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Abstract

Type X collagen is a member of the family of network-forming collagens, it contains a triple 
helical domain flanked by two non-collagenous (NC) domains, NC2 at the N-terminal and 
NCI at the C-terminal. It is expressed and synthesised by hypertrophic chondrocytes of the 
epiphyseal growth plates during the process of endochondral ossification (EO). This process 
involves replacement of a cartilaginous anlagen by bone, the coordination of chondrocyte 
proliferation, maturation and hypertrophy are followed by calcification of hypertrophic 
cartilage, vascular invasion and deposition of a bone matrix. A precise functional role for type 
X collagen has not been defined, although its temporal and spatial expression has linked it to 
endochondral ossification. A family of Small Leucine Rich Proteoglycans (SLRPs) have been 
demonstrated to be important for collagen biology. In particular, the well characterised 
decorin and biglycan, interact with numerous collagen types, non-collagenous proteins and 
growth factors. Decorin and biglycan have also been linked to the mineralisation process. This 
led to the hypothesis that type X collagen interacts with decorin and biglycan in the 
hypertrophic cartilage extracellular matrix.

Interactions of type X collagen with decorin and biglycan were investigated using a solid 
phase assay and surface plasmon resonance (SPR). The interaction of type X collagen with 
decorin and biglycan was found to be of high affinity, with dissociation constants in the 
nanomolar range. Through using different domains of the type X collagen molecule; the NCI 
domain, the triple helical region or whole type X collagen, it was demonstrated that the 
interactions are likely to be mediated by the NCI domain. The interaction of type X collagen 
with decorin and biglycan was found to be independent of the presence of the 
glycosaminoglycan chain(s) on decorin and biglycan, indicating the protein cores of decorin 
and biglycan are involved. Negative staining and transmission electron microscopy were used 
to visualise the interactions of type X collagen with decorin and biglycan labelled gold 
particles. The localisation of gold particles to the ends of type X collagen molecules supports 
the finding that the interactions are mediated by NCI. Recombinant fragments of the NCI 
domain were synthesised in an attempt to further determine regions of NCI important for the 
interactions with decorin and biglycan, these fragments have to date provided no additional 
information. Using RT-PCR decorin was demonstrated to be co-expressed with type X 
collagen by hypertrophic chondrocytes. Immunohistochemistry was utilised to study the 
localisation of type X collagen, decorin and biglycan in the hypertrophic cartilage 
extracellular matrix. All of the interacting components were shown to co-localise. The co
expression and co-localisation studies indicate that these interactions could occur in vivo.

The characterised interactions of type X collagen with decorin and biglycan are likely to have 
functional roles in EO. Potentially; they may be involved in regulation and assembly of a type 
X collagen pericellular matrix, they may adopt a structural role providing mechanical stability 
to an extracellular matrix undergoing dynamic remodelling, they could be involved in 
sequestering growth factors in the hypertrophic cartilage and hence be involved in modulating 
interactions of growth factors with their signalling receptors. These postulated functions are 
all possible in the normal development and growth of a long bone. Type X collagen, decorin 
and biglycan have all been implicated in pathology; the interactions could alternatively be 
involved in pathological calcification. Molecular interactions that contribute to the molecular 
assembly of the growth plate are fundamental to its functions. Characterisation of such 
interactions will aid in defining precise roles for molecules such as type X collagen, decorin 
and biglycan during the process of EO.
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CHAPTER 1

Chapter 1: Introduction

1.1 The Skeleton

The skeleton derives from mesoderm, which gives rise to a loosely organised tissue known as 

mesenchyme. Skeletal elements can form via two different mechanisms. The process of 

intramembranous ossification involves mesenchymal cells directly differentiating into bone, 

the craniofacial skeleton forms via this mechanism. The process responsible for the formation 

of most of the vertebrate appendicular and axial skeleton is endochondral ossification (EO). 

Mesenchymal cells differentiate into cartilage which then provides a template for bone 

morphogenesis (Ortega et al., 2004).

1.1.1 Endochondral Bone Formation

In brief, mesenchymal cells differentiate into chondrocytes, which produce a cartilage matrix 

(figure 1.1). A cartilaginous model of the future bone forms. Chondrocytes at the diaphysis of 

these future bones begin to hypertrophy, this changes the matrix that they produce, and 

subsequently the matrix begins to calcify. As this calcified cartilage enlarges, the 

perichondrium differentiates into an outer connective tissue sheath containing fibroblasts and 

an inner osteoblastic layer of cells, a thin layer of periosteal bone forms around the diaphysis. 

The end of the embryonic period is marked by invasion of blood vessels via the periosteal 

bone shaft into the calcified hypertrophic cartilage. Invading blood vessels bring 

haemopoietic stem cells, osteoblasts and osteoclasts. A primary or a diaphyseal ossification 

centre- forms, where the cartilage cells and matrix have begun to disintegrate. Cartilaginous 

remnants are then used as a scaffold for the formation of trabecular bone. Resorption of a 

central core forms the marrow cavity. A secondary or an epiphyseal ossification centre forms, 

at the growing cartilaginous ends in long bones. The primary and secondary centres of 

ossification are separated by a transverse plate of cartilage that extends across the bone. This 

is the epiphyseal growth plate which remains until an individual stops growing (Mundlos, 

1994) (Price et al., 1994).
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1.1.2 The Epiphyseal Growth Plate

Longitudinal growth of the skeleton is a tightly regulated process which occurs at the growth 

plate (figure 1.2), via the mechanism of EO. Locally produced growth factors and systemic 

hormones act on growth plate chondrocytes triggering changes in gene expression. These 

events lead to differentiation of the chondrocytes resulting in alterations in chondrocyte 

phenotype, including size of the cell and expression of extracellular matrix components, 

secreted enzymes, numerous growth factors, and their receptors. Calcification of the matrix 

and removal of terminally differentiated chondrocytes complete endochondral bone formation 

(Ballock and O'Keefe, 2003).

The growth plate can be divided into discrete zones: the resting zone, proliferating zone, 

prehypertrophic zone, hypertrophic zone and the calcified zone, which contain chondrocytes 

at different stages of differentiation. The chondrocytes synthesise and are surrounded by an 

extracellular matrix (ECM), composed of an organised network of macromolecules, 

comprising collagens and proteoglycans (discussed later). The reserve or resting zone is 

adjacent to the epiphysis, it contains spherical chondrocytes which are separated by abundant 

extracellular matrix, these cells exhibit low rates of proliferation (Kember, 1978). In the 

proliferative zone, cells undergo rapid division forming columns of flattened cells, and matrix 

synthesis results in longitudinal growth. The chondrocytes of the hypertrophic zone have a 

cellular volume up to tenfold bigger than those of the proliferative zone. This is the main 

factor which contributes to longitudinal growth. Hypertrophic chondrocytes are metabolically 

active cells, with overall matrix synthesis per cell increased approximately three-fold, 

compared to the proliferative zone (Hunziker et al., 1987). The zone of calcified cartilage is 

the transitional region between bone and cartilage. Matrix calcification occurs in the 

longitudinal septae between the columns of chondrocytes and this calcified matrix becomes 

the scaffolding for bone deposition in the metaphysis. The fate of hypertrophic chondrocytes 

in this region is subject to contradictory reports. Originally it was believed that the 

chondrocytes die by apoptosis which may be triggered by the metaphyseal vasculature. 

Apoptosis of hypertrophic chondrocytes has been proposed to exert effects on the process of 

endochondral ossification, including intracellular calcium accumulation and release, matrix 

calcification, matrix resorption, attraction of blood vessels and osteoblast precursors, and 

stimulation of bone formation (Gibson, 1998). Alternatively it has been suggested that these 

cells are highly active and may differentiate into osteoblasts (Hunziker and Schenk, 1984). An 

assymetrical cell division was demonstrated to take place in an embryonic chick culture
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system, one daughter cell dies by apoptosis and the other differentiates into an osteogenic cell 

(Roach et al., 1995), however, this has not been demonstrated in other species.
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1.2 Molecular Composition of Hypertrophic and Articular Cartilage

The ECM of cartilage contains a complex network of molecules including collagens, 

proteoglycans, non-collagenous proteins and glycosaminoglycans. These groups of molecules 

will be discussed in the following sections.

1.2.1 The Collagen Superfamily

Collagens are the major proteins in bone and cartilage matrices and are essential in 

determining the size, shape and strength of these tissues. The collagen superfamily of proteins 

contains 27 members, which have a variety of structures, are expressed in different locations 

and have varying biological functions. Collagens are defined as proteins that: (a) contain 

several repeats of the amino acid sequence -Glycine-X-Y- in which the X position is 

frequently proline and the Y position is frequently 4-hydroxyproline and (b) have the potential 

for three chains with such repeated sequences to fold into a characteristic triple helix (Prockop 

and Kivirikko, 1995). The basic subunits of collagens are the a-chains, they vary in size from 

600 to 3000 amino acids, can contain non-collagenous (NC) interruptions within and on the 

ends of the triple helical domain and some collagens contain motifs which are homologous to 

other extracellular matrix proteins (Brown and Timpl, 1995).

1.2.1.1 Collagen Biosynthesis

The correct biosynthesis of fibrillar collagens (figure 1.3) requires many post-translational 

events. Pre-procollagen chains are synthesised on the ribosomes of the rough endoplasmic 

reticulum. They all contain a signal peptide that targets them for secretion into the lumen of 

the rough endoplasmic reticulum where modifications begin within the cell. After removal of 

the signal peptide, hydroxylation of some proline and lysine residues occurs. Some 

hydroxylysine residues are then glycosylated by the addition of galactose with or without the 

addition of glucose. A mannose-rich oligosaccharide may be added to the C-terminus 

propeptide. The C-propeptides associate with each other and interchain disulphide bonds 

form. The triple helix then folds in a zipper-like manner from the C-terminus. The triple helix 

is stabilised by hydrogen bonds involving the amino (NH) group of glycine and the carboxyl 

(CO) group of the amino acid in the X position of the adjacent chain. Further stabilisation 

involves the hydroxyl groups of hydroxyproline residues forming hydrogen bonds through 

water bridges (Myllyharju and Kivirikko, 2001).
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After secretion of the procollagen from the cell, the N and C-terminus propeptides are cleaved 

by N-proteinases and C-proteinases, respectively. The collagens then self assemble into 

fibrils. Some lysine and hydroxylysine residues are oxidised into reactive aldehydes by the 

extracellular enzyme lysyl oxidase. The reactive aldehydes form covalent crosslinks which 

stabilise the fibrils (Prockop and Kivirikko, 1995).

This process is typical of the fibrillar collagens but many of the non-fibrillar collagens 

undergo different post-translational processes. Some collagens do not contain propeptides but 

have large non-collagenous domains at either end of their triple helix, these domains are not 

removed by proteinases. Other collagen types require the addition of N-linked 

oligosaccharides or the addition of glycosaminoglycan (GAG) chains. Some collagens such as 

types XIII and XVII assemble their triple helical domains from the N-terminus to the C- 

terminus (Myllyharju and Kivirikko, 2001).

The collagen superfamily contains twenty seven members at present, and can be divided into 

groups based on their molecular structures and the supramolecular assemblies which they 

adopt (figure 1.4).
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1.2.1.2 Fibril Forming Collagens

Fibril forming collagens include types I, II, III, V, XI, XXIV and XXVII, they contain around 

1000 amino acids in each a-chain in their triple helical domain and assemble into cross- 

striated fibrils (Kielty and Grant, 2002). Types I, II and III are initially synthesised with isl
and C-terminus pro-peptides which are removed during post-translational processing. Type I 

collagen fibrils are packed into parallel bundles and provide physical strength to tissues which 

experience extensive forces, such as bone and tendons. Fibrils formed from type II collagen 

are narrower and are the major collagen component of cartilaginous tissues and vitreous 

humour. Type III collagen fibrils are prevalent in elastic tissues such as the skin, intestine and 

aorta. Type V and XI collagens also undergo post-translational processing, but retain an N- 

terminus globular domain. They are usually found within fibrils formed from collagen types I- 

III, type V collagen is found in most non-cartilaginous tissues which contain types I and III 

collagen fibrils, whereas, type XI collagen is found in cartilaginous tissues. Type XXVII 

collagen has recently been assigned to the fibrillar collagen family (Boot-Handford et al., 

2003). However it contains some unusual molecular features such as a major helical domain 

that is short and interrupted when compared with other family members.

1.2.1.3 Fibril-associated Collagens with Interrupted Triple Helices (FACIT Collagens)

Collagen types IX, XII, XIV, XVI, XIX, XX, XXI and XXII are members of the FACIT 

family, these collagens are characterised by short triple-helical domains interrupted by non- 

collagenous sequences (Kielty and Grant, 2002). Types IX, XII and XIV collagens decorate 

the surface of fibrillar collagens. They organise and anchor the fibrils and are able to interact 

with other matrix components. Type IX collagen is associated with type II collagen, whereas 

types XII and XIV collagens are usually associated with type I collagen. Type XVI collagen 

is broadly distributed and has 11 NC domains, more than all other family members. Type XIX 

has been localised to many developing embryonic tissues and to specific adult tissues, such as 

brain.

Type XX collagen has recently been assigned to the FACIT family (Koch et al., 2001), its 

expression was found in many chick embryo tissues, being most prevalent in corneal 

epithelium. Collagen type XXI has also been assigned to the FACIT collagens (Chou and Li,

2002), its genomic organisation is similar to that of other FACIT members. Expression of 

collagen XXI is highest at fetal stages, it is an extracellular component of blood vessel walls 

and is secreted by smooth-muscle cells.

10



CHAPTER 1

1.2.1.4 Network Forming Collagens

The family of network forming collagens consists of types IV, VIII and X collagens. Type 

VIII and X collagens demonstrate structural similarities at nucleotide and amino acid levels, 

and are approximately half the size of fibrillar collagens (Kielty and Grant, 2002). Type VIII 

collagen is expressed by endothelial cells and is found in the specialised ‘basement 

membrane’ laid down by corneal endothelial cells, Descemet’s membrane and in most blood 

vessels. The hexagonal lattice-like network that it forms is mediated via interactions of its 

NCI domain. Recent microscopic analysis of recombinant molecules led to the proposal of a 

model for collagen VIII assembly, in which four homotrimers form a tetrahedron stabilized by 

central interacting C-terminus NCI trimers. Tetrahedrons could then act as building blocks of 

three-dimensional hexagonal lattices generated by secondary interactions involving terminal 

and helical sequences (Stephan et al., 2004). Type X collagen is discussed in more detail later.

Type IV collagen contains a large C-terminus non-collagenous domain (NCI) and a short 

non-collagenous domain at its N-terminus, the N-terminus domain along with a short stretch 

of the triple helical region is known as the 7S domain (Kielty and Grant, 2002). The triple 

helical region contains around 20 imperfections in its Gly-X-Y sequence, giving a more 

flexible molecule. Type IV collagen is found in basement membranes, sheet like structures 

that are associated with epithelial and endothelial cells. Type IV collagen forms these sheet 

like assemblies via interactions involving its NCI and 7S domains.

1.2.1.5 Filamentous Collagens

Type VI and VII collagens are the only members of the filamentous collagens family. Type 

VI collagen contains a short triple helical domain flanked by large N- and C-terminus 

globular domains (Kielty and Grant, 2002). Its characteristic extensive filamentous assembly 

is found in many connective tissues, including skin and cornea. The type VI molecules 

assemble into dimers in an anti-parallel fashion which aggregate laterally to form disulphide 

bonded tetramers. Type VI collagen tetramers are the basic unit of beaded filaments or type

VI micro fibrils. Type VII collagen is found in anchoring fibrils, specialised extracellular 

structures which anchor basement membranes to the stroma (Kielty and Grant, 2002). Type

VII collagen dimers associate laterally in a non-staggered array to form tightly packed fibrous 

structures. The three armed NCI domains contain motifs homologous to adhesive proteins, 

thus are spatially and chemically suitable to interact with basement membrane proteins.
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1.2.1.6 Membrane Bound Collagens

Types XIII, XVII, XXIII and XXV collagens are members of the membrane bound collagen 

family, all containing a hydrophobic trans-membrane segment (Kielty and Grant, 2002). Their 

short N-terminus region is intracellular while their collagenous regions are situated 

extracellularly. Membrane-associated collagens are expressed in mesenchymal tissues. Type 

XIII contains four NC domains, whereas type XVII contains sixteen. Type XVII is a 

component of anchoring filaments tethering the epithelia via hemidesmosomes to basement 

membranes. Furin mediated proteolytic processing of type XVII yields a 120 kDa soluble 

triple-helical extracellular domain of unknown function. It has been suggested that it may 

influence signal transduction and or cell attachment to the basement membrane during 

proliferation and differentiation (Hirako et al., 1998). Type XXIII collagen has recently been 

assigned to this family, after being identified in rat prostate carcinoma cells (Banyard et al., 

2003). It shows structural homology with the other members of the family. Type XXV 

collagen has been linked with Alzheimer’s disease amyloid plaques (Hashimoto et al., 2002), 

as a membrane-tethered component and a secreted extracellular domain.

1.2.1.7 Multiplexin (multiple triple-helix domains and interruptions) Collagens

Types XV and XVIII collagens contain multiple collagenous and non-collagenous domains 

(Kielty and Grant, 2002). Their tissue distribution is distinct, with type XV collagen being 

highly expressed in muscle tissues and high levels of XVIII being found in the liver. It has 

been suggested that both collagens may contribute to the structural and functional integrity of 

basement membranes. Endostatins derived from the C-terminus of collagens XV and XVIII 

have been shown to inhibit angiogenesis (Sasaki et al., 2000). Whether these 

collagens/endostatins have roles in the angiogenesis which occurs in the epiphyseal growth 

plate is not known. Type XXVI collagen has been characterised and is expressed in the testis 

and ovary (Sasaki et al., 2000), it was demonstrated to have homologies with types XIII and 

XXV collagens.

1.2.1.8 Others

Another group within the superfamily has many members containing triple-helical 

collagenous domains but are not defined as collagens. An example of such a molecule is C lq 

of complement (Myllyharju and Kivirikko, 2001). The collagenous sequences in these 

proteins contribute structure. Triple helix formation leads to the alignment of the non-
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collagenous subunits, thereby leading to correct functioning. Many of these proteins have 

roles in immunity.

1.2.1.9 The Cartilage Collagens

Type II collagen is the most abundant collagen in cartilage (Kielty and Grant, 2002). Type II 

is composed of three identical a l (II) chains that wind into the characteristic triple helix, type 

II collagen forms heterotypic fibrils with less abundant type IX and XI collagens (figure 1.5). 

Type XI collagen integrates into the interior of type II fibrils and type IX associates with the 

exterior of the fibril. These fibrils form highly ordered arrangements that constitute a regular 

three-dimensional network throughout the cartilage matrix, providing the ECM with strength 

and resilience. The fibrils have sites which are available for interaction with other ECM 

components.

Type IX collagen is a heterotrimer [al(IX) a2(IX) a3(IX)], the three chains are products of 

three distinct genes (Eyre and Wu, 1995). There are long and short forms of type IX collagen, 

which differs depending on the presence or absence of a large globular domain (NC4) at the 

amino terminus of the a l chain. In the hypertrophic cartilage of the growth plate the short 

form of type IX collagen is the dominant form whereas in articular cartilage type IX is present 

mainly in the long form, thus the expression of these different forms is tissue specific and 

developmentally regulated (Olsen, 1992). The a2 chain of type IX collagen can also bear a 

chondroitin sulphate chain which allows this collagen to be classified as a proteoglycan. Type 

XI collagen is a heterotrimer [al(XI) a2(XI) a3(XI)]. The al(X I) and a2(XI) chains are 

products of separate genes, while the a3(XI) chain is coded for by the same gene as the a 1 (II) 

chain, but undergoes different post-translational hydroxylation and glycosylation (Burgeson et 

al., 1982). The a-chains of type XI collagen can participate in the formation of heterotypic 

molecules with type V collagen (Fichard et al., 1994). Genetic mutations in the genes which 

code for the different components of the heterotypic fibril, lead to a variety of diseases with 

different severities (Mundlos and Olsen, 1997). Mutations in the COL2A1, COL9A2 and the 

COL11A2 gene loci can lead to achondrogenesis type II, multiple epiphyseal dysplasia and a 

Stickler-like dysplasia, respectively (Horton, 1996).

Type VI collagen microfibrils in cartilage are primarily localised around the chondrocytes in 

the pericellular capsule known as a chondron (Poole et al., 1988). It is rich in the integrin 

binding motif, the RGD sequence, and has been demonstrated to bind to the surface of
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chondrocytes. Pericellular type VI collagen staining has been shown around the resting and 

early proliferating chondrocytes of the growth plate, however the staining became 

progressively diffuse and was virtually absent by the end of the proliferating zone, there was 

no staining for type VI collagen observed pericellularly around hypertrophic chondrocytes of 

the growth plate (Sherwin et al., 1999).
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1.2.2 Proteoglycans

Proteoglycans (PGs) are complex molecules which fulfil a variety of biological functions. 

Their protein cores are substitiuted with sulphated glycosaminoglycans (GAGs), which can 

vary in their composition, size and number. Hyalectans and small leucine rich proteoglycans 

(discussed later) are examples of families of proteoglycans. Hyalectan aggregates (figure 

1.6a) are formed by multiple proteoglycans binding to an extended hyaluronan chain (HA). 

They bind via a globular binding region on the protein core, the stability of the PG-HA bond 

is increased by the participation of a 40 kDa link protein (figure 1.6b) (Hardingham et al., 

1984).

1.2.2.1 Hyaluronan (HA)

HA is an ubiquitous component of the ECM, it is synthesised as a high molecular weight non- 

sulphated glycosaminoglycan and is released from the cell as a linear polymer that is not 

attached to a polypeptide backbone (Knudson, 2003). The polymer consists of a simple 

repeating disaccharide unit : P-l,4-glucuronic acid - p-l,3-N-acetyl-D-glucosamine (figure 

1.6c) and is critical for normal mammalian embryogenesis (Spicer et al., 2002). A study 

investigating HA in the epiphyseal growth plate demonstrated that hypertrophic chondrocytes 

secrete large amounts of HA into the pericellular space, thus contributing to expansion of the 

lacunae. The mechanism of expansion is due to HAs ability to exert a hydrostatic pressure on 

the surrounding territorial matrix, therefore HA is partially responsible for the interstitial 

growth of the epiphyseal plate which, in turn, determines the rate of bone elongation 

(Pavasant et al., 1996). HA is removed from the zone of erosion during the process of EO by 

osteoprogenitor cells that express CD44 on their surfaces (Pavasant et al., 1994). CD44 is a 

cell surface transmembrane glycoprotein receptor for HA which mediates both cell-cell and 

cell-matrix interactions (Knudson, 2003).

1.2.2.2 Aggrecan

Aggrecan is the predominant proteoglycan (PG) found in cartilage ECM and because it forms 

large multimolecular complexes with hyaluronan it is a member of the hyalectan family. 

Other family members include versican, brevican and neurocan. Aggrecan has a multi-domain 

protein core of approximately 220 kDa (figure 1.6d) its domains have distinct functional roles. 

The globular G1 domain is located at the N-terminus and binds non-covalently to hyaluronan 

(and a stabilising link protein), thereby facilitating the formation of multimolecular aggregates
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comprised of up to 100 monomers (Caterson et al., 2000). A second globular domain G2 is 

separated from the G1 domain by a short interglobular domain. Adjacent to the G2 domain is 

a short keratan sulphate attachment domain (KS) and two chondroitin sulphate attachment 

domains (CS1 and CS2). Over 100 CS and KS chains may be present in the GAG attachment 

regions. At the C-terminus there is another globular domain termed G3, the function of which 

remains unclear. Its lectin-like properties suggest the possibility of interaction with other 

matrix components, though it has also been suggested that it is involved in intracellular 

trafficking during aggrecan synthesis (Roughley, 2001).

The functional role of aggrecan is dependant on its characteristics, its ability to form 

multimolecular complexes with hyaluronan and the high content of sulphated GAGs. In 

cartilage, each aggrecan monomer occupies a large hydrodynamic volume, and when 

subjected to compressive forces, water is displaced from individual monomers. The swelling 

of the tissue is dissipated readily when the compressive forces are removed and the water 

molecules are drawn back into the tissue (Iozzo, 1998). Aggrecan shows a similar distribution 

in the growth plate to type II collagen. The highest rate of expression being seen in 

chondrocytes of the proliferating and upper hypertrophic zones (Mundlos, 1994). As the 

chondrocytes undergo hypertrophy aggrecan expression is down regulated (Wai et al., 1998). 

Other hyalectan family members have not been linked to the growth plate.
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Figure 1.6: (a) Schematic illustration of the high molecular weight proteoglycan 
aggregate found in cartilage and its component parts, (b) Link protein with 
domains highlighted, (c) Hyaluronan repeating disaccharide, (d) Aggrecan 
monomer, showing different domains and sites of GAG attachment.
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1.2.2.3 Perlecan

Perlecan is a heparan sulphate containing proteoglycan that is present in all basement 

membranes. These cell-associated sheet-like extracellular matrices are involved in cell 

differentiation, survival and migration. Basement membranes also provide mechanical 

stability and form barriers between different cell types (Sasaki et al., 2004). Perlecan has a 

large modular protein core which is approximately 466 kDa in humans, the protein core is 

substituted with two or three heparan sulphate chains at its amino terminus and one 

chondroitin sulphate chain at its carboxy terminus on domain V (Hassell et al., 2003; 

Tapanadechpone et al., 1999). The protein core is divided into distinct domains based on 

homology with other proteins (figure 1.7). Domain I contains the sites for heparan sulphate 

attachment, domain II is similar to the cholesterol binding region of the low density 

lipoprotein receptor (LDL-R), domain III is similar to the short arm of the laminin A (LA) 

chain and the laminin epidermal growth factor-like repeats (LE), domain IV contains 21 

repeats of IgG-like motifs similar to those in neural cell adhesion molecule and domain V is 

similar to the globular subdomains of the laminin chain (LG) interrupted by EGF-like motifs 

(Murdoch et al., 1992). Perlecan has been found to be present in hypertrophic cartilage of 

growth plates during the process of endochondral ossification (Handler et al., 1997).

Perlecan knockout mice have been generated and have highlighted the importance of perlecan 

in skeletal development. A large proportion of the mice die at embryonic days 10-12 due to 

defective basement membranes in the heart. The mice which survive go on to suffer from 

severe skeletal defects characterised by shortened long bones and craniofacial abnormalities 

and then die shortly after birth. Histological analysis of the bones of these animals revealed 

disorganised growth plates with reduced proliferation and differentiation, and defective 

endochondral ossification (Arikawa-Hirasawa et al., 1999). Electron microscopy analysis of 

the growth plates of wild-type animals showed a dense network of collagen fibrils with 

uniform length and diameter, however the same analysis with perlecan knockout animals 

revealed reduced collagen fibrillar density, with very short fibrils, varied in diameter and 

lacking a dense network. This has led to the suggestion that perlecan may have a special 

function in maintaining the cartilage ECM, possibly by being involved in the storage, 

stability, or inactivation of MMPs within the growth plate matrix (Gustafsson et al., 2003).
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1.2.3 Other ECM Components

The extracellular matrix of cartilage contains protein components, which are neither collagens 

nor proteoglycans. Some examples which are relevant to development and growth plate are 

described below.

1.2.3.1 Matrilins

The matrilin family consists of at least four members. The prototype of the matrilin family, 

cartilage matrix protein (CMP) or matrilin-1 is a disulphide bonded trimer, joined near the 

carboxy terminus of its subunits. It has been shown to interact with collagens and aggrecan. 

CMP is present in skeletal cartilages during development. It is expressed predominantly by 

chondrocytes in the proliferating and upper hypertrophic regions of the growth plate 

(Mundlos, 1994) (Roughley, 2001). Mice lacking matrilin-1 have been generated and do not 

display any gross skeletal development or growth plate organisation abnormalities. However, 

ultrastructurally the mice have abnormal type II collagen fibrillogenesis and fibril 

organisation i.e. bundling and an increase in diameter, in the zones of maturation and 

hypertrophy (Huang et al., 1999). Matrilin-3 is also expressed exclusively in developing 

cartilage. The identification of the co-assembly product (MAT-1)2 (MAT-3)2 from growth 

plate cartilage suggests that the synthesis of these two forms overlap. Difference in the spatial 

expression of matrilin forms may contribute to the matrix maturation process during 

endochondral ossification (Zhang and Chen, 2000).

1.2.3.2 Cartilage Oligomeric Matrix Protein

Cartilage oligomeric matrix protein (COMP) is a member of the thrombospondin family of 

extracellular matrix proteins. It is a pentameric protein consisting of five 87 kDa subunits held 

together by interchain disulphide bonds. The C-terminus region of the subunits has been 

shown to bind in a zinc dependant manner to collagen types I and II (Rosenberg et al., 1998) 

and also to collagen type IX (Holden et al., 2001). COMP is present in all cartilages, being 

most abundant in growth plate during development, but also in mature articular cartilage. 

Mutations in the COMP gene are responsible for the human genetic disorders 

pseudochondroplasia (PSACH) and some types of multiple epiphyseal dysplasia (MED) 

(Briggs and Chapman, 2002). COMP null mice exhibit normal skeletal development, and 

show no anatomical, histological or ultrastructural abnormalities and show no signs of 

PSACH or MED. These results suggest that mechanisms such as, folding defects or
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extracellular assembly abnormalities due to dysfunctional mutated COMP, cause the 

phenotype in PSACH and MED, not the reduced amount of COMP (Svensson et al., 2002).

1.3 Type X Collagen

Type X collagen is a member of the network forming collagen family. It is a homotrimer 

comprising three a l(X ) chains (figure 1.8). It has a short triple helical region, compared to the 

major fibrillar collagens found in cartilage (type II collagen) and bone (type I collagen). This 

triple helical region is flanked by two non-collagenous (NC) domains, NC2 at the amino 

terminus and a much larger NCI at the carboxyl terminus.

Discovery of type X collagen occurred simultaneously by two groups in the early 1980’s 

(Gibson et al., 1982; Gibson et al., 1981; Schmid and Linsenmayer, 1983). Collagen type X 

was isolated from culture medium of chick chondrocytes undergoing hypertrophy and was 

described as a short chain (SC) collagen (Schmid and Linsenmayer, 1983). The molecular 

weight of the native molecule was described as 59 kDa, which reduced to 45 kDa after limited 

pepsin digestion. The 45 kDa form was identified as being collagenous, while the 59 kDa 

form also had non-collagenous regions. A low molecular weight collagen of the same size and 

characteristics was also described by another group of scientists studying collagen synthesis 

by chick sternal chondrocytes maintained in long term culture in collagen gels, they named 

their molecule G collagen (Gibson et al., 1982; Gibson et al., 1981). The name type X 

collagen was introduced shortly after in a paper which described the synthesis of type X 

collagen to occur almost exclusively in the cartilaginous zone of hypertrophying chondrocytes 

within the developing long bones (Kielty et al., 1985).
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1.3.1 Three Distinct Domains of Type X Collagen: the triple helix, NCI and NC2

1.3.1.1 The Triple Helix

Amino acid analysis of the 45 kDa collagenous form of type X collagen revealed the typical 

collagenous traits. About a third of residues being glycines, a high content of hydroxylysine 

and hydroxyproline. Different from other collagen molecules analysed, the type X triple helix 

contains an unusually high methionine content, a relatively low arginine content and no 

cysteine residues (Schmid and Linsenmayer, 1983). Type X collagen has high thermal 

stability, denaturation temperature (Tm) of the helical structure is approximately 47°C 

compared to approximately 42°C for the fibrillar collagens (Schmid and Linsenmayer, 1984). 

Rotary shadowing electron microscopy revealed the helical domain to be a 138nm rod 

(Schmid et al., 1984).

The triple helix of type X collagen contains 463 amino acid residues in the human, the same 

number is found in bovine while the avian triple helical domain contains 460 residues 

(Thomas et al., 1991a). The human helical domain shares 86.6% identity at the amino acid 

level with the bovine helix and 74.8% with the avian helix. The human triple helix contains 

eight imperfections of the Gly-X-Y sequence, they are highly conserved across species. Two 

of these imperfections correspond to mammalian collagenase cleavage sites (Gly-Ile-Yaa- 

Xaa-Yaa-Gly). Human skin collagenase (MMP-1) was demonstrated to cleave type X 

collagen within the triple helical domain to release a 32 kDa fragment from the centre of the 

molecule, an 18 kDa tyrosine rich C-terminus fragment and a 9 kDa N-terminus fragment 

(Schmid et al., 1986). The 32 kDa cleavage product has a relatively high thermal stability 

with a Tm of 43°C and requires the action of cathepsin B for complete degradation (Sires et 

al., 1995).

1.3.1.2 The NCI Domain

The C-terminus NCI domain of human al(X ) is 161 amino acid residues in length. The 

human amino acid sequence shares high sequence identity with the bovine 89.4% and the 

avian 77.7% NCI domains (Thomas et al., 1991a). The position of 13 tyrosine residues, an 

un-paired cysteine residue and a putative N-linked oligosaccharide attachment site are all 

conserved within the NCI domain of human, bovine and avian molecules. The NCI domain 

contains a cluster of aromatic residues which are conserved in the C-termini of collagen VIII

2 4



CHAPTER 1

and in the collagen like complement factor Clq. This cluster is part of a larger region of 130 

amino acids which displays a hydrophilicity profile very similar to that of the C-terminus of 

type II collagen (Brass et al., 1992). This conserved region probably causes the trimerisation 

of the NCI domain, which in turn leads to the association and alignment of the al(X ) chains. 

The NCI domain forms an exceptionally stable trimer without any disulphide bonds, which is 

only dissociated after heat denaturation at 100°C (Zhang and Chen, 1999).

The crystal structure of the human collagen X NCI trimer has been resolved revealing some 

interesting features (figure 1.9). The NCI domain is a trimer of ten-stranded p sandwich 

subunits. A cluster of four calcium ions buried inside the apex of the NCI trimer interact with 

aspartic acid residues, the interaction of the protein loops with the calcium ions is likely to 

contribute significantly to the stability of the NCI trimer. The molecular surface of the NCI 

trimer contains three strips, consisting of eight partially exposed aromatic residues which 

creates a hydrophobic surface patch involved in the higher order association of type X 

collagen trimers (Bogin et al., 2002).

The NCI domain has been demonstrated to be involved in mediating cell-adhesion properties 

of type X collagen, particularly to a2pi integrin expressing cells. The intracellular- 

extracellular connection that the NCI domain could mediate between the hypertrophic 

chondrocytes and the ECM may potentially have regulatory roles during the process of EO 

(Luckman et al., 2003). Thus, the NCI domain is crucial for the assembly of type X collagen 

molecules and hence crucial for the functions of type X collagen.
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Figure 1.9: Structure of the collagen X NCI trimer and the Ca2+ cluster 
(taken from Bogin et al., 2002).

(A) Cartoon representation of the NCI trimer viewed down the 
crystallographic 3-fold axis. Beta strands are labelled A, A’, B, B \ C-H 
and calcium ions are represented as purple spheres.

(B) As in (A) but rotated 90° about the horizontal axis.

(C) Ca 2+ ions and water molecules are represented as large purple and 
small red spheres, respectively. Cal is situated on the 3-fold symmetry axis 
of the collagen X NCI trimer. Residues coordinating the Ca2+ ions are 
shown as ball and stick models and are labelled.
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1.3.1.3 The NC2 Domain

The N-terminus NC2 domain of human and bovine al(X ) are both 38 amino acid residues in 

length, and share a sequence identity of 78.6% at the amino acid level. However, the avian 

NC2 domain is 34 amino acid residues in length, and is less conserved when compared to the 

human NC2 domain, sharing only 55.4% sequence identity at the amino acid level (Thomas et 

al., 1991a). This domain contains a high proportion of hydrophobic amino acids similar to the 

NCI domain. NC2 is the least characterised domain of type X collagen, no functional roles 

have been attributed to this domain due to most studies focusing their attentions on the NCI 

domain.

1.3.2 Ultrastructural Assembly and Function of Type X Collagen

An immunoelectron microscopic investigation revealed that type X occurs in two 

supramolecular forms. Immediately adjacent to the cell surface the type X matrix forms 

filamentous mats, a fibrillar arrangement is seen when the molecule is associated with fibrils 

of type II collagen. These forms were identified in the matrix of hypertrophic cartilage tissue 

and of chondrocytes in culture (Schmid and Linsenmayer, 1990). Chick type X collagen was 

shown to form large aggregates based on a regular hexagonal lattice, in vitro (figure 1.10). 

The aggregation is initiated by associations of the NCI domains followed by the interactions 

of the juxtaposed triple helical domains to form an extensive latticework. These interactions 

are mediated via the NCI domain, as they are not seen in pepsin treated samples (Kwan et al., 

1991). The NC2 domain of type X collagen is likely to participate in the formation of 

supramolecular aggregates, however its involvement has not been characterised. Type X 

collagen is similar to collagen type VIII in sequence and in protein structure. They have 

almost identical triple helical domains containing eight imperfections in the Glycine-X-Y 

repeat structure (Yamaguchi et al., 1989). Type VIII collagen provides an open porous 

structure in Descemet's membrane. It has been suggested that type X collagen may have a 

comparable function, providing an open temporary matrix permissive to vascular invasion and 

mineralisation (Sutmuller et al., 1997). Type X collagen may function as a scaffold preventing 

collapse of the matrix, as the proteoglycans and collagen II are degraded in the hypertrophic 

region of growth plate cartilage.

Despite being initially described 20 years ago, attributing a precise functional role for type X 

collagen has proven elusive. Due to its restricted distribution to the hypertrophic zone of the 

growth plate, the role of type X collagen in the process of endochondral ossification is of
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particular interest. It has been proposed that type X collagen may be degraded more readily 

than type II collagen, since type X has two sites for vertebrate collagenase compared to the 

one site in type II collagen, thus assisting vascular invasion. Another possibility is that type X 

collagen may be involved in matrix calcification since it appears before the onset of 

mineralisation.
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Figure 1.10: Rotary shadowing electron micrographs of the extended 
network of type X collagen aggregates. (A) Regularly spaced nodules 
of aggregated NCI domains are interconnected with structures formed 
via interactions between adjacent triple helices. (B) The hexagonal 
nature of the type X collagen lattice is highlighted in this micrograph. 
Bar = 200nm. Figure taken from Kwan et al., 1991.
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1.3.3 The Type X Collagen Gene

The type X collagen gene has been well characterised in a number of species, analysis of the 

nucleotide sequence has revealed homology across species, with all species studied sharing 

the same genomic organisation containing three exons (figure 1.8a). The chicken type X 

collagen gene was the first to be analysed, exon 1 97 basepairs (bp), codes for most of the 5’- 

untranslated region (UTR) of the mRNA, exon 2 (159bp) codes for the signal peptide and a 

short non-triple-helical domain (NC2), while exon 3 (2136bp) contains the coding region of 

the entire triple helix, the large non-triple-helical carboxyl domain (NCI) and the 3’-UTR 

(LuValle et al., 1988). This exon structure is unusual when compared to other known 

vertebrate collagen genes. The fibrillar collagen genes (types I, II, III, V and XI) are large 

containing around 50 exons and have a highly conserved exon structure in which the size of 

the exons coding for the triple helical domain are related to 54bp, (Gly-X-Y)6.

The complete primary structure of the bovine a l(X ) collagen chain was later determined. The 

primary translation products of both bovine and chick type X collagen are 674 amino acids in 

length and there is 73% identity at the amino acid level. Sequence analyses revealed that the 

greatest degree of identity between the two species occurs within the triple helical domain and 

the NCI domain, whereas the identity within the NC2 domain is markedly lower (Thomas et 

al., 1991b).

The mouse type X collagen gene has been mapped to chromosome 10 (Apte et al., 1992), and 

the genomic organisation is the same as chick and bovine (Elima et al., 1993); (Apte and 

Olsen, 1993). The human collagen X gene (COL10A1) has been assigned to the distal end of 

the long arm of chromosome 6 at the locus 6q21-6q22.3 (Thomas et al., 1991a); (Apte et al.,

1991). The full length cDNA sequence of human collagen X was determined, it revealed that 

the genomic organisation was highly homologous to the chicken and mouse (Reichenberger et 

al., 1992). Recent sequence analysis of the porcine COL10A1 gene revealed strong 

evolutionary conservation of both the gene structure and amino acid sequence (Madsen et al., 

2003).
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1.3.4 Type X Collagen Localisation other than Growth Plate

Despite the restricted expression of type X collagen to hypertrophic chondrocytes of the 

growth plate, it has previously been immunolocalised to the surface of human, pig and rat 

articular cartilage, where it is said to be a component of normal articular cartilage (Rucklidge 

et al., 1996). There are also reports suggesting that there is small amounts of type X collagen 

in the proliferating zone of the growth plate (Jacenko et al., 2001).

Type X collagen was demonstrated to be expressed in fracture repair and in human 

osteoarthritic articular cartilage. Experimental fractures were created in the chicken humerus 

and type X collagen synthesis occurred in the fracture callus primarily within regions of the 

callus composed of hypertrophic cells, where matrix was undergoing vascularisation and 

mineralisation (Grant et al., 1987). This indicates collagen X is involved in new bone 

formation, as well as being involved in bone formation in development and during growth. 

Synthesis and extracellular deposition of type X collagen by hypertrophic cells and 

chondrocyte clusters in the middle zone of osteoarthritic articular cartilage was demonstrated 

immuno-histologically. Type X collagen synthesis was also demonstrated in suspension 

cultures of freshly isolated chondrocytes from osteoarthritic cartilage by SDS-PAGE and by 

immunoprecipitation with a specific antibody for human type X collagen (von der Mark et al.,

1992). Type X collagen may be involved in the pathology of osteoarthritis, when regions of 

articular cartilage are calcified.

Type X collagen has more recently been localised to other regions. It has been found in the 

mineralised fibrocartilage at the ligament-bone interface of the bovine medial collateral 

ligament (Niyibizi et al., 1996) and in the mineralised fibrocartilage of the bovine Achilles 

tendon-calcaneus interface (Fukuta et al., 1998). The intervertebral discs of mature Beagle 

dogs have also been used to study type X collagen. The vertebral endplate was the 

predominant site of type X collagen expression, but some animals also had expression in the 

nucleus pulposus and in the annulus fibrosus (Lammi et al., 1998). In a study involving 

human intervertebral discs the presence of type X collagen was linked with disc degeneration 

(Roberts et al., 1998). Knee menisci of healthy and osteoarthritic rabbits and humans have 

also been shown to contain type X collagen (Bluteau et al., 1999). In general, expression of 

type X collagen outside of the hypertrophic zone of the growth plate may be part of a 

pathological process.
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1.3.5 Schmid Metaphyseal Chondrodysplasia (SMCD)

SMCD is a relatively mild autosomal dominant disorder of the osseous skeleton resulting 

from growth plate cartilage abnormalities (Chan and Jacenko, 1998). The SMCD phenotype is 

variable and symptoms include short stature, affected spine, pelvis and long bones, coxa vara 

which is a reduction in the angle between the femoral neck and bone shaft and a waddling 

gait. Intelligence and life expectancy are unaffected by the disorder.

