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Abstract

This study investigates the population genetic structure of three primate species living in 

forest fragments of the Lower Kinabatangan Wildlife Sanctuary (LKWS), Sabah, Malaysia. 

The sanctuary is surrounded by oil palm plantations and human settlements but still retains 

high diversity of both flora and fauna. LKWS is famous for its orang-utan and proboscis 

monkey populations but also supports Sabah’s eight other primate species. The current study 

investigated the effects of forest fragmentation and geographical barriers, especially the 

Kinabatangan River, on three species of primates with different social systems and dispersal 

abilities. The orang-utan is a large bodied, solitary ape that is incapable of swimming whereas 

the proboscis monkey and the long-tailed macaque, are smaller bodied, live in large groups 

and are good swimmers. Using non-invasive samples (faeces), we sequenced approximately 

100 individuals from each of these three primates using the left domain (and right domain for 

long-tailed macaques) of the mitochondrial control region. High levels of genetic diversity 

were detected in the proboscis monkey and long-tailed macaque, but lower levels were 

detected in the orang-utan. Statistical analyses (haplotype and nucleotide diversities, 

mismatch distributions and neutrality tests) indicate that the orang-utan and the proboscis 

monkey have experienced population bottlenecks, which for the orang-utan supports our 

earlier studies using microsatellites. Long-tailed macaques, on the other hand, show evidence 

of population stability. As predicted from the known mobility of these primates, the 

Kinabatangan River did not appear to impede the movement of proboscis monkeys and long

tailed macaques, but did act as a geographical barrier for orang-utans. Furthermore, re

analysis of the current data with previously published sequences of orang-utans collected 

throughout Borneo revealed the likely importance of rivers in differentiating between 

populations that corresponded closely to currently described subspecies (with the exception of 

the subspecies morio).

There are four general conclusions from the current study. Firstly, non-invasive faecal 

samples are viable for large scale studies on these wild primate populations. Secondly, 

mitochondrial DNA is an informative marker for population studies due to its high levels of 

polymorphism over small spatial scales (with the left domain of the control region providing 

better resolution than the right domain). Thirdly, the social structure of primate species 

profoundly influences patterns of mitochondrial genetic diversity. Finally, dispersal patterns 

greatly influence the mitochondrial genetic structure of these populations. The implications of 

these findings for the future of Borneo primates and conservation of Lower Kinabatangan 

Wildlife Sanctuary and Sabah are discussed.
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CHAPTER 1: INTRODUCTION

This study examines the comparative population structure of the long-tailed macaque, 

the orang-utan and the proboscis monkey in the Kinabatangan Wildlife Sanctuary, using 

mitochondrial DNA sequences. To introduce the study area, the geological history and 

geography of South East Asia and the impact of habitat degradation on biodiversity are 

described. The biology of the three primates is reviewed, including previous genetic studies. 

In the context of phylogeography and conservation genetics, the utility of different molecular 

markers and the suitability of non-invasive sources of DNA are considered. Finally, specific 

details of the geography and biodiversity of the study site are described.

1.1 HISTORICAL BIOGEOGRAPHY OF SOUTH EAST ASIA

From the early Eocene (-50 million years ago, MYA) to the late Oligocene (-25 

MYA), South East Asia formed a continental block with Indochina (Hall, 1998; Wilson & 

Moss, 1999). Between 20 and 10 MYA, Borneo is reported to have experienced a counter 

clockwise rotation of 45° based on Hall’s (1996) reconstruction. However, this rotation 

hypothesis for Borneo is highly contentious (see Wilson & Moss, 1999). By the early 

Pliocene (-5 MYA), the region had essentially attained its modem formation, although the 

exact margins and low-lying areas at this time are unknown (Fig. 1.1, Hall, 1998; Voris, 

2000).

During the Pleistocene, climate changes caused the sea level to drop, which exposed 

land bridges among islands. Until around 9,500 years ago, all three of the major Sunda Islands 

remained connected to one another and the mainland Indochina, via the Malay Peninsula, 

forming the Sunda Shelf (Fig.1.2; Voris, 2000; Inger & Voris, 2001). During Pleistocene 

glacial periods, the central range of New Guinea experienced a lowering of air temperatures
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by up to 6°C, which in turn lowered the snowline by approximately 1000 m, influencing the 

treeline and other altitudinal vegetation (Verstappen, 1997). In Borneo, the Kinabalu 

glaciation was limited to just a few square kilometres above 3,800 m. Fluctuations in sea 

levels would have governed coastal evolution during the Pleistocene, when the extensive shelf 

areas emerged in the glacial period and a drainage network developed (Verstappen, 1997).

Figure 1.1. Map showing the modem form of South East Asia.
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The ability of rainforest animals to move across the exposed shelf in the Pleistocene 

would have been influenced by topographical and ecological features of the landscape 

(Tougard, 2001). There is fossil evidence from Pongo pygmaeus arjd Ailuropoda melanoleuca 

that the colonization of large mammals across Sundaland followed migration routes from 

Indochina to the Malay Peninsula and Sumatra, and to Java and Borneo (Tougard, 2001). The 

fossils found in mainland Asia in the Late Middle Pleistocene already featured modem 

characteristics, whereas the fossils found in Java still contained archaic forms indicating that 

Java was isolated compared to mainland Asia (Tougard, 2001).
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Figure 1.2 Voris’ (2000) maps of South East Asia and Australasia illustrating depth contours 
of 10, 20, 30, 40, 50, 75, 100 and 120 m below present level. On the lower left 
comer of each map, a horizontal bar graph provides estimates of the percentage of 
time that the sea level was at or below the level illustrated on the map during the 
past 17,000, 150,000 and 250,000 years.
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Many studies have revealed a predominance of the grassland characteristic of a 

savanna (Verstappen, 1997; Morley, 1998; Harrison et al., 2006) on the Sunda shelf during 

the last glaciation whereas others indicate tropical rainforest and mangrove swamp habitats 

were common (e.g. Sun et al., 2000). Based on geomorphology, biogeography, palynology 

and vegetation modelling for insular South East Asia, Bird et al. (2005) suggested that there 

was a savanna corridor from southern Sundaland to the equator. This corridor connected the 

areas of open vegetation at the north and south of the equator and separated forest areas of 

unknown extent to east and west at times of lowered sea level (Bird et al., 2005). Northern 

Borneo, like Sumatra, probably remained moist due to rainfall from moisture coming from the 

sea and high altitudes, which allowed the interception of the weak summer monsoon and fog, 

forcing precipitation (Newsome & Flenley, 1988; Stuijts, 1993; Gathome-Hardy et al., 2002). 

Fossils studies have shed light on the dispersal and movement of animals colonising the 

Sundaland region (van de Bergh et al., 2001; Harrison et al., 2006). Extant animal and plant 

diversity found on the Sunda Islands provides clues about these historical, spatial and 

temporal events, especially for the so-called ‘Sunda Shelf (Harrison et al., 2006). The 

presence of different habitats on this historical land mass determined the presence and 

distribution of characteristic fauna when the shelf was flooded after the last glaciation (van de 

Bergh et al., 2001; Meijaard & Groves, 2006). Gathome-Hardy et al. (2002) hypothesized, 

based on termite assemblage distributions, that there were Pleistocene refugia in Northern and 

Eastern Borneo and in Sumatra. The location of two of these xefugia was supported by 

Meijaard’s (2003) study on geographical analysis of habitat specific species, which indicated 

rainforest cover in Northwest Borneo, West Sumatra, but they also identified potential refugia 

in the Malacca Straits and around Palawan. Other areas (on and to the east of Malay/Thai 

Peninsula and the Java Sea, including the Sunda Strait and Eastern Borneo) may have been 

covered by more open vegetation types, such as savanna or open deciduous forest (Meijaard, 

2003). In addition, extant and paleo plant diversity can provide clues about habitat distribution
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and the nature of the associated climate during the Pleistocene and Holocene (Cannon & 

Manos, 2003; Brown et al., 2006). The high diversity of vascular plants (-5,000 species) on 

Mount Kinabalu suggests that this area retained its rainforest cover during the last glacial 

maxima, thereby acting as a refugium (Cannon & Manos, 2003; Brown et al., 2006; Grytnes 

& Beaman, 2006).

1.2 TROPICAL RAINFOREST AND DEFORESTATION

Tropical rainforests in South East Asia have developed during the past 65 million 

years or more (Heaney, 1991). During the Miocene, rainforest extended as far north as Japan 

but slowly contracted due to changes in climate (Heaney, 1991). The Food and Agriculture 

Organization of the United Nations (FAO) estimates that over the last decade more than 2.4 

million ha of tropical forests have been lost each year (FAO, 2001; Stibig & Malingreau, 

2003). Sodhi et al. (2004) predicted that South East Asia could lose three quarters of its 

original forests by 2100 and up to 42% of its biodiversity. The forest of Sundaland represents 

some of the world most valuable and productive tropical forests (Myers et al., 2000; Brooks et 

al., 2002). Borneo, as part of Sundaland, is one of the most important biodiversity hotspots in 

the world (Myers et al., 2000; Brooks et al., 2002). The rainforest of Borneo is dominated by 

Dipterocarpaceae (i.e. Shorea and Dryobalanops spp.), commercially valuable trees (Ahston, 

1988), but is also exceptionally diverse, for example 1,175 tree species were recorded in a

0.52 km2 survey area in Lambir National Park alone (Davies et, al., 1998) and in Mount 

Kinabalu National Park around 5,000 species of vascular plants were documented from an 

area of 1,200 km2 (Beaman, 2005). Unfortunately, the logging and deforestation rate of South 

East Asia (0.91% per year) is three times that of South America (0.38%) (Dennis & Colfer, 

2006). The tropical rainforest in Borneo has been reduced considerably due to logging, 

conversion to plantation, forest fires and population pressure (Fig. 1.3; Stibig & Malingreau,

2003).
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Figure 1.3. Reduction in forest cover on Peninsular Malaysia, Sumatra and Borneo from (A) 
middle of 1980s (B) to 2000 (adapted from Stibig & Malingreau, 2003).

200 km200 km

In Sabah, deforestation has reduced the proportion of forested areas from 86% in 1953 

to 63% in 1984 (McMorrow & Talip, 2001) and to 59.7% in 2001 (Jomo et al., 2004). Again, 

the main reasons for such a drastic reduction are logging and forest conversion to agriculture 

resulting in further isolation of forest fragments by cultivated lands. This was clearly shown 

by McMorrow & Talip (2001) on a land use map analysis of eastern Sabah (Fig. 1.4).

Figure 1.4. Reduction in natural forest cover in Sabah from 1975 to 1995 (adapted from 
McMorrow & Talip, 2001).
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1.2.1 Logging

Recently, Curran et al. (2004) reported the loss of more than 56% of valuable 

protected forest in West Kalimantan between 1985 and 2001 due to illegal logging. The 

logging processes have not only increased the vulnerability of certain species by reducing
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their habitat, but also altered inter-specific interactions. For example, some plants die 

following sudden increases of sunlight (Davies et al., 1998), whereas others (seedlings or 

pioneer species, such as Macaranga spp.) will germinate immediately. It has also been 

suggested that logging indirectly increases hunting activities due to logging roads improving 

accessibility. Nevertheless, Cannon et al. (1998) reported an increase in species diversity in a 

regenerating forest in Indonesian Borneo (Kalimantan) logged eight years previously 

compared with an unlogged forest. However, this is too short a time span to compare a mature 

forest to a newly regenerating forest as many factors might have been overlooked, such as 

logging increasing the heterogeneity of forest microhabitats and providing niches for 

colonization by immigrant species. Such colonizers tend to be good dispersers and 

“disturbance dependent”, and they replace the vulnerable taxa characteristic of primary forest 

(Sheil etal., 1999).

1.2.2. Agriculture

Some forests have been cut down either for their hardwood or agricultural purposes. 

Agriculture, particularly the planting of oil-palm (Elaeis guineensis) in Malaysia and the ill- 

fated Mega Rice Project in Indonesia, has created gaps in the once continuous forest of 

Borneo (Rijksen & Meijaard, 1999; Sodhi et al., 2004). Overall the planting of perennial 

export crops, such as rubber (Hevea brasiliensis), oil-palm (Elaeis guineensis) and coconut 

(iCocos nucifera) account for 20-30% of the total cultivated aregt in Borneo (Sodhi et al.,

2004).

1.2.3 Forest fires

Until recently, Borneo had only experienced two major forest fires in living memory, 

the first in 1982-83 and the second in 1997-98 (Dennis & Colfer, 2006). The third one is 

currently on-going as this PhD is being written. Based on time series satellite imagery from

Chapter 1



1983 to 2000, Dennis & Colfer (2006) studied the impact o f forest fires on land use in East 

Kalimantan. After the first forest fire, the authors observed a recovery in burnt forest but the 

effects of the second forest fire coupled with changes of land use completely degraded the 

recovering habitat. A second study on forest cover change also using satellite imagery was 

carried out by Trigg et al. (2006) in West Kalimantan in Gunung Palung National Park. Using 

data obtained from 1988 to 2002, they revealed accelerating deforestation, with 70% of the 

buffer zones surrounding the national park being cleared (logged) over a period of 14 years.

1.2.4 Impact of deforestation on biodiversity in Borneo

Deforestation creates a mosaic of habitats which includes fragments of forest and open 

scrub-land, resulting in a matrix of habitats isolated or semi-isolated from each other (Fahrig, 

2003; Wright, 2005). The impact of habitat fragmentation varies widely in faunal assemblages 

(Turner & Corlett, 1996; Fahrig, 2003; Kinnaird et al., 2003; Wright, 2005). Kinnaird et al. ’s 

(2003) long term study on large mammals in Sumatra showed that animals with large home 

ranges, particularly those which avoided human contact, were forced into suboptimal 

conditions as the forest dwindled in area, sometimes leading to their demise. Reduction in 

habitat size increases the chances of human-animal conflict, especially where animals raid 

food crops to supplement their diets. Opportunistic and/or versatile species tend to be less 

affected than niche specialists (Webb et al., 2002; Pribil & Houlahan, 2003). Studies 

assessing the impact of forest disturbance on biodiversity are spldom conclusive (Fahrig, 

2003; Turner & Corlett, 1996; Kinnaird et al., 2003; Wright, 2005; Meijaard et al., 2006), 

nevertheless over time a decline in species richness deterministically accumulates in 

fragments isolated from continuous forest (Turner & Corlett, 1996).

Recently, Meijaard et al. (2006) reviewed the impact of timber concessions on 

Bornean wildlife and found that different animals respond differently to logging activities.
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Some ungulates, including the rare banteng (Bos javanicus), seem to benefit from road 

building activity, being attracted to grazing on the herbaceous vegetation growing along 

roadsides (Meijaard et al., 2006). The Malay civet ( Viverra tangalunga) in Danum Valley, 

Sabah, was not drastically affected by logging, but the densities of the animals were higher in 

unlogged compared to logged forest (Colon, 2002). Other species, such as hombills, 

experience reduced survival in logged areas due to loss of breeding sites (holes in large trees) 

and food resources (Meijaard et al., 2006). The survival of two mouse deer species (Tragulus 

tragulus and T. napu) was also affected by logging activities (Heydon & Bulloh, 1997), and 

both Hylobates lar and Presbytis melalophos decreased their level of activity possibly to 

conserve energy (Johns, 1986). For primates, which need high quality food, logging usually 

reduces the diversity of food resources available, making foraging more difficult. However, 

most of these studies have only considered short-term effects (up to three years), seldom are 

the long-term effects of logging considered (Meijaard et al.f 2006).

Habitat loss and fragmentation has resulted in the restriction of many species to small 

habitat patches separated by a matrix of inhospitable environments. Adverse impacts on 

genetic diversity include a reduction in local population size, reduced migration, stochastic 

population dynamics (genetic drift) and inbreeding depression (Avise et al, 1987; Frankham 

et al., 2002; Avise, 2004; Frankham, 2005). Short term effects of habitat fragmentation and 

isolation are influenced by effective population sizes and reproductive success, controlled by 

factors such as the availability of mates and food, and predation and parasitism pressure. Long 

term consequences may include genetic drift, mutation and fixation of certain haplotypes.

1.3 PRIMATES OF SUNDALAND

There are nine genera (i.e. Pongo, Hylobates, Macaca, Presbytis, Trachypithecus, 

Nasalis, Simias, Tarsius and Nycticebus) of extant primates found in Sundaland of which 13
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species are found in Borneo (Harrison et al., 2006) and ten of these occur in the Lower 

Kinabatangan Wildlife Sanctuary in Sabah, Malaysia. Amongst these ten Kinabatangan 

species, three were selected for the current study, an ape (orang-utan, Pongo pygmaeus), a 

colobine (proboscis monkey, Nasalis larvatus) and a cercopithecine (long-tailed macaque, 

Macaca fascicularis). The orang-utan is a large-bodied, long-lived, slow reproducing animal 

that usually occurs at low population densities and is thus potentially more prone to extinction 

due to demographic factors than more rapidly reproducing species (Harcourt, 1999; Purvis et 

al.t 2000). In contrast, long-tailed macaques (and to a lesser extent, proboscis monkeys), 

occur at higher densities, have shorter life spans and a higher rate of reproduction and 

therefore are potentially able to adapt faster to environmental changes. These three species are 

predicted to show different responses to forest fragmentation, particularly as orang-utans and 

proboscis monkeys are unable to tolerate human proximity whereas long-tailed macaques are 

known to exploit humans for food (i.e. by crop-raiding). Based on mobility, since orang-utans 

cannot swim and both long-tailed macaques and proboscis monkeys (especially) can swim, 

the Kinabatangan River and its tributaries potentially provide barriers to movement between 

forested areas. Deforestation also degrades the quality of the forest affected thus influencing 

food availabilities for these primates (Johns, 1986; Bawa & Seidler, 1998; Chapman et al., 

2000).

1.3.1 The orang-utan #

The orang-utan, the largest arboreal ape, is found on Sumatra and Borneo in South 

East Asia. Traditionally, the orang-utan was classified as two subspecies, P. pygmaeus 

pygmaeus in Borneo and P. pygmaeus abelii in Sumatra. However, recent molecular data has 

led to the re-classification of the orang-utan into two distinct species, P. pygmaeus and P. 

abelii (see Xu & Amason, 1996, but see Muir et a l, 1998; 2000; Zhang et al, 2001). 

Furthermore, based on mitochondrial control region DNA data, Warren et a l (2001)
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suggested there are four distinct phylogenetic groupings of the Bornean orang-utans, 

corresponding to (i) Sabah, (ii) Sarawak and Northwest Kalimantan, (iii) Southwest and 

Central Kalimantan, and (iv) East Kalimantan populations.

A recent Sabah-wide survey indicated that there are about 11,000 orang-utans in the 

state with most individuals recorded outside protected areas (Ancrenaz et al, 2005; Fig. 1.5). 

There are two major concentrations of orang-utans in Sabah, namely Segama (4,500 

individuals) and on the north-side of the upper Kinabatangan River (1,700 individuals); both 

areas comprise of logged, commercial forest reserves (except the Danum Valley Conservation 

Area, which lies within Segama). Other noteworthy populations are in the Tabin Wildlife 

Reserve (1,400 individuals), Kinabatangan Wildlife Sanctuary (1,100 individuals, see also 

Ancrenaz et al., 2004) and Kulamba Wildlife Reserve (500 individuals) (Ancrenaz et al., 

2005).

Figure 1.5 Distribution of the five major orang-utan populations in Sabah (A - Segama; B - 
Upper Kinabatangan; C - Tabin Wildlife Reserve; D - Lower Kinabatangan 
Wildlife Sanctuary; E - Kulamba Wildlife Reserve (modified from Ancrenaz et 
al, 2005).
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There is a high degree of sexual dimorphism in orang-utans. Average body mass for 

an adult orang-utan is 86 kg for males and 38 kg for females (Delgado & van Schaik, 2000). 

Recent studies show that sexually mature males have two distinct physical morphs 

(bimaturism), flanged and unflanged (Delgado & van Schaik, 2000; Utami et al, 2002). 

Flanged males have throat sacs which they use to emit ‘long calls’ to advertise their presence, 

assert their dominance and territorial rights (Delgado & van Schaik, 2000). Male orang-utans 

are assumed to be larger than females because of male-male competition and sexual selection. 

Large, flanged males displace smaller conspecifics for access to females for mating, although 

forced copulation has been occasionally observed by unflanged males (Rodman & Mitani, 

1987; Delgado & van Schaik, 2000). Utami et al. (2002) and Goossens et al. (2006a) showed 

that both flanged and unflanged males are reproductively successful.

Orang-utans are diurnal, building nests made of branches and leaves each night 

(MacKinnon & MacKinnon, 1974). During the day, they move through the forest using inter

connected branches or by bending a branch using their weight to form an inter-crown pathway 

(Fleagle, 1998; Felton et al., 2003). Only when there is a large gap between trees will an 

orang-utan descend to the ground (Fleagle, 1998). Orang-utans are primarily frugivorous, 

although occasionally insects, leaves and bark are also consumed (Galdikas, 1988; Delgado & 

van Schaik, 2000). However, lack of food had been shown to force orang-utans switch to 

folivory (Rijksen & Meijaard, 1999; van Schaik et a l, 2001). Utai^ii & van Hooff (1997) also 

recorded meat eating behaviour among adult female orang-utans.

Orang-utans are classified as possessing a “semi-solitary” social system but, in the 

swamp forest of Suaq Balimbing, van Schaik (1999) described an individual fission-fusion 

system. The only family unit is of a mother and her dependent offspring. Orang-utans reach 

sexual maturity after 8 to 10 years for males and 11 to 15 years for females (Delgado & van
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Schaik, 2000). Orang-utans have a gestation period of almost nine months and give birth to a 

single offspring every five to eight years. Females will often settle in an area near their 

mother’s range (philopatry) whereas males tend to disperse (Rodman & Mitani, 1987; 

Delgado & van Schaik, 2000, but see Goossens et al., 2006a). Male territories overlap with 

one or more females. Home range sizes range from 64 - 600 ha (Borneo) and 300 - 900 ha 

(Sumatra) in females and 500 - 600 ha (Borneo) and 800 - 4000 ha (Sumatra) in males 

(Delgado & van Schaik, 2000). Orang-utans were thought to live up to 45 years in the wild 

(Delgado & van Schaik, 2000) but Wich et a l (2004) recently estimated that Sumatran male 

and female orang-utans can live at least 58 and 53 years, respectively.

A dramatic population decline in Sabah’s orang-utans from ca. 315,000 individuals in 

1900 to 27,000 in 1997 has been estimated by Rijksen & Meijaard (1999), while Wich et al. 

(2003) indicated the number of wild Sumatran orang-utans was as low as 3,500 by the end of 

2002. Major threats to orang-utans include habitat destruction, particularly due to logging and 

anthropogenic disturbance (e.g. hunting and the pet trade) (Rijksen & Meijaard, 1999; 

Robertson & van Schaik, 2001; van Schaik et al., 2001). Habitat degradation following 

logging activities has several detrimental effects on orang-utan survival. Destruction of 

canopy areas used by orang-utans as their pathway throughout the forest restricts their 

movement and increases their vulnerability to predators (Rijksen & Meijaard, 1999; van 

Schaik et al., 2001; Felton et al., 2003). Large scale commercial logging activities with 

conversion to agricultural estates (particularly oil-palm plantations) further reduces the orang

utan’s food resources. It also increases contact with humans, and orang-utans that forage in 

plantation and cultivated lands are often killed (Rijksen & Meijaard, 1999). Logging and land 

conversion also opens up adjoining forest areas to increased illegal hunting and poaching due 

to the greater accessibility offered by logging roads (Rijksen & Meijaard, 1999; van Schaik et 

al., 2001; Felton et al., 2003). Finally, forest fires caused either by prolonged dry seasons
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(predominantly due to the El Nino Southern Oscillation) or from the clearing of forest patches 

for small scale agriculture also play an important role in orang-utan population declines as 

these slow moving apes are unable to escape rapidly moving fires. For example, a recent 

study showed a high mortality rate for orang-utans during the 1997-1998 forest fires in 

Kalimantan (Rijksen & Meijaard, 1999).

Genetic studies on orang-utans to date have been rather limited, with most studies 

focusing on systematics (Xu & Amason, 1996; Muir et al., 2000; Zhang et al., 2001; Zhi et 

al., 1996); rather than genetic structure (Warren et al., 2000; 2001; Goossens et al., 2005; 

Kanthaswamy et al., 2006). Furthermore, a large proportion of these studies have utilised 

invasive samples from zoo and rehabilitation centres, compromising the geo-referencing of 

data produced, with very limited non-invasive sampling (i.e. hair and faeces) from wild 

animals. Only Goossens et al. (2005, 2006b), studying a fragmented orang-utan population in 

the Lower Kinabatangan floodplain, completely utilised non-invasive samples from wild 

orang-utans.

1.3.2 The long-tailed macaque

The genus Macaca is the most widespread of the Cercopithecinae (Tosi et al., 2000; 

Abegg & Thierry, 2002). Members of this genus can be found from North Africa (i.e. Macaca 

sylvanus) to Japan (i.e. Macaca fuscata). O f the 20 recognised spepies, 19 occur in Asia. The 

divergence of the genus Macaca from the tribe Papionini dates back seven MYA based on 

fossil and molecular data (Tosi et al., 2000; Abegg & Thierry, 2002) and major diversification 

of this genus began around five MYA, resulting in three lineages, silenus-sylvanus, sinica- 

artoides and fascicularis (see Abegg & Thierry, 2002). The long-tailed macaque {Macaca 

fascicularis) is grouped within the fascicularis lineage which includes three other species, M.

Chapter 1



15

mulatto (rhesus macaque), M. fuscata (Japanese macaque) and M. cyclopis (Formosan 

macaque) (Tosi et al., 2000; Abegg & Thierry, 2002).

Long-tailed macaques are found from Burma and Indochina in the north, to Bali on the 

extreme east, and Sumatra and Nicobar on the extreme west. They are neither rare nor 

threatened in their native range (Abegg & Thierry, 2002; Umapathy et al, 2003). In fact, 

long-tailed macaques have been listed as one of the 100 most invasive alien species with 

successful invasions in Sulawesi, Lesser Sunda, Palau, Mauritius, Papua New Guinea and 

Hong Kong (Lowe et a l, 2000; Long, 2003).

Long-tailed macaques inhabit a variety of forest habitats throughout their native range, 

preferring edge habitats and riverine areas, but can also be found in village areas (i.e. 

disturbed habitat), often raiding crops where they are classified as a pest (van Schaik et a l, 

1996; Abegg & Thierry, 2002). In Sumatra, long-tailed macaques occur at high densities in 

selectively logged forest, secondary forest and cultivated land (Supriatna et a l, 1996). They 

are omnivorous and opportunistic feeders. The average body mass for an adult male and 

female long-tailed macaque is around 6 and 3.3 kg, respectively (Harcourt & Schwartz, 2001). 

They are diurnal and can be totally or semi- arboreal. They move through the forest canopy 

and on land quadrupedally, but are also considered good swimmers (Richard, 1985).

•

The social system of the long-tailed macaque is multi-male, multi-female with an 

average group size of about 30 individuals (de Ruiter, 1994; Harcourt & Schwartz, 2001). 

Female macaques usually remain in their natal group (philopatry) and males disperse (de 

Ruiter, 1994). There is a hierarchical system amongst group members based upon matrilines 

(de Ruiter & Geffen 1998). Dispersal of female long-tailed macaques occurs most commonly
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by group fission, where low ranking females split off to form a new group. Mating is 

promiscuous and dominated by the alpha male (de Ruiter, 1994, de Ruiter & Geffen 1998).

Macaques in general have been widely studied, rhesus macaques being particularly 

useful in medical research. The population genetic structure of long-tailed macaques has been 

studied mostly in Indonesia, de Ruiter (1994), studying the social aspect of Sumatran long

tailed macaques in Ketambe, found that large differentiation between adjacent social groups 

was caused by social structure rather than distances. However, for sites other than the main 

study population in Ketambe, distance plays an important role for differentiation. Perwitasari- 

Farajallah et a l  (1999) studying the Javanese long-tailed macaques found high genetic 

diversity among local populations and, like de Ruiter (1994), found a significant positive 

correlation with geographic distance.

1.3.3 The proboscis monkey

The proboscis monkey (Nasalis larvatus), known locally as Bangkatan or the Dutch 

man, is endemic to Borneo with no evidence that it formerly occurred elsewhere (Payne & 

Francis, 1998; Harcourt & Schwartz, 2001). This primate is adapted to nipa-dominated 

mangrove, mangrove, peat swamp, riverine and lowland forest (Kawabe & Mano, 1972; 

Meijaard & Nijman, 2000). Currently, the proboscis monkey is threatened by habitat 

destruction and hunting (Meijaard & Nijman, 2000) and much of#its former range has been 

reduced due to logging (e.g. in Kinabatangan), swamp reclamation, gold mining, shrimp 

farming and forest fires (Meijaard & Nijman, 2000). Hunting is much in evidence in Sarawak 

and Kalimantan (Meijaard & Nijman, 2000). The proboscis monkey is currently classified by 

IUCN as ‘vulnerable’ (IUCN, 2000) and is protected by law throughout its range (Meijaard & 

Nijman, 2000).
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Karyological studies split the genus Nasalis (2n = 48) from all other Asian colobines 

(2n = 44) (Disotell, 1996; Page et al., 1999; Bigoni et al., 2003). However, this observation is 

incongruent with morphological and molecular analyses which group Nasalis with all other 

Asian colobines (Collura et al., 1996; Page et al., 1999; Bigoni et al., 2003). For example, 

based on a 7-Globin DNA phylogeny, Nasalis occurs in the same clade as Trachypithecus 

obscurus with estimated divergence times between Nasalis-Trachypithecus of 5-6 million 

years (Page et al., 1999). Recently, Sterner et al. (2006) estimated the divergence time 

between African and Asian colobines to be 10.8 MYA with Asian colobines diversifying at 

about 6.7 MYA.

The proboscis monkey has been well documented in terms of its behavioural ecology 

and conservation needs within its range in the Malaysian states of Sarawak and Sabah 

(Kawabe & Mano, 1972; Salter et a l, 1985; Salter & MacKenzie, 1985; Bennett & Sebastian, 

1988; Bernard, 1997; Boonratana, 2002; 2003; Murai, 2004; 2006, Murai et al., 2006), Brunei 

(Macdonald, 1982; Yeager, 1995) and Kalimantan, Indonesia (Yeager, 1989; 1992; Meijaard 

& Nijman, 2000). There are two elements to the social system; harems (consisting of one 

adult male and several females) and all-male groups (consisting of juveniles, adolescents and 

adult males) (Bennett & Sebastian, 1988; Yeager, 1995; Boonratana, 2002; Murai, 2004). 

Proboscis monkeys live in groups of three to 32 individuals. Males as young as 18 months 

will leave their natal group and join an all male group (Bennett & Sebastian, 1988). Adult 

females will sometimes leave their natal single male group to join another group, but may 

later re-join their original natal group (Bennett & Sebastian, 1988; Murai et al., 2006). In the 

Kinabatangan, Murai (2004) reported that females can join all-male groups temporarily and 

will copulate with them. Murai (2006) also found that females are promiscuous. Both groups 

(one male and all-male) usually come into close proximity during the evening as they migrate
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close to rivers to sleep in trees (Bennett & Sebastian, 1988). Despite considerable knowledge 

of this species, there are currently no population genetic studies of this endangered colobine.

1. 4 PHYLOGEOGRAPHY AND CONSERVATION GENETICS

Phylogeographic studies examine biogeographic patterns and infer population 

processes from an evolutionary (historical) perspective (Avise et al., 1987). Biogeographic 

barriers, such as rivers (Telfer et al., 2003; Eriksson et al., 2004; Goossens et al., 2005) and 

mountain ranges (Hewitt, 2000), may disrupt gene flow, thus moulding genetic structure. 

Nevertheless for widespread species, genetic divergence may simply be a function of distance 

due to limited gene flow (Avise et al., 1987). At a regional level, comparative 

phylogeography can be used for conservation purposes to localize areas of high diversity and 

hence high conservation value (Moritz & Faith, 1998). Intraspecific phylogeography can 

contribute to our understanding of fragmentation by analysing evolutionary relationships 

between haplotypes and geographical distribution of haplotype variants over a variety of 

timescales. Historical demography influences genetic structure and hence intra-specific 

phylogenies (Avise, 2004).

The application of molecular markers in a conservation context (‘conservation 

genetics’) aims to describe and understand the origin and maintenance of genetic variation 

and to use this information to minimize extinction risks due to genetic factors (Frankham, 

1996; 2005). Large-bodied, slow-reproducing, solitary animals, such as the orang-utan which 

occurs in low densities, are predicted to be much more vulnerable to extinction compared to 

smaller bodied, rapidly reproducing species, such as long-tailed macaques (Frankham, 1996; 

2005). At low densities, organisms may experience a reduction in genetic variability and thus 

be less capable of adapting to changes in environment (i.e. climate change, exposure to 

disease, etc). Genetic variability may be lost due to a combination of founder effects,

Chapter 1



19

inbreeding, genetic drift and population bottlenecks. However, populations with a large 

effective population size are usually safeguarded against these factors (Frankham, 1996;

2005).

1.5 MOLECULAR MARKERS

Mitochondrial (mt) DNA has proved a reliable workhorse for intraspecific 

phylogeographic studies (Avise, 2000, 2004). However, a variety of mitochondrial and 

nuclear markers are available for phylogeography and conservation genetic studies depending 

on questions that need to be answered (Wan et al., 2004). Here, I discuss mtDNA and nuclear 

markers in light of their suitability for the current study.

1.5.1 mtDNA

The use of mtDNA has become standard in phylogenetic and population genetic 

studies, first encouraged by developments in methodology for mtDNA isolation and the use of 

restriction enzymes to detect nucleotide polymorphisms (Lansman et al., 1981), and 

subsequently by the development of PCR methodology and the application of ‘universal’ PCR 

primers (Kocher et al., 1989) for amplification of mtDNA. Much of this interest is related to 

the rapid rate of evolution of mtDNA compared to nuclear genes. Higher numbers of 

nucleotide substitutions accumulate in the mitochondrial compared to the nuclear DNA 

genome (Brown, 1979) probably due to inefficiency of DNA repair and replication errors. 

MtDNA is haploid and (almost) exclusively maternally inherited. Compared to diploid 

nuclear autosomal genes with biparental transmission, the effective population size of mtDNA 

is approximately 25% (Moore, 1995). Therefore, mtDNA phylogeny is more likely to be 

congruent with a species phylogeny due to a high probability of coalescence (convergence of 

lineages to a point in the past i.e. the most recent common ancestor) even when speciation 

events have occurred within short time-periods. Mitochondrial genes are inherited as a single
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linkage group in the absence of recombination (Hayashi et al, 1985; Hoech et al., 1991). 

Animal mtDNA is a circular molecule of 15-20 kb and in vertebrates contains genes for 22 

transfer-RNAs, 2 ribosomal-RNAs and 13 messenger-RNAs coding for proteins involved in 

electron transport and oxidative phosphorylation (Fig 1.6; Moritz et al, 1987; Sorensen et a l, 

1999; Ballard & Rand, 2005). The only major non-coding region of the mtDNA is the control 

region, typically 1 kb in length, involved in the regulation and initiation of mtDNA replication 

and transcription (Moritz et a l, 1987; Ballard & Rand, 2005).

Figure 1.6. Schematic diagram of Macaca 
mulatto mtDNA showing gene organisation 
(adapted from Sorensen et al., 1999).

The vertebrate control region (typically around 1 kb) is involved in the regulation and 

initiation of mtDNA replication and does not code for proteins and has only a few short 

sequence blocks conserved among taxa (Fumagalli et al., 1996; Avise, 2004). The human 

mtDNA control region contains three segments, HVI, HVII and HVIII. HVI (otherwise 

known as the left domain) is more polymorphic than HVII (right domain), with HVIII 

showing the lowest polymorphism (Lutz et al., 1998). The regions separating the segments 

are relatively conserved. For example, in the black howler monkey (Alouatta caraya) the 

control region contains two highly divergent peripheral (left and right) domains flanking a 

conserved region (Ascunce et al., 2003). Within HVII and HVIII, a short conserved block 

reduces the polymorphism of these domains. The left domain is always more variable than the
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right domain (e.g. Ascunce et al., 2003). However, for this study, I test the utility of using the 

left and right hypervariable domains of the mtDNA control region. I will test this on long

tailed macaque (see Chapter 3) and based on the results will influence the choice o f domains 

for subsequent studies.

1.5.2 Microsatellites

Microsatellites are nuclear markers, composed of 1-6 base pairs arranged as tandem 

repeated motifs (Tauntz & Renz, 1984). They are most abundant in non-coding regions of the 

genome and possess a high mutation rate (Hancock, 1999; Zane et al, 2002). Since their first 

description (Tautz, 1989; Weber & May, 1989), microsatellites have been detected in both 

eukaryotic and prokaryotic genomes (Zane et al., 2002) and been widely used as genetic 

markers in different kinds of studies. For example, Goossens et al. (2000, 2005, 2006a,b) used 

human-derived microsatellites in their studies on orang-utans in Sumatra, Indonesia and 

Sabah, Malaysia. The wide applicability of microsatellite markers spans areas such linkage 

mapping (Straub et al., 1993), population and conservation genetics (Goossens et al., 2005, 

2006b), forensic DNA studies (Halos et al., 1999), paternity analyses (Launhardt et al., 2001), 

identifying individuals (Maudet et al., 2002), human origin reconstruction and hybridization 

(e.g. Goldstein & Schlotterer, 1999; Tautz, 1989; Weber & May, 1989; Zane et a l, 2002). 

Major advantages of microsatellites include their high allelic variability and the fact that 

primers may cross amplify between different species (Primmer et a l , 1996), sometimes even 

between species diverging millions of years ago (Zane et al., 2002).

1.6 NON-INVASIVE SAMPLES FOR ENDANGERED MAMMALS

Studying endangered species requires an approach to minimize the handling of 

animals in order to obtain samples. Non-invasive sampling techniques provide alternative 

methods for sample collection, ideal for studying endangered species, and have already
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proved successful for studying vulnerable populations, such as the giant panda (Zhan et al., 

2006) and the bonobos (Eriksson et al., 2004). A range of different source materials collected 

by non-invasive sampling have been successfully tested, including plucked hair (Li et al., 

2005), shed hair (Morin et al. 1993 in chimpanzees), shed feathers (Taberlet & Bouvet, 1991), 

sloughed/shed skin (Baker et al., 1991; Hauser et al., 2000), faeces (Roeder et al., 2004) and 

egg shell (Strausberger & Ashley, 2001) (for more details see Taberlet & Luikart, 1999; 

Avise, 2004).

Goossens et al. (2005, 2006a,b) demonstrated the utility of non-invasive samples 

whilst studying a wild orang-utan population in Sabah. A large sample size (>200 samples) 

was obtained without disturbance to the Kinabatangan orang-utan population. The results of 

the study suggested that the Kinabatangan River has had a major impact on gene flow and 

dispersal behaviour of individuals (Goossens et al., 2006a). Despite, the relatively small 

census size of the remaining population (approximately 1,050 individuals), Kinabatangan 

orang-utans retain relatively high levels of genetic diversity (Goossens et al., 2005) although 

analysis of microsatellite allelic spectra also shows that that the population recently 

underwent a collapse (Goossens et al., 2006b) and this variation might not be retained in the 

long-term unless conservation measures are immediately put in place.

Studying endangered species (such as the orang-utan) requires different approaches to 

studying common species. Firstly, endangered species are usually found in small populations 

and are easily affected by human disturbance (i.e. Amur tiger, Kerley et al., 2002). Secondly, 

endangered species are protected by law, thus invasive techniques for obtaining samples is not 

an option and CITES regulations prevent the samples being exported to other countries. Non- 

invasive samples circumnavigate this problem (Zhan et al., 2006). This innovation has 

prompted an increase in the study of protected animals using non-invasive samples not
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protected by local and international law. Thus, studies on endangered species, such as gorillas, 

chimpanzees, orang-utans, giant pandas, and whales, have been made possible with minimal 

disturbance to the individual (Valsecchi et al., 1998; Morin et al., 2001; Clifford et al., 2004; 

Goossens et al., 2005; Zhan et al., 2006). Previously, animals had to be tracked, darted and/or 

handled to obtain biopsy or blood samples (Nyakaana & Arctander, 1999). The current trends 

of using non-invasive samples have advanced so much that as little as 100 g of faeces is now 

a valuable source of genetic material. The improvement of techniques for extracting DNA 

using commercial kits (e.g. the QIAGEN DNA stool mini kit) have also increased the 

popularity of non-invasive samples. There are many methods used to extract DNA from 

different kinds of samples and the success rate depends on the suitability of methods used (see 

Waits & Paetkau, 2005). Jeffery (2003) investigated the utility of shed/plucked hair samples 

for gorilla conservation in Gabon. She discovered that whilst plucked hairs have a higher 

success rate than shed hairs, the success rate for the latter was halved from 56% for freshly 

shed hair (within 24h) to 26% for 3 day old hair (Jeffery, 2003). Recently, an astonishing new 

non-invasive technique, using a blood sucking bug (Dipetalogaster maximus), has been used 

to obtain high quality DNA from birds (Becker et al., 2006). The bugs (second and third 

instar) were housed in an empty shell and were collected after the parent birds vacated the 

nest (Becker et al., 2006) (Fig. 1.7). This has transformed the possibility of obtaining non- 

invasive samples to include DNA rich blood samples without invasive procedures by 

sampling ectoparasitic insects. .
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Figure. 1.7. Semi-invasive method for obtaining avian blood sample. The dummy eggs in the 
bird nest containing an instar of Dipetalogaster maximus. The Dipetalogaster 
maximus after the blood meal (Becker et al., 2006).

1.7 THE LOWER KINABATANGAN WILDLIFE SANCTUARY

The Kinabatangan River at 560 km is the longest river in Sabah and is also one of 

Borneo’s few navigable rivers (WWF, 1998). The Kinabatangan floodplain is a mosaic of 

heterogeneous habitats consisting of mangrove, freshwater swamp, riverine, seasonally 

flooded forest and dry lowland dipterocarp forest (Azmi, 1998; WWF, 1998). Humans have 

been active here since at least the 7th century AD and the natural habitats have undergone 

considerable long term changes. However, since the 1950s, when logging licenses were first 

issued, the environment has significantly deteriorated. In addition, from the 1970s, 

agricultural has become more important to the Malaysian economy and 1980 saw the opening 

of the first oil-palm plantation. The subsequent growth of the oil-palm industry has resulted in 

marked fragmentation of the forested habitats (WWF, 1998). Nonetheless, the Kinabatangan 

floodplain still harbours many unique plants and animals, with two of the important 

inhabitants of Kinabatangan being the orang-utan and proboscis monkey (WWF, 1998).
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Besides the orang-utan and proboscis monkey, LKWS is home to eight other species 

of primate; Bornean gibbon (Hylobates muelleri), long-tailed macaque, pig-tailed macaque 

{Macaca nemestrina), Hose’s langur {Presbytis hosei), red langur (Presbytis rubicund a), 

silvered langur {Semnopithecus cristata), slow loris {Nycticebus coucang) and western tarsier 

(Tarsius bancanus) (WWF, 1998; Goossens et al., 2003). The orang-utan, proboscis monkey, 

Bornean gibbon and Hose’s langur are categorised as endangered, but for the latter too very 

little is known of their life history (WWF, 1998; Payne & Francis, 1998). Protection of 

Kinabatangan’s unique flora and fauna was initiated by gazetting 10 blocks or Lots (Lots 1 -  

10) in August 2005 into the Lower Kinabatangan Wildlife Sanctuary (LKWS) (see Fig. 1.8).

