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Abstract

This dissertation considers, the Variable Precision Rough Sets (VPRS) model, and its development 

within a comprehensive software package (decision support system), incorporating methods of re­

sampling and classifier aggregation. The concept of /?-reduct aggregation is introduced, as a novel 

approach to classifier aggregation within the VPRS framework. The software is applied to the credit 

rating prediction problem, in particularly, a full exposition of the prediction and classification of 

Fitch's Individual Bank Strength Ratings (FIBRs), to a number of banks from around the world is 

presented.

The ethos of the developed software was to rely heavily on a simple 'point and click' interface, 

designed to make a VPRS analysis accessible to an analyst, who is not necessarily an expert in the 

field of VPRS or decision rule based systems. The development of the software has also benefited 

from consultations with managers from one of Europe's leading hedge funds, who gave valuable 

insight, advice and recommendations on what they considered as pertinent issues with regards to 

data mining, and what they would like to see from a modern data mining system.

The elements within the developed software reflect each stage of the knowledge discovery 

process, namely, pre-processing, feature selection, data mining, interpretation and evaluation. The 

developed software encompasses three software packages, a pre-processing package incorporating 

some of the latest pre-processing and feature selection methods; a VPRS data mining package, 

based on a novel “vein graph” interface, which presents the analyst with selectable /?-reducts over 

the domain of /?; and a third more advanced VPRS data mining package, which essentially 

automates the vein graph interface for incorporation into a re-sampling environment, and also 

implements the introduced aggregated /?-reduct, developed to optimise and stabilise the predictive 

accuracy of a set of decision rules induced from the aggregated /?-reduct.
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Chapter 1

Introduction

“It is often said that the soul of a technology-driven economy is continuous innovation.
No successful enterprise can pat itself on the back for last year's software...”

Aburdene (2007, pp. vii)

Throughout history, information, or knowledge in many forms, has always been a tradable 

commodity. It is a curious fact that historians consider history, as opposed to pre-history, as 

beginning with the earliest examples of written information; be it, the ancient Egyptian hieroglyphs 

or Mesopotamian cuneiform, used some 5,000 years ago (Carr, 2001).

Within modem times, the information industry has become considered one of the most important 

sectors within today's evolving economic structure (Whitehom and Whitehorn, 1999; Wu, 2002; 

Business Intelligence Channel, 2008; Rooney et al., 2005). There are a number of types of 

information industries, providing information on a wide range of areas such as, scientific, technical, 

medical, media, and relevant to this dissertation, business and financial information (Fayyad et al., 

1996).

Business information providers (IPs), such as, Reuters Group, Bloomberg and Dow Jones 

Newswires, in themselves, supply their customers with a vast variety of information and financial 

market data (Bloomberg, 2008; Dow Jones Newswires, 2008; Reuters Group, 2008). Other notable
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IPs, such as Bureau van Dijk supply online, research targeted databases, concerned with public and 

private companies, banks and insurance firms (Bureau van Dijk, 2008).

In his 1984 book Megatrends, Naisbitt (pp. 24) wrote, “We are drowning in information, but 

starved for knowledge...”, this is a sentiment which still holds true over 20 years later. With the 

increasing rate at which data is being collected (Brachman et al., 1996), and given business IPs 

ability to task their sources to collect such vast quantities of data, is, as Naisbitt suggested, fruitless 

unless knowledge can be gleaned from it (also see, Naisbitt, 1988, 1996). The business journalist 

Aburdene (2007), argues that the information revolution is now over, and that we are at the 

beginning of a new epoch, where, what she terms, the 'concious individual' who can create 

technology to exploit the information industry, will be the driving force behind a new revolution.

Utilising modem technology (computers), the process by which knowledge is extracted from 

databases of information, is commonly known as data mining and is seen as a major step of the 

more broader discipline of Knowledge Discovery in Databases KDD (Han et al., 2003). Where 

knowledge management, is the business process, by which companies organise, collect and 

assimilate this knowledge into their systems (Zom and Taylor, 2003).

Due to the volume of data available, and facilitated by the advances made in modern computers,

new techniques are being developed, both in industry and academia, to exploit this increasing

abundance o f information. Tay et al. (2003, pp. 1) notes that:

“A new generation of techniques and tools is emerging to intelligently assist humans in 
analyzing mountains o f data, finding useful knowledge and in some cases performing 
analysis automatically...”

This dissertation develops one o f the more recent data mining methods, based on Variable Precision

Rough Sets (VPRS) (Ziarko, 1993a), an extension of Rough Set Theory (RST) (Pawlak, 1982),

within the field of quantitative financial analysis. In more detail, bespoke, prototype Decision

Support Software is developed (a specific type of KDD system, described later), where the software

incorporates a full suite of facilities capable of tackling some of the most relevant issues within the
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field KDD and data mining. In particular, one of the main focuses of this dissertation was the 

development a framework to facilitate, re-sampling and ensemble methods, within the VPRS model 

(described later).

This research has benefited from support and advise, by professional investment managers, from 

one of Europe's leading hedge funds. Whose expressed interest, is grounded in the fact that, for the 

daily challenges that face the modem data analyst, there is a dearth of accessible data mining tools 

developed for their industry (Harnett and Young, 2004, 2007). They have offered advice on what 

they would expect, and would like, from a modern data mining package, and described the 

problems within their current systems. Though, this is not to say, that the developed software is 

specific to their field of work, however, the developed software is considered here, in the context of 

financial quantitative research, and is expounded using the problem of, predicting bank rating 

classifications.

The remaining sections of this introductory chapter are outlined below:

•  Section 1.1. KDD and Data Mining. This section provides an introductory overview of KDD 

and data mining, including: the roles of RST, in particular, VPRS as a modern approach to data 

mining; and re-sampling and ensemble methods within KDD, as modern evaluation, 

stabilisation and optimisation methods.

•  Section 1.2. Development of the VPRS Decision Support Software. This section provides a 

general description o f the extensive software developed for this dissertation, describing the 

methods implemented to assist an analyst through the KDD process.

•  Section 1.3. C hapter Synopsis. This section presents a chapter synopsis, outlining the 

remainder of the dissertation.
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1.1 K D D  a n d  D a t a  M i n i n g

Due to their contemporary nature, there are no strict definitions o f KDD and data mining. Frawley

et al. (1992, pp. 58) described KDD as the, “non-trivial extraction o f implicit, unknown, and

potentially useful information from data'’. Although the terms, KDD and data mining, are often used

synonymously (data mining is considered to be the more popular term, Piatetsky-Shapiro, 2000), a

clear distinction can be drawn, as stated by Fayyad et al. (1996, pp. 39):

“KDD refers to the overall process o f discovering useful knowledge from data, and data 
mining refers to a particular step in this process. Data mining is the application of 
specific algorithms for extracting patterns from data...”

Hence, data mining can be considered as just one stage within the KDD process. Figure 1.1.1

presents the stages o f the KDD process (Brachman and Anand, 1996; Fayyad et al., 1996), with

each stage, a transition o f the data from the source database to the discovered knowledge. The

stages o f the knowledge discovery process described here, reflect more closely the analysis

undertaken throughout this dissertation and may not be representative o f all KDD processes.

Knowledge

■

Patterns
(Rules)

Transformed 
Data Set

Pre-processed 
Data Set

Target 
Data Set

Database
(Bankscope)

Reiterate if Necessary

Figure 1.1.1: Stages of the KDD Process 

The KDD process, as illustrated in Figure 1.1.1, is an interactive, iterative, process starting with
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Data Set Selection. Whereby, a target data set is acquired from a data source. Typically, a subset is 

taken from a larger database. For example, the data set used within this dissertation is taken from 

Bureau van Dijk's online banking database Bankscope (2007), which gives the option to select 

subsets of their database of world banks (only European banks etc.). The data set selection stage 

may also entail, the initial selection of variables, required for the subsequent analysis.

Once the data set has been acquired, for many KDD problems, the next stage in the KDD process 

is the Pre-processing of the data (as a prerequisite for the later data mining stage). Operations of 

pre-processing include, methods for handling missing data, tackling imbalanced data, and 

discretisation of continuous valued data into discrete data (a requirement of some data mining 

methods, including RST). The aim o f pre-processing is to improve the quality of the final 

discovered knowledge (the predictive performance and interpretability).

Often, data sets contain variables (also described as features or attributes), which are redundant 

or irrelevant, hence, as shown in Figure 1.1.1, a Feature Selection stage is required prior to data 

mining. Reduction of the data through feature selection can remove these variables (from those 

selected during the data set selection stage), allowing the subsequent data mining stage to be more 

efficient and effective at recognising meaningful patterns for the purpose of classification or 

prediction.

The first three stages of the KDD process, could be described as supportive processes for the 

main stage, that is, Data Mining. There are numerous data mining methods (Weiss and Kulikowski, 

1991; Giudici, 2003; Kantardzic, 2003; Han and Kamber, 2006), and selection of a specific method 

is, dependant on the target application of the KDD process. The data mining method may be 

required either for classification or prediction. Typically, data mining methods used to predict 

categorical data are referred to as classification methods, whereas the prediction of continuous 

valued variables are referred to as numerical prediction, or simply prediction methods (Weiss and 

Indurkhya, 1998). From a research context, the data mining method may have already been
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selected, and the purpose of the knowledge discovery process is with a mind to understanding and 

testing the method rather than optimising its predictive capabilities (Fayyad et al., 1996). For the 

purpose of this dissertation the discovered knowledge, is referred to as the classifier.

The fifth and final stage o f KDD, namely, Interpretation and Evaluation, involves testing the 

final classifier, to asses its potential predictive performance. The analyst may also, in some 

circumstances, attempt to interpret and rationalise the results. For example, whether or not a list of 

rules constructed through the data mining process makes logical sense. The analyst can also benefit 

here, through the statistical analysis of the results and graphical visualisations. The final step of the 

KDD process would be to apply the discovered knowledge to unseen data, in an attempt to make an 

accurate classification or prediction.

The following subsections describe: in subsection 1.1.1, VPRS as a modern alternative to the 

more established data mining methods, and in subsection 1.1.2, re-sampling and ensemble methods 

as, modem approaches to evaluation and classifier optimisation.

1.1.1 VPRS Within Data Mining

Developed by Pawlak (1982, 1991), Rough Set Theory (RST) is a set theoretical approach for 

dealing with imprecise or vague concepts within knowledge. With regards to data mining, it offered 

a new methodology for, construction and application o f decision tables, based on inconsistent data 

sets (Ziarko, 2003). VPRS is an extension of RST, which relaxes an assumption that, the given 

classifications within the data set are totally correct (Mi et al., 2004). Hence, VPRS allows for a 

level of uncertainty, which may be inherent within some data sets (Ziarko, 1993a). This concept of 

uncertain classification, is relevant to the financial data that will be used here, namely, bank rating 

data (Tay et al., 2003).

RST based approaches, have intrinsic aspects that make them attractive as a modern analytical 

method (Ziarko, 2003; Beynon et al., 2004; Ilczuk and Wakulicz-Deja, 2007). RST is a non-
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parametric method, that makes no assumptions regarding the underlying distributions of the data 

variables, which is a limitation of other methods, such as regression (Dobson, 2001; Johnson and 

Wichem, 2007). RST, when utilised for classification, provides the user with a list of readable, 

interpretable, decision rules. The transparency and interpretability aspects that RST based methods 

offer (readable rules), are seen as key issues for the modem financial analyst (Harnett and Young, 

2004, 2007). With regards to data mining methods in general, Olecka (2007, pp. 139) noted that, 

“...patterns must be, not only valid and understandable, but also explainable...”, patterns being the 

discovered knowledge (classifier, rules etc.). Therefore, classifier methods providing readable lists 

of rules, are now becoming more favourable than, say, “black box” systems such as neural 

networks, whose method of knowledge representation (a network of weighted equations), is 

difficult to analyse (Lu et al., 1995; Craven and Shavlik, 1997; Lawrence et al., 1998; Roy, 2000).

With regards to feature selection (stage three of the KDD process shown in Figure 1.1.1), most 

data mining methods require feature selection to be performed prior to the data mining process, or 

use wrapper methods (described later) to perform feature selection during the process (Liu and 

Motoda, 2002). However, to some extent, feature selection is integral to RST based methods, 

including VPRS, through what is known respectively as reducts and /?-reducts (described in Chapter 

2). These are subsets of variables that maintain the data's semantics or 'meaning1, whilst eliminating 

irrelevant or redundant variables from the data set. This semantic preserving element of feature 

selection is particularly desirable, as it facilitates the interpretability of the resulting knowledge 

(Jensen, 2004). However, for the work within this dissertation, some feature selection or “pre­

feature selection” is incorporated for larger data sets (described in depth in Chapter 4).

1.1.2 Evaluation and Classifier Optimisation through Re­
sampling and Ensemble Methods

As data mining methods have evolved, so have the techniques for evaluating the potential future
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performance of the constructed classifiers (Weiss and Kulikowski, 1991, Han and Kamber, 2006). 

With regards to classifier predictive accuracy, these methods are collectively referred to as re­

sampling plans (Efron, 1982; Shao and Tu, 1995), and have been extensively used within 

regression, but until more recently, less so in machine learning. Breiman's (1996a) classification and 

regression trees perhaps being the exception. The most widely used methods of re-sampling are: 

leave-one-out, fc-fold cross-validation and bootstrapping (Han and Kamber, 2006). Re-sampling is a 

repetitive process, that affectively finds an average predictive accuracy, based on variants of the 

classifier, constructed using different subsets of the data set from each repetition.

Additionally, and bom out of the field of re-sampling, are ensemble methods (Dietterich, 2000a, 

2000b). Whereas re-sampling methods have been developed to improve the evaluation stage of 

KDD, ensemble methods through re-sampling, have been developed to improve the data mining 

stage. They are designed to stabilise and optimise the process of classification and prediction 

through, in a sense, constructing an average or aggregated classifier from the classifiers constructed 

during the re-sampling process. The most notable ensemble method being Breiman's bootstrap 

aggregating or bagging (Breiman, 1996a).

In terms of the position of this dissertation, there has been only limited research into re-sampling 

and ensemble methods with regards to RST (Bazan et al., 1994; Leifler, 2002; Jiang and Abidi, 

2005; Stefanowski, 2004, 2007), and even less so within VPRS (Griffiths and Beynon, 2007, 2008). 

As stated, the developed software, with regards to the VPRS model, facilitates and implements a 

novel approach to evaluation, stabilisation and optimisation, through the application of re-sampling 

and ensemble methods, and in particular through a proposed method of /?-reduct aggregation 

(described in depth in Chapter 3).
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1.2 Development of the VPRS Decision Support Software

The software developed here, can be considered a specific type of KDD system, namely, a Decision 

Support System (DSS). Introduced in the early 1960's (Raymond, 1966; Turban, 1967; Keen, 1980), 

a DSS supports an expert or the analyst, with complex real world decision making. A DSS extracts 

inference or knowledge, from data, during the data mining process. They can also discover new 

relationships (patterns) within data that were, hitherto unknown (Weiss and Kulikowski, 1991).

It is important here, to draw a distinction with another type of KDD system, known as an expert 

system (Power 2002, 2008; Coppin, 2004), because of the poor reputation of expert system (Bell, 

1985; Bachmann, 1993). The perceived role of expert systems was to reproduce an expert's 

reasoning and problem solving skills, but many of these systems met with limited success or 

outright failure (Bell, 1985; Bachmann, 1993). DSSs however, do not seek to replace the expert, but 

as their name suggests, support their decision making. DSSs have not attracted the unfavourable 

press which has marred the field of expert systems. Additionally here, the description of the 

developed software as a DSS, as opposed to an expert system, was received more favourably in the 

early discussions with Harnett and Young (2004), who expressed scepticism of expert systems.

The software developed within this dissertation, is envisaged to be a DSS, that supports an 

analyst's decision making, and allows them full autonomy throughout the KDD process. That is, the 

system will allow the analyst to make the final decisions, during each stage of the KDD process. An 

objective of the developed DSS, was to make it as user friendly as possible, providing an intuitive 

user interface that makes VPRS more accessible to the analyst, who may not be an expert in the 

field of VPRS (or rule based systems in general). The system was developed to empower the 

analyst, allowing them choice and flexibility to choose from a range of pre-processing, feature 

selection and evaluation methods; and setting certain parameters associated with those methods 

during the KDD process.

There are two main stages to the developed software. As shown in Figure 1.2.1, the first stage
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being a software package that incorporates the pre-processing and feature selection aspects o f the 

KDD process, and a second stage, taking the direction o f one o f two separate VPRS software 

packages (one basic and one advanced, described next) that incorporates the data mining, 

interpretation and evaluation aspects o f the KDD process.

Stage One

Pre-processing & 
Feature Selection 
Software

Data Set

Preprocessing & 
Feature Selection

Stage Two

Data Mining, 
Evaluation & 
Interpretation 
Software

Route One (Basic) 
VPRS Vein Graph 

Softw are

Route Tw o (Advanced) 
VPRS Re-sampling 

Softw are

Vein GraphAnalysis

/3-reduct
Validation Set

Results

LLU LLJ

Re-sampling
Analysis

T
Aggregated 

/3-reduct Validation 
Set Results

Out-of-Bag 
Re-sampling Results

"2u
:---------a-----ar

i I XU. L I
11311
I t M  U
3 3 13 1 3

Figure 1.2.1: The Two Stages o f the Developed Decision Support Software, Illustrating the Choice 
Between the Basic VPRS Vein Graph Analysis (Route One) and the More Advanced VPRS Re­

sampling Analysis (Route Two)

As stated and illustrated in Figure 1.2.1, two versions o f  the VPRS analysis software have been 

developed, a basic package and a relatively more advanced package. The basic package, 

implements an interactive analysis approach based on the ideas surrounding the VPRS ytf-reduct vein
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graph1 as presented in Beynon (2001), and is referred to here as, the VPRS vein graph software. The 

second, more advanced package, automates the /?-reduct selection process, and incorporates some of 

the most recent developments in classifier evaluation, optimisation and stabilisation, namely, re­

sampling and ensemble methodology. At the theoretical level, it introduces the aggregated /?-reduct, 

as a proposed approach to ensemble classification within VPRS. The more advanced package is 

referred to here as, the VPRS re-sampling software.

The developed software is programmed in Java and is based on a tabbed panel system. Where 

input is required from the analyst, this is done through a simple point and click interface, pull-down 

menus and selection using tick boxes.

As an overview o f the software, the following expounds the methods incorporated at each stage 

of the process (less the data selection stage). A comprehensive explanation of the methods will be 

provided in the subsequent chapters.

Pre-processing

A selection o f basic and advanced methods are implemented within the pre-processing and feature 

selection software. VPRS requires a discrete data format, hence four discretisation methods were 

selected, two basic methods, equal-width and equal-frequency, and two more advanced methods, 

Minimum Entropy and FUSINTER, which are based on optimising a measure of information 

entropy (Fayyad and Irani, 1992; Zighed et al., 1998). The results o f the discretisation process, are 

presented to the analyst, in a panel within the software, that allows them to adjust the discretisation, 

or select a different discretion method for specific variables if required.

The software also allows the analyst, the choice of three methods for handling imbalanced data 

sets (a data set that has a skewed classification distribution), namely up-balancing, down-balancing 

and average-balancing (Japkowicz, 2000). With regards to missing data, only two basic methods 

have been employed, they are, a simple mean imputation of missing values, and a &-fold nearest

1 First referred to as “the vein graph” within this dissertation, previously referred to as Information Veins in Griffiths
and Beynon (2008).



neighbour approach (methods for handling missing data are less developed than other pre­

processing methods, Weiss and Indurkhya, 1998).

Feature selection

Although the developed VPRS software incorporates a level of feature selection through identifying 

/?-reducts, it was found through the work undertaken during this dissertation, that a level of pre­

feature selection (feature selection undertaken prior to identifying /?-reducts) may be required for 

larger data sets. Here, two recent feature selection methods are implemented, ReliefF (Kononenko, 

1994) which is similar to a ^-nearest neighbour type approach, and a development of an RST based 

feature selection method proposed by Beynon (2004). The feature selection results are presented to 

the analyst in a table within the developed software, which allows them to choose the final set of 

variables for the subsequent data mining analysis. The results are augmented by a series of graphs 

which provide the analyst with further information to support their variable selection choice.

Data mining

The VPRS vein graph software will allow the analyst to select /?-reducts using a novel point and 

click graphical interface, that is, the vein graph. The decision rules associated with the choice of /?- 

reducts are derived, and displayed on a separate panel of information for inspection by the analyst.

The more advanced VPRS re-sampling software implements an original method for /?-reduct 

aggregation. Whereby, using an automated approach, /?-reducts are selected during the re-sampling 

process (which involves a number o f repetitions), and are then selectable by the analyst for /?-reduct 

aggregation. The analyst has the choice o f which set of aggregated /?-reducts they wish to select, 

based on evidence recorded during the re-sampling process, and presented to them within a number 

of information panels (described next under evaluation and interpretation).

The final product o f /?-reduct aggregation, is a list o f sorted aggregated decision rules, where 

stable and potentially most useful decision rules, are the most prominent. The aggregated decision
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rules are presented with associated metrics, indicating properties such as, stability and potential 

predictive performance. The analyst has the final choice of aggregated rule selection through a 

simple point and click interface, where the analyst's decisions are supported by a substantial amount 

of information recorded and summarised during the re-sampling process.

Evaluation and interpretation

A number of evaluation methods have been implemented within the software. At the most basic 

level (VPRS vein graph software), the analyst has the choice to retain a certain percentage of the 

data as a validation set. They may either choose to use: stratified sampling that maintains the 

distribution o f the classifications, or a novel method, more appropriate for imbalanced data sets, 

based on a statistical approach and introduced here for the first time.

The VPRS re-sampling software, through re-sampling, implements a more advanced scheme of 

evaluation. These re-sampling methods potentially provide better estimates of future predictive 

performance by, in a sense, finding average predictive accuracies, from a number o f constructed 

classifiers. The results o f re-sampling are presented in panels displaying information such as, re­

sampling: predictive accuracies (also called out-of-bag estimates), quality of classifications, quality 

of approximation and so forth (described later), and a breakdown of rules associated with the 

selected /?-reducts. A number o f graphs are also provided to aid the analyst's decision making.

As mentioned, the software records information throughout the data mining process, and 

provides the analyst with summaries and breakdowns. Within the software, with regards to testing 

the classifier (set o f rules), the predictions based on training and validation sets, are 

comprehensively broken down into a number of panels o f information. Firstly, the predictions are 

broken down into, data the classifier can predict, and data the classifier must predict using an 

approach called nearest rule classification. Secondly, they are further broken down into, data 

predicted correctly and data predicted incorrectly. A method known as the confusion matrix, is used 

within these panels, which further elucidates the predictive performance across all possible decision



classes. Finally, a full listing of all predicted data items (observations, objects) is given, presenting 

the analyst with information relating to each specific classification.

This section has outlined the developed VPRS software and the methods implemented within it, but 

it is only fair to acknowledge that there are a number of other existing RST based systems, 

developed within academia.

Most o f the earlier systems concentrated on the basic RST model, whereas, the later systems 

incorporated extensions of the original RST (Peters and Skowron, 2007; Shen and Jensen, 2007). 

Amongst the most prominent systems is ROSETTA (Rough Sets Data Base, System, 2008), which 

supplies the analyst with a comprehensive set of tools to undertake an RST analysis. ROSETTA is 

not aimed at a particular application domain, but would require an analyst with knowledge of RST. 

That is, the analyst is more exposed to the underlying mathematics o f RST. Whereas, the software 

developed here, seeks to remove the need for a deeper understanding of the mechanics of 

RST/VPRS, to accommodate analysts who are not experts in VPRS, or do not require the deeper 

more complex incite that ROSETTA would provide.

Also worth mentioning with regards to this dissertation is GROBIAN (Rough Sets Data Base, 

System, 2008), an earlier RST system (dating from 1996) that incorporated training and testing 

methodology (a methodology used here and descried in Chapter 3). A more recent software system 

known as JAMM, is based on another extension of the original RST, known as Dominance Based 

Rough Sets (DRSA). JAMM can be found at (http://idss.cs.put.poznan.pl/site/jamm.html)

Other RST software systems worthy of note are KDD-R, TRANCE and PRIMEROSE. A 

comprehensive list o f RST based software systems, including those mentioned here, can be found 

online at the Rough Sets Data Base System (2008), which also provides references and a range of 

other information relating to RST.
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1.3 Chapter Synopsis

The motivation, issues and objectives of this dissertation have been presented within this, the first 

chapter. This final section, provides a synopsis of the forthcoming chapters. The order of the 

chapters, does not directly reflect the order of the stages involved in the KDD process expressed in 

Figure 1.1.1, because Chapter 4, the chapter on data pre-processing and feature selection, requires 

for a specific feature selection method developed by Beynon (2004), an understanding of the RST 

theory laid out in Chapter 2.

Chapter 2, Rough Set Theory and Variable Precision Rough Sets Model

Chapter 2 formally introduces RST, including the notion of reducts, as a method of feature selection

that is semantic preserving. Basic decision tables and rule generation are described.

The VPRS generalisation o f RST is presented in full, with discussion on the /? value as a level of 

probabilistic inclusion to deal with uncertainty, and /?-reducts as the VPRS generalisation of a 

reduct. Decision tables providing minimal covering rules based on prime implicants are elucidated. 

The final section o f this chapter describes the vein graph as a quantitative tool, that allows analysts, 

who are not experts in VPRS, to undertake a VPRS analysis of their data.

Chapter 3, Re-sampling, Ensemble Methods and Introduction to /?-reduct Aggregation

Chapter 3 introduces methods for estimating the future predictive performance of a classifier, 

discussing the basic principles and methods, before describing, the more advanced re-sampling 

methods. Taking re-sampling as a foundation, it goes on to describe classifier ensembles as 

methods, for aggregating classifiers to improve stability and predictive performance. These methods 

are then adapted, for use within the VPRS model, and subsequent construction of aggregated /?- 

reducts.

Chapter 4, Data Pre-processing and Feature Selection
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Chapter 4 presents an overview o f the methods implemented within this dissertation for the purpose 

of data pre-processing and feature selection. It describes the four methods of discretisation 

mentioned previously, namely, equal-width, equal-frequency, minimum entropy and FUSINTER; 

two methods for ’pre-feature' selection, that is, ReliefF and Beynon's (2004) RST based method; 

two methods for handling missing values, mean imputation and a ^-nearest neighbour approach; 

and three methods for handling imbalanced data, up-balancing, down-balancing and average- 

balancing.

C hapter 5, Credit Ratings, Fitch Individual Bank Strength Ratings and Initial Data Selection 

The bank rating classification problem is described in Chapter 5, and provides the application area 

for which the developed VPRS software is demonstrated. The initial sections of Chapter 5 will 

introduce the broader problem of predicting credit rating classifications and the need for modem 

analytical methods. It then focuses more on bank ratings, including the considered Fitch's Individual 

Bank Strength Ratings (FIBR) (Fitch, 2007). A review of studies relating to the prediction of bank 

rating classification, will form the basis for the analysis proposed in the later chapters. That is, the 

variable models utilised in those related studies, in particular the CAMELS model (Feldman et al., 

2003; Derviz and Podpiera, 2004), are used for guidance on how to select the variables, and 

ultimately the data to be used in the subsequent analyses, shown within the following chapters.

Chapter 6 , Introduction to Software, Pre-processing and Feature Selection Results

Chapter 6 introduces and demonstrates, the pre-processing element of the developed software. 

Describing in general, the technical layout and operation of the software. It provides the results of 

the software implementation of the pre-processing methods discussed in Chapter 4, applied to the 

FIBR data. It discusses issues relating to how discretisation and balancing affects the performance 

of the subsequent data mining analyses. The results of the feature selection methods, ReliefF and 

the RST based method, are also compared and discussed. The set of selected variables from the
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results presented in Chapter 6 , are used subsequently in Chapters 7 and 8 .

Chapter 7, Vein Graph Software Analysis of the Example and FIBR Data

For consistency with examples given in Chapter 2, and for demonstration purposes, Chapter 7 

initially introduces the software implementation of the VPRS vein graph analysis on a small 

example data set. The remainder o f the chapter presents a VPRS vein graph analysis of the FIBR 

data, discussed in Chapter 5. This chapter also illustrates the intuitive user interface (an interactive 

point and click vein graph), and the extensive range of interpretation and evaluation procedures 

implemented within the software, as mentioned in section 1.2 .

Chapter 8, VPRS Re-sampling and Aggregated /?-reduct Analysis of the FIBR Data

Chapter 8 presents the more advanced VPRS re-sampling analysis of the FIBR data, based on the 

three re-sampling methods described in Chapter 3. The results are compared with the more basic 

results reported in Chapter 7. Chapter 8, also investigates the impact to stability and predictive 

performance o f the introduced /?-reduct aggregation method, incorporated within the VPRS re­

sampling software, and described in Chapter 4. It illustrates an extensive range of interpretation and 

evaluation methods. Additionally, for consistency with the VPRS vein graph software, it evaluates 

the aggregated /?-reducts through a suite o f evaluation methods common with the VPRS vein graph 

software. For the purpose o f benchmarking, the final section of this chapter presents a number of re­

sampling results, based on five benchmark data sets, and comparisons are also drawn against other 

classification methods.

Chapter 9, Conclusion and Future Work

The overall results o f the FIBR analyses are discussed. The performance of the developed software 

as a DSS is summarised, for each stage o f the KDD process implemented within the software, 

namely, preprocessing, feature selection, interpretation and evaluation. In particular, the suitability 

of the VPRS model as a data mining solution is discussed. Future work in terms of possible
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improvements to the system are presented, including adaptations to some of the methods 

implemented within the developed software, and consideration of other possible changes, in terms 

of theoretical directions within RST/VPRS, with regards to classification associated with the reality 

o f real world data sets.
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Chapter 2

Rough Set Theory and Variable 
Precision Rough Sets Model

Set theory, attributed to Cantor (1883), is considered by many mathematicians and philosophers, as 

one o f the fundamental bases for modem day mathematics (Pawlak, 2005). It provides the rigour 

necessary for the integrity o f mathematical concepts that must be clear and exact (Frege, 1903). Put 

simply, a set is a collection o f objects or elements that are in some way related (Allenby, 1997). The 

relation between these elements may be stated mathematically or verbally, but the definition must 

be precise, in this sense, a set is said to be crisp or exact (Pawlak, 2004).

In an attempt to solve certain paradoxical statements associated with set theory (Potter, 2004), 

there have been a number o f proposed extensions and indeed some alternative algebras (Pawlak, 

2004). It should be acknowledged though, that set theory also has critics, including Bishop (1967) 

and Wittgenstein (2001).

More recently, applied mathematicians have looked at the application of set theory to “real 

world” applications, in particular, when dealing with the notions of vagueness or impression that 

may arise due to incomplete data sets or misclassified data (possibly due to subjective opinion). It 

was found that, for many situations, the notion of a crisp set although essential for the rigours of 

mathematics, is too constrictive (Zadeh, 1965; Pawlak, 1991; Ziarko, 1993a, 1993b). There are a
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number o f fields where the ability to model imprecision is important (Tsumoto et al., 2004), 

particularly within computer science and relevant to this dissertation, namely the classification of 

objects (observations) within a data set, based on sets o f descriptive attributes (variables).

A number o f extensions to set theory have been proposed to deal with imprecision, most notably 

fuzzy set theory (Zadeh, 1965) and Rough Set Theory (RST) (Pawlak, 1982). Fuzzy set theory 

defines vagueness through graduated membership, that is, an element belongs to a set with degree k 

(0 < k < 1). RST defines vagueness through the notion of a boundary region, if the boundary region 

of an associated set is empty, then the set is said to be precise or crisp, else the set is described as 

imprecise or rough. RST is not an alternative to set theory, but rather “...embedded in it” (Pawlak, 

2005, pp. 7), in essence RST is an extension to set theory, to allow for the description of vague 

concepts.

There are a number o f properties of RST that have made it popular as a modem data mining 

method (Li and Wang, 2004). Here, the particular properties of interest are, data reduction through 

the selection of attribute2 (variable) subsets, termed reducts, that maintain the information semantics 

(meaning) o f the data (described later); and the ability to construct readable sets of “If... then...” 

decision rules. Furthermore, the non-parametric nature of RST (assuming no underlying distribution 

of the data), adheres closely to the principle of soft computing as stated by Duntsch and Gediga 

(1997, pp. 5), that is, “Let the data speak for itself’.

However, in respect to classification problems, RST may in itself, be too restrictive. Specifically, 

in circumstances where objects may be indiscernible to any specific classification, because of 

insufficient or incomplete knowledge (Katten and Cooper, 1998). Ziarko (1993a, 1993b), proposed 

the Variable Precision Rough Set (VPRS) model as a generalisation of RST, that allows for a level 

of misclassification. Ziarko introduced the notion of partial or probabilistic classification based on a 

classification error ft defined in the domain [0.0, 0.5), later An et al. (1996) re-defined p  as a

2 The word “variable”, is more commonly used within data mining, but within RST, the word “attribute” is used more 
frequently. Hence, within this chapter variables are referred to as attributes for consistency with the extant literature 
(further described in section 2.1).



probabilistic measure o f majority inclusion in the domain (0.5, 1.0] (this definition of (3 is adopted 

within this dissertation). Furthermore, Ziarko (1993a, 1993b) introduced the /?-reduct, which 

extended the notion o f a reduct, to deal with data reduction with regards to the partial classification 

of objects within VPRS.

The selection o f a suitable /? value (Ziarko, 1993a, 1993b; Ziarko and Xiao, 2004; Li et al., 

2007), has received less attention than the discovery of reducts (or /?-reducts). Beynon (2001) 

considered a visual representation o f certain aspects of VPRS, aimed towards aiding the analyst in 

understanding the interim analysis. Based on a visualisation of the /?-reducts over their respective 

domains o f /?, it aids the analyst in the selection o f the most suitable /?-reduct according to their 

specific application requirements. This visual representation has been titled here the “vein graph”, 

as the lines resemble veins, and because o f the connotations with veins of knowledge within a 

mountain o f data, an analogy used by LinofF (1998). The vein graph is one of the core elements of 

the VPRS decision support software developed within this dissertation.

It should be acknowledged, VPRS is not the only extension to RST, and that other RST based 

methodologies have been developed (Shen and Jensen, 2007), to tackle, other challenges relating to 

real world data sets. Greco et al.'s (2005) Dominance based Rough Set Approach (DRSA), has 

recently been proposed to deal with the ordinal properties o f data, and enhances RST by providing 

more informative decision rules (Chapter 9 subsection 9.2.2, further discusses DRSA). There have 

also been a number of approaches to extending RST to incorporate the ideas of Bayes' Theorem 

(Wong and Ziarko, 1986; Sl^zak and Ziarko, 2003; Sl^zak, 2004; Goldstein and Wooff, 2007). 

However, the elements of Bayes' theorem described later in subsection 2.2.3, do not reflect the 

usage o f Bayes' theorem as reported in the referenced papers, because here, in contrast to those 

referenced papers, no assumptions are made with regards to the underlying data distribution as a 

priori to analysing the data (Ziarko, 2003; Pawlak, 2005). Another promising direction involves 

combining rough and fuzzy sets, Pawlak (2005) notes that the theories complement each other and
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that their hybridisation has proved successful in many applications (Pal and Skowron, 1999; Jensen 

2004; Jensen and Shen, 2008).

The following sections o f this chapter, introduce the core theory and mathematics required for 

this dissertation, as described below:

•  Section 2.1. Rough Set Theory and Decision Tables. This section describes the basic

mathematics o f RST, including, attribute dependency and the notion of a reduct. The theory is

conveyed through the exposition of a decision table containing an example data set.

•  Section 2.2. Variable Precision Rough Set Model. This section describes the VPRS extension

to RST, including the notion of p  as a measure of majority inclusion and a yff-reduct as the 

extension to a reduct. Again the theory is demonstrated through the continued use of the 

example data set given in the previous section.

•  Section 2.3. The Vein Graph. This section provides a full exposition of the vein graph as 

introduced by Beynon (2001). Based on VPRS, the vein graph enables the analyst to visualise 

identified /?-reducts over different domains of p.

•  Section 2.4. Summary. This section summarises the main points of the previous sections, and 

briefly describes their implementation with the developed VPRS vein graph software.

2.1 Rough Set Theory and Decision Tables

Central to RST, and many other data mining methods, is the notion of an information system 

(Pawlak, 1991, 2004,2005), which is defined as the universe of objects (observations) U {oi, o2,...}, 

characterised by the set o f attributes^ {ai, a2,...}. More appropriate here, is a specialised case of the 

information system known as the decision table, which further defines the universe of objects U as 

being characterised by the set o f condition attributes C = {c\, c2,...} and classified to the set of 

decision attributes D  = {d\} (here only one decision attribute is considered), where A = CUD.
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Hence, a decision table can be denoted as S = (U, C, D). The value of an attribute associated with a 

particular object is referred to as an attribute value (Beynon and Peel, 2001; Sl^zak, 2004).

Table 2.1.1 illustrates an example data set, represented as a decision table containing seven 

objects {o\, o2, 0 3 , o4, o5, o6, o7), characterised by six condition attributes {c\, c2, c3, c4, c5, c6,j, and 

classified by the decision attribute {d \} (example taken from Beynon, 2001). Table 2.1.1 could 

represent seven patients (objects), being categorized as either ill {dx = 0) or healthy {d\ = 1), where 

for example, the condition attribute c4 may represent temperature (has temperature c4= 1, and does 

not have temperature c4 = 0). The attribute values, are of a discrete data type, taking values of only 1 

or 0, hence this data would be described as having a low level of granularity (Sl^zak et al., 2005a, 

2005b). This example data set will be referred to throughout this chapter for demonstration 

purposes (and Chapters, 4 and 6).

Objects C l Cl C3 C4 c5 c 6 di
o i 1 1 1 1 1 1 0
02 1 0 1 0 1 1 0

03 0 0 1 1 0 0 0
04 1 1 1 0 0 1 1

05 1 0 1 0 1 1 1

06 0 0 0 1 1 0 1

0 7 1 0 1 0 1 1 1

Table 2.1.1: Example Data Set

The sets o f condition classes E ( C ) =  { X x,..., X i = \ E ( C ) \ )  and decision classes 

E ( D )  =  (Z j , . . . ,  Zj\ j  =  |£ (D ) |}  within RST, are each defined as the set of equivalence classes 

of objects that are indiscernible over the condition attributes and decision attribute, respectively. 

Where the equivalence relation E(•) is referred to as the indiscemibility relationship. From Table

2.1.1, the equivalence classes associated with the set of condition classes E{C) are:

X \  =  { ^ 1 }9 X 2 =  ^7}’ 3 “  { ^3}’ ^ 4  — { ^4 }» X 5 — ( ^6 } ’

and the equivalence classes associated with the set of decision classes E(D) are:

Zj =  {Oj, o2, O3}, Z2 = {04, o5, o6, 07}- 

As stated in the introduction to this chapter, RST was developed as a method for handling vague
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or imprecise concepts within knowledge. Central to the theory, is the notion of approximating an 

equivalence class, with equivalence classes defined over a separate disjoint set of attributes. Of 

particular interest here, is the approximation of the decision classes by the condition classes, using 

what is termed the lower and upper approximations denoted as B and B, defined here as:

R( Zj )  =  UvXiCZj{ X t: X te E ( C ) } 9 (2.1.1)

^( Zj )  =  O v^nz^ja { X j ' X j E E ^ ) } .  (2.1.2)

Where the lower approximation defines, the subset of objects in Z, which are certainly defined as 

objects belonging to Zy, based on the condition classes Xu The upper approximation contains those 

objects in Z; which are either totally or partially defined as objects belonging to Z„ based on the 

condition classes Xh Additionally, the boundary region defines those objects which are only 

partially defined as objects belonging to Z„ with respect to the condition classes X„ and denoted as:

BN( Zj ) = B( ZJ) - B ( Z J). (2.1.3)

An empty boundary region, or BN (Z;) =  indicates that the set Z, is precise or exact with 

respect to Xh otherwise if there are objects within the boundary region it is described as imprecise or 

rough.

Following on from the example data set, and demonstrating with the decision classes Z\ and Z2, 

then:

2?(Zj) =  { o l9 o3}, B ( Z X) =  { o x, o2, o3, o5, o7}, B N ( Z ,) =  {o2, o5, o7}.
B ( Z 2) =  {04, o6}, 5 ( Z 2) = { o2i o4, o5, o6, o7}, B N ( Z 2) — {o2, o5, o-j}.

Clearly there are objects within the boundary regions BN (Z J  and BN (Z 2), hence the decision

classes Z\ and Z2, can be considered imprecise or rough with regards to the set of condition classes

E(Q.
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2.1.1 Rule Generation and Attribute Dependency

Each row within a decision table, such as Table 2.1.1, based on the concomitant attribute values of 

the condition attributes C, describes a rule with a decision outcome d\. The rules can be described in 

a simple then...” format. Taking for example, row two within decision Table 2.1.1, the rule 

based on the object o2, can be interpreted as: “Tjfci = 1, c2 = 0, c3 = 1, c4 = 0, c5 = 1 andce = 1 then 

d\ = 0”. Describing decision rule construction more formally; for the decision table S = (U, C, D), a 

decision rule may be determined from object o„ an element of U, as a sequence 

c \ (°»)» --JC|C|(o M) - > J ( o M), this is called the decision rule induced by on in S and denoted, in short, 

as C0'->D0m. The set o f all possible rules, based on objects within Table 2.1.1, would be termed the 

maximal rule set (An et al., 1996; Ziarko and Xiao, 2004). For many applications, where a level of 

rule interpretability is important, the maximal rule set may not be practical (particularly if the rule 

set is large), subsection 2.2.3 describes a generalisation o f the maximal rule set, that increases 

interpretability.

Clearly, when comparing objects o2 and o5 within Table 2.1.1, they have the same condition 

attribute values, but different decision values, the rules induced by these objects are termed 

inconsistent (Pawlak, 2004). Conversely, objects o5 and o7 have the same condition attribute values 

and the same decision value, hence the rules induced by these objects are termed consistent.

The number o f consistent rules represented within a decision table, can be used as a measure of 

the consistency and more formally known here as, the attribute dependency between the decision 

attributes D  and the condition attributes C, where D  is said to depend on C in degree 

y ( C , D )  (0  <  y  ( C , D )  < 1). The value y ( C , D ) is referred to as the quality of classification 

(QoC) (Beynon, 2001), and calculated as:

y ( C ,  D)  =  C W (U v z-e';(D̂ ( Z j ) ) . (2.1.1.1)
yy  ’ ’ card ( U )  K

The QoC for the example data set within Table 2.1.1, is calculated as:
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v f r  ^  _ c a r d ( R( Z l ) U B ( Z 2)) 
y (  ’ } card ( U )

card( { o lf o3} U { o 4, o6} )
card( Oi, o2, 03, 04, o5i o6, o7)

= y  = 0.571 (to 3 d.p.).

A value o f y  ( C , D)  < 1 indicates that Z) is partially dependent on C and that the decision table 

is inconsistent, whereas, y  ( C , £)) =  1 indicates a total dependency and a consistent decision table. 

Hence, there is a level o f inconsistency associated with the example data set in Table 2.1.1, since 

y (C , D)  =  0.571<1.

2.1.2 Reducts

As mentioned in Chapter 1, it is often desirable to reduce the number o f attributes to remove

irrelevant or redundant attributes, this process is referred to as feature selection (see Chapter 4

section 4.2 for more detail). One of the disadvantages o f many feature selection algorithms is their

inability to preserve what is termed the semantics of the data (Jensen, 2004). Here, with regards to

RST, the semantics of the data are preserved by maintaining the dependency between the condition

and decision attributes, that is, by insuring the calculated value of QoC is the same for the feature

subset o f attributes as the full set of attributes (Beynon, 2001; Pawlak, 1991, 2004, 2005). Within

RST, a feature subset o f attributes that has the same QoC as the full set of attributes, is referred to as

a reduct. Pawlak (2004, pp. 16) describes a reduct as:

“... a reduct is the minimal subset o f attributes that enables the same classification of 
elements o f the universe as the whole set of attributes. In other words, attributes that do 
not belong to a reduct are superfluous with regard to classification of elements of the 
universe.”

More formally, if  P ^ C , then P  is a reduct of C if the equation y ( P ,  D)  = y ( C , D )  holds true, 

and no subset P Q P  allows y ( P ,  D)  = y ( C , D ) .  Put simply, P is a reduct of C if the QoC 

associated with P  is equal to the QoC associated with C, and no subset of P can achieve the same
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QoC.

Using the example data set in Table 2.1.1, if  P  = {cx, c2, c5} then the condition classes of E(P) 

are, P\ = {oi}, P2 = {o2, o5, 07}, P 3 = {03}, Pa = {04} and P5 = {oe}, clearly, these are the same 

condition classes associated with the full set of condition attributes C, as calculated previously (see 

section 2.1). Hence, y ( P ,  D ) =  y (C , D ), that is, y ( P , D ) = 0.571, and no proper subset of P 

has a QoC equal to 0.571, so P  is a reduct of C (for illustration, the decision table associated with P 

is shown in Table 2.1.2.1).

Objects Cl C2 C5 d x

Ox 1 1 1 0
02 1 0 1 0
03 0 0 0 0
04 1 1 0 1
05 1 0 1 1
06 0 0 1 1
07 1 0 1 1

Table 2.1.2.1: Decision Table Based on Reduct P -{c \ ,  c2, c5}

Computation of the reducts associated with a decision table is commonly undertaken through the 

use o f a discemibility matrix (Pawlak, 1991; Ziarko and Xiao, 2004), but this can be a 

computational intensive task (depending on the data set). Indeed, Komorowski et al. (1999) state 

that, the number o f reducts associated with an information system, with number of attributes m, is

of the order ([w"2]), additionally Skowron and Rauszer (1992) noted that computation of all reducts is

a NP-complete problem, hence indicating the non-trivial nature of reduct discovery.

There are however a number o f time efficient heuristic methods (thus potentially non-optimal) 

for reduct discovery, which are more time efficient, such as genetic algorithms (Wroblewski, 1995; 

1998). Recently, Wang et al. (2005) utilised the particle swarm algorithm (Kennedy and Eberhart,

1995) for reduct identification, citing that unlike other evolutionary algorithms such as genetic 

algorithms, it does not require complex operators, but remains as effective. Other reduct discovery 

algorithms seek only to find a single reduct, as this is often all that is required (Jensen, 2004). 

Notable among these algorithms are, the QuickReduct algorithm (Chouchoulas and Shen, 2001) and
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the ReverseReduct algorithm (Chouchoulas et al., 2002). Jaganathan et al. (2006) presented a 

hybrid system, combining what they termed the Enhanced QuickReduct and the ant colony 

optimisation algorithm, for the purpose of data pre-processing. For other heuristic and suboptimal 

approaches, see Lin and Yin (2004) and Susmaga (2004).

2.2 Variable Precision Rough Set Model

As mentioned within Chapter 1, there are often circumstances, particularly with regards to real 

world data, where objects have been misclassified, possibly due to a level of subjectivity within an 

expert's decision making. An example pertinent to this dissertation, being bank ratings (Pasiouras et 

al., 2006), other examples can be found in bio-informatics and medical diagnosis (Adibi et al., 

1993; Laita et al., 2001; Beynon and Buchanan, 2003; Rudnicki and Komorowski, 2004; Widz et 

al., 2004).

Ziarko (1993a, pp. 39), whilst discussing RST, commented that its, “...inability to model 

uncertain information...” was frequently emphasized by people attempting to utilise RST for 

analyses, and that, “This limitation severely reduces the applicability of the rough set approach...”. 

RST assumes that the objects classified within the given data set are correctly classified (Ziarko, 

1993a; Mi et al., 2003). Furthermore, Ziarko noted that, RST assumes that all objects within the 

universe U o f a data set, are known, and that any conclusion based on a model derived from that 

data set, is only truly applicable, with a full level of certainty, to that data set. In reality, the set of 

available objects only represents a sample of the universe U, from which more general conclusions 

must be derived, for application to a larger population of objects.

The Variable Precision Rough Set (VPRS) model was introduced by Ziarko (1993a, 1993b) as an 

extension to RST, which allowed for a level of misclassification under uncertain reasoning, and is 

more applicable to real world data (Dembczyriski et al., 2007). As mentioned, there are other
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extensions to RST such as Dominance based Rough Set Approach (DRSA) (Greco et al., 2005; also 

see for descriptions o f other extensions, Shen and Jensen, 2007; Jensen and Shen, 2008). Indeed, 

Dembczynski et al. (2007), bring together VPRS and DRSA, to handle, what they termed, excessive 

inconsistency within real world data for which their DRSA method, could not cope. Mi et al. 

(2004), based on Beynon's (2001) work, illustrated within VPRS, what they termed conflicting 

rules. Whereby, /?-reducts could be identified, that did not maintain the distribution of the condition 

classes within the original system (whole data set), thus not preserving the semantics o f the data set, 

as was originally intended (see subsection 2.1.2). Hence, they describe a system that seeks to 

maintain the distribution o f the condition classes associated with the /?-reducts (further considered 

in Chapter 9 section 9.2.2).

Central to the VPRS extension of RST, was the generalisation of the set inclusion relationship 

(associated with equation 2 .1.1), to a majority inclusion relationship, by means of introducing a 

probabilistic value p  in the range (0.5, 1.0] (An et al., 1996), and re-defining the RST upper, lower 

and boundary approximations.

More formally, considering the proportion of the objects within the condition class X  te E  ( C ), 

that are also associated with a decision class Z jG E ( D ) 9 if that proportion is greater than or equal 

to the pre-defined p  value, then the condition class X, is said to be in, what is now termed, the P~ 

positive region o f Z7. The /^-positive region of Z„ for the set of condition attributes C, is defined as:

r o s £ ( z , ) - m 2u_w { j r (:A r ,e£ (C)} .  (2.2.1)

Conversely, the /?-negative region is defined as those objects belonging to the condition classes 

whose proportion within the associated decision class Z/ is less than or equal to 1 — 0. Formally:

NE Gpc ( Z j ) =  U { X , : X , e E ( C ) } .  (2 .2 .2)J/  PrlZJX.W-p V J

The P-negative region can also be considered as the set of the condition classes which can be 

classified to the complement o f Z„ namely with the proportion of objects greater than or equal
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to 0, that is P O S ^ - Z ,) =  NEG,( Z ,).

The boundary region, now re-defined as the 0-boundary region, refers to those condition classes 

whose proportion within the associated decision class Z, is less than ft but greater than 1 — 0. That is, 

the set of the condition classes that belongs neither to the decision class Zj, nor its complement ~'Zi, 

with certainty greater than 0. The 0-boundary region is formally defined as:

B N D §(Z,) =  U ^ X l: X le E ( C ) } .  (2231CV Jj  l-fKPriZJX.W 1 V

Note that, a 0  value equal to unity would result in the 0-positive region coinciding with the lower 

approximation as defined in RST (see Equation 2.1.1). The upper approximation would coincide 

with the union of the 0-positive and the 0-boundary regions (see Equation 2.1.2), and the 0-negative 

region would be the complement of the upper approximation (see Equation 2.1.3). For further 

reference, Beynon (2003) describes a graphical representation of the relationship between RST and 

VPRS.

For the example data set shown in Table 2.1.1, the 0-positive, 0-negative and 0-boundary regions 

are shown, considered with, 0  = 0 .8, and Z 2 =  {o4, o5, o6, o7}, then:

POS™ (Z2) = {o4}U{o6} =  {o4, o6},

N EG ^8 (Z 2) = {o, }U {o3} =  {o,, o3},

BND£s (Z 2) = {o2, os, o7},

and for 0  = 0.55, then:

POS°-55(Z 2) = {o2, 05,o 7}U {o4}U |o 6} = {o2, 04, o5, o6, 07}, 
c

NEG°'55(Z 2) = {0 1}U{03} = ( 0 ,, 03}, 
c

BND^55(Z 2) = J0T.

By considering a lower 0  value of 0.55 (an acceptable lower level of majority inclusion 

compared to 0  = 0 .8), the set {o2, 05, o7] moves from the 0 -boundary region into the 0 -positive
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region. Clearly, the value of /? has an affect upon the QoC, hence, with respect to VPRS, the QoC 

must be re-defined to incorporate the /? value (compare with Equation 2.1.1.1), and is formally 

denoted as (Beynon, 2001):

o card(Uyz GE(D)PO S£(Z ,))
/ ( C , D ) = ------- ' ’ ■ (2-2.4)card ( U )

Moreover, there is an inverse relationship between the QoC and the /? value. That is, a lower /? 

value allows for a higher level o f classification (majority inclusion). In regards to the example, with 

ft = 0.8, y 08(C , D ) =  0.571 but with ft = 0.55, y 0 55(C , D ) = 1. This inverse relationship raises 

the question, what is the most appropriate /? value (Beynon, 2001; Mi et al., 2004)? Indeed, it may 

cause a dilemma for any analyst, who intends on using a decision table to induce a set of decision 

rules, who must decide between:

•  Selection of a relatively low value of ft, that allows for a high QoC, but also infers a possible 

high level o f misclassification.

or

•  Selection of a relatively high value of ft, which allows for a low QoC, but with a lower level of 

misclassification.

Before considering the selection o f ft, a measure of the accuracy of the rules induced during VPRS 

can also be calculated. Following Katzberg and Ziarko (1996), and Pawlak (1991), here, the 

accuracy of the whole rule set is considered, hence, the number of objects given a correct 

classification, out of those objects given a classification, is defined as:

card( V^x z { X ln Z J: ( c a r d ( Xin Z j ) lcarci (Xl ) ) >P} )  

W ( U vzs£(0 )PO S^(Z; )) '

Here, this expression is referred to as the Quality of Approximation (QoA) (Katzberg and Ziarko,

1996). Considering the example data set in Table 2.1.1 and ft = 0.8, then:

31



»» _ c a r d ( ( X ln Z l ) U ( X ln Z 2) . . . \ J(X5n Z 2) - . (card(Xln Z , ) l c a r d ( X l ))>0.&})
01 ’ card ( POS"8 ( Z ,) U POS“  ( Z 2))

_ card ({ o ,} U { o 3}U{o4}U{o6})
c a r d ( { o lt o 3} U { o 4> o6} )

and for /? = 0.55, then: 

« 0 55 (C , D)
0 . 5 5 ^  _ c a r d ( { X xn Z x)KJ(Xxn Z 2) . . . \ J( X5r \ Z2) \ { c a r d ( X ir \ Z j ) l car d ( Xl))X).55)

card ( POS"33( Z , )U POS"33( Z 2))
= c a r d ( { o x} ' J{o5, o7}U{o3}U{o4}U{o6}) 

car</({o,, o3}U{o2, o4, o5, o6, o7})

= |  =  0.857 (to 3 d.p.).

A value o f o(08(C , D)  =  1 indicates a QoA of 100% accuracy, and a 0 55 (C , £>) = 0.857 

indicates a QoA of 85.7% accuracy. Only rules associated with condition classes within the /?- 

positive regions are considered (hence the union of the /7-positive regions within the denominator in 

Equation 2.2.5), because rules induced within VPRS (more specifically, within the work undertaken 

here), are based on the prime implicants (described in subsection 2.2.3), which are induced from the 

/7-positive region (An et al., 1996; Ziarko and Xiao, 2004).

2.2.1 The Issue of Value Selection

Recently, Li et al. (2007) suggested that selection o f the /7 value may be dependant upon the specific 

application, subsequently requiring an expert to select the most appropriate value. They also 

proposed that /? may be learned through the feature selection process (/?-reduct identification and 

selection, described in subsection 2 .2 .2), although they give no details, one may assume this 

involves a simple experimental approach. However, it will be shown later in this dissertation, that 

their proposals may be an oversimplification of a non-trivial decision, involving a number of 

factors.

Ziarko and Xiao (2004) utilises a decision matrix as a means to find the /?-reducts within a data
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set provided by a car insurance company. The decision matrix is based on the indiscemibility matrix 

used in RST to find reducts (Pawlak 1991). They calculated the /? value, by first assessing the prior 

probability o f a customer (object) not having an accident (from the dichotomous decision class 'has 

accident' with attribute values 'yes' or 'no'), and assuming that any rules (constructed from a 

condition class) within +1-5% o f that probability value are significant. They proceed to set 

asymmetric /7 values (described next), /?-upper and /Mower, based on the probability value +/-5%, 

respectively.

Further research in VPRS, by Katzberg and Ziarko (1994, 1996), has relaxed the symmetric bond

between the /7-positive and /7-negative regions (previously using identical values of /7), by allowing

for different levels o f /?, that is, the aforementioned /7-upper (w) and /?-lower (/) values; to be

assigned to the /7-positive and /7-negative regions, respectively. Known as the extended VPRS

model, it allows the analyst more control over the classification of the condition classes (further

termed the VPRS/u in Beynon, 2003). The introduction o f asymmetric /? values (/ and u) adds a

further dimension to the difficult issue of, selecting the most appropriate /7 value(s). Succinctly

stated by Ziarko (1999, pp. 467), while discussing decision making within probabilistic decision

tables, the setting o f the precision control parameters / and u is:

“ ...an optimisation problem connected to the external knowledge of possible gains and 
losses associated with correct, or incorrect predictions...”

and suggests an approach based on game theory for finding the optimal parameter values for / and

u. Beynon (2003) presented an in-depth study of the effects o f /?-upper and /?-lower selection on

what is termed the (/, u) QoC and the (/, u) degree of dependency, through the introduction of a

visualisation technique named the (/, w)-graph which offers an intelligent approach to the selection

of what they termed (/, w)-reducts.

However, the original VPRS model is considered here, without loss of generality to its 

development. The following sections 2.2.2 and 2.2.3, are concerned with the /7-positive region. That 

is, rules will be induced based from the prime implicants of a given data set (described in subsection
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2.2.3). The process of finding prime implicants and constructing a rule set from them, is associated 

with the /7-positive region (An et al., 1996; Ziarko and Xiao, 2004), hence negating the requirement 

to consider asymmetric /? values for the work undertaken here.

Within the original VPRS framework, Ziarko (1993a, 1993b) suggested setting /? to a threshold 

value, that allowed any set Z, to be what they termed ^-discernible. They described as being /?- 

discernible if it has an empty /7-boundary region for the selected value of /7. For the example data set 

(Table 2 .1.1), and based on the set of condition classes X iG E ( C ), then the threshold value for X2 — 

{02,, os., o6}, with regards to Z2 = {0 4 , o5, o6, 0 7 }, is 0.667 (to 3 d.p.). Hence, setting a /? value greater 

than 0.667 would prohibit X2 from being classified within the ^-positive region. In contrast, setting 

/? to be any real value in the range (0.5, 0.667] would permit X2 to be in the /7-positive region, it 

follows, X2 would be ^-discernible within the given range. They further describe those condition 

classes not associated to any decision class for any value ft as absolutely rough, whereas those that 

do belong to a decision class for a range of ft as relatively rough.

The selection and representation of /7 within restricted ranges, with regards to what is termed /?- 

reducts was considered by Beynon (2001), and is one o f the main theoretical focuses of this 

dissertation and described more thoroughly in section 2.3.

2.2.2 Exposition o f /?-reducts

The concept o f a reduct, introduced in the previous subsection 2.1.2, is central to applications 

utilising RST as a feature selection method for semantic preserving (Kuo and Yajima, 2003; Jensen 

and Shen, 2004; Li et al., 2004; Mi et al., 2004). The VPRS extension of the reduct, termed here the 

/?-reduct, allows for the reduction o f data through the selection of a subset of features (attributes) 

that preserves the semantics o f the data under a level of misclassification. Ziarko (1993a) formally 

describes /7-reducts, where P Q C  is the considered /7-reduct, as having two associated properties:

I. y V , £ > )  =  / ( C ,  D).
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2. No proper subset PczP,  subject to the same P value can also give the same quality of 

classification, that is y fi( P , D )  ^  y p( P,  D ) V  P a  P.

Following from the example data in Table 2.1.1, Table 2.2.2.1 displays a subset P = {c3, c6} of 

the condition attributes C, that satisfy the properties for being considered a /?-reduct, with p  = 0.55. 

That is, there are no proper subsets of {c3, c6} that can be considered /?-reducts, and 

y ° 55( P ,  D)  =  y 055(C , D).

Objects Ci Cc, d Condition Class E({c3, c6}) = {Pi, P2, P3}

0\ 1 1 0 Pi = {oi, o2, o4, os, on),
02 1 1 0

Pr(Z, | Pi) = 0.4, Pr(Z2 |P ,)  = 0.6

03 1 0 0 Pi = {o3},
Pr(Z, | P2) =1. 0

04 1 1 1
05 1 1 1 Py = {06},

0 0 1 Pr(Z, | P3) = 1.0
06

07 1 1 1

Table 2..2 .2 .1: Decision Table and Condition Classes of p -reduct {c3, c6}

The lowest majority inclusion proportion with respect to {c3, c6}, is 0.6, and is associated with 

the condition class P\. Clearly, the value p  = 0.55 is less than 0.6, hence within the allowable range 

for which {c3, c6} can be considered a /?-reduct, indeed p  could have been set to any value in the 

range (0.5, 0.6]. Beynon (2001) discussed a novel approach of representing the range of values 

associated with a system of /?-reducts through the use o f what we have termed the vein graph (for 

reasons mentioned previously), that aids the user in the selection of the most appropriate value of p  

and selection of the most appropriate /?-reduct for their particular application. The next section 

describes a full exposition of the vein graph applied to the example data set.

