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Summary

The optic nerve represents an important model for neurodegenerative diseases in
addition to a number of neurodestructive ocular conditions. Among these, glaucoma is
a common cause of optic nerve damage usually associated with an elevated
intraocular pressure (IOP), retrodisplacement of the lamina cribrosa, reduced
retrograde neurotrophic support and pathological cellular changes. Retinal ganglion
cell (RGC) loss can continue after reduction of IOP to normal levels, indicating
attenuated secondary neurodegeneration during which glia activate and proliferate.

Activated glia may exacerbate glaucoma during secondary degeneration.

Experimental glaucoma was induced in Brown Norway rats using episcleral drainage
vessel sclerosis. Neurodegeneration and cell death were assessed as a function of IOP
variables. The effects of ocular hypertension on optic nerve microglia, immune cells,
astrocytes and nitric oxide synthase (NOS) were determined by qualitative analysis of

label-specific immunofluorescence

Ocular hypertension induced significant RGC death (P<0.05) and degeneration.
Significant astrocytic GFAP elevation occurred following initiation of disease
(P<0.05). Correlation of macrophage and microglial marker alterations indicated
significant increases in both cell types following the induction of ocular hypertension
and RGC death (P<0.05). Initial microglial up regulation appeared to be regulated by
CD200 axis activity. Peripheral immune cells, including B lymphocytes, may have
infiltrated the optic nerve during late stages of disease. Significant upregulation of
nitric oxide synthase isoforms 1 and 2 in the optic nerve head, also demonstrated a
positive correlation with microglial/macrophage increases (P<0.05). NOS3 was not

upregulated following the induction of ocular hypertension.

Disrupted neuroglial interactions via the CD200 axis are likely to be involved in the
initial glial response to ocular hypertension. Astrocytic and microglial activation may
play a role in initiating and maintaining RGC death during chronic glaucoma. The
production of NOS by these cells, particularly NOS2 by microglia, may serve to

either promote or prevent optic nerve neurodegeneration.
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Chapter 1 General Introduction

Chapter 1

General Introduction

1.1 The Human and Rat Optic Nerve

1.1.1 The course and nature of the optic nerve

Despite its relative structural simplicity, the rat optic nerve has anatomic parallels
with that of humans and other primates. Although optic nerve features are similar
across species, the rat optic nerve comprises only around 120,000 fibres (Hughes,
1977) as compared to the 1.1 to 1.3 million fibres of the human and 1.5 to 1.8 million
fibres of the rhesus monkey optic nerve (Potts et al., 1972a).

The optic nerve is an extension of the central nervous system, beginning at the retina
as the optic nerve head or disc, and extending to the optic chiasm. On leaving the
globe, nerve circumference increases due to individual fibre myelination and
acquisition of a three-layered connective tissue meningeal sheath (Anderson, 1969).
The optic nerve is devoid of a neurolemmal sheath, unlike peripheral nerves, which
compromises its regenerative capacity. Damage to the optic nerves, similar to the
brains white matter, is mostly irreversible (Scharenberg, 1953). The rodent and human
optic nerves travel through the optic foramen and optic canal to enter the cranium.
The nerves unite at the sub-thalamic optic chiasm where fibres of the human nerve
semi-decussate. Semi-decussation is only partial in the rat. Visual fibres then proceed
as oval bands to the peduncles where they diverge. The vast majority (90%) of human
visual fibres terminate in the lateral geniculate nucleus (LGN) of the thalamus, while
only few rat visual fibres project to this region. Some human visual fibres continue to
the superior colliculi to form the superior brachium (Yamadori and Yamauchi, 1983),
while the majority of rat visual fibres terminate
here. Other fibres leave the optic tract before reaching the LGN and terminate in mid
and hind brain oculomotor centres. The majority of human fibres take the

retinogeniculocortical pathway as simplified in Figure 1.1.
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Chapter I General Introduction

disc is concave, forming a physiological cup, lined with residual intraorbital astroglia
of the limiting membrane of Elschnig (Anderson ef al., 1967). Optic nerve axons are
separated into fascicles by these specialised support astrocytes, which are orientated
similarly to lamina cribrosa astrocytes (Anderson and Hoyt, 1969; Elkington et al.,
1990; Ogden et al., 1988; Trivino et al., 1996).

1.1.3 The lamina cribrosa

The collagenous projections of the lamina cribrosa, through which retinal axons pass,
occupies the optic nerve head almost entirely. The rat equivalent has a conical shape
with the beginnings of myelination and an almost identical protein content to the
human lamina cribrosa (Morrison et al., 1995). These similarities are useful in

modelling human optic nerve disease, including glaucoma.

The human optic nerve becomes divided into bundles at the lamina cribrosa by 10
successive fenestrated collagen sheets (cribriform layers) projecting from the
meningeal dural layer (Quigley and Addicks, 1981). The human lamina is shown
clearly in Figure 1.2. The prominence of the rat lamina cribrosa in terms of

collagenous material is less than that of the human (Morrison et al., 1995).