Figure 1.8. Map of the Lower Kinabatangan Wildlife Sanctuary showing the location of each 
Lot where the animals were sampled in the current study. The Lot boundaries are 
outlined in red. The Kinabatangan River is marked by the thick blue line with the 
thinner blue lines representing its tributaries. For detailed descriptions of the 
habitats see Ancrenaz et al. (2004).
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Amongst the ten species of primates in Kinabatangan, only the orang-utan and 

proboscis monkey have been widely studied. Ancrenaz et al. (2004) carried out the most 

recent census of the orang-utan within the LKWS and Goossens et al. (2005, 2006b) were the 

first to investigate the population genetics of LKWS orang-utans. The proboscis monkey has 

been studied in Kinabatangan since the 1970’s. Kawabe & Mano (1972) investigated the
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ecology and behaviour of this species in Kinabatangan. They noted troop sizes which ranged 

from 11 to 32 individuals, falling within the range obtained by Kern (1964) in Padas Bay, 

Brunei. More recent studies on feeding ecology and ranging behaviour of the Kinabatangan 

proboscis monkey were carried out from 1990 to 1991 (Boonratana, 1993; 2000). Recently, 

Murai (2004) described the social behaviour of proboscis monkey all-male groups found in 

Kinabatangan which he had monitored from 1999 to 2002. Only one study has attempted to 

estimate the population sizes of the long-tailed macaque and the proboscis monkey in 

Kinabatangan to date, when Goossens et a l (2003) estimated the population sizes of 

proboscis monkey based on their densities as at 3,430 individuals and long-tailed macaques at 

3,170 individuals.

1.8 AIMS

The main objective of this study is to investigate genetic variation of three species of 

primates (orang-utan, long-tailed macaque and proboscis monkey) within the LKWS. Using 

the mitochondrial DNA control region, the impact of recent forest fragmentation and isolation 

is assessed on these three species, which exhibit different life history traits. The orang-utan is 

a large-bodied, long-lived, slow reproducing animal that usually occurs at low population 

density, in contrast, long-tailed macaques (and to a lesser extent, proboscis monkeys), occur at 

higher densities, have shorter life spans and a higher rate of reproduction. Long-tailed 

macaques and proboscis monkey are highly mobile and able to swim in contrast to orang

utans which are bulky and cannot swim thus restricting movement across the rivers. 

Deforestation also degrades the quality of the forest affected thus influencing the food 

availabilities for these primates (Johns, 1986; Bawa & Seidler, 1998; Chapman et al, 2000). 

Each of the species selected has different diets, with orang-utans and long-tailed macaques 

being versatile feeders, whereas proboscis monkeys are specialist folivores, thus food 

availability is predicted to limit populations, particularly of proboscis monkeys (Wasserman
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& Chapman, 2003). The combination o f these factors (i.e. primate life histories traits, 

behaviour etc.) allows the following hypotheses to be tested.

Hypothesis I: Habitat fragmentation has resulted in a reduction of effective population size 

(Ne) and genetic drift in each of the primate populations. If Ne reduction has occurred, then 

species with long lifespan and slow reproduction rates (i.e. the orang-utan) will show a lower 

reduction of genetic diversity than species with a short lifespan and faster reproduction rates 

(i.e. macaque and proboscis monkey). However, this will also be influenced by population 

size, macaques and proboscis monkeys being three times more abundant than orang-utans (see 

Chapters 3, 4 & 5).

Hypothesis II: The Kinabatangan River is a barrier to primate gene flow. It is predicted that 

levels of genetic differentiation in primate populations on either side of the river will be 

greater than between populations on the same side of the river, the magnitude of which will 

correlate with the ability of each species to cross the river (see Chapters 3, 4 and 5). 

Specifically (i.e. across species), orang-utan populations on either side of the river will be 

least similar and proboscis monkey populations most similar. Long-tailed macaques are 

predicted to show intermediate levels of genetic variation due to their occasional swimming 

and social structure.

•

In Chapter 2, I describe the field and laboratory methods used during my study, including 

details of the genetic analyses used in subsequent chapters. In the subsequent Chapters (3, 4 

and 5), I describe the population genetic structure and historical demography of each species 

beginning with long-tailed macaque and then describing the orang-utan and proboscis 

monkey. In the final Chapter (6), I assimilate all the data from the three different primate 

species and present a scenario on the events that occurred in Kinabatangan basin that might
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have caused the present day levels of genetic diversity and population structure in the orang

utan, long-tailed macaque and proboscis monkey.
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CHAPTER 2: MATERIAL & METHODS

2.1 SAMPLING

Prior to fieldwork, we decided to utilize faeces as a non-invasive source of DNA from 

each primate species. As the primates (long-tailed macaques and proboscis monkeys) are 

known to use riverine trees for sleeping sites (van Schaik et al, 1996) and all ten Lots of 

Kinabatangan border the river this enabled the animals to be observed and counted with ease 

using a boat survey. Effectively the river was used as a transect to census the primates during 

their inactive periods. Collection of the orang-utan faecal samples used in the current study 

(see Chapter 4) has previously been described by Goossens et al. (2005).

Sampling for long-tailed macaques and proboscis monkeys was carried out between 

June and September 2003. During the fieldwork, the whole length of the Lower Kinabatangan 

Wildlife Sanctuary (LKWS) was divided into five sections (see Fig. 2.1). For each section, 

census data and sampling was carried out for about two weeks (see Table 2.1).

Figure 2.1: Location of the Lower Kinabatangan Wildlife Sanctuary study sites in the Sabah 
state of Malaysia. The sanctuary consists of ten Lots, each marked in red. The 
Kinabatangan River and its tributaries are shown in blue.
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Table 2.1: Fieldwork timetable (dry season June to July and rainy season August to 
September)

No. Fieldwork Months Areas

1. Section 1 June 2003 Lots 1 and 2

2. Section 2 July 2003 Lots 5, 6 and 7

3. Section 3 August 2003 Lots 3 and 4

4. Section 4 September 2003 Lots 8, 9 and 10

In total, the surveys covered -330 km, equalling 660 km of riverbank including 

smaller tributaries. The surveys were carried out from 0600 to 0900 hours. The survey team 

consisted of the boat-man and one observer while the boat stayed in the centre of the river 

with a constant speed of 4 km/h. For each primate sighting, the following information was 

recorded: date, start and end times of observation, forest quality (i.e. disturbed or heavily 

disturbed as defined by Ancrenaz et a l , 2004), species, location (GPS coordinates), estimated 

group size and, where possible, group composition. Group size was estimated to the nearest 

10 individuals (A <10, B = 11-20, C = 21-30 and D 31-40).

2.1.1 Section 1 (Lots 1 and 2)

The first leg of the fieldwork was carried out in Lots 1 and 2, 33.4 and 37.6 km2 in 

size, respectively (Fig. 2.2). The first base camp was established at Danau Pitas. Both Lots 

consist of disturbed lowland forest that experiences diurnal inundation during each tide, 

exacerbated during the monsoon season. Here, there were seven groups of long-tailed 

macaques and five groups of proboscis monkeys that were observed and sampled. Group sizes 

of both species ranged from two to ten individuals. However, it is likely that disturbance due 

to a high level of river traffic (fishing, barge and tourist boats) reduced the number of primate 

sightings during the census.
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Figure 2.2. Lots 1 and 2 of the Lower Kinabatangan Wildlife Sanctuary and the position of
the base camps (yellow triangle). Lot boundaries are demarcated by the river or
shown by the red dotted lines.
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2.1.2 Section 2 (Lots 5, 6 and 7)

Figure 2.3. Lots 5, 6 and 7 of the Lower Kinabatangan Wildlife Sanctuary and the position
of the base camp (yellow triangle). Lot boundaries are demarcated by the river or
shown by the red dotted lines.

The second part of the field sampling was carried out in Lots 5, 6 and 7 (Fig. 2.3). 

Both Lots 5 and 6 are classified as disturbed forest, but Lot 7 is classified as heavily disturbed 

forest. As in Lots 1 and 2, this forest is also occasionally flooded during monsoon rains. There 

are many ox-bow lakes with large numbers of primates found near the lakes. Habitat 

disturbance is more pronounced than in Lots 1 and 2. Lot 5 covers the largest area within the 

sanctuary at 74.2 km2. Lot 6 is more modest at 26.7 km2 and Lot 7 at 10.3 km2. An oil palm 

plantation separates Lots 5 and 7, Lot 6 is bordered by the Kinabatangan River in the north 

and oil palm plantation in the south. On the north-western border of Lot 5 lies the Gomantong 

Forest Reserve. In Lots 5 - 7 ,  103 long-tailed macaques and 43 proboscis monkey groups 

were recorded. The sizes of the groups ranged from two to 40 long-tailed macaque individuals 

and from two to 30 proboscis monkey individuals. Both species were commonly found 

sleeping in the same trees. In contrast to Lots 1 and 2, the impact of tourist disturbances is less 

apparent due to the increased distances from the nearest village.
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2.1.3 Section 3 (Lots 3 and 4)

Figure 2.4. Lots 3 and 4 of the Lower Kinabatangan Wildlife Sanctuary and the position of
the base camp (yellow triangle). Lot boundaries are demarcated by the river or
shown by the red dotted lines.

The third sampling was carried out in Lots 3 and 4 (Fig. 2.4). Both are comparatively 

small in size at 22.1 km2 and 18.8 km2 consisting of disturbed forest with seasonal inundation. 

There were several ox-bow lakes showing different stages of plant colonization. There were 

14 and 36 groups of long-tailed macaques and proboscis monkeys observed, respectively. 

Most of the groups observed were small ranging from two to ten individuals. Rarely were 

large groups of 20 or more individuals observed. On a number of occasions, the riverbanks 

were devoid of any primates due to the noise of tourist boats and, as the animals were 

sensitized to boat disturbances, the number of animals in these Lots was probably 

underestimated.
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2.1.4 Section 4 (Lots 8, 9 and 10)

Figure 2.5. Lots 8, 9 and 10 of the Lower Kinabatangan Wildlife Sanctuary and the position
of the base camps (yellow triangle). Lot boundaries are demarcated by the river
or shown by the red dotted lines.

The fourth sampling period was the most difficult due to the start of the monsoon 

rains. Flooding of the forest greatly limited suitable sites for our base camps. Three base 

camps were set up due to the large distances between Lots. Both Lots 8 and 9 are heavily 

disturbed semi-inundated forest. Lot 10 consists of three fragments of mixed heavily 

disturbed and disturbed forest (Fig. 2.5). The Lot sizes ranged from 11.2 to 12.0 to 28.1 km2 

for Lots 9, 8, and 10, respectively. Only 12 groups of long-tailed macaques and 13 groups of 

proboscis monkeys were observed. All the group sizes were small ranging from two to 10 

individuals, but this may have been caused by the reduced visibility in the rainy season. There 

was no disturbance from tourists, but occasionally crocodiles were detected basking on the 

river banks or lying in shallow water, which seemed to greatly reduce primate activity.

Immediately following each morning and evening census survey, the same sites were 

revisited and faecal samples were collected below trees previously occupied by sleeping or
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resting primates. Samples were carefully collected to avoid potential cross contamination with 

human DNA and stored into 95% ethanol as suggested by Goossens et al. (2003). GPS 

coordinates of samples were noted for confirmation of sample location within each study area. 

Samples were then stored in a cold room before DNA extraction.

2.2 GENETIC STUDIES

DNA was extracted from all faecal samples using a QLAamp DNA Stool Mini Kit 

(QLAGEN, GMBH Cat. #51504) according to the manufacturer’s protocol with the following 

modification: at the final step, the amount of AE elution buffer was reduced from 200 /zl to 

150 fi\ (see part 2.2.1 for further details). The extracted DNA samples were later stored at 

4°C.

2.2.1 Faecal DNA extraction protocol

DNA was extracted from faecal samples using the QLAGEN QLAamp DNA Stool 

Mini Kit (QLAGEN, GMBH Cat. #51504). For each sample, five sets of Eppendorf tubes 

were prepared and labelled A-E (A and B were 1.8 ml tubes and C-E 1.5 ml tubes), in 

addition to one set of QLAamp spin columns and two collection tubes for each sample marked 

X and Y. In tube A, 1.4ml of Buffer ASL was added; in tube B, one Inhibitex tablet was 

added; and in tube D, 15 /d of Proteinase K was added.

The surface of the faecal samples were scraped with a clean sterile blade and this 

together with an inner portion of the pellet was added to tube A (150-200 mg) and mixed 

using a clean sterile spatula. The mixture was vortexed for 1 min and then heated at 70°C for 

five min. The mixture was then vortex for 15 s and centrifuged at 13,000 g for one min. The 

supernatant (1.2 ml) was transferred from Tubes A to B, and Tube A was discarded. Tube B 

was vortexed for one min, incubated at room temperature for one min, re-centrifuged for 3
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min, before the supernatant was transferred to Tube C. Tube B was discarded. Tube C was 

centrifuged for 3 min and then 200 ml of supernatant transferred to Tube D. To this was 

added 200ml of buffer AL before vortexing for 15 s. After 10 min incubation at 70°C, 200 ml 

of ethanol was added to the lysate and vortexed for 15 min.

The lysate was transferred from Tube D into a new QLAamp spin column and Tube D 

was discarded. The QLAamp spin column was centrifuged at 13,000 g for one min. and then 

the spin column was transferred into a new collection tube (Tube X) and the tube containing 

the filtrate was discarded. In the same QLAamp spin column, 500/d AW1 buffer was added 

and centrifuged for one min. The spin column was then transferred into a new collection tube 

(Tube Y) and tube X was discarded. In the same QLAamp spin column, 500/d AW2 buffer 

was added and then centrifuged at 13K for three min. The same spin column was then 

transferred into a new eppendorf tube (Tube E). 150/d AE buffer was added into the QLAamp 

spin column and incubated for one min at room temperature. The column was centrifuged at

8,000 g for one min. Finally, the spin column was discarded and the resulting DNA extraction 

(Tube E) was stored at 4°C prior to use.

2.2.2 Hair extraction protocol

Human DNA could easily cause contamination when studying non-human primates 

causing false positive in PCR. To control for cross-species amplification, DNA from human 

hair was extracted from the author as a control for each PCR carried out in the study. The 

DNA was extracted from hair follicles using a buffer based protocol of Engstrom et al. (1998) 

and Vigilant (1999).

Hair samples were washed several times in ultrapure water. Using a clean, sterile 

blade, hair shafts were removed and the remaining hair and root were transferred into a 1.5ml

Chapter 2



37

screw capped eppendorf tube containing 20pl 10X PCR buffer, lp l Proteinase K (50pg/pl) 

and 79pl ultrapure water. The mixture was agitated at 37°C overnight.

. The next day, the mixture was boiled for 10 min and centrifuged at 13K for one min. 

The resulting DNA extraction was stored at 4°C prior to use. For subsequent PCRs, there was 

no need to add extra buffer.

2.2.3 Standard PCR protocol

PCR reactions were performed in a final volume of 20/d, containing 2/d DNA extract, 

1.5/d 4 mg/ml BSA, 2/d 10X PCR Buffer, 1.5/d 25 mM MgCl2, 1/d lOmM of dNTP mix,

0.2/d of 50 pmol of each primer, 0.2/d of AmpliTaq Gold™ and 11.4/d of ultrapure water. 

Amplification was carried out in a Perkin Elmer 9700 thermocycler following an initial 

denaturation for 12 min at 94°C followed by 40 cycles of 94°C denaturation for 40 s, 

annealing at 58°C for 30 s, one min of extension at 72°C and final extension of 10 min at 

72°C. The annealing temperature ranged between species, 58°C, 60°C and 62°C for long

tailed macaque, orang-utan and proboscis monkey, respectively.

Amplification of the mtDNA control region was achieved using the general primers 

(LI6517 and 12SAR-3’, Fumagalli et al.> 1996; Palumbi, 1996) and species-specific primers 

(see Table 2.2). For this study, three sets of species-specific primers were developed that 

successfully amplified only the target species. These primers were tested against other target 

species (primate vs. primate) and humans (human vs. primate), but only amplified the target 

species.
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No. Species Primer code Primer Sequence

1. Long-tailed macaque M f-5 ' 5’-GCA ACT ACT TTC TGC ACT-3’

2. Long-tailed macaque M f-3’ 5’-GAA CAA GGG ATT CCT AAG-3’

3. Orang-utan Pp-5’ 5’-GCA CTT AAC TTC ACC ATC-3’

4. Orang-utan Pp-3' 5’-AAA CAA GGG ACC ACT AAC-3’

5. Proboscis monkey Nl-5’ 5’-CGT AAA CCA GAA ACG GAT-3’

6. Proboscis monkey Nl-3’ 5’-TAA TGG GAA TAT CCG TGC-3’

2.2.4 DNA sequencing

PCR products were purified using Exonuclease I/Shrimp Alkaline Phosphatase 

(ExoSap) (USB Corp, USA) (Hanke & Wink, 1994). An 0.5pi aliquot of ExoSap mastermix 

(Exonuclease I (10 units/p 1) and Shrimp Alkaline Phosphatase (1 unit/pl) in a ratio of 1:1) 

was added to each 5 pi PCR product. Purification of PCR products was carried out following 

activation of the enzymes at 37°C for 60 min and deactivation at 80°C for 15 min.

Sequencing PCRs were performed in a final volume of 8pl, containing 2pl of purified 

PCR product, 2.5pl Better Buffer (Web Scientific), 0.5pi BigDye Terminator Ver.l (Applied 

Biosystems), lp l of 1.6 pmol of primer and 2pl of water. Sequencing PCR was performed 

separately for forward and reverse primers. Sequencing PCR was carried out following an 

initial denaturation for 3 min at 96°C followed by 25 cycles of 96°C denaturation for 15 s, 

annealing at 50°C for 10 s and 2 min of extension at 60°C. Sequencing PCR was performed 

using ABI Big Dye Terminator vs. 1 (Applied Biosystems). Each PCR product was 

sequenced in both directions.
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PCR products were precipitated by adding 90pl of 63% isopropanol to each PCR tube. 

Tubes were vortexed for 20 s, left to stand for 15 min, then centrifuged for 30 min at 13,000 

g. The supernatant was discarded and 150pl of 70% isopropanol was added to each PCR tube. 

The PCR strips were then centrifuge for one min at 500 g and dried at 52°C for 2 min. 

Sequencing was performed in an ABI3100 automated sequencer.

2.3 DATA ANALYSIS

2.3.1 Sequence alignment and editing

Sequences obtained were checked by eye and contigs created from each forward and 

reverse sequence in SEQUENCHER 3.1.2 (Genecode Corp.). Each contig was checked again 

for any base discrepancies and corrected by eye. The contig was then converted into a 

consensus sequence and all the consensus sequences were aligned into one file consisting of 

all individual samples for each species. This file was then exported in NEXUS format.

2.3.2 Genetic Diversity

For this study, two basic measures of genetic diversity were used to describe the data, 

nucleotide and haplotype diversity, both calculated in ARLEQUIN version 3 (Excoffier et 

al., 2005). Nucleotide diversity (7r) is a measure of DNA sequence polymorphism within a 

population, and is defined as the average number of nucleotide differences per site between 

two sequences (Nei, 1987). Haplotype diversity (h) is defined as the probability that two 

randomly chosen haplotypes are different (Nei, 1987), where n is the number of gene copies 

in the sample, k is the number of haplotypes, and Pi is the sample frequency of the i-th 

haplotype. It is equivalent to the expected heterozygosity for diploid data.

Haplotype and nucleotide diversities are typically interpreted according to Grant & 

Bowen (1998) who analysed mtDNA of marine fish as a basis of assessing demographic
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histories (Table 2.3). Low values found for both indices indicate a recent bottleneck, whereas 

high values indicate a large stable population with a long evolutionary history or secondary 

contact of differentiated lineages. High haplotype and low nucleotide diversities suggest that 

there has been rapid growth from a small ancestral population but in too short a time to 

accumulate mutations. Low haplotype and high haplotype diversities may be the result o f 

transient bottlenecks in large ancestral populations since short crashes eliminate many 

haplotypes but do not affect nucleotide diversity severely.

Table 2.3. Grant & Bowen’ (1998) interpretation of differences between haplotype and
___________ nucleotide diversities.__________________________________________________

Haplotype diversity

Low High

Low

Nucleotide 

diversity High

Recent population bottleneck. 

Founder effect with single or few 

lineages.

Divergence between 

geographically subdivided 

populations.

Bottleneck followed by rapid 

population growth and mutation 

accumulation.

Large stable population with long 

evolutionary history. Secondary 

contact between differentiated 

lineages

2.3.3 Analysis of molecular variance (AMOVA)

Hierarchical population genetic structure was investigated using Analysis of 

Molecular Variance (AMOVA) as implemented in ARLEQUIN version 3 (Excoffier et al., 

1992, 2005). This statistical method was initially defined by Cockerham (1969, 1973) and 

extended by others (Weir & Cockerham, 1984; Long, 1986). The AMOVA approach is based 

on analysis of variance of gene frequencies which can take into account the number of 

mutations between molecular haplotypes (Excoffier et al., 2005). For this study, populations 

were defined according to their geographic locations and to investigate the possibility that the 

Kinabatangan River impedes gene-flow, primate populations on the north and south riversides 

were compared.
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The fixation index (O) ranges from 0 (indicating no differentiation between the overall 

population and its subpopulations) to a theoretical maximum of 1. Occasionally AMOVA 

produces small negative values of O st which indicates that haplotypes drawn at random from 

one population have a higher probability of being identical to haplotypes of another 

population rather than the population of origin (Excoffier et al., 1992). Fixation indexes (O) 

can be determined for differentiated hierarchical levels of a population structure, for example, 

O ct describes the regional apportionment of genetic variation with respect to all haplotypes, 

Osc describes the apportionment of variation within the population of a given region, and O st 

characterizes the variation between haplotypes in a single population relative to all haplotypes 

(Excoffier et al., 1992).

2.3.4 Networks

In this study, gene genealogies were investigated using networks rather than 

bifurcating evolutionary trees, which assume no reticulation (horizontal gene-flow - an 

assumption violated in many population studies). Intraspecific genealogies can be affected by 

low divergence among individuals, persistence of ancestral haplotypes, reticulation and large 

sample sizes (Posada & Crandall, 2001).

Two different methods were used to create networks: (i) minimum spanning networks 

(MSN) implemented in ARLEQUIN version 3 (Excoffier et al., 2005) and (ii) median joining 

network (MJN) using NETWORK version 4.1.1.1. (Bandelt et al., 1999). The minimum 

spanning network includes all equally parsimonious minimum spanning trees (MST) into a 

single network. MST construction is based on a matrix of pairwise distances among 

haplotypes. If there is more than one solution present, alternative links are created in the 

network (Excoffier & Smouse, 1994). In the median joining approach, all MSTs are first 

combined within a single network (MSN) following an algorithm analogous to Excoffier &
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Smouse (1994). Using a parsimony criterion, median vectors (which represent missing 

intermediates) are added to the network (Bandelt et al., 1999; Posada & Crandall, 2001).

2.3.5 Mismatch distributions

Population demography was analysed using mismatch distributions. A mismatch 

distribution is the distribution of the observed number of differences between pairs of 

haplotypes. Samples drawn from a population at demographic equilibrium that exhibit highly 

stochastic gene tree topologies usually have a multimodal distribution. In contrast, 

populations having passed through a recent demographic bottleneck and expansion (Slatkin & 

Hudson, 1991; Rogers & Harpending, 1992) or though a range of expansions with high levels 

of migration between neighbouring demes (Ray et al. 2003; Excoffier 2004) tend to be 

unimodal. Mismatch distribution can be calculated using three different models: pure 

demographic expansion, sudden expansion and spatial expansion model. The first two models 

are very similar, and therefore in the current study just the pure demographic expansion and 

spatial expansion models were calculated in ARLEQUIN 3 (Excoffier et al., 2005).

A demic spatial expansion generally occurs if  the range of a population is initially 

restricted to a very small area, and then the range of the population increases over time and 

space. In the demic spatial expansion model, the shape of the gene genealogies and the overall 

pattern of diversity within demes are influenced by the age of the expansion and the level of 

gene-flow, Nm (N=size of deme; m= proportion of migrants) between neighbouring demes 

(Ray et al., 2003). Low gene-flow (<1 migrant per generation) produces a substantial 

proportion of coalescent events early in the genealogy producing gene genealogies that are 

star-shaped and multimodal mismatch distributions. For large Nm values, most coalescent 

events that occur around the time of the onset of the spatial expansion produce a mixture of 

both very short and long branch lengths gene genealogies resulting in unimodal mismatch
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distributions. Tests of selective neutrality (Tajima’s D or Fu’s Fs) will show significant 

negative values after a spatial expansion only in demes with high Nm values

2.3.6 Selective neutrality

Statistics based on mismatch distribution are not always robust at detecting expansion 

and critically depend on sample size, therefore, a range of tests were employed to detect 

traces of past population growth or stability based on DNA sequences (Ramos-Onsins & 

Rozas, 2002). Tajima’s D (Tajima, 1989), Fu’s Fs (Fu, 1997), Fu & Li, D* and F* (Fu & Li, 

1993) tests of neutrality were also used to assess demographic history. All estimates are based 

on the infinite-site model (ISM) without recombination, appropriate for mtDNA. Fu & Li’s 

(1993) D* and F* statistics together with Fu’s (1997) Fs can be used to distinguished the 

effects of background selection from population growth or range expansion. If Fs is 

significant and F* and D* are not, this indicates population growth or range expansion, 

whereas, the reverse indicates selection (Fu, 1997). All selective neutrality tests were 

performed in ARLEQUIN 3 (Excoffier et al., 2005) with the exception of Fu & Li’s (1993) 

D* and F*, which were calculated in DNASP 4.10.3 (Rozas et al., 2003).

2.3.7 Coalescent simulation

Coalescent-based methods were used to test for evidence of population expansion 

using FLUCTUATE v.1.4. (Kuhner et al., 1998). This approach uses a maximum likelihood 

method to simultaneously estimate theta (0Kuhner; the scaled mutation rate theta (0) = N/i 

where N is the size of each subpopulation and fi is the mutation rate, assuming an infinite 

allele mutation model) and population growth rate (g). FLUCTUATE assumes that the loci 

sampled are not affected by selection or recombination. If these assumptions are violated the 

results may be erroneous. To achieve convergence for the estimates, the simulation was 

executed five times. Large positive values o f theta and g indicate population growth.
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CHAPTER 3
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MALAYSIA

Jalil, M.F.1’2, Goossens, B.1’2, Bruford, M.W.1, Sinyor, J.3 and Cable, J.1
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Abstract

To investigate the population genetic and hence demographic structure of the long

tailed macaque (Macaca fascicularis) in the Lower Kinabatangan Wildlife Sanctuary (Sabah), 

sequence variation in the mitochondrial DNA control region was analyzed from 89 faecal 

samples taken from 88 sites north (n = 31) and south (n = 57) of the Kinabatangan River. As 

predicted, this widely distributed, invasive species showed both high haplotype and 

nucleotide diversity, indicating a historically large and stable population, an inference also 

supported by a multimodal mismatch distribution. Surprisingly and despite the fact that long

tailed macaques are known to be good swimmers and therefore able to cross rivers, analysis 

of molecular variance indicated restricted gene-flow between populations on the north and 

south side of the Kinabatangan River. However, a component of this genetic structure 

probably also arises due to the high level of genetic partitioning between demes associated 

with the social system of the long-tailed macaque.

3.1 INTRODUCTION

Riverine biodiversity is threatened around the world by habitat degradation which

includes pollution, deforestation, creation of dams and over-harvesting (see Dudgeon, 2000).

Riverine species also face severe competition with humans because riverine wetlands are also
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productive agricultural lands. This is particularly important in Asia where rapidly expanding 

human settlements inexorably encroach upon riverine habitats (Dudgeon, 2000). Many river 

basins in South East Asia are crowded with growing human settlements (e.g. the Mekong and 

Chow Phraya Basins). River pollution has reduced many populations of freshwater flora (i.e. 

Cyrpticoryne) and fauna (i.e. Pangasianodon gigas, see Na-Nakom et al., 2006), and a 

combination of damming and water-flow regulation have disrupted migration patterns of 

freshwater fauna (e.g. the Chinese sturgeon, Dudgeon, 2000). One main impact of riverine 

pollution is the displacement of many wild species with domesticated forms. Many large 

bodied species that are unable to adapt to changing habitats (i.e. Yangtze river dolphin, Indian 

rhino and wild water buffalo) are almost extinct (Dudgeon, 2000; Yang et al., 2006) due to 

habitat loss. Associated habitat fragmentation has also resulted in the restriction of many 

species to small habitat patches separated by a matrix of inhospitable environments (such as 

plantations). All such changes potentially have an adverse impact on genetic diversity, 

including reduction in local population size, reduced migration (i.e. Chinese Paddlefish, 

Dudgeon, 2000) and inbreeding (Frankham et al., 2002; Frankham, 2005). Short term effects 

of habitat fragmentation and isolation are influenced by effective population size and genetic 

drift, which are controlled by factors such as availability of mates (sex ratio) and food 

(productivity), predation pressure and parasite loads. Long term consequences may include 

genetic loss, deleterious mutation accumulation and fixation of certain haplotypes.

•

Asia is unique in having many terrestrial mammals associated with riverine wetlands 

(Dudgeon, 2000), some of which are now classified as vulnerable (e.g. fishing cats) or 

endangered (e.g. orang-utan, proboscis monkey, IUCN, 2006) due to habitat loss and 

degradation. In addition to the charismatic megafauna that can be found in riverine wetlands 

(such as Malayan Tapir and Asian elephant), some common and commensal species are also 

present, including the long-tailed macaque (Macaca fascicularis, see van Schaik et a l , 1996;
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Dudgeon, 2000). This species occurs from Burma and Indochina in the north, to Bali in the 

east, and Sumatra and Nicobar in the extreme west. They are extremely common throughout 

their native range (Abegg & Thierry, 2002; Umapathy et al., 2003). In fact, the long-tailed 

macaque has been listed as one of the 100 most invasive alien species with successful 

invasions in Sulawesi, Lesser Sunda, Palau, Mauritius, Papua New Guinea and Hong Kong 

(Lowe et al., 2000; Long, 2003). Long-tailed macaques inhabit a variety of forest habitats, 

preferring edge habitats and riverine areas, but can also be found in villages (i.e. disturbed 

habitat), often raiding crops and where they may be classified as a pest (van Schaik et al., 

1996; Abegg & Thierry, 2002). Their only natural predators are the clouded leopard and 

crocodile, but these predators occur in low densities with no obvious impact on long-tail 

macaque populations. Long-tailed macaques required large home ranges depending on the 

quality of the forest, 25-50 ha in primary forest and up to 200 ha in secondary or degraded 

forest (Wolfheim, 1983; de Ruiter & Geffen, 1998).

Using mitochondrial DNA (mtDNA) sequences, Melnick and Hoelzer (1996) and 

Cowlishaw and Dunbar (2000) showed that primates with female philopatry (such as 

macaques) have greater local genetic homogeneity and greater among-population genetic 

differentiation than species which conform more closely to panmixis. The utility of mtDNA is 

widely recognised for inferring genetic relationships among and within populations, 

especially as it is easily isolated and occurs in multiple copies per .cell. The control region of 

the mtDNA is particularly useful due to its rapid rate of sequence evolution in humans 

(Vigilant et al., 1989, 1991), other primates (Marmi et al., 2004) and other vertebrates such as 

birds (Wennick et al., 1994; Delport et al., 2002). Traditionally, the left domain of the control 

region has been favoured due to its rapid rate of evolution and lack of conserved blocks 

(Fumagalli et al., 1996). Many recent papers have used the left domain to study 

phylogeography of primates across their geographic ranges showing high levels of
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polymorphism (i.e. gorillas, Clifford et al., 2004; orang-utans, Warren et al., 2001; barbary 

macaques, Modolo et al., 2005). However, to date there have been no empirical studies that 

have directly compared polymorphism in the left and right domain of the control region in 

non-human primates and very few examining polymorphism within and among social groups 

and populations on a small spatial scale. This study both compares levels of polymorphism in 

the left and right domain of the mtDNA control region, prior to investigating the fine-scale 

population genetic structure of the long-tail macaque. Specifically, the genetic diversity 

within and between populations of long-tailed macaques in the fragmented forest of Lower 

Kinabatangan is assessed in the context of their highly structured social systems along the 

Kinabatangan River.

3.2 MATERIAL AND METHODS 

DNA samples

Samples were collected along the Kinabatangan River and Pangi Forest Reserve 

(Pangi) within the Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysia (LKWS) in 

2003 (Fig. 3.1 and Appendix 1). Long-tailed macaques were surveyed on each Lot of the 

LKWS by boat at a constant speed following methods described by Goossens et al. (2003). 

All faecal samples were collected under trees following earlier sightings of long-tail 

macaques, therefore individual samples could not always be related back to defined social 

groups. Faecal samples (n = 88 + one from Labuk Bay outside of LKWS) were collected in 

sterile falcon tubes and preserved in 95% ethanol at 4°C. Total DNA was extracted using a 

QLAamp DNA Stool Mini Kit following the manufacturer’s protocol (QLAGEN GMBH Cat. 

#51504). However, at the final step, the amount of AE elution buffer was reduced from 200/d 

to 70/d.
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Figure 3.1. Distribution of long-tailed macaque faecal samples (purple squares) collected along the Kinabatangan River. Red line indicates the Lower 
Kinabatangan Wildlife Sanctuary (LKWS) boundaries for each Lot and blue lines indicate the Kinabatangan River and its tributaries.
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The left (350 bp) and right domains (545 bp) of the mitochondrial DNA control region 

were amplified using primers Mf-5’/Mf-3’ (see Chapter 2) and L16517/12SAR-3’, 

respectively (Fumagalli et a l .,1996; Palumbi, 1996) (Fig. 3.2). PCR reactions were performed 

in a final volume of 20/xl, containing 2/xl DNA extract, 1.5/xl 4 mg/ml BSA, 2pl 10X PCR 

Buffer, 1.5/rl 25mM MgCb, 1/xl lOmM of dNTP mix, 0.2/xl of 50pmol of each primers, 0.2/ri 

of AmpliTaq Gold™ (Applied Biosystems) and 11.4/ri of ultrapure water. Amplifications 

were performed in a Perkin Elmer 9700 thermocycler following an initial denaturation for 12 

min at 94°C followed by 40 cycles of 94°C for 40 s, 50°C for 30 s and one min of extension at 

72°C, and a final extension of 10 min at 72°C.

PCR products were purified using Exonuclease I/Shrimp alkaline Phosphatase 

(ExoSap) (Hanke & Wink, 1994). ExoSap mastermix were prepared by adding Exonuclease I 

(10 units/pl) (USB Corp. USA) and Shrimp Alkaline Phosphatase (1 unit/pl) (USB Corp. 

USA) in a ratio of 1:1. 0.5pi of the mastermix was added into each 5 pi PCR product aliquots 

(in a new PCR strips). Purification of the PCR products was carried out following an 

activation of the enzymes at 37°C for 60 min and deactivation at 80°C for 15 min.

Sequencing PCR was performed in a final volume of 8pl, containing 2pl purified PCR 

product, 2.5/xl Better Buffer (Web Scientific ltd. UK), 0.5pl BigDye Terminator Ver.l 

(Applied Biosystems, Europe), lpl of 1.6 pmol of primer and 2pl#of water. Sequencing was 

performed using both forward and reverse primers. Sequencing PCR was carried out 

following an initial denaturation for 3 min at 96°C followed by 25 cycles of 96°C denaturation 

for 15 s, annealing at 50°C for 10 s and 2 min of extension at 60°C. PCR products were 

precipitated by adding 90 pi of 63% isopropanol to each PCR tube, vortexing for 20 s, 

standing for 15 min, and then centrifuging for 30 min at 13,000 g. The supernatant was 

discarded and 150 pi of 70% isopropanol was added to each PCR tube. The PCR strips were
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Figure 3.2: Schematic diagram of the organization of the mitochondrial DNA control region 
in mammals (from Fumagalli et al., 1996).
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then spun for 1 min at 500 g and dried at 52°C for 2 min. Each PCR product was sequenced in 

both directions. Sequencing was performed in an ABB 100 semi automated sequencer.

Genetic structure o f control region haplotypes

MtDNA control region sequences were aligned using the program SEQUENCHER

3.1.2 (GeneCodes Corp.) with correction by eye. Minimum spanning and median joining 

networks were estimated using ARLEQUIN 3 (Excoffier et al., 2005) and NETWORK 

4.1.1.1 (Bandelt et al., 1999) (available at http://www.fluxus-engineering.com/). ARLEQUIN 

was used to estimate nucleotide (x) and haplotype (h) diversity at various population sampling 

levels. ARLEQUIN and DNASP 4.10.3 (Rozas et al., 2003) were used to calculate Tajima’s 

D (Tajima, 1989) and Fu’s Fs (Fu, 1997) test of selective neutrality and to compute mismatch 

distributions (Rogers & Harpending, 1992) based on two different models (the sudden and 

spatial expansion models) for all LKWS long-tailed macaque samples and separately for each 

riverside as implemented in ARLEQUIN. A hypothesis of exponential growth using a 

Markov Chain Monte Carlo (MCMC) approach was also tested as implemented in 

FLUCTUATE v. 1.4. (Kuhner et al., 1998). ARLEQUIN was also used to estimate pairwise 

population differentiation (4>st values) by Analysis of Molecular Variance (AMOVA) 

(Excoffier et al., 1992). The significance of $ s t  was assessed through a permutation test with

1,000 repetitions.

•

3.3 RESULTS

I. Left Domain of mtDNA Control Region

From 350 bp of the left domain (LD) of the CR sequenced from 89 samples, there were 43 

polymorphic sites with 42 transitions and 1 transversion (Table 3.5). Twenty two haplotypes 

were identified, 21 in LKWS and one in Labuk Bay (Tables 3.1 & 3.2). Of the 21 haplotypes 

in LKWS, 11 were identified in multiple sites and ten were found only on the southern side of
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Table 3.1. Variable nucleotide positions in the alignment of mtDNA sequences of the long-tailed macaque control region. Dots indicate 
positions where the bases are identical to haplotype LD01.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3
1 3 7 0 1 2 2 4 5 6 6 7 7 8 8 8 8 9 0 0 0 0 0 0 0 1 1 1 2 2 2 3 3 3 3 4 4 5 5 5 8 8 1
4 2 3 6 6 2 3 7 1 2 8 6 7 1 5 6 7 7 2 3 4 5 6 8 9 0 7 9 0 4 8 0 3 8 9 2 8 4 5 6 3 5 0

LD01 A C A T c c C T T c A G A A T c T C G C A T G C T c A T T c C T c A A T G G C T A T

LD02 T C

LD03 T C T C c . G A T C T C C T . G C A T C C

LD04
LD05 T C T C c . G A T C T C . T G C A T C G c
LD06 T c T . c c G A T c T c T G c A T c . c
LD07 c T T c A . C T C A A T c T C T C T . A . T c c
LD08 . c T . c c A . A T 0 T T A T c G c
LD09 T c T c c A A T . c A T c . T G c A T c c
LD10 A

LD11 T . c T c G . . A T G c T c . T T C T G c A A T c G c
LD12 A

LD13 c
LD14 . c T T c c G T A T c T c T T c . G . A . T c G c
LD15 T . c T c c A c T c T c T G c A . T c c
LD16 T c T . c . G . . A T G c T c T T c T G c A A T c G c
LD17 T T G A c
LD18 T c T c c A c T c . T T c A T c c
LD19 T c T c c G A A T c T c G c T T c A . T c c
LD20 G A

LD21 T . c T c c . G A T c T c . T c T G c A T c c
LABUK T c T c c . G A T . c c T T c A T c c
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Table 3.2. Haplotypes of left domain (LD) of mtDNA control region observed for long-tailed 
macaques and their frequency in each Lot and forest reserve.

H A PL O T Y PE
N O R TH E R N SO U T H ER N

LA B U K
L O T  4 L O T  5 L O T  7 L O T I L O T  3 L O T  6 L O T  9 PA N G I

LD01 - - - 1 - - 1 - -
LD02 - - - - - 2 - - -

LD03 - 2 1 - - 2 - - -
LD04 - - - - - 1 - - -
LD05 - - - - - - - 4 -
LD06 1 - - 1 - - - 2 -
LD07 - - - - - - - 1 -
LD08 - - - - 1 - - - -
LD09 - - - - 1 - - -
LD10 - - - - 10 1 - - -

LD11 - - - - - 1 - - -

LD12 - - - 2 - - - 7 -

LD13 - - - - - - 2 - -
LD14 1 2 - - - 2 - 3 -
LD15 - 1 1 - 1 - - - -
LD16 - 9 3 - - 2 - 1 -
LD17 - 1 - - - 1 - - -
LD18 - 3 1 - - 1 - - -

LD19 1 - 4 - 1 - - - -

LD20 - - - 2 - - - - -

LD21 - - - - - - 3 - -

LA BU K - - - - - - - - 1
T O T A L 3 18 10 6 14 13 6 18 1
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the river (Lot 1 -  LD20; Lot 3 -  LD08, LD09; Lot 6 -  LD02, LD04, LD11; Lot 9 -  LD13, 

LD21 and Pangi -  LD05, LD07).

Both minimum spanning and median joining networks revealed groupings of closely 

related haplotypes connected by long mutational steps. Both networks also suggested partial 

separation of populations between the Northern and Southern riversides with the Labuk 

haplotype showing closest affinities to the ‘Northern’ sequences (Fig. 3.3A & B). Individual 

haplotypes from Pangi were observed in both groups (Fig. 3.3). Most of the haplotypes 

occurring in more than one Lot were found in adjoining Lots or forest reserves (i.e. LD16 was 

found in Lots 5, 6 and 7, and Pangi).

Haplotype diversity (h) ranged from 0.809 + 0.053 to 0.924 + 0.019 to 0.926 + 0.012 

for Northern, Southern groupings and all LKWS, respectively. Nucleotide diversity (if) varied 

from 0.022 + 0.012 to 0.034 + 0.017 to 0.035 + 0.018 for Northern, Southern groupings and 

all LKWS, respectively (Table 3.5). Both indexes revealed higher values in the Southern 

compared to the Northern grouping.