Beynon (2001) also suggests that there is no specifically prescribed method for the selection of 

/?-reducts, and that a full derivation is a non-trivial computational problem. As mentioned 

previously, there are heuristics and suboptimal solutions for finding reducts, Slezak and Wroblewski 

(2003) extends the genetic algorithm approach, to find what they termed approximate entropy 

reducts. Typically though, approaches such as those mentioned and that described in Ziarko and
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Xiao (2004), require pre-selected p  values, which is not appropriate to the system exposited within 

this dissertation (in particular the vein graph described in section 2.3). As here, the focus is based on 

calculating the range o f p  values for all possible /?-reducts, between a generally lower ft value 

(towards 0.5) and their threshold values, thus, the ft value is not required to be pre-calculated.

The /?-reduct generation approach adopted here, is simply based on those two properties of a /?- 

reduct mentioned previously and outlined in Ziarko (1993a, 1993b). Put simply, the power set P(C) 

is constructed (all possible /?-reducts), then by iteratively selecting each set from the power set, and 

calculating all possible threshold values associated with that particular set, the possible ranges of ft 

for which it could be considered a /?-reduct (where y p( C , D)  = y p( P , D )) were recorded. Finally, 

for each range of p  for which the subset is possibly a /?-reduct, it was compared with all previously 

recorded /?-reducts to asses if any subsets o f the current superset were /?-reducts over the same range 

(point 2 in Ziarko’s, 1993a, description of a valid /?-reduct). Where there was an overlap between 

ranges of /?, the range o f the superset was curtailed not to include the range where the subset was 

recorded as a /?-reduct. This approach is better understood through a visualization of the process, as 

such, the figures presented in section 2.3 o f this chapter should aid the reader.

2.2.3 Prime Implicants and Rule Metrics

Once the ̂ -positive region has been identified, that is, the condition classes that belong to a decision 

class to at least degree /?, a procedure known as the decision matrix can be used to identify the 

prime implicants, as a step towards, constructing a minimal covering rule set (An et al., 1996; 

Ziarko and Xiao, 2004). The prime implicants are the specific condition attribute values that 

uniquely distinguish each of the condition classes associated with the ^-positive region. Table 

2.2.3.1 displays the process for calculating the prime implicants associated with/?-reduct {c3, c6}.
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P i P i P i

C l =  1 C6 =  1 C i =  1 c6 =  0 c j  =  0  c 6 =  0

A Ci - 1 c6= 1 - - 0 0  0

P i Cl =  1 C6 =  0 -  1 - - 0

P i c i  =  0 Ce =  0 1 1 1 - ' -

Prime Implicants 1 1 0 0

Table 2.2.3.1: Prime Implicants of the Condition Classes X\, X2 and X3,
Associated with /?-reduct {c3, c6}

Within Table 2.2.3.1, the values in the grey shaded area, identify the condition attribute values 

that distinguish between each of the three condition classes Pi = {o\, o2, o4, o5, o7}, P2 = {o3} and P2 

= {o6} shown in Table 2.2.2.1. For example, the condition attribute values c3 = 1 and c6 = 1, 

associated with the condition class with the column headed Pi, differs to the condition attribute 

values c3 = 1 and C6 = 0 associated with the condition class in the row headed P2, by the condition 

attribute c6 That is, for the condition classes Pi and P2, the condition attribute values for c3 are equal 

(record as a dash within the table), but the condition attributes values for c6 differ. Hence, the cell 

relative to the condition attribute c6 and those condition classes, has the value 1 recorded in it 

(highlighted in bold within the grey shaded area), to indicate the condition attribute and the specific 

value which differentiates the condition classes Pi and P2. The prime implicants displayed at the 

bottom of the table are the values that uniquely distinguish between the condition classes given in 

the column headings, and all other condition classes given in the row headings. Here for example, 

Pi is uniquely distinguished from P 2 and P3 by c6 = 1.

Based on the prime implicants, a set of minimal covering rules can be constructed (described 

next). Each rule is based on a single condition class and decision class value, from those condition 

classes associated with the ^-positive region. Table 2.2.3.2 presents the minimal covering rule set 

associated with /?-reduct {c3, c6}, in an then...” format, a number of rule metrics, Support, 

Correct, Strength and Certainty, are also shown, and are described next.
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Rule c3 c6 d x Support Correct Strength Certainty

n(Pu Z2) If - and 1 then 1 5 3 0.714 0.6

ri{Pi, Zi) If 1 and 0 then 0 1 1 0.143 1.0

n(Ph Z2) If 0 and - then 1 1 1 0.143 1.0

Table 2.2.3.2: “7/L then...” Minimal Covering Rule Table with Concomitant Metric Values, for /?-
reduct {c3, cj)

The rule index within Table 2.2.3.2, is shown with the associated condition and decision class in 

brackets (e.g. rx{P\, Z2)). They are described as minimal covering rules, because, no two rules have 

equivalent condition and decision attribute values associated with them, hence a “minimal” rule set. 

Additionally, objects classified by the rules are not necessarily classified correctly, hence “minimal 

covering” rule set. This is in contrast to the maximal deterministic rule set, with regards to RST 

described in subsection 2.1.1 (for further description of a maximal deterministic rule set see Ziarko, 

1998). Within Table 2.2.3.2, a dash “-” represents the fact that the condition attribute value 

associated with the rule is irrelevant, based on the prime implicant information taken from Table

2.2.3.1.

There are a number of metrics (calculated values), specifically probabilistic metrics, that can be 

defined with regards to the minimal covering rule set. Based on Bayes' theorem (Pawlak, 2004; 

Beynon, 2001; Ziarko and Xiao, 2004), these metrics allow the analyst to infer certain information 

about a specific rule, such as, the proportion of the objects within the universe it covers (strength), 

or the probability of it being classified correctly (certainty).

The basic measure by which the other probabilistic measures are calculated, is called support 

(Equation 2.2.3.1). The support value represents the number of objects given a classification 

(correctly or incorrectly) by a given decision rule rk(Xh Zj) (k < n, the number of objects). Support 

is calculated as:

Supporter*(X ;, Z y)) = card(Xi ) .  (2.2.3.1)

Equation 2.2.3.2 defines, given a rule r^Xt, Zj), the number of objects that would be correctly 

classified, from the condition class associated with r^X, Zj), and calculated as:
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Correctfi( r k( X„  Zj))  =  card ( X, n  Z ,). {2.232)

The rule strength (Equation 2.2.3.3), is a probabilistic value, and defines the proportion of the 

objects within the universe of objects (a data set), given a classification by the given rule rk(X„ Zj). 

Strength is calculated as:

, b , x Support^{ r k( X n Z j )
Strength Z,)) =  -  V-1\ j j \ j j  ■ (2.23.3)

Rule certainty (Equation 2.2.3.4), is also a probabilistic value, and defines the proportion of the 

objects from the condition class associated with a given rule rk{Xi, Zj), that are classified correctly. 

Certainty is calculated as:

~ Correct p( r k{Xj,  Z ,))
Certainty\ r t (X„  Z ,)) =     —  ■■ j  (2.23.4)

Support (r* (X ;, Zj))

Below, are example metric calculations for r\{P\, Zj) (from the minimal covering rule Table

2.2.3.2), associated with /?-reduct {c3, c6}, where, P i = (oi, o2, o4, o5, o7j, and Z2 = {04, o5, o6, o7j

and /? = 0.55:

Support055( r 2(P j, Z J )  = c a r d { { ox, o2, o4, o5, o7} )  = 5,
Correct055( r2( P lt Z j )  = c a r d ( { ou o2, o4, o5, o7} n { o 4, o5, o6, o7}) = 3,

Strength"55(r-2(P ,. Z 2)) = |  =0.714,

Certainty"55( {c2, cs} , D ) = j  = 0.6.

Ziarko (1998, 2001, 2003) and Ziarko and Xiao (2004), discussed the importance of probabilistic 

decision rules in depth. With regards to the choice of VPRS over RST, Ziarko (1998, pp. 179) states 

in general terms, that:

“...most o f the practical problems occurring in machine learning, pattern recognition and 
data mining inter-data relationships are probabilistic in nature, leading to non- 
deterministic decision tables.”

The minimal covering rule table, can be considered a probabilistic non-deterministic rule table, as

described by ibid. Whereas, the maximal rule table defined with regards to RST is a deterministic
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rule table (also see Ziarko 2001, for further definitions). Essentially, Ziarko is proposing that the 

probabilistic non-deterministic rule table associated with VPRS is, of more practical use, than the 

deterministic rule table associated with RST.

2.3 The Vein Graph

Allowing the analyst to select a p  value and consequently a /?-reduct appropriate to their application 

requirements (predictive accuracy, interpretability etc.), is a consideration of the software developed 

within this dissertation. This section describes Beynon's (2001) approach to visualizing /?-reducts, 

namely through the vein graph. This approach was developed and implemented within the VPRS 

vein graph software, to facilitate the selection, by an analyst, of /?-reducts over the range of /?.

As has been demonstrated in the previous subsection 2.2.2, for any given p-reduct, it is 

associated with a range of P values in which p  can be chosen, and which satisfies those properties of 

a yff-reduct given in subsection 2.2.2. In respect to this Ziarko (1993a, 1993b), proposed two useful 

propositions relating to ranges of p\

Proposition 3.1. If a condition class Xt is given a classification with 0.5 < P < 1.0, then Xt is also 

discernible at any level 0.5 < Pl < P.

Proposition 3.2. If a condition class Xt is not given a classification within 0.5 < P < 1.0, then Xj is 

also indiscernible at any level P < Pi < 1.0 .

In the light of these propositions, Beynon (2001, pp. 596) noted that:

“These statements of Ziarko indicate some move to the exposition of the role of ranges 
of P rather than specific P values.”

Motivated by this observation, Beynon introduced a novel method for visualising ranges of P

associated with specific /?-reducts, targeted in part, for the requirement of modem data analysis
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tools for quantitative analysts. Here, we have come to know this as the vein graph (shown later in 

Figure 2.3.1), but before a full explanation is given, further discussion of /?-reducts and threshold 

values is required.

As described previously, for any relatively rough condition class X„ there is an associated 

threshold value greater than 0.5 for which /? may take, that allows Xt to be discerned to a decision

class Zj. Let the /? threshold value for any given Xj be denoted as ^  hence any value P ^  Pm , also

allows Xi to be discernible. The lowest o f the Pm , values for any given set of condition classes is

defined as Pmin, — m n̂iPMr Hence, through the selection o f/?, only those condition classes^, where

Pthd, ^  P, are discerned to a decision class. To summarise, those condition classes Xt whose Pm ,

values are in the interval [Pmm,> P), are not discernible based on the majority inclusion rule,

whereas those condition classes whose Pm , are in the range [P, 1) are discernible. A direct

consequence of this is that the QoC for the set of condition classes is less than unity if Pmin^P- 

Table 2.3.1 displays all the /Lreducts associated with the example data set show in Table 2.1.1, 

including the ranges for which they are valid, and their associated QoC.

/f-reduct index Condition Values fi range QoC

/?-reduct 1 (c\, (0.5, 0.6] 1

/?-reduct 2 [Ch c6} (0.5, 0.6] 1

/?-reduct 3 {cd (0.5, 0.667] 1

/?-reduct 4 {C2, Cs} (0.5, 0.667 | 0.75] 1

/?-reduct 5 {cd (0.667, 0.75] 0.57

/?-reduct 6 {ci, c2, c3) (0.667, 1] 0.57

/?-reduct 7 {c2, c3, Cs} (0.667, 1] 0.57

/?-reduct 8 {C 2, Cs,  C6} (0.667, 1] 0.57

/?-reduct 9 { C l ,  C4, C5} (0.75, 1] 0.57

/?-reduct 10 {C2, C3, Cd (0.75, 1] 0.57

/?-reduct 11 {c2, C4, Cs} (0.75, 1] 0.57

/?-reduct 12 { c 3, c4, Cs} (0.75, 1] 0.57

/?-reduct 13 {c4, Cs, cd (0.75, 1] 0.57

Table 2.3.1: All /?-reducts Associated with the Example Data Set

Referring to /3-reduct {C3, c6}, as shown in Table 2.3.1 (see subsection 2.2.2 for associated
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calculations), its QoC was y 0 5 5( P , D ) =  1, that is, 0 < Pmini (i.e. 0.55 < 0.6). The allowable range 

of I? associated with /?-reduct {c3, c6} is (0.5, 0.6], which is a subinterval of the /?-range (0.5, 0.667] 

associated with the full set of attributes C, for which y p( C , D)  = 1. If we define the allowable 

range of /?, as requiring the same QoC associated with C as 0y, then pl = (0.5, 0.667]. Beynon 

(2001) describes those /?-reducts whose /? range is contained in fiY, as being restricted /?-reducts, and 

those whose /? range is equal to or contains f$y, as being unrestricted /?-reducts. So the example /?- 

reduct {c3, c6}, would be considered a restricted /?-reduct. /?-reduct {ci, c2, c3}, is an example of an 

unrestricted /?-reduct associated with the example data set (calculations not shown), with allowable 

range of /? in (0.667, 1.0], with concomitant y p( P , D ) = 0.57, where C is associated with 

j3° 57 = (0.667, 1.0]. Note, as a consequence of point 2 of Ziarko's definition of a valid /?-reduct, /?- 

reduct {ci, c2, c3} is not a valid reduct in the range (0.5, 0.667], because /?-reduct {c\, c3} is a subset 

of {ci, c2, c3}, and is a valid /?-reduct over the range (0.5, 0.667].

Note that, within Table 2.3.1, the /? range of /?-reduct {c2, c5}, is recorded as (0.5, 0.667 | 0.75]. 

The value to the right of the “|” line 0.75, denotes the upper limit on what is termed the hidden or 

extended /?-reduct (to be discussed next). The /?-reduct {c4} appears twice as /?-reduct 3 and /?-reduct 

5, because the /?-reduct based on the single condition attribute c4 is a /?-reduct over two separate 

ranges of /?, associated with two separate levels of QoC. Within Table 2.3.1, there are two 

unrestricted /?-reducts in the range, namely /?-reducts 3 and 4, and there are three unrestricted /?- 

reducts in the ft0 57 range, namely ̂ -reducts 6, 7 and 8.

Figure 2.3.1 is Beynon's (2001) vein graph visualization of the information presented within 

Table 2.3.1. The /? subintervals and their concomitant QoCs, associated with C, are illustrated on the 

top line of the graph in Figure 2.3.1. The /?-reducts (shown on the left) and their concomitant ranges 

of /? are illustrated below the C line. As stated within the introduction, the method was entitled the 

vein graph, as the lines are analogous to veins of knowledge within the data (Linoff, 1998).
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Figure 2.3.1: Vein Graph for the Example Data Set

Within Figure 2.3.1 (taken from Beynon, 2001), there are four /?-reducts associated with a QoC 

y p( C , D)  = 1.0 (i.e. in the range p x), and nine associated with the range /?°57. The unrestricted /?- 

reducts are clearly visible as those /?-reducts having the same QoC over the same range of /? as the 

full set of attributes C, where the y p( C , D ) values are shown on the sub ranges ft = (0.5, 0.667], 

y p{ C , D ) = 1.0; and p  = (0.667, 1.0], y p( C , D)  =  0.571. It can also be seen that the two /?- 

reducts relating to {^4}, are associated with different levels of QoC over separate sub-domains of p. 

The graph emphasises the important connection between the selection of the p  value and the 

concomitant QoC.

Looking more closely at /?-reduct {c2, c5}, a portion of the line is dashed between 0.667 and 0.75. 

The value 0.75 is the calculated upper bound or fimini threshold value associated with the P reduct. 

However, for the p  reduct to have been selected as a valid /?-reduct, the analyst would have had to 

have chosen a P value in the range (0.5, 0.67] (i.e. to have the same QoC as the full set of condition 

attributes C). Beynon (2001) terms this p  value in the range (0.5, 0.67], as the external p  value that 

is imposed without any independent calculations, except knowledge of the QoC associated with the

43



full set of condition attributes C. Furthermore, based on a selection of the external P value in that 

range, the /?-reduct {c2, c5} would be found, but the actual level of confidence associated with the /?- 

reduct is in fact above the upper allowable P value range (0.5, 0.67], that is 0.75. This extended 

range is referred to as, the internal p  value associated with the /?-reduct, and /?-reducts such (c2, c5}, 

which exhibit this extended range or level of confidence are referred to as, extended /?-reducts.

Additionally, with a pre-selected ft value in the range (0.667, 0.1], the /?-reduct {c2, c5} would not 

have been identified, hence in these circumstances it is referred to as a hidden /?-reduct. Beynon 

(2001) considers that supplying the analyst with this extra information allows them more choice in 

their decision making. Moreover, if an analyst has a specific QoC in mind, then they could be 

provided with the p  values and /?-reducts that achieve that priori, but they would only be provided 

with the external /?-reducts that do not consider the internal levels of confidence, that would be 

associated with any calculated p-reduct. Hence, presenting the analyst with a graph such as the vein 

graph, provides them with a full exposition of information concerned with the choice of /?-reducts 

available.

The developed VPRS vein graph software, implements the vein graph as a novel “point and 

click” system, that allows an analyst to select /?-reducts from the vein graph. Based on the selected 

/?-reduct, the software then automates the process of constructing the minimal covering rules from 

the prime implicants. The constructed rule set is applied to training and validation data (described in 

the following chapter), to evaluate the possible future performance of the selected /?-reduct, 

allowing the analyst to compare between the /?-reducts presented within the vein graph. A full 

elucidation of the VPRS vein graph software is presented in Chapter 7, through the analysis of the 

FIBR data, and the example data set presented in this chapter.
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2.4 Summary

This chapter formally introduced Rough Set Theory (RST) in section 2.1, and in particular, its 

generalisation, Variable Precision Rough Set (VPRS) model in section 2.2, as a tool for the 

mathematical analyses of imprecise or vague concepts. The specific area of application has been 

predictive analysis, formulated around the notion of decision tables, and also incorporating data 

reduction (feature selection) through the utilisation of /?-reducts (in VPRS).

Section 2.3 introduced and emphasised the vein graph as a visual aid for the analyst. It provides 

them with information from which they may select the most appropriate majority inclusion value /?, 

and hence, identify and subsequently select the most appropriate /?-reduct. It has been shown, within 

VPRS, that selection of the p  value may be complicated by factors such as hidden or extended /?- 

reducts that would be disregarded under other circumstances.

A major focus of this dissertation is to provide a front ended software environment which allows 

an analyst, who is not an expert in VPRS, to undertake VPRS analyses. One core feature of the 

developed software is the implementation of the vein graph, as an interactive software application, 

that allows for the simple “point and click” selection of /?-reducts from the graph. Following 

selection of a /?-reduct, the analyst will be provided with the minimal covering rule decision table, 

which is then evaluated using the methods described within the following chapter. Chapter 7, 

presents the VPRS vein graph analyses of the example data referred to throughout this chapter 

(Table 2.1.1), and the FIBR data described in Chapter 5.
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Chapter 3

Re-sampling, Ensemble Methods and 
yff-reduct Aggregation

With regards to classification problems, constructing a classifier from a data set, for the purpose of 

future classification of unclassified objects, is essentially the primary aim of data mining (Larose,

2005). Within data-mining, it is crucial to be able to evaluate the constructed classifier, to facilitate 

benchmarking against other competitor methods, and to give the analyst an indication of future 

performance of the classifier (Weiss and Kulikowski, 1991; Giudici, 2003).

A number of factors such as, computation time, scalability and interpretability should be 

considered with regards to a classifier's future performance. However, predictive accuracy, as a 

diagnostic measure, can be considered as the ubiquitous indicator of a classifier's future 

performance (Kantardzic, 2003). Put simply, the predictive accuracy of a classifier is calculated as, 

the proportion of correctly classified objects from the total number of objects given a classification 

(Weiss and Indurkhya, 1998). The data set upon which the predictive accuracy is calculated, can 

greatly affect the calculated value. Moreover, the predictive accuracy is actually only the estimated 

predictive accuracy of the true predictive accuracy, since, it is only possible to know the true value 

by testing the classifier on all possible objects within the universe. For many data mining 

applications, based on the data available, this cannot be achieved, and so, only an estimate of the
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true predictive accuracy is possible.

Attempts to accurately estimate the true predictive accuracy, with particular regards to statistical 

models and sub-sampling, have been studied since the early twentieth century (Larson, 1931; Horst, 

1941). In the latter half of the twentieth century, more advanced methods of estimation, using cross- 

validation were developed, to tackle, what Stone (1974, pp. I l l )  referred to as the, “...shrinkage 

phenomenon...” (described later). These cross-validation methods are now more broadly known as 

re-sampling methods and have been extensively studied within the statistics community (Hills, 

1966; Duda and Hart, 1973; Stone, 1974; Efron, 1982, 1983; Shao and Tu, 1995).

More recently, and bom out of the philosophy of re-sampling, “ensemble” methods have been 

developed to stabilise and optimise classifiers, attempting to improve their predictive accuracy (Han 

and Kamber, 2006). Ensembles or aggregated classifiers, utilise re-sampling methods in a sense, to 

construct an “average classifier” (Hothom and Lausen, 2005). Giudici (2003) notes that, in some 

respects this approach is considered similar to Bayesian model-averaging methods (Dietterich, 

2000b; Brooks et al., 2003; Green et al., 2003). Notable among the ensemble methods is bagging or 

bootstrap aggregating. Introduced by Breiman (1996a), it is based on the bootstrap re-sampling 

method (Efron, 1979, 1982, 2003), and has been applied to many different classifier methods, 

within various spheres of application (Horthom and Lausen, 2003a; Huang et al., 2004a; Li et al., 

2006; Kotsianti and Kanellopoulos, 2007).

Re-sampling within RST has received limited attention, where dynamic reducts are perhaps the 

most notable application (Bazan et al., 1994; Leifler, 2002; Jiang and Abidi, 2005), which attempts 

to find the most stable reduct from a data set (does not use re-sampling as a method for estimating 

predictive accuracy). Aggregation within RST, has received even less attention, with perhaps the 

only notable work being Stefanowski (2004, 2007), who followed Breimen's (1996a) bagging 

method, but applied it to their rule construction method based on RST. With regards to VPRS, 

which to some extent is still a nascent development on RST, there does not appear to be any re-
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sampling or ensemble related material published so far (other than that presented by Griffiths and 

Beynon, 2007, 2008).

The following sections within this chapter outline sub-sampling and re-sampling as methods to 

estimate the predictive accuracy; ensemble methods to optimise and stabilise a classifier; and /?- 

reduct aggregation as a novel approach to implementing ensemble methods, within a VPRS 

framework. The proceeding sections are briefly described below:

•  Section 3.1. Sub-sampling. Introduces the simple train and test methodology for estimating the 

predictive accuracy.

•  Section 3.2. Additional Classifier Performance Considerations. Covers some additional 

aspects of estimating the predictive accuracy, such as, bias and variance. It also presents the 

confusion matrix, as a method for determining the predictive accuracy of individual decision 

classes.

•  Section 3.3. Re-sampling Methods. Reviews re-sampling methods utilised for estimating 

predictive accuracy. Mainly concentrating on the three most established re-sampling methods, 

namely, leave-one-out, £-fold cross-validation and bootstrapping.

•  Section 3.4. Ensemble Methods. Reviews the recent developments in ensemble and classifier 

aggregation methods, with a full exposition given to bagging.

•  Section 3.5. VPRS Re-sampling and /?-reduct Aggregation. Presents a novel method for 

implementing ensemble methodology within VPRS and introduces the aggregated /?-reduct.

•  Section 3.6. Additional Classification Issues within VPRS. Describes the process of 

classification through, either a /?-reduct, or an aggregated /?-reduct, and describes the nearest 

rule methodology, for classifying objects that cannot be classified by a matching rule (a rule that 

has matching condition attribute values).

•  Section 3.7. Summary. Briefly summarises the topics and developments within this chapter.
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3.1 Sub-sampling

Perhaps the most naive approach, to estimating the true predictive accuracy of a classifier, is to test 

the classifier on the data that was used to construct it. Known as the apparent or re-substitution 

predictive accuracy,3 for smaller data sets it typically provides a misleading or over-optimistic result 

(Weiss and Kulikowski, 1991; Nolan, 1997; Kantardzic, 2003). Figure 3.1.1 illustrates the process 

o f calculating the apparent predictive accuracy.

Sample 
Data Set

Train

v
Constructed

Classifier
Test

T
Apparent
Predictive
Accuracy

Figure 3.1.1: Calculation o f the Apparent Predictive Accuracy

The apparent predictive accuracy is typically over-optimistic, because as shown in Figure 3.1.1, 

by training and testing on the same data set, the estimated predictive accuracy does not take into 

account objects, not represented within the data set. It is this over-optimistic estimation, that Stone 

(1974), was referring to when describing the shrinkage phenomenon (quoted in the introduction to 

this chapter).

The earliest work to overcome this over-optimistic estimate, employed the simple train and test 

methodology to calculate an unbiased estimate of predictive accuracy (Larson, 1931; Horst, 1941; 

Simon, 1971).

3 The related literature more commonly talks in terms o f the apparent error rate, where the error rate is the proportion 
o f incorrectly classified objects over the total number o f objects given a classification. Here, to avoid contusion we 
are only referring to performance in terms o f  predictive accuracy (the complement o f  the error rate), as it is more 
widely used within the RST related literature.
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3.1.1 Simple Train and Test Methodology

In his work on successful marriages, Horst (1941), recognised what he called the drop in 

predictability between the original sample, which he used to construct his classifier, and an 

independent check sample. This is an early instance o f the simple train and test methodology, the 

process is illustrated in Figure 3.1.1.1.

Essentially, the early work on estimating predictive accuracy, indicated that, to avoid the over- 

optimistic value indicative o f the apparent predictive accuracy, the analyst ideally had to test the 

classifier on “unseen” objects. Stone (1974, pp. I l l ) ,  when commentating on this approach, notes 

that the statistician who uses it can be “...confident in the knowledge that the set-aside data will 

deliver an unbiased judgement...” .

Sub D|vide

Train

Test

Training
Set

Validation
Set

Sample 
Data Set

Constructed
Classifier

Estimated
Predictive
Accuracy

Figure 3.1.1.1: Calculating an Unbiased, Train and Test Estimate 
o f the Predictive Accuracy

Describing the simple train and test methodology more formally, and illustrated by Figure 3.1.1.1. A
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subset of the sample data, known as the training set, is taken at random and used to train the 

classifier, the predictive accuracy is then estimated on the remainder of the data set, termed the 

validation set. The key associated issue here, being, what size validation set is required for a good 

estimate of the true predictive accuracy?

Analyses have shown that the estimated predictive accuracy is, in fact, asymptotic with the true 

value. That is, given a sufficiently large validation set, the estimated predictive accuracy converges 

to the true value (Valiant, 1985). Based on basic probability and statistical considerations, and 

regardless of the true population distribution, some very strong results are known. For example, 

with a validation set of 1,000 objects, the estimated predictive accuracy is accurate (note the 

“estimation” is accurate, not the predictive accuracy), and with 5,000 objects, it is virtually identical 

to the true predictive accuracy (Weiss and Kulikowski, 1991). These analytical results are based on 

Probability Approximately Correct (PAC) analysis, and this analytical method for evaluating 

classifier performance has been used since the mid-eighties (Valiant, 1985; Haussler, 1988), and is 

still a widely used analytical method (Goldberg, 2001; Trumbower et al., 2006). However, within 

many data mining problems these issues prove academic, as many classification problems are based 

on, relatively speaking, much smaller data sets, such as, the data set that is utilised within this 

dissertation, which contains 620 objects (see Chapter 5, section 5.5).

The larger the validation set, the more confidence the analyst can take from the estimated 

predictive accuracy. However, with a limited number of objects given in a sample data set, the 

preference would be to use as many objects as possible for training the classifier (Weiss and 

Kulikowski, 1991; Kantardzic, 2003). This presents a dilemma for the analyst, who must decide 

what proportion to take for training and what proportion to take for validation. Kantardzic (2003, 

pp. 84) notes that:

“There are no good guidelines available on how to divide the samples into subsets. No 
matter how the data is split, it should be clear that different random splits, even with 
specific size of training and testing sets, would result in different error estimations.”
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It is this inconsistency in the estimated predictive accuracy for smaller data sets, and the dilemma of 

subset proportions that motivated the development of cross-validation methods, which essentially, 

seek to find an average predictive accuracy (described in section 3.3).

The standard approach for the train and test methodology, is to randomly divide the training set 

and validation sets into 2/3 and 1/3 partitions, respectively (Weiss and Kulikowski, 1991; Han and 

Kamber, 2006). Although other proportions such as 3/4 to 1/4 are used (see for example, Giudici, 

2003).

Under certain circumstances it may be desirable to ensure that the distribution of the decision 

classes within the training set, reflects the distribution of the decision classes within the sample data 

set, particularly when considering skewed (imbalanced) samples (a data set that has varying size 

decision classes, see Chapter 4). Hong and Weiss (2001), when referring to their work on fraud 

detection, remarked that, the skewed distribution within their data set would baffle traditional data 

mining algorithms unless “stratified" samples were used within the training set. Stratifying, as it is 

termed, ensures that for each decision class the number of representative objects within the subset 

are proportional to the decision class sizes within the original data set, thus maintaining the 

distribution of the decision classes (Han and Kamber, 2006). Table 3.1.1.1 demonstrates an example 

of stratified sampling, based on taking a 50% training set (ergo, 50% validation set) from a data set 

with five decision classes and 620 objects.4

4 The results o f  Table 3.1.1.1 and Table 3.1.2.1 (next subsection), were taken from the FIBR bank data set described 
later in Chapter 5 and utilised in Chapters 6 to 8. Used here as a pertinent example o f  the effect o f  sampling on an 
imbalanced (skewed) data set.



Decision
Class

Number of 
Objects

Training
(Taken)

Validation
(Remaining)

1 16 8 8

2 319 160 159

3 163 82 81

4 107 54 53

5 15 8 7

Totals 620 312 308

Table 3.1.1.1: Taking a 50% Stratified Training Set 

Within Table 3.1.1.1, 50% of the objects from each decision class have been taken to create a 

training set, rounding up where necessary, hence, there is not an exact a 50/50 split overall (312 

objects within the training set, and 308 within the validation set). However, both the training and 

validation sets, retain a distribution close to that of the original data set.

In subsection 3.1.2, a novel method adapted from a known statistical technique and similar to 

stratification is presented as an alternative approach to selecting subsets. Although, re-sampling 

methods (described in section 3.3) mitigate the problem of subset sizes, re-sampling can be 

computationally expensive (in terms of time and memory required). So, under certain 

circumstances, where computer resources are an issue, it may still be preferable to use the train and 

test methodology. Moreover, for larger data sets the train and test methodology is perfectly adequate 

(Weiss and Kulikowski, 1991).

It should also be noted that, when considering ensemble methods (section 3.4), and with 

particular regards to the /?-reduct aggregation process developed here (section 3.5), the process does 

not facilitate re-sampling of aggregated /?-reducts (for reasons given in section 3.4.1). Hence, there 

is a requirement for a validation set, for evaluation of the aggregated /?-reducts, and for testing and 

benchmarking against the VPRS vein graph analysis (as described in Chapter 2).
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3.1.2 Statistical Sub-sampling Method

Much of the work relating to the estimation of the predictive accuracy within data mining, has 

borrowed heavily from known statistical approaches, particularly, re-sampling (Efron, 2003). 

Additionally, Kantardzic's quote (shown previously, on page 50), suggested that, there are no good 

guidelines on how to divide a sample into subsets (referring to data mining in particular). However, 

there has been statistical work relating to the sample size required, to be considered representative 

of a given population (Rao, 2000).

Israel (2007, pp. 1) notes, the sample size (of a population) is influenced by a number of factors 

“...the purpose of the study, population size, the risk of selecting a 'bad' sample, and the allowable 

sample error...”. Israel presents an overview of different equations used to calculate sample sizes, 

dependant on specific data characteristics (for further reading see also, Cochran, 1963; Smith, 1983; 

Israel, 1992; Rao, 2000), and suggests that Yamane's (1967) Equation 3.1.2.1, is a simple but 

effective solution where little is known about the population distribution, and calculated as:

Nn = 17’ (3.1.2.1)
(1 + N ( c Y )

where n is the calculated sample size, N  is the population and c represents the required confidence 

level (e.g. for 95% confidence c = 0.05). Applying Equation 3.1.2.1 to the sample data set utilised 

within this dissertation (FIBR data described in Chapter 5), each decision class will be considered 

independently as a sub-population (Israel, 1992), with N  equal to the decision class size, from which 

a representative sample size n must be taken at random. These representative samples will be 

combined to make the training set. Table 3.1.2.1 illustrates the calculated values for the 95% 

confidence level (c = 0.05).
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Decision
Class

Number of 
Objects

Training
(Taken)

Validation
(Remaining)

1 16 15 1

2 319 177 142

3 163 115 48

4 107 84 23

5 15 14 1

Totals 620 405 215

Table 3.1.2.1: Example Number of Objects Taken 
from each Decision Class by Equation 3.1.2.1 (with c = 0.05)

Within Table 3.1.2.1, where a decision class is under represented, by using Equation 3.1.2.1 to 

calculate the number of objects that can be taken from that class, a greater proportion is taken for 

training than validation. This is in contrast to simply setting an arbitrary proportion which takes no 

account of the decision class sizes (as demonstrated previously in Table 3.1.1.1).

Although this approach is quite novel in terms of data mining (considering the size of the sub­

samples, that can be taken over each individual decision class), it is certainly less subjective than 

choosing a proportion value (as in Table 3.1.1.1). In some respects, by using Equation 3.1.2.1, and 

considering each decision class on an individual basis, this method could be considered a 

“supervised” sub-sampling method.

Figure 3.1.2.1 represents the plot of Equation 3.1.2.1, for the 95% and 90% confidence levels 

(values suggested by, Israel, 2007). With the number of objects, within a given sub-population (a 

decision class), plotted on the horizontal axis, and the concomitant number of objects the equation 

calculates are required to represent that sub-population, shown on the vertical axis. This dynamic 

approach for selecting objects from a decision class, based on what proportion can be reasonably 

taken, has a number of advantages, listed below Figure 3.1.2.1:
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Based on Equation 3.1.2.1

•  As can been seen in Table 3.1.2.1 and Figure 3.1.2.1, for larger sized decision classes (such as 

decision class 2 in Table 3.1.2.1), the proposed statistical approach, recognises that, as the 

particular decision class size increases (i.e. sub-population increases), less proportion of the 

objects are required for training. The graph within Figure 3.1.2.1, also shows that more objects 

are required for the higher 95% confidence level, and that the gradient of the 95% confidence 

level, becomes shallower at a slower rate than the 90% confidence level.

•  For smaller decision classes (such as decision class 1 in the Table 3.1.2.1), the proposed 

statistical approach, recognises that, as the particular decision class size decreases, more 

proportion o f the objects are required for training. That is, it would be futile to try and take 

objects for the validation set, from an under represented decision class.

•  This proposed statistical approach, mitigates a possible subjective decision on how to partition 

the subsets between the training and validation set, and removes that responsibility from the 

analyst.

•  With the proposed statistical approach, the analyst is not implicitly bound, into having to set a
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specific training set proportion size, which is then blindly applied to all decision classes, 

irreverent to such issues as imbalanced data (skewed, see Chapter 4), as is the case in Table 

3.1.1.1. Furthermore, with regards to imbalanced data, the proposed statistical method presented 

here, brings some balance to the sub-sampled training data set. This is because, to some extent, 

it attempts to prevent the larger decision classes from dominating, and smaller decision classes 

from being under represented (unless they are grossly under represented, where it becomes 

futile to consider taking objects for validation). This is potentially superior to the balancing 

methods described later in Chapter 4, as they rely on a certain amount of subjective opinion 

from the analyst.

The only potential drawback of this statistical approach, relates to the remaining objects that are 

used for the validation set. If the original sample from which the training set is drawn from, is as a 

whole small, then there are fewer objects left for the validation set. Hence, the analyst would be 

unable to take any confidence in the estimated predictive accuracy, based on the validation set. This 

problem is compounded when considering the predictive accuracy for each decision class 

independently (as will be described in subsection 3.2.1), especially for the under represented 

decision classes, which may yield few or no objects for validation (such as in decision classes 1 and 

5 within Table 3.1.2.1). However, it must be acknowledged that attempting to train and test on a 

small data set is futile and that it would be wiser to keep as many objects as possible for training 

(Weiss and Kulikowski, 1991). Re-sampling methods, for overcoming this problem are described 

later in section 3.3.

To briefly summarise section 3.1, two basic approaches to estimating the predictive accuracy, 

namely, the apparent predictive accuracy, which is biased optimistically, and the train and test 

methodology which is less biased, but raises issues on how to partition a data set into training and 

validation sets, were described. With regards to the train and test methodology, three approaches to 

train and test sub-sampling were described: firstly, a simple random sub-sample, which takes no
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account of the distribution o f the decision classes; secondly, stratified sub-sampling, which attempts 

to maintain die proportions (the distribution) of the decision classes between the data set, the 

training set, and the validation set; and thirdly, a novel statistical sub-sampling method was 

introduced, which considers the size o f the decision classes on an individual basis (within the rest of 

this dissertation, we will refer to this method as the statistical sub-sampling method).

The VPRS software developed within this dissertation, for the purpose of evaluation, 

incorporates the apparent predictive accuracy method, and two of the train and test approaches for 

estimating the predictive accuracy, namely, stratified sub-sampling and the introduced statistical 

sub-sampling method.

3.2 Additional Classifier Performance Considerations

The previous section of this chapter, only considered the predictive accuracy in terms of a single 

calculated value. There are however, a number of other considerations that can be taken into 

account when investigating the predictive accuracy of a classifier.

The discussion in subsection 3.1.2 raised the concept of considering each decision class 

independently as a sub-population (with regards to the statistical sub-sampling method). Subsection 

3.2.1 builds on this concept and describes the confusion matrix as a means to analyse the predictive 

performance of a classifier, for each individual decision class.

The over-optimistic (bias) estimation of a classifier's predictive accuracy, synonymous with the 

apparent predictive accuracy, and the potential for a range (variance) of predictive accuracy 

estimates based on different validation subsets, was described in the previous section 3.1. As it has a 

baring on the re-sampling work described later in section 3.3, subsection 3.2.2 elucidates the issues 

of bias and variance more formally.
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3.2.1 The Confusion Matrix

Typically, within much of the classifier related literature, only the overall predictive accuracy is 

quoted (Poon et al., 1999; Oelericha and Poddig, 2006). This approach is satisfactory if all 

incorrectly predicted objects are o f equal importance. In many applications, the cost of incorrectly 

predicting an object from one decision class, may be higher than incorrectly predicting an object 

from another decision class. The case of medical screening (as a first stage of diagnoses) is 

commonly quoted (Weiss and Kulikowski, 1991; Coppin, 2004), that is, if a patient is ill, but is 

classified as being healthy (known as a false negative error), then this situation is far more serious 

than if a patient is healthy and was diagnosed as being ill (a false positive error) (Han and Kamber,

2006).

The medical diagnosis example has a dichotomous decision class (ill or healthy), other 

applications may have a number of decision classes, such as the bank rating problem considered 

within this dissertation. Although, incorrectly predicting a bank is not a fatal mistake, the financial 

cost incurred, can be dependant on the degree to which the bank is incorrectly predicted (Harnett 

and Young, 2004,2007).

If it is important to distinguish between the predictions for each decision class, then the 

confusion matrix (Weiss and Kulikowski, 1991; Han and Kamber, 2006), can be used to present the 

correctly/incorrectly predicted objects for multiple decision class problems. Table 3.2.1.1 

demonstrates a three decision class confusion matrix.

Actual

Predicted 

1 2 3

Predictive
Accuracy

1 10 5 3 10/18=55.6%

2 4 40 5 40/49 = 81.6%

3 0 3 30 30/33=90.9%

Table 3.2.1.1: Example Confusion Matrix with Three Decision Classes
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The left column of the confusion matrix in Table 3.2.1.1, shows the actual value of the objects, 

whereas the columns, under the 'Predicted' heading, display the predicted values for each object. 

Hence, the correctly predicted objects lie along the leading diagonal of the matrix (top left to 

bottom right). The predictive accuracy for each individual decision class is given at the end of each 

row. Taking the decision class 1 as an example, ten objects have been classified correctly, five and 

three objects have been erroneously classified into decision classes 2 and 3, respectively.

The confusion matrix is implemented within the developed VPRS software (vein graph and re­

sampling), and as will be seen in Chapters 7 and 8, it proves to be an indispensable tool for 

evaluating predictive performance.

3.2.2 Bias, Variance and Overfitting

When using the estimated predictive accuracy to compare between classifier models, or classifiers 

trained on different subsets of a given data set, there are two additional issues, namely bias and 

variance which need consideration. It has already been stated that a classifier tested on the data that 

was used to train it, provides an over-optimistic estimation of the true predictive accuracy. In this 

case the estimation is said to be biased optimistically (i.e. the apparent predictive accuracy). In 

contrast, other methods for estimating the predictive accuracy, such as bootstrap re-sampling (see 

subsection 3.3.3), are quoted as being biased pessimistically (Breiman, 2001). Theoretical aspects 

of bias have been widely studied in statistics (Efron, 1982; Shao, 1988; Shao and Tu, 1995; Rao, 

2000).

Whilst the estimated predictive accuracy taken on the validation set is typically less biased than 

that estimated on the training set, the range of estimated values will vary, depending not only on the 

specific sizes of the training and validation sets, but also on the objects randomly selected to be 

within those sets. This effect is known as the variance of the estimated predictive accuracy 

(Kantardzic, 2003). Different methods for estimating the predictive accuracy have different
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properties with regards to bias and variance. Indeed, it is often bias and variance which are used to 

benchmark between the different re-sampling methods (as will be shown in subsection 3.3.4), and 

will be utilised later in Chapter 8, to compare between predictive accuracy results.

Overfitting, or over-specialising, of a classifier describes a situation where the classifier has been 

trained in such a way, as to increase the apparent predictive accuracy based on the training set 

(Kantardzic, 2003; Han and Kamber, 2006). Some classifier methods utilise the training set as a 

benchmark during their construction, in an attempt to increase the performance of the classifier, for 

example, the operation of neural networks through the back propagation method (see Geman et al., 

1992; Zhang et al., 1999; Han and Kamber, 2006). Overfitting can increase the predictive 

performance on the training set, but the estimated predictive accuracy is biased very optimistically, 

and may actually be detrimental to the predictive accuracy on the validation set. Attempting to 

predict all objects within the training set correctly, including erroneous or misclassified objects, has 

the potential to weaken more general trends that would perform better on any future classification; 

it can also cause classifiers to become overly complex (Kantardzic, 2003). Generally, overfitting in 

terms of VPRS would result in an increase in the number of more complex (more attributes), less 

generalised (weaker strength) rules, in an attempt to improve the predictive accuracy on the training 

set. It also has the undesirable affect of, decreasing interpretability, as a consequence of those more 

complex rules.

3.3 Re-sam pling M ethods

Sub-sampling methods are an improvement on estimating the predictive accuracy, when compared 

to the apparent predictive accuracy. However, as suggested in section 3.1, sub-sampling has a 

number of drawbacks, such as, selection of the training and validation sample sizes and whether or 

not the data set is large enough to reasonably partition it into a training set and validation set. By the
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late 1940s and early 1950s, it was recognised that more advanced methods were required to address 

these drawbacks. Hence, emphasis was put on developing methods that were described as cross- 

validation, examples include the works of, Cureton (1951), Katzell (1951), Mosier (1951) and 

Wherry (1951), who contributed suggestions to 'Symposium: The need and means of cross- 

validation' (1951).

By the early eighties, a number of varying cross-validation methods had been proposed (Stone, 

1974; Efron 1979, 1982), each promoting a different “re-sampling plan”, with differing associated 

properties in terms of bias, variance, overfitting and computational requirements (Weiss and 

Kulikowski, 1991). Cross-validation has become more generally known as re-sampling, where the 

term cross-validation, itself, has become more synonymous with a specific re-sampling method 

known as &-fold cross-validation. The other two most prominent re-sampling methods being leave- 

one-out and bootstrapping (described next). Figure 3.3.1 presents an illustration of the general re­

sampling methodology, which encompasses the three methods mentioned here (leave-one-out, k- 

fold cross-validation and bootstrapping), described in more depth in the following subsections.

Within Figure 3.3.1, for n repetitions, n different pairs of training and validation subsets are 

taken from the sample data set. The estimated predictive accuracy is calculated as the proportion of 

objects, from all repetitions of the validation set that were predicted correctly; or equivalently, by 

taking the average of all the estimated predictive accuracies from all repetitions of the validation set 

(Breiman, 1996b). The size of the training set taken within each repetition can be larger than that 

taken with regards to the simple train and test methodology, because at some stage within the 

repetitive process, all objects will be included in an independent validation set (though, not 

necessarily true for the bootstrapping method described in subsection 3.3.3). This is the main 

advantage of re-sampling over simple train and test methodology (Weiss and Kulikowski, 1991). 

That is, not only can more objects be taken for training purposes, but all objects at some stage, will 

be used for validation purposes.
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ure 3.3.1: Re-sampling Approach to Estimating the Predictive Accuracy

Re-sampling also has an advantage over analytical approaches (such as those used in statistics), 

because it makes no prior assumptions about the distribution o f the data (Kantardzic, 2003); this 

irreverence to the underlying distributions o f the attributes, is more in line with the general 

RST/VPRS philosophy and the “Let the data speak for itse lf’ line o f thought, as quoted in the 

previous chapter. The following subsections describe three o f the most established re-sampling 

methods, namely, leave-one-out, &-fold cross-validation and bootstrapping.

3.3.1 Leave-one-out

Attributed to Lachenbruch and Mickey (1968), leave-one-out is perhaps the simplest re-sampling
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method, and has been widely accepted as being superior to the simple train and test methodology

for small data sets (Baumann, 2003; Lendasse et al., 2003).

Described formally, for a sample with n objects, a classifier is trained on n -  1 of the objects and

validated on the remaining one object. This process is repeated n times, sequentially selecting a

different object to leave out for each repetition. Predictive accuracy is taken as, the number of

correctly classified single validation objects over n. This method is a virtually unbiased estimator of

the predictive accuracy (Weiss and Kulikowski, 1991), as all objects are used for validation during

the process, and for each repetition nearly all the objects are used to train the classifier.

Although leave-one-out was attributed to Lachenbruch and Mickey (1968), Mosteller and Tukey

(1968, pp. I l l )  are accredited with describing the first general statement of what they termed

simple cross-validation, which is now commonly known as leave-one-out, in which they state:

“Suppose that we set aside one individual case, optimise for what is left, then test on the 
set-aside case. Repeating this for every case squeezes the data almost dry...”

Historically, this method would have been considered computationally expensive and was only

applicable to smaller data sets, but with the advances in modem computing, it has become more

feasible to use the leave-one-out re-sampling method.

3.3.2 Mold Cross-validation

The &-fold cross-validation method was proposed by Stone (1974), and is a generalisation of the 

leave-one-out re-sampling method. Within this method, the sample data set is split into k subsets of 

equal size, that is, the number of objects in each set are equal (or as near as can be). To demonstrate 

the method, 200 objects may be split into ten {k = 10) equally sized sets of 20 objects (objects 

selected randomly). Nine of these sets (90% of the sample data set) would be used to train the 

classifier; the remaining set would be used to test the classifier. For each repetition5, a different set 

out of the ten available sets would be left out for use as a validation set.

5 Figure 3.3.1 refers to n repetitions, however for Mold cross-validation, we will be referring to k repetitions.

64



The £-fold cross-validation estimated predictive accuracy, is calculated as the average of all 

predictive accuracies from all k repetitions. The advantage of the £-fold cross-validation is that all 

the cases in the available sample are used for testing, and for each repetition almost all the cases are 

used for training the classifier (though not as many relative to the leave-one-out method).

In comparison to the leave-one-out method, &-fold cross-validation requires less repetitions, and 

is subsequently less computationally expensive. Within the extant literature, values of k generally 

range from 10 down to 2 (Efron, 1982; Zhang et al., 1999; Dietterich, 2000a). A simplistic formula

to evaluate k was presented in Davison and Hinkley (1997), that is k = min(«1/2; 10), where n is the 

number of objects in the data set (see also Wisnowski et al., 2003).

Considering today's computational power, it may be difficult to justify using &-fold cross-

validation over leave-one-out, but as a direct consequence of this computing power, the rate at

which information is gathered, and the volume which is being collated, is out stripping our ability to

analyse it. As a testament Kantardzic (2003) notes:

“...the problem of data overload looms ominously ahead. Our ability to analyse and 
understand massive data sets, as we call large data, is far behind our ability to gather 
and store the data.”

In general, the “large data sets” of the past are probably considered medium sized in regards to the 

modem day comparison. With this in mind, then A:-fold cross-validation is still very much a relevant 

and practical method. Han and Kamber (2006) stress that even if computational power allowed 

more folds (k = n, for leave-one-out), it is still preferable to use &-fold cross-validation as it has a 

lower variance than leave-one-out (discussed next). Moreover, they recommend stratified A>fold 

cross-validation for imbalanced (skewed) data sets. Stratified &-fold cross-validation is similar to 

the concept of stratification for the simple train and test methodology (see subsection 3.1.1), it seeks 

to retain the proportional distributions of the decision classes within the individual £-fold subsets 

(Thomassey and Fiordaliso, 2006).

It should be pointed out though, as stated earlier, given a sufficiently large data set, the simple
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train and test methodology is a perfectly acceptable method for estimating the true predictive 

accuracy (stated in subsection 3.1.1).

3.3.3 Bootstrapping

Since its introduction by Efron (1979, 1982), the bootstrap re-sampling method has received much 

scrutiny and attention within statistical analysis, and is an ongoing area of research (Efron, 2003). 

The bootstrap method draws a random sample of equal size to the sample data set (size n), using 

sampling with replacement (hence some objects in the sample may be duplicated), this constitutes 

the training set (hence the training set is also of size ri), any objects that do not appear within the 

training set are utilised as the validation set.

For example, given a sample of 200 objects, sampling with replacement n times yields a training 

set of 200 objects (some objects may appear more than once). On average, the proportion of the 

objects appearing in both the sample data set and the training set is 0.632 (0.368 are therefore 

duplicates), hence the average proportion of the validation set is 0.368 (Han and Kamber, 2006).

The theoretical motivation behind the bootstrap method, was summed up by Shao and Tu (1995), 

who point out that a data set of size «, has 2”-1 non-empty subsets, the leave-one-out re-sampling 

method only utilises n o f them, and that the estimated predictive accuracy may be improved by 

using more than n or even 2""1 subsets.

There is little guidance on the number of repetitions required within bootstrapping. Original 

estimates suggested between 25 to 200 (Breiman, 1996a; Weiss and Kulikowski, 1991), but the 

value appears to be dependent on the classifier model in question. Indeed Dixon et al. (1987), used 

500 bootstrap repetitions, whereas Brownstone and Valletta (2001) used up to 1,000. Andrews and 

Buchinsky (2000, pp. 23) noted the, “...ad hoc manner”, for choosing the number of bootstrap 

repetitions, and suggest a three-step method for solving the problem, to achieve a “desired level of 

accuracy”, with respect to measures of statistical inference.

66



With regards to calculating the predictive accuracy, the simplest method within bootstrapping is 

to take the average of the estimated predictive accuracies from all the repetitions (similar to Mold 

cross-validation). Known as the eO estimate (Weiss and Kulikowski, 1991), it yields a low variance 

result, but is typically biased pessimistically. There have been a number of alternative methods for 

calculating the predictive accuracy with regards to bootstrapping, which are discussed in the next 

subsection.

3.3.4 Comparison of Re-sampling Methods

As described previously, the apparent predictive accuracy is by far the most biased estimation of 

predictive accuracy. Using a validation set offers an unbiased estimate, but has high variance for 

small sample sizes, thus the analyst cannot take any confidence in the estimation. Re-sample 

methods are computationally more expensive, but result in, less biased, and lower variance 

estimates. However, there are differences between the bias and variance associated with each re­

sampling method. Table 3.3.4.1 summarises the bias (severity within the parenthesis) and variance, 

for the estimation methods discussed previously in subsections 3.3.1 to 3.3.3.

Bias Variance

Apparent Predictive Accuracy Optimistically (high) -

Train and Test Methodology unbiased High

Leave-one-out unbiased High

fc-fold cross-validation Pessimistic (low) Low

Bootstrapping Pessimistic (medium) Low*

* lower than £-fold cross-validation

Table 3.3.4.1: Bias and Variance Comparisons of Predictive Accuracy Estimation Methods 

As shown within Table 3.3.4.1, leave-one-out is said to be a virtually unbiased estimate of the 

true predictive accuracy, but has a high variance (Weiss and Kulikowski, 1991). With regards to 

bootstrapping, as stated in subsection 3.3.3, on average a classifier is only trained on 0.632 of the 

sample data set, so bootstrapping provides an estimate that is biased pessimistically, but has a very
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low variance. With regards to &-fold cross-validation, it could be described as a “half-way house” 

between leave-one-out and bootstrapping, as in general, it produces a slightly pessimistic result 

when compared to leave-one-out, but less pessimistic than bootstrapping, additionally its variance is 

much lower than leave-one-out, but not as low as bootstrapping (Han and Kamber, 2006).

There have been attempts to adjust for the known effects of bias and variance within £-fold 

cross-validation and bootstrapping. With regards to bootstrapping, the 0.632B linear combination 

estimator (Efron and Tibshirani, 1997), has demonstrated strong results, and is presented in 

Equation 3.3.4.1:

(0.368 X eO) + (0.632 X app), (3.3.4.1)

where app is the apparent predictive accuracy (the equation has been adapted to utilise predictive

accuracy as opposed to error rate), and the eO estimate was described in the previous subsection. 

Sima and Dougherty (2006) describe the 0.632B estimator as a convex combination, and note that 

there has also been some attempts to improve &-fold cross-validation by using a similar convex 

combination approach (Toussaint and Sharpe, 1975; Raudys and Jain, 1991).

There are arguments both for, and against each re-sampling method. With regards to leave-one-

out, although it is said to be a virtually unbiased estimator, Baumann (2003, pp. 395) found:

“...the commonly applied leave-one-out cross-validation has a strong tendency to 
overfitting, underestimates the true prediction error, and should not be used without 
further constraints or further validation.”

Shao (1993), in what they described as the inconsistency of leave-one-out, found it could be

rectified by using &-fold cross-validation. Wisnowski et al. (2003), noted that the challenge when

using &-fold cross-validation is not to over-fit the model, as may happen with leave-one-out.

The possible superiority of bootstrapping over the other re-sampling methods was reported in 

(Efron, 1983), and it has gained wide acceptance that it can outperform &-fold cross-validation for 

small data sets (Kantardzic, 2003), but other studies have suggested that, under certain 

circumstances, &-fold cross-validation can be superior (Weiss, 1991). Additionally, depending on the
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number of repetitions required, bootstrapping can prove computationally more expensive over the 

other re-sampling methods (Giudici, 2003).

Here, the most generally accepted re-sampling methods have been presented, but there are many 

variations. The usual motivation behind investigating alternative re-sampling methods has been to 

combine the strengths of &-fold cross-validation and bootstrapping (to achieve low bias and low 

variance estimates, see Table 3.3.4.1). Efron and Tibshirani (1997) discussed combining 

bootstrapping with £-fold cross-validation (including what they described as the leave-one-out 

bootstrap); Ambroise and McLachlan (2002) applied a '10-fold cross-validation 0.632B' to their 

micro array data. More recently, Fu et al. (2005), presented a similar concept to that presented in 

Ambroise and McLachlan (2002), and based their approach on a similar combining principle. 

Lendasse et al. (2003), describe the Monte-Carlo cross-validation, whereby, repeated validation sets 

were randomly and sequentially drawn.

3.4 Ensemble Methods

Re-sampling is still an active area of research within statistics, and is gaining more attention within

the machine learning community, in particular, bootstrapping as an alternative to £-fold cross-

validation. Efron (2003, pp. 138) when discussing the future of the bootstrap, commented that:

“...its workhorse status in machine learning, as seen in the recent book by Hastie, 
Tibshirani, and Friedman (2001), makes it a statistical success story in the outside 
world.”,

but later concedes that what is not available (pp. 139), “...is theoretical reassurance that the 

numerical gains... will hold up in general practice.” This is a sentiment shared by other authors of 

data mining based research, who see that data mining being developed by computer scientists for 

very practical usage, has evolved separately from the rigours of statistical mathematics (Kantardzic,

2003). Giudici (2003) commented that statistical methods should be used to study and formalise
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data mining methods and that (pp. 6):

“...we need to develop a conceptual paradigm that allows the statisticians to lead the 
data mining methods back to a scheme of general and coherent analysis.”

However, one promising area of research making a very practical impact within data mining is

ensemble methods. Whereby, the numerous classifiers constructed during a re-sampling phase are

combined to produce a more “stable” classifier, that can improve predictive accuracy (Han and

Kamber, 2006; Skurichina and Duin, 1998). The authors of the more established methods do

provide mathematical evidence that underpin their ensemble methods (Breiman, 1996; Freund and

Schapire, 1997), but the empirical evidence for the success of ensemble methods is also

encouraging (Webb, 2000; Borra and Di Ciaccio, 2002; Hothom and Lausen, 2003a; Stefanowski,

2004).

The methods described within the previous sections focused on how to accurately estimate the 

true predictive accuracy of a classifier, with consideration given to bias and variance. The methods 

in themselves, do not actively seek to improve the predictive accuracy of the classifier. Ensemble 

methods however, do seek to improve the predictive accuracy of a classifier through re-sampling 

with little extra computational expense (Han and Kamber, 2006).

Breiman's (1996a) bagging (bootstrap aggregating), and Freund and Schapire's (1997) paper on 

boosting, are the seminal works on ensemble classifiers. There have been a number of extensions to 

these ensemble methods, but they can be placed into two categories, as stated by Bauer and Kohavi 

(1999, pp. 105), “...those that adaptively change the distribution of the training set based on the 

performance of previous classifiers (as in boosting methods) and those that do not (as in bagging).”

There have been a number of studies investigating and comparing the potential performance 

enhancing capabilities o f these ensemble methods (Dietterich, 2000a; Kuncheva et al., 2001; Borra 

and Di Ciaccio, 2002). In terms of bias and variance, it is generally known (through cross- 

validation of ensemble methods), that when compared to bagging, boosting tends towards a lower 

bias, but higher variance. Furthermore, if the boosting algorithm is left to proceed unchecked, it will
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over-fit the training set, and become biased optimistically (Friedman, 1999, 2002). Ridgeway 

(2002, pp. 380) misleadingly suggests that Breiman's (2001) iterated bagging seeks to combine the 

ideas of bagging and boosting in the expectation that, “...boosting's bias reduction together with 

bagging's variance reduction could produce excellent predictive models.” However, Breiman (2001, 

pp. 262) had already denied the link, and stated, “...iterated bagging has no connection to 

boosting...”, although he does acknowledge there are similarities with Freidman's (1999) work on 

gradient boosting. The confusion may lie in the fact that iterated bagging is an attempt to improve 

bagging by reducing the bias of the constructed classifier.

There are many examples of the successful performance enhancing capabilities of both bagging 

and boosting (for a good overview see, Dietterich, 2000b; Sewell, 2007). Some more exotic 

methods have suggested other methods for aggregating classifiers. Bauer and Kohavi (1999) 

proposed an interesting variant on bagging namely wagging (weight aggregating). Where uniform 

weights are initially associated with each object, and they describe wagging as a method that (pp. 

122), “...seeks to repeatedly perturb the training set as in bagging, but instead of sampling from it, 

wagging adds Gaussian noise to each weight...”, from which they then induced their decision tree 

and Naive-Bayes classifiers (see, Kohavi et al., 1997; Quinlan, 1993). They found that the results of 

wagging were comparable with bagging. Webb (2000) took wagging and combined it with boosting 

in what they named MultiBoosting, which as they described, harnessed the high bias reduction of 

boosting with wagging's superior variance reduction.

Other notable variants, such as Hothom and Lausen's (2003b) paper on 'Double bagging' 

suggests using the in-sample (similar to the training set, described in the next subsection) from the 

bootstrap to train a classifier, and to simultaneously use the out-sample (similar to the validation 

set), to perform linear discriminant analysis, then combining the results of both to improve the 

performance of their constructed classifier. Their further work on 'Bundling classifiers' (Hothorn 

and Lausen, 2005), builds on the idea of combining different classifier methods, in an attempt to
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combine the best elements of a range of classifier methods within a decision tree framework.

