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ABSTRACT

Data mining refers to the automation of data analysis to extract patterns from large 
amounts of data. A major breakthrough in modelling natural patterns is the 
recognition that nature is fractal, not Euclidean. Fractals are capable of modelling 
self-similarity, infinite details, infinite length and the absence of smoothness.

This research was aimed at simplifying the discovery and detection of groups in data 
using fractal dimension. These data mining tasks were addressed efficiently. The first 
task defines groups of instances (clustering), the second selects useful features from 
non-defined (unsupervised) groups of instances and the third selects useful features 
from pre-defined (supervised) groups of instances. Improvements are shown on two 
data mining classification models: hierarchical clustering and Artificial Neural 
Networks (ANN).

For clustering tasks, a new two-phase clustering algorithm based on the Fractal 
Dimension (FD), compactness and closeness of clusters is presented. The proposed 
method, uses self-similarity properties of the data, first divides the data into 
sufficiently large sub-clusters with high compactness. In the second stage, the 
algorithm merges the sub-clusters that are close to each other and have similar 
complexity. The final clusters are obtained through a very natural and fully 
deterministic way.

The selection of different feature subspaces leads to different cluster interpretations. 
An unsupervised embedded feature selection algorithm, able to detect relevant and 
redundant features, is presented. This algorithm is based on the concept of fractal 
dimension. The level of relevance in the features is quantified using a new proposed 
entropy measure, which is less complex than the current state-of-the-art technology. 
The proposed algorithm is able to maintain and in some cases improve the quality of 
the clusters in reduced feature spaces.

For supervised feature selection, for classification purposes, a new algorithm is 
proposed that maximises the relevance and minimises the redundancy of the features 
simultaneously. This algorithm makes use of the FD and the Mutual Information (MI) 
techniques, and combines them to create a new measure of feature usefulness and to 
produce a simpler and non-heuristic algorithm. The similar nature of the two 
techniques, FD and MI, makes the proposed algorithm more suitable for a 
straightforward global analysis of the data.
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Chapter 1

Introduction

This chapter presents a general background of methods, motivation and objectives 

adopted in this research. At the end, the structure of the thesis is outlined.

1.1 Background

Euclidean geometry has endured over the centuries because it provides a good basis 

for modelling the world, but there are many circumstances where it fails. An example 

of this is when in 1950 the English mathematician, Lewis Fry Richardson, needed to 

estimate the coast line of Great Britain. Richardson soon realized that the length of the 

coastline was indeterminate because it depended on the resolution with which the 

measurements were made. In order to describe non-Euclidean structures, in 1977 the 

mathematician Benoit Mandelbrot developed the concept of a dimension that had no 

integer values and was capable of performing multi-resolution analysis. The term 

given by Mandelbrot to the dimension was Fractal. Since 1977 FD has attracted 

attention as a practical tool in many branches of science where Euclidean distance is 

used. Scientific fields such as hydrology, geophysics, biology and communication 

systems are just some examples (Mandelbrot and Ness, 1968).

When researchers realized how well fractals mimicked nature, they started to explore 

how to measure and apply the FD in their investigations. The FD has been used as a 

method of quantifying the complexity of a wide variety of materials, objects and 

phenomena. For example the growth of tree structures; nerve cell growth and 

degeneration, osteoporosity, metal fatigue, fractures, diffusion and electrical discharge 

phenomena. The FD can measure the texture of a surface and is able to replace or 

augment Fourier methods by providing an index of surface roughness quantification 

(Borodich, 1997).

Image compression is another field in which fractals have been introduced and proven 

useful. Fractal image compression methods were developed by Michael Barnsley in
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1987 when he set up his company, Iterated Systems. Most images exhibit a high 

degree of redundancy in their information content: for example most adjacent pixels 

will be the same or of similar colour or intensity. This redundancy can be used to 

repack the image so that it takes up less storage space (Barnsley, 1988).

Contemporary Computer Aided Design (CAD/computer aided manufacturing (CAM) 

theories and systems are well developed only for Euclidean analytical objects, lines, 

curves and volumes. However, there are still many types of objects such as flexible 

objects with a deformable geometry, and non-Euclidean geometrical objects, that 

cannot be modelled by the current CAD representation schemes. In this case, the FD 

can be used to mathematically define these types of products (Chiu et al., 2006).

1.2 Fractal Mining

The goal of data mining is to find patterns. Classical modelling approaches look for 

Gaussian patterns that often appear in practice. However, distributions such as 

Poisson and Gaussian, together with other concepts like uniformity and independence, 

often fail to model real distributions. Work done in data mining and pattern 

recognition shows how fractals can often reduce the gap between modelling and 

reality. FD is used in the following ways:

• To find patterns in a cloud of points embedded in the hyper space.

• To find patterns in time sequences useful in characterization and prediction.

• Graph representation e.g. social or computer networks.

The first is when multidimensional clouds of points appear in traditional relational 

databases, where records with N  attributes become points in N-D spaces (age, blood 

pressure, etc), for example medical databases, 3-D brain scans (Arya et al., 1993) and 

multimedia (Faloutsos et al., 1994) databases. In these settings the distribution of the 

N-d points is seldom uniform. It is important to characterize a deviation to this 

uniformity in a concise way (Agrawal and Srikant, 1994) and to find accurate and 

short descriptions in the databases. The characterization of the data helps to reject 

some useless information and to provide hints about hidden rules.

2



The second task is when data changes through time. Time sequences appear very 

often in many of data applications. For example, there is a huge amount of literature 

in linear (Box et al., 1994) and non-linear forecasting (Castagli and Eubank, 1992) as 

well as in sensor data (Papadimitriou et al., 2003).

The third task is so general that it seems to be apparent everywhere, precisely because 

graph representation has a large number of applications, for instance in the world 

wide web which is probably the most impressive real network. So finding patterns, 

laws and, regularities in large real networks has numerous applications. Examples 

include: Link analysis, for criminology and law enforcement (Chen et al., 2003); 

analysis of virus propagation patterns on social/e-mail networks (Wang et al., 2000). 

Another application is the analysis of empirical data collections of DNA segments, 

called Networks of Regulatory Genes to indicate possible gene connections and 

interactions they have with proteins to perform their functions (Barbasi, 2002).

An extended enterprise is a type of network comprising interconnected organizations 

sharing knowledge and manufacturing resources. The individual organizations team 

up with one another so that their competitive advantage can be improved. Fractals are 

introduced into the construction of extended enterprises to enable simpler 

performance and transparency in terms of modality, information, functionality and 

time (Hongzhao et al., 2004).

1.3 Statistical Entropy

Entropy is considered a form of information and can be used to measure uncertainty 

of random variables (Fast, 1962). Unlike energy, information is not conserved. 

However, an analogy between information and energy is interesting because they 

share several properties. Energy and information can exist in any region of space, can 

flow from one place to another, can be stored for later use, and can be converted from 

one form to another.

In the context of physical systems uncertainty is known as entropy. In communication 

systems the uncertainty regarding which actual message is to be transmitted is also
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known as the entropy of the source. The general idea is to express entropy in terms of 

probabilities, with the quantity dependent on the observer (features in the case of 

data). One person may have different knowledge of the system from another one, and 

therefore would calculate a different numerical value for entropy.

Statistical entropy is a technique that can be used to estimate probabilities more 

generally. The result is a probability distribution that is consistent with known 

constraints expressed in terms of averages. This principle has applications in many 

domains, but was originally motivated by statistical physics, which attempts to relate 

macroscopic, measurable properties of physical systems. Physical systems, from the 

point of view of information theory, provide a measure of ignorance (or uncertainty, 

or entropy) that can be mathematically calculated.

1.4 MI (Mutual Information)

MI is a measure that shows the amount of information between two random variables 

x and y. In MI conditional entropy is used to calculate the reduction of uncertainty 

about the variable x, when y  is known (Cover and Thomas, 2006). For example MI is 

used in text classification to calculate the amount of information between certain 

words and the rest of the document (Michel et al., 2008). MI is used in speech 

recognition and to find combinations of audio feature stream (Ellis and Bilmes, 2000). 

Other areas of application of MI are probabilistic decision support, pattern 

recognition, communications engineering and financial forecast (Fayyad et al., 1996). 

More recently, MI has been widely used in data mining due to its robustness to noise 

and to data transformations.

1.5 Motivation

Finding groups in data is a practical way to handle large amounts of data. Powerful 

mathematical and statistical concepts such as fractals, MI and entropy are tools that 

work well independently, which have never been combined before, for data mining.
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A combination of these tools to simplify supervised and unsupervised data mining 

methods is addressed in this research as set out below:

• Divisive hierarchical clustering algorithms are not generally available in the 

literature and have rarely been applied due to their computational 

intractability. In this research a combination of hierarchical clustering and 

fractals is proposed to make divisive clustering more accessible than existing 

methods such as that developed by Kaufman and Rousseeuw (2005).

• To identify important features, when labels are not available, in a dataset is a 

problem without a direct solution. An unsupervised feature selection approach 

based on fractals instead of Euclidean geometry is developed to improve on a 

solution proposed in (Dash et al., 1997).

• Common supervised feature selection algorithms (Liu et al., 2008, Peng et al., 

2005) rely mainly on heuristics tools such as search techniques and learning 

machines to find correlations at the cost of burdening the feature selection 

process. FD in combination with other tools can alleviate computational 

burden in a pure mathematical basis.

1.6 Aim and Objectives

The overall aim objective of the research is to combine fractals, statistical entropy and 

MI techniques for the development of new algorithms, to simplify the detection of 

groups in data under an unsupervised and a supervised framework.

The specific objectives are summarised as follows:

• To develop a new simpler top-down hierarchical clustering algorithm that uses 

the FD as a similarity measure. The methodology gives the algorithm the 

capability to find clusters without any initialization step which is needed in 

previous fractal clustering algorithms.
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• To develop an unsupervised Feature Selection (FS) algorithm that combines 

the FD and statistical entropy to detect useful features. The use of the FD 

reduces the complexity of the statistical entropy calculation and the removal of 

irrelevant features.

• To develop a supervised FS algorithm that combines FD and MI to maximize 

the relevance and minimize the redundancy of features simultaneously. The 

algorithm should select useful features without using any intermediate or 

heuristic subset evaluation step as is used in current FS frameworks.

1.7 Outline of the thesis

Chapter 2: This chapter gives an overview of classical FS approaches and clustering. 

Fractals, entropy and MI concepts followed by their applications in data mining are 

introduced.

Chapter 3: This chapter proposes a new clustering approach to find natural clusters in 

data. The algorithm uses the FD as a similarity measure among instances. The divisive 

approach used in the algorithm simplifies the analysis procedure of previous Fractal 

Clustering (FC) algorithms.

Chapter 4: In this chapter, a new Unsupervised Feature Selection (UFS) algorithm 

that ranks the features in terms of importance is proposed. The algorithm takes 

advantage of mathematical properties of the FD to reduce the complexity of the 

entropy function, to calculate relevant features under an unsupervised framework.

Chapter 5: In this chapter a new FS method that uses MI and FD is presented. The 

proposed method maximises the relevance and minimises the redundancy of the 

attributes simultaneously. The new method proposes a simpler framework for the 

evaluation of useful features.

Chapter 6: In this chapter, the conclusions and the main contributions of this thesis 

are presented. Suggestions for future research in this field are also provided.

6



Chapter 2

Background

This chapter presents an overall description of the basic concepts, FD, statistical 

entropy and MI that are used in this research. The chapter also introduces clustering 

and unsupervised and supervised feature selection approaches and gives recent 

examples of clustering and feature selection techniques.

2.1 Fractal Dimension

Most of the objects that are present in nature are very complex and erratic in having a 

Euclidean geometric structure. Mandelbrot proposed the concept of fractal in trying to 

address a model able to describe such erratic and imperfect structures. Since 

Mandelbrot, (1977) proposed the technique of FD to quantify structures, it has 

attracted the attention of mathematicians (Flook, 1996), computer engineers and 

scientists in various disciplines. Mathematicians introduced FD to characterize self­

similarity to overcome the limitations of traditional geometry (Mandelbrot, 1982) 

(Schroeder, 1991). Engineers and scientists in the area of pattern recognition and 

image processing, have used the FD for image compression (Barnsley, 1988), image 

medical processing (Zhuang and Meng, 2004), texture segmentation (Chaudhuri and 

Sarkar, 1998), face recognition (Zhao et al., 2008), de-noising (Malviya, 2008), and 

feature extraction (Traina et al., 2000). Physicists, chemists, biologists and geologists 

have used the FD in their respective areas as well. Fractal theory is based on various 

dimension theories and geometrical concepts. There are many definitions of fractals 

(Mandelbrot, 1982). In this thesis, a fractal is defined as a mathematical set with a 

high degree of geometrical complexity. This complexity is useful to model numeric 

sets such as data and images.
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2.1.1 Self-Similarity

One of the characteristics of fractals is self-similarity as shown in Figure 2.1 by 

Sierpinsky pyramid and triangle. This property defines the geometrical or statistical 

likeness between the parts of an entity (dataset) and the whole entity (dataset).

Self-similarity implies a scaling relationship when little pieces of an object are exact 

smaller copies of the whole object, i.e., smaller pieces of a fractal will be seen at finer 

resolution. Self-similarity specifies how the small pieces are related to the large 

pieces, thus self-similarity determines the scaling relationship. For example, consider 

a line segment to measure its self-similarity a line is divided into M  smaller line 

segments, this will produce 77 smaller objects. If the object is self-similar each of the 

77 smaller objects is an exact but reduced size copy of the whole object. The self­

similarity d  can be calculated direct from the equation

T] = M d (2.1)

m  n  M d

line

square

cube

Fig. 2.1: Self-similarity in 1, 2 and 3 dimension. 77 new pieces when each line 

segment is divided by M.



Equation (2.1) is solve for d  using logarithms properties on both sides of the equation 

as is shown next

d  log 2 (M) = log 2 (77) (2.2)

and finally equation (2.2) can be written as

d =  (2.3)
log 2(M )

To quantify the self-similarity of an object its FD needs to be calculated. FD describes

how the object fills up the space, giving information about its length, area and

volume. Its value can be an integer or a fraction.

■ArA

Fig. 2.2: a) Sierpinsky pyramid, b) Sierpinsky triangle.

Mathematically, the FD of a given set A is defined as follows:

dlo g 2r
(2.4)

where £ is the FD of the set A. Bn denotes the number of boxes used to cover the

object and r the length of the box side. The FD describes how an object fills up a 

space and gives information about the length, area, or volume of an object. The box-
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counting method illustrated in Fig (2.3) is probably the most popular method due to 

its simplicity and good accuracy.

2.1.2 Box Counting Dimension

The box counting dimension is a useful way to measure the FD. The method consists 

in covering an object (data) with a grid and counting how many boxes the grid 

contains, for at least some part of the object. The counting process is repeated a 

certain number of times (resolutions), each time using boxes half the size of the boxes 

used the previous time. The box counting method calculates the FD dimension using 

the slope, shown in Fig (set number), of the plot log(rj(S)) versus log(l/ S) where 

rj(S) is the number of boxes occupied and r is the size of the box.

Step 1 r  Step 2 r/2

Step 4 r/8

Fig. 2.3: Illustration of box-counting method, in every step the size of the grid r is 

decreased in half to analyse the data in different level of resolutions.

Each of the resolution in each step of the box-counting method generates a point like 

the ones show in Fig 2.4. The quantity for the first resolution corresponds to the first 

point up-right of the graph, and the last resolution corresponds to the last point 

bottom-left.

Step 3 r/4

10



Log 1 /5

Fig. 2.4: Points generated to calculate the FD of an object.

If an object is perfectly self-similar the points generated in Fig 2.4 would create a 

perfect linear plot.

2.2 Clustering

Cluster analysis has its origins some thirty years ago when biologists and social 

scientists began to look for systematic ways to find groups in their data. The term data 

clustering first appeared in the title of a 1954 article dealing with anthropological data 

in a Journal from the Royal Society. The aim of clustering is to find a structure in data 

to generate hypotheses, detect anomalies, and indentify salient features. It can be used 

for natural classification to identify the degree of similarity among instances in data. 

Clustering has also been employed for compression as a method for organizing the 

data and summarising it through cluster prototypes. For all these reasons clustering is 

considered exploratory in nature (Jain, 2009).

The availability of computers made it possible to implement the resulting ways into 

algorithms, for different types of data. The most popular and simple clustering 

algorithm, k-means, was first published over 50 years ago. Thousands of Clustering 

algorithms have been published since then in a rich variety of scientific fields.

Nowadays clustering is applied in different fields, such as: Geosciences, political 

science, marketing, Artificial Intelligence (AI), chemometrics, ecology, economics, 

medical research, psychometrics. Since the eighteenth century researches such as 

Linnaeus and Sauvages have provided extensive classification of animals, plants,
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minerals and diseases. In astronomy Hertzprung and Russell classified stars into 

various categories using their light intensity and their surface temperature. In social 

science for example behaviour and preferences are usually used to classified people. 

Marketing tries to identify market segments which are structured according to similar 

needs of consumers (Arabie and Hubert, 1994). In geography the objective is to group 

different types of regions. In medicine discriminating different types of cancer is one 

of the main applications as well as studying the genome data (Brandon et al., 2009). 

In chemistry classifying compounds and in history grouping archaeological 

discoveries, are other uses of clustering.

Image segmentation, a branch of AI, is an important problem in computer vision 

which is being formulated as a clustering problem (Jain and Dubes, 1988a, Frigui and 

Krishnapuram, 1999, Shi et ah, 2000). Automatic text recognition can be efficiently 

performed using hierarchical clustering techniques (Iwayama and Tokunaga, 1995). 

Clustering is also used in planning group services to deliver engagements for 

workforce management (Hu et ah, 2007).