Tajima’s test of selective neutrality, D, revealed values ranging from -0.131 to 0.936 

to 1.423 for Northern, Southern grouping and all LKWS, respectively. Fu’s Fs ranged from 

0.385 to 2.676 to 4.365 for the Southern grouping, all LKWS and Northern grouping, 

respectively. However, none of the population expansion estimates were significant at the 

95% level (Table 3.5). Mismatch distributions provided multimodal patterns for all LKWS 

samples, and for the Northern and Southern groupings analysed separately (Fig. 3.4). 

Coalescent analysis yielded a low value of 0  at 0.026 + 0.002 and a small growth 

parameter value of 1.52 + 23.93. AMOVA estimated that 72.1% of genetic variability was
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Figure 3.3. Minimum spanning network (A - MSN) and median joining network (B -  MJN) 
of the Kinabatangan long-tailed macaque mtDNA control region. Each circle 
represents a different haplotype and the diameter indicates haplotype frequency. 
The smallest circle represents a singleton. Mutational steps are represented by 
black bars on lines connecting haplotypes for MSN. In MJN, black dots are 
median vectors presumed unsampled or missing intermediates and numbers 
indicate the location of sites that have undergone mutations.
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Figure 3.4. Mismatch distribution for long-tailed macaque left domain mtDNA control 
region sequences (LD). Observed (solid lines) and expected (dotted lines) 
showing the frequencies of pairwise differences within the (A) northern, and 
(B) southern riversides.
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attributable to variance within populations and 27.9% was accounted for by differences 

among riversides. The riverside 4>st value of 0.279 was highly significant (P=0.000).

II. Right Domain mtDNA Control Region

From the longer (545 bp) fragment of the right domain (RD) sequenced from 74 

samples, there were only 13 polymorphic sites with 12 transitions and 1 transversion 

(Appendix 3.1). Due to the low level of polymorphism compared to the left domain, no 

analyses were performed on this dataset alone.

III. Combined RD and LD datasets of mtDNA Control Region (CR)

Individual sequences obtained for the left and right domain were combined to produce 

74 sequences of 895 bp. There were 55 polymorphic sites with 53 transitions and two 

transversions within this combined dataset (hereafter known as CR) (Table 3.3). The CR 

dataset produced a total of 26 haplotypes in LKWS and one in Labuk Bay. From the 26 

haplotypes, 10 occurred in multiple sample sites and 16 were private, occurring in six 

different Lots (Lot 1 -  CR20, CR21; Lot 3 -  CR15, CR16; Lot 5 -  CR01, CR02, CR04, 

CR08; Lot 6 -  CR05; Lot 9 -  CR03, CR26; Pangi -  CR07, CR09, CR10, CR12, CR13). 

Within the combined dataset, 12 haplotypes were found North and 20 South of the 

Kinabatangan River (Tables 3.3 & 3.4).

•

The minimum spanning network generated from the CR dataset was almost identical 

to that produced from the LD dataset with the Labuk haplotype clustering together with the 

Northern grouping. Similar patterns were found in median joining networks for both datasets 

(Figs. 3.5A & B). Haplotype diversity values obtained for the CR dataset were lower in the 

North (0.890 + 0.035) compared to the South (0.901 + 0.032) and the entire LKWS (0.938 +
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Table 3.3. Variable nucleotide positions in the alignment of mtDNA sequences of the long-tailed macaque control region. Dots indicate positions 
where the bases are identical to haplotype CR01. The vertical line marks the border between left and right domains of mtDNA control 
region.
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C R 02 C T 0 A G T A C A G T G 0 0 C G

C R 03 C C G G

C R 04 0 A C A 0 G A 0 0 G

C R 05 C T T . A G C T C T C c T C A T G T A A c C A G G C G G

C R 06 c A C c T c G A 0 G

C R 07 c A c T c G G

C R 08 c A c A c T A G G C .
C R 09 T 0 A c T c G A C c C A G G C G G

C R 10 c c A G T A c A G T G A C c c A G G . C G G

CR11 0 A c T c G A G

C R 12 c T A A C T C A A T C T C c . A T G . A A C c c A G G C G G

C R 13 c T 0 A G T A c A G T A C . c c A G G . C G G

C R 14 C G

C R 15 c c A A A T c c T A T G A C c c A G G C G G

C R 16 T c A A A A c T c G A C G

C R 17 c G C T A G c A T c T C c T c A T G C T A T A C c c A G G . C G G

C R 18 0 A c A c T A G A T G

C R 19 c T C T A G c A T c T c c T c A T G C T A T . A C c c A G G C G G

C R 20 c T c T A G c A T c T . c c T c A T G c T A T . A C c c A G G G C G G

CR21 G c T c T A G c A T c T c c T c A . T G c T A T A c . c c A . G G C G G

C R 22 0 A ♦ c A c G A

C R 23 c G

C R 24 c T T T A G G c A T c T . c c T c A . T G c T A G A . c c A G G C G G

C R 25 0 A A G C c T . A G A T G

C R 26 A

LABUK 0 A c c T A G A A C G
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Table 3.4. Haplotypes of the mtDNA control region (CR) for long-tailed macaques and their 
frequency in each Lot and forest reserve.

H A PL O TY PE
N O R TH E R N SO U T H ER N

LA B U K
L O T  4 L O T  5 L O T  7 L O T I L O T  3 L O T  6 L O T  9 PA N G I

CR01 - 1 - - - - - - -

CR 02 - 1 - - - - - - -

CR 03 - - - - - - 1 - -

C R 04 - 1 - - - - - - -

CR 05 - - - - - 2 - - -

CR 06 - 2 1 - - 2 - - -

C R 07 - - - - - - - 2 -

C R 08 - 1 - - - - - - -

C R 09 - - - - - - - 1 -

C R 10 - - - - - - - 2 -

CR11 1 - - - - - - 2 -

C R 12 - - - - - - - 1 -

C R 13 - - - - - - - 1 -

C R 14 - 3 - - - - - 1 -

C R 15 - - - - 1 - - - -

C R 16 - - - - 1 - - - -

C R 17 - - - - 10 1 - - -

C R 18 - 2 - - - 1 - - -

C R 19 - - - 1 - - - 7 -

C R 20 - - - 1 - - - - -

CR21 - - - 1 - - - - • -

CR 22 1 - 1 - - - - - -

C R 23 - 5 3 - - 1 - -

C R 24 - 1 - - - 1 r - -

C R 25 1 - 4 - 1 - - - -

C R 26 - - - - - - 2 - -

LA BU K - - - - - - - - 1

T O TA L 3 17 9 3 13 8 3 17 1
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0.013). Similarly, nucleotide diversity in the North (0.011 + 0.006) was lower than that in the 

South (0.018 + 0.009) and entire LKWS (0.019 + 0.010) (Table 3.5).

The Tajima’s D value obtained for the Northern grouping was lower (-0.618) when 

compared to the Southern grouping (0.828) or all of the LKWS (1.693). The values of Fu’s Fs 

were all positive, ranging from 0.833 in the Southern grouping to 1.442 in all LKWS to 1.604 

in the Northern grouping, but none were significant (Table 3.5). The mismatch distribution for 

all LKWS samples, the Northern and Southern subpopulations showed a multimodal pattern 

(Fig. 3.6). Coalescent analysis yield a low value of 0  at 0.020 + 0.002 and the growth 

parameters also yielded a very low value of 49.15 + 42.96 (Table 3.5). Comparing long-tailed 

macaque populations on either side of the river, AMOVA analysis estimated variability 

within populations of 62% and between riverside variability of 38%. Like the LD dataset, the 

combined dataset produced 4>st value of 0.380 which was again highly significant (P=0.000).

3.4 DISCUSSION

This is the first study of non-human primates to directly compare variation in the left 

and right domain of the mtDNA control region in the same individuals. As in human studies 

(e.g. Salas et al., 2000), the left domain was much more variable with a 3 - 4 fold difference 

in the number of polymorphic sites in 350 bp compared to 545 bp of the right domain. In fact 

there appeared to be little value at all in additional sequencing of the right domain as 

statistical analysis of the combined data sets produced virtually identical results to those 

obtained from the left domain alone. Thus, the left domain seems the most productive and 

cost effective sequence to target when evaluating primate control region genetic variation.

This study revealed high levels of genetic diversity in long-tailed macaques in the 

Lower Kinabatangan, with 21 and 13 haplotypes detected from the left and right domain,
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Figure 3.5. Minimum spanning network (A-MSN) and median joining network (B-MJN) of 
mtDNA control region haplotypes of the long-tailed macaque. The diameter of 
the circle indicates number of sequences. The smallest circle represents a 
singleton. Black bars in MSN and numbers in MJN indicates the mutational 
steps (MSN) and the sites that undergone mutations. Black dots (in MJN) 
represent missing samples.
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Figure 3.6. Mismatch distribution for long-tailed macaque mtDNA control region sequences 
(CR). Observed (solid lines) and expected (dotted lines) showing the frequencies 
of pairwise differences within the (A) northern, and (B) southern riversides.
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Table3.5. Summary on number of sequences and haplotypes, values of nucleotide (7r) and haplotype (h) diversity, neutrality tests (Tajima’s D and 
Fu’s Fs), population parameters of 0  and growth parameter of g  for mitochondrial DNA control region datasets (RD, LD & CR datasets) 
for long-tailed macaque (Macaca fascicularis) in the Lower Kinabatangan Wildlife Sanctuary.

LKWS NORTH SOUTH
LD CR LD CR LD CR

Seq. 88 73 31 30 57 43
Hap. 21 26 8 12 8 12

h 0.926 ±0.012 0.9384 ±0.0125 0.8206 ±0.0506 0.8897 ±0.053 0.9242 ±0.0188 0.9014 ±0.0315
TC 0.03520 ±0.00105 0.019108 ±0.009527 0.021866 ±0.011645 0.010575 ±0.005555 0.034060 ±0.017345 0.017523 ±0.008856
D 1.42336 (P=0.94600) 1.69302 (P=0.97000) -0.13050 (P=0.47600) -0.61841 (P=0.31500) 0.93572 (P=0.91668) 0.82812 (P=0.84700)
Fs 2.67646 (P=0.81900) 1.44169 (P=0.72300) 4.36517 (P=0.93900) 1.60421 (P=0.77800) 0.38459 (P=0.60600) 0.38459 (P=0.60600)
e 0.0264 ±0.0022 0.0204 ±0.0019 - - - -

g 1.52 ±23.93 49.15 ±42.96 - - - -
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respectively. In contrast, Perwitasari-Farajallah et al. (1999) studying the same species using 

PCR-RFLP of the control region, identified only five haplotypes from West Java. Even 

though direct comparison is not valid, our small geographic coverage produced a higher 

haplotype diversity illustrating the increase in sensitivity of PCR sequencing over PCR-RFLP. 

From 392 bp of the left domain of the mtDNA control region, Marmi et al. (2004) detected 

only nine haplotypes from 50 individuals of the Japanese macaque, Macaca fuscata, from 

mainland Japan. Using the right domain, Hayaishi & Kawamoto (2006) studied the same 

species, from a small island (Yakushima), and found only six haplotypes from 488 faecal 

samples collected from the whole island. However, although Hayaishi & Kawamoto (2006) 

genotyped almost 10 times as many individuals as Marmi et a l (2004) the results are not 

comparable as different domains were targeted. From the Barbary macaque (Macaca 

sylvanus), Modolo et al. (2005) identified 24 haplotypes from the left domain of the control 

region from 212 samples across its entire geographic range. This low level of diversity 

probably reflects population bottlenecks due to contraction of suitable habitats (Modolo et al., 

2005). With an estimated population of ~10,000 Barbary macaques remaining in the wild, the 

remaining populations clearly need proper management to maintain genetic diversity (Modolo 

et al., 2005).

Neutrality tests, mismatch distribution and coalescent analysis all indicated that the 

Lower Kinabatangan long-tailed macaque population has remained stable for a long period of 

time and has not undergone a demographic expansion in the recent evolutionary past. This 

long-term stability could be due to their adaptability to different habitats and being 

opportunistic, especially within human settlements in the Kinabatangan basin, although this 

would not explain their post-glacial demographic profile, since humans only arrived in the 

region relatively recently. Nonetheless, wild primates with access to human waste or other 

such food resources are much heavier with significantly higher birth (hence productivity)
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rates, especially as in well fed populations females mature earlier (Wheatley et al., 1996; 

Cowlishaw & Dunbar, 2000).

The social system of long-tailed macaques consists of multi-male and multi-female 

groups dominated by an alpha male and alpha female, de Ruiter & Geffen (1998) found that 

within Sumatran long-tailed macaques, a stable social group comprised eight to 60 

individuals. In our Kinabatangan study, we observed group sizes ranging from two to 40 

individuals, but the most common group size was 10 to 20 (see Chapter 2). This species is 

known to prefer open, degraded habitats (Supriatna et al., 1996). The differences in group size 

between de Ruiter & Geffen’s (1998) and the current study could potentially be attributed to 

the more degraded habitat in LKWS or a lack of resources to sustain such a large group size 

like in Sumatra, although this is clearly speculation.

Perhaps surprisingly, evidence of genetic differentiation was detected between long 

tail macaque populations on each side of the Kinabatangan River. However, as these primates 

are known to be good swimmers, the differences between riversides may actually reflect 

differences in social structure between populations. Like other macaques species, female 

long-tailed macaques are highly philopatric (Melnick, 1987; Hoelzer et al., 1994; de Ruiter & 

Geffen, 1998) and social groups tend to consist of closely related females. Female philopatry 

is common in cercopithecoid primates usually associated with strong matrilineal bonds among 

sisters/females (Difiore & Randall, 1994; Cowlishaw & Dunbar, 2000). New social groups 

are formed, usually through group-fission (de Ruiter, 1994; de Ruiter & Geffen, 1998) which 

results in closely related females staying together and unrelated females forming a new 

‘daughter’ groups (Hoelzer et al., 1994; de Ruiter & Geffen, 1998; Cowlishaw & Dunbar,

2000). These new groups usually occupy available habitat nearby the source group as 

demonstrated by toque macaques in Sri Lanka (Hoelzer et al., 1994) and long-tailed
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macaques in Sumatra (de Ruiter, 1994) and Sabah (current study). Restriction enzyme 

analysis revealed that toque macaques in Polonnaruwa, Sri Lanka, exhibit two highly 

divergent haplotypes which occupied adjacent habitats (Hoelzer et al., 1994). These two 

haplogroups were distinct despite a lack of known geographic barriers, but the distribution of 

these two haplotypes is consistent with known history of group fission (Hoelzer et al., 1994).

For long-tailed macaques in Sumatra, de Ruiter & Geffen (1998) found that the river 

did not significantly disrupt gene-flow, instead relatedness values were similar for adults on 

one and both sides of the river, which was interpreted as being due to female philopatry and 

the formation of new groups by group fission along matrilineal lines. This result is supported 

by the current study which showed clustering of closely related haplotypes within and 

between adjacent Lots. Due to strong genetic drift operating at the social level, the linear 

habitat along the river in Sumatra may enhance group differentiation by a ‘stepping stone’ 

configuration among social groups (Schefffahn et al., 1996). Amazonian primate 

communities on facing riverbanks are more similar across narrow, slow flowing rivers, but 

less similar across faster flowing rivers (Ayres & Clutton-Brock, 1992). However, on flood 

plains the increased occurrence of the formation of oxbow lakes on large, slow flowing rivers, 

may lead to increased opportunities for primates to move between riverbanks. Another factor 

which might influence movement of individuals across rivers is the formation of arboreal 

bridges (tree canopies) over narrower channels (Cowlishaw & Dujibar, 2000). This situation 

has been observed in Chinese and Indian Rhesus macaques (Smith & McDonough, 2005). 

Despite the hazardous terrains of the Himalayan glaciers, it is considered unlikely that the 

Brahmaputra River Valley barrier (Melnick et al. 1993) restricted gene flow of the Rhesus 

macaques, as this species is known to inhabit regions in the Himalayas as high as 3,500 m 

(Smith & McDonough, 2005). The most likely explanation for differentiation between Indian 

and Chinese rhesus macaques is climatic. Towards the end of the Pleistocene, climatic
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changes, including the desiccation of the tropical forest, caused near extinction of these 

macaques and a bottleneck that persisted until quite recently (Smith & McDonough, 2005).

Unlike de Ruiter’s (1994) work in Sumatra, populations in the current study were 

sampled essentially at random with little information on social group origin of samples. 

Genetic analysis revealed a mixture of closely related with some very distant related lineages 

without any apparent structure except that many of the lineages were distributed between 

adjacent Lots in LKWS but some lineages are unique to one Lot only (i.e. LD02 in Lot 6 and 

CR03 in Lot 9). Here, the high mobility of macaques might contribute this kind of movement 

but an alternative explanation is that groups were forced into the Kinabatangan from other 

areas (adjacent forest) during the deforestation that occurred in the region during the 1960’s 

and 1970’s and have subsequently interbred with the local long-tailed macaques hence the 

highly differentiated lineages. Alternatively, several invasions of Kinabatangan by long-tailed 

macaques might have occurred from the surrounding forest.

Considering the stability of the LKWS macaque population, it is interesting to ask the 

question how can a relatively small-bodied monkey apparently out-compete the other nine 

primate species in the same area? If we look at the LKWS primate fauna, two of them are 

nocturnal prosimians (Tarsius bacanus and Nycticebus coucang) which have different dietary 

requirement and are too small to compete with long-tailed macaques. Secondly the langurs, 

Presbytis rubicunda, P. hosei and Trachypithecus cristata, which live in smaller social 

groups, high up in the canopy, usually only compete for resources within the canopy itself as 

they seldom move down to the ground in the way that macaques are known to. Thirdly, the 

proboscis monkey (Nasalis larvatus) with its highly specialized diet does not compete with 

long-tailed macaques; in fact on many occasions, both species forage in the same area 

(Kawabe & Mano, 1972). The Bornean gibbon (Hylobates muelleri) and the orang-utan
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(.Pongo pygmaeus) might provide some competition for food resources but being either 

monogamous or solitary species occurring at relatively low densities, they will easily be out- 

competed by the numerous long-tailed macaques. The only other species that could provide 

competition to the long-tailed macaque is the pig-tailed macaque, however as both species 

show different habitat preferences (mainly terrestrial foragers in hill forest for pig-tailed and 

mainly arboreal foragers in riverine forest for long-tailed macaques), potential competition is 

reduced. Thus, the long-tailed macaque seems to flourish more than other primates in 

Kinabatangan as the forest is rich with fruiting trees and macaques are the only primates to 

obtain food from humans by crop raiding.

The current study had demonstrated that the left domain of the control region mtDNA 

is a suitable marker for intraspecific phylogeography study of long-tailed macaques and other 

primates, and that there is no additional benefit for phylogeographic studies in also 

sequencing the right domain. The study also revealed that Kinabatangan long-tailed macaques 

have a stable population, high level of genetic diversity and that differentiation between 

riversides is the merely the product of their social systems. The success of long-tailed 

macaques in Kinabatangan could be attributed to their adaptability, reflected by the fact that 

this genus is the most successful of all non-human primates (Abegg & Thierry, 2002).
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CHAPTER 4

RIVERS INFLUENCE THE POPULATION GENETIC STRUCTURE OF BORNEAN 

ORANG-UTANS (PONGO PYGMAEUS)

Jalil, M.F.1’2, Cable, J.1, Sinyor, J.3, Bruford, M.W.1 and Goossens, B.1’2

1 School of Biosciences, Cardiff University, Cardiff CF10 3TL, UK.

2 Institut Biologi Tropika & Pemuliharaan, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah, Malaysia.

3 Kinabatangan Orangutan Conservation Project, P.O.Box 3109, 90734 Sandakan, Sabah, Malaysia.

Abstract

We examined mitochondrial DNA control region sequences of Kinabatangan orang

utans to test the hypothesis that the genetic structure of the Bornean orang-utan is influenced 

by major rivers. Our samples from the Lower Kinabatangan Wildlife Sanctuary represent the 

northern-most population of orang-utans (Pongo pygmaeus) on Borneo and they are separated 

into two subpopulations by the Kinabatangan River, the longest river in Sabah. Orang-utan 

samples on either side of the river were significantly differentiated by a high 4>st value of

0.404 (P=0.000). Our data also revealed an east-west gradient of genetic diversity and 

evidence for a population expansion along the river, possibly reflecting a post-glacial 

colonization of the Kinabatangan. We analysed our data together with previously published 

sequences of Bornean orang-utans and discuss the general importance of rivers as barriers to 

gene flow in this long-lived, solitary arboreal ape.

4.1 Introduction

Phylogeographic studies examine the biogeographic patterns of molecular sequences 

in a species and the data are used to infer population processes from an evolutionary 

(historical) perspective (Avise et al., 1987). Biogeographic barriers, such as rivers (Telfer et 

al., 2003; Eriksson et al., 2004) and mountain ranges (Hewitt, 2000), may disrupt gene flow
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thus shaping genetic structure. Comparative phylogeography analyses geographic patterns of 

genetic variation across species in order to find general patterns of evolutionary history within 

biogeographic regions and to reveal the evolutionary processes behind these patterns 

(Bermingham & Avise, 1986; Eizirik et al., 1998). Nevertheless for widespread species, 

genetic divergence may occur simply as a function of distance (isolation by distance) due to 

limited gene flow (Avise et al., 1987). At a regional level, comparative phylogeography can 

be used for conservation purposes to identify areas of high biodiversity and hence high 

conservation value (Moritz & Faith, 1998).

The orang-utan {Pongo pygmaeus), the largest arboreal ape, is found on Sumatra and 

Borneo in South-East Asia. Traditionally, the orang-utan was classified into two subspecies, 

P. pygmaeus pygmaeus in Borneo and P. p. abelii in Sumatra. However, recent molecular data 

has led to the re-classification of the orang-utan into two distinct species, P. pygmaeus and P. 

abelii (see Xu & Amason, 1996, but see Muir et al., 1998; Muir, 2000; Zhang et al., 2001). 

Furthermore, based on mitochondrial control region DNA data, Warren et al. (2001) 

suggested there are four distinct evolutionary groups within the Bornean orang-utan, 

corresponding to populations living in (i) Sabah, (ii) Sarawak and northwest Kalimantan, (iii) 

southwest and central Kalimantan, and (iv) east Kalimantan. Warren et al. (2001) also 

suggested that these subpopulations should be treated as separate units for conservation with 

their genetic integrity maintained.

Genetic studies on orang-utans to date have been limited, with most work focusing on 

the taxonomic status of the Bornean and the Sumatran sub-species (Xu & Amason, 1996; Zhi 

et al., 1996; Muir et al., 2000; Zhang et al., 2001), rather than population genetic structure 

(Warren et al., 2000, 2001; Goossens et al., 2005). Furthermore, most of these studies have 

utilised invasive samples (see Kanthaswamy et al., 2006) from zoo and rehabilitation centres
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with very limited non-invasive sampling from wild animals (Kanthaswamy & Smith, 2002). 

Only recently have completely non-invasive samples (i.e. hair and faeces) been utilized to 

study wild orang-utans, as part of the antecedent study to this work, based in the Lower 

Kinabatangan floodplain (Goossens et al., 2005, 2006a, b).

In the current study, the structure and historical demography of the fragmented orang

utan populations previously analysed by Goossens et al. (2005, 2006b) were re-examined 

using mitochondrial control region sequences. As mitochondria are maternally inherited in a 

single copy, any reduced migration rates in females (as has been inferred for Sumatran orang

utans; see Utami et al., 2002) are predicted to lead to an increased structuring of 

mitochondrial lineages. Such demographic effects are also predicted to result in a decrease in 

intra-population mitochondrial variability and to increase mitochondrial differentiation 

between subpopulations. Recently, however, Goossens et a l (2006b) showed males and 

females to be equally philopatric in the Kinabatangan using microsatellite markers, casting 

doubt on whether mitochondrial DNA would show a different structure to nuclear DNA. 

Here, we analysed samples from the northern and southern side of the river to investigate 

phylogeographic structure and gene flow along an almost linear habitat. In addition, 

sequences from Warren et al. (2001) with known localities in Borneo were used to analyse the 

phylogenetic relationships between Lower Kinabatangan Wildlife Sanctuary samples and 

localities elsewhere in Borneo.

4.2 M aterial and methods

DNA Samples

Faecal samples (n = 73) used in the current study were collected by BG and members 

of the Kinabatangan Orang-utan Conservation Project (KOCP) in 2001 from all 10 Lots in the 

Lower Kinabatangan Wildlife Sanctuary (LKWS), Sabah (Fig. 4.1). Details of sampling and
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Figure 4.1. Sampling localities (yellow squares) for orang-utan samples in Lower Kinabatangan Wildlife Sanctuary (LKWS). The red line indicates 
the Lower Kinabatangan Wildlife Sanctuary (LKWS) boundaries for each Lots and blue lines indicate the Kinabatangan River and its 
tributaries.
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extraction protocols are given in Goossens et al. (2005) and Chapter 2. As only a single 

sample was collected from Lot 7, this sample was combined with others from the closest Lot 

(5) for analysis. Information on LKWS Lot size and forest types can be obtained from 

Ancrenaz et al. (2004) and Chapter 1.

Orang-utan sequences from Warren et al. (2001) (n = 29; Table 4.1) were combined 

with sequences from the current study to further investigate the relationships between orang

utan sequences in Borneo. Warren et a V s sequences (Genbank accession nos. AJ391095- 

AJ391141) were derived from several populations from the Malaysian States of Sarawak and 

Sabah, and the Indonesian province of Kalimantan. Sequences from the current study were 

shortened (by 89 bp) to match those from Warren et al. (2001). The combined dataset (78 

Sabah sequences and 102 Borneo sequences) comprising 234 bp of sequence was analysed as 

described below.

Control region sequencing

The left hypervariable domain of the control region (323 bp) was amplified by PCR 

using primers Pp-5’ (‘5-GCA CTT AAC TTC ACC ATC-3’) and Pp-3’ (‘5-AAA CAA GGG 

ACC ACT AAC-3’) designed during the current study specifically to amplify orang-utan 

mtDNA. The PCR reaction mix contained 1.5/d 4mg/ml BSA, 2/d 10X PCR Buffer, 1.5/d 

25mM MgCl2, 1/d lOmM of dNTP mix, 0.2/d of 50pmol of each primer, 0.2/d of AmpliTaq 

Gold™ (Applied Biosystems), 11.4/d of ultrapure water and 2/d template DNA in a final 

volume of 20/d. PCRs, carried out in a Perkin Elmer 9700 thermocyclers, were performed 

following an initial denaturation for 12 min at 94°C followed by 40 cycles of 94°C for 40 s, at 

61°C for 30 s and one min at 72°C with a final extension step of 10 min at 72°C. Negative 

controls (with DNA template replaced with ultrapure water) were included with each PCR. 

Prior to sequencing, 5/d of each PCR product was electrophoresed on a 1.5% agarose gel to
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Table 4.1. List of orang-utan samples from Warren et al. (2001) analysed in the current study.

Samples Assession No. Locality
DS29 AJ391099 Leboyan, Danau Sentarum, Northwest Kalimantan
DSLE1 AJ391100 Leboyan, Danau Sentarum, Northwest Kalimantan
DSME1 AJ391101 Meliau, Danau Sentarum, Northwest Kalimantan
DSME2 AJ391102 Meliau, Danau Sentarum, Northwest Kalimantan
DSRA AJ391103 Radai, Danau Sentarum, Northwest Kalimantan
GP31 AJ391105 Gunung Palling, Southwest Kalimantan
GPJA AJ391106 Gunung Palung, Southwest Kalimantan
GPMA AJ391107 Gunung Palung, Southwest Kalimantan
GPUN AJ391108 Gunung Palung, Southwest Kalimantan
KA1 AJ391109 Sangatta, East Kalimantan
KPC AJ391110 Sangatta, East Kalimantan
SB372 AJ391116 Sepilok, Sabah
SB57 AJ391117 Sukau, Kinabatangan, Sabah
SB60 AJ391118 Kinabatangan, Sabah
SB70 AJ391119 Lahad Datu, Sabah
SB71 AJ391120 Sandakan, Sabah
SE8 AJ391121 Semongok, Sarawak
SEAH AJ391122 Semongok, Sarawak
SEBU AJ391123 Semongok, Sarawak
SEOA AJ391124 Semongok, Sarawak
SEUA AJ391125 Semongok, Sarawak
TNK36 AJ391133 Kutai National Park, East Kalimantan
TNK37 AJ391134 Kutai National Park, East Kalimantan
TNK39 AJ391136 Kutai National Park, East Kalimantan
TNK41 AJ391137 Kutai National Park, East Kalimantan
TP14 AJ391138 Tanjung Putting, Central Kalimantan
TP15 AJ391139 Tanjung Putting, Central Kalimantan
TP24 AJ391140 Tanjung Putting, Southwest Kalimantan
TP6 AJ391141 Tanjung Harapan, Tanjung Putting, Central Kalimantan
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verify amplification. PCR products were cleaned with an Exonuclease I (10 units/pl) (USB 

Corp. USA) and Shrimp Alkaline Phosphatase (1 unit/pi) (USB Corp. USA) mix at a ratio of 

10pi PCR product to lp l mix (Exonuclease I: Shrimp Alkaline Phosphatase -1 :1 )  (Hanke & 

Wink, 1994). The product was incubated at 37°C for 1 h and at 80°C for 15 min to deactivate 

the enzymes. Sequencing PCR was performed using ABI Big Dye Terminator vs. 1 (Applied 

Biosystems). Each PCR product was sequenced in both directions. PCR products were 

precipitated by adding 90pl of 63% isopropanol to each PCR tube. The product and 

isopropanol were vortexed for 20 s, left to stand for 15 min, then centrifuged for 30 min at 

13,000 g. The supernatant was discarded and 150pl of 70% isopropanol was added to each 

PCR tube. The PCR strips were then centrifuged for one min at 500 g and the pellets dried at 

52°C for 2 min. Sequencing was performed in an ABB 100 automated sequencer. The mtDNA 

control region sequences were aligned using the program SEQUENCHER 3.1.2 (GeneCodes 

Corp.) with correction by eye. A BLAST (Basic Local Alignment Search Tool) nucleotide 

search was performed on each sequence.

Phylogenetics, mtDNA diversity and population structure

Sequences were collapsed into unique haplotypes using DAMBE 4.2.13 (Xia & Xie,

2001). Intra-specific gene genealogies were inferred using two network construction methods, 

minimum spanning and median joining using ARLEQUIN vs. 3 (Excoffier et al., 2005) and 

NETWORK vs. 4.1.1.1, respectively (available at http://www.fluxus-engineering.com/) 

(Bandelt et al., 1999). Intra-specific nucleotide level (x) and haplotype diversities (h) were 

estimated using ARLEQUIN (Tajima, 1983; Excoffier et al., 2005). Analysis of molecular 

variance (AMOVA) was used to analyze how genetic variability was partitioned within and 

between riversides using O-statistics in ARLEQUIN. This approach incorporates information 

on the absolute number of differences among haplotypes and haplotype frequencies. The 

significance of variance, designated O-statistics (F statistic analogue), was tested by 1000
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random permutations. In order to test the sequences for deviation from the expectations based 

on neutral theory, Tajima’s D (Tajima, 1989), Fu’s Fs (Fu, 1997), Fu and Li’s D* (Fu & Li, 

1993), and Fu and Li’s F* (Fu & Li, 1993) were calculated using ARLEQUIN and DNASP

4.10.3 (Rozas et al., 2003). Past demography was also assessed by mismatch distribution 

(distribution of pairwise sequence differences; Rogers & Harpending, 1992) in ARLEQUIN 

based on a spatial and sudden expansion models for orang-utan samples at three different 

levels; for each riverside, for Sabah and for Borneo. A coalescent-based simulation method to 

test for evidence of population expansion was also carried out, implemented in FLUCTUATE 

v.1.4 (Kuhner et al., 1998). The model was run five times to ensure convergence of the 

estimates.

4.3 RESULTS

I. Lower Kinabatangan Wildlife Sanctuary (LKWS)

Genetic diversity

From all 73 DNA samples, 323 bp of the left hypervariable domain of the control 

region was successfully amplified (Table 4.2). From the 323 nucleotides, 314 were invariant 

and nine were variable with eight transitions and one transversion.

Amongst the 13 haplotypes identified (Table 4.2), OU11 and OU12 were dominant 

and found in 28 (38.3%) and 25 (34.2%) samples, respectively. OU11 was identified in eight 

out of nine Lots (not in Lot 1) and OU12 in six Lots (absent from Lots 2, 4 and 5). Only 

haplotypes OU10 (North = 4; South =1), OU11 (North = 21; South = 7) and OU12 (North = 

5; South = 20) were found on both sides of the river. Haplotypes OUOl, OU02, OU07, OU08 

and OU13 were present exclusively on the Northern side, whereas OU03, OU04, OU05, 

OU06 and OU09 were only on the Southern bank. Besides haplotypes OU11 and OU12, only
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Table 4.2. Condensed matrix displaying variables sites of the 323 bp alignment of the 
mtDNA control region for 13 haplotypes found in Lower Kinabatangan orang
utan. Haplotype codes and nucleotide position are displayed on the left, and 
haplotype frequencies for each Lot (L) are given on the right.

VARIABLES SITES NORTH SOUTH

1 2 2 2 2 2 3 3
9 7 0 2 4 5 6 9 0
9 5 9 6 3 5 1 3 8 L2 L4 L5 L8 L10 L1 L3 L6 L9

OU01 C A C C A G T C T 1
OU02 A C 1
OU03 G T . . C C 1
OU04 T . G A , c 2
OU05 T . . A . c 1 1 1
OU06 A A c 1
OU07 G T . . , c 1
OU08 G T . A , . 1
OU09 . « T . A c 3
OU10 G 4 1
OU11 G T 3 10 5 2 1 3 3 1
OU12 A , c 1 4 8 4 5 3
OU13 T . T 1

TOTAL 8 11 8 3 5 12 10 10 6
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OU05 and OUIO were recorded in more than one Lot (OU05 = Lot 1, 6 and 9; OUIO = Lot 2 

and 9) (see Table 4.3).

A minimum spanning network connecting the 13 haplotypes in a linear form revealed 

a partial separation into two groups, largely corresponding to populations on the northern and 

southern sides of the river (Fig. 4.2A). Haplotypes OU12 and OU11, distinguished by 10 

substitutions, were the most common haplotypes on each riverside. There were four 

haplotypes between OU11 and OU12, two haplotypes radiating from OU12 and three 

haplotypes from OU11. The haplotypes are similarly grouped in a median joining network 

(Fig. 4.2B), which also highlights five potentially unsampled or missing haplotypes.

Based on AMOVA, the genetic variation in LKWS orang-utans was mostly 

attributable to among rather than within populations (Ost = 0.404; P=0.000) suggesting that 

the river is a significant barrier to gene flow. Within the Northern riverside, the Ost value was 

higher (O st = 0.388, P=0.000) than for the Southern riverside (O st = 0.067, P=0.123) 

indicating genetic structure on the Northern but not on the Southern riverside. Nucleotide 

diversity (7r) ranged from 0.005 + 0.003 on the Northern riverside to 0.008 + 0.005 in the 

whole of LKWS. Overall haplotype diversity (h) within LKWS was 0.734 + 0.035. 

Comparing the North and South populations, the latter had the highest nucleotide (w, 0.006 + 

0.004) and haplotype diversity (h, 0.690 + 0.071) (Table 4.3). The overall high haplotype and 

low nucleotide diversity in the LKWS indicates a population bottleneck event followed by 

rapid population growth and accumulation of mutations.

Historical demography

Neutrality tests were performed to detect for additional evidence of population 

expansion. Negative values indicate the presence of either some form of selection (unlikely at
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Table 4.3. Number of sequences and haplotypes, nucleotide diversity (x), haplotype diversity 
(h), test of selective neutrality (Tajima’s D, Fu’s Fs, Fu & Li’s D* & Fu & Li’s 
F*) and population parameters of theta (0) and growth parameter (g) of orang
utan mtDNA control region sequences for LKWS, Sabah and Borneo.

Samples ALL LKWS LKWS North LKWS South SABAH BORNEO

Sequences 73 35 38 78 102

Haplotypes 13 8 8 17 40

h 0.736 + 0.035 0.620 + 0.086 0.690 + 0.071 0.768 + 0.034 0.865 + 0.025

X 0.007 + 0.005 0.005 + 0.003 0.006 + 0.004 0.011 +0.007 0.026 + 0.014

D 0.789 (P=0.837) 0.162 (P=0.591) -0.157
(P=0.471)

-0.798
(P=0.236)

-1.582
(P=0.030)

Fs -2.586 -1.920 -0.811 -5.147 -18.897
(P=0.170) (P=0.120) (P=0.371) (P=0.023) (P=0.000)

D* - - - - -3.140 (P<0.05)

F* - - - - -3.046 (P<0.02)

0 0.041 + 0.003 0.008 + 0.001 0.006 + 0.001 0.053 + 0.004 0.177 + 0.019

g 305.44 + 36.70 170.68 + 173.35 119.42 + 130.52 526.12 + 56.03 147.54 + 16.96
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the non-coding control region) or population expansion. Based on Table 4.3, all datasets 

(LKWS, North and South) had negative values for Fu’s Fs, indicating population expansion, 

although these values were not significant at the 95% level. In contrast, Tajima’s D results 

were much lower (<1.0) and only one dataset (South) showed a negative value, but again this 

was not significant (Table 4.3).

The bimodal mismatch distributions for LKWS, the Northern and Southern 

populations (Fig. 4.3) indicate two population expansions or the presence of two or more 

mixed populations that have subsequently expanded. The latter interpretation is clearly 

supported by the network in which the haplotypes OU11 and OU12 were found on both sides 

of the river. A coalescent approach to detect population expansion using FLUCTUATE 

indicated positive estimates for the growth parameters for all sample groups (LKWS, 

Northern and Southern), (Table 4.3). Estimates of theta (0  + SD) were 0.041 + 0.003 

(LKWS), 0.008 + 0.001 (North) and 0.006 + 0.001 (South). The growth parameters (g + SD) 

were 305.44 ± 36.70 (LKWS), 170.68 ± 173.35 (North) and 119.41 ± 130.52 (South) which 

indicates population growth. Both positive theta values and high values of growth parameters 

support the results of neutrality test and mismatch distribution that the Kinabatangan orang

utan population is expanding.

II. Sabah 

Genetic diversity

The LKWS samples were combined with five Sabah samples from Warren et al. 

(2001) and reanalysed. From 78 nucleotides, there were a total of 17 haplotypes with 18 

polymorphic sites. There were 17 transitions and one transversion in the dataset with a 

haplotype diversity h o f 0.768 + 0.034 and nucleotide diversity tt of 0.011 + 0.007. Out of five 

Warren samples, only one, SB70 (AJ391119, Lahad Datu, Sabah) matched the LKWS
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Figure 4.2. Minimum spanning (A - MSN) and median joining networks (B - MJN) of the 
Kinabatangan orang-utan sequences. Each circle represents a haplotype and the 
diameter scales to haplotype frequency. The smallest circles represent 
singletons. Mutational steps are represented by black bars on lines connecting 
haplotypes (MSN). In the MJN, black dots are median vectors presumed 
unsampled or missing intermediates and numbers indicate the locations of site 
that have undergone mutations.
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Figure 4.3. Mismatch distribution for each of the analysed LKWS orang-utan samples.
Observed (solid lines) and expected (dotted lines) showing the frequencies of 
pairwise differences within the (A) northern, and (B) southern riversides.
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haplotypes, OU08. Four other haplotypes grouped within the dominant Northern haplotypes, 

OU11 (SB57-AJ391117) or OU12 (SB372-AJ391116; SB71-AJ391120; SB60-AJ39118). For 

the Sabah dataset, both networks showed a similar topology to the LKWS dataset (Fig. 4.4) 

with the addition of four new haplotypes, radiating from OU11 (SB57, SB70) and OU12 

(SB372, SB60, SB71).

Historical demography

Both tests of selective neutrality revealed negative values (Fu’s Fs and Tajima’s D). 

However, the values obtained from Fu’s Fs (-5.147 P=0.023) were significant and far greater 

than Tajima’s D (-0.798 P=0.236) which is not significant. A bimodal pattern was found for 

mismatch distribution for the Sabah dataset (Fig 4.5), similar to the Lower Kinabatangan 

datasets. Growth estimate (g + SD) for the Sabah dataset indicated positive growth of 526.12 

+ 56.03 and theta (0  + SD) of 0.053 + 0.004 (Table 4.3). These results indicate that the Sabah 

population, like the Lower Kinabatangan population, is expanding.

III. Borneo 

Genetic diversity

The combined dataset between LKWS samples and Warren et a l (2001) yielded a 

total of 40 haplotypes (13 LKWS and 27 Warren) with 62 polymorphic sites (Table 4.3) and 

65 substitutions, 57 of which were transitions and 8 transversions. The haplotype diversity 

obtained for the Bornean dataset was h\ 0.865 + 0.025 and nucleotide diversity was t . 0.026 + 

0.014. Both networks revealed four groups corresponding to (i) Sabah, (ii) Sarawak and 

Northwest Kalimantan, (iii) southwest and Central Kalimantan, and (iv) East Kalimantan 

(Fig. 4.6). However, median joining network present the result better than minimum spanning 

network because the four grouping were well separated from each other. The closest to the 

Sabah samples were the East Kalimantan group, which were separated by four mutations (Fig. 

4.7).
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Figure 4.4. Minimum spanning network (A: MSN) and median joining network (B: MJN) for 
Sabah orang-utan (LKWS and Warren datasets).
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Figure 4.5. Mismatch distribution for Sabah orang-utan (LKWS and five Warren samples).
Solid line represents the observed and dashed lines represent the expected for 
each model.
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Figure 4.6. Minimum Spanning Network of Bornean orang-utan samples. Each circle 
represents a different haplotype. The diameter of the circle represents the 
frequency of each haplotype with the smallest indicating a singleton. Each bar 
represents a mutational step and dotted lines indicate an alternative connection.
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Figure 4.7. Median Joining Network of Bornean orang-utan samples. Black dots are median 
vectors presumed unsampled or missing intermediates. The number on the line 
indicates the site which has undergone mutations.
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Historical demography

Both Fu’s Fs and Tajima’s D revealed negative values for the neutrality test which 

were significant at 95% significant level (D: -1.582 and Fs -18.973). Mismatch distributions 

revealed a complex pattern that resembled bimodal which usually corresponds to several 

populations mixing and expanding (Fig 4.8), thus supporting both the Fu’s Fs and Tajima’s D 

results. To further examine the Bornean dataset, Fu & Li’s D* and F* were calculated as these 

tests are more sensitive to singletons and both gave significant negative results of -3.140 

(P<0.05) and -3.046 (P<0.02), respectively. Based on a coalescent simulation, FLUCTUATE 

indicated moderate growth estimates (g + SD) of 147.54 + 16.96 and a large theta (0  + SD) of 

0.177 + 0.019. All these results indicate population expansion and the presence of several 

Bornean populations.

