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Abstract

In this dissertation some advanced methods for extracting sources from single and mul­

tichannel data are developed and utilized in biomedical applications. It is assumed that 

the sources of interest have periodic structure and therefore, the periodicity is exploited 

in various forms. The proposed methods can even be used for the cases where the signals 

have hidden periodicities, i.e., the periodic behaviour is not detectable from their time 

representation or even Fourier transform of the signal.

For the case of single channel recordings a method based on singular spectrum anal­

ysis (SSA) of the signal is proposed. The proposed method is utilized in localizing 

heart sounds in respiratory signals, which is an essential pre-processing step in most of 

the heart sound cancellation methods. Artificially mixed and real respiratory signals 

are used for evaluating the method. It is shown that the performance of the proposed 

method is superior to those of the other methods in terms of false detection. More­

over, the execution time is significantly lower than that of the method ranked second in 

performance.

For multichannel data, the problem is tackled using two approaches. First, it is as­

sumed that the sources are periodic and the statistical characteristics of periodic sources 

are exploited in developing a method to effectively choose the appropriate delays in which 

the diagonalization takes place. In the second approach it is assumed that the sources 

of interest are cyclostationary. Necessary and sufficient conditions for extractability of 

the sources are mathematically proved and the extraction algorithms are proposed.

Ballistocardiogram (BCG) artifact is considered as the sum of a number of inde­
pendent cyclostationary components having the same cycle frequency. The proposed 

method, called cyclostationary source extraction (CSE), is able to extract these compo­

nents without much destructive effect on the background electroencephalogram (EEG).



It is shown that the proposed method outperforms other methods particularly in pre­

serving the remaining signals. The CSE is utilized to remove the BCG artifact from 
real EEG data recorded inside the magnetic resonance (MR) scanner, i.e., visual evoked 
potential (VEP). The results are compared to the results of benchmark BCG artifact 

removal techniques. It is shown that VEPs recorded inside the scanner and processed 

using the proposed method are more correlated with the VEPs recorded outside the 
scanner. Moreover, there is no need for electrocardiogram (ECG) data in this method 

as the cycle frequency of the BCG artifact is directly computed from the contaminated 

EEG signals.
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Chapter 1 

IN T R O D U C TIO N

1.1 Overview

In many of the conventional statistical signal processing methods the signals are treated 

as they are statistically stationary. That means it is assumed that the parameters of the 

underlying physical mechanisms which generate the signals do not vary with time. But 

for most of the signals from man-made systems such as those encountered in mechanical 

systems and communication, radar and sonar systems some parameters vary periodi­

cally with time. Because of presence of rhythmic, seasonal, or other cyclic behaviour, 

periodic structure also arises in some of the signals which have natural origins, as in data 

encountered in economics, astronomy, climatology, biomedical and atmospheric science 

[41]. Although in some of these signals the periodicities are not detectable as periodic 

functions of time, the statistical characteristics of the signals may vary periodically with 

time [43]. This class of signals are called cyclostationary signals.

Mostly, the periodicities are ignored by signal processing algorithms. However, in 

many cases much information can be gained to improve the performance of the signal 

processing techniques by recognizing and exploiting the underlying periodicities [41].

The objective of this thesis is to develop suitable multi and single channel signal pro­

cessing techniques for extracting signals with periodic structures. The proposed methods 

have been utilized to mitigate the physiological artifacts originated from heart activity. 

Most of biomedical signals are somehow contaminated by artifacts synchronized with 

heartbeats. Therefore, artifact processing is an essential task in analysis of biomedical
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signals.

In this chapter the structure and periodic behavior of heart are studied. The theories 

behind the techniques for analyzing and processing cyclostationary and periodic signals 

are explained in the next chapters. Cogency of artifact removal in biomedical signal 

processing is explained in Section 1.2. A list of artifacts which are generated from heart 

activity is presented in Section 1.3. Heart structure and different recording approaches 

for measuring heart activity are detailed in Sections 1.4 and 1.5, respectively. Objectives 

of this research are explained in Section 1.6. Finally, Section 1.7 presents the organization 

of this dissertation.

1.2 Artifact removal

Removing noise and artifacts from a signal is probably the first and the most common 

step in signal processing. Distinction between the signal and the noise or artifacts is a 

heuristic decision made by the user. In some cases, the distinction between the noise 

and the signal is obvious and in other applications some prior information is required to 

separate them. Once distinction between the signal and artifacts is identified, the next 

goal is to remove the artifacts with the least possible distortion of the signals of interest 

[22]. In biomedical signal recordings, a wide variety of artifacts can appear, some of 

which can be easily identified by simple classical algorithms, while identification and 

removal of the others may be extremely difficult.

A common approach for categorizing artifacts is by referring to the root of the arti­

fact, i.e., physiological or technical. It is also worth mentioning that multiple types of 

artifacts can exist in a single recording at the same time. In practice, the influence of 

artifacts of technical origin can be reduced to a large extent by using appropriate devices, 

controlling the experimental environment, and paying extra attention to the attachment 

of electrodes to the body surface. However, it is impossible to avoid the influence of 

physiological artifacts [93]. Signal processing techniques are required to identify and 

remove this kind of artifacts before any further processing.
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1.3 Heart originated artefacts

Cardiac pulsation and blood flow in the body are the major sources of a class of physio­

logical artifacts in most of biomedical recordings. These artifacts are directly related to 

the heart activity and depending on the acquisition technology interfere with the under­

lying signals in different forms. Some examples of this class of artifacts are as follows. 

Electroencephalogram (EEG) and electromyogram (EMG) recordings are contaminated 

by electrocardiogram (ECG) signals. Blood oxygen level dependent (BOLD) signals of 

brain can contain some periodic artifacts which are originated from blood flow in the 

brain. Lung sounds in auscultation signals are always obscured by heart sounds as the 

result of continuous activity of the heart.

The repetitive and regularly occurring waveform pattern of the heart activity char­

acterizes the normal heartbeats. Fortunately, it is always possible to track heart activity 

with existing techniques to find signatures of the artifact in the recorded data and signals 

of interest.

1.4 Heart structure

The heart is a muscular organ responsible for pumping blood throughout the body 

in all animals. The blood is distributed all around the body by repeated, rhythmic 

contractions of the heart. The heart can be seen as two separate pumps: one of which 

is the right heart responsible for pumping the blood through the lungs and the other is 

the left heart which pumps the blood to the other organs in the body. Each of these is 

a two-chamber pump composed of an atrium and a ventricle [54]; see Fig. 1.1.

The human heart is composed of three types of muscle: atrial, ventricular, and 

specialized excitatory and conductive muscle fibers. The heart’s continuous contract 

and relax cycles are coordinated by a local periodic electrical stimulation. The cardiac 

events that occur from beginning of one heartbeat to beginning of the next are called 

the cardiac cycle. Each cardiac cycle consists of a period of relaxation called diastole, 

during which the heart fills with blood, followed by a period of contraction called systole

N -
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Head and upper extremity

Right ventricle
Inferior 

vena cava

Right atrii

Pulmonary
valve

Sinus node

Tricuspid
valve

vena ca
Super Pulmonary artery

Pulmonary
vein

Left atrium

Mitral valve

Aortic valve

Left
ventricle

I
Trunk and lower extremity

Figure 1.1: Structure of the heart and blood flow inside this organ; taken from [54].

Small valves prevent backflow of blood from the ventricles into the atrium during 

systole. These valves are anchored to the wall of the ventricle by chordae tendineae. 

The mitral valve lies between the left atrium and the left ventricle. The tricuspid valve 

is on the right side of the heart, between the right atrium and the right ventricle. As the 

mitral and the tricuspid valves separate the atria and the ventricles of the heart, they 

are called the atrioventricular (AV) valves [54].

There are two other valves at the base of both the pulmonary artery and the aorta 

(the two arteries taking blood out of the ventricles). These valves permit blood to be 

pumped into the arteries, and similar to AV valves prevent backflow of blood. The aortic 

valve is located between the left ventricle and the aorta and the pulmonary valve lies 

between the right ventricle and the pulmonary artery. These valves are called Semilunar 

valves and do not have chordae tendineae [54].

Heart cycles are initiated by spontaneous generation of an action potential in the 

sinus node located in the superior lateral wall of the right atrium. Each heart muscle 

cell has an electrical charge across its membrane. De-polarisation of the cell (reducing 

this charge towards zero) causes the cell to contract [30].

During each heartbeat a healthy heart has an orderly progression of a wave of de­

polarisation that is triggered by the cells in the sinus node, and travels rapidly from there
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through both atria and then through the atrioventricular bundle (a bundle of conductive 

fibers several millimeters in diameter) into the ventricles [30].

The regular stimulations occur with an intrinsic frequency of 100 to 120 beats per 

minute. However, because of the complex set of chemical exchanges between the initial 

stimulation and the subsequent de-polarisation of the surrounding cardiac tissue the 

actual heart rate is lower than the stimulations rate [30].

The heart has a special system for both generating rhythmical electrical impulses 

and conducting these impulses rapidly through the muscles. When this system functions 

normally, the atria contracts around one sixth of second ahead of ventricular contraction, 

which allows filling of the ventricles before they pump the blood through the lungs and 

peripheral circulation [54].

1.5 Heart signal acquisition

Different techniques have been developed to measure heart activity. Based on the fea­

tures and the quality, hardware and software availability and the requirements one of 

these techniques are selected by the researchers or the clinicians to assess the heart ac­

tivities. Auscultation, electrocardiography, and Carotid arteriogram are the most used 

techniques.

1.5.1 A uscu ltation

Auscultation is the act of listening, usually with a stethoscope, to the internal sounds of 

the body. This technique is used usually to listen to three main organs/organ systems: 

heart, lungs, and the gastrointestinal system. When auscultating the heart, physicians 

listen for abnormal sounds coinciding with heartbeats. When listening to the lung, 

breathing sounds such as wheezes and crackles are identified. The gastrointestinal system 

is auscultated to note the presence of bowel sounds [107]. Auscultation is performed as 

one of the initial and very important steps in the diagnosis of heart or lung abnormalities.

Heart sounds are caused by flow of blood into and out of heart through valves and also 

heart tissue movements [49]. By placing a stethoscope over the chest, close to the heart 

location, four basic heart sounds can be identified which are referred to as SI, S2, S3,
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and S4. The first and second heart sounds (Si and S2) are the most fundamental heart 

sounds. SI is caused by closure of the mitral and tricuspid valves at the beginning of 

ventricular contraction. During this contraction cycle the blood is pumped from heart 

to body. S2 is caused by closure of the aortic and pulmonic valves at the beginning 

of ventricular relaxation; see Fig. 1.1. The third heart sound (S3), when audible, 

occurs early in ventricular filling and the fourth heart sound (S4), when audible, is 

caused by vibration of the ventricular wall during atrial contraction. Both S3 and S4 do 

not have significant amplitude and mostly are not audible in healthy subjects. These 

components of heart sound are ignored in most of heart sound processing applications. 

Main frequency components of the heart sound are concentrated in the range of 20-150 

Hz.

One approach for visualizing heart sounds is to record the signals using a microphone 

and to display the electrical signals graphically. This is called a phonocardiogram (PCG), 

in which the x and y axis represent time and voltage, respectively.

1.5.2 Electrocardiography

Electrocardiography (ECG or EKG) is an interpretation of the electrical activity of heart 

over time captured non-invasively from the chest wall using skin electrodes.

The ECG works by detecting and amplifying the tiny voltage changes on the skin 

caused when the heart muscles de-polarize during each heart beat. The voltage changes 

are displayed on screen or on paper as a wavy line which indicates the overall rhythm 

of the heart. ECG signals are used to identify possible malfunctions or weaknesses in 

different parts of the heart muscle.

In practice more than two electrodes are used to record ECG signals and they can 

be combined into a number of pairs. The output voltage of each pair is called a lead. 

Usually, an ECG is taken while the patient is in rest.

ECG is known as the best measure for diagnosis of heart abnormal rhythms [21]. It 

may also be used to assess the success of drug administration or coronary revascularisa­

tion such as coronary intervention or bypass surgery.

A typical ECG waveform is comprised of a sequence of almost similar structure. The
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Figure 1.2: A typical ECG waveform for one heart beat.

first positive peak is called P-wave, followed by three peaks which are known as ‘QRS 

complex’ and then a trailing T-wave (see Fig. 1.2). These waves are defined as follows: 

P-wave: It is a low voltage fluctuation which is caused by de-polarization of the atria 

prior to contraction.

QRS complex: The highest peaks of the ECG signal caused by the ventricular de­

polarization.

T-wave: Caused by ventricular re-polarisation.

1.5.3 Carotid arteriogram

Carotid arteriogram is an x-ray examination to see the blood vessels in neck. These 

vessels supply blood to the brain. This technique involves inserting a fine plastic tube, 

called a catheter, into an artery through a needle placed in the groin. The tip of the 

catheter will need to be guided to its proper position by the radiologist (or x-ray doctor) 

whilst watching on a TV monitor [80].

1.6 O bjectives of this thesis

Heart originated artifacts are referred to as quasi-periodic signals contaminating differ­

ent biomedical recordings and the objective is to extract the artifacts from the recorded 

signals. Multi channel signal processing methods in the context of blind source separa­

tion (BSS) are powerful candidates for applications for which more than one recorded 

channel is available. Time series analysis methods are proposed for single channel signal 

processing.
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The objectives of this research are as follows:

• Reviewing state of the art research on cyclostationarity and cyclostationary source 

separation methods.

• Developing effective and efficient algorithms for extracting signals with periodic 

structure.

• Reviewing recent achievements in heart and lung sound separation and proposing 

new approaches in order to enhance the performance of the separation methods.

• Removing periodic artifacts from EEG data recorded inside magnetic resonance 

imaging scanner.

Recording devices, standards, and procedures are not of any concern in this disser­

tation and therefore, are not covered.

1.7 Organization of th e thesis

Concepts of blind source separation and well established instantaneous BSS methods 

are reviewed in Chapter 2. A more detailed discussion about these methods specifically 

focussing on signals with periodic structures is also provided. In this part, the cyclosta­

tionary sources, which are known to have periodic higher order statistics, are reviewed. 

Separation techniques based on cyclostationarity are powerful tools for extracting the 

signals with hidden periodicities.

In Chapter 3 an efficient algorithm for separating periodic sources is presented. The 

algorithm is proposed based on the assumption that the sources are periodic and the peri­

odicities are known a priori. The algorithm is used for separation of artificial mixtures. 

Human voice and music as quasi-periodic signals are used to evaluate the separation 

performance of the algorithm.

Heart and lung sound separation is a challenging problem in the field of biomedical 

signal processing. Localization of heart sound components is an essential pre-processing 

step in some removal methods. In Chapter 4 a novel method for localizing SI and 

S2 components is proposed. This method is based on singular spectrum analysis of
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the respiratory signals recorded over the chest. Comparison between the results of the 

proposed method and those of two localization methods are reported.

Two methods for extracting cyclostationary sources are proposed in Chapter 5. In 

the first method it is assumed that the sources of interest have distinct periodic structure, 

while in the second method the sources can have identical periodic structures. Necessary 

and sufficient conditions for extracting the sources are considered and mathematical 

proofs are provided. Preliminary experiments on synthetic data are conducted and the 

results are reported.

Complementary experiments using the method proposed in Chapter 5 are carried out 

for synthetic data and the results are presented in Chapter 6. Quantitative indices are 

defined for more accurate evaluation of the proposed method in comparison with other 

methods. Ballistocardiogram artifact is one of the major artifacts of EEG recorded 

jointly with fMRI. This artifact is generated as the result of interactions between the 

patient’s body, inter-electrode loops, and the magnetic field inside the MR machine. 

Details of the proposed approaches for identifying periodic behaviour of the sources, 

deflating the extracted sources, and managing the heart rate variability are presented.

Finally, in Chapter 7 the work presented herein is summarized and some future 

research directions axe proposed.



Chapter 2 

EX TR A C TIN G  PERIO DIC  
SIGNALS

2.1 Overview

Blind source separation (BSS) is currently one of the most attractive areas of research in 

statistical signals processing and unsupervised machine learning due to its potential ap­

plications in various areas such as digital communications, biomedical signal processing, 

and financial time series analysis [62, 90]. The term ‘source separation’ refers to the fact 

that the objective is recovering unknown underlying sources which are mixed through an 

unknown environment from a set of existing observations. The main feature of BSS lies 

in the word ‘blind’ which means that the separation process is done without any training 

data. However, weak assumptions about the sources or the unknown environment are 

permitted in the BSS context.

One of these assumptions is statistical independence of the sources, which is the 

foundation for most of the BSS methods. The term for the operation of this family of 

algorithms is independent component analysis (ICA). The objective in ICA methods, as 

powerful statistical tools, is therefore to transform the data into a set of signals that are 

mutually statistically independent.

2.2 Blind source separation

The BSS problem is to recover the original vector of sources s (t) from a set of observations 

x(t). It is assumed that x(t) is a mixture of the underlying sources and the mixing
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medium is unknown. In general, blind source separation is formulated as follows.

Assume that the outputs of a MIMO (multi input, multi output) linear dynamical 

system are observed via n sensors:

x(t) =

Xi(t)

X2(t) 

xn (t)

(2 .2 .1)

The aim is to design a stable inverse system that can estimate the inputs to the MIMO 

system just based on the observations and a priori knowledge about the system. As it 

is shown in Fig. 2.1, m input signals

s (t) =

si (t) 
s 2{t)

(2 .2 .2)

are mixed in an unknown dynamic system, n sensors measure these mixtures, while 

additive noise is added to the measurements. The conventional method used in BSS is 

estimating the unknown mixing matrix by processing the outputs of the dynamical sys­

tem. In this case based on some assumptions that come from a priori knowledge about 

the system and using suitable algebraic or optimization methods, the source signals can 

be estimated implicitly. BSS is referred to as blind because recovery of the sources is car­

ried out without knowledge about the sources or characteristics of the mixing channels, 

except for some minor assumptions about the sources or the mixing system.

2.2.1 Instantaneous BSS

In many BSS problems, the sources are instantaneously mixed by a linear system of 

zero memory. In mathematical terms, it is assumed that m unknown source signals 

sq(k)} (q € {1, 2, ...m}) are mixed linearly to generate a set of n mixtures xp(k), (p €
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U n k n o w n

Noise + Interference
Estimated
Sources

M ix in g
sy s te m

Figure 2.1: General model illustrating blind source separation.

{1,2, ...n}). Usually it is assumed that n  ^  m. This can be written as

m

xp(k) = awS i +  np(^) (2.2.3)
9=1

or in the matrix form

x(A;) =  As (k) +  n (k) (2.2.4)

where n (k) =  [ni(fc), ri2 (k) , ..., nn(k)]T is a vector of additive noise, A is the unknown 

full column rank mixing matrix, and T  denotes the transpose of a matrix. In general, 

just the observations are available and the number of sources is unknown [27].

In this way, a typical BSS solution estimates a linear full rank separating (unmixing) 

matrix B such that the output signal vector s (k) =  [si(fc), S2 (k),..., sm(k)]T, defined by 

s(A;) =  Bx(fc) is an estimate of the input vector s(A;) [28].

2.2.2 C onvolutive BSS

In a broad category of BSS applications the mixing media are more complicated than 

instantaneous systems. If the mixtures are weighted and delayed, and each source con­

tributes to the mixtures with multiple weights and delays corresponding to multiple 

paths, then, the system is referred to as convolutive. Examples of such systems can be 

seen in acoustics, biomedical engineering, and telecommunications [84].
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In a convolutive model the following equation governs the relationship between the 

pth observation, the original source signals, and additive noise np(k):

m  T - 1

Xp(k ) = '5 2 '5 2 apqrSq(k - T) + np(k )’ (p =  1, 2, fl) (2.2.5)
g = l  T = 0

where r  represents the time delay corresponding to the path from the pth source to the 

qth sensor, and is the corresponding mixing matrix filter coefficient.

In practice, these coefficients may also change in time, but for simplicity the mixing 

model is often assumed stationary. In theory, the filters may be of infinite length, but 

in practice it is assumed that T  < oo. In matrix form, the convolutive model of (2.2.5) 

is written as T—1
x(*) =  £  Ar s (k -  r) +  n(k)  (2.2.6)

T = 0

where Ar is an n x m  matrix which contains the r th  filter coefficients. In the 2-domain 

the convolutive mixture of (2.2.6) can be written as:

X(z) = A(z)S(z) + N  (z) (2.2.7)

where A(z) is a matrix with an FIR polynomial in each entry [84].

2.2 .3  A nechoic B SS

In the third class of BSS applications the mixtures are delayed and weighted, however, 

unlike the convolutive BSS the weights do not change for different time delays. The 

mixing model of an anechoic system is formulated as follows:

m

Xp{h) =  ^   ̂CLpqSgjk “Tpq) T np(A:), {p = 2, ...,7l) (2.2.8)
9 = 1

Although some anechoic blind separation methods have been proposed [98, 109], 

instantaneous and convolutive source separation methods are the main trends within 

the BSS community. In theory, convolutive BSS algorithms should perform much better 

in an anechoic scenario.
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2.2 .4  Independent com ponent analysis

Independent Component Analysis (ICA) is the most widely used technique in BSS. The 

following assumptions are made to ensure that the sources can be estimated.

1. The components are assumed to be statistically independent.

This assumption is enough for the model to be estimated. In most of the ICA 

methods, nothing more than this assumption is needed. By definition, random variables, 

Vi, t*2, vn are said to be independent if no information about values of Vi can be 

extracted from the value of Vj where i ^  j .  Mathematically speaking, t>i, i>2, ..., vn are 

statistically independent if and only if their joint probability density function (pdf) is 

factorizable as

where p(vi,V2, ..., vn) and Pi(v{) denote the joint pdf of the random variables, and the 

marginal pdf of the random variable viy respectively.

2. The components must have non-Gaussian distributions.

In methods based on higher order statistics no more than one source can be Gaussian

while they are needed for estimating the mixing matrix and the source signals [62]. 

In some of the ICA methods the assumption of non-Gaussianity is replaced by some 

assumptions on time structure of the signals.

2.2.5 A m biguity o f th e  problem

In BSS it is not possible to uniquely estimate the source signals without some a pri­

ori knowledge. In other words, the source signals are estimated up to the following 

indeterminacies:

• The amplitude of the original sources can not be determined.

Since both A and s(k) are unknown, any scalar multiplier ap of source sp can be 

canceled by dividing the corresponding column ap by the same multiplier;

p(Vl tV2 , - , V n) =  Pi(l>l) X P2(u2) X ... X p„(vn) (2.2.9)

since the moments and cumulants of more than 2nd order are zero for Gaussian signals

(2 .2 .10)
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Therefore, to overcome this problem in ICA methods the variances of the source signals 

are assumed to be one, that is Vp E{s^}  =  1. It is notable that still there is an 

ambiguity in the sign of signals, i.e., a multiplier of -1 can be changed between a source 

and the corresponding column vector of the mixing matrix. Fortunately this is not so 

important, since in most of the real world applications the waveform contains most of 

the required information.

• The order of independent components can not be determined.

Again due to the lack of information about A and s, the order of the sources can 

be changed and so by changing the order of the corresponding column vector in the 

mixing matrix, no change will be observed in the sensor measurements. In other words, 

a permutation matrix and its inverse can be substituted in the mixing model to give 

x(fc) =  A P - 1Ps(A;). The elements of Ps(A;) are the reordered form of the original signals. 

The matrix A P -1 is a new unknown mixing matrix to be estimated [62].

These indeterminacies are usually expressed as scaling and permutation of estimated 

source signals which are not so important in most of the real world applications. In 

majority of signal processing applications, it is desirable to have only the waveforms of 

the original sources and useful information can be exploited form the waveforms. In 

these cases estimation of the exact amplitude, order of the signals, or even time delays 

are not very crucial [28]. It is also notable that there is no guarantee that the waveforms 

of estimations are exactly the same as the source signals. Those are just estimations of 

the source waveforms and thus their accuracy varies for different sources and different 

separation methods.

2.3 Protagonists in BSS

Several algorithms have been developed so fax in the BSS context each relying on dif­

ferent assumptions and exploit different characteristics of the signals. Here, we review 

Infomax (derived from information maximization), fast fixed-point algorithm for in­

dependent component analysis (known as FastICA), second order blind identification
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(SOBI), and joint approximate diagonaiization of eigen matrices (JADE). These meth­

ods are respectively based on maximization of the mutual information, maximization 

of the negentropy of every estimated signal, diagonaiization of a set of time delayed 

covariance matrices, and minimization of the sum of the squared cross-cumulants of the 

estimates. These methods will be used in the next subsections to evaluate the perfor­

mance of the proposed methods.