Bryll et al. (2003) presented another promising direction, in the form of attribute bagging, 

whereby random subsets of the attributes are taken (instead of subsets of objects). They point to the 

faster computation time, and claimed that (pp. 1298), “...attribute partitioning methods are superior 

to data partitioning methods (e.g. bagging and boosting) in ensemble learning.” Attribute bagging is 

a promising method, because it combines the advantages of increasing the predictive accuracy and 

stability of a classifier (as in other ensemble methods), whilst also performing attribute selection 

(feature selection, see Chapter 4). However, within their study, a substantial validation set had to be 

set aside (validation of ensemble classifiers is discussed in the next subsection). Perhaps combining 

attribute bagging with the established data partitioning bagging, would yield a powerful classifier 

“wrapper” method, that could tackle feature selection and the combined problems of bias and 

variance (stability), whilst improving predictive accuracy. However, this approach could result in a 

computationally expensive process, if data partitioning bagging was performed for every iteration 

of the attribute bagging process.

For the purpose of this dissertation, we have concentrated on Breiman's (1996a) original bagging 

methodology, described fully in the next subsection. Additionally, the developed VPRS software 

will not only allow the analyst to perform bootstrap aggregation, but also aggregation over the 

leave-one-out and &-fold cross-validation re-sampling methods.

3.4.1 Bagging

Bagging was introduced as an ensemble method by Breiman (1996a), as a way to improve accuracy 

and stability of a classifier. Stability, is linked to the issue of variance, whereby, classifiers trained 

and validated on different subsets of a sample data set can have a varying range of predictive 

accuracies (variance). It follows that, improving the stability, should generally improve the 

predictive accuracy of a classifier, by insuring that the predictive accuracy on any unseen data set is
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within a tight interval.

Bagging aims to combine the classifiers constructed during bootstrap re-sampling, to create an 

improved aggregated classifier. Figure 3.4.1.1 displays the general model for an aggregated 

classifier.

Sample 
Data Set

TrainingValidation

m training and validation subsets

J L  J L  J L  JL .
In-samplel Out-sample| fln-samplel [Out-sample In-sample Out-sample

Classifier 1 ► Test ClassifierClassifier
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predictive 
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Classifiers

Combine \ 
Classifiers ,

/  Calculate 
Average

Aggregated
Classifier
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PredictiveAggregated C lassifier
Predictive Accuracy Accuracy

Figure 3.4.1.1: Construction o f an Aggregated Classifier (such as in the Bagging Method)
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The methods for aggregating classifiers can be model dependant, but in general, after the m 

bootstrap classifiers have been trained (as shown in Figure 3.4.1.1), each model can “vote” on the 

classification of any unseen objects (thus forming the aggregated classifier), and the classification 

of the unseen objects, are then based on the majority vote.

With reference to Figure 3.4.1.1, to validate the aggregated classifier, a validation set needs to be 

set aside at the initial stages of the bagging process. To avoid confusion, the subsets taken during 

the m bootstrap repetitions are now described as the in-sample (the data the classifier is trained on) 

and the out-sample (the data the classifier is tested on). The aggregated classifier is then tested on 

the independent validation set. Breiman's (1996a) approach, actually cross-validates the entire 

bootstrapping process using &-fold cross-validation, and found that the standard deviation of the 

estimated predictive accuracies based on the k constructed aggregated classifiers, to be extremely 

low (between 0.1% and 0.9%). Brieman also found that, the average improvement in the predictive 

accuracies to be around 2% to 10% (inferred from error rates stated by ibid), these levels of 

performance improvement are supported by other studies (Hothom and Lausen, 2003a, 2003b, 

2005; Stefanowski, 2004). However here, it is not possible to completely follow Brieman's 

approach, and cross-validate the VPRS ensemble model (presented later within this chapter), for a 

number of reasons given below. Hence, evaluation of the aggregated /?-reducts is only done on the 

validation set.

•  Firstly, the analyst is required during the VPRS data mining process to select which attributes to 

analyse. It would not be feasible to expect the analyst to make this choice for the k repetitions, 

particularly where A: was large (e.g. Breiman, 1996a, used k=  100 repetitions).

•  Secondly, as a product of the /?-reduct aggregation process (see next section), a number of 

different options are available to the analyst in terms of aggregated /?-reduct selection and 

selection of the aggregated rules associated with each aggregated /?-reduct. Again £-fold cross- 

validation would require the analyst to be present to make the choice after each repetition of k.
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To utilise cross-validation, this point and the previous point would require full automation, 

perhaps a consideration for the future, but infeasible within the framework of the VPRS 

software developed here.

•  Thirdly, from preliminary work (Griffiths and Beynon, 2007, 2008), it was found that, during 

the VPRS analysis, each bootstrap of the data set can produce vastly different sets of results, 

particularly with regards to the selected /?-reducts. The number of bootstrap repetitions required 

within a VPRS based analysis was found to be greater (500 plus) than that advocated in the 

extant literature (e.g. Breiman, 1996a, used 50 bootstraps). Mainly because, a range of different 

/?-reducts are selected during the /?-reduct aggregation process (described in the next subsection, 

and shown in Chapter 8), thus, more repetitions are required to ensure confidence in the results. 

Hence, it would be computationally infeasible to cross-validate the aggregated classifier 

constructed within the framework of the VPRS software developed here (within a reasonable 

time frame).

Here, the statistical method described in subsection 3.1.2 is employed, to set aside a validation set. 

It should be noted though, that within the developed VPRS software, the re-sampling predictive 

accuracies are recorded, and can be used as an indication of the future performance of a classifier. 

The extant literature on ensemble methods, refers to this use of the re-sampling estimated predictive 

accuracy as the “out-of-bag” estimate (Breiman, 1996b; Hothom and Lausen, 2003a). Moreover, 

Breiman (2001, pp. 11), noted that, “...using the out-of-bag error estimate removes the need for a set 

aside test set [validation set]...”, but concedes that the estimate will be pessimistic with regards to 

the bootstrap estimation because the classifier is only trained, on average, with about two thirds of 

the available training set (see also, Tibshirani, 1996; Wolpert and Macready, 1999).

The performance enhancing effects of bagging are widely accepted, Han and Kamber (2006, pp. 

367) stated that:

“The bagged classifier often has significantly greater accuracy than a single classifier
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derived from D, the original data. It will not be considerably worse and is more robust 
to the effects of noisy data. The increased accuracy occurs because the composite model 
reduces the variance of the individual classifier. For prediction, it was theoretically 
proven that a bagged predictor will always have improved accuracy over a single 
predictor derived from Z).”

With regards to comparisons between bagging and boosting (the most well established alternative

method), boosting has been found to outperform bagging, but not universally so. Boosting performs

particularly poorly for noisy data sets, and can in fact, produce a classifier which is worse than one

produced from a single run (Bauer and Kohavi, 1999; Dietterich, 2000a).

3.5 VPRS Re-sampling and/?-reduct Aggregation

As stated in the introduction and Chapter 2, dynamic reducts (Bazan et al., 1994; Leifler, 2002; 

Jiang and Abidi, 2005), is perhaps, the closest work utilising RST and re-sampling, relating to the 

work undertaken in this dissertation. Wherein, a reduct is described as dynamic, if it appears within 

those reducts identified from a sample data set, and within all subsets of the sample data set taken 

during re-sampling. In most cases, this definition is too restrictive and a proportion measure 

0 < e<  1 was introduced. That is, if a reduct appeared in a proportion of the subsets that was greater 

than the threshold e, defined by the analyst, then it would be considered dynamic. As reducts 

generated from a sample data set are sensitive to change in the data (e.g. by removal or addition of 

objects), the identification of dynamic reducts is in the hope that more stable reducts will be found, 

and hence that they will perform better as a classifier on unseen data (Jensen, 2004). Bazan (1998) 

showed that, generally, dynamic reducts performed no better than the conventional reducts. It can 

be speculated that no improvement was seen, because in a sense nothing is done to stabilise the 

rules associated with the reducts that have been shown to be dynamic (stable). Thus the suggestion 

here, is to consider a process of aggregating the most stable reducts (/?-reducts specifically) and 

associated rules, in an attempt to induce the most stable rule set, and potentially increase its
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predictive performance.

In terms of ensemble methods and RST, Stefanowski (2004, 2007) has presented the most 

notable work. Whereby, they applied bagging to their MODLEM rule induction algorithm (based on 

RST, Stefanowski, 1998), and they found that (pp. 341), “... bagging significantly outperformed the 

single classifiers...” in 14 out of 18 of their sample data sets.

There has been limited attention given to ensemble methods within RST/VPRS, perhaps due to 

the complexities of reduct identification (Jensen, 2004) and rule generation (both theoretically and 

computationally), further compounded by the question of reduct/rule aggregation. Stefanowski 

(2004, 2007) opted for bagging their MODLEM approach, because it provided an efficient single 

classifier, within a reasonable computational time frame. Jiang and Abidi (2005) emphasised the 

advantage of their methods involving rules induced from dynamic reducts, which produced concise 

more generalised rules, and also maintained predictive accuracy. The undesirable relation between 

potentially improving the predictive accuracy of a classifier through aggregation, and the additional 

complexity involved with an aggregated classifier, was summed up succinctly by Breiman (1996a, 

pp. 137), when commenting on their classification tree approach, “What one loses, with the trees, is 

a simple and interpretable structure. What one gains is increased accuracy.”

The method introduced within the VPRS software developed here, does not restrict the analyst to 

a threshold value e as in dynamic reducts, but rather presents them with the important information 

concerning all selected /?-reducts, when undertaking a VPRS re-sampling analysis (the selection 

process is described next). Here, the software, allows the analyst to asses which /?-reduct, that has 

been selected on the most number of repetitions, so potentially stable, to aggregate. The method of 

/?-reduct aggregation described later in subsection 3.5.2, combines the minimal covering rule sets 

associated with each occurrence of the selected /?-reduct, and again allows the analyst to select the 

rules which occur most often, hence the most general (stable) rules. This mitigates the problem of 

aggregated classifier complexity as the analyst can “skim” off the most general rules to construct
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the final classifier. Before /?-reduct aggregation is described further, some explanation must be 

given to how the /?-reduct selection process has been automated.

3.5.1 /?-reduct Automated Selection

Within Chapter 2, the vein graph was described as a method for presenting all /?-reducts associated 

with a sample data set, from which the analyst could choose a /?-reduct for analysis. In a re­

sampling environment, it would be impracticable for the analyst to choose a /?-reduct for each 

repetition. Here, to automate the process of /?-reduct selection, a criteria has been defined to select a 

single /?-reduct from each repetition. Originally used in Griffiths and Beynon (2008), which was an 

extension from that outlined in Beynon et al. (2004), the criteria is specified as (see Chapter 2 for 

terminology):

i. /L.„ threshold greater than specified p  value. Infers that the selected /?-reduct(s) will have a pmin 

threshold value (defined in Chapter 2) greater than a /?-value defined by the analyst.

ii. The highest quality of classification possible, associated with the /7-reduct(sf identified in if. 

Infers the identified /?-reduct(s) from i), will assign a classification to the largest possible 

number of objects in the training set. A consequence being, the rules constructed may 

misclassify a number of objects. It is then more probable that the ft sub-domains associated with 

the selected /?-reduct(s) for this criterion, are at the lower end of the ft domain (0.5, 1].

iii. The highest /L;„ value from those associated with the /7-reduct(sf identified in i) and ii). Infers 

the selected /?-reduct(s), will have the highest proportional level of majority inclusion, with 

regards to the condition classes associated with the decision classes, of the relevant /^-positive 

regions.
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iv. Least number of decision rules associated with the ff-reductfs'l identified in D to iiiV Infers that 

the selected /?-reduct(s), will have the most general rules (higher strengths). This follows the 

science tenet of Occam’s Razor (Domingos, 1999), the principle is expressed in Latin as the lex 

parsimoniae ("law of parsimony" or "law of succinctness"), and is often paraphrased as "All 

things being equal, the simplest solution tends to be the right one!"

v. Least number of condition attributes in the yff-reductfs') identified in i) to iv). Infers an identified 

/?-reduct will have the least complex decision rule set. It implies, if a choice is available, then 

the simpler model should be chosen. Hence, a /?-reduct with less condition attributes would be 

chosen, over one with more condition attributes, to exact a simpler model. The role of this 

criterion is akin to the point made in iv).

vi. The largest sub-domain of B associated with the ff-reductfs'l from those selected in i) to vL Infers 

a selected /?-reduct will have been chosen from the largest choice of /? value (largest sub- 

domain). This criterion replicates a level of stochastic subjectivity, namely, a random choice of a 

P value would more probably mean 'this' selected /?-reduct would be chosen.

Initial studies undertaken during the software development, indicated that the criteria outlined 

above, is adequate for selecting a single /?-reduct. At such a point where, only a single y0-reduct is 

identified (hence selected), there is no requirement to go through the remaining criteria. In the 

unlikely case of more than one /J-reduct having being identified after point vi), a single /?-reduct is 

then randomly selected from those remaining.

Here, points i) and iv) are in addition to those suggested by Beynon et al. (2004), and were 

considered through work presented in Griffiths and Beynon (2008). Point i) allows the analyst to 

have more control over the accuracy of the identified /?-reduct(s). Point iv) has been inserted, as it 

was found that point v) was too impacting or influential on the identified /?-reducts, almost
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defaulting to the selection of a /?-reduct(s) based on a single condition attribute (a problem that was 

identified during the development of the software, and illustrated in Griffiths and Beynon, 2007). It 

should be noted that, the order of the criteria is not fixed and a different order may be more 

appropriate (with different inference, as will be demonstrated in Chapter 8 section 8.1).

3.5.2 /?-reduct Aggregation

This subsection proposes a method for identification and construction of aggregated /?-reducts. For 

the m re-sampling repetitions undertaken during the aggregation process (Figure 3.4.1.1), each /?- 

reduct and its details, such as QoC, associated rule set, predictive accuracy and the number of 

occurrences of a specific /?-reduct, are recorded.

The analyst, presented with all the recorded details (as statistical measures and graphs etc.), can 

now make a choice of selecting the most appropriate /?-reduct to aggregate. For example, based on 

500 repetitions, a /?-reduct may be selected on 300 instances, this is good evidence for the stability 

of the /?-reduct (although not universally so, as will be shown in Chapter 8). The analyst would then 

select this /?-reduct, the associated rule sets for each occurrence of that /?-reduct would then be 

aggregated (described next), thus forming the aggregated rule set.

Once the aggregated rule set has been constructed, the analyst will be allowed to select which 

rules within the aggregated rule set they wish to use. Note that, even though condition attributes 

associated with the aggregated /?-reduct may be equivalent, due to the re-sampling process, the rules 

associated with the /?-reduct may differ, because of the presence or absence of objects during each 

repetition, in theory, the most (general) stable rules should occur more frequently. The selected rules 

are then validated on the set aside validation set (see Figure 3.4.1.1). The validation set allows 

comparison to be drawn between different aggregation preferences, that is, aggregation based on 

leave-one-out, &-fold cross-validation or bootstrapping. It also facilitates comparisons to be drawn 

between the final aggregated /?-reduct and a single run VPRS analysis, and if required, the
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validation set can be used to benchmark against alternative classifier methods.

The following discussion, presents a simple example of the proposed /?-reduct aggregation 

method. Considering VPRS within a re-sampling environment, with m = 5 repetitions and the 

training set size n = 10 objects, hence five /?-reducts have been selected. Tables 3.5.2.1 to 3.5.2.3, 

present three hypothetical decision rule tables associated with three of the five /?-reducts, that were 

equivalent in terms of the condition attributes {c \, c2j , that is to say, /?-reduct {c\, c2j has occurred 

on three of the five repetitions.

Rule Ci Ci di Support Correct Strength Certainty

1 If 1 and 0 then 0 4 3 0.400 0.75

2 If - and 1 then 0 4 3 0.400 0.75

3 If 0 and then 1 2 2 0.200 1.00

Table 3.5.2.1: First Decision Table Associated with the /?-reduct {ci, c2j

Rule Ci Ci dx Support Correct Strength Certainty

1 If 1 and 0 then 0 4 3 0.400 0.75

2 If - and 1 then 1 2 2 0.200 1.00

3 If 0 and - then 1 2 2 0.200 1.00

Table 3.5.2.2: Second Decision Table Associated with the /?-reduct {cu c2}

Rule Cl Ci dx Support Correct Strength Certainty

1 If 1 and 0 then 0 4 4 0.400 1.00

2 If 0 and - then 1 2 2 0.200 1.00

Table 3.5.2.3: Third Decision Table Associated with the /?-reduct {c\, c2}

With reference to the Tables 3.5.2.1 to 3.5.2.3, to aggregate each decision rule table, one instance of 

any specific rule based on the condition attribute values {<?i, c2} with a specific decision outcome du 

is recorded in a new aggregated rule decision table, see Table 3.5.2.4.

81



Rule Cl Ci di
Occurrence
Support

Occurrence
Correct

Occurrence
Strength

Occurrence
Certainty

Occurrence

( R o c c )

1 If I and 0 then 0 12 10 12/30 = 0.400 0.83 3

2 If - and 1 then 0 4 3 4/30 = 0.100 0.75 1

3 If - and 1 then 1 2 2 2/30 = 0.067 1.00 1

4 If 0 and - then 1 6 6 6/30 = 0.200 1.00 3

Table 3.5.2.4: Aggregated Rule Table, for the now Aggregated /?-reduct {c\, c2)

In Table 3.5.2.4, the number of occurrences of a specific rule are also recorded under the 

'Occurrence (ROCc)' column. For instance, within the decision rule Tables 3.5.2.1 to 3.5.2.3, the rule 

“If c\ = 1 and c2 = 0 then d\ = 0” appears once in each of the decision Tables (rule 1 in each case). 

Hence, the rule is recorded once in the aggregated rule decision Table 3.5.2.4, and the rule 

occurrence Rocc is recorded as three. The 'Occurrence Support' and 'Occurrence Correct' are taken as 

the sum of the Support and Correct values associated with each occurrence of the specific rule.

In defining the probabilistic measures, 'Occurrence Strength' and 'Occurrence Certainty', one 

must consider what the concepts of strength and certainty represents now, within the aggregated /?- 

reduct environment (as opposed to a standard /?-reduct). For a single run, Strength (see Chapter 2 

section 2.2.3 Equation 2.2.3.3) essentially indicates what proportion of objects within the training 

set that a given rule can classify (and some indication on its future performance on unseen objects). 

Hence following this concept, Occurrence Strength has been defined as the average proportion of 

the objects a specific rule would give a classification to, within each training set repetition, defined 

more formally as:

Occurrence Strength = ®ccurrence Support (3.5.2.1)
” R occ

A similar argument can be posed with regards to Occurrence Certainty. That is, Certainty (see 

Chapter 2 section 2.2.3 Equation 2.2.3.4) indicates the proportion of objects that a rule would 

correctly classify, from those it can give a classification to (also some indication of the possible 

future performance of the rule). So 'Occurrence Certainty' is defined as the average proportion of
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objects that a rule would correctly classify, from those it can give a classification to, within each 

training set repetition, defined more formally as:

. ■ . Occurence Correct _Occurrence Certainty^-------------------------. (3 5 2 2)
Occurence Support

The Occurrence Certainty, cannot be greater than unity. However, the sum of the Occurrence 

Strengths may be greater than unity, unlike Strength associated with VPRS and Strength associated 

with RST (see, Pawlak, 2004), where the combined Strengths of the rules can at most, only add up 

to unity (in the case of an empty boundary region).

Finally, taking rules 2 and 3 from Table 3.5.2.4, as an example of how to manage an instance 

where two or more rules are based on the same condition attribute values but have differing 

decision class values; rule 2 would always be chosen over rule 3 when classifying unseen objects, 

because rule 2 has the greater Occurrence Strength. Hence, rule 3 is, in fact, superfluous within the 

decision rule table, as such, the rule can be ignored and removed from the table. Table 3.5.2.5 

reflects the finalised aggregated rule decision table, with rule 3 removed (rule 4 in Table 3.5.2.4, is 

now re-indexed as rule 3 within Table 3.5.2.5)

Rule Ci C2 d,
Occurrence
Support

Occurrence
Correct

Occurrence
Strength

Occurrence
Certainty

Occurrence

(Rocc)

1 If 1 and 0 then 0 12 10 12/30 = 0.400 0.83 3

2 If - and 1 then 0 4 3 3/30 = 0.100 0.75 1

3 If 0 and - then 1 6 6 6/30 = 0.200 1 3

Table 3.5.2.5: Finalised Aggregated Rule Table

Table 3.5.2.5 presents an example, of how the final aggregated rule table will be displayed within 

the VPRS re-sampling software. The next short section describes the process of how to classify data 

using a rule table (standard or aggregated), and the method of nearest rule to classify objects that do 

not match the condition attribute values of any rule from a given rule set.
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3.6 Classification Issues within VPRS

Within this chapter, the classifier has been referred to in a generic sense. Essentially, the decision 

rule table, the end product of a VPRS analysis, is the classifier associated with the developed VPRS 

software (vein graph and re-sampling). This section discusses the utilisation of the decision rule 

table with regards to object classification of training and validation sets.6

Previously (in Chapter 2), the decision rule tables were only discussed in terms of classifying the 

objects upon which they were trained. Furthermore, it was suggested that, the rules would only 

classify those objects, which had matching condition attribute values. Within this section, the 

objects within the validation set, and the objects that do not match the condition attribute values of 

any given rule from a rule set, are considered.

Those objects that do not match the condition attribute values of any rule, are classified by the 

'nearest' rule method, as presented in Slowinski (1992). There are a number of other distance 

measures which could have been considered, such as Manhattan distance (Han and Kamber, 2006) 

or a method based on interpolation (Huang and Shen, 2006, 2008) may also prove effective, but 

here we have focused on Sfowinski's (1992) method.

Equation 3.6.1 calculates a measure of distance (dist) between a decision rule and an object, 

computed from those condition attributes that determine the rule. For an object x, described by the 

condition attribute values c x (*), c2(x), . . . ,  c ^ x ) ,  the distance of rule y  described by 

c x( y ),..., ci( y ) - * d ( y )  (where i is less than, or equal to, the number of condition attributes 

associated with the /?-reduct, and only the prime implicants of rule y  are considered), is measured 

by:

dist= — 
z / = i

1
\ p

vn - v r
(3.6.1)

6 Classification with regards to VPRS, is discussed more in-depth within this Chapter, rather than within Chapter 2, 
because the validation set was first discussed within this chapter.
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where, p  is a natural number selected by the analyst, and vr „ are the maximal and minimal 

attribute values of ci, respectively, ki is the importance coefficient of condition attribute ct, and i is 

the number of condition attributes in a decision rule. It follows, the value of p  determines the 

importance of the nearest rule. A small value of p  allows a major difference with respect to a single 

condition attribute to be compensated by a number of minor differences, with regard to other 

condition attributes, whereas a high value of p  will over-value the larger differences and ignore 

minor ones. Here, the values are set to, p  -  2, and ki = 1 for all / (equal importance amongst the 

condition attributes), thereby implying least squares fitting to a given rule. See Slowinski (1992) for 

full discussion on this measure.

This distance measure equation is demonstrated next, where Table 3.6.1 displays a set of rules 

used to classify an example set of seven objects in Table 3.6.2. The type of data set, training, 

validation, in-sample or out-sample, is of no consequence for this example. The strength and 

certainty in Table 3.6.1 could represent either, Strength and Certainty for a /?-reduct, or Occurrence 

Strength and Occurrence Certainty for an aggregated /?-reduct, again it is of no consequence for this 

simple classification example.

Rule Ci Cz C3 di Strength Certainty

1 If 1 and - and 1 then 0 0.5 1

2 If - and 1 and 1 then 0 0.2 1

3 If 1 and - and 0 then 1 0.1 1

4 If - and 0 and - then 0 0.2 1

Table 3.6.1: Rules Used to Predict Unseen Data in Table 3.6.2
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Objects Cl c2 03
Actual

W )

Predicted

(4 )

Predicted 
by rule:

Rule 1 (0) 
Distance

Rule 2 (0) 
Distance

Rule 3 (1) 
Distance

Rule 4 (0) 
Distance

0i 1 1 1 0 0 1 0.0 0.0 0.5 1.0

o2 0 1 0 0 0 2* 0.7 0.5 0.5 1.0

0i 0 1 1 0 0 2 0.5 0.0 0.7 1.0

04 1 1 0 1 1 3 0.5 0.5 0.0 1.0

05 0 1 0 1 0 2* 0.7 0.5 0.5 1.0

06 0 0 1 1 0 4 0.5 0.5 0.7 0.0

07 0 1 0 1 0 2* 0.7 0.5 0.5 1.0

* Predicted by nearest rule, with highest rule strength

Table 3.6.2: Objects Predicted by Rules from Table 3.6.1 

Within Table 3.6.2, the 'Actual' column denotes the actual decision value of the object and the 

'Predicted' column denotes the classification given either by, a rule that has matching condition 

attribute values, or the nearest rule in terms of distance (dist). The 'Predicted by rule' column 

displays which rule was used to predict an individual object. The last four columns give the distance 

of each rule to the individual objects (associated rule decision outcome d\ within the parenthesis). 

Note that rules classifying objects that have matching condition attribute values, consequently have 

a distance of zero.

Where two or more rules have the same distance to an object, the object is classified by the rule 

with the highest strength; if the strengths are equal then the certainty is used to distinguish between 

the competing rules. The classification of the objects within Table 3.6.2, can be divided into four 

categories:

1. Those predicted correctly by a rule with matching condition values, objects 01,03 and 04.

2. Those predicted incorrectly by a rule with matching condition values, object o6.

3. Those predicted correctly by the nearest rule, were there were no rules with matching condition 

values, object o2.

4. Those predicted incorrectly by the nearest rule, were there were no rules with matching 

condition values, objects o5 and o7.
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Tables similar to Table 3.6.2, are implemented in both the VPRS vein graph and re-sampling 

software. It provides the analyst with information about the classification results, such as, which 

rules are predicting correctly and which are predicting incorrectly.

3.7 Summary

This chapter has presented a broad overview of the methods utilised within data mining to evaluate 

the possible future performance of a given classifier. With particular attention given to estimating 

the true predictive accuracy through, the apparent predictive accuracy, the train and test 

methodology and re-sampling methods. Three sub-sampling methods were described, namely, 

random sub-sampling, stratified sampling and a novel statistical sampling method. The concepts of 

bias and variance have been discussed as means to distinguish between the different estimation 

methods.

Three re-sampling methods were described, namely, leave-one-out, M old cross-validation and 

bootstrapping. The bias and variance associated with each re-sampling method was discussed, and a 

method for adjusting the eO bootstrap predictive accuracy estimate, to account for it being biased 

pessimistically, was described, namely, the 0.632B bootstrap.

Ensembles, as an approach to improve classifier performance, in terms of predictive accuracy 

and stability, were described, with particular attention given to bagging. A new, novel approach to 

/?-reduct aggregation has been outlined which adapts the bagging method; but also allows 

aggregation of /?-reducts through the two other described re-sampling methods, leave-one-out and k- 

fold cross-validation. A number of aggregated rule metrics were introduced, namely, Occurrence, 

Occurrence Support, Occurrence Correct, Occurrence Strength and Occurrence Certainty.

Finally, a demonstration of classification, using a decision table, applied to a validation set was 

given, and the classification of objects using the nearest rule method to classify objects, where there
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was no rule within a given rule set, that had matching condition attribute values, was illustrated.
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Chapter 4

Data Pre-Processing and Feature 
Selection

This chapter outlines the methods implemented within the developed software, to facilitate the pre­

processing and feature selection stages of the KDD process (as described in Chapter 1). Within this 

dissertation, the purpose of data pre-processing and feature selection, in the context of the VPRS 

analyses, is to improve the predictive performance and interpretability of the rules induced from the 

selected /?-reducts.

It should be noted that pre-processing and feature selection, have been extensively studied within 

the extant literature (Liu et al., 2002b; Han and Kamber, 2006; Jensen and Shen, 2008;). The 

sections presented within this chapter focus on the four main areas as outlined below:

•  Section 4.1. Data Discretisation. This section describes the process of discretising continuous 

valued data. It discusses the issues surrounding different discretisation approaches and describes 

four methods, which are implemented within the developed VPRS software.

•  Section 4.2. Feature Selection. This section considers the issues surrounding feature selection, 

and describes two methods implemented within the developed pre-processing software.

•  Section 4.3 Balancing. This section considers the problem of imbalanced data, and describes 

three basic methods for tackling an imbalanced data set, which are implemented within the
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developed pre-processing software.

•  Section 4.4. Missing Data. This section highlights the problem of missing data, and describes 

two methods of missing value imputation, which are implemented within the developed pre­

processing software.

•  Section 4.5. Summary. This section summarises the main methods described throughout the 

chapter, in particular those implemented in the VPRS pre-processing software.

Within this dissertation, when compared to the work presented on discretisation and feature 

selection, less emphasis has been placed on balancing and missing value imputation. Firstly 

because, feature selection and discretisation were more pressing pre-processing issues, that needed 

more attention to facilitate the data mining (VPRS) analyses, and secondly, because within the 

extant literature, less emphasises has been placed on solving the issues surrounding balancing and 

missing data (Weiss and Indurkhya, 1998).

4.1 Data Discretisation

Within data mining, some classification methods can only be constructed from, a training set based 

on discrete data (categorical, nominal and symbolic data), or require continuous valued attributes to 

be discretised into a finite number of intervals (Boulle, 2004). For example, decision tree induction 

methods, such as: ID3, C4.5 and C5/See5 (Quinlan, 1986, 1993, 2007) and Breiman et al.'s (1984) 

Classification and Regression Trees (CART), intervalise or discretise the data during the process. 

There are also a number of rule induction methods, that require the data to be discretised, such as: 

Cohen’s (1995) RIPPER, Weiss and Indurkhya's (1998) Swap-1, and more relevant to this 

dissertation, rule induction based on RST (VPRS). Note though, with regards to RST, recent 

developments based on Fuzzy sets and Dominance Based Rough Set Theory have been developed
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that can facilitate continuous valued attributes (Jensen, 2004; Greco et al., 2005).

The tree induction methods, and the non-tree induction methods mentioned above, differ 

distinctly in the way they implement discretisation. That is, the tree induction methods such as ID3 

and CART perform discretisation dynamically during the algorithm's process (Kerber, 1992). That 

is, discretisation is integral to the algorithms; whereas, methods such as RST require, as a 

prerequisite, for the data to be discretised before the analysis and construction of the classifier can 

be performed.

Despite the fact that the methods of discretisation described within this chapter may be relevant 

to both the dynamic and non-dynamic methods, because of the focus on VPRS within this 

dissertation, they will be described in the non-dynamic sense as part of the pre-processing phase. 

Hence, within the context of pre-processing presented in this chapter, discretisation is the process of 

dividing a continuous valued attribute into finite intervals, and recoding the data within those 

intervals into categoric integer values (e.g. 0, 1, 2 and so forth), prior to the VPRS analysis.7

4.1.1 Discretisation Basic Concepts

Manually dividing the continuous data into intervals is the simplest method of discretisation. For 

example, when discretising the attribute age, the discrete intervals may be set as, young (0, 30], 

middle aged (30, 60] and old aged (60, oo). The advantage of manually setting the intervals, is that, 

where the analyst is knowledgeable of the attribute in question, they can set more intuitive intervals 

(for further information on the related subject of intuitive partitioning, see Han and Kamber, 2006).

Manually setting the discrete intervals for a large data set may be a slow task. Furthermore, it 

may not be immediately apparent, where the cut-points (values that separate the intervals) should be 

placed within the attribute's data range (although separate analysis of the data may aid the analyst's 

decision). Kerber (1992, pp. 123) notes that:

7 Any data input into the developed VPRS analysis software, o f  a nominal or sym bolic nature, w ill also be represented
by numeric values.



“While the extra effort of manual discretisation is a hardship, of much greater 
importance is that the classification algorithm might not be able to overcome the 
handicap of poorly chosen intervals.”

However, there are numerous automated discretisation methods, which are faster and potentially

better than the manual process, at identifying important cut-points within the data. There are simple

automated methods, such as equal-width and equal-frequency (described next), which do not

considered the distribution of a decision attribute's values, and there are, more advanced methods,

which typically provide better intervalisation, that do consider the distribution of the decision class

values. The more advanced methods are better, in the sense that, the resultant classifiers have an

improved predictive performance. The following subsections describe some of the concepts relating

to these methods.

4.1.1.1 Supervised and Unsupervised Discretisation

One of the simplest, and perhaps most naive methods of discretisation,8 namely equal-width, takes 

the minimum and maximum values from the continuous valued attribute and divides the range in 

between, into k intervals of equal-width (the number of required intervals is supplied by the 

analyst). As an example, taking the attribute salaries ranging from £20,000 to £100,000, and 

discretising it into four intervals of equal-width, the resultant intervals would be [£20,000, 

£40,000], (£40,000, £60,000], (£60,000, £80,000], (£80,000, £100,000]. A similar method, known 

as equal-frequency, seeks to divide the data between the minimum and maximum, into k intervals 

containing approximately the same amount of objects, for example if k = 10, then each interval 

would contain approximately 10% of the data.

The methods of equal-width and equal-frequency can perform poorly, because they do not 

consider the distribution of the decision attribute in relation to the continuous valued attribute being 

discretised. Kerber (1992, pp. 123) when discussing these methods, stated the following reason for 

their poor performance:
8 When referring to discretisation, w e are now referring to automated discretisation methods.
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“The primary reason that these methods fail is that they ignore the class of the training 
examples, making it very unlikely that the interval boundaries will just happen to occur 
in the places that best facilitate accurate classification.”

To reiterate, Kerber is stating that the discretisation method should take into account the distribution

of the decision attribute associated with the continuous value attribute being discretised, what is

generally known as supervised discretisation, as opposed to unsupervised discretisation (Dougherty

etal., 1995).

To illustrate, Figures 4.1.1.1.1 and 4.1.1.1.2 present, a visualisation of the equal-width 

discretisation method applied to a continuous valued attribute X(.) associated with a dichotomous 

decision attribute represented by the classes 'x' and 'o'.

X X I  X X X  O X O X O O  X O  0 0 0 0  0 0 0 X 0

X X X X X X X X X X X X O X O X O X  X O  0 0 0 0 0  o o o o x o x

x o x x x x x x x x x x x x o x o x o x  X O  0 0 0 0 0  o o o o o x o x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 X(.)

Figure 4.1.1.1.1: Distribution of the Decision Attribute Sorted into Ascending Order Based on the
Continuous Value Attribute X{.)

X X X X X X 0 X 0 X 0 0 X 0 0 0 0 0 0 0 0 X 0

X X X X X X X X X X X X 0 X 0 X 0 X X 0 0 0 0 0 0 0 0 0 0 X 0 X

0  X X X X X X X X X X X X 0 X 0 X 0 X X 0 0 0 0 0 0 0  0 0 0 0 X 0 X

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Figure 4.1.1.1.2: Illustrating the Equal-Width Discretisation of the Continuous Value Attribute X(.)

The top diagram in Figure 4.1.1.1.1, shows the distribution of the decision values associated with a 

sorted continuous valued attribute X{.), where the continuous valued attribute's range is from 1 to 

40. The lower diagram illustrates the intervalisation of X(.) into four intervals of equal-width, 

namely, [1, 10], (11, 20], (21, 30], (31, 40] (as per the equal-width methodology). It is clear in 

Figure 4.1.1.1.2, that the intervals are not ideal, as they do not appear to split the distribution at the 

most “natural” positions (see for example either side of cut-point 30 and 31). That is, splitting the 

intervals so that they contain values from only one of the decision classes.

The question here, with regards to discretisation is, can having knowledge of the decision 

attributes distribution, be used to improve the interval discretisation? and indeed supervised
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methods have been developed that utilise the decision attribute distribution, some of which, are 

described in more depth in subsection 4.1.2.

4.1.1.2 Top-down and Bottom-up Discretisation

Most supervised discretisation methods can be said to be either a top-down or bottom-up process. If 

the process involves initially splitting a continuous value attribute into two or more intervals around 

a cut-point, and then recursively splitting those intervals into smaller intervals, the discretisation 

method is described as a top-down process. There are a number of methods for choosing the out­

points, including measures of entropy (randomness) and statistical measures (described in section

4.1.2). There are also a number of methods for terminating the recursive process, again entropic and 

statistical measures, or the analyst may predefine the maximum number of intervals they require. 

Examples of top-down methods include, Zeta (Ho and Scott, 1997, 1998), Adaptive Quantizer 

(Chan et al., 1991) and Minimum Class Entropy (MCE) (Fayyad and Irani, 1992).

Conversely, bottom-up processes, initially split the continuous value attribute's data into as many 

intervals as can be identified,9 then merges the smaller intervals together, until a stopping criteria 

based on the optimisation of some measure has been satisfied. The stopping criteria may be a pre­

defined minimal number of intervals, or based on entropic or statistical measures. In addition, the 

process will stop if the intervals are merged into a single interval. A single all inclusive interval 

would indicate that the attribute is of no information value to the analyst or the analytical process 

(Zighed et al., 1998). Examples of bottom-up merging methods include, the ChiMerge (Kerber, 

1992), Chi2 (Liu and Setiono, 1997), ConMerge (Wang and Liu, 1998) and the FUSINTER method 

(Zighed et al., 1998).

9 The method used for identifying the initial intervals is dependant on the discretisation method employed.
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4.1.1.3 Global and Local Discretisation

The ChiMerge (Kerber, 1992) is an example of what is described as a local discretisation method. It

is a local method, because during the interval merging process, the X2 Chi statistic is used to 

determine the quality of the discretisation taken across only two of the intervals being merged. 

Conversely, global discretion methods, select the intervals to be merged based on optimising a 

measure across the whole distribution (all intervals). Examples of global discretisation include 

FUSINTER (Zighed et al., 1998) and Zeta (Ho and Scott, 1997, 1998). The potential advantage of 

global discretion is its ability to avoid thin partitioning. Global methods typically identify less 

partitions than the ChiMerge or Minimum Class Entropy (described later), which are both local 

methods. Recently, Boulle (2004) suggested a global discretisation adaptation of the ChiMerge 

known as Khiops, which seeks to optimise the X2 Chi statistic across all intervals of an attribute 

being discretised. Top-down and bottom-up discretisation methods, can either be local or global 

distretisation methods, dependant on the particular method in question.

It is important to draw a distinction here, between the global methods suggested above, which 

are global at the attribute level, and methods such as that suggested by Chemielewski and 

Grzymala-Busse (1995, 1996), which are global on the data set level (all attributes). They present a 

wrapper method which utilises elements of RST, that can “globalise” local discretion methods. In a 

sense, their method, is much more of a global method, as they suggest using the Quality of 

Classification (they term it dependency or consistency) to optimise a local discretion method across 

all attributes simultaneously (the other methods described here, discretise attributes independently 

of each other). Integral to their method was the basic principle that the attributes' domains after 

discretisation should be as simple as possible (few intervals), because simpler rules can be induced 

from the discretised data, and that these rules encompass more general trends. It should be noted 

though, that their method inherently assumes that all attributes, not a feature subset of those 

attributes, will be used in any subsequent analysis (feature subsets are described in section 4.2).
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4.1.2 Supervised Discretisation Methods

Equal-width and equal-frequency are examples of unsupervised “binning” discretisation methods.

Whereby, the analyst pre-selects the number of intervals required and the continuous values lying

within those intervals are simply recoded to discrete values.

Not only are equal-width and equal-frequency limited by being unsupervised methods, but by

being binning methods, as they are sometimes referred to (Kotsianti and Kanellopoulos, 2006), they

are sensitive to the number of intervals (bins) the analyst chooses. That is, the number of intervals

may effect the performance of, any subsequently constructed classifier.10 They are also sensitive to

outlier values, which are attribute values, that do not comply with the general behaviour of the

attribute in question (Kantardzic, 2003; Han and Kamber, 2006).

There are however, a number of supervised discretisation methods which seek to optimise the

intervalisation of the continuous value attribute through, the optimisation of an entropic or

statistical measure, calculated on the distribution of the associated decision attribute values. Here,

for brevity, only the more popular methods are highlighted.

Perhaps one of the most influential supervised methods, and now popular amongst the related

literature as a bench mark method, is the ubiquitous ChiMerge (Kerber, 1992). Kerber highlighted

the short comings of the available “binning” methods, and that, the more advanced discretisation

methods at that time, were integral to the specific classifier methods (integral, as in dynamic

discretisation described in the introduction of section 4.1). Hence, Kerber presented the ChiMerge

as a supervised bottom-up (merging) method; proposed for use as a pre-processing step in machine

learning. Kerber (1992, pp. 126) discussed the robustness of the ChiMerge over that of the other

available discretisation methods and stated:

“...ChiMerge will seldom miss important intervals or choose an interval boundary when 
there is obviously a better choice. In contrast, the equal-width-intervals and equal- 
frequency-intervals methods can produce extremely poor discretisation for certain

10 1R (Holte, 1993) and maximal marginal entropy (Dougherty et al., 1995), are both supervised adaptations o f  the 
equal-width and equal-frequency methods respectively. That seek to improve the intervalisation by utilising the 
decision class information.
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attributes...”

Conversely, Boulle (2004) mentions the ChiSplit as a top-down alternative to the ChiMerge, which

splits intervals recursively whilst trying to optimise the Chi statistic.

There are a number of other methods similar to the ChiMerge, that either merge or split intervals

based on the optimisation of a measure based on the distribution of the associated decision attribute

values. Examples include, discretisation methods based on the Gini index (Zhang et al., 2007),

Akaike Information Criterion (AIC) and Baysian Information Criterion (BIC) (Hand et al., 2001).

Interestingly, Jin et al. (2007, pp. 183) claim to prove analytically, that:

“...discretization methods based on informational theoretical complexity and the 
methods based on statistical measures of data dependency are asymptotically 
equivalent.”

They devise a generalised function and showed that discretisation methods involving the Gini 

index, AIC, BIC, and the X2 Chi statistic, are all derivable from this generalised function. 

Furthermore, they propose (pp. 183) a, “...dynamic programming algorithm that guarantees the best 

discretization...”, based on the utilisation of their generalised function.

Here, the supervised discretisation methods selected for implementation seek to optimise a 

measure of entropy associated with the distribution of the decision attribute values. The MCE 

method (Fayyad and Irani, 1992), was selected as a representative of the top-down and local 

methods. It was one of the earliest (if not the earliest) examples of top-down entropic discretisation 

and is based on Shannon's entropy. FUSINTER (Zighed et al., 1998) was selected to represent the 

bottom-up and global (attribute level) discretisation methods, and is based on quadratic entropy. In 

addition, equal-width and equal-frequency are implemented as representatives of the unsupervised 

methods.

4.1.3 Implementing MCE and FUSINTER

The following two subsections describe the MCE and FUSINTER algorithms in detail. The
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descriptions presented here are based on those given in Fayyad and Irani (1992) and Zighed et al. 

(1998). To describe both methods, firstly some general notation needs formalising. Thus, where t/is  

the universe of objects, let X(.) be the continuous value attribute to be discretised, where for any 

object w, X(w) represents a specific value. 7(.) represents the decision class values associated with 

the object set, where 7(w) represents the class value associated with a specific object w.

Therefore, let Dx be the distribution of X(.) (also called the definition field). Where discretising 

the attribute X(.) is to intervalise Dx with a set of interval cut-point (threshold) values dj. Hence, we 

obtain k intervals Ij, j  = (1 ,..., k ; k >  2) such that:

/ i  — Ij ~ \ dj_j, dj'), ..., /  ̂ — [ d k_j, d k\.

Once the interval threshold values have been identified, the continuous attribute X(.) is replaced 

by a categorical attribute X(.), which takes its values in the set (1 ,..., k}.  Thus, V wEU  if 

dj_x < X  (w ) < dj  then X ( w ) = j .

Let riij be the number of training objects which are in the interval Ij and which belong to the decision 

classy,, hence ntj = Card{ w E U : X ( w ) G l j9 Y (w) = y,}.

m

Let n.j be the number of objects which are in the interval Ij, n y ^  n,j-
i = i

k

Let Yij. be the number of examples of the decision class y„ ni = ^  nt].
j =  i

k k

Let n be the number of objects in the sample, n =  ^  n y, or n = ^  ni .
j = \ ' j= i

Supervised discretisation methods, such as MCE and FUSINTER, attempt to optimise the 

discretisation of the attribute X{.) based on the decision attribute values of 7(.). Here, we are 

attempting to discretise the data in such a way that it improves the predictability of the decision 

class 7(.) based on X(.), hence it is desirable to identify discretisation cut-points where the intervals 

contain exclusively objects associated with the same decision class value (see later in Figure

4.1.3.1.2).
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4.1.3.1 Minimum Class Entropy

Minimum Class Entropy (MCE) was proposed by Fayyad and Irani (1992), it is actually an 

extraction from the ID3 decision tree induction method (as stated previously, some discretisation 

methods were originally integral to the classifier method involved). MCE is a top-down approach, 

based on Shannon’s entropy measure (Shannon, 1948), as shown in Equation 4.1.3.1.1:

m Yl Yl
E n t ( S ) = - Z - ^ l o g 2̂ ,  (4.1.3.1.1)

/ = i  n j n.j

where S is a subset of objects in U. Within information theory, Shannon's entropy or information 

entropy is a measure of the uncertainty associated with a random variable. Here, with regards to 

discretisation, uncertainty is considered in terms of the impurity or randomness of the decision 

attribute's distribution over two intervals.

The algorithm below outlines a summary of the MCE process. MCE can be applied to a 

multiclass problem, but here, we continue to consider, only the simpler dichotomous decision class 

example as shown in Figure 4.1.3.1.1. The method initially identifies all possible interval cut-points 

(values X{w)) (steps 1 to 3). The process then recursively splits intervals, identifying each cut-point 

by selecting the cut-point which shows the lowest entropy value over the interval being split (steps 

4 and 5). The process is terminated at such a point that inserting more cut-points cannot achieve a 

lower entropy value over any of the intervals, or the number of intervals has reached the amount 

specified by the analyst, prior to the discretisation (step 5).

MCE Algorithm Pseudo Code

1. The distribution Dx, is formed by sorting all objects into ascending order according to the 

increasing values of X(.), making runs of points identified by their decision class x or o (see 

Figure 4.1.3.1.1).

2. Each run of points of the same decision class forms an interval.

3. If several decision classes are superposed on the same value of X(.) (such as the value 13 

shown in Figure 4.1.3.1.1, where there are three associated decision values, two x's and one 

o), then the associated interval will be reduced to this unique value and unlike other
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intervals, this one will contain a mixing of classes. The set K, of k possible intervals is 

recorded.

> * 1 " 13 it

X X X X X X 0 X 0 X 0 0 X 0 0 0 0 0 0 0 0 X 0

X X X X X X X X X X X X 0 X 0 X 0 X X 0 0 0 0 0 0 0 0 0 0 X 0 X

X 0 X X X X X X X X X X X X 0 X o X 0 X X 0 0 0 0 0 0 0  0 0 0 0 X 0 X w

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
W
X{.)

Figure 4.1.3.1.1: Initial Identification of Interval Cut-points within the Distribution Dx.

4. For an attribute X(.), where S is a subset of objects in U, and dj a cut-point value from K, let 

S.czS be the subset of examples in S with attribute values in X(.), not exceeding the cut- 

point value dj and S2 = S — S The class information entropy of the partition induced by dj, 

denoted E ( X  ( .) , d j9 S ), is defined by Equation 4.1.3.1.2:

(4.1.3.1.2)

An interval cut-point is selected from K, by selecting the cut-point that optimises the 'bi­

partitioning' of an interval. That is, the cut-point that minimises the value E ( X ( . ) ,  d  y, S ) 

but where E { X { .  \  dj,  S) < Ent ( S ).

5. The fifth step is repeated on each of the sub-divisions recursively, until no improvement is 

possible (i.e. E ( X ( . ) ,  d Jf S) > Ent ( 5 ) V dj^K)  or a maximum number of intervals 

specified by the analyst has been reached (for MCE and other entropic feature selection 

stopping criteria, see Liu et al., 2002a). The resulting intervalisation of the distribution 

shown in Figure 4.1.3.1.1 is presented in in Figure 4.1.3.1.2.

X X X  X X X  o x

x x x x x x x x x x x x  

x o x x x x x x x x x x x x

0 X 0 0
0 X 0 X 0

0 X 0 X 0

0 0 0 0 

0 0 0 0 0 
0  0  0  0  0

1 2 3 4 5 6 7 8 9 10 1! 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 X{.)

Figure 4.1.3.1.2: Illustrating the MCE Discretisation of the Continuous Value Attribute X{.)

Within Figure 4.1.3.1.2 five intervals based on the optimisation of an entropic value have been 

identified. Note that, the intervals are not necessarily the same width apart, as would be the case 

with the equal-width method (see Figure 4.1.1.1.2), and that the intervals do not necessarily contain 

the same amount of objects.
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4.1.3.2 FUSINTER

FUSINTER is a bottom-up discretisation method introduced by Zighed et al. (1998). To describe 

the FUSINTER method, firstly some further notation must be introduced. Each discretisation into k 

intervals Ij9 j  = (1 ,..., k; k > 2) (including the initial discretisation), can be associated with a 

matrix T of m rows and k columns. The rows correspond to the classes and the columns the 

intervals, as shown below:

T =
n \ \  n \2

n 2\ U 22

l \k

*2 k

Also note that a single column (interval) can be referred to as Ty —

nu
n 2 j

i 'V ,

and as such T may be

referred to as T = ( r i5..., TJ9..., Tk).

Within the following algorithm, the discretisation seeks to minimise a criterion <p(T)9 where 

<p(T) represents quadratic entropy, as defined in Equation 4.1.3.2.1 (for further explanation, see 

Zighed et al., 1992, 1998):

<p ( T )  = £ « - ^  + ( 1 - „ ) ^ A
J=l n 7̂=1« 7+/wA( nj+mAjJ rij

(4.1.3.2.1)

= X  oiHAh,  A) + ( ! —«)
7 =  1

mA
n .

Where a and A are variables that control the performance of the discretisation, Zighed et al. (1998)

m A
state that the (1 — a )  term penalises for over-splitting, that is, the term penalises for discretising

into too many intervals, containing potentially fewer objects. The criterion cp ( T )  is essentially a
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compromise between the purity measure H j ( h , \ )  and the splitting measure . Informally, a  can
n  j

be considered the degree of emphasis on purity over, over splitting, whereas A is the actual degree 

to which we want to penalise for over splitting.

Zighed et al. (1998) suggests both a cross-validation approach and a more involved analytical 

approach, for finding suitable values of a  and A. In the extreme case, and based on an analytical 

example, they set a =0.95 and A =0.61, but state that, based on an experimental approach (we 

assume they are referring to cross-validation), they found that a = 0.975 and A =1.0 were a good 

compromise between purity and interval size.

Here, also through experimentation, we found that setting ex =0.97 and A=0.9, puts slightly less 

emphasis on impurity and hence emphasises more on over-splitting, but penalises less for it. These 

values appear to influence the FUSINTER algorithm into discretising attributes into less intervals, 

allowing for more general trends to be established within the discretisation (for reasons similar to, 

and stated earlier, given by Chemielewski and Grzymala-Busse, 1996).

The points of the FUSINTER method are described in the pseudo code below. FUSINTER, 

similarly to MCE, firstly identifies all possible cut-points (steps 1 to 3), but in contrast to MCE, 

FUSINTER initially inserts all cut-points and iteratively removes them until the <p(T) value is 

optimised (steps 4 to 6). The essential difference between MCE and FUSINTER (besides 

FUSINTER being bottom-up and MCE being top-down) is that FUSINTER takes the value cp(T) 

across all intervals (hence global at the attribute level), whereas MCE calculates Shannon's entropy 

across two intervals (hence a local method).

FUSINTER Algorithm Pseudo Code

1. The distribution Dx, is formed by sorting all objects into ascending order according to the 

increasing values of X{.), making runs of points identified by their decision class x or o (see 

Figure 4.1.3.1.1).

2. Each run of points of the same decision class forms an interval.

3. If several decision classes are superposed on a same value of X(.), then the associated
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interval will be reduced to this unique value and unlike other intervals, this one will contain 

a mixing of classes. The set K, of k possible intervals are recorded.

4. Let us suppose that the initial discretisation provides k intervals, and the matrix T is deduced 

of m rows and k columns that allows for the calculation of the criterion <p(T), 

T — [Tx,..., T(j_x), Tj ,. .., Tk).

5. Iteratively, search for the two adjacent intervals whose merging would improve the value of 

the criterion, that is j  such as:

c p (T ) - ( p ( . . . , { T j + Tu+l)}, . . . )  = Max*:! (v (T) -cp( . . . ,T i+ T v+l), . . . ))

6. If:

cp(T)-cp(Ti, . . . ,T j + Tu+l), . . . ,Tk) > 0 

then, the two intervals I j and / (7+i) are merged.

7. The process is repeated from step 2, with k — 1 intervals, until no improvement is possible or 

k reaches the value 1. If the process stops with k = 1, it indicates that the discretisation of 

X(.) is of no interest for the determination of 7(.).

The results of the FUSINTER algorithm described here, with regards to Figure 4.1.3.1.1, were 

identical to those results shown in Figure 4.1.3.1.2, originally found in Zighed et al. (1998).

4.2 Feature Selection

For the purpose of machine learning and classifier construction, it is often necessary to reduce the 

number of attributes associated with a given data set. Data sets may contain many more attributes 

than are necessary for the purpose of classification, where attributes may be irrelevant or redundant. 

Irrelevant attributes have no bearing on the classification, for example nationality is irrelevant to 

classifying a persons gender. An attribute that conveys similar, or the same information as another 

attribute, may be considered redundant (referred to as collinear in statistics). That is, a redundant 

attribute brings no additional information for the purpose of classification (Kantardzic, 2003; Liu 

andMotoda, 1998, 2008).
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It is possible for an expert to select the set of most relevant attributes, but this can be time

consuming, and the analyst must have a thorough knowledge on the subject domain. Additionally,

where a good selection of attributes can lead to increased classifier accuracy, selection of a few

irrelevant or redundant attributes can be detrimental. Han and Kamber (2006, pp. 75) states:

“Leaving out relevant attributes or keeping in irrelevant attributes may be detrimental, 
causing confusion for the mining algorithm employed. This can result in discovered 
patterns of poor quality. In addition, the added volume of irrelevant or redundant 
attributes can slow down the mining process.”

Hence, automated approaches, known as feature selection or attribute selection methods, seek to

find the optimal set of attributes for use in classification. Given n attributes, there are 2" possible

subsets, hence searching for the best set of attributes can prove computationally expensive and time

consuming. There are however, a number of sub-optimal feature selection methods that perform

faster. Subsection 4.2.1 describes some of the issues relating to automated feature selection

methods.

4.2.1 Feature Selection Basic Concepts

Feature selection methods, in general, can be ordered into a number of categories. Here, we 

describe the main categories pertinent to the methods implemented in this dissertation. For more 

thorough overviews, see Jensen (2004), Liu (2008) and Liu and Motoda (1998, 2008).

4.2.1.1 Filter Based and Wrapper Based Feature Selection

If a subset of attributes are selected prior to, and independent of any particular classifier method, 

then the feature selection algorithm is described as a filter method. Examples include ReliefF 

(Robnik-Sikonja and Kononenko, 2003), Contextual Merit (Hong, 1997; Puuronen et al., 2001) and 

Focus (Almuallim and Dietterich, 1991).

Feature selection that integrates the classifier construction method in question, is described as a
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“wrapper” approach (Hall, 1999, 2000). For example, the Las Vegas algorithm for Wrapper feature 

selection (LVW) was proposed by (Liu and Setiono, 1998b), and is a wrapper version of their Las 

Vegas algorithm for Filter feature selection (LVF) (Liu and Setiono, 1998a). Wrapper methods 

typically incorporate some measure of classifier performance (such as predictive accuracy) to 

evaluate the set of attributes. Note, the similarity in the distinction drawn between wrapper and 

filter methods and, dynamic and non-dynamic discretisation methods, described previously (section 

4.1).

Although the wrapper approach may produce better results in terms of selection, that is, the best 

subset of attributes that provides for the best results in terms of classification accuracies, they can 

be resource intensive (computing memory and processing time), and may not be robust enough to 

deal with larger data sets (Liu and Motoda, 2000). An exhaustive search of reducts within RST is a 

good example of a feature selection method that breaks down when a larger number of attributes are 

involved (more will be discussed about this issue later in subsection 4.2.2). Filter based methods are 

less optimal, but are generally suitable for most classifier methods requiring an element of feature 

selection (Lui and Motoda, 2000).

4.2.1.2 Forward Selection, Backward Elimination and F/B Combination

If the feature selection method in question initially starts with an empty set as the subset of selected 

attributes, and iteratively adds attributes from the remaining set of attributes until a stopping criteria 

is met, then the method is described as forward selection. Zhou et al. (2006) describe a modem 

forward selection method called Streamwise feature selection, which has an advantage over other 

methods, in that, it does not assume that all attributes are known in advance. In their method, 

features can be generated dynamically to aid the feature selection search for the most promising 

attributes.

Conversely, if the method initiates with all possible attributes as the determined subset and
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iteratively removes attributes until some criteria is met, then it is described as a backward 

elimination method. Song et al. (2007) describe a modem backward elimination method based on 

the Hilbert-Schmidt Independence Criterion (HSIC) as a measure of dependence between the 

attributes. They also state that, a more efficient forward selection version of their algorithm is 

derivable, but that it yields slightly poorer results.

Additionally, some feature selection methodologies, use a combination of forward selection and 

backward elimination. Possibly including random selection of attributes, or combinations of the 

methods described here (see Liu and Motoda, 2000, pp. 78-80, for further reading).

4.2.1.3 Single Feature and Stepwise Feature Selection

Some feature selection algorithms select features on the principal that they are independent of each 

other (mainly earlier methods), a simple check of condition and decision attribute correlation being 

one example (for further reference on earlier feature selection methods see, Weiss and Kulikowski, 

1991).

Clearly, attributes are not independent in all examples, hence, stepwise feature selection methods 

identify dependencies by sequentially determining the 'next' attribute to select, based on a criteria 

involving the previously selected attributes. In most circumstances, stepwise feature selection is 

considered better than independently selected features, but because backtracking is not used, 

stepwise feature selection is still a suboptimal solution (Weiss and Kulikowski, 1991),11 a 

combination of forward and backward stepwise selection, may be one solution in facilitating 

backtracking. Note that by their nature, forward and backward selection/elimination are stepwise 

feature selection methods. Indeed, Han and Kamber (2006) only refer to the distinctions as 

'stepwise forward' selection and 'stepwise backward' elimination.

11 The only true guarantee of an optimal solution being an exhaustive search through the combinatoric domain of all 
attributes.
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4.2.2 Reducts and /?-reducts as a Method of Feature Selection

Reducts or /?-reducts constitute the feature selection elements of RST and VPRS respectively, but as 

discussed in Chapter 2, finding all possible reducts//?-reducts would require searching the entire 

search space of the full set of attributes, that is, searching the full 2" possible combinations. 

Theoretically it is possible, but in reality the analyst is limited by computing power and time 

constraints. Note, that the addition of an extra attribute to the full set of attributes affectively 

doubles the search space and hence the search time. That is, the search time grows exponentially as 

additional attributes are considered. Time efficient heuristics for the discovery of reducts//?-reducts 

are available, but as stated within Chapter 2 they are not appropriate within the VPRS analysis 

framework presented here (see Chapter 2 section 2.1.1 for further explanation).

Experimentation on the developed VPRS analysis software,12 indicated that a maximum of 

twelve attributes appeared to be the reasonable limit on the developed software's capabilities. 

Although, this is dependant on a number of issues, including: levels of discretisation, size of the 

training set, computing power and the analyst's own time constraints. Thus, it may be plausible to 

analyse more attributes.

Hence here, we suggest a compromise, that employs feature selection methods implemented 

within the pre-processing software phase of the developed software, that pre-determines important 

attributes for selection prior to the VPRS analysis. In the role as pre-selection methods, the feature 

selection methods implemented and described next, may go some way to identifying irrelevant or 

redundant attributes, hence reducing the number of attributes that need consideration by the analyst 

and passing into the subsequent VPRS analysis (note the analyst has the final decision, on what 

attributes to pass into any subsequent VPRS analyses).

12 Tested on a 1.6GHz Intel Centrino laptop with 512MB of RAM
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4.2.3 Feature Selection Methods Selected for Implementation

Two feature selection methods have been implemented within the developed VPRS pre-processing 

software. Namely, ReliefF (Kononenko, 1994) and a novel feature selection method suggested by 

Beynon (2004) which utilises the concepts of RST and VPRS (for brevity it will be refereed to as 

RST_FS).