The link was made between SMCD and the COL10A1 gene when a 13 base pair deletion was 

discovered in a large Mormon kindred affected by SMCD. The mutation resulted in a 

frameshift which altered the C-terminus 60 amino acids of the a l(X ) chain, a region of the 

protein which is highly conserved across species. The effect of the 13 base pair deletion in 

this family is likely to prevent association of the mutant polypeptide during trimer formation, 

causing a reduction in the amount of normal type X collagen which can be synthesised. The 

identification of this mutation supports a role for type X collagen in endochondral ossification 

(Warman et al., 1993). Growth plate cartilage from SMCD patients was used to analyse type 

X collagen. The patient studied was heterozygous and had a premature termination mutation 

in the NCI domain (Y632X). In direct analysis of growth plate cartilage tissue it was 

demonstrated that only the normal allele was expressed. The inability to detect mutant mRNA 

or mutant type X collagen protein indicated that in the patient in question, a functionally null 

a l(X ) allele leading to haploinsufficiency was the molecular basis causing SMCD (Chan et 

al., 1998). The proof reading machinery of the cell is likely to rapidly degrade mRNA 

encoding premature termination codons. Degradation of mutated mRNAs introducing 

premature termination codons is termed nonsense-mediated decay (NMD), a recent study 

found that cartilage specific NMD is an important molecular cause of SMCD (Bateman et al.,

2003).

At present, around 30 mutations have been discovered in unrelated SMCD patients. 

Interestingly, the mutations defined include amino acid substitutions, nonsense mutations and 

deletions all map to the C-terminus NCI domain. The only exception to this has been the 

discovery of two missense mutations found at the junction of the signal sequence and the N- 

terminus globular domain, of two unrelated Japanese SMCD patients (Ikegawa et al., 1997). 

These mutations support the haploinsufficiency theory, ineffective cleavage of the signal
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peptide could impair translocation of type X collagen to the endoplasmic reticulum and 

subsequently secretion from the cell into the matrix.

Haploinsufficiency may not be the only mechanism underlying SMCD, clustering of both 

point and frameshift mutations in the NCI domain of type X collagen contradicts this. In 

haploinsufficiency one would expect to find SMCD causing frameshift mutations to be 

randomly distributed throughout the gene. The non-random clustering of SMCD mutations in 

the NCI domain is more consistent with a mechanism involving dominant interference in 

which the mutant chains retain the ability to trimerise (Marks et al., 1999). Confirmation of 

the dominant interference hypothesis came when it was found that mutant type X chains are 

able to form homotrimers capable of nucleating triple helix formation to form a thermally 

stable triple helix. The mutant chains are also able to co-assemble with wild type chains to 

form heterotrimers. Altered conformation and stability of these proteins could affect their 

secretion, expression, assembly and their interactions with other extracellular matrix proteins 

outside the cell (McLaughlin et al., 1999).

1.3.6 Type X Collagen Transgenic and Knockout Mice

A great deal has been learned from mice carrying spontaneous or experimentally induced 

mutations in extracellular matrix genes. These mouse models are of great interest not only for 

understanding the causes of ECM-related diseases in humans but may also allow the 

development of diagnostic tools. These mice have also increased our knowledge about 

pathogenetic mechanisms leading to ECM-dependant diseases and allowed researchers to 

uncover new and unexpected functions of ECM proteins. On the other hand, some mutations 

in mice result in much milder phenotypes than in humans, demonstrating the limitations of 

transgenic mouse models (Aszodi et al., 1998). Studies involving type X collagen transgenic 

and knock-out mice have proved inconclusive with different groups reporting variable 

findings.

1.3.6.1 Transgenic Type X Collagen Mice

Transgenic mice with a dominant negative mutation in collagen X were generated to test the 

role of collagen X in skeletal morphogenesis. Transgene constructs contained chicken al(X ) 

cDNA with in-frame deletions within the triple helical domain of collagen X, removing either 

21 or 293 amino acid residues, transgene expression was driven by appropriate chicken al(X )

33



CHAPTER 1

promoter and upstream regulatory elements. Given the high degree of homology between 

chicken and mouse a l(X ) carboxyl domains the truncated chicken polypeptides competed 

with endogenous mouse chains for assembly, and thus interfered with triple helical folding of 

trimers. Expression of the collagen X transgene constructs in mouse hypertrophic cartilage 

resulted in 14 transgenic lines with similar skeletal and growth abnormalities. Initially 

transgenic pups were indistinguishable from one another. At around post natal day 16-17, 15- 

20% of transgenic mice developed hunching of the back, gradual hind limb paresis, 

respiratory problems and died within 4 days. Dwarfism with varying severity was seen in 80% 

of transgenic mice. Histological analysis of the mice revealed abnormalities in growth plates, 

bony trabeculae and bone marrow of all tissues undergoing endochondral ossification. Growth 

plate compression was seen, hypertrophic cartilage was reduced and hypertrophic 

chondrocytes were flattened and reduced in number, organisation of chondrocyte columns 

was also effected. The number and size of metaphyseal trabeculae, composed of hypertrophic 

cartilage cores with newly deposited bone on the surface, were also reduced. It was concluded 

that the compressed growth plate phenotype resulted from a deficient type X pericellular 

matrix in the hypertrophic cartilage of these animals due to a reduced level of intact collagen 

X molecules (Jacenko et al., 1993).

Haematopoietic defects in transgenic type X collagen mice were later noted. These included 

reduced thymuses and diminished cortical lymphocytes, small spleens and absent lymph 

nodes. (Jacenko et al., 1996). A more exhaustive investigation demonstrated that collagen X 

transgenic mice exhibited impaired haematopoiesis and marrow hypoplasia. The mice 

displayed reduced B cells in bone marrow and spleen, and elevated splenic T cells. Marrow 

abnormalities are thought to occur as a result of the skeletal alterations in the chondo-osseous 

junction, implying that endochondral ossification contributes to the prerequisite environment 

in the marrow stroma for subsequent blood cell differentiation. These defects underscore an 

unforseen link between hypertrophic cartilage, endochondral ossification, and establishment 

of the bone marrow microenvironment required for blood cell differentiation (Jacenko et al., 

2002).

Ultrastructural, histological, and immunohistochemical analyses were used to demonstrate 

that collagen X transgenic mice have a disrupted pericellular lattice network around
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hypertrophic chondrocytes of the growth plate. This was attributed to increased proteolysis of 

the mutant chains, or to the inability of the mutant collagen X molecules to properly aggregate 

with the wild type collagen. The loss of structural integrity in the pericellular matrix, alters the 

partitioning of hyaluronan and heparan sulphate proteoglycan in the growth plate of these 

animals. Aggregates, probably containing aggrecan are seen throughout the matrix of the 

growth plate. This data implies a potential association between collagen X and heparan 

sulphate and PG’s with disruption of these interactions leading to a decompartmentalised 

chondro-osseous junction. Hyaluronan and heparan sulphate proteoglycans are implicated in 

haematopoiesis, therefore disruption to these molecules provides an explanation for 

haematopoietic failure in the collagen X transgenic or null mice (Jacenko et al., 2001).

The compartmentalisation function of type X collagen was tested by genetically altering the 

relative in vivo proportions of the proteoglycans perlecan and aggrecan to collagen X. The 

molecules were altered by either over-expressing type X collagen in transgenic mice, or by 

reducing the amount of proteoglycans by using perlecan and aggrecan null mice. When type 

X collagen was over-expressed, mRNA was restricted to the hypertrophic chondrocytes, 

whereas the protein could diffuse away from the hypertrophic zone into other areas of the 

growth plate. Type X collagen was distributed throughout the growth plate in transgenic mice 

over-expressing type X collagen and in perlecan null mutants. This effect was also observed, 

but to a lesser extent in transgenic mice that contain perlecan with reduced heparan sulphate 

chains (Cheah et al., 2004).

1.3.6.2 Collagen X Null Mice

Shortly after the original report on transgenic mice by Jacenko et al., 1993, type X collagen- 

null mice were generated, they were viable and fertile and had no gross abnormalities in long 

bone growth or development. Histological examination revealed growth plates with normal 

appearance, and mineralisation of bones appeared normal. The distribution of other matrix 

components, such as type II collagen, osteopontin and osteocalcin, were also assessed and 

appeared normal. The complete lack of type X collagen did not alter the distribution of other 

markers in the growth plate. These findings resulted in the suggestion that type X collagen is 

not essential for long bone development, alternatively it may be that other matrix components 

can fulfil the function of type X collagen in its absence (Rosati et al., 1994).
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When type X collagen null mice were generated by a different laboratory, deficient mice 

developed a SMCD-like phenotype, developing coxa vara and had abnormal trabecular bone 

architecture (Kwan et al., 1997). Other consequences of the deficiency were reduction in the 

thickness of the growth plate resting zone and articular cartilage, altered bone content, and 

atypical distribution of matrix vesicles and proteoglycans within the growth plate. The altered 

distribution of matrix components was thought to have arisen by diffusion from the 

hypertrophic zone or by displacement as the result of forces generated by rapid endochondral 

bone growth. It was concluded that collagen X is important for the compartmentalisation of 

matrix components to the hypertrophic zone of growth cartilage, providing the proper 

environment for mineralisation and bone remodeling.

Contradictory to the previous reports, a variable skeleto-haematopoietic phenotype was 

observed in the collagen X null mice generated by Rosati et al., 1994, when they were later 

studied. As the colony of mice was expanded, an acute perinatal lethal phenotype was 

detected in 10% of the mice at week three after birth. Subtle growth plate compressions 

primarily within the proliferative zone of the growth plate were observed in the null mice, as 

well as haematopoietic changes (Gress and Jacenko, 2000).

1.4 Small Leucine Rich Proteoglycans (SLRPs)

The SLRPs belong to a larger family of proteins which contain leucine-rich repeats (LRRs). 

The LRRs contain twenty to thirty amino acids, with asparagine (N) and leucine (L) residues 

in conserved positions in the LxxLxLxxNxL motif. The LRRs have been discovered in a 

variety of proteins from prokaryotes and eukaryotes, they have a wide spectrum of cellular 

locations and functions, examples include hormone receptors, tyrosine kinase receptors, cell 

adhesion molecules, bacterial virulence factors, enzymes and ECM-binding proteins. A 

common feature among family members is involvement in protein-protein interactions 

(Matsushima et al., 2000).

Members of the SLRP family are structurally related and are each encoded by a different 

gene. They are characterised by a protein core (approximately 40 kDa) with a central region 

containing LRRs. They differ according to whether they contain N-linked oligosaccharides, 

contain GAG chains such as CS, DS or KS, are tyrosine sulphated or undergo proteolytic 

processing. The members of the family have been divided into three distinct classes based on 

their evolutionary protein conservation, the sequence of a distinct cysteine-rich region at the
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N-terminus, the number of leucine repeats they have and their genomic organisation (Iozzo,

1999). Some members of the family do not fall into any of the classes and so form an ‘others’ 

category. Discovery of additional members may lead to an expansion of classes in the future. 

Members of each class and their characteristics are summarised in figure 1.11
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Figure 1.11: Members of the different SLRP classes are shown, with genomic, protein and GAG details displayed.
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1.4.1 Class I SLRPs

Class I SLRPs contain ten LRRs and the N-terminus consensus sequence, CX3CXCX6C 

(where C is a cysteine and X is any amino acid), each member is encoded by eight exons 

(figure 1.12) Members of Class I include the well studied and characterised decorin and 

biglycan, along with the newest member asporin.

The protein core of asporin is similar to decorin and biglycan with regards to the number of 

LRRs and the conserved cysteine motif. However, asporin does not contain the N-terminus 

serine/glycine dipeptide sequence(s) required for xylosyl transfer and glycosaminoglycan 

assembly, thus asporin is probably not a proteoglycan. Instead, asporin contains a stretch of 

aspartic acid residues in this region. The number of aspartate residues in this acidic motif can 

vary from eleven to eighteen depending on species (Henry et al., 2001). Expression of asporin 

mRNA has been found in various human tissues, with highest levels in osteoarthritic articular 

cartilage, aorta, uterus, heart and liver (Lorenzo et al., 2001).

1.4.1.1 Decorin and Biglycan

Decorin and biglycan are the original members of the SLRP family and are well characterised. 

Their protein cores are homologous (Fisher et al., 1989) and from the N-terminus they contain 

a leader/signal sequence which targets the protein for secretion. A propeptide which consists 

of highly negatively charged residues, proposed to act as a recognition signal for the first 

enzyme, xylosyltransferase, involved in the biosynthesis of the GAG chain (Sawhney et al., 

1991). The tetrapeptide Ser-Gly-Xaa-Gly where Xaa is any amino acid, has been 

demonstrated to be a recognition consensus sequence for the attachment of GAG chains to the 

core proteins of proteoglycans (Bourdon et al., 1987). The GAG attachment region is 

followed by a short cysteine-rich cluster, ten central LRRs and a hydrophobic C-terminus 

cysteine-rich cluster.

Decorin is substituted with one GAG chain and biglycan is substituted with two GAG chains 

(Iozzo, 1999), GAG attachment sites have been identified at different positions in different 

species (Krusius and Ruoslahti, 1986; Neame et al., 1989; Scholzen et al., 1994). Different 

glycosylated forms of decorin and biglycan are spatially and temporally regulated, indicating 

flexible post-translational modification. The composition of the GAG chain in terms of 

iduronate content and pattern of sulphation varies between tissues (Cheng et al., 1994), with 

dermatan sulphate predominating in skin and chondroitin sulphate the major form in bone
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(Hocking et al., 1998). There are a number of contrasting reports regarding the processing of 

the propeptide, it appears that the proteins can be secreted with or without processing 

(Marcum and Thompson, 1991; Roughley et al., 1996). Complexity is further increased by the 

possibility of N-linked oligosaccharides, decorin has three potential sites within its protein 

core and biglycan has one.

The three dimensional structure of decorin (figure 1.13) has been modelled on the crystal 

structure of the porcine ribonuclease inhibitor (Weber et al., 1996). The model predicts a 

‘horse-shoe-like’ shaped molecule with the GAG chain located on Ser 7 at one edge of the 

molecule, thus the GAG chain would be relatively free to protrude away from the core protein 

in different directions. The three N-linked oligosaccharides at Asn184, Asn228 and Asn275, are 

positioned on the outer surface of the arch projecting away from the protein core. This model 

allows easy access of interactive protein to the inner surface. The inner surface of the arch 

contains charged residues that could form ionic and polar interactions with residues found in a 

polar sequence in the d band of collagen a  1(1) in the collagen triple helix. More recently this 

model has been challenged by the resolving of the crystal structure of bovine dimeric decorin 

(Scott et al., 2004). This model predicts a more open structure, with the concave surface 

previously implicated in decorin ligand interactions involved in a high affinity dimer 

interaction.

Both decorin and biglycan have been reported to be Zn2+ metalloproteins, with a zinc binding 

site located in their N-terminus region (Yang et al., 1999). The significance remains unclear, 

but it may be necessary for the correct conformation of the proteins, or alternatively may 

function as a storage pool of zinc in tissues. Decorin forms dimers in solution (Scott et al., 

2003), while biglycan can form dimers and hexamers depending on conditions (Liu et al.,

1994), however whether any multimeric forms occur in vivo is unknown.
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Weber, Harrison, and lozzo, J Biol Chem 271, 31767, 1996.

Figure 1.13: Molecular model of the decorin core protein, 
displaying the ‘horse-shoe-like’ conformation. Taken from 
www.astreix.cs.gsu.edu/weber/model.html
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1.4.1.2 Genomic Organisation of Decorin and Biglycan

The eight kilobase pair human biglycan gene was charcterised and localised to the end of the 

long arm of the X chromosome (Xq27-ter) (Fisher et al., 1991). The gene contains eight exons 

with the first one coding for the 5’-untranslated region (UTR) of the mRNA. The second exon 

codes for the signal sequence, the pro-peptide, the GAG attachment sites and the first 

cysteine-rich region. Exons three to seven code for the LRRs. The C-terminus cysteine-rich 

region is coded for by the final exon. The murine biglycan gene also maps to chromosome X 

(Chatterjee et al., 1993). The murine gene has a similar structure to the human gene although 

is larger. It comprises eight exons with conserved intron/exon organization (Wegrowski et al.,

1995). The human (Ungefroren and Krull, 1996) and murine (Wegrowski et al., 1995) 

biglycan promoters contain a high GC content and multiple potential binding sites for the 

transcription factor SP-1. They lack TATA and CAAT boxes and contain multiple 

transcription start sites. These features of the promoter region are common in genes 

constitutively expressed at low levels or in genes related to growth.

The thirty eight kilobase human decorin gene has been mapped to chromosome 12q23. The 

intron-exon junctions within the coding portion of the gene are identical to those found in the 

biglycan gene, although the introns in decorin are larger. Two alternatively spliced leader 

exons termed la and lb, were found in the 5’ UTR, these were found to be homologous to 

sequences from avian and bovine decorin (Danielson et al., 1993; Vetter et al., 1993). The 

murine decorin gene has been mapped to chromosome 10 and differs from its human 

counterpart in its promoter region and lacks the leader exon lb which is alternatively spliced 

(Scholzen et al., 1994). Analysis of the upstream sequence of exons la and lb revealed that 

only the region upstream of exon lb exhibits strong transcriptional activity (Santra et al., 

1994). The lb promoter region contains a CAAT and two TATA boxes, as well as several 

putative binding sites for factors such as AP-1, AP-5, NF-kB and TGF-p. Thus, it is highly 

unlikely that two different transcripts are produced from the gene yielding two different 

proteins.

1.4.1.3 Localisation of Decorin and Biglycan

Decorin and biglycan are ubiquitously expressed and are found in many tissue types at 

different developmental stages. Generally, in human embryos decorin is found in tissues rich 

in fibrillar collagens, while biglycan is expressed by more specialised cell types such as renal 

tubular epithelia, keratinocytes and skeletal myofibers (Bianco et al., 1990). A screening of
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human adult tissues found ubiquitous expression of both decorin and biglycan trancripts, with 

increased biglycan expression in a few specialised tissues such as aorta, spleen and brain 

(Hocking et al., 1998). During fetal development of the mouse, decorin is expressed in most 

mesenchymal derivatives which give rise to connective tissues, but not in cartilage and bone. 

In contrast, biglycan is expressed in cartilage and bone, and other sites of connective tissue 

such as dermis and mesothelial linings of large organs (Wilda et al., 2000).

Decorin and biglycan localisation with regard to the growth plate has also been studied. 

Decorin and biglycan are present in the bovine growth plate but their distribution and 

expression profiles vary within different zones (Alini and Roughley, 2001). Decorin was 

found in the reserve and proliferating zones, and its abundance decreased in the hypertrophic 

zone. In contrast, biglycan was found throughout the growth plate though its abundance was 

decreased in the proliferative and hypertrophic zones.

Biglycan was found to be associated with cartilage matrix mineralisation in a study involving 

the developing epiphyseal cartilage of 10-day old Wistar rats (Takagi et al., 2000). The core 

protein and mRNA of biglycan were localised to the hypertrophic region, and to terminally 

differentiated chondrocytes associated with the ossifying region of the epiphyseal plate. The 

presence of biglycan in the clusters of hydroxyapatite (HAP) crystals or in the crystal ghosts 

suggests a role in inducing or regulating the formation of apatite crystals. There is also a 

possibility that decorin may have some involvement in mineralisation. In vitro evidence 

suggests that decorin inhibits collagen matrix mineralisation when it is over-expressed in 

osteoblasts, thus it could potentially modulate the timing of mineralisation in vivo (Mochida 

et al., 2003).

Decorin and biglycan substituted with CS and deglycosylated decorin and biglycan have been 

demonstrated to bind to HAP. Both molecules displayed a strong association for HAP, which 

was predominately facilitated through the glycosaminoglycan chains. Both decorin and 

biglycan inhibited HAP crystal growth. Biglycan was the most efficient and the core proteins 

were slightly more inhibitory than the whole molecules, and when the proteoglycans were 

complexed with type I collagen the degree of inhibition was reduced. This could be attributed 

to the reduced number of binding sites on the protein available to interact with the HAP 

crystal surface (Sugars et al., 2003).
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1.4.1.4 Interactions of Decorin and Biglycan with Collagens

Decorin and biglycan interact with many collagen types found in extracellular matrices of 

different tissues. Their widespread distribution and involvement in protein-protein 

interactions, confirms their importance in extracellular matrix biology.

Decorin has been shown to modulate the process of collagen fibril formation. It was 

demonstrated that an interaction between a dermatan sulphate proteoglycan and collagen 

causes increased stability of collagen fibrils and a change in their solubility (Toole, 1969). A 

later study showed an association between rat tail tendon collagen and a dermatan sulphate 

proteoglycan at the d band in the gap region of the collagen fibril. The orthogonal array of 

proteoglycan about the collagen fibril was postulated to inhibit fibril radial growth and to 

inhibit calcification (Scott and Orford, 1981). The discovery of an association between the 

two molecules started a series of studies to identify the precise regions of the proteins 

involved in the interaction. Chondroitinase digestion did not eliminate the small dermatan 

sulphate proteoglycans ability to inhibit fibrillogenesis of types I and II collagen. Alkali 

treatment on the other hand, which destroys the core protein, did affect the ability to inhibit 

fibrillogenesis, indicating that the core protein of the proteoglycan interacts with collagen. 

Fibrillogenesis of pepsin treated collagens was also inhibited by decorin, indicating that the 

interaction was with the triple helical region of collagens and did not involve the telopeptides 

(Vogel et al., 1984). Removal of an N-terminus stretch of 17 amino acids, including the GAG 

attachment site on the decorin core protein by enzymatic digestion, did not affect the 

inhibition of fibrillogenesis (Vogel et al., 1987).

The binding regions between decorin and collagen type I are now reasonably well 

characterised. By forming chimeric protein molecules of decorin and biglycan, it was found 

that decorin binds to collagen primarily via leucine rich repeats 4 and 5, an area of about 40 

amino acids. However, it was noted that this chimera had somewhat lower affinity for 

collagen than wild type decorin, suggesting that additional low affinity binding sites maybe 

located in other parts of decorin (Svensson et al., 1995). Using rotary shadowing electron 

microscopy and photo affinity labelling, the binding site of decorin protein core was mapped 

to a narrow region near the C- terminus of type I collagen (Keene et al., 2000). A study 

involving endothelial cells revealed that decorin mRNA expression could be induced by 

interleukins-6  and -1 0 , however decorin protein synthesis only occurred in the presence of a
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type I collagen matrix (Strazynski et al., 2004), indicating the importance of the surrounding 

extracellular matrix during protein synthesis of ECM proteins.

The binding between fibrillar collagens and biglycan however remains unclear, and 

contrasting results have been found. Biglycan has been found to interact with type I collagen, 

probably at identical or at adjacent binding sites as that of decorin, however binding affinity 

was significantly less than that attributed to decorin interactions (Schonherr et al., 1995). In 

another study biglycan interacted strongly with type II collagen but not with type I collagen 

(Vynios et al., 2001).

An interaction between type V collagen with decorin and biglycan has been identified. The 

binding sites on the collagen may be different for each proteoglycan, preliminary studies 

indicate that the protein core of decorin was responsible for the interaction, while intact 

proteoglycan was necessary for the interaction involving biglycan (Whinna et al., 1993).

Both decorin and biglycan have been shown to bind to type VI collagen, the interaction 

occurs at the N-terminus region of the triple helix and is not dependant on the presence of the 

GAG chain on decorin or biglycan (Wiberg et al., 2001). Later, the ability of decorin and 

biglycan to influence the supramolecular organization of type VI collagen was investigated. 

Both proteins organise collagen VI into extensive hexagonal-like networks, however, 

biglycan with its two GAG chains is far more efficient than decorin with its one GAG chain. 

The GAG chains are vital for collagen VI network formation, deglycosylated decorin and 

biglycan loose their ability to organise collagen VI (Wiberg et al., 2002). Decorin and 

biglycan were demonstrated to be present in a complex with matrilin-1, acting as adapter 

proteins connecting the collagen VI microfibrillar networks to aggrecan and type II collagen 

in Swarm rat chondrosarcoma tissue (Wiberg et al., 2003). In vitro studies, have revealed that 

decorin can also act as a bridging molecule between types I and VI collagen, decorin interacts 

with these two collagens via different binding sites (Nareyeck et al., 2004).

Decorin interacts with collagen XIV. This collagen is a member of the FACIT family, and the 

interaction is mediated via an N-terminus fibronectin type III repeat present in the NC3 

domain of type XIV (Ehnis et al., 1997). Their distribution in tissues such as tendon and skin 

and their localisation at the d band of collagen I fibrils, support the possibility of this 

interaction occurring in vivo.
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1.4.1.5 Interactions of Decorin and Biglycan with Non-Collagenous Proteins

As well as interactions with members of the collagen superfamily, decorin and biglycan 

interact with other proteins. Decorin binds to a variety of proteins including, the cartilage- 

specific fibronectin isoform (Gendelman et al., 2003), fibrinogen, in a zinc dependant 

interaction (Dugan et al., 2003), thrombospondin, resulting in inhibition of cell adhesion 

(Winnemoller et al., 1992), the microfibrillar proteins MAGP-1 and fibrillin-1 (Trask et al.,

2000) and the extracellular matrix 22 kDa protein (Okamoto et al., 1996).

Biglycan and decorin bind to and can modulate the haemolytic activity of the complement 

component C lq  (Hocking et al., 1996; Krumdieck et al., 1992). The interaction is mediated 

via the core protein and is not affected by denaturation. An interaction between heparin 

cofactor II, a blood serine protease inhibitor and decorin and biglycan has been identified 

(Whinna et al., 1993). The activity of thrombin is inhibited by heparin cofactor II, this 

inhibition is enhanced in the presence of decorin or biglycan.

1.4.1.6 Interaction of Decorin and Biglycan with Growth Factors

The multifunctional cytokine, transforming growth factor-p (TGF-P), regulates a diverse 

range of processes important for cell growth. It has been determined that TGF-p participates 

in the control of cell proliferation, differentiation, adhesion, and deposition of the extracellular 

matrix (Hocking et al., 1998). In Chinese hamster ovary (CHO) cells, recombinant expression 

of decorin was accompanied by an inhibition of cell proliferation (Yamaguchi and Ruoslahti, 

1988). It was proposed that this effect was due to the ability of decorin to bind to and inhibit 

the activity of TGF-p (Yamaguchi et al., 1990). It was later shown that decorin and biglycan 

bind to all isoforms of TGF-p, ~p 1, -P2 and -p3, with dissociation constants in the nanomolar 

range (Hildebrand et al., 1994). Collagen bound decorin is also able to interact with TGF-P 

(Schonherr et al., 1998), allowing decorin to act as a reservoir for these growth factors in the 

extracellular millieu. The modulation of TGF-P activity by decorin and biglycan is likely to 

be due to the proteoglycans preventing binding of the cytokine to its receptor(s). However, in 

other cellular systems the ability of decorin to bind to TGF-P augments the bioactivity of the 

cytokine, for example the addition of decorin to osteoblastic cells enhances the binding of 

radiolabeled TGF-P to its receptors (Takeuchi et al., 1994).
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Attempts have been made to utilise the proteoglycan-cytokine binding in a therapeutic 

manner. In kidney glomerulonephritis overproduction of TGF-P leads to tissue fibrosis and 

extracellular matrix deposition. Injection of decorin into rats with experimental 

glomerulonephritis inhibited the production of extracellular matrix (Border et al., 1992). Gene 

therapy has also been used in the same disease model with similar results (Isaka et al., 1996).

The relationship between the expression and function of the small proteoglycans and TGF-(3 

has been speculated to involve an autocrine negative feedback mechanism (Ruoslahti and 

Yamaguchi, 1991). TGF-p stimulates the production of the proteoglycans and in turn they 

regulate the activities of this bone-enriched growth factor (Young et al., 1992). More recently 

it was demonstrated that decorin and biglycan interact with tumor necrosis factor-a (TNF-a) 

in vitro (Tufvesson and Westergren-Thorsson, 2002), whether this interaction occurs in vivo 

and could be physiologically relevant remains unclear.

Through studies on angiogenesis and tumourigenesis decorin has been demonstrated to be 

able to inhibit cellular proliferation and to be involved directly in signalling pathways. 

Decorin suppresses the malignant phenotype of A431 squamous carcinoma cells by activating 

the epidermal growth factor (EGF) receptor. Dimerisation and phosphorylation of the receptor 

causes the activation of the mitogen-activated protein kinase (MAPK) pathway, a 

mobilisation of calcium stores and an up-regulation of p2 1 , an inhibitor of cyclin dependent 

kinases involved in tumour suppression, and ultimately leads to cell cycle arrest (Kresse and 

Schonherr, 2001). In an angiogenesis model (Schonherr et al., 1999), decorin synthesis by 

endothelial cells leads to capillary formation and survival of the cells. Decorin enhances the 

phosphorylation of protein kinase B (PKB) /Akt and subsequently induces p21 (Schonherr et 

al., 2001). This activation occurs independently of the EGF receptor, decorin causes 

phosphorylation of PKB by binding to and activating the IGF-I receptor. Whether decorin is 

involved in signalling via these mechanisms in chondrocytes remains to be elucidated.

1.4.1.7 Decorin and Biglycan Transgenic Mice

A number of transgenic mice have been generated which lack decorin, biglycan or both. 

Variable phenotypes have been observed and multiple tissues are affected. The effect on 

collagens in these transgenic animals confirms the importance of SLRPs for collagen 

assembly and ultrastructure.
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1.4.1.7.1 Biglycan-defkient mouse

Targeted disruption of the biglycan gene leads to a reduced growth rate and an osteoporosis 

like phenotype. The biglycan-null animals grew normally until three months after birth, at 

which point their growth rate decreased, tibia and femur length was reduced when compared 

with littermates, indicating that biglycan is involved in the regulation of postnatal skeletal 

growth. The null-animals show reduced bone mass that becomes more pronounced with 

ageing, probably due to a lower osteoblast number and lower osteoblast activity (Xu et al., 

1998). Thus, biglycan acts as a positive regulator of bone formation and bone mass by 

affecting the cellular processes of bone formation that occur during both development and 

adult life. Changes in dentin mineralisation and enamel thickness in biglycan-null animals, 

confirms the importance of biglycan in mineralised tissues (Goldberg et al., 2002).

1.4.1.7.2 Decorin-deficient mouse

Mice with a disrupted decorin gene are viable, do not show any gross anatomical 

abnormalities and grow to normal size. The animals have fragile skin with markedly reduced 

tensile strength and a thinner than normal dermis. Ultrastructural analysis of the collagens of 

the skin and tendons revealed abnormal packing of collagen fibrils, large variation in fibril 

diameter as well as fibrils with irregular and scalloped edges. Collagen fibrils in the corneas 

of decorin-deficient animals however appeared normal when compared to wild-type animals 

(Danielson et al., 1997). The phenotype of the mice resembles the cutaneous defects observed 

in the human Ehlers Danlos syndrome (EDS) VIIC. No observations were reported on any 

cartilaginous tissues in the decorin-deficient animals

1.4.1.7.3 Biglycan/Decorin-deflcient mouse

Double-deficient animals revealed that the effects of decorin and biglycan deficiency are 

additive in the dermis and synergistic in bone (Corsi et al., 2002). The animals had a thinned 

dermis with loosely packed collagen bundles, which had varying fibril diameters. These 

changes contributed to a dermatosparaxis-like phenotype. A skeletal phenotype was observed 

at two months of age, the long bones of double-deficient animals were shorter and wider 

compared with wild type animals and were markedly osteopenic. The shorter limbs of these 

animals suggests abnormal functioning of the growth plate, indicating a potential involvement 

for decorin and biglycan within the growth plate. Collagen fibrils from bone tissue resemble 

‘hieroglyphics’ with an overall serrated appearance. Reduced bone mass and reduced mineral 

content were also seen in bones of double-deficient animals. This phenotype is reminiscent of
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a specific subtype of human EDS, the progeroid variant, which is characterised by a defective 

galactosyltransferase I enzyme necessary for the synthesis of GAG chains. The outcome of 

this human disease is the production of small proteoglycans devoid of GAG chains. This 

underlies the functional importance of the GAG chains on biglycan and decorin in bone and 

skin tissue (Ameye and Young, 2002).

1.4.2 Class II SLRPs

Class II SLRPs contain ten LRRs and the N-terminus consensus sequence, CX3CXCX9C, 

each member is encoded by three exons. Members of Class II include fibromodulin, lumican, 

keratocan, PRELP (proline arginine-rich end leucine-rich repeat protein) and osteoadherin.

Fibromodulin was originally isolated from articular cartilage but was found in other 

connective tissues including tendon, sclera and nucleus pulposus of the intervertebral disc 

(Heinegard et al., 1986). Its core protein is substituted with KS chains attached via N- 

glycosidic linkages to asparagines, it also contains negatively charged tyrosine sulphate 

residues at the N-terminus, (Antonsson et al., 1991). Fibromodulin was proposed to be a 

modulator of collagen fibrillogenesis and was shown to inhibit collagen fibrillogenesis in 

vitro (Hedbom and Heinegard, 1989).

There have been a number of investigations into the localisation of fibromodulin in growth 

plates of different species. These studies have proven inconclusive with many contradictory 

reports regarding its localisation. Fibromodulin is reported to be distributed in all regions of 

the bovine growth plate, however its abundance at the protein level decreases in the lower 

zones (Alini and Roughley, 2001). A study in mice found deposition of fibromodulin was 

strong around the late-hypertrophic chondrocytes of the growth plate, in young epiphyses 

fibromodulin was found interterritorally mainly in the uncalcified and deep-calcified cartilage, 

however calcified cartilage of older mice became enriched with fibromodulin (Saamanen et 

al., 2001). In contrast to this murine study, a different investigation also found fibromodulin 

to be developmentally expressed in the growth plate, however it was localised to the 

perichondrium and proliferating chondrocytes during endochondral ossification (Gori et al., 

2001).

Mice lacking a functional fibromodulin gene exhibit thinner collagen fibrils with irregular 

outlines in tendon. This phenotype is associated with an approximately 4-fold increase in the
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deposition of lumican, suggesting that lumican and fibromodulin share the same binding site 

on tendon collagen fibrils (Svensson et al., 1999). Fibromodulin-null mice display increased 

incidences of the degenerative changes associated with osteoarthritis in their knee joints, this 

is probably due to alterations in the ligaments, leading to abnormal mechanical loading of the 

cartilage (Gill et al., 2002).

Lumican contains three or four KS side chains which are N-linked, the linkage for the KS 

chain is a complex type N-linked oligosaccharide, there are additional sites which can be 

substituted with N-linked oligosaccharides of the high mannose type. Lumican was so named 

for the important role that it plays in the acquisition and maintenance of corneal transparency. 

Its protein core has been found in muscle and intestine as well as the cornea (Blochberger et 

al., 1992). Lumican expression has been localised mainly in the cartilaginous matrices during 

early embryonic development of the mouse, however in older embryos the expression is more 

prominent in the developing bone matrices. This finding led to the suggestion that lumican 

could potentially be involved in endochondral and intramembranous ossification (Raouf et al., 

2002). Disruption of the lumican gene in mice causes the development of fragile skin and 

bilateral corneal opacity. These phenotypes are results of structural alterations to the 

organisation of irregular collagen fibrils (Chakravarti et al., 1998).

Fibromodulin and lumican double-deficient mice display severe tendon weakness, gait 

abnormality, joint laxity, age-dependant osteoarthritis and are smaller than wild type animals. 

This phenotype resembles the clinical features of EDS. Manipulations of the lumican gene in 

fibromodulin null mice established fibromodulin as a key regulator and lumican as a 

modulator of tendon strength (Jepsen et al., 2002). Mice deficient in fibromodulin alone 

(lumican+/+ fibromodulin^) have reduced tendon stiffness, with further loss in stiffness in a 

lumican gene dose-dependent way. The tendon phenotype is partially rescued in the 

fibromodulin A mice by an increase in lumican protein.

Keratocan is a KS proteoglycan, its restricted expression in corneal tissue suggests a role in 

developing and maintaining corneal transparency (Liu et al., 1998; Tasheva et al., 1998). 

Gene targeting was used to generate ‘knockout’ keratocan mice, these mice displayed subtle 

structural alterations in the organized packing of collagen fibrils in the comeal stroma (Liu et 

al., 2003). PRELP derives its name from its basic N-terminus region which is rich in arginine 

and proline. It was originally identified from a human articular chondrocyte cDNA library.
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The protein core contains four potential N-linked glycosylation sites, however, the presence 

or absence of KS substitution is unclear and may vary depending on species (Bengtsson et al., 

1995; Grover et al., 1996). Osteoadherin is a bone proteoglycan containing KS chains and an 

acidic motif at its C-terminus. The last 38 amino acids of the protein contain 16 negatively 

charged aspartic or glutamic acid residues, these are thought to mediate binding to the mineral 

hydroxyapatite (Sommarin et al., 1998).

1.4.3 Class III SLRPs

Class III SLRPs contain six LRRs and the N-terminus consensus sequence, CX3CXCX6C, 

each member is encoded by seven exons. Members of class III include Epiphycan/PG-Lb/DS- 

PG3, mimecan/osteoglycin and opticin/oculoglycan.

Epiphycan was named based on its isolation from bovine epiphyseal cartilage (Johnson et al., 

1997), it is a homologue of avian PG-Lb (Shinomura and Kimata, 1992) and human DSPG3 

(Deere et al., 1996). The protein core is substituted with two GAG chains and one O-linked 

oligosaccharide at its N-terminus. Epiphycan localises to the zone of flattened chondrocytes 

of developing chick limb cartilage (Shinomura et al., 1983). This zone is not associated with 

calcification, which suggests its functions may include delaying the onset of calcification or 

arranging the matrix in preparation for the extensive remodeling that is associated with 

calcification (Johnson et al., 1997). The expression of epiphycan has been studied during 

mouse embryonic development and its expression was compared to type II and X collagen. 

The expression of epiphycan occurs later than the expression of type II collagen but before 

type X collagen in cartilage development. However, at the protein level epiphycan can be 

found in the matrix of all the zones of the growth plate (Johnson et al., 1999).

Osteoglycin/mimecan was initially isolated in a truncated form from bovine bone and was 

called osteoinductive factor (Bentz et al., 1989). It was subsequently characterised as one of 

the major keratan sulphate containing proteoglycans in the cornea, and was found to be 

present in other connective tissues in less abundance (Funderburgh et al., 1997). The protein 

core contains consensus sites for tyrosine sulphation at its N-terminus and contains an N- 

linked glycosylation site in its LRR region. Osteoglycin/mimecan deficient mice do not have 

a corneal phenotype but do have fragile skin. Ultrastructural analysis revealed that the 

collagen fibrils in cornea and skin are thicker than wild type and are more loosely packed 

(Tasheva et al., 2002).
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Opticin was initially extracted from the vitreous and was later found to be expressed in 

ligament, skin and retina. The protein core contains six LRRs in its central domain, which are 

flanked by cysteine clusters including a C-terminus two-cysteine cluster containing an 

additional LRR. Potential O-glycosylation sites at the N-terminus were found to be substituted 

with sialylated O-linked oligosaccharides in bovine vitreous (Reardon et al., 2000). 

Differences in the post-translational modifications of opticin between species have been 

found, possibly suggesting that addition of carbohydrate moieties may not be necessary for all 

functions (Hobby et al., 2000).

The SLRP family of proteins is a diverse family with a wide variety of tissue distributions and 

functions. The ability of some members to bind growth factors indicates potential roles in 

tissue homeostasis. Their involvement in protein-protein interactions is well characterised, 

particularly their interactions with collagens. The abnormal collagen ultrastructure seen in 

transgenic mice lacking SLRPs, including decorin and biglycan, illustrates the crucial role 

these proteoglycans play in collagen assembly and maintenance.

1.5 Cellular Control, Remodelling, Mineralisation and Angiogenesis during 

Endochondral Ossification

1.5.1 Cellular Control of Growth Plate Chondrocytes

The differentiation, proliferation and hypertrophy of chondrocytes are fundamental processes 

during longitudinal growth, and are controlled by a variety of molecules which interplay with 

each other (figure 1.14). Coupled with the mineralisation, remodelling and angiogenesis that 

also occur during the process of EO, strict control is required to ensure correct functioning of 

the growth plate.

1.5.1.1 Indian hedgehog and Parathyroid Hormone-related Protein

The secreted signalling molecules Indian hedgehog (Ihh) and parathyroid hormone related 

protein (PTHrP) mediate a negative feedback loop of intercellular communication, which 

regulates the proliferation and maturation of growth plate chondrocytes. PTHrP is a paracrine 

factor which binds to the PTH/PTHrP receptor. Ihh is a member of the conserved family of 

secreted proteins which are essential for embryonic patterning, the actions of Ihh are mediated 

by the receptor components Patched (Ptc) and Gli (Vortkamp et al., 1996).
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Ihh is expressed in the cartilage of the developing long bones, specifically in the 

prehypertrophic chondrocytes committed to the hypertrophic phenotype, Ihh itself inhibits 

transcription of the Ihh gene. Thus, the differentiation of proliferating chondrocytes is blocked 

by Ihh before they differentiate to Ihh-expressing cells. Ihh targets the perichondrium via Ptc 

and Gli and induces the secretion of PTHrP from the peri-articular region of the growth plate. 

The action of the secreted PTHrP on its receptor expressed by proliferating chondrocytes 

delays chondrocyte differentiation, thereby allowing more chondrocyte proliferation. This 

leads to reduced Ihh secretion and completes the negative feedback loop in which 

chondrocyte proliferation is maintained and hypertrophic differentiation is delayed by the 

action of Ihh and PTHrP (Stevens and Williams, 1999). In addition Ihh signalling is directly 

required for osteoblast differentiation in developing long bones (Long et al., 2004).

