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ABSTRACT

Lean premixed combustion is promoted as one of the new technologies which can be applied to 
gas turbines to enable the reduction of pollutant emissions, especially of NOx. Some of the main 
advantages of lean premixed operation are lower overall combustion temperatures, shorter flame 
lengths and better fuel burnout. The swirl lean premixed combustion provides the initial 
stability and flexibility for the system. However, there are still problems that can occur during 
the combustion process including those related to flashback especially for high burning velocity 
fuels such as hydrogen enriched fuels.

CFD modelling is used to simulate the combustion of premixed swirl burner that uses different 
types of fuels. A three dimensional -  finite volume model is used to study the flashback 
phenomenon. It was realized that two different types of flashback can take place, partial 
flashback and full flashback. The partial flashback exists due to the extension of a Central 
Recirculation Zone (CRZ) back into the burner exit and that allows the hot gases to return to the 
burner and cause flashback. The other type o f flashback is caused by the low velocity of the raw 
gases that may drop below the local burning velocity and thus causes full flashback. The results 
show die possibility of reducing or virtually eliminating partial flashback by using passive 
constrictions at the burner exit which can manipulate the CRZ and hence avoid partial 
flashback. The passive constrictions are not able to prevent full flashback but there are other 
methods that are introduced to improve the stability limits of the flame and reduce the system 
flashback tendency. The results are generally confirmed for methane by experiments using a 
model burner operated at atmospheric pressure, although there are regions around the fuel 
nozzle where CFD cannot pick out the finer detail of the flames found.

Full flashback can be reduced by lowering the turbulent intensity, adding carbon dioxide to the 
fuel and/or operating at equivalence ratios less than about 0.65. CFD Modelling for premixed 
swirl combustion is initially performed to simulate the combustion of Methane-Air with carbon 
dioxide dilution. The impact of CO2 addition to the premixed air fuel mixture is studied, this 
being representative of various future gas turbine fuels. The results show that the stability limits 
of CH4 combustion can be improved by CO2 addition to the flame as the flame velocity 
decreases with the increase of CO2 addition. This is confirmed experimentally although the CFD 
code overestimates the conditions at which flashback will occur, except at very weak and rich 
conditions

Flashback simulations studies were also performed for a wide range of hydrogen/methane 
(H2/CH4 ) blends using the same swirl burner under premixed conditions. The laminar flame 
speed was calculated for H2/CH4 blends from pure methane up to pure hydrogen at various 
pressures, temperatures and equivalence ratios. This was done by using CHEMKIN-PRO 
software package with PREMIX code and an algebraic expression derived by asymptotic 
methods incorporated with Le Chatelier’s Rule-like correlation. The feasibility of using a new 
approximation for laminar flame speed of H2/CH4 blends based on the gravimetric mixture ratio 
was checked and compared with the previous calculations. The new approximation gave a good 
prediction at various conditions. The numerical values for laminar flame speed calculated by 
CHEMKIN are then fed to a FLUENT CFD model to create a PDF table for turbulent premixed



combustion calculations and flashback studies. Flashback limits were defined and determined 
for H2/CH4 blends ranging from 0% (pure methane) up to 100% (pure hydrogen) based on the 
volumetric composition at atmospheric pressure and 300K for various equivalence ratios. The 
results show that the use of up to 50% blends of methane and hydrogen causes fewer problems 
with flame stability and flashback compared with the use of pure hydrogen. Also, the flashback 
limits depend on the values for both laminar and turbulent flame speed. What emerges is the 
need for more theoretical and experimental research work to obtain more accurate values for 
flame speeds.

CFD simulations using FLUENT were carried on for the definition of turbulent parameters and 
confirmation of the accuracy between empirical and numerical results, as well as extrapolating 
the results to high pressure and air preheat. The experimental validations allowed the numerical 
analysis of cases with hydrogen enriched blends, plus the use of diluting components such as 
CO2, augmenting the understanding of flashback using these types of passive methods of 
suppression and their efficiency in the avoidance of the flashback phenomenon.