ReliefF, a filter based method proposed by Kononenko (1994), has been selected here, because 

of its efficiency (in terms of processing speed) and its ability to recognise dependencies between 

condition attributes. ReleifF is an unusual feature selection method (Liu and Motoda, 2000), as it 

does not seek to find a subset of attributes, but rather ranks all attributes based on their ability to 

distinguish between decision classes. ReleifF's unique methodology (described next) excludes its 

categorisation into any of the conventional feature selection categories of forward selection, 

backwards elimination, or independent and stepwise feature selection. ReliefF is based on the k- 

nearest neighbour classification approach and works well on similar classification algorithms 

(Kohavi and John, 1997). Although it is an efficient algorithm and good at distinguishing relevant 

features, unfortunately it is less adept at removing (giving a lower rank to) redundant (correlated) 

features (Kohavi and John, 1997; Liu and Yu, 2002)

RST_FS was selected as an alternative method to ReliefF, as it is a more conventional, filter 

based, sequential forward approach, that considers the dependency between sets of selected 

condition attributes and the decision attribute. Unlike ReliefF, it only selects a subset of attributes 

and does not attempt to rank all attributes. In some respects this is an advantage. That is, it indicates 

to the analyst, the number of attributes required within the determined subset (the subset having 

comparable classification performance to the full set of attributes, based on QoC, described next). 

Additionally, it was felt that RST_FS may be more pertinent as a feature selection method in respect 

to the VPRS model, as its underlying methodology is based on principles similar in concept to /?- 

reduct selection.
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4.2.3.1 ReliefF

Kira and Rendell (1992a, 1992b) on the realisation that the majority of the heuristic feature 

selection approaches of the time, assumed independence of condition attributes, proposed Relief as 

a new filter approach that recognised possible dependencies between attributes. The central idea of 

the Relief algorithm was based around assessing the suitability of an attribute by how well it 

distinguished between objects within different decision classes. Relief is generally accepted as a 

successful feature selection algorithm (Deitterich, 1997).

Relief was later expanded by Kononenko (1994), from a feature selection method that could only 

cope with dichotomous decision classes, to a methodology that could handle multiple decision class 

problems, and hence, renamed as ReliefF. A further adaptation, RReliefF, was also proposed by 

(Robnik-Sikonja and Kononenko, 1997) to accommodate the field of statistical regression, where 

the condition and decision attributes are represented by continuous (non-discrete) data. More 

recently, Liu et al. (2002b) proposed an alternative approach to ReleifF for the handling of multi 

decision class problems using selective sampling in what they called Reliefs. Here, we will be 

focusing on the original ReliefF.

Essentially, ReliefF works on the same principle as Relief. With reference to the algorithm 

shown below (originally from Robnik-Sikonja and Kononenko, 2003). The analyst defines the 

number of iterations m (line 2). For each iteration / in m, an object or where r — (1 ,..., n), is 

randomly selected from the training set of n possible objects { o x,..., on} (line 2.1). ReliefF 

searches for the object's k nearest neighbours from the same decision class djED  where 

D = { dj} ,  called nearest hits H; and k nearest neighbours from each of the other decision 

classes, called nearest misses M  (lines 2.2 to 2.3.1.1). The search criterion is based on the 

Manhattan distance between the objects, derived from their associated set of condition attribute 

values {v a l u e v a l u e ^ a ^ } ,  equated by Equations 4.2.3.1.2 and 4.2.3.1.3. 

W = {wa j,..., wat} is the quality estimation (weight) associated with each condition attribute,
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updated for every iteration I in m, using Equation 4.2.3.1.1 (line 2.3.2.1). The quality estimation for 

each attribute indicates its ability to distinguish between objects from the same decision class 

(nearest hits) and objects from the other decision classes (nearest misses).

When searching for a suitable attribute, if the distance is large between the random object or and 

any of the k objects from the same decision class (nearest hits), this is an undesirable characteristic. 

Hence, the term a in Equation 4.2.3.1.1 reduces the weight wo, associated with any given condition 

attribute ah penalising proportionally for larger distances. Where the distance is large between the 

random object or and any of the k objects from the other decision classes (nearest misses), this is a 

desirable characteristic. Hence, the term /? in Equation 4.2.3.1.1 increases the weight wat associated 

with any given condition attribute ah rewarding proportionally for larger distances (lines 2.3.2 to 

2.3.3).

This process is repeated m times, selecting random objects or and adjusting the quality estimation 

values in W.

ReliefF Algorithm Pseudo Code

1. Set all weights W := 0.0;
2. For / := 1 to m do

2.1. Randomly select an instance or;
2.2. Find k nearest hits H;
2.3. For j  :=  lto|Z)| do

2.3.1. If d d e c i o n c l a s s (or) do
2.3.1.1. From class dj find k nearest misses M(dj);

2.3.2. For / := lto |^ | do
2.3.2.1. := a —a+fi ,  where:

* {Mf{a, ,or, H ) \
mk

P ( d  j)
1 - P ( c la s s ( o r))  L =1 mk

« = 1
j  = 11

k

P = I
dj # class( or)

2.3.3. End For;
2.4. End For;

3. End For;
4. Output W;

Where, if the current attribute values associated with two objects are discrete:

(4.2.3.1.1)
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y \ value(ai tOi) = value (ait o,)d iff (a ,,0 |0 2) =  .. . , (4.2.3.1.2)
[ 1: otherwise J

and if the current attribute values associated with two objects are continuous:

a c c ,  \value(c , , o l)-value(al,o2)\
‘ Max Value (a, ) -  Mm Value (a,) ' (4.2.3.1.3)

With reference to the setting of the parameters, m and k. In Robnik-Sikonja and Kononenko 

(2003), based on empirical evidence they found that twenty to fifty iterations (m) were necessary. 

They also demonstrate an example that requires 300 iterations. From our experimentations we 

found these recommended values too low and had to set a much higher value of m. This issue is 

better discussed within the context of the pre-processing results, hence it is described in more detail 

in Chapter 6 section 6.3.1.

With regards to setting the k value, Robnik-Sikonja and Kononenko (2003) reported that, setting 

a value of k too high, can be detrimental to the identification of dependencies between condition 

attributes. Conversely, they also stated that, setting k too low may be detrimental, because the 

method would not be robust enough to handle noisy or complex data. Hence, they propose a default 

value of k = 10. This value appeared satisfactory for our analyses and is supported by other studies 

(Hall, 2000).

Here, the implemented ReliefF algorithm within the developed software will be applied to both 

the continuous pre-discretised training data, and the post-discretised training data, with both sets of 

results being presented to the analyst. As such, to distinguish between both sets of the algorithm's 

results, they were designated RefliefFC and ReliefFD, relating to the continuous and discrete 

versions of the training data, respectively. Furthermore, the pre-processing software will present 

three graphs. Firstly a graph that shows, the weight values associated with each condition attribute 

over a range of values of m up to, m = n. A second graph that shows the difference in weight values 

between each consecutively calculated weight value, associated with each condition attribute over a 

range of values of m up to m = n. Then a third graph that displays the variance in rank positions for
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each of the condition attributes based on their associated weights over a range of values of m up to 

m = n (see later Chapter 6 subsection 6.3.1).

4.2.3.2 R S T F S , a Feature Selection Algorithm Based on Rough Set
Theory

The feature selection algorithm referred to here as R ST F S is an implementation of the original 

work proposed by Beynon (2004), who described an iterative procedure for /?-reduct selection 

within the VPRS model. The method is similar to the QuickReduct (Chouchoulas and Shen, 2001) 

and the ReverseReduct (Chouchoulas et al., 2002), and is a suboptimal approach to finding /?- 

reducts. Here, the procedure is re-considered as a feature selection method.

As described previously, the method was selected for implementation because of its stepwise 

approach, which considers dependencies between the condition attributes and the decision attribute. 

It has also been selected for its association with the /?-reduct identification method integral to the 

developed VPRS software (vein graph or re-sampling).

To describe the RST_FS method, the notation and concepts relating to VPRS described in Chapter 2 

are required here. Hence, describing the RST_FS method with reference to the algorithm outlined 

below. Individual QoCs can be calculated for each /7-interval (intervals described on line 2 of the 

pseudo code) associated with the full set of condition attributes C and the decision attribute set D;

where y ^ 1+/5"3)(C ,D ) i =  1 ,...,|0C| defines the QoC associated with each individual /^-interval. 

RST_FS seeks to find a subset of condition attributes P that has, as close to as is possible, the same 

QoC over each subdomain of /?, as the full set of attributes C.

An attribute set A, is initially set equal to the full set of attributes C (line 3). Attribute aj is 

selected individually from A, and its suitability as a possible augmentation to the determined set of 

attributes P (initially empty) is tested, by setting a test set T, equal to P for each iteration and 

augmenting Twith the current selected attribute aj. A distance measure shown at Equation 4.2.3.2.1
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is then calculated on the set T (lines 4.1 to 4.2). The attribute aj that offers the best result in terms of 

minimising the distance measure between the QoCs associated with the full set of attributes C and 

the test set T is recorded, removed from A and augmented to P. The process is repeated until either 

the measure equals zero, in which case the subset P of attributes is an exactitude of C, in terms of p  

domains and associated QoC; or the set of attributes A is exhausted and no attributes remain to be 

augmented to P (lines 4, 4.5. and 5).

RST FS Algorithm Pseudo Code

1. Let P equal the initially empty set of selected attributes;

2. Identify the /7-intervals associated with C, defined by:

' - ( P i ,  1 > P i ,  2 ]? (02, 1? P i ,  2L---5 ( P i ,  1? P i ,  ( P \ f \ ,  P P\pc\, 2̂ 5

3. Let the set A : = C IIA is the set of potentially selected attributes {ax,..., a j};

4. W hiled not empty do

4.1. For j  :=  \ to\A\ do

4.1.1. Let the test set T := P;

4.1.2. T := T U{ a j } ;

4.1.3. Identify the /7-intervals associated with T, defined by:

P  P i , 2 ~\f ( P 2 , 1 > 0 2 , 2]>---» ( P i ,  1? Pi,  2 ] ^ "  j ( P \ p T\, P P\pT 1 , 2 ] ’

4.1.4. Merge the ̂ -intervals associated with C and T to obtain the combined intervals 

defined by:
a TUC ,  a m C .  q TUC.-, ,  nT U C  q TUC ,  R TUC n ^U C -, (  R TUC R TUC
P  - ( P l , l  5 P  1,2 Js V P2,  1 j P i ,  2 V.P/,1 5 P i , 2 Js • * • S V P | / uC|, p  P |0 ruC| ,2-l”

4.1.5. Calculate the associated distance measure over the combined intervals, defined 

by A y^ uC( T , D)  and given by Equation 4.2.3.2.1:

A y fTiC(.T, D)  = 2^< , p™2c - P l f ) x \ y 2 ( T , D ) - y  ( C,  Z))|; (4.2.3.2.1)
/ = 1

4.1.6. Ifj  = 1, set p v : = A y pruC( T , D ) and the recorded attribute index value r = j ,  

Else if  ̂ y J uC(T , D)  is less than the previously recorded valuepv, let

p v : = A y pTuc( T , D)  and let r = j ;

4.2. End For;

4.3. Let P :=  P U{flr };

4.4. Let 4̂ :=  A - { a r} ;
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4.5. If pv  = 0.0 break while loop. //no further augmentation necessary

5. End While;

6. Output P ;

To demonstrate the RST_FS algorithm, an example is described with the aid of the graphical 

visualization shown below in Figure 4.2.3.2.I. This example was first presented in Beynon (2004). 

It is based on the wine data set (http://archive.ics.uci.edu/ml/datasets/Wine), which categorizes 

bottles of wine to three wine cultivators. The data set contains 178 objects described by 13 

condition attributes { c ,, . . . ,c 13} and classified by a three class decision attribute values (three 

cultivators). The condition attributes, were appropriately discretised using a dichotomous 

discretisation (discretisation method not given in Beynon, 2004). Table 4.2.3.2.1 summarised the 

results of the augmentation procedure, based on the wine data set.

n*
Iteration

Attribute
Augmented

p A y ^ - l P , D)

l Cl {C .} 0 . 6 1 4 2

2 C\2 { C l ,  C n } 0 . 2 9 6 6

3 C\\ { C \ ,  C n ,  C\2} 0 . 2 1 0 7

4 Cl ( c i ,  Ci, C n ,  C n } 0 . 1 6 0 5

5 C\ { Ci , Ci,  Ca, C n ,  C n } 0 .1 1 6 4

6 Cio { c i ,  Ci, Ca, Cio, C n ,  C n } 0 . 0 8 6 1

7 Cl {ci, c2, Ci, Ca, Cw , C n ,  C n } 0 . 0 6 7 4

8 c6 {ci, c2, Ci, Ca, Cs, c io, c ii, C n } 0 . 0 4 4 9

9 Cl3 { c i j  Ci, Ci,  Ca, Cs , Cio, C n ,  C n ,  C13} 0 . 0 3 3 7

1 0 Cg {C i ,  Ci,  Ci, Ca, Cs , Cg, C 10, C n ,  C n ,  C 13} 0 . 0 2 2 5

11 Cj {ci, c2, Ci, Ca, Cs, Cs , Cg, Cio, C u ,  C n ,  C n } 0.0000

Table 4.2.3.2.1: Summary of the RST_FS Augmentation Process, on Successive Sets of P 

Within Table 4.2.3.2.1, it shows for the first iteration, that the attribute c\, where 

z \y{uc( { c J ,  D)  = 0.6142, is the closest single attribute to the full set of attributes C (no 

information was given on the nearness of the other individual attributes). The remaining attributes 

were successively augmented to the set of previously selected attributes, based on which attribute 

resulted in the greatest reduction in distance through augmentation. With their concomitant distance
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measures A y JuC( P ,  D)  shown in the fourth column of Table 4.2.3.2.I. Note that, for the eleventh 

iteration (which selected attribute c5), the distance measure reaches zero, hence the process is 

terminated as no further selection of attributes is necessary. That is, a subset of eleven condition 

attributes have been identified, that are an exactitude, to the full set of the thirteen condition 

attributes C, in terms of ^-interval domains and QoC. Figure 4.2.3.2.1 presents a visual 

representation of the augmentation process (taken from Beynon, 2004).

cio C4 c. C,
Augmented condition attributes

Figure 4.2.3.2.1: Graphical Representation of the Augmentation Process (Beynon, 2004)

The three dimensional graph in Figure 4.2.3.2.1, illustrates how the augmentation process 

converges on the ^-intervals, and QoCs, associated with the full set of condition attributes C. A line 

for the full set of condition attributes C cannot be visualised on this particular graph, as it would 

occupy the same space as the subset P of the eleven identified attributes (to the far left of the 

graph). With regards to the developed software, a two dimensional version of the graph shown 

above was developed, that uses colour coding to represent the condition attributes augmented at 

each stage of the process (shown later in Chapter 6 section 6.3.2).

Finally, as a by-product of RST_FS, a more rudimentary feature selection method based on the

individual distance measures A y ^ c { P , D )  for each condition attribute was developed. It was 

recognised that a ranking could be assigned to each attribute based on their individual distance 

measure. The first iteration of RST_FS calculates these individual distance measures, hence they
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were recorded along with the associated attribute, sorted, and a ranking assigned. The closest 

attribute (in terms of distance) is given the highest ranking. This simple feature selection method 

was named RST phase one or RST_PH1 for brevity, as it is based on the first phase of the RST FS 

algorithm (finding the single nearest condition attributes).

The initial motivation for RST_PH1 was based on the realisation that RST FS does not 

necessarily offer a complete ranking of all the condition attributes. However, it was promptly 

realised that the rankings given by RST_PH1 should be considered as a separate assessment to 

RST_FS, as RST_PH1 does not recognise dependencies between attributes, whereas RST FS does, 

hence, the rankings given by RST_PH1 have no bearing on the rankings given by RST_FS. 

RST_PH1 supplies the analyst with a separate, alternative feature selection analysis, and should be 

regarded as such. Interestingly, based on correlation assessment, RST_PH1 produces comparable 

results to ReliefF (ReliefFC and ReleifFD), this will be shown later in Chapter 6 section 6.3.3. 

Additionally, because RST_PH1 does not recognise dependencies between attributes, it will not 

recognise redundant attributes, but it does recognise irrelevant attributes and assigns them lower 

rankings (comparable to ReliefF).

4.3 Imbalanced Data

Decision classes within data sets often have an uneven distribution (Maloof, 2003). That is to say, 

there may be more or less objects of a particular decision class when compared to another. An 

imbalanced data set occurs where there is a significant disparity between the number of objects 

belonging to the different decision classes (Guo and Viktor, 2004; Estabrooks et al., 2004; 

Grzymala-Busse et al., 2005). In extreme circumstances, there may be a small number of decision 

classes that dominate the data set (majority classes), leaving other decision classes critically under 

represented (minority classes) for the purpose of classification (An et al., 2001).
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Imbalanced data sets can be detrimental to classifier performance. Training and testing classifiers

on relatively balanced data sets does not reveal their potential vulnerabilities to the affects of

imbalanced data (An et al., 2001). Japkowicz (2000) suggests that the underlying problem with

many of the classifiers proposed in the extant literature, is that they distinguish a classifier's

performance based solely on a measure of predictive accuracy taken across all decision classes,

Japkowicz states (pp. 18):

“Such a situation poses challenges for typical classifiers such as decision tree induction 
systems or multilayer perceptrons that are designed to optimize overall accuracy 
without taking into account the relative distribution of each class. As a result, these 
classifiers tend to ignore small classes while concentrating on classifying the large ones 
accurately. Unfortunately, this problem is quite pervasive as many domains are cursed 
with class imbalance.”

In addition, Provost (2000) stated, that not only is there an assumption within many classifier 

designs that optimising overall predictive accuracy is the goal, but that the constructed classifier 

will also operate on data drawn from the same distribution as the training set.

There are two approaches to handling imbalanced data (An et al., 2001). Much in the same way 

as discretisation and feature selection methods can be either integral (dynamic, wrapper) to a 

classifier or an external (non-dynamic, filter) pre-processing step, balancing methods can also be 

divided by that distinction. Here, as before, we will be concentrating on external pre-processing 

approaches to data balancing.

The most common strategy, is to rebalance the data set artificially by taking samples from the 

objects belonging to each decision class. The three methodologies most frequently cited 

(Japkowicz, 2000), and hence implemented here, within the pre-processing software, are described 

below:

Under-sampling

Under-sampling, samples from the decision classes, where the sample size is equal to the number of 

objects within the minority class (Kubat and Matwin, 1997). The sample process is based on
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random sampling without replacement, although more sophisticated approaches do exist (Liu, 

2004).

Under-sampling has the advantage that, by using less data, classifier construction time and 

computer resources are greatly reduced. However, by removing data, it is possible that valuable 

information may be lost that could be useful to the constructed classifier (ibid). Here, not to confuse 

with the issues of sub-sampling, under-sampling is referred to as down-balancing.

Over-sampling

Over-sampling increases the number of objects within the minority classes, up to the number of 

objects within the majority class, by randomly sampling with replacement each of the minority 

classes (i.e. the classes that are not the majority class) (Ling and Li, 1998).

Over-sampling has the advantage that it does not lose any data. Although, the increase in data 

can cause an increase in processing time and computer memory usage, Liu (2004) suggests a 

number of alternative over-sampling methods that may address these issues. Here, over-sampling is 

referred to as up-balancing.

Combined Over and Under-sampling

Chawla et al. (2002) implemented a method that over-sampled the minority class and under­

sampled the majority class. Eastbrooks et al. (2004), also indicated that based on their results, it 

may be useful to combine the ideas of over-sampling and under-sampling by selecting a sample rate 

in-between the minority and majority class sizes, they state (pp. 27):

“...the combination of the oversampling and undersampling strategies may be useful 
given the fact that the two approaches are both useful in the presence of imbalanced 
data sets and appear to learn concepts in different ways...”

Here, a simple combined approach is implemented that uses the average decision class size, and

randomly over-samples the minority classes up, whilst under-sampling the majority class down.

Here, combined sampling is referred to as average-balancing.
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4.4 Missing Values

Real world data sets are often incomplete or 'contain' missing data. That is, attribute values may not 

have been recorded for every attribute associated with a subset of the available objects. These 

missing data values can occur for a number of reasons (Kantardzic, 2003). Issues surrounding 

missing data have been documented in: Friedman (1977), Breiman et al. (1984), Quinlan (1989), 

and Han and Kamber (2006).

Some machine learning processes can cope with missing data, whereas others require that data 

sets to be complete (Kantardzic, 2003). The simplest solution to the problem of incomplete data is 

to remove all objects containing missing data, but with some incomplete data sets, this approach 

may be too drastic, leaving the analyst with little or no data to train their classifier. A second 

solution would be to input values for the missing values during the pre-processing stage, and there 

are established approaches for doing this, namely: impute a global constant, impute the attribute 

mean, and impute the attribute mean value for the associated object's given decision class.

The three methodologies mentioned above, are widely used. With regards to the last two, 

imputing a calculated mean value has the potential to bias an attribute towards a certain value 

(Kantardzic, 2003; Han and Kamber, 2006). Widely accepted, robust approaches, to dealing with 

missing data have yet to be recognised, Weiss and Indurkhya (1998, pp. 61) suggest that the current 

approaches to dealing with missing data are, “...weak...”, and that the problem of imputing a 

surrogate value is a whole prediction sub problem of its own, but logic based methods may be more 

robust to missing data (note though, they were quoting with regards to predictive, not classification 

methods13).

Although these methods for handling missing data are not ideal, it is clear that dealing with 

missing data is a matter of facilitating a balance between leaving out potentially useful data, and 

biasing a particular attribute towards a certain value. With regards to the developed software, here, a

13 The difference between predictive and classification problems was stated in Chapter 1 section 1.1
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compromise is implemented. Such that, only objects from the data set that are associated with less 

than 10% missing data will be used14. Where, missing values will be imputed using a method 

similar to imputing the decision class mean, except here, we will be calculating the average value 

based on the A>nearest neighbours in the decision class (^-nearest objects, based on Manhattan 

distance). As a default A: was set equal to 10 (for similar methods see Jonsson and Wohlin, 2006). By 

using this combination of approaches it is hoped to lessen the impact of attribute value bias.

4.5 Data Transition Through the Data Pre-processing and 

Feature Selection Stages

Considering the scope of the pre-processing and feature selection methods that may be applied to 

the selected data set, before it is passed onto the data mining stage of the KDD process, it is 

pertinent to consider the correct order to which these methods are applied. Thus, to finalise this 

chapter, a flow chart is presented in Figure 4.5.1, which illustrates the order of events, charting the 

transition of the original data set from its raw unprocessed state, through its separation into training 

and validation sets, then the application of the pre-processing and feature selection methods before 

being passed into the data mining stage.

As can be seen from Figure 4.5.1, initially, the process of missing value imputation is performed 

on the original data set (see section 4.4), after which the data set is separated into a training set and 

a validation set (if a validation set is required by the analyst).

14 The values o f  10% and 5% are commonly used within statistics. A value o f  5% was given consideration, but 
represented an appreciable loss o f  data, for further reference see later in section 5.5.
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Considering first the transition of the training set, as Figure 4.5.1 shows, the training set is 

balanced (if the analyst instructed the system to balance the data. See section 4.3 for data 

balancing), a copy of the balanced training data is then discretised based on the discretisation 

method selected by the analyst. Both the balanced training data set and the discretised balanced 

training data set are then passed onto the feature selection stage, where, as described in section

4.2.3, ReliefFC utilises the continuous (non discretised) version of the balanced training set, and 

ReliefFD, RST_PH1 and RST_FS utilise the discretised balanced version of the training set. The 

results of the feature selection methods can then be used, by the analyst, to select the final attributes 

and associated data from the balanced discretised training set, to be passed onto the subsequent data 

mining analysis.

Considering now the validation set, and still referring to Figure 4.5.1. The validation set is 

discretised based on the discretisation intervals calculated and recorded with regards to the training 

set, and the attributes selected, are also based on those selected by the analyst with regards to the 

feature selection stage of the training set. The validation set is then passed onto the subsequent data 

mining analysis.

The order of the pre-processing and feature selection methods, do not necessarily have to follow 

the series of events as laid out in Figure 4.5.1, but the ethos here, was to keep the validation set 

separate from the pre-processing and feature selection processes until the final stage, as would be 

the reality if classification was to be performed on unseen data. More specifically, as some 

discretisation methods (here, MCE and FUSINTER) and feature selection methods (all methods 

considered here) required the decision class data, it would have been unrealistic to perform these 

processes on the data before it was split into the training and validation sets. With regards to 

balancing, again the process requires information regarding the decision class, but also in reality it 

would serve no purpose to balance unseen data. Finally, with regards to missing value imputation, 

here this was applied before the data set was split, but this was based on a practical consideration, as
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the theory relating to RST and VPRS described in Chapter 2 does not consider the problem of 

handling missing data with regards to classifying unseen objects. This problem is referred back to in 

Chapter 9, as work for future consideration.

4.6 Summary

This chapter has presented the three aspects of pre-processing most pertinent to the developed 

software, namely, discretisation, missing values, and imbalanced data. It has also presented a 

number of feature selection methods. Although, pre-processing and feature selection have not been 

presented as extensively, as perhaps is warranted, we have been constrained both by development 

time and limits to the size of this dissertation.

Four methods of discretisation were chosen for implementation, namely equal-width, equal- 

frequency, Minimum Class Entropy (MCE) and FUSINTER. These methods were discussed in 

detail, but the wider issues surrounding discretisation, including other established methodologies 

were also highlighted.

Technically, two methods for “pre-feature” selection were chosen for implementation, namely 

ReliefF and a method based on RST, designated RST FS (though four sets of results are derived 

from the two methods). ReliefF will be applied to the data, both pre and post discretisation. To 

distinguish the two variations they have been designated ReliefFC and ReliefFD. As a first phase in 

the RST_FS algorithm, RST_PH1 was also identified as a rudimentary feature selection algorithm 

based on measures of QoC. Therefore, with regards to what attributes to pass into the subsequent 

VPRS analysis, from the two feature selection methods implemented, four sets of results will be 

available to the analyst, to aid their decision making.

With regards to balancing, the issue appears to have received proportionally less attention from 

the data-mining/machine learning community. Here, we will be implementing the three basic re­
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balancing methods, down-balancing, up-balancing, and average-balancing.

The issue of missing data was highlighted. Again, some basic methodologies for handling 

missing data have been presented. Here, a strategy that is a compromise between excluding objects 

with missing attribute values, and imputing the missing values using a combined decision class and 

^-nearest neighbour approach, has been implemented within the pre-processing software.

Finally, it is worth mentioning here, that the software was designed in such a way, as to allow a 

“retro fit” of other pre-processing methods, at a later date (given more development time).
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Chapter 5

Credit Ratings, Fitch Individual 
Bank Strength Ratings and Initial 
Data Selection

“There are two superpowers in the world today in my opinion. There's the united States 
and there's Moody's Bond Rating Service. The United States can destroy you by 
dropping bombs, and Moody's can destroy you by downgrading your bonds. And 
believe me, it's not clear sometimes who's the more powerful.”

(Friedman, 1996)

This chapter introduces the credit rating problem, and in particular, the prediction of bank credit 

ratings, as the area of application, for which the developed VPRS software will be applied. It offers 

a justification of why an analyst may be interested in predicting a credit rating. As the opening 

quote suggests, credit rating agencies such as Moody's, Fitch and S&P (Standard and Poor), have 

within recent years, become increasingly important within the fixed income financial markets 

(Sylla, 2002; Partnoy, 2006). It is hypothesised by many scholars that this increase, is by and large, 

a result of tighter financial regulations imposed by domicile authorities such as the United States 

Securities and Exchange Commmision (SEC) (Levich et al., 2002; Partnoy, 2002; SEC, 2003) or, 

the international implementation of the Basel Committee's, Basel one (1988) and Basel two (2007)
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accords on banking laws, recommendations, regulations and codes of best practice (Basel, 2007).

Currently, there are only a handful of globally recognised rating agencies, predominantly those 

mentioned above, that appear to dominate the market (Cantor and Packer, 1994, 1995; Partnoy, 

2002). Although, there are a considerable number of less recognised global firms and agencies that 

operate within smaller economic regions (typically within the country in which they are registered). 

For a comprehensive overview of global and regional rating agencies, see Smith and Walter (2002).

Many financial institutions allocate considerable resources to the measurement and management 

of credit risk, that is, the assessment of the possibility, of debt issuers defaulting. Credit rating 

agencies are in the business of providing credit ratings, which indicate their assessment of the 

issuers credit worthiness (Hull, 2006). Originally, the subscribers (the lenders) would pay the rating 

agencies a fee for the information, but in recent times the issuers have had to pay a fee to be rated, 

which has raised issues over conflicts of interest within the ratings industry (Smith and Walter, 

2002; Poon and Firth, 2005; Van Roy, 2006).

A credit rating typically takes the form of a discrete alpha numeric value. Taking Moody's 

corporate bond rating system as an example, the highest Aaa rating is considered as having almost 

no chance of defaulting, with the next safest level being Aa and the following ratings are, A, Baa, 

Ba, B, Caa, with any rating over Baa considered investment grade (Hull, 2006). To further refine 

such a system, numerical values may be introduced (e.g. Moody's A l, A2, A3, Aal etc.) or positive 

and negative signs may be appended to indicate higher or lower risk (e.g. S&P's AA+, AA, AA-, 

A+ etc.), there are a number of other appendages used by other rating agencies.

There are, for a variety of reasons, a number of different organisations who are interested in the 

prediction of credit ratings. For example, governmental organisations such as the Federal Reserve in 

the U.S. or the U.K.'s Bank of England, are interested in implementing off-site early warning 

systems to identify struggling banks (increased likelihood of banking collapse) (Sahajwala and Van 

den Bergh, 2000). Off-site monitoring systems imply that there has been no direct consultation with
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the bank in question, identification of possible struggling banks may involve more costly on site

inspections (Jagtiani et al., 2003)

In terms of the wider credit rating industry, investors are also interested in predicting ratings, as

Peavy (1984, pp. 46) noted:

“The ability to successfully predict industrial bond rating changes would be most useful 
in formulating profitable bond portfolio strategies...if bond yields (and therefore prices) 
do indeed adjust immediately after, but not before, a rating change announcement, then 
the ability to predict these reclassifications should translate into a profitable trading 
strategy.”

Another direction relating to credit rating prediction, is with regards to predicting the credit risk 

of companies, that have not been issued a rating. Companies may wish not to be rated for a number 

of reasons, Huang et al. (2004b) suggest that the time and human resources needed by the credit 

rating companies, to do a thorough on-site inspection, prove too expensive for some smaller 

companies. Poon (2003) state a number of other reasons why a company may not wish to be rated:

1. Middle eastern bankers prefer not to raise debt or equity from oversees investors as they do not 

wish foreign share holders to take control of their countries banks, and as net lenders on the 

global inter-banking system they do not need to obtain a rating (Harington, 1997).

2. China prefers local rating agencies to rate their financial institutions. As they claim that their 

regulatory procedures are different, and external companies, such as the U.S. based Moody's, 

are not knowledgeable enough about the current situation in China to make a well informed 

decision.

3. Issuers may fear that their rating would not be up to investment grade quality, so do not solicit a 

rating in case an unfavourable rating would damage their company's reputation.

Interestingly, in reference to the second point on China, Poon and Chan (2008) highlight that 

China's rating agencies exaggerate the credit worthiness of the companies that they rate, and indeed 

a disproportionate number of companies are rated as investment grade or above, whilst external
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global ratings agencies which assign them unsolicited ratings15 (an off-site assessment based on 

publicly available data, typically balance sheet data), find that the companies are in fact only 

speculative grade. Kennedy (2003) suggests that, investors within the Chinese market attach little 

creditability to these domestic ratings. So there is clearly an opportunity for off-site models to 

provide impartial risk assessments to investors.

Poon's third point, in some respects relates to the rating transition process, which if understood, 

could provide some incite into the rating process used by the rating agencies (Kim and Sohn, 2008). 

Which in turn, would enable companies to improve specific areas of operation, to encourage a more 

favourable credit rating (with the intention of attaining and retaining an investment grade rating). It 

should be noted, that larger credit rating agencies, such as Moody's, do not explicitly disclose their 

rating rationale and claim that quantitative models cannot capture the qualitative aspects included in 

their model (Shin and Han, 2001). Conversely, smaller agencies which are less dependant on 

subscriber revenue are more transparent and make their ratings and rating rationale publicly 

available (SEC, 2003).

The remainder of this chapter describes the attribute model, and the data selected within this 

dissertation, for the prediction of bank ratings. The sections are outlined below:

•  Section 5.1 Historic Overview. This section provides a concise historic overview, of credit 

ratings, and the credit ratings industry.

•  Section 5.2 Bank Ratings and Their Prediction. This section describes the problem of bank 

credit rating prediction, and investigates a number of studies related to that topic.

•  Section 5.3 CAMELS Model. This section describes the CAMELS model, a generally accepted 

model within the extant literature relating to bank credit rating prediction.

•  Section 5.4 Fitch Individual Bank Ratings. This section describes Fitch's Individual Bank 

Strength Ratings, and their prediction. Which is the focus application, of the developed software

15 Also an area of some contention within the ratings industry (Smith and Walter, 2002; Poon and Firth, 2005; Van 
Roy, 2006).



within this dissertation.

•  Section 5.5 Data Selection and Attribute Model. Based on the CAMELS model, this section 

details the final attribute and data selection process.

•  Section 5.6 Summary. This section briefly summaries the main points of this chapter, relevant 

to the subsequent results chapters.

5.1 Historic Overview

The origin of the credit rating agency is generally attributed to John Moody, who in 1909 set up the 

first recognised rating agency, to rate the bonded debts of the burgeoning U.S. railroad market 

(Moody's, 2007). Although, the practice of bond ratings can in some respects be traced to the earlier 

1857 company founded by John Bradstreet, who published what appeared to be the first 

commercially available ratings book. The Bradstreet company, later went on to merge with the 

American credit-reporting agency R. G. Dun and Co. in 1933, to form Dun & Bradstreet, who in 

1962 went on to acquire Moody's Investor services (The bond rating agency originally set up by 

John Moody in 1909), but they continued to operate as independent entities (Cantor and Packer, 

1994, 1995).

Since their initial introduction by Moody's, the importance of credit ratings has fluctuated, in the 

eyes of both the issuers and the lenders. Indeed, the bonded markets of America had existed for 

about 300 years without the necessity of credit ratings (Levich et al., 2002; Sylla, 2002). Moreover, 

the railroad markets had been issuing corporate bonds for at least 60 years before John Moody's 

entrepreneurial inception of the credit rating. For Moody, the pivotal point came with, the critical 

mass of the expanding investment class within the American society, hungry for financial 

information; and railroad companies endeavouring to raise capital on an almost continental scale. It 

is also, in part, attributed to the decline of the type of investment bankers operating during that

129



period, because of the combined disdain for them, both by issuers and lenders (Sylla, 2002). The 

relevance of the credit rating was boosted in the period between the 1914 and 1940, due to America 

emerging out of World War 1 as the worlds new financial superpower, but more so because of the 

role rating agencies were beginning to play within the tighter regulations introduced by the U.S. at 

Sate and Federal levels (White, 2002).

The period between 1940 and 1970 saw a stagnation of the rating agencies importance (Partnoy, 

2002). Many issuers considering credit ratings, perhaps more of a necessity than of any practical 

real value (Partnoy, 1999), and the lenders saw that ratings carried little more information than 

could actually be inferred from the market place (Pinches and Mingo, 1973; Reilly and Joehnk, 

1976; Pinches and Singleton, 1978). The information value of credit ratings is a topic of some 

contention within the extant literature, with arguments both for and against the perceived value of 

the information provided by a rating (for an overview see Gonzalez et al., 2004).

From 1970 onwards, history in some respects repeated itself, almost in an ironic sense. As credit 

ratings originally emerged from the need to rate prosperous railroad companies in 1909, by 1970 it 

was the default and inevitable bankruptcy of Pennsylvania and New York Central Transportation, 

which ignited a chain reaction amongst the other railroad companies, that caused investors to 

demand better research into companies' credit worthiness (Partnoy, 2002; Daughen and Binzen, 

1999). Additionally, and probably a factor that caused the financial problems within the railroad 

companies, was the global credit crises of the 1970s which led the governments of the time to 

impose further regulation on the financial sector and to introduce stricter fiscal policies (Partnoy, 

2002). Notable, was the implementation of a regulation imposed by the U.S. SEC in 1975 which 

incorporated the use of credit ratings into the regulations, but only by Nationally Recognised 

Statistical Rating Organisations (NRSROs).

The use of NRSROs gave recognition to the then established rating agencies Moody's, S&P and 

Fitch, and affectively froze out any other competition, because of a paradox, that is, being able to
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raise what is termed reputation capital before being given the accolade of NRSRO (Cantor and 

Packer, 1995). To explain further, a rating agency would need to prove its competence and gain 

reputation before being accepted as an NRSRO; which would prove difficult, because by not 

initially being an NSRRO, a new ratings company would find it difficult to enter the market and 

raise the reputation capital needed. It is to this, that some studies attribute the reason behind, why 

there are so few globally recognised ratings agencies (White, 2002).

As a consequence of the tighter regulations imposed throughout the period of the 1970s, the 

1980s saw a phenomenal rise in the importance of rating agencies (including their staffing levels 

and profits), again boosted by the 1988 Basel accord on banking regulation (Partnoy, 2002; Sylla, 

2002) By the late 1990s, the requirement for a credit rating had almost become a expected 

component of many large reputable companies' profiles, and an antecedent part of a new company 

seeking credit approval (Partnoy, 1999). With the 2007 implementation of the much awaited Basel 

two accord, it is likely that the future position of the credit rating agencies is only going to become 

stronger. Furthermore, with the recent credit crises of the 2007 and 2008, where the rating agencies 

failed to anticipate the initial downgrading of Collateralised Debt Obligations (CDOs) caused by 

problems within the U.S. sub prime mortgage market (Stempel, 2007), investors will inevitably 

echo the calls of the 1970s, for better research into the financial worthiness of the institutions and 

even stricter financial regulations, indeed a quick search for 'Basel IIP on the internet delivers a 

plethora of speculative articles.

5.2 Bank Ratings and their Prediction

It is evident from the historic overview of credit ratings that the American financial market has been 

a leading force within the credit rating industry. Interestingly, the U.K. which accounts for 20% of 

the worlds cross boarder lending and is the biggest financial centre in the E.U. (Kosmidou et al.,
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2006), as of 2002, had no rating agency solely headquartered in that country (White, 2002).

However, the trend towards globalisation has seen the credit rating firms rise to prominence and

providing services on a global scale, Poon and Firth (2005, pp. 1742) noted:

“While once confined to the U.S. and other industrialised nations, credit rating agencies 
now evaluate firms in virtually all countries with organised securities markets and even 
in some that don't.”

International financial regulations such as the Basel accords and the relaxation of individual 

countries' rules on cross country banking activity, have, no doubt been the catalyst towards this 

globalisation of the banking industry (Kosmidou et al., 2006).

Banking, particularly banking external to the U.S., is one area of the financial industry that has

felt the impact of this globalisation, and has had to implement the American practice of ratings to

aid in the regulation of the banking sector. White (2002, pp. 58) summed up the differences between

the manner in which U.S. banks supply capital and how banking systems external to the U.S.

encourage capital raising:

“These countries have tended to stress bank-supplied loans as their sources of finance 
for companies; and, since the countries tend to be more geographically compact than is 
the United States and they encourage nationwide branching, the banks themselves could 
be effective information gatherers.”

However, given the effects of globalisation, banks now need to be competitive on a global scale,

which has led to mergers and a concentration of the banks into larger institutions operating across

global markets (Kosmidou et al., 2006). As a response, in 1995, Moody's ushered in a new type of

rating, namely the Bank Financial Strength Rating (BFSR), with other ratings companies following

suit and offering similar rating systems, such as Fitch's Individual Bank Strength Rating (FIBR) and

Bank support ratings.

The U.S. banking regulators, have had, for many years, early warning models in place to identify 

struggling banks, such as the CAEL system implemented in the early 1980s, used by the Federal 

Deposit Insurance Company (FDIC) and the Federal Reserve. However, the general field of rating 

prediction (particularly bond ratings), was pioneered earlier than the introduction of the CAEL
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model, with perhaps some of earliest work having been undertaken by Horrigan (1966). Horrigan 

used a multiple regression model with very limited success, predicting 58% of Moody's bond 

ratings and 52% of S&P's. West's (1970) model, achieved slightly more success, using the attributes 

proposed by Fisher's (1959) work on determining risk premiums on corporate bonds; West achieved 

a 62% predictive accuracy on Moody's ratings. Motivated by the observation of Foster (1978) who 

noted that previous models lacked an 'economic rationale', Belkaoui (1980) implemented a model 

identifying eight financial attributes, which they believed captured the essence of three factors, 

which they felt, determined the investment quality of a bond (i.e. their economic rationale). 

Although the predictive model still only achieved a 65.9% predictive accuracy on S&P's ratings, on 

the breakdown of the different bond rating grades, they found a range of predictive accuracies, with 

a then impressive 75% of B ratings being predicted correctly (but only 36% accuracy for the BBB 

rating). Though not conclusive proof of their method, it did set a precedent in that the models that 

followed attempted to apply a rationale to their attribute selection. The internal16 BOPEC and 

CAMELS bank ratings systems in use by the U.S. Federal Reserve are indicative of the principle of 

implementing an economic rationale (the CAEL and CAMELS models are described in more depth 

within the next section).

Over the following thirty years, the statistical techniques and the quality of the data improved 

(Poon et al., 1999), leading to better rates of predictive accuracy (for a comparison, see overviews 

in, Altman et al., 1981; Huang et al., 2004b). Returning to the prediction of bank ratings 

specifically, there appears to be, only a limited number of studies concentrating on predicting 

ratings issued by commercial rating agencies (since as previously stated, bank ratings were only 

introduced in the late 1990s). There have however, been numerous studies looking at the prediction 

of the U.S. banks' internal BOPEC and CAMELS ratings (for examples, see Gilbert et al., 2000; 

Krainer and Lopez, 2003).

Poon and Firth (1999) appear to have conducted the first study investigating the prediction of

16 Internal, in the sense that, the ratings are not disclosed to the general public.
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commercially available bank ratings. They utilised six various logistic regression models based on a 

selection of different attributes to predict ten categories of the Moody's BFSR's (A+, A, B+, B, C+, 

C, D+, D, E+ and E). They achieved accuracies of between 21.1% for the poorest model and 71.1% 

for the best model. Although, it does appear these accuracies are based on the training sample (i.e. 

the apparent predictive accuracy as described in Chapter 4 section 4.1, which is typically over 

optimistic). More recently, Poon and Firth (2005) investigated whether unsolicited credit ratings 

(also called shadow ratings) were lower than solicited ratings. They also investigated the overall 

ability of their model to predict Fitch's FIBRs, with some impressive results. On a validation 

sample, they achieved a predictive accuracy of 85%. Other notable studies include, Kosmidou et al. 

(2006), who analysed the financial characteristics (attributes) important to foreign and domestic 

banks operating within the U.K.; and Pasiouras et al. (2006), who investigated the importance of 

banking regulation, supervision and market structure with regards to characterising bank ratings. 

They found that different combinations and enforcement of these factors (such as amount of 

regulation, deposit insurance schemes etc.), did have some impact on the prediction of FIBRs.

The aforementioned CAMELS model has become core to many of the studies into rating 

prediction, particularly within bank rating prediction, such as, those studies mentioned above. As 

previously stated, the CAEL model (a derivative of the CAMELS model), was the model 

implemented by the FDIC and the Federal Reserve as an early warning system to identify failing 

banks. Here, we will be utilising the CAMELS economic rationale which is described in the 

following section.

5.3 CAMELS Model

During the early 1980s, the U.S. supervisory authorities such as the Federal Reserve and FDIC, to 

assess the likelihood of a bank failing, introduced the CAMEL model as an on-site assessment
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system. The system assigns a grade between, one (best) and five (worst), reflecting the supervisors 

assessment of the banks condition. CAMEL is an acronym for the five elements deemed to be 

component factors for the successful operation of a banking institution, namely Capital, Asset 

Quality, Management, Earnings and Liquidity. A sixth 'S' component was added to the model in 

1997, in an effort to capture the banks Sensitivity to market risk, hence the modem acronym is 

referred to as the CAMELS model (Feldman et al., 2003; Derviz and Podpiera, 2004).

Prior to the introduction of the CAMEL model, and since the early 1970s, the U.S. authorities 

had used off-site computer systems to identify possible problem banks, but these initial off-site 

monitoring systems performed poorly (Sahajwala and Van den Bergh, 2000). Subsequently, and in 

parallel with the introduction of the CAMEL rating, the FDIC implemented the CAEL model which 

took the four components of the original CAMEL model that could be used to assess a quarterly off- 

site assessment (i.e. Capital, Asset Quality, Earnings and Liquidity). This CAEL rating would be 

compared to the most recent CAMEL(S) rating, and if there was a change, the FDIC would then 

identify the bank for further investigation, and a possible full on-site inspection. Essentially, the 

CAEL system was seen as an early warning system, however, since 1999 it has been withdrawn and 

superseded by the SCOR system (Statistical CAMELS Off-site Rating). The Federal Reserve have 

also implemented their own early warning system independently of the other regulatory authorities. 

Known as SEER (System for Estimating Exam Ratings), it involves two models, one for the 

predicting of bank failure over a two year horizon, and the second for predicting CAMELS ratings. 

More recently, European financial authorities have also introduced early warning systems, such as 

U.K.'s financial services authorities RATE system (Risk Assessment, Tools of Supervision and 

Evaluation) (see Sahajwala and Van den Bergh, 2000, for an overview of some of the most 

prominent early warning systems used globally).

Today, the CAMELS model is widely accepted as capturing the elements that underpin a 

financial institution's level of risk, and has become widely used as the economic rationale of choice
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in many studies (e.g. Pasiouras et al., 2006). For off-site systems, four of the six elements of the 

CAMELS model, namely 'C', 'A', 'E', 'L' are captured using balance sheet data, and often captured in 

the form of financial ratios (described in section 5.5). The management and sensitivity elements of 

the CAMELS model, are more difficult to capture, but a number of studies have used “proxy” 

attributes in an attempt to capture elements of management style and sensitivity to market risk 

(Krainer and Lopez, 2003; Pasiouras et al., 2006; Van Roy, 2006).

5.4 Fitch Individual Bank Ratings

As was stated in the introduction to this chapter, the developed VPRS software will be applied to

the prediction of bank ratings, specifically, Fitch's Individual Bank Strength ratings (FIBRs) (Fitch,

2007). There is only a limited amount of research literature specific to FIBR prediction. Both Poon

and Firth (2005) and Van Roy (2006) investigated whether there was evidence that unsolicited

FIBRs were lower than solicited ratings; and Pasiouras et al. (2006) tested whether attributes

capturing the environment aspects in which the bank operated, such as banking regulations, would

have an impact on FIBR prediction models. Fitch (2007) describe FIBRs as:

“...ratings, which are internationally comparable, attempt to assess how a bank would be 
viewed if it were entirely independent and could not rely on external support. These 
ratings are designed to assess a bank's exposure to, appetite for, and management of 
risk, and thus represent our view on the likelihood that it would run into significant 
difficulties such that it would require support.”

FIBRs are divided into six categories, representing Fitch's opinion on the likelihood that a bank 

will get into difficulties (or is in difficulty), and in such an event would require external support. 

External support can be in the form of state assistance (e.g. The Bank of England, Federal Reserve 

etc.), deposit insurance funds (e.g. the U.S.'s Federal Deposit Insurance Corporation FDIC); 

acquisition by some other corporate entity or an injection of new funds from its shareholders or 

equivalent.
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The five main FIBR's categories are described below in Table 5.4.1, as given by Fitch (2007).

Fitch Individual Recoded to Description
Bank
Rating

A 0 A very strong bank. Characteristics may include outstanding

profitability and balance sheet integrity, franchise, management, 

operating environment or prospects.

B 1 A strong bank. There are no major concerns regarding the bank.

Characteristics may include strong profitability and balance 

sheet integrity, franchise, management, operating environment 

or prospects.

C 2 An adequate bank, which, however, possesses one or more

troublesome aspects. There may be some concerns regarding its 

profitability and balance sheet integrity, franchise, management, 

operating environment or prospects.

D 3 A bank, which has weaknesses of internal and/or external

origin. There are concerns regarding its profitability and 

balance sheet integrity, franchise, management, operating 

environment or prospects. Banks in emerging markets are 

necessarily faced with a greater number of potential 

deficiencies of external origin.

E 4 A bank with very serious problems, which either requires or is

likely to require external support.

Table 5.4.1: Fitch's Definition of its Individual Bank Rating Categories

In addition, Fitch also provide an F category that represents a bank, that has either defaulted or, 

in Fitch’s opinion, would have defaulted if it had not received external support. The F category is 

not considered within this dissertation as it is not available within our database (described in the 

next section). The five main 'A' to 'E' categories will be recoded to numerical values as shown on 

the second column of Table 5.4.1 (the developed VPRS software operates on numeric data values).

Furthermore, Fitch describes four intermediate categories known as graduations, they are A/B, B/ 

C, C/D, and D/E. Banks are assigned these graduation ratings if Fitch deems them to be in between
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two of the five main 'A' to 'E' ratings. Banks within these categories are left out at the data selection 

stage (described next), as initial studies suggested that the results were improved by increasing the 

notional boundary between rating categories. That is, where banks may have been border line 

between ratings, it caused the resultant VPRS classifier (rules) from the developed software to 

perform poorly on the validation sample, perhaps because of the weakness of these “border line 

rules”. This issue of weak boundary area rule reduction is considered in Ziarko (2003), who 

suggests three approaches for the reduction of the boundary area. The concept of these border line 

objects (resulting in weak rules) and the impact they have within the training phase (rule creation) 

of VPRS is a topic which may need some attention in the future.

5.5 Data Selection and Attribute Model

The target data used within this dissertation, has been taken from Bureau van Dijk's Bankscope 

Database (2007). This database, provides information on banks and financial institutions world 

wide, with up to 16 years of detailed accounts, on ratios, ratings and rating reports, ownership, 

country risk and country finance reports.

The previously discussed CAMELS model has been utilised as a basis for attribute selection. 

Within the related literature, the elements of the CAMELS model are typically captured using 

balance sheet data in the form of financial ratios (Sahajwala and Van Den, 2000). Financial ratios 

are used to evaluate the overall financial condition of a company. They are expressed as decimal 

values and are used by company managers, shareholders and financial analysts. The practice of 

using financial ratios has been around since the late 1890s, for a historical analysis see Horrigan 

(1968).

Table 5.5.1 lists the number of occurrences of financial ratios that occurred twice or more, across 

twelve recent studies related to bank rating predictions (Poon et al., 1999; Gilbert et al., 2000;
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Raveh, 2000; DeYoung et al., 2001; Feldman et al., 2003; Krainer and Lopez, 2003; Derviz and 

Podpiera, 2004; Poon, 2003; Poon and Firth, 2005; Kosmidou et al., 2006; Pasiouras et al., 2006; 

Van Roy, 2006). These ratios have been separated into the appropriate CAMELS categories for 

which they are considered representative. Ratio explanations can be found on Bureau van Dijk's

Bankscope (2007) product support manual.

CAMELS Category Attribute
Occurrence

CAMELS Category Attribute
Occurrence

CAPITAL Adequacy(C)
Tier 1 Ratio 2

EARNINGS (E)
Net Interest Margin 3

Total Capital Ratio 4 Net Int. Inc./ Aveg Assest 3
Equity / Total Assets 9 Non Int Exp / Avg Assets 3
Equity / Net Loans 2 Return on Average Assets 11
Cap Funds / Tot Assets 2 Return on Average Equity 5

ASSET QUALITY (A)
Loan Loss Reserve / Gross Loans 2

Cost to Income Ratio 

LIQUIDITY (L)

4

Loan Loss Prov / Net Int Rev 4 Net Loans / Total Assets 5
Loan Loss Res / Impaired Loans 2 Net Loans / Customer & ST Funding 3
Impaired Loans / Gross Loans 3 Liquid Assets / Cust & ST Funding 5

Sensitivity to Market Risk (S)
Number of subsidiaries 3

Table 5.5.1: Occurrence of Attributes from 12 Recent Bank Rating Studies

The management element 'M' of the CAMELS model is absent from Table 5.5.1. Many studies 

ignore this category, due to its qualitative nature and the subjective analysis required, it is deemed 

difficult to capture and quantify (Pasiouras et al., 2006; Sahajwala and Van den Bergh, 2000). The 

sensitivity to market risk category 'S', which is a later addition to the CAMELS model, has received 

less attention than the other categories, mainly because the literature concentrates on the pre 'S' 

category period, where there is more data available (Gilbert et al., 2000; Feldman et al., 2003).

Derviz and Podpiera (2004), suggest using the attribute Total Assets Value at Risk (see McNeil et 

al., 2005) to model the 'S' category, as it is commonly used by financial institutions to measure the 

market risk of their portfolio (but it is not available within Bankscope). Pasiouras et al. (2006), 

presented a comprehensive study, suggesting a number of attributes that could be used as proxies 

for non-quantitative elements of bank ratings, particularly with relation to banking regulations, 

supervision and market structure. Interestingly, based on Falkenstein et al.'s (2000) hypothesis that
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smaller companies have less depth in management and are more susceptible to idiosyncratic shocks 

within the market, Pasiouras et al. (2006) suggest using the number of subsidiaries as a measure of 

business size and diversification. Supporting Pasiouras et al.'s argument, Fitch (2007) state that the 

banks diversification in terms of involvement in a variety of activities in different economic and 

geographical sectors, is, an important factor in their model.

Based on the attributes in Table 5.5.1, Table 5.5.2 presents the final selection of attributes taken 

form Bankscope, with the addition of some attributes that were available, and that were deemed 

appropriate to the model. Note that, Net Int. Inc./Aveg Assets (net interest income to average assets) 

as shown in Table 5.5.1, was not available within Bankscope, and hence does not appear in Table 

5.5.2. The second column displays the amount of missing data associated with each attribute

(discussed later in this section).

CAMELS Category Missing Data 
(%)

CAMELS Category Missing Data 
(%)

CAPITAL (C) EARNINGS (E)
Tier 1 Ratio 8.055 Net Interest Margin 0.000
Total Capital Ratio 0.323 Non Int Exp / Avg Assets 0.000
Equity / Total Assets 0.000 Return on Average Assets 0.000
Equity / Net Loans 0.323 Return on Average Equity 0.000
Cap Funds / Tot Assets 0.000 Cost to Income Ratio 0.161
Subord Debt / Cap Funds 1.936

LIQUIDITY (L)
ASSET QUALITY (A) Net Loans / Total Assets 0.000
Loan Loss Reserve / Gross Loans 0.000 Net Loans / Customer & ST Funding 0.161
Loan Loss Prov / Net Int Rev 0.323 Liquid Assets / Cust & ST Funding 0.806
Loan Loss Res / Impaired Loans 7.258
Impaired Loans / Gross Loans 0.000 Sensitivity to Market Risk (S)

EIU Overall Country Risk 0.000
EIU Banking Sector Risk 0.000
EIU Banking Sector Risk Outlook 3.065
Number of recorded subsidiaries 0.000
GDP/head 0.000

Table 5.5.2: Final Attribute Selection 
The ratio Subord Debt/Cap Funds (subordinated debt to capital funds) has been included under

the Capital Adequacy category 'C', as a number of papers referred to the possible importance of 

subordinated debt in the overall risk of a institution's portfolio (e.g Krainer and Lopez, 2003; Derviz 

and Podpiera, 2004). Subordinated debt refers to debt that is, repayable only after a borrower's other 

debts or financial obligations have been settled, in the event of foreclosure subordinated debt has
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the lowest priority. Thus, it is deemed to be a more risky option for the lender. According to 

Bankscope, the lower the ratio of subordinated debt to capital funds the better, that is, less risk 

associated with the institution.

Within Table 5.5.2, perhaps the most liberty in terms of attribute selection has been taken with 

regards to the Sensitivity to Market Risk category 'S', in that, five additional attributes that were 

available in Bankscope have been included, because it was deemed that they may perform as good 

proxies for important factors within our model. To explain our rationale, Le Bras and Andrews

(2004) suggest that Fitch consider a number of factors which relate to a banks operating 

environment including, a countries political situation and banking regulatory system. Additionally, 

Fitch (2007) state themselves that FIBRs are internationally comparable and that operating 

environment is important. Hence, the three EIU17 attributes Overall Country Risk, Banking Sector 

Risk and Banking Sector Risk Outlook, have been included in our attribute selection. Poon and 

Firth (1999) appear to support the addition of banking environment attributes, as they include a 

similar country risk attribute CRISK which they obtained from the International Country Risk 

Guide (Sealy, 1997). They state that this attribute is a composite measure of three factors, namely, a 

countries political, financial and economic risk. In addition to the banking environment attributes, 

GDP/head (Gross Domestic Product per head) was included in our model, as it may reflect, a candid 

measure of the internal economic situation within a country.

Having identified the final set of attributes (Table 5.5.2), and selecting only banks (objects) from 

Bureau van Dijk's Bankscope Database (2007), associated with less than 5% missing data (See 

Chapter 4 section 4.4 for description of missing data), the target data set contained 620 banks. With 

regards to the percentage of missing data associated to each attribute, as shown in Table 5.5.2, only 

two attributes (Tier 1 Ratio and Loan Loss Res/Impaired Loans) have more than 5% missing data, 

but still less than 10%. Table 5.5.3 presents the distribution of the number of banks associated with 

the five FIBR rating levels .

17 Economist Intelligence Unit (EIU, 2007) attributes were available directly through Bankscope.
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Rating A B C D E Total

Grade A B C D E

Number of Banks 16 319 163 107 15 620

Percentage of Total 2.5811 51.452 26.290 17.258 2.419 100

Table 5.5.3: Distribution of FIBR Ratings 

It can be seen from Table 5.5.3, that the data within the five rating classes is quite imbalanced, with 

the 'B' rated banks being the majority class (See Chapter 4 section 4.3 for description of imbalanced 

data). The 'A' grade and 'E' grade banks being the under represented classes.

5.6 Summary

This Chapter has presented an overview of credit ratings and the credit rating industry. The main 

emphasis has been on bank ratings, and the prediction of bank ratings. The CAMELS model has 

been described as a general rationale for attribute selection.

The last section of this chapter described the final attribute and data selection, concerned with 

those attributes that where assessed to be relevant to the prediction of Fitch's Individual Bank 

strength Ratings (FIBRs). The data has been obtained from Bureau van Dijk's Bankscope Database, 

and is used in the following three chapters.
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Chapter 6

Introduction to Software, 
Pre-processing and Feature Selection 
Results

This chapter introduces and describes the developed software, in particular, the results of the pre­

processing element and feature selection elements of the software, applied to the FIBR data set as 

discussed in Chapter 5. The results from this chapter are used in the subsequent analyses of the 

FIBR data, presented in Chapters 7 and 8 (which further describe the developed software).

This chapter contains three sections, as outlined below:

•  Section 6.1. Parameter Setting. This section presents and describes, the opening window of the 

developed software, which allows the analyst to set parameters relating to the subsequent, pre­

processing, feature selection, data mining and evaluation (re-sampling) stages of the KDD 

process, as outlined in Chapter 1.

•  Section 6.2. Data Discretisation Results. This section describes the results of the data 

discretisation and briefly discusses the issues encountered with regards to data balancing and 

missing value imputation.

•  Section 6.3. Feature Selection. This section describes the results of the feature selection 

algorithms employed, including a number of graphs that were developed to assist the analyst 

during the final attribute selection. Following on, the final attribute selection is also described,
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where final selection, takes the form of a point and click table, allowing the user to have the 

final decision on, what attributes to pass forward into any subsequent VPRS analyses.

•  Section 6.4 Summary. This section summarises the results of the discretisation, feature 

selection and final attribute selection. Where those attributes selected, are passed into the 

subsequent software analyses described in Chapters 7 (vein graph) and 8 (re-sampling).

6.1 Param eter Settings

At the initial stage of the developed VPRS software, the analyst is presented with a window that 

allows them to set a number of parameters and options affecting, as stated, the subsequent pre­

processing, feature selection, data mining and evaluation methods employed within the analyses. 

Figure 6.1.1 displays the screenshot of this set-up window.

; D ata Mining P re-piocessing Set-up

File Help

File Selection

Browse

VPRS Analysis

13 Vein Graph Analysis

desampling Analyses

□  Leave One Out

□  k-fold □  Stratified

□  Bootstrapping

Beta Minimum Threshold Value

Number of Folds 

Number of Iterations

V 1M
10 H

Analysis [ Sub-sampling [ Discretisation [ Missing Values [ Balancing

Exit Continue

Figure 6.1.1: Initial VPRS Software Set-up 

From the set-up window shown in Figure 6.1.1, the analyst has the following options:

1. The ability to browse their file system, for the file they wish to analyse, or to re-open a file from
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a previously saved analysis.

2. The option to select the basic VPRS vein graph analysis (as will be described in Chapter 7), or 

selection of the VPRS re-sampling analyses, including, leave-one-out, A:-fold cross-validation 

and bootstrapping (as will be described in Chapter 8). On selection of, &-fold cross-validation or 

bootstrapping, the analyst will also have the option to select the number of &-folds or bootstrap 

samples (repetitions), respectively.