2.2.1 Clustering Techniques

Clustering methods can be broadly classified into two categories: partitioning and 

hierarchical methods (finding groups in data). In partitioning methods the basic idea 

is to construct k clusters. In each cluster there is at least one object and each object 

must belong to exactly one of the clusters. To satisfy this, there must be at least as 

many objects as there are clusters. In partitioning methods the number of clusters is 

given by the user. Not all values of k lead to a “natural clustering”, so it is suggested 

to run the algorithm a few times using different values for k. A different option is to 

leave the computer to decide the number k  by trying many possible values and 

choosing the one that is best at satisfying a particular condition.

Partitioning methods try to find a “good” set of clusters in which the members in each 

are close or related to one another, and the members of different clusters are far apart 

or very different. The goal is to uncover a structure that is already present in the data. 

The most popular partitioning methods are k-means and k-medoid which determine k
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cluster representatives (centroids) randomly, and assign each object to the cluster with 

its representative closest to the object. The procedure iterates until the distances 

squared between the objects and their representatives is minimized. Extension of k- 

means and k-medoids for large databases is CLARANS and BIRCH (Zhang et al., 

1996). Other types of partitioning methods are those which identify clusters by 

detecting areas of high density object population. DBSCAN (Ester et al., 1996) finds 

these regions, which are separated by low density points, by clustering together 

instances in the same dense region. Self-Organizing Map (SOM) is an effective 

clustering algorithm (Kohonen, 1982) that can converge into optimal partitions 

according to similarities in the data. The SOM performs with prototype vectors that 

themselves can be associated to each cluster centroid. There are different versions of 

the SOM algorithm that try to overcome the measure of similarity among objects 

(Alahakoon and Halgamuge, 2000).

Hierarchical methods are among the first techniques developed to perform clustering. 

Unlike partitioning methods, hierarchical methods do not divide the data in a 

determined number of clusters. In theory they deal with all the values of k from one to 

n which is the number of elements in the data. When the partition has k=l clusters, 

all the instances are together in the same cluster, and when the partition has k=n every 

instance is considered a cluster. The only difference between k=r and k=r+l is that 

one of the r clusters is divided to obtain r+1 clusters. Note that hierarchical 

algorithms can be used to generate a partition by specifying a threshold on the 

similarity of the instances.

There are two types of hierarchical techniques. The first is called agglomerative, and 

the second, divisive. They construct their hierarchy in opposite directions, usually 

causing different results. The agglomerative approach builds clusters by merging two 

smaller clusters in a bottom-up mode. All the clusters together form a tree where leafs 

are the generated clusters and the root is the group with all the data instances. The 

divisive approach splits a cluster into two smaller ones in a top-down mode forming 

also a tree, the root in this case is the opposite to that in the agglomerative approach. 

However the tree structure is not exactly the same and depends crucially on the 

criteria used to choose the clusters to merge and split.
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Hierarchical approaches have the disadvantage that they cannot correct what has been 

done in previous steps. In fact, once the agglomerative approach has joined two 

clusters, they cannot be separated any longer. In the same way when a divisive 

algorithm has divided an object, it cannot be reunited. However this limitation, in both 

hierarchical methods, is a key to achieve small computational times. On the other 

hand, hierarchical techniques do not really compete with partitioning approaches as 

they describe the data in a totally different way. The most well-known hierarchical 

algorithms are single-link and complete-link. Xiong et al., (2009) proposed a 

hierarchical divisive version of k-means called bisecting k-means, that recursively 

partitions the data into two clusters at each step.

2.2.2 Number of clusters

To determine how many clusters are in a dataset has been one of the main problems in 

clustering. Very often, clustering algorithms are run with different values of number 

of clusters (AT); the best value for K  is selected based on a predefined criterion. It is 

not easy to determine automatically the number of clusters, the task casts into the 

problem of model selection. The Dirichlet Process (DP) (Ferguson, 1973) (Rasmussen 

et al., 2009) proposes a probabilistic model to derive a posterior distribution for the 

number of clusters, from which the most likely number of clusters can be computed. 

Other techniques to calculate the number of clusters are Bayes Information Criterion 

(BIC) and Akiake Information Criterion (AIC). (Tibshirani et al., 2001) use gap 

statistics assuming that when the data is divided into an optimal number of clusters, 

the partition is more resilient to random perturbations. Figueiredo et al., (2006), Jain 

and Flynn, (1996) use the MML (Minimum Message Length) criteria together with 

GMM (Gaussian Mixture Model). This approach starts with a large number of clusters 

which are gradually reduced if the MML criterion is minimized.

2.2.3 Cluster Validity

Cluster validity procedures intend to evaluate qualitatively and objectively the results 

of the cluster analysis. There are three basic criteria in which cluster validity can be 

performed: internal, relative, and external (Jain and Dubes, 1988). The internal
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criterion compares the fit between the structure generated by the clustering algorithm 

and the data using the data alone. Hirota and Pedrycz (1985) propose a way of 

evaluating the fuzzy clustering methods using probabilistic sets and entropy 

characterisation. The relative criterion compares multiple structures that are generated 

by the same or by different algorithms, and decides which one of them is better. The 

external criterion measures the performance by matching the cluster structure to a 

priori information namely the class labels.

There is no best clustering algorithm. Each cluster algorithm imposes a structure on 

the data either implicitly or explicitly. When there is a good match between the model 

and the data, generally good partitions are obtained. Since the structure of the data is 

not known in advance, several approaches need to be tried before determining the best 

clustering algorithm for the application at hand. The idea of no clustering algorithm is 

the best is partially captured by “the impossibility theorem”. This theorem states that 

no single clustering algorithm simultaneously satisfies three basic axioms of 

clustering. The first is scale invariance, i.e. an arbitrary scaling of the similarity metric 

must not change the clustering results. The second axiom is richness, i.e. the 

clustering algorithm must be able to achieve all possible partitions of the data. The 

third is consistency, i.e. shrinking within cluster distances and stretching between- 

cluster distances, the clustering results must not change (Kleinberg, 2002).

The development of a top-down hierarchical clustering algorithm is presented in 

chapter four. The algorithm uses FD as a similarity measure. The validation of the 

clusters is done using the class label (Dash et al., 1997).

2.3 Feature Selection Approaches

The objective of FS is to find a set of features of a certain size that provide the largest 

generalization and stability in data predictions. This has been mainly performed by 

selecting relevant and informative features that increase the efficiency of existing 

learning algorithms. FS is one of the central problems of machine learning so many 

algorithms incorporate the FS step in their framework. FS can have some other 

motivations such as:
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• General data reduction - to limit storage requirements and increase algorithm 

speed.

• Feature set reduction - to save resources in the next round of data collection or 

during its utilization.

• Performance improvement - to gain in predictive accuracy in the predictions.

• Data understanding - to gain knowledge about the process that is generated by 

the data or simply to visualize the data.

A critical aspect of FS is to properly assess the quality of the features selected:

• Evaluation criterion definition (relevance index or predictive power).

• Evaluation criterion estimation (or assessment method).

Two of the main frameworks developed for feature selection are filters and wrappers. 

Both frameworks differ mainly in the way they evaluate the quality of the features. 

Filters uses evaluation criteria that does not employ feedback from learning machines 

for example criteria such as relevance index based on correlation coefficients or test 

statistics are examples of these criteria. Wrappers on the other hand use the feedback 

of the learning machine to assess the quality of the features. There is a third approach 

for feature selection called the embedded method which incorporates the feature 

subset selection and evaluation in the learning machine (predictor) (Guyon et al., 

2006).

2.3.1 Filter approach

The filter method, termed in (John et al., 1994), forms part of feature selection 

algorithms that are independent of any learning method. Such a method performs 

without any feedback from predictors and uses the data as the only source of
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performance evaluation. These characteristics make the filter method the least 

computationally expensive approach and the least prone to overfit the learning 

machine.

All features ►

Fig. 2.5: Filter Approach.

The filter approach has a framework in which FS is performed as a pre-processing 

step for learning. In this framework there is no connection between the learning 

machine and the FS algorithm during the feature evaluation process. This 

characteristic gives to filters a remarkable superiority in terms of simplicity over other 

FS frameworks. Two of the most famous filter methods for feature selection are 

RELIEF and FOCUS (Kira and Rendell, 1992). In RELIEF the final subset of features 

is not directly selected, but rather each of the features is ranked in terms of its 

relevance to the class label. This FS method is ineffective at removing redundant 

features as the algorithm determines that a feature is important even if it is highly 

correlated to others.

The FOCUS algorithm guides an exhaustive search through all the feature subsets to 

determine a reduced set of relevant features. The search technique criterion makes 

FOCUS very sensitive to noise and to missing values in the training data. Moreover, 

the exponential growth of the number of possible feature subsets makes this algorithm 

impractical for domains with more than 25-35 features. The wrapper methodology 

proposed in (Kohavi and John, 1997) offers a simpler and more powerful way to 

search the feature subset space as it relies on a learning machine to evaluate the 

relevance of the features.

2.3.2 Wrapper approach

The wrapper approach is the second type of feature selection method. This approach 

receives direct feedback from a learning machine to evaluate the quality of the feature 

subsets. The machine learning is directly connected to the wrappers in order to drive

Filter
Feature
subset Predictor
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the search and train the learning model with all the subset of features. It is because of 

its structure that wrapper approach requires a higher computational effort to find an 

optimal subset of features.

All features
Multiple
Feature
subsets

Predictor

Wrapper

Fig. 2.6: Wrapper Approach.

Traditionally researches have been concerned about finding the best subset of 

features; in which the error estimation procedure yields a value no larger than for any 

other subset. But in the absence of a tractable strategy to do so, one which is able to 

guarantee the best subset, a useful strategy has to be considered.

In order to improve the tractability of wrappers, simpler search techniques are needed. 

Some of the simplest and most popular search techniques proposed by researchers are: 

greedy backward elimination, forward selection and nested (Guyon et al., 2006). 

These search techniques suffer from two main drawbacks: the first one is a tendency 

towards a sub-optimal convergence. The second drawback is the inability to find 

possible interactions among attributes. Despite these limitations, wrappers tend to 

produce better results in terms of classification accuracy.

In the section 2.2 a wide review of search techniques that can be used together with 

filters, wrappers and embedded, is presented.

2.3.3 Embedded approach

The embedded method unifies both theoretical methods, filter and wrappers. It creates 

a specific interaction between the learning machines and the feature selection process. 

This interaction combines the two procedures into one single entity. The inclusion of 

the feature selection process into the classifier learning procedure means the 

embedded methods are specific to the type of classifier that are considered (Guyon et
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al., 2006). In contrast, wrapper approaches are independent from the kind of 

classifiers used, since any learning machine can be used to measure the quality of the 

features. The main advantage of the embedded method is a reduced computational 

effort than the wrapper method as it avoids repeating the whole training process to 

evaluate every possible solution.

All features Embedded method

Predictor

Fig. 2.7: Embedded Approach.

Each of the three feature selection approaches (filter, wrapper and embedded) has 

advantages and disadvantages. The filter approach is the fastest of the approaches as 

no learning is incorporated in the process of analysis. The wrapper approach, on the 

other hand, is the slowest one because in each iterations evaluates a cross-validation 

scheme. If the function that measures the quality of the feature subset is evaluated 

faster than the cross-validation procedure, the embedded method is expected to 

perform faster than the wrapper method. Embedded methods have higher capacity of 

generalization than filter methods, and are therefore more likely to overfit when the 

number of training samples is smaller than the number of dimensions. Thus, filters 

are expected to perform better when the number of training samples is limited.

All of the three previous approaches show difficulties in defining a relevance criterion 

(a relevance index for the performance of a learning machine) which has to be 

estimated from a limited amount of training data. Two strategies are possible: ‘in- 

sample’ or ‘out-of-sample’. The first one (in-sample) is the “classical statistics” 

approach. It refers to using all the training data to compute an empirical estimate. The 

estimate is then assessed with a statistical test to measure its significance, or with a 

performance bound test to give a guaranteed estimate. The second one (out-of- 

sample) is the “machine learning” approach. It refers to splitting the training data into 

a training set used to estimate the parameters of a predictive model (learning machine) 

and a validation set used to estimate the model predictive performance. Averaging the
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results of multiple splitting (or cross-validation) is commonly used to decrease the 

variance of the estimator (Guyon et al., 2006).

2.4 Unsupervised Feature Selection Approaches

The objective of UFS is to select relevant features to find natural clusters in data. 

Feature selection can occur within two contexts: FS or UFS. As explain previously the 

difference between the two contexts is that FS is used for classification purposes, and 

UFS is applied for clustering tasks. It is broadly accepted that a large number of 

possibly not useful features can adversely affect the performance of learning 

algorithms, and clustering is not an exception. While there is a large amount of work 

on FS, there is little and mostly no recent research on UFS. This can be explained by 

the fact that it is easier to select features in a supervised context than in an 

unsupervised one. The reason for this is that in supervised learning it is known a priori 

the learning goal. The case is not the same for the unsupervised context, where the 

lack of label makes the relevant features hard to determine.

To find relevant features in data when the labels are not available (UFS) has to be 

seen exclusively as a problem within the data itself. In order to solve this problem, 

researchers have focused on looking for search techniques, evaluation functions and a 

stopping criterion.

The three approaches used in FS, filter, wrapper and embedded can be employed for 

UFS. The three approaches in USF follow the same line of efficiency as in the 

supervised context. The superiority of wrappers has been noticed in works such as 

(Guyon et al., 2006). However, their essential characteristics of using greedy search 

procedures remain suggesting that the filter approach is a less computational 

expensive alternative.

Wrappers and filters are the two approaches mainly considered to perform UFS tasks. 

Wrappers are relatively easy to implement in the supervised context since there is an 

external validation measure available (labels). On the contrary, in the unsupervised
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context labels are not available and the wrapper has no guidance for the learning steps 

required in its FS process.

The main advantage of wrappers is that, in some cases, they are able to achieve the 

same performance as filters using fewer features. The probable reason for this is that 

most of filters techniques do not eliminate redundant features. Redundant features are 

those features that will not provide any improvement on the selected subset (Talavera,

2005). Filters might be less optimal than wrappers, but they are still reasonably good 

in performance and much less computationally expensive. The filter approach 

employs a sort of criterion to score each feature individually and to supply a ranking 

list. This approach can be extremely efficient as it has a less complex scoring 

procedure than other approaches.

Assuming the goal of clustering is to optimize some objective function to obtain 

“good quality” clusters, it is possible to use the same function to estimate the quality 

of different feature subsets. Although labels, when they are available, can be used as 

an external measure to validate the discovering of clusters.

2.5 Unsupervised Feature Relevance

Features are said to be relevant if they are able to give a good description of the 

elements in a dataset. The objective of clustering is to group similar elements together 

(Kaufman and Rousseeuw, 2005) to have a good description of them. Irrelevant 

features have no influence on forming distinct clusters, but relevant ones do. The 

similarity of the dataset depends on the correlation of the features. Most clustering 

algorithms assume that the features in the dataset are equally important for the 

clustering task. But contrary to this, different features have different impact in 

creating clusters. A relevant feature helps to create a cluster while an irrelevant one 

may affect negatively (Dash and Liu, 2000).

In (Dash et al., 2002) a filter algorithm is presented with an entropy measure to 

determine the relative relevance of features. The algorithm ranks the features in terms 

of relevance taking into account the whole data rather than just individual clusters.
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Talavera (2005) developed a wrapper algorithm based on Expectation Maximisation 

(EM) to estimate the maximum likelihood. This algorithm performs the clustering 

while at the same time selecting the best subset of features. In a general way this is an 

iterative procedure which alternates between two steps: the expectation step, and the 

maximisation step. An agglomerative algorithm developed by (Talavera, 2005) 

considers as relevant features, those ones which present high dependency within the 

rest of the features. The algorithm at each step merges similar values of elements 

among all the features, encouraging cohesive clusters and determining the most 

relevant features for these clusters.

RIS is a method proposed in (Kailing et al., 2003) that ranks subsets of features 

according to their clustering structure. The criterion used to measure the quality of the 

subsets is a density-based clustering notion of DBSCAN (Ester et al., 1996). RIS 

performs a bottom-up navigation through sets of possible subsets accumulating 

information and ranking them in terms of importance. Baumgartner and Plant, (2004) 

proposed an algorithm called SUREING (SUbspaces Relevant For clusterENG). This 

algorithm measures the relevance of a subset of features using a criterion based on its 

hierarchical clustering structure.

2.6 Statistical Entropy

The concept of entropy was firstly explained by Boltzman in 1872. The statistical 

entropy defined in Eq. (2.3) was initially derived only for the number of possible 

arrangements in a gas or mixture of gases (Fast, 1962). However, its validity is so 

general that in all cases, as yet investigated, it leads to the same results analogous to 

thermodynamics. The tendency of entropy to a maximum value according to Eq. (2.3) 

means nothing else but a tendency to a state of large number of microstates, i.e. the 

tendency to a more probable state

S = k\nm  (2.5)

The number of micro-states in the most probable distribution can be written 

mathematically as S  = k h .g max. Applying this equation to a gas only counts those
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micro-states in which the gas, macroscopically considered, is distributed uniformity 

over the available space. On the other hand, when using Eq. (2.3) one only counts the 

microstates which correspond to non-uniform distributions.

The statistical definition of entropy is often introduced using the connection between 

probability and entropy. The principle is that the entropy is a function of the number 

of different ways in which m, a thermodynamic state, can be realized:

According to classical thermodynamics a reversible state is reached in an isolated 

system, as soon as the entropy is at the maximum.

2.6.1 Entropy in Data Mining

ID3 is a very popular induction algorithm that uses the entropy measure to find the 

necessary information to classify instances. ID3 builds a decision tree system 

selecting the attribute with the minimum entropy in every node to split the tree 

(Quinlan, 1986). C4.5 is the successor of ID3 and is one of the most widely used 

decision tree algorithms. C4.5 has been augmented to C4.5 Rules to convert a 

decision tree into a rule set (Quinlan, 1995).

Zhu et al., (2010) proposed a model-based approach to estimate the entropy to 

overcome the sparseness in gene expression data. The entropy on a multivariate 

normal distribution model of the data is calculated instead on the data itself.