2.3.1 Infom ax

This algorithm maximizes the output entropy or information flow of a neural network 

with nonlinear outputs. Assume x is the input to the neural network and y is the output 

vector. The following equation describes the relation between the inputs and the outputs 

of neurons:

y» =  0»(wfx) + m (2.3.1)

where fa are some nonlinear scalar functions, w* are the weight vectors of the neurons, 

and n =  [ni,n2, ...nn]T is the additive Gaussian white noise vector. The entropy of the 

output is expressed by

H(y) = H{(j>i(w fx ) ,. . . ,  <t>n(w£x)) (2.3.2)

For a typical invertible transformation of the random vector x, y =  f(x), the rela­

tionship between the entropies of y and x  can be expressed as

H(y) = H(x)  +  £{log | det Jf(x)|} (2.3.3)

where «/f(.) is the Jacobian matrix of the function f(.) [62].

Using (2.3.3) and assuming that y =  f(x) =  [0 i(w ix ),. . . , 0n(wjx)] denotes the 

nonlinear function defined by the neural network, the transformation of the entropy in

(2.3.2) can be obtained as

H(  y) =  H(x) + E{  log | det ^ ( x ) | } (2.3.4)
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The second term in the right hand side of (2.3.4) can be easily derived and simplified 

as follows:

E {log | det ^ ( x ) | )  =  + lo& I det W | (2.3.5)
t

If the nonlinear functions fa are chosen as the culumative distribution functions corre­

sponding to the density p* of the zth source, i.e. fa =  pi, the output entropy is equal 

to the likelihood. In other words, Infomax is equivalent to maximum likelihood estima­

tion and therefore, all the methods used to maximize the likelihood can be used here to 

maximize the entropy of the neural network output.

Gradient, natural gradient, and fast fixed-point algorithms have been proposed to

find the maximum point of the likelihood function [62]. Here, we discuss the Bell- 

sejnowsky algorithm as the simplest algorithm obtained by gradient method [15].

Using the stochastic gradient of the log-likelihood expression in (2.3.5) the update 

relation of the neural network weight vector is as follows:

AW  a  [(W7) - 1 -  <p(y)xT] (2.3.6)

where <p(y) is a nonlinear function represented by a column vector whose i-th component

is

(2.3.7)
p{ y i )

The approximated probability density function (pdf) of the z-th source signal is 

shown by p(yi). In practice, <p(z/») =  —2tanh(z/j) and <p(z/i) =  tanh(z/j) — y* are used for 

super-Gaussian and sub-Gaussian signals, respectively.

2.3.2 FastIC A

This method is one of the well-known instantaneous ICA methods that maximizes the 

statistical independence of the estimated sources by maximizing the non-Gaussianity. 

FastICA is inspired from the central limit theorem which states that the distribution of 

sum of independent random variables tends to have Gaussian distribution [62]. Based on 

this theorem it is assumed that the distribution of the mixtures are closer to Gaussian
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distribution than that of the original sources. Therefore, statistical independence and 

non-Gaussianity are known to be equivalent in the context. However, this would result 

in the main limitation of the method which implies that at most one source can possess 

a Gaussian distribution.

Negentropy is a non-negative function which quantifies how much a random variable 

deviates from Gaussianity. This function can be formulated as [62]:

N(y) = H{xgausa) -  H(x)  (2.3.8)

where H(.) denotes the entropy of the enclosed term, and xgauss is a Gaussian random 

variable of the same variance as x. Due to properties of the entropy function it is 

concluded that negentropy is always non-negative. Due to the computational complexity 

of calculating negentropy, Hyvrinen et al. proposed to use the following approximation 

instead [62]:

tf(» )« [E { ff(y )} -£ { s( :r ,,)}]2 (2.3.9)

where v is a Gaussian variable of zero mean and unit variance and g(u) can be any non­

quadratic function. In particular, choosing a g that does not grow too fast can provide 

more robustness. The following choices of g have been approved to be very useful [62]:

gi(u) =  — logcosh(aiu) (2.3.10)
ai

9 2 (u) = — exp(—u2/2) (2.3.11)

where 1 < a\ < 2 is a suitable constant, often taken equal to one.

Differentiating (2.3.9) with respect to the separating vector w* corresponding to the 

zth source yields:

Vw i = aE{zg'(wJz)}  (2.3.12)

where a  =  E{g(wfz)}  — E{g(xv)} and z is the whitened mixtures. The following fixed 

point iteration is then suggested intuitively:

W i,t + 1  <—  E{zg'(wJkz)} (2.3.13)
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As the convergence of the fixed point iteration of (2.3.13) is not satisfactory, a La- 

grangian approach is employed in [62] to yield a convergent fixed point iteration as 

follows:

Wj <—  E{zg'(wjz)  -  E{g,,(w jz )w i} (2.3.14)

This method has been widely used in biomedical signal processing [57, 67, 102], which 

stems from the fact that most natural signals are non-Gaussian.

2.3.3 SO BI

If the underlying sources in an ICA problem are not random variables, i.e. they are time 

series with particular time structure, additional statistics can be used to improve the 

estimation of the model. As for example, the cross-covariance or cross-cumulant of the 

sources are used in some methods. In this case the non-Gaussianity assumption can be 

relaxed in some algorithms.

The covariance matrix of an observation vector at delay zero, i.e. Cq = E{x(t)x(t)T} 

does not contain enough parameters to allow estimation of the mixing matrix. That 

means simply trying to whiten the observation vector will not yield independent com­

ponents. This is why in the basic ICA methods one has to exploit the non-Gaussian 

structure of the components.

The key point here is that the time delayed covariance matrix C* = E{x(t)x(t  — r)T} 

can be used to obtain more information about the underlying sources. In the simplest 

case, as it is proposed in the algorithm for multiple unknown signals extraction (AMUSE) 

algorithm [97] only one time delay is used. It is assumed that z(i) is the zero-mean white 

version of the observation vector, x(t). In the next step, the eigenvalue decomposition 

of C ZT = \[C* -I- C f ]  for some r  is calculated. The rows of the separating matrix are 

given by the eigenvectors. A similar algorithm has been proposed by Molgedey et al. 

in [76]. Although these algorithms are very simple and fast, they only work when the 

eigenvectors of the matrix C* are all distinct, which is not always possible.

An extension of the AMUSE algorithm that reduces the dependency on the appro­

priate time delay and hence improves the performance is to consider the covariance 

matrices at several time delays. This method, called SOBI, simultaneously diagonalizes
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the covariance matrices calculated at different time delays [16]. Although practically it 

is not possible to perfectly diagonalize all the matrices, the objective is to minimize the 

value of the following cost function:

J ( W) = off(WC;WT) (2.3.15)
rG T

where T  is the set of chosen lags r  and off(.) is the sum of squared off diagonal elements. 

The idea is based on the Essential Uniqueness of Joint Diagonaiization theorem [16]:

Theorem 1. Let M. =  {Mi, ...,M/c} be a set of matrices where, for 1 < k < K,  matrix 

is in the form M # = UD^U^ with U a unitary matrix and D* =  diag[di(k) , ..., dn(k)] 

Any joint diagonalizer of A i is essentially equal to U if and only if

V I  < i / j < n  3k, 1 < k < K  dk{k) ±  dj(k). (2.3.16)

Therefore, instead of exactly diagonalizing a single covariance matrix, the approxi­

mate joint diagonaiization allows the information extracted from a set of covariance ma­

trices to be integrated in a single unitary matrix. Generalization of the Jacobi technique 

to the case of multiple matrices is straightforward as in [16]. This technique consists of 

computing the unitary diagonalizer as a product of Givens rotations calculated at each 

iteration of the algorithm.

2.3 .4  JA D E

The other approach in ICA consists of using higher order cumulant tensors. Tensors 

are generalization of the matrices and hence the cumulant tensors are generalization 

of the covariance matrices. An idea similar to whitening the data by using eigenvalue 

decomposition of the covariance matrices is used which results in another class of ICA 

methods [62].

The fourth order cumulant tensor (sometimes called cumulant tensor for simplicity)
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can be considered as a four dimensional matrix. The entries of the cumulant tensor 

are given by the fourth order cross cumulants of the data, i.e, cum(xi, X j , x k , %i), where 

1 < < n. The important property of fourth order statistics which is used in

ICA methods is that if the sources are independent, all the cumulants with at least two 

different indices are zero.

The cumulant tensor defines a linear transformation F  =  [fa] in the space o f n x n  

matrices. The i,jth. element of the matrix given by the transformation is defined as 

follows:

^  m ki cum(ij, Xj,xk, x t) (2.3.17)
kl

where m ki is the k,lth element of the matrix M  and cum() is the fourth-order cumulant 

tensor. An eigenmatrix of the cumulant tensor is, by definition, a matrix M  such that

F(M ) =  AM (2.3.18)

that is /ij(M ) = Amy, where A is a scalar eigenvalue. The transformation has n2 and 

rea* eigenvalues for complex and real variables respectively [23].

This concept is used in ICA context by assuming that z is the whitened data, i.e.

z =  VAs =  W Ts (2.3.19)

where W T is the whitened mixing matrix. If we assume that w m is the mth row of W , 

it can be proved that

/ij(w mw^) =  WmiWmj kurt(sm) (2.3.20)

where kurtQ refers to kurtosis. That means every matrix of the form M  =  wmw ^ is an 

eigenmatrix of the tensor and the corresponding eigenvalues are given by the kurtoses of 

the independent components. Moreover, it can be proven that all other eigenvalues of the 

tensor are zero. If the eigenmatrices of the cumulant tensor are known, the independent
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components can be identified easily. If the eigenvalues of the tensor, i.e. the kurtoses 

of the independent components, are distinct, every eigenmatrix will provide one of the 

columns of the whitened mixing matrix. However, in practice the eigenvalues may not 

be distinct and therefore, the eigenmatrices are the linear combinations of the matrices 

Wmw £.

Different methods have been proposed for eigenvalue decomposition of cumulant 

tensors, e.g., power methods. JADE is one of the well established methods to solve the 

problem of degenerate eigenvalues of the cumulant tensor. The eigenvalue decomposition 

can be viewed as diagonaiization, therefore, assuming that the ICA model holds the 

problem is approached by assuming that the matrix W  is the separating matrix. In this 

case, W  diagonalizes F(M), i.e, W F (M )W r  is diagonal for any M. This is because 

matrix F  is a linear combination of the eigenmatrix terms wmw^.

Thus, we have to choose a set of different matrices M* and diagonalize the matrices 

W F(M j)W T as much as possible. Obviously, because of sampling errors and uncertain­

ties in the model it is not possible to exactly diagonalize the set of matrices. The best 

choice of the matrices is the eigenmatrices of the tensor matrix of the whitened data. 

The first n significant eigenpairs are selected.

The diagonality of the matrices Q =  WF(M»)W T can be measured using the fol­

lowing cost function, which is equal to off(.) operator:

J i(W  ) =  £ < &  (2.3.21)
k^l

Extended Jacobi technique for simultaneous diagonaiization method [25] is used to 

jointly diagonalize the matrices W F(M j)W T [24].

Although JADE provides competitive performance for low dimensional data, it can 

not perform well for high dimensional spaces [62].
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2.4 Periodic com ponent analysis

Periodic component analysis method (7rCA), has been originally developed to enhance 

the periodic signature of the speaker’s pitch in speech processing applications. In this 

method, it is assumed that the speech source is periodic at some pitch period r  =  l//o  

where /o is the fundamental frequency [91]. A linear combination s(t) =  wx(t) = 

5^  WiXi(t) is sought such that the following cost function which is a measure of period­

icity has minimum value at some r:

■1” ' r ) - g ' l E J W <' )'’ (2“ >

This cost function measures the normalized prediction error. To compensate the 

phase changes across the channels Hilbert transform is applied to Xi(t) resulting in an 

analytic function Xi(t). The Fourier series of these signals are related by:

ak txxsfckt +  4>k) Xi(t) = ^ 2  a ke?{ukt+*k) (2.4.2)
k k

Substituting Xi(t) with Xi(t) in (2.4.1) and simplifying the relations the cost function 

generalizes in a straightforward way to:

,  ,  EijWiWiOiAT) ,n A „«(w,T) =  - = i -----— r—  (2.4.3)
E i j w> j bH

where * represents the complex conjugate of a variable, and A (r) =  [a,̂  (t-)] and 

B =  [&ij] are Hermitian matrices with complex elements

ao(r ) =  +  r )*j(* +  r ) -  xl(t)xj(t +  t ) -  x*i(t +  r)xj(t)]
t

and

b<i = 'E ,  **(*)*)(*)
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Using the Rayleigh-Ritz theorem of linear algebra the weight vector minimizing

(2.4.3) is given by the eigenvector corresponding to the smallest eigenvalue of the matrix 

B _1A (r). The pitch periods are estimated by first diagonalizing the matrices B _1A (r) 

on sliding windows of £* over a range of pitch periods r  G [rmtn, Tmax] where Tm in  and 

rmax are selected based on a priori knowledge. The pitch period is estimated by the 

value of r  that minimizes the cost function for each sliding window.

In [89] generalized eigenvalue decomposition (GEVD) is used to approach the sep­

aration of periodic sources in a different way. The problem of GEVD of a matrix pair 

(A,B) (for all n x n symmetric matrices A and B) consists of finding matrices U and 

D such that:

Ut AU = D and Ur BU = I  (2.4.4)

where D is the diagonal generalized eigenvalue matrix corresponding to the eigen­

vector matrix U. If A and B are symmetric and positive-definite matrices, eigenvalues 

of D are real and positive.

The problem of periodic component analysis is then restated by modifying the cost 

function (2.4.1) as:

• < - » -  - « ' - 5 § S £ i

where A x(r) =  Et{[x(t +  r) -  x(£)][x(£ +  r)  -  x(t)]T} =  2CX(0) — 2Cz(r) and Cx(r) is 

the covariance matrix of x(t) at time delay r.

The weight vector w minimizing (2.4.5) is given by the eigenvector corresponding 

to the smallest generalized eigenvalue of the pair (Ax(r), Cx(0)), or equivalently, the 

largest generalized eigenvalue of (Cz(r), C x(0)).

Using (2.4.4) and assuming D as the diagonal generalized eigenvalue matrix corre­

sponding to the eigenvector matrix U, with real eigenvalues sorted in descending order
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on its diagonal, the transformation Ur x(t) gives the most periodic components in de­

scending order of periodicity.

Fundam ental frequency estim ation

The simplest method to analyze periodicity, as done in [91], is to compute the auto­

correlation of the signal. For nonstationary signals such as speech the autocorrelation 

can be calculated over a sliding window. In this case the peaks in the autocorrelation 

function provide estimates of the fundamental frequency.

For those cases that there might be some variations in the periodicity of the signals, 

e.g., ECG recordings, a constant r  can not provide enough information about the peri­

odicity of the signal. In [89] a method is presented to utilize the time varying period of 

the ECG data. By detecting the R-peaks of the ECG, a linear phase <f)(t) ranging from 

—7r to 7r is assigned to each ECG sample, with the R-peak being fixed at 4>{t) =  0. The 

linear phase <f>{t) provides a means for phase-wrapping the RR-interval onto the [—7r, 7r] 

interval. Therefore, the ECG may be converted to a polar representation in which the 

ECG components in different beats, such as the P, Q, R, S, and T waves, are more or 

less phase-aligned with each other, especially over the QRS segment.

2.5 Blind source extraction using oblique projectors

In [99] and [100] blind source extraction (BSE) is performed using approximate joint 

diagonaiization (AJD). It is assumed that the sources are spatially uncorrelated and 

wide sense stationary. The time lagged autocorrelation matrix is defined as:

R  (rk) = E{x.(t)xT( t - r k)}, k = 1,2,..., K  (2.5.1)

where x(£) is the observation vector and K  is the index of maximum time lag.

We know that the vector xp(t) (for all 1 < p < n) is a linear combination of the
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columns of matrix A (the mixing matrix). Therefore, to extract the pth source one 

can project x(t) onto a subspace in Rn orthogonal to all columns of A except ap, i.e., 

{a i,..., ap_i, ap+i, ...,a„}. Suppose t =  ap and v is a vector orthogonal to the space 

spanned by columns of A excluding ap, i.e.

V-L{ai,..., 3p_i, ap_|_i,..., an}.

Using oblique projection notation [14] the following relation is obtained:

y(t) t =  Et|vj.x(*) (2.5.2)

where y(t) is an estimation of the source of interest, v1- is a subspace in Rn perpendicular 

to v and Et|vx = (tvT)/(vTt) is the oblique projector onto direction t along v-1. By 

omitting the scalar l/(v Tt) and dropping t from both sides of (2.5.2) we will have:

y(t) = vTx(t) (2.5.3)

In blind source extraction based on second order statistics, both vectors t and v are 

unknown and they both have to be estimated. The following criterion is exploited to 

find the unknown parameters:

[t, v, d] =  arg min J  (t, v, d) (2.5.4)
t ,v ,d

where the cost function *7(t,v, d), is defined as:

K

J { t ,  V, d) =  Y ,  l|R fa)v  -  4 t | |2 (2.5.5)
fc= l

and d =  [d\, d<2 , ..., dx]H is the vector of unknown scalars.

The cost function in (2.5.5) utilizes the fact that for blind source extraction R(rjt)v
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should be collinear with t incorporating the coefficients dk which provide t with proper 

scaling. It is clear that immediate global minimum point of the cost function (2.5.5) is t 

=  v =  d = 0. This solution has been avoided by imposing the condition ||t|| = ||d|| = 1.

Minimization of the cost function (2.5.5) with respect to v leads to the identification 

of vector v in equation (2.5.3) which can thereby be used to extract one of the sources.

The sequential approximate diagonalisation algorithm (SDA) proposed in [71], is 

used to optimize the cost function (2.5.5) by adjusting the parameters sequentially. 

After extracting one source a deflation process is carried out to remove the extracted 

source from the mixed signals [28]:

xi+i (t) = Z Tx(t), xi (t) = x(t) (2.5.6)

where x(£) is the original observation signal and

z  = l _ {257)
a v

and R»(0) = E{xi(t)x[(t)} , I is an n x n identity matrix, and o2 =  E{y2}. The

autocorrelation matrix has to be updated by the following relation:

Ri+i(0) =  Zr R»(0)Z (2.5.8)

This algorithm can extract the source signals one by one. While we are interested 

in extracting just a source of interest (Sol) this algorithm may not help unless some a 

priori information about Sol is known.

If the fundamental period of the Sol is, r  samples, then its autocorrelation matrix 

will have the same value at time lags corresponding to integer multiples of r.

Therefore, the autocorrelation matrices R ( t * )  = £ ,{x(t)xr (t — t * ) }  can be jointly 

diagonalized at time lags r , 2r, ..., K t along with the constraint d\ =  cfo =  ... =  d^.
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However, if the source of interest has a varying period this extraction algorithm will 

result in erroneous results [100].

2.6 Cyclostationary BSS

By definition, stationary signals represent physical phenomena that maintain a constant 

statistical behaviour in time. This type of signals are conceptually well established and 

plenty of techniques and tools are developed to process and analyze them.

However, this property is hardly met by some systems such as biomedical and me­

chanical systems which undergo a nonstationary operation. Even under constant condi­

tions, a succession of phenomena can happen within continuous cycles which causes the 

system to release energy on a rhythmic basis. Such phenomena typically produce tran­

sient signatures in the signals, which are likely to carry some critical information about 

the operating condition of the system. It is emphasized in [11] that nonstationarity is 

intimately related to the concept of information. As an example speech or music signals 

can carry information because they consist of nonstationary sequences.

In practice it is very difficult to trace the nonstationarities included in the signals 

acquired from real world applications. Therefore, it is usually assumed that the signals 

are stationary and the stationary signal processing methods are utilized to analyze and 

process them.

There are many processes in nature that originate from periodic phenomena. Al­

though these processes may not have periodic behaviour in time, give rise to random 

data whose statistical characteristics vary periodically with time and are called cyclosta­

tionary processes [43]. Most of the pioneer works on cyclostationary signals have been 

limited to communications research and applications in which the modulation of signals 

for transmission purposes results in cyclostationary behaviour. By further attempts such 

as in [11] and [40] the cyclostationary framework was generalized and it was shown that
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Figure 2.2: Addition and modulation of a sine wave with noise. Using Fourier transform one 
can identify the periodicity hidden in the signal with additive noise. This technique is not 
working for the modulated signal.

it is a powerful tool for analyzing any signal originated from phenomena with periodic 

statistical behaviour. Recently, different methods for cyclostationary signal processing 

have been developed and used commonly in different fields including telecommunications, 

radar and sonar applications, mechanics, econometrics and biological and atmospheric 

science [43].

It is shown in [38] that even successful BSS methods such as JADE [24] that axe 

derived on the assumption that the source signals are zero mean and statistically sta­

tionary, often do not provide good results when the sources are cyclostationary. The 

authors have shown that the estimator that is based on higher-order statistics generates 

biased estimates when the original data has a cyclostationarity property.

Different approaches for defining the concept of cyclostationarity are provided. In 

[11], a cyclostationary signal is defined to be the one that exhibits some hidden periodic­

ity in its energy flow. Periodic activity of some parts of the systems may cause periodic 

modulation of the other signals or noise in the system. As an example, a simple sine
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wave of x(t) =  sin(27r50t) is presented in Fig 2.2.(a). The time and frequency represen­

tations of x(t) with an additive random Gaussian noise are illustrated in Fig. 2.2.(b) and 

2.2.(c), respectively. Although, the periodicity of the signal is not recognizable from the 

time domain representation of the signal, applying Fourier transform can help to identify 

the periodicity of the signal as a high peak at 50 Hz in the spectrum of the signal. The 

signal in Fig 2.2.(b) is said to have first order hidden periodicity [40]. On the other 

hand, if the sine wave is amplitude modulated with the noise, the resulted signal will 

be different from the previous case. The time and frequency domain representations of 

the result are shown in Fig 2.2.(d) and 2.2.(e). In the case of modulated signal Fourier 

transform can not help in identifying the periodic structure of the underlying sources. 

Signal 2/2M has second order hidden periodicity [40].

Gardner has defined the cyclostationary signals in two ways [42]. Based on the 

first definition a signal is cyclostationary of order n in wide sense if and only if an nth 

order nonlinear transformations of the signal can be found which generate finite strength 

additive sine wave components. These components yield spectral lines, e.g. for n — 2 

the squared signal or the product of the signal with a delayed version of itself generates 

spectral lines. For stationary signals only one spectral line at frequency zero is generated.

The second definition in [42] is that a signal is cyclostationary of order n in wide sense 

if and only if the time fluctuations in n spectral bands with center frequencies that sum 

to certain discrete nonzero values are statistically dependent1. For stationary signals, 

only those bands whose centre frequencies sum to zero have statistical dependence.

It is shown in [42] that the two definitions are completely equivalent. For the simple 

case of n =  2 a signal x(t) is cyclostationary with cycle frequency (3 if and only if for 

some r  some of the delayed products of the form y(t) = x(t)x(t — r) show a spectral line 

at frequency (3 (For complex signals y(t) = x(t)*x(t — r) can be used). On the other 

hand, x(t) is cyclostationary if and only if the time fluctuations in at least some pairs of 

lrTo d e m o n s t r a te  d e p e n d e n c y  i t  is  e n o u g h  t o  s h o w  t h a t  th e ir  n t h  o r d e r  m o m e n t  is  n o n z e r o .
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spectral bands of x(t), whose two centre frequencies sum (or difference for the complex 

case) to /3, are correlated.

In this subsection we will first introduce cyclostationarity in mathematical terms 

and then different approaches that exploit this property to separate the sources will be 

reviewed.