The important conclusion was reached that when combusting H2/CH4 fuel mixes flashback 
behaviour approaches that of pure methane for equivalence ratios less than about 0.65, all 
pressures investigated up to 7 bara and air inlet temperatures of 300 and 473K. Significant 
deleterious changes in flashback behaviour for H2/CH4 fuel mixes occurred for air inlet 
temperatures of 673K, although operation at weak equivalence ratios less than 0.65 was still 
beneficial.
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Chapter 1

In t r o d u c t i o n

1.1 World Energy and Environm ental A spects

Energy plays an important role in the economics of all countries. It is the driving engine to 

development and one of the basic factors to improve the quality of life and economic viability. 

The policies of the electricity and energy sector aim to optimum utilization of primary energy 

sources.

In 2008, the worldwide energy consumption of the human race was estimated at 11294.9 

million ton oil equivalent (Mtoe) with 88.2% from burning fossil fuels; coal, oil and natural gas. 

Figure 1.1 represents the trend of world energy consumption from 1983 until 2008. World 

primary energy consumption grew by 1.4% in 2008, this is the weakest growth since 2001. Oil 

remains the world's dominant fuel, though it has steadily lost market share to coal and natural 

gas in recent years. However it is still counted as the primary energy source with 34.8% of the 

total energy supply falling from 38.7% over the past decade. Oil consumption and nuclear 

power generation declined last year, while natural gas and coal consumption, as well as 

hydroelectric generation, increased [1]. In this review, primary energy comprises commercially 

traded fuels only. Therefore, fuels such as wood, peat and animal waste that, though important 

in many countries, are excluded. This is because they are unreliably documented in terms of 

consumption statistics. Also wind, geothermal and solar power generation are excluded. Other 

statistics of International Energy Agency (IEA) (21 and Organisation for Economic Co­

operation and Development (OECD) [3] that consider the energy produced from combustible 

renewables and waste count it as 1 0 . 1 % of the total primary energy consumption in 2006 and 

the energy produced from wind, geothermal and solar power generation are 0.6%. A complete 

survey of the world energy resources is in [4J.

Regarding the electricity generation, Figure 1.2 represents the fuel shares in electricity 

generation in 2006. It is realized that the main energy contribution in the electrical power 

generation field is the fossil fuel (coal, oil, and gas) with a total percentage about 66.9%. While 

the nuclear energy contributes 14.8% and hydro power contributes 16% from the total electricity 

generation of 18,930 TWh (2(.
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From the previous statistics, it can be concluded that thermal energy is still the main energy 

source all over the world and deserves appropriate research.

World consumption
U t o e m K i t a o M M n

tMO

Figure 1.1: The trend of world energy consumption from 1983 until 2008 |1|

2006 
Iro Other**

Nuclear 
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Figure 1.2: The fuel shares in electricity generation [2J

The environmental impact o f the use of fossil fuels and potential scarcity of supply are the 

major driving forces behind current energy policies. The environmental problems associated 

with fossil fuel consumption are the major problems that most research tackles.
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Energy production from fossil fuel combustion results in the emission of greenhouse gases, the 

dominant contributor being CO2. Public awareness and legislation have led to a policy of 

reduction of greenhouse gas emissions in most economically well-developed countries, with the 

regulations partially driven by (international) initiatives such as the Kyoto protocol and the 

Intergovernmental Panel on Climate Change (IPCC) |5, 6|.

In recent years, air quality has become a particularly severe problem in many countries. 

Growing concern with exhaust emissions from gas turbines (GT) and internal combustion 

engines (ICE) has resulted in the implementation of strict emission regulations in many 

industrial areas such as the United States and Europe. In the meantime, the Kyoto protocol calls 

for a reduction in greenhouse gas emissions between 2008 and 2012 to the levels that are 5.2% 

below 1990 levels in 38 industrialized countries. Therefore, how to reduce hazardous emissions 

and greenhouse gases from engines has now become a research focus. If driven according to the 

certifying cycle, modem engines with three way catalyst emit very low amounts of hazardous 

emissions, along with large amounts o f water and carbon dioxide (CO2) emissions.