1.5.1.2 Transforming Growth Factor-Beta (TGF-p)

TGF's-P (~pi,-p2,-p3) have been implicated in a variety of cellular events involved in the 

regulation of bone growth and turnover. They are produced by chondrocytes and osteoblasts 

and are highly concentrated in skeletal tissues. All three TGF-p isoforms and their receptors 

have been detected at sites of endochondral ossification. In the growth plate TGF-P 1 

expression is restricted to the proliferative and upper hypertrophic zones, TGF-p2 is found in 

all zones of the cartilage with highest expression seen in the hypertrophic and mineralising 

zones, TGF-p3 is found in the proliferative and hypertrophic zones (Homer et al., 1998). An 

interplay between TGF-p and PTHrP has been identified which regulates hypertrophic 

differentiation in embryonic mouse metatarsal organ cultures. TGF-p acts upstream of PTHrP 

to regulate the rate of hypertrophic differentiation suggesting that TGF-p has both PTHrP 

dependent and independent effects on endochondral bone formation (Serra et al., 1999). TGF- 

P2 was demonstrated to act as a signal relay between Ihh and PTHrP in the regulation of 

cartilage hypertrophic differentiation (Alvarez et al., 2002).

1.5.1.3 Fibroblast Growth Factors (FGFs) and their Receptors (FGFRs)

FGFs comprise a family of 22 related proteins. Family members activate four distinct FGFR 

tyrosine kinase molecules. FGF activity is regulated by the binding of FGF-FGFR to a 

heparan sulphate proteoglycan to form a trimolecular complex (Omitz and Marie, 2002). 

FGFRs -1 and -3 are both expressed in the epiphyseal growth plate. They are found in 

different chondrocyte populations, FGFR-1 in hypertrophic chondrocytes and FGFR-3 in
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proliferating chondrocytes (Peters et al., 1992). During the development of endochondral 

bones the expression of FGF-2, -7, -8 , -9, -10 and -18 have been demonstrated (Omitz and 

Marie, 2002). The importance of FGF signalling in the regulation of skeletal development has 

been confirmed by the identification of FGFR mutations in humans with skeletal dysplasias 

(Burke et al., 1998).

Through analysis of FGFR-3 mutations, it has been demonstrated that FGFR-3 is a negative 

regulator of chondrocyte maturation. Coordinated signalling by FGFR-3 and PTHrP has been 

shown to regulate chondrocyte proliferation, differentiation and apoptosis during bone 

development (Amizuka et al., 2004). FGF-2 treatment of rats stimulates the proliferation of 

chondrocytes and permits their differentiation, but inhibits vascular invasion and resorption of 

the cartilage matrix (Nagai and Aoki, 2002).

1.5.1.4 Bone Morphogenetic Proteins (BMPs)

BMPs are members of the TGF-P superfamily involved in regulating bone formation, their 

actions are transduced by a family of kinase receptors. The roles of BMPs in the growth plate 

have been studied and overlap with the Ihh/PTHrP signalling control mechanism. Cells of the 

perichondrium surrounding pre-hypertrophic and hypertrophic chondrocytes express BMP2, 

BMP4, BMP5 and BMP7. Pre-hypertrophic and hypertrophic chondrocytes express BMP6  

and the receptor BMPR1A (Vortkamp, 2001). A role for the BMPs as intermediary molecules 

involved in the Ihh/PTHrP has been proposed. BMPs are secreted from perichondrial cells in 

response to Ihh, they act via BMPR1A on pre-hypertrophic chondrocytes to delay 

differentiation (Zou et al., 1997).

1.5.1.5 Other Growth Factors and Hormones

Growth hormone, insulin like growth factors (IGF-I & IGF-II), glucocorticoids and thyroid 

hormones are examples of other molecules which have roles in the regulation of normal 

skeletal development (Siebler et al., 2001). However, their actions and functions will not be 

discussed in this thesis.
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Figure 1.14. Schematic illustration detailing some of the signalling molecules 
involved in the cellular control of events occurring at the growth plate.
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1.5.2 Matrix Remodelling During the Process of EO

Matrix metalloproteinases (MMPs) are a large family of zinc-dependent proteases with a 

conserved domain structure (figure 1.15) which are involved in proteolytic degradation of the 

ECM (Somerville et al., 2003). MMPs are synthesised as proenzymes and are processed to an 

active form by the proteolytic removal of an N-terminus propeptide. This involves the 

‘cysteine-switch’ mechanism, which involves a covalent interaction between a cysteine 

residue in the N-terminus propeptide and the essential zinc ion bound to the catalytic domain 

of the protease, once this cysteine-zinc pairing is disrupted the enzyme becomes activated. 

The regulation of MMPs occurs at three levels: transcription, proteolytic activation of the 

zymogen form, and inhibition of the active enzyme by a host of natural inhibitors 

(Stamenkovic, 2003).

Degradation of the ECM is a necessity for the process of EO. Analysis of mice deficient in 

either MMP-9, MMP-13 or membrane type 1 MMP (MT1-MMP) has highlighted the 

importance of MMPs during particular stages of EO (Ortega et al., 2004). MMPs are 

associated with molecular reorganisation of the ECM in the growth plate. The early 

accumulation of calcium and phosphate before cellular hypertrophy is related closely to a 

carefully controlled resorption of the extracellular matrix. Initially the NC4 domain of the rare 

long form of type IX collagen is removed, followed by the removal of the COL2 domain of 

type IX collagen, and then loss of type II collagen, with only a transient loss of the PG 

aggrecan. The proteolytic mechanisms involved in the hypertrophic zone are in part addressed 

by the demonstration of increased collagenase cleavage of type II collagen at the time of 

increased MMP-13 expression (Mwale et al., 2002).

MMP-13 is expressed during development in skeletal tissues, its expression is restricted to 

hypertrophic chondrocytes and osteoblasts in relation to the growth plate and EO. Type X 

collagen and aggrecan can be degraded by MMP-13, thus contributing to collagen and 

proteoglycan degradation in the hypertrophying and calcifying chondrocyte matrix (D'Angelo 

et al., 2000). Use of a synthetic inhibitor of MMP-13 in growth plate cultures not only arrests 

MMP-13 activity but also inhibits mineralisation, indicating matrix resorption is essential for 

mineralisation to occur. Lack of degradation products leads to suppression of MMP-13 and 

type X collagen gene expression, indicating an important linkage between hypertrophy and 

matrix resorption (Wu et al., 2001).
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It has been demonstrated that MMP-9 is a key regulator of growth plate angiogenesis and 

apoptosis of hypertrophic chondrocytes (Vu et al., 1998). Active MMP-9 is located at sites of 

matrix resorption where vascular invasion occurs, and is expressed in osteoclasts, endothelial 

cells and bone marrow stromal cells. Homozygous mice with a null mutation in the MMP-9 

gene, exhibit a delay in hypertrophic chondrocyte apoptosis, vascularisation and ossification, 

thereby leading to an abnormal accumulation of hypertrophic cartilage. A proposed functional 

role for MMP-9 during EO is that it helps release angiogenic factors from the hypertrophic 

cartilage ECM.

MT1-MMP is a membrane bound MMP capable of mediating pericellular proteolysis of ECM 

components (Sato et al., 1996) as well as activating other MMP’s. MT1-MMP deficient mice 

display skeletal dysplasia, arthritis and osteopenia. Delayed epiphyseal ossification in mutants 

leads to growth plate disorganization and reduced chondrocyte proliferation which may 

contribute to dwarfism (Holmbeck et al., 1999). MMP’s -2, -3 and -7 which are not 

associated with the growth plate, have been demonstrated in vitro to degrade decorin into a 

number of fragments, cleavage sites were identified at the N-terminus and in the LRR’s. TGF- 

pi can be released from a complex with decorin by the action of these MMP’s (Imai et al., 

1997).

In addition to the MMPs, other matrix-degrading enzymes termed ‘aggrecanases’ are involved 

in the resorption of the ECM. Aggrecanase-1 and -2 belong to the larger ADAMTS (a 

disintegrin and a metalloproteinase domain with thrombospondin type 1 domains) family of 

enzymes, and have been demonstrated to cleave aggrecan (Abbaszade et al., 1999; Tortorella 

et al., 1999). Evidence for aggrecanase cleavage of aggrecan has been found in areas 

undergoing cartilage resorption during the development of the secondary ossification centre in 

rat tibiae (Lee et al., 2001). It was concluded that aggrecanase and MMP activity contribute to 

the lysis of aggrecan, and are seen at different sites at different stages of development. 

Another study showed that growth plate chondrocytes are involved in proteoglycan 

breakdown, and that high proteoglycan-degrading activity is a marker of hypertrophic 

chondrocytes. Aggrecanase-2 (ADAMTS-5) was found to be involved in aggrecan breakdown 

during EO, the mRNA expression of aggrecanase-2 was up-regulated in hypertrophic 

chondrocytes in response to thyroid hormone (Makihira et al., 2003).
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Figure 1.15: Schematic illustration of the MMPs involved in endochondral 
ossification, different functional domains are highlighted, (adapted from 
Somerville et al. 2003).

59



CHAPTER 1

1.5.3 Mineralisation in the Growth Plate

Deposition of mineral in the growth plate involves numerous components, including enzymes, 

calcium binding proteins and membrane ion transport mechanisms, however the process is not 

fully characterised. Mineralisation of cartilage occurs primarily in the matrix located between 

adjacent hypertrophic chondrocyte columns, and not in the interzone between hypertrophic 

chondrocytes in the same column (Johnstone et al., 2000).

Matrix vesicles are small particles (50nm diameter) that serve as the initial site of calcification 

in all skeletal tissues, including growth plate cartilage, embryonic and growing bone, and 

odontoblastic predentin (Anderson, 1995). They are localised to the longitudinal septae of the 

epiphyseal growth plate, where calcification is initiated. The release of matrix vesicles from 

hypertrophic chondrocytes may be a result of increased cytosolic calcium concentration, 

contributed to by annexins forming calcium channels in the plasma membrane (Wang and 

Kirsch, 2002). Annexins II, V and VI are major components of matrix vesicles, these 

annexins exhibit calcium channel activities resulting in matrix vesicles being loaded with 

calcium during the initial phase of mineralisation. Type X collagen is able to bind to annexin 

V, and it has been suggested that this would anchor matrix vesicles in the extracellular matrix 

and might further activate the annexin V channel properties (Kirsch et al., 2000).

The plasma membrane of matrix vesicles also contains the enzyme alkaline phosphatase 

(ALP). ALP is found in cartilage and bone and is thought to play a role in mineralisation. 

ALP has the capacity to liberate inorganic phosphate from organic or inorganic substrates 

such as pyrophosphate. Reaction of inorganic phosphate with calcium leads to the formation 

of hydroxyapatite. ALP is expressed by hypertrophic chondrocytes of the growth plate, the 

intensity of which increases towards the chondro-osseous junction. ALP expression precedes 

calcification. It has been suggested that ALP is released from hypertrophic chondrocytes in 

the matrix vesicles, however calcification of the matrix in the upper hypertrophic zone is 

inhibited by matrix components such as aggrecan (Mundlos, 1994).

The role of PG’s in the calcification process is not definitive. In vivo, PGs such as aggrecan 

may bind calcium via their chondroitin sulphate chains. This could promote hydroxyapatite 

formation, ALP mediates a local phosphate concentration increase, phosphate causes 

displacement of calcium, thus raising the calcium phosphate product above the threshold 

required for hydroxyapatite precipitation (Poole et al., 1989). The role of PG’s as promoters
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of calcification is supported by the observation that calcification is not always initiated within 

matrix vesicles. Calcification has been observed, in discrete focal sites containing aggrecan 

and chondrocalcin, which is derived from the C-terminus propeptide of type II collagen. 

Chondrocalcin is able to bind to annexin V and accumulates in calcifying cartilage (Kirsch 

and Pfaffle, 1992). However, contradictory in vitro studies on hydroxyapatite formation 

suggests that PGs are inhibitors of calcification (Hunter, 1991).

Initially, mineral crystals form within the matrix vesicles, they grow and increase in number 

and eventually penetrate the matrix vesicle membrane. The rate of crystal growth and 

proliferation is then dependant on the conditions of the extra-vesicular matrix. If the 

extracellular levels of calcium and phosphate are sufficient then continued nucleation of HA 

crystals on HA templates takes place (Anderson, 2003). Potentially, the type II and X 

collagens associated with the outer surface of the matrix vesicles may serve as a bridge for 

crystal propagation out into the extra-vesicular matrix (Wu et al., 1991).

A study involving isolated matrix vesicles from chicken growth plate cartilage found that the 

vesicles contained active MMP-2, -9 and -13, they also contained latent and active TGF-p, 

thought to be activated by MMP-13 (DAngelo et al., 2001). In another study MMP-3 from 

matrix vesicles was implicated in the release of the large latent complex from TGF-P 1, hence 

activating it (Maeda et al., 2002).

1.5.4 Angiogenesis during the Process of EO

Angiogenesis of growth plate cartilage plays a fundamental role in EO. Blood vessels invade 

the cartilage from the metaphysis. The endothelial cell invasion induces vascular channel 

formation in the terminal layer of apoptotic chondrocytes, the newly formed blood vessels 

bring specialised cell types necessary for bone formation to the region (Gerber and Ferrara, 

2000).

1.5.4.1 Vascular Endothelial Growth Factor

Vascular endothelial growth factor (VEGF) is an angiogenic growth factor which plays a role 

in the control of blood vessel development. VEGF and its receptors are expressed by 

chondrocytes in the hypertrophic cartilage (Carlevaro et al., 2000). It has been suggested that 

VEGF controls at least three aspects of bone development. First, it induces angiogenesis in 

the perichondrial regions of cartilage templates in the endochondral skeleton. Second, it
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stimulates angiogenesis and chemotactic migration of osteoclastic cells into hypertrophic 

cartilage. Finally, it stimulates bone formation by increasing the activity of osteoblasts in 

endochondral bones (Zelzer et al., 2002). An essential role for VEGF in growth plate 

angiogenesis was demonstrated by systemic administration of a soluble receptor to VEGF to 

24 day old mice. The treatment led to suppression of blood vessel invasion, impaired 

trabecular bone formation, expansion of hypertrophic chondrocyte zone and a decrease in cell 

recruitment (Gerber et al., 1999).

1.5.4.2 Connective Tissue Growth Factor

CTGF is highly expressed by hypertrophic chondrocytes, it may promote EO by acting on 

many cell types, including chondrocytes, osteoblasts and endothelial cells. CTGF has 

stimulatory effects on the proliferation, maturation and hypertrophy of cultured chondrocytes. 

The replacement of cartilage with bone may be promoted by the stimulatory effect that CTGF 

has on the proliferation and differentiation of osteoblasts. The migration and proliferation of 

vascular endothelial cells is stimulated by CTGF, thus, it may induce angiogenesis at the 

vascular front of the growth plate (Takigawa, 2003). An interaction between CTGF and the 

tyrosine kinase-type receptor ErbB4 in chondrocytes has been identified, raising the 

possibility that CTGF may transduce signals into the cells through a phosphorylation cascade 

(Nawachi et al., 2002). As well as this paracrine action of CTGF, a processed sub-fragment 

may act intracellularly and reduce proliferation and apoptosis of hypertrophic chondrocytes 

(Takigawa, 2003). CTGF was demonstrated to bind to an isoform of VEGF through a protein- 

protein interaction, and could negatively regulate the angiogenic activity of VEGF in the 

extracellular environment (Inoki et al., 2 0 0 2 ).
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1.6 Aims and Objectives of the Project

1.6.1 Background and Hypothesis

The ultrastructural organisation of hypertrophic cartilage found in the epiphyseal growth plate 

is not well understood. The prominent collagen type in this region is type X collagen, which is 

only expressed by prehypertrophic and hypertrophic chondrocytes. Despite being the subject 

of many studies during the last 20 years, characterising the molecular interactions of type X 

collagen and defining a precise function has remained elusive. Due to the temporal and spatial 

expression of type X collagen in the epiphyseal growth plate, it has been associated with the 

process of EO. Interactions of type X collagen with other components of the ECM are likely 

to be of importance in assembling and maintaining the correct matrix in hypertrophic 

cartilage. This in turn is essential for the correct remodelling, angiogenesis and calcification 

seen during EO.

The significance of the SLRP family of proteoglycans in collagen biology has been 

highlighted in SLRP-deficient animals. The most characterised members of this family 

decorin and biglycan, have been traditionally thought of as being associated with the fibrillar 

collagens. However, recent studies have demonstrated that these proteoglycans also interact 

with non-fibrillar collagens as well as with a wide variety of other proteins and molecules 

including growth factors and hydroxyapatite. The potential involvement of biglycan and 

decorin in mineralisation processes has been noted and discussed.

The work in this thesis therefore addresses the hypothesis that type X collagen interacts with 

decorin and/or biglycan within hypertrophic cartilage and plays a role in regulating the 

process of EO.

1.6.2 Aims and Objectives

The overall aim of the project was to characterise interactions of type X collagen which occur 

in hypertrophic cartilage using multidisciplinary approaches including biochemical, molecular 

and morphological analyses. Knowledge of the molecular interactions involving type X 

collagen, may assist our understanding of the ultrastructural organisation of this dynamic 

tissue during the process of EO.
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1.6.2.1 Specific objectives:

• Develop a solid phase assay to study interactions.

• Characterise interactions by surface plasmon resonance.

• Visualise interactions using labelled gold probes and transmission electron 

microscopy.

• Produce recombinant proteins to determine which molecular domains are involved in 

the interactions.

• Investigate in vivo expression and localisation of interacting partners in the epiphyseal 

growth plate.
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Chapter 2: Generation of Reagents for Interaction Analysis

2.1 BACKGROUND

2.1.1 Native Type X Collagen

To study the molecular interactions of type X collagen, relatively large quantities (in the mg 

range) of purified type X collagen were required. Chick collagen X can be readily isolated 

from spent culture medium of hypertrophic chondrocytes (Barber and Kwan, 1996). Collagen 

X purified from this source was used throughout the course of this study. Chick type X 

collagen is highly homologous to human type X collagen; they share high sequence identity at 

the amino acid level, for the NC2 domain 55.4%, for the triple helical domain 74.8% and for 

the NCI domain 77.7% (Thomas et al., 1991). Native type X collagen prepared from this 

source was enzymatically digested to isolate different regions of the type X collagen 

molecule. These isolated domains were then used in the same interaction analyses as the 

whole type X collagen molecule, and gave some indication of the regions most important for 

the interactions.

2.1.2 Recombinant NCI Domain

Recombinant human NCI domain expressed in Escherichia coli (E. coli) was purified from 

bacterial cultures and was used in the interaction studies. The QIAexpress system (Qiagen) 

was the method of choice for expression, purification and detection of recombinant proteins. 

The vectors are designed to place an affinity tag of 6 consecutive histidine residues (6xHis- 

tag) at the N-terminus of the protein of interest. The 6xHis-tag rarely interferes with the 

secretion or the structure and functions of fusion proteins, and can be used for purification 

purposes (QIAGEN, 2003).

2.1.3 Decorin and Biglycan Sources

Commercially available recombinant human decorin (EMP Genetech) was used in interaction 

analyses. This protein is synthesised without tags from a eukaryotic vector in a human cell 

line, it is obtained in a secreted form from the culture supernatant. Human cell lines are the 

best host for the expression of recombinant human proteins, especially proteoglycans, because 

they produce the same post-translational modifications and recognise the same signals for 

synthesis, processing and secretion. Biglycan purified from bovine articular cartilage (Sigma)
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was also used in interaction analyses. These sources will be used for the proteoglycans due to 

the large amount of material required to perform interaction analyses.
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2.2 MATERIALS AND METHODS

All tissue culture reagents were obtained from Gibco Invitrogen Corporation, all other 

reagents were obtained from Sigma unless otherwise stated.

2.2.1 Purification of Type X Collagen

2.2.1.1 Hypertrophic Chondrocyte Culture - Tissue Preparation

Tibial epiphyses were removed from 17-day-old embryonic White Leghorn chicks under 

sterile conditions. The hypertrophic cartilage zone was removed from the epiphyseal plate 

using a scalpel. Tissue was placed into washing medium, Dulbecco's Modified Eagles 

Medium (DMEM) containing 5 mM HEPES buffer, 0.5 mM sodium pyruvate and 50 pg/ml 

gentamicin. Medium was changed three times to remove blood and serum. To release the cells 

from the ECM; tissue was incubated at 37°C for 1.5 hours with washing medium containing a 

final concentration of 3 mg/ml bacterial collagenase type 1A and 0.03% (w/v) trypsin 

solution.

2.2.1.2 Hypertrophic Chondrocyte Culture - Cell Preparation

The cell suspension was separated from tissue debris by brief centrifugation at 392 x g for 30 

seconds. The cells were pelleted from the suspension by centrifugation at 392 x g for 4 

minutes. The pellet was re-suspended in 10 ml of culture medium, DMEM containing 10% 

(v/v) foetal calf serum, 5 mM HEPES buffer, 0.5 mM sodium pyruvate, 50 pg/ml gentamicin, 

0.25 p,g/ml fungizone, 0.5 mM glutamine and 0.1 mg/ml ascorbate (Fisher Scientific, UK). 

The pelleting and re-suspending was repeated a further three times, to remove all tissue debris 

and collagenase. The chondrocytes were plated in a 420 cm2 multifloor flask (TPP, 

Switzerland) and maintained in culture, in an atmosphere of 95% air and 5% carbon dioxide 

at 37°C. Culture medium was changed after the first 24 hours and every 2-3 days thereafter. 

Culture medium was collected after 7 days, once a confluent cell layer was established and 

the cultures were maintained for approximately 4 weeks.

2.2.1.3 Storage o f Collected Medium

Culture medium was stored at -20°C with protease inhibitors, 25 mM diaminoethanetetra- 

acetic acid disodium salt (Na2EDTA) (Fisher Scientific, UK), 25 mM s-amino n-caproic acid
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(EACA), 2 mM phenylmethylsulfonylfluoride (PMSF) and 10 mM N-ethylmaleimide (NEM), 

prior to the purification protocol detailed below.

2.2.1.4 Ammonium Sulphate Precipitation

Stored culture medium was thawed and kept stirring at 4°C. Ammonium sulphate (Fisher 

Scientific, UK) was added to give 30% (w/v) saturation, over a period of 4-6 hours. The 

culture medium was allowed to stand overnight at 4°C allowing proteins to precipitate out. 

The insoluble protein precipitate was spun down at 12,000 x g for 2 hours at 4°C, using a 

Beckman JLA 10.50 rotor. The pellet was re-suspended in 50 mM Tris-HCl, containing 0.4 M 

NaCl, pH 7.4, and the supernatant was discarded. The re-suspended proteins were subjected to 

another 30% (w/v) ammonium sulphate precipitation, left to stand for 4 hours at 4°C and 

centrifuged as above. The pellet was then stored at -80°C until required.

2.2.1.5 Differential Salt Fractionation

Ammonium sulphate precipitated proteins were re-dissolved in 0.5 M acetic acid (Fisher 

Scientific, UK). They were dialysed against 0.8 M NaCl in 0.5 M acetic acid overnight at 

4°C. The dialysate was centrifuged at 48,000 x g for 1 hour at 4°C, using a Beckman JA 25.50 

rotor (Beckman, Germany). The pellet was re-suspended in 0.5 M acetic acid, and dialysed 

against 0.5 M acetic acid to de-salt, acetic acid was changed three times. This was called the 

0.8 M pellet and subsequently freeze dried. The supernatant was dialysed further against 1.2 

M NaCl in 0.5 M acetic acid and 2.0 M NaCl in 0.5 M acetic acid and the above procedure 

was repeated to get a 1.2 M and a 2.0 M pellet, see figure 2.1.

2.2.1.6 Hydroxyproline Assay

A hydroxyproline assay was performed according to the method of (Woessner, 1976) on the 

samples generated by differential salt fractionation to determine the hydroxyproline content 

and hence the collagen concentration. Samples were hydrolysed in 6 M HC1 for 24 hrs at 

110°C. 30pl of samples or standards were applied in duplicate into the wells of a 96 well 

microtitre plate. To the wells; 70pl of diluent (67% (v/v) propan-2-ol) and 50pl of oxidant (50 

mM chloramine T, 83.3% (v/v) stock buffer) (stock buffer 0.42 M sodium acetate trihydrate, 

0.13 M tri-sodium citrate dihydrate, 26 mM citric acid, 40% (v/v) propan-2-ol) were added. 

The plate was placed on a plate shaker at room temperature for 5 minutes. 125 pi of colour 

reagent (0.7 mM Ehrlich’s reagent, 13% (v/v) of 70% perchloric acid, 84.8% (v/v) propan-2-
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ol) was added to the wells; mixed briefly on a shaker, then incubate at 70°C for 10-20 

minutes. Absorbances of the samples and hydroxyproline standards (from 1-10 pg/ml) were 

measured at 550nm. The absorbance versus the concentration of standards were plotted on a 

graph, a function was obtained for the straight line, and subsequently used to calculate 

hydroxyproline content of the samples. If the samples were outside the range of the standards 

then the samples were diluted. Collagen content was calculated from the hydroxyproline 

standard curve using a determined 14% hydroxyproline content for type X collagen.
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Differential Salt Fractionation
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Figure 2.1: Schematic illustration of the steps involved in the differential salt fractionation 
process of preparing collagen. The 4 samples generated following the process are 
highlighted in green.
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2.2.2 Isolating Different Domains of Type X Collagen

2.2.2.1 Preparation o f the Triple Helical Domain

To remove the non-collagenous domains, whole type X collagen was treated with pepsin. 

Freeze dried protein from the 2.0 M Pellet (from differential salt fractionation) was dissolved 

in 1 ml of 0.5 M acetic acid containing 100pg/ml of pepsin and digestion continued overnight 

at 4°C. The digestion mixture was then dialysed against 50 mM Tris, pH 7.4, for 2 hours at 

4°C to irreversibly inhibit further pepsin digestion. Pepsinised samples were either freeze 

dried or mixed with an equal volume of 2x Laemmli sample buffer and analysed by SDS- 

PAGE.

2.2.2.2 Preparation o f  Human Recombinant NCI Domain

A glycerol stock of XL-1 Blue E.coli cells containing the NCI expression construct was used 

to generate a bacteria culture expressing and synthesising the NCI domain of type X collagen 

(generation and lysis of the culture was performed by and supplied by Dr. Alvin Kwan).

2.2.2.2.1 Purification o f 6xHis-tagged NCI under Native Conditions

10ml of cell lysate was mixed with 2 ml of a 50% Ni-NTA slurry and was shaken at 4°C 

overnight. The lysate-Ni-NTA mixture was loaded onto a column with the bottom outlet 

capped. The cap was removed and the flow-through was collected, the column was washed 

with two 5 ml fractions of wash buffer (50 mM NaH2P0 4 , 300 mM NaCl, 20 mM imidazole, 

pH 8) which were combined and retained. Proteins were eluted off the column by the addition 

of four 0.5 ml fractions of elution buffer (50 mM NaH2PC>4, 300 mM NaCl, 250 mM 

imidazole, pH 8), which were collected as eluates 1-4. Small aliquots of the flow-through, the 

wash fraction and eluates 1-4 were analysed by SDS-PAGE and Western blotting.

2.2.3 Enzymatic Digestion of Decorin and Biglycan

2.2.3.1 Chondroitinase ABC Treatment

Decorin and biglycan were deglycosylated by overnight digestion at 37°C with chondroitinase 

ABC, using 0.01 unit of enzyme per 10 pg of glycosaminoglycan in 0.1 M Tris-acetate, pH 

6.5. Deglycosylated decorin and biglycan were then dialysed against PBS for 6 hours with 3 

changes of solution. The glycosylation status of decorin and biglycan were then analysed by
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SDS-PAGE and Western blotting, and the samples were subsequently used in interaction 

analysis.

2.2.4 Analysis of Proteins and Proteoglycans

2.2.4.1 Sample preparation

Freeze dried samples obtained from differential salt fractionation during collagen preparation; 

were dissolved into laemmli sample buffer containing 10% (v/v) glycerol (Fisher Scientific, 

UK), 100 mM Tris, 2% (w/v) SDS (Fisher Scientific, UK) and 0.01% (w/v) Bromophenol 

Blue. Laemmli sample buffer (2x) was added to an equal volume of protein samples already 

in solution to give a final concentration of lx  sample buffer for analysis. If reduction of 

samples was required then 5% (v/v) 2-mercaptoethanol was added to the sample. Samples 

were denatured by heating to 90°C for 15 min before loading onto polyacrylamide gels.

2.2.4.2 Sodium Dodecyl Sulphate PolyAcrylamide Gel Electrophoresis (SDS-PAGE)

SDS-PAGE was used to separate proteins according to their molecular weight (Laemmli, 

1970). Resolving gels 1 mm in thickness were prepared by combining the reagents in table 

2.1; adding the ammonium persulphate and TEMED last, using the Miniprotean gel apparatus 

system (Bio-Rad). After polymerisation of the resolving gel, a 4% stacking gel was prepared 

by combining the reagents in table 2.1, the stacking gel was poured on top of the polymerised 

resolving gel and a well-creating comb inserted into the stacking gel solution. Once the 

stacking gel was polymerised between 5-25 pi of protein samples were loaded onto the 4% 

stacking gel, 5 pi of a molecular weight marker (Bio-Rad) was also loaded. Gels were 

electrophoresed at 200 volts for 40 minutes in Laemmli running buffer (0.025 M Tris, 0.192 

M glycine and 0.1% SDS, pH 8.3) until the dye front reached the bottom of the gel.

2.2.4.3 Coomassie Blue Staining

Gels were removed from electrophoresis apparatus and placed in to Coomassie Blue stain 

containing: 0.25% (w/v) Coomassie Brilliant Blue R250, 10% (v/v) glacial acetic acid and 

45% (v/v) methanol for a minimum of 30 minutes. The gel was incubated on a platform with 

gentle shaking in approximately 150 ml of stain. Gels were removed from Coomassie Blue 

stain and destained in 7.5% (v/v) glacial acetic acid and 10% (v/v) methanol, gels were 

destained overnight or in a shorter period if the destain solution was changed.
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Reagents
Resolving Stacking 1

7.5% 10% 12.5% 15% 4%

40% (w/v) Acyl amide / 

bisacrylamide (40:1)
2.7ml 3.8ml 4.8ml 5.5ml 575pl

1 M Tris pH 8.8 3.6ml 3.6ml 3.6ml 3.6ml —

1 M Tris pH 6.8 — — — — 1.3ml

10% (w/v) SDS lOOpl lOOpl lOOpl lOOpl 50pl

h 2o 8.2ml 7.0ml 6.4ml 4.4ml 4.1ml

10% (w/v) Ammonium 

Persulphate
73 pi 73 pi 73 pi 73 pi 37.5pl

TEMED 15pl 15pl 15pl 15pl 7.5pl

Table 2.1: Reagents used to make up resolving and stacking gels required for SDS-PAGE.

2.2.4.4 Western Blotting (Towbin et al., 1979)

2.2.4.4.1 Preparation o f  Membrane

A nylon filter (Immobilon PVDF Millipore), referred to from herein as a membrane, was cut 

to the size of a Miniprotean mini-gel. The membrane was soaked in 100% methanol for 30 

seconds, incubated in dH2C) to remove excess methanol for 2 minutes, and then equilibrated in 

Transfer buffer (laemmli running buffer containing 20% (v/v) methanol) for 5 minutes.
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2.2.4.4.2 Transfer o f  Proteins from Polyacrylamide Gels to Membranes

Once proteins had been separated on a SDS-PAGE gel, they were transferred onto membranes 

at 100 volts for 1 hour in Transfer buffer. Miniprotean blotting apparatus (Bio-Rad) was 

assembled according to the manufactuer’s instructions. Briefly, sponges and filter papers were 

soaked in Transfer buffer before a sandwich of sponge, filter paper, polyacrylamide gel, 

membrane, filter paper, sponge was assembled in a cassette. The cassette was placed into the 

blotting apparatus tank with the gel on the side of the negative electrode with respect to the 

filter. An ice pack was placed in the tank before it was filled with Transfer buffer. On 

application of a current through the Transfer buffer; negatively charged proteins from the gel 

were transferred onto the membrane.

2.2.4.4.3 Immuno-probing o f  Membranes

Membranes were removed from the blotting apparatus and were blocked for 1 hour with 

blocking buffer {Tris Buffered Saline (TBS), 0.15 M NaCl, 0.05 M Tris, pH 8), containing 

3% (w/v) skimmed milk powder and 0.05% (v/v) Tween-20 (T-20)}. Membranes were then 

incubated in the presence of a primary (1°) antibody, the dilution, the diluent and length of 

incubation varied for primary antibodies and is detailed in table 2.2. The membrane was then 

washed three times for 10 minutes each time with a large volume (approximately 200 ml) of 

TBS containing 0.05% Tween-20. The membrane was then incubated in the presence of the 

appropriate secondary (2°) antibody conjugated with the enzymes either horse radish 

peroxidase (HRP) or alkaline phosphatase (AP). Details of the dilutions, the diluents and 

length of incubations are detailed in table 2.2. The membrane was washed as above, prior to 

detection of immunoreactive bands as described in section 2.2.4.4.5

Antibodies used during this study include:-

MA3, a monoclonal antibody raised against chick type X collagen, which recognises an 

epitope in the triple helical region of the molecule (supplied by Dr. Alvin Kwan, Cardiff 

University, UK).

AVT-6E3, a monoclonal antibody raised against a human type II collagen cyanogen bromide 

peptide (Young et al., 2002) (supplied by Prof. Vic Duance, Cardiff University, UK).

28.4, a monoclonal antibody raised against decorin (supplied by Dr. Clare Hughes, Cardiff 

University, UK)

PR-1, a monoclonal antibody recognizing a biglycan C-terminal epitope (Rees et al., 2000) 

(supplied by Dr. Clare Hughes, Cardiff University, UK)
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Penta His antibody (Qiagen)

Sheep anti-mouse (SaM) HRP secondary antibody (Sigma), diluted in TBS containing 0.05% 

Tween-20.

Anti-mouse AP (Sigma), diluted in TBS containing 0.05% Tween-20 and 1% milk.

1° Antibody 

(dilution)

Diluent 

(of 1° Antibody)

2° Antibody 

(dilution)

MA3 (anti-type X)
TBS, 0.05% T-20, 1% milk

SaM HRP

(1:10,000) (1:20,000)

AVT-6E3 (anti-type II)
TBS, 0.05% T-20

SaM HRP

(1:10) (1:20,000)

28.4 (anti-decorin)
TBS, 0.05% T-20, 1% milk

SaM HRP

(1:100) (1:20,000)

PR-1 (anti-biglycan)
TBS, 0.05% T-20, 1% milk

SaM HRP

(1:50) (1:20,000)

Anti -His
TBS, 3% milk

SaM HRP (1:20,000)

(1:5000) SaM AP (1:30,000)

Table 2.2: Combinations of primary and secondary antibodies used during this study along 

with their dilutions.

2.2.4.4.5 Detection o f  Immunoreactive Bands

2.2.4.4.6 Enhanced Chemiluminescence (ECL) Detection

ECL ™ Western blotting is a light emitting non-radioactive method for detection of 

immobilised specific antigens, conjugated directly or indirectly with HRP labelled antibodies. 

Membranes were rinsed with distilled water, equal volumes of ECL reagents 1 and 2 

(Amersham Biosciences) were then applied to the membrane for 2 minutes. Excess ECL 

reagents were removed from the membrane by blotting the membrane onto tissue paper. The 

membrane was sealed into a polythene bag and exposed to ECL Hyperfilm (Amersham) for
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variable exposure times, from 15 minutes to overnight. Films were developed using a standard 

film developing protocol.

2.2.4.4.7 NBT/BCIP Detection

Nitro Blue Tetrazolium/-bromo-4-chloroindol-3-yl phosphate (0.48 mM NBT, 0.56 mM 

BCIP, 10 mM Tris and 59.3 mM MgCl2, pH 9.2) alkaline phosphatase substrate (Sigma) was 

used to reveal immunoreactive bands. This ready-to-use buffered substrate for use in 

immunoblotting produces an insoluble dark blue-purple end product when it comes into 

contact with AP conjugated antibodies used in the detection of specific antigens. Membranes 

were rinsed with distilled water; the substrate was applied to the membrane for up to 30 

minutes to allow colour development of immunoreactive bands. The membrane was then 

rinsed with distilled water to remove substrate and to stop further colour development.
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2.3 RESULTS

2.3.1 Purification of Type X Collagen

Spent culture medium from chick hypertrophic chondrocyte cultures was subjected to a 30% 

ammonium sulphate precipitation. This method is a cheap and effective way of precipitating 

proteins out of solution, the salt attracts water molecules away from the proteins causing them 

to aggregate and fall out of solution. The ammonium sulphate precipitate was then re- 

supended and subjected to a differential salt fractionation at acid pH. This method relies on 

the fact that different collagen types have different solubilities. The salt fractions prepared by 

differential salt fractionation (0.8 M ppt, 1.2 M ppt, 2 M ppt and 2 M spnt), were analysed by 

SDS-PAGE and Western blotting.

2.3.2 Analysis of Salt Fractions by SDS-PAGE

Samples were separated by SDS-PAGE on a 10% polyacrylamide gel and visualised by 

Coomassie brilliant blue staining (figure 2.2), approximately 5 pg of each sample was loaded. 

Non-reduced samples figure 2.2 (a) and reduced samples figure 2.2 (b) were run on separate 

gels. Type II collagen a  chains can be seen in lanes 2 to 4 just below the 150 kDa molecular 

weight marker, as expected type II collagen has been precipitated at 0.8 M NaCl. There is a 

prominent band in lanes 5 and 9 around the 75 kDa molecular weight marker, this is likely to 

be type X collagen as the band is not affected by reduction. Type X collagen appears to have 

precipitated at 1.2 M NaCl and 2 M NaCl.

2.3.3 Confirmation of Collagen Types by Western Blotting

The samples that are shown in figure 2.2 were analysed by Western blotting. A monoclonal 

antibody raised against chick type X collagen, MA3, which recognises a region in the triple 

helical domain was used for detection of type X collagen. The monoclonal antibody AVT- 

6E3 which is raised against human type II collagen, was used for detection of type II collagen, 

see figure 2.3.

The high molecular weight bands just above the 250 kDa weight marker and between the 100 

and 150 kDa markers seen in lanes 2-4 of figure 2.2 were confirmed to be type II collagen by 

Western blotting. Figure 2.3 (a) shows the a(II) chain just below the 150 kDa marker, and 

also shows less prominent bands above the 250 kDa marker, these could be type II 

procollagen as they are shown to be reducible, figure 2.2 (b). This blot confirms that there is
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no type II collagen contamination in the 1.2 and 2 M ppt’s, or in the 2 M spnt. The primary 

antibody negative control blot which was performed alongside the test blot contained no 

bands (not shown), confirming the specificity of the type II bands.

The Western blot for type X collagen shows the presence of type X collagen in all the 

fractions prepared by differential salt fractionation, figure 2.3 (b). The 0.8 M ppt fractions 

(lanes 2-4) contain a prominent band at around 75 kDa but also contain higher molecular 

weight bands, one between the 150 and 250 kDa weight markers and the other above the 250 

kDa weight marker. These bands are probably high molecular weight aggregates of type X 

collagen and can also been seen in the other fractions. The type X collagen bands seen in the

1.2 M ppt in lane 5 and the 2 M ppt in lane 9 are more prominent, and the appearance of 

smearing between the bands is evidence that the film has been over exposed for the levels of 

type X collagen in the samples. There is also a feint band at around 75 kDa in the 2 M spnt 

sample in lane 12, the levels of type X collagen in this sample are probably lower as there are 

no high molecular weight aggregates present, and this band is not visible in the Coomassie 

stained gels (figure 2.2). The primary antibody negative control blot which was performed 

alongside the test blot contained no bands (not shown), confirming the specificity of the type 

X bands.

A preparation of type X collagen was sufficiently purified, when Western blot analysis 

demonstrated a lack of type II collagen in the sample. A hydroxyproline assay was 

subsequently performed on the sample to determine the type X collagen concentration.
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Figure 2.2 (a): SDS-PAGE analysis of samples generated by 
differential salt fractionation. All samples are non-reduced, 10 pi 
loaded. Lane 1: Molecular weight ladder, lanes 2-4: 0.8 M ppt, 
lane 5: 1.2 M ppt, lane 9: 2 M ppt, lanes 10, 13 & 14: 2 M spnt.
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Figure 2.2 (b): SDS-PAGE analysis of samples generated by 
differential salt fractionation. All samples are reduced with 1% 
2-mercaptoethanol, 10 pi loaded. Lane 1: Molecular weight 
ladder, lanes 2-4: 0.8 M ppt, lane 5: 1.2 M ppt, lane 9: 2 M ppt, 
lanes 10, 12 & 13: 2 M spnt.
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Figure 2.3 (a): Anti-type II collagen Western blot analysis of 
samples obtained by differential salt fractionation. All samples 
are non-reduced, 5 pi loaded. Lane 1: Molecular weight ladder, 
lanes 2-4: 0.8 M ppt
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Figure 2.3 (b): Anti-type X collagen Western blot analysis of 
samples obtained by differential salt fractionation. All samples 
are non-reduced, 5 pi loaded. Lane 1: Molecular weight ladder, 
lanes 2-4: 0.8 M ppt, lane 5: 1.2 M ppt, lane 9: 2 M ppt, lane 
12: 2 M spnt.
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2.3.4 Preparation of the Triple Helical Domain of Type X Collagen

Type X collagen isolated from culture medium by ammonium sulphate precipitation and 

differential salt fractionation, was digested with the enzyme pepsin, as detailed in the 

methods, see section 2.2.2. Pepsin is an acidic protease which will digest the non-collagenous 

regions of type X collagen, the triple helical domain, however, is resistant to digestion. The 

digest was analysed by SDS-PAGE and Western blotting, figure 2.4 (a) & (b).

Samples were separated by SDS-PAGE on a 10% polyacrylamide gel and visualised by 

Coomassie brilliant blue staining, figure 2.4 (a), approximately 1 pg of each sample was 

loaded onto the gel. Whole type X collagen in lane 2 has a prominent band at around 75 kDa, 

there is also a band visible between the 150 and 250 kDa molecular weight markers, 

indicating the presence of high molecular weight aggregates. The Western blot of samples 

before and after pepsin digestion, figure 2.4 (b) using the monoclonal antibody MA3, 

confirms the presence of high molecular weight aggregates in lane 2. The Western blot shows 

the decrease in molecular weight of the prominent band from 75 kDa to just above 50 kDa 

after digestion, lane 3. It also reveals the presence of a small amount of undigested type X 

collagen which is not visible by Coomassie staining, figure 2.4 (a). Further pepsin digestion 

eliminates any undigested type X collagen, figure 2.4 (b) lane 4. The triple helical domain of 

type X collagen prepared using this method was subsequently used in interaction analysis.