2.6.1 C yclostationarity th eory

Let’s define a continuous time real valued stochastic process {x(t ,w),t G R,w € H} 

where Cl is the sample space. We just use abbreviated notation x(t) when it does not 

create ambiguity. The process x(t) is said to be Nth-order cyclostationary in the strict 

sense if its Nth-order distribution function

■^x(t+Ti)...x(t+r^_1)x(t)(^l» •••■> ^ N —  — P { x { t - \ ~ T \ )  ^  £1, . . .x ( t~ |-T /v _ i)  ^  £/V —1 1 x ( t )  ^  £ /v }

(2 .6 .1)

is periodic in t with some period To:

- ^ x ( £ + T i + 7 b ) . . . x ( t + T j v _ i + 7 b ) x ( t + 7 b ) ( £ l i  • • • »  f»N — 1  j  ^ A f )  T ^ c ( £ - |- T 1 ) . . . : r ( £ - ( - T7V _ 1 ) : r ( £ ) ( £ i ,  • • • >  £ i V — l i  £ n )

(2 .6 .2)

Vt € R,V(r1,.. . ,r w. 1) €

The mean of a process is defined by

/ +00
xf(x)dx  (2.6.3)

•OO
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where f (x )  is the probability density function of x(t). If the mean of x(t) varies with a 

period, say To, i.e.,

E{x(t + T0)} = E{x{t)} (2.6.4)

then, the process is referred to as first order cyclostationary in the wide sense. The

process x(t) is said to be second order cyclostationary in the wide sense if its mean

(2.6.3) and autocorrelation function

'R'xit, t ) = E{x(t)x( t  +  r)} (2.6.5)

are periodic with some period To:

E{x(t + T0)} = E{x{t)} (2.6.6)

7Zx(t +  T0, r )  =  7Zx(t, r) (2.6.7)

for all t and r  [43]. If we assume that the Fourier series expansion of 7Zx(t, r) converges 

to 7l x(t,r),  then, we can write:

+oo

U x(t ,T)  =  J 2  K ^ I b ( r ) e ’'2 ’r<" / T o ) ,> ( 2 .6 .8 )

n = —oc

where the Fourier coefficients are defined as:

, T o/ 2

n n/T 0 ( T ) A  y>  n x(t,r)e- j2^ n/To)tdt (2.6.9)
T ° n = % i 2

and j  = \ / —1.

The Fourier coefficients 72-"̂ T°(r) are called cyclic autocorrelation functions and the 

frequencies { n / T0} (for n G Z) are called cycle frequencies.

Let us consider this type of process in more detail. A function y(t) is said to be almost 

periodic if it is a limit of a uniformly convergent sequence of trigonometric polynomials
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in t :

y(*) =  I > e < 2'*  (2.6.10)
0&A

1 f T/2
yp -  Tlim T /  y(t)e j2n0tdt (2.6.11)

T —t o o  1  J _ T /  2

where A is a countable set and fis are incommensurate.

If the autocorrelation function 7Zx(t, r) is almost periodic in t (for each r) a more 

general class of stochastic processes is obtained. A process x(t) is said to be Nth order 

almost cyclostationary in the strict sense if its Nth  order distribution function (2.6.1) 

is almost periodic in time. Using properties of the autocorrelation function, if the au­

tocorrelation function of a stochastic process x(t) is an almost periodic function of t,

then, we call it almost cyclostationary in the wide sense. In this case IZx(t, r) is a limit

of convergent sequence of trigonometric polynomials in t :

K*(t, r)  =  X )  K { r ) e i 2 m  (2.6.12)
P&A

where
1 rT/2

7*£(t)4  Um -  /  n x(t, T )e -^ 0tdt (2.6.13)
T - k x 5 1  J _ T j  2

is the cyclic autocorrelation function at cycle frequency (3. It is shown in [40] that if x(t) 

is an almost cyclostationary process, then this process and its frequency-shifted version 

x(t)ei2ir/it are correlated for all (3 G A. Consequently if f3 is not in A, then x(t) and 

x(t)ej2n0t are not correlated and thus the cyclic autocorrelation function will be zero 

for such frequency (3. This property as will be seen in the rest of this document can 

be used for blindly separating and extracting almost cyclostationary signals which in 

this document are referred to as cyclostationary signals. In [43] it is shown that cyclic 

autocorrelation function at cycle frequency (3 (f3 G K) is:
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7ej(r ) 4  (x(t)x(t + r ) e ~ ^ >  (2.6.14)

where (.) is the time averaging operator. For the case of complex-valued processes, one 

may define the same model for cyclostationarity. If x(t) is a complex-valued process 

then, the cyclic autocorrelation function is defined as [43]:

ftf(r)  £  (x(t)x*(< +  T)e~j2*P‘). (2.6.15)

F inding hidden periodicities

The periodic behaviour of some periodic signals can be identified simply by inspecting 

the temporal waveform. However, this is not the case for all the signals, specially if the 

signal is mainly random in nature whereby even conventional spectral analysis may not 

help. One solution is to investigate how the signal energy is propagating with time.

Let xAf ( t , f )  be the filtered version of the signal x(t) through a frequency band of 

width A/  centred at frequency /. The average energy in this frequency band is

P,V,  A / ) = Tlim i  f  |xA/(i, / ) \2dt (2.6.16)
J  T

For a random signal with no pure component at frequency /  the value of energy 

tends to zero as the bandwidth A/  of the filter tends to zero. A density of energy flow 

per frequency can be measured, however, by taking the limit of the ratio Px( f , A /) /A /:

P*{f)  =  $ 3 b  Pt(A/A /) =  iH o r 1™ f h  I  |XA' (t’ ^  (2'617)

Px(f)  is called power spectral density (PSD) and is a measure of how the energy of 

the signals is distributed in the frequency domain.

The PSD of a random signal which does not contain any periodic waveform will
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Figure 2.3: Interpretation of the power spectral density as the averaged power measured at 
the output of a filter bank; taken from [11].

be a (piecewise) continuous function of frequency. On the other hand, presence of a

pure periodic component of amplitude a and frequency /  will produce a peak at that
2

frequency with magnitude limA/->o Therefore, a common practice to investigate 

whether a signal of interest contains periodic components at a typical frequency /  is 

checking for the presence of peaks in the PSD of the signal.

This concept is illustrated in Fig 2.3.

Cyclic correlation m atrix

In BSS problems we often have a number of sources that are mixed thorough an un­

known medium. Therefore, the aim is estimation of the unmixing matrix and the original 

sources. In cyclostationary blind source separation, we model the sources as cyclosta­

tionary stochastic processes and thus we can use the properties of cyclic correlation 

functions. Suppose we have a vector x(t) that is defined in Rn. We define Cyclic cross­

correlation function of signals xp(t) and xq(t) at frequency (3 to be:

1 T~1
r« ( x > T ) =  (Xp(t)xl(t +  T)e>pt) = l̂irn  ̂-  ^  xp(4K (<  +  T)ei<S‘ (2.6.18)

~ K5°  t = 0

If p =  q and (3 is the cycle frequency of source xp, r^ (x , r) is referred to as cyclic 

autocorrelation and is denoted by pp(x ,r). If x(t) =  [xi(t),X2 (t), ...,xn(t)]T is a vector
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of n independent signals, cyclic cross-correlation function has the following properties: 

(x >r ) =  +  T ) e ^ )  = 0 , if p ±  q (2.6.19)

r) = {xp(t)x*p(t -I- T)e?09t) = 0, if 0P ±  (3q (2.6.20)

^ ( x ,0 )  =  Pp(x, 0) =  (xpWxffle***)  ^  0, V p (2 .6 .21)

Accordingly, cyclic correlation matrix of the n x l  complex signal vector x(£) is defined

as:

(2 .6 .22)

where superscript H denotes complex conjugate transpose of a matrix. For the sake of 

simplicity, the time index t is ignored when appropriate and R fp(r) is used instead. This 

matrix is used widely in cyclostationary BSS. If we assume that pp(x, 0) =  1, based on 

the properties (2.6.19)-(2.6.21), it is clear that cyclic correlation matrix of n independent 

sources s (t), satisfies the following relation [64]:

R ?(o ) =  K (2.6.23)

where
1 if l €  { l ,2, . . . ,m},g = I = p 

0 otherwise
(2.6.24)

2.6.2 A  review  o f cyclostationary BSS m ethod s

Different methods have been proposed for separating (or extracting) cyclostationary 

sources from multi channel data. In most of them it is assumed that the cycle frequencies



37 EXTRACTING PERIODIC SIGNALS

axe known a priori. In this section some of the most well-known cyclostationary BSS 

methods are reviewed.

Natural gradient algorithm

Based on the concept of blind source separation which is a two-stage process, including 

prewhitening and rotation, a cyclostationary natural gradient algorithm is constructed 

in [64]. It is assumed that x(A;) = As(A;) -f n (k) is the observation vector and y (k) = 

W ^x(fc) is the output vector, where is the estimation of the mixing matrix at

A;th iteration. Considering the cyclic frequency of all the sources a new cyclic correlation 

matrix function is defined as:

R?(M) = E{ s(k)sH(k)ePh t ) + ... +  (sH(k)s(k)e?M )
m

(2.6.25)
i = l
m

i=l

where I( is defined as (2.6.24) and Im is the m-dimensional identity matrix. The mixture 

and output cyclic correlation matrices at time k and delay r  =  0 are

Rf'(M ) =  E{x(k)xH(k)e3l,"k} (2.6.26)

R£>(M) =  E{y(k )yH{k)e>^k) (2.6.27)

We can rewrite (2.6.26) and (2.6.27) as:

R ^ ( M )  =  AE{s(k)sH(k)e>e-k} A H 

= ARf>-(M )A"
(2.6.28)
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RjWjfe,0) =  W (fc)£{x(A;)x*(fc)e^fc)W (fc)H
(2.6.29)

=  W (fc)R fp(M )W (fc)H 

The main idea behind the natural gradient cyclostationary blind source separation 

method is to decorrelate the estimated sources in the cyclostationary sense. To follow 

the original approach of natural gradient algorithm it is assumed that all the source 

signals and the mixing matrix have real values [64]. Let

m m

0) =  E  E{y{k)yH( k ) ^ k} =  £  Rp>(k, 0) (2.6.30)
P =  1 p =  1

Then, in the limit, as k —> oo, each of the output cyclic correlation matrices Ryp(/c, 0) 

converges to a matrix with only one non-zero entry placed at the pth position along 

the main diagonal. Consequently, the sum of all correlation matrices converges to the 

identity matrix:
^ 0

K -*oo
lim Rj,(fc,0) =  Im (2.6.31)

Using (2.6.31), we can rewrite (2.6.29) as:

m

R^(fc,0) =  ] T w < t >R«-(fc,0)wWT
P=1

=  w<fc) R *’ (fc> °) j  W(t)T (2.6.32)

= W w R.f’’(fc,0)W(,!)''

Therefore, the following cost function is defined that represents the sum of Kullback- 

Leibler divergence between the output joint probability density function and the product
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of the marginal probability distribution functions, and the distance between the two nor-
~ ftmal distributions with covariance matrices R y and Im:

KC(W<*>) =  -  logdet(W (‘)) log<?„(%(*:))
p=i (2.6.33)

+ i r r ( R > ,  0)) -  \  logdet(R^(fc, 0)) -  j

where qp is the true or estimated probability distribution function of source sp(t) and is 

used as a reference. Applying the stochastic gradient descent, the gradient of (2.6.33) 

is:

3W W (2.6.34)

+  W (,!)Rf(A:,0) -  (W ( t r ‘)r

where f(y(/c)) is an odd nonlinear function of the output vector y(t) [9]. In order to 

obtain natural gradient of the cost function (2.6.34) is post-multiplied by W ^ TW ^ , 

which results is:

=  [f(y(fc))yT(A:) - 1 +  Ry(fc, 0) - 1] W (t> (2.6.35)

Thus, the update equation can be expressed by:

w<*+1) = w (lt) -
aw<*) (2.6.36)

=  W<*> +  p, [i -  i(y(k))yT(k) + 1 -  R (̂jfc, 0)] W**'

where p  is the step size parameter. In [64] (2.6.36) is compared with Natural Gradient 

update equation

W (l!+1) =  W (*> +  IX [I -  f(y(fc))yT(A:)] W (t). (2.6.37)

Equation (2.6.36) contains second and higher order conventional deconvolution terms as
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in (2.6.37) plus second order cyclic deconvolution terms.

The output cyclic correlation matrices Hyp(k, 0) , p € {1,2,..., m} are estimated at 

each iteration using an exponentially weighted average of the instantaneous statistics

R * (*  +  1,0) =  (1 -  A)R* (* ,0 ) +  X[y(k)yH( k ) e ^ k) (2.6.38)

where A is the Lagrangian multiplier.

BSS using cyclostationary statistics

In [1] it is assumed that m sources impinge on an array of n sensors, where n > m  as 

the general formulation of BSS:

x(t) = y (£) +  n (t) = A s  (t) + n(t) (2.6.39)

As it is mentioned in (2.6.19)-(2.6.21) a vector of zero mean mutually independent

cyclostationary sources s(t) =  [s\(t), ...,sm(t)]T, satisfies the following conditions:

(s>r ) =  (5p(*K(* +  T) ^ vt) = 0, i fP  /  Q (2.6.40)

r ) =  <sp(*K(* +  T ) ^ Pqt) = 0. i/Pp ^  Pq (2.6.41)

r^ ( s>T) =  Pp(s, r) =  (sp( t ) s ; ( t ) ^ pt) > 0, Vp (2.6.42)

The additive noise vector n(t) is modeled as a stationary random process, so that

{np(t)n*(t +  r)e?Ppt) = 0, Vp, r  (2.6.43)

The output cyclic correlation matrix is defined to be

R » > ( r ) A ( x ( t ) x w ( t  +  T ) e * * , ) =  Y . ( 2 . 6 . 4 4 )

i.Q\Pq=Pp}
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where the sum is defined over all sources with frequency /3p. If all the sources have 

distinct cycle frequencies the output cyclic correlation matrix will be:

R * (r)  =  pp(s ,r)a paJr (2.6.45)

The indeterminacy in estimating the separating matrix is used to assume that the source 

signals have unit-norm zero-lag cyclic autocorrelation coefficients:

pP(s,0) =  (Sp( t ) s ; ( t ) ^ )  = 1 (2.6.46)

In [1] the necessary and sufficient conditions for cyclostationary BSS have been defined 

using only cyclic correlation matrices. If there exist multiple sources with a common 

cycle frequency, separation is possible if the following condition is met [1].

Identifiability condition: For any K  > 0 blind source separation can be achieved 

using the output cyclic correlation matrices {Rfp(r)|p  =  l ,. . . ,m ;r  £ {0,Tj, r*.}} if 

and only if there do not exist any two distinct source signals sp(t) and sq(t) whose cycle 

frequencies are the same (/3P = /3q) and whose cyclic autocorrelation vectors pp(s) and 

p9(s) are linearly dependent, where p t{ s) =  [pj(s, 0), p/(s, r x), . . . , P / ( s , t k - ) ] ,  1 <1 < m .

Based on the identifiability condition the following theorems are presented that dis­

cuss the necessary and sufficient conditions for separability of a vector of observations

W-

Theorem 2. Assume that the cycle frequencies of the source signals are distinct. For

any matrix B, define z(t) to be the m x 1 vector given by z (t) = Bx(£). Then, B is a

separating matrix if and only if

r^ (z ,0 )  =  0 and r^ (z , 0) =  1 Vp, q 1 < p ^  q < m. (2.6.47)

Proof. Define C =  BA =  [cpq]i<p,q<m so that z(£) =  Cs(£) -I- Bn(£). From the mutual



42 EXTRACTING  PERIODIC SIGNALS

independence of the sources and the stationarity of the noise vector n(t) we can conclude
ftthat rpq(z,r) =  cppĉ ppp(s, r). B is a separating matrix if and only if C is a unitary 

diagonal matrix, thus it is sufficient to show that (2.6.47) is equivalent to C being unitary 

and diagonal. This readily follows from the fact that pp{s, 0) =  1 for all p. In particular, 

if C is unitary and diagonal, then CppC*p =  0 for all p ^  q, and CppĈ  =  |cpp|2 =  1 if 

p = q. This implies (2.6.47).

Conversely, if (2.6.47) is true, then |cpp|2 =  1 and CppC*p = 0 for all p ±  q. This means 

that C is unitary and diagonal. □

In Theorem 2 only cyclic correlation functions with r  =  0 were considered. Theorem 

3 as follows is a generalization of Theorem 2:

Theorem 3. Assume that the identifiability condition is satisfied, that is if /3P = (3q then, 

pp and pq are linearly independent. Then, B is a separating matrix if and only if

(z >k) =  0 and rw(z > °) =  1 9 1 5~ P ^  <7 ™ and
(2.6.48)

A; € {0;7i,..., tk}

Proof. The proof is extension of proof of Theorem 2. Recall that C = B A . Write it as 

C =  [ci,...,cm] where c/ is the Zth column of C. Consider an arbitrary source p and 

let pi, ...,pi be all the sources (including p) with the same cycle frequency as source p. 

Define sp{t) = [sPl(t), ...sP/(t)]T as the corresponding column vectors of C i.e., 

Cp =: [spi, , ...sp/] , and

Sp(r ) =  (s„(t)s"(t +  r  )eJ/,pt) =  diag(ppi ( r ) , ..., pp,(r))

R f”(r) =  (z(t)z"(t +  =  CpSp(r)C "

where the last equality comes from (2.6.44). Applying matrix notations to (2.6.48)
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it leads to

^ R f - (O )  =  C C " = I.
Pp

That means C is unitary (and thus, in particular, Cp is full column rank), and 

Rf'(fc) =  C pSp(k)C"  is diagonal for k =  Tj, ..., tk-  We can then conclude that Cp = 

PA, where P  is a permutation matrix and A = [Aj, 0t ]t , where Ap is an I  x I  unitary 

diagonal matrix by using Theorem 2 of [16]. □

Based on these theorems two algorithms have been developed in [1]. Since Theorem 

2 is just an special case of Theorem 3, its implementation is an special case of that of 

Theorem 3 and therefore, only the general case is discussed here. The following cost 

function is defined based on the concepts of Theorem 3:

G(z)- iz  [lrM(Z.fc) + rw(Z’fc)|2 + lrM(Z’fc)_rw(Z’fc)|2)
( 2 g 4 9 )

+ f X ' ( z ,0 ) - l |2
P= 1

where r0 =  0. According to the separation criterion of Theorem 3 it is clear that

G(z(t)) = 0 => B is a separating matrix (2.6.50)

where z(t) = Bx(£). The solution is an iterative algorithm based on natural gradient 

algorithm [8], [10].

In each iteration z, the un-mixing matrix B and the estimations z(t) are obtained by 

the following equations:

Bfi+O =  (I +  e(i))B (0 (2.6.51)
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z <i+1>(4) =  (I +  £<‘>^<‘>(4) (2.6.52)

where the matrix = [f&jjiSMSm is obtained from a local linearization of G(Bx(t)) 

calculated as follows.
o(»)

At the zth iteration, Tpq (z, r) is approximated by:

T —k

k) «  ^  +  k ) ^ pt (2'6'53)
t=l

where T is the number of observations. If flp =  (3q, using (2.6.52) it can be concluded 

that

r $ +,’(z, k) A { z ^ ( t ) z ^ +»'(t  + jfcje#**)

= I  fzp’ft)+53 £S4°(o) • +k~> + Yl z<i'}‘ +k^ jel0pt̂

If we assume that B* is close to a separating matrix, then the following terms are 

negligible: |e^ | <C 1, (* +  k)ej^pt}\ <  1 for I ±  p, and \(z^\t)zq1̂ (t +

k)e?Ppt) | C  1 for h /  q. A first-order approximation of Tpq (z, A;) is thus given by

rw fl)(z’k) w rm *(z’*) +  *0 +  c&)rw }(z> k ) (2.6.54)

When €$ is chosen to be the solution of the following least squares (LS) mini­

mization problem obtained by substituting (2.6.54) into (2.6.49)

min [ r f  (z), r ^ J E f  (z) +  ( i ( r f ( z )  +  r f  (z)), ^ ( r # ’(«) -  r f  (z))]



45 EXTRACTING PERIODIC SIGNALS

where

E (,) =pq
«(<£>)

*(48)
^ ( cw)

‘̂ ( €9p)

pq

(2.6.55)

(2.6.56)

here $ft(x) and $t(x) denote the real and imaginary parts of the complex scalar x. Solving 

the least square minimization problem for e, we obtain:

(4>T(z) + r$”(z))> ̂ (4$%) -  r$”(z))
-1

=  ( [ r f  ( z ) 4 % ) ] « [ r f  ( z ) , r £ ] ) “ [rj4“( » ) , i f  (.)]*  

^ ( ^ ’(z) +  r$”(z)), ^ (r $ ° (z )  -  r$”(z))

(2.6.57)

where jj denotes pseudo-inverse of a matrix. For diagonal elements, i.e. when p = q 

(2.6.57) is simplified to:
,(<)

*) _  1 ~  rpp (z> Q)c(
pp ?(o (2.6.58)

2 (z, 0)

The iterative algorithm for Theorem 2 is similar to the above algorithm with the sim­

plification that the off-diagonal elements are calculated by:

r(0 -  _pq
r qp (z > 0)

qq (z>0)
(2.6.59)

Sequential BSS for periodic sources

In a separate work, the separation is performed by sequentially converging to a solution 

which diagonalizes the output covariance matrix constructed at a lag corresponding to 

the smallest fundamental period [65]. It is assumed that m zero mean periodic sources 

s(k), are mixed and their instantaneous mixtures x(t) = As(t)  are measured. The pth
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original source is temporally periodic in time with fundamental period Tp

Sp(^) — sp(k “I- fiTp) (2.6.60)

and it is assumed that Tp is the smallest period such that Tp < Tqt € {1,2, ...,p — 

l ,p  +  1, ...,m}.

The following theorem is proved in [65] which deals with the distinction between the 

eigenvalues of covariance matrix and will be used in the identification criterion.

Theorem 4. The eigenvalues of the source covariance matrix R S(TP) are nonzero and 

distinct, provided the following:

1) there exist m unit variance, discrete-time source signals with distinct periods;

Identification criterion: Suppose decorrelation of observation signals is carried 

out at t =  Tp , an instantaneous output covariance matrix can be formed from:

where A a{Tp) =  R S(TP), P (k) = W ^ A  and y (k) =  W ^x(fc). Let R p(Tp) denote the

2) Psq(T p) ^  0, Vg € { l ,2 , . . . ,p — l , p +  l , . . . ,m }

3) Psq(Tp) ^  pSl(Tp), Vg,Z € { l , 2 , . . . , p -  l , p +  1,

where R s(r) =  (s(k)sT(k +  Tp)) and pSi(r ) = (Si(k)si(k + r)).

Ry(k,Tp) = P (k )A s(Tp)PT(k +  Tp) (2.6.61)

output covariance matrix at convergence of a sequential algorithm, that is

Jim Ry(k ,Tp) = Rl(Tp) (2.6.62)

By definition, the whitening operation implies that

R l(Tp) = P°A s(Tp)P°t  =  D(T„) (2.6.63)
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where D (Tp) is a diagonal matrix and, since the system (2.6.63) is in steady-state, 

P° =  lim (P(k)). The columns of P° are the eigenvectors of H°(TP). This leads to the
k —too

following theorem:

Theorem 5. Provided that Theorem 4 holds, the eigenvalues of H°(TP) are distinct and 

nonzero.

Proof. Pre- and post-multiplying (2.6.63) by P oT and P° respectively, we have

P oTR°(Tp)P° =  P oTP°As(Tp)P oTP° =  AS(TP) (2.6.64)

where A3(TP) is the diagonal matrix of eigenvalues of R a(Tp). Clearly, from (2.6.64), it 

also contains the eigenvalues of R°(TP), and therefore, provided that Theorem 4 holds, 

its diagonal entries are distinct and nonzero. □

In the next theorem it is shown that whitening the output covariance matrix at a 

lag t = TP, simultaneously whitens all the covariance matrices at r  =  nTp.

Theorem 6. Diagonalization of R y(Tp) effectively amounts to simultaneously diagonal- 

ising the covariance matrix at every delay r  = Tp,n e Z

Proof of this theorem can be found in [65]. This theorem indicates that a separating 

matrix W ° exists that diagonalizes all the matrices R°(nTp), if its eigenvalues are distinct 

and so it results in blind separation of periodic sources.

Minimizing the following information theoretic cost function is the main idea used 

in a sequential algorithm for separation of periodic signals:

1 1 m J(W<*>) =  - -  log(det(W<i)W (l') )) +  -  y;<|2/i(% *(fc +  t ) \ )  (2.6.65)
i=l

Role of the first term in the right-hand side of (2.6.65) is to avoid a zero solution for 

W ^ .  The second term is used to ensure that at the chosen lag r  the output signals 

have minimum sum absolute auto-correlation values. Differentiating (2.6.65) results in
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the following gradient function:

V J {  W w ) =  -  

thus the following learning rule is provided:

W w . (2.6.66)

w (*+i) =  W<*> + T) I h R “ (k,Tp) + Ry(k,Tp)) W (fc). (2.6.67)

Convolutive cyclostationary BSS

As explained before, in many real world applications such as those in biomedical engi­

neering, telecommunications, speech processing, econometrics, and atmospheric science, 

the sources are not mixed instantaneously [84]. In these applications the observations 

are mixed convolutively and conventional blind source separation methods can no longer 

be applied to separate the underlying sources.