3. The analyst has the option to select from two sampling methods. That is, the stratified sub 

sampling method, which takes a percentage of the data for the validation set, whilst maintaining 

the decision class distribution, or the statistical sub-sampling method based on Equation 3.1.2.1 

described in Chapter 3 section 3.1.2.

4. The analyst is given the option to select which discretisation method they wish to use. 

Additionally, the analyst may set the number of discretisation intervals they feel is appropriate 

for the equal-width and equal-frequency methods, or maximum number of intervals for the 

Minimum Class Entropy (MCE) discretisation method. Note, the FUSINTER discretisation 

method, autonomously sets the number of intervals and no further parameter setting is required 

(see Chapter 4 subsection 4.1.3.2).

5. The analyst is also given the option to select which missing value imputation method they wish 

to use, that is, mean imputation or mean imputation based on the A>nearest neighbour method 

described in Chapter 4 section 4.4. They can also choose between, the three balancing methods 

as described in Chapter 4 subsection 4.3, namely, up-balancing, down-balancing, and average- 

balancing. They do however, have the option, not to use balancing.

For the analysis of the FIBR data, we have opted for, the statistical sub-sample selection method, 

and the ^-nearest neighbour missing value imputation method. After extensive testing, it was found 

that for the FIBR data, the choice of missing value imputation method had no noticeable impact on 

the final predictive accuracies.
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The developed statistical sub-sampling method was chosen for the reasons given in Chapter 3, in 

brief because it recognises if a decision class is under represented and takes less objects for the 

validation set. With regards to balancing (up, down and average-balancing), again after extensive 

testing it was found that, although balancing improved the predictive accuracies on the under 

represented classes (mainly 'A' and fE' grade banks), it proved quite detrimental to the predictive 

accuracies of well represented classes, and to the overall predictive accuracy. Hence, it was felt that 

the loss in overall predictive accuracy could not justify the use of balancing in the case of the FIBR 

data. Perhaps employing more involved balancing methods, to tackle such highly imbalanced data
t

as the FIBR data, may be required. Estabrooks and Japkowocz (2004), describe a multiple re­

sampling method, that involves a more complex approach to re-balancing, Grzymala-Busse et al.

(2005), suggest simply changing the rule strengths, specifically targeting the rules based on the 

under represented condition classes.

With regards to selection of discretisation method, it was found that the best predictive 

accuracies (in the subsequent VPRS analyses), were based on the data discretised using the 

FUSINTER method. In addition, the FUSINTER method removes the requirement of the analyst to 

make a possibly subjective decision on how many intervals to use for the undertaken discretisation. 

Boulle (2004), which includes a survey of recent discretisation methods, also found that compared 

to the alternative methods (particularly the methods implemented with the developed software), 

FUSINTER performed better, in terms of the constructed classifiers' predictive accuracies, on both 

the training and validation sets. Once the analyst is satisfied with the parameter settings, they can 

proceed to the pre-processing stage, which is described in the following two sections.

6.2 Data Discretisation Results

This section presents the FIBR data set at different stages of the developed pre-processing software,
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from the initial data set through to the discretised training and validation sets. Figure 6.2.1 displays 

the opening screenshot o f the pre-processing application, specific to the FIBR data set.

D a t a f i l e *  B a n k D a t a  2 0 0 7 ,  M B U  J »?0 v 23 -inlx

Data set ] Discretisation Training Set Validation Set Feature Selection

I values (Nearest I

j Net Loan... I Net Loan... ] Liquid As...
F -------- — ---

EIU Over... EIU Bank... EIU Bank... Number... GDP/hea... j Decision
o |68 93 124.64 9.57 1 1 4 36355 0 *
1 59.97 NA 0.00 0 1......... .. ■ 1 48625
2 56 89 71.33 3.73- 1 1 1 36355 P
3 55.36 71.62 21.63 1 1 167 36355 jo

|63 78 99.63 2.41 1 1 549 30306 p
5 58.13 96.08 32.82 1 1 549 30306 0
6 82.81 13485 5.48 1 2 77 18668 P
7 82.87 129.03 18.67 1 2 77 18668 b
8 (94.89 105.48 0.03 1 1 1 36355 0

71.39 87.32 7.59 1 1 746 36355 p
10 35.57 [50.84 56.18 1 1 1875 36355 p
11 37.59 59.16 62.29 1 1 1875 36355 p

54.80 103.29 1.04 1 1 374 28495 p_
68.53 84.10 12 91 1 1 374 28495 p

14 165.43 97.61 827 1 1 1203 36355 p
15 72.86 103.73 7.30 1 1 1203 36355 p
16 91.45 [99.48 5.18 1 1 38 28495 1
17 65.14 79.91 15.84 2 2 NA 123 13723
18 [57.76 90.86 4.72 2 2 NA 123 13723 II
19 65.68 96.12 10.12 1 1 1 10 36355 1..............
on , A 1 R - 1 C G  ! l V

k

Figure 6.2.1: Initial Screenshot o f the Pre-processing Software, Partially Displaying the FIBR Data
Set

The left most column o f  the table exhibited in Figure 6.2.1, displays the index o f the objects 

from zero, as they were input from the data file. The column headings show the attributes names, 

and the final column to the right (which has been scrolled to, using the horizontal scroll bar), 

indicates the decision class o f each object. Note that, some o f the data cells within the table contain 

the letters 'NA', this indicates a missing value. A separate table (not shown here), selectable on the 

adjacent tab (labelled 'Data without missing values (Nearest Neighbour)'), displays the same data 

set but with values evaluated and imputed for the missing values. The full data set is separated into 

the training set and validation sets (shown later in this section).

Here, the FUSINTER discretisation algorithm has been applied to the training set, and the 

intervals identified for each attribute are displayed in Figure 6.2.2.
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Figure 6.2.2: Data Discretisation Table 

The table row headings displayed in Figure 6.2.2, indicate the attributes input from the data file. 

The first column displays the choice of discretisation method used to discretise the data (here, 

FUSINTER was used for all attributes), the choice of discretisation was made in the initial set-up 

(see section 6.1). The second column displays the number of intervals associated with each 

attribute, and the interval ranges themselves are displayed in the proceeding columns. Note that the 

default lowest initial interval value, associated with any attribute is zero, except where the attribute 

in question, contained negative values. For example, Loan Loss Prov/Net Int Rev's lowest value 

was -47.98 and hence its first interval is the range [—47.98, 9.96].

Looking at the first row, and taking the attribute Loan Loss Reserve/Gross Loans as an example 

(highlighted in Figure 6.2.2), it has been discretised into three intervals [0.0, 1.09], (1.09, 2.55] and 

(2.55, 30.86]. Hence, the data associated with this attribute, is recoded into the discrete values 'O', T  

and '2', respectively (shown next in Figure 6.2.4). Note, that when these intervals are used to 

discretise the validation set, there is the possibility that a value within the validation set, may lie 

outside the lower (0.0) and upper (30.86) bounds. In this circumstance the value will be discretised 

to its nearest associated interval, for example, a value less than 0.0 will be set to 0 and any value 

greater than 30.86 would be set to 2.
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The analyst is provided with separate tables containing both the training and validation sets. 

Figures 6.2.3 and 6.2.4 display the training data at the pre-discretised (labelled 'Data' under the 

'Training Set' tab) and post-discretised (labelled 'Discrete Balanced Data' under the 'Training Set' 

tab) stages, respectively. There is a further table (not shown here), which if balancing had been 

used, allows the analyst to inspect the balanced version o f the training data (labelled 'Balanced Data 

(None)' under the 'Training Set' tab).

D a l < t P r r  p r i n  r s s i f H i  A p p l i c a t i o n t  a l l i e s  ( t a n k ! ) a t  a  ? 0 0 1 S a v e
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3 55 36 71 62 21.63 1.0 1.0 1.0 167.0 36355.0 0.0
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Figure 6.2.3: Training Set, Pre-discretisation 
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Figure 6.2.4: Training Set, Post-discretisation

Note that the missing values denoted previously by the letters 'NA', have been replaced within 

the table displayed in Figure 6.2.3, with values evaluated using the ^-nearest neighbour method. 

With regards to the num ber o f  objects taken for the training set, 405 objects were taken, this value 

was obtainable by scrolling the vertical scroll bar to the bottom o f the table in Figure 6.2.3 (the
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breakdown o f  training and validation set objects is described next).

The validation set is discretised using the intervals calculated from the training set, shown

previously. The results of which are shown below in Figure 6.2.5.

Fil*
D»t« set Discretisation Training Set V a l i d a t i o n  S e t  ] Feature Selection

Discrete Data | _________________________________________________________________________________________

j! Net Loan... [[ Net Loan... || Liquid As... || EIU Over... || EIU Bank... || EIU Bank... [| Number... |j GDP/head I Decision

Figure 6.2.5: Discretised Validation Set

Note, from inspecting the table displayed in Figure 6.2.5. that only one object (bank) from the 'A' 

grade banks (decision class '0'), has been included in the validation set. This is a result of the 

statistical sub-sampling method, recognising that the class is under represented and that the majority 

of the 'A' grade banks are required for training purposes. With regards to the number of objects 

selected for validation, 215 objects were selected, again this value was obtainable by scrolling the 

vertical scroll bar to the bottom of the table shown in Figure 6.2.5.

The following Table 6.1.1, displays the breakdown of the number of objects sampled from each 

class for use in the training set, with the remaining objects used in the validation set (displayed 

previously in Chapter 3 section 3.1.2).

Bank Grade 
(Decision Class)

Number of 
Objects

Training
(Taken)

Validation
(Remaining)

A (0) 16 15 1

B (1) 319 177 142

C (2) 163 115 48

D (3) 107 84 23

E (4) 15 14 1

Totals 620 405 215

Table 6.1.1: Training Set and Validation Set Sample Sizes

With regards to the under represented classes within Table 6.1.1, as expected, less objects were
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left for the purpose of validation. The proportional split between the training and validation sets is 

around two thirds, one third respectively, which is in line with the recommendations quoted in the 

associated literature (Weiss and Kulikowski, 1991; Han and Kamber, 2006).

6.3 Feature Selection

This section is split into three subsections which present the results of the two implemented feature 

selection algorithms, namely ReliefF and the more novel algorithm proposed by Beynon (2004) 

based on RST, referred to here as the RST_FS method (RST Feature Selection). The first and 

second subsections describe graphs developed in association with the ReliefF algorithm and the 

RST_FS algorithm, respectively. The final subsection describes how the software collates the 

results of the feature selection methods into a table, to be used by the analyst to select the attributes 

to be passed forward into any subsequent VPRS analysis.

6.3.1 Results o f ReliefF

Within the developed software, the ReliefF algorithm, described in Chapter 4, is applied to both the 

pre-discretised training set and the post-discretised data set. The results for both variations of the 

application of the ReliefF algorithm are presented under two separate sub-categories within the 

feature selection element of the software, namely ReliefFC (C signifying continuous data) and 

ReliefFD (D signifying discrete data). Here, only the results of ReliefFD are discussed because the 

VPRS analysis is based on discretised data, hence, it was thought more pertinent to select attributes 

identified by ReliefFD at the final attribute selection stage (described in subsection 6.2.3).

Three graphs were developed to elucidate the ReliefF process, and to aid the analyst in their 

attribute selection decisions. The graphs have also, to some extent, assited the development of the 

ReliefF algorithm (explained next).
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The first o f these three graphs is shown in Figure 6.3.1.1, it represents the evaluated quality 

estimation18 value for each attribute, over values o f m, where the value o f m is increased in 

increments o f five, between five and the number o f objects in the training data set, thus the highest 

value o f  m shown in being Figure 6.3.1.1 405.19 To recap, the m value essentially represents the 

number o f randomly chosen objects from the training set. The lowest value o f m chosen here (for 

the graph) being five, that is five objects selected at random (without replacement).
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Figure 6.3.1.1: ReliefFD Weights Graph Over the Range o f m Values 

The colour coded legend to the right o f the graph in Figure 6.3.1.1, indicates the final ranked 

positions o f all the attributes based on the highest value o f m. Only the top ten ranked attributes are 

plotted on the graph, and are coloured other than grey in the legend (described in more detail later 

in this section).

It is clear from the graph in Figure 6.3.1.1, that the quality estimation associated with each

18 Robnik-Sikonja and Kononenko (2003), describe an attribute's quality estimation, as a measure o f  an attributes 
ability to distinguish between (dis)similar objects. With a larger quality estimation indicating an attribute has a good 
level o f  distinguishing capability.

19 The software implementation o f  the ReliefF algorithm, by default, sets the highest m value on the graph, to the size 
o f  the training set. That is, if  the training set had not been a multiple o f  five, e.g. 403, the final m value would have 
been set to 403.
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attribute are volatile (inconsistent) for lower values o f m, but become more consistent as m 

increases and more objects are utilised during the ReliefF algorithm. Moreover, the final evaluated 

quality estimates, which in theory should be the most accurate estimation o f the quality associated 

with each attribute (Robnik-Sikonja and Kononenko, 2003), appear to converge to specific values. 

To further demonstrate this convergence, the graph presented in Figure 6.3.1.2 displays the 

difference between each consecutive quality estimate over consecutive values o f m, associated with 

each attribute.
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Figure 6.3.1.2: Convergence o f the Difference Between ReliefFD Weight Values Over Consecutive
Values o f m

Although the graph presented in Figure 6.3.1.2, does not provide any extra information to aid the 

analyst in their final attribute selection decision, it does further emphasize, the initial volatility in 

the evaluated quality estimates, and the convergence o f the values to a specific stable value, for 

higher values o f m.

With regards to both the graphs presented in this subsection so far, it is difficult to asses the rank 

positions (highest to lowest) associated with each attribute for the whole range o f m values. Hence,
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the third and final graph presented in this subsection, presented in Figure 6.3.1.3, shows the rank 

positions associated with each attribute over the range o f m values. Where for each value o f m, the 

attribute with the highest associated quality estimate is ranked as first, and the attribute with the 

lowest associated quality estimate, is ranked as last. There are 23 attributes associated with this pre­

processing analysis, hence the lowest possible position an attribute can take is 23rd. The graph only 

displays the top 10 ranked attributes, based on their final ranking position (i.e. for m = 405).
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Figure 6.3.1.3: Attribute Rankings Over the Range o f m Values 

The graph presented in Figure 6.3.1.3, does not convey the convergence effect o f  the ReliefF 

algorithm over the range o f m values, as clearly as the previous two graphs. It does however, 

indicate the inconsistent nature o f the rank positions associated with each attribute for lower values 

o f m, which in general, becomes more consistent for higher values o f m.

For the top ranked attributes 1st (yellow) to 6th (pink), there is consistency for the larger values o f 

m, and total consistency from m greater than, or equal to 380. The attributes ranked 7th (turquoise) to 

9th (light green), are consistently ranked for values o f m over 265, between the 7th and 9th positions. 

The analyst cannot take their final rankings as being totally conclusive, but can say with confidence,
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that their rankings are in the range seven to nine. Similarly for the 10th, 11th, and 12th ranked 

attributes (11 and 12 not shown on graph) their final rank position may be inconclusive (in the range 

10 to 12), but the analyst can say with some confidence that the tenth ranked attribute is likely to 

have a ranking in the range ten to twelve for values of m greater than 360.

The graphs described within this subsection, provide the analyst with further insight into the final 

rank positions that are indicated by the ReliefF algorithm. Interestingly, and of particular relevance 

to this analysis, they clearly indicate that selection of the largest m value is of importance. It should 

be noted here though, that a deterministic approach to ReliefF was implemented (as opposed to a 

random sampling approach), for reasons described next. Finally, the graphs indicate that the analyst 

cannot take the final rank positions as conclusive. This was demonstrated within the final graph 

shown in Figure 6.3.1.3. Hence, the analyst should only use the results to aid their final decision, 

where they may consider other factors, such as, the results from alternative feature selection 

algorithms.

There were a number of issues relating to ReliefF, that require further consideration. Firstly, 

relating to the stability of the results. The number of iterations m, affected the precision of the 

attributes' final rankings. Increasing the number of iterations m, led to more stable quality estimates 

(because of the relative increase in sample size as m is increased). That is, for larger values of m, the 

associated quality estimates were more consistent between two or more runs of the algorithm (as 

demonstrated by Figure 6.3.1.1 and Figure 6.3.1.2).

It was not specifically stated by Robnik-Sikonja and Kononenko (2003), whether ReliefF was 

based on sampling with or without replacement (sampling with replacement seemed inferred, see 

Chapter 4 subsection 4.2.3.1 for algorithm description). In Robnik-Sikonja and Kononenko (2003), 

based on empirical evidence they suggested that, they typically observed stable results within 

twenty to fifty iterations. They also demonstrate an example that requires 300 iterations, but our 

results were contradictory. We required m to be much higher, up to twenty times the number of
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objects within the training set (for the FIBR data we required 10,000 iterations to achieve stable 

results, not shown here in software).

Interestingly, Kohavi and John (1997, pp. 7) reported a similar problem when utilising the

original Relief algorithm, and stated that:

“...we found significant variance in the relevance rankings given by Relief. Since Relief 
randomly samples instances and their neighbors from the training set, the answers it 
gives are unreliable without a very high number of samples. In our experiments, the 
required number of samples was of the order of two to three times the number of cases 
in the training set. We were worried by this variance, and implemented a deterministic 
version of Relief that uses all instances...”

Here, we implemented a similar deterministic approach to the ReliefF algorithm, by employing 

sampling without replacement, and allowing for m to equal up to the number of objects within the 

training set n. For m = n, it is effectively the same as sequentially going through and selecting each 

object within the training set once, as opposed to randomly sampling objects. Here though, random 

sampling was used, as it enabled the graphical demonstration, of how, the results converged to a 

stable solution as m tended towards n.

Interestingly, as m tends to infinity, the results based on sampling 'with' replacement converge to 

the solution based on sampling 'without' replacement (the deterministic approach). Kohavi and John 

(1997) reported a similar observation with Relief. Note however, sampling with replacement greatly 

increases the processing time as more iterations m are required before stability of results is 

achieved, hence sampling without replacement is also a more efficient alternative.

There may be a number of reasons why Robnik-Sikonja and Kononenko (2003) suggested using 

such relatively low values of m. Their empirical results appear to be based on large simulated data 

sets (up to 7,000 objects), where sampling with or without replacement may not have been an issue. 

Whereas, our preliminary tests included relatively smaller data sets (500 objects), that were 

imbalanced and had multiple decision classes. From these findings, for small difficult data sets 

(imbalanced, missing data, multiple decision classes), it may be pertinent to prescribe implementing 

the deterministic approach suggest here, or more simply, implementing a version of ReliefF that
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utilises a sequential approach that selects all n objects once (possibly using stratification for larger 

datasets).

6.3.2 RST Feature Selection Method Results

Continuing with the results o f feature selection based on the FIBR data, this subsection describes 

two graphs that were developed in association with the RST_FS algorithm described by Beynon 

(2004). The first graph to be presented, as shown in Figure 6.3.2.1, is an adaptation o f the three 

dimensional graph system presented in Beynon (2004). That is, a colour coded system has been 

utilised to distinguish between the attributes, as opposed to using a third axis with attribute names 

along the scale.
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Figure 6.3.2.1: RST_FS Graph, Depicting the Difference in QoC Over the Range o f /? Values for
each Subset o f Selected Attributes

To recap, the RST_FS graph as shown in Figure 6.3.2.1, indicates the disparity, or notional

distance between the Quality o f Classification (QoC) over the range o f /?, for the selected attributes

compared to the full set o f attributes. The initial attribute is selected by taking the attribute whose
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QoC is closest to the full set of attributes' QoC. This initial attribute is successively augmented with 

additional attributes, which in combination with the previous selected attributes, offer the greatest 

decrease in distance to the QoC of the full set of attributes. The process finishes when either the 

distance is zero, or all attributes have been successively selected. In the case presented in Figure 

6.3.2.1, it took eight attributes to attain a QoC equal to the full set of attributes.

The legend to the right of the graph, indicates the order in which the attributes were selected and 

hence ranked. Here, with GDP/head ranked as first (yellow) and Loan Loss Reserve/Gross Loans 

ranked last (dark green).

The full set of attributes is represented by the dashed red line, because at the point that the subset 

of selected attributes has equal QoC as the full set, the lines representing the selected subset and the 

full set are identical (overlapping). Hence, the selected subset also appears as a dashed line, 

indicated here by the dashed dark green.

Clearly, from Figure 6.3.2.1, GDP/head appears to make the most impact in terms of eliminating 

the notional distance between the QoC of the full set and that of the selected subset of attributes. To 

elucidate how much each additional selected attribute contributes to bringing the subset of selected 

attributes closer to the full set of attributes' QoC, a second graph was developed and is presented in 

Figure 6.3.2.2.

As described with regards to the previous graph, GDP/head has the most impact on reducing the 

distance between the QoC of the selected subset and full set of attributes, over the domain of /?. 

Within Figure 6.3.2.2, this “impact” (importance) is depicted by the gradient of the slope, with a 

steeper slope indicating more impact. The colour coded dashed lines help indicate how much 

“numerically” each attribute impacts on the feature selection process, for example, GDP/head 

reduces the notional distance from 1.0 to 0.55. The following four attributes ranked 2nd to 5th appear 

to be of relatively equal importance, in terms of the successive reductions in distance. The attributes 

ranked 6th and 7th, appear to have similar importance but less than the previous attributes, and the
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final attribute ranked 8th, appears to contribute the least to the selection process.
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Figure 6.3.2.2: QoC 'Distance' Gain for each Additional Selected Attribute 

As with the graphs described in the previous subsections, these graphs present the analyst with 

additional information, such as the contribution/importance o f  each attribute during the feature 

selection precess. This additional information will aid the analyst in making their final choice o f  

attributes to pass forward into any subsequent VPRS analysis (vein graph or re-sampling). Selection 

o f the final set o f attributes is discussed in the next subsection.

6.3.3 Final Attribute Selection

This section presents the final screenshot o f  the pre-processing software to be discussed within this 

chapter. Figure 6.3.3.1 displays the final rankings from each feature selection method collated into 

one table.
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Figure 6.3.3.1: Final Attribute Ranking and Selection 

The row headings within the table displayed in Figure 6.3.3.1, contain the attribute names, and 

the first four column headings indicate the feature selection methods used. The values within the 

columns represent the final rank position for each attribute associated with each feature selection 

method. The first two columns ReliefFC and ReliefFD's rankings range from 1st to 23rd. The 

RST_FS method's rankings range from 1st to the number o f attributes identified by the feature 

selection algorithm, in this case 8 , hence a lowest ranking o f 8th.

During the initial development o f the software, in particular regards to RST_FS, consideration 

was given to whether there may be circumstances where the analyst may wish to select more 

attributes than those identified by the RST_FS method, hence the RST phase one (RST_PH1) 

approach was developed (see Chapter 4 section 4.2.3.2 for more development explanation). 

RST_PFI1 simply ranks the attributes by their notional distance to the full set o f attributes (based on 

QoC over the range o f ft). Essentially, RST_PH1 is the first phase o f the RST_FS algorithm (as 

described in Chapter 4 section 4.2.3.2), and as such, it can be clearly seen that, GDP/Head is ranked 

both first for RST_PH1 and RST_FS in Figure 6.3.3.1, because GDP/head is notionally the closest 

attribute in terms o f  QoC to the full set o f attributes available in the data set.
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The RST PH1 method, was later dismissed as a creditable method for choosing further attributes 

in addition to those identified by the RST_FS method, because it was felt that the rankings 

associated with the RST_PH1 method had little meaning or relevance to those already ranked by the 

RST_FS method. Although, it is interesting to see that the rankings indicated by ReliefFC, ReliefFD 

and RST_PH1 do appear to have a high level of correlation. Table 6.1.2 indicates the Spearman’s 

rank correlations between those three methods.

ReliefFC ReliefFD R STP H  1

ReliefFC - 0.727* 0.810*

ReliefFD 0.727* - 0.810*

R S T P H 1 0.810* 0.810* -
Table 6.1.2: Spearman's Rank Correlations Between Three Feature Selection Methods 

* Correlation significant at the 0.01 level (1-tailed)

Although the RST_PH1 is not creditable as a method for choosing further attributes in addition 

to those identified by RST_FS, it does appear, that based on the correlations in Table 6.1.2, it may 

still be useful as a simple feature selection method in itself.

It was found that, the RST_FS method, perhaps due to its stepwise nature (see Chapter 4 section

4.2.1.3), was too restrictive as a feature selection method. Moreover, subsequent VPRS analyses 

based on the RST_FS method typically only identified one reduct based on all the attributes input 

into the VPRS analysis. Hence, it was hypothesised that RST FS was tending to identify a single /?- 

reduct, rather than a set of attributes allowing for a range of /?-reducts. This hypothesis is further 

strengthened by the fact that the RST_FS algorithm draws many similarities with the QuickReduct 

heuristic described by Chouchoulas and Shen (2001), which is a suboptimal method for identifying 

reducts.

The subsequent VPRS analyses based on attributes identified by the feature selection methods 

other than RST_FS, namely, ReliefFC, ReliefFD and RST PH1, tended to, provide more of a varied 

range of /?-reducts, in terms of the number of /?-reducts, the number of attributes associated with 

those /?-reducts, the QoC and /7-ranges associated with the set of /?-reducts (only the results
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associated with ReliefFD are shown in the following chapter, due to constraints on the size of this 

dissertation).

Finally, the table shown in Figure 6.3.3.1 allows the analyst to select, through the use of tick 

boxes, which attributes they wish to pass forward into the subsequent VPRS analysis. Here, the top 

eight ranked attributes identified by the ReliefFD method were chosen (for reasons explained next). 

As VPRS utilises the discrete training data, it was concluded that, the attributes identified by 

ReliefFC were less appropriate than those identified by ReliefFD, since ReliefFD was based on the 

discrete training data. Additionally, the developed RST_PH1 method was deemed as experimental, 

whereas ReliefF is an established method, hence it was decided to use ReliefFD rather than 

RST_PH1.

With regards to the number of attributes selected, for the subsequent VPRS analyses; initially ten

attributes were considered, but it was found that the subsequent VPRS analyses, did not yield

favourable results. That is, it typically appeared to default to identifying one /?-reduct, based on the

full set of attributes, which were associated with a large number of weak rules, with no apparent

general trend. Weiss and Kulikowski (1991) appear to suggest an explanation, and state that, in

certain situations, having too many attributes relative to the number objects, can result in poorer

predictive performance, and overfitting. They stated further that (pp. 73):

“While we like to think that the more information the better, one needs a corresponding 
increase in the number of samples to determine what information is useful.”

By only taking eight attributes, this improved our range of /?-reducts and identified /?-reducts 

with more general sets of rules, with good predictive accuracies (based on a number of subsequent 

VPRS analyses). It was reasoned that, by including too many attributes in the analyses, the number 

of condition classes would increase (because of the potential extra combinations of attribute values 

associated with the objects), which would have the effect of creating many weak rules (say based on 

condition classes only containing one object). In effect, by including too many attributes, it could be 

considered as, saturating the VPRS analysis with data (in the attribute sense). One alternative option
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would be to reduce the granularity of the data, by either using an alternative discretisation method 

or relaxing the parameters within the FUSINTER algorithm, to allow it to reduce the number of 

intervals associated with each attribute (see Chapter 4 section 4.1.3.2 for FUSINTER parameter 

setting).

As described previously, the eight attributes identified by RST FS were too impacting as a 

feature selection method, because, there was no further scope for identification of /?-reducts within 

the subsequent VPRS analyses. However, RST_FS may be a good indicator, of how many attributes 

were required in the subsequent analysis, which could aid the analyst.

The eight attributes shown as having been selected in Figure 6.3.3.1, are subsequently utilised in 

Chapters 7 and 8. Additionally, at this stage the analyst has the opportunity to save the current pre­

processing analysis by selecting the save option under the pull-down 'File' menu as seen at the top 

left comer of Figure 6.3.3.1. The system, saves the separate training and validation sets, and only 

includes data associated with the attributes selected by the analyst in Figure 6.3.3.1. To continue to 

the VPRS analysis, the analyst can choose the continue option under the 'File* pull-down menu.

6.4 Summary

This chapter has introduced and described the developed pre-processing software, elucidating the 

pre-processing and feature selection stages within the developed software, applied to the FIBR data 

set described in Chapter 5. The separation of the data into training and validation sets was 

exposited, and the results of the discretisation of the data set based on the FUSINTER algorithm 

was presented and described.

A number of graphs were presented, associated with the feature selection methods described in 

Chapter 4, and implemented within the software, to aid the analyst in their final attribute selection. 

The results of the feature selection algorithms were compared, most notably, RST_FS appeared too
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restrictive, and the results of the other three feature selection methods, namely, ReliefFC, ReliefFD 

and RST_PH1 appeared correlated. The final attribute selection was demonstrated, utilising the 

results from RelieFD, where a novel tick box selection system implemented within the developed 

software, enabled the analyst to select which attributes to pass forward into the subsequent VPRS 

analysis.

The final set of attributes selected within this chapter, are now utilised in the subsequent VPRS 

vein graph and re-sampling analyses, presented in Chapters 7 and 8, respectively.
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Chapter 7

Vein Graph Software Analysis of the 
Example and FIBR Data Sets

This chapter introduces the developed VPRS vein graph software, based on the vein graph 

described by Beynon (2002) (discussed in Chapter 2 sections 2.3). Continuing from the pre­

processing phase described in the previous chapter, this chapter elucidates a VPRS vein graph 

analysis of the FIBR data set based on the final attributes selected during the pre-processing. This 

presentation is a precursor to the larger elucidation of the developed VPRS re-sampling software 

presented in Chapter 8.

The vein graph analysis software allows the analyst, via a simple point and click interface, to 

inspect and select the /?-reduct which they believe is most appropriate to their analysis. That is, 

selection of a /?-reduct which has a low p  threshold value, allowing for a greater level of 

misclassification, but with a relatively high proportion of the objects given a classification; or 

selection of a /?-reduct which has a high p  threshold value, allowing for a greater level of accuracy, 

but fewer objects given a classification.

Within the software analysis, the rules induced from the selected p -reduct are applied to both the 

training and the validation sets. The predictive results based on both the training and validation sets 

are presented separately and broken down further into those objects that are predicted by a rule
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which matches an object's condition values, and objects that are predicted by the nearest rule 

method, based on the equation introduced by Slowinski (1992) (discussed in Chapter 3 Equation 

3.6.1).

The sections within this chapter are briefly described below:

•  Section 7.1 Vein G raph Analysis of the Example Data Set. This section demonstrates the 

VPRS vein graph analysis of the simple example data set introduced in Chapter 2 section 2.1. 

The purpose of this short analysis, is to provide some continuity with Chapter 2, and to give 

confidence that the developed software can produce results equivalent to those shown in 

Chapter 2, and are verifiable by hand, by the reader.

•  Section 7.2 Vein G raph Analysis of the FIBR Data Set. This section presents the VPRS vein 

graph analysis of the FIBR data set described in Chapter 5. Including, descriptions of the 

different information panels incorporated within the software, and predictive performances of a 

selected /?-reduct, on both the training and validation sets.

•  Section 7.3 Comparison of FIBR /?-reducts. This section compares the properties of the /?- 

reducts identified within the FIBR data set, in terms of matching or nearest rule classification of 

objects, and the confusion matrix.

•  Section 7.4 Summary. Summarises the results from sections 7.2 and 7.3, and draws conclusions 

which have implications for the following VPRS re-sampling analyses presented in Chapter 8.

7.1 Vein Graph Analysis of the Example Data Set

This section describes the VPRS vein graph software. If the analyst initially selected the vein graph 

analysis option during the set-up phase (see Chapter 6 section 6.1); on choosing the 'continue' 

option from the pull-down menu in the pre-processing software (after the analyst is satisfied with 

the selected attributes), the software proceeds to perform the VPRS vein graph analysis. They are
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initially presented with a new frame containing a tabbed panel displaying the training set, as shown 

in Figure 7.1.1.

As with the pre-processing software, the tab (tab name) o f the panel o f information that is 

currently selected, is highlighted in a light shade of grey. With regards to Figure 7.1.1, the 'Training 

Set' panel is selected. The tab (tab name) o f the panels that are not currently selected (therefore not 

visible) are indicated by a darker grey.

In addition to the frame shown in Figure 7.1.1, when the analyst continues from the pre­

processing phase a second smaller frame also appears as shown in Figure 7.1.2. This smaller frame 

acts as a quick reference legend, displaying the condition attribute names (discussed in more detail 

next).

D a t a f i l e *  P r o t o t y p e  m a l e f e m a ! e d a t a . t x t  P o i n t  a n d  C l i c k  I n t e r f a i

Decision

_________Training Set j Validttion Set  j Reducts Analysis

Figure 7.1.1: Initial Screenshot of the VPRS Vein Graph Analysis, Displaying the Training Set

Attributes

1 .  C 1

2 .  c 2

3 .  c 3  

A .  c 4

а . c s

б .  c 6

Figure 7 .1.2: Attribute 
Legend

The training set displayed in Figure 7 .1.1, is that o f the simple example data set, as discussed in 

Chapter 2 (Table 2 .1.1). The column headers display the condition attribute names, here c t to C6, 

input from the data file (more practical names can be used). In addition, the attributes are preceded 

by an index I to 6 , used for reference purposes. This reference index is most useful during the /?-
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reduct selection phase, where describing each /?-reduct by its associated condition attribute's name, 

would be awkward for attributes with longer names (shown later). In addition, the floating legend20 

(Figure 7.1.2), allows the analyst to quickly reference the index for the condition attributes' full 

names. The floating legend is also useful where the condition attribute headings are too large to fit 

in the column headers of tables within the information panels, such as, that shown in the next 

section with regards to the analysis of the FIBR data.

Within the tabbed panel displayed in Figure 7.1.1, the analyst can select the 'Validation Set' tab to 

view the validation set, but in this demonstration, no portion of the data was set aside for the 

validation set (hence no screenshot is shown here). Also note that, during the pre-processing phase, 

prior to this VPRS vein graph analysis, the analyst had the option under the discretisation settings to 

select a setting indicating that the input data was already of a discretised format, and required no 

further discretisation. Hence, this allowed the simple example data set to be input directly into the 

analysis, in a pre-discretised format.

By selecting the 'Reducts' tab the analyst is presented with the software implementation of the 

vein graph, as shown in Figure 7.1.3. The vein graph, has been developed to facilitate an interactive 

“point and click” interface. The analyst may use the mouse to select a /?-reduct which is most 

appropriate for their analysis requirements. The selected /?-reduct is highlighted in dark grey (all p  

sub-domains are highlighted), within Figure 7.1.3 /?-reduct {c4} has been selected.

The position of the mouse pointer is indicated by the red cross-hairs. For the cross-hairs' current 

position within the p  domain (0.5, 1.0], the associated p  value is displayed in red (here the p  value is 

0.6377). The Quality of Classification (QoC) associated with the highlighted /?-reduct over the p  

sub-domain, is displayed in blue, below the p  value (here the QoC value is 1.0), and can also be 

found by inspection of the top line. The top line displays in blue, the differing levels of QoC 

associated with the full set of condition attributes C, over the associated p  sub-domains. Note that

20 Floating in that, it is not attached to any other frames, and can be minimized or m oved to a different position on the 
screen.
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the vein graph displayed in Figure 7.1.3 is equivalent to that presented in Beynon (2001) (shown in

Chapter 2 section 2.3 Figure 2.3.1). Figure 7.1.3, shows the selection of/?-reduct {c4}.

0A 1 « |
*

Q 1 0.57

Ml ------ .- 'f-  *--------- —| ~
■ 0.6377 
1 1.0

_________ L L S L
(3,6]

I---------------------------------------------------
I-------------------------------------1 * "I

f i  2 53
1 1

|
[2.3.41

i
1 . . . . . .  ------  . . . .  . .

(2 3 51 I
i

f l  4 51
I

| .......................  - ................
(2 .4  51

1
I ..........  - ........

(2.5.61 I .
1

i
j-------------------------------------------------------------

(4 5 61 1________ l VI________ 11 J I

Training Set Validation Set [ Reducts 1 Analysis

Figure 7.1.3: Vein Graph, Displaying the Selection o f /?-reduct {c4}

On selecting a /?-reduct from the vein graph, the 'Analysis' panel, as shown in Figure 7.1.4, is 

updated to reflect the analysis based on the rules associated with the selected /?-reduct. From here, 

the analyst has the further option o f choosing, where applicable, the /?-reduct over a different p  sub- 

domain, using the top portion o f the interface (the currently selected p  sub-domain is highlighted in 

dark grey). Selection o f a different p  sub-domain for the /?-reduct {c4} is shown in Figure 7.1.5 (as

shown in Chapter 2 section 2.3, /?-reducts may be associated with more than one p  sub domain).

0.5 I jO
1 1 i i
1 ' i I

0.57

mam—m

tion: 5/7 71.42%

ow iT
1.0

Reduct {4} Number

H U  1

f Rules: 2 Quality or Classification: 7/7 1 00.00% Quality of Approxima

Rules Training Set Predictions Validation Set Predictions Predictive Summary Stats

' i ...... f ..................... Decision |( Support || Correct Strength Certainty

Rul«1  I n  t e n 0 3 |2 0.4286 0.6667
Rule 2 Ilf 0 then L  4 3 0.5714 0.7500

| _ _ _  fj— —  |

Training Set Validation Set Reducts I Analysis

Figure 7.1.4: The Analysis Panel, Displaying Rules Associated with the p -reduct (c4|  Over the p
Sub-domain (0.5, 0.66]
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Rule 1 IlfO then 1 4 |3 0.5714 10.7500 j
4 3________________ i

Training Set Validation Set ReductsB  Analysis i

Figure 7.1.5: The Analysis Panel, Displaying the Rule Associated with the /?-reduct {c4} Over the p
Sub-domain (0.66, 0.75]

Figure 7.1.4 displays the selection o f the /?-reduct {c4} over the p  sub-domain (0.5, 0.66] and its 

two associated rules (following the rule construction procedure outlined throughout Chapter 2). The 

condition attributes associated with the /?-reduct {c4} are displayed below and to the left o f the 

single /?-reduct vein, here {4}, that is condition attribute c4. Additionally, the number of rules (i.e. 

two), QoC 7/7 (or 100%) and the QoA 3/4 (or 71.4%) associated with the /?-reduct {c4} are also 

displayed underneath the vein line.

Figure 7.1.5 displays the rules associated with /?-reduct {c4}, but over the P sub-domain (0.66, 

0.75]. It can be clearly seen, that by selecting a higher range o f /?, decreases the QoC (number o f 

objects within the training set given a classification 4/7) but increases the QoA (number o f objects 

given a classification, that have been classified correctly 3/4). This is indicative o f the inverse 

relationship between QoC and QoA, as highlighted in Beynon (2001).

The rules associated with the /?-reduct {c4}, are understandably going to be based on a single 

condition attribute. Hence for example, rule 1 in Figure 7.1.5, would be read as, “If c4 = 0 then d\ = 

1”, it is supported by four objects, three o f which are classified correctly, leading to a strength o f 

0.5714 (4/7) and a certainty o f 0.75 (3/4). To demonstrate a more interesting set o f rules, and to 

provide some continuity with the example shown at the end o f Chapter 2 section 2.2.3, Figure 7.1.6 

displays the rules associated with the selected /?-reduct (c3, Ce).
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Figure 7.1.6: The Analysis Panel, Displaying Rules Associated with the /?-reduct (c3, c6}

As would be expected, according to the example given in Chapter 2, the /?-reduct (c3, c*} is 

associated with three rules, a QoC o f 7/7 (100%) and a QoA o f 5/7 (71.42%). It is interesting to 

note at this stage, that two o f the rules, rule 1 and rule 3, each have a certainty o f 1. As a measure o f 

possible future performance (predictive accuracy) o f these rules, their certainty values taken on their 

own would be misleading, as the strength associated with each rule is only 0.1428. Essentially the 

rules are only categorising one object each. In more complex analyses, rules with a certainty o f 1, 

that only categorise a single object may be considered spurious. The more advanced VPRS re­

sampling software assists the analyst in identifying possible spurious rules (as will be shown in 

Chapter 8), it allows the analyst to select which rules they wish to involve in the final predictive 

analysis.

There are three further information panels available to the analyst under the 'Analysis' tab within 

this VPRS vein graphs software; namely 'Training Set Predictions', 'Validation Set Predictions' and 

'Predictive Summary Stats', but as no validation set was taken for this example data set, it is more 

appropriate and productive to discuss these three panels, within the context o f the next section, 

based on the more involved FIBR data set analysis.
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7.2 Vein Graph Analysis o f FIBR Data Set

This section applies the vein graph analysis to the FIBR data set, based on the attributes selected in 

the previous chapter. The screenshot o f the legend shown in Figure 7.2.1, lists the attributes used 

within the analysis (identified in Chapter 6), this legend is available to the analyst during the 

analysis, for referencing the condition attribute names. With regards to the analysis presented within 

this section, a single /?-reduct is selected for investigation and demonstration o f the software based 

results. However, section 7.4 of this chapter will make comparisons over the full set o f identified /?- 

reducts.

The vein graph shown in Figure 7.2.2 is associated with the FIBR data set based on the condition 

attributes displayed in Figure 7.2.1. In Figure 7.2.1, it is shown that there are only six /?-reducts 

identified when using this selected set o f attributes.

A ttribu tes

1. Loan Loss R e se rv e  / G ross Loans

2. Loan Loss R es / Im paired Loans

3. Im paired Loans / G ross Loans

4. Non Int Exp / Avg A sse ts

5. R e tu rn  on A verage Equity (ROAE)

6. EIU O verall C ountry Risk

7. EIU Banking S ec to r  Risk

8. GDP/head

Figure 7.2.1: Attribute Legend for 
the Considered FIBR Data Set
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Figure 7.2.2: Vein Graph Associated with the FIBR Data Set

Five out o f the six identified /?-reducts shown in Figure 7.2.2, have a QoC of 0.95 (lying in the /? 

sub-domain (0.5, 0.67]), including the selected /?-reduct (c2, c4, c8}. Where there is no /?-reduct over 

a certain domain o f /?, the system defaults to the full set o f attributes C, that is, as shown by the sixth 

/?-reduct (ci, c2, C3, c4, C6, C7, c8}, with nine associated/? sub-domains ranging in (0.6667, 1.0].

Within Figure 7.2.2, the three condition attributes associated with the selected /?-reduct (c2, c4, 

c8}, belong to three o f the five represented categories o f the CAMELS model (n.b. the 'M' category 

was not considered, see Chapter 5 section 5.5). That is, attribute '2* (Impaired Loans / Gross Loans) 

belongs to the Asset quality category (A), attribute '4' (Non Int Exp / Avg Assests) belongs to the 

Earnings category (E), and attribute '8 ' (GDP/head) belongs to the Sensitivity to market risk 

category (S). Furthermore, it is interesting to see that both attributes '4' and '8 ' are prevalent in all 

identified /?-reducts, and attribute '2 ' is associated with five o f the six identified /?-reducts.

It is hypothesised that, attribute '8 ' could be acting as a global discriminant (n.b. the FIBR is a 

rating that is applied to banks globally), which was the original intention behind its inclusion during 

the attribute/data selection rationale given in Chapter 5 section 5.5. With regards to attributes '2' and 

'4', these attributes could be acting as the discriminants, that further differentiate banks by refining 

the discernibility potential within the induced rule sets. As a pertinent but interesting side point, the 

recently collapsed IndyMac bank within the U.S.A (previously that countries seventh largest 

mortgage lender), reported on March 31st 2008 that its impaired loans had reached $1.85 billion, an 

increase 40.56% from the previous quarter (we assume as a percentage o f gross loans) which in turn 

caused loss o f earnings, and hence liquidity and capital problems. The bank was taken into 

conservatorship by the FDIC on July 11th 2008, two days after Standard & Poor's downgraded its
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credit risk rating from a 'B' to a 'CCC' and warned its rating would most likely see another 

downgrade (FDIC, 2008; Reuters, 2008b).

Returning to the selection o f /?-reduct {C2, c4, eg), Figure 7.2.3 displays the 13 rules associated 

with it. The cross-hairs indicate that, the jS value is set to 0.5131, which is within the /?-reduct's /? 

sub-domain o f (0.5, 0.5238], and is associated with a QoC of 0.9506. Note that, the /?-reduct {C2, c4, 

eg} has an upper /? threshold value equal to the lowest certainty value belonging to rule 8, shown in

Figure 7.2.3.
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Figure 7.2.3: Analysis o f the /?- reduct (c*2, c4, eg}, which has 13 Associated Rules

Giving some interpretation to the rules shown within Figure 7.2.3, o f the 13 rules shown, rule 1 

based only on GDP/head is the strongest (rule supported by 112 banks, giving a strength value o f 

112/405 or 0.2765) and has the second highest certainty value (correctly predicts 92 banks, giving a 

certainty value o f 92/112 or 0.8214). It is interesting to note that almost a third o f all the banks are 

given a classification based on just rule 1, associated with only one condition attribute, namely 

GDP/Head. Moreover, GDP/head appears to be a factor in all thirteen rules, strengthening the 

argument that GDP/head could be acting as a “global” discriminant.
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There are a number of rules within the rule set, which have relatively high support values but are 

associated with weak certainties, for example, rules 6 and 8. This is understandable, since the p- 

reduct {ci, C4, eg} is associated with a low p  threshold value, which therefore implies that, the 

analysis is including rules associated with a high degree of misclassification.

Furthermore, there are a number of rules with low support values (therefore low strength), but 

have high certainty values, for example, rules 7, 11 and 13. These rules tend to be associated with 

condition classes containing only a few banks (objects21), or in the extreme case, such as rule 7, a 

single bank. Strong conclusions, cannot be drawn on the rules associated with low strengths, and 

high certainty values. Hence, perhaps with regards to /Treducts associated with low p  threshold 

values, only the more general rules, concomitant with, relatively high support (higher rule strengths) 

and reasonably high levels of certainty should be considered. This may be particularly true when 

trying to establish any general trends, relating condition attribute values to the decision classes (here 

financial variables to FIBR grade).

Here in terms of the FIBR, the general trend suggests that a bank domicile within a country that 

has a high GDP/head, is more likely to have a relatively high bank rating. Loan Loss Res/Impaired 

Loans (index 2) and Non Int Exp/Avg Assets (index 4), appear to be important additional factors to 

a bank's final rating classification (grade) (as considered with regards to Figure 7.2.2). Where Loan 

Loss Res/Impaired Loans, is associated with a relatively high value (discrete value of 1) and Non 

Int Exp/Avg Assets is associated with a relatively low value (discrete value of 0), this could imply 

the difference between a bank being classified with a 'B' (1) rating, or a 'C' (2) rating (see rule 5).

Rules 10, 11 and 13 appear more difficult to interpret. That is, why would banks within countries 

that have apparently high levels of GDP/head (discrete value 5), not be associated with higher 

ratings? Rules 11 and 13 could be discounted as their rule strengths are quite weak (0.0074 and 

0.0099 respectively), and would give the analyst no confidence in their future performance. Rule 10

21 As a convention with regards to the FIBR data, objects w ill be referred to as banks throughout the remainder o f  this 
chapter, and Chapter 8.
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which has the 5th highest strength (0.1062), appears to suggest that a low value for Non Int Exp / 

Avg Assets would bring the rating down, but note the weak certainty of rule 10. It has the third 

lowest certainty value (0.6279), and perhaps on this basis, rule 10 could be discredited. Indeed Non 

Int Exp / Avg Assets (non interest expenses or overheads to average assets) is a measure of a banks 

operational costs, hence conventional wisdom would suggest that, in generally a lower value would 

indicate an efficiently operating bank (Bankscope, 2007).

Finally, it is pertinent to note, that the rule set associated with the /?-reduct (c2, c4, c8} contains no 

rules capable of classifying banks to the 'A' (0) and 'E' (4) grades. It is hypothesised that the p- 

reduct {c2, c4, c%) does not contain enough condition attributes, hence enough detail, to produce a 

rule set capable of distinguishing between the three well represented bank ratings 'B' (1), 'C' (2) and 

'D' (3), and the under represented bank ratings 'A' (0) and 'E' (4).

In summary, it is reasonable to assume, that the threshold value associated with the selected p- 

reduct {c2, c4, c%) is too low, because it lacked the capability to predict banks belonging to all five 

rating grades. That is, 'A' and 'E' grade banks would be classified to the other three grades. Hence, it 

is presumable that selecting a /?-reduct whose P sub-domain is associated with a higher p  threshold 

value, may be inclusive of rules that predict the 'A' (0) and ’E' (4) grade banks, and in addition, 

removes the strong rules that are associated with weak certainty values (such as rule 10 in Figure

7.2.3). Although, it should be noted that /?-reducts whose ft sub-domains are associated with higher 

p  threshold values, are typically linked with more complex, less interpretable rules (shown later). 

This issue echoes Breiman's (1996a) statement referenced earlier in Chapter 3 section 3.5, 

suggesting that what we can gain in accuracy, we may loose in interpretability.

7.3 Prediction of FIBR Data Set

The developed VPRS vein graph software, utilises the rules associated with a selected /?-reduct, to
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predict both the training and the validation sets. These predictive results, are presented through a 

number o f separate results panels, which elucidate a range o f aspects associated with the prediction 

process. This includes, amongst other aspects, informing the analyst to which banks were predicted 

by matching rules (matching their condition attribute values), and which were predicted using the 

nearest rule method, as described by Slowinski (1992) (see Chapter 3 section 3.6). This section 

discusses these aspects in detail, beginning with the predictions made on the training set.

In Figure 7.3.1, the 'Correctly Predicted' panel, displays the banks from the training set, predicted 

correctly by rules associated with the /?-reduct {C2, c4, eg}, which have matching condition values. 

The adjacent panel, namely the 'Incorrectly Predicted' panel, contains those banks from the training 

set, that have been incorrectly predicted by rules, which have matching condition attribute values, 

shown in Figure 7.3.2 (discussed later). Banks from the training set predicted correctly and

incorrectly based on the nearest rule method are described later in this section.
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Figure 7.3.1: Information Panel Displaying Banks from the Training Set, Correctly Predicted by 
Matching Rules from the Rule Set Associated with /?-reduct {0 2 , c4, c8}

Describing the 'Correctly Predicted' panel presented within Figure 7.3.1, the row headers display,

Page 177



in the left of the row header cell, a simple row index for reference purposes, and to the right, the 

banks original index value, read in from the data file (not successive values since banks in the 

validation set are not included). The index value to the right is useful to the analyst, because it 

allows them to find its original row position either under the 'Training Set' panel (which also 

indicates the banks original index values read in from the data file), or the original 'Data Set' panel 

(both of which are still accessible through the pre-processing software, see Chapter 6 section 6.2), 

and hence this enables the analyst to view the banks condition attribute values.

In Figure 7.3.1 the 'Actual' column displays the decision class values 'O' to '4' associated with 

each bank (values 'O' to '4' represent FIBRs 'A' to 'E', respectively). The 'Predicted' column displays 

the decision class predicted by the matching rule from the rule set (described next). The 'Closest 

Rule' column displays the closest (nearest) rule based on Stowinski's (1992) distance measure. The 

'Correct Rules' column indicates which rules would have correctly classified the bank.

The remaining columns display the distance measure between each rule and the predicted banks. 

It is notable that, because these banks have been predicted by a rule which exactly matches the 

banks condition values, then intuitively, one of the rules will have a distance measure of zero. For 

example, bank 15 in row 0, is predicted correctly by rule 2, which has a distance measure of zero; 

therefore rule 2 has been recorded as the closest rule. The decision class value (FIBR grade) for 

each rule is displayed in the brackets to the right of the respective column heading, for example, 

'rule 1 (1)' classifies banks to decision class '1'. The table can be scrolled horizontally to view the 

full set of rules. Where banks are referred to as 'predictable' in the remainder of this dissertation, 

this is referring to them being predictable by matching rules (not Stowinski's, 1992, nearest rule 

method).

As stated earlier, the banks from the training set, predicted incorrectly by rules which have 

matching condition values, are displayed under a separate, but adjacent panel, as shown in Figure 

7.3.2.
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Figure 7.3.2: Information Panel, Displaying Banks from the Training Set, Incorrectly Predicted by 
Matching Rules from the Rule Set Associated with /?-reduct (c2, C4 , Cs}

The format o f the information displayed in Figure 7.3.2, is identical to that described previously 

for Figure 7.3.1. Note here though, the 'Correct Rule' column displays the value 'NA' (None 

Available), in regards to the banks whose actual decision class values were 'O' ('A' grade banks), as 

there are no rules capable o f predicting these banks correctly. Intuitively, this is a consequence o f 

the earlier realisation that, the rule set contained no rules capable o f classifying either the decision 

classes 'O' ('A' grade banks) or '4' ('E' grade banks). The analysis presented in Figure 7.3.2, may be 

useful to an analyst who is interested in seeing the nearness o f the rules other than the closest rule, 

and may give them further incite into the rating mechanism.

Moving on to discuss those banks predicted by the nearest rule method. Figure 7.3.3 displays 

those banks which have been correctly classified by the nearest rule method. Figure 7.3.4 presents 

the same information to that in Figure 7.3.3, but scrolled to the right so that more o f the rule 

distance measures are visible.
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Figure 7.3.3: Information Panel, Displaying Banks from the Training Set, Correctly Predicted by the 
Nearest Rule method, from the Rule Set Associated with /?-reduct {c2, c4, c8}
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Figure 7.3.4: Rule Distances for Rules 1 to 9, Associated with /?-reduct {C2, c4, c8}, for Banks 
Classified Correctly by the Nearest Rule Method

The format o f the table displayed in Figure 7.3.3 is similar to those described previously in 

Figures 7.3.1 and 7.3.2. Note here though, because the closest (nearest) rule is not a matching rule, 

the distance o f the closest rule is above zero. For example, bank 194 in row 0 o f  Figure 7.3.3, is 

predicted by rule 8; it can be seen from Figure 7.3.4, that the distance o f rule 8 to the condition 

attribute values associated with bank 194 is 0.0833. Where there is more than one rule with equal 

lowest distance measure to a bank, the rule strength and certainty measures are used to discern 

between each candidate rule (as per the description in Chapter 3 section 3.6).

Figure 7.3.5, the 'Incorrectly Predicted' panel, displays those banks predicted by the nearest rule 

method, but have been incorrectly predicted.
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Figure 7.3.5: Information Panel Displaying Banks from the Training Set, Incorrectly Predicted by 
the Nearest Rules from the Rule Set Associated with /?-reduct {c2, c4, c8}

In Figure 7.3.5, again, the 'Correct Rule' column displays the value 'NA' with regards to those 

banks whose actual decision class values are '4' ('E' grade banks), which as realised previously, is a 

consequence o f the respective rule set containing no rules capable o f predicting decision class '4' 

('E' grade bank).

The results presented in Figure 7.3.3 to Figure 7.3.5 shows that, only a small proportion o f the 

training set is actually predicted using the nearest rule method (only nine banks in Figure 7.3.3, and 

11 banks in Figure 7.3.5). Here, the limited number o f banks predicted by the nearest rule method, 

is an effect o f selecting a /?-reduct associated with a low ft threshold value, which has, consequently, 

allowed for a large portion o f the banks in the training set, to be given a classification, be it 

correctly or incorrectly by a matching rule.

Within the developed VPRS software, exact values on the number o f banks classified, and the 

predictive accuracies o f the rule set on the training set, are presented through three additional 

information tables, within three selectable panels. Namely, the 'Predictable Objects Summary 

Table', the 'Nearest Rule Objects Summary Table' and the 'Combined Summary Table', each o f 

which are described next.

Firstly, the 'Predictable Objects Summary Table', shown in Figure 7.3.6, displays summary



information based on those banks predicted by rules with matching values (both correctly and 

incorrectly).
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Figure 7.3.6: Summary Table for Training Set Banks Predicted by Matching Rules from the Rule
Set Associated with /?-reduct {ci, C4 , eg}

Within Figure 7.3.6, the table shows the number o f banks in the training set (405); the number o f 

banks classified by matching rules (385), and o f those banks, the number o f them predicted 

correctly (287) and incorrectly (98). In addition, it displays as a percentage, the predictive accuracy 

of those 385 banks that have been predicted correctly, that is 74.54% (287/305). This 74.54% value, 

is equivalent to the displayed QoA (as a percentage), displayed below the “vein line” on the far right 

of the screenshot. This is understandable, because the predictive accuracy, is based on applying the 

rules to the data they were constructed upon, namely the training set. Moreover, the predictive 

accuracy could be considered the apparent predictive accuracy on the banks that are predictable (see 

Chapter 3 section 3.1). This is an important point, because the QoA value is known prior to 

applying the rule set to the training set. Hence, with regards to the VPRS framework, the apparent 

predictive accuracy is known without the need for further calculations.

The lower portion o f the table in Figure 7.3.6, displays information cross referencing the 'Actual' 

decision classes (rating grades) o f the banks, and the 'Predicted' decision classes o f the banks, 

through the implementation o f the confusion matrix (shown in Chapter 3 subsection 3.2.1). To
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describe further, 15 ’A' (0) grade banks have been incorrectly classified as 'B' (1) grade banks; 157 

'B' (1) grade banks have been correctly classified, but 20 have been incorrectly classified as 'C' (2) 

grade banks, and so forth.

The final column of this confusion matrix displays the predictive accuracies associated with each 

individual decision class. For example, 88.7% of the 'B' (1) grade banks have been classified 

correctly. These predictive accuracies play a key role in determining the performance (predictive 

capability) of the classifier (the /?-reduct and its associated rules), because the predictive accuracy of 

74.54% based on all the decision classes,22 does not reflect the fact that the predictive accuracies 

over the five individual decisions classes, predictable by the rule set, varies between 0.0% and 

88.70%.

Displaying the range of predictive accuracies over all the decision classes (the confusion matrix), 

allows for a level of transparency which, may be lacking from, or not reported within many studies 

(Poon et al., 1999; Oelericha and Poddig, 2006). Clearly, quoting the single overall predictive 

accuracy could be misleading and indeed with reference to the analysis based on the validation set 

(shown later), this variance between the predictive accuracies of the individual decision classes is 

magnified. Moreover, when dealing with an imbalanced data set, such as the FIBR data, there is a 

likelihood that, the well represented decision classes will be associated with a relatively high 

predictive accuracy, and the under represented decision classes will be associated with a low 

predictive accuracy, but based on the overall predictive accuracy, the dominance of the larger well 

represented decision classes would mask the disparity.

A final pertinent observation, with regards to the distribution of the predicted banks within the 

confusion matrix shown in Figure 7.3.6, is that, 89.8% (88/98) of the incorrectly predicted banks are 

at most, only one decision class away from their actual decision class. This is also reflected in the 

later validation set analysis (see Figure 7.3.9). These banks could be border line cases, and by

22 Note the value of 74.54% is not the average of the individual predictive accuracies associated with each decision 
class.
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selecting a /?-reduct associated with a higher p  threshold value (which typically implies the /?-reduct 

is associated with more condition attributes, and hence, a larger more complex, potentially more 

accurate rule set), may allow for more banks to be correctly classified. Choosing a /?-reduct with a 

higher ft threshold value, appears to “thin out” these border line cases, particularly with regards to 

the training set. This trend though, is not reflected in the later validation set analysis. Moreover, it is 

shown in the next section, that by choosing a /?-reduct too far to the right of the vein graph, that is, 

/?-reducts whose ft sub-domains are associated with high p  thresholds, can lead to overfitting of the 

classifier (the p -reduct and associated rules). Additionally, they are associated with high, but 

misleading predictive accuracies based on the training set, as there is no noticeable improvement on 

the more important predictive accuracies based on the validation set (more important since the 

predictive accuracies based on the validation set are less biased, and the analyst can take more 

confidence from them, see Chapter 3 section 3.1). In fact, it can impair the predictive performance 

on the validation set. These issues are presented, in more depth, within the next section.

With regards to bank rating prediction, and an analyst's investment strategy. If it is the case that 

the majority of misclassified banks are typically predicated only one rating grade away from the 

true grade, then there may be an argument that, the losses attributed to the incorrectly predicted 

banks, are in some sense minimalised.

Considering next, the 'Nearest Objects Summary Table' panel as shown in Figure 7.3.7, it 

displays summary information based on those banks predicted, both correctly and incorrectly by the 

nearest rule method.