According to IEA statistics, the world CO2 emissions doubled from 1971 till 2006 as shown in 

Figure 1.3. Emissions were 28100 Mt in 2006. This amount were calculated using IEA energy 

databases and the default methods and emissions factors from the Revised 1996 IPCC 

Guidelines for National Greenhouse Gas Inventories [2]. Global C 0 2 emissions increased by 

900 Mt between 2006 and 2007. This represented a growth rate of about 3% in CO2 emissions, 

identical to that of the previous year. However early indicators suggested that growth in 

emissions slowed in 2008 and 2009 [7J.
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Figure 1.3: World C 0 2 emissions evolution from 1971 to 2006 

by fuel (Mt of C 0 2) [2]
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CO2 is a greenhouse gas in the exhaust gases of combustion from GTs and ICEs. C 0 2 emissions 

from engines can be reduced by improving fuel economy, using a fuel with higher hydrogen to 

carbon ratio (H/C) or using a renewable fuel. The fuel economy of GT and ICE can be improved 

by operating the engine with diluted mixtures through extra air or exhaust gas recirculation 

(EGR) due to low temperature combustion, low heat transfer losses and low pumping losses at 

part loads. Direct injection SI engines have reduced pumping losses and heat transfer losses and, 

hence, have low fuel consumption. Homogenous charge compression ignition (HCCI) gasoline 

engines using diluted mixtures can also improve their fuel economy [8 ].

CO2 is not the only harmful pollutant resulting form fossil fuel combustion but many other 

pollutants are produced. Combustion of standard fossil fuels in commercial and industrial 

combustors results in the following nine emissions; carbon dioxide, nitrogen, oxygen, water, 

carbon monoxide, nitrogen oxide, sulphur oxides, volatile organic compounds, and particulate 

matter. The latter five products of combustion are considered pollutants and are known to, either 

directly or indirectly, cause harmful affects on humans and the environment [9].

1.2 Gas Turbines

1.2.1 Overview

A gas turbine extracts energy from a flow of hot gas produced by combustion of gas or fuel oil 

in a stream of compressed air. It has an upstream air compressor (radial or axial flow) 

mechanically coupled to a downstream turbine and a combustion chamber in between. "Gas 

turbine" may also refer to just the turbine element.

The principle of gas turbine engine is shown in Figure 1.4. Energy is released when compressed 

air is mixed with fuel and ignited in the combustor. The resulting gases are directed over the 

turbine's blades, spinning the turbine, and mechanically powering the compressor. Finally, the 

gases may pass through a nozzle, generating additional thrust by accelerating the hot exhaust 

gases by expansion back to atmospheric pressure. Generating mechanical power from a power 

turbine or thrust from a nozzle depends on the commercial usage of the gas turbine unit. Energy 

is extracted in the form of shaft power, compressed air and thrust, in any combination, and used 

to power aircraft, trains, ships, electrical generators. A CAD drawing for die gas turbine engine 

is shown in Figure 1.5.
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Figure 1.4: Gas turbine cycle principle 110]

The use o f gas turbine technology has substantially grown during the last century. It has wide 

applications in both stationary power generation and aircraft sectors. Furthermore gas turbine 

technology has steadily advanced since its inception in the early 1900s and continues to evolve 

specially after the second world war. The manufacture of gas turbines is now a major industry in 

most of highly industrialized nations of the world. Research has been active in design, 

production and development of gas turbines. In recent years, the research has refocussed to 

studying the visibility of using a new alternative fuels whilst recognizing the emissions and 

environmental aspects. The use of computers in analysis and design, specifically CFD software, 

allows a wide diversity in studying and comparing different choices of design and fuel varieties.

Gas turbine technology has steadily advanced since its inception and continues to evolve; 

research is active in producing ever smaller gas turbines. Computer design, specifically CFD 

and finite element analysis along with material advances, has allowed higher compression ratios 

and temperatures, more efficient combustion, better cooling of engine parts and reduced 

emissions. On the emissions side, one challenge in technology is actually getting a catalytic 

combustor running properly in order to achieve single digit NOx emissions to cope with the 

latest regulations, although other methods also prove promising. Additionally, compliant foil 

bearings were commercially introduced to gas turbines in the 1990s. They can withstand over a 

hundred thousand start/stop cycles and eliminated the need for an oil system [12].

The advantages o f gas turbine engines can be summarized as follows (12, 13]:

Very high power-to-weight ratio, compared to reciprocating engines (i.e. most road 

vehicle engines);

Smaller than most reciprocating engines of the same power rating;

- Rotates in one direction only, with far less vibration than a reciprocating engine, so very 

reliable;

Simpler design.
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Low operating pressures.

High operation speeds.

Low lubricating oil cost and consumption.