As convolutive BSS is not the main concern of this thesis, only two methods are 

reviewed here briefly. In the first selected research work, ICA is used to separate heart 

and lung sound signals [87] and in the second one a method for extracting cyclostationary 

sources from convolutive mixtures is proposed [105].

In [87] heart and lung sounds separation is performed using ICA. It is assumed 

that the observations are convolutive mixtures of the source signals. Therefore, Xp{t) is 

expressed as:
m m

xp(t) =  "y > 0  JapqiT)sq{t ~  r )) =  y  y apg{t) * sq{t) (2.6.68)
9 = 1  r  9 = 1

where * denotes convolution and represents the transfer function of the transmission 

path from source q to the sensor p. For simplicity it is assumed that the number of 

sensors is the same as the number of sources, i.e., m — n. The convolutive model of
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(2.6.68) can be written in the matrix form as follows

x(t) =  A(t) 0  s(t) (2.6.69)

where

A (t) =

an (t) au (t) ••• aln(t)

a2i(t) a22 (t) ••• a2n(t)

® n l ( 0  ®n,2 ( 0  ' ' ’ ® n,n(^)

and 0  represents matrix convolution.

Equation (2.6.69) is then represented in time-ffequency domain using short time 

Fourier transform (STFT) as

X ( lj, ta) = A(uj)S(lj, ts), t8 = 0, AT, 2A T ,... (2.6.70)

where A(uj) is the Fourier transform of A (£), S(oj, ts) is the STFT of the source signals 

and AT represents shifting time. Short time Fourier transform of a signals is commonly 

called the spectrogram of the signal. Now the mixing model is changed such that the 

mixing matrix is simply multiplied to the source matrix. Thus, one of the conventional 

source separation methods can be used. In [87] JADE is used. The separation method 

is run for different frequencies and so different components of the sources in different 

frequencies are separated.

Permutation problem is solved using the fact that the components of a nonstationary 

signal at different frequencies are correlated [77]. Combining proper independent compo­

nents for each frequency band, the spectrograms of the estimated signals are produced. 

Using the Inverse Short Time Frequency Transform (ISTFT) the separated signals are
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transformed to time domain to reconstruct the original sources of interest.

Recently a work has been reported in [105] that uses cyclo-stationarity of the source 

signals and extends the natural gradient method used in [64] to separate convolutive 

mixtures of cyclo-stationary signals. It is assumed that the sources and observations are 

related through the following equation:

x(lfc) -  H(z)s(k) +  v(fc) (2.6.71)

where H (z) is the z-transform of the mixing matrix with entries Hpq(z) = ^pqiz ~x,

P is the filter length, and z~l is the time shift operator, i.e., z~lsq(k) = sq(k — 1).

It is assumed that y (k) is the source estimation, thus

y (k) = W(z ,k)x(k)
(2.6.72)

= W (z,*)H (2)s(fc) =  C(z,k)s(k)

where entries of y(k) are yp{k) = Y^=\Wpq(z,k)xq(k) and W (z,k) is the unmixing 

matrix with entries Wpq(z,k) = wpqi(k)z~\  where L is the filter length. It is

assumed that H(z) and W (z,k)  are both stable with no zero eigenvalues on the unit 

circle \z\ =  1

The goal is to adjust Wpq(z, k) such that lim C(z, k) = PAD(z) where P  is a
k —too

permutation matrix, A is a non-singular diagonal scaling matrix, D (z) is a diagonal 

matrix whose ppth entry is JZtCpiZ~l, Cpi is a complex scalar weighting, and i is an 

integer delay value. It is also assumed that the source signals are cyclostationary and 

satisfy (2.6.23).

Prom algebraic point of view, convolutive and instantaneous BSS have equivalent 

mathematical models except for description of the mixing media.

To simplify the complexity of convolutive BSS, Z-transform is used. Similar to [64],
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the following cost function for convolutive mixtures of cyclostationary sources is defined:

m 1 r
J (V f (z ,k ) )  = -  y^log(p,(^(A:)) -  —  f  log | det W (2, k)\z~1dz

t i  2w] 1 (2.6.73)

+ i  {7Y (r£(M )) -  logdet(R.£(M)) -  N }

where R y(k, 0) is defined as in (2.6.25). The minimum point of (2.6.73) is estimated using 

natural gradient algorithm following the same approach of [64], which was discussed 

before.

2.7 Concluding remarks

The main focus of this chapter was blind source separation/extraction of sources with 

periodic structure. General framework for BSS problem and mathematical formulation 

were described. Based on the characteristics of the mixing media different models for the 

system and mixtures can be generated and therefore, different approaches for separation 

the sources of interest have been developed. Theoretical details of four well-established 

instantaneous separation methods were reviewed and 7rCA as one of the ICA methods 

for separating periodic sources was described.

A review of cyclostationarity as a concept for analyzing the signals with hidden 

periodicity was provided. This concept has attracted researchers from different areas 

and powerful techniques have been developed for processing and analyzing this type of 

signals. Recent research works on blind separation and extraction of cyclostationary 

sources were described as well.

In the next chapters periodicity of the sources will be exploited to develop suitable 

separation methods and the results will be compared with those of benchmark methods, 

when applicable.



Chapter 3

A FAST BLIND SEPARATION  
M ETHOD FOR PERIODIC  
SOURCES

3.1 Overview

In this chapter a fast algorithm for blind identification of periodic sources is presented. In 

the well-known SOBI method, the information is extracted from instantaneous mixtures 

by simultaneously diagonalizing several time-delayed covariance matrices, however, the 

delays are chosen arbitrarily. This imposes computational cost which is linearly related 

to the number of covariance matrices. Statistical characteristics of periodic sources are 

exploited in the new algorithm to develop a method to effectively choose the appropriate 

delays in which the diagonalization should happen. Detailed theory together with the 

corresponding algorithm will be presented. Software simulations verify the superior 

performance of the algorithm in the face of different noise and frequency variation levels 

over alternative methods.

The outline of the chapter is as follows. Next section covers the related work. Prob­

lem formulation is detailed in section 3.3. The proposed algorithm and the simulated 

experiments are presented in sections 3.4 and 3.5, respectively. Section 3.6 contains 

concluding remarks.
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3.2 R elated works

Knowledge about periodicity of the signals has been exploited by researchers in differ­

ent science and engineering fields to separate the sources that originate from periodic 

phenomena. In [89] and [91] a method based on GEVD is used to diagonalize the covari­

ance matrices of the observation vector at zero lag and a lag equal to the period of the 

source of interest. The method called periodic component analysis (7rCA) maximizes a 

cost function which is a measure of periodicity of the estimated source. In the case of 

varying periods, the observations have to be adjusted to have exact periods [89]. The 

performance of this method depends on proper detection of the cycles of the periodic 

source signal(s). More details about the 7rCA method are provided in section 2.4.

Second order statistics are widely used in source separation context. Using the 

concept developed in Essential uniqueness theorem in [16], an average eigen structure 

of the data is obtained by simultaneous diagonalization of a set of covariance matrices 

each calculated at a different delay of the pre-whitened data. It has been shown that the 

sources can be estimated using the joint diagonalizer of the covariance matrices [16, 25]. 

This method is called second order blind identification (see section 2.3.3). Whitening 

a nonzero delay covariance matrix is suggested in [26] to reduce white noise effects in 

the non-stationary data. In order to reduce the effects of spatially colored noise on 

the separation performance, the whitening is performed on a positive definite matrix 

in [17]. This matrix is a linear combination of covariance matrices at different delays. 

To minimize the effects of spatially colored noise on separation performance, a bank of 

subband filters is proposed in [47]. The method is based on reducing the covariance 

matrix of noise subband from the covariance matrix of the observations.

Despite the good performance of the methods in [16, 17, 26, 47], there is no guideline 

regarding the selection of appropriate delays in order to achieve the best performance 

and the least computational cost in separation. Moreover, it is not known how many 

delayed covariance matrices are required such that the condition of essential uniqueness
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theorem [16] is met. In the implementation of the algorithm provided by the authors, 

the first min( 100, N/S) delayed covariance matrices are used as default, where N  is 

the total number of samples. Using this number of covariance matrices leads to an 

acceptable average eigenvalue decomposition. However, the computational cost of jointly 

diagonalizing c matrices is proportional to c [16, 66] and therefore, if one can reduce the 

number of covariance matrices the separation algorithm will converge faster.

Under the periodicity assumption of the sources, a method for selecting appropriate 

delays is presented in this chapter. It is shown that for p periodic signals of different 

periodicities using just p delayed covariance matrices is enough to obtain a high quality 

estimation. This method is also robust to noise and performs well in those cases where 

the main frequency of the sources vary with time.

3.3 Problem  formulation

As in general instantaneous BSS problem assume m unknown mutually statistically 

independent sources are mixed through an unknown medium and measured at n (n > m) 

sensors (see section 2.2). Also, let the mixing medium be modeled by matrix A. Such a 

system, therefore, can be formulated in a vector form as

x(t) =  As (t) +  n (t) — y(t) +  n(t) (3.3.1)

where s(t) =  [«i(£)...sm(£)]r  is an m x 1 source vector, n(t) = [ni (£)...nn(f)]T is an 

n x 1 stationary zero mean white noise vector independent of the source signals, x(t) =  

[xi(t)...xn(t)]T is an n x 1 measurement vector, and A is an n x m  unknown full column 

rank mixing matrix. The additive noise is stationary, temporally white, zero mean 

random process, and independent of the source signals.

Here, it is assumed that the source signals are periodic with distinct fundamental 

frequencies. Furthermore, to simplify the notation and with no loss of generality we
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assume that m=n.

The covariance matrix of vector v(t) at time t and delay r  is defined as

1 N
R „(t,r) =  (v(t)vH(t + t)) =  y v + I  ^  +  T) (3'3'2)

t = —N

where (.) is the expected value of the enclosed term, N  is the total number of samples 

and superscript H  denotes complex conjugate transpose of a matrix. We refer to the 

ijth  element of R v(t, r) as rjf(t, r).

In order to overcome the scaling problem, without loss of generality, we assume that 

the sources are unit norm signals, which means

R ,(t, 0) =  (s(t)sH(t)) =  I  (3.3.3)

where I  is an n x n identity matrix . From the above assumption we can easily conclude 

the following relations for ij th element of the covariance matrix (3.3.3):

K*(£,t)| < 0)| Vt, r; Vz 1 < i < n (3.3.4)

x)| = 0 V i,r; V i , j ' l < z ^ j < n  (3.3.5)

To estimate the original sources,

the signal part of the observation vector is first pre-whitened to obtain W y (t) =  

WAs(t). C =  WA is a unitary matrix because Ry(£, 0) =  WA(s( t)sH(t))AH'WH =  

C C H = I. The fundamental idea behind the method is to find a matrix B which 

estimates the source signals by a rotation applied to the whitened data, i.e., z (t) =

Wx(£). In other words, by finding the appropriate matrix B the sources can be identified

as s(t) =  3 hz (t).
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The covariance matrix of the whitened data at lag r  is:

R*(£, t )  =  (z(t)zH(t +  t))  = C(s(t)sH(t +  t ) ) C h  (3.3.6)

which is obviously a normal matrix. The objective is to find a matrix B which is equal 

to C or essentially equal to C. In the case of successful estimation of B, the estimation 

of mixing matrix, A, is found by A =  W**B where denotes Moore-Penrose pseudo­

inverse of W.

It is known from linear algebra that all normal square matrices are diagonalizable 

by some unitary matrices (spectral theorem in [96]) which may lead to separation. The 

unitary diagonalizer matrix of a whitened covariance matrix at some lag r  is the sepa­

rating matrix if the covariance matrix has distinct eigenvalues. However, without having 

any prior knowledge it is difficult to find a time delay in which the covariance matrix 

is full rank. In order to reduce the probability that an unfortunate choice of time lag r  

results in unidentifiability of C from R z(t, r) the joint diagonalization of several covari­

ance matrices is proposed in [16]. The consequent problem in joint diagonalization to 

be addressed is the uniqueness of the unitary diagonalizer matrix. Here, the periodicity 

of the sources is used to obtain the unique unitary diagonalizer, which is the separating 

matrix.

We know that the source signal S{(t) is periodic for all 1 < i <  n. This requires that 

for every source s», we have:

r “ (£, kTi) =  r ” (£, 0) Vt, i 1 < i <  n (3.3.7)

where T{ is the period of source s* and A; is an arbitrary integer. r “ (i, 0) is the maximum 

possible value for the covariance of the zth source. It means that except for the integer 

multiples of 7* the value of this function is less than r“ (£, 0) for all the other time delays. 

Since the original sources are unit norm, the covariance matrix of s in delay kTi obeys
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the following structure:

R s(t,kTi) = d i a g ( r i , r*_i, 1, ri+\ , ..., rn)
(3.3.8)

|r/| < 1 , I ^  i, kT{ ^  Tj , 1 < i, j, I < n, A: € N

Assume that a unitary matrix B diagonalizes the covariance matrix R z(£, r) at lag r  

such that B ^R Z(£, t ) B  =  B ^ C R ,^ , r )C ffB =  A. Both B and C are unitary matrices, 

so D =  B h C is also a unitary matrix and the diagonal matrix A = diag(Ai, A2, ..., An) 

is the eigenvalue matrix of R 8(t,r)  which is equal to R s(f,r). Therefore, for each time 

delay Tj, the covariance matrix R z(f, Tj) is diagonalizable and only one of its eigenvalues 

is equal to 1. This means for each Tj we have:

Aj =  1 ^  Aj Vj 1 < j  <n,  j  ^  i (3.3.9)

This fact is used in the following theorem to guarantee uniqueness of the unitary diag­

onalizer.

Theorem 1. Assume that z(t) is a white mixture of periodic sources with distinct periods 

and the covariance matrices of the source vector s(t) satisfy (3.3.8). If a unitary matrix B 

simultaneously diagonalizes the set of covariance matrices R  = {R2(£, Tj) V* 1 < i < n}, 

(i.e. for all i R z(t,Tj) =  BD jB^, where Di =  diag(di(i),d2 (i), ...,dn(i))) then, any joint 

diagonalizer of elements of R  is essentially equal to B.

Proof. To prove the sufficiency of the theorem, it is enough to show that any linear 

combination of the columns of B cannot be a common eigenvector of the members of 

R.  Let’s assume e is a common eigenvector, i.e.,

n

R z(t, Tj)e = Aje  =  AjCHjbj for all 1 < j  < n (3.3.10)
1=1
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where b* is the zth column of B and Aj is an eigenvalue of R z(t,Tj). We arbitrar­

ily assume that ap ±  0, 1 < p < n. Then, index j  can be found such that dp(j) — 

hp Hz(t,Tj)bp = 1. Using the definition of e and the assumption of the theorem, 

R z(t, Tj)e can also be restated as:

n

R ,(t, Tj)e = R  z(t, Tj) £  a,b,
t=l

n

=  ^ a iR,(«,TJ)bj (3.3.11)
1=1

n

= b*
t=i

From (3.3.10) and (3.3.11) one can conclude that for all z, oci{\j — di(j)) =  0. We 

know that ap ^  0, therefore, Aj = dp(j) = 1. Because the sources are periodic, using

(3.3.8) it can also be concluded that d*0") ^  dp(j) =  1 for all z ^  p and hence a, =  0.

For the necessity condition assume that for two arbitrary indices {p,q) dp(j) = dq(j) 

for all j. I t’s clear that any linear combination of the columns of B is a common 

eigenvector of the members of 11.

□

Although the above analysis is based on the assumption that the periods of the 

signals are exactly known, the analysis is still true for some time intervals close to the 

exact periods. In other words, when there is uncertainty about the fundamental periods 

of the sources or fundamental periods vary with time, the method can still be used 

successfully. In (3.3.7) and (3.3.8) we showed that for each periodic signal there is a set 

of delays in which the source covariance has a maximum value. An approximation of the 

source frequencies may be obtained by different time and frequency domain methods. 

It is very likely that the maximum covariance value can be found in a delay close to the 

estimated period. Hence, to best cover the estimation indeterminacy or the frequency 

variations a window centered at the delay corresponding to the estimated frequency is
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used. A suitable window length L (which depends on the nature of the sources) meets 

the condition of Theorem 1 and so can lead to separation of the source signals. It is also 

noteworthy that choosing the appropriate window length is not our major concern here.

3.4 Separation algorithm

Based on Theorem 1 our objective is to find a unitary matrix B which jointly diagonalizes 

the set of selected delayed covariance matrices. In other words, the desired B is the one 

which minimizes the squared off-diagonal elements of the set of all B ^R *^, T*)B for all 

periods 7*. The implementation of the proposed method is presented in Algorithm 1.

Algorithm 1
1) Estimate periods of the sources
2) Pre-whiten the data by W  as z (t) = Wx(<). W  = A_1/2Er  where A is the 
eigenvalue matrix of x(£) and E is the corresponding eigenvector matrix.
3) Calculate U  =  (J?=171* where = {Rz{t,71*),R z{t,7*± 1), ...,R z(f,7*± |L /2J)}*
4) Find B, the joint diagonalizer of the set of covariance matrices R.
5) The estimated sources are formed by B and W  as s(t) =  B^Wx(£).

where [.J is the floor operator, i.e. the largest integer not greater than the operand.
* The set of covariance matrices 7£* can be formed for any delay &7* instead of 7* as 
long as kTi ^  Tj, j  and k £ N.

Remarks:

•  Computational cost of the second order blind identification algorithm is

crm2/2 +  4m3/3 +  (c -  l)m 3/2  +  I tn2[4n{c -  1) +  17(c -  1) +  4n + 75]/2 (3.4.1)

where c is the number of covariance matrices, It is the number of sweeps required 

by the joint diagonalization algorithm, and r is the length of the data [66].

• Periodic component analysis [91] is a special case of the presented method in 

which the diagonalization is performed in only two lags (i.e. zero and the one 

corresponding to the frequency of periodic signal). However, the accuracy of this
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method is subject to the frequency variations. The presented method in [89] for 

adjusting the period is useful as long as the cycles of the periodic signals can be 

accurately recognized by some means.

• The proposed method can be considered as a special case of the well-known SOBI 

method. SOBI is a widely used method and has an established performance, 

however, a large number of matrices is usually used in this method. As it is 

shown in Section 3.5 selecting a small number of covariance matrices does not 

provide a correct separation by SOBI and a large number of matrices require 

higher computational cost.

3.5 Experim ents

To evaluate the performance of the proposed method, different experiments were de­

signed for both synthetic and real world data. The first data set used here includes 

four periodic sources, which are composed of sine waves with normalized frequencies of 

0.023, 0.01, 0.037, and 0.017 Hz and few harmonics. To evaluate the performance of the 

method where the main frequencies of the signals vary in time, a random coefficient is 

also applied to the frequencies in each cycle. Fig. 3.1 illustrates 500 samples of pure 

periodic sources along with their distorted versions. The main frequencies of the dis­

torted sources have a random variation of up to 10%. The second data set is a mixture 

of human voice and music signals. Experiments 1-4 are performed for the synthetic data 

and in the last experiment the proposed method is applied to real world data.

In the ideal case of the separation, A should be equal to A, or in other words
- 0  ̂jj

A A =  I. Therefore, the sum of the squared off-diagonal elements of A A which is 

called mean rejection level (MRL) is used here as a quantitative measure to evaluate the 

algorithm. The lower the value of MRL is, the better performance from the algorithm 

is expected [16].
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Figure 3.1: Four periodic sources used in the experiments. For some experiments the frequen­
cies of the sources are changed by time. The black dashed lines show the distorted sources 
when change of up to 10% in frequencies is permitted in each cycle.
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Figure 3.2: Mean rejection level vs. the number of covariance matrices.
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Table 3.1: Simulation time vs. number of covariance matrices for the proposed method. The 
average time for SOBI with c = 100 is 94.1ms. (All times are in milliseconds.)

No. of covariance matrices (c)
11 18 39 53 64 79 94 100

time 19.1 23.0 38.1 50.0 57.0 70.5 87.3 94.3

In the following experiments, 2000 samples of the periodic sources are mixed using 

linear mixing matrices while Gaussian noise is added to the mixtures. MRL (when used) 

is averaged over 100 independent trials for each value of the horizontal axis of the plots. 

L covariance matrices are calculated for each estimated period and after omitting the 

overlapping delays a set of c matrices are jointly diagonalized.

Exper im en t  1 : In order to compare the execution time of the proposed method 

with that of SOBI, both methods were applied to the first data set (where the sources 

are pure periodic sources, Fig. 3.1). The experiments were conducted on a PC with 

3.2 GHz Pentium IV CPU and 1.5GB of RAM. The average execution time of 100 in­

dependent trials of the original SOBI algorithm and the proposed method for different 

number of covariance matrices have been reported in Table 3.1. Lower number of covari­

ance matrices yields lower execution time. Separation qualities of the methods are also 

compared. As well as a fast convergence of the proposed algorithm, by analyzing the 

mean rejection levels of the results of the experiments it is verified that the separation 

quality is very close to that of SOBI when c =  100 (see Fig.3.2).

E xp er im en t  2: MRL against the total number of delayed covariance matrices (c) 

is shown in Fig. 3.2. The horizontal axis represents the total number of covariance 

matrices. The results of the proposed algorithm along with the results of SOBI, when 

the same number of covariance matrices are used, are presented in this figure. The result 

of SOBI with 100 covariance matrices is also presented as a reference. In this experiment 

the signal-to-noise ratio (SNR) defined as SNR = — 101og10 a2 is set to -ldB, where a2 is 

the noise variance. For almost all values of c the proposed method performs very close



63 A FAST BLIND SEPARATION METHOD FOR PERIODIC SOURCES

cs
.2
1s
q
S -105

-  — — Proposed Method

 SOBI (L=l, c =  4)

 SOBI (c=100)
-15

-10
SNR (dB)
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to SOBI with 100 covariance matrices.

E xperim en t 3: In this experiment the effects of SNR on the performance of the 

methods were investigated and the results were depicted in Fig. 3.3. Different levels 

of noise were added to the linear mixtures of the same sources used in previous experi­

ments. The results of the proposed method are shown by dashed line. Although only 4 

covariance matrices are diagonalized by the proposed method, the performance is very 

close to SOBI with 100 covariance matrices (solid line). This performance is the result 

of choosing appropriate time delayed covariance matrices.

E xperim en t 4 ' Fig. 3.4 illustrates the performance of the proposed algorithm for 

a set of periodic signals with time varying frequencies. Again, the main frequencies of 

the signals are equal to those of the signals used in experiment 1, but for each cycle of 

the ith source, /» +  /?/» is used as the main frequency, where is the main frequency 

and —0.10 < (I < 0.10 is a random coefficient. As expected, the proposed method with 

c=12 and SOBI with c=100 provide better performance compared to 7rCA and SOBI 

with c—12.

E xperim en t 5: The second data set includes linear mixture of human voice and 

music signals. Both the original sources and the mixtures were obtained from the ICA 

demo page at Helsinki University of Technology ICA research group website1. The 

sources 2, 4, 5, and 7 were selected and the proposed method was applied to their linear 

mixtures. Figures 3.5.a and b show the original sources and the mixtures respectively. 

The proposed method is applied to the mixtures where only 12 covariance matrices 

{L = 3, c =  12) are chosen to be diagonalized simultaneously. The result of application 

of the method is presented in Fig. 3.5.c. Although there are scaling and permutation 

ambiguities, the estimated sources are very similar to the original ones. Src2 and Src^ 

are estimates of Src\ and Src^, respectively and Src\ and SVc3 estimate Src2 and Src3 

with a negative multiplier.

1The demo page is accessible from: h t tp : / /w w w .c is .h u t .f i /p r o je c t s / ic a /c o c k ta i l /c o c k ta i l_  
en . cg i

http://www.cis.hut.fi/projects/ica/cocktail/cocktail_
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The period of the original sources has to be known a priori. Here, the appropriate 

time delays are chosen using the PSD of the sources. In Fig. 3.6 portions of the PSD of 

the sources are presented.