Both the neck and transition zone of the rodent optic nerve exhibit transverse vessels
with wide collagen filled perivascular spaces and astrocytic borders. These
collagenous structures are ultrastructurally similar to primate lamina beams, and
consist mainly of collagen types I, III and VI with some elastin (Morrison et al.,
1995). Chondroitin and dermatan sulphate-containing proteoglycans, with collagens I,
Il and VI, make up.the lamina core surrounded by laminin and collagen IV (Morrison

et al., 1995).

Collagen IV and laminin are produced by astrocytes and vascular endothelial cells of
the lamina cribrosa, as well as cultured lamina cribrosa cells (Hernandez et al., 1988).
The specialised supportive lamina cribrosa astrocytes also contain glial filaments
including glial fibrillary acidic protein (GFAP). The lamina sheets are separated by
astrocytes, whose processes are perpendicular to optic nerve axons, and directly
contact the unmyelinated axons by entering the nerve fibre bundles (Anderson, 1969;
Elkington et al., 1990; Trivino et al., 1996).
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Chapter I General Introduction

the measurement or quantification of nerve fibre loss can be performed more easily.
The supportive framework alters to become pial septae, with similar constituents to
the cribriform plates of the laminal region. Collagen types I, II, IV and V, laminin and
fibronectin have all been localised here. Postlaminar regions differ structurally from
the lamina cribrosa; less compact septae are orientated at right angles to the lamina

supports (Sawaguchi et al., 1994).
1.2 Glaucoma
1.2.1 Introduction to glaucoma

The glaucomas are a heterogeneous group of optic neuropathies with differing
pathophysiological mechanisms. All share common characteristics of excessive optic
disc excavation, accompanied by a specific pattern of retinal ganglion cell (RGC)
degeneration and loss. Photoreceptors and retinal interneurons rely on RGCs to
package and transmit quanta of visual information for use by higher brain structures.
During glaucoma, RGC death results in a functional deficit over time. Normally this
deficit is associated with an increased intraocular pressure (IOP), but vascular and
structural alterations at the optic nerve head can also contribute. Visual field loss
begins with peripheral vision, advances to the remaining visual field, and eventually

compromises central vision (Sears, 1979).
1.2.2 History of glaucoma

The first recorded incidence of glaucoma by Sams-ed-Din, a fourteenth century Arab
physician, described blindness accompanied by pain, immobile pupils and elevated
IOP. Glaucoma was not described in Europe until the seventeenth century. Sir
William Lawrence coined the term during the early nineteenth century, and in 1830,
William Mackenzie associated the disease changes with IOP. Ophthalmoscopy
enabled the discovery that glaucomatous optic disc cupping, and not disc elevation,

resulted from IOP elevation (Duke-Elder, 1940).
1.2.3 Diagnosis

The glaucomas can be differentiated between and from other ocular conditions by an

elevated IOP of over 21 mmHg (which occurs frequently, but not always),
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accompanied by excessive optic disc excavation, and a specific pattern of visual field
defect. Symptoms such as pain or deterioration of visual function can occur at any
level from normal vision to complete blindness. However, pathophysiology can begin
in a preceding asymptomatic phase (Quigley ef al., 1982"), diagnosed by a nasal step
in the visual field, a notch in the optic disc, angle pathological signs, or afferent
pupillary defect (Hitchings and Spaeth, 1976). The presence of pathological signs
does not always indicate that symptoms will develop further, as although most

glaucomas are progressive, some are stable (Martinez-Bello et al., 2000).
1.2.4 Forms of glaucoma

Glaucoma can be divided into three primary categories: open-angle, closed-angle and

congenital, as well as secondary, dependent on the primary defect.
1.2.4.1 Primary open-angle glaucoma

During primary (or idiopathic) open-angle glaucoma (POAG), chronic elevated IOP is
partly responsible for bilateral optic nerve atrophy with an unknown initiation factor.
As many as 25% of POAG patients have a normal IOP below 21 mmHg (Sommer,
1996). POAG can be subdivided by optic disc characteristics into focal, diffuse and
vasospastic glaucoma, and typically has a late onset age. Open-angle glaucoma can

also be secondary to vasospasm, trauma, and many other factors.
1.2.4.2 Primary angle-closure glaucoma

Narrow anterior chamber angles are associated with primary angle-closure glaucoma.
Effects of angle-closure include mechanical blockage of aqueous outflow from the
eye with associated IOP elevation. Inherited in a multifactorial manner, with a late
onset age, angle-closure glaucoma can be divided into subtypes of acute, subacute and

chronic. Angle-closure can also occur due to secondary insults such as ocular trauma.
1.2.4.3 Primary congenital glaucoma

Primary congenital glaucoma is an autosomal recessive disease with a higher

incidence in males. The inheritance rate of primary congenital glaucoma is low, with
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an incidence in siblings of 3-11%. Developmental aberrations in the anterior chamber

angle, trabecular meshwork, iris and/or ciliary body are responsible for this disease.
1.2.5 Incidence

Glaucoma has serious implications for public health, accounting for 13% of all new
registrations of blindness annually (Evans and Bird, 1996). Susceptibility to the
disease depends on age, race and family history. It is estimated that 2% of Europeans
and around 8% of African-Americans and African-Caribbeans over the age of 40 are
affected (Egbert, 2002), making it the most common cause of blindness for the latter.