Lee et al., (2001) presented an algorithm that divides the feature space into good non­

overlapped decision regions for classification applications. The algorithm divides the 

feature space using the feature distribution information calculated by Fuzzy entropy.

S = f ( m ) (2.6)

If two systems are considered A and B  as one system AB, its entropy is:

(2.7)
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Yao et al., (1998) proposed an entropy-based clustering method that calculates the 

entropy at each data point and selects the one with minimum entropy as the first 

clusters centre. The algorithm automatically calculates the number and location of the 

cluster centres. After this, all data points that have similarity are placed, within a 

threshold, in a chosen cluster centre.

Cheng and Wei (2009) proposed a new entropy clustering method using adaptive 

learning able to find natural boundaries in datasets and classify similar objects into 

subsets. The algorithm uses a similarity measure among data points based on the 

calculation of entropy between two instances (Dash et al., 1997).

Wang (2005) developed algorithms that address the problem of clustering under the 

framework of possibility theory based on entropy. The algorithm has a number of 

advantages over other entropy-based approaches such as the ones in (Karayannis, 

1994, Li and Mukaidono, 1995, Lorette et al., 2000). The algorithm calculates 

automatically the number of clusters by repeatedly merging similar clusters. A 

resolution parameter is proposed that determines regions of high density in the 

dataset.

Jing et al., (2007) extended the k-means algorithm by calculating a weight of 

importance for each dimension in each cluster. This is achieved using weight entropy 

in an objective function, that is minimized during the k-means clustering algorithm.

Tsai and Lee (2004) proposed an entropy based approach in neural networks that 

improves the learning speed, size or recognition accuracy for classification of 

structures. Entropy has been successful in determining the architecture of 

conventional neural networks in (Bichsel and Seitz, 1989, Cios and Liu, 1992, Lee et 

al., 1999). To improve the performance of a classifier Wang and Sontakke (2005) 

introduced a new packet classification algorithm that hierarchically partitions rule- 

bases using entropy and hashing.
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2.6.2 Entropy as Relevance Measure

In principle, statistical entropy is a technique that can be used to estimate input 

probabilities by calculating a probability distribution expressed in terms of averages. 

Statistical entropy has applications in many domains. Started being used in statistical 

physics to relate macroscopic and measurable properties of physical systems at 

atomic or molecular level (Dash and Liu, 2000). In the case of physical systems, 

entropy is considered a measure of uncertainty. In communications systems the 

uncertainty regarding which actual message is to be transmitted is known as the 

entropy of the source. In general, entropy depends on the observer. A person may 

have a different knowledge of the system from another and thus may calculate a 

different value for the entropy.

Data has orderly configurations if it has distinct clusters, and disorderly and chaotic 

configurations otherwise. Entropy is low in orderly configurations, and increases in 

disorderly configurations (Fast, 1962). Dash et al., (1997) proposed an algorithm to 

measure the entropy content in a data for several feature projections in order to 

determine irrelevant features. Jang and Chuen-Tsai, (1995) presented an algorithm 

based on entropy for UFS. Firstly the data is separated appropriately in clusters. 

Secondly for each of the clusters the entropy for different sets of features is computed. 

At the output, a list of features useful for the description of the data is generated.

Entropy has also been proposed for clustering analysis. For example, Cheng and Wei 

(2009) proposed a clustering algorithm based on entropy to avoid parameters. The 

method uses entropy to measure the mean of the distances between data points and the 

clusters centres.

2.7 Search Techniques Overview

Because of the difficulties with optimal strategies, researches have proposed more 

complex search techniques to find reasonably good features subsets (features in the 

context of FS) without exploring all of them. There are plenty of these suboptimal 

approaches and some of them are described next:
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Exhaustive search is a simple method and the only which guarantees to find the best 

subset. It evaluates every possible combination of features. With n candidate variables 

there are 2” -1  subsets to go through, making impossible the evaluation of all of 

them in a practical amount of time.

Branch and bound is a strategy proposed in (Narendra and Fukunaga, 1997) that 

searches only part of the feature space. The strategy is based on the fact that once a 

subset S  consisting of more than d  variables has been evaluated, we know, thanks to 

the monotonicity property, that no subset of it can be better. Thus, unless S  excels the 

currently best known subset S o f target size d, the subsets of S  need not be evaluated 

at all, because there is no way the evaluation result for any of them could exceed the 

score of S . However the algorithm still has an exponential worst case complexity, 

which may render the approach infeasible when a large number of candidate variables 

are available.

The Branch and Bound method is not very useful in the wrapper model, because the 

evaluation function is typically not monotonic, i.e. adding features cannot decrease 

the accuracy. While methods like the RBABM (Kudo and Sklansky, 2000) are able to 

relax the requirement slightly, the problem is that typical predictor architectures, 

evaluated for example using cross-validation, provide no guaranties at all regarding 

the monotonicity (Guyon et al., 2007).

2.7.1 Sequential Selection Algorithms

SBS {Sequential backward selection) is a sequential pruning of variables introduced 

by Marill and Green (1963). This method is the first search technique suggested for 

variable subset selection. SBS starts with the variable set that consists of all the 

candidate variables. During one step of the algorithm, remaining variables in the set 

are considered to be pruned. The results of the exclusion of each variable are 

compared to each other using certain evaluation function. The step is finished by 

actually pruning the variable whose removal yields the best results. Steps are taken 

and variables are pruned until a pre-specified number of variables are left, or until the 

results get not good.
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SFS {Sequential forward selection) is a similar algorithm to SBS proposed in 

(Whitney, 1971). The algorithm starts with an empty set and continues adding 

features. In one step each candidate feature that is not yet part of the current set is 

added, after the set is evaluated. At the end of the step, the feature whose inclusion 

resulted in the best evaluation is leaved in the current set. The algorithm proceeds 

until a pre-specifled number of features are selected, or until there is no more 

improvement in the results.

SFS executes faster than SBS as in the beginning of the search when both methods 

have a big amount of possible combinations to evaluate, SFS evaluates much smaller 

feature sets than SBS. It is true that at the end of the SFS much bigger sets are 

evaluated than in SBS even that in this stage of the search there are very few 

combinations left to be considered. SFS evaluates the features in the context of only 

those that are already included in the subset. Thus, it may not be able to detect a 

feature that is beneficial alone but combined with other features.

2.7.2 Second generation of Sequential Selection Algorithms

After the sequential selection algorithms became known, a plethora of new versions of 

these basic search strategies were proposed. Some examples of these are described 

next.

Generalized Sequential Feature Selection methods are simple generalizations of SFS 

and SBS which include or exclude a subset of g  number of features at a time and 

evaluate a created set. These types of algorithms are called GSFS (Generalised 

Sequential Forward Selection) and GSBS (Generalized Sequential backward 

Selection). When there are n — k  candidate variables to be included (excluded), this 

(n  — k \
results into evaluations in one step of the algorithm. This is much more than

I g )

the plain n - k  evaluations in SFS, even if g  is only two. On the other hand, the 

algorithms do not take as many steps as SFS and SBS, because they select more 

variables at a time, thus getting to a specified number of features using a smaller
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number of steps. However, the combinatorial evaluation of one step decreases the 

complexity in the overall number of steps.

Backtracking during search is a method that solves the nesting effect in SFS, SBS, 

GSFS or GSBS. Using any of these algorithms, if a feature is added or removed in 

one step it will never be removed or added later in the process. This creates a problem 

called the nesting effect: bad decisions made at the beginning of the search cannot be 

corrected later as the selected features are fixed in the subset without the possibility of 

removal.

Backtracking has been used to deal with the nesting effect. During the search an 

algorithm named PTA (Plus 1-Take Away) divides each step into two substeps. In the 

first substep, SFS is run to include / new features. The second substep consists of 

running SBS to exclude r features from those that have been already selected. A 

straightforward generalisation of the PTA is simply to run GSF and GSBS instead of 

SFS and SBS, and this is how Kudo and Sklansky (1999) describe the GPTA (General 

Plus 1-Take Away) algorithm. However Kittler (1978) took the generalization a bit 

further by running GSFS in such a way that every step is split in a predefined r 

number of steps, reducing computational complexity. If r is equal to one, the 

algorithm is reduced to the nongeneralized PTA algorithm.

Beam Search is a method in which more than one subset is considered to be selected. 

In certain occasions it may be useful to analyze several promising subsets without 

restricting the selection to only one of them. It may also be desirable to be able to later 

return to different feature subsets other than the one that was chosen as the best one. 

In (Aha and Bankert, 1996) a list o f several good feature subsets is maintained, when 

the list has only one set the algorithm is reduced to basic sequential selection. On the 

contrary, if there is a list with more than one good subset the algorithm analyses the 

first and then proceeds to analyse the subsequent ones in the list.

Floating search was introduced in (Pudil et al., 1994) and there are two versions of 

this methodology. The first is the SFFS (sequential forward floating selection) and the 

second is the SBFS (sequential backward floating selection). The basic idea in both is 

to perform a backtracking in the same way as in PTA, with the difference that in each
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step the number of substeps is not limited. These substeps continue for as many as 

you need in order to improve the results obtained in previous steps.

SFFS (SBFS) has two different and alternating stages. The first stage runs one step of 

SBS (SFS). The second stage performs SFS (SBS) in which continues for as long as 

the feature subset is the best in size. When the subset decreases in quality, the first 

phase takes place again. The original floating point search methods had a minor bug 

which was pointed out and corrected in (Somol et al., 1999). When the algorithm 

returns to the first stage might be the case that a subset with less quality than the 

previous ones is found. The flaw is that the algorithm analyses this less promising 

subset even when a better one has already been found. In addition, Somol et al. (1999) 

developed a more sophisticated versions of SFFS and SBFS. The version is named 

Adaptive Floating Search (AFS) which switches from GSFS to GSBS, or vice versa, 

to select the best features.

In floating search, when the amount of backtracking is large more time is taken but 

there is a good chance to select better features. In addition to this, the algorithm can 

be stopped at any time because it keeps track of the best feature sets. Acceptable 

results are often obtained even if the algorithm has not yet finished (Guyon and 

Elisseeff, 2003).

OS (Oscillating search) was proposed in (Somol and pudil 2000). The algorithm is 

initialized using SFFS or SFS to set a good guess of the optimal number of features d. 

The OS consists of what the creators call down-swing and up-swing. During these 

processes the algorithm searches for subsets that are smaller and bigger than d  

respectively. The amplitude of the oscillation decreases if an improvement comes up 

during the swing, otherwise it increases. In this way computing power is decreased by 

restricting the search in a reduced number of feature spaces.

Compound operator is a technique used in sequential methods to reduce the 

computational cost in the pruning of irrelevant features (Kohavi and Somerfield 

1995). Sequential methods waste computational power as irrelevance in the same 

features is calculated repeatedly in different subspaces.

29



The compound operator technique combines first and second best feature candidate to 

produce the first compound operator. More operators are produced by allocating the 

next best candidates. Candidates are added continuously until the operators do not 

degrade the result.

Stochastic search algorithms perform with random components. These components 

involve changes in the variable set. The changes vary depending on a particular 

initialization of the algorithm. This property of variability helps the algorithm to be 

more robust and consistent when values in the data are missed along different 

applications.

Stochastic optimization has been used to develop several algorithms for FS. Two of 

the most popular ones are Simulated Annealing (SA) and Genetic Algorithms (GA). 

They were first suggested for variable selection in (Siedlecki and Sklansky, 1988).

SA simulates the process of cooling down a body by minimizing its energy until it 

becomes a crystal structure. This analogy between the minimization energy process 

and the search for a minimum state in a system was first proposed in (Kirkpatric and 

Gelatt, 1983).

For FS applications SA is initialized randomly with a feature subset (high 

temperature). A small random change in the feature subset is introduced in all next 

steps of the algorithm. If the subset is better, the change is accepted. If the subset is 

worse, the change is accepted with a probability proportional to the change. At the 

beginning of the algorithm the probability of an adverse change is more likely to be 

accepted than at the end of the algorithm (low temperature). As the algorithm iterates, 

the temperature decreases very often when no improvements are found. This is the 

reason SA at the beginning, when the temperature is high, is able to escape easier 

from local optimum. Still, it is able to find the exact local optimum at the end of the 

search due to low temperatures. The temperature does not allow deteriorating changes 

to be made anymore.

GA is part of the stochastic optimization algorithms family, a comprehensive 

introduction can be found in (Michalewicz, 1992). While the idea of SA is based in
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physics GA comes from biological evolution motivation, where the best individual 

has the better chances of survival. In GA the solution subset of features is called 

chromosomes, and a set of solution subsets is a population. Another two concepts in 

GA, extracted from the biological vocabulary, are mutation and crossover. When 

mutation is applied a random bit or several bits of the chromosome are flipped to 

create a new chromosome. In crossover an offspring of two chromosomes is obtained 

by cutting both at some position and swapping the tails. A new population is formed 

when some of the chromosomes are retained in the old population, producing new 

chromosomes by applying genetic operations on the old chromosomes. The better the 

chromosome is the higher the probability of being selected to the new populations, or 

as parents in genetic operations.

Rapid randomized pruning: This method was proposed by (Stracuzzi and Utgoff, 

2004) to be specially used when the amount of relevant variables is small. The basic 

idea is to compute the probability that an important feature has in a randomly selected 

subset that is considered to be pruned. A subset of certain size is chosen to enable the 

straightforward removal of few features with a high probability of being irrelevant. If 

the estimation of the error increases as a consequence of the exclusion, it is concluded 

that one or more of the pruned features were relevant. In this case, the removal is 

cancel and a new random subset is chosen. This process continues until many 

consecutive iterations fail. When the process takes so long might be a sign that all the 

remaining features are relevant.

2.8 Relevance in Features

It is of great necessity to focus on the most relevant information when an 

overwhelming quantity and low quality data increases due to the massive generation 

of information of new technologies. From that point of view, preparing for learning 

can be divided into two subtasks: the first one, selecting which features are relevant in 

describing a principle and the second one, eliminating redundant ones.

In the machine learning literature there are a variety of definitions of feature 

relevance. The reason of this variety is that it always depends on the question:
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“relevant to what”, more specifically, different definitions may be more appropriate 

depending on one’s goal (application). Relevance has been studied for over fifty years 

by (Keynes, 1921) who proposed an intuitive meaning related to the relationship 

between objects. In the case of supervised learning the idea is to be relevant to the 

pre-determined class. Kohavi and John (1997) suggest two levels of relevance:

The first level is called strong relevance. This category includes those features which 

must be retained by the feature selection process. If any of these attributes is removed 

the descriptive power of the feature subset, S, is negatively affected.

Level 1 (strong relevance). A feature Xi is strongly relevant if there exists some xi, y, 

and SL for which p( Xi = xi, & = si) > 0 such that

p(Y = y X i =xi,Si = s , )*p(Y = yS, = s, )
(2 .8)

Weak relevance is the second level in terms of importance. This level includes 

features which are not essential to build a good feature subset. However, a weakly 

relevant feature can still be useful especially in combination with other features (Yu 

and Liu, 2004).

Level 2 (weak relevance). A feature Xi is weakly relevant if it is not strongly relevant 

and there exists a subset of features Si of Si, for which there exists some xi, y, and Si 

with p( Xi = xi, Si = of) > 0, such that

p(Y  = y X i =x„S ,  = s ' i ) * p ( Y  = yS ,  =s . )
(2.9)

A feature is relevant if it is either weakly relevant or strongly relevant otherwise, it is 

irrelevant (Kohavi and John, 1997b).

The third level of importance is called irrelevance, and includes features which are not 

useful at all.
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Fig. 2.8: Diagram for Relevant Features.

2.8.1 Relevance Approaches in FS

There are two types of FS approaches to detect relevance in features: univariate and 

multivariate. The univariate methods measure the individual relevance of the features 

and are considered faster and less prone to overfit. The multivariate methods which 

search for relevant subsets of features maintain the characteristics of wrappers and 

embedded FS methods.

A major disadvantage of the univariate methods is that they assume independence 

among features. The independence among features acts in two ways which are 

explained next:

• Features that individually are not relevant may become relevant in the context 

of other features.

• Features that individually are relevant may not all be useful because of 

possible redundancies.

Both multivariate and univariate FS methods typically focus only on measuring the 

relevance to the target. They keep relevant features and they eliminate the irrelevant 

ones.
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Features are considered relevant in general if their information distribution is 

dependant to the target. There are several approaches to estimate relevance index, 

some of them are explained next:

Correlation methods are perhaps the simplest approach for single feature relevance. 

The Pearson correlation (Press et al., 1988) coefficient is probably the most classic 

relevance index, and it is defined as follows:

and Y the n dimensional vector with all the target values. Pearson correlation is used 

to calculate redundancy among features and relevance to the class.

In a group of features the relevance grows within the correlation between class and 

features, and decreases within the growing of the correlation among the features 

(Ghiselli, 1964, Reynolds, 1977).

M I  is one of the most popular techniques that can be used as a measure of information 

dependence between two variables. If two variables are independent, there is no 

correlation between them and the MI between them is zero. If the two are dependent, 

the MI between them is closer to one.

An advantage of using MI over correlation functions is that MI is able to measure 

general dependencies while the correlation measures can only measure linear 

dependencies. A second major advantage of MI is that it can be applied to both, 

categorical and numerical variables. Correlation techniques can only be applied to 

numerical variables.

C ( j ) (2 . 10)

where X . is the n dimensional vector that contains all the values of the j th feature
J J

PCA is a useful statistical technique to highlight similarities and differences among 

features to reduce the dimension by extracting new components without losing too
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much information. The method uses simpler linear transformations that can ease the 

selection of the features.

RELIEF  (Robnik-Sikonja and Kononenko, 2003) is an algorithm that weighs features 

by estimating how well they are able to describe data in comparison to those that are 

similar in value. Relief is based on the K  nearest neighbours from the same class, and 

the same number of vectors of different classes. Relief has been designed to be robust 

with the presence of noise and missing values. Also, relief is considered a very 

successful algorithm due to its simplicity in multivariate probability distributions 

calculations.