High peaks at PSD of signals show the periodic structure of the signal. Several peaks 

are detectable in this figure indicating the periodic behaviour of the sound signals. For 

this case 34.9, 97.5, 134.6, and 164.4 hertz are selected empirically.

3.6 Conclusions

In this chapter an efficient method for selecting the optimal delays for second order 

blind identification of periodic signals has been presented. The cost of computations for 

simultaneous diagonalization of covariance matrices in the second order blind identifica­

tion method is a linear function of the number of covariance matrices. In the proposed 

method, using a considerably smaller set of covariance matrices results in a fast and still 

high separation quality. Different experiments show that, with lower computational cost, 

the results of the proposed method are very close to the asymptotic results of SOBI.
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Figure 3.5: A set of voice and music signals; (a) original sources, (b) linear mixtures, and (c) 
output of the proposed method.
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Figure 3.6: Part of power spectral densities of the original sources in Fig. 3.5.a. Arrows point 
to some of the frequencies corresponding to the appropriate time delays to be used in the 
proposed algorithm.



Chapter 4 

LOCALIZING HEART SOUNDS  

IN  RESPIRATORY SIGNALS

4.1 Overview

Respiratory sound signals are always contaminated by heart sound interference. An 

essential pre-processing step in most of the heart sound cancellation methods is localiza­

tion of primary heart sound components. Singular spectrum analysis (SSA), a powerful 

time series analysis technique in separating periodic structures from non-periodic struc­

tures and noise, is used in this chapter to find a subspace that contains information 

about the underlying heart sound. Artificially mixed and real respiratory signals are 

used for evaluating the performance of the method. Selecting an appropriate length for 

the SSA window results in a good decomposition quality and low computational cost 

for the algorithm. The results of the proposed method are compared with the results of 

well-established methods which use wavelet transform and entropy of the signal to de­

tect the heart sound components. The proposed method outperforms the wavelet based 

method [88] in terms of false detection and also correlation with the underlying heart 

sound. The performance of the proposed method is generally superior to that of the



69 LOCALIZING H EART SOUNDS IN  RESPIRATO RY SIG NALS

entropy based method [108]. Moreover, the execution time of the former is significantly 

lower than that of the latter.

This chapter is organized as follows. The related work is reviewed in the next section. 

The theoretical background and the localization method are presented in sections 4.3 

and 4.4, respectively. Experimental results are detailed in section 4.5. A summary and 

the concluding remarks are provided in the last section.

4.2 R elated work

Auscultation has been the first and the easiest method used for years to diagnose lung 

abnormalities. Recordings from the chest wall are mixtures of lung sound, heart sound 

(HS), environmental sounds, effects of thoracic tissues, and measurement noise [49]. Al­

though modern stethoscopes can assist in hearing the sounds more clearly, heart sounds 

still interfere with the respiratory sounds.

Lung sound signals exhibit wideband power spectrum, however, most of the energy 

is concentrated in frequencies below 200 Hz [94]. On the other hand, HS has four basic 

time components. The first two components (called Si and S2) are the most fundamental 

ones. The other components (called S3 and S4) do not have significant amplitudes and 

are mostly inaudible in healthy subjects. The main frequency components of the HS are 

found in the range of 20-150 Hz. Peak frequencies of heart sounds are shown to be lower 

than those of lung sounds [13].

Removing HS signals from respiratory signals has been studied in many research 

works so far. The easiest way to cancel heart sounds is to highpass filter the respiratory 

signals. However, due to temporal and spectral overlaps of the heart and lung sounds, 

part of the useful signal information may be lost. Different methods based on adap­

tive filtering [55, 63, 101], Wavelet denoising [56, 59], time-frequency filtering [88], and 

modulation filtering [37] have been proposed to overcome this problem. In [46] and [87]
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blind source separation methods have been used to separate heart and lung sounds from 

multi-channel recordings. Due to the complex nature of the mixing system common BSS 

methods, however, do not result in accurate separation in this problem.

An important pre-processing step in some of the HS removal methods is to find the 

locations of fundamental HS components. Knowing the approximate location of SI and 

S2, different methods such as adaptive filtering [39, 69] and nonlinear prediction [3] can 

be exploited to remove the heart sounds.

In [63] a modified ECG signal was used to provide a reference for the HS. Using the 

amplitude of the respiratory signal, the distance between the SI and S2 peaks, and a 

noise-reduction percentage criterion, a HS localizer algorithm has been proposed in [55]. 

Both of these methods rely on a fixed time distance between SI and S2, which is not 

always a valid assumption.

In [88] the time-frequency spectrogram of the respiratory sound, calculated using 

continuous wavelet transform, was used to localize the HS components. The recurrence 

time statistic is used in [3] to detect the location of heart sounds. The idea is based on 

determining the dynamics of a system by its possible states using a multivariate vector 

space (state space) and describing the transitions between the states by vectors. The 

entropies of the respiratory sound segments including HS components are greater than 

those of the other segments. Based on this observation a localization method is proposed 

in [108]. Despite the good performance of this method, calculating the entropies for all 

segments is a time consuming task. In [4] the first HS component is localized using 

wavelet denoising and ECG-gated ensemble averaging. The focus of that work is on 

exact localization of SI and does not deal with S2 component.

In this chapter, a new method for HS localization is proposed. The method is based 

on singular spectrum analysis of the respiratory signal. SSA is a well-established time 

series analysis method widely used in different applications. In order to select the compo­

nents that provide more information about the HS components in reconstruction stage,
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a set of heuristic criteria are defined. The performance of the method is examined both 

on synthetically mixed and real respiratory signals by evaluating localization errors, false 

detection percentage, correlation with the original HS, and execution time. The results 

of the proposed method are compared with those of other localization methods reported 

to have the best performance.

4.3 Singular spectrum  analysis

SSA is essentially a model-free technique, which decomposes the data into a number of 

interpretable components including slowly varying trends, oscillatory components, and 

unstructured noise [52].

Assume s is a non-zero real-valued time series of length r samples, i.e. s =  [so, s i , ..., sr_i 

where r  > 2. Singular spectrum analysis consists of two complementary stages: decom­

position and reconstruction, and each of the stages has two consecutive steps.

1) D ecom position: This stage is composed of two steps: embedding and singular 

value decomposition (SVD).

Embedding: In this step, the time series s is mapped to k multidimensional lagged 

vectors of length /,

Xi =  [sj_  i , Sf , . . . ,  s*+ /_2]t , l < i < k  (4.3.1)

where k =  r  — Z +  1, Z is the window length (1 < Z < r), and superscript T  denotes the 

transpose of a vector. A proper window length totally depends on the application and 

the prior information about the signals of interest. Theoretically, Z should be large but 

not greater than r/2  [48].

The trajectory matrix of the series s is constructed by inserting each as the ith 

column of an Z x k matrix, i.e.,
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X  =  [xij] = [x i ,x2, . . . ,xfc]

So S i S2  • • * S k - l

S i S 2 S3 ■ Sk

S2 S3 S4  • Sk +1

Si— 1 &l Sl+ l ’ ’ ■ &r— 1

From (4.3.2) it is evident that the trajectory matrix has equal elements for all the 

diagonals i +  j  = constant, and therefore, is a Hankel matrix.

Singular value decom position: Let S =  X X T and assume Ai, A2, A *  are the 

eigenvalues of S in descending order; that is Ai > A2 > ... > A* > 0 and ei, e2, e *  are 

the corresponding eigenvectors.

Projecting the time series onto the direction of each eigenvector yields the corre­

sponding temporal principal component, i.e., v* =  X Tei/y/Xl. The SVD of the trajectory 

matrix can be written as

X  =  X 1 + X 2 +  ... +  Xd (4.3.3)

where d =  arg max^A* > 0} and X» =  y/XieivJ’. The collection (\/A^, ei: v^) is called 

the ith eigentriple of the SVD (4.3.3). The matrices X» have rank 1.

2) R econ stru ction : This stage has two steps: grouping and diagonal averaging. 

Grouping: The grouping step divides the set of indices {1,2, ...,d} to m disjoint 

subsets / i , / 2, For every group Ij =  {zji, ...,ijP} we have X^. =  X ^  -I-... -I- X ijp.

Grouping the eigentriples and expanding all matrices X^., (4.3.3) can be written as

X =  X / l + ... +  X /m (4.3.4)

There is no general rule for grouping. For each application the grouping rule totaly
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depends on the special requirements of the problem and the type of the contributing 

signals and noise.

Diagonal averaging : In the final stage of analysis, each group is transformed into 

a series of length r. For a typical I x k matrix Y  the gth element of the resulted time 

series, gq, is calculated by averaging the matrix elements over the diagonal i + j  = q + 2, 

where i and j  are the row and column indices of Y, respectively [52].

The eigenvectors resulting from the SSA contain information about the frequency 

content of the data. If there is a periodic component in the data, it will be reflected 

in the output of the SSA as a pair of (almost) equal eigenvalues [73]. Moreover, the 

highest peaks in the Fourier transform of the corresponding eigenvectors are related to 

the frequency of the periodic component [85]. These features are used to construct a set 

of data driven filters [86].

4.4 Localization m ethod

In principal component analysis (PCA) the principal components (which are the results 

of singular value decomposition of the covariance matrix) are categorized into signal 

and noise subspaces using the sorted eigenvalues. In SSA the trajectory matrix X is 

the result of embedding the original time series and therefore, in order to obtain the 

underlying signals, one has to carefully group the eigentriples into a number of disjoint 

subsets.

In real world applications of SSA usually a priori knowledge about the problem is 

used to define some heuristic criteria to reject the noise subspace and extract the trends 

or particular periodicities. The auscultation signal contains heart and lung sounds and 

noise. Applying SSA to this signal will decompose it into a number of principal compo­

nents. Because of the frequency overlap of the heart and lung sounds, it is not possible 

to categorize the components into distinct heart and lung subspaces. Therefore, our
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Figure 4.1: Heart and lung sound signals used to evaluate the performance of the heart sound 
localization method; (a) heart sound, (b) lung sound, and (c) a typical randomly generated 
convolutive mixture of the sounds.

approach in localization is based on finding a subspace which contains more information 

about the HS signal.

As each eigenvalue in the decomposition stage is equal to the variance of the signal in 

the direction of the corresponding principal component, one can conclude that only the 

largest eigenvalues belong to the signal subspace, and interpret the smallest eigenvalues 

as noise [73]. Investigating different recorded respiratory signals, the following criterion 

is defined heuristically as in [73] to reject the components most probably relating to the 

noise subspace.

Rejection criterion: All the components relating to the eigenvalues Ai are rejected if 

i > £, where

C =  arg min{—j -1 — > 0.95} (4.4.1)
°  J2j=i

Assuming that the recording system has acceptable quality and the environmental 

noise is under control, the dominant part of the signal after rejecting the noise is a 

mixture of heart and lung sounds. Periodicity of the HS is utilized here to select a group
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of principal components which best reconstruct the HS subspace. Thus, we seek for 

the eigenvalues which exist in pairs. However, the following facts have to be considered 

when selecting the pairs:

1) Noise can generate equal eigenvalue pairs,

2) The eigenvalues generated by quasi-periodic sources may not be exactly equal [73], 

(85],

The corresponding eigenvectors must also have almost equal frequency peaks in their 

spectrum and have similar waveform in time domain [85]. Therefore, in order to obtain 

only the periodic components, the eigenvalues A* and Aj are selected as a pair if the 

following conditions are met [73]:

1) i and j  are less than £,

2) |1 -  <  0.05,

3) |1 -  £ l < 0.03 and cross-correlation maximum (over different lags) of e* and 

ej is greater than 0.8 where has the highest peak value in the Fourier transform of 

eigenvector e*.

As discussed in the next section, the first few eigentriple pairs represent a subspace 

which contains more information about the HS and hence the SI and S2 peaks are clearly 

distinguishable.

At the final step, the locations of S i and S2 components are identified in the re­

constructed signal using an adaptive threshold defined as (/i +  cr), where fi and a are 

respectively mean and standard deviation of the reconstructed signal [108].

A disadvantage of SSA is its computational complexity for calculation of the SVD 

[5]. However, this shortcoming can be reduced by using modern and parallel algorithms 

for SVD. Moreover, selecting smaller values for I reduces the dimensions of the problem 

and therefore reduces the cost. As mentioned before, the length of the window is totaly 

a problem dependent task.
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4.5 E xperim ents

The objective of our work is to detect the segments of the respiratory signal that include 

one of the HS components. In order to evaluate the performance of the proposed method 

different experiments were carried out using synthetically mixed data and real respiratory 

sound signals. The HS localization methods presented in [88] and [108] were also used 

for comparison.

HS localization in [88] is performed using multi-resolution decomposition. The 

wavelet transform of the original lung sound signal was calculated using Daubechies 

mirror filters of order 4 (db4) with eight levels. Thresholding the spectrogram of the co­

efficients at the fifth level results in detection of the segments which include HS. In [108], 

localization is performed by dividing the respiratory data into 20 ms segments with 50% 

overlap. The Shannon entropy of each segment is calculated as H(p) = — YliLiPi 1°8 Pi 

where {p», i = 1, ...N} are the pdf of the samples and N  is the number of samples in 

each segment. An estimate of the pdf of the samples in each segment is calculated us­

ing a Normal kernel estimator. Because of higher entropy of the heart sound included 

segments, they can be detected using an adaptive threshold. The outputs of the three 

methods are a set of windows which indicate the estimated location of each HS compo­

nent. In sequel the multi-resolution decomposition and the entropy based methods are 

referred to as CWT and ENT, respectively

Synthetic data

The respiratory sounds recorded from the chest wall are not simple instantaneous 

mixtures of the heart and lung sound signals [35]. Therefore, in our experiments con- 

volutive mixtures of the signals are used. Normal heart and lung sounds1 were mixed 

after being down-sampled to 4kHz and filtered by two randomly generated FIR filters 

of length four. Fig. 4.1 illustrates the original sound signals and a typical convolutive

1 Available to download from http://www.dundee.ac.uk/medther/Cardiology/hsmur.html and 
http://www.acoustics.org/press/132nd/2aea4.html.

http://www.dundee.ac.uk/medther/Cardiology/hsmur.html
http://www.acoustics.org/press/132nd/2aea4.html
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Figure 4.2: The first 50 eigenvalues normalized by cumulative sum of all the eigenvalues. The 
rest of eigenvalues are almost zero.

mixture.

An appropriate window length, /, is a compromise between computational cost and 

decomposition quality. After trying different I values, we set / =  200 which provides 

a fair decomposition and does not impose high computational cost. Before applying 

SSA, the simulated respiratory signal is highpass filtered at 50 Hz. Fig. 4.2 shows 

the eigenvalue spectra of the first fifty eigentriples. The values are normalized by the 

cumulative sum of all the eigenvalues. The rest of the eigenvalues (from 51 to 200) are 

almost zero and therefore not shown in this figure.

Inspecting the eigenvalue spectra provides some insight into the time series. The first 

six eigenvalues can be categorized as three almost equal pairs. Because of the significant 

change in the trend of the spectra, we can conclude that the first three pairs belong to 

a subspace different from that of the others. Therefore, we choose the first six principal 

components and reconstruct the corresponding time series. The reconstructed and the 

remaining signals are shown in Fig. 4.3. As expected, the heart and lung sound signals 

are not separated completely. However, the SI and S2 peaks are clearly distinguishable 

in Fig. 4.3. (a) and can be localized using an adaptive threshold.

Although the time series presented in Fig. 4.3.(b) is very similar to the waveform
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Figure 4.3: Result of SSA applied to the signal of Fig. 4.1.(c); (a) reconstructed signal using 
the first six eigentriples and (b) the remaining signal.

of the underlying lung sound (see Fig 4.1.(b)), there are some parts of the lung sound 

mixed with the HS in Fig. 4.3.(a). Investigating the power spectrum of the signal in Fig.

4.3.(b) also confirms existence of dominant frequencies that belong to the HS spectrum. 

To evaluate the performance of the localization methods for different breathing flow

rates, separate experiments were conducted on low and medium flow rate synthetic 

signals. The respiratory signals were simulated by normalizing the coefficients of the HS 

FIR filter to one. Each mixture was empirically interpreted as having low and medium 

flow rate if the norm of the lung sound filter coefficients were in the range of [0.1, 0.7) 

and [0.7, 1.6), respectively. 100 experiments with random filter coefficients were carried 

out for low and medium flow rates independently. The experiments were conducted on 

a PC with 3.2 GHz Pentium IV Intel CPU and 1.5GB of internal memory.

SSA, CWT [88], and ENT [108] methods were utilized to localize the HS components. 

Fig. 4.4 illustrates a typical medium breathing flow mixture along with the original HS 

and the output of different methods. A segment of the Fig. 4.4. (a) including two heart 

cycles is selected and represented in Fig. 4.4. (b) to show the details of the signal. Fig.

4.4.(d)-(f) illustrate the same segment of the outputs of different methods. The center 

of each HS component is marked by a vertical dashed line. The duration and center 

of the resulted windows for each method vary based on the possible overlaps with the 

lung sounds. If the lung sounds are strong, they may impose errors in both length 

and center of the window, as can be seen in Fig. 4.4. To evaluate the accuracy of
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Figure 4.4: Localizing SI and S2 in the synthetically mixed data; (a) the artificial respiratory 
signal. A segment of this signal (enclosed in the rectangle) is selected to compare the original 
heart sound and the output of localization methods, (b) the selected segment of part (a), (c) 
original heart sound corresponding to the segment, (d), (e), and (f) the results provided by SSA, 
ENT, and CWT respectively. Vertical lines show the center of the heart sound components 
derived from part (c).
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localization methods, the difference between the center of every heart sound component 

in Fig. 4.1. (a) and the center of corresponding windows found by different methods 

are averaged over 100 experiments. Moreover, the number of false positive and negative 

errors were investigated manually and their averages were reported in Table 4.1. In ideal 

case the results of different methods have to be highly correlated with the underlying 

HS. Therefore, the heart sound of Fig.4.1.(a) was used as a reference and its correlations 

with the outputs of the localization methods were calculated for each random mixture. 

As the sample correlation coefficients (rs values) are not distributed normally, under the 

null hypothesis that the population correlation coefficient (p) equals zero, the Fisher’s Z 

transformation [75] is employed to transform the coefficients into normally distributed 

values, i.e. z =  In where n is the number of sample correlation coefficients. 

Setting a  (the level of significance) to 0.05, the critical values to reject the null hypothesis 

will be ±1.96. The averages over all 100 independent experiments are reported in Table 

4.1. High correlation values (compared with 1.96) for all the methods lead to rejection 

of the null hypothesis p = 0.

From Table 4.1 it can be concluded that the localization errors of low fiow signals 

are almost in the same range for all the methods. For medium breathing flow, this 

parameter measures lower for CWT. SSA and ENT outperform CWT both in terms 

of component detection and correlation. Although the average percentage of errors in 

detecting the components are similar for SSA and ENT and the localization error of 

CWT is lower, SSA provides lower false negative values which is more desirable for 

the HS localization problem (as localization is a pre-processing step). Table 4.1 also 

indicates that the results of SSA are more correlated with the original HS. Moreover, 

the average execution time for 100 independent trials were 1.21 ±  0.06, 0.09 ±  0.01, and 

3.62 ±  0.16 seconds for SSA, CWT, and ENT methods, respectively.

Despite the low computational cost and localization error of CWT, the number of 

false detections is higher in this method and the correlation of its output with the HS is
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Table 4.1: SSA, CWT, and ENT methods were applied to the randomly generated convolutive 
mixtures of the heart and lung sound of Fig. 4.1.(c). The experiments were carried out for 
100 independent trials and the results were averaged. L and M represent low and medium 
breathing flows, respectively.

Localization error False negative False positive Correlation 
(samples) (%) (%)

SSA 4.79 ±  3.61 0.0 ±  0.0 0.03 ±  0.17 8.27 ±  0.73
L. CWT 4.26 ±  3.09 0.08 ±  0.33 0.11 ±  0.44 6.18 ±  0.33

ENT 4.92 ±  3.58 0.01 ±  0.10 0.04 ±  0.19 7.70 ±  0.56
SSA 21.77 ±  33.25 0.27 ±  0.14 0.31 ±  0.54 5.75 ±  0.67

M. CWT 19.56 db 15.24 1.78 ±  0.83 1.16 ±  0.74 4.02 ±  0.26
ENT 23.11 ±  34.02 0.33 ±  0.2 0.30 ±  0.48 5.13 ±  0.56

lower. On the other hand, ENT provides less false detection rates and higher correlation, 

however, the computational cost is considerably high. The computational cost and the 

localization error of SSA are less than those of ENT, and at the same time this method 

has the least false negative detection and the most correlated output with the underlying 

HS.

Respiratory data

The proposed HS localization methods were applied to respiratory signals recorded 

from three healthy subjects (male, aged 28 to 32 years) with no known cardiac or pul­

monary problem. A Welch Allyn Tycos stethoscope was used to record the sounds from 

the chest. The subjects were reposed in a comfortable position and the stethoscope was 

fixed over the chest in the left midclavicular area, 2nd intercostals space. The subjects 

were trained and asked to breath at low or medium flow rate during each experiment. 

For each subject the respiratory data was recorded for 3 minutes, amplified, and digi­

tized at 44 kHz. The respiratory signals were then down-sampled to 4 kHz and highpass 

filtered at 50Hz. A 5.32 second segment of one of the respiratory signals is illustrated in 

Fig. 4.5.(a).

The length of SSA window was set to 200. Using the rejection criterion (4.4.1) more 

than 150 of the eigentriples were rejected. In order to find the component pairs which 

have almost equal eigenvalues and frequency peaks the eigen spectrum of three subjects
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Table 4.2: False component detection for each of the methods on low and medium breathing 
flow rate respiratory signals. The values are the averages of the results obtained from the 
respiratory sounds of three different healthy subjects.

False negative (%) False positive (%)
SSA 0.41 ±  0.09 0.90 ±  0.13

Low flow CWT 1.10 ±  0.45 1.92 ±  0.72
ENT 0.40 ±  0.12 0.93 ±  0.19
SSA 1.79 ±  0.52 1.86 ±  0.61

Medium flow CWT 4.38 ±  0.75 5.23 ±  1.12
______________ ENT 1.86 ±_0.60_______2.07 ±  0.97

at low and medium flow rates were analyzed and the correlation of the eigenvectors were 

also evaluated. Therefore, the first six eigentriples were selected. The eigenvectors of 

the selected pairs are illustrated in Fig. 4.6. The high correlation between eigenvector 

pairs 1-2, 3-4, and 5-6 is clearly distinguishable.

The principal components corresponding to the selected pairs were reconstructed 

and using the defined adaptive threshold the locations of the heart components were 

identified. The result is presented in Fig. 4.5.(b). Fig. 4.5.(c) and (d) respectively 

illustrate the results of the ENT and CWT methods. In order to provide a quantitative 

performance measure, the number of false negative and positive errors of the proposed 

method and the two other methods are presented in Table 4.2. The values are averaged 

for three subjects in low and medium flow rates.

The execution times averaged over three subjects were 8.09 ±  0.31, 0.72 ±  0.12, and 

24.13 ±  1.57 seconds for SSA, CWT, and ENT methods, respectively.

The difference between the results of ENT and SSA for low breathing flow rates is 

negligible. For medium flow rates, SSA generally provides better results than ENT. 

Moreover, both of the methods provide lower false negative results for both low and 

medium flow rates than CWT does.
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Figure 4.5: A segment of one of the respiratory signals along with the results of different 
localization methods; (a) the original signal, (b) result of SSA by reconstructing the output 
using the first six eigentriples, (c) localization using entropy based method (ENT), and (d) 
result of multi-resolution decomposition (CWT).
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Figure 4.6: The first six eigenvectors, (a) eigenvalue pairs 1, 2, (b) pairs 3, 4, and (c) pairs 5, 
6 .
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4.6 Sum m ary and conclusions

Singular spectrum analysis was used in this chapter to construct a data driven filter to 

localize the primary HS components in the single channel auscultation signal. The main 

advantage of using SSA, particularly compared with conventional PCA, is its power 

in extracting periodic components in the time series. Investigating the characteristics 

of different principal components and the resulting reconstructed signals, the required 

criteria for selecting the best subspace were defined.

The error in localization and the correlation between the original heart sound and 

the outputs of different methods were used to quantitatively evaluate the performance 

of the methods on synthetic data. False negative and positive detections were used as a 

measure which can be used for both synthetic and real world signals.