2.3.5 Preparation of Human Recombinant NCI Domain

XL-1 Blue cells containing the NCI expression construct were cultured and induced to 

synthesise recombinant protein as described in the methods section. An E. coli lysate was 

prepared under native conditions, the lysate was combined with Ni-NTA agarose and 6xHis- 

tagged proteins were purified using a column procedure. Small aliquots of the flow-through, 

the wash fraction and eluates 1-4 were combined with 3x Laemmli sample buffer, to yield a 

final concentration of lx sample buffer and were analysed by SDS-PAGE and Western 

blotting.

2.3.5.1 Analysis of Recombinant NCI by SDS-PAGE and Western Blotting

Samples were reduced with 5% 2-mercaptoethanol prior to analysis. 15 pi of each sample 

(eluates 1-4) were loaded on 10% gels with and without heat denaturation. 15 pi of each 

sample was loaded on to the gel. The Coomassie stained gel figure 2.5 (a), reveals the 

presence of distinct bands in eluates 3 and 4 (lanes 7, 8, 11 & 12), a distinct band between the
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37 and 50 kDa molecular weight markers can be seen in both samples. The expected 

molecular weights of the NCI trimer, dimer and monomer are approximately 50 kDa, 38 kDa 

and 20 kDa, respectively. Distinct bands can be seen in eluates 3 and 4 (lanes 7 & 8) just 

below the 25 kDa molecular weight marker; which are not present in the samples which have 

not been heat denatured (lanes 11 & 12).

These bands were confirmed to be His-tagged proteins by Western blot analysis using a 

penta-His antibody. Two different detection methods were used; the substrate BCIP/NBT was 

used in combination with an AP conjugated secondary, figure 2.5 (b) and ECL detection was 

used in combination with a HRP conjugated secondary, figure 2.5 (c). Both blots confirm the 

presence of recombinant NCI in eluates 3 and 4 (lanes 7, 8 11 & 12), with the samples that 

had been heat denatured samples (lanes 7 & 8) also having lower molecular weight bands.
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Figure 2.4 (a): SDS-PAGE analysis of the 2 M ppt sample generated by 
differential salt fractionation. Lane 1: molecular weight ladder, lane 2: 
undigested type X collagen (1 pg), lane 3: pepsinised type X collagen (1 pg).
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Figure 2.4 (b) Western blot analysis of the 2M ppt sample generated by 
differential salt fractionation. Lane 2: undigested type X collagen (1 pg), lane 3: 
pepsinised type X collagen (lpg), lane 4: double digested type X collagen (1 pg).
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Figure 2.5: SDS-PAGE and Western blot analysis of fractions generated by 
Ni-NTA agarose column purification, (a) Coomassie stained 10% 
polyacrylamide gel, lane 1: molecular weight ladder, lane 3: column flow
through, lane 4: column wash, lane 5: eluate 1 (heat-denatured), lane 6: 
eluate 2 (heat-denatured), lane 7: eluate 3 (heat-denatured), lane 8: eluate 4 
(heat-denatured), lane 9: eluate 1, lane 10: eluate 2, lane 11: eluate 3, lane 
12: eluate 4. (b) Anti His-tag Western blot analysis of samples as in 
Coomassie stained gel using BCIP/NBT substrate (c) Anti His-tag Western 
blot analysis of samples as in Coomassie stained gel using ECL substrate.
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2.3.6 Deglycosylation of Decorin and Biglycan

Chondroitinase ABC was used to remove the GAG chain(s) from decorin and biglycan, as 

described in section 2.2.3. The GAGs chondroitin sulphate and dermatan sulphate can be 

digested by this enzyme. The glycosylation state of both proteoglycans was analysed by SDS- 

PAGE and Western blotting. Samples were separated by SDS-PAGE on 10% polyacrylamide 

gels; approximately 2 jag of protein/per well was loaded onto the gels.

Coomassie staining, figure 2.6 (a) shows decorin in lane 2 appearing as a smear at around 150 

kDa before deglycosylation. Lane 3 shows the deglycosylation of decorin results in a doublet 

which is between the 37 and 50 kDa molecular weight markers. The monoclonal antibody

28.4 was used in Western blot analysis of decorin. Figure 2.6 (b) shows a feint smear in lane 2 

corresponding to decorin with its GAG chain intact, the decorin doublet in lane 3 appears as a 

large band due to merging of the two bands.

The biglycan samples were reduced prior to SDS-PAGE and Western blot analysis. 

Coomassie staining, figure 2.7 (a) shows biglycan in lane 2 appearing as a band between the 

150 and 250 kDa molecular weight markers before deglycosylation. After deglycosylation the 

biglycan band in lane 3 shifts down to between the 37 and 50 kDa molecular weight markers. 

Western blot analysis of biglycan used the monoclonal antibody PR-1. Figure 2.7 (b) reveals a 

band which corresponds to lane 3 of the Coomassie stained gel, the band appears between the 

37 and 50 kDa molecular weight markers. No band is detected in the biglycan sample which 

has not been deglycosylated, lane 2. This could be due to the presence of the GAG chains 

sterically hindering binding of the antibody to the protein core. Whole and deglycosylated 

decorin and biglycan were used in interaction analysis with type X collagen.
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Figure 2.6 : SDS-PAGE and Western analysis of decorin before and after 
deglycosylation. (a) Coomassie stained 10% polyacrylamide gel; lane 1: 
molecular weight ladder, lane 2: decorin (2fig), lane 3: deglycosylated 
decorin (2pg). Samples are non-reduced. (b) Anti decorin Western 
analysis of identical samples loaded onto Coomassie stained gel.
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Figure 2.7: SDS-PAGE and Western analysis of biglycan before and after 
deglycosylation. (a) Coomassie stained 10% polyacrylamide gel; lane 1: 
molecular weight ladder, lane 2: biglycan (2pg), lane 3: deglycosylated 
biglycan (2pg). Samples reduced with 2-mercaptoethanol. (b) Anti 
biglycan Western analysis of identical samples loaded onto Coomassie 
stained gel.
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2.4 DISCUSSION

Epiphyseal plates of 17-day old embryonic chick tibiae were dissected and used as a source of 

hypertrophic chondrocytes. Following isolation of hypertrophic chondrocytes from the tissue 

the cells were maintained in culture. Light microscopy was used to assess the morphology and 

viability of the cells during the culture period. Culture medium containing all the proteins 

synthesised and secreted by the cells during culture was collected over a four week period, 

protease inhibitors were added to the medium to minimise any protein degradation during 

storage.

Type X collagen was purified from the collected culture medium, using well established 

techniques. Differential salt fractionation was used to separate type X collagen from other 

collagen types and proteins synthesised by hypertrophic chondrocytes. The salt fractions were 

de-salted by dialysing against a large volume of 0.5 M acetic acid, the samples were 

subsequently freeze dried and resuspended in a small volume of acetic acid. SDS-PAGE and 

Western blotting were used to detect and confirm the presence of type X collagen and other 

collagen types in the samples generated by differential salt fractionation. Type X collagen was 

found in all salt fractions generated; however, the 2 M precipitate was used as the source of 

type X collagen because of type X collagens predominance and the lack of other collagen 

types in this fraction. Western blot analysis confirmed there was no type II collagen in the 2 

M precipitate. Other minor collagen types produced by chondrocytes, such as type IX 

collagen are unlikely to be present in the 2 M precipitate in significant quantities, the 

expression of type X collagen is up-regulated and the expression of other collagen types is 

down-regulated in hypertrophic chondrocytes.

High molecular weight aggregates of type X collagen were detected in the samples, 

electrophoretic migrations of these aggregates were unaffected by reduction. Aggregation 

persisting after SDS-treatment and heating indicates the existence of possible covalent bonds 

which are yet to be characterised. High molecular weigh aggregates and limited proteolytic 

products have also been observed by others (Schmid and Linsenmayer, 1989). To determine 

the concentration of type X collagen in the prepared samples generated by differential salt 

fractionation, a hydroxyproline assay was performed. The type X collagen preparation was 

qualitative, cell numbers and medium volume were not closely monitored and there was intra

batch variation in the yields of type X collagen produced. Large quantities of type X collagen
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was successfully prepared using this method, contamination from other collagen types was 

minimal and was monitored by SDS-PAGE and Western blotting. Other potential techniques 

which could have been utilised to ensure that the type X collagen was pure include 

immunoprecipitation, however this would not have been efficient for preparative scale work.

Pepsin digestion of the chick native type X collagen was performed to isolate the triple helical 

domain of type X collagen, a change in molecular weight from 59 kDa for whole type X 

collagen to 45 kDa for the triple helical domain, was visualised by SDS-PAGE and Western 

blotting. This was the method of choice for preparing the triple helical domain, as the stability 

of the triple helix is not compromised and the procedure is simple. Pepsin digestion results in 

the loss of the high molecular weight aggregates seen in the whole type X collagen sample, 

indicating the covalent cross-links mentioned above are located in the non helical region. This 

is consistent with the putative role of NCI in the aggregation of individual type X collagen 

molecules to form a hexagonal lattice structure (Kwan et al., 1991). Previous studies have 

characterised cross-links found in the triple-helical domain. Type X collagen contains the 

non-reducible lysylpyridinoline cross-link which is frequently associated with type I collagen 

(Orth et al., 1996).

The NCI domain of type X collagen was produced recombinantly in XL-1 Blue E. Coli cells, 

a vector with a human NCI construct was expressed by the cells, the vector also contained a 

6x His tag which was utilised to purify type X collagen from all other bacterial proteins. The 

NCI was prepared from the cell lysate under non-denaturing conditions. Trimeric NCI which 

is heat stable can be seen on the Coomassie stained gel and its identification was confirmed 

using a 6x His-tag antibody in Western blot analysis. NCI was also prepared from the native 

chick whole type X collagen by collagenase digestion. Trimeric, dimeric and monomeric NCI 

were separated on a Sephacryl 300 gel filtration column. Characteristion of the NCI prepared 

in this way, was not possible due to the lack of availability of an antibody to the NCI domain. 

Native chick type X collagen, pepsinised type X collagen and the recombinant NCI domain 

were all used in subsequent interaction analysis.

Decorin and biglycan were deglycosylated enzymatically with chondroitinase ABC, which 

can remove chondroitin and dermatan sulphate chains. As with the type X collagen material, 

SDS-PAGE and Western blotting were used before and after enzyme treatment to ensure that 

deglycosylation was complete. Both decorin and biglycan appeared as a diffuse band at ~ 100
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-  150 kDa on gels before deglycosylation but became discrete bands of ~ 40 kDa after 

enzyme treatment. Decorin and biglycan with and without their respective GAG chains were 

used in interaction analysis with type X collagen.

In summary, the materials required for in vitro interaction analysis have been prepared. Type 

X collagen was purified from the medium of hypertrophic chondrocyte cultures. Methods 

used to purify type X collagen included an ammonium sulphate precipitation and a differential 

salt fractionation. To isolate the triple helical domain type X collagen was subjected to pepsin 

digestion. Recombinant NCI domain which contains a 6x His-tag was expressed in E . Coli, a 

Nickel affinity column was used to purify the NCI domain from an E. Coli lysate. Decorin 

and biglycan were bought from commercial sources and were deglycosylated using 

chondroitinase ABC. SDS-PAGE and Western blot analysis were used to assess the molecular 

weights and to confirm the identity of type X collagen, decorin and biglycan.
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Chapter 3: Interaction Studies of Type X Collagen with Decorin 

and Biglycan

3.1 BACKGROUND
A variety of in vitro methods were employed to study interactions of type X collagen with 

decorin and biglycan.

3.1.1 Molecular Interactions in a Solid Phase Assay

Immunoassays fall within the class of analytic techniques -  frequently described as binding, 

or ligand assays -  which rely on observation of the reaction between the target substance 

(analyte) and a specific binding substance, the latter being generally of biologic origin and 

typically comprising a specific binding protein (Ekins and Chu, 1997). A solid phase assay 

based on an immunoassay was developed to study type X collagen interactions with decorin 

and biglycan. Enzymatic manipulations of the proteins allowed the likely domains involved in 

the interaction to be elucidated. Solid phase assay systems have been utilised in the past to 

study the interactions of many extracellular matrix molecules. Examples include COMP with 

fibronectin (Di Cesare et al., 2002), decorin and biglycan with collagen type VI, collagen 

types I, II and IX with COMP (Holden et al., 2001; Rosenberg et al., 1998).

In brief, one of the interacting proteins, (A) is bound to a solid support, usually a well in a 

microtiter plate. Any unoccupied sites on the support are blocked, before the other interacting 

protein, (B), is incubated with the solid phase immobilised protein A and allowed to bind. An 

antibody specific for protein B, followed by a secondary antibody, which is enzyme linked, is 

used to detect protein B. Enzyme linked antibodies are detected and quantitated using a 

soluble chromogenic substrate which is converted to a soluble coloured product. Enzyme 

levels are determined by monitoring colour development in a spectrophotometer. Any 

unbound proteins and antibodies are removed and washed away during the procedure; 

therefore the colour development at the end is directly related to the interaction occurring 

between proteins A and B.

Complexity may be added to the assay by incubating protein B with protein A or a different 

protein C, before incubation with the solid phase protein A. Thus, the interaction between A 

in the solid phase and B in the liquid phase is being competitively inhibited by the presence of
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A or C in the liquid phase. This leads to a decrease in the absorbance readings as a result of 

less protein B being bound to protein A in the solid phase.

In the assay used to investigate type X collagens interaction with decorin and biglycan, 

protein A was either decorin or biglycan, protein B was always type X collagen and protein C 

was either decorin or biglycan. The arrangement of the molecules in a well of a microtitre 

plate are demonstrated in figure 3.1

9 2
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Basic Solid Phase Assay
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Figure 3.1: Interaction analysis using solid phase assays.
Arrangement of protein molecules in a well during basic and 
competitive solid phase assays.
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3.1.2 Biomolecular Interaction Analysis (BIA) Technology

Real-time BIA from Biacore AB, Sweden uses the optical phenomenon of surface plasmon 

resonance (SPR) to monitor biomolecular interactions. The interaction between two or more 

molecules, such as proteins, can be studied without the need for interactants to be labelled or 

detected with additional components. One of the interactants (the ligand) is covalently 

attached to the surface of a sensor chip, and the other interactant (the analyte) is injected over 

the surface in a controlled manner. Repeated interaction analyses may be carried out on the 

same sensor chip surface, by removal of the analyte and other non-covalently bound material 

with a regeneration step.

3.1.2.1 Surface Plasmon Resonance (SPR) -  Basic Principle

Light passing from a denser medium or higher refractive index (e.g. glass prism) to a less 

dense one or of lower refractive index (e.g. water) is refracted towards the plane of the 

interface. Above a certain critical angle of incidence no light is refracted across the interface 

and total internal reflection (TIR) is observed (see figure 3.2). Although no light passes out of 

the prism, the electric field of the photons extends a short distance (about one wavelength) 

beyond the reflecting surface; this is termed the evanescent wave (Markey, 2000)

If the interface between the media is coated with a thin film of metal (e.g. gold), and the light 

is polarized, the incident light photons are transformed into surface plasmons. The energy of 

the incident light is transferred to plasmons and the intensity of the light reflected from the 

surface is reduced. Resonance (i.e. transformation of photons into plasmons) occurs when the 

momentum of the incoming photons is equal to the plasmon momentum. If the metal surface 

conditions and the wavelength of the incident light are held constant, there will be a dip in the 

intensity of the reflected light at a specific angle of incidence corresponding to the angle for 

surface plasmon resonance (see figure 3.3).

The SPR angle is determined by three parameters; the properties of the metal film, the 

wavelength of the incident light and the refractive index of the media on the other side of the 

metal film. In BIAcore systems, the metal film properties, wavelength and refractive index of 

the denser medium (glass) are kept constant, and SPR is used to probe the refractive index of 

the aqueous layer immediately adjacent to the metal (gold) surface.

9 4
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The monochromatic light source is focused on the TIR / glass-gold interface of the sensor 

chip in a wedge shaped beam, giving a fixed range of incident angles. Reflected light is 

monitored by a two-dimensional diode array. Changes such as biomolecular interactions 

occurring at the sensor surface change the solute concentration and thus the refractive index 

within the evanescent wave penetration angle. The alteration in the angle of incidence 

required to create the SPR phenomenon is measured as a response signal. Plotting the 

response against time during the course of an interaction provides a quantitative measure of 

the progress of the interaction -  this plot is called a sensogram. SPR response values are 

expressed in resonance units (RU). One RU represents a change of 0.0001° in the angle of the 

intensity medium.

3.1.2.2 Sensor Chip Technology

The sensor chip consists of a glass surface, coated with a thin layer of gold. The sensor 

surface in BIAcore forms one wall of a flow cell, and measurements are made under 

conditions of continuous liquid flow over the surface. Each sensor chip has 4 flow cells on its 

surface. The gold surface can be modified with a range of derivatives. The most commonly 

used sensor chip, CM5, is modified with a carboxymethylated dextran layer. This dextran 

hydrogel layer forms a hydrophilic environment for attached biomolecules, preserving them 

in a native state. The most common method for direct immobilisation of ligands is covalent 

coupling to amino groups in the ligand molecule. The immobilisation procedure is carried out 

in four steps: 1) activation of carboxyl groups on the sensor surface; 2) attachment of ligand; 

3) inactivation of residual active groups; and 4) conditioning of the sensor surface with the 

regeneration solution.

Other sensor chips include surfaces modified with streptavidin for capture of biotinylated 

ligands, surfaces modified for capture of ligand via metal chelation and some sensor chips 

have a matrix free planar surface rather than a dextran matrix. Planar chip surfaces allow 

interactions to take place closer to the chip surface therefore maintaining sensitivity when 

large molecules like some of the ECM proteins are being studied. The choice of which 

interacting component to immobilise depends on whether the investigation involves 

comparing the interaction of several molecules with a common species, the stability of the 

molecules -  which would be more able to withstand regeneration conditions, the purity of the 

sample and the size of the molecules involved.
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a. REFRACTION 

Incident angle 0 < critical angleIncoming light

Prism

Refracted light

b. TOTAL INTERNAL 
REFLECTION

Incident angle 0 > critical angle

Prism Reflected lightIncoming light

Gold film

Evanescent wave

Figure 3.2: Schematic diagram of refraction and total internal reflection.

a. Light passing from a denser medium to a less dense one is refracted 
towards the plane of the interface.

b. Above a critical angle of incidence, total internal reflection occurs and 
no light passes into the less dense medium.
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Figure 3.3: Applying SPR to biomolecular analysis. The SPR angle is sensitive to 
the mass concentration of molecules close to the sensor chip surface. As analyte 
binds to the ligand on the chip surface, the SPR angle shifts from I to II. The 
changes in the SPR angle are monitored over time and displayed as a sensogram.
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3.1.3 Visualising Interacting Molecules Using Negative Staining

The examination of ECM macromolecules by transmission electron microscopy (TEM) can 

provide important information on macromolecular organisation and interactions (Sherratt et 

al., 2000). Macromolecules can be stained with heavy metal salts, derived from molybdenum 

or uranium. Heavy ions are used as they readily interact with the electron beam and produce 

phase contrast. In negative stain microscopy, the electron beam primarily interacts with the 

stain. When stain is added to a sample, the stain surrounds the sample but is excluded from 

the volume occupied by the sample, hence the term ‘negative staining’. Colloidal gold has 

many physical characteristics which makes it suitable for use as a specific marker in negative 

staining TEM (Horisberger, 1992), these include:

* Gold particles of uniform size and shape can be inexpensively and rapidly produced.

* Particle size ranges from 2 - 150nm.

* Gold particles are negatively charged and can be complexed by non-covalent electrostatic 

adsorption with various macromolecules (gold probes).

* Gold probes are stable and under appropriate storage conditions will retain their 

bioactivity for many months.

* Gold particles demonstrate high electron density because of the high atomic number of 

gold and are capable of strong emission of secondary and back scattered electrons.

The use of negative staining in association with gold labelled ECM molecules has been

widely used to study molecular interactions. Examples of ECM molecules studied in this way 

include type VI collagen, biglycan, COMP and fibronectin (Di Cesare et al., 2002; Wiberg et 

al., 2002).
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3.2 MATERIALS AND METHODS

All materials and reagents for the solid phase assay were obtained from Sigma (UK), reagents 

used during the SPR interaction studies were obtained from BIAcore AB (Sweden), reagents 

used for negative staining analysis were obtained from Agar Scientific Ltd (UK), unless 

otherwise stated.

3.2.1 Basic Solid Phase Assay

96 well microtiter plates (ICN Biomedicals, UK) were coated with 100 pi of 5 pg/ml human 

recombinant decorin (EMP Genetech, Germany) or bovine biglycan, in Phosphate Buffered 

Saline (PBS), 0.14 M NaCl pH 7.4, 2.7 mM KC1, 1.8 mM KH2P 0 4, 10 mM Na2HP04. In 

control experiments wells were coated with 100 pi of 3% (w/v) skimmed milk powder (Co

op, UK) in PBS. Plates were coated overnight at 37°C, all following incubations were carried 

out at 37°C. Wells were washed three times with 200 pi of PBS containing 0.05% (v/v) 

Tween-20 (PBS-T), this washing step was repeated after each subsequent incubation. To 

avoid nonspecific interactions, wells were blocked for 1 hour with 200pl of 3% (w/v) 

skimmed milk powder in PBS-T. Coated wells were incubated for 2 hours with 100 pi of 0-10 

pg/ml of type X collagen in PBS. The amount of bound type X collagen was determined by 

incubation for 2 hours with 100 pi of a monoclonal anti-type X collagen antibody, MA3, 

diluted 1:1000 with PBS-T. Bound IgG was detected with a sheep anti-mouse horse radish 

peroxidase (HRP) secondary antibody, diluted 1:1000 with PBS-T, 100 pi per well of the 

secondary antibody was incubated for 2 hours. Enzyme activity was measured with o- 

phenylenediamine (OPD) as the substrate, 100 pi of 1 mg/ml OPD in 0.5 M sodium citrate, 

pH 5.5,, containing 0.125% (v/v) hydrogen peroxide was incubated in wells for 5-15 minutes 

after which the reaction was stopped by addition of 50 pi of 1 M H2S 04. The absorbance was 

read at 492 nm on a multiwell plate reader (Philips PU8675 UV/VIS Spectrophotometer). 

Experiments were repeated on separate plates three times.

3.2.1.1 Competitive Solid Phase Assay

Coating and blocking followed the basic solid phase assay method. When type X collagen 

was applied as a ligand, varying amounts of decorin or biglycan 0-10 pg/ml in PBS were 

mixed with the type X collagen before being applied to the plate. The total volume remained 

100 pi. All subsequent steps were the same as the basic solid phase assay. Experiments were 

repeated on separate plates three times.
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3.2.2 Biomolecular Interaction Analysis

Protein-protein interaction studies were carried out on the BIAcore 3000 system (BIAcore 

AB, Sweden). The running buffer HBS-EP (0.01 M HEPES pH 7.4, 0.15 M NaCl, 3mM 

EDTA, 0.005% (v/v) surfactant P20) was used for diluting all the ligands and analytes in 

BIAcore experiments.

3.2.2.1 Immobilisation o f Ligands on CM5 Sensor Chips

Whole and pepsin treated type X collagen purified from chick hypertrophic chondrocyte 

cultures and purified recombinant NCI domain were used as ligands. Amine coupling 

chemistry was used at 25°C to immobilise ligands onto the CM5 sensor chip surface. The chip 

surface was activated by injection of a 1:1 mixture of 0.05 M N-hydroxysuccinimide and 0.2 

M N-ethyl-N’-(dimethylaminopropyl) carbodiimide. Ligands whole type X collagen

(lOOpg/ml), pepsinised type X collagen (90 pg/ml) and recombinant NCI domain were 

immobilised at a flow rate of 5 pl/min. A maximum target of 400 RU was aimed for during 

immobilisation to ensure accumulation of data suitable for kinetic analysis, as recommended 

by BIAcore. The remaining active groups were blocked with 1 M ethanolamine

hydrochloride, pH 8.5. Additional flow cells were prepared as blanks by activation and 

blocking of the carboxymethyl dextran surface.

3.2.2.2 Kinetic Assays on the BIAcore

All the kinetic experiments were carried out at 25°C at a flow rate of 30 pl/min. Analytes

decorin and biglycan were injected for 3 minutes and 15 minutes was allowed for

dissociation. Different concentrations of decorin and biglycan (0-200 pg/ml) were injected in 

duplicate over the three different type X collagen chip surfaces and blank surfaces. The sensor 

chip surface was regenerated with a 30 second injection of 50 mM NaOH, the surface was 

stabilised for 15 minutes before the next cycle of analyte injection was started.
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3.2.23 Data Preparation and Analysis using BIAevaluation 3.0

BIAevaluation was used to analyse BIAcore data, and apparent kinetic rate constants were 

estimated directly from response curves using non-linear least squares regression. Each data 

set, which consists of sensograms of analyte at varying concentrations over the same surface, 

were analysed using different kinetic binding models

3.2.3 Negative Staining Electron Microscopy

3.2.3.1 Preparation o f Gold Colloids

Gold colloid was prepared as previously described with some modifications (Slot and Geuze, 

1985). This method produces homodisperse gold sols having particle sizes between 3 nm and 

15 nm, depending on the amount of tannic acid used. Briefly; solution A -  the Au3+ solution 

contained 0.5 ml 1% (w/v) AuCU and 79.5 ml of dH20 , solution B -  the reducing solution, 

consisted of 4 ml 1% (w/v) sodium citrate, 2 ml 1% (v/v) tannic acid, 5 ml 25 mM K2CO3 and 

9 ml of dH20 . Solutions A and B were heated to 30°C in clean glassware, mixed and then 

boiled for 5 minutes or until a brown-red colour develops, indicating formation of gold 

colloid. The solution was allowed to cool to room temperature.

3.2.3.2 Preparation o f  Decorin and Biglycan Gold Probes

The necessary amount of decorin and biglycan required for colloid stabilisation was 

determined by titrating increasing amount of proteoglycan to the gold sol. To 5 ml of the 

colloidal gold solution, 2 -  100 pi of decorin or biglycan solution (250 pg/ml) was added. 

Successful stabilisation against electrolyte-induced precipitation was achieved when, upon the 

addition of 10% (w/v) NaCl conjugate formation was not observed as assessed by electron 

microscopy. Gold probe preparations were examined for the presence of fused particles, 

chains and aggregates.

3.2.3.3 Concentration o f Gold Particle Populations by Centrifugation

Gold decorin and gold biglycan probes were concentrated and differentiated according to gold 

particle size by centrifugation. Colloidal gold solutions, 5 ml, containing decorin and biglycan 

were centrifuged at 20,000 rpm at 4°C for 10 minutes. The pellets were retained and the 

supernatants were centrifuged at 30,000 rpm at 4°C for 15 minutes. The pellets were retained 

and the supernatants were centrifuged at 40,000 rpm at 4°C for 30 minutes. The pellets were 

resuspended in 500 pi of 20 mM Tris, pH 8, containing 0.025% (v/v) polyethyleneglycol,
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20% (v/v) glycerol and 0.1% (w/v) BSA. Aliquots of the resuspended decorin and biglycan 

gold probes were stored at -20°C.

3.2.3.4 Estimation o f  Gold Particle Sizes

A line grating grid with known dimensions (in nm) was recorded at all magnifications. 

Electron micrographs of the line grating were scanned and scaled up to A4 paper. The line 

grating was measured (in mm) with a ruler. Calculation of % nm = 1 mm were subsequently 

carried out for each magnification. Decorin and biglycan gold particles were adsorbed onto 

pioloform coated grids and were analysed by electron microscopy. Electron micrographs were 

scaled up to A4 size and the diameter of at least 50 decorin and biglycan labelled particles on 

three separate micrographs were measured. Grids were examined by TEM (Phillips EM208). 

Images were recorded at variable magnifications and were scanned using an Epson GT-7000 

scanner.

3.2.3.5 Grid Preparation and TEM

Decorin and biglycan gold probes obtained from the pellet after the 40,000 rpm centrifugation 

step, were diluted 1:20 and were mixed with equal volumes of whole type X collagen (10 

pg/ml). Following incubation for 15 minutes a 50 pi aliquot of the mixture was pipetted onto 

nescofilm. A 400-mesh pioloform coated copper grid was floated onto the droplet and 

incubated for 30 seconds, the grid was subsequently placed on a droplet of 0.5% (w/v) uranyl 

formate for 30 seconds and on two water droplets for approximately 10 seconds each. The 

grid was blotted on filter paper and allowed to air dry. Grids were examined by TEM (Phillips 

EM208). Images were recorded at variable magnifications and were scanned using an Epson 

GT-7000 scanner.
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3.3 RESULTS

3.3.1 Solid Phase Assays

Using the solid phase assay developed; interactions of type X collagen with decorin and 

biglycan were characterised. Experiments were performed in triplicate, a single data set 

representative of the findings are shown.

3.3.1.1 Decorin interacts with type X  collagen in a solid phase assay

A  96 well plate was coated with 5 pg/ml of decorin in PBS, 3% (w/v) skimmed milk powder 

in PBS coated wells were used as controls. Type X collagen was applied to the experimental 

and control wells in triplicate as a ligand, varying concentrations from 0 to lOpg/ml were 

used. OPD was used as the substrate for antibody conjugated with HRP, optical densities were 

measured at 492 nm. Absorbance readings for the control 3% (w/v) milk coated wells were 

averaged and subtracted from triplicate absorbance values gained from the corresponding 

decorin coated wells. The absorbance values have been plotted against the concentration of 

type X collagen (figure 3.4). As the concentration of type X collagen increases the absorbance 

values increase until binding saturation is reached at around 5 pg/ml. Absorbance readings 

reach a plateau as excess type X collagen is unable to bind decorin and is consequently 

removed during the washing procedure.

3.3.1.2 Interaction o f decorin with type X  collagen can be competitively inhibited by 

decorin

A 96 well plate was coated with 5 pg/ml of decorin in PBS, 3% skimmed milk powder in PBS 

coated wells were used as controls. Type X collagen was pre-incubated with decorin before 

being applied to the experimental and control wells in triplicate as a ligand. The concentration 

of type X collagen was kept constant at 5 pg/ml, while decorin was used at a range from 0 to 

10 pg/ml. OPD was used as the substrate for antibody conjugated with HRP, optical densities 

were measured at 492 nm. Absorbance readings for the control 3% (w/v) milk coated wells 

were averaged and subtracted from triplicate absorbance values gained from the 

corresponding decorin coated wells. The absorbance values have been plotted against the 

concentration of competing decorin (figure 3.5). The data was analysed using non-linear 

regression and a sigmoidal dose response curve was generated. As the concentration of 

competing decorin increases the absorbance values decrease until binding is abolished. All the
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type X collagen in the liquid phase is bound to competing decorin and is therefore unable to 

bind to decorin in the solid phase. 50% inhibition is reached between 4.4 pg/ml and 5.2 pg/ml 

of competing decorin. An R2 value (correlation coefficient) of 0.87 was calculated for the 

curves goodness of fit.

3.3.1.3 Interaction o f decorin with type X  collagen can be competitively inhibited by 

biglycan

A 96 well plate was coated with 5 pg/ml of decorin in PBS, 3% (w/v) skimmed milk powder 

in PBS coated wells were used as controls. Type X collagen was pre-incubated with biglycan 

before being applied to the experimental and control wells in triplicate as a ligand. The 

concentration of type X collagen was kept constant at 5 pg/ml, while biglycan was used at a 

range from 0 to 10 pg/ml. OPD was used as the substrate for antibody conjugated with HRP, 

optical densities were measured at 492 nm. Absorbance readings for the control 3% (w/v) 

milk coated wells were averaged and subtracted from triplicate absorbance values gained 

from the corresponding decorin coated wells. The absorbance values have been plotted 

against the concentration of competing biglycan (figure 3.6). The data was analysed using 

non-linear regression and a sigmoidal dose response curve was generated. As the 

concentration of competing biglycan increases the absorbance values decrease until binding is 

abolished. All the type X collagen in the liquid phase is bound to competing biglycan and is 

therefore unable to bind to decorin in the solid phase. 50% inhibition is reached between 5.8 

pg/ml and 6.2 pg/ml of competing biglycan. An R2 value of 0.97 was calculated for the 

curves goodness of fit.
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T y p e  X  C o l l a g e n  I n t e r a c t s  w i t h  
D e c o r i n
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Figure 3.4: Type X collagen interacts with decorin in a solid phase 
assay. A plot of absorbance at 492nm against concentration of type X 
collagen applied as a ligand, to a plate coated with 5 pg/ml of decorin.
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Inhibition of the Interaction of Type 
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Figure 3.5: The interaction of type X collagen with decorin can be 
competitively inhibited by decorin. A plot of absorbance at 492nm 
against concentration of competing decorin applied as a ligand with 
5pg/ml of type X collagen, to a plate coated with 5pg/ml of decorin.
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Figure 3.6: The interaction of type X collagen with decorin can be 
competitively inhibited by biglycan. A plot of absorbance at 492nm 
against concentration of competing biglycan applied as a ligand with 
5pg/ml of type X collagen, to a plate coated with 5pg/ml of decorin.
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3.3.1.4 Biglycan interacts with type X  collagen in a solid phase assay

A 96 well plate was coated with 5 pg/ml of biglycan in PBS, 3% (w/v) skimmed milk powder 

in PBS coated wells were used as controls. Type X collagen was applied to the experimental 

and control wells in triplicate as a ligand, varying concentrations from 0 to 10 pg/ml were 

used. OPD was used as the substrate for antibody conjugated with HRP, optical densities were 

measured at 492 nm. Absorbance readings for the control 3% (w/v) milk coated wells were 

averaged and subtracted from triplicate absorbance values gained from the corresponding 

decorin coated wells. The absorbance values have been plotted against the concentration of 

type X collagen (figure 3.7). As the concentration of type X collagen increases the absorbance 

values increase until binding saturation is reached at around 5 pg/ml. Absorbance readings 

reach a plateau as excess type X collagen is unable to bind biglycan and is consequently 

removed during the washing procedure.

3.3.1.5 Interaction o f biglycan with type X  collagen can be competitively inhibited by 

biglycan

A  96 well plate was coated with 5 pg/ml of biglycan in PBS, 3% (w/v) skimmed milk powder 

in PBS coated wells were used as controls. Type X collagen was pre-incubated with biglycan 

before being applied to the experimental and control wells in triplicate as a ligand. The 

concentration of type X collagen was kept constant at 5 pg/ml, while biglycan was used at a 

range from 0 to 10 pg/ml. OPD was used as the substrate for antibody conjugated with HRP, 

optical densities were measured at 492 nm. Absorbance readings for the control 3% (w/v) 

milk coated wells were averaged and subtracted from triplicate absorbance values gained 

from the corresponding decorin coated wells. The absorbance values have been plotted 

against the concentration of competing biglycan (figure 3.8). The data was analysed using 

non-linear regression and a sigmoidal dose response curve was generated. As the 

concentration of competing biglycan increases the absorbance values decrease indicating 

binding is abolished. All the type X collagen in the liquid phase is bound to competing 

biglycan and is therefore unable to bind to biglycan in the solid phase. 50% inhibition is 

reached between 3.1 jag/ml and 3.6 pg/ml of competing biglycan. An R2 value of 0.94 was 

calculated for the curves goodness of fit.
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3.3.1.6 Interaction o f biglycan with type X  collagen can be competitively inhibited by 

decorin

A  96 well plate was coated with 5 pg/ml of biglycan in PBS, 3% (w/v) skimmed milk powder 

in PBS coated wells were used as controls. Type X collagen was pre-incubated with biglycan 

before being applied to the experimental and control wells in triplicate as a ligand. The 

concentration of type X collagen was kept constant at 5 pg/ml, while decorin was used at a 

range from 0 to 10 pg/ml. OPD was used as the substrate for antibody conjugated with HRP, 

optical densities were measured at 492 nm. Absorbance readings for the control 3% (w/v) 

milk coated wells were averaged and subtracted from triplicate absorbance values gained 

from the corresponding biglycan coated wells. The absorbance values have been plotted 

against the concentration of competing decorin (figure 3.9). The data was analysed using non

linear regression and a sigmoidal dose response curve was generated. As the concentration of 

competing decorin increases the absorbance values decrease until binding is abolished. All the 

type X collagen in the liquid phase is bound to competing decorin and is therefore unable to 

bind to biglycan in the solid phase. 50% inhibition is reached between 6.6 pg/ml and 7.7 

pg/ml of competing decorin. An R2 value of 0.73 was calculated for the curves goodness of 

fit.
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Figure 3.7: Type X collagen interacts with biglycan in a solid phase 
assay. A plot of absorbance at 492nm against concentration of type X 
collagen applied as a ligand to a plate coated with 5pg/ml of 
biglycan.
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Figure 3.8: The interaction of type X collagen with biglycan can be 
competitively inhibited by biglycan. A plot of absorbance at 
492nm against concentration of competing biglycan applied as a 
ligand with 5pg/ml of type X collagen, to a plate coated with 
5pg/ml of biglycan.
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Figure 3.9: The interaction of type X collagen with biglycan can be 
competitively inhibited by decorin. A plot of absorbance at 492nm 
against concentration of competing decorin applied as a ligand with 
5pg/ml of type X collagen, to a plate coated with 5pg/ml of biglycan.
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3.3.1.7 Pepsinised Type X  Collagen Does Not Interact With Decorin or Biglycan

96 well microtitre plates were coated with 5pg/ml of decorin or biglycan in PBS, 3% (w/v) 

skimmed milk powder in PBS coated wells were used as controls. Type X collagen, before 

and after pepsin digestion was applied to the coated wells as a ligand, varying concentrations 

from 0 to 5pg/ml were used. OPD was used as the substrate for antibody conjugated with 

HRP, optical densities were measured at 492nm. Absorbance readings for the control wells 

were averaged and subtracted from triplicate absorbance values gained from the 

corresponding decorin or biglycan coated wells. The average absorbance values have been 

plotted against the concentration of the ligands, whole type X collagen or pepsinised type X 

collagen (figure 3.10). As the concentration of type X collagen increases the absorbance 

values increase until binding saturation is reached at around 5pg/ml. No interaction is seen 

between the pepsinised type X collagen and decorin or biglycan. Pepsinised type X collagen 

is recognised by the monoclonal antibody, MA3, used in the solid phase assay, as 

demonstrated by Western blot analysis (see section 2.3.4).
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1.8 1

, 6 j (a) Decorin coated plate
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Figure 3.10: Solid phase assay demonstrating interactions of decorin and biglycan 
with whole type X collagen but not with pepsinised type X collagen. Graph of 
absorbance at 492nm against concentration of whole and pepsinised type X 
collagen applied as a ligand to plates coated with (a) decorin and (b) biglycan.
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3.3.2 Biomolecular Interaction Analysis Results

3.3.2.1 Immobilisation o f Ligands to the Sensor Chip Surface

Amine coupling chemistry was used to covalently attach whole type X collagen, pepsinised 

type X collagen and the NCI domain to the surface of CM5 sensor chips. Ligands were 

always immobilised on flow cells 2 or 4. Control surfaces were also generated by the blocking 

of the activated carboxymethyl dextran surface with ethanolamine. Flow cells 1 and 3 were 

always used as controls.

The sensogram generated during the immobilisation of the NCI domain and blank chip 

surface preparation is shown in figure 3.11. Similar sensograms were generated when whole 

and pepsinised type X collagen were immobilised to chip surfaces. A maximum target of 400 

response units (RU) was aimed for during immobilisation to ensure accumulation of data 

suitable for kinetic analysis, as recommended by BIAcore. The response generated from 

immobilising the different ligands were variable, type X collagen coupling to the surface 

generated 264 RU, pepsinised type X collagen generated 491 RU, whereas NCI domain

coupling to the surface generated 226 RU.

3.3.2.2 BIAcore Analysis o f  Type X  Collagen and NCI Domain Interactions with Decorin

A  concentration range of decorin (0-200 pg/ml) was injected over the whole type X collagen 

chip surface (see figure 3.12); some duplicate sensograms have been omitted from the figure 

for clarity. From the sensograms it can be seen that the response generated is dependant on the 

concentration of analyte, increased response from higher concentrations. The phases of the 

interaction analysis are highlighted in figure 3.12. During the analysis the stability of the 

baseline in all flow cells is monitored between cycles or analyte injections (see figure 3.13). 

The stability of the control flow cell (figure 3.13a) is subtracted from the ligand coated flow

cell (figure 3.13b) to give an overall stability (figure 3.13c).
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graph has been expanded to demonstrate the 226 RU of NCI immobilised on the chip surface.
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33.2.2 BIAcore Analysis o f  Type X  Collagen and NCI Domain Interactions with Decorin

The sensograms were manipulated and analysed using the BIAevaluation software. Curves 

were fitted according to a 1:1 Langmuir dissociation model (figure 3.14). A chi value 

indicating the closeness of fit of the curves was calculated to be 0.22. Dissociation rate 

constants (kd values) were calculated for each concentration of decorin and ranged from 3.2 

to 3.8 xlO'4 s '1. These values were subsequently used to calculate association rate constants 

(ka values), in the 1:1 Langmuir association model (figure 3.15). A chi2 value was calculated 

to be 0.07. The calculated ka values ranged from 4xl03 to 6xl04 M'V1. Apparent equilibrium 

dissociation constants (KD values) were calculated and ranged from 1.2xl0'8 to 8.3xlO'9M, 

indicating high affinity binding.

The same experimental design was used to study the interaction of the NCI domain of type X 

collagen with decorin. A range of decorin concentrations (0-200pg/ml) were injected over the 

NCI domain sensor chip surface. Responses increased as the concentration of decorin 

increased. The sensograms were analysed using BIAevaluation, the curves were fitted to 1:1 

Langmuir dissociation and association models (see figures 3.16 & 3.17). Chi was calculated 

to be 0.06 and 0.04 for dissociation and association models, respectively. Apparent kinetic 

rate constants and apparent equilibrium dissociation constants were calculated, kd values 

ranged from 1.1 to 2.2 xlO'4 s '1, ka values ranged from 5xl03 to 1x10s M'V1. Like the high 

affinity binding seen with type X collagen, Kd values were in the range of lxlO '8 to lxlO'9M.
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Figure 3.14: Sensogram showing a concentration range of the analyte decorin, being injected over a type X collagen chip surface. 
The dissociation phase curves have been fitted to a 1:1 Langmuir dissociation model.
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surface. The association phase curves have been fitted to a 1:1 Langmuir association model.
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3.3.2.3 BIAcore Analysis o f  Type X  Collagen and NCI Domain Interactions with Biglycan

Biglycan was used as the analyte and was injected over a type X collagen chip surface at a 

range of concentrations (0-200pg/ml). The highest concentrations of biglycan generated the 

biggest responses on the sensograms. The sensograms were analysed using BIAevaluation, 

the curves were fitted to a 1:1 Langmuir dissociation model (see figure 3.18), chi2 was 

calculated to be 5.8 and subsequently to a 1:1 Langmuir association model (see figure 3.19); 

chi2 was calculated to be 0.7. Apparent kinetic rate constants and apparent equilibrium 

dissociation constants were calculated, kd values ranged from 2.5 to 7.9 xlO"4 s'1, ka values 

ranged from 8xl03 to 2xl05 M'V1. Like the high affinity binding seen between type X
o o

collagen and decorin, Kd values were in the range of 1.8x10' to 8.6x10' M.