The format of the table within Figure 7.3.7 is identical to that described in Figure 7.3.6. Here, 

there is less information displayed within the confusion matrix portion of the table, due to there 

being fewer banks predicted by the nearest rule method. The most interesting point to note here, is, 

the poor predictive performance, with only nine out of the 20 banks (45.0%) classified correctly 

(note they are all predicted 'B' grade banks). From experience, based on this, and other testing
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analyses undertaken during the software development, the poor predictive performance associated 

with the nearest rule method seems characteristic.

m r m i ■ ■ ■ ■ ■ - i n i x i

0 8 0 8 6  0 8 8
. ... I.......................  I L  J

0.78
. 1 — I .J—

0.73
i r  . - i .  -

0.60
----------1, I I------------ • j

o i t a s
0.9806

Reduct (2 .4 .8 ] N um ber of R ules: 13

Rule* Training Set Prediction* | Validation Set Prediction* Predictive

Quality of C lassification: 386/408 98.06%

l y  Stata J

Quality of Approxim ation: 287/386 7484%

PrtO ictabi* Object* N o a re it Rule O b jects P red ictab le O bjects Summary Table j N e are st Rule O bjects Summary Table C om bined Summary Table

Mearest Rule Object*
Mum Training Object* 
Mum Predicted Object* 
Predicted Correctly 
Predicted Incorrectly 
Predictive Accuracy

406
20
9

Actual

11_____
45.00%

Predicted iCorrect
4

P f t ft

1

0.00 % 
3.00%W.W /O [ 
100.00 % 
0 .00%  

0 .0 0 %

igure 7.3.7: Summary Table for Training Set Banks Predicted by Nearest Rules from the Rule Set
Associated with /?-reduct {C2, c4, Cs}

With final reference to the training set predictions, the 'Combined Summary Table' panel, shown 

in Figure 7.3.8, displays summary information based on all the banks within the training set, that is, 

on both those groups o f banks predicted correctly and incorrectly, by matching rules and by the 

nearest rule method, respectively.
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Figure 7.3.8: Summary Table for Training Set Banks Predicted by Matching and Nearest Rules from
the Rule Set Associated with /?-reduct {C2, c4, c%)
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The purpose of the information displayed in Figure 7.3.8 is to allow the analyst to compare the 

results of this VPRS analysis with other classifier methods, such as regression analysis. A major 

advantage the developed VPRS software has to offer over other classifier methods, is the ability to 

distinguish between, and report separately on, those banks that the rule set can and cannot predict 

(i.e. predicted by a matching rule and predicted by nearest rule, respectively).

Moreover, in the knowledge that the nearest rule method performs poorly on those banks the rule 

set does not have a matching rule for, it is likely that the analyst would rather discount those banks 

as unpredictable, and concentrate on those banks which the software indicates are predictable. To 

bring this notion back to the FIBR data, and the field of financial investments, this allows the 

analyst to “cherry pick” and invest in those banks that the VPRS systems indicates are predictable. 

Furthermore, having knowledge on the strength and certainty of a rule used to predict a bank, the 

analyst may steer away from predictions made by weaker or less certain rules. This of course, 

depends on the amount of risk the analyst is willing to take and their investment strategy, for 

example, invest small amounts on high risk predictions, on a large scale, or large amounts on low 

risk predictions, on a relatively smaller scale (hedging). In addition, the level of interaction the 

analyst wishes to have with the process, may also be a factor, as many analysts prefer to just 

monitor a fully automated trading system (Harnett and Young, 2004, 2007; Hull, 2006).

As the above statement suggests, the predictive accuracies based only on the banks predicted by 

matching rules, are, especially here, more important than the predictive accuracies based on the 

nearest rule method or all predictions on the whole training set (i.e. all banks predicted by matching 

and nearest rules). This is equally true of the validation set, and as such, only the 'Predictable 

Objects Summary Table' for the validation set is presented here, and shown in Figure 7.3.9. The 

other panels (not shown here) relating to the validation set take the same format as those described 

previously in this subsection.
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Figure 7.3.9: Summary Table for Validation Set Banks Predicted by Matching Rules from the Rule
Set Associated with /?-reduct {c2, c4, eg}

Surprisingly, for the validation set, the overall predictive accuracy o f 84.61% shown in Figure 

7.3.9 is higher than the predictive accuracy o f 74.54% reported for the training set shown in Figure 

7.3.6. This is surprising, because, the theory outlined in Chapter 3 suggested that, predictive 

accuracies based on the training set, would typically be over-optimistic (expected to be higher than 

the validation set). However, it will be seen in the following section that, the predictive accuracies 

relating to /?-reducts associated with higher /? threshold values, do tend to have, higher, over- 

optimistic, predictive accuracies based on the training set.

Comparing the individual predictive accuracies over the individual decision classes, between 

both the training and validation sets (Figures 7.3.6 and 7.3.9 respectively), based on the rule set 

associated with /?-reduct (c2, c4, C g } ;  the accuracies based on the validation set are higher than the 

accuracies based on the training set for the ’B’ (1) and 'D' (3) grade banks, but lower for the 'C' (2) 

grade banks. However, too much confidence should not be placed on the accuracies for the 'C' (2) 

and 'D' (3) grade banks, for either the training or validation sets, as these accuracies are based, on a 

small number o f banks. That is, for example, correctly or incorrectly classifying a single bank that 

should be a 'D' grade bank, can change the predictive accuracy by 5%. Encouragingly though, both 

the overall predictive accuracies and the predictive accuracies based on the individual decision



classes are relatively respectable, based on the training and validation sets, and comparable with 

results of similar studies (Oelericha and Poddig, 2006).

Finally, as it can be observed throughout this subsection, based on the one selected /?-reduct, 

there is a plethora of information (displayed on a number of panels), relating both to the training 

and validation sets for the analyst to digest. Hence, the final panel of information to be described 

here, and the remaining panel to be described within the vein graph analysis, summarises the more 

pertinent information presented within the other panels, such as, the sample sizes and overall 

predictive accuracies for the training and validation sets, shown here in Figure 7.3.10.
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Figure 7.3.10: Summary Statistics Associated with the Selected /?-reduct {C2, c4, <?s}

The 'Predictive Summary Stats' panel in Figure 7.3.10, allows the analyst to quickly observe the 

performance of a selected /?-reduct, and to compare between the performance based on the training 

and validation sets. From experience, the summary panel is most useful at the initial stages of the 

analysis, when searching for /?-reducts that have a good predictive accuracy on the validation set 

and can predict a large portion of the banks by matching rules (displayed as 'Predictable Objects' in 

the first column within the table in Figure 7.3.10). The analyst may then further investigate any /?-
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reducts of interest, using the more comprehensive panels of information described throughout this 

section.

Due to constraints on the size of this dissertation, presentation of a deeper analysis involving 

screenshots based on more /?-reducts is not presented. However, the following section displays in 

tabular form, the collated results of all the /?-reducts identified from the FIBR data set for discussion 

and comparison.

For the single /?-reduct investigated, the predictive accuracies were as stated previously, quite 

respectable and comparable with other studies (Oelericha and Poddig, 2006). Although noticeably, 

the rule set lacked the capability to predict 'A' and 'E' grade banks. The following subsection proves 

that it is possible to select /?-reducts with the capability of predicting these ratings (albeit by weak 

rules). Unfortunately, with only a minimal number of banks representing the 'A' and 'E' rating 

grades within the validation set, it is difficult to asses the predictive performance, of the rules 

capable of predicting bank grades belonging to these under represented decision classes.

The information panels described in this subsection 7.3, have all been within the 'Analysis' panel 

of the vein graph analysis. These information panels are also available in the VPRS re-sampling 

analysis described in the next chapter, again under the 'Analysis' panel. This permits some 

consistency between both the vein graph analysis and the re-sampling analysis, allowing the analyst 

to contrast the results between both versions of the developed VPRS software.

7.4 Comparison of FIBR /?-reducts

This subsection contains the necessary information collated from the vein graph analysis of the 

FIBR data, to allow comparisons to be made, and conclusions to be drawn upon the identified /?- 

reducts. The information is represented in tabular form, starting with Table 7.4.1, which displays the 

number of rules, QoC and QoA (both as percentages), associated with each /?-reduct over all sub­
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domains.

y?-reduct P Sub-domain Number o f Rules QoC (%) QoA (%)

{.C2,  C4, c8} (0.5,0.5238] 13 95.06 74.54

{ ^ 2 j £ 4,  C l ,  C j} (0.5238,0.5385] 23 95.06 77.92

{ ^ I j  C 3,  C4,  Cfy, Cg} (0.5 0.5556] 67 95.06 85.71

{ C l ,  C2, C i ,  C i ,  C i ,  C s} (0.5238,0.6] 96 95.06 90.64

{ C l,  C2, C i ,  C i ,  C5,  C i ,  C i } (0.6,0.6667] 109 95.06 92.46

{ C l ,  C2,  C i ,  C i ,  C i ,  Cs, C i ,  C g ) (0.6667, 0.7143] 108 87.65 94.92

( C i ,  C2,  C i ,  C i ,  C i ,  C i ,  C i ,  C i } (0.741,0.75] 107 85.92 95.40

( C i ,  C2,  C i ,  C i ,  C i ,  C i ,  C i ,  C i } (0.75, 0.7778] 107 80.98 96.64

(C g , C2,  C i ,  C i ,  C i ,  C i ,  C i ,  Cg} (0.7778, 0.8] 106 78.76 97.17

{ ^ 1» C 2,  C i ,  C i ,  C i ,  C i ,  C i ,  Cg} (0.8,0.8571] 106 75.06 98.02

{C g, C2,  C i ,  C i ,  C i ,  C i ,  C l ,  C i } (0.8571,0.9] 105 73.33 98.31

{ C i ,  C2,  C i ,  C i ,  C i ,  C i ,  C i ,  C i } (0.9 0.9355] 103 68.39 98.91

[ C i ,  C 2, C i ,  C i ,  C i ,  C i ,  C l ,  Cg} (0.9355,0.95] 1 0 2 60.74 99.59

( C l j  C2,  C i ,  C i ,  C i ,  C i ,  C l ,  C i } (0.95, 1.0] 1 0 1 55.80 1 0 0 . 0 0

Table 7.4.1:FIBR/?-reducts and Associated Information

It can be seen in Table 7.4.1, as the size (number of associated condition attributes) of a /?-reduct 

increases, there is a corresponding increase in the number of associated rules. This is a consequence 

of, the potential increase in the number of condition classes associated with the /?-reducts, as their 

sizes' increase. The effect on the rule set, is to produce more rules but with weaker strengths, as 

there are less supporting banks in the associated condition classes. Taking y^-reduct (ci, c2, c3, c4, c5, 

c8} for example, it is associated with 96 rules, based on a the training set of 405 banks; this implies 

that the average rule strength is just over 4 (405 divided by 96). Although, when inspecting the rule 

set associated with /?-reduct {ci, c2, c3, c4, c5, c«} (not shown), many of the rules are much stronger 

(with 20 or more banks in support of some individual rules) and hence, by deduction (and by 

inspection), it was evident that a large portion of the remaining weaker rules, were based upon a 

condition class associated with a single bank, and associated with a certainty value of 1.0. 

Furthermore, the size and complexity of the rule sets associated with the larger /?-reducts, makes 

them practically impossible to interpret.

The smaller sized /?-reducts however, have smaller size rule sets, containing stronger more 

general rules, which typically offer better opportunity for interpretation by the analyst, relative to
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the larger rule sets. They are more general in the sense that, a single rule may classify relatively 

more banks, however, there is more potential for banks to be misclassified.

Although the number of rules associated with the /?-reducts tends to increase as the size of the p- 

reduct increases; for a /?-reduct multiply identified over more than one p  sub-domain, selecting a 

sub-domain associated with a higher p  threshold value appears to decrease the number of associated 

rules. This is observable with regards to the /?-reduct {ci, C2, c3, c4, c5, c6, c7, c8} (equal to the full set 

of condition attributes C), whose p  sub-domains shown in Table 7.4.1 are associated with higher p  

threshold values than the other /?-reducts. To explain this relationship, as the p  threshold value is 

increased, less condition classes are included in the analysis because of the majority inclusion 

principle, hence rules supported by relatively weaker condition classes are eliminated. In theory, 

this should imply that only the more accurate rules remain, with the rule sets classifying less banks 

(decreased QoC). Though in practice, particularly with regards to this analysis, it reduces the rule 

set to a set of weaker rules (many based on a single banks) with higher certainties.

Table 7.4.1 also shows the inverse relationship between the /?-reducts' associated p  threshold 

values and the concomitant QoCs, with the /?-reducts associated with higher p  threshold values 

having lower concomitant QoCs. Note also, that as the QoC decreases, there is a corresponding 

increase in QoA. According to the theory (Beynon, 2001), this is a consequence of the associated 

rule set containing more accurate rules, but at the expense of classifying less banks.

Increased accuracy is associated with the larger sized /?-reducts, as a consequence of their 

relatively larger rule sets. This increase in accuracy, is also shown in the predictive accuracies based 

across the individual decision classes of the training set, as displayed in Table 7.4.2.
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/?-reduct
Overall

Predictive
Accuracy

Individual Decision Class Predictive Accuracies

0 1 2 3 4
{c2, c 4, Cg} 74.54 0 . 0 0 88.70 71.69 72.00 0 . 0 0

(c2, C4, C i,  Cg} 77.92 0 . 0 0 93.06 73.83 76.92 0 . 0 0

{ C i,  C3, C4,  C(j, Cg} 85.71 0 . 0 0 95.85 80.73 90.24 46.15
{ C i,  C2, C3, C4,  C j,  Cg} 90.64 30.76 97.05 90.82 90.12 6 6 . 6 6

( C l ,  C2, C3, C4, C5, C i,  Cg} 92.46 30.76 98.81 93.57 91.46 6 6 . 6 6

{ C l,  C l, C i ,  C4, C5, C6,  C l,  Cg} 94.92 36.36 99.37 96.07 95.94 57.14
{ C l,  C l, C l ,  C4, C i,  C6,  C l,  Cg} 95.40 36.36 99.37 96.07 95.65 80.00
( C l ,  C l, C i ,  C4, C5, C6.  C l,  Cg} 96.64 44.44 99.34 96.93 96.92 1 0 0 . 0 0

{ C l,  C l, C l ,  C4, C5, C6,  C7, Cg} 97.17 57.14 99.31 96.93 96.92 1 0 0 . 0 0

{ C l, C l, C l ,  C4, C l,  C6,  C7, Cg} 98.02 57.14 1 0 0 . 0 0 98.91 96.72 1 0 0 . 0 0

{ c j ,  C i,  C i ,  c 4, C5, Cg, C7, Cg} 98.31 6 6 . 6 6 1 0 0 . 0 0 98.91 96.72 1 0 0 . 0 0

( C i ,  C l,  C i ,  C4, C5, Cg, C i , Cg} 98.91 6 6 . 6 6 1 0 0 . 0 0 98.64 1 0 0 . 0 0 1 0 0 . 0 0

{ C l,  C l,  C l ,  C4, C5, Cg, C l,  Cg} 99.59 80.00 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0

{ C l,  C l, C l ,  C4, C l,  Cg, C l,  Cg} 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0

Table 7.4.2: Predictive Accuracies Associated with the Full Set of /?-reducts, Applied to the FIBR
Training Set

Table 7.4.2 displays the predictive accuracies for each /?-reduct on the FIBR training set. The 

second column displays the overall predictive accuracies, and the remaining columns display the 

predictive accuracies associated with each individual decision class. It can clearly be seen that, as 

the size of the /?-reducts increases (and hence the associated rule set increases), that both the overall 

predictive accuracies and the predictive accuracies over the five decision classes, also increases. 

This could initially lead the analyst to assume that the larger /?-reducts would perform better in 

terms of classification accuracy on any future unseen data, but as Table 7.4.3 shows, based on the 

validation set, it would be a nai've assumption.

Table 7.4.3 displays the predictive accuracies for each /?-reduct on the FIBR validation set. Note 

that there is not much difference between the predictive accuracies based on the smaller /?-reducts 

and those based on the larger /?-reducts. This demonstrates that, the results based on the training set 

are, as anticipated, misleading and over-optimistic (anticipated, based on the theory outlined in 

Chapter 3). Moreover, these results lead to the hypothesis that the rule sets associated with the 

larger /?-reducts, appearing in Table 7.4.2, demonstrate a clear case of overfitting (see Chapter 3 

subsection 3.2.2). That is, the considerable amount of weak rules associated with the larger /?- 

reducts are affectively predicting the banks they were constructed on (typically a single bank), but
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are of little value in predicting unseen banks such as those in the validation set. It is most likely that 

these weaker rules, especially those based on a single bank, are not representative of any general 

trends.

/?-reduct
Overall

Predictive
Accuracy

Individual Decision Class Predictive Accuracies

0 1 2 3 4
{C 2, C i, C s} 84.61 0 . 0 0 92.25 65.90 80.00 0 . 0 0

(^ 2 )  ^-4,  ^ 7) C g} 84.21 0 . 0 0 93.52 64.44 73.91 0 . 0 0

{C \, C i,  C 4 ,  c 6 ,  c 8 } 84.00 0 . 0 0 95.45 63.63 63.63 0 . 0 0

{cu C i, C l, C i, Cs, Cg} 82.03 0 . 0 0 94.11 63.04 52.17 0 . 0 0

{ C l,  C l, C l, C4, Cs, C l, C g ) 83.65 0 . 0 0 94.28 64.44 59.09 0 . 0 0

{ C l,  C l, C l, C i, Cs, Co, C l,  Cg} 84.04 0 . 0 0 95.16 58.13 75.00 0 . 0 0

( C i ,  C2, C i, C i, Cs, C(,, C i,  Cg} 84.04 0 . 0 0 95.16 58.13 75.00 0 . 0 0

{ C l, C l, C l, C i, Cs, C6, C l,  C g) 84.53 0 . 0 0 95.00 58.53 78.94 0 . 0 0

{ c  1, C2, C i, C i, Cs, Co, C i,  Cg} 84.26 0 . 0 0 94.87 58.53 78.94 0 . 0 0

{ C l,  C 2 ,  C 3 ,  C 4 ,  Cs, Co, C i,  Cg} 86.14 0 . 0 0 95.32 6 6 . 6 6 78.94 0 . 0 0

{C 1, C i, C i, C i, Cs, Co, C i,  Cg} 86.30 0 . 0 0 95.41 65.00 78.94 0 . 0 0

4C1, C i, C i, C i, Cs, Co, C i,  Cg} 85.97 0 . 0 0 95.41 61.11 78.94 0 . 0 0

{ C l, C l, C l, C i, Cs, Co, C l,  Cg} 84.56 0 . 0 0 94.68 61.11 78.94 0 . 0 0

{ C l,  C2, C3, C i, Cs, Co, C l,  Cg} 82.57 0 . 0 0 93.50 61.11 78.94 0 . 0 0

Table 7.4.3: Predictive Accuracies Associated with the Full Set of /?-reducts, Applied to the FIBR
Validation Set

However, unlike in the circumstances of overfitting associated with other classifier methods, 

such as neural networks, where predictive accuracy can decrease in relation to overfitting, here, 

there is no decrease in the predictive accuracies associated with the larger /?-reducts. Possible, 

because there are still a small proportion of rules associated with the larger /?-reducts, that are 

representing general trends (retaining residual strength as the condition classes decrease in size), 

and they are stronger than, and more likely to be used than, the other weaker rules in the rule set. 

Though, these slightly stronger rules are not necessarily as strong as the rules associated with the 

smaller sized /?-reducts.

Finally, the number of rules within the rule sets, which predict each individual decision class, 

must be given some consideration. Table 7.4.4 displays the breakdown of the rules associated with 

each /?-reduct over all p  sub-domains, and the number of rules that classify to each individual 

decision class.
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/?-reduct Number o f rules predicting Each Individual Decision Class Total

0 1 2 3 4
{c2, c4, c8} 0 5 6 2 0 13
{c2, Ci, Ci, Cg} 0 9 9 4 0 22
{ C i,  Ci, Ci, Cs, Cg} 0 20 27 17 3 67
{ C i,  Ci, Ci, Ci, Cs, Cg} 4 33 35 19 5 96
{ C l,  Cl, Cl, Ci, Cs, Cl, Cg} 4 36 43 21 5 109
{ c  1, Ci, Ci, Ci, Cs, C6, Ci, Cg} 4 39 40 21 4 108
{ C l,  Cl, Cl, C4, Cs, Cs, Ci, Cg} 4 39 40 20 4 107
{C 1« Ci, Ci, Ci, Cs, Cs, Ci, Cg} 4 41 39 19 4 107
{ C i,  Ci, Ci, Ci, Cs, Cs, Ci, Cg} 4 40 39 19 4 106
{ C l,  Cl, Cl, Ci, Cs, Cs, Cl, Cg} 4 39 40 19 4 106
{ C l,  Cl, Cl, Ci, Cs, Cs, Cl, Cg} 4 38 40 19 4 105
{ C l,  Cl, Cl, Ci, Cs, Cs, Ci, Cg} 4 38 38 19 4 103
( C l ,  Cl, Cl, C4, Cs, Cs, Ci, Cg} 4 37 38 19 4 102
( c i ,  Ci, Ci, Ci, Cs, Cs, Ci, Cg} 4 36 38 19 4 101

Table 7.4.4: Number of Rules Predicting Each Individual Decision Class

It is clear from Table 7.4.4 that, although /?-reduct {ci, c*, c8} has comparable predictive 

performance to the larger /?-reducts (based on the results of Table 7.4.3), as stated in the previous 

section, it lacks rules with the capability to predict the 'A' (0) and 'E' (4) grade banks. Thus, it might 

be wiser for the analyst to select from the vein graph analysis, a /?-reduct with a slightly higher 

associated p  threshold value.

Unfortunately, the limited size of the validation set mitigates any real possibility of assessing 

their predictive performance on the 'A' and 'E' decision classes. This issue is a significant factor 

with regards to the next chapter on re-sampling, and /?-reduct aggregation of the FIBR data. That is, 

during the automated /?-reduct selection, should the p  value be set higher than the p  threshold value 

associated with /?-reduct |c 2, C4, c8} (investigated in the previous section), as a higher p  threshold 

value would allow the automated process more opportunity to select /?-reducts that are capable of 

predicting the 'A' and 'E' grade banks.

The great advantage of re-sampling over the vein graph analysis, is the use of the out-of-bag 

predictive accuracies (as described in Chapter 3 section), because the out-of-bag estimations are 

based on the training set, which includes 'A' and 'E' grade banks (since the training set is repetitively 

split into the in-sample and out-of-sample data sets). Hence, the out-of-bag estimates are more
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inclusive of all the decision classes. Also, the out-of-bag estimations are not compromised by 

overfitting because they use the out-of-sample data. Hence, the out-of-bag estimates reflect a more 

candid estimation of the predictive accuracies, than that provided here, by the validation set.

7.5 Summary

This chapter has presented the VPRS vein graph analysis of the FIBR data set. The developed 

software has been demonstrated through the selection of a single /?-reduct, and the rules associated 

with that /?-reduct applied to the training and validation sets. A number of panels of information 

were described, which offered further breakdown, transparency and incite into the predictive 

accuracy results.

Comparisons have been drawn between all the identified /?-reducts, based on the results of 

predicting the banks belonging to the training and validation sets. The predictive accuracies, in 

general, are relatively respectable (Oelericha and Poddig, 2006), and confidence can be taken that 

the system is capable (in the case of FIBRs), of producing /?-reducts that can classify the banks with 

a reasonable degree of accuracy.

It is evident from the results, that, although it appears that larger /?-reducts provide a superior 

predictive performance based on the training set, this trend does not translate to the validation set. 

Moreover, there is no evidence that the larger /?-reducts associated with higher /? threshold values 

perform any better than the smaller /?-reducts which are associated with, lower /? threshold values 

and smaller more interpretable rule sets.

It is clear that the results based on the training set tend to be over-optimistic and that the 

validation set provides more transparent results, particularly in relation to the predictive accuracies 

associated with the individual decision classes. It should be noted though, the training set does 

indicate that, /?-reducts whose /? domains are associated with a ^-threshold value above a certain
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level, are more capable of predicting the under represented 'A' and 'E' bank ratings (see Table 7.4.2).

Based on the information presented from the analysis within this chapter, the analyst can make 

judgements on how a re-sampling analysis may perform. Moreover, it allows them to judge the /? 

threshold value they should choose for the automated /?-reduct selection process (used within the 

following chapter concerned with the VPRS re-sampling software). That is, should they choose a 

very low value, say just over 0.5, that implies a greater opportunity for the system to select small 

sized /?-reducts that have relatively smaller, more general rule sets, but less chance of having rules 

that can predict ’A' and 'E' grade banks; or should they choose a slightly higher p  threshold value, 

say around 0.55, that implies a greater opportunity for the system to select /?-reducts that have 

slightly larger, less interpretable rule sets, but with more chance of having rules that can predict 'A' 

and 'E' grade banks.

With regards to the performance of the developed software, over a number of different analyses, 

the functionality and the usability of the interface has proved quite affective. There is scope to 

improve the software's performance (in terms of speed), in particular, either through prior 

calculation and storage of all the rule sets and their classification of the banks in the training and 

validation sets; or storing the rule sets of the /?-reducts that the analyst has selected during the 

analysis, hence allowing quick retrieval of the information if the analyst reselects one of the p- 

reducts.

The following chapter continues with the VPRS analysis of the FIBR data, but within the re­

sampling environment, and culminates in an appraisal of the developed /?-reduct aggregation 

process.
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Chapter 8

Re-sampling Analysis of FIBR Data 
Set and Further Benchmark Analyses

This chapter continues the exposition of the developed software and the analysis of the FIBR data 

started in the previous two chapters. Here, the FIBR data will be analysed using the three re­

sampling methods, as described in Chapter 3, namely, leave-one-out, £-fold cross-validation, and 

bootstrapping, within the context of the developed VPRS re-sampling software. The results of these 

re-sampling analyses, and the predictive performances based on the aggregation of selected fi- 

reducts, from each of these analyses, are compared and contrasted. A further set of results are also 

presented in this chapter, based on the application of the VPRS re-sampling software to a number of 

data sets for the purpose of benchmarking against other studies.

The sections within this chapter are described as follows:

•  Section 8.1 Exposition of the VPRS Re-sampling Software Within the Leave-one-out 

Environment. This section exposits the re-sampling and /?-reduct aggregation aspects of the 

developed VPRS re-sampling software, within the context of the leave-one-out analysis.

•  Section 8.2 A-fold Cross-validation, Comparison with Leave-one-out. This section compares 

the results of the &-fold cross-validation and leave-one-out analyses in the context of the 

developed VPRS re-sampling software. With particular attention being drawn to the asymptotic
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nature of the two re-sampling methods as A tends to the number of banks n.

•  Section 8.3 Bootstrap Re-sampling and Bootstrap p-reduct Aggregation. This section 

follows the boostrap re-sampling of the FIBR data. It also discusses the issues pertinent to the 

process of /?-reduct aggregation, with regards to the bootstrapping results, and demonstrated 

within the software.

•  Section 8.4 Comparison of Leave-one-out, A-fold Cross-validation and Bootstrapping 

Predictive Results. This section compares the results of the estimated predictive accuracies 

across the three re-sampling methods. The predictive results of the aggregated /?-reducts with 

regards to leave-one-out, bootstrapping, and those /?-reducts identified from the single run vein 

graph analysis of the FIBR data (from Chapter 7), are also compared and discussed.

•  Section 8.5 Further Benchmark Results. This section presents a VPSRS re-sampling analysis 

of a number of data sets for the purpose of benchmarking. The results are compared to a number 

of other studies and classifier methods, in particular Multi Discriminant Analysis.

•  Section 8.6 Summary. This section summarises the many results presented within this chapter, 

with regards to both the re-sampling predictive accuracies and the aggregated /?-reducts.

From the initial parameter set-up phase of the VPRS software (see Chapter 6 section 6.1), the 

analyst has the option of selecting one of the three re-sampling methods (as opposed to the single 

run vein graph analysis). If they choose A-fold cross-validation, they have the further option of 

choosing stratified or non-stratifled A-fold cross-validation (see Chapter 3 subsection 3.1.1). The 

subsequent pre-processing of the FIBR data by the software, is identical to that described in Chapter 

6. However the following stage, implements a VPRS re-sampling analysis of the FIBR data. Section

8.1. describes a leave-one-out analysis, but the description of the software given in that section is 

also pertinent to both A-fold cross-validation and bootstrapping analyses.
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8.1 Exposition of the VPRS Re-sampling Software Within 

the Leave-one-out Environment

This section presents, a leave-one-out analysis of the FIBR data, and demonstrates the /?-reduct 

aggregation process. Before the software based results are presented, it is necessary to reiterate the 

re-sampling /?-reduct selection process, as previously described in Chapter 3 subsection 3.5.1. The 

selection of a /?-reduct at each repetition, is based on the automatic selection criteria (see subsection 

3.5.1), which essentially selects a /?-reduct from the vein graph. Though, the vein graph and its 

peripheral elements are not literally constructed, only the associated calculations are undertaken 

(identification of the /?-reducts and their concomitant /? sub-domains), and recorded at each 

repetition. However, the most appropriate order of the automated selection criteria with regards to 

the analysis of the FIBR data undertaken here, differs to that outlined in Chapter 3, for reasons 

given next. The order of the criteria used here, is outlined below:

i. Selection of /?-reduct(s) with a /tam threshold value greater than 0.55 (as suggested at the end of 

the previous chapter, sections 7.4 and 7.5).

ii. Selection of /?-reduct(s) with least number of decision rules associated with the /?-reduct(s) 

selected in i).

iii. Selection of /?-reduct(s) from ii), with the highest quality of classification possible.

iv. Selection of /?-reduct(s) with the highest pmin value from those /?-reduct(s) selected in iii).

v. Selection of /?-reduct(s) with least number of condition attributes associated with the /?-reduct(s) 

selected in to iv).

vi. Random selection of a single /?-reduct from those remaining /?-reducts after point v). Typically, a 

single /?-reduct has been selected before this sixth step is required.

The most appropriate ordering of this criteria, was judged through experimentation with a
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number of different data sets (Griffiths and Beynon, 2007, 2008); which indicated that /?-reducts 

associated with smaller rules sets (point ii., in the criteria shown here, previously point iv., in the 

criteria shown in Chapter 3 subsection 3.1.1), tended to correspond to higher predictive accuracies 

and higher QoCs, when compared to those /?-reducts associated with larger rule sets. Thus, also 

following the science tenet of Occam’s Razor, described previously (Domingos, 1999; all things 

being equal, the simplest solution tends to be the right one). However, through the evidence gained 

by the vein graph analysis of the considered FIBR data set, /?-reducts associated with smaller rule 

sets, did not necessarily contain rules capable of classifying all five decision classes of the FIBR 

data set (see Chapter 7, Tables 7.4.2 and Table 7.4.4 for example).

Here, by allowing the analyst the autonomy to set the /^-threshold value (during the parameters 

set-up phase, see Chapter 6 Figure 6.1.1), it is possible to increase the likelihood that a selected f$- 

reduct will contain rules capable of predicting to all five decision classes. Thus, this criterion was 

placed first within the criteria. Though, increasing the /7-threshold value, may be at the expense of 

the associated rules sets, being less general (rules associated with lower ^-support and /?-strengths, 

see Chapter 2 subsection 2.2.3). In addition, the rule set may be larger and less interpretable. This 

balance between generality and decision class predictive scope, is a subjective decision the analyst 

must make.

Returning to the description of the developed VPRS re-sampling software, on continuing from 

the pre-processing phase to a re-sampling analysis, the analyst is initially presented with a 

screenshot as shown in Figure 8.1.1, which presents the overall summary statistics of a number of 

metrics based on all 405 selected /?-reducts, selected during the 405 repetitions of the leave-one-out 

analysis (or associated re-sampling analysis if another re-sampling option was chosen). Within 

Figure 8.1.1, the columns display the descriptive statistics, minimum, maximum, mean, median, 

mode, standard deviation (S.D.) and skewness with regards to the associated metrics, shown in the 

row headers, and described next.
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The first four rows of values, under the heading 'SAMPLE SIZES', show the descriptive statistics 

associated with the in-sample and out-of-sample (out-of-bag) size metrics, under the headings 'In 

Sample Size' and 'Out Sample Size', respectively. The out-of-sample is further broken down into the 

number of banks that were predictable by a matching rule and those predicted by nearest rules, 

under the headings 'Predictable Objects' and "Nearest Rule Objects', respectively (see Chapter 3 

section 3.6 for nearest rule explanation).

O verall Summary Statistic* | Summary Graphs B .ta-R eductSum m a? Statistics Aggregated Beta-Reduct

Minimium 1 Maximum |j M ean ]| M edian Mode 8.D. S kew ness

SAMPLE SIZES

In Sample Size 404.0000 404.0000 404.0000 404.0000 404.0 0.0000 Na

O ut Sam ple Size 1.0000 1.0000 1.0000 1.0000 1.0 0.0000 N>
P red ictab le O bjects 0.0000 1.0000 0.9283 1.0000 1.0 0.2578 •0.8343

N e arest Rule O bjects 0.0000 1.0000 0.0716 0.0000 0.0 0.2578 0.8332

PREOICTIVE ACCURACY ESTIMATIONS

Leave O ne Out Estim ates

Out Sam ple (%) 0.0000 100.0000 70.3703 100.0000 100.0 45.6623 •1.9466

P red ictab le O bjects (%) 0.0000 100.0000 72.8723 100.0000 100.0 44.4618 -1.8304

N e arest Rule O bjects (%) 0.0000 100.0000 37.9310
.

0.0000 0.0 48.5215 2.3452

VPRS METRICS

Quality of C lassification 94.5544 96.0396 95.0690 95.0495 95.04 0.1543 0.3791

Quality of Approximation 74.7395 90.6250 85.0854 85.6770 85.67 25143 -0.6306

N um ber Of Condition A ttributes 3.0000 6.0000 4.9358 5.0000 5.0 0.4927 -0.3909

N um ber of D ecision Rules 13.0000 96.0000 63.1012 67.0000 67 X) 15.0964 -0.7747

Figure 8.1.1: Summary Statistics of the Leave-one-out Analysis of the FIBR Training Set

As there are 405 banks within the training data set, there are 404 banks within each repetition of 

the leave-one-out analysis (404 banks in the in-sample, one in the out-of-sample). Consequently 

within Figure 8.1.1, the maximum, minimum, mean, median and mode for the 'In Sample Size' are 

all 404, the standard deviation is zero and there is no skewness value to calculate. Similarly, the 

values for the 'Out Sample Size' are also recorded as one, with a standard deviation of zero and no 

skewness.

The three rows under the heading 'PREDICTIVE ACCURACY ESTIMATIONS', and under the 

sub heading 'Leave One Out Estimates', display the descriptive statistics relating to the concomitant 

predictive accuracies, as percentages on the out-of-sample, associated with all selected /?-reducts. It

Page 201



is further broken down, to display the descriptive statistics relating to, those banks within the out- 

of-sample that are predictable by a matching rule, and those only predictable by a nearest rule. With 

regards to the leave-one-out method, because the single bank in the out-of-sample is either 

predicted correctly or incorrectly, the minimum and maximum values are respectively, 0% 

(predicted incorrectly) or 100% (predicted correctly).

The final four rows under the heading 'VPRS METRICS', display the descriptive statistics under 

the headings (associated with the metrics of the same name), 'Quality of Classification', 'Quality of 

Approximation', 'Number of Condition Attributes', and the 'Number of Decision Rules', associated 

with all 405 selected /?-reducts.

The 'Overall Summary Statistics' panel shown in Figure 8.1.1, may be less important than the 

analyses shown in the remainder of this section, because it does not aid the analysts with respect to 

the later /?-reduct aggregation process; but as a point of quick reference it has proved particularly 

useful during the software's development, and may have some value to the analyst wanting a quick 

overview of the results. That is, results that appear to be erroneous at this stage (low predictive 

accuracies, large rule sets etc.) can lead the analyst, to investigate further within the other analysis 

panels (described next, in particular the 'Beta-Reduct Summary Statistics' panel). The information is 

also useful with respect to investigating the bootstrap re-sampling method (described in section 

8.3). Furthermore, the average (mean) predictive accuracy estimates also allow comparisons to be 

drawn between the three re-sampling methods.

The remainder of this section is divided into three subsections, describing the three remaining 

panels within the software screenshot shown in Figure 8.1.1, namely, 'Summary Graphs', 'Beta- 

reduct Summary Statistics' and 'Aggregated Beta-Reduct'. The subsection headings relate to those 

headings, respectively.
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8.1.1 Summary Graphs

The 'Summary Graphs' panel, displays three graphs associated with the selected /?-reducts. The first 

graph, shown in Figure 8.1.1.1, displays the occurrence o f the top ten most frequently selected 

reducts.

| O vtrail Summary Statistics I Summary Graphs [ B«ta-R>duct

F requency of Identified Beta-Reduct j Fi

Statistics

Of Condition Attribute

Frequency of Identified Beta-Reduct

360

300

250

Frequency 20Q 
of

Occurrenc

160

100

{ 1 , 3 , 4 , 6 , 8 } { 2 , 4 , 8 } { 1 , 3 , 4 , 6 , 7 , 8 } { 1 , 3 , 4 , 7 , 8 }{2,6,7,8} {1,2,3,4,5,8}
{ 3 , 4 , 6 , 6 , 7 } {1,2,3,4,7,8} 

Beta-Reducts

{ 2 ,3 ,4 ,5 ,7 ,8 }

Figure 8 .1.1.1: Frequency o f Occurrence o f the Selected /?-reducts, Associated with the Leave-one-
out Analysis o f the FIBR Training Set

Figure 8.1.1.1 indicates that, within the leave-one-out analysis, the /?-reduct {c i, c3, c4, c6, <?8} was 

m ost frequently selected by the automated selection criteria; moreover, it was particularly dominant, 

being selected 323 out o f  the 405 repetitions (nearly 80% o f the repetitions). It should be noted that 

/?-reduct {ci, c3, c4, c6, c8}, also appears in the vein graph analysis o f the FIBR training data (see 

C hapter 7 Figure 7.2.2), as do the /?-reducts {c2, c4, c8} and (ci, c2, c3, c4, c5, c8} which also appear in 

F igure 8.1.1.1. Thus, showing some consistency with the single run vein graph analysis o f the FIBR 

data, previously exposited. Additionally, in some respects, the /3-reduct {ci, c3, c4, c6, Cg} was the 

target y9-reduct o f the automated selection criteria (under the order o f automated selection criteria set 

here, w ith the ^-threshold value set to 0.55 for the first criterion point i), as the collated results of
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the vein graph analysis showed in the previous chapter (see subsection 7.4.4), it had the potential to 

predict banks from the minority 'E' grade decision class, and was associated with a relatively 

medium sized rule set.

It is interesting to note, for about 20% of the 405 repetitions, by selecting a particular single bank 

as the out-of-sample (as per the leave-one-out process), it affected the /?-reduct selected, that is, a p- 

reduct was selected other than /?-reduct (ci, c3, c4, c6, c8}. It will be shown later in sections 8.2 and 

8.3, that there is more variation within the /?-reducts selected, for the A>fold cross-validation and 

bootstrapping analyses, because the out-of-sample sizes are larger (more than one bank). Also note, 

that the vein graph analysis of the FIBR data, did not provide the analyst with this extra level of 

knowledge to aid in their decision making.

As the selection of a single particular bank for the out-of-sample can affect the selected /?-reduct 

from the in-sample, it is interesting to see how this affects the condition attributes associated with 

all selected /?-reducts. The graph shown within Figure 8.1.1.2, displays the distribution (frequency 

of occurrence) of the condition attributes within all selected /?-reducts.

Page 204



SEResampling Analysis C : DatalUes/Baiik Data 200'’ Save/S s

O v f t l  Summary Stabattci |*Summafv Graphs f Beta-R«duct! r Statistics | i I Beta-Reduct ■

of Identmed Beta-Reduct ] Frequency Of Condition Attribute Frequency of Beta-Reduct Size

Frequency Of Condition Attribute

40 0

3 6 0

300

Frequency 260 
of

Occurrence 200

Condition Attribute

Figure 8.1.1.2: Frequency of Occurrence of the Condition Attributes Associated with the Selected /?- 
reducts, with Regards to the Leave-one-out Analysis of the FIBR Training Set

It can be seen from Figure 8.1.1.2, even though the out-of-sample affects which /?-reduct is 

selected, the dominance of the most frequently occurring condition attributes associated with all 

selected /?-reducts remains fairly stable. Indeed, the attribute c8 (GDP/Head) within Figure 8.1.1.2, 

was present within 97% (390/405) of the repetitions, again an indication of the importance of that 

particular attribute (concurring with the vein graph analysis in Chapter 7 section 7.2). Information 

such as the importance or dominance of particular condition attributes across all /?-reducts is less 

overt when considering the graph shown previously within Figure 8.1.1.1. Moreover, the most 

frequently occurring condition attributes Ci, c3, c4, c6 and c8, are directly associated with the most 

frequently selected /?-reduct (ci, c3, c4, c6, c8}.

The final graph, shown here within Figure 8.1.1.3, displays the frequency of selected /?-reduct 

size (number of condition attributes associated with the selected /?-reducts). Clearly, the graph 

within Figure 8.1.1.3 shows that the dominant /?-reduct size is five; which is understandable, since 

the most frequently selected /?-reduct (ci, c3, c4, C6, c8} contains five condition attributes. Here, with
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regards to the leave-one-out analysis, the graph is less interesting to the analyst, because of the 

dominance of the most frequently selected /?-reduct (ci, C3, C4, c6, c8}. However, as will be shown 

later, the dominant /?-reduct associated with the bootstrap analysis is not reflected by the dominant 

size of the most frequently selected /?-reduct, and this graphical analysis is most useful with regards 

to that particular re-sampling analysis.

Overall Summary Statistics- ] Summary Graphs Beta-Reduct Summary Statistics Aggregated Beta-Reduct

Frequency of IdenOfled Beta-Reduct Frequency Of Condition Attribute Frequency of Beta-Reduct Size

Frequency of Beta-Reduct Size

360

300

260

Frequency
of 20 0

Occurrence

150

100

60 *

14 21
23

n .
1 2  3 4 5 6  7 8

Nun Der of Condition AtrribUlM I

Figure 8.1.1.3: Frequency of Selected /?-reducts Size, Associated with the Leave-one-out Analysis
of the FIBR Training Set

In general, the summary graphs presented (Figures 8 .1.1.1 to 8 .1.1.3) aid the analyst in the 

subsequent /?-reduct aggregation process (shown later in subsection 8.1.3), as they convey 

information that may not be immediately obvious when considering the overall summary statistics, 

or the more in-depth individual /?-reduct statistics (shown in the following subsection). Moreover, 

they have proved valuable during the development of the software, and for understanding the 

affects of the re-sampling processes, such as indicating the disparity between the most dominant 

selected /?-reduct and most dominant size of /?-reduct with regards to bootstrapping, and the 

asymptotic link between leave-one-out and &-fold cross-validation, described in the following
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sections 8.2 and 8.3.

8.1.2 Beta-Reduct Summary Statistics

The 'Beta-Reduct Summary Statistics' panel provides the analyst with further information, relating 

to the reducts selected during the re-sampling process. There are two internal panels contained 

within the 'Beta-reduct Summary Statistics' panel, namely, 'Individual Beta-Reduct Statistics' and 

'Number of Beta-reduct Rules Predicting Each Decision Class' panel, which contain statistical 

information relating to metrics associated with the occurrence of the top ten most frequently 

selected /?-reducts. They give a comprehensive breakdown, with the specific aim to aid the analyst 

with their decision making during the /?-reduct aggregation phase. These two internal panels are 

described in the following two subsections (internal relative to the 'Beta-reduct Summary Statistics' 

panel they are contained in).

8.1.2.1 Individual Beta-reduct Statistics

The 'Individual Beta-Reducts Statistics' panel, shown in Figure 8.1.2.1.1, displays statistical 

information associated with metrics regarding the occurrence of the top ten most frequently selected 

/?-reducts (sorted into descending order). Note, it does not show the occurrence of each individually 

selected /?-reduct, but rather statistics based on the accumulated results of /?-reducts which have 

been selected and are identical (in terms of condition attributes), to any previously selected /3- 

reducts. For example, the mean predictive accuracy on the out-of-sample associated with the most 

dominant /?-reduct (ci, c3, c4, c6, c8}, which occurred on 323 of the 405 repetitions is 80.8049%, 

shown in the eighth row, and the fourth column of the table within Figure 8.1.2.1.1. Note that the 

number of occurrences of each /?-reduct is not obtainable within this table, but is obtainable from 

the summary graphs shown previously (Figure 8.1.1.1), or through the /?-reduct aggregation phase 

described later.
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The metrics utilised within Figure 8.1.2.1.1, are identical to the metrics described with regards to 

the 'Overall Summary' panel (sample sizes, predictive accuracy estimates etc. see Figure 8.1.1), but 

gives a comprehensive breakdown of the top ten most frequently selected /?-reducts.

TsjPTff upling Analysis C : D atafilesRank Data 20f)',/Savi» J8sav  20N ovfP 1358.:

Overall Summary Statfatlcs Summary G rap ta  J Beta-Reduct Summary Statistics Aggregated Beta-Reduct 
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Figure 8.1.2.1.1: Breakdown of Metric Descriptive Statistics, Relating to the Top Ten Most 
Frequently Selected /?-reducts, Associated with the Leave-one-out Analysis

It is not possible, within one screenshot, to display all the information within the table shown in 

Figure 8.1.2.1.1. Hence, the vertical scroll bar has been scrolled down, to display only the statistics 

concerning the 'PREDICTIVE ACCURACY ESTIMATIONS' (as the results will be most pertinent 

to the following discussion).

As stated, the mean predictive accuracy for the /?-reduct {ci, c3, c4, c6, c8} on the out-of-sample is 

80.8049%. The mean predictive accuracy on the banks from the out-of-sample that are predictable 

by matching rule is 81.7891%. These predictive accuracies are encouragingly high, and more 

confidence can be taken from these results, compared to the predictive accuracies that would have 

been estimated on the validation set during a vein graph analysis (as shown in the previous chapter). 

That is, these out-of-bag estimates, include, in their estimated value, evidence gained from the
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predictive accuracy based on the available 'A' and 'E' grade banks (the under represented classes), 

which are almost absent within the validation set, but not so within the training set (see Chapter 6, 

section 6.1 for validation and training set banks' decision class distributions). Note that, the same 

validation set that was used for the vein graph analysis in the previous chapter, is used here, later in 

the chapter, to test the /?-reduct aggregation process.

Within Figure 8.1.2.1.1, the mean predictive accuracies for banks predicted by nearest rule, are 

notably poorer than those predicted by matching rules, and this concurs with the results of the vein 

graph analysis, which showed the banks predicted by nearest rule were often incorrectly predicted 

(see chapter 7 Figure 7.3.7, and Appendix A.5). Also, the predictive accuracies associated with the 

/?-reducts, other than /?-reduct {cx, c3, c4, c6, c8} (the most dominant /?-reduct), are also notably lower 

on the out-of-sample, over both, the predictable by matching rule, and predictable by nearest rule 

banks.

With regards to the reasons why these less dominant /?-reducts may have been selected during the 

leave-one-out process; one may speculate that, the single banks left out, during those repetitions 

selecting the less dominant /?-reducts, had unique condition attribute values and hence belonged to 

their own distinct condition classes (condition classes containing a single bank). By leaving one of 

these single banks out, it would have effectively removed a condition class, which in turn, affected 

the nature of the identified /?-reducts (flmm values, Quality of Classification etc.).23 Hence, there 

would have then been the possibility, that the criteria mentioned previously could have selected an 

alternate /?-reduct to the dominant /?-reduct {cb c3, c*4, c6, c8j. Furthermore, if these banks formed 

their own unique condition classes, they may have been unpredictable by the rules constructed on 

the other condition classes, which could explain the low predictive accuracies reported in Figure

8.1.2.1.1, associated with the less dominant /?-reducts.

An alternative reason for the selection of a less dominant /?-reduct may be related to the absence

23 This could be visualised as affecting the 'topology' o f  the veins within a vein graph analysis, that is, how  the veins 
appear within the vein graph.
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or presence of a single bank, resulting in, the difference between a condition class being associated 

to one decision class or another (in accordance with the majority inclusion principle); again this 

may affect the nature of the identified and consequently selected /?-reducts.

Finally, with regards to the general trend of the leave-one-out estimated predictive accuracy 

results, it is notable within Figure 8.1.2.1.1, that the standard deviation is quite large, for all /?- 

reducts where a standard deviation has been recorded. This conforms with the related literature 

(Weiss and Kulikowski, 1991) which suggested, the leave-one-out predictive accuracy estimate 

would have low bias but high variability (variance, here shown by the high standard deviation). 

This variability is understandable, because either a bank is predicted correctly (100% of the out-of- 

sample) or incorrectly (0% of the out-of-sample). The issues of bias and variability with regards to 

the analysis of the FIBR data, is discussed in more depth, within section 8.4.

8.1.2.2 Number of Beta-Reduct Rules Predicting Each Decision Class

The 'Number of Beta-Reduct Rules Predicting Each Decision Class' panel shown in Figure

8.1.2.2.1, displays statistical information relating to, the number of rules that predicted banks 

belonging to the different decision classes (FIBR rating grades 'A' to 'E' recoded 'O' to '5'), 

associated with the top ten most frequently selected /?-reducts. For example, there are on average 

(mean), zero rules associated with the dominant /?-reduct {cv, c3, c4, c6, c8} capable of predicting 'A' 

grade banks (decision class '0'), 19.9721 for predicting the 'B' grade banks (decision class '1'), 

26.9721 for predicting the 'C' grade banks (decision class '2'), 16.9783 for predicting the 'D' grade 

banks (decision class '3') and 2.9969 rules for predicting the 'E' grade banks (decision class '4').

The table presented within Figure 8.1.2.2.1, is particularly useful in aiding the analyst during the 

/?-reduct aggregation and aggregated rule selection process, described in more depth later, in 

subsection 8.1.3.
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Figure 8.1.2.2.1: Statistical Information Relating to the Number of/?-reduct Rules Capable of 
Predicting Each Decision Class, Associated with the Top Ten Most Frequently Selected /?-reducts, 

with Regards to the Leave-one-out Analysis of the FIBR Training Set

The table in Figure 8.1.2.2.1 indicates that, seven out of the top ten /?-reducts do not have the 

capability to predict 'A' grade banks (not all /?-reducts are shown within the screenshot), even 

though it was stated earlier that the ^-threshold value had been set to a level (0.55), which would 

hopefully, force the system to select /?-reducts capable of predicting all decision classes. It should be 

noted though, seven out of the ten most frequently occurring /?-reducts in Figure 8.1.2.2.1 (a 

different set of seven) were capable of predicting the 'E' grade banks. Unfortunately, as stated 

previously, setting the ^-threshold value posed a trade off, between the capability of the /?-reducts to 

predict all decision classes (including minority decision classes 'A' and 'E') and decision rule 

generality (small set of high strength, interpretable decision rules).

For example purposes, two /?-reducts capable of predicting all decision classes are now 

considered. Figure 8.1.2.2.2 shows the rule set distributions scrolled down to display the two /?- 

reducts {cu c2, c3, c4, C s, c8|  and {ci, c2, c3, c4, c7, c8}, that were both capable of predicting the 

minority 'A' grade and 'E' grade banks; with Figure 8.1.2.2.3 showing the 'Individual Beta-Reduct
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Statistics' panel, scrolled down to view the average (mean) number o f rules (plus other statistics) 

associated with both o f  these /?-reducts.
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Figure 8.1.2.2.2: Decision Rule Distributions Associated with Two /?-reducts {c{, c2, c3, c4, c5, c8} 
and {c i, C2, c3, c4, c7, c8}, Capable o f Predictive the Minority 'A' and 'E' Decision Classes
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Figure 8.1.2.2.3: Statistical Information Relating to the Number o f Rules Associated with the Top 
Ten Most Frequently Selected /?-reducts, Associated with the Leave-one-out Analysis o f the FIBR

Training Set

It can be seen that, if the analyst was to consider the subsequent analysis based on the 

aggregation o f the occurrences o f the /?-reduct (ci, c2, c3i c4, c5, c8}, Figure 8.1.2.2.3 implies, the 

average number o f rules required would be, almost thirty more than compared with the dominant /?- 

reduct (ci, c3, c4, c6, c8} (i-e. 66.9195 compared to 95.6250). The rule increase associated with /?- 

reduct (ci, c2, c3, c4, c7, c8} is lower (i.e. 66.9195 compared to 72.0000), but the analyst must 

consider the other information associated with the /?-reducts, such as the stability o f the /?-reducts 

(their frequency o f occurrence), other metric statistics (such as those shown in Figure 8 .1.2.1.1) and 

the summary graphs. For example, according to the predictive accuracies within the table shown in
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Figure 8.1.2.1.1, there is no reason to believe that the /?-reduct {cu c2, c3, c4, c7, c8} will out-perform 

the dominant /?-reduct {C[, c3, c4, c6, c8}. It should be stressed that, it would have been difficult to 

make assessments of the /?-reducts, as described above, without the aid of the developed software 

(in particular the developed VPRS re-sampling software).

This subsection has shown some of the thought processes the analyst may go through, when 

selecting a suitable /?-reduct for any subsequent aggregation, and the necessity of using all the 

presented information, across the different analysis results, both statistical and graphical.

The software and results shown thus far, have had two purposes; firstly to indicate the future 

predictive performance of any selected /?-reduct, in the guise of the predictive accuracy estimates 

(the out-of- bag estimates); and secondly, to aid the analyst in the subsequent /?-reduct aggregation 

phase (described next). Finally, it is worth re-iterating at this point, that the analyst still retains a 

high level of autonomy, and it is they who make the final decisions, such as the selection of the /?- 

reduct to aggregate.

8.1.3 /?-Reduct Aggregation
This final subsection of the leave-one-out analysis, describes the process of /?-reduct aggregation 

within the developed VPRS re-sampling software. On selecting the 'Aggregated Beta-Reduct' tab, 

the analyst is initially presented with the 'Beta-Reduct Aggregation Selection' panel, as shown in 

Figure 8.1.3.1.

This panel allows the analyst to select, using the tick boxes on the right of the table, the /?-reduct 

that they wish to aggregate24 (aggregating all occurrences of the selected /?-reduct as described in 

Chapter 3 subsection3.5.2). The table shows the number of occurrences of the top ten most 

frequently selected /?-reducts, this information was also represented graphically under the 'Summary 

Graphs' panel (see Figure 8.1.1.1).

24 The software does allow  the analyst to select more than one /?-reduct to aggregate, but the issue o f  aggregating 
across /?-reducts was not explored within the theoretical conceptualisation o f  the /?-reduct aggregation process in 
Chapter 3. However, the functionality remains in the software for any future expansion o f  the theory.
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Figure 8 .1.3.1: 'Beta Reduct Aggregation Selection' Panel Associated with the Leave-one-out
Analysis o f the FIBR Training Set

Once the analyst has selected the yf?-reduct for aggregation, aided by the analysis information 

displayed within the previously described panels, they must click the 'Update Beta-Reduct 

Aggregation' button seen at the bottom o f the panel shown in Figure 8 .1.3.1. The rules associated 

with all occurrences o f  the selected /?-reduct are now aggregated, and the results are shown in the 

'Aggregated Rules Selection' panel in Figure 8 .1.3.2.
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Figure 8 .1.3.2: Example Selection o f Aggregated Rules Concomitant with the Aggregated /?-reduct 
{c i, C3, C4, C6, Ci}, Associated with the Leave-one-out Analysis o f the FIBR Training Set

Figure 8 .1.3.2, shows the selection o f the aggregated rules, associated with the aggregated /?-
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reduct {ci, c3, c4, c6, c8}. The analyst has complete autonomy to select the decision rules they want 

to use with regards to their analysis, using the tick boxes in the column on the right of the panel. 

Their choice o f selection, would be based on the information provided in the previously described 

panels, or through the information displayed within the 'Aggregated Rules Selection' panel itself 

(based on strength, certainty values etc.). Figure 8.1.3.2 illustrates an instance where the analyst has 

not selected all rules capable of predicting the 'B' (1) grade banks (some tick boxes not ticked).

The rules within Figure 8.1.3.2, are ordered by decision class 'O' to '4' (grades 'A' to 'E') and 

sorted within those five decision classes, first by strength (aggregated /?-reduct strength, see Chapter 

3 Equation 3.5.2.1) and then by certainty (see Equation 3.5.2.2).

Within Figure 8.1.3.2, the number of rules selected (ticked in the boxes), was based on the mean 

frequency o f the rule occurrence over the five decision classes, utilising the decision rule 

distributions shown previously in Figure 8.1.2.2.1 (means rounded to nearest integer). It follows 

that, zero rules for predicting 'A' (0) grade banks (none were available), 20 rules for predicting 'B' 

(1) grade banks (only 11 shown within Figure 8.1.3.2), 27 rules for predicting the 'C' (2) grade 

banks (only eight shown within Figure 8.1.3.2), 17 rules for predicting 'D' (3) grade banks and three 

rules for predicting the 'E' (4) grade banks were selected.

Once the analyst has selected the final rule set (ticked boxes within Figure 8.1.3.2), they may 

proceed to test the predictive accuracy of the selected rules on the concomitant FIBR validation set. 

The analysis on the validation set now follows the same process (analysis panels), as those shown 

with regards to the vein graph analysis in Chapter 7, except here, the rules are associated with the 

aggregated /?-reduct rule set, as opposed to a set of rules associated with a single /?-reduct selected 

during a vein graph analysis. Using the same analysis panels/interface as before, gives a level of 

consistency between the both the re-sampling and vein graph analyses, and allows the analyst to 

easily compare results.25

25 A s stated previously, it is  also good programming practise to use a consistent interface and re-use programming 
code, m itigating the n eed  for multiple developm ent and testing o f  the software. It also aids a user, i f  familiar 
interfaces are used  throughout.
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Here for brevity, only the results of those banks predictable by matching rules from the 

validation set are presented, shown below in Figure 8.1.3.3. A more comprehensive exposition of /?- 

reduct aggregation is given in section 8.4. The format of Figure 8.1.3.3, was described previously in 

Chapter 7 section 7.3).

Pred ic tab le  O b jects N e are s t Rule 0 b je c ts  P red ic tab le  O bjects Summary Table N earest Rule O b jects Summary Table C om bined Summary Table

J , — 1............. ------------- z p z z j ...............1..........”  1
Predictable Objects 
Num Validation Objects 216 
Num Predicted Objects 200 
Predicted Correctly |l6 8

________ ________
------------

— BPredicted Incorrectly 32 
Predictive Accuracy 84 00 %!

Predicted Correct
o | r ~ 2 3 4

I ___________ I J
0.00  %Actual ¥> ° H r - 0  0  0

............ ft ” ........ 0  1126 6  0 0 95.45 %
B 0  11 28 6  0 63.63 %
a 0 1 6  14 2 63.63%
M 0  0 0 1 0 0 .0 0 %

Figure 8.1.3.3: Application of the Selected Aggregated Rules Concomitant with the Aggregated /?- 
reduct {c\, C3, c4, eg), Associated with Leave-one-out and Applied to the FIBR Validation Set

Within Figure 8.1.3.3, 200 out of the 215 banks within the validation set were predictable by a 

matching rule from the selected aggregated rule set (see second and third rows of the table within 

Figure 8.1.3.3), with 168 or 84.00% of those banks being predicted correctly (fourth and fifth row). 

The breakdown of predictive accuracies over the decision classes (the confusion matrix portion of 

the table), gives exactly the same predictive accuracies as the results of the same /?-reduct (ci, C3, c4, 

c6, c8} seen previously within the vein graph analysis of the FIBR data (see Chapter 7, Table 7.4.3). 

Thus, based on these results for this FIBR data, it can be concluded that, aggregation of the /?- 

reducts selected through the leave-one-out analysis does not improve on the predictive accuracy 

(this is not necessarily the case with regards to bootstrap aggregation described later in sections 8.3 

and 8.4).

In addition to looking at the predictive performance, based on selecting the average number of 

decision rules predicting each decision class (the process described earlier with regards to Figure 

8.1.3.2), Figure 8.1.3.4 presents the results based on all the aggregated rules from the aggregated 

rule panel shown in Figure 8.1.3.2 (i.e. selection of all rules).
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igure 8.1.3.4: Application of All Aggregated Rules Concomitant with the Aggregated /?-reduct {c j, 
C3, c4, c6, c8j, Associated with Leave-one-out and Applied to the FIBR Validation Set

When compared to Figure 8.1.3.3, Figure 8 .1.3.4 gives four more banks a classification (200 

compared to 204 banks, respectively). However there is, a slight decrease in overall predictive 

accuracy within Figure 8.1.3.4 and specifically the predictive accuracies on the 'B1 (1) and 'C' (2) 

grade banks, when compared to Figure 8.1.3.3. Though there is almost a 5% increase on the 'D' (3) 

grade banks (68.18% in Figure 8.1.3.4, compared to 63.63% in Figure 8.1.3.3).