Among different steps of the singular spectrum analysis, SVD is the one with the 

highest computational cost. Therefore, selecting a suitable window length is of great 

importance. On the other hand, ENT is a segment based approach. That means, for 

each segment of the data pdf estimation is required, which imposes a high computational 

cost. One would suggest to increase the length of the segments in order to reduce the 

computational cost. This approach cannot help, as it affects the estimated entropies.

In order to quantitatively evaluate the performance of the proposed method normal 

heart and lung sounds were mixed to generate artificial respiratory signals. The average 

numbers of false detection by the proposed and the entropy based methods were better 

than that by the multi-resolution decomposition method. Comparing the results of 

different methods with the original HS, it is concluded that the result of the proposed 

method is more correlated with the HS. CWT method resulted in the least localization 

error and had the lowest computational cost among the three methods. The drawback 

of this method was its high false detection which is very important when evaluating the 

performance of a typical HS localization pre-processing method. On the other hand, SSA 

generally performed better than ENT in terms of false detection, correlation between
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HS and the output of the methods, and error in localization while it was much faster.

Real world respiratory signals from three different subjects recorded in low and 

medium breathing flow rates were also used to evaluate the methods. The results were 

almost similar to the results when synthetic signals were used, where the lower values 

of false negative detection were provided by SSA and ENT and the execution time of 

ENT was the largest among the others.



Chapter 5 

CYCLO STATIO NARY SOURCE  
E X T R A C T IO N

5.1 O verview

There are many processes in nature that originate from periodic phenomena. These 

processes may generate some random data that represent periodicity in their statistical 

properties, and are often called cyclostationary processes. Examples of cyclostation- 

ary data can be found in telecommunication, radar and sonar applications, mechanics, 

econometrics, biological science, and meteorology [43], see Chapter 2 for more informa­

tion about cyclostationarity.

Real world observations are often mixtures of different signals plus noise and re­

searchers in different application areas try  to develop methods that can blindly estimate 

the original sources. In these problems the original sources and the mixing mechanism 

are generally unknown and only weak assumptions about them are available.

Novel methods for blind source extraction of cyclostationary sources are developed 

and presented in this chapter. It is assumed that the cycle frequencies of the sources are 

known a priori. Different cases of distinct and common cycle frequencies are considered 

and necessary and sufficient conditions are introduced. In order to estimate the sources, 

steepest descent method for complex matrices (which stems from differential geometry) 

and extended Jacobi technique for diagonalization of complex matrices are used. The
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proposed algorithms are applied to simulated data and the effectiveness and performance 

of the algorithms are verified.

5.2 R elated work

Second and higher order statistics are widely used in BSS problems and many algorithms 

have been developed based on such information. A typical algorithm performs a pre­

whitening operation followed by a rotation to estimate the parameters.

SOBI algorithm is a well known method in which several time-delayed covariance 

matrices of observations are jointly diagonalized [16]. Joint approximate diagonalization 

method is applied to forth-order cumulant matrices in [24] to estimate a set of narrow 

band sources from their mixtures. Details of these well-established methods are pre­

sented in Chapter 2. In [65] the periodicity of the correlation matrix of cyclostationary 

signals is used to separate periodic signals. In this attempt, the covariance matrices 

have been diagonalized in different lags. Authors of [1] have presented two iterative and 

two algebraic methods to separate and extract the cyclostationary sources.

Convolutive mixtures of cyclostationary signals have been considered as well. In [104] 

the conventional higher-order statistics and second-order cyclostationarity of the signals 

are used and it is shown that exploitation of the statistical properties of this kind of 

signals can enhance the performance of blind cyclostationary source separation.

In this chapter extraction of cyclostationary sources is considered in two different 

cases: 1) sources with distinct cycle frequencies and 2) sources with common cycle fre­

quencies. In the case of distinct cycle frequencies, an extraction algorithm is proposed 

which exploits cyclostationarity of the source signals to extract them. Subject to pres­

ence of a priori knowledge about the cyclic frequencies, it is possible to extract all the 

cyclostationary sources one by one [45].

In the second case, it is assumed that the cyclostationary sources can have com­

mon cyclic frequencies. The necessary and sufficient conditions to blindly extract the
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cyclostationary sources are introduced and based on the extended Jacobi method for 

diagonalization of complex matrices [25] the extraction algorithm is developed.

In this chapter an overview of two diagonalization methods for complex matrices is 

introduced first. Next, the fundamental theory of blind cyclostationary extraction and 

the proposed algorithms are provided. Finally, the time varying cycle frequency problem 

is discussed and the results of the experiments on synthetic data are reported.

5.3 D iagonalization o f com plex m atrices

Before going more into the details of BSE methods let first introduce some techniques 

which are used in sequel. Regardless of the original signals being complex or real, 

the definition of the cyclic correlation matrix of equation (2.6.18) transfers the data to 

complex domain. Therefore, selecting appropriate data manipulation techniques is of 

great importance.

Matrix diagonalization is a technique used widely in the BSS context. The problem 

can be formulated as follows:

Assume A =  [a^] is an n x n complex matrix. A is diagonal if the norm of A is not 

zero and off{A} = 0, where operator off{.} computes the sum of squared magnitudes 

of the off-diagonal elements of the enclosed term, i.e, off {A} =  Yh<i^j<n laol2- ^  A 

is inherently a non-diagonal symmetric matrix it is possible to diagonalize it as much 

as possible by defining the function /(B )  =  B ^A B  and minimizing the cost function 

^/(B) =  off{/(B)}, where /  : Cnxn —> Cnxn and J  : Cnxn - ^ E B i s a  unitary matrix.

In both of the extraction methods considered in this chapter, we have a diagonaliza­

tion problem. Two well established methods are introduced here and used in developing 

the extraction methods. Both of these methods result in unitary diagonalization which 

is a requirement of the proposed extraction methods. Steepest descent algorithm for 

complex matrices is an optimization method that can be used for diagonalization by
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defining the appropriate cost function. Extended Jacobi method is essentially an itera­

tive algorithm for simultaneous diagonalization of several complex matrices.

5.3.1 S teep est D escen t a lgorith m

In order to find the minimum point of J7(B), the steepest descent method for complex 

matrices [2] can be used. This method stems from differential geometry and optimizes 

the cost function under unitary constraint. It is shown in [2] that to find the optimum 

point of a cost function under unitary constraint on the Riemannian space it is enough to 

evaluate the gradient of the cost function at a point B and then translate it to identity. 

In mathematical terms, if VjT(B) is the gradient of the cost function J { B) on Euclidean 

space, then the gradient direction on the Riemannian space is:

V J { B) =  B ) B h -  B V J ( B ) h . (5.3.1)

The Riemannian steepest descent algorithm is therefore as follows [2]:

A lgorithm  2_______________________________________________________________
k  4— 0, B t- 4— I 
rep ea t

Compute the Euclidean gradient of the cost function: V J (B*)
Compute the gradient direction on the Riemannian space: S7J{Bk)
Compute the rotation matrix P* =  exp(—/iWJ'^Bk))
Bfc+i 4— PfcBfc, k  4— k  +  1 

u n til ||V J (B fc)l| < Tr_____________________________________________________

where fi is the learning rate, T r  is a pre-defined threshold level, and the exponential 

of an n x n complex matrix M  is given by the convergent power series exp(M) =

E~=o(M m/m!).

5.3 .2  E xten d ed  Jacobi m eth o d

The other approach to find the minimum point of the cost function J (B) is the extended 

Jacobi technique [25] which can be used to diagonalize the complex matrices. In this
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method, which is originally developed for simultaneous diagonalization of a set of normal 

commuting matrices (i.e., A  = {A i,A 2, ...,A k }), a unitary matrix U is sought such 

that it minimizes the cost function Efc=i,K°ff{UAjtU}. The complex rotation matrix 

V (i , j, c, s) =  Vpq is defined to be equal to identity matrix except for the following entries:
~ ■

Vii Vij c s*

r-
--- £ Vjj —s c*

c, s € C and |c|2 +  |s |2 =  1 (5.3.2)

In each iteration of the diagonalization algorithm and for each selection of i and j , it is 

desired to find the complex angles c and s which minimize the cost function

K
/ ( c, s) =  j ,c ,s )A fcV(i, j,c , s)H}

fc=l

It is shown in [25] that the solution for (5.3.3) is

y - j z

(5.3.3)

c = x  +  r s = r = y /x2 + y2 + z2 (5.3.4)
2r  y/2r(x  r)

where [x,y,z]T is any eigenvector associated with the largest eigenvalue of G, G =  

real(%2k=i k  ^ i/(Afc)h(A*:)), and h(A) = [au—ajj,aij+aji,j(aji—aij)\. In each iteration, 

i and j  can be selected cyclic by row (or by column), i.e., for the first row, select all the 

columns and then carry on with the other rows and the rest of the columns [51]. Details 

of the method are presented in Algorithm 3.

Algorithm 3_____________________________________________________________
B  <— I
while err > eps do  

for p  =  1 to n — 1 do 
for q — p+1 to n  do 

(c,s) =  Jacobi(A, p,q)
B  =  BV(p,(?,c,s) 

end for 
end for 

end w hile

where A  is the input to the algorithm, err is sum of the errors, eps is the maximum 

allowed level of error (here err is a measure of nondiagonality of the cyclic correlation
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matrix), and Jacobi is a function which calculates complex angles, c and s, based on the 

values of A, p, and q as inputs.

5.4 C yclostationary source extraction

Assume m unknown mutually statistically independent sources are mixed instanta­

neously through an unknown medium and n sensors (n > m ) are used to measure 

these signals. This system can be formulated in a vector form as

x(t) =  As (t) +  n(t) (5.4.1)

where s (t) = [$i(£),..., sm(£)]r  is an m x 1 source vector, n (£) =  [ni(t), ...,nn(t)]T is an

n x 1 stationary noise vector, x(£) =  [xi(t), ...,xn(t)]T is an n x 1 observation vector,

A is an n x m  unknown full column rank mixing matrix. Furthermore, to simplify the 

problem it is assumed that m=n.

It is also assumed that some of the source signals are second order cyclostationary in 

wide sense.1 The objective here is to estimate a set of cyclostationary sources assuming 

that their cycle frequencies are known a priori.

As mentioned earlier in Chapter 2 if s(t)  is cyclostationary, s(t) and its frequency- 

shifted version s ( t ) e are correlated. Using the definition of cyclic cross-correlation 

function, equation (2.6.18), the following properties are concluded:

(s ’r ) =  <spWsJ(* +  r ) ^ 1) = 0, if p ^  q 

rft(s. r) = (sp(t)s*p(t +  t ) ^ )  = 0, if /3P *  (3q (5.4.2)

0) =  {sP{ t ) s l { ty Ppt) ^  0, Vp

where /?* is the cycle frequency of the source S i ( t ) .  Based on the assumption about 

the stationarity of the noise vector it can also be concluded that R„(r) =  (n(t)nH(t +

1F o r  d e f in i t io n  o f  w id e  s e n s e  c y c lo s t a t io n a r i t y  s e e  s e c t io n  2 .6 .
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«(/)

W

Figure 5.1: The overall block diagram of the BSS problem.

r)eJ/3t) =  0 Vr, /?, [40]. These properties are used here to blindly extract the cyclosta­

tionary sources of interest. The problem is considered in two different cases of sources 

with distinct and common cycle frequencies.

5.4.1 D istin ct cycle  frequencies

To estimate the original sources, the observations are first pre-whitened to obtain z(t) = 

Wx(£) =  C s ( t )  + W n(f), where C =  W A (see Fig. 5.1). To find an estimation of the 

source signals we need to rotate the whitened data by a matrix B, which will generate 

z(t) =  3 Hz(t). In [24], fourth order cumulants are used to find the rotation matrix for 

non-Gaussian sources. Here we exploit the cyclostationarity property of the sources to 

estimate and extract the original sources.

In the following theorem the necessary and sufficient conditions for extracting one 

cyclostationary source from the set of observations are considered.

Theorem 1. Assume z ( t )  is a white mixture of cyclostationary sources with distinct 

cycle frequencies fa, i G {l,...,n} . For any matrix B, define z ( t )  = B Hz(t). Then b* 

(column i of B) is an extracting vector of the pth source if and only if |r^p(z,0)| =  1 

and r?j(z, 0) =  0 for all j  G {1,..., i — 1, i +  1,..., n}.

Proof. Define D =  B ^ C  =  [dM], so that z (t) = B Hz(t) = B ^W (A s(t) +  n (*)). Due to 

independence of the source signals, stationarity of the noise signals, and the assumption 

that the cyclic autocorrelation of each source is equal to one, the elements of the cyclic
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correlation matrix can be simplified to

B is a separating matrix if and only if D is a unitary diagonal matrix. Therefore, to 

prove the theorem it is enough to show that the conditions of the theorem are equivalent 

to D being unitary and diagonal.

If D is unitary and diagonal, then

That means the conditions of the theorem are satisfied. Conversely, if the conditions 

are true then |dpp|2 =  1, and dppd^ = 0 for all p ^  q, i.e, D is a unitary and diagonal

Therefore, if a matrix B can be found such that the conditions of Theorem 1 are 

satisfied, the mixed sources can be extracted one by one. To simplify the calculations, 

it is assumed that the sources are real, and it is easy to extend the results to complex 

case. Fourier series expansion of the periodic sources exist and for the vth source it can 

be written as:

in the Fourier series expansion. It is possible to assume that the source signals are zero 

mean, therefore, o^o =  0. To calculate r^ (z , 0) we first evaluate zp(t)zq(t) for all p and

0 if p 7̂  q

\dpp\2 =  1 if p = q

matrix. □

L

sv(t) = a v0 +  ^ 2  avi cos(2n lfvt +  (j>i) 
i=i

(5.4.3)

where f v is the fundamental frequency of source v, and L is the number of coefficients
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q as

n  n

Z p { t ) Z q ( t )  ^  ^ d ph .S h ( t )  ^  ^ d g g S g i t )
h = l g=l

= E E w s E E « ^  (5'4 4 )
h=  1 5 = 1  1=1  e = l

x  c o s ( 2 n l f h t  -F 0 i)  c o s ( 27re f g t  +  <j)e )

From basic trigonometry we know that

c o s ( 27xl f h t  +  <f>i) c o s ( 27r e f g t  +  0 e ) =

- [ c o s ( 27T ( l f h  4 * e f g ) t  +  0 i +  0 e ) +  ( 5 .4 .5 )

cos(2?r( lfh -  e /ff)t +  01 -  0e ) ]

Substituting (5.4.4) and (5.4.5) in the cyclic cross correlation function (defined in (2.6.18)) 

and remembering the Fourier transform properties of cosine function and ignoring the 

frequency component at (5 =  0 it can be concluded that:

• For the vth estimated signal, z v ( t ) ,  the cyclic auto-correlation function r&v(z, 0) has

nonzero values for all Pv G T Vi where T v = {P\P — k f v;Vk € ( 1, . , 2L},/3 ^  0}.

(3V is a cyclic frequency of z v ( t ) .

• For any two estimated signals, z p ( t )  and z q ( t ) ,  the cyclic cross-correlation func­

tion r ^ ( z ,0) can have nonzero values at cyclic frequencies (3, where (3 E {Ifi ±  

e / i , ..., / / i  ±  e f n , . . . ,  l f n  ±  e / i , ..., l f n  ±  e f n , ^  0}

In other words, the spectrum of the quadratic function z p ( t ) z q ( t )  has nonzero components 

at some /?, where the values of these components are composed of two parts. The first 

one is resulted from a cosine term with frequency /  =  p/2  and the second one comes 

from the values of cross components which are created by mutually multiplying the
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harmonics of the source signals while their harmonic frequencies satisfy:

l f h ± e f g =  P (5.4.6)

For the zth source with cycle frequency /%, provided that the source signals satisfy

it means that the cosine term with the frequency of /  =  Pi/2 exists in just one row of 

z ( t ) .  In other words, B  can extract a cosine term with frequency Pi in the source of 

interest, i.e., s»(t). All the terms in the Fourier series expansion of the source S { ( t )  are 

multiplied by the same elements of the matrices A, W , and B and therefore, outcome 

of the extraction process is the complete source S i ( t ) .

To extract the zth source we can relax the condition of Theorem 1 and simply diag- 

onalize the cyclic correlation matrix of the estimation vector.

Although (5.4.7) imposes a restriction, it provides some redundancy in selecting the 

appropriate cycle frequency. In other words, we don’t need to select the fundamental 

cycle frequency (the one corresponding to the fundamental frequency) as the required 

cycle frequency of the source. As long as the cycle frequencies satisfy (5.4.7) there is no 

more restriction in the selection.

A lgorithm

The objective is to find a matrix B for which (5.4.8) is satisfied. In order to find B, Al­

gorithm 2 is used. The following cost function is defined, which measures nondiagonality

V h , g ^ i  l f h ± e f g ^ p i (5.4.7)

if a matrix B is found such that for pi € Ti

off{Rf‘(0 )} = 0 (5.4.8)
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of the cyclic correlation matrix of z(t):

J {  B) =  off{R?"(0)} =  off{BwR^I>(0)B}. (5.4.9)

For our problem, the Euclidean gradient of G(B) is

V -  M S )
dB  (5.4.10)

=  R * “(0)B (B " R fp(0)B -  diag(BHRVp(0)B )) .

Therefore, the minimizer of (5.4.9) can be found using Algorithm 2 and applying R^p(0) 

to the input.

Deflating sources of interest

Upon convergence of the above algorithm, zp(t) is an estimaton of the pth source. It

is notable to mention that due to permutation ambiguity, the source of interest may

appear in a different row of z (£), but it has the same properties. To deflate the extracted 

signal we use the deflation method proposed in [46] which is based on minimizing the 

cyclic correlation between the extracted source and the remaining mixtures. In this case 

Zp+i(t) = zp(t) — bpzp(t) and bp is the n  x 1 deflating column vector:

(zp(f)z"(f)^>'()bP , .
b p =  (5A 11)

where bp is a column in B corresponding to the pth  source.

5.4 .2  C om m on cycle  frequencies

So far, we assumed that the cyclostationary sources have distinct cycle frequencies. 

In this subsection we consider a more complicated case of when a number of sources 

have a common cycle frequency. This case happens when the cyclostationary sources
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are originated from the same periodic phenomena inside the system. Such a system is 

governed by a model which follows equation (5.4.1) while it is assumed that d sources 

have a common cycle frequency.

In [1] a condition for identifiability of cyclostationary sources with common cycle 

frequency is presented and proved as follows:

Iden tifiab ility  condition:

If pp(s, r)  is the cyclic autocorrelation function of the pth source signal, the 1 x (.K +  

1) cyclic autocorrelation vector is defined as pp( s) = [pp(s, 0), pp(s, t i  ),..., pp(s, t r -)]. 

Separation of the cyclostationary sources can be achieved if and only if two distinct 

sources sp(t) and sq(t) do not exist whose cycle frequencies are the same and whose 

cyclic autocorrelation vectors pp(s) and p q(s) are linearly dependent.

Proof, without loss of generality it can be assumed that the source vector s(t) is such 

that pi = P2 and p2(s) =  p2(s). For any mixing matrix A =  [a i,..., am], define another 

mixing matrix, A =  [a i,a2,a 3, ...,am], where

cos # sin#
[ai,a2] =  [ai,a2]

—sin# cos#

Similarly, define another source vector, s (t) = [si(£), s2(t), s^{t),..., sm(t)]T, where

Si(t) cos# —sin# Si(t)

•52(f) sin# cos# S2(f)

It can be easily verified that the output vectors x(£) =  As(£) +  n(t) and x(t) = A s(t) +  

n(t) have the same cyclic correlation matrices at time delays 0, n , ..., tk  as well as the 

source vectors s (t) and s (t). □

In order to extract the sources of interest, the observations are first pre-whitened 

by a matrix W  to obtain z (t) = W x(f), where C =  WA. To find an estimation of
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the source signals the whitened data is then rotated by a matrix B, which will generate 

z ft) =  Bi/z(t). The objective is to find an extracting matrix B such that d elements of 

z ft) are estimations of the cyclostationary sources of interest.

Each entry of the cyclic correlation matrix of z at a typical cycle frequency (3 can be 

written as:

r£ ( 2’T) =

= bf(z(t)z*(< + r)e^‘)b, (5-4.12)

= b"C(s(t)s*(t +  T)e^‘)C"b,

where b» is the zth column of matrix B. If the cycle frequencies of the sources are dis­

tinct and known a priori, Theorem 1 considers the necessary and sufficient conditions 

for extracting one cyclostationary source from the set of observations. This theorem is 

extended here to the more complicated case of the sources with common cycle frequen­

cies.

Assume that d sources have the same cycle frequency (3P and satisfy the identifiability 

condition. We exploit the scaling ambiguity of ICA methods to assume that the sources 

are unit norm and hence the cyclic correlation matrix of sp(t) =  [sPl(t), s^ ft) ,  •••■> sPd(£)] 

at r  =  0 is equal to Id, where Id is a d x d identity matrix. In other words, cyclic 

correlation matrix of s (t) at t  =  0 obeys:

Rf-(O) =
Id 0 

0 0
(5.4.13)

This property is used in the following theorem to find the extracting matrix:

Theorem 2. Assume z (t) is a white instantaneous mixture of independent sources with 

stationary additive noise and the sources satisfy the identifiability condition. sp(£) =  

[sPl (t), ..., sPd(£)] is a vector of d sources which are all cyclostationary with common

cycle frequency (3p. Define z (t) = &Hz(t), then, any unitary matrix B is an extracting
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matrix of sp(t) if and only if for d columns (rows) of R fp(0) the off-diagonal elements 

are zero while the diagonal elements are not.

Proof. To simplify the calculations we prove the theorem for the case of m  = n = 3, 

while two of the sources have common cycle frequencies. The proof can be generalized 

to higher dimensions and more numbers of cyclostationary sources.

We first prove sufficiency of the theorem. From (5.4.13) and the assumption that two 

of the sources have a common cycle frequency, it is known that the cyclic correlation 

matrix of s{t) has two nonzero diagonal elements while all other elements are zero . 

Without loss of generality we can assume that the two first elements of this matrix are

1. Therefore,

R fp(0) =  B " C

1 0 0 

0 1 0 

0 0 0

c hb . (5.4.14)

Expanding (5.4.14) results in

r-f{z,0)  =  b f c i c f b j  -I- b f  c2c f  bj.H  H i (5.4.15)

If B is an extracting matrix, R fp(0) must be diagonal and since its rank is 2, two of 

its diagonal elements are nonzero, while all the off-diagonal elements in each column of 

R fp(0) are zero, i.e., Vz ^  j

b f  c ic f  bj +  b f  c2c f  bj =

b f  (c ic f  b j  +  c2c f  bj) =  b f  (a ijC i +  a 2jC 2) = 0
(5.4.16)

where c*ij  =  c f  b j and a 2j  = c f  bj are two scalar values that form a linear combination 

of Ci and c2. The equality in equation (5.4.16) is met in only one of the following cases:

bi =  0. B is a unitary matrix, so this can never happen.
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a i j C i  + a 2j C 2 = 0. This is not possible, unless ot\j = 0 and a 2j  = 0.

bi _L a^Ci +  a 2jc 2 Vz, 1 < i < n = 3. This means b 2 and b 3 are both orthogonal 

to the plane made by Ci and c2. But as long as aij,  a 2j  ^  0 this is not possible 

because b*s are orthogonal vectors.

(b fc ic fb j  =  0 and b f c 2c f b j = 0 Vz, j  (i ^  j)). For each term one of the two 

following alternative conditions must be true:

b f  C jcfb , =  0

b f  Cl =  0

or

b f  C2c f  b j =  0

c f b j — 0

b f  c2 =  0 

or

c f  bj =  0

©

@
D

As R jp (0) is a symmetric matrix, we just evaluate the lower triangular elements 

of this matrix. For each off-diagonal element of cyclic correlation matrix there 

are four different combinations of the above conditions and it is easy to see that
n O

(a)-© and (6)-(3) cause the diagonal elements r22(z, 0) and r ^ ( z ,  0) to be zero 

simultaneously, so these are not valid combinations.

