitin/proteasome 

(Aberle et al., 1997; Orford et al., 1997), calpain (Hwang et al., 2002; Li and Iyengar, 

2002; Rios-Doria et al., 2004; Benetti et al., 2005) and caspases (Herren et al., 1998; 

Steinhusen et al., 2000; Ling et al., 2001). Which of these degradation systems is active 

in haematopoietic cells is currently unknown, as is the functional relevance of such 

proteolytic y-catenin fragments to the cell biology.

6.4 Conclusion

In conclusion, this study has demonstrated that y-catenin could be important for normal 

haematopoietic development, where protein level and subcellular localisation is tightly 

regulated independently o f  /3-catenin. Many mechanisms have been proposed to regulate 

y-catenin nuclear localisation, however the exact mechanisms active in haematopoietic 

cells are not known. Data presented here would suggest they must be defective in AML 

leaving two-fold consequences for the cell; firstly, the overexpression of y-catenin 

leading to its nuclear localisation and secondly, the ability of dysregulated y-catenin to 

influence the level and nuclear localisation o f /3-catenin. Clearly, this relationship is not 

the only one by which /3-catenin becomes stabilised in AML since evidence exists in the 

cell line and primary AML blast data, where /3-catenin expression is high independently 

of y-catenin (and vice versa). Rather, the heterogeneity o f AML, and the context- 

dependent nature o f these proteins, make it likely that the pre-existing background of 

molecular defects are highly determinant of y-catenin’s contribution to AML pathology. 

For instance, THP-1 cells seem to provide a sufficiently aberrant molecular background 

whereby dysregulated y-catenin can promote the level and nuclear localisation o f /3- 

catenin. Which catenin is directly responsible for imposing the subsequent
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differentiation block observed in these cells, remains unknown. Previous evidence 

would suggest /3-catenin is the main transcriptional driver, however a co-operative role 

can not be excluded given the proven ability o f y-catenin to bind and activate TCF/LEF 

transcription factors. The evidence for y-catenin having any independent pathological 

role in AML is now questionable however given its interdependence with /3-catenin 

level and localisation. Indeed, previous studies implicating y-catenin in self-renewal o f 

murine/human HPC and induction o f AML-like disease in vivo all failed to co-assess /3- 

catenin expression. Preliminary data of this study would suggest that y-catenin could 

serve important transcriptional roles in normal haematopoiesis by governing lineage fate 

(between monocyte/macrophage and granulocytic development). Therefore, any 

attempts to therapeutically target y-catenin directly in AML must exercise caution. 

However, even taking this into consideration, targeting the y-catenin//3-catenin 

pathological axis could represent a therapeutically viable target since data exists in vivo 

showing normal haematopoiesis can continue in their combined or individual absence.

6.5 Further work

It will be important to firstly substantiate incomplete preliminary data generated from 

this study. O f particular importance, will be an expansion o f the primary AML patient 

cohort for which y-catenin and /3-catenin protein expression has been assessed. Ideally, 

analysis of over 100 AML samples should provide more statistical power for identifying 

any prognostic significance. Further experimental repeats will also be necessary to fully 

characterise the phenotype o f y-catenin knockdown in normal haematopoietic 

development using the in vitro model o f haematopoiesis.

Data from this study led to the hypothesis that a mechanism must exist in normal 

haematopoietic cells governing the translocation o f catenins, which appears to be 

dysfunctional in AML blasts. The full characterisation of this mechanism will be 

essential in any attempts to therapeutically remedy it in AML. The use of a biochemical 

approach such as immuno-precipitation and mass spectrometry could be used to identify 

potential chaperone proteins, or nuclear import/export systems, active in y-catenin 

translocation in healthy and malignant haematopoiesis. A few obvious candidates such
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as LEF-1, TCF-4 or APC may associate with y-catenin, but other novel protein partners 

cannot be excluded (see 3. S. 3).

The discovery o f significant y-catenin nuclear localisation in leukaemic cells has 

highlighted the limitations o f our group’s previous attempts to model y-catenin in AML 

by over-expression in normal human CD34+ HPC. This model is incapable of 

recapitulating the degree of nuclear y-catenin present in many primary AML blasts or 

leukaemic cell lines, and ectopic expression fails to significantly modulate the level or 

localisation o f /3-catenin as it does within a leukaemic setting. Therefore an alternative 

model is required encompassing the aforementioned features. It is possible to artificially 

target y-catenin to the nucleus using an N-terminally fused NLS (Li et al., 2007). 