The differences between the results shown in Figures 8.1.3.3 and 8.1.3.4, illustrate that, it is 

possible to obtain, better or worse predictive accuracies based on the validation set through the 

selection of different sets of aggregated rules from the panel shown in Figure 8.1.3.2. An increase in 

predictive accuracy on the validation set, could be orchestrated by selecting a specific set of 

aggregated rules, however, this manipulation of the results would be a naive approach, as in effect, 

the analyst would be overfitting their selected aggregated rule set to the validation set. It would be 

wiser, to find ways of increasing the out-of-bag predictive accuracies, as they are less biased 

towards a particular predictive accuracy estimate (see Chapter 3, section 3.3, and subsection 3.4.1 

for explanation of the out-of-bag estimate).
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8.2 &-fold Cross-validation, Comparison with Leave-one- 

out

This section presents the re-sampling results of £-fold cross-validation for a number of values of k 

(stratified &-fold unless otherwise stated, see Chapter 3 section 3.3.2), and makes comparisons with 

the results of the leave-one-out analysis shown in the previous section. The graphs (as described in 

subsection 8.1.1) are used to elucidate the commonality between the results of &-fold cross- 

validation and leave-one-out, and to demonstrate the asymptotic nature between them, as the value 

of k increases. Moreover, it highlights that, the often recommended values for k, such as k = 5 and k 

= 10 (Efron, 1982; Davison and Hinkley, 1997; Zhang et al., 1999; Dietterich, 2000a) are viewed 

with regards to this analysis, as relatively inadequate for the purpose of VPRS re-sampling.

Initially, the value of k was set to ten (Thomassey and Fiordaliso, 2006). The graph in Figure

8.2.1 shows the frequency of the selected /?-reducts (based on the automated selection criteria, 

described previously), Figure 8.2.2 shows the frequency of the condition attributes associated with 

the selected /?-reducts, and Figure 8.2.3 shows the frequency of selected /?-reducts size associated 

with the selected /?-reducts.
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Figure 8.2.1: Frequency o f Occurrence o f the Selected /?-reducts, Associated with the 10-fold Cross-
validation Analysis of the FIBR Training Set
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Figure 8.2.2: Frequency o f Occurrence o f the Condition Attributes Associated with the Selected /3- 
reducts, with Regards to the 10-fold Cross-validation Analysis o f the FIBR Training Set
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Figure 8.2.3: Frequency of Selected /?-reducts Size, Associated with the 10-fold Cross-validation
Analysis of the FIBR Training Set

With regards to Figure 8.2.1, clearly, due to the limited number of re-sampling repetitions (i.e. 

ten), there is no /?-reduct showing any significant dominance (frequency of occurrence) over the 

other selected /?-reducts; in contrast to the leave-one-out results shown previously within Figure

8.1.1.1 (which indicated /?-reduct (ci, c3, c4, c6, c8} was significantly dominant). Indeed the impact 

of using 10-folds (only 10 repetitions), is the limited information and results, which it provides the 

analyst, to discern between /?-reducts for any subsequent /?-reduct aggregation analysis.

The graph shown in Figure 8.2.2 does show some consistency with the equivalent leave-one-out 

graph shown in Figure 8.1.1.2, with the condition attributes ci, c3, c4, c6, c7 and c8, showing some 

dominance over the other condition attributes, although the relative dominance of c7 is inconsistent 

with Figure 8.1.1.2. Figure 8.2.3 appears quite inconsistent with the equivalent leave-one-out graph 

shown in Figure 8.1.1.2. Although, /?-reducts of size five are dominant in Figure 8.1.1.2, this could 

not be conclusively inferred from Figure 8.2.3, as the result is only based on three of ten repetitions.

It should be reaffirmed, as stated in Chapter 3, one of the advantages of £-fold cross-validation,
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was a decrease in the overall processing time,26 with little impact/difference between the predictive 

accuracies of A>fold cross-validation and leave-one-out analysis. Unfortunately here, within the 

VPRS re-sampling environment, as a number of different /?-reducts may be selected during the re­

sampling process, a low value of k represents an inadequate number of repetitions, leading to 

inconclusive results. Griffiths and Beynon (2007 and 2008) illustrated a similar finding with regards 

to the use of 10-fold Cross-validation applied to other data sets, thus indicating, that the 

inconclusive results asociated with 10-fold Cross-validation, is not unique to the bank data 

considered here. Hence, the value of k was increased to such a point, that the results converged to 

reflect the results of the leave-one-out analysis more closely.

The graphs within Figures 8.2.4, 8.2.5 and 8.2.6 are based on &-fold cross-validation where k -  

50. For further comparative reference, Appendix A sections A.l to A.4, illustrate the full set of 

graphs, elucidating the asymptotic nature of the convergence between the results of £-fold cross- 

validation and leave-one-out analyses, as k increases through k=  10, 20, 30, 40 and 50.
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{1,2,3,4,6,8}{ 1 , 3 , 4 , 6 , 8 } {2,6,7,8} { 1 , 3 , 4 , 6 , 7 , 8 }
{ 3 , 4 , 6 , 6 , 7 }

Beta-Reducts

Figure 8.2.4: Frequency of Occurrence of the Selected /?-reducts, Associated with the 50-fold Cross-
validation Analysis of the FIBR Training Set

26 The other advantage being, reduced variance o f  the estimated predictive accuracy (see Chapter 3 subsection 3.3.4).
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Figure 8.2.5: Frequency o f Occurrence o f  the Condition Attributes Associated with the Selected /?- 
reducts, with Regards to the 50-fold Cross-validation Analysis o f  the FIBR Training Set
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Analysis o f  the FIBR Training Set

Clearly, with k = 50, the graph in Figure 8.2.4 now shows m ore convergence with the leave-one-out
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equivalent (see Figure 8.1.1.1) than when k = 10 (see Figure 8.2.1), with the first three most 

frequently occurring /?-reducts being identical in both graphs (in terms of condition attributes, not 

their frequency of occurrence). More importantly, /?-reduct {cu c3, c4, c6, c8} in Figure 8.2.4, now 

appears significantly dominant (compared to Figure 8.2.1). Figure 8.2.5 also shows convergence 

with its leave-one-out equivalent (see Figure 8.1.1.2), with the condition attributes, cu c3, c4, c6 and 

c8, displaying the most significance, and c7 now displaying less significance than in the 10-fold 

equivalent (see Figure 8.2.2). Additionally, Figure 8.2.6 now demonstrates convergence with its 

leave-one-out equivalent (see Figure 8.2.2), with /?-reducts of size five displaying significant 

dominance over the other /?-reduct sizes.

It may be debatable whether such a high value of k = 50 is warranted, as for lower values of k, 

the frequency of condition attribute graph (such as previously shown in Figure 8.2.2), could be 

enough to indicate the most dominant /?-reduct (see Appendix A, section A.l and A.4). This is 

perhaps a judgement the analyst would have to make. It should be noted though, that k -  50 still 

represents an eight fold decrease in the processing time when compared to leave-one-out (50 

repetitions as opposed to 405).

Due to limits on the amount of analyses that can be presented within this dissertation; here, only 

the results with regards to the stratified &-fold cross-validation are exposited. Appendix sections A.l 

to A.4, show the full set of graphs necessary to allow comparisons to be made, based on values of k 

= 10, 20, 30, 40 and 50, for both the stratified and non-stratified &-fold cross-validation analyses. 

They illustrate that the results of the stratified Ar-fold cross-validation converge to the results of the 

leave-one-out analysis for lower values of k. Hence, vindicating the case for using stratified over 

non-stratified A>fold cross-validation (Thomassey and Fiordaliso, 2006).

Following on from the results of the graphs shown in Figures 8.2.4 to 8.2.6, the subsequent 

Figures 8.2.7 to 8.2.9, demonstrate the /?-reduct aggregation process and validation set results, based 

on the 50-fold cross-validation of the FIBR training data set (n.b. stratified &-fold).
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Figure 8.2.7 illustrates the selection of /?-reduct (ci, c3, c4, c6, c8) for the purpose of aggregation,

and Figure 8.2.8 presents the selection of the associated aggregated rule set, which is applied to the

FIBR validation set shown in Figure 8.2.9.

The rules selected within Figure 8.2.8 (ticked boxes), are selected, based on the same principle

used previously, with regards to the leave-one-out analysis. That is, utilising the mean frequency of

the rule occurrence over the five decision classes (using the £-fold cross-validation results

equivalent to that shown previously in Figure 8.1.2.2.1, and means rounded to nearest integer). It

follows that the selection consisted of, zero rules predicting 'A1 (0) grade banks (none were

available), 20 rules for predicting 'B' (1) grade banks, 27 rules for predicting the 'C' (2) grade banks

(only 8 shown within Figure 8.2.8), 17 rules for predicting 'D' (3) grade banks (selection of all 17

shown within Figure 8.2.8) and three rules for predicting the 'E' (4) grade banks were selected.

It should be noted that, the average (mean) number of rules selected here, with regards to each

decision class (grade), for the aggregated /?-reduct {ci, c3, c4, c6, c8|,  is identical to the leave-one-out

analysis discussed previously in subsection 8.1.3. Moreover, the results of applying the selected

aggregated rule set to the validation set, shown in Figure 8.2.9, are also identical to those results

shown previous with regards to the leave-one-out analysis (subsection 8.1.3 Figure 8.1.3.3). Thus

these results further emphasise the asymptotic convergence, between the results of the &-fold cross-

validation and leave-one-out analyses. However, there is a difference between the distribution of the
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occurrence values shown in the eleventh columns of Figures 8.2.8 and 8.1.3.2, with Figure 8.2.8 

showing more range of values.27

The main difference however, between &-fold cross-validation and leave-one-out, can be seen 

within the predictive accuracy estimates (out-of-bag estimates), where, £-fold cross-validation 

demonstrates similar predictive accuracies as leave-one-out but are associated with less variability 

(standard deviation), as may be expected according to the theory presented within Chapter 3. A 

comparison of these predictive accuracy estimates across all three re-sampling methods are 

presented within section 8.4.

This section has demonstrated the functional necessity of the VPRS re-sampling graphs utilised 

within the developed software (in terms of &-fold cross-validation). They allow the analyst to 

recognise whether results may be conclusive or inconclusive, depending on, the occurrence of the 

selected /?-reducts and their concomitant condition attributes. It has also demonstrated that, there 

may be a threshold value of k, below which, the results are not conclusive enough to aid the analyst 

with their decision making.

Finally, finding an appropriate value of k with regards to VPRS re-sampling, has highlighted an 

issue which would not have been considered prior to this investigation. This is reflected within the 

graphs presented in Appendix A sections A.l to A.4, which illustrate that &-fold cross-validation, 

does not converge to the graphs shown for the leave-one-analysis, until a relatively high value of k 

is set. It should be noted though, from experimental work carried out during the development of the 

VPRS re-sampling software, that the most appropriate value of k is dependant on the specific data 

set, see for example Griffiths and Beynon (2007). These findings and conclusions, have only been 

made possible through the analysis tools implemented within the developed VPRS re-sampling

27 Note that Figures 8.2.8 and 8.3.2 (shown later with regards to the bootstrapping analysis), were added to this 
dissertation after the respective 50-fold cross-validation and bootstrap analyses were undertaken, and results 
recorded. As such, and due to the random nature inherent in both re-sampling methods, it was impossible to obtain 
completely the same results as those found previously. That is, values such as the 'Occurrence' value may not be 
reflected in the respective analyses (e.g. within the graphs). However, Figures 8.2.8 and 8.3.2 are similar to their 
respective analyses in other respects (range o f 'Occurrence' values, number of associated rules etc.), and have been 
used here, mainly for example purposes.
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software.

8.3 Bootstrap Re-sampling and Bootstrap /?-reduct 

Aggregation

This section illustrates that, unlike &-fold cross-validation, the results of bootstrapping within the 

developed VPRS re-sampling software applied to the FIBR data set, are markedly different to the 

results of leave-one-out. This section investigates the bootstrapping results of the FIBR data, and 

the aggregation of the respective /?-reducts. The following section 8.4 compares the full set of 

results of the bootstrap aggregated /?-reducts, to the leave-one-out aggregated /?-reducts.

Here, since the number of bootstrap repetitions is dependent on a decision made by the analyst, 

1,000 bootstraps were undertaken and /?-reducts were selected based on the same automated 

selection criteria as outlined in section 8.1. It was decided to use 1,000 bootstraps, based on the 

discussion given in Chapter 3 subsection 3.4.1, processing time considerations, and through 

experimenting with different bootstrap values, whilst trying to obtain consistent results (consistent 

occurrence of selected /?-reducts between bootstrap analyses); Brownstone and Valletta (2001), 

found their bootstrapping analyses also required up to 1,000 bootstraps.

Looking initially at the distribution of the top ten most frequently selected /?-reducts, shown in 

Figure 8.3.1. Firstly it is interesting, that the top ten most frequently selected /?-reducts with regards 

to bootstrapping, are different to those shown earlier with respect to leave-one-out (see Figure 

8 . 1. 1. 1).
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Figure 8.3.1: Frequency of Occurrence of the Selected /?-reducts, Associated with the Bootstrap
Analysis of the FIBR Training Set

Compared to those distributions shown previously, with regards to leave-one-out (see Figure

8 .1.1.1) and &-fold cross-validation (see Figure 8.2.4), the distribution of the selected /?-reducts 

shown in Figure 8 .1.1.1, is less biased towards a single /?-reduct. However, the /?-reduct (ci, C2, C3, 

c4, c5, c6i c7, c*8} does appear to be the most dominant, and this is reflected with regards to the 

distribution of occurrence of the condition attributes associated with all selected /?-reducts, shown 

within Figure 8.3.2.
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Figure 8.3.2: Frequency of Occurrence, of the Condition Attributes Associated with the Selected /?- 
reducts, with Regards to the Bootstrap Analysis of the FIBR Training Set

Considering the /?-reduct {ci, c2, c3, c4, c5, c6, c7, c%) within Figure 8.3.1, it appears to be most 

dominant /?-reduct (though less obviously so, than the most dominant /?-reduct with regards to the 

leave-one-out analysis and 50-fold cross-validation analyses), and even though Figure 8.3.2 appears 

to support this fact, it can be shown these results do not express the information as fully as one may 

initially think. That is, by looking at the graphical distribution of the selected y?-reduct sizes 

(number of condition attributes), shown in Figure 8.3.3, and the overall summary statistics shown in 

Figure 8.3.4, it can be seen that the average (mean) number of condition attributes associated with 

the selected /?-reducts is closer to four than eight (note the most dominant /?-reduct {ci, c2, c3, c4, c5, 

c*6, c7, eg} has eight condition attributes).
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Additionally, Figure 8.3.3 shows that, /?-reducts of size eight, that is the /?-reduct {ci, c2, c3, c4, c5, 

ce, c7, c8}, are only selected by the automated selection criteria 47 out o f  the 1,000 bootstrap 

repetitions, whereas /?-reducts of size four are selected 307 out of the 1,000 repetitions. Hence the 

analyst is presented with a choice between aggregating over the most frequently selected /?-reduct 

{ci, C2, c*3, c4, c5, c6, c7, eg}, or selecting a /?-reduct associated with (or nearer to) the most frequent 

size of /?-reduct, i.e. four condition attributes in this case.

Interestingly, on closer inspection of the previously considered Figure 8.3.2, the top four most 

frequently occurring condition attributes C3, c4, c7 and eg are those which appear in the /?-reduct (c3, 

c4, c7, c8), which was the joint sixth most frequently selected /?-reduct in Figure 8.3.1. It should be 

noted that, the distribution associated with Figure 8.3.2 is slightly misleading because of the 

dominance of condition attribute c%. To explain further, considering the second, third and forth most 

significant condition attributes, c3, c7 and c4, respectively, they occur on, at least 48 more occasions 

than the next most significantly occurring condition attribute c5 (c4 occurs on 500 occasions, 

whereas c5 occurs on 452 occasions). This difference in occurrence, would have appeared much 

more significant with regards to the magnitude of values within the graphs shown previously, 

associated with the leave-one-out and with 50-fold cross-validation analyses (more so with 50-fold 

cross-validation), see Figures 8.1.1.2 and 8.2.5, respectively.

Hence, with regards to the selection of a /?-reduct when employing VPRS bootstrap aggregation, 

the analyst can be guided into, potentially making a better choice, through considering the full 

spectrum of evidence presented within the developed VPRS re-sampling software (not just 

considering the graph in Figure 8.3.1). Moreover, the next section will demonstrate, that the 

estimated predictive accuracies based on the most frequently selected /?-reduct, are not necessarily 

the best (for both the out-of-bag estimates and the results from applying the aggregated /?-reduct to 

the respective validation set), and the QoC associated with the most frequently selected /?-reduct is 

also markedly lower, than when compared to the less frequently occurring /?-reducts (again for both
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the out-of-bag estimates and the validation set). Again it should be emphasised that, these findings 

and conclusions could not have been made without utilising the developed software.

In keeping with the order o f analysis, with regards to leave-one-out and the £-fold cross- 

validation analyses, the final part o f this section presents in Figures 8.3.5 to 8.3.7, the /?-reduct 

aggregation o f the selected /?-reduct {ci, c2, c7, c8}, and the results o f the associated aggregated rule 

set applied to the FIBR validation set. The /?-reduct {ci, c2, c7, c8}, was selected considering the 

information described above, that is, /?-reduct {ci, c2, c7, c8} is the most frequently occurring 

reduct associated with four condition attributes (the most frequent size o f selected /?-reduct).
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Figure 8.3.5: 'Beta Reduct Aggregation Selection' Panel Associated with the Bootstrap Analysis o f
the FIBR Training Set
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Figure 8.3.7: Application of the Aggregated Rules Concomitant with the Aggregated /Treduct (ci, 
c2, Ci, eg}, Associated with Bootstrapping and Applied to the FIBR Validation Set

Compared to the leave-one-out and 50-fold cross-validation analyses, Figures 8.3.5 to 8.3.7 

demonstrate a more diverse range of results. Figure 8.3.5 shows the selection of/?-reduct {ci, c2, c7, 

c’g} for aggregation, and Figure 8.3.6 shows the selection of the aggregated rules concomitant with 

that aggregated /?-reduct. Rule selection was based on the same selection principle used previously, 

utilising the average (mean) frequency of the rule occurrence over the five decision classes (these
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values can be found later in Table 8.4.2.5).

The 'Strength', 'Certainty' and 'Occurrence' columns within Figure 8.3.6, clearly show a much 

more diverse range of values compared to the equivalent leave-one-out analysis (see Figure

8.1.3.2). This could indicate that the rules associated with the aggregated /?-reducts, with regards to 

bootstrapping, are less biased towards a specific rule set, and are more varied across the bootstrap 

repetitions. This is interesting because, it is in complete contrast to the theory relating to accuracy 

estimates compared between with the leave-one-out and bootstrapping analyses, which states that, 

leave-one-out is the least biased but has the highest variance (see Chapter 3 subsection 3.3.4).

Comparing the results of applying the aggregated rule set to the FIBR validation set, between the 

bootstrapping analysis shown in Figure 8.3.7 and the leave-one-out analysis shown in Figure 8.1.3.3 

(n.b. the results of 50-fold cross-validation were similar to those of the leave-one-out analysis), it 

can be seen that, bootstrapping gives a classification to two more banks (202 compared to 200), and 

predicts correctly a greater proportion of the banks it has given a classification to (87.12% 

compared to 83.33%). Moreover, the breakdown of the predictive accuracies across the five 

decision classes with respect to bootstrapping is higher for the 'B' (1) grade (94.89% compared to 

94.07%), 'C' (2) grade (67.50% compared to 62.22%) and 'D' (3) grade (82.60 compared to 68.18%) 

banks, with the 'A' (0) and 'E' (4) grade banks both having equivalent predictive accuracies (0%) to 

those shown in Figure 8.3.7. This could indicate that the results based on bootstrapping can improve 

on the results based on leave-one-out. It must also be kept in mind that, the bootstrapping results 

were based on an in-sample set which was on average, only 62.3% of the training set, whereas the 

leave-one-out results were based on 99.75% of the training set (404/405), which is impressive with 

regards to the bootstrapping results, since they are associated with higher predictive accuracies on 

the validation set.

The following section provides a full exposition and comparison of the out-of-bag estimates over 

the three re-sampling methods, and a comparison of the /?-reduct aggregation with regards to
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bootstrapping and leave-one-out, applied to the FIBR validation set.

8.4 Comparison of Leave-one-out, &-fold Cross-validation 

and Bootstrapping Predictive Results

This section is split into two subsections, which presents in a number of tables, information collated 

from the software during a number of comparative analyses. Firstly, subsection 8.4.1 compares the 

out-of-bag predictive accuracy estimates between the /?-reducts selected during the leave-one-out, k- 

fold cross-validation and bootstrapping analyses. Particular reference is made to the bias and 

variance between the three re-sampling methods. Secondly, subsection 8.4.2 compares the estimated 

predictive accuracies based on aggregating the selected /?-reducts from the leave-one-out and 

bootstrapping results, and applying those aggregated /?-reducts to the FIBR validation set. 

Subsection 8.4.2 does not consider &-fold cross-validation, as it was shown earlier in this chapter, 

for higher values of k, the results are asymptotic to the leave-one-out analysis, hence, it was only 

necessary to present the difference in results, between leave-one-out and bootstrap aggregation.

8.4.1 Out-of-bag Estimates
As stated, this subsection compares the out-of-bag estimates over the three re-sampling methods 

(two sets of results are presented for bootstrapping, i.e. the eO and the 0.632B estimates), and 

presents them in four tables 8.4.1.1 to 8.4.1.4. These tables show the selected /?-reducts within the 

first column and the frequency of occurrence in the second. The remaining columns display 

separately, the mean average predictive accuracy estimates and standard deviations of the selected 

/?-reducts for: all banks in the out-of-sample, only those banks within the out-of-sample predictable 

by matching rules, and those banks within the out-of-sample predicted by nearest rules. The 

information was collated from the statistical breakdown of the 'Individual Beta-reducts Statistics'
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panel, see in Figure 8.1.2.1.1 subsection 8.1.2.1.

Leave-one-out Estimated Predictive Accuracies 
(Out-of-bag Estimates)

A il Banks Predictable Banks by 
Matching Rule

Predictable by Nearest 
Rule

/?-reduct Occurrence Mean S.D. Mean S.D. Mean S.D.

{ C l ,  C 3, C4,  Cg, C g} 323 80.81% 39.38 81.79% 38.59% 50.00% 50.00%

{ C i, Ce, C i,  C g} 16 50.00% 50.00 50.00% 50.00% Na Na

( C 3,  C4 ,  C 5,  C6 ,  C l) 15 26.67% 44.22 26.67% 44.22% Na Na

{c2, c 4,  C g} 10 0.00% 0.00 0.00% 0.00% Na Na

{ C l ,  C l, C l,  C4, C i,  C g} 8 75.00% 43.30 75.00% 43.30% Na Na

( C l ,  C l, C l,  C4, C l,  C g} 5 0.00% 0.00 Na Na 0.00% 0.00

{ci, C l,  C g} 4 0.00% 0.00 0.00% 0.00% Na Na

{ C l ,  C i, C4, C o, C i,  Cg} 4 50.00% 50.00 Na Na 50.00% 50.00%

{ C i ,  C 3, c 4,  Ci, C g} 3 100.00% 0.000 Na Na 100.00% 0.00%

{ C l, C l, C4, C i, C i,  Cg} 3 0.00% 0.000 Na Na 0.00% 0.00%

Table 8.4.1.1: Occurrence and Average Predictive Accuracy (Out-of-bag) Estimates of the Top Ten 
Most Frequently Selected /?-reducts, Associated with the Leave-one-out Analysis of the FIBR

Training Set

50-fold Cross-validation Estimated Predictive Accuracies 
(Out-of-bag Estimates)

A ll Banks Predictable Banks by 
M atching Rule

Predictable by Nearest 
Rule

/?-reduct Occurrence Mean S.D. Mean S.D. Mean S.D.

{ C i,  Ci, C4, Cg, Cg} 15 70.00% 16.96 70.56% 15.35 42.86% 49.49

{Ci, Cg, Ci, Cg} 7 82.54% 5.79 82.54% 5.79 Na Na

{ C 3,  C4, C j ,  Cg, Ci) 5 80.56% 5.76 80.56% 5.76 Na Na

{ C |,  Cl, Cg} 4 75.00% 8.84 77.23% 6.11 0.00% 0.00

( C l ,  C3, C 4, C6, Cl, Cg} 3 71.30% 16.09 72.49% 12.98 50.00% 50.00

{C 3 , c4, Cg,  Cg} 3 63.89% 10.39 66.67% 11.79 0.00% 0.00

{Cl, Cl, Cg} 2 75.00% 0.00 75.00% 0.00 Na Na

( C i ,  Ci, Ci, C 4, C g, Cg} 2 59.03% 3.47 59.03% 3.47 Na Na

{ C l, C4, Cg} 1 75.00% 0.00 75.00% 0.00 Na Na

{C 4,  Ci, Cg} 1 37.50% 0.00 37.50% 0.00 Na Na

Table 8.4.1.2: Occurrence and Average Predictive Accuracy (Out-of-bag) Estimates of the Top Ten 
Most Frequently Selected /?-reducts, Associated with the 50-fold Cross-validation Analysis of the

FIBR Training Set
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eO Bootstrap Estimated Predictive Accuracies (%) 
(Out-of-bag Estimates)

/9-reduct Occurrence

All

Mean

Banks

S.D.

Predictable Banks by 
Matching Rule

Mean S.D.

Predictable by Nearest 
Rule

Mean S.D.

(Ci, Ci, Ci, C4, Cb, Cb, Ci, c8} 44 65.943 5.969 72.584 4.402 48.157 16.481

{Cl, C8} 29 71.214 3.071 72.747 3.231 34.985 36.480

{c,, Cl, Cl, Cs} 19 69.817 3.084 72.090 3.084 24.226 23.619

{c3, C4, Cg} 18 70.973 3.133 72.373 3.462 52.166 22.065

{ci, Cl, Cs} 17 71.404 2.602 73.126 1.865 11.006 14.302

{Cl, Cl, Cl, C4, C?, Ci, Cg} 15 70.925 4.011 74.409 2.450 48.919 13.346

(c4? Cb, Cg} 15 69.743 2.160 70.47 2.503 46.678 29.617

{c3, c4, Ci, Cg} 15 71.523 2.129 73.015 2.074 44.778 23.552

{Cl, Ci, C4, Cg} 14 70.961 3.135 72.213 3.200 42.943 17.825

{cu Cl, Cl, C4, Cb, Cg} 13 70.309 4.369 71.49 4.134 47.895 28.239

Table 8.4.1.3: Occurrence and Average Predictive Accuracy (Out-of-bag) eO Estimates of the Top 
Ten Most Frequently Selected /?-reducts, Associated with the Bootstrap Analysis of the FIBR

Training Set

0.632B Bootstrap Estimated Predictive Accuracies 
(Out-of-bag Estimates)

All Banks Predictable Banks by 
Matching Rule

Predictable by Nearest 
Rule

/9-reduct Occurrence Mean S.D. Mean S.D. Mean S.D.

{c 1, Cl, Cl, C4, Cb, Cb, Cl, Cg} 44 69.78 5.62 78.72 3.30 46.61 14.32

{Cl, Cg} 29 72.13 2.04 73.68 2.14 33.48 28.80

{Cj, Cl, Cl, Cg} 19 71.74 2.19 74.00 2.19 25.64 20.04

{ c h  C4, Cg} 18 73.11 2.30 74.56 2.57 49.27 17.93

{Cl, Cl, Cg} 17 72.33 1.90 74.00 1.19 13.98 13.95

{c 1, Cl, Cl, C4, Cb, Cl, Cg} 15 75.00 3.65 79.37 1.85 46.66 11.00

{c4, Cb, Cg} 15 70.89 1.54 71.75 1.74 45.27 23.43

{Cl, C4, Ci, Cg} 15 74.19 1.51 75.75 1.45 44.22 20.39

{c 1, Ci, C4, Cg} 14 73.71 2.33 75.10 2.31 41.09 14.87

(Ci, Ci, Ci, C4, Cb, Cg} 13 74.88 3.22 76.15 3.09 47.50 25.35

Table 8.4.1.4: Occurrence and Average Predictive Accuracy (Out-of-bag) 0.632B Estimates of the 
Top Ten Most Frequently Selected /?-reducts, Associated with the Bootstrap Analysis of the FIBR

Training Set

In general, the estimated predicted accuracy results, reflect the expected pattern with regards to 

bias and variance (shown here as standard deviation) (Chapter 3 subsection 3.3.4; Weiss and 

Kulikowski, 1991). That is, the mean estimated predictive accuracies of the bootstrapping estimates 

are more pessimistic than those estimates associated with the leave-one-out and A:-fold cross­
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validation analyses. To re-iterate briefly, leave-one-out should be nearly an unbiased estimate, k- 

fold cross-validation should be slightly pessimistic and bootstrapping should show quite pessimistic 

estimates. Though it is difficult to draw too much inference from the leave-one-out results, given 

that for the less frequently selected /?-reducts (those other than /?-reduct (ci, c3, c4, c6, eg}), they are 

only tested on a single bank for the few times they occur, hence confidence in their estimated 

predictive accuracy is not possible. This perhaps, reflects the position taken by Shao (1993), that 

leave-one-out can be deficient and the more general &-fold cross-validation can rectify its 

deficiencies. Han and Kamber (2006) shares the same sentiment, stating that in general, &-fold 

cross-validation is recommended for estimating accuracy even if computation power allows using 

more folds (with leave-one-out being the extreme limit).

With regards to the variance, here, by looking at the standard deviation values, again the re­

sampling methods follow the expected pattern. That is, leave-one-out shows the highest variance, k- 

fold cross-validation shows markedly less variance, and bootstrapping generally shows the least 

variance.

The predictive accuracy estimates between the banks predictable by matching rules, and those 

predictable only by nearest rules, for all three re-sampling methods; indicates strong evidence for 

the conclusion that the nearest rule approach to predicting banks, where no matching rule can be 

found, performs relatively poorly. This was also observed with regards to the vein graph results 

shown in chapter 7 section 7.3, and will additionally be emphasised later in this chapter with 

regards to the full exposition of the /?-reduct aggregation results on the validation set (also see 

aggregation results based on banks only predictable by nearest rule, in Appendix 8).

With regards to the eO and 0.632B bootstrap estimates (Tables 8.4.1.3 and 8.4.1.4), again, the 

results fit the pattern as described in the related literature (see Weiss and Kulikowski, 1991), which 

suggested that the eO estimates (only calculated on the out-of-sample banks), would be more 

pessimistic than the 0.632B estimates. These results were also reflected within the 'Overall
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Summary Statistics' panel shown previously in Figure 8.3.4 (relating to the bootstrapping results), 

which indicate that the 0.632B estimates (denoted as '.632B Estimates' in the row heading) were 

slightly less pessimistic than the eO estimates.

Interestingly, Figure 8.3.4 showed that the average number of banks within the out-of-samples is 

148.7470, which as a proportion of the 405 banks within the training set is 0.367 (rounding down). 

Hence, the average proportion of banks taken from the training set and used in the in-sample, once 

or more, during bootstrapping process is 0.633 (rounded up). These values are almost exactly the 

proportions estimated by Efron and Tibshirani (1993) and Breiman (1996a). Furthermore, the 

0.632B bootstrap uses the fixed proportional coefficients 0.632 and 0.368, but it is worth 

considering, if the analysis has access to the exact proportions (as the developed software does 

here), the coefficients of the 0.632B equation (see Chapter 3 Equation 3.3.4.1) could be adaptively 

assigned to utilise the exact proportions calculated at the end of the bootstrapping process, and this 

may yield better predictive accuracy estimates.

8.4.2 Comparison of Aggregated yS-reduct Validation Set Results, 
Based on the Leave-one-out, Bootstrapping, and Vein 
Graph Analyses

This section compares the results of /?-reduct aggregation, with regards to all selected /?-reducts, 

associated with the leave-one-out and bootstrap re-sampling methods, applied to the validation set 

from the FIBR data. The results are also compared with the vein graph analysis of the FIBR data 

previously reported in Chapter 7.

Table 8.4.2.1 presents the results of the /?-reduct aggregation process, for the top ten most 

frequently occurring /?-reducts selected during the leave-one-out analysis. The aggregated /?-reducts 

have been applied to the FIBR validation set, where the results shown, are only based on the banks 

that were predictable by matching aggregated rules, associated with the relevant aggregated /?- 

reducts (for the results based on the banks predictable only by the nearest rule method, see
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Appendix A sections A.5 and A.6)

Taking the aggregated /?-reduct {ci, c3, c4, c6, c8} as an example, contained in Table 8.4.2.1, it is 

associated with 104 aggregated rules (column two), from which a subset of aggregated rules are 

selected (described next); from the subset of aggregated rules: 200 out of the 215 banks within the 

validation set were predictable by matching rules (column three), 168 of those predicted were 

predicted correctly (column four), with 32 being predicted incorrectly (column five), giving a

predictive accuracy of 84.00% (column six).

/?- reduct

Number o f  
Aggregated 

Rules

Banks Predicted 
by Matching 

Rule
Banks Predicted 

Correctly
Banks Predicted 

Incorrectly
Predictive 

Accuracy (%)

C45 Cb, C gJ 1 0 4 2 0 0 1 6 8 3 2 8 4 . 0 0 %

{c2, C6, C i, Cg} 1 6 2 0 4 1 6 6 3 8 8 1 . 3 7 %

{ c j ,  C4,  C5, Cb, C i} 6 6 2 0 2 1 6 5 3 7 8 1 . 6 8 %

{c2, c 4, C g) 1 3 2 0 8 1 7 6 3 2 8 4 . 6 1 %

{ C i,  C2, C3, C4, Cs, Cg} 1 0 1 2 0 6 1 7 0 3 6 8 2 . 5 2 %

{ C l,  C2, C3, C4, C l, Cg} 7 2 2 0 5 1 6 9 3 6 8 2 . 4 3 %

{ c 2, C l, Cg} 1 4 2 0 8 1 6 9 3 9 8 1 . 2 5 %

( C l ,  C35 C45 Co, C i, Cg} 7 6 1 9 8 1 6 9 2 9 8 5 . 3 5 %

{ c  1, C 3, C4,  C l, Cg} 6 5 1 9 5 1 6 8 2 7 8 6 . 1 5 %

{c2, C 3,  C4,  Cs, C i,  Cg} 8 8 1 9 0 1 6 2 2 8 8 5 . 2 6 %

Table 8.4.2.1: Aggregated /?-reduct Results Associated with the Leave-one-out Analysis Applied to
the FIBR Validation Set

As stated, the number of aggregated rules presented in Table 8.4.2.1 is not the final number of 

rules selected for the classification of the banks within the validation set. The number of aggregated 

rules selected from the 'Aggregated Rules Selection' panel (see Figure 8.1.3.2), was based on the 

average number of rules (rounded to the nearest integer) that predicted each individual decision 

class, discussed previously and shown in subsection 8.1.2.2. The average number of aggregated 

rules selected and associated with all the selected /?-reducts with regards to the leave-one-out 

analysis, have been collated from the panel shown earlier in Figure 8.1.2.2.1 and are shown below 

in Table 8.4.2.2. Table 8.4.2.3 then presents the breakdown of the validation set predictive 

accuracies, across the five decision classes, for each aggregated /?-reduct.
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/?-reduct

Average Number of Rules Predicting Each Individual Decision Class
Total0 (A ) 1(B ) 2(C ) 3 (D ) 4(E )

\ C l ,  C 3, C4,  Cs , £ 8} 0.00 20.00 26.97 16.98 3.00 66.92

[c2, Cs, C j,  c8} 0.00 7.00 7.00 2.00 0.00 16.00

{C 3, C4 , Cs, Cs, C l} 0.00 13.00 22.27 14.07 3.07 52.47

{c2, c4, C s} 0.00 5.00 6.00 2.00 0.00 13.00

{ C i, c2, Cs, C4,  Cs, C s} 3.90 33.00 34.88 19.00 4.88 95.63

} C i, C2, Ch  Ca , Ci , C s} 2.00 23.00 32.00 11.00 4.00 72.00

[c2, C l, C s} 0.00 7.00 5.00 2.00 0.00 14.00

(Ci, C 3, C4,  C5,  C l, C i} 0.00 24.00 31.5 17.00 3.00 75.00

{ C l,  Cs, C4, C l, C s} 0.00 21.00 29.00 12.00 3.00 65.00

[c2, Cs, C4, Cs, C l, C s} 4.00 30.00 33.00 17.00 4.00 88.00

Table 8.4.2.2: Average and Total Number of Rules Predicting Each Individual Decision Class, 
Associated with the /?-reducts Selected During the Leave-one-out Analysis of the FIBR Training Set

/?-reduct

Individual Decision Class Predictive Accuracies

0 (A ) 1(B) 2(C ) 3 (D ) 4(E )

{ C i,  C3, C4,  Cs, C s} 0.00% 95.45% 63.63% 63.63% 0.00%

{c2, Cs, C i, C s} 0.00% 90.00% 59.52% 75.00% 0.00%

{ c 3, C4, Cs, Cs, c 7} 0.00% 94.07% 53.48% 63.63% 100.00%

{c2, C4,  C s} 0.00% 92.25% 65.90% 80.00% 0.00%

{ C l,  C2,  Cs, Ca,  Cs,  C8 } 0.00% 94.11% 63.04% 56.52% 0.00%

{ C i,  C2, Cs, Ca, Ci ,  C s} 0.00% 92.02% 67.44% 59.09% 0.00%

{C 2, C i, C s} 0.00% 92.14% 54.34% 75.00% 0.00%

(Ci, C 3,  C4,  C6, C i, C s} 0.00% 96.94% 62.79% 68.18% 0.00%

{ C l,  C3,  Ca, C l, C s} 0.00% 96.15% 70.73% 63.63% 0.00%

{C 2,  C3, Ca, Cs, C l,  C s} 0.00% 93.60% 68.29% 72.72% 100.00%

Table 8.4.2.3: Breakdown of the Validation Set Predictive Accuracies Across the Five Decision
Classes, Associated with the /?-reducts Selected During the Leave-one-out Analysis of the FIBR

Training Set

Within Table 8.4.2.3, a zero percent predictive accuracy was recorded for all A ' (0) grade banks, 

but as shown in Chapter 6, the validation set only contains one 'A' grade bank, hence no inference 

can really be extracted from the predictive accuracy results associated with the 'A' grade banks. 

Furthermore, as shown in Table 8.4.2.2, only three out of the ten aggregated p -reducts are 

associated with aggregated rule sets capable of predicting the 'A' grade banks.

Tables 8.4.2.4, 8.4.2.5 and 8.4.2.6 present similar information as those three tables described 

above, but associated with the aggregation of the /?-reducts selected during the bootstrap re-
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sampling analysis of the FIBR training set, applied to the FIBR validation set.

/?-reduct

Number o f  
Aggregated 

Rules

Banks Predicted 
by Matching 

Rule
Banks Predicted 

Correctly
Banks Predicted 

Incorrectly
Predictive 

Accuracy (%)

{ ^ i»  £-2? C'if C4 ,  C s, Co, C i ,  Cg} 5 6 5 1 6 3 1 3 9 2 4 8 5 . 2 7 %

{c-t, Cg} 1 9 2 0 0 1 7 2 2 8 8 6 .0 0 %

{ C l,  C i,  C i , Cg} 1 0 2 2 0 2 1 7 6 2 6 8 7 . 1 2 %

{C s , C4,  Cg} 8 6 2 0 4 1 7 5 2 9 8 5 . 7 8 %

{c2, C7,  Cg} 3 7 2 0 6 1 7 2 3 4 8 3 . 4 9 %

{C j, C2,  C s, C4 ,  C s, C i, Cg} 3 6 6 1 8 4 1 5 9 2 5 8 6 . 4 1 %

(C 4,  Co, Cg} 4 6 1 9 9 1 6 6 3 3 8 3 . 4 1 %

(C 3j C4,  C i, C g} 1 3 3 2 0 1 1 7 0 3 1 8 4 . 5 7 %

( C i ,  C3,  C4,  Cg} 1 6 9 2 0 9 1 7 0 3 9 8 1 . 3 3 %

{C ], C2,  C s, C4 ,  C s, Cg} 3 2 9 2 0 5 1 7 4 3 1 8 4 . 8 7 %

Table 8.4.2.4: Aggregated /?-reduct Results Associated with the Bootstrap Analysis Applied to the
FIBR Validation Set

/?- reduct
Average Number of Rules Predicting Each Individual Decision

Class Total
0 (A ) 1(B) 2(C ) 3 (D ) 4 (E )

( C 1,  C2, Cs, C4 ,  Cs, Co, C i,  Cg} 3.23 28.20 30.02 15.64 3.05 80.14

{ C l , Cg} 0.00 4.72 4.45 1.79 0.10 11.06

( C i ,  C2, C i, Cg} 0.37 10.42 12.95 4.95 1.05 29.74

{ C 3,  C4 ,  Cg} 0.83 10.11 13.11 7.72 0.83 32.60

{c2, C i, Cg} 0.06 6.53 5.59 2.06 0.29 14.53

(C|. C2,  C3.  C4.  Cs, C i,  Cg} 3.27 29.33 21.27 14.67 3.53 72.07

{ C4 ,  Co, Cg} 0.00 5.13 6.53 3.20 0.20 15.06

{ c s ,  C4 ,  C i,  Cg} 0.6 13.13 17.47 9.20 1.33 41.73

}Cij C s, C4 ,  Cg} 1.14 15.00 19.07 10.07 1.93 47.21

1C 1,  C2j  Cs, C4,  C s, C g} 3.62 27.85 28.69 13.77 4.23 78.16

Table 8.4.2.5: Average and Total Number of Rules Predicting Each Individual Decision Class, 
Associated with the /?-reducts Selected During the Bootstrap Analysis of the FIBR Training Set
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Individual Decision Class Predictive Accuracies

/?-reduct 0 (A ) 1(B) 2(C ) 3 (D ) 4 (E )

( C l )  C29 C3j C4,  Cl, Cl, C7j C g) 0 . 0 0 % 9 9 . 0 5 % 5 7 . 8 9 % 6 3 . 1 5 % 0 . 0 0 %

{Cl, C s} 0 . 0 0 % 9 2 . 7 5 % 7 0 . 2 7 % 7 8 . 2 6 % 0 . 0 0 %

{ C l,  C2, Ci, C s} 0 . 0 0 % 9 4 . 8 9 % 6 7 . 5 0 % 8 2 . 6 0 % 0 . 0 0 %

{ci, c4, C s} 0 . 0 0 % 9 2 . 7 0 % 6 9 . 7 6 % 7 7 . 2 7 % 1 0 0 . 0 0 %

{c2, Cl, C s} 0 . 0 0 % 9 2 . 9 5 % 5 9 . 5 2 % 7 5 . 0 0 % 0 . 0 0 %

{ C l,  C 2, C j ,  C4, C 5, Cl, C s} 0 . 0 0 % 9 7 . 5 8 % 6 2 . 5 0 % 6 8 . 4 2 % 0 . 0 0 %

{c4, C<5, C s} 0 . 0 0 % 9 1 . 1 7 % 6 4 . 2 8 % 7 8 . 9 4 % 0 . 0 0 %

{c3, Ci, Cl, C s} 0 . 0 0 % 9 2 . 0 8 % 6 6 . 6 6 % 7 1 . 4 2 % 1 0 0 . 0 0 %

{ C l,  Cl, Ci, C s} 0 . 0 0 % 9 2 . 8 5 % 5 6 . 5 2 % 6 6 . 6 6 % 0 . 0 0 %

{C j - Ci, Ci, Ci, Ci, C s} 0 . 0 0 % 9 6 . 3 5 % 6 2 . 2 2 % 6 3 . 6 3 % 0 . 0 0 %

Table 8.4.2.6: Breakdown of the Validation Set Predictive Accuracies Across the Five Decision 
Classes, Associated with the /?-reducts Selected During the Bootstrap Analysis of the FIBR Training

Set

The predictive accuracies displayed in Table 8.4.2.4, generally show an increase over the 

accuracies associated with the aggregated /?-reducts shown previously, with regards to the leave- 

one-out analysis (see Table 8.4.2.1). This is further reflected in Table 8.4.2.6, which gives the 

breakdown across the individual decision classes for the banks that were predictable by a matching 

rule from one of the bootstrap aggregated /?-reducts.

With regards to the number of rules capable of predicting each decision class associated with the 

/?-reducts selected during the bootstrap re-sampling analysis, shown in Table 8.4.2.5, when 

compared to Table 8.4.2.2, there are more selected /?-reducts in Table 8.4.2.5 that are capable of 

predicting the 'A' (0) grade banks. That is, for eight out of the ten selected /?-reducts within Table 

8.4.2.5, during one of the repetitions, the selected /?-reducts' associated rule sets contained a rule, 

capable of predicting an 'A' grade bank.

From the information presented in Tables 8.4.2.4 to 8.4.2.6, in general, it appears that the 

aggregated /?-reducts based on bootstrapping of the FIBR data, perform better than those of the 

leave-one-out analysis. Table 8.4.2.7 further supports this conclusion by comparing the average 

values of the predictive accuracies and average values of the breakdown of the predictive accuracies 

for the bootstrapping and leave-one-out predictive performances on the validation set; it also
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includes the average number o f banks predicted from the 215 banks within the validation set. Table 

8.4.2.7 additionally compares the results with the set of /?-reducts shown in Chapter 7 section 7.4, 

associated with the vein graph analysis of the FIBR validation set. The results are compared to the 

vein graph analysis to asses whether, the extra processing required to produced aggregated fi-

reducts translates, into improved predictive performances.

Individual Decision Class Predictive 
Accuracies

Analysis Method

Reducts' Average 
Predictive 
Accuracy

Average Number o f  
Banks Predicted 
from 215 Banks 0 (A ) 1(B) 2(C ) 3 (D ) 4 (E )

Vein Graph /?-reducts 84.35% 181.78 0.00% 94.58% 62.13% 73.67% 0.00%

Leave-one-out Aggregated 
/?-reducts

83.46% 201.60 0.00% 93.67% 62.92% 67.74% 20.00%

Bootstrapping Aggregated 
/?-reducts

84.83% 197.30 0.00% 94.24% 63.71% 72.54% 20.00%

Difference between
bootstrapping and Vein 
Graph /?-reducts

+0.48% + 15.52 0.00% -0.34% +1.58% -1.13% 20.00%

Difference between
bootstrapping and Leave- 
one-out Aggregated /?- 
reducts

+ 1.37% ^1.30 0.00% +0.57% +0.79% +4.8% 0.00%

Table 8.4.2.7: Averaged Predictive Accuracy Values, and Differences Between Bootstrapping 
Compared to the Leave-one-out and Vein Graph Predictive Performances on the FIBR Validation

Set

Table 8.4.2.7 indicates that the bootstrap aggregated /?-reducts show, on average, a 1.37% 

increase in predictive accuracy over the leave-one-out analysis. This is not strong evidence that 

bootstrap aggregation is better than leave-one-out, but on the breakdown of the individual decision 

class predictive accuracies, there is a 4.8% increase on the (C) grade banks. Other studies indicated 

that the increase of predictive accuracy associated with bootstrap aggregation was between zero and 

five percent (Breiman, 1996a; Stefanowski, 2004, 2007). Hence, an increase of almost five percent, 

if only on one decision class may be significant; it also illustrates again, the importance of reporting 

the predictive accuracies over all the decision classes individually.

When compared to the average vein graph /?-reduct predictive accuracies on the validation set
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(the banks predictable by matching rules) shown in Chapter 7 section 7.4, there is less evidence that 

bootstrap aggregation has improved the predictive performance, with only a 0.48% increase. 

Though, the bootstrap aggregated /?-reducts did, on average, predict 15.52 more banks from the 

validation set compared to the average of the vein graph /?-reducts, with comparable levels of 

predictive accuracies. Additionally, the results of the bootstrap aggregated /?-reducts within Table 

8.4.2.4, contain the top two highest predictive accuracies (87.12% and 86.41%) compared to the 

vein graph results, and the top four (87.12%, 86.41%, 86.00% and 85.78%) when compared to the 

leave-one-out aggregated /?-reducts.

Here, there is some evidence that the bootstrap aggregated /?-reducts would perform better on 

any future unseen data, but it is perhaps not ideal comparing average predictive accuracy results 

between analyses that yield different reducts (ft and aggregated /?), and the results of the accuracies 

based on the validation set are not conclusive. Additionally, the results shown here, are comparable 

with the closest known study by Stefanowski (2004), which investigated the increase of predictive 

accuracy through the application of bootstrapping to their RST based rule construction process. 

However here, we have shown that, the predictive accuracy may actually improve particular 

decision class accuracies.

It should be kept in mind though, that the re-sampling analysis is not solely about improving the 

predictive accuracy results of the /?-reducts through classifier aggregation, but also about better 

estimations of the /?-reducts future predictive accuracy, through calculation of the out-of-bag 

estimates. Clearly, when compared to the out-of-bag estimates shown previously in subsection 

8.4.1, the predictive accuracies based on the validation set for both the vein graph (see Chapter 7 

section 7.4) and re-sampling analyses are over optimistic.
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8.5 Further Benchmark Results

This final section provides further VPRS re-sampling and /?-reduct aggregation results based on a 

number of benchmark data sets. It also includes the predictive accuracy results of another 

classification method, namely Multi Discriminant Analysis (MDA) (Altman, 1968; Beynon and 

Peel, 2001; Jingbo et al., 2005) based on those benchmark data sets. The purpose of this section is 

to allow comparisons to be made with other classification methods that exist in the extant literature.

Five benchmark data sets, that are regularly utilised in the related literature (Breiman, 1996a; 

Kotsianti and Kanellopoulos, 2007; Stefanowski, 2007), were selected here, and can be found at the 

UCI machine learning repository (http://archive.ics.uci.edu/ml/index.html). Table 8.5.1 describes 

these data sets, namely the breast-cancer (Wisconsin original version), iris, SPECT, wine, and zoo 

data sets.

Data Set
Number o f  

Objects
Training

Set
Validation

Set
Number o f  
Attributes

Attributes 
Selected for 

Analysis
Decision
Classes

breast-cancer 699 363 336 10 7 2

iris 150 132 18 4 4 3

SPECT 267 198 69 22 6 2

wine 178 153 25 13 8 3

zoo 101 91 10 17 6 7

Table 8.5.1: Details Regarding the Selected Benchmark Data Sets

Describing Table 8.5.1 in more detail, the second column within the table states the number of 

objects associated with each data set, the third and fourth columns display the number of objects 

associated with the training and validation data sets, respectively (using the statistical sub-sampling 

method described in section 3.1.2). The fifth column displays the number of attributes associated 

with the respective data sets. The sixth column indicates how many of those attributes were selected 

for the VPRS re-sampling analyses28, and the last column displays the number of decision classes 

associated with each of the data sets. Table 8.5.2 displays the information relating to the re-

28 See Appendix A6 for further details on the attributes associated with the selected benchmark data sets.

Page 246

http://archive.ics.uci.edu/ml/index.html


sampling analyses and /?-reducts selected for aggregation, based on the benchmark data sets.

Data Set
/? Threshold Value 

Selected
Leave-one-out /?-reduct 

Selected for Aggregation
Bootstrapping /?-reduct 

Selected for Aggregation
Number o f Bootstrap 

Repetitions

breast-cancer 0.69 {c3, c4, c7} {c3, c4, c7} 400

iris 0.70 { C l, c3, c4} {c3, c4} 200

SPECT 0.52 { C \ ,  C2, C3, c5, c6} {Cl. C i, C3, Cs, 200

wine 0.65 { C u  C7) {C5, C 6. c 7} 200

zoo 0.65 {C 3, Ca,  Cs, Co 1 {c3, Ca, Cs, Co} 200

Table 8.5.2: Information Regarding Parameter Settings and /?-reducts Selected for Aggregation, 
Associated with the Leave-one-out and Bootstrapping Analyses of the Benchmark Data Sets

To describe Table 8.5.2, taking the iris data set as an example, the first column indicates that a /? 

threshold value of 0.7 was set during the parameter set-up stage (see section 6.1) (determined from 

a vein graph analysis of the iris data set), and that based on the leave-one-out analysis, the /?-reduct 

{ci, C3, Ca) was selected for aggregation, as shown in the third column. Furthermore, based on a 

bootstrap analysis (and a process considering the re-sampling results, similar to the process 

described throughout this chapter) the /?-reduct (c3, c4} was selected for aggregation, shown in the 

fourth column. The last column indicates that 200 bootstrap repetitions were undertaken with 

regards to the bootstrapping analysis of the iris data set. As has been the case with section 8.4, a k- 

fold cross validation analysis was not undertaken, as the results are asymptotic to leave-one-out for 

high values of k.

Referring now to the predictive results of the /?-reducts selected for aggregation, associated with 

the leave-one-out and bootstrapping analyses of the benchmark data sets, Table 8.5.3 displays the 

out-of-bag (re-sampling) predictive accuracies, on all the objects given a classification, those 

objects only classified by matching rules, and the percentage of those objects given a classification 

that were given a classification by a matching rule.
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Leave-one-out (%) Bootstrapping (%)

Objects Predictive Accuracy Objects Predictive Accuracy
Out-of-Bag Predicted by on Objects Out-of-Bag Predicted by on Objects
Predictive Matching Predicted by Predictive Matching Predicted by

Data Set Accuracy Rule Matching Rule Accuracy Rule Matching Rule

breast- . 96.58 100.00 96.58 95.77 99.32 95.74
cancer (95.79) (95.87)

iris 96.88 98.00 98.41 97.90
(97.37) 97.32 100.00

(100.00)

SPECT 71.88 93.00 73.83 63.42
(66.37) 88.97 63.61

(67.00)

wine 94.78 100.00 94.78 89.23
(90.28) 98.00 90.08

(91.01)

zoo 91.36 95.00 91.36 87.89
(87.14) 91.55 96.15

(95.91)

Table 8.5.3: Out-of-Bag Re-sampling Predictive Accuracies for the Leave-one-out and 
Bootstrapping Analyses of the Benchmark Data Sets

Describing Table 8.5.3 in more detail, and again referring to the iris data. Considering first the 

leave-one out analysis (columns two to four), there is an out of bag predictive accuracy on all 

objects given a classification (by matching or nearest rule) of 96.88%, of those objects 98.00% were 

predicted by matching rules, and of those objects predicted by matching rules, 98.41% were 

predicted correctly. With regards to the bootstrapping analysis of the iris data (columns five to 

seven), there is an out-of-bag eO predictive accuracy on all objects given a classification (by 

matching or nearest rule) of 97.90% and a 0.632B estimate (in parenthesis) of 97.37%, of those 

objects 97.32% were predicted by matching rules, and of those objects predicted by matching rules, 

100.0% were predicted correctly for both the eO and 0.632B estimates.

More generally, the results within Table 8.5.3, indicate quite optimistic estimates of the 

predictive accuracies, with perhaps the SPECT data set being an exception. Though, this is not to 

say that the estimates are bias or over-optimistic; as described in the theory in section 3.3, leave- 

one-out should provide an almost unbiased estimate, and bootstrapping should typically be 

pessimistic. Though there is no clear trend here, with regards to the expected biases, with both the
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bootstrapping results for the breast-cancer and iris data sets appearing more optimistic than the 

leave-one-out results. What is perhaps interesting to see here though, is that the results based on the 

zoo data set, a relatively small data set (101 objects) with seven decision classes (thus on average 14 

objects per decision class) still achieves re-sampling predictive accuracies of over 87.89%.

As a comparison, the results based on the iris, wine, zoo and breast-cancer data sets are now 

compared to a similar study by Kotsiantis and Kanellopoulos (2007), who implemented a number of 

different ensemble29 versions of the Decision Stump classifier (DS) (a type of decision tree 

classifier, see Murthy, 1998) and applied them to a number of benchmark datasets, including the 

four named data sets (they did not use the SPECT data set). The comparisons are shown in Table

8.5.4.

Leave- Boot­
Bagging Dagging Adaboost Multiboost Decorate VOTE one-out strapping

Data Set DS DS DS DS DS DS DS VPRS VPRS

breast-cancer 69.27 73.44 72.53 71.55 71.76 75.18 73.90 96.58 95.77
(95.79)

iris 66.67 70.33 78.13 95.07 94.73 93.93 95.07 96.88 97.90
(97.37)

wine 57.91 85.16 71.21 91.57 91.17 96.45 91.74 94.78 89.23
(90.28)

zoo 60.43 60.63 39.51 60.43 60.43 61.96 60.43 91.36 87.89
(87.14)

Table 8.5.4: Comparison Between the Leave-one-out and Bootstrap Predictive Accuracies (%) 
Compared to a Number of DS Ensemble Classifiers

It is clear form Table 8.5.4 that the predictive accuracies, estimated by the leave-one-out and 

bootstrapping VPRS analyses, generally outperform those based on Kotsiantis and Kanellopoulos' 

(2007) work. Indeed, the re-sampling VPRS results outperform the DS ensemble classifier results in 

three out of the four data sets (highest predictive accuracies highlighted in bold).

As a further comparison, taking the most recent similar work within the RST literature, namely 

Stefanowski (2007), based on the iris and the zoo data sets, the best predictive accuracies presented 

by ibid with regards to their n2MODLEM classifier were 95.53% and 94.64%, respectively. Here,

29 The implement ensemble methods include, Bagging, Dagging, Adaboost, Multiboost, Decorate and VOTE, see 
Kotsiantis and Kanellopoulos (2007) for further detail.
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the re-sampling accuracies with regards to the iris data were slightly higher at 96.58% (leave-one- 

out), 95.77% (eO) and 95.79% (0.632B), and with regards to the zoo data they were marginally 

lower at 91.36% (leave-one-out), 87.89% (eO) and 87.14% (0.632B). Thus, given the results in 

Table 8.5.4 and the comparisons made with Stefanowski (2007), it is possible to conclude that the 

predictive accuracy estimates with regards to applying re-sampling within the VPRS framework 

considered within this dissertation, appear to provide very competitive results (high accuracies).

Considering next, the results of the aggregated /Lreducts applied to the set aside validation sets, 

Tables 8.5.5 and 8.5.6 displays the results with regards to the aggregation of the /Lreducts selected 

from the leave-one-out and bootstrapping analyses of the benchmark data sets, respectively

(selected /?-reducts shown previously, in table 8.5.2).

Data set

Number o f  
Aggregated 

Rules

Objects 
Predicted by 

Matching Rule

Objects
Predicted
Correctly

Objects
Predicted

Incorrectly
Predictive 

Accuracy (%)

Iris 4 18(18) 16 2 88.88

Wine 10 25 (25) 25 0 100.00

Zoo 5 8(10) 8 2 100.00

Cancer 8 333 (336) 315 18 94.59

SPECT 9 57(69) 49 8 85.96

Table 8.5.5: Results of Applying the Aggregated /7-reducts Selected from the Leave-one-out 
Analysis of the Benchmark Data Sets, to the Respective Validation Set

Data set

Number o f  
Aggregated 

Rules

Objects 
Predicted by 

Matching Rule

Objects
Predicted
Correctly

Objects
Predicted

Incorrectly
Predictive 

Accuracy (%)

Iris 3 18(18) 16 2 88.88

Wine 13 25 (25) 21 4 84.00

Zoo 5 8(10) 8 2 100.00

Cancer 9 334 (336) 316 18 94.61

SPECT 11 63 (69) 53 10 84.12

Table 8.5.6: Results of Applying the Aggregated /?-reducts Selected from the Bootstrap Analysis of 
the Benchmark Data Sets, to the Respective Validation Sets

Again, both Tables 8.5.5 and 8.5.6, indicate a high level of predictive accuracy (under the 

'Predictive Accuracy' column), based here though, on the validation sets. It is also perhaps
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interesting to see, that a high proportion of the objects within all the data sets were predicted by 

matching rules, and perhaps even more interesting is the small size of the rule sets involved. Indeed, 

with regards to Table 8.5.6 displaying the results based on the bootstrap aggregated /?-reducts, the 

18 objects associated with the iris validation set, were classified based only on three simple rules 

(simple because the associated bootstrap aggregated /?-reduct only consisted of two attributes {c3, 

c4}, see Table 8.5.2). Table 8.5.7 gives a further break down of the validation set results, based on 

the confusion matrices associated with the analysess of the benchmark data sets.

Data Set breast-cancer iris SPECT
...............

wine ZOO

Decision
Class

1 2 1 2 1 2 1 2 1 2

1 93.85 93.87 100.00 100.00 0.91 0.82 100.00 100.00 100.00 100.00

2 96.62 96.62 100.00 63.63 0.77 0.75 100.00 0.83 100.00 100.00

3 NA NA 100.00 100.00 NA NA 66.66 0.83 0.00 0.00

4 NA NA NA NA NA NA NA NA 100.00 100.00

5 NA NA NA NA NA NA NA NA 0.00 0.00

6 NA NA NA NA NA NA NA NA 100.00 100.00

7 NA NA NA NA NA NA NA NA 100.00 100.00

Table 8.5.7: Breakdown of Leave-one-out (1) and Bootstrap (2) Predictive Accuracies (%) over the 
Decision Classes Associated with the Benchmark Validation Data Sets

Table 8.5.7 gives the predictive accuracies for both the leave-one-out and bootstrap aggregated 

/?-reducts, displaying the predictive accuracies associated with each individual decision class of the 

associated benchmark validation sets, for those objects predicted by matching rules30, (the shaded 

grey cells indicate no further decision classes are associated with the considered data set). For 

example, the wine data has three decision classes (labelled in the left most column) with predictive 

accuracies based on the associated leave-one-out aggregated /?-reduct {cu c7} of 100%, 100% and 

66.66% on the decision classes '1', '2' and '3', respectively.