Probability Distribution of the features can be used to measure their relevance to the 

target. There are several relevance FS algorithms based on this technique (Ogura et 

al., 2010, Pudil et al., 2002, Inza et al., 1999), one of the most popular was proposed 

by (Kolmogorov, 1998). The algorithm consists of calculating the difference between 

the joint and the product distributions of the features:

Dk (Y ,X)  = YL iHy,, -  P (x  )P(y, )|
' ;=1 (2 .11)

Where Y and X  are two different distributions P(X) the probability distribution of one 

or both of the features. This function is the base for the MI calculation, a technique 

previously mentioned.

Decision Trees are top-down hierarchical partitioning techniques, useful in selecting 

relevant features. The benefit of using decision trees, for continuous values, is that 

they split the elements of the features in relatively pure bins, i.e. automatic 

discretisation is performed as the tree grows. This makes more accurate the 

calculation of probabilities such as P (xt) and P (yt |x.) which are needed to calculate

the MI and other indices (Duch et al., 2003). A very effective decision tree algorithm 

for feature ranking is 1R (Holte, 1993) as it creates only single level trees.
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C4.5 tree (Quinlan, 1986) uses information gained to determine the splits and to select 

the most important features which are the ones closest to the root node.

CHAID (CHi-squared Automatic Interaction Detector) decision tree algorithm (Kass, 

1980) measures association between classes and feature values using %2 statistics, if 

you have X, Y variables the strength association is defined as follows:

= - ----------------
mij

where

M rMj

where mi} represents the expected number of observations assuming X, Y 

independence.

CART (Classification And Regression Tree) algorithm (Breiman et al., 1984) sums 

the squares of the class probability distribution for a tree node using the Gini impurity 

index J  Gini(Y) = i - X  p (y  ;.)2 . Each of the features is split into subsets with discrete
i

values, the Gini indices are calculated for each feature. The gain is proportional to the 

average of the sum of squares of all conditional probabilities

= ^  P ( X )^ ]  P( y t |x ' ) 2 e  [0,1] which gives a measure of the probability
J i

concentration useful for feature ranking.

2.8.2 Relevance versus Optimality

If a feature is relevant it does not imply that it has to be included in an optimal feature 

subset. In the same way when the feature is irrelevant does not imply that it should be 

excluded from the optimal feature subset. In other words, the two most relevant 

features do not create the best pair of features.

(2 .12)

(2.13)
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A feature that is relevant in combination with other features may become irrelevant 

individually. Another different case is when two individually irrelevant features 

become relevant when used in combination (Guyon et al., 2006).

The relevance and redundancy influence in determining optimal feature subsets makes 

FS a combinatorial problem. This is one of the reasons why multivariate methods 

looking for a good combination of features, achieve better results.

2.9 Feature Redundancy

When two features are very similar to each other, the corresponding class- 

discriminative power would not change in great manner if a feature is removed. For 

this reason redundancy analysis is needed to create smaller feature subsets with the 

same or better discriminative power. A good and small feature subset contains 

features highly correlated with the class, yet uncorrelated with each other (Flail, 

2000).

If two features are perfectly redundant and only one of them is used in the learning 

process, the performance is not affected. But when the redundancy is not perfect the 

features may complement each other, and information is gained when both features 

are used.

A concerning issue about multivariate methods is that they are prone to overfit. The 

problem is aggravated when the number of features selected is still too large 

compared to the number of instances. In this case it is recommended to use a filter 

method to filter out the least promising features before continuing with any learning 

process. Still, one wonders whether one could potentially lose some valuable features 

through the filtering process.

Traditionally multivariate methods are used to measure feature redundancy. The 

detection is done mainly using search techniques. Greedy methods (forward selection 

or backward selection) are the most popular techniques used in this task. Forward 

selection can yield better results than backward selection if the univariate approach is
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used (Guyon and Elisseeff, 2003). The backward elimination approach usually 

performs better at the cost of selecting larger feature subsets. However for too short 

feature subset the performance of the learning may decrease abruptly (Guyon et al.,

2006).

Incremental search methods (forward, backward) can be used in combination with 

different techniques to measure the redundancy among features.

Pearson’s Correlation Coefficient (Reynolds, 1977) is a traditional statistical 

approach to find pairs of strong correlated attributes. The main disadvantages of using 

Pearson’s is its weakness in the presence of outliers and the assumption of a Gaussian 

distribution of the data. These limitations may cause the analysis of Pearson’s 

Correlation to fail in some application (Jing et al., 2007).

Fast Correlation is another technique for feature selection which is used to find the 

correlation. The evaluation criteria used within this method is called symmetrical 

uncertainty given by the following expression:

SU = 2 (2.14)
H ( X )  + H ( Y )

where H(X) is the entropy of a variable X  after observing the variable Y.

FD is a mathematical concept that provides a way to quickly detect redundant features 

in a deterministic way. (Traina et al., 2000) developed an algorithm based on the FD 

that is able to detect redundant attributes. This algorithm was implemented and used 

to develop the algorithms proposed in this research. (Bhavani et al. (2008) proposed a 

filter based on the FD that is non-parametric and shows the relationship between 

dimensionality and a proper number of resolutions to calculate FD.
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2.10 Mutual Information

The MI between two features measures the each other dependence, amount of 

information shared by them. MI is capable to successfully detect different types of 

dependencies. MI information is a non-parametric and non-linear technique that 

makes no assumption about the distribution of the data. When a search technique is 

combined with MI, groups of features with lower mutual inter-dependency can be 

found. Thus, MI is a very popular method to measure redundancy among features 

(Peng et al., 2005). A mathematical description of MI is given following:

We can start with the uncertainty of a random variable X  that can be measured by the 

entropy, defined as

H ( X )  = - ^ P ( x ) h g P ( x )  (2.15)
x e X

Where p ( x ) = Pr(X = x) is the probability density function of X. Similarly the joint

entropy of two random variables X  and Y is:

H ( X ,  Y) = ^  P(x, y)  log p(x,  y)  (2.16)
y& Y  xeA"

Conditional entropy refers to the uncertainty reduction of a variable when another is 

known. If the variable Y is given, the conditional entropy H(X\ Y) of X  with respect to 

Fis:

H (X  | Y) = p ( x , y)  log p(x  | y ) ,  (2.17)
y & Y x e X

where P(x \ Y) is the posterior probability of X  given Y. From the previous definition, 

if X  fully depends on Y, then H(X\ Y) is zero. This means that no more information is 

required to describe X  when Y is known. Otherwise, H(X\ Y) =H(X) denotes that 

knowing Y will do nothing to observe X. To quantify how much information the two 

variables X  and Y share the MI I(X, Y) is used and defined as:
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I ( X J )  = Y , ^ p { x , y ) h  g p(x ,y) (2.18)
y e Y  x e X p(*)p(y)

From above I(X; Y) will be very high if X  and Y are closely related; on the contrary 

I(X;Y) will be close to the value of zero when the values are unrelated (Battiti, 1994).

MI is a non-parametric and non-linear technique that makes no assumption about the 

distribution of the data. It is successfully capable of detecting different types of 

features dependencies without relying on transformations o f the different variables 

(Peng et al., 2005). Due to these reasons MI is a popular method used in FS to 

characterise the dependency among the features and their class label.

(Li, 1990) makes an extensive comparison between MI and the correlation function to 

show the superiority of the MI to find general dependences in symbolic sequences. An 

algorithm based on greedy feature selection that takes both MI with respect to the 

output class and with respect to the already-selected features is proposed by (Battiti, 

1994). A forward selection algorithm that stops itself automatically and uses the MI as 

a criterion to find optimal features is proposed by (Francois et al., 2007). (Michel et 

al., 2008) developed a multivariate approach, aimed to decode cognitive information 

from functional Magnetic Resonance images, able to detect non-linearities between 

the features and the label. (Sanchez et al., 2007) proposes an extended definition of 

the MI among fuzzified continuous variables to select optimal features and to obtain 

the most informative fuzzy partition of the data.

2.11 Summary

This chapter presents a general review of clustering, unsupervised and supervised FS 

techniques to provide relevant background information for the research reported in 

subsequent chapters.
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Chapter 3

Divisive Fractal Clustering Approach

3.1 Preliminaries

This chapter presents a clustering algorithm that uses the FD as a tool to find natural 

clusters in data. The aim of this chapter is to present the FD as a useful tool for 

partitioning data into clusters that contain similar instances within themselves, and 

dissimilar instances within other groups.

Organising data into sensible groups is fundamental to understand and learn. This can 

be achieved using methods that study and perform automatically a cluster analysis. 

Clustering analysis groups objects according to their intrinsic characteristics or 

similarity when a class labels are not available. Fractals are used to perform clustering 

by detecting self-similarity in groups. Instances in data that belong to a certain cluster 

present a large amount of self-similarity and considerably less with respect to 

instances in other clusters. The main idea of FC is to group points within a cluster in 

such a way that none of the points in the cluster change the FD of the cluster by a 

large amount.

Barbara (2003) proposes a FC algorithm that requires an initialization step to create 

initial clusters and to start its execution. The initialization step is very important for 

good performance and requires very good quality initial clusters which have a direct 

impact in the quality of the clusters.

This chapter proposes a hierarchical FC algorithm which does not require an 

initialization step in order to start its execution. Instead, a divisive hierarchical 

algorithm that uses the FD as a similarity measure is proposed. The advantages and 

disadvantages of the proposed algorithm are discussed by comparing results with the 

algorithm proposed by Barbara (2003). The data used in the experiments is artificial 

and benchmark data.
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The chapter is organized as follows: Section 3.2 describes the hierarchical clustering 

algorithms. In section 3.3, the classic fractal clustering approach is presented. In 

section 3.4 the proposed clustering algorithm is explained. Results are shown in 

section 3.5 and the work is summarized in Section 3.6.

3.2 Hierarchical Clustering

Hierarchical methods are the simplest of the techniques for clustering and it was first 

proposed in 1951 in (Florek et al., 1951). A hierarchical method suffers from a defect 

that can never repair what was done in previous steps. Indeed once an agglomerative 

algorithm has joined two objects, they cannot be separated any more. Also, whatever 

a divisive algorithm has split up cannot be reunited. This rigidity of the hierarchical 

methods has both an advantage and disadvantage. The disadvantage is an inability to 

correct erroneous decisions. The advantage is that it leads to small computation times.

Hierarchical clustering algorithms have several other advantages as well: they are 

robust when it comes to inputting parameters, they are less influenced by cluster 

shapes, they are less sensitive to largely differing point densities of clusters, and they 

can represent nested clusters. Hierarchical algorithms do not really compete with 

partitioning methods because they do not pursue the same goal, as they describe data 

in a totally different way. The hierarchical methods do not actually create clusters, but 

compute a general hierarchical representation of the dataset. The hierarchical cluster 

structure is not unique. It depends crucially on the criterion of choosing the clusters to 

merge or to split.

There are two kinds of hierarchical techniques; the first technique is called 

agglomerative (bottom-up), and the second, divisive (top-down). These two modes of 

analysis offer advantages and disadvantages and can lead to differences in the 

hierarchical structure.

Agglomerative clustering (bottom-up) starts with details and then works its way up to 

large clusters. Quality in final clusters, often large clusters, could be affected by 

unfortunate decision in the first steps. On the other hand divisive clustering (top-
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down) starts with the main chunks. In the first step it splits the data into two parts and 

then goes on by dividing them further into pairs of smaller parts. Because the large 

clusters are determined first, the final clusters are less likely to suffer from mistakes in 

the earlier steps. Moreover, one might even halt the divisive process at a stage where 

one is no longer interested in further splits.

On the other hand, divisive analysis poses some computational problems, at least in 

principle. Indeed, if  the first step of the algorithm involves considering all possible 

divisions of the data into two subsets, it becomes unfeasible. Even for middle size 

datasets the divisive step is computationally prohibited due to the larger number of 

possible combinations (Kaufman and Rousseeuw, 2005). The clustering algorithm 

proposed in this chapter intends to alleviate computational burden by not performing 

any combinatorial analysis in the divisive analysis.

In relation to agglomerative hierarchical clustering plenty of algorithms have been 

proposed, some of the most relevant are mention next:

BIRCH (Zhang et al., 1996) is a hierarchical agglomerative algorithm which one of 

the main characteristics is its low computational complexity, it achieves an 0(n) I/O 

(input-output linear) cost. BIRCH is a clustering algorithm that constructs a data 

structure called cluster feature (CF) tree by scanning the data only once. BIRCH 

performs poorly when the clusters are not spherical in shape. Whereas STING is a 

divisive hierarchical clustering algorithm, that divides the data space into grids. The 

hierarchical structure is built by exploiting the ancestor-descendant relation between 

the grids. The complexity of STING attains 0(G) , here G denotes the number of grids 

in the lowest layer. STING is the most suitable for handling two dimensional data 

such as geographical data.

Guha et al. (2003) developed a robust agglomerative hierarchical clustering algorithm 

called ROCK. The algorithm uses a novel concept of links to measure the 

similarity/proximity between a pair of data points.

Dash and Liu (2000) carried out extensive empirical studies to show that, except for a 

number of top levels of the hierarchical tree, all lower levels agglomerate clusters
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which are very small in size and close in proximity to other clusters. They named that 

characteristic the 90-10 rule, it suggests that most levels from the bottom merge pairs 

of very small clusters separated by very small distances. Based in this rule Dash 

proposed a hierarchical algorithm that significantly reduces time and memory 

requirement of other hierarchical methods.

Rodrigues et al. (2007) proposed and algorithm for incremental clustering of 

streaming time series that constructs a hierarchical tree-shaped structure of clusters 

using a top-down strategy. The main idea is to split the cluster into two child-leaves, a 

diameter of the new clusters should be less or equal than the diameter of the parent 

node. If the diameter of the leaf is greater than its parent’s diameter, then a previously 

taken decision would no longer reflects the structure of the data. The results obtained 

show that their performance is nearly as good as a batch divisive clustering on 

stationary time series.

Hulle and Gautama, (2004) proposed a hierarchical algorithm that uses topographic 

maps to estimate density areas at every level in a hierarchy. This criterion is used to 

determine a number of clusters and to divide data into new subsets to be analysed in a 

next level.

Pavan and Pelillo, (2003) suggested a new divisive hierarchical clustering approach 

based on an idea of varying a regularization parameter during the clustering process. 

The algorithm starts with a sufficiently large value which yields a unique large cluster 

that comprises all data. As the value decreases, the algorithm attempts to split large 

and incoherent ( with dissimilar instances) clusters into smaller pieces.

Xiong et al., (2009) proposed a hierarchical clustering method that effectively divides 

and categorises data using Multiple Correspondence Analysis (MCA). MCA is a 

powerful factor analysis tool for categorical data which is widely used in the social 

and behavioural sciences. The splitting procedure of the algorithm consists of two 

phases; preliminary splitting and refinement. The preliminary splitting is based on 

MCA. A refinement, o f each bisection, takes place like a reassignment step of the k- 

means algorithm with k=2, where k is the number of clusters.
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A clustering algorithm that combines the strengths on both partitioning and 

agglomerative methods is proposed in (Laan and Pollard, 2003). In this algorithm the 

clusters are partitioned into two smaller clusters with an enforced ordering of the 

clusters. Steps to unify the two closest clusters into one cluster are used to correct 

errors made in previous partitioning steps.

Ding et al. (2001) proposed four new divisive selection criteria for hierarchical 

clustering; the average similarity, the cluster cohesion, avg-cohesion and temporary 

objective. Ding applies the criteria in datasets in which the number of clusters K  is 

already known. The results obtained from the clustering algorithm are compared with 

hierarchical agglomerative clustering using four different linkage functions. The 

similarity measure W = (W .̂) is applied on the linkage functions as they can be

translated into similarity functions. The translated linkage functions are; complete 

linkage, average linkage, MinMax linkage.

Ding set several observations from comparisons between agglomerative and divisive 

methods. Such observations led him to the conclusion that the agglomerative method 

is much slower with a complexity of 0 (n 3 log(«)) comparatively with 0 (« 2) for the 

divisive method.

3.2.1 Agglomerative analysis

Hierarchical agglomerative clustering begins with one-point cluster and recursively 

merges the most similar pair of clusters. In several domains, hierarchical 

agglomerative clustering algorithms are able to yield best-quality results. However, 

this class of algorithms are characterized by a high complexity which reduces the size 

of the datasets that can be handled. In standard cases such complexity is 0 ( d N 2), 

where N  is the number of objects in the dataset and d  the cost of computing the 

distances between two objects. When d  is either constant or very small in quantity, the 

complexity is simplified to 0 { N 2).

In some contexts, however computing distances can be a very expensive task, such as 

in the case of complex comparison functions or high dimensional data i.e. distance
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computation between long strings. The computation of all object-to-object distances 

dominates the overall cost of the clustering process, and so any attempt to improve 

performances should be aimed at saving distance computations effort (Nanni, 2005).

In the algorithm presented in this chapter a fractal agglomerative method proposed in 

(Barbara, 2003) is used as a, if needed as refinement step. Some examples in data 

could be very far from any cluster and can be either considered as noise or assigned to 

one of the clusters according to a certain criteria. If an instance remains without 

cluster the refinement step uses the FD to measure its similarity to all clusters and 

place it in the most suitable one.

There exist some traditional agglomerative hierarchical algorithms reported in the 

literature which have a complexity of 0 ( N 3),  such as (Fisher, 1987) (Gennari et al., 

1989) (Gowda and Diday, 1991) (Jain and Dubes, 1988). More recently, another 

agglomerative clustering algorithm with 0(nlogn) complexity called Chameleon has 

been developed. This algorithm uses interconnectivity and relative closeness among 

instances to discover natural and homogeneous clusters.