The disadvantages of gas turbine engines are (12,13 J:

Cost is much greater than for a similar-sized reciprocating engine (very high- 

performance, strong, heat-resistant materials needed);

Use more fuel when idling compared to reciprocating engines - not so good unless in 
continual operation.

These disadvantages explain why road vehicles, which are smaller, cheaper and follow a less 

regular pattern of use than tanks, helicopters, large boats and so on, do not use gas turbine 

engines, regardless of the size and power advantages imminently available.

1.2.2 Combustion In Gas Turbine

Gas turbine engines for power generation and propulsion applications have traditionally used 

diffusion-flame combustors because of their reliable performance and reasonable stability 

characteristics. Unfortunately, this type of combustor usually produces unacceptably high levels 

of thermal NOx. The increasingly strict regulation for pollutant emissions has recently led 

engine manufacturers to develop combustors that meet various regulatory requirements [14,15]. 

New concepts for combustion technology have been introduced to the gas turbine industry, 

including lean-premixed (LPM) combustion (or lean-premixed prevaporized (LPP) combustion 

when liquid fuels are employed), rich-bum quick-quench lean-bum (RQL) combustion, and 

catalytic combustion [16, 17]. Among these three methods, RQL techniques are hampered by 

soot formation and incomplete mixing between fuel-rich combustion products and air. Catalytic 

combustion suffers from challenges associated with cost, durability and safety. Lean-premixed 

(prevaporized) combustion appears to be the most promising technology for practical systems at 

the present time (note that for aero-engine gas turbines using liquid fuels, lean direct injection 

(LDI) combustion is often adopted for pollution control because of its superior stability 

behavior). In LPM combustion, the fuel and air are premixed upstream of the combustor to 

avoid the formation of stoichiometric regions. The combustion zone is operated with excess air 

to reduce the flame temperature; consequently, thermal NOx is virtually eliminated [18].

Lean premixed combustion is often chosen as the principle strategy to reduce pollutants 

produced in such devices (mainly NOx,, CO and UHC), but with ever more stringent emissions 

regulations a more thorough understanding of combustor design becomes increasingly
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necessary. An intrinsic feature of all premixed combustion systems is a tendency toward 

flashback.

The basic principle involved in flame stabilization is quite simple. If combustion is initiated in a 

flowing stream, and if the gas velocity is higher than the flame speed, the flame moves 

downstream, while if the flame speed is higher than the gas velocity, the flame moves upstream 

|19, 20].

Flashback constitutes an obstacle for lean premixed technology for fuels have high burning 

velocity such as hydrogen rich fuels, which makes it one of the gas turbine industry priority 

issues that needs attention. Flashback can cause a system failure as shown in Figure 1.6. A new 

burner assembly is shown in the same figure for comparison.

Fig. 1.6: Burner assembly (left) damaged by combustion instability and new burner
assembly (right) [2 1 ].

1.2.3 Gas Turbines Fuels

The most dominant fuel issues of today are those of cost and availability. After 1973, the price 

of crude oil rapidly increased three to four times. This major price change had a market impact 

on the economy of the industrial nations. It is now generally accepted that the availability of 

previously abundant high grade crudes is decreasing and will probably fail to meet the demand 

sometimes in the future. So, the diminishing o f world fossil fuel reserve and the pollution 

problems resulted from its use, specially its effect on the global warming, opens the way to 

extend the using of alternative clean fuels and energies.
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The increased use o f gas turbines for power generation is accompanied by the need to use some 

more cost-effective alternative fuels with a wide range of heating value. In the past kerosene 

was the main fuel of gas turbines but recently natural gas replaced kerosene in most stationary 

gas turbines. Although natural gas is the primary fuel for most stationary gas turbine engines 

nowadays, there is growing interest, due to ever-increasing natural gas prices, in burning 

alternative fuels. These alternative fuels, including coal-derived syngas (synthetic fuel gas), 

biomass and landfill gases, and liquefied natural gas (LNG). They are usually significantly 

different from natural gas in terms of physical and chemical properties. For example, syngas 

obtained from gasification of coal is typically a mixture of methane (CH4), hydrogen (H2), and 

carbon monoxide (CO), with smaller amounts of CO2 and N2. Advanced power systems based 

on the integrated gasification combined cycle (IGCC) technology have been developed utilizing 

syngas as the primaiy fuel. The composition of syngas, however, can vary widely depending on 

the source and processing technique. Refineries and chemical plants produce by-product gases, 

usually rich in H2, that are often flared. Biomass-derived fuels and sewage/landfill off-gases 

represent another economical energy source. For the longer term, methane and hydrogen are 

among the candidate fuels now being considered. Methane combustion is of great interest, 

because its low molar ratio of carbon to hydrogen signifies that it can generate power with fewer 

greenhouse gas emissions. Lean turbulent methane combustion has great potential for reduced 

NOx emissions in spark ignition engines and gas turbines [18,22,23].