The same experimental design was used to study the interaction of the NCI domain of type X 

collagen with biglycan. A range of biglycan concentrations (0-200|ag/ml) were injected over 

the NC1 domain sensor chip surface. Responses increased as the concentration of biglycan 

increased. The sensograms were analysed using BIAevaluation, the curves were fitted to 1:1 

Langmuir dissociation and association models (see figures 3.20 & 3.21). Chi was calculated 

to be 0.05 for dissociation and association models, respectively. Apparent kinetic rate 

constants and apparent equilibrium dissociation constants were calculated, kd values ranged 

from 2.9 to 7.3 xlO'4 s '1, ka values ranged from 6xl03 to 2xl05 M 'V 1. Kd values were in the 

range of 3x1 O'8 to 5.7x10'9M, indicating high affinity binding.
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Figure 3.18: Sensogram showing a concentration range of the analyte biglycan, being injected over a type X collagen chip surface. The 
dissociation phase curves have been fitted to a 1:1 Langmuir dissociation model.



RU

400

Association Phase Curve Fitting
350 -

300

250 -

200  -

Q 150 -

£ 100

50

0

-50

-100
-200 1000200 400 600 800

Time

Oug/ml 10ug/ml 25ug/ml 50ug/ml 100ug/ml 150ug/ml 200ug/ml
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association phase curves have been fitted to a 1:1 Langmuir association model.
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chip surface. The dissociation phase curves have been fitted to a 1:1 Langmuir dissociation model.
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3.3.2.4 Interactions o f Type X  Collagen with Decorin and Biglycan are Mediated Via The 

NCI Domain and are Independent o f the Presence o f GAG Chains

When decorin and biglycan were used as analytes over the pepsinised type X collagen ligand 

chip surface, no interactions were observed (data not shown). This indicated that the 

interactions are mediated by the NC domains, which confirm the data generated by solid 

phase assay. Deglycosylated decorin and biglycan were used as analytes over the type X 

collagen chip surface. Interactions were observed with type X collagen and deglycosylated 

decorin and biglycan (sensograms not shown). Binding affinities were calculated and are 

shown in Table 3.1, which summarises all the apparent dissociation constants calculated for 

the data generated by BIAcore experiments.

Apparent Dissociation
A n a ly te

Constants (nM)
Decorin

(+GAG)

Decorin

(-GAG)

Biglycan

(+GAG)

Biglycan

(-GAG)

Type X Collagen 8-10 7 20-90 20

*53
Sm«CS

imj

NCI Domain 1-10 Not tested 6-30 Not tested

Pepsinised Type X No No No No

Collagen response response response response

Table 3.1: Summary of the nanomolar range binding affinities for interactions of different 

regions of type X collagen immobilised to a sensor chip surface, with decorin and biglycan 

before and after deglycosylation being used as analytes.

129



CHAPTER 3

3.3.3 Interactions Visualised by Negative Staining

3.3.3.1 Production o f Decorin and Biglycan Labelled Gold Particles (4 -  5nm diameter)

Using the reduction of HAuCL* by tannic acid method gold sols were prepared. Decorin and 

biglycan were used to label the gold particles; chemical methods were used to ensure the gold 

particles were completely adsorbed. Different sized labelled gold particles were fractionated 

by centrifugation. The pelleted gold particles after the 40,000 rpm centrifugation step were 

used for interaction analysis. The sizes of the labelled particles were estimated by using a line 

grating grid of known dimensions. The line grating was photographed at a variety of 

magnifications (figure 3.22 a -  d). The arrow in figure 3.22d corresponds to approximately 

400nm. By measuring this distance in mm after each electron micrograph is scaled up to A4 

paper size, it was possible to estimate how many nm’s in each mm on a scaled up electron 

micrograph at all magnifications. On examination using electron microscopy the gold 

particles appeared spherical. Three separate electron micrographs were used to estimate the 

sizes of the decorin and biglycan labelled gold particles, the diameter of at least 150 gold 

particles were measure for each label. Decorin labelled gold particles were estimated to be 

approximately 4nm in size (figure 3.23), while the biglycan labelled gold particles were 

estimated to be approximately 5nm in diameter (figure 3.24).
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(c) (d)

Figure 3.22: Electron micrographs of the line grating grid used for 
measuring and size estimation purposes. The scale bar provided by the 
electron microscope and one line grating are highlighted in (a) & (d), 
respectively. Line grating grid recorded at (a) 25,000x (b) 40,000x (c) 
63,000x (d) 80,000x.
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Figure 3.23: Estimation of decorin labelled gold particle diameter.

(a) Electron micrograph of decorin labelled gold particles adsorbed onto 
pioloform coated copper grids (100,000x magnification).

(b) Frequency distribution bar chart of different sized decorin labelled 
gold particles, derived from the 40,000rpm centrifuge fraction.
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Figure 3.24: Estimation of biglycan labelled gold particle diameter.

(a) Electron micrograph of biglycan labelled gold particles adsorbed onto 
pioloform coated copper grids (100,000x magnification).

(b) Frequency distribution bar chart of different sized biglycan labelled 
gold particles, derived from the 40,000rpm centrifuge fraction.
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3.3.3.2 Type X  Collagen in, Multimeric and Aggregated Forms

A grid was prepared with type X collagen only and stained with 1% uranyl formate. At 

moderately high magnification it was possible to see type X collagen as multimeric forms and 

in aggregates (figure 3.25a). Isolated type X collagen molecules were not easily identified. At 

low magnification the distribution of stain indicated that type X collagen had aggregated into 

a regular pattern (figure 3.25b).

3.3.3.3 Type X  Collagen Interacts with Decorin and Biglycan

Type X collagen was incubated with the decorin and biglycan labelled gold particle 

preparations and grids were prepared, as described in section 3.2.3. Type X collagen was 

found to associate with the decorin labelled gold particles (figure 3.26). On closer inspection 

these interactions appear to be localised to the end of the type X collagen molecules (figure 

3.27). Unfortunately, the stoichiometry of interactions can not be commented on as there are 

not many type X collagen molecules in isolation, there is a tendency for aggregation. This is 

also true for the electron micrograph showing type X collagens interaction with biglycan 

labelled gold particles (figure 3.28). The aggregation of type X collagen molecules does not 

allow any precise location of the gold particles. However, the lack of gold particles in the 

regions which do not contain stained type X collagen suggests that the interactions between 

the biglycan labelled gold particles and type X collagen are specific.
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Figure 3.25: Electron micrographs of type X collagen stained with 1% uranyl 
formate.

(a) Type X collagen multimers (m) and aggreates (a). Bar = 86nm, 40,000x 
magnification.

(b) Aggregated type X collagen staining forming a regular pattern (rp). Bar = 
900nm, 8000x magnification.
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Figure 3.26: Electron micrograph after negative staining 
with 1% uranyl formate of type X collagen (X) 
interacting with decorin labelled gold particles (g). 
Circled areas are shown at higher magnification in 
figure 3.27. Bar = 86nm approx, 40,000x magnification.
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(a)

Figure 3.27: Electron micrograph after negative staining with 
1% uranyl formate of type X collagen interacting with decorin 
labelled gold particles. Bar = 90nm approx. 63,000x 
magnification.
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Figure 3.28: Electron micrograph of type X collagen interacting with 
biglycan labelled gold particles; negatively stained with 1% uranyl 
formate. Bar = 92nm approx. 50,000x magnification.
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3.4 DISCUSSION

Type X collagen was shown to interact with decorin and biglycan in a solid phase assay 

system. Decorin and biglycan were used to coat multi-well plates and type X collagen was 

applied as a ligand. Binding saturation was reached at around 5 pg/ml of type X collagen 

(figures 3.4 & 3.7).

Interaction of type X collagen with decorin can be competitively inhibited by the addition of 

decorin (figure 3.5) or biglycan (figure 3.6) in the liquid phase with type X. The competing 

proteins are mixed with type X collagen before being applied to the plate. The absorbance 

readings decrease as the concentration of the competing proteins increase. The type X 

collagen in the liquid phase is prevented from binding to the protein in the solid phase. Thus 

the type X collagen antibody, and subsequently the enzyme conjugated antibody have nothing 

to bind to, when the chromogenic substrate is applied to the wells minimal coloured product is 

seen and the absorbance readings are low.

When decorin is used as a competitor with decorin coated wells, 50% inhibition is reached 

between 4.4 and 5.2 pg/ml of competing decorin. When biglycan is used competitively, 50% 

inhibition is reached between 5.8 and 6.2 pg/ml of competing biglycan. These results indicate 

that decorin and biglycan may bind to the same sites on type X collagen. However, decorin is 

slightly more efficient at inhibiting the decorin-type X interaction than biglycan is.

Interaction of type X collagen with biglycan can be competitively inhibited by the addition of 

biglycan (figure 3.8) or decorin (figure 3.9) in the liquid phase with type X. The competing 

proteins are mixed with type X collagen before being applied to the plate. As with the decorin 

data, as the concentration of competing protein increases the absorbance values decrease.

When biglycan is used as a competitor with biglycan coated wells, 50% inhibition is reached 

between 3.2 and 3.6 pg/ml of competing biglycan. When competitive decorin is used, 50% 

inhibition is reached between 6.7 and 7.7 pg/ml of competing decorin. These results indicate 

that decorin and biglycan may bind to the same sites on type X collagen. However, biglycan 

is slightly more efficient at inhibiting the biglycan-type X interaction than decorin is.
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In the reported experiments type X collagen interacts with decorin and biglycan with 

apparently similar affinity. The inhibition experiments performed suggests that decorin and 

biglycan have a common site of interaction on the type X collagen molecule. The finding that 

100% inhibition could be produced in the inhibition experiments is evidence for this. 

Pepsinised type X collagen which is the triple helical domain of type X collagen was used as a 

ligand and its binding was compared to that of whole type X collagen. Decorin and biglycan 

coated plates were allowed to interact with whole and pepsinised type X collagen. No 

interaction was observed between the proteoglycans and pepsinised type X collagen (figure 

3.10). This indicates that the NC domains of type X collagen mediate the interactions of type 

X collagen with decorin and biglycan. Solid phase assays are a popular in vitro method for 

studying protein-protein interactions, many ECM molecular interactions have been 

demonstrated with this method (Di Cesare et al., 2002; Holden et al., 2001; Rosenberg et al., 

1998).

In the reported experiments, purified chick type X collagen, recombinant human decorin and 

bovine biglycan were used in solid phase assays. The proteins being from a variety of species 

is not ideal for interaction analysis, however, the conserved homologies across species of all 

the proteins involved has proven strong enough to be able to perform interaction analysis 

successfully. Ideally recombinant human proteins should have been used, but the construction 

of expression vectors, transfections and purification of expressed proteins can be very time 

consuming and the yields may not be great.

The BIAcore system monitors biomolecular interactions in real time, using a non-invasive 

optical detection principle based on SPR. The SPR response reflects a change in mass 

concentration at the detector surface as molecules bind or dissociate. Since real-time BIA 

monitors interactions directly as they happen, the technique is well suited for the 

determination of kinetic parameters. Comparative affinity ranking is simple to perform, and 

both kinetic and affinity constants can be derived from the sensogram data. SPR has been 

widely used for studying interactions of ECM proteins (Holden et al., 2001; Wiberg et al., 

2001).

Type X collagen was shown to interact with decorin and biglycan using SPR (figures 3.12, 

3.18 & 3.19). The sensogram data was fitted to 1:1 Langmiur association (figure 3.15 & 3.19) 

and dissociation (figures 3.14 & 3.18) binding models, figures show the sensogram curves in
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colour with the fitted curves in black. Chi2 values are a statistical measure of the closeness of 

the fit of the curves. For good fitting, chi2 is of the same order as the noise in RU (typically 

<2). The chi2 values ranged from 0.07 to 5.8, indicating the fitting was adequate. Kd values 

were calculated and were in the nanomolar range, indicating that the interaction between type 

X collagen and decorin and biglycan was high affinity binding.

The lack of binding of decorin and biglycan to pepsin digested type X collagen in the solid 

phase assays indicated that the NC domains were involved. This could not be investigated in 

the solid phase system as the available antibody to type X collagen, MA3, recognises a 

collagenous domain. However, the availability of recombinant NCI enabled direct 

interactions of NCI with decorin and biglycan to be investigated using the BIAcore system. 

The NCI domain of type X collagen was shown to bind to decorin and biglycan. The 

sensogram data was fitted to 1:1 association (figure 3.17 & 3.21) and dissociation (figures 

3.16 & 3.20) binding models, figures show the sensogram curves in colour with the fitted 

curves in black. Chi2 values ranged from 0.04 to 0.06, indicating good curve fitting. KD values 

were calculated and were in the nanomolar range indicating high affinity binding between the 

NCI domain of type X collagen and decorin and biglycan.

The data indicates that the interaction between type X collagen and the proteoglycans is 

mediated by the NCI domain. The sensograms and the Kd values indicate that the binding to 

NCI is comparable to whole type X. Experiments using pepsinised type X collagen as a 

ligand on the chip surface, have confirmed this finding with no responses being seen when the 

analytes decorin and biglycan are injected over its surface. These findings have led to the 

conclusion that the NC2 domain of type X collagen is unlikely to be involved in the 

interaction of type X collagen with decorin and biglycan. However, this has not been 

investigated in the solid phase assay or BIAcore system directly to confirm its exclusion. 

Interactions were also observed between type X collagen and deglycosylated decorin and 

biglycan. The similar binding affinities (Table 3.1) found before and after deglycosylation 

indicate that the interactions are occurring independently of the presence or absence of the 

GAG chains on the proteoglycans, therefore are mediated by the protein cores of decorin and 

biglycan.

When the data for the type X-decorin/biglycan interactions and the NCI domain- 

decorin/biglycan interactions was fitted to simultaneous ka/kd binding models the fitted
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curves did not appear to fit the sensograms well and the chi2 value was often very large. This 

is why the association and dissociation phases were fitted separately. A possible explanation 

of why this was necessary is that different conditions apply during association and 

dissociation.

Kinetic data is always interpreted in terms of a model of the interaction process, and the 

kinetic constants obtained from the analysis are apparent constants which are valid in the 

context of the model. The simplest model for interaction on the sensor chip surface is a 

homogeneous 1:1 binding, treating the immobilised ligand as a solid phase component. 

Analysing data in terms of this model is done by non-linear curve fitting procedures. The 

results of model fitting do not reveal what is actually happening at the sensor chip surface. 

The apparent constants which are derived are valid within the context of the model and are 

sufficient for purposes such as indicating high affinity binding (Markey, 2000)

Negative staining can be used as a tool to capture images of interacting proteins. Such images 

can be considered as powerful evidence of an interaction, and are an ideal complement to data 

generated from other interaction studies such as solid phase assays or SPR. Decorin and 

biglycan labelled gold particles were prepared for utilisation in negative staining experiments. 

The gold particles were relatively spherical and uniformly sized at around 4 -5nm (figures 

3.23 & 3.24).

Prior to interaction with decorin and biglycan analysis, type X collagen samples were 

negatively stained (figure 3.25). The images captured demonstrate the tendency for type X 

collagen to aggregate, and highlight the lack of single molecules in isolation. Changes to the 

concentration or the ionic conditions of the solution that type X collagen is dissolved in are 

probably necessary to prevent such aggregation. However, this was not optimised and 

interaction analysis was performed.

Preliminary negative staining experiments of type X collagen utilising decorin and biglycan 

labelled gold particles have proved promising. Type X collagen can be seen interacting with 

decorin and biglycan gold probes, figures 3.26 & 3.27 and 3.28, respectively. Due to the 

problems associated with the aggregation of type X collagen described above, isolated 

molecules have not been photographed and the precise stoichiometry of the interactions can 

not be commented on. The gold probes appear to be localised to the end of some of the type X
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collagen molecules, possibly indicating interactions with the NCI domain. The lack of 

decorin and biglycan gold particles in areas of the electron micrographs which do not contain 

type X collagen are suggestive that the interactions seen are specific.

In summary, type X collagen interacts with decorin and biglycan as demonstrated by solid 

phase assays and SPR. The interactions are likely to be mediated by the NCI domain of type 

X collagen; as pepsinised type X collagen was found not to interact with decorin or biglycan 

by solid phase assays or by SPR and the binding affinities of interactions with decorin and 

biglycan are comparable between whole type X collagen and the NCI domain. The high 

affinity binding interactions were found to be independent of the presence or absence of the 

GAG chain(s) on decorin and biglycan, indicating that the protein cores of decorin and 

biglycan mediate the interactions. The interaction of type X collagen with decorin and 

biglycan labelled gold particles was investigated by negative staining and TEM. Interactions 

were visualised on electron micrographs, no additional information regarding the interactions 

was generated using this method.
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Chapter 4: Construction of Expression Clones, Expression and 

Purification of Recombinant Proteins and Interaction Analysis of 

NCI Fragments with Decorin and Biglycan

4.1 BACKGROUND

The identified interactions involving the NCI domain of type X collagen with decorin and 

biglycan require further characterisation, fragments of the NCI domain of type X collagen 

could be used in interaction studies to localise the site of interaction on the NCI domain. 

Subsequent comparisons of interacting NCI fragments with the resolved crystal structure of 

the NCI domain could potentially pinpoint key regions important for the interaction of type X 

collagen with these SLRP’s.

4.1.1 Bacterial Expression of NCI Recombinant Fragments

Recombinant fragments of the NC 1 domain were produced and used in interaction studies, to 

further charcaterise the interactions with decorin and biglycan. Escherichia coli (E. coli) was 

used as a host system for production of recombinant proteins; factors such as ease of genetic 

manipulation, availability of optimised expression plasmids and ease of growth were among 

the reasons that this system was chosen (Wingfield, 1997).

The QIAexpress system (Qiagen) was the method of choice for expression, purification and 

detection of recombinant proteins. The vectors are designed to place an affinity tag of 6 

consecutive histidine residues (6xHis-tag) at the N-terminus of the protein of interest. The 

6xHis-tag rarely interferes with the secretion or the structure and functions of fusion proteins, 

and can be used for purification purposes. Other features of the vectors such as the T5 

promoter, lac operator sequences and the multiple cloning site are highlighted in figure 4.1. 

Three different versions of the pQE expression vector used were available; pQE -30, -31 and - 

32, which allowed cloning of the gene of interest in different open reading frames, figure 4.2 

(QIAGEN, 2003).

4.1.2 Regulation of Expression: pREP4 plasmid

Transcription at the T5 promoter of pQE vectors can be regulated and repressed by high levels 

of the lac repressor protein. The E. coli strain M15[pREP4] contains the low-copy plasmid
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pREP4 which confers kanamycin resistance and constitutively expresses the lac repressor 

protein encoded by the lac I gene. Recombinant proteins expressed by pQE vectors can be 

induced by the addition of isopropyl-p-D-thiogalactoside (IPTG) which binds to the lac 

repressor protein and inactivates it. RNA polymerase then transcribes the sequences 

downstream from the promoter, and translation of the recombinant protein follows.

4.1.3 Purification of 6xHis-tagged proteins by Ni-NTA affinity chromatography

Nitrilotriacetic acid (NTA) is a tetradentate chelating agent, which occupies four of the six 

ligand binding sites in the coordination sphere of the nickel ion, leaving two sites free to 

interact with the 6x-His-tag (figure 4.3). Ni-NTA agarose is composed of Ni-NTA coupled to 

Sepharose®CL-6B and offers high binding capacity and minimal non-specific binding, it can 

be used to purify 6xHis-tagged proteins in a variety of ways including; on a column, or by 

centrifugation.
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Xbo[ [0]
^  promoter/lac operator

Q b i a / y ^V y fco R I

Bgfi II
\ \  ORBS 11

O  ori

----f t  0 polylinker/
T1 6xHij tag

Elements Present in QIAexpress pQE -30, -31 & -32 Vectors

Optimised promoter / operator element consisting of the phage T5 promoter and two 
lac operator sequences which increase lac repressor binding and ensure efficient 
repression of the powerful T5 promoter.

Synthetic ribosomal binding site, RBSII, for efficient translation.

6 x His-tag coding sequence 5’ to the polylinker cloning region.

Multiple cloning site and translational stop codons in all reading frames for 
convenient preparation of expression constructs.

Two strong transcriptional terminators: t0 from phage lamda and T1 from the rmB 
operon of E. Coli, to prevent read-through transcription and ensure stability of the 
expression construct.

ColEl origin of replication from pBR322.

C J  Beta-lactamase gene (bla) conferring resistance to ampicillin at 1 OOpg/ml.

Figure 4.1: pQE vector map with characteristics required for 
protein expression highlighted. (Taken from QIAGEN 2003).
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PT5 - l o c O - l a c O - R B S - A T G - 6xHls Stop Codons

* pQE-30 
pQE-31 
pQE-32

pQE-30, pQE-31, 
pQE-32 
3 .4  kb

pQE-30/pGE-&0 L

5 m o  I
E c o R I /R B S  6 x H is  B o m  Sc»h I S o :  K p n l  Xmo I S o l i  RsH_________H in d  III k

I   ATOV-.Qa GGATCG - K3GAK CGCATGCGAGC TCGGTa C CCC OGGTC GACC TGCAGC CAAfiC TTl AATIAGC TGAG I I

RGSHls epitope

pQ E -31/pQ E -81 I

S m o  I
E c o R I/R B S  6 x H is  B om  S o h  I S o :  K p n l  * n io  I S a i l  Psr I_________H in d _III__________  ro

I '  A Jg^ .GAGGATCT H i  AC I GGATC CGCATGC GACC TCGGKCCC CGGGTCGAC C TC< .-GCC A AGCTT] A4JTAGCTGAG I I

RGS Hls ep itope

pQ E-32/pQ E-82 L

S m o  I
E o n  P I/D R C  6 x H is  B o m  S o h  I S o :  K p n l  Xmo I S o i l  Psl I_________H in d  III r.

I ATCK Ga GGaTC T I g g a t c  CGCATGCGAGCTCGGTACCC CGGGTCGACC TGCa g c  c AAGC n  | AATTAGC TGAG I I

RGS Hls epitope

Figure 4.2: Vector map showing positions of features important for protein 
expression and diagram detailing sequence of restriction sites present in the multiple 
cloning sites of vectors pQE -30, -31 and -32. (Taken from QIAGEN 2003).
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Figure 4.3: Interaction between neighbouring residues in the 6xHis tag and 
Ni-NTA matrix. (Taken from QIAGEN 2003).
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4.2 MATERIALS AND METHODS
All reagents for protein biochemistry were purchased from Sigma, all molecular biology 

reagents were purchased from Promega and all reagents used for protein expression were 

purchased from Qiagen, unless otherwise stated.

4.2.1 Amplification o f  NCI Fragments by Polymerase Chain Reaction (PCR)

Primer sequences and their annealing positions with regard to the whole NCI sequence are 

shown in figure 4.4. Different combinations of these primers were used to yield different 

sized products in PCR reactions. A 20 pi PCR reaction contained, 50 pM of each dNTP, 

0.125 pM of forward and reverse primers, 2.5 mM MgCl2, 1 unit of Taq polymerase, lx PCR 

reaction buffer (10 mM Tris-HCl pH 9, 50 mM KC1, 0.1% Triton X-100). dH20  and 1 pi of 

template DNA were added to give a final volume of 20 pi. Samples were initially denatured at 

95°C for 5 minutes, 35 cycles of the following parameters ensued; 95°C for 30 seconds, 

annealing at 58°C for 30 seconds, extension at 72°C for 30 seconds. After completion of the 

35 cycles a final extension phase at 72°C for 10 minutes followed (Sprint/Express 

thermocyclers, Hybaid UK). Samples were then incubated at 4°C.

4.2.1.1 PCR Using Prim ers A dapted with Restriction Sequen ces

The enzyme Accusure DNA polymerase (Bioline, UK) was used for its high fidelity feature, it 

possesses 3’-5’ proof-reading activities which prevents mis-incorporations during DNA 

polymerase activity. A PCR reaction included; 2 pi of lOx Acc Buffer (600 mM Tris-Cl, 60 

mM (NH4)2S0 4 , 100 mM KC1, 20 mM M gS04, pH 8.3), 50 pM of each dNTP, 0.125 pM of 

forward and reverse primer, 1 unit of Accusure DNA polymerase, 1 pi of template DNA 

(plasmid DNA diluted 1:100 and 1:1000) and dH20  up to a final volume of 20 pi. Samples 

were subjected to an enzyme activation step; 10 minutes at 95°C, followed by 30 cycles o f : 

95°C for 30 seconds, 58°C for 30 seconds, 72°C for 1 minute, followed by a final extension at 

72°C for 10 minutes (Sprint/Express thermocyclers, Hybaid UK). Samples were stored at 4°C.

149



CHAPTER 4

NCI Nucleotide Sequence and Primer Positions

N C I FI
•  ►
gtcatgcctgagggttttataaaggcaggccaaaggcccagtctttctgggacc

cctcttgttagtgccaaccagggggtaacaggaatgcctgtgtctgcttttactgtt

attctctccaaagcttacccagcaataggaactcccataccatttgataaaattttgt
N C I F2

#■   ii ■■ i   ,, . . . . . . .  ^

ataacaggcaacagcattatgacccaaggactggaatctttacttgtcagatacc
"* NCI  Rl  *

aggaatatactatttttcataccacgtgcatgtgaaagggactcatgtttgggtag
N C I F3#    ■        ►

gcctgtataagaatggcacccctgtaatgtacacctatgatgaatacaccaaagg
*  N C I R2 *

ctacctggatcaggcttcagggagtgccatcatcgatctcacagaaaatgacca

ggtgtggctccagcttcccaatgccgagtcaaatggcctatactcctctgagtat

gtccactcctctttctcaggattcctagtggctccaatg
*  N C I R 3 #

F o r w a r d  P r i m e r s :  •  ► R e v e r s e  P r i m e r s :  < -

NCI FI. gtcatgcctgagggttttata NCI R l. agtccttgggtcataatgctg

NCI F2. ccaaggactggaatctttact NCI R2. gtacattacaggggtgcc

NCI F3. aatggcacccctgtaatgtac NCI R3. cattggagccactaggaatcc

Figure 4.4. Sequence of the NCI domain of human type X collagen COL10A1 
mRNA (gi:l 8105031). Positions and sequences of forward primers (in green) and 
reverse primers (in red) are shown.
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4.2.1.2 Agarose Gel Electrophoresis

PCR products were analysed by electrophoresis in agarose gels. 1% gels containing 10 pg/ml 

ethidium bromide (Sigma) in Tris borate EDTA buffer (80 mM Tris borate, 2 mM EDTA, pH 

8.3) were prepared. 10 pi of sample was mixed with 1 pi of loading dye (10 mM Tris-Cl, pH 

7.5, 50 mM EDTA, 10% Ficoll 400, 0.255% Bromophenol blue, 0.25% Xylene Cyanol FF, 

0.4% orange G) prior to loading on the gel. A lOObp DNA ladder was mixed with loading dye 

and run on all gels as a marker, or alternatively Hyper-ladder I (Bio-Line) was used. Samples 

were resolved at 60-80 volts for 1-2 hours. A Quantity One Gel Doc system was used to 

illuminate gels with UV light and capture images of resolved samples.

4.2.1.3 Purification o f  DNA from Agarose Gels using QIAEXII (Qiagen)

A gel extraction method was used to purify amplified PCR products and restriction digest 

fragments from agarose gels. The manufacturer’s guidelines were followed for the 

purification process. Briefly, using a scalpel the DNA band was excised from the gel and 

weighed. Three volumes of buffer QX1 were added to one volume of gel (i.e. 300 pi of buffer 

to 100 mg of gel). QIAEX II silica beads were re-suspended by vortexing and 10 pi was 

added to the sample, the sample was incubated at 50°C for 10 minutes during which time the 

agarose solubilised and the DNA bound to the beads. The sample was centrifuged for 30 

seconds at 12,000 x g in a bench top centrifuge to pellet the QIAEX II silica beads, the 

supernatant was carefully removed and discarded. To remove residual agarose contaminants 

the silica beads were washed with 500 pi of buffer QX1, and then pelleted as above. The 

silica beads were washed twice with buffer PE to remove residual salt contaminants, and then 

pelleted as above. The silica beads were air-dried for 10-15 minutes and were resuspended by 

adding 20 pi of 10 mM Tris-HCl, pH 8, and vortexing. The eluted DNA was obtained by 

pelleting the silica beads as above, and by carefully removing the supernatant which 

contained the DNA.

4.2.2 Cloning NCI Fragments into the Cloning Vector pGEM®-T

Purified PCR products were ‘TA-cloned’ into the cloning vector pGEM®-T (figure 4.5). 

Cloning using this method, utilises the single deoxyadenosine that polymerases often add to 

the 3’ end of amplified products during PCR and the single 3’ terminal thymidine overhang 

present on the linearised pGEM®-T. Insertional inactivation of the a-peptide coding region of 

the enzyme P-galactosidase allows recombinant clones to be directly identified by colour 

screening on selective agar plates. Clones that contain PCR products usually produce white
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colonies, while those that do not produce blue colonies. When the P-galactosidase gene is not 

inactivated by the insertion of a PCR product, the presence of isopropyl p-D- 

thiogalactopyranoside (IPTG) and 5-bromo-4-chloro-3-indolyl-p-D-galactopyranoside (x-gal) 

in the agar plates induces expression of the enzyme which then converts the substrate x-gal 

into a blue product.

4.2.2.1 Ligating PCR Products into thepGEM®-T Vector

The 5 pi reaction mixture included; 2.5 pi of 2x rapid ligation buffer (60 mM Tris-HCl pH 

7.8, 20 mM MgCl2, 20 mM DTT, 2 mM ATP, 10% polyethylene glycol), 0.5 pi of pGEM®-T 

vector (50 ng pi"1), 1 pi of purified PCR product, 0.5 pi of T4 DNA ligase (3 units pi"1) and

0.5 pi dH20 . Ligation reactions were mixed by gentle pipetting and incubated overnight at 

4°C.

4.2.2.2 Transformation o f  Competent E. coli (JM109) with pGEM®-T.

Plasmid DNA was used to transform high efficiency competent JM109 cells. From ligation 

reactions 2 pi of DNA was removed and added to sterile Falcon 2059 polypropylene tubes 

(Becton Dickinson, UK), 25 pi of just thawed JM109 cells was mixed with the DNA and 

incubated on ice for 20 minutes. Cells were heat-shocked at 42°C for 45-50 seconds in a water 

bath and then returned to ice for 2 minutes. To the cells, 475 pi of SOC medium (Gibco Life 

Sciences, UK) was added, and incubated at 37°C with shaking at 150 rpm for 1.5 hours. 100 

pi of each transformation culture was plated onto LB agar plates containing 100 pg/ml 

ampicillin, 0.5 mM IPTG, 50 pg/ml x-gal. Plates were inverted and incubated at 37°C 

overnight.

White colonies were selected using a sterile tip and used to inoculate 5 ml of LB broth 

containing 100 pg/ml ampicillin, cells were incubated at 37°C shaking at 225 rpm overnight. 

Glycerol stocks of each clone were prepared in LB broth with 20% (v/v) glycerol and stored 

at -80°C. The remaining cells were used to prepare plasmid DNA.

4.2.2.3 DNA purification using the Wizard® Plus SVMiniprep System (Promega)

Plasmid DNA was isolated from 1-10 ml of overnight E. coli cultures using the above system 

according to manufacturer’s protocol, the method is summarised in figure 4.6. Briefly, cells 

were harvested by centrifugation at 10,000 x g for 5 minutes. Cells were resuspended in 250 

pi of cell resuspension solution (50 mM Tris-Cl pH 7.5, 10 mM EDTA, 100 pg ml"1 RNase
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A) and transferred to 1.5 ml microcentrifuge tubes. Cells were lysed using 250 pi of cell lysis 

solution (0.2 M NaOH, 1% SDS), tubes were inverted 4 times to ensure mixing and incubated 

for no longer than 5 minutes. To inactivate endonucleases and to non-specifically degrade 

protein contaminants, 10 pi of alkaline protease solution was added to the cleared cell lysate, 

mixed by inverting the tube 4 times and incubated for 5 minutes. The mixture was neutralised 

by the addition of 350 pi of neutralisation solution, tubes were inverted 4 times to ensure 

thorough mixing. The bacterial lysate was centrifuged at 14,000 x g for 10 minutes at room 

temperature.

The supernatant was decanted into a spin column inserted into a 2 ml collection tube. The 

supernatant was centrifuged at 14,000 x g for 1 minute, the flow-through was discarded from 

the collection tube. The column was washed using 750 pi of wash solution (60 mM potassium 

acetate, 8.3 mM Tris-HCl pH 7.5, 40 pM EDTA, 60% ethanol), centrifuged at 14,000xg for 1 

minute, the flow-through was discarded as before. This wash step was repeated using 250 pi 

of wash solution and a 2 minute centrifugation step. The columns were transferred to sterile

1.5 ml microcentrifuge tubes, plasmid DNA was eluted from the column by the addition of 

100 pi of nuclease-free water, followed by centrifugation at 14, 000 x g for 1 minute. Plasmid 

DNA was stored at -20°C.

4.2.2.4 Sequen cing Reaction

Sequence analysis was performed using the ABI Prism® 3100 Genetic Analyser (Applied 

Biosystems, UK). The Big Dye Terminator Ready Reaction Cycle Sequencing Kit (Applied 

Biosystems, UK) was used and includes: dye terminators, dNTPs, AmpliTaq DNA 

polymerase and MgCl2. Sequencing was performed by a Cardiff University support facility. 

In brief, DNA plasmid template was prepared as described in 4.2.2.3 to concentrations of 

around 100 pg m l'1. 250-500 ng of plasmid DNA was combined with 8 pi of terminator ready 

reaction mix, 3.2 pmol forward or reverse primer and was made up to 20 pi with dH20. 

Details of sequencing primers are shown in table 4.1. The sequencing reactions were 

subjected to 25 cycles of: 96°C for 20 seconds, 50°C for 10 seconds and 60°C for 4 minutes 

(Express Thermocycler, Hybaid).

Prior to electrophoresis unincorporated Big Dye terminators were removed by precipitation. 

To each 20 pi sequencing reaction, 80 pi of 70% (v/v) iso-propanol was added and briefly 

vortexed. Extension products were precipitated by incubation at room temperature for 15

153



CHAPTER 4

minutes; they were collected by centrifugation at 12,000 x g for 30 minutes. The supernatant 

was discarded and the sample pellets were washed twice in 250 pi of 70% (v/v) ethanol to 

remove traces of residual salts. The sample pellets were air-dried for 15 minutes, and then 

resuspended in 15 pi of HiDi® Formamide (Applied Biosystems, UK) before being run on 

the ABI Prism® 3100 Genetic Analyser. Sequence chromatograms were analysed using 

Chromas, version 1.43 (Conor McCarthy, Griffith University, Brisbane, Australia), the 

sequence data was copied into text format and analysed using the BLAST search engine for 

homology with sequences on the EMBL database.

Vector Primer Primer Sequence

pGEM-T
M l3 Forward 5 ’-CGCCAGGGTTTTCCCAGTCACGAC-3 ’

M l3 Reverse 5 ’-AGCGGATAACAATTTCACACAGGA-3 ’

pQE-30
pQE Forward 5 ’ -CCCGAAAAGTGCC ACCTG-3 ’

pQE Reverse 5 ’-GTTCTGAGGTCATTACTGG-3 ’

Table 4.1: Oligonucleotide sequences of primers used in sequencing reactions.
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N cc I Sa c II S p e  I Not I j Ps/1 Sai I N d e  I
S stZ  I

SP 6 Transcription Start

I
GGAGA GCTCC CAACG CGTTG GATGC ATAGC TTGAG TATTC TATAG TGTCA CCTAA AT , 3' 
CCTCT CGAGG GTTGC GCAAC CTACG TATCG AACTC ATAAG ATATC ACAGT GGATT TA . 5'

 I I__________________ 11 I SP6 Promoter
Sac ■ B st XI Tvs* I

Figure 4.5: (a) pGEM®-T vector circle map and sequence reference points, 
(b) The promoter and multiple cloning sequence of the pGEM®-T vector. 
(Taken from Promega 2003).
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Overnight culture

f*

f

Centrifuge.

Remove culture media. 

Resuspend cells.

Lyse cells.

Neutralise.

Clear lysate by centrifugation.

Transfer lysate.

\ y

Insert column in collection tube. Transfer 
cleared lysate and bind DNA

Wash, removing solution by centrifugation.

Elute plasmid DNA.

Figure 4.6: Protocol for the Wizard® Plus SV Minipreps DNA purification system. 
(Adapted from Promega 2001).
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4.2.3 Restriction Digestion of NCI PCR Products

PCR products generated from reactions using primers that had been adapted with restriction 

sites were digested with Bam H I and Pst I. Restriction digestion reactions included, 5 pi of 

buffer H (90 mM Tris-HCl, 10m M MgCh, 50 mM NaCl, pH 7.5) which is compatible for 

both enzymes, 0.1 pg/pl BSA, 10 units of enzymes Bam H I and Pst I, 50-250 ng of DNA, 

and H2O up to 50 pi. Samples were incubated at 37°C for 3 hours and resolved by agarose gel 

electrophoresis.

4.2.3.1 Linearisation of pQE-30 Expression Vector

The pQE-30 expression vector from the QIAexpress Kit was prepared by dissolving 5pg of 

plasmid DNA in lOpl of lOmM Tris-HCl, pH 8 . A 2pl aliquot was linearised using restriction 

enzymes Bam H I and Pst I in buffer H (90mM Tris-HCl, lOmM MgCb, 50mM NaCl, pH 

7.5). The 20pl restriction digestion reaction contained lp g  DNA template, 2pl of lOx digest 

buffer H, 10 units of each enzyme, O.lpg/pl BSA made up to 20pl with H2O. Samples were 

incubated at 37°C for 1-4 hours and resolved by agarose gel electrophoresis.

4.2.3.2 Ligation o f NCI Fragments into pQE-30 Expression Vector

T4 DNA ligase was used to catalyse the joining of the NCI fragments to the linearised pQE- 

30 expression vector. A 1:3 molar ratio of vector : insert DNA was used for cloning NCI 

fragments into the pQE-30 expression vector. The following calculation was used to convert 

molar ratios to mass ratios:

ng of vector x kb size of insert insert
--------------------------  x molar ratio of “  = ng of insert

kb size of vector vector

The ligation reactions contained 3 units of T4 DNA ligase, 3 pi of ligase 10 x buffer (300 mM 

Tris-HCl pH 7.8, 100 mM MgCl2, 100 mM DTT and 10 mM ATP), 400 ng of pQE-30 vector 

DNA, 40-110 ng of insert DNA, made up to a total volume of 30 pi with H2O. Initially, 

vector DNA, insert DNA and H2O were combined and heated at 45°C for 5 minutes, to melt 

cohesive termini that had re-annealed. The DNA was placed on ice and the ligase buffer and 

enzyme were added. The ligations were incubated overnight at 4°C.
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4.2.4 Preparation of Competent E. Coli Cells:

4.2.4.1 Ml5[Prep4J Cells

A sterile inoculating loop was used to remove a trace of M15[Prep4] cells and to streak the 

cells onto LB agar plates containing 25 jag/ml kanamycin. Plates were incubated at 37°C 

overnight. A single colony was picked and inoculated in 10 ml of LB broth containing 25 

pg/ml kanamycin, cells were incubated at 37°C overnight in a shaking incubator at 225 rpm. 

From the overnight culture 1 ml was taken and added to a flask of 100 ml of pre-warmed LB 

broth containing 25 jag/ml kanamycin, the flask was incubated at 37°C at 225 rpm, until an 

optical density of 0.5 was reached at a wavelength of 600 nm. The culture was cooled on ice 

for 5 minutes and then centrifuged at 4°C at 4000 x g for 5 minutes. The supernatant was 

discarded and the cells were kept on ice. The cells were resuspended in 30 ml of 100 mM 

RbCl, 50 mM MnCk, 30 mM potassium acetate, 10 mM CaCk, 15% glycerol, pH 5.8. The 

cell suspension was incubated on ice for 90 minutes. The cells were centrifuged at 4°C at 

4000 x g for 5 minutes. The supernatant was discarded and the cells were kept on ice. Cells 

were resuspended in 4 ml of ice cold 10 mM MOPS, 10 mM RbCl, 75 mM CaCb, 15% 

glycerol, pH 6 .8  with KOH. Aliquots of 200 pi were prepared in cryovials and frozen in 

liquid nitrogen, cryovials were stored at -80°C for long term storage.

4.2.4.2 XL-1 Blue Cells

A sterile inoculating loop was used to remove a trace of XL-1 Blue cells from glycerol stocks 

and to streak the cells onto LB agar plates containing 25 pg/ml kanamycin. Plates were 

incubated at 37°C overnight. A single colony was picked and inoculated in 10 ml of LB broth 

containing 25 pg/ml ampicillin, cells were incubated at 37°C overnight in a shaking incubator 

at 225 rpm. From the overnight culture 5 ml was taken and added to a flask of 250 ml of pre

warmed SOB broth (2% w/v bactotryptone, 0.5% w/v yeast extract, 10 mM NaCl, 2.5 mM 

KC1, 10 mM MgCb, 10 mM MgS0 4 , pH 6.7). The flask was incubated at 37°C at 225 rpm, 

until an optical density of 0.5 was reached at a wavelength of 600 nm. The culture was cooled 

on ice for 10 minutes and then centrifuged at 4°C at 2500 x g for 10 minutes. The supernatant 

was discarded and the cells were kept on ice. The cells were resuspended in 80 ml of 

transformation buffer (10 mM Pipes, 55 mM MnCl2,15 mM CaCl2, 250 mM KC1, pH 6.7) and 

incubated on ice for 10 minutes. The cells were centrifuged at 4°C at 2500 x g for 10 minutes. 

The supernatant was discarded and the cells resuspended in 20 ml of transformation buffer. 

DMSO was added to a final concentration of 7% (v/v). Cells were incubated on ice for 10
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minutes before aliquots of 200 pi were prepared in cryovials and frozen in liquid nitrogen, 

cryovials were stored at -80°C for long term storage.