3.2.2 DIANA (Divisive Analysis)

Most hierarchical algorithms work using agglomerative analysis. The DIANA 

technique is a hierarchical clustering technique that works in the opposite way to an 

agglomerative method (Barbara, 2003). At each step, DIANA splits up a cluster into 

two smaller ones until all clusters contain only a single element. This means that a 

hierarchy is built n-1 steps when the data set contains n objects.

In the literature, hierarchical divisive methods have been largely ignored. In fact when 

hierarchical clustering is mentioned it is often assumed that agglomerative clustering 

is meant. Most books on clustering pay little attention to divisive techniques, and 

software techniques do not include divisive algorithms at all. The main reason for this 

appears to be the computational aspect. In the first step of an agglomerative algorithm 

all possible fusions of two objects are considered, leading to a number of 

combinations given by
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n(n -1 ) 
2

(3.1)

This number grows quadratically with n, which is large but the computations still 

feasible. On the contrary a divisive algorithm based on the same principle would start 

by considering all possible divisions of the data set into two nonempty subsets, which 

amounts to a number of possibilities given by

the number above grows exponentially and soon exceeds the current estimate of the 

number of atoms in the universe (Kaufman and Rousseeuw, 2005). Even for medium 

size datasets, a complete enumeration approach is not feasible.

Nevertheless, it is possible to construct divisive methods that do not consider all 

divisions. (Macnaughton et al., 1964) proposed an iterative procedure using an 

average dissimilarity between an object and a group of objects. Other divisive 

methods use a dissimilarity matrix as an input which are based on the optimization of 

a bipartition (Wang and Sontakke, 2005).

3.3 Fractal Clustering

Natural groups of data present a high degree of self-similarity which can be measured 

using the FD. By calculating the FD of the whole data and the FD of each of the 

instances it is possible to group self-similar elements of data which are likely to 

belong to the same clusters. Few clustering algorithms that use the FD to find natural 

clusters in data have been proposed and are briefly described below:

Barbara (2003) proposes a clustering algorithm that needs to be initialized by using a 

different clustering technique to find N  initial clusters. After this initial step the FD of 

each of the clusters is calculated. The instances are assigned to the clusters which 

they least affect the FD of the clusters.

2”“1 -1 (3.2)
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Tasoulis and Vrahatis (2005) proposed an algorithm that uses the FD together with the 

k-windows clustering algorithm (Prasad et al., 2003) to discover cluster centres more 

efficiently and to identify different regions within a single cluster.

Wang, (2005) proposed a fractal clustering method that uses the FD to cluster self- 

affine genes. The algorithm provides a very natural way of defining clusters that is not 

restricted to any particular cluster shape. The clusters are built in such a way that the 

data points in the same clusters are more self-affined among themselves than to the 

points in other clusters, although the clusters do not have to present perfect self­

similarity.

3.4 Proposed algorithm

In this chapter a top-down hierarchical clustering is proposed that uses the FD 

dimension as a similarity measure. The algorithm has two steps. In the first step the 

algorithm partitions the data using DIANA approach and the FD as a similarity 

measure.

The pseudo algorithm to calculate the FD, using the box-count technique, proposed in 

(Traina et al., 2000) and used in this research is shown next:

Algorithm: Compute the fractal dimension D of a dataset A
input: normalized dataset A (N  rows, with E  dimensions/attributes each) 

output: fractal dimension D
Begin
For each desirable grid-size r= l/2 j, j=  1, 2 ,..., /

For each point of the dataset
Decide which grid cell it falls in (say, the z-th cell)
Increment the count Ci (‘occupancy’)

Compute the sum of occupancies
Sfr) = X C 2;

Print the values of log(r) and logOS^r)) generating a plot;
Return the slope of the linear part of the plot as the fractal dimension D  of the dataset 
A.
End
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The previous algorithm is used with DIANA to develop an algorithm that divides the 

data in such a way that maximizes the similarity within clusters and minimizes the 

similarity among relatively small clusters.

A theoretical description of the algorithm proposed in this chapter is given using the 

following toy example:

Consider an initial group of objects {a, b, c, d, e, f, g, h, i, j} that contain all the 

objects in the dataset. In the first step, the algorithm splits the data into two sub­

groups {a, b}, {c, d, e, f, g, h, i, j}. This is not done by considering all possible 

divisions, but rather by means of a comparative process of the FD of the whole data. 

Such a comparison is done by calculating a Fractal Impact (FI) of all instances in the 

data. The FI impact of the ith instance is obtained by quantifying how each of the 

instances affects the FD of the cluster. In order to calculate the FI the following 

formula is used:

F /(i)  = | pfd(f) ~ FD | (3.3)

where pfd(i) is the partial FD of the ith instance, FD is the fractal dimension of the 

whole dataset and FI(i) is the fractal impact of the ith instance. In this example the 

total number of FI calculations is 10, {Fla, Fib, FIc, Fid, Fie, FIf, Fig, Flh, Fli, FIj}. 

The partition of the cluster into two sub-clusters is defined by a threshold T defined by 

the mean of the total number of FI calculations. The instances with a value of FI 

above T create one of the clusters, in this case {a, b}. The instances with a value of FI 

below T create the second cluster {c, d, e, f, g, h, i, j}.

In the second step the algorithm finds which sub-groups are possible to split up again 

by calculating their FD. It is not possible for the FD to calculate very small sub­

groups though because they do not have enough instances. The groups that are not 

large enough are left as sub-clusters to possibly merge with other sub-clusters in a 

second phase of the algorithm. Let assume that the sub-group {a,b} is found not to 

have FD due to the lack of instances, so it is not split any more and is left as a sub- 

cluster. The other sub-group {c, d, e, f, g, h, i, j} is considered to have enough
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instances and is split up using the same criterion used in phase 1, generating other two 

sub-groups {c, d, e, f} {g, h, i, j}.

In the third step the two sub-groups are found to have FD so they can both be split to 

generate sub-groups {c, d} {e, f} {g ,h} {i ,j}. All these sub-groups are very small and 

it is possible to calculate their FD, so all of them are considered sub-clusters, stopping 

the algorithm in this stage.

b )  sub-cluster

£ )  sub-chtster
c d f e

d) sub-clusterc d « f g  h ij

i O  sub-cluster

h ' )  sub-cluster

Step 0 Step 1 Step 2 Step 3

Fig. 3.1: DIANA

Crucial is how to best select the next sub-clusters to split or to merge. The fractal- 

D1ANA algorithm, previously explained, would generate in a first stage relatively 

small sub-clusters. These sub-clusters need to be remerged in a second stage in order 

to build larger clusters.

3.4.1 Second Phase

The objective in the second phase of the algorithm is to find genuine clusters by 

repeatedly combining the sub-clusters that were found in the first step. The second 

phase of the algorithm merges sub-clusters that are close to each other to obtain the 

final clusters. The diameter of the cluster is the maximum distance between the 

variables of that cluster.
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3.4.2 Stopping Criterion

The DIANA algorithm starts the clustering process dividing a cluster that contains all 

the instances in the data. The algorithm stops when single-points clusters, for each 

data point, are created. The ffactal-DLANA algorithm starts the clustering process 

from the same single cluster that contains all the instances. The algorithm stops when 

all the sub-clusters created do not have FD and, in consequence, no more sub-clusters 

can be created.

3.4.3 Number of Clusters

The proposed algorithm does not address the problem of selecting the optimal number 

of clusters automatically. The number of clusters generated by the ffactal-DIANA 

algorithm is set by the user. The clusters obtained, in the second phase, under the 

criteria of closeness and density, can vary depending on the number of sub-clusters 

obtained after the DIANA algorithm is applied. If the number of clusters is larger than 

the number of pre-defined clusters N , a re-merging phase is run. In this re-merging 

phase the N  largest clusters are re-merged correspondent^ with close and small 

clusters that remain. All the clusters that are under certain threshold of proximity PT 

are merged to one of the ith large clusters. In this way all the small sub-clusters are 

merged to the N  big clusters to create only the number of clusters set by the user.

The pseudo- algorithm of the clustering method proposed in this chapter is shown 

next:

Algorithm -  Divisive Fractal clustering algorithm (DFCA) 
input: dataset A
output: all instances in the dataset organized in clusters 

Begin 
Phase one

1- Compute the fractal dimension D  of the whole dataset;
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2- Calculate the fractal impact of each instance in the dataset;
3- Divide the data generating two sub-groups according to the FI of each 

instance;
While there are divisible sub-groups

4- Compute the fractal dimension D  of the ith sub-cluster;
If (D ith > 0 ) or (sub-cluster size > T2)

5- Calculate the fractal impact or each instance in the cluster;
6- Divide the ith generated cluster;

Else
7- Store apart the ith sub-group and consider it as a sub-cluster

end 

Phase two

If #sub-clusters > NC (number of clusters pre-defined by the user)

8 - Calculate the distances among sub-clusters
9 - Calculate the diameter of all sub-clusters
10- Select the TV biggest sub-clusters and define them as clusters
11- Merge the remaining sub-clusters to their closest clusters

else

12 - Final clusters = sub-clusters

End

In the second step the proposed algorithm switches by repeatedly combining the sub­

clusters, measuring their proximity with the Euclidean distance. The phase two of the 

algorithm involves merging the clusters that are the most similar and closest together,

3.4.4 Refining Step

In the case that there are remaining instances finishing the first and second steps, the 

algorithm proposed in (Barbara, 2003) is run as a refining step to allocate the points in 

the proper clusters. After step two is finished, if some points are left without cluster 

assignment, a point that changes the FD of a cluster the least is assigned to it.

The clustering algorithm proposed adopts a common framework for clustering, which 

must discover cohesive and distinctive clusters. This framework assumes that a cluster 

must have similar feature values common to its members (cohesion) and few values 

common to member of other clusters (distinctiveness).
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3.4.5 Evaluation Measure

The adaptation of the evaluation function is not straight forward, since most of the 

existing criteria relies on assessing how well a given feature subset discriminates 

among a set of predefined classes that are not available for unsupervised learners. 

There is no standard definition of irrelevance for an unsupervised prediction task. In 

the algorithm proposed the quality of the clusters is evaluated using the original labels 

of the data.

3.5 Experimental Results

In the following figures the results of the algorithm proposed on artificial data are 

shown. The data used is bi-dimensional and it contains 1000 instances. The data 

contain 3 clusters and is created using the MATLAB fuzzy clustering toolbox available 

in www.mathworks.com/matlabcentral. The quality of clusters generated by the 

divisive fractal algorithm was evaluated measuring the accuracy within the original 

label in the datasets. The value of the means of the clusters found, by the proposed 

algorithm, and the means of the original clusters were used to define the cluster labels.

o.o-
 1-------------------------------------------- 1--------------------------------------------- 1-------------------------------------------- 1---------------------------------------------!--------------------------------------------- 1---------

0.0 0 .2  0/4 0 .6  0 .8  1.0

Attribute 2

Fig. 3.2: Artificial dataset, 80.15% of accuracy using 10 number of steps in the phase 

one of the fractal DIANA.
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Fig. 3.3: Artificial dataset, 90.14% of accuracy using 11 number of steps in the phase 

one of the proposed fractal algorithm.

T o  Z 0 4  0 4  0 4  l l o

Attribute 2

Fig. 3.4: Artificial data set 97.94% of accuracy using 12 number of steps in the phase 

one of the proposed fractal algorithm.

The artificial dataset above is partitioned until groups of data do not present FD. The 

DIANA partition reduces the data from 1000 to 252 groups of similar instances which 

are merged, with other subgroups, in the second stage of the algorithm. The fractal
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DIANA performs the partitions for the best accuracy, as shown in Fig. 3.4, in 12 

steps.

Dataset # Instances # Features # Classes

Iris 150 4 3

Ionosphere 351 34 2

WDBC 569 30 2

Artificial 1000 2 3

Table 3.1 Benchmark datasets and artificial dataset used to test and compare the 

Fractal clustering algorithm, proposed and original version.

Dataset Fractal Clustering 

(Proposed)

Hierarchical

Clustering

K-means

Iris 83.6 % 84.15 ± 4.7 % 89.83 ± 3.51 %
Ionosphere 72.38 % 65.82 ± 11.3 % 68.88 ± 3.59 %

WDBC 85.31 % 90.86 ± 1.91 % 92.39 ± 1.67 %
Artificial 97.94 % 99.48 ± 0.02 % 99.95 ±0.11 %

Table 3.2 Experimental results using benchmark and artificial datasets.

data used for initialization

Dataset

30 60 90

Iris 82.35±0.0 87.22±0.0 94.41±0.0
Ionosphere 93.57±0.55 84.66±3.8 64.57±6.17

WDBC 93.81±1.5 85.54±5.17 87.53±1.41

--------- '— -------— .___
75 80 90

Artificial 74.47±0.58 78.83±0.67 88.5±0.32

Table 3.3 Experimental results using the benchmark and artificial datasets used Table 

3.2 for the FC algorithm proposed by Barbara (2003).
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3.8 Summary

In this chapter a divisive clustering algorithm that uses the FD as a criterion to find 

natural clusters in data is proposed. The algorithm performs a divisive methodology to 

find relatively small clusters (sub-clusters) in a first step. In a second step the small 

clusters are merged to find final larger clusters. This is done by comparing the whole 

FD dimension of each sub-cluster and the pfd  of each instances within them.

The main difficulty in employing FD in clustering is that natural clusters exhibit self­

similarity over a limited range of resolutions. The plots to calculate the FD are either a 

series of straight line segments or curved. A further limitation is that the FD provides 

a good index for the complexity of a boundary between two clusters but contains no 

information of the structure of that complexity, i.e. many different sub-clusters can 

have the same FD. The Fractal-DIANA algorithm proposed in this chapter is more 

suitable for approximately ball-shaped clusters.
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Chapter 4

Unsupervised Feature Selection

4.1 Preliminaries

This chapter proposes an unsupervised feature selection algorithm based on a new 

fractal-entropy measure to rank features in order of importance. FD is a very efficient 

technique used to calculate similarity among objects. To simplify the detection of 

relevant features, in an unsupervised way, the use of the FD and entropy is considered 

in this research.

UFS is a way to simplify the discovery of clusters in data and most likely to improve 

their detection. The descriptive power of the data can be improved by selecting 

features that are relevant for a description process of the clusters. It is sometimes 

believed that larger datasets have better quality, but it is not rare for some of them to 

hide important structures and with this confuse the learning process.

An efficient way to handle large datasets and improve their description process is by 

selecting a subset of important features. Feature selection helps to understand the data 

better, to find clusters efficiently, to process, collect and store the data more 

efficiently. A meaningful feature helps to build clusters while a meaningless feature 

may have a negative effect in creating them.

Elimination of redundant features is important to reduce the size of the feature set. 

Even when you have a feature set full of relevant features some of them may be 

redundant as they do not add new information to the set. Various dependence 

measures like correlation coefficients, measures of statistical redundancy (Heydom, 

1971) and linear dependence (Das, 1971, Toussani and Vilmansen, 1972).

The number of features in a dataset makes the learning models more complex, like in 

the case of clustering. When UFS is performed this complexity is expected to 

decrease obtaining clusters with at least the same quality as the ones obtained using

57



all the feature set. Reducing the number of features used in the clustering process 

helps to deliver shorter cluster descriptions to the user. Shorter descriptions tend to be 

better understood hence they are less complex.

In this chapter, a new algorithm for UFS based on calculating entropy of data is 

proposed. The algorithm follows a new statistical entropy approach combined with 

the FD in order to detect relevant features for clustering. The statistical entropy 

measure proposed uses the FD instead of Euclidean distance to reduce computational 

complexity. The original Euclidean measure is reduced in complexity from quadratic 

to linear in terms of number of instances.

This chapter is organized as follows. Section 4.2 presents some classic and relevant 

work for unsupervised feature selection. In section 4.3, the concept of unsupervised 

relevance and redundancy are introduced. In section 4.4 the FD feature reduction is 

developed. In section 4.5 the classic approach of entropy to calculate relevance in 

features is presented. In section 4.6 the algorithm proposed is introduced. In section 

4.7 results for the proposed algorithm on benchmark datasets and on a real application 

are given. Section 4.8 summarises the chapter.

4.2 Unsupervised Feature Selection

Similar to a supervised approach there are two main unsupervised feature selection 

approaches. The first one is the unsupervised wrapper approach and the second one 

the unsupervised filter approach.

The wrapper method evaluates different feature subsets using an index measure and 

selecting the best one from the features subsets analysed. In the case of UFS, an index 

usually measures the quality of feature subsets without using a class label. A problem 

with the wrappers is their exponential computational cost in searching for useful 

features. On the other hand the advantage of using wrappers is their ability to 

commonly achieve an equal performance to filters with a more reduced dataset. 

Wrappers have an ability to make more accurate selection of relevant and non- 

redundant features. Unfortunately experiments provide evidence that suggests
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wrappers are more prone to get trapped in local maxima, a common problem in 

sequential searching (Talavera, 2005).

In unsupervised approaches the wrapper methods evaluate the feature subset quality 

using a clustering algorithm such as k-means or EM algorithm as there is no 

unanimous criterion to estimate quality of features. Contrary to supervised FS, in 

which there is a consensual (label) way for assessing feature quality. The features 

selected by wrappers enable a specific clustering algorithm to find faster and better 

clusters. Unfortunately, the feature sets found by wrapper are not likely to work 

efficiently on different clustering algorithms. Another disadvantage of wrappers is 

that have the highest computational cost of all the three approaches.

Filter methods for UFS exclusively perform feature assessment on intrinsic properties 

of the data. Filters appear to be less optimal but they reasonably compromise the 

wrapper performance. Experimental evidence suggests that filters are able to perform 

a reasonably good job given the limited information they use. Features are selected 

without using any clustering method, this significantly reduces computational burden 

in comparison with other techniques such as wrappers.

Filters for UFS are still an uncommon approach in data mining. A notable exception is 

a work in (Dash et al., 2002, Dash and Liu, 2000, Dash et al., 1997) that proposes an 

unsupervised entropy measure for ranking features in terms of relevance. A problem 

that current filters methods present (Heydom, 1971) is their sensitiveness to redundant 

features. To alleviate this problem some filter algorithms that use a search technique 

have been proposed.