The ability to effectively bum these fuels in gas turbines will provide substantial cost 

advantages, while minimizing adverse effects on the environment. The economical end 

environmental benefits are an immediate motivator to develop fuel flexible gas turbine systems 

capable of using many different fuels containing various blends of hydrogen and hydrocarbons 

[22]. The use of liquid and gaseous fuels from biomass will indeed help fulfill the Kyoto targets 

concerning GHG emissions. In addition, to make industrial processes more environmentally 

friendly, waste gases could be used as a potential gas turbine fuel [24]. The change in fuel type 

and composition usually leads to significant changes in the characteristic time scale of chemical 

reactions in the combustion system, which consequently has a major impact on combustion 

operability, including flashback, auto-ignition, lean blowout, and combustion dynamics [18J. 

Developing fuel-flexible combustion systems capable of burning a variety of fuels without 

significantly altering combustor operability and performance is a motivation for extensive 

research work.

8



1.3 Modelling of Com bustion

During the last three decades, computational fluid dynamics (CFD) has emerged as an important 

element in professional engineering practice, cutting across several branches of engineering 

disciplines. That was due to the growth in the processing speed with which arithmetic 

operations can be performed on a computer.

Computational fluid dynamics (CFD) is concerned with numerical solution of differential 

equations governing transport of mass, momentum, and energy in moving fluids. CFD activity 

emerged and gained prominence with availability of computers in the early 1960s. Today, CFD 

finds extensive usage in basic and applied research, in design of engineering equipment, and in 

calculation of environmental and geophysical phenomena. Since the early 1970s, commercial 

software packages (or computer codes) became available, making CFD an important component 

of engineering practise in industrial, defence, and environmental organizations [25].

For a long time, design (as it relates to sizing, economic operation, and safety) of engineering 

equipment such as heat exchangers, furnaces, cooling towers, internal combustion engines, gas 

turbine engines, hydraulic pumps and turbines, aircraft bodies, sea-going vessels, and rockets 

depended on painstakingly generated empirical information. The same was the case with 

numerous industrial processes such as casting, welding, alloying, mixing, drying, air- 

conditioning, spraying, environmental discharging of pollutants, and so on. The empirical 

information is typically displayed in the form of correlations or tables and figures among the 

main influencing variables.

The main difficulty with empirical information is that it is applicable only to the limited range 

of scales of fluid velocity, temperature, time, or length for which it is generated. Thus, to take 

advantage of economies of scale, for example, when engineers were called upon to design a 

higher capacity power plant, boiler furnaces, condensers, and turbines of ever larger dimensions 

had to be designed for which new empirical information had to be generated all over again. The 

generation of this new information was by no means an easy task. This was because the 

information applicable to bigger scales had to be, after all, generated via laboratory-scale 

models. This required establishment of scaling laws to ensure geometric, kinematic, and 

dynamic similarities between models and the full-scale equipment. This activity required 

considerable experience as well as ingenuity, for it is not an easy matter to simultaneously 

maintain the three aforementioned similarities. The activity had to, therefore, be supported by 

flow-visualization studies and by simple (typically, one-dimensional) analytical solutions to 

equations governing the phenomenon under consideration. Ultimately, experience permitted
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judicious compromises. Being very expensive to generate, such information is often o f a 

proprietary kind. In more recent times, of course, scaling difficulties are encountered in the 

opposite direction. This is because electronic equipment is considerably miniaturised and, in 

materials processing, for example, the more relevant phenomena occur at microscales (even 

molecular or atomic scales where the continuum assumption breaks down). Similarly, small- 

scale processes occur in biocells [25].