4.4 DISCUSSION

This mtDNA study clearly shows genetic differentiation of P. pygmaeus populations 

on either side of the Kinabatangan River in Sabah. This provides independent support for the 

suggestion, based on microsatellite data, that this river is the major barrier for dispersal of 

orang-utans in the Lower Kinabatangan Wildlife Sanctuary (LKWS) (Goossens et al, 2005). 

In the current study, analysis of molecular variance and median joining networks clearly 

indicated two major haplotypes on either side of the Kinabatangan River. Together with these 

findings and those reported by Warren et al. (2001), the data indicate that rivers play an 

important role in shaping the genetic structure of Bornean orang-utans. The low nucleotide 

and high haplotype diversity exhibited by LKWS orang-utans suggests population expansion 

by a few founder lineages. The two haplotypes (OU11 and OU12) exhibiting the highest 

frequencies are most likely to represent the co-founders of the current population. This 

interpretation was further supported when Sabah samples from Warren et al. (2001) were 

included in the analysis as these also clustered with OU11 and OU12. The almost star-shaped
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Figure 4.8. Mismatch distribution for Bornean orang-utan (LKWS and Warren). The solid 
line represents the observed and dashed lines represent the expected for each 
models.
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phytogeny with OU11 and OU12 surrounded with rare haptotypes differentiated by single 

mutational steps implies the potential ancestral lineages or founders (OU11 and OU12) 

recently experienced expansion (Posada & Crandall, 2001). The haplotypic relationships 

portrayed by both the minimum spanning and median joining networks show an almost 

dumb-bell-like shape composed of two linked star-like clusters of haptotypes. Weak 

structuring amongst haptotypes despite significant division between barriers can be 

interpreted as the signature o f a young population, possibly caused by a relatively recent 

demographic event, such as population growth or expansion. The high haplotype diversity, 

tow nucleotide diversity, unimodal mismatch distribution of mtDNA haptotypes and the tests 

of selective neutrality (Tajima’s D and Fu’s Fs) observed in the whole LKWS population and 

in the north and south populations, all indicate a possible historical expansion. The coalescent 

based estimator (0 ) and growth parameters (g) also strongly support a historical population 

expansion.

The present population o f orang-utans in the LKWS is small, about 1000 individuals 

(Ancrenaz et al., 2004), and we have sequenced 73 individuals, about 7% of the total 

population. However, out o f these 7%, we identified 13 haptotypes of which 12 were new to 

Sabah. Warren et al. (2001) reported only five haptotypes from their Sabah study and only 

one o f these matched our haptotypes. Amongst the few studies on orang-utans, our work 

identifies the largest number of haptotypes from one study site (27,000 ha). We also found 

evidence that the population of orang-utans in Borneo is not static but expanding after a series 

of bottlenecks. Zhi et al. (1996) found only 9 haptotypes using 16s RNA and they also 

reported complete isolation between Sumatran and Bornean orang-utans. However, they also 

reported that there is very little differentiation within the Bornean orang-utan and, contrary to 

our data, found no evidence for past bottlenecks or founder effects (Zhi et al., 1996). Muir et 

al. (2000) identified three orang-utan lineages, two in Sumatra and one in Borneo. The latter
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consisted of just four cytochrome b and five NADH haplotypes. In contrast to Zhi et al* s 

(1996) finding of complete dichotomy between Sumatran and Bornean orang-utans, Muir et 

al. (2000) found one Sumatran individual with a haplotype that was identical to the most 

widespread Bornean haplotype. However, both of these studies were based on limited 

geographic coverage. Warren et al. (2001) had access to all subspecies from Borneo and 

Sumatra, and using the control region, identified 37 haplotypes from 41 Borneo individuals 

that clustered into four distinct subpopulations. These were distinct from four haplotypes 

found from five Sumatran individuals (Warren et al. 2001). The current study is the only 

comprehensive population genetic study using mtDNA of orang-utans in a single, localised 

area. Despite the restricted area (27,000 ha), we show that orang-utans in the Kinabatangan 

retain high levels of mtDNA genetic diversity. This complements the findings of Goossens et 

al. (2005, 2006a) who identified high levels of nuclear genetic diversity in the same orang

utan populations.

During the early and middle Pleistocene, orang-utans were widely distributed 

throughout mainland South East Asia (Harrison et al., 2006). When the Sunda Shelf was 

exposed, orang-utans colonised Sumatra, Borneo and Java. Even though a land bridge existed 

between mainland South East Asia and its islands, the movement of orang-utans might have 

been disrupted by a drier arid landscape of seasonal woodlands and grasslands that bordered 

the eastern edge of the Malay Peninsula and continued onto the lowland areas between 

Sumatra and Borneo, through southern Kalimantan and eastern Java and the Lesser Sunda 

Islands (Bird et al., 2005; Harrison et al., 2006). This almost completely isolated the orang

utan populations within Borneo, probably contributing to their morphological and molecular 

separation from Sumatran orang-utans, where there is no current evidence of population 

subdivision (Harrison et al., 2006). Brandon-Jones (1998) described a severe glacial drought 

around 190,000 years ago (YA) and a second less severe drought 80,000 YA. Contraction and
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expansion of rainforest distribution has been the prime mediator of extant primate distribution 

in Borneo (Brandon-Jones, 1998). The first severe glaciation might have caused a population 

decline and fragmentation of orang-utan populations due to contraction of the forest habitats. 

Orang-utans were previously considered highly dependent on primary forest (Delgado & van 

Schaik, 2000) and being solitary animals, the effects of fragmentation and drought during 

glaciation might have resulted in local extinctions. Recently, Ancrenaz et al. (2004) suggested 

that orang-utan populations could survive in small degraded forest based on the finding that 

within a restricted area (Kinabatangan) these primates can utilize a wide range of food items, 

from fruits and leaves to insects and bird eggs. This might explain why the contraction of 

rainforest during the last glaciation did not wipe out all orang-utan populations but some 

might have survived in rainforest remnants (Brandon-Jones, 1998). However, the climatic 

change brought by glaciation might have further isolated the remnants of these populations 

thus severing potential gene flow which might have caused allopatric speciation (Slatkin, 

1987).

Based on fossil records, the Kinabatangan area is a relatively recent habitat (Noad, 

2001), which was probably colonized by orang-utans from Mount Kinabalu (see Appendix I), 

a known glacial refugia for many species, including orchids (Barkman & Simpson, 2001), 

termites (Gathome-Hardy et al., 2002) and oaks (Cannon & Manos, 2003). Mount Kinabalu 

lies to the west of the Kinabatangan headwaters, therefore assuming orang-utans colonized 

from this refugium, we predicted greater genetic diversity of orang-utans in the west 

compared to the east. Assuming the Kinabatangan populations were founded by very few 

lineages, then a small number of haplotypes would dominate (Lawler et al., 1995) as detected 

in the current study. Haplotypes OU11 and OU12 were the most common haplotypes, each 

dominating one river side, and each being more common in the east compared to the west (see 

Figure 4.9). This process of colonization is likely to have been slow considering that orang
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utans have a long life span, very low fecundity and occur at low densities (Degado & van 

Schaik, 2000). Recently, Goossens et al. (2006b) showed that the orang-utan in Kinabatangan 

were highly philopatric, this further supports the hypothesis of only a few founders colonizing 

Kinabatangan.

Figure 4.9. The possible sequential event of lineage sorting in orang-utan populations on the 
Northern and Southern sides of the Kinabatangan River.

Lot 10 Lot 8 Lot 5 Lot 4 Lot 2

#  =*  0  ^  O  0 ^ 0

Lot 9 Lot 6 Lot 3 Loti
H aplo type

I I OU11 Q ~ ]  OU12

The Bornean orang-utan samples cluster into four monophyletic groups on the median 

joining network. Mapping the locality of samples used for genetic analyses reveals the 

possible separation effects of five major rivers, the Rajang, Kapuas, Barito, Mahakam and 

Kayan (Fig. 4.10). Warren et al. (2001) hinted that geographic barriers might be responsible 

for isolating the four separate subpopulations of Bornean orang-utans. As described above for 

Kinabatangan, the other three haplogroups (east Kalimantan, Sarawak & northwest 

Kalimantan, central and southwest Kalimantan) might have originated in a similar fashion 

during the last glaciation. The mountain range on which Mount Kinabalu is located, i.e. the 

Crocker Range, is actually considered to consist of several separate glacial refugia (Tanaka et 

al., 2001). In addition to Mount Kinabalu in the north, there is considered one refugium in the 

east and another in the west (Gathome-Hardy et al., 2002) from which the different orang

utan haplogroups might have originated. Such divergence within a species has also been 

shown in another species of great ape, the bonobo {Pan paniscus), which occurs within the
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Democratic Republic of Congo (Eriksson et al., 2004). Bonobos show high genetic diversity 

within the Congo across their entire distribution range and can be loosely divided into two 

major clades (Eriksson et al., 2004). The greatest differentiation was observed between 

samples in the east and the north, and between the north and northeast, populations which are 

divided by Congo and Lomami rivers, respectively. Eriksson et al. (2004) concluded that this 

pattern was indicative of the rivers hindering gene flow within this species.

Figure. 4.10. The location of orang-utan samples used in the current study and by Warren et 
al. (2001), and the associated median joining network derived from the control 
region mtDNA. The colour of the squares on the map (left) corresponds to the 
colours of the network haplotypes (right).
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Groves (1986, 2001), Groves et al. (1992) and Uchida (1998) suggested that Bornean 

orang-utans could be separated into three subspecies based on cranial and dental (post canine) 

morphologies, (i) P. p. morio found in Sabah and East Kalimantan, (ii) P. p. pygmaeus found 

in Sarawak and northwest Kalimantan, and (iii) P. p. wurmbii found in central and southwest 

Kalimantan. Only recently has this hypothesis of three subspecies been accepted (Goossens et 

al., 2005; Harrison et al., 2006), and in fact Warren et al. (2001) and the current study suggest
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that there may even be four subspecies. However, the current data can not be explained by 

Groves’ (1986, 2001) morphological subspecies because our Sabah and East Kalimantan 

clades do not form reciprocally monophyletic groups, unlike the Sarawak and northeast 

Kalimantan (P. p. pygmaeus) and central and southwest Kalimantan (P. p. wurmbii) which do 

correspond to subspecies groupings. Instead, the divergence between the Sabah and East 

Kalimantan could be attributed to the Kayan River that separates the population. However, 

this explanation might appear less likely if more samples are obtained south of Kinabatangan 

and north of Kayan River. Unlike the other three great rivers of Kalimantan (Kapuas, Barito 

and Mahakam), the Kayan River is relatively short and there is a possibility of gene flow 

around the headwaters of this catchment in the highlands. Orang-utans have been reported in 

the highlands {i.e. Mount Kinabalu; see Ancrenaz et al., 2005) and even though they cannot 

swim, they can travel over large areas providing suitable habitat is available. However, more 

research is needed to resolve the relationship between the East Kalimantan and Sabah 

subspecies.

The current study has demonstrated the importance of rivers in shaping the genetic 

structure of orang-utan populations. Previously, Warren et al. (2001) suggested that 

geographical barriers are responsible for partitioning of Bornean orang-utan populations, and 

here we identify these geographical barriers as rivers. This geographical structuring within the 

Bornean orang-utan poses an immediate question for conservation projects. Further study is 

needed to explore the extent of geographical structuring in Bornean orang-utans to detect 

distinct populations for conservation purposes. Populations that are highly divergent must be 

protected to safeguard the genetic diversity of the dwindling Bornean orang-utan, especially 

in Kalimantan. Further research with a larger coverage of samples and different molecular 

markers {i.e. Y-chromosomes; microsatellites see Kanthaswamy & Smith, 2002) could

provide alternative views on population genetics of this spec :urrent study and of
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Goossens et al. (2005, 2006a,b), which utilized the same DNA extracts, we have 

demonstrated unequivocally that non-invasive samples yield high enough DNA quality, 

without the need for invasive samples (see Kanthaswamy et al., 2006), for genetic studies of 

endangered species, such as the orang-utan.
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CHAPTER 5

GENETIC STRUCTURE AND DISPERSAL IN A PROBOSCIS MONKEY (NASALIS  

LARVATUS) POPULATION IN SABAH, MALAYSIA.

Jalil, M.F. lt 2, Goossens, B .l’2, Cable, J . 1 ’ Sinyor, J . 3 and Bruford, M .W .1

1 Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3TL, UK.

2 Institut Biologi Tropika & Pemuliharaan, Universiti Malaysia Sabah, 88999 Kota Kinabalu, 

Sabah, Malaysia.

3 Kinabatangan Orangutan Conservation Project, P.O.Box 3109, 90734 Sandakan, Sabah, 

Malaysia.

Abstract

To investigate the population structure and demographic history of the proboscis monkey in

northern Borneo, we examined variation in the mitochondrial DNA control region from 133

faecal samples obtained from the Lower Kinabatangan Wildlife Sanctuary and Labuk Bay,

Sabah. We found very high haplotype diversity and moderate to high nucleotide diversity in

this population, and identified three distinct mitochondrial lineages. However, there was no

support for geographic partitioning between these lineages and no indication of any form of

restricted gene flow across the Kinabatangan River, in accordance with the observed strong

swimming behaviour of this species and in direct contrast to other primates inhabiting the

Kinabtangan, for example the Bornean orang-utan. However, evidence for demographic

expansion of more than one population probably reflects post-glacial refugial colonization of
*

the Kinabatangan.

5.1. INTRODUCTION

The Sunda Shelf experienced several major episodes of climatic change in the late 

Pliocene and early Pleistocene which had a dramatic impact on the flora and fauna of the 

region (van de Bergh et al., 2001; Bird et al., 2005). Several authors have hypothesized that 

an ‘arid corridor’ was present across the continent of Sundaland during the last glaciation
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(Voris, 2000; Bird et al., 2005). This provided a potential route for fauna (e.g. orang-utans; 

Harrison et al., 2006) from continental Asia to disperse to the islands (such as Java; van de 

Bergh et al., 2001), but also served as a barrier for forest dependent species, such as some 

primates (Brandon-Jones, 1996, 1998). Meijaard (2003) suggested that during the last glacial 

maximum (LGM) several areas remained forest-covered which included West Sumatra, 

North-west Borneo, the Malacca Straits and the region around Palawan Island. This refugium 

hypothesis is supported by the disjunct and restricted distributions of several primate taxa in 

both Sumatra and Borneo (Brandon-Jones, 1996, 1998). Recently, Tanaka et al. (2001) 

suggested that the mountain range on which Mount Kinabalu is located, i.e. Crocker Range 

may comprise several separate glacial refugia (see Appendix I). In addition to Mount 

Kinabalu in the north, a second refuge may lie to the east and a third in the west (Gathome- 

Hardy et al., 2002).

Within this context, the genus Nasalis is a severely range restricted, monotypic genus, 

now found only in Borneo with no evidence that its distribution ever extended beyond 

Sundaland (Brandon-Jones, 1996, 1998; Harcourt & Schwartz, 2001). Sterner et al. (2006) 

suggested that ancestral Asian colobines split from African colobines around 10.8 million 

years ago (MYA) and began to diversify around 6.7 MYA. This corresponds to Harrison et 

al. ’s (2006) suggestion that the ancestor for both the proboscis monkey (Nasalis larvatus) and 

its closest relative, the Simakobu monkey (Simias concolor) arrived on the Sunda Islands 

during the early Pliocene (Sterner et al., 2006). During the late Pliocene, several cold phases 

led to fragmentation of tropical and subtropical rainforest creating refugia separated by open 

vegetation (Meijaard & Groves, 2006). As both species are forest dependent (Brandon-Jones, 

1996) this contraction of suitable habitat during the LGM is likely to have reduced their 

population sizes, thus establishing their endemism by the late Pliocene (Harisson et al, 2006). 

Subsequently, early Pleistocene glaciation and climate change may have formed an arid
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barrier between Sumatra and Borneo preventing these primates from recolonising their 

previous habitat (Brandon-Jones, 1996; Bird et al., 2005).

Traditionally, proboscis monkeys have been considered to prefer habitats within 

riverine areas, peat swamps, mangroves and nipa dominated mangrove forests (Kawabe & 

Mano, 1972; Meijaard & Nijman, 2000). However, more recent data have shown that 

proboscis monkeys are more widely distributed, occurring throughout Borneo (Meijaard & 

Nijman, 2000). These primates are highly folivorous, but can survive on high or low quality 

food resources at different times of the year allowing them to exploit seasonal rainforest 

where food is more abundant than open woodlands (Bennett & Davis, 1994; Brandon-Jones, 

1996; Agoramoorthy & Hsu, 2005a). Thus, the proboscis monkey, like the other odd-nose 

genera Simias and Pygathrix, has evolved an adaptive foraging strategy that enables them to 

thrive in seasonal forest (Bennett & Davies, 1994; Sterner et al., 2006).

The proboscis monkey, known locally as the bangkatan or Dutchman monkey, occurs 

in two types of social group: harems consisting of a single dominant male and several females 

and all-male groups (Murai, 2004). However, larger bands of individuals comprising both 

types of social groups often co-habit with overlapping home ranges (Kawabe & Mano, 1972; 

Bennett & Sebastian, 1988). Female transfer between harems occurs quite frequently and is 

usually more common in subadult females than adult females (Murai et al., 2006). Boonratana 

(2000) reported that the home range size of the proboscis monkey in Sukau, Kinabatangan, is 

approximately 220 ha which is much smaller than in Samunsam, Sarawak (900 ha) but larger 

than in Tanjung Putting, Kalimantan (137 ha). The home range size of the proboscis monkey 

is influenced by the availability of food items. The large home-range in Samunsam probably 

compensates for lack of suitable resources thus the animals forage over larger distances 

(Bennet & Davies, 1994). The poor diversity of trees in Samunsam (-10 genera), compared to
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Kinabatangan and Tanjung Putting, probably accounts for the four fold increase in size of 

home range.

Proboscis monkeys are excellent swimmers (Fleagle, 1998) and have been found on 

many occasions swimming from riverside to riverside, also if frightened while swimming 

they can dive for several minutes (Bennett & Gombek, 1993). The proboscis monkey is 

indeed the most aquatic of all primates with several unique adaptations, including interdigital 

webbing on their feet and upturned nostrils (Fleagle, 1998; Oates et al., 1994). According to 

the Aquatic Ape Hypothesis (AAH) (Morgan, 1999), ancestral humans may have evolved 

aquatic adaptation to survive living in wet/semi-aquatic environments. As proboscis monkeys 

are most at home in the water, the ancestral proboscis monkey might have lived in similar 

semi-aquatic environments, however the AAH remains an extremely controversial idea.

Relatively few genetic studies have been carried out on colobines (i.e. Trachypithecus 

spp., Rosenblum et al., 1997; Rhinopithecus roxellana, Li et al., 2003) and there have been no 

previous molecular studies on N. larvatus. This is the first study of population genetics and 

demography of wild proboscis monkeys in the fragmented forest of the Lower Kinabatangan 

in Sabah, Malaysia. It is predicted that this endemic Bornean colobine will display relatively 

high genetic diversity and no population structure within Kinabatangan due to their social 

structure and swimming ability. ,

5.2. MATERIAL AND METHODS

Sampling

Faecal samples (n = 132) were collected along the Kinabatangan River within the 

Lower Kinabatangan Wildlife Sanctuary (LKWS), Sabah, Malaysia (Fig 5.1) in 2003. An 

additional sample was collected in Labuk Bay, north of the Kinabatangan basin in the same
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Figure 5.1. Distribution of proboscis monkey faecal samples (green squares) collected within the Lower Kinabatangan Wildlife Sanctuary, Sabah.
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year (see Chapter 2 for further details). All samples were placed into sterile Falcon tubes and 

preserved in 95% ethanol and stored at 4°C prior to use. DNA was extracted from the samples 

using a QIAamp DNA Stool Mini Kit (QIAGEN GMBH Cat. #51504) according to the 

manufacturer’s protocol with the following modification: at the final step, the amount of AE 

elution buffer was reduced from 200/d to 70/d. DNA samples were stored at 4°C (see Chapter 

2 for further details).

DNA amplification

A fragment of the mitochondrial control region (434 bp) was amplified by polymerase 

chain reaction (PCR) with the specific primers Nl-5’ (5’-CGT AAA CCA GAA ACG GAT

S’) and Nl-3’ (5’-TAA TGG GAA TAT CCG TGC-3’). PCR reactions were performed in a 

final volume of 20 pi, containing 2 p\ DNA extract, 1.5 p\ 4 mg/ml BSA, 2 p\ 10X PCR 

Buffer, 1.5 p\ 25 mM MgCb, 1/d 10 mM of dNTP mix, 0.2 p\ of 50 pmol of each primer, 0.2 

p\ of AmpliTaq Gold™ (Applied Biosystems) and 11.4 p\ of ultrapure water. PCR was 

carried out consisting of an initial denaturation of 12 min at 94°C, followed by 40 cycles of 30 

s at 94°C, 30 s at 50°C and one min at 72°C, with a final extension of 10 min at 72°C. PCR 

products were purified using Exonuclease I/Shrimp Alkaline Phosphatase (ExoSap) (USB 

Corp, USA) (Hanke & Wink, 1994). An 0.5pl aliquot of ExoSap mastermix (Exonuclease I 

(10 units/pl) and Shrimp Alkaline Phosphatase (1 unit/pl) in a ratio of 1:1) was added to each 

5 pi PCR product. Purification of PCR products was carried out following activation of the 

enzymes at 37°C for one hour and deactivation at 80°C for 15 min. Sequencing PCRs were 

performed in a final volume of 8 p\, containing 2 p\ purified PCR product, 2.5 p\ Better 

Buffer (Web Scientific), 0.5 p\ BigDye Terminator Ver.l (Applied Biosystems), 1 p\ of 1.6 

pmol of primer and 2 pi of ultrapure water. Sequencing PCR was performed separately for 

forward and reverse primers and was carried out following an initial denaturation for 3 min at 

96°C followed by 25 cycles of 96°C denaturation for 15 s, annealing at 50°C for 10 s and 2
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min of extension at 60°C. Sequencing PCR was performed using the ABI Big Dye Terminator 

vs. 1 (Applied Biosystems). Each PCR product was sequenced in both directions. PCR 

products were precipitated by adding 90 pi of 63% isopropanol to each PCR tube. The 

product and isopropanol were vortexed for 20 s, left to stand for 15 min, then centrifuged for 

30 min at 13,000 g. The supernatant was discarded and 150 pi of 70% isopropanol was added 

to each PCR tube. The PCR strips were then centrifuged for one minute at 500 g and dried at 

52°C for 2 min. Sequencing was performed in an ABB 100 automated sequencer.

Mitochondrial DNA analysis

MtDNA control region sequences were aligned using the program SEQUENCHER 

3.1.2 (GeneCodes Corp.) with correction by eye. The program DAMBE 4.2.13 (Xia & Xie, 

2001) was used to search the total data alignment for unique haplotypes. These haplotypes 

were assembled into a separate data set and used for all subsequent analyses. Genetic 

diversity was measured for the entire sample based on haplotype diversity (h) and nucleotide 

diversity (7r). Haplotype diversity was defined as the probability that two randomly chosen 

sequences from a sample were different and nucleotide diversity was the average number of 

nucleotide differences per site between two randomly chosen sequences (Nei, 1987). These 

diversity indices were computed with the software ARLEQUIN 3 (Excoffier et al., 2005). 

Patterns of mtDNA genetic structure between riversides of LKWS were examined using an 

analysis of molecular variance (AMOVA) (Excoffier et al., 1992) as implemented in 

ARLEQUIN. The significance of the genetic structure within the whole population ( $ st) was 

assessed by 1000 permutation tests implemented in ARLEQUIN. To investigate the 

relationship between haplotypes, minimum spanning and median joining networks were 

constructed using ARLEQUIN and NETWORK 4.1.1.1 (Bandelt et al., 1999; available at 

http://www.fluxus-engineering.com/), respectively. Tests for selective neutrality, Tajima’s D 

(Tajima, 1989) and Fu’s Fs (Fu, 1997) which can independently assess the demographic
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trajectories of populations (specifically, signatures of population expansion) were performed 

using ARLEQUIN. A mismatch distribution was constructed to further test for demographic 

expansion using ARLEQUIN. A coalescent-based method to test for evidence of population 

expansion was also carried out using FLUCTUATE v. 1.4 (Kuhner et al., 1998). The 

programme used a maximum likelihood approach based on coalescent theory to 

simultaneously estimate theta (0) and population growth rate (g). The programme was run 5 

times to ensure convergence of the estimates.

5.3. RESULTS

In the 434 bp fragment of the mtDNA control region from the proboscis monkey, 

alignment of 133 sequences revealed 45 variable nucleotide positions (Table 5.1). Of the 44 

LKWS haplotypes identified, 17 were found at multiple sites and 27 were identified only in 

individual Lots. The site with most haplotypes recorded was Lot 4 and PM33 was the most 

commonly found haplotype in LKWS. Lot 4 also contained the highest number of private 

haplotypes (9) followed by Lot 10 (5) and Lot 5 (4), whereas only two private haplotypes 

were recorded in Lots 1, 3, 6 and 8. No transversions were observed amongst the proboscis 

monkey sequences (Table 5.2). The sample from Labuk Bay contained a unique haplotype. 

No insertions or deletion were observed in any of the samples.

Nucleotide diversity (if) was 0.016 + 0.008 across all LfCWS Lots, but higher for 

samples from the northern compared to southern side of the river (Table 5.3). Haplotype 

diversity (h) was also highest on the northern side of the river (Table 5.3). The minimum 

spanning and median joining networks indicate three distinct groups of proboscis monkey 

mtDNA sequences in the LKWS. However, the groups are not clearly separated according to 

riverside (Figs. 5.2 & 5.3). This observation was supported by AMOVA, which indicated an 

extremely high proportion of variation residing within populations (99.8%), but only 0.2%
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Table 5.1. Variable nucleotide positions in the alignment of mtDNA sequences of the 
proboscis monkey control region. Dots indicate positions where the bases are 
identical to haplotype PMOl.

1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 9 5 7 7 0 0 1 3 4 4 4 6 7 7 7 8 8 8 9
6 7 6 0 2 0 5 4 1 2 5 8 9 3 8 9 2 6 8 3

2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4
9 0 1 1 1 2 3 4 4 4 5 5 5 5 6 6 7 8 8 9 0 1 2 3 3
6 3 1 3 4 6 1 4 5 9 3 4 5 9 5 7 6 7 9 9 5 0 9 1 3
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Table 5.2. Frequency of each mitochondrial DNA control region haplotype of proboscis
monkey within the Lower Kinabatangan Wildlife Sanctuary. (L=Lot; BD=Balad 
Dami)

HAPLOTYPE L 1 L 2 L 3 L 4 L 5 L 6 L 8 L 9 L 10 BD
PM01 - - - 1 - - - - - -

PM02 - - - 1 - - - - - -

PM03 - - - 1 - - - - - -

PM04 - - - - - 1 - - - -

PM05 - - - - - - - - - 2
PM06 - - - - - - - - 1 -

PM07 - - - 1 - - - - - -

PM08 - - - 3 - - - - - -

PM09 - - - - - - 1 - - -

PM10 - - - 1 - - - - - -

PM11 - - - - - - - - 1 -

PM12 - - 1 - - - - - - -

PM13 1 - 3 2 - - - - - -

PM14 - - - - - - - - 2 -

PM15 - - 2 - - - - - - -

PM16 - - - 1 - - - - - -

PM17 - - - 1 - - - - - -

PM18 - - 1 - 1 - - - - -

PM19 - - - - - 1 - - - -

PM20 - 1 1 - - - - - - -

PM21 1 - - - - - - - - -

PM22 - - - - 1 - - - - -

PM23 4 2 - - - - - - - -

PM24 - - 1 3 - - - - - -

PM 25 1 - - - - - - - - -

PM26 - - - - 4 - - - - -

PM27 - - - - 1 - - - - -

PM28 3 . - 2 - - - - - 2 -

PM29 - - - - - - - 1
PM30 1 2 - 3 - - - - _ _

PM31 - - - 1 1 2 1 - - _

PM 32 1 2 - 1 1 1 - - -

PM33 4 3 - 1 - 1 1 1 . _

PM34 - - - 2 2 - - - _ _

PM35 - - - - 1 - - - _

PM36 - - - 2 - 2 •
- - .

PM37 - - - 1 - - - - 1 _

PM38 - - - 1 - 1 - - . .

PM39 - - 2 4 3 3 - - - _

PM40 - - - - - - 2 - _

PM41 - - - 3 - - - - .

PM42 2 - 1 4 - - 2 - 1 -

PM43 - - - - - - - - 1 _

PM44 1 - 2 - - - - . 2 _

NO. OF 
SEQUENCES 19 10 16 38 15 12 7 1 12 2
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Figure 5.2. Minimum spanning network (MSN) of proboscis monkey mtDNA control region haplotypes. Each circle represents a different haplotype 
and the diameter indicates haplotype frequency. The smallest circle represents a singleton. Mutational steps are represented by black bars 
on lines connecting haplotypes.
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Figure 5.3. Median joining network (MJN) of proboscis monkey mtDNA control region haplotypes. Each circle represents a different haplotype and 
the diameter indicates haplotype frequency. The smallest circle represents a singleton. Black dots are median vectors presumed 
unsampled or missing intermediates and numbers indicate the sites that have undergone mutations.
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Figure 5.4. Mismatch distribution for each of the analysed Lower Kinabatangan Wildlife 
Sanctuary proboscis monkey samples. Observed (solid lines) and expected 
(discontinuous line) showing frequencies of pairwise differences.
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Table 5.3. Number of sequences and haplotypes, nucleotide diversity (tt), haplotype diversity (h), Tajima’s D and Fu’s Fs and population (6) and 
growth (g) parameters of proboscis monkey mitochondrial DNA control region sequences for all Lower Kinabatangan Wildlife 
Sanctuary Lots.

Seq. Hap. TC h D Fs 0 g

LKWS 132 44 0.015710 ±0.008243 0.9647 ±0.0052 -0.53103 (P=0.34300) -17.22284 (P=0.00000) 0.0953 ±0.0053 369.71 ±31.73

NORTH 84 38 0.016277 ±0.008551 0.9710 + 0.0063 -0.50756 (P=0.36500) -15.69746 (P=0.00000) - -

SOUTH 48 21 0.014664 ±0.007850 0.9495 + 0.0128 0.02908 (P=0.58300) -4.25203 (P=0.07500) - -
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variation between populations on either side o f the river (P=0.000). Most o f the haplotypes 

within each clade (I & II) were scattered throughout Kinabatangan, with the exception o f the 

clade ID which was absent from Lots 6, 8 and 9 (Figs. 5.2 & 5.3). This pattern o f high 

haplotype and nucleotide diversity indicates either a large stable population with a long 

evolutionary history or secondary contact between differentiated lineages (Grant & Bowen, 

1998).

Tajima’s D value for the whole o f LKWS population was -0.531 (Table 5.3). Only the 

northern side o f the river showed a negative value o f -0.508, the southern side o f the river 

showed a positive value o f 0.029, but none o f the values were significant. In contrast, Fu’s Fs 

revealed a highly significant value o f -17.223 (P=0.001) for the whole LKWS and -15.698 

(P=0.001) for the northern side of the river. The southern side o f the river showed a smaller 

non-significant value o f -4.252 (Table 5.3). Generally, it is accepted that Fu’s Fs is more 

sensitive than Tajima’s D to detect an excess of recent mutations, a pattern typical o f both 

demographic expansion and/ or selective sweep (Fu, 1997; Ford, 2002). The mismatch 

distribution o f all samples (Fig. 5.4) revealed a bimodal pattern, indicative of intermixed 

populations in Kinabatangan and demographic expansion. A coalescent approach to detect 

population expansion using FLUCTUATE indicated large positive estimates for the growth 

parameters for the Kinabatangan population (Table 5.3). Estimates of growth parameters (g ±  

SD) and theta (0  + SD) were 369.71 + 31.73 and 0.095 + 0.0Q5, respectively. All these 

analyses concur, suggesting that the proboscis monkey population in the Lower Kinabatangan 

is expanding quite rapidly.

5.4 DISCUSSION

To date this is the first population genetic study on wild proboscis monkeys. The 

presence of 44 control region haplotypes from 133 samples is indicative of high haplotype
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diversity in the proboscis monkey population of the Lower Kinabatangan Wildlife Sanctuary, 

Sabah. Mismatch distribution analysis revealed a bimodal pattern, indicating a mixture o f two 

or more populations that subsequently expanded. It is clear from both haplotype networks and 

AMOVA that there was no geographical partitioning of haplotypes in the Kinabatangan. 

These results have two major implications for our understanding o f Kinabatangan and Sabah 

proboscis monkey populations. Firstly, despite the small sampling coverage (only from 

Kinabatangan basin), the high level o f genetic diversity among individual samples revealed a 

tri-phyletic pattern, suggesting a split o f these three lineages or the retention o f one or more 

ancestral haplogroups by chance (Masembe et al., 2006). Secondly, the netwoik and 

mismatch distribution results indicate that the current population contains a mixture of 

different groups indicating possible secondary contact between refugial populations in the 

Kinabatangan River basin. The fact that the proboscis monkey did not exhibit any degree of 

population genetic structuring between riversides o f the Kinabatangan was not surprising as 

proboscis monkeys are excellent swimmers (Brandon-Jones, 1996), thus the Kinabatangan 

River dissecting the Lower Kinabatangan Wildlife Sanctuary did not pose a barrier for 

movement of this species, in contrast to other species studied in this thesis.

The apparent lack of geographically partitioning o f Kinabatangan proboscis monkeys 

may also be related to the non-philopatric nature o f the females (Mural, 2006; Murai et al., 

2006) indicating free movement of females. Similar trends have, been observed within the 

colony of Cape fur seal {Arctocephalus pusillus pusillus) in South Africa/Namibian breeding 

colonies (Matthee et al., 2006). Murai (2006) and Murai et al. (2006) studying the same 

population of proboscis monkey in Kinabatangan revealed the promiscuous behaviour o f the 

females, which leave their groups to breed with other males before returning to their former 

groups. The peaceful nature of male proboscis monkeys probably supports this behaviour. As 

proboscis monkeys live in a harem, female offspring would increase the number females in
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the harems, and male offspring might challenge the dominant males for its rank. Nevertheless, 

infanticide among wild proboscis monkeys has been observed in Labuk Bay, north of 

Kinabatangan (Agoramoorthy & Hsu, 2005b).

The genetic diversity of proboscis monkeys within the Kinabatangan was higher than 

we predicted, exceeding that of both long-tailed macaques (see Chapter 3) and orang-utans 

(see Chapter 4). The number of haplotypes even exceeds that recorded for Eritrean hamadryas 

baboon (Papio hamadryas hamadryas), with only 35 mtDNA control region haplotypes from 

10 localities in Eritrea (Hapke et al., 2001). Winney et al. (2004) studying the same baboon 

species in Saudi Arabia recorded only 26 mtDNA control region haplotypes from 107 

individuals. Similar to our results, Hapke et al. (2001) did not find any structure within their 

populations. Another study on Asiatic colobine also found high diversity with little structure 

among the populations of Trachypithecus cristatus and T. auratus in Peninsula Malaysia, 

Sumatra and Java (Rosenblum et al., 1997). The high genetic diversity observed in 

Kinabatangan proboscis monkey probably reflects the female biased dispersal and /or the 

large ancestral population that inhabited Borneo. The female biased and the size of the harem 

also contributed to the large sizes of the female lines. As mtDNA are inherited by females 

only, the high level of mtDNA diversity is proportioned to the large numbers of breeding 

females in the ancestral population before the onset of the climatic chaos. The lack of large 

predators in Borneo might also be one of the factors allowing for Jhe population to retain its 

size. The unique diets of proboscis monkey, provides a special niche with very little 

competition thus enables them to secure their food source (Agoramoorthy & Hsu, 2005a).

The triphyletic lineage detected within Kinabatangan proboscis monkeys might have 

been the product of several secondary contacts (from several refugia) during the Plio- 

Pleistocene expansion and contraction of forests (Masembe et al., 2006). Similar to the
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current study, Masembe et al. (2006) also observed triphyletic lineages between African Oryx 

in Tanzania and Kenya and interpreted this as the effects of ancient hybridization and 

introgression. Birungi & Arctander (2000) suggested that the two divergent clades identified 

for African Kob (Kobus kob) were the result o f range expansion and secondary contact o f two 

ancestral lineages that evolved in allopatry.

Throughout the Miocene, Borneo was connected to mainland Asia, Sumatra and Java, 

(Hall, 1998) facilitating the colonisation of colobine primates (Sterner et al., 2006). Asian 

colobines began to diversify sometime around the late Miocene and at the same time North 

Borneo was uplifted from the sea (Hutchison et al., 2000; Noad, 2001). By the early Pliocene 

(~5 MYA) the Sunda Islands had obtained an essentially modem formation (Hall, 1998; 

Gorog et al., 2004). The proboscis monkey probably became an endemic species in Borneo 

during the end of Pliocene (Harrison et al., 2006), accounting for the lack of fossil records of 

this species elsewhere in Sundaland (Harcourt & Schwartz, 2001). The warmer climate 

together with the expanse of tropical forest during the Miocene probably facilitated expansion 

and colonisation of colobine primates, including the proboscis monkey, in South East Asia 

(Harrison et al., 2006). Towards the end of Pliocene, climatic change resulted in the formation 

of more open and arid habitats (Meijaard & Groves, 2006). As proboscis monkeys are highly 

forest dependent with a restricted diet, open habitat and savanna represents a barrier for their 

dispersal, thus limiting their range towards the end of the Pliocene. At this time, tropical 

forest was limited to the highlands, i.e. Mount Kinabalu, which would have provided refugia 

for many forest dependent species (Tanaka et al., 2001; Gathome-Hardy et al., 2002). So 

even though a land bridge existed between the Sunda Islands, unsuitable habitat is likely to 

have formed barriers for dispersal for proboscis monkeys confined to refugia (Hall, 1998). 

During the Pleistocene climate cycles, proboscis monkey refugia in Borneo were probably 

located within the mountainous areas of Western Sabah, Western-Central Borneo and Eastern
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Borneo (Brandon-Jones, 1996, 1998; Gathome-Hardy et al., 2002, Gorog et al., 2004) (see 

Fig. 5.5). Towards the end of the drought period (Brandon-Jones, 1998), the proboscis 

monkey populations probably began to increase in size as the forest expanded. Several 

previously isolated populations of proboscis monkey might have met in secondary contact 

zones, such as the Kinabatangan. The union of different refugial populations and the non- 

philopatric nature of proboscis monkeys might have facilitated interbreeding, thereby 

generating the current pattern of genetic diversity.

Figure 5.5. Possible routes of proboscis monkey colonization of Kinabatangan from three 
hypothetical Pleistocene refugia.
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In conclusion, the current study revealed high genetic diversity in proboscis monkeys 

in the Kinabatangan, despite the fact that their habitat consists of fragmented, degraded forest.
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Three distinct lineages were identified that are hypothesized to have evolved in allopatry in 

three separate glacial refugia, but having subsequently come into secondary contact following 

forest expansion (see Fig 5.5). Considering the Kinabatangan proboscis monkey population 

consists of only approximately 3,400 individuals (Goossens et al., 2003) and yet still retains a 

very high level of genetic diversity, then the entire Borneo population is likely to be much 

higher. Thus, the present day proboscis monkey population in Kinabatangan is not facing 

immediate danger. However, this species is classified as an endangered species and pressures 

on habitat continue to slowly eradicate suitable habitats ideal for proboscis monkey. Ideally, 

future work should assess the genetic diversity of proboscis monkeys across their range in 

Borneo and studies using a much faster evolving molecular marker, such as micro satellites or 

SNPs covering the Y chromosome that would also incorporate male dispersal should also be 

incorporated. Comparative studies of gene flow between males and females would greatly 

enhance our knowledge of social structure and kinship in this enigmatic proboscis monkey.
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CHAPTER 6: FINAL DISCUSSION

The current study is the first to compare phylogeographic patterns among primate taxa 

in Borneo in any geographic region. The species selected for this study (orang-utan, long

tailed macaque and proboscis monkey) vary in their dispersal ability, social organisation and 

longevity. The orang-utan is of particular interest to evolutionary biologists, being the only 

ape found outside Africa and, unlike other apes, it has a solitary nature (Groves, 2001). The 

proboscis monkey is endemic to Borneo and is a specialist feeder, living in relatively large 

harems. In contrast, the long-tailed macaque is widely distributed all over South East Asia, 

living in large hierarchical social systems and is considered a pest species due to its 

adaptability (Groves, 2001).

This study focussed on the Lower Kinabatangan Wildlife Sanctuary (LKWS) in 

Sabah, a 27,000 ha area of fragmented forested. Heavy reliance on logging (and now 

agriculture) has left much of the Sabah forest, including the Kinabatangan, in fragments, 

isolated from one another by a wasteland of scrubland, agriculture and human settlements 

(WWF, 1998; McMorrow & Talip, 2001; Jomo et al., 2004). However, despite the degraded 

nature of the habitat, the LKWS still contains a rich biodiversity and provides an ideal study 

site with which to assess the impact of forest fragmentation on primates (i.e. orang-utan see 

Goossens et al., 2005; Appendix II). In addition, as the LKWS is bisected along its length by 

the Kinabatangan River, this site provided the opportunity to study the impact of this natural 

potential geographical barrier on the population structure of the three primates.

The current study revealed moderate to high levels of genetic diversity for orang

utans, long-tailed macaques and proboscis monkeys. Furthermore, the Kinabatangan River 

does influence the population structure of the former two species. Orang-utans, due to their
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inability to swim (Fleagle, 1998), exhibit the greatest genetic differences on either side of the 

river, whereas either smaller or no differences were detected for long-tailed macaques and 

proboscis monkeys, respectively. Both of these latter species are good swimmers (Fleagle, 

1998), especially the proboscis monkey. This study also revealed that LKWS long-tailed 

macaques have experienced long term population stability, whereas both orang-utans and 

proboscis monkeys have experienced population bottlenecks and expansions.

In this Chapter, the observed genetic structure of three species of primates inhabiting 

the LKWS is discussed first in the context of the geology of the region and then in relation to 

conservation of the area, with recommendations given for management of the primates in 

LKWS. The study was based on data derived from mitochondrial DNA (mtDNA) that has a 

mutation rate of approximately 2% per million years in primates (Brown et al., 1979). Thus, it 

is appropriate to begin our historical account of the chronological events that led to the 

current population genetic structure for each species in the Pliocene.