Should such a strategy be viable in haematopoietic cells, then this model would allow 

the examination o f how nuclear y-catenin translocation affects normal haematopoietic 

development. Further still, this may permit the identification (using microarrays) o f the 

prospective monocytic and granulocytic genes y-catenin could transcriptionally govern 

in late haematopoiesis (see 6.3). However, before such investigations are performed, it 

will be critical to confirm the subcellular localisation o f /3-catenin within this NLS 

model, before any transcriptional independence can be attributed to y-catenin.

The co-localisation o f y- and /3-catenin in the nucleus makes it impossible to

discriminate which protein has primary transcriptional activity in leukaemic cells.

Typically, the TOPFLASH reporter (created by Hans Clevers laboratory) is employed in

experiments aiming to measure the output o f /3-catenin mediated Wnt signalling. The

TOPFLASH reporter is an expression construct that emits a detectable fluorescence

signal when TCF/LEF transcription factors are bound and activated. However, y-catenin

has also been shown to activate this reporter on /3-catenin null backgrounds (Conacci-

Sorrell et al., 2002; Kim et al., 2011) making it unlikely such a system could discern

between y- or /3-catenin mediated transcription in a nucleus where both are abundant.

Resolution o f this issue may only be possible by assessing y-catenin transcriptional

activity on a /3-catenin-null background, however data from this study would suggest

such a haematopoietic setting is unlikely to exist. The TOPFLASH reporter could be

incorporated into the in vitro model o f normal human haematopoiesis in order to
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confirm whether TCF/LEF activity is elevated in the cell types identified to harbour 

high levels o f nuclear y-catenin (e.g. monocyte subsets). This may aid in establishing 

the activity and function of y-catenin in more differentiated haematopoietic subsets.

Finally, many o f  the investigations o f this study have been tailored toward 

understanding y-catenin’s transcriptional potential, however its prospective role as a cell 

adhesion component has been largely neglected. This function is likely to be irrelevant 

for haematopoietic cells in circulation (except maybe for trans-endothelial migration of 

monocytes as described in 3.5.1) but may be more important in the HSC BM niche. 

Indeed, this study has shown y-catenin to be nuclear excluded in CD34+ HSC/HPC 

better suiting a structural role at this level. If y-catenin does mediate a pro-adhesive or 

migratory effect in the BM niche then such a phenotype would be desirable for both 

normal LT-HSCs propagating healthy haematopoiesis, and LICs establishing a 

malignant clone and evading chemotherapy. The interaction with cadherin might also be 

worth investigation, not only for its association with cell adhesion, but also in the 

documented ability o f this molecule to sequester y-catenin from the nucleus (Fukunaga 

et al., 2005). Could this mechanism explain the nuclear exclusion o f y-catenin protein in 

primitive CD34+ cells? Future studies incorporating an inducible model o f E- or N- 

cadherin in human CD34+ HSC will be useful to assess the affect on adhesion, 

migration and catenin re-localisation.
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Appendices

A ppendix 1

Purification of DNA from gel using a QIAquick™ gel extraction kit

Gel slices were weighed in colourless tubes and 3 volumes o f ‘Buffer QG’ added for 

every 1 volume o f  gel. The gel slices were completely dissolved by incubating at 50°C 

for 10 min and vortexing every 2-3 min to promote solubilisation. Upon full dissolution 

of the gel slices, the colour o f the mixtures was inspected to ensure a yellow colour, 

indicating an optimal pH ( <  7.5) for adsorption o f DNA onto the QIAquick™ 

membrane. To increase the yield o f DNA fragments, one gels volume o f isopropanol 

was added to the samples and mixed. The mixtures were applied to QIAquick™ spin 

columns and centrifuged in a micro centrifuge at 17,900 x g  for 1 minute to bind DNA. 

At the end o f centrifugation, flow through was discarded and 0.5ml of ‘Buffer QG’ 

applied, before centrifugation for another minute. The waste was discarded and the 

columns washed by the addition o f 0.75 ml o f ‘Buffer PE’ and two 1 minute 

centrifugations at 17,900 xg . The QIAquick™ columns were transferred to clean 1.5ml 

micro centrifuge tubes, and the respective DNAs eluted from the membranes by the 

direct addition o f 50^tl Buffer EB (lOmM TrisCl, pH 8.5) and centrifugation as above.