Combustion problems are among the most complex that CFD codes are used to solve because 

they usually involve complicated geometries and fluid dynamics, heat transfer, and chemical 

reactions. As the complexity of the problem increases, so do the number of iterations required to 

get a converged solution. The large number of grid-points and complicated physics often equate 

to long computational times [26].

It is desired to use CFD to design new combustion equipment because it is often much cheaper 

and faster than building prototypes that are usually tested first under controlled laboratory 

conditions before trying them out in the actual field installations. Furthermore, it is also desired 

to use CFD to guarantee the performance of combustion equipment because it may difficult to 

test the equipment in every conceivable type of application. CFD can be used to dramatically 

reduce the cycle times for developing new products. It can be also used to simulate the 

processes under hazardous conditions.

The quantitatively correct numerical simulation of turbulent reacting gas flows is currently one 

of the most challenging problems, particularly in the context of low emission combustion. 

Advances in computing has led to significantly improved combustion models, but a key 

difficulty still remains in the elaboration of physical and chemical models.

1.4 Aims of the  T hesis

One of the most important technologies used in gas turbine combustors is the swirl lean 

premixed combustion. It provides the initial stability and flexibility for the system. Lean 

premixed combustion enables techniques that can be used to minimize the impact and 

production of NOx. Combustion instability in lean-premixed combustion systems remains a 

substantial challenge for designers. The focus of this research is concentrated on the flashback 

limits of the flame and how can these limits be improved. CFD combustion simulation is used to 

determine the stability limits for various fuels and experimental measurements are used to 

validate the model.
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The aims of this work can be introduced as follows:

To enhance the techniques that can be used for reducing the combustion emissions and 

pollutants. These techniques such as:

■ Lean premixed combustion which can be used for reducing NOx emissions,

■ C 0 2 recirculation or using syngas (the gas resulted from biomass gasification 

and contains C 02, CO, and H2) that can be used for reducing CO2 emissions, 

and

■ Using H2 as a new clean fuel and can be used for reducing both NOx and CO2 

emissions.

To study the main problem of premixed combustion that is recognized as flame 

flashback.

To reduce the existence of flashback in practical swirl burner by using burner nozzle 

modifications.

To define the stability limits for flames. These limits are recognized by defining the 

normal combustion and flashback zones with respect to mixture mass flow rates at 

various equivalence ratios.

To study the effect of operating pressure and air preheat temperature on the stability 

limits.

Trying to improve the stability limits of methane by adding C0 2 to the fuel.

Introducing H2 as a promising clean fuel and improving its stability by using hybrid 

mixture with CH4 , the main component of natural gas. This hybrid fuel can be 

considered as an environment friendly fuel.

To implement CFD simulation as a guide to the experimental work to gain the 

advantages of modelling regarding cost, tim e, etc.

1.5 Structure of the  Thesis

In this thesis, CFD analysis is used to highlight the flashback problem which occurs by using 

premixed combustion in gas turbines. Methods are suggested to improve the stability limits of 

premixed flames.

The thesis consists of eight chapters. These chapters are organized as follows:

Chapterl outlines the current world energy consumptions and future trends and needs. The 

environmental requirements and restrictions are shown. The principles of gas turbine are 

introduced. The general aspects of combustion in gas turbine and the fuels used are mentioned.
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The importance o f modeling combustion is clarified. The aims of the research work arc stated 

and the thesis structure is outlined.

Chapter 2 describes the combustion technology in gas turbines. The lean premixed combustion 

is introduced as a promising technique for emissions reduction but it is hindered by stability 

problems. Swirl combustion is mentioned as flame stabilizing technique. The general aspects of 

swirl combustion are presented. The stability problem and the flashback definitions are 

presented in the context of discussing the causes of flashback and instability. CO2 dilution is 

introduced as a new technique that can be used for stabilizing fuels of high flame speeds. 

H2/CH4 mixtures are mentioned as a promoted fuel that can be used in existing gas turbine 

systems and so the effect of the mixing percentage on flame stability is studied in this research.

Chapter 3 identifies the principle of computational fluid dynamics. The advantages of using 

CFD modeling are highlighted. Laws of fluid motion are presented. Planning the CFD analysis 

is shown. Turbulence models and combustion models are surveyed. Fluent as a CFD code that is 

used for the simulation is discussed. Due to the importance of laminar flame speed in 

combustion modelling, a general review of the methods used for calculating the laminar flame 

speed of methane and hydrogen and their blends are presented.