4.2.43 Transformation o f  Competent M l5 and XL-1 Cells

A 5 pi aliquot of ligation reaction containing NCI inserts in the pQE-30 expression vector 

was aliquoted into a cold sterile transformation tube (Falcon) and kept on ice. The control 

expression plasmid pQE-40 (2 ng) was also used to transform E. coli. An aliquot of frozen 

M l5 or XL-1 cells was removed from -80°C storage and thawed on ice, 100 pi of cell 

suspension was added to the ligation mix. The cells were kept on ice for 20 minutes and then 

transferred to a water bath at 42°C for 90 seconds. Psi broth 500 pi (LB medium containing 

4mM MgS0 4 , 10 mM KC1) was added to the cells, which were then incubated at 37°C 

shaking at 225 rpm for 90 minutes. Aliquots of 100 pi of M l5 and XL-1 cells were then 

plated onto LB-agar plates containing either 25 pg/ml kanamycin and 100 pg/ml ampicillin or 

100 pg/ml ampicillin, respectively. Plates were incubated at 37°C overnight. Colonies were 

selected using a sterile tip and used to inoculate 5ml of LB broth containing 25pg/ml 

kanamycin and 100 pg/ml ampicillin for M15[prep4] cells or 100 pg/ml ampicillin for XL-1 

cells. Cultures were incubated at 37°C shaking at 225 rpm overnight. Glycerol stocks of each 

clone were prepared in LB broth with 20% [v/v] glycerol and stored at -80°C. The remaining 

cells were used to prepare plasmid DNA.

4.2.5 E. coli Culture Growth for Preparative Purification

Glycerol stocks of M15[pREP4] cells containing pQE-30 / NCI fragment expression vector 

and the control expression plasmid pQE-40 were streaked onto LB agar plates containing 25 

pg/ml kanamycin and 100 pg/ml ampicillin and incubated at 37°C overnight. Single colonies 

were then used to inoculate 10 ml of LB broth containing 25 pg/ml kanamycin and 100 pg/ml 

ampicillin. Liquid cultures were incubated overnight at 37°C with vigorous shaking. A 500 ml 

pre-warmed culture containing 25 pg/ml kanamycin and 100 pg/ml ampicillin, was then 

inoculated 1:50 with the non-induced overnight culture. The 500 ml culture was grown at 

37°C with vigorous shaking until an OD600 of 0.6 was reached. A 1 ml non-induced control 

sample was taken immediately before induction, the cells were pelleted and resuspended in 50 

pi of 5x SDS-PAGE sample buffer. Expression was induced in the 500 ml culture by adding 

IPTG to a final concentration of 1 mM. The culture was incubated for a further 4-5 hours. A 1 

ml induced control sample was taken, the cells were pelleted and resuspended in 100 pi of 5x
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SDS-PAGE sample buffer. The cells in the 500 ml culture were harvested by centrifugation at 

4000 x g for 20 minutes. The cell pellets were stored at -20°C overnight.

4.2.5.1 Preparation o f Cleared E. coli Lysates Under Native Conditions

The cell pellet was thawed on ice for 15 minutes and was then resuspended in lysis buffer (50 

mM NaH2PC>4, 300 mM NaCl, 10 mM imidazole, pH 8 ) at 2-5 ml per gram of wet weight. A 

100 x protease inhibitor cocktail (Calbiochem, UK) was added to the cell lysate suspension, to 

yield a final concentration of 500 pM AEBSF-HC1, 150 nM aprotinin, 1 pM E-64, 0.5 mM 

EDTA disodium salt, and 1 pM leupeptin hemisulphate. Lysozyme to 1 mg/ml was added and 

incubated on ice for 30 minutes. Cells were sonicated with a microtip at 40% amplitude using 

a Sonics Vibra-Cell™, six pulses of 9 seconds with a 9 second cooling period between each 

burst was used. To the cell lysate RNase A at 10 pg/ml and DNase I at 5 pg/ml were added 

along with MgCh to a final concentration of 1 mM, the lysate was incubated on ice for 15 

minutes. The lysate was centrifuged at 10,000 x g for 30 minutes at 4°C to pellet the cellular 

debris. A small sample of the native supernatant was mixed with an equal volume of 2x 

sample buffer for analysis by SDS-PAGE, the remainder of the native supernatant was stored 

at -20°C. The cellular debris pellet was then prepared under denaturing conditions.

4.2.5.2 Preparation o f E. coli Cellular Debris Under Denaturing Conditions

The cellular debris pellet was resuspended in denaturing lysis buffer (50 mM NaH2PC>4, 10 

mM Tris-Cl, 8 M urea, pH 8 ) at 5 ml per gram of wet weight. The cell debris suspension was 

stirred for 1 hour at room temperature. The suspension was centrifuged at 10,000 x g for 30 

minutes at room temperature to pellet the cellular debris. A small sample of the denatured 

supernatant was mixed with an equal volume of 2x sample buffer for analysis by SDS-PAGE, 

the remainder of the denatured supernatant was stored at -20°C.

4.2.5.3 Purification o f 6xHis-tagged Proteins from E. coli Lysate Under Native Conditions 

To 4ml of the native supernatant, 1 ml of a 50% Ni-NTA slurry was added and mixed gently 

on a rotary shaker at 4°C for 60 minutes. The mixture was centrifuged at 1000 x g for 10 

seconds to pellet the resin. The supernatant was carefully taken off the resin, a lOOpl aliquot 

of the supernatant was mixed with 5x sample buffer for analysis by SDS-PAGE as the 

unbound fraction, and the remainder of the supernatant was stored at -20°C. The resin was 

then washed twice with 5 ml of wash buffer (50 mM NaH2P0 4 , 300 mM NaCl, 20 mM
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imidazole, pH 8), the suspension was centrifuged at 1000 x g for 30 seconds after each wash, 

the supernatant was carefully removed from the resin and a 1 0 0  pi aliquot of the supernatant 

mixed with 5x sample buffer for analysis by SDS-PAGE as the first and second wash 

fractions, respectively, the remainder of the supernatant was stored at -20°C. Proteins were 

eluted from the resin 4 times by the addition of 1 ml of elution buffer (50 mM NaH2PC>4, 300 

mM NaCl, 250 mM imidazole, pH 8 ), the suspension was centrifuged at 1000 x g for 1 

minute after each elution step, the supernatant was carefully removed from the resin and a 100  

pi aliquot of the supernatant mixed with 5x sample buffer for analysis by SDS-PAGE and 

labelled as eluates 1-4, respectively, the remainder of the supernatant was stored at -20°C.

4.2.5.4 Purification o f 6xHis-tagged Proteins from E. coli Cellular Debris Under 

Denaturing Conditions

The procedure for preparing 6 xHis-tagged proteins from E. coli cellular debris under 

denaturing conditions is as described in 4.2.5.3. With the following exceptions wash buffer 

(50 mM NaH2P0 4 , 10 mM Tris-Cl, 8 M urea, pH 6.3) and elution buffer (50 mM NaH2P0 4 , 

10 mM Tris-Cl, 8 M urea, pH 5.9). A further 4 elutions were carried out by the addition of 1 

ml of elution buffer (50 mM NaH2P0 4 , 10 mM Tris-Cl, 8 M urea, pH 4.5) the suspension was 

centrifuged at lOOOxg for 1 minute after each elution step, the supernatant was carefully 

removed from the resin and a 100 pi aliquot of the supernatant mixed with 5x sample buffer 

for analysis by SDS-PAGE and labelled as eluates 5-8, respectively, the remainder of the 

supernatants were stored at -20°C.

4.2.6 SDS-PAGE and Western Blot Analysis

SDS-PAGE and Western blot analysis was carried out as previously described in section 2.2.4 

of Chapter 2.

4.2.6.1 Western Blotting using Specialised Membrane

Immobilpon-PSQ transfer membrane (Millipore) was used to maximise protein binding, this 

membrane is well-suited for immunodetection of proteins that are less than 20 kDa following 

electroblotting from electrophoresis gels. SDS-PAGE gels were equilibrated for 20 minutes in 

transfer buffer PSQ (Laemmli buffer containing 35% methanol). The Immobilpon-PSQ transfer 

membrane was prepared by wetting the membrane in 100% methanol for 1-3 seconds,
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transferring to H2O for 2  minutes to displace the methanol, finally the membrane was 

equilibrated in transfer buffer PSQ prior to Western blotting as detailed in section 2.2.4.

4.2.6.2 Immuno-detection Using Qiagen’s Penta-His Antibody

PVDF filters were removed from the blotting apparatus; washed twice for 10 minutes with 

TBS, and then incubated in 3% (w/v) BSA in TBS for 1 hour to saturate protein binding sites 

on the filters. The filters were again washed twice for 10 minutes with TBS containing 0.05% 

(v/v) Tween 20 and once for 10 minutes with TBS. Filters were incubated in penta-His 

antibody diluted to 0.2 pg/ml in 3% (w/v) BSA in TBS for 1 hour. The filters were washed 

again twice for 10 minutes with TBS containing 0.05% (v/v) Tween 20 and once for 10 

minutes with TBS. Filters were incubated with a sheep anti-mouse HRP conjugated secondary 

antibody, diluted 1:20,000 with TBS containing 0.05% (v/v) Tween 20 for 45 minutes. Filters 

were washed four times with TBS containing 0.05% (v/v) Tween 20 for 10 minutes each time. 

ECL reagent was applied to the filters and the filters were exposed to ECL hyperfilm for 1 

hour.

4.2.7 Determination of Protein Concentration

A protein assay kit based on bicinchoninic acid (BCA) was used to estimate the concentration 

of protein samples. The BCA protein assay kit (Pierce) was used according to manufacturer’s 

instructions. Briefly, the BCA working reagent was prepared by mixing 50 parts of BCA 

reagent A (containing sodium carbonate, sodium bicarbonate, bicinchoninic acid and sodium 

tartate in 0.1M sodium hydroxide) with 1 part of BCA reagent B (containing 4% cupric 

sulphate). A range of BSA standards from 0 to 2000pg/ml were prepared to generate a 

standard curve for determining concentrations of unknown protein samples. 25pl of BSA 

standards or unknown samples were applied to wells of a 96-well microplate in triplicate, 

2 0 0 pl of the working reagent was added to each well and was mixed thoroughly using a plate 

shaker for 30 seconds. The plate was covered and incubated for 30 minutes at 37°C, the plate 

was cooled to room temperature and the absorbance was measured at 590nm. The BSA 

standard curve was then used to estimate the protein concentration in samples prepared using 

the Ni-NTA agarose.

4.2.8 Optimisation of Antibody Dilutions Required for Interaction Analysis

The His-tagged mouse recombinant DHFR protein (5 pg/ml) in PBS was used to coat the 

wells of a 96-well microtitre plate, as a control 3% (w/v) BSA in PBS was also used to coat
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wells, 100 pi of each coating was applied. The plate was incubated at 37°C overnight, all 

subsequent incubations were carried out at 37°C. The wells were washed three times with 200 

pi of PBS containing 0.05% (v/v) Tween 20. Un-occupied binding sites on the wells were 

then blocked with 200 pi of 3% (w/v) BSA in PBS for 1 hour. The wells were washed as 

above. The Qiagen penta-His antibody was applied down the plate in doubling dilutions, from 

1 pg/ml to 0.0625 pg/ml, the antibody was diluted in PBS and 100 pi was applied to DHFR 

and 3% (w/v) BSA coated wells. The antibody was incubated for 2 hours, before the wells 

were washed as above. A HRP conjugated sheep anti-mouse secondary antibody (Sigma) was 

then applied 100 pl/well across the plate in doubling dilutions in PBS, from 1:1000 to 

1:16,000. The wells were washed as above. The chromogenic substrate OPD was then applied 

to the wells, 100 pi of 1 mg/ml OPD in 0.5M sodium citrate, pH 5.5, containing 0.125% (v/v) 

hydrogen peroxide was incubated in wells from 5-15 minutes after which the reaction was 

stopped by addition of 50 pi of 1 M H2SO4. The absorbance was read at 492 nm on a 

multiwell plate reader.

4.2.8.1 Interaction Analysis using Basic Solid Phase Assay

96 well microtiter plates (ICN Biomedicals, UK) were coated with 100 pi of 5 pg/ml human 

recombinant decorin (EMP Genetech, Germany) or bovine biglycan, in PBS, (0.14 M NaCl,

2.7 mM KC1, 1.8 mM KH2 PO4, 10 mM Na2HP0 4 ,pH 7.4). In control experiments wells were 

coated with 100 pi of 3% (w/v) BSA in PBS. Plates were coated overnight at 37°C, all 

following incubations were carried out at 37°C. Wells were washed three times with 200 pi of 

PBS containing 0.05% (v/v) Tween-20 (PBS-T), this washing step was repeated after each 

subsequent incubation. To avoid non-specific interactions, wells were blocked for 1 hour with 

200 pi of 3% (w/v) BSA in PBS. Coated wells were incubated for 2 hours with 100 pi of 0-5 

pg/ml of the recombinant NCI fragments (F l/R l, F1/R2, F2/R2, F2/R3) and DHFR in PBS. 

The amount of bound protein was determined by incubation for 2 hours with 100 pi of a 

monoclonal penta-His antibody diluted with PBS to 0.125 pg/ml. Bound IgG was detected 

with a sheep anti-mouse horse radish peroxidase (HRP) secondary antibody, diluted 1:1000 

with PBS, 100 pi per well of the secondary antibody was incubated for 2 hours. Enzyme 

activity was measured with OPD as the substrate, 100 pi of 1 mg/ml OPD in 0.5 M sodium 

citrate, pH 5.5, containing 0.125% (v/v) hydrogen peroxide was incubated in wells for 5-15 

minutes and the reaction was stopped with 50 pi of 1 M H2S0 4 - The absorbance was read at 

492 nm on a multiwell plate reader.

163



CHAPTER 4

4.3 RESULTS

4.3.1 Amplification, TA Cloning and DNA Sequencing of NCI Fragments

Primers which had been previously designed by Dr Alvin Kwan (Cardiff University, UK) 

were utilised to amplify different regions of the NCI sequence from a plasmid DNA 

preparation which contained the entire NCI sequence (supplied by Dr Alvin Kwan). Primer 

sequences and their annealing positions with regard to the whole NCI sequence are shown in 

figure 4.4. The primer pair combinations displayed in table 4.2 were used to yield five 

different products:

Forward Primer Reverse Primer Size of Product (bp)

NCI FI NCI R1 201

NCI FI NCI R2 312

NCI F2 NCI R2 120

NCI F2 NCI R3 291

NCI F3 NCI R3 192

Table 4.2: Summary of primer pair combinations used and expected product sizes generated.

PCR was performed as previously described and products were visualised using ethidium 

bromide staining in a 1% agarose gel after electrophoresis (figure 4.7). Products of 201 bp 

generated by F l/R l, 312bp generated by F1/R2, 120bp generated by F2/R2, 291 bp generated 

by F2/R3 and 192bp generated by F3/R3 can be seen in lanes 2, 4, 6 , 8 and 10, respectively. 

The H2Q controls for each PCR reaction were negative, lanes 3, 5, 7, 9 and 11.
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1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.7: PCR products generated using different combinations of the NCI 
primers. 1% agaraose gel electrophoresis of PCR amplified products from a 
plasmid DNA template containing the NCI sequence (diluted 1:100) and a H20  
control:
1. 100 bp ladder
2. Plasmid DNA
3. H20
4. Plasmid DNA
5. H20
6. Plasmid DNA
7. H20
8. Plasmid DNA
9. H20
10. Plasmid DNA
11 .h 2o

12. lOObp ladder

201 bp product^
I Primed with NCI FI -  NCI R1

312bp product 3 Primed with NC1 FI -  NCI R2 

120bp product 1 Primed with NCI F2-N C 1 R2

291 bp product 

192bp product

Primed with NCI F2 -  NCI R3

Primed with NCI F3 -  NCI R3
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PCR products F l/R l, F1/R2, F2/R2, F2/R3 and F3/R3 were excised from the agarose gel and 

purified using Qiagen’s QIAEX II gel extraction kit. Purified PCR product was then used in a 

ligation reaction with the cloning vector pGEM-T, these ligations were subsequently used to 

transform competent E. coli JM109 cells. Transformed bacteria were plated onto LB agar 

plates containing IPTG, X-gal and lOOpg/ml ampicillin. Following overnight incubations 

colour screening was used to determine transformed colonies, white colonies which contained 

an insert were selected and used to inoculate a 10ml liquid culture. Plamid DNA was prepared 

from transformed bacteria using Promega’s Wizard mini-prep kit for each product F l/R l, 

F1/R2, F2/R2, F2/R3 and F3/R3.

Plamid DNA purified using the Promega Miniprep Wizard kit was used to determine 

sequences for the different NCI fragments (F l/R l, F1/R2, F2/R2, F2/R3 and F3/R3) that had 

been cloned into pGEM-T. Sequence data obtained from Chromas chromatograms was 

analysed, the insert was located and vector sequence was identified. All the sequence data 

from the different clones was aligned to the COL10A1 mRNA sequence (gi: 18105031) using 

the sequence alignment programme BLAST2, only clones that contained a 100% sequence 

homology were selected for sub-cloning into the expression vector. The NCI fragment clones 

F l/R l (figure 4.8), F1/R2 (figure 4.9), F2/R2 (figure 4.10) and F2/R3 (figure 4.11) all 

contained 100% homology to the COL10A1 mRNA sequence. Unfortunately none of the 

F3/R3 containing clones selected had 100% homology to the COL10A1 mRNA, all F3/R3 

clones selected containing the 192bp product contained mismatches in the sequence. These 

clones were therefore not used for subsequent sub-cloning and were excluded from the 

remainder of the study.
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Query: 1 gtcatgcctgagggttttataaaggcaggccaaaggcccagtctttctgggacccctctt
l I l l l l l I l i l I l l l I > l l l l l l I l I l l l I l l l l l l I I l I I i l  I l I l I I i l i l i I i i i i I

60

Sbjct: 1654
i i i i i i i i i i i i i i i i  i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i
gtcatgcctgagggttttataaaggcaggccaaaggcccagtctttctgggacccctctt 1713

Query: 61 gttagtgccaaccagggggtaacaggaatgcctgtgtctgcttttactgttattctctcc 
I I 1 I I I I I 1 I I I i i  I i I i i  i I I I i i i  I I 1 i I I I i I i I I I I i i I I I i I i i  i i i i  i i i i m  i

120

Sbjct: 1714
I I  I I  1 1 1 1 I I  1 1 I I  1 1 I I  1 I I  1 I I  I I  ! I I  I I  1 1 I I  1 I I  I I  1 1 I I  I I  1 1 1 1 1 1 I I  I I  1 I I  1
gttagtgccaaccagggggtaacaggaatgcctgtgtctgcttttactgttattctctcc 1773

Query: 121 aaagcttacccagcaataggaactcccataccatttgataaaattttgtataacaggcaa 
1 I I l I I I I 1 I 1 I I I I l I I l I I l I I I I 1 1 1 I I I I 1 I 1 l 1 M 1 1 I 1 1 1 I 1 1 I 1 1 1 I 1 I 1 I 1 I

180

Sbjct: 1774
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

aaagcttacccagcaataggaactcccataccatttgataaaattttgtataacaggcaa 1833

Query: 181 cagcattatgacccaaggact 201 
I i I i I I 1 I 1 I 1 1 I I I I 1 I 1 I I

Sbjct: 1834
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

cagcattatgacccaaggact 1854

Figure 4.8: 100% sequence identity of NCI clone F l/R l, the query, with the COL10A1 

mRNA, the subject, sequence alignment was performed using nucleotide-nucleotide BLAST. 

Positions of forward primers (in green) and reverse primers (in red) are highlighted. All 201 bp 

are 100% homologous to the COL10A1 subject.
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Query: 1 gtcatgcctgagggttttataaaggcaggccaaaggcccagtctttctgggacccctctt 60 
I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Sbjct: 1654 gtcatgcctgagggttttataaaggcaggccaaaggcccagtctttctgggacccctctt 1713

Query: 61 gttagtgccaaccagggggtaacaggaatgcctgtgtctgcttttactgttattctctcc 120 I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
Sbjct: 1714 gttagtgccaaccagggggtaacaggaatgcctgtgtctgcttttactgttattctctcc 1773

Query: 121 aaagcttacccagcaataggaactcccataccatttgataaaattttgtataacaggcaa 180 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I II 
Sbjct: 1774 aaagcttacccagcaataggaactcccataccatttgataaaattttgtataacaggcaa 1833

Query: 181 cagcattatgacccaaggactggaatctttacttgtcagataccaggaatatactatttt 240 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I 

Sbjct: 1834 cagcattatgacccaaggactggaatctttacttgtcagataccaggaatatactatt'tt 1893

Query: 241 tcataccacgtgcatgtgaaagggactcatgtttgggtaggcctgtataagaatggcacc 300 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Sbjct: 1894 tcataccacgtgcatgtgaaagggactcatgtttgggtaggcctgtataagaatggcacc 1953

Query: 301 cctgtaatgtac 312
I I I I II I I II I I 

Sbjct 1954 cctgtaatgtac 1965

Figure 4.9: 100% sequence identity of NCI clone F1/R2, the query, with the COL10A1 

mRNA, the subject, sequence alignment was performed using nucleotide-nucleotide BLAST. 

Positions of forward primers (in green) and reverse primers (in red) are highlighted. All 312bp 

are 100% homologous to the COL10A1 subject.

Query: 1 ccaaggactggaatctttacttgtcagataccaggaatatactatttttcataccacgtg 60 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I 

Sbjct: 1846 ccaaggactggaatctttacttgtcagataccaggaatatactatttttcataccacgtg 1905

Query: 61 catgtgaaagggactcatgtttgggtaggcctgtataagaatggcacccctgtaatgtac 120 
I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

Sbjct: 1906 catgtgaaagggactcatgtttgggtaggcctgtataagaatggcacccctgtaatgtac 1965

Figure 4.10: 100% sequence identity of NCI clone F2/R2, the query, with the COL10A1 

mRNA, the subject, sequence alignment was performed using nucleotide-nucleotide BLAST. 

Positions of forward primers (in green) and reverse primers (in red) are highlighted. All 120bp 

are 100% homologous to the COL10A1 subject.
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Query: 1 ccaaggactggaatctttacttgtcagataccaggaatatactatttttcataccacgtg 60 
I I I I I ! I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I 

Sbjct: 184 6 ccaaggactggaatctttacttgtcagataccaggaatatactatttttcataccacgtg 1905

Query: 61 catgtgaaagggactcatgtttgggtaggcctgtataagaatggcacccctgtaatgtac 120 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I 

Sbjct: 1906 catgtgaaagggactcatgtttgggtaggcctgtataagaatggcacccctgtaatgtac 1965

Query: 121 acctatgatgaatacaccaaaggctacctggatcaggcttcagggagtgccatcatcgat 180 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Sbjct: 1966 acctatgatgaatacaccaaaggctacctggatcaggcttcagggagtgccatcatcgat 2025

Query: 181 ctcacagaaaatgaccaggtgtggctccagcttcccaatgccgagtcaaatggcctatac 240
I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Sbjct: 2026 ctcacagaaaatgaccaggtgtggctccagcttcccaatgccgagtcaaatggcctatac 2085

Query: 241 tcctctgagtatgtccactcctctttctcaggattcctagtggctccaatg 291
II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I 

Sbjct: 2086 tcctctgagtatgtccactcctctttctcaggattcctagtggctccaatg 2136

Figure 4.11: 100% sequence identity o f NCI clone F2/R3, the query, with the COL10A1 

mRNA, the subject, sequence alignment was performed using nucleotide-nucleotide BLAST. 

Positions of forward primers (in green) and reverse primers (in red) are highlighted. All 291 bp 

are 100% homologous to the COL10A1 subject.

4.3.2 Sub-cloning into the pQE-30 expression vector

Plasmid DNA containing NCI inserts F l/R l, F1/R2, F2/R2 and F2/R3; which were 

confirmed to have a 100% homology with the COL10A1 mRNA, were used as templates for 

subsequent PCR reactions. All o f the NCI fragments: F l/R l, F1/R2, F2/R2 and F2/R3 were 

generated using primers designed to be ‘in-frame’, no additional base pairs were therefore 

required in the expression vector to ensure that the correct in-frame protein would be 

produced. The expression vector pQE-30 was therefore selected as the expression vector 

(figure 4.2)

The NCI primers previously described were adapted to contain 5’ restriction sites, which 

would allow directional sub-cloning into the pQE-30 expression vector. Analysing the pQE- 

30 expression vectors multiple cloning site (MCS) (figure 4.2); showed that cleaving the 

expression vector with Bam H I and Hind III, would be beneficial with regards to removing 

the largest amount o f sequence from the MCS and hence having least number o f additional
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amino acids when the protein is expressed. However, following analysis of the NCI domain 

sequence for restriction sites, a Hind III restriction site was identified. The enzymes used for 

directional sub-cloning should not have recognition sequences within the insert to be cloned. 

Therefore, Bam H I and Pst I were determined as the enzymes of choice for linearising the 

pQE-30 expression vector and were the recognition sequences used to adapt the NCI primers 

(figure 4.12).The Bam H I recognition sequence GGA TCC was placed 5’ of the forward 

primers and the Pst I recognition sequence CTG CAG was placed 5’ of the reverse primers. 

Three additional nucleotides; CCA, were placed 5’ of the restriction enzyme recognition 

sequences, this was to ensure there were enough nucleotides for stable binding of the 

restriction enzyme to the DNA.

Forward Primers

Bam H I-NC1 FI 5’CCA GGA TCC GTC ATG CCT GAG GGT TTT ATA 

Bam H I-NC1 F2 5’CCA GGA TCC CCA AGG ACT GGA ATC TTT ACT

Reverse Primers

Pst I-N C1 R1 5’CCA CTG CAG AGT CCT TGG GTC ATA ATG CTG

Pst I-NC1 R2 5’CCA CTG CAG GTA CAT TAC AGG GGT GCC

Pst I-NC 1 R3 5’CCA CTG CAG CAT TGG AGC CAC TAG GAA TCC

Figure 4.12: Sequences of the restriction site adapted NC1-F and NC1-R primers, restriction 

sites are highlighted in blue.

These restriction site adapted primers were then used in PCR reactions with the F l/R l, F1/R2, 

F2/R2 and F2/R3 pGEM-T plasmid DNA preparations. Plasmid DNA was used as a template 

at different dilutions and using a DNA polymerase containing proof-reading activity. PCR 

was performed as previously described and products were visualised using ethidium bromide 

staining in a 1% agarose gel after electrophoresis (figure 4.13). All of the products were 

expected to be 18bp larger than the previous product size in figure 4.7, due to the additional 

restriction sequences on the primers.

Products in lanes 2 and 3 of figure 4.13(a) are approximately 309bp, generated from the 

F2/R3 template using the primers Bam H I-NC1 F2 and Pst I-NC1 R3. Products in lanes 2 

and 3 of figure 4.13(b) are approximately 330bp, generated from the F1/R2 template using the
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primers Bam H I-NC1 FI and Pst I-NC1 R2. Products in lanes 2 and 3 of figure 4.13(c) are 

approximately 138bp, generated from the F2/R2 template using the primers Bam H I-NC1 F2 

and Pst I-NC1 R2. Products in lanes 2 and 3 of figure 4.13(d) are approximately 218bp, 

generated from the F l/R l template using the primers Bam H I-NC1 FI and Pst I-NC1 Rl. 

Water controls for each PCR reaction in lane 4 (figure 4.13 (a), (b), (c), (d)) were all negative. 

Products were run on separate gels to prevent cross-contamination during extraction of the 

bands from the gels. The PCR products were purified using Qiagen’s QIAex II purification 

kit.

The purified PCR products from figure 4.13 and the pQE-30 expression vector were digested 

with restriction enzymes Bam H I and Pst I. The restricted products and the linearised p QE- 

30 expression vector (figure 4.14) were then ligated using the enzyme T4 DNA ligase. Figure 

4.15 summarises the sub-cloning procedure.
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309 bp product

330 bp product

138 bp products

219 bp products

Figure 4.13: 1% agarose gel electrophoresis o f PCR amplified products with NCI 
primers containing 5' restriction sites from plasmid DNA. Lane 1: 100 bp ladder, 
lane 2: plasmid DNA diluted 1:1000, lane 3: plasmid DNA diluted 1:100, lane 4: 
H?0  control.

[a] Amplification with Bam H 1 NCI F2 and Pst 1 NCI R3 

fb] Amplification with Bam H i NCI FI and Pst 1 NCI R2 

fc| Amplification with Bam H 1 NCI F2 and Pst 1 NCI R2 

[d| Amplification with Bam H 1 NCI FI and Pst 1 N C 1 R1
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3.4 kb linear 
pQ E -30

Figure 4.14: 1% agarose gel electrophoresis of linearised pQE-30 expression 
vector after Bam H I and Pst I restriction digest. Lane 1: Hyperladder I, Lanes 
2-5: pQE-30 expression vector (1 pg), lane 6: uncut pQE-30 expression vector
(0.2 gg).

173



CHAPTER 4

Expression
Vector

NCI fragment
generated by PCR

i
Product purified and cloned 

♦

pQE-30

Multiple cloning site

I
Linearisation of expression vector 

using restriction enzymes

!
pQE-30

Pst IBam H I

t  t
Bam H I  Pst I

Amplification with NCI primers 
containing 5’ restriction sites

t

Pst I

Bam H 1 /  |

Purification and restriction digestion of product

i

\  /
Gel purification

I

Bam H I I Pst I

j __________£

Bam H I  p i t  I

Ligation of product and linearised expression vector

Figure 4.15: Sub-cloning steps used to generate NCI fragment expression vectors.
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4.3.3 Confirming the presence of NCI Fragments in the pQE-30 expression vector in 

transformed E. coli

From a 30pl ligation reaction, 5pl was used to transform M15[pREP4] and XL-1 Blue E. coli 

competent cells. Both types of E. coli were used to maximise the possibility of successful 

transformation and expression of recombinant protein. As a control the expression plasmid 

pQE-40 was also used to transform E. coli. Cells were plated onto selective agar plates and 

single colonies were subsequently used to inoculate 10ml overnight liquid cultures. For each 

of the NCI inserts F l/R l, F1/R2, F2/R2 and F2/R3, three colonies A, B and C were selected 

from each plate. Glycerol stocks of F l/R l A-C, F1/R2 A-C, F2/R2 A-C and F2/R3 A-C were 

taken and plasmid DNA was purified from these cultures, this DNA was used as a template to 

determine the sequences of the inserts and in PCR reactions using the original NC1-F and 

NC1-R primers. Glycerol stocks were also made of the pQE-40 transformed bacteria and 

plasmid DNA was prepared.

PCR reactions were performed to confirm the presence of the NCI inserts in the transformed 

M15[pREP4] and XL-1 Blue E. coli cells. The plasmid DNA preparations F l/R l A-C, F1/R2 

A-C, F2/R2 A-C and F2/R3 A-C; were used as templates in PCR reactions, which utilised the 

NCI F and NCI R primers originally used to generate the fragments. PCR was performed as 

previously described and products were visualised using ethidium bromide staining in a 1% 

agarose gel after electrophoresis (figure 4.16 & 4.17).

Figure 4.16 shows products generated using the plasmid DNA prepared from M15[pREP4] 

cells. Products of 201bp generated by priming with NCI FI and NCI R1 can be seen in lanes 

2, 3 and 4 which correspond to F l/R l A-C, products of 291 bp generated by priming with 

NCI F2 and NCI R3 can be seen in lanes 6, 7 and 8 which correspond to F2/R3 A-C, 

products of 312bp generated by priming with NCI FI and NCI R2 can be seen in lanes 10, 11 

and 12 which correspond to F1/R2 A-C, products of 120bp generated by priming with NCI 

F2 and NCI R2 can be seen in lanes 14, 15 and 16 which correspond to F2/R2 A-C. The FLO 

controls for each PCR reaction were negative, lanes 5, 9, 13 and 17.

Figure 4.17 shows products generated using the plasmid DNA prepared from XL-1 Blue cells. 

Products of 201bp generated by priming with NCI FI and NCI R1 can be seen in lanes 2 and 

4 which correspond to F l/R l A and C, no product was generated using the F l/R l B DNA as a 

template, products of 291bp generated by priming with NCI F2 and NCI R3 can be seen in
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lanes 6, 7 and 8 which correspond to F2/R3 A-C, products of 312bp generated by priming 

with NCI FI and NCI R2 can be seen in lanes 10, 11 and 12 which correspond to F1/R2 A-C, 

products of 120bp generated by priming with NCI F2 and NCI R2 can be seen in lanes 14, 15 

and 16 which correspond to F2/R2 A-C. The H2O controls for each PCR reaction were 

negative, lanes 5, 9, 13 and 17.

Plasmid DNA F l/R l A-C, F1/R2 A-C, F2/R2 A-C and F2/R3 A-C from M15[pREP4] cells 

was used as templates for sequencing the inserts in the pQE-30 expression vector using the 

Qiagen sequencing primers. Sequence data obtained from Chromas chromatograms was 

analysed, the insert was located and vector sequence was identified. All the sequence data 

from the different clones was aligned to the COL10A1 mRNA sequence (gi: 18105031) using 

the sequence alignment programme BLAST2. Sequencing was carried out to ensure that no 

errors had been incorporated into the inserts during the sub-cloning procedure. 100% 

homology was found in all clones sequenced, figures 4.18, 4.19, 4.20 and 4.21 show the 

nucleotide sequence of the inserts, the predicted protein sequence and the sizes expected when 

the recombinant proteins are expressed.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

V  Y"

201 bp 291 bp 312 bp 120 bp
product product product product

Figure 4.16: 1% agarose gel electrophoresis of PCR amplified products from 
plasmid DNA samples diluted 1:100; from different colonies of M15[pREP4] 
cells transformed with different NCI fragments, using combinations of NCI F 
and NCI R primers:

1. 100 bp ladder

2. Colony A^j

3. Colony B (>- NCI FI -N C I  R1 201 bp product

4. Colony C

5. h 2°  J

6. Colony A

7. Colony B
>

NCI F 2 -N C 1  R3 291 bp product

8. Colony C

9. h 2o

10. Colony A '

11. Colony B NCI FI -N C I  R2 312 bp product

12. Colony C

13. H20

14. Colony A

15. Colony B ► NCI F 2-N C 1 R2 120 bp product

16. Colony C

17. h 2o

18. 100 bp ladder
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1 2 3 4  5 6 7 8 9 10 11 12 13 14 15 16 17 18

500 bp 
400 bp Z  
300 bp — 
200 bp — 
100 bp —

201 bp 
product

291 bp 
product

312 bp 
product

120 bp 
product

.500 bp 
-400 bp 
-300 bp 
-200 bp 
'100 bp

Figure 4.17: 1% agarose gel electrophoresis of PCR amplified products from 
plasmid DNA samples diluted 1:100; from different colonies of XL-1 Blue cells 
transformed with different NCI fragments, using combinations of NCI F and 
NCI R primers: 1.

2 .

3.

4.

5.

6 .

7.

8.

9.

10 . 

1 1 . 

12.

13.

14.

15.

16.

17.

18.

100 bp ladder 

Colony A 

Colony B 

Colony C

h 2o

Colony A 

Colony B 

Colony C 

H2°

Colony A 

Colony B 

Colony C 

H20

Colony A 

Colony B 

Colony C

h 2o

100 bp ladder

N C 1 F 1 -  N C 1 R1 201 bp product

N C 1 F2 -  N C 1 R3 291 bp product

NCI FI -  NCI R2 312 bp product

NC 1 F2 -  NC 1 R2 120 bp product

178



CHAPTER 4

Below is shown the nucleotide and protein sequences for the F l/R l NCI fragment, the 201 bp 

insert codes for 67 amino acids, however the recombinant protein will contain 19 additional 

amino acids due to the presence of the MCS of the pQE-30 expression vector. This 86 amino 

acid recombinant protein has a calculated molecular weight of 9372 Da.

ATG AGA
9

GGA TCG CAT
18

CAC CAT CAC
27

CAT CAC GGA
36

TCC GTC ATG
45

CCT GAG GGT
54

TTT

Met Arg Gly Ser His His His His His His Gly Ser Val Met Pro Glu Gly Phe

ATA AAG
63

GCA GGC CAA
72

AGG CCC AGT
81

CTT TCT GGG
90

ACC CCT CTT
99

GTT AGT GCC
108
AAC

H e Lys Ala Gly Gin Arg Pro Ser Leu Ser Gly Thr Pro Leu Val Ser Ala Asn

CAG GGG
117
GTA ACA GGA

126
ATG CCT GTG

135
TCT GCT TTT

144
ACT GTT ATT

153
CTC TCC AAA

162
GCT

Gin Gly Val Thr Gly Met Pro Val Ser Ala Phe Thr Val lie Leu Ser Lys Ala

TAC CCA
171
GCA ATA GGA

180
ACT CCC ATA

189
CCA TTT GAT

198
AAA ATT TTG

207
TAT AAC AGG

216
CAA

Tyr Pro Ala lie Gly Thr Pro lie Pro Phe Asp Lys lie Leu Tyr Asn Arg Gin

225 234 243 252 261
CAG CAT TAT GAC CCA AGG ACT CTG CAG CCA AGC TTA ATT AGC TGA 3'

Gin His Tyr Asp Pro Arg Thr Leu Gin Pro Ser Leu lie Ser ***

Figure 4.18: Sequence data of NCI fragment F l/R l, showing multiple cloning site of pQE-30 

expression vector (in red) and the NCI insert (in black), the protein sequence is displayed 

below the corresponding nucleotide sequence.

179



CHAPTER 4

Below is shown the nucleotide and protein sequences for the F2/R3 NCI fragment, the 291 bp 

insert codes for 97 amino acids, however the recombinant protein will contain 19 additional 

amino acids due to the presence of the MCS of the pQE—30 expression vector. This 116 

amino acid recombinant protein has a calculated molecular weight of 13,075 Da.

ATG AGA
9

GGA TCG CAT
18

CAC CAT CAC
27

CAT CAC GGA
36

TCC CCA AGG
45

ACT GGA ATC
54

TTT
Met Arg Gly Ser His His His His His His Gly Ser Pro Arg Thr Gly lie Phe

ACT TGT
63

CAG ATA CCA
72

GGA ATA TAC
81

TAT TTT TCA
90

TAC CAC GTG
99

CAT GTG AAA
108
GGG

Thr Cys Gin H e Pro Gly lie Tyr Tyr Phe Ser Tyr His Val His Val Lys Gly

ACT CAT
117
GTT TGG GTA

126
GGC CTG TAT

135
AAG AAT GGC

144
ACC CCT GTA

153
ATG TAC ACC

162
TAT

Thr His Val Trp Val Gly Leu Tyr Lys Asn Gly Thr Pro Val Met Tyr Thr Tyr

GAT GAA
171
TAC ACC AAA

180
GGC TAC CTG

189
GAT CAG GCT

198
TCA GGG AGT

207
GCC ATC ATC

216
GAT

Asp Glu Tyr Thr Lys Gly Tyr Leu Asp Gin Ala Ser Gly Ser Ala lie lie Asp

CTC ACA
225
GAA AAT GAC

234
CAG GTG TGG

243
CTC CAG CTT

252
CCC AAT GCC

261
GAG TCA AAT

270
GGC

Leu Thr Glu Asn Asp Gin Val Trp Leu Gin Leu Pro Asn Ala Glu Ser Asn Gly

CTA TAC
279
TCC TCT GAG

288
TAT GTC CAC

297
TCC TCT TTC

306
TCA GGA TTC

315
CTA GTG GCT

324
CCA

Leu Tyr Ser Ser Glu Tyr Val His Ser Ser Phe Ser Gly Phe Leu Val Ala Pro

ATG CTG
333
CAG CCA AGC

342
TTA ATT AGC

351
TGA 3’

Met Leu Gin Pro Ser Leu lie Ser •k -k "k

Figure 4.19: Sequence data of NCI fragment F2/R3, showing multiple cloning site of pQE-30 

expression vector (in red) and the NCI insert (in black), the protein sequence is displayed 

below the corresponding nucleotide sequence.
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Below is shown the nucleotide and protein sequences for the F1/R2 NCI fragment, the 312 bp 

insert codes for 104 amino acids, however the recombinant protein will contain 19 additional 

amino acids due to the presence of the MCS of the pQE-30 expression vector. This 123 

amino acid recombinant protein has a calculated molecular weight of 13,632 Da.

ATG AGA
9

GGA TCG CAT
18

CAC CAT CAC
27

CAT CAC GGA
36

TCC GTC ATG
45

CCT GAG GGT
54

TTT

Met Arg Gly Ser His His His His His His Gly Ser Val Met Pro Glu Gly Phe

ATA AAG
63

GCA GGC CAA
72

AGG CCC AGT
81

CTT TCT GGG
90

ACC CCT CTT
99

GTT AGT GCC
108
AAC

H e Lys Ala Gly Gin Arg Pro Ser Leu Ser Gly Thr Pro Leu Val Ser Ala Asn

CAG GGG
117
GTA ACA GGA

126
ATG CCT GTG

135
TCT GCT TTT

144
ACT GTT ATT

153
CTC TCC AAA

162
GCT

Gin Gly Val Thr Gly Met Pro Val Ser Ala Phe Thr Val lie Leu Ser Lys Ala

TAC CCA
171
GCA ATA GGA

180
ACT CCC ATA

189
CCA TTT GAT

198
AAA ATT TTG

207
TAT AAC AGG

216
CAA

Tyr Pro Ala lie Gly Thr Pro lie Pro Phe Asp Lys lie Leu Tyr Asn Arg Gin

CAG CAT
225
TAT GAC CCA

234
AGG ACT GGA

243
ATC TTT ACT

252
TGT CAG ATA

261
CCA GGA ATA

270
TAC

Gin His Tyr Asp Pro Arg Thr Gly lie Phe Thr Cys Gin lie Pro Gly lie Tyr

TAT TTT
279
TCA TAC CAC

288
GTG CAT GTG

297
AAA GGG ACT

306
CAT GTT TGG

315
GTA GGC CTG

324
TAT

Tyr Phe Ser Tyr His Val His Val Lys Gly Thr His Val Trp Val Gly Leu Tyr

AAG AAT
333
GGC ACC CCT

342
GTA ATG TAC

351
CTG CAG CCA

360
AGC TTA ATT

369
AGC TGA 3'

Lys Asn Gly Thr Pro Val Met Tyr Leu Gin Pro Ser Leu lie Ser ★ * *

Figure 4.20: Sequence data of NCI fragment F1/R2, showing multiple cloning site of pQE-30 

expression vector (in red) and the NCI insert (in black), the protein sequence is displayed 

below the corresponding nucleotide sequence.
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Below is shown the nucleotide and protein sequences for the F2/R2 NCI fragment, the 120 bp 

insert codes for 40 amino acids, however the recombinant protein will contain 19 additional 

amino acids due to the presence of the MCS of the pQE-30 expression vector. This 59 amino 

acid recombinant protein has a calculated molecular weight of 6770 Da.