For j  = 1 if we assume that the combination (a)-(3) is true, then, it can be concluded 

that b2 ±  Ci, b3 ±  ci, and bi _L c2. That means bx || ci. As c fb 2 ±  0 the 

necessary condition for 0) =  0 is b fc 2  = 0 or in other words b3 ±  C2 . It

means b2  || C2  and b3 || c3, and therefore,

Z X( t ) 4 - V i { t )

z 2 ( t ) <X2S2 { t )  +  V2 ( t )
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where r*i and a 2 are scalar values and v\ (t) and V2 (t) are undesirable effects of noise 

on the estimations that are inevitable in all ICA methods. The same analysis for 

the combination (B)-© results in

Zl(t) <*lS2 { t )  +  U i ( t )

Z2 { t ) <*2S l ( t )  +  V2 ( t )

For necessity condition it is obvious that for any separating matrix B the cyclic 

correlation matrix R fp(0) satisfies (5.4.13). □

Therefore, if a unitary matrix B can be found such that the conditions of the above 

theorem are satisfied, the mixed cyclostationary sources can be extracted.

Algorithm

Assume /3 is a set of P a priori known cycle frequencies of the sources of interest, i.e. 

(3 = {0P\1 < p < P}. The proposed algorithm is developed based on the assumption 

that there exist dp sources having the same cycle frequency /3P.
a

Our objective here is to find a matrix B for which *7(B) = off{Rg (0)} is minimum. 

Using the extended Jacobi approach, the proposed source extraction method is im­

plemented as follows:

A lgorithm  4 Cyclostationary source extraction (CSE)

1. Calculate the covariance matrix of x(t); denote the eigenvalues of this matrix by 

Ai, A2, ... and A„ and the corresponding eigenvectors by ei, e2, ... and en.

2. Obtain the whitened data from z (t) = Wx(£), where W  =  A~1//2ET, A = 

diag{A1? A2, ..., An} and E =  [ei,e2, ...en].

3. Calculate R fp(0), the cyclic correlation matrix of z (t) at r  =  0 using (2.6.22).
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4. Use the extended Jacobi technique to find the unitary matrix B, the minimizer of 

cost function J ( B) =  off{B//R^p(0)B}.

5. Estimate dp cyclostationary sources as zdp(t) =  [bdl b da ... b ^J^x ^), where b di’s 

are dp column vectors of B corresponding to the largest diagonal values of R.fp (0).

Deflating sources of interest

The easiest and fastest way to deflate the sources of interest is to simply switch off all 

the estimated cyclostationary sources and project the data back to the sensor space. If 

we define z (t) to be equal to z (t) except for the rows Pi,P2 , —,Pd which are all set to 

zero, then x(t) =  (B //W )ttz(t) is the remaining observation vector.

5.5 Tim e varying cycle frequencies

In the proposed algorithms we assumed that the cycle frequencies of the sources are 

known and fixed. The knowledge about the cycle frequency of the signals can be ob­

tained using power spectral density of the signals. However, in some of the real world 

applications such as speech processing, biomedical signal processing, and econometrics, 

the cycle frequencies may not be fixed and are subject to change with time.

If by any means one can identify the cycle durations of the source of interest in the 

mixtures, then, it is possible to warp the signals such that the cycles have the same 

duration. Here based on the assumption that the sources of interest have a peak in each 

cycle which can be detected easily, a method is proposed to overcome the changes in 

frequency. This assumption is true for some signals such as heart sound signals or ECG 

signals in which the high amplitude of the heart signals can be recognized easily.

The main idea in warping (de-warping) is changing the duration of a cycle from 

h+i — h  samples to lavg samples, where lavg is the average duration of the cycles and 4  

represents the sample number of the fcth peak in the sequence of cycles. The warping
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procedure is as follows:

Procedure  warping_________________________________
-Find the peaks of the Sol* and recognize each cycle duration

-lavg — average of cycle durations

-Assign the phase range of [—n, 7r] to the range

[0, la v g  l]

-For all cycles, assign the phase range of [—n, 7r] to the 

sequence of samples in the range of [Ik, h+i — 1]

- Warp the signal by mapping every individual cycle 

to the cycle with the duration of T samples.

* Sol: Source of interest

5.6 Experim ents

Computer simulations were carried out to illustrate the performance of the proposed 

algorithms and the results were compared with those of the other methods. More ex­

periments are reported in the next chapter.

5.6.1 D istin ct cyc le  frequencies

The objective of the proposed algorithm in subsection 5.4.1 is to estimate the source 

signals such that there is minimum cyclic correlation between them. Thus, the follow­

ing performance index is used to measure the cyclic correlation between the estimated 

sources:
P I  =  y  — o ff{ R f‘(Q)}—  (5 6

The lower values of this performance index are preferred.

Experiment 1:



104 CYCLO STATIO NARY SOURCE EXTRAC TIO N

(»)

0 100 200 300 400 500 600 700 800 900 1000

W, W W lA IW W W M lA Jlf
0 100 200 300 400 500 600 700 800 900 1000

M,

0 100 200 300 400 500 600 700 800 900 1000
Sample number

Figure 5.2: Synthetic source signals.

The proposed algorithm was applied to 2000 samples of three periodic signals illustrated 

in Fig. 5.2 while different levels of noise were added and the performance index was 

averaged over 100 independent trials for each level of noise. The signal-to-noise ratio is 

defined as SNR = —10 log10 a2 , where a2 is the noise variance. The warping/de-warping 

method is also utilized.

The values of the performance indices for SOBI, JADE, and the proposed algorithm 

are presented in Fig. 5.3. Obviously, performances of all the methods are affected by 

high levels of noise. Although for high noise levels all the methods perform similarly with 

high PI values (which means the performance is low), the performance of the proposed 

method is better for normal and low levels of noise.

Experiment 2:

The proposed algorithm has been used to separate heart and lung sounds from a set of 

two synthetically generated mixtures. A typical random mixture is illustrated in Fig. 

5.4. Because of the changes in the period of the heart sound signal, the warping/de- 

warping method is utilized in advance to adjust the cycle frequency (ft). The output of 

algorithm is presented in Fig. 5.5. Listening to the signals also confirms separation of 

the sound signals.
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Figure 5.3: Performance comparison of the proposed method, SOBI and JADE algorithms for 
different levels of noise.
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Figure 5.4: Amplitude normalized mixtures of heart and lung sounds.
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Figure 5.5: Amplitude normalized estimated heart (top) and lung (bottom) sounds.
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5.6.2 C om m on cycle frequencies

Computer simulations were carried out to illustrate the performance of the CSE method 

(subsection 5.4.2) and the results were compared with those of well known ICA algo­

rithms, i.e., SOBI and JADE. We have also implemented Theorem 4 (ATH4) in [1] which 

is developed for extracting cyclostationary sources with common cycle frequency. This 

theorem is as follows:

ATH4 from [lj: Define matrix B* =  R _/f/2UjV  i, where R  l^2 is the pseudo-inverse of 

an n x m  square root of R  =  (x(£)x*(£) e-7̂ *), Uj is an mxd* matrix whose column

vectors form an orthogonal basis of ker(R _1//2R ^R ~ ^2), R* =  (x 

Vj is a di x d{ unitary matrix that jointly diagonalizes the matrices Mj(/c) for k =  

t i , . . . , t *-, Mi(k) =  U fR _ i/2R»(A:)R_7//2Ut, and Ki(k) = (x(£- f  k)-x*(t)ePpit). Then, B* 

separates out the source signals with common cycle frequency /%, i.e., z*(£) =  B ^x(t) is 

an estimate of s*(£).

The ATH4 algorithm can be implemented simply using the above theorem. The 

following normalized performance index which is a standard measure of the performance 

of BSS algorithms [29] is also used for evaluating the performance of the methods:

p i = im
y f y  _ A  +  x

\J r [m a x q\piq\2 j  maxq\pqj\2

P I is evaluated and averaged for 100 independent trials at different noise levels.
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Figure 5.6: Performance index of three algorithms vs. SNR over an average of 100 different 
experiments on each noise level.
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Figure 5.7: Performance index of the proposed algorithm vs. SNR compared with that of 
ATH4.

Experiment 3:

The two sources are first order autoregressive Gaussian processes with complex coeffi­

cients ai = 0.8ejO-4 and a,2 = 0.5ejO 6 which are modulated with two separate sine waves. 

The cyclic correlation of the sources are ol\ =  2 /i and a 2 =  2/ 2, where f \  and f i  are the 

carrier frequencies [40]. The sources are mixed by random 2 x 2  full rank matrices. The 

signal-to-noise ratio is defined as SNR =  — 101og10cr2, where o2 is the noise variance. 

Fig. 5.6 demonstrates the PI values for different noise levels resulted from the proposed, 

SOBI, and JADE algorithms. Although the difference is not significant, the proposed 

method has lower performance index values.
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Experiment 4:

The same configuration as that of experiment 3 is used except the value of the carrier 

frequencies, which are modified so that = f 2. Theorem 4 (ATH4) in [1] is used as 

a benchmark to evaluate the performance of the proposed method. As it is shown in 

Fig. 5.7, the proposed algorithm performs significantly better than ATH4. In the CSE 

method, the sources are extracted only based on the information obtained from the zero 

lag cyclic correlation matrix. This can be a possible result of better performance of the 

method.

5.7 C oncluding rem arks

In this chapter two algorithms for blind extraction of cyclostationary sources are intro­

duced. In developing the first algorithm it is assumed that the cyclostationary sources 

have distinct cycle frequencies which are known a priori. If there are more than one 

cyclostationary source, it is possible to extract all of them by extracting the sources one 

by one after deflating the extracted sources.

Extraction of the sources with common cycle frequencies is considered in the sec­

ond algorithm, called CSE. Both algorithms are based on diagonalization of the cyclic 

correlation matrix at a specific cycle frequency. Computer simulations verify better per­

formance of the proposed algorithms compared with the other ICA methods. In the next 

chapter the results of applying the cyclostationary source extraction method to a real 

world problem is presented. More experiments on synthetic mixtures are also conducted 

and the results are reported.



Chapter 6

BA LLISTO C A R D IO G R A M  
ARTIFACT REM OVAL U SIN G  
CSE

6.1 Overview

Simultaneous recording of EEG and functional magnetic resonance imaging (fMRI) se­

quences is increasingly used to monitor various mental and physiological brain activities. 

The interactions between the scanner magnetic field, the patient’s body, and the EEG 

electrodes generate a pulsation artifact called ballistocardiogram (BCG) which is syn­

chronized with the patient’s heart beat. In this case, in order to make the EEG signals 

clinically useful such artifacts have to be highly reduced. Ballistocardiogram artifact is 

considered here as the sum of a number of independent cyclostationary components hav­

ing the same cycle frequency. The proposed method, which is based on cyclostationary 

source extraction (CSE), is able to extract these components without much destructive 

effect on the background EEG data. It is shown that the proposed method outper­

forms other methods particularly in preserving the remaining signals. CSE is utilized to 

remove the BCG artifact from real EEG data recorded inside the magnetic resonance 

(MR) scanner, i.e., visual evoked potential (VEP). The results are compared to the 

results of benchmark BCG artifact removal techniques. Analyzing the power spectral 

density of the cleaned EEG data, it is shown that CSE effectively removes the frequency
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components corresponding to the BCG artifact. It is also shown that VEPs recorded 

inside the scanner and processed using the proposed method are more correlated with 

the VEPs recorded outside the scanner. Moreover, since the cycle frequency of the BCG 

artifact is directly computed from the contaminated EEG signals there is no need for 

electrocardiogram (ECG) data in this method.

In the next section, the literature of BCG artifact removal techniques is reviewed. 

The extraction algorithm is presented in Section 6.3. The results of application of this 

method on synthetic data and EEG recordings are respectively reported in Sections 6.4 

and 6.5. Section 6.6 presents the concluding remarks.

6.2 R elated  work

Information from simultaneous recording of EEG and blood-oxygen-level dependent 

(BOLD) data provides a great opportunity to examine the temporal and spatial ac­

tivities of the brain. This information is used by neuroscientists to study spontaneous 

brain activity which, by its nature, is non-reproducible and hence difficult to study with 

separate EEG and fMRI. One of the expected results of such studies is identification of 

different areas of the brain involved during EEG events. However, concurrent EEG-fMRI 

recording poses some difficulties.

EEG data recorded during MR scanning are affected by the interaction between the 

patient’s body, the EEG electrodes, and the magnetic field inside the MR scanner [7]. 

During imaging, switching magnetic fields induce electromotive forces (EMFs) which 

obscure the EEG signals with a regular artifact having an amplitude of up to 100 times 

larger than the EEG amplitude and with a very short time course [7], [78]. This arti­

fact is coined the gradient artifact and is independent of movements of the head and 

leads. Several methods have been proposed to remove the gradient artifact. In [58] the 

frequencies related to the power spectrum template of the artifact are filtered out. As 

the shape of this artifact is relatively invariant over time [33], an average template of
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the artifact can be formed and subtracted from the EEGs as in [6, 18, 53, 81].

Other significant source of artifact is the tilting - movement - of the subject’s head 

within the MR scanner, which changes the area of inter electrode loops normal to the 

magnetic field. This type of artifact can be divided into two groups. The first group, 

which is caused by deliberate movements of the head, has higher amplitudes and happens 

in short courses of recording. The second group, called ballistocardiogram, is caused by 

micro-movements of the head as a result of cardiac pulsation and obscures the underlying 

EEG mainly at alpha frequency (8-13 Hz) and below, with amplitudes around 150 fiV  at 

1.5 Tesla magnetic field [20]. It is also likely that BCG artifact is the result of blood flow 

perpendicular to the static magnetic field inside the scanner [7, 106] and the movements 

of the electrodes and scalp due to expansion and contraction of scalp arteries between 

systolic and diastolic phases [92].

In an early attempt to remove the BCG artifact, a method based on average subtrac­

tion has been proposed in [7]. The QRS complexes of subject’s ECG are first detected. 

Then, a limited number of the EEG signal slices corresponding to the QRS timing are 

averaged to create a template of the BCG artifact to be reduced from each channel. This 

method, which is called average artifact subtraction (AAS), is very popular [78]. How­

ever, the assumption that all the waveforms are similar during the scans is not always 

valid [81]. In order to deal with the heart beat timing variations a weighted averaging 

approach is proposed in a subsequent study [50]. In [53], the problem of variability of 

the artifact is addressed using a clustering algorithm. For all the methods which are 

based on averaging technique a reference ECG channel is essential. However, in some 

cases this channel is not present or the heart beats are not accurately detectable.

A new type of multi-path EEG cap is proposed in [36] that oversamples the electrode 

space to provide an overcomplete representation of the data. Using the assumption that 

neural activity is Kirchhoffian and the BCG artifacts are not, the artifacts are removed 

by solving an overcomplete representation of the single trial EEG data.
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Adaptive filtering has also been used for BCG artifact removal [20], [92], and [103]. 

The reference signal comes from a movement detector, i.e. a piezoelectric sensor, a t­

tached to the body of the subject inside the scanner [20] and median filtering is used 

instead of simple averaging to create the BCG artifact template [92]. The authors in 

[68] enhanced their work by exploiting both average subtraction and adaptive filtering.

Different ICA based methods have also been used for BCG artifact removal [15, 70, 

74, 78]. These methods assume that the brain neural activity including evoked potentials, 

oscillatory waves, artifacts caused by muscles, and noise are all mixed linearly and are 

independent or at least can be categorized in groups of independent components. As 

mentioned earlier, three phenomena with different characteristics generate the BCG 

artifact. It implies that BCG artifact consists of more than one independent component 

added linearly to the EEG data [7, 106]. Hence, the artifact can still be separated using 

ICA methods. The advantage of these methods is that they do not require an ECG 

channel. More importantly, they do not assume that the BCG artifacts are reproducible. 

Infomax [15] is used in [95] to extract the BCG artifact sources. In [74], fastICA [61, 62] 

is utilized to remove imaging, BCG, and ocular artifacts. In a comparative work, the 

performance of Infomax, fastICA, SOBI [16], and complexity pursuit [60] are evaluated 

and compared to AAS in [78]. A sequential blind extraction method [71] is used in [70] 

to extract the BCG artifacts and a simple peak detector is utilized to track the time 

varying period.

Based on the assumption that each occurrence of the BCG artifact in any EEG 

channel is independent of the previous observations, principal component analysis (PCA) 

is employed in the optimal basis set (OBS) method [81]. In the next step, for each EEG 

channel few of the principal components are chosen as the basis set, which is then 

fitted (scaled in time and amplitude) and subtracted from each BCG artifact instance. 

To remove any possible BCG artifact residual it is proposed in [32] and [33] to apply 

Infomax to the OBS output.
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An important issue of concern in BCG artifact removal is selection of the correct 

number of BCG artifact components. In ICA based methods, an incorrect assumption 

about the number of BCG artifacts may influence the independence assumption. It is 

assumed in [78], that the BCG artifacts are caused only by head movements inside the 

scanner. In this case, it is mathematically and experimentally shown that the number 

of independent BCG artifact components is three. Their experiments also show that 

assuming three BCG artifact components provides reliable results. In another attempt, 

the number of components is not set fixed and three to six independent components are 

chosen for different subjects by thresholding the correlation of the estimated independent 

components (ICs) with the ECG channel [74]. The authors in [81] opted a conservative 

approach and fixed the number of components to three. In [36], only the strongest 

component (in terms of power) from the ICA decomposition of the EEG data is labeled 

as BCG artifact.

CSE is an ICA based blind source extraction method for extracting the sources with 

periodic statistics. Similar to other ICA methods, it is assumed that the original sources 

and the mixing medium are generally unknown, however, a priori knowledge about the 

periodicities helps to improve the extraction performance [44, 45]. This method, is used 

to remove the BCG artifacts from the EEG data recorded inside the MR scanner. The 

period of the second order statistics is obtained directly from the EEG data (availability 

of the ECG channel, necessary for some of the other removal methods, is not essential 

here). In order to find the appropriate number of BCG artifact components, the outputs 

of different methods are analyzed using the defined performance indices. Moreover, it 

is shown that the proposed method preserves the remaining data better than the other 

methods.
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6.3 A lgorithm

Details of cyclostationary source extraction method development were presented in 

Chapter 5. An overview of the algorithm is provided here. A technique for estimat­

ing the cycle frequency of the BCG artifact channel without using the ECG channel is 

also presented.

6.3.1 Source ex traction

Assume s (t) is a vector of m unknown mutually (statistically) independent sources which 

are mixed instantaneously through an unknown medium, A, and x(£) is the vector of n 

measurements, i.e., x(£) =  A s(t) +  v(£), where v(t) is an n x 1 stationary noise vector. 

Also assume that d sources are cyclostationary with a common cycle frequency (3p. The 

objective is to estimate the cyclostationary sources.

The steps of the proposed cyclostationary source extraction method are described 

below (see Chapter 5 for more details).

1. Calculate the covariance matrix of x(£); denote the eigenvalues of this matrix by 

Ai, A2, ... and An and the corresponding eigenvectors by ei, e2, ... and e„.

2. Obtain the whitened data from z(t) =  W x(t) where W  =  A- 1/2ET, A =  diag 

{Ai, A2, ..., An} and E =  [ei, e2, ..., en].

3. Calculate R^p(0), the cyclic correlation matrix of z (t) at r  =  0, using (2.6.22).

4. Use the extended Jacobi technique (see subsection 5.3.2) to find the unitary matrix 

B, the minimizer of cost function off{Bi/R fp(0)B}.

5. Estimate dp cyclostationary sources as z ^ t )  =  [b^ bd2 ... bdp]iifx(t), where b^s 

are dp column vectors of B corresponding to the largest diagonal values of R fp(0).

6.3.2 C ycle frequency estim ation

As the cycle frequency of the cyclostationary signals appear as high peaks in their PSDs 

[43], the cycle frequencies in real world scenarios can be estimated using the PSD of
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the mixtures as long as the SNR and energy of the sources of interest are not too low. 

Therefore, a simple way to find the cycle frequency is investigating the PSD of those 

channels which have more periodic behavior (or the average of the PSDs of all or some 

of the channels). PSDs are obtained by calculating FFT of the squared version of the 

signals. This approach takes advantage of the cyclostationarity and works for those 

signals that have hidden periodicity, i.e., any periodic behavior which may be hard to 

be distinguished from visual inspection of the temporal waveform [11].

6.3.3 D eflating sources o f  in terest

After estimating the extracting matrix, the output channels which show the highest 

cyclostationarity at cycle frequency (3P can be determined visually. Alternatively, as an 

automated solution, one can choose those sources which have the highest correlation with 

a reference signal [95]. It is shown in [32] that the ECG channel contains some features 

that are not present in the EEG (and vice versa). Therefore, this method is not suitable 

enough for BCG artifact removal. Here, we identify the sources of interest by examining 

the PSD of the output signals and selecting those having the highest PSD peaks at (3P 

and its two harmonics1 by smoothing the PSD of each output channel and subtracting 

the smoothed PSD from the original PSD. The outputs are sorted according to the sum 

of the values of the modified PSD at the main cycle frequency and the harmonics. The 

first d sources are the sources of interest.

To deflate the estimated sources it is enough to switch off all the d estimated sources 

of interest and project the remaining data back to the sensor space. If we define z(£) 

to be equal to z (t) except for the rows Pi,P2 , which are all set to zero, then

x(t) = (B ^ W ^ zft) is the remaining observation vector, where jf denotes pseudo-inverse 

of the matrix.
1 Investigating the PSD of the BCG artifact we realized that the significant part of the periodic 

components is concentrated in the first three harmonics.
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6.4 Experiments

To evaluate the performance of the proposed algorithm it is compared with different 

ICA methods using a set of artificially mixed synthetic signals. The CSE method is 

then applied to the real world EEG data and the results are compared to the outputs of 

the traditional BCG removal methods, i.e., AAS and OBS. Several performance indices 

are utilized to assess the quality of the extracted sources and the deflation process.

6.4 .1  Perform ance evaluation

The objective of all extraction algorithms is to find a vector bj for each source of interest 

such that Zi(t) = bjW x(t) is an estimation of the source. Ideally, f» =  b*WA = c ^ k  is a 

column vector which has just one nonzero element in say k t h  row and thus £*(£) =  CfcSfc(t), 

where c* is an arbitrary nonzero scalar and efc is the k t h  unit base vector along the k t h  

coordinate direction.

In order to evaluate the performance of a typical algorithm which extracts d sources 

the following performance index is defined [28], [72]:

1 d ( \ T m f 2 \
P h  =  ~d 101° g10 ( m  X ( 6 4 1 )

where £ =  [f^i f a  More negative values of this index show better performance

of the extraction algorithm.

The second index used in the sequel is the averaged correlation of the remaining

data at time delays close to the period of the deflated data. If the remaining data are

represented by x(t) =  [ii(£) X2 (t) ... x m ( t ) ] T  and the cycle frequency of the deflated

data is /3P, P I 2 is defined as:

<m2»
where W  is an / second length time window centered at 1//3P seconds and fa is the mean
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Figure 6.1: Five signals are synthetically mixed to evaluate the performance of the proposed 
method. SI and S3 have a common cycle frequency.

of X { ( t )  [78]. PI2 is a measure which shows the amount of deflated sources still present 

in the remaining data. Again, more negative values of PI 2 are more desirable.

Improvement in normalized power spectrum ratio (INPS) [78, 95] is used to measure 

how the deflation process succeeds in clearing the undesired sources from the data. If 

(fixAf) denotes power spectral density of x ( i ) ,  INPS is defined as:

i f )o r  _  1 V - m i
3 10£ / £f < M /)

(6.4.3)

where F  is a set of intervals around (3P and its harmonics. More negative values of P /3 

represent better performance.

The indices defined so far are useful measures to evaluate the extraction and deflation 

quality. Additionally, we need to know whether the remaining data are distorted by the 

deflation process. To do so, we define s ( t )  to be equal to s ( t )  except for the sources of 

interest which are all set to zero. In definition of the last performance index x(t) =  A s ( t )  

is used as a reference to evaluate the performance of the deflation process:

p h  =  -  X ) 10 loSio
<  X i ( t ) , X i ( t ) >

- I I - (6.4.4)
i=l  V <  X i { t ) , X i ( t )  > <  X i ( t ) , X i ( t )  >

This index measures the similarity between x and x. The more negative the value of 

P /4, the better the performance.
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SOBI, Infomax, and fastICA are selected as benchmarks for comparison when applied 

to synthetic data. SOBI is a widely used blind source separation method which estimates 

the sources by simultaneously diagonalizing a set of time delayed covariance matrices. In 

other words, SOBI defines an average eigen-structure of the data [16]. Infomax is based 

on maximization of the estimated entropy, i.e. maximizing the mutual information 

between the observations and the estimations [15]. The main idea in fastICA is to 

maximize the negentropy of every estimated signal [62].

Average artifact subtraction and optimal basis set methods are fully automated 

methods commonly used as benchmarks in BCG artifact removal [78], [33]. Therefore, 

for real world EEG data, CSE results are compared with the results of these methods. 