Greedy algorithms such as sequential forward and backward search are very popular 

heuristic methods due to their simpler implementation. The sequential algorithms 

have quadratic complexity but perform poorly when the number of instances increases 

too much (Gheyas, 2009).

Dash et al, (1997) developed an unsupervised entropy-based measure in order to 

determine the relevance of the features. This method uses a new criterion based on 

statistical entropy. Entropy is low for data orderly configurations, and more for

59



disorderly configurations. The measure determines a feature to be relevant if 

removing the feature increases the entropy of the dataset. The algorithm searches for 

relevant feature subsets using a sequential backward selection method.

In literature most of the FS algorithms have been created for supervised learning. The 

absence of the class labels makes more difficult to find relevant features due to the 

lack of guidance they provide, and this might be the reason why there is not much 

research done in this area. Few and mostly recent UFS have been proposed for 

clustering. Most importantly, the majority of them are wrappers methods that require 

intense computational work. There are three categories for unsupervised feature 

selection algorithms according to their evaluation criterion in selecting useful 

features: filters, wrappers and embedded. Filters are the most efficient approaches to 

deal with high dimensional datasets.

4.3 Unsupervised Relevance and Redundancy in Features

In a set of relevant features some might be redundant as they do not provide any 

additional useful information. Redundant features may deteriorate or not play an 

important role in generalising an ability to detect certain groups in the data. In 

addition, it is always desirable to find small and informative feature subsets, which 

also reduce computational effort, collection and storage requirements. UFS is not an 

easy task to perform as labels are not available to guide the selection process. The 

problem becomes even more challenging when the number of clusters is not known in 

advance.

The problem of redundant features in which the class label is not available has not 

been addressed in a great manner within the literature. The UFS literature usually 

accepts that the instances in a cluster have similar feature values, i.e. a cluster has 

members with redundant features. On the other hand, the presence of redundant 

features makes difficult to differentiate among clusters. Few works that consider both 

analyses redundancy and relevance have been proposed.
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Zeng and Cheung, (2009) proposed a new feature selection method in which not only 

the most relevant features are indentified, but the redundant features are also 

eliminated so that smaller relevant feature subsets can be found.

Cord et al., (2005) proposed a wrapper UFS algorithm based on Laplace mixture 

model. The number of features selected uses a strategy based on the t-statistic to 

choose the most relevant features. After this, and evaluation of the clustering error to 

discard the redundant features from the relevant ones is applied. This strategy gives a 

good compromise between the selection of features and the performance of the 

clustering. This approach is computationally intensive as it is based on the wrapper 

method.

Li et al, (2007) proposed an algorithm that applies a sequential backward search able 

to find locally optimal subsets, i.e. different feature subsets for each of the clusters. 

This algorithm is based on the idea that different clusters may be better discovered in 

different subspaces. Regardless what the evaluation criteria is, global UFS can only 

find relevant feature subsets for all of the clusters together. The experimental result 

for this algorithm shows that the UFS outperforms global approaches on various 

datasets.

4.4 Fractal Dimensionality Reduction

Fractal theory is based on various dimension theories and geometrical concepts. There 

are many definitions of what a fractal is (Mandelbrot, 1977, Mandelbrot, 1982). In 

this thesis, a fractal is defined as a mathematical set with a high degree of geometrical 

complexity (Barnsley, 1988). The complexity quantified by fractals is useful to model 

and measure the complexity of numeric sets such as data and images (Tasoulis and 

Vrahatis, 2005). One of the characteristics of fractals is self-similarity. Fig. 4.1 shows 

two self-similar figures, the 2D and 3D Sierpinski set. Self-similarity defines 

geometrical or statistical likeness between parts of a set and the whole set. To quantify 

the self-similarity of an object its FD, defined by Eq. 4.1, needs to be calculated. This 

measure describes how the object fills up the space, giving information about its 

length, area and volume, the value of the FD can be an integer or fractional.
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Fig. 4.1: a) Sierpinsky pyramid, b) Sierpinsky triangle.

Some fractal object has similar properties over certain range of sizes. Length, area and 

volume remain proportional at finer resolutions. Thus the value of the FD depends on 

the resolution used to make the measurement, giving you a different insight of how 

the object fills the space.

Mathematically the FD of a given set A is defined as follows:

F D = dlogN „(A) , r e [ r l .r2] (41)
oiogr

the FD of a set A. N„ denotes the number of boxes used to cover the object and r the

length of the box side. Due to its relative simplicity and good accuracy, the box- 

counting method is the one chosen in this work to calculate the FD of a dataset.

FD has been used as a tool for the spatial access (Belussi and Faloustos, 1995), 

indexing (Bohm and Kriegel, 1999), joint selectivity estimation and analysis of metric 

trees (Faloutsos et al., 1994).

An algorithm to calculate the FD based on the box-counting method, explained in 

chapter 2, is proposed in (Traina et al., 2000). The FD methodology is part of another 

algorithm able to quickly select redundant attributes in a dataset. The main idea of the
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algorithm is to calculate the FD of the dataset and drop the features which do not 

affect it. The algorithm works as follows:

Consider a dataset with N  features and I  number of instances, (Nxl) size. Impose an E- 

grid with grid cells of side r. Focus on the i-th cell, let Cr i be the count of points in

each cell (occupancies). Then compute

5('-) = I Cr />  (4.2)

the derivative of log(iS'(r)) at different resolutions with respect to the logarithm of the 

radius is the FD of the whole data. The muti-resolution analysis is performed using a 

multi-level structure, where each level has a radius half of the size of the previous 

level (r=l/2, 1/4, 1/8...). The different values of log(S(r))  versus the values of r 

create a two dimensional line graph, which slope is linear if the dataset is self-similar.

In order to detect and drop the redundant features (Traina et al., 2000) proposes a 

backward elimination reduction algorithm called FDR. The proposed idea is to 

calculate the FD of the whole dataset, and also the PFD dropping one of its N  

attributes at a time. There are N  partial fractal dimensions, one for each attribute. The 

attributes whose PFD is very similar to the FD are considered the least redundant 

ones. The algorithm is able to detect linear and non-linear correlation among attributes 

and it is described next:

Algorithm - Fractal dimensionality reduction (FDR) algorithm 
input: datasets
output: list of attributes in the reverse order of their redundancy

Begin
1- Compute the fractal dimension D  of the whole dataset;
2-Initially set all attributes of the dataset as the significant ones, and the 

fractal dimension as the current D  ;
3-While there are significant attributes do:

4-For every significant attribute i, compute the partial fractal dimensions 
pD i
using all significant attributes excluding attribute i;

5- Sort the partial fractal dimensions pD i obtained in step 4 and select the
attribute a which leads to the minimum difference (current D  - p D i);

6- Set the pD i obtained removing attribute a as the current D;
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7- Output attribute a and remove it from the set of important attributes;
end

The computational complexity of previous algorithm grows linearly with the number 

of instances in the dataset and exponentially on the number of features.

4.5 Statistical Entropy Relevance Estimation

A dataset is represented with j  number of points in a M  dimensional space. Where 

each data point jc/ ? i = 1,...,7V, is represented by a vector of M  values. If the dataset

has clusters included, it is said, it has an orderly configuration. If the data does not 

contain any cluster it is said it has a chaotic configuration. From (Fast, 1962) it is 

known that entropy is low for orderly configurations, and more for disorderly 

configurations. Thus, if the entropy for each of the projections can be measure it is 

possible to determine which of the features is useful to describe orderly configurations 

(clusters). Notice that in a dataset the entropy should be very low between two 

instances if they are very close or very far, and very high if they are separated by the 

mean of all distances. For two instances, the entropy measure is:

where S  is a similarity measure that is based on distances, and assumes a very small 

value (close to 0) for a very close pair of instances, and a large value (close to 1) for 

very distant pairs of instances. The variable E  measures the entropy for two instances, 

that assume the maximum value of E=1.0 when S=0.5, and the minimum value of 

E=0.0 for S=0 and S=l.

For a dataset of M  dimensions the entropy of different feature subsets can be 

calculated and within it the relevance of each of the features. The statistical function 

used to measure entropy of I  instances is as follows:

E  = —S log2 S - (  1 - S)log2( l - S) (4.3)

(4 .4 )
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where /  is the number of instances and S is a similarity measure defined as follows:

-aD,
S,J = (4.5)

where ZX is the distance between the instances x, and x . . a  is a constant that

mathematically is given as: a  -  where D is the average distance among the

instances in a hyperspace. Euclidean distance is used to calculate the distance ZX 

between two data points x, and xy. In a multidimensional space it is defined as:

M

* > , = £ (  )2r  (4 .6 )t=1 maXj-nmij

where max* and min^ are the maximum and minimum values for the k th dimension.

Dash et al. (1997) proposed a sequential backward selection algorithm to determine 

the relative relevance of features. In each iteration, the algorithm calculates the 

entropy E  after removing one feature from the set of remaining features. A feature is 

removed as the least important one if a set without the variable gives the least entropy. 

This continues until the importance of all variables is determined. The complexity of 

the algorithm is 0 { M 2N 2) where M is the number of features and N  is the number of 

instances in the dataset.
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The pseudo-algorithm to find important variables is shown next:

M  = Total number o f  features 

T = Original feature set 

Begin

For k=l to M -l {iteratively remove features one at a time}

For every variable v in T {Determine which variable to remove}

Tv = T - v

Calculate ETv on D using ec
Let Vk be the variable that minimizes ETv
T — T  — Vk {Remove Vk as the least important variable}
Output Vk

End

4.6 Proposed Algorithm

In this chapter a UFS algorithm that uses a new entropy function to detect important 

features is proposed. The new entropy function E F uses the FD to reduce one loop in 

the entropy function proposed in (Dash et al., 1997). The proposed function 

eliminates the calculation of distances between instances xf and xy. . The Euclidean

distance measure is not used to calculate the similarity among instances. Instead, the 

similarity is calculated using the FI of each instance, the exponential term in the 

function is maintained for normalization purposes.

Fractal Impact

Fractal dimension of 

the whole dataset

pFD Instance 1

pFD Instance 2

pFD Instance 3

pFD Instance n

Fig. 4.2: Illustration of the calculation of the FI.

66



The algorithm proposed has a computational complexity of 0 (M 2N ) where M  is the 

number of features and N  is the number of instances. The computational complexity 

of Eq. (4.4) is reduced from quadratic to linear on the number of instances. The

complexity reduction in the algorithm is achieved by modifying the similarity

measure S  from the Eq. (4.5). The Euclidean distance D  is replaced by the calculation 

of the FI on the equation Eq. (4.5). Using the FI eliminates the double loop needed to 

calculate the entropy E  in the Eq. (4.4) resulting in a simplified entropy equation:

E r = - t  (Sf, log Sf, + (1 -  Sf,) log(l -  Sf,)) (4.7)
/'=1

where

Sft = e ^ 1- (4.8)

where FI is used to calculate the distance among instances and is given as follows:

F I -  FD -  PFDl (4.9)

where FD is the fractal dimension of the whole data set and pFDi is the partial fractal

dimension of the ith instances. The pFD  of the ith instance is calculated removing the 

ith instance from the dataset and calculating the FD of the remaining 1-1 instances.

4.6.1 Unsupervised Redundancy

To calculate the redundancy in the features a new ratio Rt based on the fractal 

dimension is proposed. Redundancy is quantified as follows:

min ApD „ n .. 1A,
R. = ----- ^ ^ 0 < R ,  <1 (4.10)

ApDi

where i ApD is the difference between the zth partial fractal dimension and the fractal 

dimension D. The expression min ApD refers to the minimum absolute difference
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among all the partial fractal dimensions. When i ApD tends to be small and 

approaches min ApD, the ratio Ri takes a value close to its upper extreme, which 

indicates the redundancy of the ith attribute. When ApDj tends to be large the ratio Ri 

approaches zero, which means that the zth attribute has a low redundancy

max[£(*,) ~ Rt (F)] (4.11)
x , e F

where E  is the entropy of each feature. Entropy gives a quantity of the relevance each 

feature has to describe the possible clusters in the dataset. Ri is the level of 

redundancy of the zth feature calculated using the FD and the PFDs. The elimination 

of the redundant features helps to discriminate better the clusters and to reduce the 

size of the feature subsets.

The pseudo-algorithm of the proposed unsupervised algorithm to select important 

features is shown next:

T = Original Variable set 

M  = Total number o f  features in the data 

f  = ith feature in the data

Algorithm — Unsupervised Fractal-Entropy Dimensionality Reduction (UFEDR) 
input: dataset^
output: list of attributes in order of their importance 

Begin
1- Calculate the FD (fractal dimension) of the whole data 

For i=l :M {each feature in the dataset}

2- 7] = T  -  f i  {the complete set of features without the ith feature}
3- Calculate the entropy EF of 7] using (4.5)
4- Compute the partial fractal dimension PD for each feature;
5- Compute Ri defined in
6- Execute the proposed function (4.9)

End
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4.7 Experimental Results

The experiments in this chapter were carried out to measure usefulness of the subsets 

of features found by the UFS algorithm proposed in this chapter. The solution 

assumes that the goal is to obtain at least the same quality of clustering results with a 

reduced set of features than the clustering results obtained with the whole set.

The proposed algorithm is compared with more FS algorithms. The first one, called 

unsupervised statistical entropy, is an FS algorithm proposed in (Dash et al., 1997) 

that uses the Euclidean distance to measure entropy. The second algorithm, called 

supervised variance of predictive error, is a FS that selects important features in a 

supervised way. The SFS algorithm for which the accuracy graph can be seen at the 

bottom of each dataset shows a comparative reference for the above UFS algorithm 

algorithms.

Benchmark datasets from the UCI machine learning repository website and a real 

application dataset for wood defects detection were used to select important features.

The quality of features selected by the three FS algorithms was tested using a 

hierarchical algorithm called two step that finds clusters by dividing and merging 

instances in the data. A detailed description of the two-step algorithm can be found in 

Appendix D.

The data was partitioned randomly in two sets of instances. The first set contains 80% 

of the data and is used to train the ANN model. The second partition contains 20% of 

the data and is used to test the model created. The experiment for each subset of 

features was repeated twenty times.
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Dataset # Instances # Features # Classes
Breast Cancer Wisconsing 
(original)

699 10 2

WDBC (Diagnostic Breast 
Cancer)

569 32 2

WPBC (Prognostic Breast 
Cancer)

198 34 2

Australian Credit approval 690 14 2
Echocardiogram 132 12 2
Ecoli 336 8 8
Statlog (Heart) 270 13 2
Hepatitis 155 19 2
Ionosphere 351 34 2
Iris 150 4 3
Lymphography 148 18 4
Parkinsion 194 23 2
Pima Indian Diabetes 768 8 2
Lenses 24 4 3
Glass Identification 214 9 6
Tae 151 5 3
Mammography Masses 830 6 2
SPECTF Heart 267 44 2
Vehicle 846 18 4
Vowe Context 990 10 11
Wine 178 13 3
Zoo 101 16 7
Wood (Real Application) 232 17 13

Table 4.1 Description of benchmark datasets.
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Fig. 4.3: Breast cancer Wisconsing unsupervised and supervised FS comparison.
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78



100
Unsupervised Fractal Entropy on Hierarchical Clustering

50

1— i— i— i— i ^ i— i— i— i— i— r  r

M
! ! ! ! ! ! ! ! ! H T H — r t

r t 
???

; I 1 M M  M  1 1 I i

■J— J— 1 i I I 1 I 1 ,1 ..1— 1— 1— i i i i i i i i i i i i i . 1. _ i .i

100

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334  

Unsupervised Statistical Entropy on Hierarchical Clustering

% I 50

t—i—i—i—r

Q U  I I I 1 I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 I 1 I I I I L
1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334

Supervised Variance of Predictive Error on Hierarchical Clustering
100

? f  S
Q
3

1 2  3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334
Number of Features
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Fig. 4.14: Parkinson (K-means) unsupervised and supervised FS comparison.
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Fig. 4.15: Pima Indian Diabetes unsupervised and supervised FS comparison.
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Fig. 4.16: Lenses unsupervised and supervised FS comparison.
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Fig. 4.17: Glass Identification unsupervised and supervised FS comparison.
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Fig. 4.18: Tae unsupervised and supervised FS comparison.
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Fig. 4.19: Mammography Classes unsupervised and supervised FS comparison.
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Fig. 4.20: SPECTF Heart unsupervised and supervised FS comparison.
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Fig. 4.21: Vehicle unsupervised and supervised FS comparison.
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Fig. 4.22: Vowe Context unsupervised and supervised FS comparison.
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Fig. 4.24: Zoo unsupervised and supervised FS comparison.
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Fig. 4.25: Wood (real application) unsupervised and supervised FS comparison.
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4.8 Discussion

For each of the benchmark datasets and the real application dataset, three graphs of 

results were generated using a hierarchical clustering algorithm called two step. In 

each figures of results the graph at the top was obtained selecting the features with the 

algorithm proposed that uses the entropy measure based on FD. The results in the 

graph in the middle were obtained selecting the features with the algorithm proposed 

in (Dash et al., 1997) that uses an entropy measure based in Euclidean Distance. The 

last graph at the bottom corresponds to the results obtained selecting the best features 

using the original label in the dataset with the algorithm called variance o f predictive 

error. After selecting the features in a supervised way, as in the previous two cases, 

the two step hierarchical clustering algorithm was used to find clusters in the datasets.

Each of the graphs contains a box plot for each of the features selected. The best 

feature is used alone and then combined with the second best feature, after this, the 

pair of best features is combined with the third best feature and so on, until the last 

feature is combined. The quality of the clusters is evaluated using the original label in 

the dataset. A feature is considered good when it leads to a good clustering i.e., the 

size of the box is small and with high accuracy. The size of the box gives information 

of how stable is the set of features over 20 repetitions of the algorithm. As more stable 

the set of features is, as smaller the box will be. If the set of features gives non-stable 

results the box will be large. The horizontal line in the box is the sample median, the 

tops and bottoms of each box are the 25th and 75th percentiles of the samples, 

respectively. The distances between the tops and bottoms are the interquartile ranges.