Table 1.1 below shows the incidence of the different types of glaucoma.

Table 1.1 The incidence of glaucoma

| Category of glaucoma Proportion of glaucoma patients
Primary open-angle 66%
Primary closed-angle 28%
Primary congenital 1%
Secondary 5%

POAG has the highest rate of occurrence of all the glaucomas in a normal population,
with an incidence of 0.5%. Acute angle closure glaucoma, the next most prevalent
form of the disease, has an incidence of 0.1%. Congenital glaucoma has the lowest

prevalence, occurring in 1 in every 30,000 live births.
1.2.6 Risk factors

Elevated IOP is considered one of the most important predisposing factors to
glaucoma other than age (Armaly et al., 1980; Wilson et al, 1987). Increased IOP can
produce many optic nerve alterations, including compromise of vascularisation,
reduced retrograde transport, and glial scarring (Yucel et al., 1999), all of which may
contribute to neurodegeneration (Soares et al., 2003). However, IOP varies naturally,
and glaucoma often occurs in normotensive eyes (Sommer et al., 1991), with the

majority of hypertensive eyes not developing glaucoma. Despite the importance of
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elevated IOP, predisposition to glaucoma can result from a number of other factors

(Georgopoulos et al., 1997; Le et al., 2003; Wilson et al., 1987).

Ocular conditions not associated with IOP may render affected eyes more susceptible
to glaucomatous damage, for example myopia (Georgopoulos ef al., 1997; Grodum et
al., 2001; Le et al., 2003; Perkins and Phelps, 1982). Social factors can also be
important (Fraser et al., 2001; Wilson et al., 1987). These factors are covered

comprehensively in Table 1.2.

Table 1.2 Risk factors for glaucoma

Demographic factors Age

Race

Family history (heredity)
Ocular risk factors Angle configuration

Large cupping of the optic nerve head
Ocular ischaemia

Glaucomatous damage to the fellow eye
Elevated intraocular pressure

Myopia

Pigment dispersion

Exfoliation syndrome

Angle recession

Systemic risk factors Peripheral vascular diseases

Hyperviscosity states

Arteriosclerotic and ischemic vascular diseases
Malnutrition

Hypotension or hypertension

Diabetes mellitus

Migraine

Lifestyle Obesity

Lack of exercise

Smoking
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1.2.7 Aqueous humor dynamics and intraocular pressure

An increased basal IOP is a major treatable risk factor for glaucomatous damage
(Brubaker, 1996). IOP maintenance is a function of the aqueous humor, the drainage
and production of which helps maintain globe structure and eye functions. Average
ocular tensions of 19mmHg for the human (Armaly, 1965) and 1SmmHg for the rat
are considered average normal pressures. Deviation from these levels may be a result

of increased production and/or limited drainage of the intraocular aqueous.

1.2.7.1 Aqueous humor production

Aqueous is produced at a rate of 2.4 +/- 0.6 pl/hour. Circadian variation reduces
production during the night for diurnal and during the day for nocturnal species
(Gharagozloo et al., 1988; Pointer, 1997). Control of aqueous humor diffusion or
active secretion from the ciliary body is a function of the suprachiasmatic nucleus
(SCN). The SCN receives a direct retinal projection and belongs to a system
responsible for circadian timing, to which it is connected by sparse efferent
hypothalamic projections (Stephan and Zucker, 1972). Coupled oscillator SCN

neurons form a pacemaker within the core or ventrolateral SCN (Moore et al, 1996).

Core SCN neurons contain vasoactive intestinal polypeptide, calretinin, somatostatin,
substance P, gastrin releasing peptide (Karatsoreos et al., 2004) and y-amino butyric
acid (GABA). All may have a role in the complex sympathetic control of circadian
rhythm. The core SCN receives primary entraining afferents and contains pacemaker
neurons responsible for circadian oscillations including that of IOP. The sympathetic
nervous system and P-adrenergic receptors are important in control of these
oscillations and circadian aqueous flow (Nii ef al., 2001). Epinephrine can reduce IOP
(Wang et al., 2002), and selective P-receptor antagonists can increase aqueous

production.
1.2.7.2 Aqueous humor drainage

Aqueous humor exits the eye via two main drainage routes. The direct outflow
pathway accounts for 80% of drainage via the trabecular meshwork, Schlemm’s

canal, and collector channels into the intrascleral and episcleral venous plexus (Figure





















































































































































































































































































































































































































































































































































































































































































































































































