6.1 HISTORICAL PERSPECTIVES ON COLONIZATION

Eastern Sabah, where the Kinabatangan is located, was characterised in the early 

Miocene by argillaceous materials, pyroclastics and slump breccias, reflecting the unstable 

conditions of the deposition (Geological Survey of Malaysia, 1989; Noad, 2001). The 

Gomantong Limestone karst in the middle of Kinabatangan basin is of Chattian to 

Burdigalian age (Late Oligocene to Early Miocene) (Noad, 2001). The Upper Kinabatangan 

(Kuamut formation) slump deposits or melange contain fossils assemblages indicating that the 

deposition occurred in deep marine conditions (Geological Survey of Malaysia, 1989). Noad 

(2001) suggested that the Gomantong Limestone was deposited on an open shelf, where the 

shallower portions of the shelf were colonised by coralline red algae, forming algal flats. 

Subsequent limestone deposits occurred along a palaeo-shoreline running roughly east-west,
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close to the Gomantong outcrops (Noad, 2001). By the Pliocene, most of Sabah had been 

uplifted and rotated (Hall, 1998), and during the early Pleistocene, Kinabatangan was lifted 

completely from the sea.

The Asian colobines are far more diverse than their African counterparts (Davis & 

Oates, 1994), the two lineages split during the late Miocene and spread from Africa to 

continental Asia (Sterner et a l, 2006). In Asia, the ancestral colobine began to diversify 

around 6.7 million years ago (MYA) and at the same time, the ancestral proboscis monkey 

began to colonize Borneo via the Malay Peninsula (see Fig 6.1 A; Harrison et al., 2006; 

Meijaard & Groves, 2006).

Figure 6.1. The land distribution (A) during the late Miocene - early Pliocene, (B) late 
Pliocene to Early Pleistocene, (C) Early to Middle Pleistocene, and (D) Middle 
Pleistocene during periods of high sea level. Adapted from Meijaard & Groves 
(2004).
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The beginning of the Pliocene was marked by warm and humid climates, and tropical and 

subtropical vegetation occurred all over South East Asia (Meijaard & Groves, 2006). The 

expanse of tropical habitats facilitated the expansion of colobine monkeys, which are 

specialized feeders (Yeager et al., 1997; Wasserman & Chapman, 2003; Chapman et al., 

2006). As the climate became warmer, sea level rose by 20 - 60 m, separating Borneo from 

the Malay Peninsula. This effectively marooned the proboscis monkey on the island of 

Borneo. Towards the beginning of the Middle Pliocene, global climate changes initiated 

aridification and savannah habitats started to expand (Harrison et al., 2006; Meijaard & 

Grooves, 2006).

The Late Pliocene began with several cold phases leading to more open vegetation. 

This isolated tropical and subtropical forest, creating refugia for forest dependent species 

(Meijaard & Groves, 2006). Towards the Early Pleistocene, with decreasing temperature, sea 

level dropped (120 - 135 m) exposing the land bridges between the islands of the Sunda Shelf 

again (Figs. 6.IB and 6.1C). At this period, orang-utans from continental Asia began to 

colonize the Sunda Island and could be found in Sumatra, Java and Borneo (Delgado & van 

Schaik, 2000; Harrisons et al., 2006). However, their movement was restricted as open 

vegetation and savanna of the Late Pliocene acted as barriers to dispersal for colonizing the 

entire Sunda Shelf islands (Harrison et al., 2006).

In Sundaland, Pleistocene human expansion (~70,000 YA, Excoffier et al., 1992) 

probably caused extinctions of many large animals. Vegetation during the Early Pleistocene 

began to thin out and mixed vegetation with isolated tropical forest refugia was common (Fig.

6.2). Orang-utan populations started to differentiate as they were isolated on their respective 

islands (see Muir et al., 2000). During the Middle Pleistocene period, widespread extinction
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occurred throughout South East Asia (van de Bergh et al., 2001; Tougard, 2001; Meijaard, 

2003).

Figure 6.2 Land distributions in the Last Glacial Maxima where the data indicate that more 
open vegetation types may have existed. Adapted from Meijaard (2003).
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The Late Pleistocene was characterized by seasonal forest and open vegetation. This 

further isolated the tropical forest refugia (Meijaard, 2003; Harrison et al., 2006). Eruption of 

Mount Toba in North Sumatra (74,000 YA), the second largest volcanic eruption producing 

10 billion metric tons of ash resulted in a global drop of temperature contributing to the 

Wisconsin Glacial Epoch (Ambrose, 1998; Muir et al., 2000). Gathome-Hardy & Harcourt- 

Smith (2003) found no evidence of the Toba eruption causing a bottleneck of Mentawai 

Island primates. Ambrose (2003) suggested that the Mentawai primates were saved due to the 

downwind location of the Island from the volcanic eruption.
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During the Late Pleistocene to Early Holocene, savanna persisted, thus forming a 

long-term barrier between the east (Sumatra) and west (Borneo) of Sundaland (Meijaard, 

2003; Birds et a l , 2005). The separation was further enforced by several large rivers isolating 

the two sides. Even though the savanna persisted for thousands of years separating the two 

sides, West Sumatra and a large part of Eastern Borneo were still covered by rainforest 

(Meijaard, 2003). The high level of endemicity and plant diversity found in these two regions 

suggests that they served as refugia (Meijaard, 2003; Slik et al, 2003). As the climate 

continued to warm and increase in humidity, the rainforest began to expand. Isolated patches 

of rainforest refugial began to merge to form large expanses of forest, where the meeting of 

animals from different refugia resulted in hybrid zones or zones of secondary contact.

6.2 PRIMATE POPULATION DEMOGRAPHY

Assuming that proboscis monkeys first invaded Borneo in the Late Pliocene (2.6-1.8

MYA; Fig 6.3), followed by the orang-utan during the early Pleistocene (1.8-0.78 MYA; Fig

6.3) and the long-tailed macaque in the late Pleistocene (0.13-0.012 MYA), extant 

populations of these species would most likely have stable structures on the basis of their 

early colonization during favourable climate conditions. However, the current study indicated 

that both the proboscis monkey and orang-utan have experienced bottlenecks and subsequent 

population expansion, and only the long-tailed macaque population has been stable. This 

difference is probably explained by the ecology of the animals.

Proboscis monkeys live in large harems, have a high reproduction rate related to the 

high female to male ratio and have excellent dispersal capabilities (Fleagle, 1998; Meijaard & 

Nijman, 2000). However, this is counteracted by their specific dietary requirements unlike the 

orang-utan which is omnivorous (Yeager et al., 1997; Delgado & van Schaik, 2000). The 

orang-utan is a solitary species, with a low reproduction rate and especially females have 

limited dispersal capabilities (Rijksen & Meijaard, 1999; Delgado & van Schaik, 2000).
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Long-tailed macaques, on the other hand, live in multimale-multifemale groups with a high 

reproduction rate (Fleagle, 1998). They have good dispersal capabilities, in fact Abegg & 

Thierry (2002) suggested that long-tailed macaques recolonised the islands of Sundaland by 

rafting. Unlike the proboscis monkey, the long-tailed macaque is not limited to specific diets 

but is an opportunistic feeder able to utilise most resources available, hence Harcourt & 

Schwartz (2001) described this primate as an excellent survivor candidate.

Figure 6.3. The proposed sequential events of colonization by the two primate species from 
Pliocene to early Pleistocene. (Red dot - proboscis monkey, green squares -  
orang-utan).
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Both the orang-utan (current study; Goossens et al., 2006b) and the proboscis monkey 

appear to have undergone bottlenecks. In the current study, the lowest genetic diversity was 

detected in the orang-utan and the highest in the proboscis monkey. How could animals with
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previous histories of bottlenecks have such different levels of genetic diversity? The answer 

probably relates to their reproductive modes and dispersal abilities. The female biased 

population structure of proboscis monkeys, together with their age to maturity (5 years for 

females) and fecundity (probably around 5 offspring/female) results in a reproduction rate 

several times higher than that of the orang-utan (sexual maturity of female 11-15 years with 

an average fecundity of 5 offspring/female). Furthermore, the proboscis monkey has a much 

high dispersal capacity than the orang-utan. As the forest expanded and different fragments of 

rainforest merged during the late Pleistocene, isolated populations of proboscis monkey might 

have interbred, producing mixed lineages. Evidence for this hypothesis was provided by the 

identification of triphyletic lineages in the current study. However, an alternative explanation 

for the presence of three different proboscis monkey lineages in LKWS is that a recent event, 

such as deforestation across Borneo, might have forced widely dispersed populations to 

concentrate in the Kinabatangan. Such rapid enforced migration might have resulted in a 

recent dramatic population reduction, therefore the high levels of genetic diversity in the 

current LKWS population might actually reflect past genetic diversity as proposed by 

Goossens et al. (2006b) for the orang-utan population in Kinabatangan.

The Kinabatangan orang-utan population is dominated by two major haplotypes found 

on either side of the Kinabatangan River. This low haplotype diversity suggests that 

Kinabatangan orang-utans were founded by very few lineages following the Pleistocene 

bottleneck. The two lineages that survived the bottleneck probably colonized Kinabatangan 

from refugia (probably Mount Kinabalu) in the west of Upper Kinabatangan. As the orang

utan is a slow breeder with a very low density and being solitary animals, the expansion rate 

must have been much slower compared to the proboscis monkey (Harcourt & Schwart, 2001)

Climate fluctuation during the Pleistocene also influenced the distribution of forested 

areas. During the Pleistocene, the Sunda Shelf was exposed and based on accumulating
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palynological evidence it is suggested that the Shelf was covered by cool, arid savannah-like 

vegetation (Goroj et al., 2004). Between 190,000 to 130,000 years ago, during the dry glacial 

period, the low sea level (thus low river level) may have allowed freer movement within the 

Kinabatangan, possibly resulting in the slight the mixing of orang-utan haplotypes between 

riversides (Brandon-Jones, 1998; Goroj et al., 2004). During these periods rain forest refugia 

were confined to northern and eastern Borneo according to a study based on termite 

community composition (Gathome-Hardy et al., 2002). If the orang-utan population 

expanded during and after this period this would suggest that the population had previously 

suffered a bottleneck as the forest contracted to savannah and orang-utan was confined in 

refugia. Due to the low density of the orang-utan population, their solitary nature and their 

dependence on rain-forest, the orang-utan is more prone to local extinction (Harcourt et al., 

2002). As conditions improved, the orang-utan might have colonized habitats including the 

Kinabatangan, but as the orang-utan reproduces slowly, the expansion would have been slow.
i

Besides orang-utans, proboscis monkeys were also originally forest dependent species 

(Brandon-Jones, 1998). The genus evidently evolved in forest-woodland habitat and then 

when their habitats were overwhelmed by mangroves it began to adapt (Brandon-Jones, 

1998).
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Figure 6.4. The hypothetical colonization routes for orang-utan (red arrows), proboscis 
monkey (yellow arrows) and long-tailed macaques (white arrow).
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Unlike the orang-utan, there was no evidence of population bottlenecks in long-tailed 

macaques, instead our analyses indicated a large and stable population in the Kinabatangan. 

Long-tailed macaques are opportunistic feeders which can utilise a wide array of food and 

thus are adaptable to a variety of conditions (Fleagle, 1998). They can also adapt easily to 

human settlements, raiding plantations and houses for food (Wheatley, 1988). The ‘super 

adaptability’ of macaques makes them the most successful genus of primates extending from 

Japan to North Africa (Abegg & Thierry, 2002). They are included in the top 100 list of the 

most successful alien species (Lowe et al., 2000; Long, 2003). With this flexibility on diet 

requirement and ability to adapt, the colonization of Kinabatangan would be easier for this 

species compared to the orang-utan and proboscis monkey (see Chapters 4 and 5). As long

tailed macaques live in a moderate to large social groups and their fast reproduction rates,
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unlike orang-utans, enables them to spread and colonize more areas, generating the signal for 

population stability.

6.3 IMPACT OF RIVERS ON PRIMATES

This study demonstrated that for an animal with limited dispersal abilities (i.e. the

orang-utan), a biogeographic barrier (i.e. large river) could induce isolation and 

differentiation. The sharing of haplotypes between the two major orang-utan haplotypes 

across the river, indicates some historical movement between the riversides. One simple 

explanation could be that the past forest of Kinabatangan formed a continuous canopy thus 

enabling movement within the canopy across the river aided by lower water levels associated 

with fluctuating sea levels during the Pleistocene. Orang-utan social behaviour, in which 

females will usually settle near their mother’s range, suggests Kinabatangan orang-utans 

dispersed in a linear direction from the headwater to the sea or vice versa. By dispersing 

closed to one another this would have increased the dominance of certain lineages. Analysis 

of Bornean orang-utans, revealed reciprocal monophyly for four groups: Sabah, East 

Kalimantan, Central and Southwest Kalimantan, and Northwest Kalimantan and Sarawak. 

These four groups correspond to the three subspecies of orang-utan in which Sabah and East 

Kalimantan were Pongo pygmaeus morio, Central and Southwest Kalimantan were P. p. 

wurmbii and Northwest Kalimantan and Sarawak were P. p. pygmaeus. Warren et a l  (2001) 

suggested that the separation was due to river barriers and this is strongly supported by the 

current study. Between the four major samples sites lie major rivers in Kalimantan, Sarawak 

and Sabah. For example, the two populations of P. p. morio are separated by the the Kayan 

River. The Mahakam and Barito rivers isolate P. p. morio from P. p. wurmbii in Central and 

Southwest Kalimantan. P. p. pygmaeus is isolated from subspecies wurmbii by the Kapuas 

River and from subspecies morio in the north by the Rajang and Baram rivers.

Within Borneo, the Kapuas River has been shown to act as a geographic barrier for 

orang-utans (Uchida, 1998). The current study also revealed the importance of rivers
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impeding movement of orang-utans in Kinabatangan and Borneo (see Chapter 4). Historical 

records have revealed that orang-utans were absent from Brunei (area surrounded by Baram 

River) and South Kalimantan (between the Barito and Mahakam Rivers). This was probably 

related to the orang-utans inability to cross rivers, as these three large big rivers prevent 

arboreal movement through the canopy.

6.4 INFLUENCES OF OX-BOW LAKES

Ox-bow lakes are common in the LKWS, with the highest concentration occurring 

between Lots 3 and 4 (Fig. 6.5) and Lots 6 and Lot 7. Boonratana (cited in Bennett & Davies, 

1994) reported that in Sukau, proboscis monkeys occur in abundance near ox-bow lakes. 

Based on the sampling map generated from GPS recordings (Figs. 3.1, 4.1 and 5.1 in 

Chapters 3, 4 and 5, respectively), primate sightings and sample collection did appear to be 

higher in the region of ox-bow lakes, but this requires further investigation.

Figure 6.5. The possible influences of ox-bow lake formation (Lot 4) in distribution of 
primates along the Kinabatangan River especially between North and South 
banks.
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For orang-utans, ox-bow lake formation might influence the movement between 

riverside. As an example, assuming the orang-utan home range was located inside one of the 

river bend and which was located at the northern part of the river (Fig 6.6). As the bend was 

cut off, the home range of that particular orang-utan now is part of the southern side of the 

riverbanks. This might provide an alternative explanation why during the colonization of 

Kinabatangan, the two major haplotypes was found on both sides of the river. Nevertheless, to 

confirm this phenomenon, further investigation must be carried out.

Figure 6.6. The formation of ox-bow lake and how orang-utan home range (animal symbol) 
change from being found in the North (green) to the South (red) river bank.
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6.5 FOOD COMPETITION

The Kinabatangan river basin was probably first colonized by proboscis monkey and 

then orang-utans and long-tailed macaques (Fig. 6.4). These three species probably manage to 

live in such a small area without competition due to their different diets. The proboscis 

monkey has a highly specialised diet which does not overlap with either long-tailed macaques 

or orang-utans, both being omnivorous. Even though long-tailed macaques and orang-utans 

might compete for the same resources, the body size and population densities might explain 

their apparent successful co-occurence. Orang-utans are large bodied solitary animals with 

large home range enabling them to cover large areas for food, whereas long-tailed macaques 

are small bodied species that usually prefer disturbed habitat.
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6.6 SOCIAL BEHAVIOUR INFLUENCES POPULATION STRUCTURE

Long-tailed macaques exhibit high haplotypic diversity with groups of closely related

haplotypes that are connected to each other by long mutational steps. Each of the closely 

related haplotypes were distributed on the same side of the river, clearly indicating female 

bonding and a strong philopatric nature, characteristic of the macaque (Melnick, 1987). 

Similarly, the structure observed from network analysis in the current study may reflect the 

highly philopatric nature of female macaques (Melnick, 1987) and there was no indication to 

suggest a barrier to gene flow for this species.

Proboscis monkeys exhibit high haplotype diversity, without any apparent 

geographical partitioning, probably because this species is not as philopatric as the long-tailed 

macaque and there is extensive gene flow between demes in LKWS (see Chapter 5). Unlike 

the orang-utan, proboscis monkeys were found in higher densities, with a higher proportion of 

females than males and being peaceful enough to form large congregations of unimale groups 

(Kawabe & Mano, 1972). Such higher densities coupled with a much shorter generation time 

results in an increased reproduction rate. Free movement between females increases the 

number of maternal lines as indicated by the number of haplotypes and homogenising effects 

on both sides of the river (Murai, 2006; Murai et al., 2006).

Unlike long-tailed macaques or proboscis monkeys, orang-utans are solitary animals. 

With a history of recent bottlenecks (Goossens et al., 2006b), the long longevity and slow 

reproduction rates would hinder an immediate expansion of the orang-utan population in 

Kinabatangan. The population would slowly recover with evidence of founder events as 

observed in the current study (see Chapter 4).
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6.7 CONSERVATION ISSUES FOR KINABATANGAN PRIMATES

The current study indicates that the primates in Kinabatangan must be managed 

according to their dispersal abilities and population structure. Moreover, this study and 

Goossens et al. (2005, 2006a, b) suggests that the future of the primates in Kinabatangan 

depends on management of the sanctuary. Further development or encroachment of the 

LKWS forest is likely to hasten the extinction process of vulnerable species (i.e. the orang

utan).

Currently LKWS is surrounded by ever encroaching oil-palm plantation and villages. 

The protection status of LKWS as a wildlife sanctuary should be enforced by local authorities 

to ensure protection of the species in LKWS, particularly against hunting and habitat 

degradation. Orang-utans and proboscis monkeys are listed on Schedule 1 (Section 2) of 

Sabah’s totally protected species Part 1 in the Sabah Wildlife Conservation Enactment No. 6 

of 1997. Long-tailed macaques, on the other hand, are listed on the same enactment under 

Schedule 2 (Section 2) of Sabah’s protected species of animals with limited hunting and 

collection under licence. Hunting is one of the major obstacles in conservation project in 

Malaysia. Intensive hunting can exterminate low reproducing rate species and alter species 

composition (Laurance et al., 2000). Similarly, in Amazonia, hunting pressures is one of the 

major threats for large animal and bird declines in fragmented forests (Laurance et al., 2000). 

The Lots of LKWS are easily accessible for hunters due to the edge effect of fragmented 

habitats. During the current study, no evidence of hunting was detected, however this activity 

may be more apparent at the borders between the forest and the plantation. Orang-utans are 

still captured though, especially when they stray inside the plantation areas. Most of them are 

relocated into other forest reserves (i.e. Tabin Wildlife Reserve), but some juveniles are sent 

to a rehabilitation centre in Sepilok. This small forest reserve is run by Sabah Wildlife 

Department funded by the Government.
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Volunteer projects, such as the Kinabatangan Orang-utan Conservation Project, a non

governmental organisation project of HUTAN, a French NGOs, have been successfully 

carried out in Sukau to educate the local people on the importance of conserving wildlife and 

forest. The same project could be applied to other areas in Kinabatangan or Sabah to manage 

the forest sustainably. Only through understanding the importance of maintaining our 

biodiversity will our campaign for conservation be successful. The cooperation of local 

people is vital to support any conservation efforts undertaken by government or non

government agencies. In the Lower Kinabatangan, the Model Ecologically Sustainable 

Community Tourism Project or MESCOT, centred at Batu Putih, on the extreme west of 

Sukau village is the other successful nature-tourism based project, which also involves local 

people. Their most successful project, the Miso Walai Homestay Programme, combined 

homestay with transport services and recreational activities.

Currently, LKWS is divided into 10 forest fragments (Lots), isolated or partially 

isolated from each other either by the Kinabatangan River or its tributaries, agricultural lands, 

degraded secondary forest, forest reserve and villages. In general, conservation biologists 

agree that landscape connectivity enhances population viability (Beier & Noss, 1998). Many 

studies have shown that many animals, birds and invertebrates are unable or unwilling to 

cross even small forest clearings (Bierregaard & Stoiiffer, 1997; Laurance et al., 2000). As

orang-utans and proboscis monkeys require a large tract of land (home ranges of 0.42 - 7.77

2 2km and 9 km , respectively), it is imperative that connections between these fragments of 

protected land are re-established. Ideally, the Government should provide funding to purchase 

the land between forest fragments to create forest corridors. In addition, the heavily degraded 

forest could be re-planted with suitable plants (i.e. fruiting trees etc.) and managed to provide 

corridors of mature trees between fragments. As Lots 7 and 8 are divided by a major road
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from Sandakan to Lahad Datu, arboreal corridors (such as artificial arboreal bridge) could be 

created to connect the forest between the two Lots. Recently, arboreal corridors have been 

installed in some sites in LKWS by local people with the help of KOCP and HUT AN. Other 

projects undertaken by local people, like re-planting forest on the heavily degraded forest 

fragments, have been funded by the WWF Malaysia.

Future Direction

Animal conservation projects should be supported by the analyses of several 

independent data sets (Wayne et al., 1994). The use of different molecular markers often 

provides additional information unobtainable just by observational or ecological studies. The 

current study illustrates that a single molecular marker is insufficient to provide information 

for conservation purposes as highlighted by the information-rich datasets (mtDNA and 

microsatellites, see Appendix n, Goossens et al., 2005) for the orang-utan compared to the 

information-poor data (mtDNA only) for proboscis monkeys and long-tailed macaques. 

Further information on male-inherited DNA (Y-chromosome) might provide interesting data 

with which to compare the female-inherited DNA to understand the contribution of each sex 

in population genetic diversity (Domingo-Roura et al., 2001)

Future work on orang-utans should include larger sampling areas as the current study 

indicates that orang-utan populations seem to be influenced by biogeographic barriers such as 

rivers. This provides an interesting question on the distribution of orang-utans, especially why 

for some parts of Borneo such as Brunei, there are no records of orang-utans. Are rivers 

(Baram and Tutoh) that surround Brunei responsible for preventing colonization of this area 

by orang-utans?
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Nevertheless, the information currently obtained by mtDNA should provide a 

motivation for a larger study to investigate the population structure in Kinabatangan. With 

more sample coverage from all over Borneo, the question remains as to whether the proboscis 

monkey retains the triphyletic clade patterns currently observed and if so, how is spatially 

organised. The triphyletic clades observed in Kinabatangan would be an interesting to 

investigate over a larger scale.

The current study, even with its limitations, has revealed the conservation value of the 

Lower Kinabatangan Wildlife Sanctuary as an important place for primates in Sabah. 

However, more studies are needed to accurately answer questions on dispersal and genetic 

structure of the threatened primate populations living in the Kinabatangan. Also, further 

research (i.e. kinship, genetic diversity within Lots etc.) is needed before we can predict the 

fate of these three primates in Kinabatangan.
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Appendix I
Map of Sabah showing the forest reserves and conservation areas. The colour indicates the type of forest reserves as indicated by the Legends.
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Patterns of genetic diversity and migration in increasingly 
fragmented and declining orang-utan (Pongo pygmaeus) 
populations from Sabah, Malaysia
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Abstract

We investigated the genetic structure within and among Bornean orang-utans (Pongo pyg
maeus) in forest fragments of the Lower Kinabatangan flood plain in Sabah, Malaysia. 
DNA was extracted from hair and faecal samples for 200 wild individuals collected during 
boat surveys on the Kinabatangan River. Fourteen microsatellite loci were used to charac
terize patterns of genetic diversity. We found that genetic diversity was high in the set of 
samples (mean HE = 0.74) and that genetic differentiation was significant between the sam
ples (average FST = 0.04, P < 0.001) with FST values ranging from low (0.01) to moderately 
large (0.12) values. Pairwise ŜT values were significantly higher across the Kinabatangan 
River than between samples from the same river side, thereby confirming the role of the 
river as a natural barrier to gene flow. The correlation between genetic and geographical 
distance was tested by means of a series of Mantel tests based on different measures of geo
graphical distance. We used a Bayesian method to estimate immigration rates. The results 
indicate that migration is unlikely across the river but cannot be completely ruled out 
because of the limited ŜT values. Assignment tests confirm the overall picture that gene 
flow is limited across the river. We found that migration between samples from the same 
side of the river had a high probability indicating that orang-utans used to move relatively 
freely between neighbouring areas. This strongly suggests that there is a need to maintain 
migration between isolated forest fragments. This could be done by restoring forest corri
dors alongside the river banks and between patches.

Keywords: genetic diversity, immigration, microsatellites, noninvasive sampling, Pongo pygmaeus, 
population fragmentation
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Introduction

Current trends in great ape populations indicate a dramatic 
ongoing decline, which is predicted to result in the extin
ction of ape species in the wild for entire regions in the 
near future. Recent findings have particularly focused on 
African apes, and have implicated multiple factors, such as

Correspondence: Benoit Goossens, Fax: + 33 5 61 55 73 27; E-mail: 
goossensbr@cardiff.ac.uk

deforestation, hunting and disease (Walsh etal. 2003; 
Leendertz etal. 2004; Leroy etal. 2004). Less well pub
licised, but equally dramatic, has been the decline in Asia's 
only great ape, the orang-utan species of Sumatra and Borneo 
(Pongo abelii and Pongo pygmaeus). Current trends suggest 
that extinction is potentially imminent for the Sumatran 
species in the wild and although anthropogenic pressures 
are equally severe in parts of the orang-utan's range in 
Borneo, some potentially viable populations remain.

On both islands, orang-utans exist now mainly in frag
mented and isolated populations, the sizes of which are

© 2005 Blackwell Publishing Ltd
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only now being accurately estimated. Using wild reserve 
data, Rijksen & Meijaard (1999) estimated that the number 
of orang-utans may have dropped from c. 315 000 around 
1900 to c. 27 000 in 1997 and have recently been estimated 
to be as low as 3500 in Sumatra (Wich et al. 2003). In Borneo, 
orang-utans appear to be widely distributed across Indo
nesia (Central, West, and East Kalimantan) and Malaysia 
(Sarawak and Sabah). Still, the situation appears critical as 
the population is estimated to have dropped from 23 000 in 
1996 to 15 000 individuals in 1997 (a reduction of some 33% 
in one year, Rijksen & Meijaard 1999) because of drought 
and fires. Despite the uncertainties existing on these popu
lation size estimates (see Payne 1987,1988), there is general 
agreement that populations have decreased at least 10-fold 
in the last 100 years (Delgado & van Schaik 2000).

There appears to be several causes for the dramatic 
decline of the Bornean orang-gutan in the last century, but 
it is known that processes threatening orang-utan popula
tions include him ting, habitat loss, habitat degradation 
and forest fragmentation (Delgado & van Schaik 2000; 
Robertson & van Schaik 2001). In the Malaysian state of 
Sabah in the northern part of Borneo, human pressure has 
steadily increased. Indeed, in the last 20 years very large 
areas of forest have been logged and converted into oil 
palm plantations. In 2001, it was estimated that between a 
third and half of the original forest area had disappeared 
(McMorrow & Talip 2001).

Throughout their range, great apes, in common with 
many other species are increasingly affected by anthropo
genic forest fragmentation and this problem is a major 
issue in Malaysia and Borneo (e.g. Laid law 2000; Kinnaird 
et al. 2003). Conservation planning for these increasingly 
isolated forest fragment communities presents a demand
ing set of challenges, ranging from determining viable 
population sizes (which may be in the tens of thousands 
for orang-utans, Harcourt 2002), assessing the potential 
for and importance of dispersal among populations (e.g. 
Travis & Dytham 1999) and estimating the relative import
ance of different ecological and life history parameters 
in predicting extinction risk (e.g. Brashares 2003). Large
bodied, slow-reproducing species, such as the orang-utan, 
have been shown in many studies to be more prone to 
extinction (Webb et al. 2002; Cardillo 2003), especially in 
closed or fragmented habitats (e.g. Laurance 1991; Davies 
et al. 2000). However, predicting population persistence is 
complex and, for example, those species which are able to 
effectively utilize modified habitats may remain stable or 
even increase in fragmented landscapes (Laurance 1991). 
Further, dispersal behaviours may modify according to 
habitat availability and persistence, potentially affecting, 
for example, predictions of extinction/recolonization in 
metapopulations (Travis & Dytham 1999; Reed 2004).

One trait which has rarely been examined in large-bodied 
species living in fragmented populations is genetic diversity.

While the link between genetic diversity and population 
persistence has been demonstrated in smaller bodied ver
tebrates, invertebrates and plants (e.g. Saccheri et al. 1998; 
Madsen et al. 1999; Pryor et al. 2001) studies are much less 
common in large vertebrates, probably because of the fact 
that their slower vital rates are not expected to result in 
measurable reductions in genetic diversity over the time- 
scale (in generations) of most anthropogenic habitat frag
mentation (but see, for example, Miller & Waits 2003).

However, while genetic diversity may not obviously be 
affected in such species using standard gene diversity 
measures, such effects may be discernible in the genealogical 
data found in their allele distributions (e.g. O'Ryan et al. 
1998; Goossens etal. submitted) and, regardless, genetic 
diversity in present day populations still needs to be man
aged judiciously in these species to guarantee their persist
ence in the future. For example, in the absence of direct 
behavioural observation, genetic methods can be used to 
infer dispersal and immigration events which can have 
profound consequences for population viability (e.g. 
Keller et al. 2001), allow the assignment of sexed individuals 
to their natal populations (e.g. Berry et al. 2004; Moller & 
Beheregaray 2004) and permit the development of a better 
understanding of how geographical features in different 
landscapes correlate with dispersal and genetic differenti
ation among local populations (e.g. Palsson 2004).

Orang-utans are large-bodied, semisolitary and slow- 
reproducing species, with extreme sexual dimorphism in 
body size and appearance. Orang-utans also show a pro
nounced bimaturism among sexually mature males and 
matings seem to be promiscuous, with both morphs 
(flanged and unflanged males) being reproductively success
ful in the populations (Rodman & Mitani 1987; Delgado 
& van Schaik 2000; Utami et al. 2002). Sexual maturity is 
variable and difficult to determine in the wild, particu
larly for males. In females it may vary between 7 and 
15 years and is probably greater than 10 years in males 
(Leighton et al. 1995; Delgado & van Schaik 2000). Females 
care for dependent offspring for at least six years and the 
interbirth interval is about 8 years (Leighton et al. 1995). 
Slow growth and development contribute to a long lifespan, 
estimated to be about 45 years for both sexes in the 
wild (Leighton et al. 1995). Little is known about dispersal. 
Maturing females tend to remain near the natal area (philo- 
patry), while males move away (Mitani 1989; Galdikas 
1995; Singleton & van Schaik 2001). However, they seem to 
be very poor dispersers and they can be confined in iso
lated populations (van Schaik et al. 2001).

Within this context we studied the genetic diversity of an 
important remaining orang-utan 'population' in Sabah, found 
in the forests of the Lower Kinabatangan flood plain (c. 1100 
individuals, Ancrenaz et al. 2004). In this area, conversion 
of forest into oil palm plantations has resulted in a highly 
fragmented forest structure (Fig. 1, Rijksen & Meijaard

© 2005 Blackwell Publishing Ltd, Molecular Ecology, 14,441-456



155

GENETIC DIVERSITY A N D  MIG R AT IO N  IN BO RN E AN  O R A N G - U T A N S  443

Fig. 1 Map of the Lower Kinabatangan 
Wildlife Sanctuary (LKWS) showing the 
location of the 10 lots of forests and the 
virgin jungle forest reserves alongside the 
Kinabatangan River. The inside map shows 
the location of the LKWS in Borneo Island.
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1999; McMorrow & Talip 2001). In 2002, the state government 
of Sabah gazetted 27 000 ha of these forests as a wildlife 
sanctuary, with the ultimate aim of creating a corridor for 
wildlife along the Lower Kinabatangan flood plain, between 
the remaining virgin forest reserves. The impact of habitat 
fragmentation on the long-term survival of isolated orang
utan subpopulations is the main focus of current ecological 
and behavioural surveys in the region (Lackman-Ancrenaz 
e t a l .  2001). Population densities are unusually high for 
secondary forest, perhaps a result of recent habitat loss 
and consecutive concentration of individuals in the re
maining forests (Ancrenaz e t  a l. 2004).

While Bornean orang-utans have already been geneti
cally studied (e.g. Zhi e t a l. 1996; Warren e t a l. 2000, 2001), 
the present study is the first to be carried out on wild ani
mals (as opposed to individuals mostly sampled in zoos or 
in and around rehabilitation centres). Two other important 
specificities of the present work are: (i) the large number 
of individuals and loci typed (14 loci typed for 200 indi
viduals), and (ii) the high proportion — c. 20% — that these 
individuals represent compared to the estimated number

© 2005 Blackwell Publishing Ltd, Molecular Ecology, 14, 441-456

of individuals present in the sampled region (Ancrenaz 
e t  al. 2004). Specifically, we examine genetic structure within 
and among the remaining sampled forest fragments and 
determine the effect of natural barriers such as the Kinaba
tangan River, on isolation. We estimated diversity within 
and migration rates among forest patches on the same and 
different sides of the river. Our analysis includes an 
attempt to assess the genetic effects of both past and ongo
ing dispersal. The applicability of these data to be incor
porated in conservation assessment in a management plan for 
P. p y g m a e u s  in the region is discussed.

M aterials and m ethods

The Lower Kinabatangan flood plain and the Lower 
Kinabatangan Wildlife Sanctuary

The Lower Kinabatangan flood plain (5o20'-5o45' N, 
117°40'-118°30' E) is located in eastern Sabah, Malaysia. 
The flood plain is a patchwork of different habitat types: 
riverine forest, seasonally flooded forest, swamp forest,
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dry dipterocarp forest,.nipa palms, and mangrove (Azmi
1998). However, since the mid 1950s, the whole Lower 
Kinabatangan region has been subjected to large-scale 
commercial timber exploitation and agriculture. During 
the past 20 years, postlogging land conversion to oil palm 
plantations has been extensive (McMorrow & Talip 2001).

On 16 January 2002, the proposed Lower Kinabatangan 
Wildlife Sanctuary (LKWS) was gazetted and now com
prises 10 sectors or lots (lots 1-10, with lot 10 divided into 
10A-C) chosen to increase connectivity between remain
ing forest reserves (Fig. 1). The aim of this sanctuary is to 
transform the 27 000 ha of flood plain into a forest corridor 
connecting the coastal mangrove swamps with dry land 
forests upriver.

Sampling

Shed hair in nests and faeces were collected from wild 
orang-utans during boat surveys carried out alongside the 
Kinabatangan River (between Abai village and Lokan 
village, corresponding to a 280 km river tract, see Fig. 1) 
between January and May 2001. When a fresh nest (between 
one and five days old -  see Goossens et al. 2004) was spotted, 
shed hairs were collected. Shed hairs were also collected 
during line transects made to estimate nest densities 
(Ancrenaz et al. 2004). Faecal samples found below fresh 
nests were collected as well. When an orang-utan was 
directly encountered it was followed until defecation and 
the faecal sample was collected.

Hair samples were stored in plastic bags, whereas faecal 
samples were stored in 50 mL BD Falcon™ tubes with 90% 
ethanol. Precautions were taken to avoid human contami
nation during the sampling by using sterile gloves and 
implements (sterilized forceps). GPS coordinates were 
taken for each sample.

Shed hairs from 176 different nests, and faecal samples 
from 71 orang-utans were collected and could be assigned 
to nine sampling regions S1-S9 (Fig. 1), which corresponds 
mostly to the lots described above, except that samples in 
lots 5 and 7 were grouped into S5. In the 32 cases where 
faecal samples were collected below fresh nests, they were 
used instead of shed hairs collected in the nest. Thus, of a 
total of 279 samples collected, 247 samples were selected 
for genetic analyses.

DNA extraction

For shed hairs (144 samples), DNA was extracted using a 
polymerase chain reaction (PCR) buffer method (Vigilant
1999). Faecal extractions (103 samples) were carried out in 
a Class I microbiological safety hood, using the QIAamp 
DNA Stool Mini Kit (QIAGEN) and following a protocol 
for orang-utans detailed in Goossens etal. (2000a) and 
Utami et al. (2002).

Table 1 Characteristics of 14 human-derived microsatellite loci 
used in Pongo pygmaeus

Locus ID Ta (°C), time (s) Size (bp)

D5S1457 49,45 111-139
D5S1470 51,30 208-236
D1S550 60,30 128-166
D2S1326 60,30 200-224
D3S2459 60,45 200-216
D4S1627 55,30 188-208
D4S2408 64,45 274-306
D5S1505 64,30 211-243
D6S501 60,30 153-181
D13S321 60,45 200-216
D13S765 60,45 185-205
D12S375 60,30 172-188
D2S141 64,45 138-150
D16S420 58,30 178-194

Ta = optimal PCR annealing temperature.

D N A amplification and microsatellite genotyping

Fourteen human-derived microsatellite loci were used: 2 
dinudeotide lod D2S141 and D16S420; and 12 tetranudeotide 
lod D5S1457, D5S1470, D1S550, D2S1326, D3S2459, D4S1627, 
D4S2408, D5S1505, D6S501, D13S321, D13S765 and D12S375 
(Table 1) (see also Coote & Bruford 1996; Goossens etal. 
2000b, 2002; Zhang et al. 2001; Utami et al. 2002). All forward 
primers were fluorescently labelled. All PCR reactions were 
carried out in 12.5 pL total containing 2.5 |iL DNA extract. 
A multiple-tube procedure was conducted for each faecal 
extract according to Taberlet et al. (1996). For each extract, 
three amplifications were performed using the D5S1457 
locus (Goossens et al. 2000a). After that, the most successful 
extract (three positive PCRs) for each sample was amplified 
seven times for each locus to avoid typing errors (see 
Taberlet et al. 1999 for a review). Amplifications were carried 
out in 12.5 pL [10 mM  Tris-HCl (pH 9.0), 200 mM (NH4)2S04, 
50 pM  each dNTP, 1.5 m M  MgCl2, 5ng of BSA, 0.1 U 
AmpliTaq Gold DNA polymerase (Perkin Elmer), 0.5 pM 

reverse primer, 0.5 pM  fluorescent (TET, FAM or HEX) 
forward primer, 2.5 pL of DNA extract]. PCR amplification 
of 50 cycles was carried out for each locus separately (initial 
denaturation 94 °C for 10 min, 94 °C for 15 s, 45 °C to 52 °C 
for 15-30 s, 72 °C for 30-60 s). The annealing temperature 
was optimized for each locus (Table 1). All PCR products 
were separated on an acrylamide gel using an ABI PRISM 
377 DNA sequencer. Gels were analysed using g e n e s c a n  

a n a ly sis  2.0 and g e n o t y pe r  1.1 software.

Genetic diversity and population structure

Genetic diversity was measured as the mean number of 
alleles per locus (MNA), observed (Hq), and expected (HE)
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heterozygosities (Nei 1978). Linkage disequilibrium (LD) 
was estimated across all pairs of loci using the correlation 
coefficient of Weir (1979). A permutation approach was used 
to determine which LD values were significant. Wright's F 
statistics were estimated according to Weir & Cockerham 
(1984) and their departure from the null hypothesis (no 
genetic differentiation for F ^, and Hardy-Weinberg equi
librium for Fb and was tested using permutations. 
Analyses were performed using the g e n e t ix  software 
(Belkhir et al. 1996/1997, available at http://www.University- 
montp2.fr/-genetix/genetix/genetix.htm).

Differentiation between river sides

As the Kinabatangan River represents a natural barrier to 
the movement of orang-utans, we divided the samples into 
two sets called River Side 1 — RSI = (SI, S3, S6, S8) — and 
River Side 2 — RS2 = (S2, S4, S5, S7, and S9). We then looked 
at the distribution of pairwise Fsr values between samples 
belonging (i) to the same side of the river (RSI vs. RSI and 
RS2 vs. RS2) and (ii) to different sides (RSI vs. RS2). We 
then compared them to the set of all pairwise ŜT values 
(i.e. regardless of the river side). For simplicity of notation 
we shall refer to these sets as FCT(RS1)/ Fsr(fts2y ̂ ST(RSi-2y an(3 
FST(tot>' respectively. We were interested in two different 
statistical tests. In the first, we compared the FCT(RS1)/ 
ŜT(RS2) ar*ti distributions to the Fstood distri

bution. This allowed us to determine whether each subset 
was significantly different from a random subsample of all 
the Fgj values. This was done by repeatedly permuting the 
set F^j-(jOT> values to create three sets of Fgy values con
taining the same number of Fgj values as F ^ ^ y  FST(RS2) 
and FgT(RS1_2), respectively. At each permutation and for 
each set we calculated the mean ŜT value. The observed 
(real) average ŜT of each subset was then compared to 
the distributions obtained. In the second set of tests, we 
compared the FCT(RS1) and Fsrot^) distributions to the dis
tribution of F g j^ .y  values. The randomization was done 
by sampling from the distribution of FCT(RS1_2) values one 
subset of Fgy values with the same size as the F ^ ^ ,)  (or 
FST(RS2)) set- The distribution of means was then compared 
to the real mean. This allowed us to test whether Fgj values 
within each river side were significantly lower than those 
observed between river sides.

In order to further assess the effect of the river in the pat
terns of genetic differentiation and to test the correlation 
between genetic and geographical distance, a series of two- 
way Mantel tests was carried out (Mantel 1967). In each of 
these tests the matrix of pairwise values was used 
against four different matrices of geographical distances. 
The four geographical distances were built in order to 
account for the potential role of the Kinabatangan as a geo
graphical barrier. In the first case, the river was ignored 
and a simple Euclidian distance was computed among all

samples. In the three other cases three different assump
tions were made regarding the point at which orang-utans 
were possibly able to cross the river, whereas distances 
between samples from the same side were computed by 
following the river. The three hypothetical crossing points 
were assumed to be (i) at the level of S8 and S9 (the most 
upstream samples used) where the river is approximately 
200 m wide, (ii) approximately 150 km upstream of S8 and 
S9, which is probably the closest location where the river is 
narrow enough to allow orang-utans to use fallen trees 
to cross the river, and (iii) at the Kinabatangan source, 
approximately 260 km upstream of S8 and S9. All the per
mutation tests above, including the Mantel test, were per
formed using the R statistical package.