ATG AGA
9

GGA TCG CAT
18

CAC CAT CAC
27

CAT CAC GGA
36

TCC CCA AGG
45

ACT GGA ATC
54

TTT

Met Arg Gly Ser His His His His His His Gly Ser Pro Arg Thr Gly lie Phe

ACT TGT
63

CAG ATA CCA
72

GGA ATA TAC
81

TAT TTT TCA
90

TAC CAC GTG
99

CAT GTG AAA
108
GGG

Thr Cys Gin H e Pro Gly lie Tyr Tyr Phe Ser Tyr His Val His Val Lys Gly

ACT CAT
117
GTT TGG GTA

126
GGC CTG TAT

135
AAG AAT GGC

144
ACC CCT GTA

153
ATG TAC CTG

162
CAG

Thr His Val Trp Val Gly Leu Tyr Lys Asn Gly Thr Pro Val Met Tyr Leu Gin

CCA AGC
171
TTA ATT AGC

180
TGA 3'

Pro Ser Leu lie Ser ***

Figure 4.21: Sequence data of NCI fragment F2/R2, showing multiple cloning site of pQE-30 

expression vector (in red) and the NCI insert (in black), the protein sequence is displayed 

below the corresponding nucleotide sequence.
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4.3.4 Recombinant Protein Production and Purification

Bacteria were grown from glycerol stocks, up to a 500ml culture for each of the NCI 

fragments F l/R l, F1/R2, F2/R2 and F2/R3, and also for the control plasmid pQE-40 which 

encodes for the mouse recombinant DHFR protein. The bacterial cultures were induced to 

begin recombinant protein transcription and translation by addition of IPTG (as detailed in 

section 4.2.5). Cells were harvested after 5 hours, E. coli lysates were prepared under native 

conditions; (see section 4.2.5.1) and the cellular debris was prepared under denaturing 

conditions (see section 4.2.5.2). Proteins from the native and denatured preparations were 

purified using Ni-NTA agarose.

During the native purification process using Ni-NTA agarose; a total of ten samples were 

removed for analysis, these included: a non-induced culture control, an induced control 

culture, an E. coli native lysate, an un-bound protein fraction, the first Ni-NTA agarose wash 

(wash 1), the second Ni-NTA agarose wash (wash 2), and four Ni-NTA agarose elution 

fractions (Eluates 1-4). During the denaturing purification process using Ni-NTA agarose; a 

total of twelve samples were removed for analysis, these included: an E. coli denatured lysate, 

an un-bound protein fraction, the first Ni-NTA agarose wash (wash 1), the second Ni-NTA 

agarose wash (wash 2), and eight Ni-NTA agarose elution fractions (Eluates 1-8).

To determine the purity and the fraction which contained most of the recombinant proteins, all 

of the above samples were subsequently analysed by SDS-PAGE and Western blot analysis 

using the Qiagen penta-His antibody. Samples were separated on 12.5 or 15% polyacrylamide 

gels.

The mouse recombinant DHFR protein encoded by the pQE-40 expression plasmid is 

optimised for high level expression producing up to 40 mg/litre in culture. It is an ideal 

control for cell growth, expression and purification. Approximately, 10% of the 26 kDa 

recombinant protein is soluble and can be purified under native conditions the remaining 90% 

of protein accumulates as an insoluble form in inclusion bodies, purification under denaturing 

conditions is therefore required. The DHFR recombinant protein produced by M15[pREP4] 

cells and purified as a positive control in this study, was largely found in the insoluble 

inclusion bodies as expected.
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4.3.4.1 Analysis o f  the Positive Control Protein, DHFR

The 26 kDa DHFR recombinant protein purified under native conditions can be seen in figure 

4.22. On the Coomassie stained polyacrylamide gel, figure 4.22(a), a band which is slightly 

lower than the 29 kDa molecular weight marker can be seen in the induced control sample 

(lane 3), the native E. coli lysate (lane 4) and in eluates 1-4 (lanes 8-11). These bands (lanes 3, 

4, 8, 9 & 10) were confirmed to be the his-tagged DHFR recombinant protein by Western blot 

analysis, figure 4.22(b). The feint band seen in lane 11 in figure 4.22(a) was not detected by 

Western blot.

The samples which were purified under denaturing conditions, contained far more of the 

DHFR recombinant protein, as expected. On the Coomassie stained polyacrylamide gel, 

figure 4.23(a), a band which is around the same position as the 29 kDa molecular weight 

marker can be seen in all lanes. The intensity of this band varies in the samples with the most 

intense being found in the E. coli denatured lysate (lane 2) and in eluates 5-8 (lanes 10-13). 

The high level of DHFR in this preparation is highlighted by the fact that there are bands 

present in the un-bound protein fraction (lane3), indicative that all the his-tagged binding sites 

on the Ni-NTA agarose were occupied and there are also bands present in wash fractions 1 

and 2 (lanes 4 & 5).

These bands were confirmed to be the His-tagged DHFR recombinant protein by Western blot 

analysis, figure 4.23(b). A band around the same level as the 29 kDa molecular weight marker 

can be seen in all lanes. A higher molecular weight band has also been detected in the 

Western blot, this band is positioned around the 49 kDa molecular weight marker, this band is 

most prominent in the samples which have the most intense band at 29 kDa in the Coomassie 

stained gels (lanes 2 & 10-13). This band could potentially be a dimer of the 26 kDa DHFR 

protein.
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tagged DHFR

35 k D a ^  

29 kDa

21 kDa

9 10 11

(b)

Figure 4.22: SDS-PAGE and Western blot analysis of samples generated 
under native conditions using the Ni-NTA agarose to purify 6xHis-tagged 
DHFR. (a) Coomassie stained 12.5% polyacrylamide gel, lOpl of each 
sample loaded, lane 1: molecular weight ladder, lane 2: non-induced 
control, lane 3: induced control, lane 4: native lysate, lane 5: un-bound 
protein, lane 6: wash 1, lane 7: wash 2, lane 8: eluate 1, lane 9: eluate 2, 
lane 10: eluate 3, lane 11: eluate 4. (b) Anti penta-His antibody used in 
Western analysis of the samples detailed in (a).
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Figure 4.23: SDS-PAGE and Western blot analysis of samples generated 
under denaturing conditions using the Ni-NTA agarose to purify 6xHis- 
tagged DHFR. (a) Coomassie stained 12.5% polyacrylamide gel, lOjul of 
each sample loaded, lane 1: molecular weight ladder, lane 2: denatured 
lysate, lane 3: un-bound protein, lane 4: wash 1, lane 5: wash 2, lane 6: 
eluate 1, lane 7: eluate 2, lane 8: eluate 3, lane 9: eluate 4, lane 10: eluate 
5, lane 11: eluate 6, lane 12: eluate 7, lane 13: eluate 8, (b) Anti penta-His 
antibody used in Western analysis of the samples detailed in (a).
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4.3.4.2 Analysis o f the NCI Fragment, F l/R l

Samples obtained from the purification of the F l/R l recombinant protein under native and 

denaturing conditions were analysed by SDS-PAGE and Western blot analysis. The F l/R l 

recombinant protein is expected to have a molecular weight of 9372 Da, therefore the region 

of interest lay between the 7 and 21 kDa molecular weight markers. On the Coomassie stained 

polyacrylamide gel of the samples prepared under native conditions; figure 4.24(a), there is no 

obvious band of this size which appears after induction in the induced control (lane3) 

compared to the non-induced control (lane 2). There are prominent bands between the 7 and 

21 kDa molecular weight markers in the native E. coli lysate (lane 4), the un-bound protein 

fraction (lane 5) and in the wash 1 fraction (lane 6). However, these bands do not appear to be 

eluted off the Ni-NTA agarose (lanes 8-11), and are probably not His-tagged proteins. The 

lack of obvious F l/R l bands on the Coomassie stained gel; figure 4.24(a), was confirmed by 

the absence of any bands on the Western blot analysis of the same samples, figure 4.24(b).

The samples which were purified under denaturing conditions, contained no obvious Fl/R l 

bands on the Coomassie stained polyacrylamide gel, figure 4.25(a). There appears to be some 

bands in the area of interest in the denatured E. coli lysate (lane 2), the un-bound protein 

fraction (lane 3), and both wash fractions (lanes 4 & 5). However, the lack of bands in the 

eluate fractions (lanes 6-13) suggests that these bands are not His-tagged. Western blot 

analysis of the same samples; figure 4.25(b), confirmed that there was no His-tagged proteins 

in any of the samples.

The absence of recombinant F l/R l fragment in the native and denatured preparations could 

be caused by many factors which will be discussed later.
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Figure 4.24: SDS-PAGE and Western blot analysis of samples generated 
under native conditions using the Ni-NTA agarose to purify 6xHis-tagged 
Fl/R l recombinant fragment, (a) Coomassie stained 12.5% 
polyacrylamide gel, lOpl of each sample loaded, lane 1: molecular weight 
ladder, lane 2: non-induced control, lane 3: induced control, lane 4: native 
lysate, lane 5: un-bound protein, lane 6: wash 1, lane 7: wash 2, lane 8: 
eluate 1, lane 9: eluate 2, lane 10: eluate 3, lane 11: eluate 4. (b) Anti 
penta-His antibody used in Western analysis of the samples detailed in (a).
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Figure 4.25: SDS-PAGE and Western blot analysis of samples generated 
under denaturing conditions using the Ni-NTA agarose to purify 6xHis- 
tagged F l/R l recombinant fragment, (a) Coomassie stained 12.5% 
polyacrylamide gel, lOpl of each sample loaded, lane 1: molecular weight 
ladder, lane 2: denatured lysate, lane 3: un-bound protein, lane 4: wash 1, 
lane 5: wash 2, lane 6: eluate 1, lane 7: eluate 2, lane 8: eluate 3, lane 9: 
eluate 4, lane 10: eluate 5, lane 11: eluate 6, lane 12: eluate 7, lane 13: 
eluate 8, (b) Anti penta-His antibody used in Western analysis of the 
samples detailed in (a).
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4.3.43 Analysis o f the NCI Fragment, F1/R2

SDS-PAGE and Western blot analysis were used to analyse samples obtained from the 

purification of the F1/R2 recombinant protein under native and denaturing conditions. The 

F1/R2 recombinant protein was expected to have a molecular weight of 13,632 Da, therefore 

the region of interest lay between the 7 and 21 kDa molecular weight markers. On the 

Coomassie stained polyacrylamide gel of samples prepared under native conditions; figure 

4.26(a), there does appear to be a band in this region in the induced control (lane3), which is 

not in the non-induced control (lane 2), this band appears in the native E. coli lysate (lane 4), 

the un-bound protein fraction (lane 5) both wash fractions (lanes 6 & 7) and in eluates 1 and 2 

(lanes 8 & 9).

The Western blot analysis; figure 4.26(b), confirms the presence of His-tagged proteins in the 

induced control sample (lane 3), the native E. coli lysate (lane 4), the un-bound protein 

fraction (lane 5) and in eluates 1 and 2 (lanes 8 & 9), these bands are just below the 21 kDa 

molecular weight marker and are on the dye front. There are also higher molecular weight 

aggregates in these lanes below the 29 kDa molecular weight marker, a dimer of F1/R2 would 

have a molecular weight of 27,264Da, this band could therefore be a F1/R2 dimer. There are 

also feint bands in the non-induced control (lane 2) and in the un-bound protein fraction (lane 

5) which are not in the same positions as the bands in lanes 4, 5, 8 & 9.

The samples which were purified under denaturing conditions, contained far more of F1/R2 

recombinant protein. On the Coomassie stained polyacrylamide gel, figure 4.27(a), a band 

which is between the 7 and 21 kDa molecular weight marker can be seen in all lanes. The 

intensity of this band varies in the samples with the most intense being found in the E. coli 

denatured lysate (lane 2), the un-bound protein fraction (lane 3) and in eluates 5-8 (lanes 10- 

13). The high level of F1/R2 in this preparation is highlighted by the fact that there are bands 

present in the un-bound protein fraction (lane3), indicative that all the His-tagged binding 

sites on the Ni-NTA agarose were occupied and there are also bands present in wash fractions 

1 and 2 (lanes 4 & 5). These bands were confirmed to be the His-tagged F1/R2 recombinant 

protein by Western blot analysis, figure 4.27(b). A band between the 7 and 21 kDa molecular 

weight marker can be seen in all lanes.
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Figure 4.26: SDS-PAGE and Western blot analysis of samples generated 
under native conditions using the Ni-NTA agarose to purify 6xHis-tagged 
F1/R2 recombinant fragment. (a) Coomassie stained 12.5% 
polyacrylamide gel, 10pl of each sample loaded, lane 1: molecular weight 
ladder, lane 2: non-induced control, lane 3: induced control, lane 4: native 
lysate, lane 5: un-bound protein, lane 6: wash 1, lane 7: wash 2, lane 8: 
eluate 1, lane 9: eluate 2, lane 10: eluate 3, lane 11: eluate 4. (b) Anti 
penta-His antibody used in Western analysis of the samples detailed in (a).
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Figure 4.27: SDS-PAGE and Western blot analysis of samples generated 
under denaturing conditions using the Ni-NTA agarose to purify 6xHis- 
tagged F1/R2 recombinant fragment, (a) Coomassie stained 12.5% 
polyacrylamide gel, lOpl of each sample loaded, lane 1: molecular weight 
ladder, lane 2: denatured lysate, lane 3: un-bound protein, lane 4: wash 1, 
lane 5: wash 2, lane 6: eluate 1, lane 7: eluate 2, lane 8: eluate 3, lane 9: 
eluate 4, lane 10: eluate 5, lane 11: eluate 6, lane 12: eluate 7, lane 13: 
eluate 8, (b) Anti penta-His antibody used in Western analysis of the 
samples detailed in (a).
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43.4.4 Analysis o f the NCI Fragment, F2/R2

Samples obtained from the purification of the F2/R2 recombinant protein under native and 

denaturing conditions were analysed by SDS-PAGE and Western blot analysis. The F2/R2 

recombinant protein is expected to have a molecular weight of 6770 Da, therefore the region 

of interest lay around the 7 kDa molecular weight marker. On the Coomassie stained 

polyacrylamide gel, figure 4.28(a), there does not appear to be an obvious band around the 7 

kDa molecular weight marker in any of the samples which have been prepared under native 

conditions. There does appear to be a band between the 7 and 21 kDa markers in the induced 

control sample (lane 3) that is not present in the non-induced control sample (lane 2). A 

F2/R2 dimer would have a molecular weight of 13,540 Da which would lie in this region, this 

band could therefore be a dimer. Unfortunately any bands at 6770 Da would probably be in 

the dye front of the gel.

The Western blot analysis of the native samples, figure 4.28(b) confirms the presence of His- 

tagged proteins in the induced control sample, the native E. coli lysate and the un-bound 

protein fraction (lanes 3, 4 & 5). However, there are no bands present in any of the eluates.

The samples which were purified under denaturing conditions, contained more of F2/R2 

recombinant protein. On the Coomassie stained polyacrylamide gel, figure 4.29(a), a band 

which is around the 7 kDa molecular weight marker can be seen in the denatured E. coli 

lysate (lane 2), the un-bound protein fraction (lane 3), wash 1 fraction (lane 4) and in eluates 

5-7 (lanes 10-12). The Western blot analysis of the denatured samples, figure 4.29(b) 

confirms the presence of His-tagged proteins in most of the above samples (lanes 2, 3, 10, 11 

& 12).
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Figure 4.28: SDS-PAGE and Western blot analysis of samples generated 
under native conditions using the Ni-NTA agarose to purify 6xHis-tagged 
F2/R2 recombinant fragment, (a) Coomassie stained 12.5% 
polyacrylamide gel, 1 Opl of each sample loaded, lane 1: molecular weight 
ladder, lane 2: non-induced control, lane 3: induced control, lane 4: native 
lysate, lane 5: un-bound protein, lane 6: wash 1, lane 7: wash 2, lane 8: 
eluate 1, lane 9: eluate 2, lane 10: eluate 3, lane 11: eluate 4. (b) Anti 
penta-His antibody used in Western analysis of the samples detailed in (a).
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Figure 4.29: SDS-PAGE and Western blot analysis of samples generated 
under denaturing conditions using the Ni-NTA agarose to purify 6xHis- 
tagged F2/R2 recombinant fragment, (a) Coomassie stained 12.5% 
polyacrylamide gel, 1 Opl of each sample loaded, lane 1: molecular weight 
ladder, lane 2: denatured lysate, lane 3: un-bound protein, lane 4: wash 1, 
lane 5: wash 2, lane 6: eluate 1, lane 7: eluate 2, lane 8: eluate 3, lane 9: 
eluate 4, lane 10: eluate 5, lane 11: eluate 6, lane 12: eluate 7, lane 13: 
eluate 8, (b) Anti penta-His antibody used in Western analysis of the 
samples detailed in (a).
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4.3,4.5 Analysis o f  the NCI Fragment, F2/R3

SDS-PAGE and Western blot analysis were used to analyse samples obtained from the 

purification of the F2/R3 recombinant protein under native and denaturing conditions. The 

F2/R3 recombinant protein is expected to have a molecular weight of 13,075 Da, therefore the 

region of interest lay between the 7 and 21 kDa molecular weight markers. On the Coomassie 

stained polyacrylamide gel of samples prepared under native conditions figure 4.30(a), there 

does appear to be a band in this region in the induced control (lane 3) that is not present in the 

non-induced control (lane 2), however this band does not appear to be eluted off the Ni-NTA 

agarose in eluates 1-4 (lanes 8-11). This band was confirmed to be a His-tagged protein by 

Western blot analysis, figure 4.30(b). The band appears below the 21 kDa molecular weight 

marker at the dye front; this sample also contains a higher molecular weight aggregate, which 

under 29 kDa could be a dimer of F2/R3 at 26,150 Da. There are also bands present in the 

non-induced control sample (lane 2) which do not appear the same size as those in lane 3.

The samples which were purified under denaturing conditions, contained more of F2/R3 

recombinant protein. On the Coomassie stained polyacrylamide gel, figure 4.31(a), a number 

of bands between the 7 and 21 kDa molecular weight marker can be seen in the denatured E. 

coli lysate (lane 2), the un-bound protein fraction (lane 3) and in wash 1 fraction (lane 4). The 

lower of these bands appears to be eluting off the Ni-NTA agarose in eluates 5-8 (lanes 10- 

13).

The Western blot analysis figure 4.31(b); of these denatured samples confirmed the presence 

of a His-tagged protein between the 7 and 21 kDa molecular weight markers in all of the 

samples. There also appears to be a higher molecular weight aggregate; below the 29 kDa 

molecular weight marker in the following samples, the denature E. coli lysate (lane 2), the un

bound protein fraction (lane 3) and in eluates 5-8 (lanes 10-13). This could be a dimer of 

F2/R3 which would have a molecular weight of 26,150 Da.
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Figure 4.30: SDS-PAGE and Western blot analysis of samples generated 
under native conditions using the Ni-NTA agarose to purify 6xHis-tagged 
F2/R3 recombinant fragment, (a) Coomassie stained 12.5% 
polyacrylamide gel, 1 Opl of each sample loaded, lane 1: molecular weight 
ladder, lane 2: non-induced control, lane 3: induced control, lane 4: native 
lysate, lane 5: un-bound protein, lane 6: wash 1, lane 7: wash 2, lane 8: 
eluate 1, lane 9: eluate 2, lane 10: eluate 3, lane 11: eluate 4. (b) Anti 
penta-His antibody used in Western analysis of the samples detailed in (a).
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Figure 4.31: SDS-PAGE and Western blot analysis of samples generated 
under denaturing conditions using the Ni-NTA agarose to purify 6xHis- 
tagged F2/R3 recombinant fragment, (a) Coomassie stained 12.5% 
polyacrylamide gel, lOpl of each sample loaded, lane 1: molecular weight 
ladder, lane 2: denatured lysate, lane 3: un-bound protein, lane 4: wash 1, 
lane 5: wash 2, lane 6: eluate 1, lane 7: eluate 2, lane 8: eluate 3, lane 9: 
eluate 4, lane 10: eluate 5, lane 11: eluate 6, lane 12: eluate 7, lane 13: 
eluate 8, (b) Anti penta-His antibody used in Western analysis of the 
samples detailed in (a).
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4.3.5 Interaction Analysis

For subsequent interaction analysis the samples from the purification procedures which were 

deemed to have most of the purest recombinant protein, were the denatured eluates 5-8. The 

protein concentrations of these samples; NCI fragments F1/R2, F2/R2 and F2/R3; and the 

recombinant DHFR protein were determined using the BCA protein assay. The fractions with 

the highest protein concentrations were used in the interaction analysis.

4.3.5.1 Optimisation o f  Antibody Dilutions

To prevent wastage of valuable NCI samples the recombinant protein DHFR was used in the 

optimisation of antibody dilutions. A 96-well plate was coated with 5 pg/ml of the DHFR 

protein, a serial dilution of primary antibody and of secondary antibody were subsequently 

applied to the plate. After application of the chromogenic substrate OPD, the absorbance of 

the coloured product was read at 492 nm. The graph; figure 4.32, shows a trend of decreased 

absorbance reading with increasing dilution of secondary antibody, and a decrease in 

absorbance reading as the primary antibody is diluted. Due to limited availability of the penta- 

His antibody, this was the antibody that was required to be used sparingly. It was therefore 

decided that 0.125 pg/ml of the penta-His antibody would be used in combination with a 

1:1000 dilution of the sheep anti-mouse HRP conjugated secondary. This combination of 

antibodies gave an absorbance reading of 1.196 in the optimisation procedure, which is a 

suitable reading for a maximal response.

4.3.5.2 Interaction Analysis using N C I Recombinant fragments F1/R2, F2/R2 and F2/R3 

A 96-well plate was coated with 5 pg/ml of the proteoglycans decorin or biglycan. After 

washing and blocking the wells as detailed in the methods section; the NCI Recombinant 

fragments (F1/R2, F2/R2 and F2/R3), were applied to the wells in triplicate at a range of 

concentration from 0 to 2.5 jig/ml. After incubation and washing steps, 0.125 pg/ml of the 

penta-His antibody was used in combination with a 1:1000 dilution of the sheep anti-mouse 

HRP conjugated secondary. After application of the chromogenic substrate OPD the 

absorbance of the coloured product was read at 492 nm.

Unfortunately the absorbance readings were not above the background absorbance for empty 

wells, or the control wells which had been coated with 3% (w/v) BSA in PBS. The solid phase 

assay was repeated with increased concentrations of the NCI recombinant fragments F1/R2,
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F2/R2 and F2/R3, up to 5 pg/ml. Once again the absorbance readings were not above 

background absorbance. These results will be deliberated in the discussion.

2 0 0



A
bs

or
ba

nc
e 

(4
92

nm
)

CHAPTER 4

Optimisation o f  Antibody Dilutions for Interaction Analysis
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Figure 4.32: Graph of absorbance at 492 nm versus a range of dilutions for the 
sheep anti-mouse HRP secondary antibody for five different concentrations of 
the penta-His antibody, on a 96-well plate coated with the His-tagged 
recombinant DHFR protein.
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4.4 DISCUSSION

The NCI domain o f type X collagen contains 161 amino acids which is encoded for by 483 

bp. Plasmid DNA which contained the entire NCI sequence was used as a template in PCR 

reactions, using primers designed to produce products that were ‘in-frame’ with regards to the 

translated protein sequence. PCR was used to generate five overlapping products which 

encompassed all 483 bp (figure 4.7)

These products were cloned into the cloning vector pGEM-T, which was used to transform 

competent JM109 cells. Transformed colonies were selected by colour screening on selective 

agar plates. Plasmid DNA was prepared from all clones and sequenced. Out of the five PCR 

products cloned, the NCI fragments F l/R l, F1/R2, F2/R2 and F2/R3 all had 100% homology 

to the COL10A1 mRNA (figures 4.8, 4.9, 4.10 & 4.11). The F3/R3 insert contained many 

mismatches and was excluded from the remainder of the study.

The four overlapping products F l/R l, F1/R2, F2/R2 and F2/R3, encompass all 483bp of the 

NCI sequence, figure 4.33 shows the sequence of the products generated and using different 

coloured text demonstrates the overlap of sequence between the products. The F l/R l product 

is 201 bp, which is all present in the F1/R2 product which is 312bp, the F2/R2 is the smallest 

product at 120bp and contains the last 9bp of F l/R l and the last 11 lbp of F1/R2, the 291bp of 

F2/R3 contains the whole of F2/R2 and an additional 17 lbp of the NCI sequence.

By using a combination of PCR with primers adapted with restriction sequences (figures 4.12 

& 4.13), restriction digestions (figure 4.14) and ligation, the products were directionally sub

cloned into the expression vector pQE-30 (summarised in figure 4.15). These expression 

constructs and the control expression plasmid pQE-40 were used to transform two different 

strains of E. coli, M l 5 and XL-1 Blue. M l5 carries the pREP4 repressor plasmid, while XL-1 

Blue contains an episomal copy of laclq, which is a mutation of lacl that produces high levels 

of the lac repressor. Both strains were used because clone analysis can sometimes be difficult 

using the M l 5 strain due to the presence of the p REP4 plasmid. However, for the most stable 

propagation of expression constructs, the M l 5 strain was recommended by the manufacturer’s 

(Qiagen) because o f higher repressor levels.
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Fl/R l______________________________________
gtcatgcctgagggttttataaaggcaggccaaaggcccagtctttctgggacccctcttgttagtgccaa
ccagggggtaacaggaatgcctgtgtctgcttttactgttattctctccaaagcttacccagcaataggaac
tcccataccatttgataaaattttgtataacaggcaacagcattatgacccaaggact

F1/R2______________________________________
gtcatgcctgagggttttataaaggcaggccaaaggcccagtctttctgggacccctcttgttagtgccaa
ccagggggtaacaggaatgcctgtgtctgcttttactgttattctctccaaagcttacccagcaataggaac
tcccataccatttgataaaattttgtataacaggcaacagcattatgacccaaggactggaatctttacttgtc
agataccaggaatatactatttttcataccacgtgcatgtgaaagggactcatgtttgggtaggcctgtataa
gaatggcacccctgtaatgtac

F2/R2_____________________________________
ccaaggactggaatctttacttgtcagataccaggaatatactatttttcataccacgtgcatgtgaaaggg
actcatgtttgggtaggcctgtataagaatggcacccctgtaatgtac

F2/R3______________________________________
ccaaggactggaatctttacttgtcagataccaggaatatactatttttcataccacgtgcatgtgaaaggg
actcatgtttgggtaggcctgtataagaatggcacccctgtaatgtacacctatgatgaatacaccaaagg
ctacctggatcaggcttcagggagtgccatcatcgatctcacagaaaatgaccaggtgtggctccagctt
cccaatgccgagtcaaatggcctatactcctctgagtatgtccactcctctttctcaggattcctagtggctc
caatg

Figure 4.33: The nucleotide sequence o f the NCI products generated by 
PCR. The overlap o f nucleotide sequence between the products is 
highlighted by coloured text.
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The presence of the inserts in the bacteria was confirmed by PCR (figures 4.16 & 4.17), and 

sequence analysis was used to confirm the inserts had 100% homology to the COL10A1 

mRNA. The creation o f expression constructs utilising the expression vector pQE-30, and 

four different fragments o f the in frame human NCI sequence with 100% homology to the 

COL10A1 mRNA was successful (figures 4.18, 4.19, 4.20 & 4.21).

The production of recombinant protein on a small scale was attempted at first (data not 

shown), a 10 ml culture was induced to produce recombinant proteins, the cells were 

harvested, resuspended in sample buffer and subsequently analysed by SDS-PAGE and 

Western blot analysis. The recombinant proteins DHFR (translation product of the control 

pQE-40 expression plasmid), F1/R2, F2/R2 and F2/R3 were all visualised on Coomassie 

stained polyacrylamide gels and confirmed to be present by Western blot analysis. However, 

the F l/R l recombinant protein was not observed. It was assumed that the protein was 

insoluble and was therefore not loaded onto the gel or may have been unstable and was 

degraded.

A large scale production of recombinant protein was performed. Cells were harvested and 

were subjected to preparation under native and denaturing conditions, purification of His- 

tagged proteins using Ni-NTA agarose was also performed under native and denaturing 

conditions. Small samples which were taken during these procedures were analysed by SDS- 

PAGE and Western blotting. The recombinant proteins DHFR, F1/R2, F2/R2 and F2/R3 were 

all successfully expressed and were purified under denaturing conditions (figures 4.23, 4.27, 

4.29 & 4.31, respectively). The F l/R l recombinant fragment was not observed (figures 4.24 

& 4.25), under native or denaturing conditions. This result was similar to that found in the 

preliminary small scale purification. The possibility that the F l/R l recombinant protein was 

insoluble however was disproved by its absence in samples prepared under denaturing 

conditions.

Proteins that are smaller than 10 kDa are not stable in E. coli and may be rapidly degraded. 

Two out of the four NCI recombinant fragments are smaller than 10 kDa, F l/R l has an 

expected molecular weight of 9372 Da, F2/R2 has an expected molecular weight of 6770 Da, 

F1/R2 has an expected molecular weight of 13,632 Da and F2/R3 has an expected molecular 

weight of 13,075 Da. For this reason during the preparation procedure, protease inhibitors 

were present, as detailed in the methods section. However, having successfully produced the
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F2/R2 recombinant protein that is smaller than F l/R l this complication is probably not an 

issue.

There are a number of possibilities; including culture conditions, reading frame and secretion, 

as to why the F l/R l recombinant protein was not successfully synthesised. The culture 

conditions for expression and the host cells for all recombinant proteins were the same, and 

obviously were adequate for the positive control DHFR, as well as the NCI fragments F1/R2, 

F2/R2 and F2/R3. These are examples of things that can be easily altered in the future for the 

F l/R l fragment. The coding sequence was ligated in the correct reading frame, as this was 

checked before recombinant proteins were produced this is not the reason why recombinant 

protein F l/R l was not produced.

Another potential problem as far as synthesis of recombinant proteins is concerned; is the 

stability of the expression construct. During this study this aspect was not explored, all of the 

bacterial cultures were maintained with 100 pg/ml of ampicillin and 25 pg/ml of kanamycin. 

Plasmid levels can be checked by plating cells from the expression culture on agar plates with 

and without ampicillin. Bacteria containing the expression construct will be resistant to 

ampicillin, if there are only a few or even no colonies on the plate containing ampicillin, this 

is indicative that there are not many expression construct containing cells in the culture. 

Ampicillin resistant bacteria produce the enzyme p-lactamase; this in turn rapidly depletes the 

ampicillin which is an unstable antibiotic in the growing cultures. This allows bacteria 

without ampicillin resistance and hence the expression construct to grow. The stability of the 

expression construct could possibly have been different for F l/R l; if  this expression construct 

is unstable then cultures should have been grown in the presence of 200 pg/ml ampicillin.

Freshly transformed bacterial colonies often express recombinant proteins at different levels. 

Three colonies were selected for all the recombinant proteins; this is a small number of 

colonies to screen. A better way of screening, in light of the unsuccessful F l/R l recombinant 

protein would be to perform a colony-blot procedure. Comparison of the signals produced 

after colony blotting could identify high-expressing colonies which would significantly aid 

establishing expression cultures.

Lastly, the F l/R l recombinant protein contains 29 hydrophobic amino acids which accounts 

for 34% of the total amino acids. Hydrophobic proteins can be incorporated into membrane
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systems of the host cells during protein synthesis, thus having a toxic effect on the cells and 

ceasing recombinant protein production. However, the hydrophobicity of the other NCI 

fragments are not markedly different to F l/R l, ranging from 27 to 33%, therefore this is 

unlikely to be the cause of problematic F l/R l production

The recombinant proteins F1/R2, F2/R2 and F2/R3 from the denatured purification eluates 

were used in interaction analysis with decorin and biglycan, as detailed in the methods 

section. Unfortunately, no interactions were observed in the solid phase assay between the 

recombinant proteins and the proteoglycans. Due to the conditions required for purification of 

the recombinant proteins, it is reasonable to assume that the proteins may have been part of 

insoluble aggregates known as inclusion bodies. It is well characterised that many eukaryotic 

gene products expressed intracellularly in E. coli that accumulate as insoluble aggregates lack 

functional activity. Further optimisation of the culture conditions could ensure the expression 

of soluble functionally active protein, which when purified under native conditions may 

demonstrate interactions with the proteoglycans in a solid phase assay.

In summary, four recombinant fragments of the NCI domain have been cloned into the 

cloning vector pGEM-T, sequence analysis was performed and these fragments were 

directionally sub-cloned into the expression vector pQE-30. E. coli was used as a host to 

synthesise the recombinant proteins. Three of the four NCI fragments were purified using 

metal affinity chromatography from E. coli lysates under native and denaturing conditions. 

They were subsequently used in interaction analysis with decorin and biglycan. No additional 

information about the interaction of NCI with decorin and biglycan was generated using these 

fragments.
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Chapter 5: Expression and Localisation of Interacting

Components Type X Collagen, Decorin and Biglycan in 

Hypertrophic Cartilage.

5.1 BACKGROUND

Identification and characterisation of novel interactions in vitro, such as interaction of type X 

collagen with decorin and biglycan need to be substantiated by other methods which indicate 

the interaction may have some physiological importance, in vivo. Examples of such methods 

are expression by the same cell types, localisation of protein to the same region or using 

chemical cross-linking agents to covalently bridge molecules that are close enough to interact 

in the tissue.

5.1.1 Confirming Hypertrophic Chondrocyte Expression

During expression studies, RNA isolated from different regions of embryonic chick sternal 

cartilage was used. The sternum can be easily divided into caudal and cephalic regions, the 

chondrocyte populations within these regions have been extensively studied and are well 

characterised (Gibson et al., 1984; LuValle et al., 1992). Type X collagen is expressed by 

hypertrophic chondrocytes which are only found in the cephalic region of the sternum. 

Isolation of hypertrophic and non-hypertrophic chondrocyte populations from the sternum is 

much easier than isolating them from the epiphyseal growth plate due to the size of the tissues 

involved.

5.1.2 Confirming Localisation of Interacting Components Type X Collagen, Decorin 

and Biglycan in Epiphyseal Growth Plate Cartilage

The localisation of type X collagen in hypertrophic cartilage of the growth plate has been well 

studied utilising immunohistochemical methods (Schmid and Linsenmayer, 1985). The 

precise localisation of decorin and biglycan within the epiphyseal growth plate is however 

more controversial. Contrasting studies have been reported in species such as bovine and rat 

(Alini and Roughley, 2001; Takagi et al., 2000), while no studies of decorin and biglycan 

localisation in the mouse growth plate have been reported.
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5.2 MATERIALS AND METHODS

Molecular biology reagents were obtained from Promega (UK) unless otherwise stated. 

Tissue samples from the caudal and cephalic regions of 17 day embryonic chick stemae were 

a kind donation from Mr. Waiel Al-Amoudi (Cardiff University, UK). Tissue samples from 6 

week old C57 black mice were obtained from Dr. Elaine Rees (Cardiff University, UK).

5.2.1 RNA Preparation

5.2.1.1 Homogenisation o f Cartilage in Trizol®

Embryonic chick sternal cartilage samples; approximately 50 mg wet weight, were snap 

frozen in liquid nitrogen. Frozen tissue samples were placed in liquid nitrogen cooled 

dismembrator chambers (B. Braun Biotech International, Germany) with 200 pi Trizol® 

reagent (Gibco, UK), and the tissue was homogenised for 1.5 minutes at 2000 rpm. The 

chamber was cooled in liquid nitrogen and a further 200 pi Trizol® reagent was added to the 

homogenate. The homogenisation step described above was repeated twice. The homogenised 

tissue was scraped from the chamber into a sterile micro-centrifuge tube containing 600 pi 

Trizol® reagent. In total 1 ml of Trizol® reagent was used.

5.2.1.2 Ph ase Separation

The homogenised samples were incubated at room temperature for 5 minutes to permit the 

complete dissociation of nucleoprotein complexes. To the sample in 1 ml of Trizol® reagent, 

0.2 volumes (200 pi) of chloroform was added, it was mixed by inverting the tube for 15 

seconds, and then samples were incubated at room temperature for 2 minutes. Samples were 

centrifuged at 12,000 x g for 15 minutes at 4°C. The RNA present in the aqueous phase was 

then carefully removed from the organic phase and the interphase; and transferred to a fresh 

tube.

5.2.1.3 RNA Precipitation, Washing and Re-dissolving

RNA was precipitated by the addition of an equal volume of isopropanol to the aqueous phase 

containing the RNA, the sample was briefly vortexed and then incubated at -20°C for 1 hour. 

The RNA precipitate was obtained by centrifugation at 12,000 x g for 10 minutes at 4°C. The 

supernatant was removed and the gel-like pellet washed with 75% ethanol, the sample was 

vortexed briefly and then centrifuged at 7500 x g for 5 minutes at 4°C. The washing and
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centrifugation step was repeated once again. The RNA pellet was air dried for 15 minutes and 

resuspended in 86 pi of RNase-free sterile water.

5.2.1.4 DNase Treatment o f Isolated RNA

Contaminating DNA in RNA samples was removed by DNase treatment. To 86 pi of RNA; 

the following were added: 2 units of RQ1 RNase-free DNase (deoxyribonuclease), 80 units of 

recombinant RNasin® ribonuclease inhibitor, lOpl of lOx reaction buffer, yielding a final 

concentration in 100 pi o f 40 mM Tris-HCl pH 8, 10 mM MgSC>4 and 10 mM CaCl2. The 

samples were vortexed and incubated at 37°C for 15-30 minutes.

5.2.1.5 Re-Extraction o f RNA Post-DNase Treatment

The RNA was re-extracted after DNase treatment by the addition of 3 volumes of Trizol® 

reagent, i.e. 300 pi Trizol® reagent added to 100 pi. The phase separation, precipitation, 

washing and redissolving was carried out as described in sections 5.2.1.2 & 5.2.1.3. The RNA 

pellet harvested after re-extraction was dissolved in 50 pi RNase-free sterile water. The 

concentration of RNA was estimated by analysis on 1% agarose gel with mass molecular 

weight markers. RNA samples were stored at -80°C.

5.2.2 cDNA Synthesis by Reverse Transcription of RNA (RT-PCR)

For each RNA sample cDNA was generated in a 20 pi reaction by RT-PCR. Approximately 1 

pg of total RNA was made up to 11 pi with nuclease-free water, 1 pi o f Oligo (dT)15 (500 

pg/ml) and 1 pi of 10 mM dNTPs were added to a nuclease free 0.2 ml tube. The mixture was 

incubated at 65°C for 5 minutes and chilled quickly on ice. 4 pi of the 5x first-strand buffer 

(250 mM Tris-HCl, pH 8.3, 375 mM KC1, 15m M MgCl2) (Invitrogen, UK), 2 pi of 0.1 M 

DTT (Invitrogen, UK) and 1 pi of nuclease free water were added to the tubes and were 

incubated at 42°C for 2 minutes. 200 units/1 pi of Superscript II (Invitrogen, UK) was added 

to each tube and was incubated at 42°C for 50 minutes. The reaction was then inactivated by 

heating to 70°C for 15 minutes. cDNA samples were stored at -20°C until required for PCR 

reactions.
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5.2.3 Primer Design

Decorin and biglycan oligonucleotide primers were designed using the Primer Express 

programme and were synthesised by MWG (UK). Decorin primers were designed using the 

chick mRNA sequence (Accession number X63797). Due to there being no sequence data for 

chick biglycan; the biglycan primers were designed to regions that were homologous across 

species using the mRNA sequences for mouse, human and rat (Accession numbers 

NM0007542, NM001711 and NM017087, respectively). Dr. Alvin Kwan provided the 

primers for type X collagen and the house-keeping gene glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) (Accession number AF047874).

Gene
Primer Sequence <& Direction 
(F -  forward & R -  reverse)

Annealing Product 
Size (bp)

Type X Collagen
F 5’ age agg age aaa tea age

56 379
R 5’ atg gtc tct att cct ctg

Decorin
F 5’ tcc gca teg cag aca cc

58 493
R 5’ ata caa cca aac ccc gcc t

Biglycan
F 5’ cca aga tcc at gaga agg cc

58 690
R 5’ tea gta acg cag egg aag g

GAPDH
F 5’ aag get gag aac ggg aaa ctt g

57 551
R 5’ tea aca aca gag aca ttg ggg g

Table 5.1: Oligonucleotide primer pair sequences used for PCR are shown, along with their 

annealing temperature and expected product sizes.

5.2.4 Polymerase Chain Reaction (PCR)

PCR was carried out as detailed in section 4.2.1. 1 pi of cDNA generated from the cephalic 

and caudal regions of 17 day embryonic chick stemae, was used as DNA template for PCR 

reactions which utilised primers for decorin, biglycan, type X collagen and GAPDH detailed 

in Table 5.1. PCR products were separated by agarose gel electrophoresis and visualized 

using ethidium bromide as detailed in section 4.2.1.2.
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5.2.4.1 PCR product Cloning & Sequencing

PCR products were extracted from the agarose gel, cloned in to the TA cloning vector pGEM- 

T and sequenced as detailed in sections 4.2.1.3, 4.2.2 & 4.2.2.4, respectively.

5.2.5 Preparation of Tissue for Histology and Immunohistochemistry

5.2.5.1 Dissection and Preparation o f Cryosections

The knee joint with the femoral and tibial heads intact were dissected from 6 week old C57 

black mice. Tissue was snap frozen by immersion into liquid nitrogen. Chucks were cooled in 

isopentane cooled in liquid nitrogen, and the tissue was mounted on to the chucks using 

Tissue-Tek (Sakura, Finetek, Netherlands). The mounted tissue and chuck were then 

immersed into liquid nitrogen. Sections, 10-15 pm, were cut using a cryostat (Bright, UK) and 

were adhered to poly-lysine coated slides (BDH Laboratory Supplies). The sections were 

allowed to air-dry before being wrapped and stored at -20°C. Cryosections were brought to 

room temperature prior to staining.

5.2.5.2 Dissection, Fixation and Decalcification Prior to Paraffin Wax Sectioning

The knee joint with the femoral and tibial heads intact were dissected from 6 week old C57 

black mice. The tissue was fixed in 10% neutral buffered formal saline (25 mM NaF^PC^, 45 

mM Na2HPC>4, 155 mM NaCl, pH 7.2, containing 10% (v/v) formaldehyde) for 48 hours at 

4°C. The fixative was removed and the tissue was rinsed with dH20. The tissue was then 

decalcified in a 10% (w/v) EDTA solution pH 7.2, over 5 days at 4°C. The decalcifying 

solution was changed twice during the five days, the tissue was rinsed with dH2 0  after 

decalcification.