Within Table 8.5.7 it is interesting to see, that there does not appear to be any bias (in terms of

30 Results based on those objects predicted by nearest rules were very limited, as most objects were predicted by 
matching rules. Hence, the results based on nearest rule classification have been omitted as they were felt 
superfluous, and did not add any value to the analysis being considered.
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higher predictive accuracies) towards any particular decision class associated with any of the data 

sets, in contrast to, the results observed with regards to the FIBR data set. This is most likely 

because there is a more even distribution of the objects associated with the decision classes of the 

benchmark data sets, that is, they are more balanced. Furthermore, the high predictive accuracies 

observed within Tables 8.5.5 to 8.5.7 could be an indication that the benchmark data sets, do capture 

the condition attributes necessary to discern between the associated decision classes (less so for the 

SPECT data set), and that this, effects more accurate classifications across all decision classes, and 

hence, the overall predictive accuracies.

There is an interesting point to be made with respect to the SPECT data set, that is, although it 

performed poorly with regards to the re-sampling results (with out-of-bag predictive accuracies of 

71.88%, 63.42% and 66.37% associated with the leave-one-out, eO and 0.632B bootstrap out-of-bag 

predictive accuracies respectively, see Table 8.5.3), it performed much more favourably with 

regards to the predictive accuracies based on the application of the aggregated /?-reducts to the 

validation sets (with predictive accuracies of 85.96% and 84.12% associated with the leave-one-out 

and bootstrap aggregated /?-reducts, respectively, see Tables 8.5.5 and 8.5.6). It is perhaps not 

unexpected to have results on the validation set that may be biased (here optimistically), but what is 

interesting is that the original works by Cios et al (1997), Kurgan et al. (2001) and Cios and Kurgan 

(2001), from where this data set originates, reported predictive accuracies on their validation set of 

between 84.00% and 90.40%31. These results raise the question, whether their estimates of the 

predictive accuracies are also biased optimistically, and would the leave-one-out, &-fold cross 

validation or bootstrap out-of-bag estimates of their CLIP3/CLIP4 method be more pessimistic (n.b. 

the analyst can be more confident that the re-sampling results are more accurate estimates of the 

true predictive accuracy, see Chapter3 and section 3.3).

As a final benchmark, the results o f the leave-one-out and bootstrap analyses from Table 8.5.3,

31 Interestingly, the reported predictive accuracy o f  90.40% was based on an ensemble o f  their CLIP4 classifier
method.
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are now compared to a MDA analysis of the benchmark data sets. The MDA analysis was 

performed using SPSS (http://www.spss.com/), which allowed for estimates of the predictive 

accuracy to be taken on the training set (i.e. the apparent predictive accuracy) and for a leave-one 

out analysis to be performed. These comparative results are shown in table Table 8.5.8

Data Set
Leave-one-out

VPRS
Bootstrapping eO (0.632B) 

VPRS
Apparent Predictive 

Accuracy, MDA
Leave-one-one

MDA

breast-cancer 96.58 95.77 (95.79) 96.10 96.00

iris 96.88 97.9 (97.37) 98.00 98.00

SPECT 71.88 63.42 (66.37) 76.40 68.90

wine 94.78 89.23 (90.28) 98.30 96.60

zoo 91.36 87.89 (87.14) 98.00 93.10

Table 8.5.8: Comparison Between VPRS Re-sampling Predictive Accuracies (%) and MDA

Comparing the results between the leave-one-out VPRS predictive accuracies and the leave-one- 

out MDA predictive accuracies from Table 8.5.8, it can be seen that MDA outperformed VPRS on 

three out of the five data sets, namely, iris, wine and zoo. The apparent predictive accuracies 

associated with the MDA analysis are perhaps, as expected according the the theory in section 3.1, 

biased optimistically. What should be kept in mind though, is that the results of all the VPRS 

analyses are based on /?-reducts which contain at most only five attributes associated with 11 rules 

(with regards to the SPECT data set and the /?-reduct {ci, c2, c3, c5, c6j) or as little as two attributes 

associated with three rules (with regards to the iris data set and the /?-reduct (c3, c4j). The point here 

being, that the interpretability, or the simplicity, of the final classifier is, as has been suggested 

throughout this dissertation, also an important factor which allows the analyst to take confidence in 

the constructed classifier.

8.6 Summary

The developed VPRS software has shown a high level of predictive performance based on the FIBR
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data, comparable to, and in some cases better than, other related studies (Poon and Firth, 1999, 

2005; Zopoundis and Doumpos, 2002; Doumpos and Pasiouras, 2005). As this dissertation is the 

first attempt at assessing the predictability of the FIBR data set through a prototype decision support 

system, it has shown strong evidence that it is possible to design a VPRS system capable of tackling 

and predicting a difficult data set (i.e. imbalanced with missing data) associated with a level of 

uncertainty. Predictive accuracy estimates could be improved further, by developing a better 

strategy to retain more banks from the under represented decision classes during the data collection 

phase, where many were removed due to missing data values. This would improve the predictability 

on the under represented decision classes (here the 'A' and 'E' grade banks).

The predictive performance results based on the introduced aggregated /?-reduct method, 

indicated that there may be some improvement based on bootstrap re-sampling (compared to the 

single run vein graph), particularly with regards to predictive accuracies of individual decision 

classes. This point reinforces the importance of a transparent breakdown of predictive accuracies 

over all the decision classes. However, the out-of-bag estimates indicated that the predictive 

performance based on applying an aggregated /?-reduct to the validation set, may be optimistic.

With respect to the FIBR data, the developed software could have been tested and demonstrated 

on a simpler target problem, that is an application associated with a balanced complete data set, 

however, the FIBR data has helped bring out more of the real challenges that would be faced by a 

modern financial analyst. Moreover, as not to mislead the analyst with regards to possible future 

predictive performance, the transparency within the system combined with the ability of the analyst 

to have control over the analysis, allows them to have more confidence in the results.

The final section of this chapter indicated that the developed software had a high level of 

predictive accuracy on a number of benchmark data sets, for both the out-of-bag and validation set 

predictive accuracy estimates. The results also indicated that the developed software was capable of 

producing a classifier (aggregated /?-reduct with associated rules) that could compete with a widely
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used and established competitor method, namely, Multi Discriminant Analysis.
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Chapter 9

Conclusion and Future 
Developments

The purpose of this dissertation was to develop a prototype Variable Precision Rough Sets (VPRS) 

Desicion Support System (DSS). The system encapsulates four of the five stages of knowledge 

discovery as outlined in Chapter 1, namely, pre-processing, feature selection, data mining, and 

evaluation. The system was envisaged as being as user friendly as possible, relying heavily on an 

intuitive point and click interface. The objective of this software, was to make VPRS analysis 

accessible to an analyst, who wishes to use VPRS as a data mining method, but is not an expert in 

VPRS.

Although developments within RST and VPRS are ongoing, little research has been done into 

the utilisation of re-sampling and classifier aggregation within the RST/VPRS framework. Hence, 

in its role as a DSS, the software developed here, implemented and expanded on re-sampling 

methods as a means of evaluating the future predictive performance of a classifier (here a list of 

decision rules), and additionally implemented a system enabling ensemble classification through a 

novel method of /?-reduct aggregation, which has the potential to improve classifier stability and 

predictive accuracy.

The software was demonstrated mainly through the analysis of the Fitch Individual Bank
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Strength Ratings (FIBR), using the CAMELS model (Feldman et al., 2003; Derviz and Podpiera, 

2004), a model that has been used extensively throughout the literature relating to bank rating 

prediction, and is used in reality by the U.S. Federal Reserve Banks as part of an early warning 

system to identify failing or struggling banks.

The first section of this final chapter summarises the work presented within this dissertation and 

makes some final conclusions. Section 9.2 discusses the future direction with regards to the role of 

VPRS within the world of analysing real data sets, and proposes a scheme that has less emphasis on 

semantic preserving, where semantic preserving may not be appropriate or applicable. It also 

outlines a number of more specific developments of certain methods employed within this 

dissertation.

9.1 Summary

This section summaries the work undertaken throughout this dissertation under four subsections. 

The first three subsections reflect the three main phases of the work, that is, pre-processing and 

feature selection, the VPRS vein graph analysis, and the VPRS re-sampling analysis; the fourth 

section relates the software based results associated with the FIBR data set, to the bank rating 

prediction problem.

9.1.1 Pre-processing and Feature Selection

The theoretical background relating to pre-processing and feature selection, utilised within this 

dissertation, was presented within Chapter 3. The practical application of the theory implemented 

within the software was presented in Chapter 6. A number of methods for discretisation of 

continuous valued data, feature selection, data balancing and missing value imputation were 

implemented.
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Four methods of discretisation were considered, two unsupervised methods, namely, equal-width 

and equal-frequency, and two more advanced supervised methods, namely, FUSINTER and 

Minimum Class Entropy (MCE) (Zighed et al., 1998; Fayyad and Irani, 1992). FUSINTER 

outperformed the other three methods (because of constraints on the size of this dissertation only 

the results with regards to FUSINTER where shown). It is likely that FUSINTER outperformed the 

similar MCE method, because FUSINTER is a global discretisation method, that considers all 

intervals associated with an attribute, whereas MCE only considered adjacent intervals whilst 

discretising (see Chapter 4 subsection 4.1.1.3).

The developed software implemented two recent feature selection methods, namely ReliefF 

(Kononenko, 1994), and a method based on RST proposed by Beynon (2004). ReliefF was applied 

to the attributes both prior to, and after discretisation, the rankings of which where noticeably 

different (though a high level of correlation existed between them). The software augmented the 

feature ranking results of ReliefF, with three novel graphs illustrating how the attribute rankings and 

weightings changed over the number of iterations undertaken (the value m, see Chapter 4 subsection 

4.2.3.1). It was found that, the random sampling approach to the original Relief algorithm (ReliefF 

being an extension) suggested by Kira and Rendell (1992), may not be the best approach when 

dealing with large real world data sets, and that an iterative deterministic approach, where the 

number of iterations equalled the number of objects in the training set, would be a more efficient 

alternative, and produce more consistent results (see subsection 6.3.1 for reasoning).

Beynon's (2004) feature selection method, which can be described as a step-wise method (see 

Chapter 4 subsection 4.2.1.3), appeared to be too impacting as a method, because in a sense, it 

tended to find a reduct//?-reduct of the full data set, where no further reduction could be achieved 

within the subsequent data mining stage. Additionally, the method was a suboptimal approach to 

feature selection, where the selection of an attribute was very much determined by the attributes 

selected prior to its selection (an extension of this method is described in the future work,
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subsection 9.1.3). The method was also augmented by two graphs, showing the difference in 

Quality of Classification (QoC) of a selected attribute subset and the full set of attributes, with 

regards to the successive inclusion of attributes into the selected subset during the selection process. 

The results illustrated that, typically, the initially selected attributes were the most impacting, and 

that the impact on the QoC of the successive attributes, diminished as the process continued. 

ReliefF had an advantage over Beynon's (2004) method, in that it gave a ranking to all attributes, 

whereas Beynon's method stopped after a certain criteria was met (where the subset's QoC was an 

exactitude of the full set's QoC over the whole range of /?). However, as a by-product of the first 

stages of Beynon's method, where basic rankings were calculated for individual attributes, a simpler 

feature selection method (termed RST_PH1) was demonstrated that was highly correlated with the 

results of ReliefF.

The ranking results of ReliefF and Beynon's (2004) based approaches were collated into a point 

and click table that allowed the analyst, based on the information presented to them (graphs, 

rankings), to select a final set of attributes for the subsequent VPRS analysis. Encouragingly, 

Harnett and Young (2007) commented that, the flexibility of the developed software that allowed 

them the final selection of the attributes was important, as they retained their authority, and the 

additional information available would help them make informed decisions.

Imbalanced data sets and missing value imputation received less focus than the other methods, as 

they were, initially, less pressing issues. Further, the methods for handling imbalanced data sets and 

missing values, within the related literature, are less developed than the methods included to 

facilitate discretisation and feature selection (Weiss and Indurkhya, 1998). Three methods of 

balancing were implemented, but none appeared affective at tackling the issue of imbalanced data 

sets. Balancing tended to be detrimental to predictive accuracy results. With regards to the up- 

balancing method specifically, it greatly affected the performance of the subsequent data mining 

analysis (in terms of processing time and memory requirements). Two methods for imputing
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missing data values were implemented, a straight forward mean imputation and a A:-nearest 

neighbour method. There was no noticeable difference between the results of the two methods (a 

full exposition of the results was not shown).

Overall, the pre-processing software, though not the main focus of this dissertation, performed 

very well (in terms of its impact on later results i.e. increased predictive accuracies). At the initial 

stages of the software development (first version of the VPRS vein graph software), the pre­

processing requirements were undertaken through a number of disjoint programs. The development 

of the pre-processing software, greatly enhanced the effectiveness of the system, allowing many 

analyses to be efficiently undertake in a fraction of the time it had previously taken, with improved 

consistency, and with the ability to save work. The pre-processing software in itself, with the 

modem approaches it encompasses, is worthy of development into an independent package that can 

support a wider range of data mining methods.

9.1.2 VPRS Vein Graph Software Analysis

The VPRS vein graph software implemented a graphical interface system, based on Beynon's 

(2001) vein graph, that allowed the analyst to select from a number of identified /?-reducts displayed 

as “veins” within a graphical panel, using a simple point and click system. Within Chapter 7, the 

system was initially demonstrated on a small example data set (following the theoretical exposition 

in Chapter 2), and then a full analysis based on the FIBR data set was presented. With regards to the 

FIBR data set, evaluation of the classifier's (a rule set induced from a selected /?-reduct) 

performance was presented through the application of the induced rules, on a training set and a 

validation set derived from the full set of data; where a breakdown of the results were presented 

separately in a number of information panels

Conforming with the work outlined in Beynon (2001), /?-reducts associated with high ^-values 

were concomitant with high Qualities of Approximation (QoA), but lower Qualities of
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Classification (QoC), thus demonstrating the inversely proportional relationship (ibid). Although, 

more importantly, this relationship was not demonstrated with regards to the validation set. That is, 

in contrast to what was expected, /?-reducts associated with lower values of /?, tended to be 

associated with higher predictive accuracies on the validation set. They also provided simpler rules 

and smaller rule sets. /?-reducts associated with higher values of /? appeared to overfit the training 

set, being able to achieve high predictive accuracies on the training set but relatively poorer 

predictive accuracies on the validation set (though still achieving a respectable level of predictive 

accuracy).

These findings were made possible by the ability to select the /?-reducts for comparison, and 

through the range of results from the evaluation methods implemented within the software. Of the 

evaluating methods, perhaps the most indispensable tool, providing the analyst with a transparent 

incite into the true nature of the predictive performance, was the confusion matrix (see Chapter 3 

subsection 3.2.1). Implemented within the summary tables (see Chapter 7 section 7.3), the 

confusion matrix highlighted the despondency between the predictive performance across the 

decision classes, and aided in the search for a better solution that reflected a better distribution of 

predictive accuracies.

It is worth mentioning here, that the affect of the validation set selection method, chosen during 

the initial set-up screen (prior to pre-processing, see Chapter 6 Figure 6.1.1), namely the statistical 

sub-sampling method, was most recognisable within the confusion matrix (presented in the 

summary tables). It was found that the statistical sub-sampling method for validation set selection 

(see Chapter 3 section 3.1.2) performed well (better than stratified and non-stratified random 

sampling) and to some extent, mitigated the affect of the imbalanced data set (the FIBR data set).

Another factor that aided in the transparency of the presented results, was the breakdown 

between objects predictable by a matching rule and those predictable using Slowinski's (1992) 

nearest rule method. This highlighted that, those objects being predicted by the nearest rule were

261



often incorrectly predicted, and that the nearest rule method was performing little better than a 

random guess. This was an important point, because, had this not been recognised, the predictive 

accuracy results based on all classifications, may have affected the analyst's confidence in the VPRS 

model as a data mining method. Other nearest rule type methods exist, which if implemented, may 

perform better. Such as Stowinski's (1993) method, based on 'valued closeness relation', however 

this method requires the analyst to place a subjective assessment on the importance of each 

attribute, hence less suitable for the system implemented here. The further breakdown of the 

predictions into correctly predicted and incorrectly predicted objects displayed in panels showing; 

the rules used to predict each object, rules that could correctly predict objects, and rule distances to 

the objects; although useful during the development of the software, and potentially useful to the 

analyst seeking an in-depth interpretation of the results (comparison between rules), were rarely 

required during the FIBR analyses. However, if additional analysis methods were implemented to 

augment the information, such as individual predictive accuracies for each rule, this would then be 

useful to the analyst. That is, the analyst could be given the option to exclude “serial offending” 

rules, i.e. those that were performing badly (consistently classifying objects incorrectly).

The VPRS vein graph software performed satisfactorily, and met our original aim of developing 

a user interface that was simple to use by the analyst. Although realistically, the VPRS vein graph 

software was developed as a prototype, it has demonstrated that with more development, VPRS is 

potentially viable as a data mining solution. Here, the software also played an important role in 

determining the parameter settings for the subsequent VPRS re-sampling analysis of the FIBR data, 

such as the /? value, and the /?-reduct selection criteria's order.

9.1.3 VPRS Re-sampling Software Analysis

The VPRS re-sampling software, constituted the more advanced approach to VPRS data mining, 

developed within this dissertation. There has been minimal attention given to re-sampling and
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classifier aggregation within the related RST/VPRS literature, hence this dissertation is the first 

comprehensive approach to incorporating re-sampling and classifier aggregation within the VPRS 

framework, and moreover as part of a developed VPRS software package. The VPRS re-sampling 

software implemented a novel approach to /?-reduct selection, that effectively allowed the 

automation of the vein graph analysis for application within a re-sampling environment (i.e. through 

the described criteria selection process). An original method for /?-reduct aggregation was also 

described and implemented, with the intention of stabilising and optimising the decision rules.

The software implemented three re-sampling methods to enable improved estimations of a set of 

decision rules predictive performance (predictive accuracy). In terms of bias and variance, the re­

sampling methods reflected the trends as seen within the related literature, when applied to other 

data mining methods. That is, leave-one-out was unbiased, but was associated with high variance; 

&-fold cross-validation was slightly more biased, but was associated with less variance; the eO 

bootstrap was biased pessimistically (when compared to leave-one-out) but had low variance; and 

the 0.632B bootstrap, a convex combination based on the eO bootstrap value and the apparent 

predictive accuracy, as expected, was less pessimist than the eO but still maintained a low variance.

The introduced /?-reduct aggregation process, allowed the analyst to aggregate /?-reducts 

associated with equivalent subsets of attributes (/?-reducts with identical condition attributes). Three 

graphs were developed to aid the analyst's choice of /?-reducts to aggregate. The first graph showed 

the distribution frequency of occurrence of the top ten most frequently occurring /?-reducts (selected 

by the criteria during the re-sampling process). The second graph showed the frequency of 

occurrence of /?-reduct size (number of attributes associated with the /?-reducts). The third graph 

showed the frequency of occurrence of each individual attribute, associated with the /?-reducts 

selected by the criteria during the re-sampling process. Additionally, a summary table provided the 

analyst with summary statistics relating to all the selected /?-reducts, and a second more detailed 

summary table displayed summary statistics for the top ten most frequently occurring /?-reducts.
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The graphs and the associated summary tables indicated that, selection of the “best” set of /?- 

reducts to aggregate, did not necessarily imply the most frequently occurring /?-reduct should be 

selected. That is, with regards to the bootstrap analysis, the size (number of condition attributes) of 

the most frequently occurring /?-reduct did not reflect in the most frequently occurring /?-reduct size. 

Hence, the full range of results had to be considered during the /?-reduct aggregation process. 

Additionally, the graphs highlighted the asymptotic nature between the results of the Leave-one-out 

analysis and the &-fold Cross-validation analyses (for stratified &-folds, k=  10, 20, 30, 40 and 50), 

but highlighted respectively, that the results associated with bootstrapping were more diverse.

The end product of /?-reduct aggregation was a list of aggregated decision rules. The analyst, 

through a table and tick box interface, had the final choice of which rules they wished to be used for 

classification. The analyst's choice was aided by metrics associated with the decision rules, such as 

aggregated /?-reduct strength, and by a summary table which listed summary statistics of the rules 

associated with the top ten most frequently occurring /?-reducts. On this matter, Harnett and Young 

(2007) commented on the importance of the analyst being able to choose the final set of rules, 

allowing the flexibility to remove erroneous rules or tailor the set to their requirements, e.g. taking a 

small set of the most general rules.

Consistent with the VPRS vein graph analysis, where the set of rules associated with a selected 

/?-reduct were applied to a validation set, the selected aggregated /?-reduct and its associated 

aggregated rules were also applied to the validation set, and the results were evaluated using a 

number of summary tables and evaluation methods.

In summary, the VPRS re-sampling software, performed well. In particular, the re-sampling 

predictive accuracy estimates provided a more transparent indication of future predictive 

performance. Used as out-of-bag estimates for /?-reduct aggregation, they indicated that the 

predictive accuracy associated with the validation set was overly optimistic, perhaps because the 

validation set did not contain many objects from the under represented decision classes. The
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performance of /?-reduct aggregation in terms of stabilisation and optimisation of the /?-reducts and 

their associated decision rules was inconclusive. Though there was some evidence, comparable with 

the closest related work by Stefanowski (2004, 2007), that suggested there could be some 

performance improvement, particularly when considering the decision classes' individual predictive 

accuracies (as shown in the confusion matrix, see Chapter 8 section 8.4). Again, this supports the 

benefit and effectiveness of the confusion matracies within the summary tables, to identify possibly 

unforeseen aspects of classifier performance.

9.1.4 Inference on the Bank Credit Rating Problem

The focus of application and research for the software developed within this dissertation was the 

credit rating prediction problem, more specifically prediction of bank ratings. An analyst may wish 

to predict bank ratings, for a number of different reasons. Firstly, a number of agencies, such as the 

U.S.A.'s Federal Insurance Deposit Company (FIDC), or central banks, are interested in developing 

early warning systems to identify struggling banks, before they require outside assistance (Feldman 

et al., 2003; Krainer and Lopez, 2003; Derviz and Podpiera, 2004). Secondly, investment companies 

may be interested in predicting the ratings of banks, that have not solicited ratings from the major 

rating agencies or, have ratings given to them by potentially biased or less reputable agencies (such 

is the case in China) (Kennedy, 2003; Poon, 2003; Poon and Chan, 2008). Thirdly, the main rating 

agencies do not disclose their rating process, and moreover claim that quantitative models cannot 

capture the qualitative aspects of the rating process. However, any incite into the rating process 

could provide companies with a basis to improve their operations and encourage a more favourable 

rating (investment grade or above) (Shin and Han, 2001; Kim and Sohn, 2008).

The specific type of bank rating investigated here, was Fitch's Individual Bank strength Rating 

(FIBR). The FIBR is a rating which is issued to banks globally. Hence, whilst developing our 

attribute rationale (initial attribute selection), based on the established CAMELS model (Gilbert et
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al., 2000; Krainer and Lopez, 2003), a number of attributes were included to capture this global 

factor. Indeed, during the pre-feature selection (ReleifF, and RSTFS), and during the data mining 

process (vein graph and re-sampling analyses), it was evident that GDP/head was a strong factor in 

determining a bank's rating, acting almost as a global discriminant. Of the other attributes, Impaired 

Loans/Gross Loans appeared to act as another strong discerning factor, where a pertinent example 

was given with regards to the U.S.A.'s recently failed IndyMac bank (Chapter 7 section 7.2), which 

three months prior to its collapse reported that its impaired loans had reached $1.85 billion, an 

increase 40.56% from the previous quarter.

In hindsight, it would have been of value to seek the opinion of a third party who is an expert in 

the field of bank credit rating prediction, to give feedback on the findings of the VPRS analysis of 

the FIBR data set undertaken within this dissertation. Perhaps the best course of action would have 

been to seek the opinion of a government agency who utilises such a system, such as, one of the 

U.S.A.'s Federal Reserve Banks, who regularly publish work relating to bank rating prediction (see 

section 5.3), or the U.K.'s Financial Services Authority who use the RATE system (Risk 

Assessment, Tools of Supervision and Evaluation) to monitor Bank Strength. Sahajwala and Van 

den Bergh (2000), give an overview of some of the most prominent early warning systems used by 

governments and other bodies worldwide.

9.2 Future Work

The future work presented here, provides a number of potential developments that could be 

implemented within the software, and some theoretical considerations with regards to the 

development of RSTYVPRS. With the many facets currently involved within the developed 

software, additional functionality would have increased the development and testing times almost 

exponentially (i.e. more analysis paths requiring testing), and would be beyond the scope which
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could have feasibly been undertaken and developed during this dissertation, and hence are only 

considered here, as future work. Additionally, the potential of some aspects of the future work, was 

only realised or considered during the development and implementation of the developed software.

This section is split into two subsections. Subsection 9.2.1, discusses some issues relating to the 

reality of attempting to apply the RST/VPRS concept of semantic preserving, that is reducts//?- 

reducts, to real world data sets. Subsection 9.2.2 goes on to describe a number of specific 

developments that could potentially enhance the system, and improve the approaches to KDD 

implemented within the developed software.

9.2.1 The Reality o f VPRS Semantic Preserving with Regards to 
Real World Data

Within Chapter 2, reducts and /?-reducts were described as subsets of attributes which maintain the 

meaning, or semantics of the full set of attributes, by maintaining the dependency (the QoC) 

between the condition attributes and the decision attributes (over a range of p  for /?-reducts). Having 

undertaken a VPRS analysis on a “real world” data set, it has raised potential doubts over the true 

meaning of semantic preserving in terms of the scaled up problem. That is, does the system truly 

preserve the “meaning” of the data.

Beynon's (2001) description of a hidden /?-reduct, that is, a subset that had a higher QoC than the 

full set of attributes over a range of ft, essentially indicated, that a subset of attributes could be 

found that performed better in terms of possible future predictive accuracy than the full set of 

attributes. However, for certain values of /? (in the hidden range), the subset of attributes would be 

rejected as a /?-reduct under Ziarko's (1993a) definition of a /?-reduct, i.e. it did not maintain the 

QoC.

With regards to the notion of maintaining the dependency (QoC) (semantic preserving), Mi et al. 

(2003), using the example originally given in Beynon (2001), showed that the derived rules from a
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/?-reduct may be in conflict with the original system. Essentially, the conflict arises whereby, a /?- 

reduct maintains the QoC with the full set of attributes but does not maintain the condition class 

distribution (number of condition classes and number of objects within those decision classes), 

which can result in a different set of derived decision rules to the original system. Hence, in contrast 

with the original concept of a reduct, the /?-reduct may not preserve the semantics of the original 

data set, at least in terms maintaining the decision rule structure.

It could be augured that by maintaining the QoC, the system is insuring that the subset of

attributes does not do worse than the full set of attributes in terms of possible future predictive

performance (Liu and Motoda, 2000, describes this as consistency). However, based on that

argument, a response may be, then why not find a subset that increased the QoC? effectively finding

a subset that could potentially improve the future predictive performance. Indeed, this approach is

much more in line with the conventional wisdom of feature section within data mining, that seeks to

find the best subset of attributes in terms of improving the future predictive performance (Liu and

Motoda, 2000) (there are other issues that would need consideration, such as, overfitting and

decision rule interpretability). This essentially epitomises, the core problem feature selection seeks

to solve, that is, not knowing which attributes to select from the source data set. Han and Kamber

(2006, pp. 75) state quite succinctly:

“...keeping in irrelevant attributes may be detrimental, causing confusion for the mining 
algorithm employed. This can result in discovered patterns of poor quality.”

Relating the above quote to the issue of reducts and /?-reducts, it implies that, where we are 

unsure of the relevance of all the selected attributes, one cannot assume that a subset of attributes (a 

reduct) cannot do better than the full set. Hence, with this in mind, it would be worth reconsidering 

the definition of a /?-reduct, with regards to real world data (specifically with relation to data 

mining), where the relevance of the selected attributes is unknown. That is, it would be interesting 

to investigate as future work, a /?-reduct defined as having a QoC equal to, or where possible, 

greater than the full set of attributes.
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9.2.2 Other Future Developments

The issue of reducts//?-reducts and semantic preserving within real world data sets, outlined in the 

previous subsection, is perhaps here, the most impacting issue with regards to classifier 

performance, which if addressed, could potentially improve performance. This subsection outlines a 

number of other future developments, that may enhance the performance or provide additional 

support to the analyst.

•  Re-sampling Extension of the RST Feature Selection Method. As stated in Chapter 4, the 

RST based feature selection method proposed by Beynon (2004) was a sub-optimised approach 

to feature selection. Unfortunately, it was found to be too impacting as a feature selection 

method, finding a subset of the data set's condition attributes that was akin to being a reduct. 

The method could be improved by wrapping it within a re-sampling framework, and recording 

average results, such as feature subset size, occurrence of condition attributes etc. This would 

represent a heuristic approach, as the results may differ for each independent application of the 

method on the same data set, and would also constitute an increase in pre-processing time.

•  Re-sampling Extension of the Confusion Matrix. The confusion matrix proved an 

indispensable evaluation asset to the VPRS data mining software developed here. However with 

regards to the VPRS re-sampling software, although the re-sampling predictive accuracy 

estimates (out-of-bag estimates) appeared more credible than the validation set's predictive 

accuracy estimates, it would have been beneficial to have seen a breakdown of re-sampling 

predictive accuracy estimates over all decision classes. This would allow the analyst some much 

needed incite into the possible predictive performance on the under represented decision classes. 

This extra level of transparency (breakdown of the out-of-bag estimates), has not been 

implemented in any previous studies (as far as we are aware), and may prove an interesting new 

addition to the field of predictive accuracy estimation. In essence, the idea constitutes the 

combining of the confusion matrix (as described in Chapter 3 section 3.2), with the ideas of re-
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sampling for predictive accuracy estimation.

•  Handling Imbalanced Data. The issue of imbalanced data has been prominent throughout the 

analyses undertaken within this dissertation, but the methods implemented in the developed 

software for dealing with imbalanced data performed poorly. Perhaps the main problem 

afflicting the balancing methods is the arbitrary affect that they have on the underlying 

distribution of the decision classes. That is, the balancing methods artificially and arbitrarily 

alter the decision class distribution, with no regard to the importance attached to any one 

decision class. The medical diagnoses example is often quoted (Coppin, 2004), as an application 

o f  balancing where the data is artificially altered to improve prediction of patients at risk of 

being ill, at the expense o f predicting healthy patients as being ill. However, this poses the 

question, how can the analyst select the amount of balancing that is required? Furthermore, this 

approach further breaks down when considering multiple decision class problems, where it is 

difficult to place an importance value (how much to up or down-balance) on different decision 

classes.

The answer perhaps, is not a question of balancing the data, but the ability to assign risk and 

cost analyses to the decision classes. This is very much related to the FIBR analysis, and indeed 

Harnett and Young (2007) suggested that an important issue for them was a break down of the 

risks, costs, and profits associated with decision rules incorrectly predicting banks to the other 

decision classes. Risk could be defined through the associated rule measurements such as rule 

strength and certainty, whereas costs could be factored in by the analyst who would know the 

cost o f incorrectly predicting a bank to another decision class, and the profit associated with 

predicting it correctly. This system would then allow the analyst to “hedge their bets”.

Dealing with the problem of imbalanced data, is often the reality with respect to many large 

real world data sets, and perhaps the best approach is to develop a robust KDD system (good 

pre-processing, feature selection, evaluation, optimisation), which mitigates the affects of
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imbalanced data. As stated, it may be the reality that not enough data exists to perform credible 

predictions on under represented decision classes, but this is also the reality for the analyst who 

themselves may struggle to make credible predictions under such circumstances.

•  Utilising Basic Financial Attributes as Opposed to Final Ratios. As stated in Chapter 5, 

financial ratios have been used since the early 1890's as a method of comparison between 

financial institutions. What is proposed here, is that, as modem data mining methods such as 

VPRS can recognise dependency between attributes, then it may be plausible to use the basic 

attribute values. For example, using the attributes net income and net loans independently, as 

opposed to the ratio net income/net loans, because in theory the system would be able to 

recognise the dependency between the attributes and the final rating classification. The 

advantage of this system, would be to reduce the potential set of attributes to select from, at the 

initial data selection stage of KDD.

•  Implementing Dominance Based RST to Mitigate the Requirement of Discretisation, and 

as an Approach to Handling Missing Data. Dominance Based Rough Set Approach (DRSA) 

is an extension of RST to accommodate the ordinal properties of data with regards to decision 

problems (Greco et al., 2001, 2005). It considers the monotonicity relation between attributes, 

that is, the mutual relationship between the attributes {ibid gave inflation rate and interest rate as 

an example of this relationship). DRSA substitutes the idea of the indiscemibility relation in 

RST, by a dominance relation. Within DRSA, an object is not just categorized by its condition 

values presence or absence within a concept (condition class), but by its degree of presence or 

absence. The decision rules from DRSA have a more informative syntax to those presented by 

RST, and would read, for example, “If object y  presents attribute a\ in degree at least hu and 

attribute ax in degree at least h2, then the object y belongs to set X  in degree at least a”.

The advantage of DRSA is that it operates on highly granular (continuous) data, and mitigates 

the need for discretisation (other extensions to RST also have these properties, such as Fuzzy-
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Rough sets, see Jensen and Shen, 2004, 2008). Recent work by Dembczynski et al. (2007), 

proposed a model for combining aspects of VPRS and DRSA, and Yang et al. (2008) has 

proposed a system for data reduction within the DRSA framework. The consideration here, is, 

the development of DRSA in both the vein graph and re-sampling environments would be a 

natural progression to the developed software.

With regards to the issue of missing data, the methods implemented for handling missing data 

within the FIBR data set were adequate. However, a proportion of the objects (banks) available 

within the source FIBR data base, were removed from the analyses because they contained too 

much missing data (attribute values). When dealing with under represented decision classes, this 

loss of data can and was, detrimental to the data mining process (i.e. affecting the predictability 

of the under represented decision classes). Greco et al. (1999) proposed an involved approach to 

handling missing data, an extension to the original RST and their DRSA. Their system 

described the use of exact and approximate rules, depending on whether they were supported by 

consistent or inconsistently classified objects. They also state that rules are robust, were they are 

supported by one or more objects with no missing values associated with the condition 

attributes.

•  Implementation of Alternative Nearest Rule Prediction Methods. There were, a number of 

occasions, with regards to the VPRS analysis considered in this dissertation, where objects had 

to be predicted by the nearest rule method, specifically Sfowinski's (1992) method, because 

there was no rule associated with a selected /?-reduct/aggregated /?-reduct's rule set that had 

exact matching condition attributes values. The results based on the implemented nearest rule 

method were typically quite poor. Hence, a number of other approaches could be considered as 

future alternatives, such as Manhattan distance (Han and Kamber, 2006), or a method based on 

interpolation (Huang and Shen, 2006, 2008).
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9.3 Closing Remarks

The software developed here, and theoretical aspects introduced within this dissertation, have 

provided the first comprehensive foundation for the integration of re-sampling and classifier 

aggregation within the VPRS framework. It has also illustrated the potential for developing fully 

integrated, intuitive, data mining software, utilising VPRS as the data mining solution. It is 

envisaged that the work undertaken here can act as a benchmark for future studies, and can facilitate 

further research within the field of VPRS; possibly through expansion of the developed software.

The introduction of this dissertation initially opened with the link between the origin of 

information and the beginning of recorded history. It is perhaps pertinent then, to close with some 

remarks on the future of the information industry, more particular, exploitation of information with 

regards to the financial markets.

The opening quote in Chapter 1, and the comments made by Aburdene (2005), suggested that if 

businesses were to remain competitive, then the future was in the hands of the concious individual, 

who could design the “killer app” (ibid) to exploit the abundance of information, and like the 

designers of successful applications that have gone before them, would launch a multi billion dollar 

industry. Indeed, a search of the web for quantitative analysis related occupations, will show the 

disparity between the supply of individuals capable of designing such systems and the huge demand 

within the financial services industry to employee them. This demand and the desire for competitive 

edge, is understandable when considering the observations made by Hull (2006), who stated that, 

the exchange traded and the over the counter markets combined, were worth around $260 trillion. 

To put this value into perspective, Hull observes that this figure is over five times the world's gross 

domestic product.

Perhaps software, such as that developed within this dissertation, or at the very least, the issues 

raised within the development of the software, will in some sense, show the way forward for the 

future. Giving those industries that are willing to risk and exploit new ideas and technology, the
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competitive edge to keep, or even expand their share of that $260 trillion industry.
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Appendix A

This appendix presents in sections Al to A4, a number of graphs expositing the convergence of the 

&-fold cross-validation analyses, to the leave-one-out analysis; an expansion of the results shown in 

Chapter 8 sections 8.1.1 and 8.2. Here, the graphical analyses have been expanded in two 

directions, firstly an increased range of folds are considered (k=  10, 20, 30, 40, 50), and secondly, 

consideration is given to both stratified and non-stratified &-fold cross-validation. The result 

illustrate that stratified £-fold, converges relatively quicker than non-stratified A>fold (as stated in 

section 8.2). Section A5 presents further tables of results relating to the selected /?-reducts 

associated with the leave-one-out and bootstrapping analyses.

A breakdown of the sections within this appendix is provided below:

•  Section A l . This section presents the non-stratified &-fold cross validation graphs, associated 

with the frequency of occurrence of the /?-reducts selected during VPRS re-sampling 

analyses, for k = 10,20, 30,40 and 50 folds.

•  Section A2. This section presents the non-stratified &-fold cross validation graphs, 

displaying the frequency of occurrence of the condition attributes associated with the /?- 

reducts selected during VPRS re-sampling analyses, for k=  10, 20, 30, 40 and 50 folds.

•  Section A3. This section presents the stratified &-fold cross validation graphs, associated 

with the frequency of occurrence of the /?-reducts selected during VPRS re-sampling 

analyses, for k = 10,20, 30,40 and 50 folds.

•  Section A4. This section presents the stratified £-fold cross validation graphs, displaying the
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frequency of occurrence of the condition attributes associated with the /?-reducts selected 

during VPRS re-sampling analyses, for k = 10, 20, 30,40 and 50 folds.

•  Section A5. This section present tables of information relating to the prediction of banks 

within the FIBR validation set, by nearest rule method; based on all aggregated /?-reducts 

associated with the leave-one-out and bootstrapping analyses.
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A.l Non-stratified A:-fold Cross-validation Graphs Associated with the

Frequency of the Selected /?-reducts, with Regards to the FIBR Data

Set

1 Resampling Analysis C D ata file s  KankPata 200" Save/Ssav 20Nov07 135S.sav KFoldt rossValidation

Overall Summary Statistics S u m m a r y  G r a p h s  Beta-Reduct Summary Statistics Aggregated Beta-Reduct
| Frequency of Identifled Beta-Reduct [  Frequency Of Condition Attribute Frequency of Beta-Reduct Size

Frequency of Identified Beta-Reduct

Frequency
of

Occurrenc

{ 3 , 7 , 8 }{ 1 , 3 , 4 , 7 , 8 }
{ 1 , 7 , 8 }

{ 6 , 7 , 8 } { 6, 8 } { 7 , 8 }

Beta-Reducts

Figure A. 1.1: Frequency of Occurrence of the Selected /?-reducts, Associated with the 10-fold 
Cross-validation Analysis of the FIBR Training Set
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Resampling Analysis C: -Datafiles/Bank Data 2007 SaYe/S s KFoldCross Validation

r Statistics ] Beta-Reduct
[ Frequency of Identified Beta-Reduct Of Condition Attribute of Beta-Reduct 4 m ]

F r e q u e n c y  o f  Ident i f ied B e t a R e d u c t

Frequency
of

Occurrenc

{1,2,3,4,6,8}
{ 1 , 2 , 7 , 8 )

{2,3,5,6,8} ( 1 , 3 , 4 , 7 , 8 }  

Beta-Reducts

< 3 , 4 , 6 , 6 , 7 }  

{2,6,7,8)

Figure A. 1.2: Frequency o f Occurrence o f the Selected /?-reducts, Associated with the 20-fold 
Cross-validation Analysis o f the FIBR Training Set

'  Resampling Analys C: Datafile* Bank Data 20I)7/Save8

StatisticsOverall Summary Graphs BetaReductStatistics BetaReduct |

Frequency of Identified BetaReduct J Frequency Of Condition Attribute of BetaReduct Size |

Frequency of Identified Beta-Reduct

Frequency
of

Occurrenc

{ 1 , 3 , 4 , 7 , 8 }
{ 1 3 , 4 , 6 , 8 }

{ 1 , 2 , 3 , 4 , 6 , 7 , 8 } (1,2,3,4,7,8} 
Beta-Reducts

{ 2, 3 , 6, 6 , 7 , 8 } 

{2,6,7,8)

Figure A. 1.3: Frequency o f  Occurrence o f  the Selected /?-reducts, Associated with the 30-fold
Cross-validation Analysis o f  the FIBR Training Set
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- Resampling Analysis C: Dalaliies/KaiikData 200"' Save/Ssav 20Nov07 lJJS .sav  K FoldCioss Validation

I Beta-Reduct
Frequency of Identified Beta-Reduct Frequency Of Condition Attribute Frequency of Beta-Reduct Size

Frequency of Identified Beta-Reduct

Frequency
o f

Occurrenc

{ 1 , 2 , 3 , 4 , 6 , 8 }  I { 1 , 3 , 4 , 6 , 8 }  I { 1 2 , 3 , 4 , 6 , 6 , 7 , 8 }  I | { 2 , 7 , 8 }
{ 1 , 3 , 4 , 7 , 8 }  I { 1 , 6 , 6 , 8 }  I { 2 , 6 , 7 , 8 }

{ 3 , 4 , 6 , 6 , 7 }  { 3 , 4 , 6 , 6 , 7 , 8 }  { 4 , 7 , 8 }

Beta-Reducts

Figure A l .4: Frequency of Occurrence of the Selected /?-reducts, Associated with the 40-fold Cross-
validation Analysis of the FIBR Training Set

K I- oldCr os s Validation( D a tx if i lc v H a n k D .i la  ?IMr  Sav i-  S s a \  ZIIN ovN  I7.5S

Statistics Summary Graphs Beta-ReductOverall Statistics

Of Condition AttributeFrequency of Identified Beta-Reduct of Beta-Reduct Size

Frequency of Identified Beta-Reduct

Frequency
o f

Occurrenc

{ 3 , 4 , 6 , 8 }  

Beta-Reducts

Figure A. 1.5: Frequency o f  Occurrence o f  the Selected /?-reducts, Associated with the 50-fold
Cross-validation Analysis o f  the FIBR Training Set
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A.2 Non-stratified A>fold Cross-validation Graphs Associated with the

Frequency o f Occurrence of Condition Attributes, with Regards to the

FIBR Data Set

I Resampling Analysis C:/Datafiles/Bank Data 2 0 0 7 Save/Usav 20Nov07 1358.

! OveraM Summary l Summary Graphs 1 Beta-Reduct Summary Stabatice \ Aflgrafli ted Beta-Reduct
Frequency of Identified Beta-Reduct Frequency Of Condition Attribute i of BetaReduct Size

Frequency Of Condition Attribute

Frequency
of

Occurrence 1-n.ill
C1 C2 C3 C4 C5 C6 C7 C8

Condition Attribute

Figure A.2.1: Frequency of Occurrence, of the Condition Attributes Associated with the Selected /?- 
reducts, with Regards to the 10-fold Cross-validation Analysis of the FIBR Training Set
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Resampling Analvs C iD atatUes/K ankData JOfl'hSave/Ssav 20Novfl" 1358.sav KFoldC

Overall Summary Statistics ; Sum mary  Graphs  | Beta-Reduct Summary Statistic* j Aggregated Beta-Reduct | 

Frequency of Identified Beta-Reduct 1 Frequency Of Condition Attribute Frequency of Beta-Reduct Size

Frequency Of Condition Attribute

Frequency
of

Occurrence

C2 C3

Condition Attribute

Figure A.2.2: Frequency of Occurrence, of the Condition Attributes Associated with the Selected /?- 
reducts, with Regards to the 20-fold Cross-validation Analysis of the FIBR Training Set

C: Datafiles BankData 200?/S»ve«sav ZONevO? 1358.sav KFoldC

Beta-Reduct S
 2

Statistics Beta-Reduct

i of Identified Beta-Reduct] Frequency Of Condition Attribute 7 Frequency of Beta-Reduct Size

Frequency Of Condition Attribute

Frequency
of

Occurrence

Condition Attribute

Figure A .2.3: Frequency o f  Occurrence, o f  the Condition Attributes Associated with the Selected /?-
reducts, with Regards to the 30-fold Cross-validation Analysis o f  the FIBR Training Set
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Resam pling .Analysis C‘: Datafiles/Bank Data 200?/Save/8 sav 20N ov0? 1358.?

! O w l  Sunw arvgtattlttca I Summary Graphs F l

Frequency of Identified Beta-Reduct j Frequency Of Condition Attribute Frequency of Beta-Reduct Size

Frequency Of Condition Attribute

Frequency
o f

Occurrence llll.lll
C1 C2 C3 C4 C5 C6 C7 C8

Condition Attribute

Figure A.2.4: Frequency of Occurrence, of the Condition Attributes Associated with the Selected /?- 
reducts, with Regards to the 40-fold Cross-validation Analysis of the FIBR Training Set

Overall Summary Statistic*- | Summary Graphs Betsi-Reduct Summary Statistics Aggregated BetaReduct

Frequency of Identified Beta-Reduct Frequency Of C o n d i t i o n  At tr i bu te  Frequency of Beta-Reduct Size

Frequency Of Condition Attribute

Frequency

Occurrence

C1 C2 C3 C4 C6 C6 C7 C8

Condition Attribute

Figure A .2.5: Frequency o f  Occurrence, o f  the Condition Attributes Associated with the Selected /?-
reducts, with Regards to the 50-fold Cross-validation Analysis o f  the FIBR Training Set
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A.3 Stratified A;-fold Cross-validation Graphs Associated with the

Frequency o f the Selected /?-reducts, with Regards to the FIBR Data

Set

- Resam pling Analysis C: Datafiles/BankI)ata_200" Save/S

I Ovtnll8uwroyy8t«Mgtlci I Summary G raphs! Beta-Reduct Summary Statistics I Beta-Reduct

Frequency of Identified Beta-Reduct Frequency Of Condition Attribute Frequency of Beta-Reduct Size

Frequency of Identified Beta-Reduct

Frequency
of

Occurrenc

{ 1 , 3 , 4 , 7 , 8 }  I { 3 , 7 , 8 }  I { 2 , 4 , 7 , 8 }
{ 1 , 7 , 8 }  I { 3 , 4 , 5 , 6 , 7 }  I { 3 , 4 , 6 , 6 , 7 , 8 }

{ 6 , 7 , 8 }  { 6 , 8 }  { 7 , 8 }

Beta-Reducts

Figure A.3.1: Frequency of Occurrence of the Selected /?-reducts, Associated with the Stratified 10- 
fold Cross-validation Analysis of the FIBR Training Set
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F req u en cy  of Identified B eta-R educt

Frequency
of

Occurrenc

{ 1 ,2 ,3 >6 ,8 >  { 2 ,7 ,8 }  {  1, 3,4 . 6, 7, 8 }

Beta-Reducts

Figure A.3.2: Frequency of Occurrence of the Selected /?-reducts, Associated with the Stratified 20- 
fold Cross-validation Analysis of the FIBR Training Set

F re q u e n c y  o f  Id e n tif ie d  B e ta - R e d u c t

Frequency of Identified Beta-Reduct

F req u en cy
of

Occurrenc

< 1 ,3 ,4 ,6 ,8 }  {2 ,3 ,4 ,6 ,7 ,8 }  { 6 ,7 ,8 }

Beta-Reducts

Figure A .3.3: Frequency o f  Occurrence o f  the Selected /?-reducts, Associated with the Stratified 30-
fold Cross-validation Analysis o f  the FIBR Training Set
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■T} S u m m a ry  G ra p h *  j  Bete-Reduct Summary Statistics Aoaregated Beta-Reduct
F r e q u e n c y  o f  Id e n tif ie d  B e ta - R e d u c t  | Frequency Of Condition Attribute | Frequency of Beta-Reduct Size |

arisra

Frequency of Identified Beta-Reduct

F re q u en c y
of

O ccu rren c

{ 2 , 6 , 7 , 8 }
{ 1 , 3 , 4 , 6 , 8 >

< 1 , 3 ,  4 , 6 ,  7 , 8 } { 1 . 2 ,  3 ,  4 ,  6 , 8 }  

Beta-Reducts

{ 1 , 2 , 3 , 6 , 8 }  

{ 1 , 6 ,  6 , 7 , 8 }

Figure A .3.4: Frequency o f  Occurrence o f the Selected /?-reducts, Associated with the Stratified 40- 
fold Cross-validation Analysis o f  the FIBR Training Set

C:/Dataflle.c Bank Data 2007/Save S sav  20Nov07 1358 (33BE25E2555
I Beta-Reduct |

Frequency of Identified Beta-RedurtllliBlM BiMiggS6tidttdtfM aiiltofilfifliK^^ :

Frequency of Identified Beta-Reduct

Frequency
of

Occurrenc

{ 1 ,2 ,3 ,4 ,6 ,8 ){1,3 ,4 ,6 ,8}
{2 ,6 ,7 ,8 ) { 1 ,3 ,4 ,6 ,7 ,8 )

{4,7,8}{3,4 ,6 ,6 ,7} { 3 ,4 ,6 ,8 )
Beta-Reducts

Figure A .3.5: Frequency o f  Occurrence o f  the Selected /?-reducts, Associated with the Stratified 50-
fold Cross-validation Analysis o f  the FIBR Training Set
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A.4 Stratified A>fold Cross-validation Graphs Associated with the

Frequency of Occurrence, of Condition Attributes, with Regards to

the FIBR Data Set

OvoraM 8ummary StafltBca | ~iummary Graphs [ Beta-Reduct Summary Statistics
Frequency of Identified Beta-Reduct Frequency Of Condition Attribute j Frequency of Beta-Reduct Size |

Frequency Of Condition Attribute

Frequency
of

Occurrence

Condition Attribute

Figure A .4 .1: Frequency o f Occurrence, o f the Condition Attributes Associated with the selected /?- 
reducts, with Regards to the 10-fold Cross-validation Analysis o f the FIBR Training Set
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i 1 Beta-Rec
CB328232E2K22231DSHB222C2nLiZ22GZ315I3

Overall Summary Statiatica ] Summary Graphs 1 Beta-Reduct Summary Statistics Aggregated Beta-Reduct 
Frequency of Identified Beta-Reduct ! Frequency Of Condition Attribute ! Frequency of Bet

Frequency Of Condition Attribute

Frequency
of

Occurrence

Condition Attribute

Figure A.4.2: Frequency o f Occurrence, o f the Condition Attributes Associated with the Selected /?- 
reducts, with Regards to the 20-fold Cross-validation Analysis o f the FIBR Training Set

nmary Statistics Aggregated Beta-Reduct
Frequency Of Condition Attribute |  Frequency of Beta-Reduct Size |

Frequency Of Condition Attribute

Frequency
or

Occurrence

■

20

C2 C3 C5 CO C 7  C 8

Condition Attribute

Figure A.4.3: Frequency o f  Occurrence, o f  the Condition Attributes Associated with the Selected p -
reducts, with Regards to the 30-fold Cross-validation Analysis o f  the FIBR Training Set
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F re q u e n c y  O f C o n d it io n  A ttrib u te

Frequency Of Condition Attribute

Occurrence

Condition Attribute

Figure A.4.4: Frequency o f Occurrence, o f the Condition Attributes Associated with the Selected /?- 
reducts, with Regards to the 40-fold Cross-validation Analysis o f the FIBR Training Set

' Resampling Analysis C: Datafiles BankData ZQOT/Savettsav 20Nov0~_ 1358.sav KFoldKTossVaUdation

Overalli i Statistic* i Summary Graphs [ Beta-Re

QfW HOixiilaU ftatfaia^llFrequency Of CondMonAWbute^

Frequency Of Condition Attribute

50

Frequency
of

Occurrence llll.lll
C1 C2 C3 C4 C6 C6 C7 C8

Condition Attribute

Figure A .4 .5: Frequency o f  Occurrence, o f  the Condition Attributes Associated with the Selected /?-
reducts, with Regards to the 50-fold Cross-validation Analysis o f  the FIBR Training Set
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A.5 Predictive Results for Banks Predicted by the Nearest Rule Method

This section presents results on the banks within the FIBR validation set, predicted by the nearest 

rule method, in the case of leave-one-out (Tables A5.1.1 and A5.1.2) and bootstrapping (Tables 

A5.2.1 and A5.2.2). These results are associated with the work presented in Chapter 8 section 8.4, 

and consider the top ten most frequently selected /?-reducts with regards to the respective leave-one- 

out and bootstrapping analyses.

A.5.1 Leave-one-out Aggregation Results Based on the Banks within the FIBR 

Validation Set Only Predictable by Nearest Rules

/?-reduct

Number o f  
Aggregated 

Rules
Objects Predicted 
by Matching Rule

Objects Predicted 
Correctly

Objects Predicted 
Incorrectly

Predictive 
Accuracy (%)

( C l ,  C3, C4, C6, Cg} 104 15 8 7 53.33%

{C2, C6, C7, Cg} 16 11 0 11 0.00%

{C i, C4, C j, Co, C7} 66 13 8 5 61.53%

( c 2, C4, Cg) 13 7 4 3 57.14%

{C l, C l, C l, C4, C5, Cg} 101 9 5 4 55.55%

{C 1, C2, C3, C4, C7, Cg} 72 10 7 3 70.00%

{C l, C l, Cg} 14 7 0 7 0.00%

{C l, C3, C4, Co, C l, Cg} 76 17 9 8 52.94%

{ C l, C i,  c 4, C l, Cg} 65 20 7 13 35.00%

{C2, C3, C4, C5, C l, Cg} 88 25 18 7 72.00%

Table A.5.1.1: Aggregated /?-reduct Results Associated with the Leave-one-out Analysis of the 
FIBR Training Set, Applied to the FIBR Validation Set
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Individual Decision Class Predictive Accuracies

/?-reduct 0(A ) 1(B) 2(C ) 3(D ) 4(E )

{C]j C3 , C4 , C5 , Cg} 0 .0 0 % 5 0 .0 0 % 5 0 .0 0 % 1 0 0 .0 0 % 0 . 0 0 %

{ c2, C6, C i ,  c 8} 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 %

{ c 3, C4 , C s, C 6,  C i } 0 .0 0 % 71.42% 6 0 .0 0 % 0 .0 0 % 0 .0 0 %

{ C 2,  C 4 ,  Cg} 0 .0 0 % 0 .0 0 % 1 0 0 .0 0 % 0 .0 0 % 0 .0 0 %

{C l, C2,  C l ,  C4, C i ,  c*} 0 .0 0 % 8 3 .3 3 % 0 .0 0 % 0 .0 0 % 0 .0 0 %

{ C l ,  C l ,  C i ,  C i ,  C l ,  Cg} 0 .0 0 % 7 5 .0 0 % 8 0 .0 0 % 0 .0 0 % 0 .0 0 %

{c2, C i ,  Cg} 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 %

(C l, C l ,  C4, C 6,  C i ,  C s } 0 .0 0 % 4 5 .4 5 % 6 0 .0 0 % 1 0 0 .0 0 % 0 .0 0 %

{cn C l ,  c 4, C l ,  Cs} 0 .0 0 % 2 5 .0 0 % 4 2 .8 5 % 1 0 0 .0 0 % 0 .0 0 %

{c2, C i ,  C4 , C5 , C i ,  Cg} 0 .0 0 % 8 8 .2 3 % 4 2 .8 5 % 0 .0 0 % 0 .0 0 %

Table A.5.1.2: Breakdown of the Validation Set Predictive Accuracies Across the Five Decision 
Classes, for the Ten Aggregated /?-reducts Associated with the Leave-one-out Analysis of the FIBR

Validation Set

A.5.2 Bootstrapping Aggregation Results Based on the Banks within the FIBR 

Validation Set Only Predictable by Nearest Rules

/?-reduct

Number o f  
Aggregated  

Rules

Objects 
Predicted by 

Matching Rule

Objects
Predicted
Correctly

Objects
Predicted

Incorrectly
Predictive 

Accuracy (%)

(C l,  C l, C i, C4, Ci, C6, C l, Cg} 565 52 11 41 21.15%

{Ci, Cg} 19 15 6 9 40.00%

[C l, C2, C i, Cg} 102 13 11 2 78.57%

}c3, C4, Cg} 86 11 9 2 81.81%

[ c 2, C l, Cg} 37 9 0 9 0.00%

{ C l, C l, C l, C4, Ci, C i, Cg} 366 31 16 15 51.61%

JC4. C&J Cg} 46 16 7 9 43.75%

{c’3, C4, Cl, Cg} 133 14 7 7 50.00%

(C l, Cl, C4, Cg} 169 6 4 2 66.66%

[ c , ,  C2, Ci, C4, Ci, Cg} 329 10 6 4 60.00%

Table A.5.2.1: Aggregated /?-reduct Results Associated with the Bootstrap Analysis of the FIBR
Training Set, Applied to the FIBR Validation Set
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/?-reduct

Individual D ecision  Class Predictive Accuracies

0 (A ) 1 (B ) 2 (C ) 3 (D )  4 (E )

(Ci, Cl, C3j C4j Csy C&, Cl, Cg} 0.00% 13.88% 40.00% 50.00% 0.00%

{ci, Cg} 0.00% 100.00% 18.18% 0.00% 0.00%

(Cl, Cl, Ci, Cg} 0.00% 100.00% 75.00% 0.00% 0.00%

{c3, Ci, Cg} 0.00% 50.00% 83.33% 100.00% 0.00%

{Cl, Cl, Cg} 0.00% 0.00% 0.00% 0.00% 0.00%

{Cl, C i, Ci, C i, C$, Ci, Cg} 0.00% 55.55% 62.50% 25.00% 0.00%

{C4. C$, Cg} 0.00% 0.00% 100.00% 25.00% 0.00%

{C i, Ci, C l, Cg} 0.00% 100.00% 44.44% 0.00% 0.00%

{Cl, C3, C i, Cg} 0.00% 50.00% 50.00% 100.00% 0.00%

{Ci. Ci, C i, Ci, C i, Cg} 0.00% 100.00% 33.33% 0.00% 0.00%

Table A.5.2.2: Breakdown of the Validation Set Predictive Accuracies Across the Five Decision 
Classes, for the Ten Aggregated /?-reducts Associated with the Bootstrap Analysis of the FIBR

Validation Set
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A.6 Attributes Selected for VPRS Re-sampling Analyses Associated with 

the Benchmark Data Sets

The following tables display the condition attributes selected from the original benchmark data sets 

utilised in section 8.5, and passed into the VPRS re-sampling analyses associated with that section. 

The tables give the actual attribute names and the shorter index condition attribute names (e.g. C\, c2 

etc.) used in section 8.5. Full listings and details of all attributes associated with the utilised 

benchmark data sets can be found at the the UCI Machine Learning Repository (see 

http://archive.ics.uci.edu/ml/index.html).

Note that attributes associated with the the original SPECT data set had no meaningful attribute 

names, and are recorded as F 1 to F22.

A .6.1 Breast-cancer Data Set Selected Attributes

Condition Attribute Indexed as

Clump Thickness Cl

Uniformity of Cell Size C2

Uniformity of Cell Shape c2
Single Epithelial Cell Size C*4

Bare Nuclei Ci

Bland Chromatin Ce

Normal Nucleoli Cl

Table A.6.1.1: Attributes Selected with regards to the Breast-cancer Data Set
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A.6.2 Iris Data Set Selected Attributes

Condition Attribute Indexed as
Sepal length (cm) C |

Sepal width (cm) C2

Petal length (cm) C3

Petal width (cm) C4

Table A.6.2.1: Attributes Selected with regards to the Iris Data Set

A.6.3 SPECT Data Set Selected Attributes

Condition Attribute Indexed as
F4 Ci

F13 C l

F14 c3

F16 c4

F17 c5

F22 c6

Table A.6.3.1: Attributes Selected with regards to the SPECT Data Set
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A.6.4 Wine Data Set Selected Attributes

Condition Attribute Indexed as
Alcohol Cl

Malic acid C2

Ash C-s

Alcalinity o f  ash C4

Magnesium C5

Total phenols Cft

Flavanoids Cl

Nonflavanoid phenols Cg

Table A.6.4.1: Attributes Selected with regards to the Wine Data Set

A.6.5 Zoo Data Set Attributes Selected Attributes

Condition Attribute Indexed as

feathers Cl

eggs Cl

milk C3

toothed C4

backbone C5

breathes c6

Table A.6.5.1: Attributes Selected with regards to the Zoo Data Set
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