The whiskers are lines extending above and below each box. The whiskers are drawn 

to show the furthest observations within the whisker length, adjacent values. Samples 

beyond the whisker length are marked as outliers. The notches give information about 

the variability of the median between samples. When the notches of two different 

boxes do not overlap have different medians at the 5% significance level. Comparing 

box-plot medians is like a visual hypothesis test, analogous to the t-test used for 

means.
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In most of the dataset the UFS algorithm proposed in this chapter manage to decrease 

the number of features maintaining the quality o f the clustering and in some cases 

improving it.

Comparatively with the UFS algorithm proposed in (Dash et al., 1997) the fractal 

based algorithm proposed in this chapter found a better set of features for datasets 

such as Lymphography, WDBC, Echocardiogram, Ecoli, Tae, mammography classes. 

The fractal algorithm found a better first feature in datasets such as Statlog heart, 

SPECTF and show more stable results in datasets such as Australian credit approval 

and Parkinson.

4.9 Summary

The proposed algorithm ranks features in terms of importance using the FD. The 

relevance is measured using a new entropy function that employs the FD. The 

algorithm ranks useful features when class information is not available.

This filter algorithm is efficient as it calculates the usefulness of the features in a 

process in which any search technique is involved. A new entropy measure based on 

the calculation of the FD is proposed in order to detect relevant features. The new 

fractal-entropy measure is less computationally expensive on the number of instances 

than the state-of-the-art entropy measure proposed in (Dash et al., 1997). The original 

entropy function based on Euclidean distance needs two loops to calculate the entropy 

of the data, while the proposed entropy function based on FD needs only one loop to 

perform the calculation. A property of the FD is its fully mathematical nature which 

removes the sequential backward selection step in the proposed algorithm.
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Chapter 5

Supervised Feature Selection

5.1 Preliminaries

As previously discussed, learning can occur within two contexts: unsupervised 

(clustering) and supervised (classification). This chapter presents relevance and 

redundancy problems analyses in FS and introduces a new algorithm to select 

important features in a supervised context.

FS has an important purpose in machine learning and is usually applied as a data pre­

processing step. Its objective is to choose a subset from the original set of features that 

describes a data set and to prepare it as an input for learning methods. Reducing the 

dimension (number of features) of a dataset permits to train faster and create simpler 

learning machines.

The only way to guarantee the best subset of features is to exhaustively search for all 

possible combinations of the features available. This algorithm is called exhaustive 

search. Unfortunately with current technology available exhaustive search is not yet 

feasible in data mining.

In order to achieve an optimal feature subset a large number of search techniques have 

been proposed over the years. Hill climbing, beam search and genetic algorithms are 

among the most popular. Search techniques for FS can be used under three different 

frameworks: filter, wrapper and embedded. The filter approach is the least 

computational expensive due to its efficient evaluation performance. The efficiency 

relies on avoiding feedback from learning machines to evaluate the quality of the 

features and drive the search.

Over years many filter applications for FS have been proposed to measure the 

relevance of the features within the class label. The relevant features are chosen in
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order to build more “intelligent” computational machines, able to discriminate 

between the different groups in the data. Relief is one of the first and most popular FS 

filter algorithms. “Optimal cell damage” is another classic filter technique based on 

ANNs. These algorithms measure the quality of each feature base only on its 

relevance to the label. Other algorithms like the ones proposed in (Peng et al., 2005) 

and (Liu et al., 2008) analyses the quality of the features based on two criteria, 

relevance and redundancy. The reason to add a redundancy analysis is because 

redundant features do not provide any extra individual information to a feature subset. 

Therefore the elimination of these features could not damage the informative quality 

of the subset.

The FS framework that joins the relevance and the redundancy criterion is called 

maximum Relevance and Minimum Redundancy (mRMR) (Peng et al., 2005). This 

framework defines the best feature as the one which is most relevant, and the least 

redundant. The relevance of a feature is calculated measuring the correlation between 

the feature and the target. The redundancy is measured calculating the correlation 

among the features (Hall, 2000).

In this chapter an algorithm is proposed to minimize the computational burden in the 

FS approach avoiding heuristics in the process. The proposed FS algorithm ranks 

features in order of importance, filtering out non-informative ones. The quality of the 

features is determined by measuring their relevance to the target and their redundancy 

to the features themselves. The techniques used to measure the relevance and the 

redundancy use MI and FD respectively. Both techniques are joined, in a new 

measure, under the framework of mRMR. The proposed measure applies the mRMR 

framework in a parallel fashion without using any heuristic techniques which burden 

the FS process.

In order to verify the performance of the proposed algorithm, 29 different benchmark 

datasets from the UCI machine repository were used. The features in each of the 

datasets were ranked in terms of importance and used to build ANN classifiers. The 

quality features were verified, within the class label, by calculating the percentage 

accuracy generated by the classifiers.
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This chapter is organized as follows. Section 5.2 gives an overview of the filter 

approach, including the MI and the mRMR for SFS. In section 5.3 the algorithm 

proposed for FS is explained. In section 5.4 the experimental methodology and results 

are presented. Section 5.5 summarises the chapter.

5.2 The Filter Approach

In (John et al., 1994) the term filter was coined to describe the approach for feature 

selection that does not use any induction algorithms to evaluate the quality of the 

features as it uses the data as the only source to measure their quality. This 

characteristic places filters as the fastest of the three FS approaches. A second 

advantage of filters is that the features selected should perform optimally in different 

types o f classifiers, although this is not always the case. Filters provide a ranking list 

with the total number o f features included in the dataset. The top feature in the list is 

considered the most important, and the feature in the bottom is considered the least 

important.

Some filter algorithms analyse features in an univariate way (Duch et al., 2003). This 

means that the features are evaluated one by one, not evaluating the performance in 

combination with any other feature. The univariate method has the disadvantage of 

making the assumption o f feature independence, which may result in lower results 

compared to the ones obtained using multivariate methods i.e. wrappers and 

embedded. On the other hand the univariate approach saves computational complexity 

in not using search techniques as they do not need to explore the feature space in a 

combinatorial way (Guyon et al., 2006).

5.2.1 Filters Approach Based on MI

MI is a popular technique to characterise general dependence between two variables 

as it has several advantages over other techniques. MI is a nonparametric and 

nonlinear technique that makes no assumption about the distribution of the data. MI is 

able to detect different types of feature dependencies among the features without 

relying in any transformation of the data. MI has been used successfully to measure
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dependency among features (redundancy) and dependencies between features and 

target (relevance) (Battiti, 1994, Conaire and O'Connor, 2008, Ding and Peng, 2003, 

Francois et al., 2007, Michel et al., 2008). There are several advantages of using MI 

instead of correlation techniques. One is that MI is able to detect general 

dependencies between variables while correlation is only able to detect linear ones. 

Another important difference between mutual information and correlation function is 

that MI can be applied to symbolic sequences as well as numeric sequences, but 

correlation can only be used on numerical sequences (Li, 1990). Nonetheless, when 

MI is used on tasks characterized by high input dimensionality suffers of inexact 

results caused by prohibitive computational demands and number of samples. This 

forces MI to be calculated only by using two-dimensional inputs to obtain accurate 

results.

MI can be calculated based on Shannon theory (Peng et al., 2005) as it can be used to 

reduce the uncertainty in a system for example: to calculate relevance, a system in 

charge of measuring the dependency between features and the target. In this case the 

system is the classifier which is conformed by the output (class) and the input 

information vector (features). Mathematically MI is described as follows: uncertainty 

in the output class can be measured by the entropy

//(C )  = - f > (c ) lo g P ( c )  (5.1)
c=\

where P(C) is the probabilities for the different classes c = l,... Nc. The average 

uncertainty after knowing the feature vector F, with N f  components, is the

conditional entropy:

Nf  Nc
H (C  /  F ) = - 'Z P ( f y '£ iP(c / F ) log P ( d F ) )  (5.2)

/ = 1  C = 1

where P(c / F ) is the conditional probability for class C given the input vector F. In 

the case where the feature vector is composed o f continuous variables, the summatory 

symbol is replaced by an integral and the probabilities by the corresponding



probability densities. Usually the conditional entropy will be less than or equal to the 

initial entropy. It is equal if and only if one has independence between features and

output class, i.e.; if  the joint probability density is a product of the individual

densities P(c, / )  = P (c )P (f) . The amount by which the uncertainty is decreased is, 

by definition, the MI I(C;F) between c and/

I{C ,F ) = H {C )-H (C  IF )  (5.3)

The MI is the amount of knowledge provided by the input feature F  which decreases 

the uncertainty about the class. If the uncertainty is considered within two different 

events (C ^ ), i.e., H(C;F), usually this is less than the sum of the individual 

uncertainties H(C) and H(F) , the following relation

H (C ;F ) = H (C) + H (F ) - 1(C;F) (5.4)

The combinations o f uncertainties H(C;F) is smaller because of the information that 

one variable provides about the other one. If the input feature vector has continuous 

components the MI is defined as follows:

/(C ;F )  = /(F ;C )  = £  \P {c ,F ) l o g (5-5)

The MI is directly estimated from the dataset when probability distributions are 

unknown in advance. The MI is a function of the joint probability distribution of the 

two variables c and F, its calculation is a sensitive part of the estimation of the MI. 

Other methods have been proposed to calculate MI, in (Beirlant et al., 1996, Drugman 

and Thiran, 2007, Scott, 1992), (Hyvarinen and Oja, 2000, Viola, 1995, Viola et al., 

1996) kernel-based and splines are used. In (Zhou et al., 2006) the estimation of the 

probability density is based on the distribution of the MI in a bayesian framework.
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5.2.2 Maximal Relevance Minimum Redundancy (mRMR)

FS algorithms should be able to find a good feature subset by eliminating features that 

provide little or no additional information. The relevance analysis is not sufficient to 

find a good feature subset, especially in high dimensional datasets where some of the 

features may be redundant. One may assume that the more features a set has the more 

discriminative the set is. But having a large number of relevant features has two main 

disadvantages: the first one is that an excessive number o f features will slow down the 

process of learning. The second disadvantage is that having too many features causes 

an over-fit in the training data as the learning is excessively constrained due to the 

amount of features. Therefore a redundancy analysis is needed in order to filter out 

features that do not provide any extra information (redundant), even if  they are 

relevant to the target (Deisy et al., 2007). The framework that unifies the criterion of 

relevance and redundancy for FS is called mRMR

It has been shown that features selected under the mRMR have more discrimination 

power. mRMR can integrate different methods for FS such as filters and wrappers to 

calculate relevance and redundancy. The mRMR is able to find smaller subsets of 

better features than those using only wrappers or filters alone. Dijck and Hulle, 

(2007), Ponsa and Lopez, (2007) present an algorithm under the mRMR that uses the 

MI to find relevant features and a wrapper methodology to perform the redundancy 

analysis. Ding and Peng, (2003) apply mRMR in five gene expression data sets 

selecting features with a broader spectrum of characteristics o f phenotypes than those 

obtained through standard ranking methods and the method led to a better 

classification results. Aunffarth et al, (2008) proposes a Hopfield network selection 

algorithm based on mRMR, the algorithm is compared with unitary redundancy and 

relevance filters, obtaining better results. Hejazai and Cai, (2009) proposed an 

algorithm that finds relevant and non redundant features for water resources systems 

based on Venn diagrams.

(5.6)
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The overall conclusion of the previous works is that a good solution contemplates 

ignoring redundant features to increase the general quality of the dataset. Subsets that 

include highly relevant and low redundant features are part of a good dataset 

representation.

5.2.3 Supervised Redundancy

Since redundancy in features is measured within the features only, the target is not 

required in the measure procedure. Taking into account the previous, the ratio 

proposed in chapter four which measures the redundancy among features, can be used 

in a supervised task. The redundancy in the features is detected by measuring changes 

in the FD when a feature is eliminated from the original set of features. A feature 

which does not affect the FD of the whole data is considered to be redundant.

In order to detect important features the fractal ratio is connected to the MI measure to 

create a new algorithm under the mRMR framework. The proposed algorithm is 

explained next.

5.3 Algorithm Proposed

MI has been proposed for feature selection in a wide range of applications. The basic 

practice of this method is to simply select the top-ranked features with higher MI 

Chow and Huang, (2005). The deficiency of this method is that the features selected 

as the most informative ones can be correlated to each other.

The aim of the algorithm proposed in this work is to select a subset with the most 

relevant and less redundant features in order to obtain stable and high accuracy results 

in supervised learning tasks. To achieve this goal, different frameworks have been 

proposed in the literature already (Deisy et al., 2007, Yu and Liu, 2004). The 

sequential analysis structure of these algorithms has two main steps as shown in Fig. 

5.1. The first step is carried out to obtain a subset of relevant features from the 

original dataset. The second step is to measure the level of redundancy on the selected 

subset of features to measure their level of redundancy.
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Original
Set ►

Relevance Relevance v Redundancy
Analysis Subset r Analysis

Selected
Subset ►

Fig. 5.1: Traditional framework of feature selection.

This sequential feature selection approach has two disadvantages. The first is that 

redundancy analysis is not applied over all of the features in the dataset, but only in a 

selected subset of relevant features. As a consequence, attributes of low redundancy 

that can be useful to describe the dataset may be removed because they are only 

mildly correlated to the target. The second disadvantage is the necessity of setting the 

number of relevant features burdening the process after the relevance analysis.

To overcome these disadvantages, a filter algorithm based on a new parallel feature 

analysis framework is proposed. This algorithm simultaneously evaluates the 

relevance and redundancy of the features, and balances the feature selection criterion 

accordingly.

Original
Set

►

►

Relevance
Analysis

Relevance
Ranking ►

Redundancy
Analysis

Redundancy w 
Ranking r

Fig. 5.2: Proposed framework of feature selection.

mRMR
Condition

Selected w 
Subset r

The first step is to perform the relevance analysis to the original set of features using 

MI. The MI index of every feature and the target is calculated using Eq. 5.5. The 

feature which obtains the highest value is ranked top in terms of relevance.

The second step is to quantify the level of redundancy of the whole dataset using FD 

analysis. This is done by first calculating the FD of the whole dataset and then the N  

PFDs. The zth PFD is calculated eliminating the zth attribute and computing the fractal 

dimension Di o f the remaining N -l features.
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To calculate the redundancy in the features a new ratio Rt based on the fractal 

dimension is proposed. Redundancy is quantified as follows:

R =  minAgg p  ^  
ApD,

where z ApD  is the difference between the zth partial fractal dimension and the fractal 

dimension D. The expression min ApD refers to the minimum absolute difference 

among all the partial fractal dimensions. When z ApD  tends to be small and 

approaches min A pD , the ratio Ri takes a value close to its upper extreme, which 

indicates the redundancy of the zth attribute. When ApDj tends to be large the ratio Ri

approaches zero, which means that the zth attribute has low redundancy. The final step 

is to verify the following condition:

max [/(*,., c ) - i? ((F)] (5.10)
x,e.F

where I(xi, c) is the dependency of the zth feature from the target c calculated using 

the MI. Ri(F) is the level of redundancy of the zth feature calculated using the FD and 

the PFDs. This function is developed by mimicking the mRMR criteria using a 

different condition for redundancy analysis that avoids the use of search techniques.

The objective of the function defined in Eq. 5.10 is to optimally set a measure of 

usefulness for the features in the dataset. The full mathematical nature of the MI and 

the FD allows a pure filter analysis and avoids evaluations of feature subsets using 

heuristic search strategies. The computational complexity of Eq. 5.10 is linear for the 

number of instances and quadratic for the number of features.

5.3.1 Algorithm Implementation

The algorithm to calculate the fractal dimension D  was implemented in C++ using 

linked lists instead of arrays to improve memory performance, and connected to 

MATLAB through MEX files for visualization purposes. The MI computation was
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performed using the algorithm proposed in (Peng et al., 2005), using a self-contained 

and cross-platform package available at Mathworks (MATLAB). The proposed 

feature selection algorithm using MI and FD with mRMR criteria is shown in Fig. 5.2.

Algorithm -  MI and FD to Maximise Relevance and Minimize Redundancy 
input: datasets
output: list of attributes in order of their importance 

Begin
1- Compute the fractal dimension D  of the whole dataset;

For each feature in the dataset
2- Compute the partial fractal dimension PD for each feature;
3- Compute Ri defined in (5.9)
4- Compute the MI between each feature and the target.
5- Execute the proposed mRMR condition.

end

Filter methods usually ranks the features according to a pre-defined criterion of 

desirability. The decision on how many features to remove can be taken by using 

either a threshold of importance, or by evaluating their incremental effectiveness 

using a learning machine.

5.4 Experimental Results

The experiments in this chapter were carried out to test a new algorithm based on the 

mRMR framework. The algorithm proposed in this chapter ranks features in terms of 

importance. The quality of the features selected with the proposed algorithm was 

compared with the one produced by two different state-of-the-art algorithms.

The first FS algorithm called variance of predictive error calculates the importance of 

the features taking into account not only the relevance of the features within the 

target, but also considering the interactions and correlations among features. This 

algorithm relates to the importance of each feature in making a prediction using an 

ANN classifier. This method leaves one feature at a time, and observes the 

performance of the remaining model i.e. the method just relates to the importance of 

each feature in making the prediction. The importance of the feature is calculated 

from the test partition and also takes into account interactions among features, thus it
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might be found that only one of two predictors is set as important if both duplicate 

much of the same information. For a more detailed reference of the variable of 

importance approach see Appendix B.

The second FS algorithm selects the features based on strength of its relationship to 

the specified target. This algorithm uses the Pearson chi-square test to measure the 

independence of the target on each feature in the datasets. The importance of each 

variable is calculated as (1-p), where p  is the p  value of the appropriate statistical test 

of association between the candidate predictor and the target. For a more detailed 

reference of this algorithm see Appendix B.