5.2.5.3 Paraffin Wax Sectioning

Tissue samples were processed on a Leica TP 1050 automatic tissue processor using the 

following schedule: 70% alcohol for 1.5 hr, 90% alcohol for 1.5 hr, 100% alcohol for 2 hr, 

100% alcohol for 2 hr, 100% alcohol for 2 hr, xylene for 0.5 hr, xylene for 0.5 hr, paraffin 

wax for 1.5 hr under vacuum, paraffin wax for 2 hr under vacuum, paraffin wax for 2 hr under 

vacuum. After processing, the samples were embedded in paraffin wax using a Leica 

EG1140H Embedding Centre. Sections were cut using a Leica 2040 rotary microtome at a 

thickness of 8 pm, sections were floated on warm water and mounted on Histobond slides. 

The sections were dried in an oven at 45°C overnight.
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5.2.5.4 Pre-staining treatment

Paraffin wax sections were re-hydrated by being taken through a series of solvents: xylene for 

2 minutes, xylene for 2 minutes, 100% ethanol for 2 minutes, 100% ethanol for 2 minutes, 

95% ethanol for 2 minutes, 70% ethanol for 2 minutes. Sections were then washed in running 

tap water for 5 minutes before being stained.

5.2.5.5 Masson’s Trichrome Staining

Cryosections and wax embedded sections were stained with Celestine Blue B for 10 minutes 

and then rinsed in running water until excess dye was removed. Slides were then stained with 

Mayers’ Haematoxylin for 10 minutes followed by another wash in running water for 10 

minutes. Staining with Ponceau acid / Fushin acid followed for a further 5 minutes, before a 

brief 30 second wash in running water. Slides were immersed in 1% Phosphomolybdic acid 

for 5 minutes and then transferred directly to light green stain for 2 minutes before being 

rinsed with running water until excess dye was removed. Slides were washed in 1% acetic 

acid for 2 minutes and then rinsed in running water for 15 seconds. Finally slides were 

immersed in 95% alcohol for 1 minute, 100% alcohol for 1 minute, 100% alcohol for a further 

2 minutes, xylene for 2 minutes and xylene for a further 2 minutes. Slides were then covered 

using DPX mountant and coverslips. Slides were observed under a light microscope 

(Laborlux 12, Leitz) and images were recorded using a digital camera.

5.2.5.6 Haematoxylin and Eosin Staining

Cryosections and wax embedded sections were stained with Mayers’ Haematoxylin for 1 

minute followed by a wash in running water for 5 minutes. Slides were stained in 1% Eosin 

for 5 minutes and then briefly washed in running water for 20 seconds. Finally slides were 

immersed in 70% alcohol for 20 seconds, 95% alcohol for 45 seconds, 100% alcohol for 1 

minute, 100% alcohol for a further 2 minutes, xylene for 2 minutes and xylene for a further 2 

minutes. Slides were then covered using DPX mountant and coverslips. Slides were observed 

under a light microscope (Laborlux 12, Leitz) and images were recorded using a digital 

camera.
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5.2.6 Immunohistochemistry

5.2.6.1 Type X  Collagen Staining

Paraffin wax sections were treated with a 100 pi of 2 mg/ml hyaluronidase in PBS, and 

incubated at 4°C for 16-24 hours. Sections were washed thoroughly with PBS five times. 2% 

normal goat serum (Sigma) in PBS was applied to the sections, and incubated for 1 hour at 

room temperature, all subsequent incubations were carried out at room temperature. Sections 

were washed thoroughly with PBS five times. Monoclonal antibody MA3 was used to detect 

type X collagen, this antibody was diluted 1:100 and 1:500 with PBS and incubated for 2 

hours. Primary negative control sections were incubated in PBS only for 2 hours. Sections 

were washed thoroughly with PBS five times. An anti-mouse FITC conjugated antibody 

raised in goat (Sigma), was used as a secondary antibody, it was diluted 1:64 with PBS and 

incubated on the sections for 1 hour. Sections were washed thoroughly with PBS five times. 

Coverslips were mounted onto the slides with Vectashield without probidium iodide. Sections 

were viewed using a fluorescence microscope (Laborlux 12, Leitz) and images were recorded 

on a digital camera.

5.2.6.2 Decorin and Biglycan Staining

Paraffin wax sections were treated with a 100 pi of 0.5 Units/ml of Chondroitinase ABC in

0.1 M Tris-acetate, pH 6.5, for 16-24 hours at 4°C. Sections were washed thoroughly with 

PBS five times. 2% normal goat serum in PBS was applied to the sections, and incubated for 

1 hour at room temperature; all subsequent incubations were carried out at room temperature. 

Sections were washed thoroughly with PBS five times. Polyclonal antibody LF-113 which 

was raised against murine decorin, was used to detect decorin, and the polyclonal antibody 

LF-159 which was raised against murine biglycan was used to detect biglycan (polyclonal 

antibodies were a kind gift from Dr. Larry Fisher, National Institute of Health, NIDCR, 

CSDB, Bethesda, Maryland). The polyclonal antibodies were diluted 1:100 to 1:300 with 

PBS, and were incubated on the sections for 2 hours. Primary negative control sections were 

incubated in PBS only for 2 hours. Sections were washed thoroughly with PBS five times. An 

anti-rabbit FITC conjugated antibody raised in goat (Sigma), was used as a secondary it was 

diluted 1:160 with PBS and incubated on the sections for 1 hour. Sections were washed 

thoroughly with PBS five times. Coverslips were mounted onto the slides with Vectashield.
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Sections were viewed using a fluorescence microscope (Laborlux 12, Leitz) and images were 

recorded on a digital camera.
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5.3 RESULTS

5.3.1 Generation of cDNA for PCR Analysis

The caudal and cephalic regions of 17 day embryonic chick stemae were used as a tissue 

source of non-hypertrophic and hypertrophic cells, respectively. The RNA was isolated from 

the cells in these tissues using Trizol reagent, the integrity of the RNA was assessed by 

agarose gel electrophoresis. The RNA prepared, figure 5.1 is of good quality with minimal 

degradation, 28S and 18S rRNA bands are visible and are highlighted. The RNA was 

subsequently used in a RT reaction as described in the methods section to generate caudal and 

cephalic cDNA. As controls RT-PCR reactions were carried out as described except the 

reverse transcriptase enzyme was omitted and substituted with water. This is referred to as the 

No RT control.

5.3.2 Type X Collagen and Decorin are Expressed by Hypertrophic Chondrocytes

The cDNA generated was used in PCR reactions with primers designed to GAPDH, type X 

collagen, decorin and biglycan. Products from PCR reactions were run on 1% agarose gels 

and the results are shown in figure 5.2 a-c. GAPDH expression is seen in cDNA generated 

from both cephalic and caudal RNA, as is decorin (figure 5.2 a & b, lanes 2 & 3). Type X 

collagen expression however is found only in the cDNA generated from the cephalic region of 

the sternum, the region that contains hypertrophic chondrocytes (figure 5.2 c, lane 2). All 

controls were negative, demonstrating the specificity of the PCR amplification. This confirms 

that type X collagen and decorin are co-expressed by the same cell type, namely hypertrophic 

chondrocytes.

The PCR products were cloned into pGEM-T, the vector was used to transform competent E. 

Coli JM109 cells. Following overnight incubation on selective agar plates, colour screening 

was used to determine transformed colonies. Using Promega’s Wizard mini-prep kit; plasmid 

DNA was prepared from a 5ml liquid culture which had been inoculated with a transformed 

colony. Sequence analysis of the plasmid DNA allowed identification of the PCR products. 

The PCR product sequences were analysed using the NCBI Blast search engine. The PCR 

product generated using the type X collagen primers was found to be 100% homologous to 

the chick type X collagen gene sequence (gi:211699) present in the EMBL database, figure
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5.3. While the product generated with the decorin primers was 100% homologous to the 

mRNA sequence for chicken decorin (Accession number: X63797.1), figure 5.4.
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28S rRNA 

18S rRNA

Figure 5.1: RNA samples isolated from the caudal (lane 3) and cephalic 
(lane 4) regions o f embryonic chick stemae run on a 1% agarose gel 
containing ethidium bromide.

1.1 OObp ladder

2 . -

3. Caudal RNA

4. Cephalic RNA
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a. GAPDH
1 2 3 4 5 6

551 bp 
product

1. 1OObp ladder

2. Cephalic cDNA

3. Caudal cDNA

4. Cephalic cDNA i
I No RT control

5. Caudal cDNA J
6. Water

c. Type X Collagen

3 7 9 b p  ^
product

Figure 5.2: PCR products run on an ethidium bromide containing 1% agarose gel.

(a) GAPDH expression in both cephalic and caudal regions.

(b) Decorin expression in both cephalic and caudal regions.

(c) Type X collagen expressed in cephalic region only.

1 2 3 4 5 6

b. Decorin

493b p  ►
product
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Query: 1 agcaggagcaaatcaagctctcacaggaatgccagtgtctgccttcactgtcattctctc 60 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Sbjct: 1758 agcaggagcaaatcaagctctcacaggaatgccagtgtctgccttcactgtcattctctc 1817

Query: 61 aaaagcctaccctggggcaacagtccccatcaaatttgacaaaatcttgtacaacagaca 120 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

Sbjct: 1818 aaaagcctaccctggggcaacagtccccatcaaatttgacaaaatcttgtacaacagaca 1877

Query: 121 gcaacactatgaccccaggacaggaatctttacctgcaggatccctggtctatactattt 180 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Sbjct: 1878 gcaacactatgaccccaggacaggaatctttacctgcaggatccctggtctatactattt 1937

Query: 181 ctcctatcatgtacatgcaaaaggaacaaatgtttgggttgcactctataaaaatggctc 240 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I 

Sbjct: 1938 ctcctatcatgtacatgcaaaaggaacaaatgtttgggttgcactctataaaaatggctc 1997

Query: 241 cccagtcatgtacacttatgatgaataccagaaaggataccttgaccagcctcaggcagt 300 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I II I I I I I 

Sbjct: 1998 cccagtcatgtacacttatgatgaataccagaaaggataccttgaccagcctcaggcagt 2057

Query: 301 gctgtcattgatctcatggagaacgatcaagtgtggctccagctgccaaattcagaatcc 360 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Sbjct: 2058 gctgtcattgatctcatggagaacgatcaagtgtggctccagctgccaaattcagaatcc 2117

Query: 361 aatggtctctattcctctg 379 
I I I I I I I I I I I I I I I I I I I 

Sbjct: 2118 aatggtctctattcctctg 2136

Figure 5.3: 100% sequence identity o f the type X collagen PCR product, the query, with the 

chicken type X collagen gene, the subject, sequence analysis was performed using the NCBI 

Blast search engine. Positions o f forward and reverse primers are highlighted in red.
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Query: 1 tccgcatcgcagacaccaacattactagcatccctaaaggtcttcctccatcccttactg 60 
I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Sbjct: 743 tccgcatcgcagacaccaacattactagcatccctaaaggtcttcctccatcccttactg 802

Query: 61 agcttcaccttgatggcaacaaaattagcaaaattgatgcggaaggtctgtctggactca 120 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I 

Sbjct: 803 agcttcaccttgatggcaacaaaattagcaaaattgatgcggaaggtctgtctggactca 862

Query: 121 ccaacttggctaaattgggtctcagcttcaacagtatttcttctgttgaaaatggctctc 180 
I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I

Sbjct: 863 ccaacttggctaaattgggtctcagcttcaacagtatttcttctgttgaaaatggctctc 922

Query: 181 tgaacaatgtacctcatctgagagaacttcatctgaataacaacgaacttgtcagagtac 240 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Sbjct: 923 tgaacaatgtacctcatctgagagaacttcatctgaataacaacgaacttgtcagagtac 982

Query: 241 ctagtgggttgggtgaacacaaatacatccaggtggtctatcttcataacaacaagattg 300 
I I I I I I I! II I I I I I II I I II II I I I I I I I I I I I I I II I I I II I I I I I I I I I I II I II II 

Sbjct: 983 ctagtgggttgggtgaacacaaatacatccaggtggtctatcttcataacaacaagattg 1042

Query: 301 cttcaattggtatcaacgacttttgccctcttggctacaacaccaaaaaggcaacctatt 360 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I II I I I I I I I II I 

Sbjct: 1043 cttcaattggtatcaacgacttttgccctcttggctacaacaccaaaaaggcaacctatt 1102

Query: 361 ctggtgtgagtctcttcagcaaccccgtgcagtactgggaaatccagccctctgctttcc 420 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

Sbjct: 1103 ctggtgtgagtctcttcagcaaccccgtgcagtactgggaaatccagccctctgctttcc 1162

Query: 421 gatgtatccatgaacgctctgcagtacagatcggaaattacaaatagatttctaaaggcg 480 
I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I 

Sbjct: 1163 gatgtatccatgaacgctctgcagtacagatcggaaattacaaatagatttctaaaggcg 1222

Query: 481 gggtttggttgtat 494
I I I I I I I I I I I I I I

Sbjct: 1223 gggtttggttgtat 1236

Figure 5.4: 100% sequence identity of the decorin PCR product, the query, with the chicken 

decorin mRNA sequence, the subject, analysis was performed using the NCBI Blast search 

engine. Positions of forward and reverse primers are highlighted in red.
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5.3.3 Expression of Biglycan by Hypertrophic Chondrocytes Not Confirmed

Using primers designed to homologous regions in the human, mouse and rat biglycan 

sequences, numerous PCR products were generated using the chick cDNA as template. 

Despite numerous successful cloning attempts, the products were not identified as biglycan by 

sequence analysis. Therefore, expression of biglycan by chick hypertrophic chondrocytes was 

not confirmed.

5.3.4 Cellular Morphology of the Growth Plate

Using histological staining of cryosections and wax sections of 6 week old mouse tibia, the 

cellular morphology o f the growth plate was studied. H & E staining was used to demonstrate 

cellular morphology, it is designed to show basophilic structures such as nucleic acids in the 

nucleus blue, black or purple and acidophilic structures such as the more basic proteins within 

cells and in the extracellular matrix shades of pink and red. Masson’s Trichrome Stain was 

used to distinguish cellular from extracellular components, collagen fibres stain an intense 

green while the nuclei stain blue or black.

The epiphyseal growth plate is highly cellular with little inter- territorial matrix. Figure 5.5 

shows a 6 week mouse tibia cryosection stained with H & E, the different zones of the growth 

plate are highlighted; which reflect the differentiation state of the chondrocytes within them. 

The smallest chondrocytes are observed in the resting zone, the proliferating chondrocytes 

appear slightly flattened and are arranged in columns, the hypertrophic chondrocytes 

increased volume is evident as is the paucity of the ECM in the hypertrophic zone when 

compared to the other zones.

The general morphology of the growth plate described above is also evident in the wax 

sections of 6 week old mouse growth plate which are stained with Masson’s trichrome, figure

5.6 a & b. The intensity of the green stain on the sections decreases as the ECM surrounding 

the chondrocytes becomes less abundant from the resting zone through to the hypertrophic 

zone. For comparison the articular cartilage of the 6 week old mouse is also shown, figure 5.6 

c. The intensity of the green stain in the ECM of the articular cartilage highlights the 

cellularity of the growth plate as well as the less abundant ECM.
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(a)

p „
(b)

Figure 5.5: Six week old mouse tibia unfixed and decalcified 15pm 
cryosections stained with H & E. Bar = 100pm.

(a) Chondrocytes of the epiphyseal growth plate at different stages of 
differentiation are highlighted within their respective zones, (r) resting 
chondrocytes, (p) proliferating chondrocytes, (h) hypertrophic chondrocytes.

(b) Growth plate image at higher magnification.
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(a)

(b)

Figure 5.6: Histological staining with Masson’s Trichrome of 10pm wax sections 
of 6 week old mouse fixed and decalcified tibia. Bar = 100pm

(a) Chondrocytes o f the epiphyseal growth plate at different stages of 
differentiation are highlighted within their respective zones, , (r) resting 
chondrocytes, (p) proliferating chondrocytes, (h) hypertrophic chondrocytes.

(b) Growth plate image at higher magnification.

(c) Articular cartilage, (as) articular surface.

2 2 3



CHAPTER 5

5.3.5 Localisation of Type X Collagen in the Hypertrophic Zone of the Growth Plate

The monoclonal antibody MA3 was used in immunohistological analyses of the 6 week old 

mouse knee joint. Type X collagen staining can be seen in the hypertrophic zone of the 

growth plate and in cartilaginous remnants at the ossification front, figure 5.7 a. White 

arrowheads indicate type X collagen staining, lack of staining in the resting and proliferating 

zones is also highlighted. Higher magnification images of the hypertrophic zone figures 5.7 b 

& c, reveal intense extracellular staining o f type X collagen surrounding the hypertrophic 

chondrocytes and in cartilaginous remnants at the ossification front. Type X collagen staining 

was not observed in the other zones of the growth plate. The primary negative control 

sections; figure 5.7 d & e, are diffusely stained by the secondary FITC conjugated antibody. 

The staining appears to be cellular rather than in the extracellular matrix.

5.3.6 Localisation of Type X Collagen in Articular Cartilage

Type X collagen staining can be seen around chondrocytes in the articular cartilage, figure 5.8

a. The staining is not as intense as the staining seen in the hypertrophic zone of the growth 

plate, but is markedly different when compared to the primary negative control. The 

pericellular staining in the articular cartilage is highlighted with white arrowheads and 

appears to be specific for chondrocytes in the deep zone, figure 5.8 b.

5.3.7 Localisation of Decorin and Biglycan in the Growth Plate

The localisation of decorin and biglycan within the tibial growth plates o f 6 week old mice 

were studied using the polyclonal antibodies LF-113 and LF-159, respectively. Diffuse 

decorin staining can be seen around the chondrocytes of the proliferating and hypertrophic 

zones, figure 5.9 a. Biglycan staining can be seen around resting and hypertrophic 

chondrocytes; as well as in the cartilaginous remnants of the ossification front, figure 5.10 a &

b. The biglycan staining appears more intense and less diffuse than the decorin staining. The 

staining of sections incubated with the LF-113 and LF-159 is markedly different to the 

background cellular fluorescence seen in the primary negative control sections, figure 5.9 b 

and 5.10 c.
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(r) resting zone 

(p) proliferating zone 

(h) hypertrophic zone 

(of) ossification front

Figure 5.7: Immunolocalisation of type X collagen in the tibial growth plate of 6 
week old C57 black mice. Tissue was fixed, decalcified, wax embedded 
and 10pm sections cut. Bar = 50pm.

(a) Staining of the hypertrophic zone and the ossification front.

(b) & (c) Higher magnification images o f staining in the hypertrophic zone.

(d) & (e) Two different magnifications of the primary negative control sections, 
no staining is visible in the extracellular matrix.
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Figure 5.8: Immunolocalisation of type X collagen in the knee joint of 6 week old C57 
black mice. Tissue was fixed, decalcified, wax embedded and 10pm sections cut. 
Bar = 50pm.

(a) Type X collagen staining in the growth plate (gp) and in articular cartilage (ac).

(b) Higher magnification image of the articular surface, with pericellular type X 
collagen staining.
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(a)

(b)

Figure 5.9: Immunolocalisation of decorin in the growth plate of 6 week old C57 black mice. 
Tissue was fixed, decalcified, wax embedded and 10pm sections cut. Bar = 50pm.

(a) Diffuse pericellular staining around chondrocytes in the proliferating (p) and hypertrophic
(h) zones.

(b) Negative control section showing no staining in the matrix of the growth plate.
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Figure 5.10: Immunolocalisation o f biglycan in the growth plate o f 6 week old C57 black 
mice. Tissue was fixed, decalcified, wax embedded and 10pm sections cut. Bar = 50pm.

(a) Pericellular staining around resting (r) chondrocytes, staining in the hypertrophic (h) 
zone and in the cartilaginous remnants o f the ossification front (of).

(b) Higher magnification image o f the hypertrophic zone and ossification front staining.

(c) Negative control section showing no staining in the matrix of the growth plate.
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5.4 DISCUSSION

Expression studies were carried out to determine whether decorin and biglycan were 

expressed by the same cell type as type X collagen, namely hypertrophic chondrocytes. 

mRNA was purified from the cephalic and caudal regions of 17 day embryonic chick stemae, 

and was subsequently used to generate cDNA. Hypertrophic chondrocytes are found in the 

cephalic region of the sternum but not in the caudal region. Using primers designed against 

the chick sequence for type X collagen and decorin, PCR products of the expected sizes were 

produced (see table 5.1 & figure 5.2). These PCR products were purified and ligated into the 

cloning vector pGEM-T, sequence analysis of the plasmid DNA confirmed the identification 

of the products. It was therefore concluded that decorin is expressed by hypertrophic 

chondrocytes. Type X collagen would have an opportunity to interact with decorin in the 

ECM after synthesis and export out of the hypertrophic chondrocytes.

Expression of biglycan by hypertrophic chondrocytes was not demonstrated using the primers 

designed against the human, mouse and rat biglycan sequences. There are a number of 

possible reasons as to why the biglycan expression study was not successful. Biglycan may 

not be expressed by hypertrophic chondrocytes; this does not exclude / disprove interactions 

occurring between type X collagen and biglycan in the ECM surrounding hypertrophic 

chondrocytes, as there have been reports of molecules diffusing through the ECM to locations 

remote from their site of synthesis (Polgar et al., 2003). A likely cause of the unsuccessful 

PCR is primer design; differences of a few base pairs in the chick sequence at the site where 

the primers anneal would affect the PCR reaction. The chicken genome has since been 

sequenced and the primers used during this study have been analysed against the database. No 

matches with significant similarity were found when the biglycan primers sequences were 

Blasted against chicken specific sequences in the Blast chicken genome.

During histological analyses both cryosections and decalcified wax sections of 6 week old 

mouse tibiae were used. Initially it was thought that unfixed calcified cryosections would 

yield good histological results and would be preferable for the immunohistochemical 

analyses. However sectioning proved difficult, often only part of the section would adhere to 

the slide despite using a variety of coated slides including poly-lysine and APES. It was 

almost always the calcified bony regions of the section that did not adhere to the slide; during 

washing procedures this region would cause the detachment of all or part of the section from
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the slide resulting in a fragmented section. For this reason wax sections of decalcified bone 

were used as an alternative.

Histological staining using Masson’s Trichrome and Haematoxylin & Eosin revealed the 

cellular nature o f the tibial epiphyseal growth plate. Comparisons were made between the 

abundant ECM found surrounding chondrocytes of articular cartilage and the sparse ECM 

surrounding chondrocytes of the growth plate. The morphology of the small flattened 

chondrocytes of the resting zone, the columnar arrangement of the chondrocytes in the 

proliferating zone and the increased volume of the hypertrophic chondrocytes in the 

hypertrophic zone was well demonstrated. Analysis o f the sections which had been 

histologically stained assisted in the orientation and interpretation of the 

immunohistochemistry which followed. Analysis of the mineralisation status of the sections 

of 6 week old mouse epiphyseal plates was desirable, but was not performed because the 

sections were decalcified. Previous studies in the growth plates of Wistar rats have shown the 

presence of mineralized chondrocytes ghosts, which were demonstrated to contain biglycan 

by immunohistochemistry (Takagi et al., 2000).

Immunohistochemistry showed that type X collagen co-localised with decorin and biglycan in 

the epiphyseal growth plate of 6 week old mouse tibiae. This indicates that the interactions of 

type X collagen with decorin and biglycan demonstrated in vitro may be functionally 

significant in vivo. Localisation to the same region of the growth plate indicates that the 

molecules are in the correct vicinity to interact. However, immunohistochemistry at the light 

microscope level does not provide any information regarding the exact proximity of the 

molecules. Electron microscopy studies using antibodies and gold labels would offer higher 

resolution, and would provide more detailed information regarding the proximity of 

interacting molecules. The differences in the intensity and diffuse nature of staining by the 

type X collagen, decorin and biglycan antibodies may be due to different affinities for their 

binding epitopes in fixed wax sections. Immunohistochemistry using unfixed cryosections 

would complement the data generated with the fixed wax sections.

In summary, RT-PCR analysis was used to demonstrate that type X collagen and decorin are 

co-expressed by hypertrophic chondrocytes, derived from the sternum of 17-day-old 

embryonic chicks. Analysis of biglycan expression by hypertrophic chondrocytes was 

inconclusive due to the lack o f biglycan primers designed against the chick sequence.
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Immunohistochemistry was performed using antibodies raised against type X collagen, 

decorin and biglycan on paraffin wax sections of the knee joint of 6 week old C57 black mice. 

Type X collagen, decorin and biglycan were demonstrated to co-localise in the hypertrophic 

cartilage matrix.
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Chapter 6: General Discussion

6.1 Background

Type X collagen is produced by hypertrophic chondrocytes o f the epiphyseal growth plate and 

has been proposed to be important for endochondral ossification (EO). A precise functional 

role for type X collagen has not been defined although a number of potential roles have been 

suggested (Shen, 2005). These include:

* being involved in regulating the calcification process during EO

* providing support as the cartilage matrix is degraded during EO

* providing an easily resorbed matrix for the deposition of bone matrix during EO.

Decorin and biglycan have been demonstrated to be important for collagen biology. They 

have been linked to the mineralisation process; interact with numerous collagen types, non- 

collagenous proteins and growth factors. This led to the hypothesis that type X collagen 

interacts with decorin and biglycan in the hypertrophic cartilage extracellular matrix. The aim 

of this study was to characterise these molecular interactions.

6.2 Summary of Findings

Interactions of type X collagen with decorin and biglycan have been studied in vitro using 

material from a variety of sources. Type X collagen was purified from culture medium of 

hypertrophic chondrocytes which were derived from the tibial epiphyseal growth plates of 17 

day old embryonic chicks. The culture medium was subjected to ammonium sulphate 

precipitation and differential salt fractionation, which allowed type X collagen to be isolated 

from the other proteins and collagen types synthesised by cultured hypertrophic chondrocytes. 

This procedure for preparation of type X collagen is well established (Barber and Kwan, 

1996). Human recombinant decorin produced in a human cell line and bovine cartilage 

biglycan were obtained from commercial sources for use in the in vitro studies.

A solid phase microtitre plate assay was developed to study the interactions of type X 

collagen with decorin and biglycan. Optimisation of conditions such as antibody dilutions, 

incubation times and temperatures were performed. Decorin and biglycan were used to coat 

wells and type X collagen was applied as a ligand. The assay utilised a monoclonal antibody, 

MA3, which recognises a triple helical epitope on type X collagen, a HRP conjugated 

secondary antibody and the chromogenic substrate o-phenylenediamine. Binding saturation
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was reached in decorin and biglycan coated wells when type X collagen reached a 

concentration of around 5pg/ml. Competitive inhibition experiments have demonstrated that 

type X collagen probably has a common site of interaction for decorin and biglycan. Assays 

which were performed with pepsinised type X collagen indicated that the triple helical region 

of type X collagen was not involved in the interaction with decorin and biglycan, and the 

interactions were therefore likely to be mediated by the NC domains. Solid phase assays are a 

popular in vitro method for studying protein-protein interactions, many ECM proteins have 

been studied in this way, examples include collagens, fibronectin, COMP, decorin and 

biglycan (Di Cesare et al., 2002; Holden et al., 2001; Rosenberg et al., 1998).

The interaction of type X collagen with decorin and biglycan was shown to be of high affinity 

using SPR. Equilibrium constants were calculated and were in the nanomolar range. The 

hypothesis that the interaction is probably mediated via the NC domains was also studied 

using SPR. Interactions of whole type X collagen and the NCI domain with the proteoglycans 

produced similar results indicating that the interaction was probably mediated via the NCI 

domain. This was further confirmed, when the sensor chip with immobilised pepsinised type 

X collagen was used in experiments with decorin and biglycan and produced no interaction. 

Using decorin and biglycan as analytes before and after deglycosylation, over the type X 

collagen chip surface produced similar results. This indicates that the interactions of type X 

collagen with decorin and biglycan involve the core protein and are independent of the 

presence or absence of the GAG chain(s).

SPR has become one o f the most predominant methods for studying in vitro interactions. The 

kinetic data that can be generated offers advantages over other in vitro interaction analysis 

methods and can be very informative. However, there are limitations with studying 

interactions of isolated molecules. This is especially true when these molecules are normally 

found in a complex three dimensional matrix. The method does not resemble the 

physiological environment of the molecules. Despite these drawbacks SPR has been widely 

used for studying interactions of ECM proteins, examples include interactions of type IX 

collagen with COMP (Holden et al., 2001) and interactions of decorin and biglycan with type 

VI collagen (Wiberg et al., 2001).

Following the identification of the involvement of NCI in the interactions with decorin and 

biglycan, further characterisation of the region of the NCI domain involved was required. The
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crystal structure of the NCI domain has been resolved (Bogin et al., 2002), details of the 

amino acid residues on the surface of the domain and potential residues that could be involved 

in interactions have been identified. Recombinant fragments of the NCI domain were cloned 

into an expression vector and were produced in E. Coli. Recombinant proteins with a 6xHis- 

tag were purified from other bacterial proteins using a nickel chelate column and were 

subsequently used in interaction analysis. Due to reasons discussed in Chapter 4, the attempt 

at further determining more specifically the region o f the NCI domain involved in 

interactions with decorin or biglycan were at present unsuccessful. Differences in folding of 

small fragments of the NCI domain compared with folding of the whole domain could be a 

perceived problem. Previous studies however, using regions of ECM proteins such as the 

collagen binding domain of fibronectin have been produced in E. Coli and have been used 

successfully in interaction analysis with a variety of collagen types, including type X collagen 

(Steffensen et al., 2002). This indicated that post-translational folding of recombinant proteins 

in E. Coli does not have to be a complication.

Preliminary studies using decorin and biglycan labelled gold particles and type X collagen in 

negative staining experiments have been encouraging. They have provided limited 

morphological evidence of the interactions of type X collagen with decorin and biglycan. The 

positioning of the gold particles appear to be at the end of the type X collagen molecules, 

however due to aggregation and to the condensed nature of the molecules on the electron 

micrographs they have proved difficult to interpret. Further optimisation of the method for the 

negative staining of type X collagen and decorin and biglycan labelled gold particles is 

required. Negative staining utilising gold labelled particles has been widely used previously to 

identify domains of ECM proteins involved in interactions, examples include decorin and 

biglycan labelled gold particles with type VI collagen (Wiberg et al., 2001; Wiberg et al., 

2002).

To substantiate data gained from interaction studies, expression and localisation studies have 

been carried out. The co-expression of decorin and type X collagen by hypertrophic 

chondrocytes has been demonstrated using RT-PCR analysis. Due to the lack of chick 

biglycan sequence, primers for biglycan were designed to regions o f sequence that are 

homologous across mouse, rat and human. Despite this the cloning and sequence analysis of 

PCR products generated using the biglycan primers proved not to be biglycan.
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Immunohistochemical analysis of 6 week old C57 black mice growth plates revealed that type 

X collagen co-localises with decorin and biglycan in the hypertrophic cartilage ECM. Staining 

for decorin and biglycan appeared more diffuse than that of type X collagen; this may be due 

to differences in the antibody affinities for their epitopes in paraffin wax sections. Expression 

and co-localisation studies suggest that interactions of type X collagen with decorin and 

biglycan may have some physiological relevance and could be occurring in vivo. Previous 

studies of the expression of decorin and biglycan message by cells of the epiphyseal growth 

plate and their localisation to the ECM of the growth plate have demonstrated variable results. 

A study o f the formation o f bone in the rat mandible found expression o f decorin and biglycan 

at the gene and protein level by newly differentiated osteoblasts before the onset of matrix 

mineralisation and concluded that they could play a role in the earliest stages of bone 

formation (Kamiya et al., 2001). Decorin and biglycan have been localised in bovine growth 

plates but their abundance in the hypertrophic zone was minimal (Alini and Roughley, 2001), 

in contrast biglycan was found in the hypertrophic zone o f developing epiphyseal cartilage of 

Wistar rats (Takagi et al., 2000).

6.3 Proposed Biological Significance of the Identified Interactions

6.3.1 Involvement in Endochondral Ossification

Molecular interactions that contribute to the molecular assembly o f the matrix in the growth 

plate are fundamental to its functions. Molecules form a macromolecular complex, and do not 

act in isolation, the structure and function is dependent on the matrix as a whole. The 

interaction between type X collagen and other matrix components, such as the small leucine 

rich proteoglycans, decorin and biglycan, may have a role in matrix assembly or maintaining 

the integrity and mechanical stability o f the matrix in the hypertrophic region of the growth 

plate.

A number of different roles have been postulated for the interaction of type X collagen with 

decorin and biglycan in the growth plate (figure 6.1). Type X collagen has been shown to 

form a hexagonal lattice in vitro (Kwan et al., 1991), lattice formation is mediated via 

interactions of the N CI domain. Whether this lattice like structure occurs in vivo is unclear. 

Interactions of type X collagen with decorin or biglycan could potentially organise the 

assembly o f this lattice or any other supramolecular assembly o f type X collagen. Binding of 

the proteoglycans could regulate the assembly or final dimensions o f the type X collagen
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pericellular lattice in hypertrophic cartilage (figure 6.1a). Decorin and biglycan are known to 

regulate the fibril diameter of fibrillar collagens (Scott and Orford, 1981) and have been 

shown to organise collagen VI into hexagonal-like networks (Wiberg et al., 2002). Their 

importance in collagen biology has been demonstrated by the abnormal ultrastructural effects 

of fibrillar collagens seen in transgenic mice lacking decorin and biglycan. The effect of 

abnormal ultrastructure is enhanced in mice that are deficient in both proteoglycans. The 

shorter limbs that double deficient animals have (Corsi et al., 2002) suggests that decorin and 

biglycan may have roles in the growth plate, possibly in regulating some of the processes 

involved in EO, however this has not been investigated and is speculative. Changes in the 

ECM architecture of epiphyseal cartilage in these animals may alter the mechanical stability 

of the growth plate and could lead to abnormal long bone formation and shortened limbs.

The interactions may serve purely a structural role; proteoglycans may act as a bridge 

between type X collagen in the hypertrophic zone of the growth plate; and the fibrillar 

collagens in the proliferative zone, or the fibrillar collagens being turned over in the 

hypertrophic region (figure 6.1b). Such structural interactions will be important for 

maintaining the stability of the matrix during a dynamic remodelling period. Type X collagen 

has been linked to the compartmentalisation of matrix components to the hypertrophic zone of 

growth cartilage, providing the proper environment for mineralisation and remodeling (Kwan 

et al., 1997). The identified interactions with decorin and biglycan would be consistent with a 

role in compartmentalisation. Type X collagen may bind to and retain these molecules in the 

hypertrophic zone promoting the mineralisation process. Biglycan has been linked with 

growth plate mineralisation after being found in clusters o f hydroxyapatite (HAP) crystals or 

in the crystal ghosts within the ossifying region o f the epiphyseal plates of Wistar rats (Takagi 

et al., 2000). While both decorin and biglycan have been demonstrated to be able to bind to 

HAP (Sugars et al., 2003).

The interaction between type X collagen and the proteoglycans may have important 

implications in the process o f endochondral ossification, possibly via the actions of TGF-p 

(figure 6.1c). The proteoglycans are known to bind to the growth factor TGF-p, their ability to 

bind to this growth factor and to type X collagen may lead to the formation of a reservoir of 

this growth factor, specifically held within the hypertrophic zone of the epiphyseal growth 

plate. Breakdown of the hypertrophic matrix, containing type X collagen bound to decorin
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or/and biglycan, may cause the release of TGF-p, thus allowing it to act on components 

present in the hypertrophic region of the growth plate and on invading cells such as 

osteoblasts at the vascular front. Previous studies have demonstrated that hypertrophy and 

apoptosis of chick chondrocytes in culture is associated with the release and activation of 

TGF-P2, this has been suggested to provide a mechanism controlling the processes of vascular 

invasion of growth cartilage and the deposition of bone matrix on nearby cartilage remnants 

(Gibson et al., 2001).
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a. Regulatory ?

S = SLRP

b. Structural ?

c. Promoting endochondral ossification ?

Hypertrophiczone 2
Growth Factors

Invading
cells

Figure 6.1: Potential roles o f an interaction between type X 
collagen and the SLRPs decorin and biglycan.
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6.3.2 Involvement in Pathology

The identified interactions of type X collagen with decorin and biglycan may have roles in 

pathology as well as normal physiological development. Pathological calcification can occur 

in multiple tissues throughout the body. Decorin and biglycan are widely expressed, whereas 

type X collagen has a much more restricted distribution. Type X collagen, decorin and 

biglycan have all been implicated in the pathology of osteoarthritis. In a study of human late 

stage osteoarthritic cartilage, decorin and biglycan transcription and translation was found to 

be up-regulated (Bock et al., 2001), and synthesised by fibroblast-like chondrocytes (Tesche 

and Miosge, 2005). Strong expression of type X collagen has been found to co-localise with 

the deposition of calcium within regions of osteoarthritic meniscal cartilage enriched with cell 

clusters (Hellio Le Graverand et al., 2001).

Another site where type X collagen, decorin and biglycan have been implicated in pathology 

is the intervertebral disc. A study o f intervertebral disc degeneration found that different 

regions of the disc respond to degeneration differently. Cells of the nucleus pulposus decrease 

biosynthetic processes, whereas they are upregulated in the annulus fibrosus. In severely 

degenerated discs aggrecan synthesis was found to be decreased and the concentration of the 

small proteoglycan decorin and biglycan was increased. This finding was suggested to be 

influential on the biomechanical properties and hence the function of the disc, as well as being 

indicative of an inappropriate repair process (Cs-Szabo et al., 2002). Type X collagen has also 

been found to be linked with disc degeneration, it was found closely associated with clusters 

of cells resembling hypertrophic chondrocytes in all regions o f degenerate discs and this also 

has been suggested to be an attempted repair response to altered loading (Aigner et al., 1998; 

Roberts et al., 1998). More recently type X collagen expression has been demonstrated in fetal 

intervertebral discs and in severely degenerated discs by an in situ hybridization study (Xi et 

al., 2004).

The production o f matrix proteins associated with bone calcification by vascular smooth 

muscle cells grown in culture, such as type I collagen, decorin and biglycan, led to the 

suggestion that smooth muscle cells in developing atherosclerotic plaques play an important 

role in the deposition o f ECM involved in calcification of developing lesions. Decorin has 

been found to induce calcification o f arterial smooth muscle cell cultures and co-localises to 

mineral deposition in human atherosclerotic plaques, suggesting that decorin functions as a 

promoter of intimal calcification (Fischer et al., 2004). In a study of the atherosclerotic
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process in rat hearts, calcified tissue in coronary arteries was found to contain type X 

collagen, among other markers o f cartilage and bone tissue (Fitzpatrick et al., 2003).

Osteoarthritic cartilage, degenerating intervertebral discs and artherosclerotic plaques are 

examples of pathological situations where types X collagen, decorin and biglycan have all 

been implicated. Whether the identified interactions involving these molecules are involved in 

these processes remains to be studied.

6.4 Future Work

There are a number of other experiments that could be done to substantiate the characterised 

interactions of type X collagen with decorin and biglycan. High resolution co-localisation 

studies of type X collagen and the SLRPs decorin and biglycan could provide important 

information on the roles of these interactions in vivo. Sections of tibial growth plate could be 

probed with specific antibodies and different size gold particles could be used as markers for 

different proteins, TEM could then be used to study co-localisation. This technique would 

offer far better resolution than immunohistochemistry using the light microscope and would 

provide direct evidence o f an interaction occurring in vivo. Artificial cross linking agents 

could be used on epiphyseal growth plate tissue, the tissue could be homogenized and the 

proteins extracted, analysis by SDS-PAGE and western blotting of the extracted proteins 

could also confirm interactions o f type X collagen.

The clones produced during this study which contain fragments o f the NC 1 domain should be 

utilised after further optimisation of recombinant protein production to characterise the 

binding site for decorin and biglycan on the NCI domain. The interaction of type X collagen 

with decorin and biglycan is in contrast to interactions with other collagen types which 

involve the triple helical domain. Decorin and biglycan bind to the N-terminal end of the 

triple helix of type VI collagen (Wiberg et al., 2001) and decorin binds to the triple helical 

region of type I collagen (Keene et al., 2000). The finding that decorin and biglycan interact 

with different domains in different collagen types reinforces their importance in collagen 

biology. Additionally, the site o f interaction on the decorin and biglycan core protein should 

be mapped. Previous studies have demonstrate that leucine-rich repeats 4 and 5 are involved 

in the binding of decorin to type I collagen (Svensson et al., 1995) and this binding occurs on 

the concave face o f the decorin ‘horse-shoe’ model (Weber et al., 1996). More recently the 

crystal structure of a decorin dimer has been resolved; which challenges this view. The dimer
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involves a high affinity interaction of the concave surface of two ‘banana-shaped’ decorin 

molecules, which would suggest that the previously characterised interactions involving the 

concave surface could not occur (Scott et al., 2004).

Additional interacting partners for type X collagen could be identified by methods such as a 

yeast two hybrid screen. Other potential interacting partners for type X collagen include 

fibromodulin and epiphycan, two members o f the SLRP family which are known to be 

present in the growth plate (Johnson et al., 1997; Saamanen et al., 2001). Perlecan is another 

potential interacting partner known to be present in the growth plate, it has been suggested 

that perlecan is involved in MMP regulation within the growth plate matrix (Gustafsson et al., 

2003). A possible association between type X collagen and heparan sulphate containing 

proteoglycans was proposed when analysis of transgenic type X collagen mice growth plates 

showed a decompartmentalised chondro-osseous junction (Jacenko et al., 2001).

To establish whether the interaction o f type X collagen with SLRPs have physiological roles, 

the use o f transgenic mice would be ideal. Mice that are deficient in type X collagen could be 

used and compared with wild type animals. The expressed message, synthesis and localisation 

of SLRPs could be studied using a variety of methods, such as in situ hybridization and 

immunohistochemistry to determine if  there are differences at the molecular and protein level 

within the growth plate. Differences in levels, distribution and activity of growth factors could 

be assessed. Changes to the histological arrangement; the onset o f calcification, or changes at 

the vascular front could also be analysed. Mice deficient in decorin, biglycan or both could 

also be studied to look for growth plate abnormalities and changes to the distribution of type 

X collagen. Data generated from animal models may substantiate in vitro interaction data by 

proving a biological significance when the interactions are lost in a knock-out model.

6.5 Closing Comments

A high affinity interaction o f type X collagen with decorin and biglycan has been described. 

The characterised interactions are likely to have functional roles in endochondral ossification 

during normal growth and development, but could also be involved in pathological 

calcification. Characterisation o f these molecular interactions which are likely to be important 

for the structure and hence the function of the hypertrophic ECM, could help define the 

precise roles of these components during the process of endochondral ossification.
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