Immigration between river sides

Wilson & Rannala (2003) recently developed a Bayesian 
method to estimate rates of recent immigration in a set of 
linked populations using multilocus data. The method is 
based on a simple model where individuals are exchanged 
between populations over generations. The probability of 
observing a particular genotype in a given population can 
be expressed as a function of the model's demographic 
parameters (this probability is the likelihood). These 
parameters include the allele frequencies, the immigration 
rates {m-, the proportion of individuals in population; that 
originate from population t), the inbreeding level in each 
population (Ff being the inbreeding in population i), and 
the time at which the immigration event took place (the 
method currently accounts for immigration events taking 
place either at the sampling generation tv  or one genera
tion before, t2)• Based on this likelihood function, Wilson & 
Rannala (2003) use a Markov chain Monte Carlo (MCMC) 
approach to explore the parameter space and obtain 
samples from the posterior distributions of the parameters 
of interest. One interesting property of this method is that, 
contrary to most methods currently available, it does not 
require samples to be at Hardy-Weinberg equilibrium 
(HWE). Also, an advantage over assignment methods is 
that migration events are accounted for in the calculation 
of allele frequencies, and hence in the likelihood. This 
is typically ignored by assignment methods. Finally, it is 
important to note that the method allows to estimate 
immigration rather than migration rates.

The method is implemented in the software bayesass 

(h ttp ://www.rannala.org/labpages/software.html). The 
software allows the user to change parameters affecting 
the proposal distributions, namely deltap, deltam, and deltaF, 
which define the manner in which the parameter space is ex
plored during the MCMC (details on the proposal distribu
tions can be found in Wilson & Rannala 2003). Using different 
values as we did can be crucial as some choices could 
produce sticky Markov chains that take a long time to
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converge (e.g. Gilks etal. 1996). Different summaries of 
MCMC runs and some parameter distributions can be 
saved and examined. One reason for saving only sum
maries rather than the chains is that the number of para
meters of potential interest can grow very quickly with 
the number of populations. However, we found that not 
having access to the chains could be problematic (see below). 
In particular, it can be critical to check that equilibrium has 
been reached before using summaries (e.g. Chikhi etal. 
2001). The code was therefore modified and recompiled to 
produce an output with the F, and the mti, thus producing 
outputs with 2n columns for data from n populations (i.e. 
for each step of the MCMC a line with the n following num
bers is produced: F1 ... Fn mu mn  ... mnn). The modifica
tions of the code and the corresponding executable were 
provided to G. Wilson and can be obtained from him. The 
results presented here for the comparison of the two river 
sides were obtained from five independent runs with dif
ferent starting values for the random number generator 
and different values of the proposal distributions (the 
parameters deltap, deltam and deltaF varied between 0.05 
and 0.35). Wilson & Rannala (2003) ran their data for 
3 x 106 iterations discarding the first 106 as a bum-in. We 
first used these conditions but decided to increase the total 
number of iterations to check convergence on very long 
runs. The number of iterations were 10,15 (two runs) and 
20 x 106. In order to test whether our modifications of the 
code did not make any change, the data were run for 
20 x 106 iterations and the results compared to the original 
ones from the 5 runs. They were not distinguishable from 
them.

Assignment tests

Assignment tests were also performed on the data to deter
mine whether it was possible to assign individuals to their 
population or river side of origin. Different approaches 
have been proposed to estimate assignment probabilities 
(e.g. Paetkau et al. 1995; Comuet et al. 1999). We applied the 
method of Rannala & Mountain (1997) because it has been 
shown to provide the best assignment results by simula
tions (Comuet et al. 1999). Note that most methods usually 
provide similar results unless sample sizes (in terms of 
individuals and number of loci typed) are small. Because 
we are interested in the role of the Kinabatangan River as 
a barrier to orang-utans movement, the exact method 
chosen was not crucial. This point is discussed below (see 
Cegelski et al. 2003; Berry et al. 2004; and references therein 
for in-depth analysis and comparison of assignment methods). 
Rannala and Mountain's method is implemented in the 
g e n e c l a s s  software. Simulations were used to rank 
'populations' (i.e. samples SI to S9) and determine the most 
probable sources for all 200 individuals. For each indi
vidual, we then checked whether the most probable, second

most probable,... sample was from the same river side as 
the individual analysed. Using only the most probable 
source is not necessarily a good choice given that the 
second most probable could be from the other side. We 
thus decided to apply a 'majority rule' algorithm and check 
the most probable river side among the k most probable 
samples. The value of k could in principle be any value 
between 1 and 9. However, the value k = 1 corresponds to 
choosing the most probable sample. Taking k = 9 will lead 
us to take all populations which would not make sense 
either. Given that there are four samples from RSI and five 
from RS2, even if the assignment was perfect, the most 
probable sample from the opposite river side would 
necessarily appear on the 5th and 6th rank, respectively. 
This also means that the majority rule must account for the 
higher probability of having an individual assigned to RS2 
by chance. For individual from RSI the majority rule 
applies if more than 4/9th of k comes from RSI, whereas 
for individuals from RS2, the rule applies if more than 5 / 
9th of k individuals are assigned to RS2. Because k cannot 
be too small or too large for the reasons given above, we 
decided to apply the majority rule to the first five and six 
samples in the assignment ranking.

Results

Genetic typing

We were able to reliably amplify DNA from 201 out of 247 
samples. Two individuals had the same genotype at all 14 
loci and corresponded to samples taken from two fresh 
nests c. 100 m apart. With the exclusion of this case, no 
other pair of samples had the same genotypes at the 14 loci. 
We found one pair of individuals identical at 13 loci and 
another pair identical for 12 loci. Two pairs were identical 
at 11 loci and three pairs had 10 loci in common. While we 
cannot exclude the possibility that the two genotypes 
above were from different individuals, they were 
considered to be from the same individual, leaving a total 
of 200 different individuals, corresponding to a total of 
200*14 = 2800 genotypes. Of these only seven genotypes 
(025%) were not reliable using the multiple-tubes approach 
and were therefore coded as missing genotypes.

Genetic diversity, departure from Hardy-Weinberg 
equilibrium (HWE) and LD

All the 14 loci used in the study were polymorphic, with 
between five and nine alleles per locus across all sam
ples (Table 2). The mean number of alleles (MNA) per 
locus ranged between 4.1 (S3) and 4.9 (S4, S5 and S9); the 
lowest was 3.3 (S7, which only has a sample size of five). 
Average HE values were high (0.66-0.75, Table 2). Average 
H0  values were slightly higher (0.67-0.77), generating slightly
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Table 2 Average number of alleles across samples (Na), observed (Hq) and expected (HE) heterozygosities and departures from Hardy- 
Weinberg proportions (FIS) for all samples and for all loci

Sample SI S2 S3 S4 S5 S6 S7 S8 S9
Locus n 27 26 22 20 27 33 5 24 16

D5S1457 HE 0.766 0.773 0.637 0.663 0.718 0.734 0.778 0.699 0.804 7
Ho 0.852 0.654 0.727 0.600 0.593 0.818 1.000 0.667 0.750
f IS 0.115 0.157 -0.145 0.097 0.178 -0.116 -0.333 0.047 0.070

NS NS NS NS NS NS *»* NS NS
D5S1470 He 0.750 0.724 0.802 0.685 0.744 0.733 0.644 0.756 0.752 8

Hq 0.963 0.769 0.727 0.800 0.667 0.758 0.600 0.750 0.562
fis 0.290 -0.064 0.096 -0.174 0.105 -0.034 0.077 0.008 0.258

»** NS NS NS NS NS NS NS NS
D1S550 He 0.757 0.744 0.646 0.745 0.789 0.772 0.689 0.551 0.754 7

Hq 0.778 0.692 0.773 0.750 0.556 0.697 0.600 0.458 0.750
f«s 0.027 0.070 -0.202 -0.007 0.300 0.098 0.143 0.172 0.006

NS NS NS NS ** NS NS NS NS
D2S1326 He 0.746 0.762 0.780 0.700 0.723 0.792 0.711 0.840 0.720 7

Hq 0.815 0.731 0.864 0.526 0.556 0.849 0.800 0.708 0.625
0.094 0.041 -0.110 0.253 0.235 -0.072 -0.143 0.159 0.135
NS NS NS NS * NS NS NS NS

D3S2459 He 0.640 0.782 0.624 0.6% 0.735 0.731 0.733 0.726 0.740 5
Hq 0.778 0.654 0.682 0.600 0.630 0.697 0.800 0.667 0.750
f is 0.220 0.167 -0.0% 0.141 0.146 0.047 -0.103 0.083 -0.014

NS NS NS NS NS NS NS NS NS
D4S1627 He 0.665 0.647 0.680 0.768 0.693 0.717 0.689 0.719 0.796 6

Hq 0.815 0.769 0.727 0.750 0.704 0.758 0.800 0.875 0.812
fis 0.231 -0.193 -0.072 0.024 -0.016 -0.058 -0.185 -0.223 -0.021

** NS NS NS NS NS NS * NS
D4S2408 He 0.658 0.624 0.537 0.735 • 0.639 0.693 0.533 0.662 0.704 5

Hq 0.630 0.577 0.636 0.700 0.741 0.667 0.800 0.708 0.625
** 0.043 0.076 -0.190 0.048 -0.162 0.039 -0.600 -0.071 0.115

NS NS NS NS NS NS NS NS NS
D5S1505 He 0.736 0.768 0.724 0.817 0.778 0.788 0.600 0.840 0.827 9

H0 0.926 0.769 0.773 0.800 0.808 0.758 0.800 0.792 0.625
Tis 0.265 -0.001 -0.069 0.021 -0.039 0.039 -0.391 0.059 0.250

»♦ NS NS NS NS NS *** NS »»
D6S501 He 0.547 0.622 0.506 0.760 0.698 0.626 0.622 0.622 0.706 8

Hq 0.556 0.654 0.545 0.850 0.704 0.636 0.600 0.708 0.875
f is 0.016 -0.052 -0.079 -0.122 -0.008 -0.017 0.040 -0.143 -0.250

NS NS NS NS NS NS NS NS NS
D13S321 He 0.800 0.737 0.627 0.7% 0.792 0.792 0.600 0.798 0.772 5

Hq 0.808 0.731 0.636 0.800 0.741 0.758 0.800 0.792 0.875
f lS 0.010 0.008 -0.016 -0.005 0.066 0.044 -0.391 0.008 -0.138

NS NS NS NS NS NS NS NS NS
D13S765 He 0.752 0.581 0.688 0.717 0.705 0.707 0.467 0.728 0.514 6

H0 0.731 0.577 0.773 0.800 0.667 0.697 0.600 0.750 0.438
f is 0.029 0.007 -0.126 -0.120 0.055 0.015 -0.333 -0.031 0.153

NS NS NS NS NS NS »*» NS NS
D12S375 He 0.639 0.606 0.575 0.679 0.680 0.671 0.733 0.662 0.724 5

H0 0.741 0.731 0.455 0.850 0.704 0.697 0.800 0.833 0.812
0.162 -0.212 0.213 -0.259 -0.036 -0.039 -0.103 -0.265 -0.127
NS NS NS * NS NS NS * NS

D2S141 He 0.677 0.594 0.809 0.768 0.722 0.760 0.778 0.802 0.782 6
Hq 0.704 0.577 0.818 0.800 0.778 0.758 0.800 0.913 0.812
Pis 0.040 0.028 -0.012 -0.043 -0.079 0.004 -0.032 -0.142 -0.040

NS NS NS NS NS NS NS NS NS
D16S420 He 0.686 0.664 0.638 0.759 0.804 0.744 0.778 0.784 0.855 8

Hq 0.680 0.577 0.727 0.800 0.852 0.697 1.000 0.833 0.938
f.s 0.009 0.133 -0.143 -0.056 -0.060 0.064 -0.333 -0.065 -0.100

NS NS NS NS NS NS NS NS NS
Total

He 0.701 0.688 0.662 0.735 0.730 0.733 0.668 0.728 0.746
H0 0.770 0.676 0.705 0.745 0.693 0.732 0.771 0.747 0.732

0.099 0.017 -0.065 -0.014 0.052 0.002 -0.177 -0.027 0.020
f,s »»» NS NS NS NS NS * NS NS
MNA 4.500 4.714 4.143 4.857 4.857 4.714 3.286 4.786 4.929

NS = nonsignificant, * = P< 0.05, **P < 0.01, ***P < 0.001. n = sample size.
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Table 3 Pairwise Fgj values

SI S2 S3 S4 S5 S6 S7 S8 S9

SI (n = 27) 0.000 0.051 0.029 0.056 0.040 0.015 0.075 0.022 0.045
S2 (m = 26) *** 0.000 0.074 0.038 0.014 0.037 0.022 0.061 0.042
S3 (n = 22) *»» *** 0.000 0.092 0.067 0.028 0.120 0.027 0.079
S4 (n = 20) »»* »** *»* 0.000 0.013 0.046 0.029 0.065 0.019
S5(n = 27) »»» »* **» * 0.000 0.028 0.014 0.054 0.015
S6 (« = 33) *»* ♦*» **» 444 **» 0.000 0.049 0.018 0.033
S7 (n = 5) »»» NS *** * NS ** 0.000 0.079 0.020
S8 (n = 24) »** *** »»» »»* *»» *** *** 0.000 0.038
S9 (« = 16) »»» **» *** »* * ♦** NS 444 0.000

NS = non significant, * = P < 0.05, **P < 0.01, ***P < 0.001. n = sample size.

negative FIS values (average FK = -0.019, NS) (Table 2). 
When all samples were considered, a significant departure 
from Hardy-Weinberg was observed with an average Pi? 
of 0.024 (P<0.01). However, as the non significant FB 
values show, this appears to be mostly caused by dif
ferentiation between samples (Fsr = 0.040, P < 0.001) and 
is therefore probably the result of a Wahlund effect.

We found 95 significant LD values (at a  = 0.05) across all 
sampled regions (Appendix 1). S7 exhibited only two signi
ficant LD values, most probably because of its small sample 
size (n = 5). Most samples appear to have between six and 
10 significant LD values, but SI and S3 have 18 and 22 sig
nificant LD values, respectively. Despite this difference, 
we could not see any clear pattern across samples. For 
instance, no pair of loci was exhibiting a significant LD in 
more than three samples, the average being 1.07 popula
tion per locus pair with some variation across regions. For 
instance SI and S3 only share three pairs of loci in LD. 
These results indicate that LD is most likely a result of the 
demographic history of the populations including events 
such as admixture or drift, rather than linkage.

Genetic differentiation between samples and between river 
sides

Overall, we found a limited but significant level of genetic 
differentiation among the samples (average Fgr = 0.04, 
P < 0.001). Pairwise Fgr values range between 0.01 and 0.12 
and most are significant (Table 3, Fig. 2). As described in 
the Materials and methods section, it is possible to divide 
the samples into two sets, RSI = (SI, S3, S6, S8) and 
RS2 = (S2, S4, S5, S7, S9), to test whether the Kinabatangan 
River represents a natural barrier to the movement of 
orang-utans. The distribution of pairwise FST values 
between samples belonging (i) to the same side of the river 
(Fst(rsi) an(* ̂ ST(RS2>)anc* (ii) to different sides ( F s r m ^  can 
be compared to the set of all pairwise ŜT values. Histo
grams of these values are represented in Fig. 2. The figure 
shows that, on average, i”ST values between samples from

the same side of the river (second and third panel from 
Fig. 2, average F g r-0  .023 and 0.026, respectively) are 
lower than FCT values between samples from different sides 
(lower panel of Fig. 2, average Fgj = 0.058). The permuta
tion tests (all tests were significant at 0.1%, with the 
exception of the fst(bs\) vs* ^srcrorv which was significant 
at 5%) we performed allow us to demonstrate that (i) the 
three lower panels are not random sets of F ^  values, (ii) the 
ŜT values within each river side are significantly lower 

than the average ŜT across all samples, (iii) the ŜT values 
between river sides are significantly larger than the aver
age Fsr across all samples, and (iv) the ŜT values within 
each river side are significantly lower than those observed 
between river sides.

Results of the Mantel tests performed with different 
measures of geographical distances (see Materials and 
methods) indicate that there is significant correlation 
between geographical and genetic distance when the river 
is considered to be a barrier (r = 0.54,0.72,0.73, P < 0.01, for 
the three distances used), but there is no correlation when 
the simple Euclidian geographical distance is used for all 
samples regardless of the river side (r = -0.07, NS). The 
correlation greatly increases between the case where we 
assume that orang-utans could cross at the level of S8 and 
S9 (where the river is still 200 m wide r = 0.54) and 150 km 
upstream (and the river starts to be reasonably narrow, 
r = 0.72). The correlation does not, however, increase with 
greater distance (i.e. when we assume that orang-utans 
could only cross the river at its source, r = 0.73).

Immigration rates

When samples were analysed using one river side vs. the 
other side, we found that the method of Wilson & Rannala 
(2003) produced highly consistent outputs across the runs, 
with clear indications that immigration rates are extremely 
low. For RSI, the posterior mean was 0.988, with the most 
probable value at 0.998 (Fig. 3). For RS2, the posterior mean 
was 0.971, with the most probable value at 0.982 (Fig. 3).
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Therefore, while it is impossible to completely reject the 
existence of movement across the river, there is very strong 
support for very low levels of migration despite the limited 
genetic differentiation. In fact, the method allows the 
determination for each individual (i.e. genotype) a 
posterior probability of being an immigrant. In such cases, 
it is also possible to estimate whether the multilocus geno
type is an immigrant or the descendant of an immigrant in 
the preceding generation. These results show that for most 
individuals (156 out of 200), the probability of being a local 
rather than an immigrant is greater than 95%. For 41 of the 
remaining 44 individuals, this probability was not as high 
but remained larger than that of being an immigrant. For 
three individuals, all of which from RS2 (S4, S7 and S9), the 
probability of being an immigrant was larger than that of 
being local, even though the latter probability was still 
non-negligible (20,40 and 44%, respectively). It is difficult 
to determine whether these individuals could indeed be 
immigrants or locals because of the limited f sr values 
observed. In other words, most individuals are more likely 
to come from the river side they were sampled in, and for 
three individuals, the odds are that they could come from 
both sides.

When the method was applied using the nine samples 
(S1-S9) independently (i.e. allowing the estimation of 
immigration rates both within and between river sides), 
we found that the method produced inconsistent results 
across runs for some parameters, such as the F,. In order to
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determine whether these inconsistencies were a result of 
the lack of convergence of some parameter for some values 
of deltap, deltam or deltaF (i.e. inefficient proposal distri
butions), we modified the outputs (see Materials and 
methods). This allowed us to determine that migration rates 
were probably too high between samples from the same 
side to allow the method to work (this was confirmed by 
discussions with G Wilson). The method was therefore 
not used further at this scale. We note however, that the 
method is expected to become inefficient when immigra
tion rates are greater than 66% (Wilson & Rannala 2003). 
Our results could thus indicate that individuals sampled in 
the different lots of each river side have relatively high 
probability of being immigrants from other neighbouring 
lots. This probability cannot be safely estimated because of 
the lack of convergence but is likely to be high.

The assignment analysis confirms these results but it 
indicates as well that for 11 individuals (five in RSI and six 
in RS2), the most probable sample of origin is from the 
other river side. Applying the majority rule defined above, 
we find that among the five most probable samples, the 
river side of origin is more often represented in 168 indi
viduals out 200. Applying the same rule to the six most 
likely sources increases this number to 181. In other words, 
there are between c. 20 and c. 35 individuals which are 
most probably assigned to the opposite river side.

Discussion

Genetic diversity, individual identification and 
population sizes

The results presented here show that the orang-utans sampled 
in the Lower Kinabatangan flood plain exhibit a high level 
of genetic variability despite the fragmentation of their 
environment. The diversity exhibited by the 14 human- 
derived microsatellite loci was high enough to permit an 
individual genetic identification of all 200 orang-utans 
typed in the study, which could prove particularly valuable 
for future studies of paternity assessment and relatedness.

Given the current census size estimates of approxi
mately 1100 individuals (Ancrenaz et al. 2004), the genetic 
diversity observed in the Lower Kinabatangan orang
utans is surprisingly high, suggesting that orang-utans are 
not at mutation-drift equilibrium. This is supported by the 
relative lack of rare alleles, typically observed in popula
tions that have been subject to a demographic bottleneck 
(e.g. Nei et al. 1975). Indeed, such populations are expected 
to first lose their rare alleles. As HE is little affected by rare 
alleles (the square of their frequency is negligible), high HE 
values can be observed long after the bottleneck has taken 
place (Nei et al. 1975; Chikhi & Bruford in press). These 
results are also in agreement with the very large numbers 
thought to have existed in the last centuries and millennia

across Borneo (Rijksen & Meijaard 1999; Delgado & van 
Schaik 2000), but do not allow us to determine whether the 
decrease in orang-utan numbers is recent or ancient.

One possibility is that the signal we detect corresponds 
to the slow decrease of orang-utans since the Pleistocene 
because of a combination of climate change and prehistoric 
him ting (Delgado & van Schaik 2000). It is possible, as a 
rough approximation, to estimate the long-term effective 
size, Ne, compatible with the observed level of genetic 
diversity as measured by HE. Under the stepwise mutation 
model and with a mutation rate between 10~3 and 10~4, we 
find that Ne would have to be between c. 1500 and 17 000 
(Ohta & Kimura 1973). While such Ne estimates should not 
be taken at their face value, they are higher than the census 
size estimates and therefore confirm that the variability 
present in the Lower Kinabatangan is 'surprisingly high'. 
This result is further confirmed by the fact that in using 
human-derived microsatellites, there is likely to be an 
ascertainment bias towards underestimating genetic diversity 
(Ellegren et al. 1997), and hence in orang-utans.

Another possibility is that the pattern of high diversity 
with few rare alleles and a small census size corresponds to 
much more recent changes, namely the anthropogenic 
destruction and fragmentation of the habitat that has taken 
place in the last century and in particular during the last 
decades. In the latter ca$e, the high level of genetic diver
sity currently observed could be explained by three factors: 
(i) the presence of very large numbers throughout the 
Kinabatangan area over long periods of time, as noted 
above, (ii) the very recent habitat loss and degradation, 
which may have led to the concentration of the surviving 
individuals in the remaining forest patches along the river, 
and (iii) the long generation time and lifespan of the spe
cies which allowed populations to retain diversity for long 
periods after habitat loss. One consequence of this would 
be that high genetic diversity is transient and may only be 
present for a short time, as it would be 'concentrated' in 
adults which may soon be unable to reproduce.

A detailed exploration of past orang-utan demography 
has been carried out by Goossens et al. (submitted) and 
thus will not be developed here. We only note that when 
formal statistical tests are performed a strong and highly 
significant signal for a past demographic bottleneck is 
demonstrated confirming that the high level of genetic 
diversity observed in the Lower Kinabatangan is the rem
nant of an ancient large population.

Population structure, isolation by distance, and 
immigration rates

The analysis of the population structure showed a moderate 
(but significant) level of genetic differentiation between 
samples that are not geographically distant (average ŜT 
-0.04). When only samples from the same side of the river
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were analysed the average F ^  was significantly lower (F^ 
-0.025) than when samples from across the river were 
analysed (Fyj.~0.06). These differences indicate that the 
Kinabatangan River represents a significant barrier to gene 
flow. The role of the Kinabatangan as a barrier is confirmed 
by our analysis of the correlation between pairwise ^sr 
values and the four geographical distances. When we 
assumed that orang-utans were able to cross the river in far 
upstream regions where the river's width becomes much 
smaller, we found that there was a significant correlation 
between geographical and genetic distance. This correlation 
disappeared when the river was artificially ignored. We 
also found that the correlation increased when we assumed 
that crossing the river was equivalent to travelling approxi
mately 300 km. We thus recalculated the correlation 
between the two matrices by incrementing the distance 
from S8 and S9 to the crossing point by multiples of 10 km 
(corresponding to an increase of 20 km by going upstream 
for 10 km and back). We find that the correlation increases 
rapidly for the first 100 km (corresponding to an increase 
in distance of 200 km) from r = 0.52-0.69 but not after 
c. 150 km (i.e. 300 km in total).

Finally, the analysis of immigration rates allowed us 
to determine that rates of recent immigration were most 
probably close to zero across the river. We could not 
exclude the possibility that some individuals could have 
crossed the river and even found that assignment tests 
were sometimes favouring the opposite river side as the 
most probable area of origin. Practiced knowledge of the 
sampled area suggests that it is extremely unlikely if not 
impossible for orang-utans to cross the Kinabatangan. The 
only bridge that could be used corresponds to the very fre
quented Sandakan-Lahad Datu road and is thus difficult to 
cross. Moreover, it would require the orang-utans to cross 
a village on one end. This suggests that the results obtained 
using the assignment method are either a result of the fact 
that intermediate genotypes can be 'generated' by both 
river sides (i.e. their likelihood is non-negligible using both 
riversides frequencies) or that they may come from other 
nonsampled regions. Another possibility is that they reflect 
the uncertainty resulting from the limited FsT values between 
samples and river sides. In the immigration analysis this 
possibility is the most probable because of the decrease in 
average FsT values obtained by pooling all samples from 
either river sides (the ^sr decreases from 0.058 to 0.036). 
Wilson & Rannala (2003) applied their method to two data 
sets exhibiting much higher differentiation levels. For example, 
in the wolf data used it appears that out of 36 pairwise FsT 
values, only five were below 0.04, and 25 were larger than 
0.058 (the average F ^  between the river sides) with values 
up to 0.188 (Carmichael et al. 2001). This explains the finer 
resolution obtained by Wilson & Rannala (2003).

These results are compatible with a model in which 
orang-utans move between neighbouring areas but do not

cross the river, at least in the study area. In such a model, 
gene flow between the two river sides is maintained over 
generations through individuals crossing the river some
where upstream. We cannot identify where orang-utans 
are most likely to cross the river, but in an isolation by 
distance model, the correlation between genetic and geo
graphical distance increased when the crossing point was 
moved upstream until it reached values of 100-150 km. 
Put in a different way, the average ^sr observed between 
the river sides is equivalent to travelling approximately 
200-300 km. Interestingly, these distances do correspond 
to regions where the river becomes narrower and crossing 
more plausible.

Previous studies on Borneo orang-utans have mostly 
used animals from rehabilitation centres. Warren etal. 
(2001) analysed mitochondrial DNA data from 41 individuals 
originating from six locations across Borneo including a 
sample from the Sepilok Orangutan sanctuary in Sabah. 
They found very large pairwise ŜT values between the 
samples (with two exceptions all values were larger than 
0.48), and suggested that at least four biogeographical 
regions could be defined, namely (i) Southwest and Cen
tral Kalimantan, (ii) Northwest Kalimantan and Sarawak, 
(iii) Sabah, and (iv) East Kalimantan. Their study also sug
gested that the differentiation between these four regions 
could be very old (on the order of 860 000 years) and could 
therefore be a result of geographical barriers such as 
ancient river systems that separated populations during 
the colonization of the island from Sumatra. Our study 
confirms the potential role of rivers in isolating orang
utans at a much finer geographical scale. In an earlier study 
Warren et al. (2000), analysed orang-utans from East 
and West Kalimantan (the Indonesian part of Borneo) 
using five microsatellites with sample sizes between 10 
and 43 individuals depending on the locus. They found 
that Nei's distance between East and West Kalimantan 
samples were small and had a large variance. They con
cluded that there was no significant differentiation at this 
scale. This result is at odds with both our results and those 
of Warren et al. (2001). One possible reason for the appar
ent discrepancy is that the conclusion of Warren etal. 
(2000) was based on the calculation of Nei's genetic dis
tance and used small sample sizes. Comparison with our 
data is difficult, as they did not estimate ^sr values. For 
instance, their data indicated that diversity was higher 
within than between samples, which should not be inter
preted as a lack of genetic differentiation and is indeed in 
agreement with our results (an F ^  of 0.02 indicates that 
98% of the diversity is within sampled regions). We thus 
estimated Fsr values by using their Tables 1 and 2. The first 
provides allele frequencies and the second sample sizes for 
the different loci. Based on these tables we find that the 
single locus FsjS are 0.061, 0.044, 0.004, 0.009 and -0.012 
(i.e. 0.000). Thus, three loci essentially show no sign of
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genetic differentiation and two show values similar to 
those observed across the river or between the most differ
entiated samples from RS2 (Fig. 2). It is difficult to make 
strong conclusions from these calculations, and we can 
only note that more loci and more samples would be 
needed to have a better understanding of genetic differen
tiation at wider geographical scales.

Overall, our results show that significant genetic differ
entiation exists among orang-utan groups separated by 
less than 200 km. Future studies should investigate the role 
played by human barriers such as oil palm plantations, 
riparian villages, or roads in the development of genetic 
differentiation between remaining forest patches. For 
instance, the Sandakan-Lahad Datu road is a very fre
quented road and may provide a significant barrier to 
current and future gene flow.

Some consequences for the conservation of orang-utans

In the present study we have shown that LK orang-utans 
have maintained relatively high levels of genetic variability 
despite the increasing fragmentation of their habitat. While 
this may be seen as good news for the conservation of 
orang-utans, some caution should be taken. The main
tenance or increase of current population sizes, including 
gene flow (through translocation for instance), are required 
to mitigate against significant loss of genetic diversity. Our 
results suggest that orang-utans move rather freely between 
lots from the same side of the river and that little, if any, 
movement seems to take place across the Kinabatangan 
River in the study area. Current orang-utan populations 
may continue to decrease in many of the forest lots 
investigated even if forest fragmentation stops. For example, 
in some lots the number of individuals estimated to 
survive is already low, as in lot 8 (corresponding to S7, see 
Fig. 1) where Ancrenaz et al. (2004) estimated the census 
size to be approximately 22. In such lots, genetic drift is 
going to reduce genetic diversity very quickly. We simulated 
genetic drift in this lot and found that two alleles will be 
lost every three generations for the next 10 generations at 
least. Given that these simulations optimistically assume 
that the census size is equal to the effective size, the 
situation is likely to be much worse. There is therefore an 
urgent need to maintain, and even increase, migration 
between lots. This could be done, for instance, by restoring 
forest corridors alongside the river banks and between lots. 
Translocation between lots from opposite sides of the river 
may be feasible because the differentiation is limited and a 
number of individuals were assigned to the opposite river 
side. However, we believe that such translocations should 
be avoided until other regions are sampled both upstream 
and away from the Kinabatangan River. Indeed, whereas 
we cannot exclude that nonsampled 'populations' could 
account for these individuals, we have good reasons to

think that orang-utans cannot cross the river in the area 
sampled. Of course, would population size keep decreasing, 
as could potentially happen in lot 8, translocation from any 
viable population would certainly be considered as a 
positive practical action. Whenever possible translocation 
between lots from the same side should be favoured. 
Moreover, wildlife surveys highlighted the importance 
of several areas in Sabah which need to be reconnected 
to each other (Ancrenaz et al. 2005). The time-frame for 
achieving corridor development may be hundreds of 
years, given the logistical challenges. Nonetheless, such 
systems are required if we are to conserve orang-utans and 
biodiversity in general in the long term.
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Appendix 1

Tests of linkage disequilibrium (LD). LD was measured using the correlation coefficient (Weir 1979). We represent the proportion of 
randomised values greater or equal to the observed correlation coefficient

Locus 1 Locus 2 SI S2 S3 S4 S5 S6 S7 S8 S9

D5S1457 D5S1470 0.9 76.6 92.9 39.5 98.1 19.4 3.1 24.2 27.1
D5S1457 D1S550 43.5 58.4 7.5 73.7 38.7 29.1 14.1 87.1 65.4
D5S1457 D2S1326 47 4.6 35.4 88 85.3 78.6 100 39.5 5
D5S1457 D3S2459 49.4 16.9 0 53.8 54.6 66.9 61.3 72.6 0
D5S1457 D4S1627 35.9 31 22.5 40.1 72.6 53.8 71 32.3 84.8
D5S1457 D4S2408 6 60.1 4.4 51.2 18.3 22.8 100 0.3 16.2
D5S1457 D5S1505 84.6 89.9 99.8 4.9 81.8 63.6 20.9 2.6 45.5
D5S1457 D6S501 4.8 58.4 9.6 49.8 4.4 13.5 10.2 88.8 21.8
D5S1457 D13S321 11.5 1.8 5.6 75.1 54.9 60.5 22.1 65 30.7
D5S1457 D13S765 77.1 31.2 16.8 78.9 9.4 32.9 37.9 19.7 11.2
D5S1457 D12S375 3 51.5 44.7 0.5 59.5 71.8 63.9 64 73.6
D5S1457 D2S141 4.6 76.4 33.1 20.7 51.1 28.5 62.5 39.2 9Z3
D5S1457 D16S420 29.4 22.8 11.7 73.4 78.5 29.4 12.6 45.4 35.8
D5S1470 D1S550 37.9 73 30.1 1.7 32.6 83 6.7 42.5 74
D5S1470 D2S1326 28 36.1 4 28 49.6 90.5 41.2 98.5 52.3
D5S1470 D3S2459 82.3 0.6 51.9 12.2 52.5 85.4 57.7 58.7 22
D5S1470 D4S1627 0.1 63.6 18 76 32.9 86.2 20 93 87.4
D5S1470 D4S2408 0.2 42.6 79.2 2.7 96.6 8.2 100 4.8 28.4
D5S1470 D5S1505 8.2 96.7 17.3 88.2 3.8 68.1 19.1 1.5 10
D5S1470 D6S501 16.9 3.9 22.4 74.9 17.1 1Z6 52.9 98.2 3
D5S1470 D13S321 62.7 30.5 24.1 68.3 51.6 16.3 20 72.1 87.9
D5S1470 D13S765 57 20.6 76.6 64.2 40.2 55.2 79.5 88.8 10.5
D5S1470 D12S375 17.8 89 17.1 56.6 71.3 99.1 6.9 11.6 64.9
D5S1470 D2S141 3.3 3.4 50.2 465 13.2 95.2 22.5 33.9 90.9
D5S1470 D16S420 30.7 80.9 63.3 0.2 76.5 52.4 2.7 85.7 33.9
D1S550 D2S1326 85.7 91.2 17.4 57.9 36.3 56.3 89.8 40.8 63.8
D1S550 D3S2459 81.6 6.2 35.9 87.1 71.5 42.1 49.4 42.1 55.4
D1S550 D4S1627 18.2 54.7 17.1 91.8 74.2 80.7 38.4 74.2 75.9
D1S550 D4S2408 46.3 49.1 32.3 0.6 43 5.1 79.6 52.2 60
D1S550 D5S1505 38.3 7 1.6 88.6 30.8 25.4 32 4.8 50.5
D1S550 D6S501 92.5 34.1 16.6 8 2.4 1.8 43.9 46.9 48.6
D1S550 D13S321 53.4 14.6 1.5 12.4 55.9 7.9 61.2 70.7 62.7
D1S550 D13S765 3.4 86.6 2.3 67.7 95.8 77.7 60.3 79.4 36.9
D1S550 D12S375 39.2 52.8 86.9 22.6 15.7 41.3 12.3 71.2 46.1
D1S550 D2S141 42.3 8.9 58 37.3 7.7 6.7 28.8 82.8 22.4
D1S550 D16S420 0.2 73.1 68.5 54.6 28.6 0 8.9 94.9 84.6
D2S1326 D3S2459 21.6 21 0 36.6 15.3 36.6 10.2 64.1 14.5
D2S1326 D4S1627 41.5 51.5 2.8 35.2 1.3 61 19 26.6 83.9
D2S1326 D4S2408 3.7 80.5 28.7 51.9 2.4 65.7 40 59.3 91.9
D2S1326 D5S1505 18.3 50.9 2.8 9.2 71.6 2.4 37.5 47.7 57.5
D2S1326 D6S501 50.4 83.9 1.9 20.3 12.3 5.5 9.4 1 3.2
D2S1326 D13S321 84.2 23.5 4.8 15.1 86.1 72.7 25.1 39.6 9.7
D2S1326 D13S765 13.5 9.4 8.2 75.5 43.9 40.5 10.3 51.1 20.1
D2S1326 D12S375 10.9 72 0.3 28.9 99.3 75.6 60.6 18.2 9.9
D2S1326 D2S141 3.4 56 42.1 73.7 40.9 67.1 27.5 36.5 96.2
D2S1326 D16S420 59.4 0.3 0.9 5.6 65.7 7.6 9.8 64.5 16.2
D3S2459 D4S1627 51.2 7Z7 4.9 13.6 0.4 45.1 90.4 2.5 9.2
D3S2459 D4S2408 93 47.9 0.4 71.2 0.1 61.3 100 54.9 0.2
D3S2459 D5S1505 69 71.6 23.2 18.3 27.4 65.9 50.1 56.8 19.5
D3S2459 D6S501 0.9 54.5 6.6 3 8 81.7 39.5 12.9 22.3
D3S2459 D13S321 21.9 69.3 1.9 55.5 80.4 50.5 42.1 57.7 39.9
D3S2459 D13S765 77.2 33.3 5.9 58.9 18.8 30.6 27.8 75.3 37.4
D3S2459 D12S375 55.8 69.6 3.8 27.4 14 83.5 27.3 76.3 34.7
D3S2459 D2S141 35.8 17.2 27.9 32 58.4 0.8 71.1 88.1 78.1
D3S2459 D16S420 61.3 78.1 3.7 13.2 74.7 52.6 5.7 87.9 36.2
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Appendix 1 Continued

Locus 1 Locus 2 SI S2 S3 S4 S5 S6 S7 S8 S9

D4S1627 D4S2408 0 19.3 34.8 26.7 25.3 13.7 39.2 29.5 54.3
D4S1627 D5S1505 87.2 2.1 44.8 78.5 16.2 67.6 14.6 10.4 48.8
D4S1627 D6S501 7.4 36.8 52 30.5 31.4 80.7 46.5 3.5 20.2
D4S1627 D13S321 29.6 12.4 8 36.4 24 39.5 5.4 4.5 92
D4S1627 D13S765 0.2 14.3 64.4 45.9 75.1 49.2 100 73.2 88.9
D4S1627 D12S375 21.4 76 0.7 7.8 56.5 9.3 49.9 97.6 21
D4S1627 D2S141 35.5 42.5 11.1 0.8 92 18.9 7.6 5.2 12.5
D4S1627 D16S420 30.7 94.8 35.6 95.7 56.4 51 11.3 15.8 6
D4S2408 D5S1505 33.9 27.9 80.8 24 91.2 71 100 1.9 19.6
D4S2408 D6S501 16.6 91.6 16.3 7.4 6.8 40.5 100 51.9 58.7
D4S2408 D13S321 3.8 21.6 2.8 89.4 68.7 13.8 100 21.7 47.3
D4S2408 D13S765 11.9 42.8 12.3 80.6 12.9 14.7 39.9 18.6 36.8
D4S2408 D12S375 65.1 64.2 5.7 1.7 52.1 23.1 42.3 76.6 54.7
D4S2408 D2S141 78.3 19 21.1 38.5 39.2 37.9 79.1 6.1 69.6
D4S2408 D16S420 7.4 6 41.8 55.8 85.5 10 60.4 23.8 42.9
D5S1505 D6S501 1.7 81.8 12.2 23.1 14.5 93.2 21.4 78.4 74.3
D5S1505 D13S321 22.4 45.2 2.5 83.4 85.5 82.2 9.4 10.7 52.6
D5S1505 D13S765 84.6 29.4 6.2 70 58.7 25.4 72 65.2 91.5
D5S1505 D12S375 34.8 23.4 86.6 14.2 95.3 64.2 100 21.8 45.4
D5S1505 D2S141 5 4.9 56.6 80.9 57.9 99.5 15 18.8 46.9
D5S1505 D16S420 54.1 16 9.7 3.5 30.5 72.1 30.5 7.5 41.5
D6S501 D13S321 7.8 47 6.2 33.8 78.6 59.7 20.6 20.7 75.5
D6S501 D13S765 14.9 39.1 1.3 79.8 0.1 4 31.4 61.4 15.8
D6S501 D12S375 47.1 72.3 8.4 75.6 57.7 36.3 63.3 87.5 51.1
D6S501 D2S141 27.1 81.6 6.4 90.4 36.9 50.2 20.4 82 56.4
D6S501 D16S420 90.8 60.7 0.4 33.7 68.6 9.4 31.7 60.7 77.3
D13S321 D13S765 66.2 78.4 14 18.2 13.5 61.2 100 20.5 58.7
D13S321 D12S375 26.3 78.8 18.7 35 28.1 26.4 100 22.3 3.8
D13S321 D2S141 14.6 75.8 6.5 36 49.2 47.2 18.4 68.2 0.7
D13S321 D16S420 23.3 18.6 39.1 32.1 33.7 57.5 28.9 6.5 41.6
D13S765 D12S375 76 55.4 65.8 67.8 51.8 19.1 18.7 26.4 34
D13S765 D2S141 50 4.6 98.4 62.7 68.2 50.8 78.5 35.5 95.8
D13S765 D16S420 29.7 5.7 31.2 85.1 84.6 69.9 19.9 56.9 44.1
D12S375 D2S141 1.7 32.4 4.6 11.3 12.1 44.5 79.6 24.6 47.4
D12S375 D16S420 35 12 70.6 1.6 1.9 88.1 16 75 21.1
D2S141 D16S420 6.5 0.8 22.7 41.6 0.4 4.8 30.7 10.3 55
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Appendix III

Long-tailed macaque and proboscis monkey samples (arranged by extract number followed 
by GPS code, species name and box number).