Different ANN models were created to asses the incremental performance of features 

ranked. The ANN’s were created using a different number of features, from one to the 

total number of features in the datasets. The features are ranked in order of importance 

determined by each of the algorithms.

The ANN’s, used to compare the different feature sets, use the Multilayer Perceptron 

(MLP) network model. All networks have only one hidden layer which contains a 

maximum of [3,(«, +n0) / 20] neurons, where ni is the number of input neurons and

n0 is the number of output neurons. The network is trained using the back propagation 

method described in Appendix A.

The data was partitioned randomly in two sets of instances. The first set contains 80% 

of the data and is used to train the ANN model. The second partition contains 20% of 

the data and is used to test the model created. The experiment for each subset of 

features was repeated ten times.

In order to show variability of accuracy of the feature subsets selected box plots 

graphs are used. The graphs for each of the datasets produce N  boxes and whiskers for 

each of the N  models created using 1 to A number of features. The box is limited with 

lines at the lower quartile, medium and upper quartile values. Whiskers extend from 

each end of the box to the most extreme data values within 1.5 times the interquartile

106



range sample from the ends of the box. Outliers are data within values beyond the end 

of the whiskers and are diplayed with a red “+” sign.

Notches display the variability of the median between samples. The width of a notch 

is computed so that box plots whose notches do not overlap have different medians at 

the 5% significance level. The significance level is based on a normal distribution 

assumption, but comparisons of medians are reasonably robust for other distributions. 

Comparing box plot medians is like a visual hypothesis test, analogous to the t-test 

used for means. The software used to produce the box plots was MATLAB.

The twenty benchmark datasets were all taken from the UCI machine learning 

repository website. These datasets were chosen according to their variability of 

classes and the different levels of overlapping between them. The class overlapping of 

each dataset can be seen from the graphs presented on Appendix C, where the 

Principal Component Analysis projection of every benchmark dataset used is shown.

Datasets # Instances # Features # Classes

Credit approval 690 14 2

Echocardiogram 107 7 2

Ecoli 336 7 8

Heart 13 270 2

Hepatitis 19 80 2

Image Satellite (Statlog 

version)

6435 36 5

Image Segmentation 2310 19 7

Letter Recognition 20000 16 26

Ionosphere 351 34 2

Iris 150 4 3

Lenses 24 5 3

Mammography masses 830 5 2

Parkinson 194 22 2

Shuttle (Statlog) 14500 9 7
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Sonar 208 60 2

Spambase 4601 57 2

Vehicle 846 18 4

Vowe Context 990 10 10

WDBC (Breast Cancer 

Diagnostic)

569 30 2

Wine 178 13 3

SPECTF Heart 267 44 2
Zoo 101 16 7
Lymphography 148 18 4
Glass Identification 214 9 6
Tae 151 5 3
Breast Cancer Prognostic 

(WPBC)

Pima Indian Diabetes 768 8 2
Breast Cancer Wisconsing 

(original)
699 10 2

Wood (Real application) 232 17 13

Table 5.1 Description of benchmark datasets
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Fig. 5.3: Australian Credit approval SFS comparison.
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Fig. 5.4: Echocardiogram SFS comparison.
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Fig. 5.5: Ecoli SFS comparison.
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Fig. 5.7: Hepatitis SFS comparison.
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Fig. 5.9: Image Segmentation SFS comparison.
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Fig. 5.11: Ionosphere SFS comparison.
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Fig. 5.12: Lenses SFS comparison.
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Fig. 5.15: Spambase SFS comparison.
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Fig. 5.16: Vehicle SFS comparison.
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Fig. 5.17: Breast Cancer (w dbc) SFS comparison.
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Fig. 5.25: Breast Cancer Wisconsing Prognostic (WPBC) SFS comparison.
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5.5 Discussion

The results obtained in this chapter for SFS are represented in similar way, using box 

plots, as in the previous chapter for UFS for each dataset. The results for the algorithm 

proposed that combines FD and MI are shown in the top graph. The proposed 

algorithm is compared with two state-of-the-art algorithms. The first one and shown 

in the middle graph is the variance o f predictive error algorithm for SFS. The second 

one and shown in the bottom graph is called Pearson Correlation.

As in the previous chapter the box plot, for each of the datasets, shows which 

combination of features is the most effective in terms of accuracy and stability. The 

features are combined from the most effective to the least effective one.

In most of the cases the algorithm proposed in this chapter is able to decrease the 

number of features maintaining and in some cases improving the classification 

accuracy. The algorithm proposed shows better performance in datasets such as in 

Image Satellite, Lenses, Mammography masses, vehicle, wine, iris. The proposed 

algorithm shows comparable performance to the other SFS techniques as in the cases 

o f Australian Credit Approval and Shuttle datasets.

5.6 Summary

A new algorithm to select useful features for classification applications has been 

developed. The usefulness of each feature is efficiently measured proposing a simpler 

and non-heuristic feature selection framework of mRMR. Comparable accuracy is 

obtained for all of the datasets showing the effectiveness of the subsets selected. The 

box plots calculated for 10 independent trials on the features selected show that the 

proposed algorithm has comparable reliability to other state-of-the-art algorithms. The 

number of features is reduced while keeping effectively the integrity of the 

information in most of the datasets. The similar nature of MI and FD, both based on 

mathematical principles, makes the proposed algorithm more suitable for a 

straightforward analysis of the data. The effect of varying levels of noise in the data 

on the performance of the proposed fractal based algorithm will be considered in 

future work.
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Chapter 6

Conclusion

In this chapter the contributions and conclusions are listed. Directions for further

research and improvements for the proposed work are provided.

6.1 Contributions

The main contributions of this research are:

• A simple partitioning-hierarchical clustering algorithm that uses the FD as 

a similarity measure among instances and does not need a bootstrapping by 

any other different clustering method.

• A divisive analysis technique with a linear computational complexity as it 

does not need to compute combinatorial dissimilarities among instances to 

divide data.

• A non-heuristic unsupervised algorithm to select important features, which 

uses a relatively simple function to measure entropy on datasets based on a 

fractal (non-Euclidean) similarity measure.

• A supervised algorithm to select important features, which uses a non­

heuristic ratio to measure redundancy among features.

• A framework for feature analysis to maximize relevance and minimize 

redundancy in a parallel way. The framework proposed does not need 

predictors, so simplifies the feature assessment procedure.
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6.2 Conclusions

The functionality of the FD, alone and combined, when carrying out data mining tasks 

such as clustering, supervised and unsupervised feature selection has been shown to 

be effective. New algorithms to simplify the tasks have been proposed and compared 

with current state-of-the-art algorithms that have similar characteristics. The 

following are conclusions for each of the tasks:

• Usually an initialization step in fractal clustering is extremely important in 

determining a good quality of clusters. In the method proposed, for fractal 

clustering, the initialization step has been eliminated, giving an adequate 

recognition of natural clusters in artificial and benchmark datasets.

• The proposed fractal clustering algorithm uses similarities instead of 

traditional Euclidean distances to divide the data into sub-clusters. The 

divisive analysis maintains a sub-cluster balance, by splitting in half range the 

sub-clusters, which is a factor for a good performance when the sub-clusters 

are re-merged to create final clusters.

• Important features can be found by detecting changes of entropy in data. 

Usually these changes in entropy are detected using sequential search 

techniques. These techniques are not needed in the algorithm for UFS 

developed in this research because it is simpler than the current state of the art 

algorithms. The simplicity of the proposed algorithm relies on a new function 

to calculate entropy in the data which uses FD to measure similarity among 

instances.

Because the FD has the property to quantify the complexity of the whole data, the 

proposed algorithm needs fewer loops to calculate the entropy, and no search 

technique to determine the important features. The algorithm shows comparable 

and in some cases better results than the current state-of-the-art algorithm, the 

latter having to use Euclidean distance to calculate similarity among instances and 

a sequential backward selection to find the important features.
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The method is useful to remove irrelevant features and helps a clustering method 

to find groups in data, with a reduced set of features. Comparing supervised and 

unsupervised selected features on a clustering method gives a better insight of the 

performance of the unsupervised selection methodology, as in the SFS the 

important features are selected using true group labels for each of the instances.

• The FD has been incorporated efficiently with the MI to produce a more 

straightforward FS algorithm to find relevant and non-redundant features. The 

proposed algorithm produces smaller feature sets which deliver stable and 

sometimes superior classification accuracies to the compared algorithms.

• In this research the FD was used to developed solutions to a fundamental 

problem in data mining which is: searching the whole space in order to 

guarantee global maximisation of a criterion function. The proposed fractal 

solutions, for clustering and unsupervised and supervised FS, give non- 

heuristic solutions to alleviate the computational burden that search techniques 

produce.

6.3 Suggestions for Future Research

• Further work should be directed at the complexity of the FD algorithm, in 

terms of features, in order to create a linear computational complexity 

algorithm.

• Developing a method to calculate the number of clusters for a given dataset. A 

clustering algorithm that computes the number of clusters automatically and 

simultaneously with a FS procedure. FS is a worthwhile line to pursue to find 

more compact feature subsets while maintaining the quality of the clusters.

• Investigating local UFS methods that select different subsets of features for 

different clusters appear particularly useful, since they can be applied when,
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known in advance. All the features in the dataset are necessary for the 

clustering task.

• Extending the method of SFS to deal with regression problems in which the 

class contains continuous values.

• Investigating the effect of varying levels of noise in the data on the 

performance of the fractal base algorithm.
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Appendix A
Back Propagation Algorithm

The training of a multilayer perceptron uses a method called back propagation of 

error, based on the generalized delta rule (Rumelhart). For each record presented to 

the network during training, information (in the form of input fields) feeds forward 

through the network to generate a prediction from the output layer. This prediction is 

compared to the recorded output value for the training record, and the difference 

between the predicted and actual output(s) is propagated backward through the 

network to adjust the connection weights to improve the prediction for similar 

patterns.

In the feed-forward calculation the information flows through the network as follows:

Input neurons have their activations set to the values of the encoded input fields. The 

activation of each neuron in a hidden or output layer is calculated as:

a, = <T( Z Jw!i°y)

where ai is the activation of neuron i j  is the set of neurons in the preceding layer, wtj 

is the weight of the connection between neuron /  and neuron j, o / is the output of 

neuron j , and cr(jt) is the sigmoid or logistic transfer function

Back-propagation calculation

When the training starts all the weights in the network are set to random values in the 

interval -  0.5 < wtJ < 0.5.
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Records are presented in cycles (also called epochs), where each cycle involves 

presenting n randomly selected training records to the network, where n is the number 

of records in the training data. Because of the random selection process, in any 

particular cycle some training records may be presented more than once and others 

may not be presented at all. For each record, information flows through the network to 

generate a prediction, as described above. The prediction is compared to the target 

value found in the training data for the current record, and that difference is 

propagated back through the network to update the weights. To be more precise, the 

change value Aw for updating the weights is calculated as:

Awu (n +1) = tjSpjopi + aAw:) (n),

where 77 is the learning rate parameter, Spj is the propagated error, described below, 

opi is the output of neuron i for record p, a  is the momentum parameters, and 

A (n) is the change value for wyi at the previous cycle.

The value of a  is fixed during training, but the value of 77 varies across cycles of 

training. 77 starts at the user-specified initial eta, decreases logarithmically to the value 

of low eta, reverts to the high eta value, and then decreases again to low eta. The 

value of 77 is calculated as

k > g (-^ )
7 (0  = 7(' -l)exp ( ^ - )

a

where d  is the user-specified number of eta decay cycles. If rj{t — 1) < rjlow then ij(t) is 

set to rjhigh. 77 and continues to cycle thusly until training is complete. The back- 

propagated error value 8pj is calculated based on where the connection lies in the 

network. For connections to output neurons it is calculated as

^  pi ~  pj ° p j  )  ° p j  ^  0  pi )
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where k  is the set of neurons to which neurons j ’s output is connected, wkJ is the

weight between the current neuron and the neuron k, and Spk is the propagated error

for that weight for the current input record. Weights are updated immediately as each 

record is presented to the network during training.
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Appendix B

Supervised Feature Selection Algorithms

Pearson’s correlation chi-square

Pearson’s correlation chi-square is a test of independence between X  and Y that 

involves the difference between the observed and expected frequencies. The expected 

cell frequencies under the null hypothesis of independence are estimated by. Under 

the null hypothesis, Pearson’s chi-square converges asymptotically to a chi-square 

distribution with degrees of freedom d  = (/-1)(*/-1).

Thep  value based on Pearson’s chi-square %2 is calculated by p  value = Prob (%2d> 
Z 2), where

Predictors are ranked by the following mles.

1. Sort the predictors by p  value in the ascending order

2. If ties occur, sort by chi-square in descending order.

3. If ties still occur, sort by degree of freedom d  in ascending order.

4. If ties still occur, sort by the data file order.

The likelihood ratio chi-square is a test of independence between X  and Y that 

involves the ratio between the observed and expected frequencies. The expected cell 

frequencies under the null hypothesis of independence are estimated by. Under the 

null hypothesis, the likelihood ratio chi-square converges asymptotically to a chi- 

square distribution with degrees of freedom d=

The p  value based on likelihood ratio chi-square G2 is calculated by p  value = Prob 

( x /  > G 2), where
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G2=2Z Z G
»=1 J= \

J
2

IJ

Predictors are ranked according to the same rules as those for the p  value based on 

Pearson’s chi-square.

Variance of Predictive Error

The variable of importance algorithm requires nmurld X nsmpk per mund data 

generated. For each round, the corresponding accuracy for each sub-model (feature 

subset) is determined. Feature X 1 for each of the j  predictors; across all rounds, 

average accuracy and variance can be calculated.

>  For each round, nsample random cases are generated as follows:

• Y is assigned a random value based on the prior probabilities n k.

• Each X i is randomly assigned based on conditional probabilities

Within a round, each of the X } features are excluded from the model, and the

accuracy is calculated based on the generated test data for each submodel in 

turn.

> The accuracies for each round are calculated by comparing the submodel’s 

predicted value for each case’s generated outcome y,

>  The mean and variance of the estimated accuracy are calculated across rounds 

for each sub-model. For each variable, the importance is measured as the 

difference between the accuracy of the full model and the mean accuracy for 

the sub-models that excluded the variable.

P ( X j \ Y  = y)

flcorrect _ without _ xj , for each of the j  submodels.accuracy _  without _ xj
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Appendix C

Two Principal Component Projections of the Benchmark datasets
used
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Appendix D

A Two Step Clustering Algorithm

As the name implies, the clustering algorithm involves two steps: Pre-clustering and 

Clustering.

The cluster algorithm is a scalable cluster analysis algorithm able to handle very large 

data sets. It can handle both continuous and categorical variables or attributes. It 

requires only one data pass. It has two steps 1) pre-cluster the cases (or records) into 

many small sub-clusters; 2) cluster the sub-clusters resulting from pre-cluster step into 

the desired number of clusters ISL (2007).

First step

The pre-cluster step uses a sequential clustering approach. It scans the data records 

one by one and decides if the current record should be merged with the previously 

formed clusters or starts a new cluster based on the distance criterion (described 

below). The procedure works constructing a modified cluster feature (CF) tree. The 

CF tree consists of levels of nodes, and each node contains a number of entries. A leaf 

entry (an entry in the leaf node) represents a final sub-cluster. The non-leaf nodes and 

their entries are used to guide a new record quickly into a correct leaf node. Each 

entry is characterized by its CF that consists of the entry’s number of records, mean 

and variance of each range field, and counts for each category of each symbolic field. 

For each successive record, starting from the root node, it is recursively guided by the 

closest entry in the node to find the closest child node, and descends along the CF 

tree. Upon reaching a leaf node, it finds the closest leaf entry in the leaf node. If the 

record is within a threshold distance of the closest leaf entry, it is absorbed into the 

leaf entry and the CF of that leaf entry is updated. Otherwise it starts its own leaf 

entry in the leaf node. If there is no space in the leaf node to create a new leaf entry, 

the leaf node is split into two. The entries in the original leaf node are divided into 

two groups using the farthest pair as seeds, and redistributing the remaining entries 

based on the closeness criterion.
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If the CF tree grows beyond allowed maximum size, the CF tree is rebuilt based on 

the existing CF tree by increasing the threshold distance criterion. The rebuilt CF tree 

is smaller and hence has space for new input records. This process continues until a 

complete data pass is finished. For details of CF tree construction, see the BIRCH 

algorithm (Zhang, Ramakrishnon, and Livny,1996).

All records falling in the same entry can be collectively represented by the entry’s CF. 

When a new record is added to an entry, the new CF can be computed from this new 

record and the old CF without knowing the individual records in the entry. These 

properties of CF make it possible to maintain only the entry CFs, rather than the sets 

of individual records. Hence the CF-tree is much smaller than the original data and 

can be stored in memory more efficiently.

Note that the structure of the constructed CF tree may depend on the input order of the 

cases or records. To minimize the order effect, randomly order the records before 

building the model.

The cluster step takes sub-clusters (non-outlier sub-clusters if  outlier handling is used) 

resulting from the pre-cluster step as input and then groups them into the desired 

number of clusters. Since the number of sub-clusters is much less than the number of 

original records, traditional clustering methods can be used effectively. TwoStep uses 

an agglomerative hierarchical clustering method, because it works well with the auto­

cluster method.

Second step

In a second stage, the initial estimate is refined by finding the largest relative increase 

in distance between the two closest clusters in each hierarchical clustering stage. This 

is done as follows:
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Starting with the model Ck indicated by the BIC criterion, take the ratio of minimum 

inter-cluster distance for that model and the next larger model Ck+1, that is, the 

previous model in the hierarchical clustering procedure,

Jfa(fc) = <U,(C‘ )
dm m (C k+l)

where Ck is the cluster model containing k clusters and dmin(C) is the minimum 

inter-cluster distance for cluster model C.
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