In this case, the performance evaluation is restricted to P I 2 and P /3, as the original 

data are unknown.

6.4.2 Synthetic data

A set of five independent sources including a BCG artifact signal extracted from an 

EEG recording (for details of the recording see the next section) is selected as in Fig. 

6.1 in which SI represents the BCG artifact signal, S2 is a periodic signal, S3 is a 

Gaussian random noise modulated with a sine wave of half the frequency of the BCG 

artifact channel in SI, S4 is a sine wave, and S5 is a uniform random noise. The first two 

sources are super-Gaussian, S4 and S5 are sub-Gaussian, and S3 is close to Gaussian. To 

evaluate the performance of the method the sources are mixed through random 5 x 5  full 

column rank matrices and different separation methods are applied to extract the sources 

that have common cycle frequency, i.e. the BCG artifact channel and the modulated 

Gaussian noise.

Fig. 6.2 provides an illustrative comparison between the PSD of the mixtures, x(£), 

the desired output, x(t), the result of CSE, x(£), and the output of the other ICA-based 

methods. Visual inspection of the PSDs in Fig. 6.2.a and Fig. 6.2.b suggests that all
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Table 6.1: The averages and their corresponding standard deviations of the results of 1000 
independent trials of different ICA methods over the linear mixtures of the sources in Fig. 6.1. 
The length of time window in calculating PI 2 is 0.4s, and the length of frequency intervals for 
each harmonic of cycle frequency of the sources of interest is 0.5 Hz.

Method P h  P h  P h  P h
SOBI -67.63 ±  2.39 -8.50 ±  0.75 -1.57 ±  0.73 -19.30 ± 1.19
Infomax -72.62 ±  5.70 -9.43 ±  0.84 -1.63 ±  0.63 -22.97 ± 1.97
FastICA -68.69 ±  2.55 -9.42 ±  0.85 -1.67 ± 0.58 -23.65 ± 1.76
CSE -99.15 ±  3.74 -9.45 ±  0.85 -1.74 ±  0.57 -29.80 ±  1.50

the methods have successfully extracted the cyclostationary sources.

Table 6.1 shows the average values for each performance index after 1000 independent 

trials and their corresponding standard deviations. For every trial a new random mixing 

matrix is generated. Since the period of SI is 1.12s, the length of W  in calculating 

P h  is set to 0.4s and the frequency intervals around the main cycle frequency and 

its two harmonics in calculating P / 3  are 0.5Hz. The values of P /i , which measure the 

accuracy of the separation algorithm in terms of sparsity of the product of the extracting 

vectors and the mixing matrix, show that the CSE method provides the smallest value. 

Although the methods do not show any significant difference in the values of P h  and 

P / 3 , CSE still provides lower values for both indices. The values of PI.4 verify that the 

CSE method preserves the remaining signals better than the other methods.

P / 2 and P / 3 measure the correlation and the power of the remaining data in the 

neighborhoods of the period and cycle frequency of the sources of interest. On the other 

hand, PI\ and P / 4  consider the overall behavior of the removal method rather than the 

performance just within certain time or frequency ranges. The values of performance 

indices in Table 6.1 show that the CSE method effectively extracts the sources of interest 

and preserves the remaining data.

6.5 EEG-fM RI data

Data from five of the fourteen subjects participated in the study of [83] were randomly 

selected. These subjects were all recruited from the University of Birmingham and paid
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Figure 6.2: A comparison between the average of the power spectral density of the mixtures, 
the desired outputs and outputs of the ICA methods applied to the mixtures, (a) mixtures, 
x(t), desired output, x(t), and CSE output, x(t), and (b) desired and all ICA outputs.

for their participation. All observers had normal or corrected to normal vision, no history 

of neurological disorders, and gave written informed consent. The study was approved 

by the local ethics committee.

The experiment was conducted in the University of Birmingham Imaging Centre 

using a 3 T Philips Achieva MRI scanner. Gradient echo-pulse sequence was acquired 

from 20 slices (2.5x 2.5x3 mm resolution, TR 1500 ms, TE 35 ms, SENSE factor 2, 

flip angle 80, with equidistant temporal slice spacing to facilitate synchronization of the 

EEG clock).
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The EEG data were recorded using a 64 channel MR compatible EEG system 

(BrainAmp MR Plus, Brain Products, Munich, Germany) consisting of 62 scalp elec­

trodes (following the 10-20 electrode positioning system) and two additional ECG and 

electrooculogram (EOG) electrodes. Current limiting resistors of 5 at the amplifier 

input were considered for each electrode. The EEG data acquisition setup clock was syn­

chronized with the MRI scanner clock using Brain Product’s SyncBox. The sampling 

rate was set to 5 kHz.

As stimuli, left hemi-field reversing checkerboards were presented at a spatial fre­

quency of 2 cycles per degree of visual angle at two different contrasts, i.e., high and 

low. Stimuli were presented together with a central fixation cross. We were interested in 

the visual evoked potentials (VEPs) elicited by these stimuli. Further details of record­

ings can be found elsewhere [83].

Raw EEG data were partitioned into data acquisition sessions and exported to *.dat 

format using Brain Vision Analyzer (Brain Products, Munich, Germany). Subsequently, 

the gradient artifacts were removed using the Brain Vision Analyzer built-in functions. 

After segmenting the data corresponding to high and low contrast stimuli, EEGs were 

low-pass filtered at 25 Hz and down-sampled to 256 Hz. To reduce the computational
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Figure 6.4: Nineteen EEG channels recorded inside MR scanner after cleaning the gradient 
artifact. ECG channel is also recorded which is used in some BCG artifact removal methods 
as a reference of cardiac pulsation.

cost of different BCG artifact removal methods, we also spatially down-sampled the data 

to twenty channels including Fpl, Fp2, F7, Fz, F8, T7, C3, Cz, T8, C4, Tp7, Tp8, P3, 

P4, Pz, 01, 02, P03, P 04  and ECG, having electrodes distributed across all areas of 

the scalp.2 The measurements were then exported to MATLAB for further analysis.3 A 

map of the placement of the electrodes is shown in Fig. 6.3 and a five second segment 

of the recorded data from one of the subjects is depicted in Fig. 6.4.

6.5.1 R esu lts

Three methods, i.e. AAS, OBS and CSE, were applied to the EEG data in order to 

remove the BCG artifact. We used the FMRIB plug-in provided in EEGLAB [34] which 

includes implementations of AAS and OBS and is freely available.

To use CSE, we first checked the validity of the basic assumptions. Since they

2EEG-fMRI data analysis is mainly performed off-line and hence the computational cost of different 
BCG artifact removal methods was not of our major concern here.

3In removing the BCG artifact using the CSE algorithm, the eye-blink artifact is also cleaned as a 
by-product. Although other advanced methods such as [79] can be utilized.
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Figure 6.5: Averaged power spectral densities of the outputs of AAS, OBS, and CSE methods. 
The PSDs of nineteen EEG channels are averaged for each method. Averaged PSD of the same 
subject’s EEG data recorded inside the scanner and the EEGs recorded outside the scanner 
are also provided for comparison.

originate from the sources of different nature, it is valid to assume that EEG and BCG 

artifact signals are independent. As BCG artifact components are synchronized with 

the heart beats, they have the same cycle frequency. Moreover, since the BCG artifacts 

are independent, the identifiability condition is satisfied for this problem. Therefore, all 

the prerequisites to apply the CSE method to this problem are met.

In developing CSE, prior knowledge about the cycle frequency of the sources of inter­

est is necessary. The concurrently recorded ECG channel is a good source of information 

about the BCG artifact cycle frequency, however in those cases where this channel is 

corrupted or not recorded, the required information can still be extracted from other 

channels. Due to the high amplitude of BCG artifacts, one can measure the cycle fre­

quency from those channels that bear BCG artifacts with the highest amplitudes. Fig. 

6.5 includes the averaged PSDs for one of the subjects before and after artifact removal. 

The averages are calculated from the PSDs of all EEG channels and show clear peaks
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Figure 6.6: Averaged values of P h  and P h  calculated for five subjects and for different artifact 
removal methods when the number of BCG artifact components is not known. Performance 
indices are calculated for three to six BCG artifact components.

in the original data at the main frequency and harmonics of the subject’s heart beat 

frequency.

Since the heart rate is not strictly fixed, we may encounter some variations in the 

cycle frequency which influence the performance of the extraction algorithm. One way 

to overcome this problem is to warp the signals after detecting the peaks, in order to 

force them to have a fixed cycle frequency, and dewarp the estimated and/or remaining 

data after deflation, as done earlier in [46]. This method is only applicable in such 

cases that the peaks are accurately detectable. This, however, imposes a significant 

computational cost for warping/de warping procedures. Alternatively, applying CSE to 

smaller segments of data can also make the extraction procedure more robust. For a pure 

periodic signal, each cycle frequency generates a high peak in the PSD of the signal. In 

quasi-periodic signals the cycle frequencies have wider peaks. If the width of the peaks is 

small, equations (5.4.2) and (5.4.13) are still satisfied and hence, the proposed algorithm 

is able to extract the sources with common cycle frequency (3P.

Here, the length of each EEG segment is selected to be 10s. This length is short
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enough to assume that in the experimental environment the heart rate does not dra­

matically vary and the cycle frequencies can be calculated with an acceptable precision. 

Finally, the CSE output is bandpass filtered between 0.1 and 25 Hz using a second order 

butterworth filter.

The correct number of BCG artifact components is not known. Therefore, we tested 

how selection of different numbers of BCG artifact components would influence the 

performance of CSE and OBS. These methods follow two different approaches for de­

composing the data. The first method decomposes the data to spatially independent 

components, whereas in the latter it is assumed that every occurrence of the artifact in 

each channel is independent of the previous ones and hence a temporal decomposition 

is performed. However, as the origin of the components in both methods is the same, 

the numbers of the components are comparable. Starting with three, the performance 

of the removal methods against different assumptions about the number of BCG artifact 

components is evaluated in terms of P I 2  and P /3. The evaluation has been performed 

for up to 6 components and averaged over five subjects. The results are presented in 

Fig. 6.6.

The values of P /2 and P /3 in Fig. 6.6 imply that CSE and OBS outperform the AAS 

method. It can also be noticed that generally CSE performs better than OBS in terms 

of P / 2 and P /3. The trend of changes in the performance index values suggests the 

appropriate number of BCG artifact channels. For the OBS method there is a shift in 

the value of P / 2 and P /3 between three and four components, but CSE has a continuous 

decreasing trend for both Pis. From step 5 of the CSE algorithm it can be concluded 

that the sources are estimated based on their cyclic autocorrelation values at /3P, which 

implies that as long as the diagonal values of R fp (0) are not zero, we can expect more 

components to be extracted. That is why both the indices have decreasing values for 

CSE.

The appropriate number of BCG artifact components can be the one for which the
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performance indices have their minimum values. This number is four for OBS and six for 

CSE. However, the values returned by P I 2 and P /3 only show how the periodic sources 

are removed. None of these performance indices evaluate the possible distortion of the 

remaining data after deflating more components. Therefore, as there is no significant 

change in the values of the indices for more than four BCG artifact components, we 

empirically select this number.

The effects of the removal methods on the signals in frequency domain is presented 

in Fig. 6.5. The averages of power spectral densities of nineteen EEG channels for the 

original data of one of the subjects, and outputs of AAS, OBS, and CSE, and the outside 

scanner data are illustrated. The peaks at the frequencies around the cardiac frequency 

and its harmonics are dramatically mitigated by CSE. Although OBS has reduced the 

power of signal at the peak points, the peaks are still visible.

Visual evoked potentials are obtained after baseline correction of the averaged data. 

The topographic map for the first positive peak at 100ms after the stimulus (P100 

peak) of one of the subjects averaged over 90 trials for the EEG data recorded outside 

the scanner is shown in Fig. 6.7.(a)-(c). It is expected that the highest values can 

be seen in the electrodes located on the right occipital region. Fig. 6.7.(d)-(f) and 

Fig. 6.7.(g)-(i) show the topographic maps of the same subject for which the data were 

recorded inside the scanner and BCG artifacts removed using the CSE and OBS methods, 

respectively. Correlation of the peak values of the output of the removal methods and 

the outside scanner data over all the channels is evaluated in order to compare the 

similarity. However, as the sample correlation coefficients (rs values) are not distributed 

normally, under the null hypothesis that the population correlation coefficient (p) is equal 

to zero, Fisher’s Z transformation is employed to transform the coefficients into normally 

distributed values, i.e. 2 =  In where n is the number of sample correlation 

coefficients [75]. Setting a , the level of significance, to 0.05, the critical values to reject 

the null hypothesis will be ±1.96. The correlation coefficients of the outside scanner
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Table 6.2: Averaged correlations between averaged VEPs obtained from EEG data recorded 
outside scanner and those obtained from the processed EEG data recorded inside the scanner. 
For each channel, Fisher’s Z transform is applied to the correlation coefficient. Averages 
of correlations over nineteen EEG channels are presented for high and low contrast stimuli 
separately. In the last two rows the average and standard deviation over all the subjects are 
displayed.

AAS OBS CSE

Subject 1 High
Low

5.97
5.45

6.26
5.70

6.42
5.97

Subject 2 High
Low

4.16
3.97

4.98
4.55

4.45
4.25

Subject 3 High
Low

6.12
5.20

6.58
5.70

6.92
6.26

Subject 4 High
Low

5.83
5.57

6.26
6.42

7.10
6.26

Subject 5 High
Low

5.97
5.57

6.12
5.45

6.58
5.83

Average High
Low

5.61 ±  0.81 
5.15 ±  0.68

6.04 ±  0.61 
5.56 ±  0.67

6.29 ±  1.06 
5.72 ±  0.83

peaks and the results of the OBS and CSE methods over nineteen EEG channels are 

2.17 and 2.90, respectively.

The waveforms of the obtained VEP from P 04  electrode are illustrated in Fig. 6.8. 

The VEPs are processed by AAS, OBS, and CSE. Visually, the three methods perform 

similarly on extracting the VEPs. In order to quantitatively evaluate the performance 

of the methods, correlation coefficients derived by comparing the outside scanner VEPs 

and those recorded inside scanner and restored by the removal methods are averaged 

over nineteen channels for five different subjects and presented in Table 6.2. The corre­

lation coefficients are averaged over all the channels after being normalized by Fisher’s 

Z transform. High correlation values in Table 6.2 (compared with 1.96) lead to rejection 

of the null hypothesis p = 0. CSE and OBS provide better correlations for high contrast 

stimulus VEPs. Although the standard deviations of the CSE results are bigger than 

those of the other methods, on average, the CSE results are more correlated with the 

outside scanner data.

To distinguish the signal and noise contributions in the obtained VEPs, the SNR 

is evaluated by dividing the amplitude of the P 100 peak by the standard deviation of 

the EEG in the 200ms pre-stimulus interval [33]. The SNR values for P04 channel for
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high contrast stimuli VEP are 5.91, 10.13, 8.42, 8.81, and 9.06 for the original (BCG 

artifact contaminated) data, outside scanner data, and the output of AAS, OBS and CSE 

methods, respectively. The same measures for low contrast stimuli VEP are 3.46, 5.83, 

3.96 4.03, and 4.59, respectively. Although the P100 amplitudes of the data restored by 

CSE have lower values compared to the AAS and OBS peak values, the higher SNRs of 

CSE indicate a better noise reduction of the proposed method.

6.6 Sum m ary and conclusions

A cyclostationary source extraction method is developed in this chapter. This method 

exploits periodicity in statistics of the sources and extracts those sources which have 

higher power spectral density levels in the cycle frequency of interest. The mathemati­

cal proof is provided and the performance of the method for synthetically mixed signals 

is compared with those of standard ICA methods. The extraction performance is compa­

rable with that of the other methods, while CSE preserves the remaining signals better 

than the others.

Unlike the standard removal methods which are based on removing a template built 

from the average of previous samples and time locked to QRS peaks, the proposed 

method does not need the ECG channel. The cycle frequency of the sources can be 

calculated using the highest peaks in the average of the smoothed PSD of different 

channels.

To identify the BCG artifact components, the output channels of the algorithm are 

sorted based on their PSD values at the main cycle frequency and its two harmonics. 

Based on the values of the performance indices it is shown that there is no significant 

improvement in the performance if more than four output channels are deflated. After 

removing the BCG artifact signals, the data are projected back to the sensor space using 

the estimated mixing matrix.

Higher performance of the CSE in removing the BCG artifact artifacts is reflected by



129 BALLISTO CARD IO G RAM  ARTIFACT REMOVAL USING CSE

two performance indices which measure how well the artifacts are removed from the EEG 

signals. The power spectral density of the EEG signals restored by different methods 

is also analyzed. Comparing the VEPs obtained from different removal methods, it 

is shown that the results of the proposed method are more correlated with the VEPs 

obtained outside the scanner. The proposed method also results in higher SNR values.

The CSE method can be used for extracting various types of sources or artifacts 

which originate from periodic phenomena even when the periodicity can not be detected 

visually in the observations. For those cases that the frequency of the periodic signals 

vary with time, two solutions are provided which make the CSE a robust method for 

extracting quasiperiodic sources.
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(g) Right view (h) Left view (i) Back view

Figure 6.7: Topographic maps corresponding to visual evoked potentials of one subject, (a)- 
(c) recorded outside the scanner, (d)-(i) recorded inside MR scanner. The BCG artifacts are 
removed using CSE in (d)-(f). Signals are restored using OBS in (g)-(i).
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Figure 6.8: Visual evoked potential on P04 electrode obtained from EEG recorded inside the 
MR scanner and restored with CSE and two standard BCG artifact removal methods, AAS 
and OBS.



Chapter 7 

C O NCLUSIO NS A N D  FU T U R E  
RESEAR C H

7.1 Sum m ary and conclusion

In this dissertation, some novel techniques for extraction of the signals with periodic 

structures were proposed. Such signals exist in many real world signal processing ap­

plications, however, in most applications they are hidden and some advanced signal 

processing techniques are required to process them. The main focus of this thesis has 

been blind source separation of multichannel data. Meanwhile, a method for single 

channel analysis has also been proposed.

The proposed extraction methods, which exploit the periodic structure of the sig­

nal, are evaluated on both artificially generated data and real biomedical signals. The 

methods can be summarized and listed as follows:

1. An efficient method to select the time delays to be used in second order blind 

identification of periodic signals.

2. A localization method derived from singular spectrum analysis to localize heart 

sound components in time domain representation of respiratory signals.

3. Blind extraction methods for cyclostationary sources. These approaches are con­

sidered for cyclostationary sources with distinct and common cycle frequencies.
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The general BSS concept was introduced in Chapter 2, where the mathematical for­

mulations were provided. More details about a number of well known BSS methods 

were described. Approaches for blind separation of periodic sources including periodic 

component analysis and cyclostationary source separation methods were reviewed. Also, 

a comprehensive review of the cyclostationary source separation methods for both in­

stantaneous and convolutive mixtures was provided.

In some of the BSS problems a number of matrices are jointly diagonalized. For 

example, the covariance matrices are jointly diagonalized in the SOBI method to obtain 

average eigenvalue decomposition. In Chapter 3, a method for selecting appropriate time 

delays to calculate the covariance matrices was presented. The results were compared 

with the results of 7rCA and SOBI, where different numbers of randomly chosen covari­

ance matrices were used in the separation algorithm. Using the values of the defined 

performance index, it was shown that although the number of covariance matrices for 

the proposed method was too low, the performance was almost equal to that of SOBI.

Heart sound localization is an important pre-processing step in most of heart sound 

removal methods. In Chapter 4 singular spectrum analysis was used to localize the fun­

damental heart sound components in single channel mixtures of heart and lung sounds. 

Inspecting the principal components resulted from decomposition of the signals, a cri­

terion for selecting a subspace, which contains more information about SI and S2 com­

ponents, was introduced. The proposed localization method was applied to synthetic 

signals and also real respiratory signals from three subjects in different breathing flow 

rates and the results were compared with those of two other localization methods.

The proposed methods for extracting cyclostationary sources were expressed in chap­

ters 5 and 6. In a typical system, there might be more than one phenomenon generating 

cyclostationary sources. If these origins have different periodic behaviours, the cycle 

frequencies will be distinct. On the other hand, if different independent origins act with 

identical periodicities or an origin can cause some independent sources, the sources will
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have common cycle frequencies. Two methods for these cases were proposed in Chapter 

5. Using the first method it is possible to extract the cyclostationary sources subject to 

having some prior knowledge about the cycle frequency of the source of interest. When 

more than one cyclostationary source exist, it is enough to extract the sources and de­

flate them one by one. Second method, called CSE, is based on the assumption that 

some independent sources have a common cycle frequency.

Four performance indices were defined in Chapter 6 to evaluate the performance 

of the extraction methods. The CSE method was used to extract the cyclostationary 

sources from artificial random mixtures of a number of signals. The results were then 

compared with the results of fastICA, Infomax, and SOBI. It was shown that the CSE 

method is able to preserve the remaining signals (after deflating the sources of interest) 

better than the other methods.

Ballistocardiogram artifact is known as one of the main artifacts contaminating EEG 

data recorded simultaneously with fMRI sequences. This artifact is caused by the sub­

ject’s body inside the MR scanner as the result of cardiac pulsation. It is usually assumed 

that BCG artifact is composed of a number of independent components [78]. The CSE 

method was used to remove BCG artifact and the results were compared with those of 

AAS and OBS as the benchmarks for this type of artifact.

As there is not that much information available about the correct number of inde­

pendent BCG artifact channels, the number of BCG artifact channels to be extracted 

was selected using the performance index values. For AAS, OBS, and CSE methods the 

values of the Pis were evaluated with different assumptions about the number of inde­

pendent BCG artifact components. Analyzing the results from five different subjects 

it was concluded that the artifacts contribute to four independent channels. The main 

advantage of CSE over the other methods for BCG artifact removal is that there is no 

need for any QRS detection system needed for the other methods. QRS detection is 

usually performed by analyzing the ECG channel.
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7.2 Future work

Removing ballistocardiogram artifact using the cyclostationary source extraction method 

is a contribution which will put a step forward in usage of the cyclostationarity concept 

and corresponding algorithms in biomedical engineering. So far, cyclostationarity has 

been used mostly in telecommunications [43] and recently in mechanics [11]. Hope­

fully, this work and the associated publications will attract attention of researchers from 

other fields of research (especially biomedical signal processing) to the high applied and 

theoretical potential of the cyclostationary signal processing.

A prerequisite for successful extraction of cyclostationary sources is estimation of 

the cycle frequency. This can be one of the reasons that the techniques which exploit 

the cyclostationarity are not widely used. If some information about the sources of 

interest is available, estimating the cycle frequencies will be possible by investigating 

the power spectral densities. However, if the energies of cyclostationary sources axe low, 

accurate estimation of cycle frequencies can be difficult. This can be included in any 

future research on cyclostationary BSS.

Exploiting the periodicity in the time representation or the statistics of a signal 

provides a great opportunity for analysis and processing of the signal. Cyclostation­

ary signal processing provides useful techniques for different applications dealing with 

signals with periodic structures. In this dissertation, the CSE method was utilized in 

a particular biomedical application, i.e., cancelling the artifacts caused by the effects 

of MR scanner on EEG data. However, there are many more applications which can 

be dealt with using this method. Some of the candidates for such applications include 

localization and magnitude estimation of cardiac related artifacts in BOLD data [31] 

and magnetohydrodynamic (MHD) removal from multichannel ECG recordings during 

magnetic resonance imaging [82, 19]. Another possible application of this method is 

condition monitoring of rotating machinery. Cyclostationary techniques have been used 

in this field and the research is still on going [11, 12].
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Singular spectrum analysis is a powerful technique for analyzing time series. This 

method has been successfully utilized in different applications. However, there is still 

no general rule for selecting the embedding window length. This can be an attractive 

research path for future work.

Subspace selection is also a challenging issue in using SSA for different applications. 

A variety of measures can be utilized to compare the statistical or spectral properties of 

the candidate subspaces with what we expect from the sources of interest. For example, 

one can measure the second order statistics of different subspaces at some particular 

time delays and select among them. Kurtosis can be another suitable measure when 

there is significant difference between Gaussianity of expected subspaces. Some pos­

sible candidate applications of this technique in biomedical signal processing include 

epilepsy prediction from EEG signals, localizing or removing heart generated artifacts 

from different biomedical recordings, and extracting murmurs from heart sound signals.
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