I. Long-tailed macaque.

E x tra c t G P S  C o d e S p e c ie s BOX R e m a rk

1 192 M a caq u es 1 North

2 192 M a caq u es 1 North

3 192 M a caq u es 1 North

4 192 M a caq u es 1 North

5 192 M a c a q u e s 1 North

6 192 M a caq u es 1 North

7 192 M a caq u es 1 North

8 192 M a caq u es 1 North

9 167 M a caq u es 1 North

10 167 M a caq u es 1 North

11 167 M a caq u es 1 North

12 167 M a caq u es 1 North

13 92 M a caq u es 1 North

14 9 2 M a caq u es 1 North

15 92 M a caq u es 1 North

16 9 2 M a caq u es 1 North

17 9 2 M a caq u es 1 North

18 9 2 M a caq u es 1 North

19 92 M a caq u es 1 North

20 92 M a caq u es 1 North

21 3 7 5 M a caq u es 1 S ou th : O u tsid e  of Lot 9

22 3 7 5 M a caq u es 1 S o u th : O u tsid e  of Lot 9

23 37 5 M a caq u es 1 S ou th : O u tsid e  of Lot 9

24 37 5 M a caq u es 1 S ou th : O u tsid e  o f Lot 9

2 5 94 M a c a q u e s 1 North: O u tsid e  o f Lot 7

26 94 M a c a q u e s 1 North: O u tsid e  o f Lot 7

27 94 M a c a q u e s 1 N orth: O u tsid e  o f Lot 7

28 94 M a c a q u e s 1 N orth: O u tsid e  o f Lot 7

29 94 M a caq u es 1 N orth: O u tsid e  o f Lot 7

30 94 M a c a q u e s 1 North: O u tsid e  o f Lot 7

31 94 M a caq u es 1 North: O u tsid e  o f Lot 7

32 94 M a c a q u e s 1 North: O u ts id e  of Lot 7

33 57 M a caq u es 1 S o u th

34 57 M a caq u es 1 S o u th

3 5 57 M a caq u es 1 S o u th

3 6 57 M a caq u es 1 S o u th

37 27 0 M a caq u es 1 North: O u ts id e  o f Lot 7

3 8 27 0 M a caq u es 1 North: O u ts id e  o f Lot 7

3 9 2 70 M a caq u es 1 North: O u tsid e  o f Lot 7

4 0 270 M a caq u es 1 N orth: O u ts id e  o f Lot 7
41 270 M a caq u es 1 N orth: O u tsid e  o f Lot 7
4 2 27 0 M a caq u es 1 North: O u tsid e  o f Lot 7

4 3 221 M a caq u es 1 North
4 4 221 M a caq u es 1 North
4 5 221 M a caq u es 1 North
4 6 221 M a caq u es 1 North
4 7 397 M a caq u es 1 S ou th : B e tw een  Lot 7  - 8
4 8 397 M a caq u es 1 S ou th : B e tw een  Lot 7 - 8
4 9 2 5 9 M a caq u es 1 North
50 25 9 M a caq u es 1 North
51 2 5 9 M a caq u es 1 North
52 2 5 9 M a caq u es 1 North
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53 2 5 9 M a c a q u e s 1 N orth

54 25 9 M a c a q u e s 1 North

55 25 9 M a c a q u e s 1 North

56 25 9 M a c a q u e s 1 North

57 9 6 M a c a q u e s 1 North

58 96 M a c a q u e s 1 North

59 96 M a c a q u e s 1 North

60 96 M a c a q u e s 1 N orth

61 9 9 M a c a q u e s 1 S o u th

62 99 M a c a q u e s 1 S o u th

63 9 9 M a c a q u e s 1 S o u th

64 9 9 M a c a q u e s 1 S o u th

65 99 M a c a q u e s 1 S o u th

66 9 9 M a c a q u e s 1 S o u th

67 156 M a c a q u e s 1 S o u th

6 8 156 M a c a q u e s 1 S o u th

6 9 156 M a c a q u e s 1 S o u th

7 0 156 M a c a q u e s 1 S o u th

71 156 M a c a q u e s 1 S o u th

7 2 156 M a c a q u e s 1 S o u th

73 156 M a c a q u e s 1 S o u th

74 1 56 M a c a q u e s 1 S o u th

7 5 156 M a c a q u e s 1 S o u th

7 6 156 M a c a q u e s 1 S o u th

77 156 M a c a q u e s 1 S o u th

7 8 156 M a c a q u e s 1 S o u th

7 9 156 M a c a q u e s 1 S o u th

80 156 M a c a q u e s 1 S o u th

81 156 M a c a q u e s 2 S o u th

82 156 M a c a q u e s 2 S o u th

83 156 M a c a q u e s 2 S o u th

84 156 M a c a q u e s 2 S o u th

85 LM04 M a c a q u e s 2 P a n g i F o re s t R e se rv e

86 LM04 M a c a q u e s 2 P an g i F o re s t R e se rv e

87 LM04 M a c a q u e s 2 P an g i F o re s t R e se rv e

88 LM04 M a c a q u e s 2 P a n g i F o re s t R e se rv e

89 LM04 M a c a q u e s 2 P an g i F o re s t R e se rv e

90 LM04 M a c a q u e s 2 P an g i F o re s t R e se rv e

91 LM04 M a c a q u e s 2 P an g i F o re s t R e se rv e

92 LM04 M a c a q u e s 2 P an g i F o re s t R e se rv e

93 LM04 M a c a q u e s 2 P an g i F o re s t R e se rv e

94 LM04 M a c a q u e s 2 P an g i F o re s t R e se rv e

95 LM04 M a c a q u e s 2 P an g i F o re s t R e se rv e

96 LM04 M a c a q u e s 2 P a n g i F o re s t R e se rv e

97 LM04 M a c a q u e s 2 P an g i F o re s t R e se rv e

98 LM04 M a c a q u e s 2 P a n g i F o re s t R e se rv e

9 9 2 2 6 M a c a q u e s 2 North

100 2 2 6 M a c a q u e s 2 N orth

101 22 6 M a c a q u e s 2 North

102 2 2 6 M a c a q u e s 2 N orth

103 2 2 5 M a c a q u e s 2 North

104 2 2 5 M a c a q u e s 2 N orth

105 2 25 M a c a q u e s 2 N orth

106 2 2 5 M a c a q u e s 2 North

107 170 M a c a q u e s 2 N orth: B e tw een  Lot 4  - 5

108 170 M a c a q u e s 2 N orth: B e tw een  Lot 4  - 5

109 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

110 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

111 LM06 M a c a q u e s 2 P a n g i F o re s t R e se rv e

112 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

113 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e
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114 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

115 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

116 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

117 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

118 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

119 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

120 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

121 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

122 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

123 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

124 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

125 LM 06 M a c a q u e s 2 P an g i F o re s t R e se rv e

126 LM 06 M a c a q u e s 2 P an g i F o re s t R e se rv e

127 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

128 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

129 LM 06 M a c a q u e s 2 P an g i F o re s t R e se rv e

130 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

131 LM 06 M a c a q u e s 2 P an g i F o re s t R e se rv e

132 LM 06 M a c a q u e s 2 P an g i F o re s t R e se rv e

133 LM 06 M a c a q u e s 2 P an g i F o re s t R e se rv e

134 LM 06 M a c a q u e s 2 P an g i F o re s t R e se rv e

135 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

136 LM 06 M a c a q u e s 2 P an g i F o re s t R e se rv e

137 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

138 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

139 LM 06 M a c a q u e s 2 P an g i F o re s t R e se rv e

140 LM 06 M a c a q u e s 2 P an g i F o re s t R e se rv e

141 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

142 LM 06 M a c a q u e s 2 P an g i F o re s t R e se rv e

143 LM06 M a c a q u e s 2 P an g i F o re s t R e se rv e

144 LM 06 M a c a q u e s 2 P an g i F o re s t R e se rv e

145 2 1 6 M a c a q u e s 2 S o u th

146 2 1 6 M a c a q u e s 2 S o u th

147 LM05 M a c a q u e s 2 S o u th O u ts id e  Lot 3

1 48 LM 05 M a c a q u e s 2 S o u th O u ts id e  Lot 3

149 LM05 M a c a q u e s 2 S o u th O u ts id e  Lot 3

150 LM05 M a c a q u e s 2 S o u th O u ts id e  Lot 3

151 LM05 M a c a q u e s 2 S o u th O u ts id e  Lot 3

152 LM05 M a c a q u e s 2 S o u th O u ts id e  Lot 3

153 LM05 M a c a q u e s 2 S o u th O u ts id e  Lot 3

154 LM05 M a c a q u e s 2 S o u th O u ts id e  Lot 3

155 LM05 M a c a q u e s 2 S o u th O u ts id e  Lot 3

156 LM05 M a c a q u e s 2 S o u th O u ts id e  Lot 3

157 LM05 M a c a q u e s 2 S o u th O u ts id e  Lot 3

158 LM05 M a c a q u e s 2 S o u th O u ts id e  Lot 3

159 LM05 M a c a q u e s 2 S o u th O u ts id e  Lot 3

160 LM05 M a c a q u e s 2 S o u th O u ts id e  Lot 3

161 LM05 M a c a q u e s 3 S o u th O u ts id e  Lot 3

162 LM05 M a c a q u e s 3 S o u th O u ts id e  Lot 3

163 LM05 M a c a q u e s 3 S o u th O u ts id e  Lot 3

164 LM05 M a c a q u e s 3 S o u th O u ts id e  Lot 3

165 LM05 M a c a q u e s 3 S o u th O u tsid e  Lot 3

166 LM05 M a c a q u e s 3 S o u th O u ts id e  Lot 3

167 LM 05 M a c a q u e s 3 S o u th O u tsid e  Lot 3

168 LM05 M a c a q u e s 3 S o u th O u tsid e  Lot 3

169 LM05 M a c a q u e s 3 S o u th O u tsid e  Lot 3

170 LM 05 M a c a q u e s 3 S o u th O u tsid e  Lot 3

171 LM 05 M a c a q u e s 3 S o u th O u tsid e  Lot 3

172 LM 05 M a c a q u e s 3 S o u th O u tsid e  Lot 3

173 LM05 M a c a q u e s 3 S o u th O u tsid e  Lot 3

174 LM05 M a c a q u e s 3 S o u th O u tsid e  Lot 3
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175 LM05 M a c a q u e s 3 S o u th : O u ts id e  Lot 3

176 LM05 M a c a q u e s 3 S o u th : O u ts id e  Lot 3

177 LM05 M a c a q u e s 3 S o u th : O u ts id e  Lot 3

178 LM05 M a c a q u e s 3 S o u th : O u ts id e  Lot 3

179 LM05 M a c a q u e s 3 S o u th : O u ts id e  Lot 3

180 LM05 M a c a q u e s 3 S o u th : O u ts id e  Lot 3

181 LM05 M a c a q u e s 3 S o u th : O u ts id e  Lot 3

182 LM05 M a c a q u e s 3 S o u th : O u ts id e  Lot 3

183 LM 05 M a c a q u e s 3 S o u th : O u ts id e  Lot 3

184 LM05 M a c a q u e s 3 S o u th : O u ts id e  Lot 3

185 2 6 9 M a c a q u e s 3 N orth: O u ts id e  o f Lot 7

186 2 6 9 M a c a q u e s 3 N orth: O u ts id e  o f Lot 7

187 2 1 8 M a c a q u e s 3 S o u th

188 2 1 8 M a c a q u e s 3 S o u th

Extract KOD GPS Species Box Remark Xtract
1 2 69 M acaq u es North: O u ts id e  o f Lot 7 N ew  E x trac t 185-186

2 2 6 9 M acaq u es North: O u ts id e  o f Lot 7 N ew  E x trac t 185-186

3 2 2 6 M acaq u es North N ew  E x trac t 99 -1 0 2

4 22 6 M acaq u es North N ew  E x trac t 99 -1 0 2

5 281 Macaques South: Between Lot 4 - 5 Unique Extract
6 281 Macaques South: Between Lot 4 - 5 Unique Extract
7 9 6 M acaq u es North N ew  E x trac t 57  - 60

8 9 6 M acaq u es North N ew  E x trac t 5 7  - 60

9 216 Macaques South Unique Extract
10 216 Macaques South Unique Extract
11 225 M acaq u es North N ew  E x trac t 103-106

12 225 M acaq u es North N ew  E x trac t 103 -106

13 LM03 Macaques North Unique Extract
14 LM03 Macaques North Unique Extract
15 LMOl Macaques South: Outside of Lot 1 Unique Extract
16 LMOl Macaques South: Outside of Lot 1 Unique Extract
17 221 M acaq u es N orth N ew  E x trac t 43 -4 6

18 221 M acaq u es North N ew  E x trac t 43 -4 6

19 3 75 M acaq u es S o u th : O u ts id e  of Lot 9 N ew  E x trac t 2 1 -24

20 375 M acaq u es S o u th : O u ts id e  o f Lot 9 N ew  E x trac t 21 -24

21 LM04 M acaq u es P an g i F o re s t R e se rv e N ew  E x trac t 8 5 -98

22 LM04 M acaq u es P an g i F o re s t R e se rv e N ew  E x trac t 8 5 -98

23 381 Macaques South: Outside of Lot 9 Unique Extract
24 381 Macaques South: Outside of Lot 9 Unique Extract
25 285 Macaques North Unique Extract
26 285 Macaques North Unique Extract
27 61 Macaques South Unique Extract
28 61 Macaques South Unique Extract
29 192 M acaq u es North N ew  E x trac t 1-8

30 192 M acaq u es North N ew  E x trac t 1-8

31 167 M a caq u es North N ew  E x trac t 9 -12

32 167 M acaq u es North N ew  E x trac t 9-12

33 27 0 M acaq u es North: O u tsid e  o f Lot 7 N ew  E x trac t 37 -42

34 270 M acaq u es North: O u tsid e  o f Lot 7 N ew  E x trac t 3 7 -42

35 156 M a caq u es S o u th N ew  E x trac t 67 -84

36 156 M acaq u es S ou th N ew  E x trac t 67 -84

37 279 Macaques South: Outside of Lot 3 Unique Extract
38 279 Macaques South: Outside of Lot 3 Unique Extract
39 93 Macaques North Unique Extract
40 93 Macaques North Unique Extract
41 259 M acaq u es North N ew  E x trac t 4 9 -5 6

4 2 259 M acaq u es North N ew  E x trac t 4 9 -5 6

4 3 9 2 M acaq u es North N ex  E x trac t 13-20

4 4 9 2 M acaq u es North N ex E x trac t 13-20

45 217 Macaques South Unique Extract
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46 217 Macaques South Unique Extract
47 223 Macaques South Unique Extract
48 223 Macaques South Unique Extract
4 9 170 M acaques North: B e tw een  Lot 4  - 5 N ew  E x trac t 1 0 7-108

50 170 M acaques North: B e tw een  Lot 4  - 5 N ew  E x trac t 1 0 7 -108

51 9 4 M acaques North: O u ts id e  o f Lot 7 N ew  E x trac t 2 5 -3 2

52 94 M acaques North: O u ts id e  o f Lot 7 N ew  E x trac t 2 5 -3 2

53 LM02 (57 ) M acaques S o u th N ew  E x trac t 33 -3 6

54 LM02 (57) M acaques S o u th N ew  E x trac t 3 3 -3 6

55 LM06 M acaques P an g i F o re s t R e se rv e N ew  E x trac t 109-144

56 LM06 M acaques P an g i F o re s t R e se rv e N ew  E x trac t 109 -144

57 397 M acaques S o u th : B e tw een  Lot 7  - 8 N ew  E x trac t 4 7  - 4 8

58 397 M acaques S o u th : B e tw een  Lot 7  - 8 N ew  E x trac t 4 7  - 4 8

59 218 M acaques S o u th N ew  E x trac t 187 -188

60 218 M acaques S o u th N ew  E x trac t 187-188

Extract Kod GPS Species Remark
Box 7 :1 L abuk B ay M a c a q u e s

Box 7: 2 L abuk B ay M a c a q u e s
Box 7:9 T aw au  Hill M a c a q u e s

Box 7 :10 T aw au  Hill M a c a q u e s

Box 7:11 T aw au  Hill M a c a q u e s

Box 7 :12 T aw au  Hill M a c a q u e s

II. Proboscis monkey

Extract Kod GPS Species BOX Remark
189 PM 03 P ro b o sc is 3 North: O u tsid e  o f Lot 2

190 PM 03 P ro b o sc is 3 North: O u tsid e  o f Lot 2

191 133 P ro b o sc is 3 North

192 133 P ro b o sc is 3 North

193 PM 03 P ro b o sc is 3 N orth: O u tsid e  o f Lot 2

194 PM 03 P ro b o sc is 3 North: O u ts id e  o f Lot 2

195 PM 03 P ro b o sc is 3 North: O u tsid e  o f Lot 2

196 PM 03 P ro b o sc is 3 N orth: O u tsid e  o f Lot 2

197 PM 03 P ro b o sc is 3 N orth: O u ts id e  o f Lot 2

198 PM 03 P ro b o sc is 3 N orth: O u ts id e  o f Lot 2

199 PM 03 P ro b o sc is 3 North: O u ts id e  o f Lot 2

2 0 0 PM 03 P ro b o sc is 3 N orth: O u ts id e  o f Lot 2

201 PM 03 P ro b o sc is 3 N orth: O u ts id e  o f Lot 2

2 0 2 PM 03 P ro b o sc is 3 N orth: O u ts id e  o f Lot 2

2 03 2 27 P ro b o sc is 3 North

2 0 4 227 P ro b o sc is 3 N orth

20 5 47 P ro b o sc is 3 S o u th : M argin Lot 1

20 6 47 P ro b o sc is 3 S o u th : M argin Lot 1

20 7 47 P ro b o sc is 3 S o u th : M argin Lot 1

20 8 4 7 P ro b o sc is 3 S o u th : M argin Lot 1

20 9 4 7 P ro b o sc is 3 S o u th : M argin Lot 1

21 0 4 7 P ro b o sc is 3 S o u th : M argin Lot 1

211 47 P ro b o sc is 3 S o u th : M argin Lot 1

2 1 2 4 7 P ro b o sc is 3 S o u th : M argin Lot 1

2 1 3 47 P ro b o sc is 3 S o u th : M argin Lot 1

2 14 47 P ro b o sc is 3 S o u th : M argin Lot 1

2 1 5 4 7 P ro b o sc is 3 S o u th : M argin Lot 1

2 1 6 4 7 P ro b o sc is 3 S o u th : M argin Lot 1

2 1 7 323 P ro b o sc is 3 N orth

2 1 8 323 P ro b o sc is 3 N orth

2 1 9 32 3 P ro b o sc is 3 N orth

2 2 0 323 P ro b o sc is 3 North
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221 3 20 P ro b o sc is 3 North: O u ts id e  o f Lot 4

22 2 320 P ro b o sc is 3 North: O u ts id e  o f Lot 4

22 3 32 0 P ro b o sc is 3 North: O u ts id e  o f Lot 4

22 4 32 0 P ro b o sc is 3 North: O u ts id e  o f Lot 4

22 5 32 0 P ro b o sc is 3 North: O u ts id e  o f Lot 4

22 6 32 0 P ro b o sc is 3 North: O u ts id e  o f Lot 4

227 320 P ro b o sc is 3 North: O u tsid e  o f Lot 4

22 8 320 P ro b o sc is 3 North: O u tsid e  o f Lot 4

22 9 3 1 3 P ro b o sc is 3 S ou th : O u ts id e  o f Lot 3

23 0 313 P ro b o sc is 3 S ou th : O u ts id e  o f Lot 3

231 313 P ro b o sc is 3 S ou th : O u tsid e  o f Lot 3

23 2 313 P ro b o sc is 3 Sou th : O u tsid e  o f Lot 3

233 313 P ro b o sc is 3 Sou th : O u ts id e  of Lot 3

23 4 313 P ro b o sc is 3 Sou th : O u tsid e  of Lot 3

23 5 29 2 P ro b o sc is 3 North

23 6 29 2 P ro b o sc is 3 North

23 7 29 2 P ro b o sc is 3 North

23 8 29 2 P ro b o sc is 3 North

23 9 2 9 2 P ro b o sc is 3 North

240 29 2 P ro b o sc is 3 North
241 321 P ro b o sc is 4 North: O u tsid e  o f Lot 4

24 2 321 P ro b o sc is 4 North: O u tsid e  o f Lot 4

24 3 321 P ro b o sc is 4 North: O u tsid e  o f Lot 4

24 4 321 P ro b o sc is 4 North: O u tsid e  o f Lot 4

24 5 321 P ro b o sc is 4 North: O u tsid e  o f Lot 4

2 4 6 321 P ro b o sc is 4 North: O u tsid e  o f Lot 4

247 321 P ro b o sc is 4 North: O u tsid e  o f Lot 4

2 4 8 321 P ro b o sc is 4 North: O u tsid e  o f Lot 4

2 4 9 321 P ro b o sc is 4 North: O u tsid e  o f Lot 4

2 5 0 321 P ro b o sc is 4 North: O u tsid e  o f Lot 4

251 321 P ro b o sc is 4 North: O u tsid e  o f Lot 4

2 5 2 321 P ro b o sc is 4 North: O u tsid e  o f Lot 4

2 5 3 3 25 P ro b o sc is 4 S o u th : O u tsid e  o f Lot 6

2 5 4 32 5 P ro b o sc is 4 S ou th : O u tsid e  o f Lot 6

2 5 5 32 5 P ro b o sc is 4 S ou th : O u tsid e  o f Lot 6

2 5 6 32 5 P ro b o sc is 4 S o u th : O u ts id e  o f Lot 6

2 57 3 2 5 P ro b o sc is 4 S ou th : O u ts id e  o f Lot 6

2 58 3 25 P ro b o sc is 4 S o u th : O u ts id e  o f Lot 6

2 5 9 3 25 P ro b o sc is 4 S o u th : O u ts id e  o f Lot 6

26 0 3 25 P ro b o sc is 4 S ou th : O u ts id e  o f Lot 6

261 32 5 P ro b o sc is 4 S o u th : O u ts id e  o f Lot 6

26 2 325 P ro b o sc is 4 S o u th : O u ts id e  o f Lot 6

2 6 3 325 P ro b o sc is 4 S o u th : O u ts id e  o f Lot 6
26 4 325 P ro b o sc is 4 S o u th : O u ts id e  o f Lot 6
2 6 5 15 P ro b o sc is 4 North: B a lad  Dam i

2 6 6 15 P ro b o sc is 4 North: B a lad  Dam i

2 6 7 15 P ro b o sc is 4 North: B a lad  Dam i

2 6 8 15 P ro b o sc is 4 North: B a lad  D am i

2 6 9 357 P ro b o sc is 4 S o u th : O u ts id e  Lot 10

2 7 0 357 P ro b o sc is 4 S ou th : O u ts id e  Lot 10
271 357 P ro b o sc is 4 S o u th : O u ts id e  Lot 10
2 7 2 357 P ro b o sc is 4 S o u th : O u ts id e  Lot 10
2 7 3 357 P ro b o sc is 4 S ou th : O u ts id e  Lot 10
2 7 4 357 P ro b o sc is 4 S ou th : O u ts id e  Lot 10
2 7 5 357 P ro b o sc is 4 S o u th : O u ts id e  Lot 10
2 7 6 357 P ro b o sc is 4 S ou th : O u ts id e  Lot 10
2 7 7 311 P ro b o sc is 4 S o u th : O u ts id e  Lot 3
2 7 8 311 P ro b o sc is 4 S ou th : O u ts id e  Lot 3
2 7 9 311 P ro b o sc is 4 S ou th : O u ts id e  Lot 3
28 0 311 P ro b o sc is 4 S ou th : O u ts id e  Lot 3
281 311 P ro b o sc is 4 S o u th : O u ts id e  Lot 3



282 311 P ro b o sc is 4 S o u th : O u ts id e  Lot 3

283 293 P ro b o sc is 4 S ou th : O u ts id e  Lot 3

284 293 P ro b o sc is 4 S ou th : O u ts id e  Lot 3

285 293 P ro b o sc is 4 S o u th : O u ts id e  Lot 3

286 293 P ro b o sc is 4 S ou th : O u ts id e  Lot 3

287 293 P ro b o sc is 4 S ou th : O u ts id e  Lot 3

28 8 293 P ro b o sc is 4 S ou th : O u ts id e  Lot 3

289 55 P ro b o sc is 4 S ou th : M argin Lot 1

290 55 P ro b o sc is 4 S ou th : M argin Lot 1

291 55 P ro b o sc is 4 S o u th : M argin Lot 1

29 2 55 P ro b o sc is 4 S ou th : M argin Lot 1

2 93 55 P ro b o sc is 4 S ou th : M argin Lot 1

2 94 55 P ro b o sc is 4 S ou th : M argin Lot 1

29 5 2 9 6 P ro b o sc is 4 North

296 2 9 6 P ro b o sc is 4 North

2 97 2 9 6 P ro b o sc is 4 North

2 9 8 2 9 6 P ro b o sc is 4 North

29 9 2 9 6 P ro b o sc is 4 North

300 2 96 P ro b o sc is 4 North

301 39 8 P ro b o sc is 4 North: B e tw een  Lot 7 & 8

3 02 3 9 8 P ro b o sc is 4 North: B e tw een  Lot 7 & 8

3 03 3 9 8 P ro b o sc is 4 North: B e tw een  Lot 7  & 8

3 04 3 9 8 P ro b o sc is 4 North: B e tw een  Lot 7  & 8

3 0 5 39 8 P ro b o sc is 4 North: B e tw een  Lot 7 & 8

306 39 8 P ro b o sc is 4 N orth: B e tw een  Lot 7 & 8

307 3 98 P ro b o sc is 4 North: B e tw een  Lot 7 & 8

3 08 39 8 P ro b o sc is 4 North: B e tw een  Lot 7  & 8

3 0 9 3 9 8 P ro b o sc is 4 North: B e tw een  Lot 7  & 8

3 10 3 9 8 P ro b o sc is 4 North: B e tw een  Lot 7  & 8

311 39 8 P ro b o sc is 4 North: B e tw een  Lot 7  & 8

3 12 3 9 8 P ro b o sc is 4 North: B e tw een  Lot 7  & 8

313 303 P ro b o sc is 4 S o u th : O u tsid e  o f Lot 4
314 303 P ro b o sc is 4 S o u th : O u ts id e  o f Lot 4

31 5 30 3 P ro b o sc is 4 S o u th : O u ts id e  of Lot 4

3 1 6 3 03 P ro b o sc is 4 S o u th : O u tsid e  of Lot 4

317 2 94 P ro b o sc is 4 S o u th : O u ts id e  o f Lot 4

3 18 29 4 P ro b o sc is 4 S o u th : O u tsid e  of Lot 4

3 19 294 P ro b o sc is 4 S o u th : O u ts id e  of Lot 4

320 294 P ro b o sc is 4 S o u th : O u ts id e  o f Lot 4

321 29 5 P ro b o sc is 5 S o u th : O u ts id e  o f Lot 4
322 2 95 P ro b o sc is 5 S o u th : O u ts id e  o f Lot 4

323 2 95 P ro b o sc is 5 S o u th : O u ts id e  o f Lot 4
324 2 95 P ro b o sc is 5 S o u th : O u ts id e  o f Lot 4
325 3 85 P ro b o sc is 5 North: O u ts id e  Lot 8
326 3 85 P ro b o sc is 5 North: O u ts id e  Lot 8
3 27 3 85 P ro b o sc is 5 North: O u ts id e  Lot 8
3 2 8 385 P ro b o sc is 5 North: O u ts id e  Lot 8

3 2 9 291 P ro b o sc is 5 North

3 3 0 291 P ro b o sc is 5 North

331 291 P ro b o sc is 5 North
3 3 2 291 P ro b o sc is 5 North

3 33 291 P ro b o sc is 5 North
3 3 4 291 P ro b o sc is 5 North

3 3 5 291 P ro b o sc is 5 North

3 3 6 291 P ro b o sc is 5 North
3 37 366 P ro b o sc is 5 S ou th : O u ts id e  of Lot 10
3 3 8 366 P ro b o sc is 5 S ou th : O u ts id e  o f Lot 10
3 39 317 P ro b o sc is 5 S ou th : O u ts id e  o f Lot 3
340 3 17 P ro b o sc is 5 S ou th : O u ts id e  o f Lot 3
341 317 P ro b o sc is 5 S ou th : O u ts id e  of Lot 3
342 3 17 P ro b o sc is 5 S ou th : O u ts id e  o f Lot 3
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343 317 P ro b o sc is 5 S o u th : O u ts id e  of Lot 3

344 317 P ro b o sc is 5 S o u th : O u ts id e  o f Lot 3

3 45 317 P ro b o sc is 5 S o u th : O u ts id e  o f Lot 3

34 6 31 7 P ro b o sc is 5 S o u th : O u ts id e  o f Lot 3

347 31 7 P ro b o sc is 5 S o u th : O u ts id e  o f Lot 3

3 48 317 P ro b o sc is 5 S o u th : O u ts id e  of Lot 3

349 PM01 P ro b o sc is 5 North: O u ts id e  o f Lot 2

350 PM01 P ro b o sc is 5 North: O u ts id e  o f Lot 2

351 PM 01 P ro b o sc is 5 North: O u ts id e  o f Lot 2

352 PM01 P ro b o sc is 5 North: O u tsid e  o f Lot 2

3 5 3 37 3 P ro b o sc is 5 S o u th : O u tsid e  Lot 9

354 37 3 P ro b o sc is 5 S o u th : O u tsid e  Lot 9

35 5 3 1 6 P ro b o sc is 5 S ou th : O u tsid e  o f Lot 3

35 6 31 6 P ro b o sc is 5 S ou th : O u ts id e  of Lot 3

357 31 6 P ro b o sc is 5 S o u th : O u tsid e  o f Lot 3

35 8 3 1 6 P ro b o sc is 5 S o u th : O u tsid e  of Lot 3

35 9 31 6 P ro b o sc is 5 S ou th : O u tsid e  o f Lot 3

360 3 1 6 P ro b o sc is 5 S ou th : O u tsid e  o f Lot 3

361 3 5 5 P ro b o sc is 5 S ou th : Sm all tribu taries

362 35 5 P ro b o sc is 5 S ou th : Sm all tribu taries

363 4 8 P ro b o sc is 5 S o u th

364 4 8 P ro b o sc is 5 S o u th

36 5 4 8 P ro b o sc is 5 S o u th

36 6 4 8 P ro b o sc is 5 S o u th

367 4 8 P ro b o sc is 5 S ou th

3 6 8 4 8 P ro b o sc is 5 S ou th

3 69 4 8 P ro b o sc is 5 S o u th

3 70 4 8 P ro b o sc is 5 S o u th

371 4 8 P ro b o sc is 5 S o u th

3 72 4 8 P ro b o sc is 5 S o u th

3 73 121 P ro b o sc is 5 North

3 7 4 121 P ro b o sc is 5 North

3 7 5 121 P ro b o sc is 5 North

37 6 121 P ro b o sc is 5 North

3 7 7 121 P ro b o sc is 5 North

3 7 8 121 P ro b o sc is 5 North

3 79 361 P ro b o sc is 5 S o u th : O u ts id e  o f Lot 10

380 361 P ro b o sc is 5 S o u th : O u ts id e  of Lot 10

381 361 P ro b o sc is 5 S o u th : O u tsid e  o f Lot 10

38 2 361 P ro b o sc is 5 S o u th : O u ts id e  of Lot 10

383 361 P ro b o sc is 5 S o u th : O u tsid e  o f Lot 10

384 361 P ro b o sc is 5 S o u th : O u ts id e  o f Lot 10

38 5 134 P ro b o s c is 5 N orth

3 86 134 P ro b o sc is 5 North

387 31 4 P ro b o s c is 5 S o u th : O u tsid e  of Lot 3

3 8 8 3 14 P ro b o sc is 5 S o u th : O u ts id e  o f Lot 3

3 8 9 314 P ro b o sc is 5 S o u th : O u ts id e  o f Lot 3

390 314 P ro b o sc is 5 S o u th : O u ts id e  of Lot 3

391 3 14 P ro b o sc is 5 S o u th : O u ts id e  o f Lot 3

392 3 14 P ro b o sc is 5 S o u th : O u tsid e  o f Lot 3

393 3 14 P ro b o sc is 5 S o u th : O u ts id e  of Lot 3

394 3 14 P ro b o sc is 5 S o u th : O u ts id e  o f Lot 3

39 5 3 14 P ro b o s c is 5 S ou th : O u ts id e  of Lot 3

3 9 6 3 14 P ro b o sc is 5 S o u th : O u tsid e  o f Lot 3

3 97 9 9 P ro b o sc is 5 S o u th

3 9 8 99 P ro b o s c is 5 S o u th

3 9 9 9 9 P ro b o sc is 5 S o u th

4 0 0 9 9 P ro b o sc is 5 S o u th

401 3 22 P ro b o s c is 6 North: O u tsid e  o f Lot 4

4 0 2 32 2 P ro b o s c is 6 North: O u tsid e  o f Lot 4

4 0 3 32 2 P ro b o sc is 6 North: O u ts id e  o f Lot 4
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404 322 P ro b o sc is 6 N orth: O u ts id e  o f Lot 4

4 0 5 322 P ro b o sc is 6 North: O u ts id e  o f Lot 4

4 06 322 P ro b o sc is 6 North: O u ts id e  o f Lot 4

407 322 P ro b o sc is 6 North: O u ts id e  o f Lot 4

4 08 322 P ro b o sc is 6 North: O u ts id e  o f Lot 4

4 09 101 P ro b o sc is 6 N orth

410 101 P ro b o sc is 6 North

411 101 P ro b o sc is 6 N orth

412 101 P ro b o sc is 6 North

413 220 P ro b o sc is 6 N orth

414 2 20 P ro b o sc is 6 North

41 5 220 P ro b o sc is 6 North

41 6 220 P ro b o sc is 6 North

417 220 P ro b o sc is 6 North

4 1 8 220 P ro b o sc is 6 North

4 1 9 2 20 P ro b o sc is 6 North

420 2 20 P ro b o sc is 6 North

421 195 P ro b o sc is 6 North S a m b u n g a n  43 3 -4 3 4

422 195 P ro b o sc is 6 North

423 195 P ro b o sc is 6 North

424 195 P ro b o sc is 6 North

42 5 2 1 9 P ro b o sc is 6 S o u th

42 6 2 1 9 P ro b o sc is 6 S o u th

42 7 21 9 P ro b o sc is 6 S o u th

4 2 8 2 1 9 P ro b o sc is 6 S o u th

4 2 9 2 1 9 P ro b o sc is 6 S o u th

4 3 0 2 1 9 P ro b o sc is 6 S o u th

431 2 1 9 P ro b o sc is 6 S o u th

4 3 2 2 1 9 P ro b o sc is 6 S o u th

43 3 195 P ro b o sc is 6 North

4 3 4 195 P ro b o sc is 6 North

4 3 5 193 P ro b o sc is 6 S ou th : O u ts id e  of Lot 4

43 6 193 P ro b o sc is 6 S o u th : O u ts id e  o f Lot 4

4 3 7 193 P ro b o sc is 6 S ou th : O u tsid e  o f Lot 4

4 3 8 193 P ro b o sc is 6 S o u th : O u ts id e  o f Lot 4

4 3 9 193 P ro b o sc is 6 S o u th : O u ts id e  o f Lot 4

4 4 0 193 P ro b o sc is 6 S o u th : O u ts id e  o f Lot 4

441 193 P ro b o sc is 6 S o u th : O u ts id e  o f Lot 4

44 2 193 P ro b o sc is 6 S o u th : O u ts id e  o f Lot 4

443 193 P ro b o sc is 6 S o u th : O u ts id e  o f Lot 4
44 4 193 P ro b o sc is 6 S o u th : O u ts id e  o f Lot 4

4 4 5 58 P ro b o sc is 6 North

44 6 58 P ro b o sc is 6 North

447 58 P ro b o sc is 6 N orth

4 4 8 58 P ro b o sc is 6 N orth

4 4 9 58 P ro b o sc is 6 North

4 5 0 58 P ro b o sc is 6 North

451 58 P ro b o sc is 6 North

45 2 58 P ro b o sc is 6 North

45 3 58 P ro b o sc is 6 North
45 4 58 P ro b o sc is 6 North
4 5 5 58 P ro b o sc is 6 North
4 5 6 58 P ro b o sc is 6 North
4 5 7 58 P ro b o sc is 6 North
4 5 8 58 P ro b o sc is 6 North
4 5 9 58 P ro b o sc is 6 North
4 6 0 58 P ro b o sc is 6 North

461 103 P ro b o sc is 6 S o u th
4 6 2 103 P ro b o sc is 6 S o u th
4 63 103 P ro b o sc is 6 S o u th
4 6 4 103 P ro b o sc is 6 S o u th
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4 6 5 103 P ro b o sc is 6 S o u th

4 6 6 103 P ro b o sc is 6 S o u th

46 7 103 P ro b o sc is 6 S o u th

4 6 8 103 P ro b o sc is 6 S o u th

4 6 9 64 P ro b o sc is 6 S ou th : o u ts id e  of Lot 1

47 0 64 P ro b o sc is 6 S o u th : o u ts id e  o f Lot 1

471 64 P ro b o sc is 6 S ou th : o u ts id e  o f Lot 1

472 64 P ro b o sc is 6 S ou th : o u ts id e  o f Lot 1

473 6 4 P ro b o sc is 6 S ou th : o u ts id e  of Lot 1

4 74 64 P ro b o sc is 6 S ou th : o u ts id e  o f Lot 1

4 7 5 64 P ro b o sc is 6 S ou th : o u ts id e  o f Lot 1

4 7 6 64 P ro b o sc is 6 S ou th : o u ts id e  of Lot 1

4 7 7 64 P ro b o sc is 6 S ou th : o u ts id e  of Lot 1

4 7 8 64 P ro b o sc is 6 S ou th : o u ts id e  of Lot 1

4 7 9 64 P ro b o sc is 6 S ou th : o u ts id e  o f Lot 1

4 8 0 64 P ro b o sc is 6 S ou th : o u tsid e  of Lot 1

481 11 P ro b o sc is 7 S ou th : M argin D an au  P ita s

4 8 2 11 P ro b o sc is 7 S ou th : Margin D an au  P ita s

483 11 P ro b o sc is 7 S ou th : Margin D an au  P ita s

484 11 P ro b o sc is 7 S ou th : M argin D an au  P ita s

48 5 11 P ro b o sc is 7 S ou th : Margin D an au  P ita s

4 8 6 11 P ro b o sc is 7 S ou th : Margin D an au  P ita s

4 8 7 11 P ro b o sc is 7 S ou th : M argin D an au  P ita s

4 8 8 11 P ro b o sc is 7 S ou th : Margin D an au  P ita s

4 8 9 11 P ro b o sc is 7 S ou th : M argin D an au  P ita s

4 9 0 11 P ro b o sc is 7 S ou th : Margin D an au  P ita s

491 11 P ro b o sc is 7 S ou th : M argin D an au  P ita s

4 9 2 11 P ro b o sc is 7 S ou th : M argin D an au  P ita s

4 9 3 102 P ro b o sc is 7 North

4 9 4 102 P ro b o sc is 7 North

4 9 5 102 P ro b o sc is 7 North

4 9 6 102 P ro b o sc is 7 North

4 9 7 102 P ro b o sc is 7 North

4 9 8 102 P ro b o sc is 7 North

4 9 9 102 P ro b o sc is 7 North

50 0 102 P ro b o sc is 7 North

501 102 P ro b o sc is 7 North

5 0 2 102 P ro b o sc is 7 North

503 102 P ro b o sc is 7 North

504 102 P ro b o sc is 7 North

50 5 102 P ro b o sc is 7 North
50 6 102 P ro b o sc is 7 North
507 102 P ro b o sc is 7 North

50 8 102 P ro b o sc is 7 North
5 0 9 102 P ro b o sc is 7 North

5 10 102 P ro b o sc is 7 North

511 102 P ro b o sc is 7 North

5 12 102 P ro b o sc is 7 North

513 102 P ro b o sc is 7 North
514 102 P ro b o sc is 7 North

515 102 P ro b o sc is 7 North
51 6 102 P ro b o sc is 7 North
517 102 P ro b o sc is 7 North
518 102 P ro b o sc is 7 North
519 102 P ro b o sc is 7 North
520 102 P ro b o sc is 7 North
521 64 P ro b o sc is 7 S o u th : O u ts id e  of Lot 1
522 64 P ro b o sc is 7 S ou th : O u ts id e  o f Lot 1
523 64 P ro b o sc is 7 S ou th : O u ts id e  of Lot 1
524 64 P ro b o sc is 7 S ou th : O u ts id e  of Lot 1
5 2 5 64 P ro b o sc is 7 S o u th : O u ts id e  o f Lot 1
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5 26 64 P ro b o sc is 7 S ou th : O u ts id e  o f Lot 1

527 64 P ro b o sc is 7 S o u th : O u ts id e  of Lot 1

5 28 64 P ro b o sc is 7 S o u th : O u ts id e  o f Lot 1

Extract KOD GPS Species Remark Xtract
1 11 Proboscis S o u th : M argin D an au  P ita s New  E x trac t 4 8 1 -4 9 2

2 11 Proboscis S o u th : M argin D an au  P ita s N ew  E xtract 4 8 1 -4 9 2

3 291 Proboscis North N ew  E xtract 3 2 9 -3 3 6

4 291 Proboscis North New  E x trac t 3 2 9 -3 3 6

5 317 P roboscis S ou th : O u ts id e  of Lot 3 N ew  E xtract 3 3 9 -3 4 8

6 317 Proboscis S o u th : O u ts id e  of Lot 3 New E xtract 3 3 9 -3 4 8

7 31 6 Proboscis S o u th : O u ts id e  o f Lot 3 N ew  E xtract 3 5 5 -3 6 0

8 316 P roboscis S o u th : O u ts id e  of Lot 3 N ew  E xtract 3 5 5-360

9 48 Proboscis S o u th N ew  E xtract 3 6 3 -372

10 4 8 P roboscis S o u th N ew  E xtract 3 6 3 -372

11 195 P roboscis North N ew  E xtract 42 1 -4 2 4

12 195 Proboscis North N ew  E xtract 4 2 1 -4 2 4

13 102 Proboscis North N ew  E xtract 4 9 3 -520

14 102 P roboscis North N ew  E xtract 493-5 2 0

15 219 P roboscis S o u th N ew  E x trac t 4 2 5 -4 3 2

16 2 19 Proboscis S o u th N ew  E xtract 4 2 5 -4 3 2

17 PM02C40) Proboscis North Unique Extract
18 PM02C40) Proboscis North Unique Extract
19 373 Proboscis S ou th : O u ts id e  of Lot 9 N ew  E x trac t 3 5 3 -354

20 373 Proboscis S ou th : O u ts id e  of Lot 9 N ew  E xtract 3 5 3 -354

21 322 P roboscis North: O u ts id e  o f Lot 4 N ew  E xtract 4 0 1 -4 0 8

22 322 Proboscis North: O u ts id e  o f Lot 4 N ew  E xtract 40 1 -4 0 8

23 361 Proboscis S ou th : O u ts id e  o f Lot 10 N ew  E xtract 3 7 9-384

24 361 Proboscis S ou th : O u ts id e  of Lot 10 N ew  E x trac t 3 7 9 -3 8 4

25 356 Proboscis North Unique Extract
26 356 Proboscis North Unique Extract
27 365 Proboscis South: Outside of Lot 10 Unique Extract
28 365 Proboscis South: Outside of Lot 10 Unique Extract
29 318 Proboscis North Unique Extract
30 318 Proboscis North Unique Extract
31 134 Proboscis North N ew  E xtract 38 5 -3 8 6

32 134 Proboscis N orth N ew  E xtract 38 5 -3 8 6

33 101 P roboscis N orth New E xtract 409-4 1 2

34 101 P roboscis North N ew  E xtract 409 -4 1 2

35 PM 01(39) Proboscis N orth: O u ts id e  o f Lot 2 N ew  E x trac t 3 4 9 -3 5 2

36 PM01C39) Proboscis North: O u ts id e  o f Lot 2 N ew  E xtract 349-3 5 2

37 133 Proboscis North New E x trac t 191-192

38 133 Proboscis North N ew  E xtract 191-192

39 220 Proboscis North N ew  E x trac t 4 1 3 -4 2 0

40 220 Proboscis North N ew  E x trac t 4 1 3-420

41 227 Proboscis North N ew  E xtract 2 0 3 -204

4 2 227 Proboscis North New E xtract 203 -204

43 193 Proboscis S o u th : O u ts id e  o f Lot 4 New E xtract 4 3 5 -4 4 4

44 193 Proboscis S o u th : O u ts id e  o f Lot 4 N ew  E xtract 4 3 5 -4 4 4

45 103 Proboscis S o u th N ew  E xtract 461 -468

46 103 Proboscis S o u th N ew  E x trac t 46 1 -4 6 8
47 99 Proboscis S o u th New  E xtract 397 -400
4 8 99 Proboscis S ou th New  E xtract 3 9 7-400
4 9 398 Proboscis North: B e tw een  Lot 7 - 8 New E xtract 301 -312
50 398 Proboscis North: B e tw een  Lot 7 - 8 New  E xtract 301 -312
51 121 Proboscis North: B e tw een  Lot 4  - 5 N ew  E xtract 373-378
52 121 Proboscis North: B e tw een  Lot 4  - 5 New  E xtract 373 -378
53 385 Proboscis North: O u ts id e  o f Lot 8 New  E xtract 325 -328
54 385 Proboscis North: O u ts id e  o f Lot 8 New  E xtract 325 -328
55 355 Proboscis S ou th : Sm all tr ibu taries New  E xtract 361-362
56 355 P roboscis S ou th : Sm all tribu taries New  E xtract 361 -362
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Appendix IV
Mitochondrial DNA control region haplotypes for the long-tailed macaque (left domain, LD 
and combined, CR), orang-utan (PP) and proboscis monkey (PM). Haplotype number is 
followed by the haplotype sample(s) and the sequence.