Appendix 2

Purification of Plasmid DNA using a QIAprep® Miniprep kit

Pelleted E.coli cells were resuspended in 250/d ‘Buffer P I’ and mixed with 250/d o f 

‘Buffer P2’ by tube inversion. Then, followed the addition o f 350/d ‘Buffer N3’ and 

centrifugation at 17,900 x g  for 10 minutes. Supernatants were transferred to QIAprep 

spin columns which were centrifuged as above for 1 minute with the resulting eluent 

being discarded. After washing o f the spin columns by sequential addition o f 500/d 

‘Buffer PB’ and 750/d ‘Buffer PE’ each followed by centrifugation as above, the
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columns were placed in fresh micro centrifuge tubes. Respective DNA was eluted from 

columns by addition o f 50/d ‘Buffer EB’ and a 1 minute RT incubation followed by a 1 

minute centrifugation as above. The eluted DNA from each colony was quantified using 

a Nano Drop® to establish if DNA (and to which concentration) had been successfully 

purified.

A ppendix 3

Purification of Plasmid DNA using a QIAprep® Maxiprep kit

Briefly, pelleted bacteria were resuspended in 10ml ‘Buffer P I’ before mixing with 

10ml of ‘Buffer P2’, and allowing to stand for 5 minutes at RT. Next, 10ml ‘Buffer P3’ 

was added followed by incubation on ice for 15 minutes, and a 30 minute centrifugation 

at 20,000 x g  at 4°C. Supernatant containing plasmid DNA was removed and 

centrifuged again, as above, to remove insoluble material. During this time a ‘QIAGEN- 

tip 500’ was equilibrated with 10ml ‘Buffer QBT’. The supernatant was transferred to 

the ‘QIAGEN-tip’ where plasmid DNA was bound to the column and washed twice 

with 30ml ‘Buffer QC’. DNA was eluted from the column using 15ml ‘Buffer QF’ and 

precipitated by the addition o f  10.5ml RT isopropanol (Fisher) and centrifugation at

15,000 x g  for 30 minutes (4°C). The DNA pellet was finally washed in 5 ml 70% 

ethanol before final centrifugation at 15,000 x g  for 10 min. The supernatant was 

decanted with care, and the pellet air-dried for 10 minutes before resuspending in 1ml 

‘TE Buffer’. Plasmid DNA was then quantified using the Nano Drop® and stored at - 

20°C.
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Appendix 4 A )

pBabe-Puro
control

B )

•%

* •

9

pBabe-Puro
y-catenin

IN

The effect of y-catenin overexpression on FDCP mix cells - The murine 
haematopoietic progenitor cell line FDCP mix was retrovirally transduced with y- 
catenin or control cDNA and placed into standard culture medium containing no 
exogenous growth factors following puromycin selection. A) Control cells maintained a 
normal FDCP mix morphology throughout culture dominated by dark-staining, 
undifferentiated blasts (Bla). B) Conversely, y-catenin overexpressing cells underwent 
spontaneous myeloid differentiation around 14 days post transduction. These cultures 
displayed a heterogeneous mix o f differentiated myeloid cells including 
metamyelocytes (MM), macrophages (Mac), immature neutrophils (IN) and mature 
neutrophils (Neu).
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A ppendix 5

Calculations for comparing CLSM and Western blotting data. 

• Volume of a sphere = 4/3 Trr3

Where;

r = radius

This equation was adapted into the equation below:

• RVF X Nuclear pixel density
Cytosol pixel density

Where;

RVF = relative volume factor (of nucleus to cytoplasm) derived as below:

Nuclear volume
Cytosolic volume

The volumes and pixel values from 13 cells o f each K562 cell line analysis were 

used to generate average nuclear y-catenin localisation for that cell line:

K562 pBabe-Puro control K562 pBabe-Puro-y-catenin

0.27 X 78.6
325.8

0.30 X 81.1
162.3

Ans x 100 = 6.5% nuclear v-catenin Ans x 100 = 15.0% nuclear y-catenin
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Appendix 6
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Replating 1 Replating 2

y-Catenin enhances the self-renewal of CD34+ haematopoietic progenitors - Cord- 
blood derived CD34+ haematopoietic progenitors retrovirally transduced with y-catenin 
(and RUNX-1/ETO (aka RUNX-1/RUNX-1T1)) displayed enhanced self-renewal 
capacity, compared with mock-transduced GFP+ cells, as demonstrated by increased 
replating efficiency of myeloid colony-forming cells (Tonks et al. unpublished data).
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