A. Long-tailed macaque (Left domain!

LD01. = 033S_01, 047SJ78
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGATTGTACATAACACAT
ACCATTACATATCAACATAACATTCCTGAATAACATGCTTACAAGCAAGTACTCTGATGT
AAACTCTAACAGTAGTCCATAGCATGGCTCTTCCAAAGTTCAACCCACCTCCCCATGAAT
ATCAACTGAACCAGCTCATGCCAGTCGTCCATAGTACATTAAATTGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD02. = 061S_06, 064S 06
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGATTGTACATAACACAT
ATCATTACATATCAACATAACATTCCTGAATAACATGCTTACAAGCAAGTACTCTGATGT !
AAACTCTAACAGTAGTCCATAGCGTGGCTCTTCCAAAGTTCAACCCACCTCCCCATGAAT
ATCAACTAAACCAGTTCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD03. = 058N_05, 060N_05, 067S_06, 070S_06, 041N_07
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATACGGTCCTTCCAAAGTCCAATCCACCTCCCCATGGAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD04. = 076S_06
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGATTGTACATAACACAT
ACCATTACATATCAACATAACATTCCTGAATAACATGCTTACAAGCAAGTACTCTGATGT
AAACCCTAACAGTAGTCCATAGCATGGCTCTTCCAAAGTTCAACCCACCTCCCCATGAAT
ATCAACTAAACCAGCTCATGCCAGTCGTCCATAGTACATTAAATTGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD05. = 092S_PP, 093S_PP, 098S_PP, 111S_PP
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATACGGTCCTTCCAAAGTTCAATCCACCTCCCCATGGAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAGTCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD06. = 035S_01, 107N_45, 117S_PP, 128S_PP
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATACGGTCCTTCCAAAGTTCAATCCACCTCCCCATGGAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD07. = 131S_PP
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATTATTACATATCAACATAACATTCCTGAACAACATGCTTACAAGCAAGTACTCTAATGT
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AAACCTCAACAGTAGTACATAATATGGCCTTTCCAAAGCTCAATCCACCCCCTCATGAAT
ATCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD08. = 153S_03
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAAGTACTCTAATGT
AAACTCTAACAGTAGTCCATAATATGGCCCTTCCAAAGTTCAATCCACCTCCTCATGAAT
ATCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAGTCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD09. = 180S_03
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAAGTACTCTAATGT
AAACTCTAACAGTAGTCCATAATACAGTCCTTCCAAAGTTCAATCCACCTCCCCATGGAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD10. = 147S03, 149S03, 157S_03, 159S_03, 163S_03, 167S_03, 170S_03, 172S_03, 
177S_03, 182S_03, 145S_06

AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAGCATGTATAATATATAGTACTATATATGCTTGATTGTACATAACACAT
ACCATTACATATCAACATAACATTCCTGAATAACATGCTTACAAGCAAGTACTCTGATGT
AAACTCTAACAGTAGTCCATAGCATGGCTCTTCCAAAGTTCAACCCACCTCCCCATGAAT
ATCAACTAAACCAGCTCATGCCAGTCGTCCATAGTACATTAAATTGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD11. = 187S_06
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCTGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATGCGGTCCTTCCAAAGTTCAATCCATCCCCTCATGGAT
ACCAACTAAACCAATCCATGCCAGTCGTCCATAGTACATTAAGTCGTTCATCGGACATAG
CACATATCTGTTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD12. = L14S_01, L16S01, 120S_PP, 121S_PP, 130SJPP, 134S_PP, 135S_PP, 138S_PP, 
140SPP

AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGATTGTACATAACACAT
ACCATTACATATCAACATAACATTCCTGAATAACATGCTTACAAGCAAGTACTCTGATGT
AAACTCTAACAGTAGTCCATAGCATGGCTCTTCCAAAGTTCAACCCACCTCCCCATGAAT
ATCAACTAAACCAGCTCATGCCAGTCGTCCATAGTACATTAAATTGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD13. = L19S_09, L23S09
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGATTGTACATAACACAT
ATCATTACATATCAACATAACATTCCTGAATAACATGCTTACAAGCAAGTACTCTGATGT
GAACTCTAACAGTAGTCCATAGCATGGTTCTTCCAAAGTTCAACCCACCTCCCCATGAAT
ATCAACTAAACCAGCTCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD14. = L25N_04, L32N_05, 013N_05, 078S_06, 082S_06, 114S_PP, 116S_PP, 142S_PP
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAATACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAAGTACTCTGGTGT
AAACTTTAACAGTAGTCCATAATACGGTCCTTCCAAAGTTCAATCCATCCCCCCATGAGT
ATCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAGTCGTTCATCGGACATAG
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CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD15. = L38S_03, 056N_05, 185N_07
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT

TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAAGTACTCTGATGT
AAACTCTAACAGTAGTCCATAACACGGTCCTTCCAAAGTTCAATCCACCCCCTCATGGAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD16. = 003N_05, 005N_05, 008N_05, 015N_05, 017N_05, 020N_05, 046N_05, 051N_05, 
054N_05, 079S_06, L10S_06, L34N_07, L40N_07, 038N_07, 144S_PP

AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCTGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATGCGGTCCTTCCAAAGTTCAATCCATCCCCTCATGGAT
ACCAACTAAACCAATCCATGCCAGTCGTCCATAGTACATTAAGTCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD17. = 011N_05, L46S_06
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGATTGTACATAACACAT
ATCATTACATATCAACATAACATTCCTGAATAACATGCTTATAAGCAAGTACTCTGATGT
GAACTCTAACAGTAGTCCATAGCATGGCTCTTCCAAAGTTCAACCCACCTCCCCATGAAT
ATCAACTAAACCAGCTCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTGTTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD18. = 100N_05,104N_05,106N_05, L47S_06, L02N_07
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAAGTACTCTGATGT
AAACTCTAACAGTAGTCCATAACACGGTCCTTCCAAAGTTCAATCCACCTCCTCATGAAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD19. = L06S_45, L50N_45, 025N_07, 027N_07, 032N_07, 039N_07
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAGGTACTCTAATGT
AAACTCTAACAGTAGTCCATAATACGGTCCTTCCAAGGCTCAATCCACCTCCTCATGAAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD20. = L28S_01, L53S_01
AACTTCATAAGATGACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGATTGTACATAACACAT
ACCATTACATATCAACATAACATTCCTGAATAACATGCTTACAAGCAAGTACTCTGATGT
a Aa c t c t a a c a g t a g t c c a t a g c a t g g c t c t t c c a a a g t t c a a c c c a c c t c c c c a t g a a t

ATCAACTAAACCAGCTCATGCCAGTCGTCCATAGTACATTAAATTGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA

LD21. =L58S_78,021S_09,023S_09
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATACGGTCCTTCCAAAGTTCAATCCACCCCCTCATGGAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA



LABUK = LABUKN
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATACGGCCCTTCCAAAGTTCAATCCACCTCCTCATGAAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTA



B. Long-tailed macaque (combined left and right domain)

CR01. = 005N_05
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCTGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATGCGGTCCTTCCAAAGTTCAATCCATCCCCTCATGGAT
ACCAACTAAACCAATCCATGCCAGTCGTCCATAGTACATTAAGTCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCAGTTACGATGGATCA
CGGGTCTATCACCCTATTAACCAGTCACGGGAGATTTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTTATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
GTCTTAACCAAATACCATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAATATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCAAAAGAAACTACCTCACAACTACACTAACACCCCT

CR02. = 013N_05
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAATACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAAGTACTCTGGTGT
AAACTTTAACAGTAGTCCATAATACGGTCCTTCCAAAGTTCAATCCATCCCCCCATGAGT
ATCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAGTCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CGGGTCTATCACCCTATTAACCAGTCACGGGAGATCTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
GTCTCAACCAAATACCATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCAAAAGAAACTACCTCACAACTACACTAACACCCCT

CR03. = 023S_09
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATACGGTCCTTCCAAAGTTCAATCCACCCCCTCATGGAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CGGGTCTATCACCCTATTAACCAGTCACGGGAGATCTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
GTCTTAACCAAATACCATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAATATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCAAAAGAAACTACCTCACAACTACACTAACACCCCT

CR04. = 056N_05
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAAGTACTCTGATGT
AAACTCTAACAGTAGTCCATAACACGGTCCTTCCAAAGTTCAATCCACCCCCTCATGGAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CGGGTCTATCACCCTATTAACCAGTCACGGGAGATCTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG



CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
GTCTTAACCAAATACCATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCAAAAGAAACTACCTCACAACTACACTAACACCCCT

CR05. = 061S 06, 064S 06
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGATTGTACATAACACAT
ATCATTACATATCAACATAACATTCCTGAATAACATGCTTACAAGCAAGTACTCTGATGT
AAACTCTAACAGTAGTCCATAGCGTGGCTCTTCCAAAGTTCAACCCACCTCCCCATGAAT
ATCAACTAAACCAGTTCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CAGGTCTATCACCCTATTAACCAGTCACGGGAGATTTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
CTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
ATCTTAACCAAGTACCATTCTCACCACGCCAATAAACCACAACCATACCTCGTCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCGAAAGAAGCTACCTCACAACTACACTAACACCCCT

CR06. = 058N_05, 060N_05, 067S_06, 070S_06, 041N_07,
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATACGGTCCTTCCAAAGTCCAATCCACCTCCCCATGGAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CGGGTCTATCACCCTATTAACCAGTCACGGGAGATTTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
GTCTTAACCAAATACCATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCAAAAGAAACTACCTCACAACTACACTAACACCCCT

CR07. = 093S_PP_098S_PP
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATACGGTCCTTCCAAAGTTCAATCCACCTCCCCATGGAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAGTCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CGGGTCTATCACCCTATTAACCAGTCACGGGAGATTTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTTATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
GTCTTAACCAAATACCATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCAAAAGAAACTACCTCACAACTACACTAACACCCCT

CR08. = 104N_05
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT



TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAAGTACTCTGATGT
AAACTCTAACAGTAGTCCATAACACGGTCCTTCCAAAGTTCAATCCACCTCCTCATGAAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CGGGTCTATCACCCTATTAACCAGTCACGGGAGATTTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATTGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTTATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
GTCTTAACCAAATACCATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTGATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCAAAAGAAACTACCTCACAACTACACTAACACCCCT

CR09. =111S_PP
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATACGGTCCTTCCAAAGTTCAATCCACCTCCCCATGGAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAGTCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CAGGTCTATCACCCTATTAACCAGTCACGGGAGATCTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
CTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
ATCTTAACCAAGTACCATTCTCACCACGCCAATAAACCACAACCATACCTCGTCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCGAAAGAAGCTACCTCACAACTACACTAACACCCCT

CR10. = 114S_PP, 116S_PP
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAATACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAAGTACTCTGGTGT
AAACTTTAACAGTAGTCCATAATACGGTCCTTCCAAAGTTCAATCCATCCCCCCATGAGT
ATCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAGTCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CAGGTCTATCACCCTATTAACCAGTCACGGGAGATCTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
CTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
ATCTTAACCAAGTACCATTCTCACCACGCCAATAAACCACAACCATACCTCGTCAAACCC
CCCCACCCCCATCTCTGACCTTGATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCGAAAGAAGCTACCTCACAACTACACTAACACCCCT

CR11. = 107N_45, 117S_PP, 128S_PP
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATACGGTCCTTCCAAAGTTCAATCCACCTCCCCATGGAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CGGGTCTATCACCCTATTAACCAGTCACGGGAGATTTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTTATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
GTCTTAACCAAATACCATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA



GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCAAAAGAAACTACCTCACAACTACACTAACACCCCT

CR12. = 131SJPP
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATTATTACATATCAACATAACATTCCTGAACAACATGCTTACAAGCAAGTACTCTAATGT
AAACCTCAACAGTAGTACATAATATGGCCTTTCCAAAGCTCAATCCACCCCCTCATGAAT
ATCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CAGGTCTATCACCCTATTAACCAGTCACGGGAGATCTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
CTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
ATCTTAACCAAGTACCATTCTCACCACGCCAATAAACCACAACCATACCTCGTCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCGAAAGAAGCTACCTCACAACTACACTAACACCCCT

CR13. = 142SPP
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAATACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAAGTACTCTGGTGT
AAACTTTAACAGTAGTCCATAATACGGTCCTTCCAAAGTTCAATCCATCCCCCCATGAGT
ATCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAGTCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CAGGTCTATCACCCTATTAACCAGTCACGGGAGATCTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
CTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
ATCTTAACCAAGTACCATTCTCACCACGCCAATAAACCACAACCATACCTCGTCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCGAAAGAAGCTACCTCACAACTACACTAACACCCCT

CRM. = 016N_05, 017N_05, 020N_05, M4S_PP
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCTGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATGCGGTCCTTCCAAAGTTCAATCCATCCCCTCATGGAT
ACCAACTAAACCAATCCATGCCAGTCGTCCATAGTACATTAAGTCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CGGGTCTATCACCCTATTAACCAGTCACGGGAGATCTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
GTCTCAACCAAATACCATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCAAAAGAAACTACCTCACAACTACACTAACACCCCT

CR15. = 153S_03
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAAGTACTCTAATGT
AAACTCTAACAGTAGTCCATAATATGGCCCTTCCAAAGTTCAATCCACCTCCTCATGAAT
ATCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAGTCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
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CAGGTCTATCACCCTATTAACCAGTCACGGGAGATCTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
CTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
ATCTTAACCAAGTACCATTCTCACCACGCCAATAAACCACAACCATACCTCGTCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCAGACAACCCGAAAGAAGCTACCTCACAACTACACTAACACCCCT

CR16. = 180S_03
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAAGTACTCTAATGT
AAACTCTAACAGTAGTCCATAATACAGTCCTTCCAAAGTTCAATCCACCTCCCCATGGAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CGGGTCTATCACCCTATTAACCAGTCACGGGAGATCTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTTATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
GTCTTAACCAAATACCATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCAAAAGAAACTACCTCACAACTACACTAACACCCCT

CR17. = 147S_03,149S_03,157S_03,159S_03,163S_03,167S_03,170S_03,172S_03, 
177S_03,182S_03,145S_06

AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAGCATGTATAATATATAGTACTATATATGCTTGATTGTACATAACACAT
ACCATTACATATCAACATAACATTCCTGAATAACATGCTTACAAGCAAGTACTCTGATGT
AAACTCTAACAGTAGTCCATAGCATGGCTCTTCCAAAGTTCAACCCACCTCCCCATGAAT
ATCAACTAAACCAGCTCATGCCAGTCGTCCATAGTACATTAAATTGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CAGGTCTATCACCCTATTAACCAGTCACGGGAGATCTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
CTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
ATCTTAACCAAGTACCATTCTCACCACGCCAATAAACCACAACCATACCTCGTCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCGAAAGAAGCTACCTCACAACTACACTAACACCCCT

CR18. = 100N_05, 106N_05, L02N_07
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAAGTACTCTGATGT
AAACTCTAACAGTAGTCCATAACACGGTCCTTCCAAAGTTCAATCCACCTCCTCATGAAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CGGGTCTATCACCCTATTAACCAGTCACGGGAGATTTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATTGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTTATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
GTCTTAACCAAATACCATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCAAAAGAAACTACCTCACAACTACACTAACACCCCT
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CR19. = L14S_01,120S_PP, 121S_PP, 130S_PP, 134S_PP, 135SJPP, 138S_PP, 140S_PP
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGATTGTACATAACACAT
ACCATTACATATCAACATAACATTCCTGAATAACATGCTTACAAGCAAGTACTCTGATGT
AAACTCTAACAGTAGTCCATAGCATGGCTCTTCCAAAGTTCAACCCACCTCCCCATGAAT
ATCAACTAAACCAGCTCATGCCAGTCGTCCATAGTACATTAAATTGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CAGGTCTATCACCCTATTAACCAGTCACGGGAGATCTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
CTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
ATCTTAACCAAGTACCATTCTCACCACGCCAATAAACCACAACCATACCTCGTCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCGAAAGAAGCTACCTCACAACTACACTAACACCCCT

CR20. = L16S_01
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGATTGTACATAACACAT
ACCATTACATATCAACATAACATTCCTGAATAACATGCTTACAAGCAAGTACTCTGATGT
AAACTCTAACAGTAGTCCATAGCATGGCTCTTCCAAAGTTCAACCCACCTCCCCATGAAT
ATCAACTAAACCAGCTCATGCCAGTCGTCCATAGTACATTAAATTGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CAGGTCTATCACCCTATTAACCAGTCACGGGAGATCTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
CTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
ATCTTAACCAAGTACCATTCTCACCACGCCAATAAACCACAACCATACCTCGTCAAACCC
CCCCACCCCCATCTCTGACCTTGATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCGAAAGAAGCTACCTCACAACTACACTAACACCCCT

CR21. = L28S01
AACTTCATAAGATGACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGATTGTACATAACACAT
ACCATTACATATCAACATAACATTCCTGAATAACATGCTTACAAGCAAGTACTCTGATGT
AAACTCTAACAGTAGTCCATAGCATGGCTCTTCCAAAGTTCAACCCACCTCCCCATGAAT
ATCAACTAAACCAGCTCATGCCAGTCGTCCATAGTACATTAAATTGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CAGGTCTATCACCCTATTAACCAGTCACGGGAGATCTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
CTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
ATCTTAACCAAGTACCATTCTCACCACGCCAATAAACCACAACCATACCTCGTCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCGAAAGAAGCTACCTCACAACTACACTAACACCCCT

CR22. = L38N_04, 185N_07
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAAGTACTCTGATGT
AAACTCTAACAGTAGTCCATAACACGGTCCTTCCAAAGTTCAATCCACCCCCTCATGGAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CGGGTCTATCACCCTATTAACCAGTCACGGGAGATTTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTTATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC



191

GTCTTAACCAAATACCATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAATATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCAAAAGAAACTACCTCACAACTACACTAACACCCCT

CR23. = 003N_05, 008N_05, 046N_05, 052N_05, 054N_05, 079S_06, 038N_07, L34N_07, 
L40N_07

AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCTGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATGCGGTCCTTCCAAAGTTCAATCCATCCCCTCATGGAT
ACCAACTAAACCAATCCATGCCAGTCGTCCATAGTACATTAAGTCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CGGGTCTATCACCCTATTAACCAGTCACGGGAGATCTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
GTCTTAACCAAATACCATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCAAAAGAAACTACCTCACAACTACACTAACACCCCT

CR24. = 011N 05, L46S 06
AACTTCATAAGATAACCTTGATATCAACCTACCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGATTGTACATAACACAT
ATCATTACATATCAACATAACATTCCTGAATAACATGCTTATAAGCAAGTACTCTGATGT
GAACTCTAACAGTAGTCCATAGCATGGCTCTTCCAAAGTTCAACCCACCTCCCCATGAAT
ATCAACTAAACCAGCTCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTGTTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CAGGTCTATCACCCTATTAACCAGTCACGGGAGATTTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTCATTAATCGCACCTACGTTCAATATTCTAG
CTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
ATCTTAACCAAGTACCATTCTCACCACGCCAATAAACCACAACCATACCTCGTCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCGAAAGAAGCTACCTCACAACTACACTAACACCCCT

CR25. = L06S 45, L50N_45, 025N_07, 027N_07, 032N_07, 039N_07
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAGGTACTCTAATGT
AAACTCTAACAGTAGTCCATAATACGGTCCTTCCAAGGCTCAATCCACCTCCTCATGAAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
c a c a t a t c t a t t a a a t a a t c c t c c t c a c c a c g g a t g c c c c c c c t c a c t t a c g a t g g a t c a

CGGGTCTATCACCCTATTAACCAGTCACGGGAGATTTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATTGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTTATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
GTCTTAACCAAATACCATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCAAAAGAAACTACCTCACAACTACACTAACACCCCT

CR26. = L58S_78, 021S_09
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAATTCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAGGTACTCTGATGT



AAACTCTAACAGTAGTCCATAATACGGTCCTTCCAAAGTTCAATCCACCCCCTCATGGAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CGGGTCTATCACCCTATTAACCAGTCACGGGAGATTTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTTATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
GTCTTAACCAAATACGATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAATATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCAAAAGAAACTACCTCACAACTACACTAACACCCCT

LABUK = LABUKN
AACTTCATAAGATAACCTTGATATCAACCTATCCACAATATTACTATGTAAT.TCGTGCAT
TACTGCTAGCCAACATGTATAATATATAGTACTATATATGCTTGACTGTACATAACACAT
ATCATTACATATCAACATAACATTCCCGAACAACATGCTTACAAGCAGGTACTCTGATGT
AAACTCTAACAGTAGTCCATAATACGGCCCTTCCAAAGTTCAATCCACCTCCTCATGAAT
ACCAACTAAACCAGTCCATGCCAGTCGTCCATAGTACATTAAATCGTTCATCGGACATAG
CACATATCTATTAAATAATCCTCCTCACCACGGATGCCCCCCCTCACTTACGATGGATCA
CAGGTCTATCACCCTATTAACCAGTCACGGGAGATTTCCATGCATTTGGTATCTTTTATC
TCTGGTCCGCACGCAACCCCATCGCAGAATGCTGACTCCCACCACATCCCGTCCTGAATG
CGCCTGTCTTTGATTCCTAGTACATGCAGTTATTAATCGCACCTACGTTCAATATTCTAG
TTCCACGCAAACCTTAGCAGGGTGTTATTTAATCCATGCTTGTAGGACATATCAATAATC
GTCTTAACCAAATACCATTCTCACCACGCCAATAAACCACAACCATACCTCATCAAACCC
CCCCACCCCCATCTCTGACCTTCATCCAAAACCCACTCTTGCCAAACCCCAAAAACAAAA
GTCTTAACATATCCGATCAGAGCTCGCGTTTTTATCTTTTAGGTGTGCACAACTCCAACT
GCCATTCTCTCAACTAACAAACATTTACCTCACTAAACGCCCCTCACACCAACCCATAAT
AAACCCTTCTCACACAACCCGAAAGAAACTACCTCACAACTACACTAACACCCCT
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C. Orang-utan (left domain)

OU1. = 143N_05
CCCAGTACCGACCCATTTCCAGCGGCCTATGTATTTCGTACATTCCTGCCAGCCAACATG
AATATCACCCAACACAACAATCGCTTAACCACCTATAACACATACAAAGCCCAATCCACA
CCCAACCTCTACCCCCCGCTTACAAGCAAGTACCCCCCCATGCCCCCCCACCCAAATACA
TACATCAATCCCCCCACATAACCCCTTCCCCCCCCGCATACCAACCAACCCAACCAAGCT
TTAAAGTACATAGCGCATAATACCCCTACCGTACATAGCACATTTCTACTAACTCCCTGC
TTAACCCTACGGATGCCCCCCCT

OU2. = 153N_02
CCCAGTACCGACCCATTTCCAGCGGCCTATGTATTTCGTACATTCCTGCCAGCCAACATG
AATATCACCCAACACAACAATCGCTTAACCACCTATAACACATACAAAGCCCAATCCACA
CCCAACCTCTACCCCCCGCTTACAAGCAAGTACCCCCCCATGCCCCCCCACCCAAATACA
TACATCAATCCCCCCACATAACCCCTTCCCCCCCCGCATACCAACCAACCCAACCAAGCT
TTAAAGTACATAGCGCATAATACCCCTACCGTACATAGCACATTTCTACTAAATCCCTGC
TTAACCCCACGGATGCCCCCCCT

OU3. = 064S 06
CCCAGTACCGACCCATTTCCAGCGGCCTATGTATTTCGTACATTCCTGCCAGCCAACATG
AATATCACCCAACACAACAATCGCTTAACCACCTATAACACATACAAAGCCCAATCCACA
CCCAACCTCTACCCCCCGCTTACAAGCAAGTACCCCCCCATGCCCCCCCACCCAGATACA
TACATCAATCCCCCCACATAACCCCTTCCCCCCCCGCATACCAACTAACCCAACCAAGCT
TTAAAGTACATAGCGCATAACACCCCTACCGTACATAGCACATTTCTACTAACTCCCTGC
TTAACCCCACGGATGCCCCCCCT

OU4. = 003S_01,109S01
CCCAGTACCGACCCATTTCCAGCGGCCTATGTATTTCGTACATTCCTGCCAGCCAACATG 
A A TA T C AC C CAACACAACAATCGCTTAACCACCTATAATAC ATACAAAGC CCAATC C AC A 
CCCAACCTCTACCCCCCGCTTACAAGCAAGTACCCCCCCATGCCCCCCCACCCAAATACA 
TACATCAATCCCCCCACATAACCCCTTCCCCCCCCGCATACCAACCAACCCAACCAAGCT 
TTGAAGTACATAGCACATAATACCCCTACCGTACATAGCACATTTCTACTAACTCCCTGC 
TTAACCCCACGGATGCCCCCCCT

OU5. = 134S_01, 057S_06, 088S_09
C C CAGTACCGACCCATTTCCAGCGGCCTATGTATTTCGTACATTCCTGCCAGCCAACATG 
AATATCACCCAACACAACAATCGCTTAACCACCTATAATACATACAAAGCCCAATCCACA 
CCCAACCTCTACCCCCCGCTTACAAGCAAGTACCCCCCCATGCCCCCCCACCCAAATACA 
TACATCAATCCCCCCACATAACCCCTTCCCCCCCCGCATACCAACCAACCCAACCAAGCT 
TTAAAGTACATAGCACATAATACCCCTACCGTACATAGCACATTTCTACTAACTCCCTGC 
TTAACCCCACGGATGCCCCCCCT

OU6. = 135S_01
CCCAGTACCGACCCATTTCCAGCGGCCTATGTATTTCGTACATTCCTGCCAGCCAACATG
AATATCACCCAACACAACAATCGCTTAACCACCTATAACACATACAAAGCCCAATCCACA
CCCAACCTCTACCCCCCGCTTACAAGCAAGTACCCCCCCATGCCCCCCCACCCAAATACA
TACATCAATCCCCCCACATAACCCCTTCCCCCCCCGCATACCAACCAACCCAACCAAGCT
TTAAAGTACATAGCACATAATACCCCTACCGTACATAGCACATTTCTACTAAATCCCTGC
TTAACCCCACGGATGCCCCCCCT

OU7. = 170N_05
CCCAGTACCGACCCATTTCCAGCGGCCTATGTATTTCGTACATTCCTGCCAGCCAACATG
AATATCACCCAACACAACAATCGCTTAACCACCTATAACACATACAAAGCCCAATCCACA
CCCAACCTCTACCCCCCGCTTACAAGCAAGTACCCCCCCATGCCCCCCCACCCAGATACA
TACATCAATCCCCCCACATAACCCCTTCTCCCCCCGCATACCAACCAACCCAACCAAGCT
TTAAAGTACATAGCGCATAATACCCCTACCGTACATAGCACATTTCTACTAACTCCCTGC
TTAACCCCACGGATGCCCCCCCT

OU8. = 185N_04
CCCAGTACCGACCCATTTCCAGCGGCCTATGTATTTCGTACATTCCTGCCAGCCAACATG
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AATATCACCCAACACAACAATCGCTTAACCACCTATAACACATACAAAGCCCAATCCACA
CCCAACCTCTACCCCCCGCTTACAAGCAAGTACCCCCCCATGCCCCCCCACCCAGATACA
TACATCAATCCCCCCACATAACCCCTTCTCCCCCCGCATACCAACCAACCCAACCAAGCT
TTAAAGTACATAGCACATAATACCCCTACCGTACATAGCACATTTCTACTAACTCCCTGC
TTAACCCTACGGATGCCCCCCCT

0U9. = 140S03, 201S03, 205S_03
CCCAGTACCGACCCATTTCCAGCGGCCTATGTATTTCGTACATTCCTGCCAGCCAACATG 
AATATC AC C C AAC AC AAC AAT CGC T T  AAC C AC C T  A T  AAC AC AT AC AAAG C C CAATC C AC A 
CCCAACCTCTACCCCCCGCTTACAAGCAAGTACCCCCCCATGCCCCCCCACCCAAATACA 
TACATCAATCCCCCCACATAACCCCTTCCCCCCCCGCATACCAACTAACCCAACCAAGCT 
TTAAAGTACATAGCACATAATACCCCTACCGTACATAGCACATTTCTACTAACTCCCTGC 
TTAACCCCACGGATGCCCCCCCT

OUIO. = 145N_02, 150N_02, 197N_02, 218N_02, 028S_09
CCCAGTACCGACCCATTTCCAGCGGCCTATGTATTTCGTACATTCCTGCCAGCCAACATG
AATATCACCCAACACAACAATCGCTTAACCACCTATAACACATACAAAGCCCAATCCACA
CCCAACCTCTACCCCCCGCTTACAAGCAAGTACCCCCCCATGCCCCCCCACCCAGATACA
TACATCAATCCCCCCACATAACCCCTTCCCCCCCCGCATACCAACCAACCCAACCAAGCT
TTAAAGTACATAGCGCATAATACCCCTACCGTACATAGCACATTTCTACTAACTCCCTGC
TTAACCCTACGGATGCCCCCCCT

OU11. =228N_02, 112N 02, 161N_02, 148S_03, 106S_03, 203S_03, 035N_04, 168N_04, 
082N_04, 085N_04, 172N_04, 182S_04,210N_04, 002N_04, 067N_04, 032N_04, 
124N_05, 132N 05, 046N_05, 052N_05, 070S_06, 038S_06, 071S_06, 054N_07, 
074N_08, 090N 08, 212S_09, 060N_10

CCCAGTACCGACCCATTTCCAGCGGCCTATGTATTTCGTACATTCCTGCCAGCCAACATG
AATATCACCCAACACAACAATCGCTTAACCACCTATAACACATACAAAGCCCAATCCACA
CCCAACCTCTACCCCCCGCTTACAAGCAAGTACCCCCCCATGCCCCCCCACCCAGATACA
TACATCAATCCCCCCACATAACCCCTTCTCCCCCCGCATACCAACCAACCCAACCAAGCT
TTAAAGTACATAGCGCATAATACCCCTACCGTACATAGCACATTTCTACTAACTCCCTGC
TTAACCCTACGGATGCCCCCCCT

OU12. = 014S 01, 077S_01, 128S_01, 130S_01, 122S_01, 192S_01, 199S_01, 208S_01, 
113S_03, 030S_03, 138S_03, 190S_03, 039AS_06, 042S_06, 101S_06, 158S_06, 
098S 06, 048N_08, 008S_09, 039BS_09, 091S_09, 010N_10, 012N_10, 022N_10, 
023N_10

CCCAGTACCGACCCATTTCCAGCGGCCTATGTATTTCGTACATTCCTGCCAGCCAACATG
AATATCACCCAACACAACAATCGCTTAACCACCTATAACACATACAAAGCCCAATCCACA
CCCAACCTCTACCCCCCGCTTACAAGCAAGTACCCCCCCATGCCCCCCCACCCAAATACA
TACATCAATCCCCCCACATAACCCCTTCCCCCCCCGCATACCAACCAACCCAACCAAGCT
TTAAAGTACATAGCACATAATACCCCTACCGTACATAGCACATTTCTACTAACTCCCTGC
TTAACCCCACGGATGCCCCCCCT

OU13. = 100N05
CCCAGTACCGACCCATTTCCAGCGGCCTATGTATTTCGTACATTCCTGCCAGCCAACATG
AATATCACCCAACACAACAATCGCTTAACCACCTATAATACATACAAAGCCCAATCCACA
CCCAACCTCTACCCCCCGCTTACAAGCAAGTACCCCCCCATGCCCCCCCACCCAAATACA
TACATCAATCCCCCCACATAACCCCTTCTCCCCCCGCATACCAACCAACCCAACCAAGCT
TTAAAGTACATAGCGCATAATACCCCTACCGTACATAGCACATTTCTACTAACTCCCTGC
TTAACCCTACGGATGCCCCCCCT



D. Proboscis monkey (left domain)

PM01. = 221N 04
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATATTTACTAACA
TCTCATCCAGAACATGCTTACAAGCAAGGACCTTCATAGAAGTATCTGACTACAATACAT
ATCATTCAAGCCTCCAAATACCATGATGTAACCCACCGGAATACCAACCGATGCCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM02. = 225N_04
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATATTTACTAACA
TCTCATCCAGAACATGCTTACAAGCAAGGACCTTCATAGAAGTATCTGACTACAATACAT
ATCATTCAAGCCTCCAAATACCATGATGTAACCCACCGGAATACCAACCGATGCCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGACATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM03. = 241 N 0 4
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGATACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGAAAATATCTGACTACAATACAT
ATCATTCAAGCCTCCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACACAGTACATTAGATTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM04. = 259S_06
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACA ATCTA GCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTA TATA GTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT
A TCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACTAACCGATACTATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM05. = 265N BD, 267N_BD
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACA ATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGATTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM06. = 2 6 9 N 1 0
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGATGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGATTCTTTATCGGGCATAGCACATCACTATTGAGC
ATCCCTAAAACAAT



PM07. = 315N_04
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAGCCCACCGGAATACCAACCGATACTATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM08. = 219N_04, 245N_04, 323N_04
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT
ATCATTCAAGCCTCCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGATTCTTTATCGGACATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM09. = 327N_08
ATCTTTCCCCAGGGCAACTCAGAAAAAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGCTTTACCGTCCATAGGACATAAAATTACATACTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGAACCCTCATAGAAGTATCTGACTACAACACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM10. = 331N_04
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTACATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT
ATCATTCAAGCCTCCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGATTCTTTATCGGACATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM11. = 337N_10
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT
ATCATTCAAGCCCTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGATCCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM 12. = 360S_03
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT
ATCATTCAAGTCTCCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGATTCTTTATCGGGCATAGCACATTACTATTGAGC
A TCCCTAAAACAAT
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PM13. = 370S_01,229S_03, 283S_03, 343S_03, 217N_04, 317N_04
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATATTTACTAACA
TCTCATCCAGAACATGCTTACAAGCAAGGACCTTCATAGAAGTATCTGACTACAATACAT
ATCATTCAAGCCTCCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGCCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM 14. = 379N_10, 383N_10
ATCTTTCCCCAGGGCAACTCAGAAAAAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTACCGTCCATAGGACATAAAATTACATACTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGAACCTTCATAGAAGTATCTAACTACAACACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM15. = 281S_03_387S_03
ATCTTTCCCCAGGGCAACTCAGAAAAAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTACCGTCCATAGGACATAAAATTACATACTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGAACCTTCATAGAAGTATCTGACTACAACACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGTACATTACTATTGAGC
ATCCCTAAAACAAT

PM 16. = 401N_04
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATATTTACTAACA
TCTCATCCAGAACATGCTTACAAGCAAGGACCTTCATAGAAGTATTTGACTACAATACAT
ATCATTCAAGCCTCCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGCCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM17. = 407N_04
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATAGAAATATCTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGCTATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM18. = 279S_03,417N_05
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGGACCTTCATAGAAGTATTTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATATCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM19. = 431S 06



ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT
ATCATTCAAGCCTCCAAATACCATGGTGTAACCCACCGGAATACCAACCGATACTATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM20. = 469S_01,453N_02
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATATTTACTAACA
TCTCATCTAGAACATGCTTACAAGCAAGGACCTTCATAGAAGTATCTGACTACAATACAT
ATTATTCAAGCCTCCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGCCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM21. = 488S01
ATCTTTCCCCAGGGCAACTCAGAAAAAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTACCGTCCATAGGACATAAAATTACATACTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGAACCTTCATAGAAGTATCTGACTACAACACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGATTCTTTATCGGGCATAGTACATTACTATTGAGC
ATCCCTAAAACAAT

PM22. = 497N05
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATAGAAATATCTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATACTATATA
TTCATTGATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM23. = 363S_01,473S_01,479S_01, 523S_01, 445N_02, 199N_02
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGCCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAGACAAT

PM24. = 285S_03, 330N_04, 385N_04, L03N_04
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAACATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGGACCTTCATAGAAGTATTTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGCCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAATAAT

PM25. = L10S_01
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT



GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAGTATCTGACTACAATACAT
ATCATTCAAGCCTCCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGATTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM26. = 421N_05,423N_05,433N_05, L11N_05
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATAGAAATATCTGACTATAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGCTATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAGT

PM27. = L13N_05
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCTAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM28. = 205S_01,209S_01,289S_01, 339S_03, L05S_03, 382N_10, L25N_10
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATAGAAATATCTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTTATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM29. = L27N J0
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TCTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM30. = 521S_01, 449N_02,459N_02, 297N_04, 313N_04, L29N_04
ATCTTTCCCCAGGGCAACTCAGAAAAAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTACCGTCCATAGGACATAAAATTACATACTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAGTATCTGACTACAACACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM31. = L31N_04, 411N_05, 253S_06, 255S_06, 301N_78
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
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TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATACTATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM32. = 291S_01, 351N_02, 193N_02, 249N_04, L33N 05, L15S_06
ATCTTTCCCCAGGGCAACTCAGAAAAAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTACCGTCCATAGGACATAAAATTACATACTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGAACCTTCATAGAAGTATCTGACTACAACACAT
ATCATTCAAGCCTTCAAATACCATGATGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGACATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM33. = 481S_01,485S_01, 490S_01, L01S_01, 190N_02, 195N_02, L35N_02, 437N_04, 
425S_06, 309NJ78, L19S_09

ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATAGAAATATCTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATACTATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM34. = 236N_04, 321N_04, 191N_05, L37N_05
ATCTTTCCCCAGGGCAACTCAGAAAAAGAGCACTCAACTCCACCACCAACACCCAAAATT
g g c a t t c t a t t t a a a c t a c t t t c t g t a T t c t a g g g g g t a c a a c t c a a a a a a t a a c t c a a g

TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTACCGTCCATAGGACATAAAATTACATACTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGAACCTTCATAGAAGTATCTGACTACAACACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACTGATGTCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM35. = L39N05
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGGACCTTCATAGAAGTATTTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATATCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGACATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM36. = 203N_04, L41N_04, 461S_06,465S_06 
a t c t t t c c c c a g g g c a a c t c a g a a a g a g a g c a c t c a a c t c c a c c a c c a a c a c c c a a a a t t

GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCACTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM37. = L43N_04, 273N_10
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
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TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATATTTACTAACA
TCTCATCCAGAACATGCTTACAAGCAAGGACCTTCATAGAAGTATCTGACTACAATACAT
ATCATTCAAGCCTCCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM38. = L22N_04, L45S_06
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT
ATCATTCAAGCCTCCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGATTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM39. = 233S_03, 389S_03,237N_04, 295N_04, 403N_04, 435N_04, 501N_05, 505N_05, 
511N_05, 397S_06, 399S_06, L47S_06

ATCTTTCCCCAGGGCAACTCAGAAAAAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTACCGTCCATAGGACATAAAATTACATACTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGAACCTTCATAGAAGTATCTGACTACAACACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM40. = 305NJ78, L49N_78
ATCTTTCCCCAGGGCAACTCAGAAAAAGAGCACTCAACTCCACCACCAACACCCAAAATT 
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG 
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA 
TTATATAGTACTATAAATGTTTTACCGTCCATAGGACATAAAATTACATACTTACTAACA 
TCTCATCCAGAACATGCTTACAAGCAAGAACCTTCATAGAAGTATCTGACTACAACACAT 
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA 
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC 
ATCCCTAAAACAAT '

PM41. = 373N_45, 375N_45, L51N_45
ATCTTTCCCCAGGGCAACTCAGAAAAAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
t a c a a t c t a g c t t t a t a t g c c c c t a t g t a a t t c g t g c a t t a c t g c t a g c c a g c a t g a a t a

TTATATAGTACTATAAATGTTTTACCGTCCATAGGACATAAAATTACATACTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGAACCTTCATAGAAGTATCTGACTACAACACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATACA
TTCATTAATCGTACATAGTACATTAGATTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM42. = 207S_01,212S 01, L07S_03, 439N_04,441N_04,443N_04, L18N_04, L53N_08, 
325N_08, L24N_10 

ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT 
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG 
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA 
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA 
TTTCGTCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAATATCTGACTACAATACAT 
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA 
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC 
ATCCCTAAAACAAT

PM43. = L56N_10
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT



GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATACTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGGACCTTCATAGAAGTATCTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM44. = 367S_01, 394S_03, 357S_03, 361N_10, L58N_10
ATCTTTCCCCAGGGCAACTCAGAAAGAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAGCATGAATA
TTATATAGTACTATAAATGTTTTATCGTCCATAAGACATAAAATTACATATTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGGACCTTCATAGAAGTATCTGACTACAATACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT

PM45. = LabukN
ATCTTTCCCCAGGGCAACTCAGAAAAAGAGCACTCAACTCCACCACCAACACCCAAAATT
GGCATTCTATTTAAACTACTTTCTGTATTCTAGGGGGTACAACTCAAAAAATAACTCAAG
TACAATCTAGCTTTATATGCCCCTATGTAATTCGTGCATTACTGCTAGCCAACATGAATA
TTATATAGTACTATAAATGTTTTACCGTCCATAGGACATAAAATTACATACTTACTAACA
TTTCATCCAGAACATGCTTACAAGCAAGAACCTTCATGGAAGTATCTGACTACAACACAT
ATCATTCAAGCCTTCAAATACCATGGTGTAACCCACCGGAATACCAACCGATGTCATATA
TTCATTAATCGTACATAGTACATTAGGTTCTTTATCGGGCATAGCACATTACTATTGAGC
ATCCCTAAAACAAT