Chapter 4 describes the design of combustion system used in this research. The model 

development, model quality, calculation parameters and the numerical description of the 

original combustion system are described. The CFD analyses for the original system are 

performed based on experimental data produced by the working team in the research centre. The 

effect of turbulence on flashback is illustrated.

Chapter 5 presents the swirl burner. Both partial and full flashbacks are defined. Two 

modifications for the swirl burner are suggested with different nozzle geometries. The 

modifications are aimed to eliminate the partial flashback. Both modifications are simulated and 

compared with the original swirl model with different operating conditions. The effect of 

combustion operating conditions (pressure, mixture temperature, equivalence ratio and, mixture 

mass flow rate) on flashback are studied and stability limits of flames are determined. Also, the 

size and shape of the recirculation zone associated region of high turbulence are studied as they 

are critical to flame stability, combustion intensity and performance.

In Chapter 6, the stability limits of CH4  flames are determined at various operating conditions. 

The modified swirl burner model is used to determine the stability limits for methane flames. 

The feasibility of improving the stability limits of methane flame by diluting an amount of CO2
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in the fuel is studied for premixed flames. The flashback limits are modelled for pure CH4 and 

with addition of C 0 2 up to 30%. Experimental measurements are performed to determine the 

stability limits of CH4 at the atmospheric conditions. The measurements are compared with the 

CFD simulation findings. Also the effect of C02 addition to CH4 combustion is studied 

experimentally at the atmospheric conditions. The stability limits of CH4 with the addition of 

CO2 of 15 and 30% by volume are measured and compared with the model results. Also the 

effect of using turbulence plates upstream is examined.

In Chapter 7 two main topics are considered; the first is the determination of laminar flame 

speed for H2/CH4 blends and the second is the determination of stability limits of such blends. 

The laminar flame speed was calculated for H2/CH4 blends from pure methane up to pure 

hydrogen at various pressures, temperatures and equivalence ratios by using two methods in the 

literature. A new approximation for laminar flame speed of H2/CH4 blends based on the 

gravimetric mixture ratio was suggested and compared with the previous calculations. The 

Flashback limits are determined for H2/CH4 blends ranging from 0% (pure methane) up to 100% 

(pure hydrogen) based on the volumetric composition at atmospheric pressure and 300 K. Three 

combustion regimes for H2/CH4 blends are defined. The stability limits of methane-dominated 

combustion (up to 50% blends of methane and hydrogen) has been extensively studied at 

different pressures and temperatures to show the effect of the combustion conditions on H2/CH4 

blends flame stability. Experimental measurements are performed at the atmospheric conditions 

to determine the stability limits for H2/CH4 flames. Two blends are used with H2 contents of

0.15 and 0.30 in the fuel. The measurements are used to validate the CFD simulation findings. 

Also, the effect of mixing H2 and CH4 on the stability limits is recognized.

Chapter 8 concludes the findings of this work and recommends future research topics in this 

research field.
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Chapter 2

C o m b u s t i o n  T e c h n o l o g y  i n  G a s  T u r b i n e s

2.1 Introduction

The gas turbine combustor is a complex combustion device within which there exists a wide 

range of coupled, interacting physical and chemical phenomena. The combustion performance 

and emissions are mainly influenced by the combustion technique and fuel type. In the design of 

gas turbine combustors, effort must be made to ensure that combustion is virtually 1 0 0 % 

efficient whilst emissions are minimal. Also it must be ensured that combustion can be 

sustained over the entire range of engine operating conditions, including the transient states of 

rapid acceleration and deceleration. Efficient combustion must be maintained in a highly 

turbulent air stream flowing at velocities that greatly exceed the normal burning velocity of the 

fuel. Furthermore, the flame must stay alight during the various abnormal conditions that 

sometimes are encountered during combustion.

Lean premixed combustion (LPMC) is currently considered one of the most promising concepts 

methods to reduce pollutant emissions, particularly NOx emissions. Lean premixed (LPM) gas 

turbine combustion has considerable advantages in terms of allowing lower overall flame 

temperatures, whilst smearing the flame and combustion processes over larger volumes.

Combustion instability remains a critical issue limiting the development of low-emission, lean- 

premixed gas turbine combustion systems. Most gas turbines and other combustion systems use 

swirl as a method of flame stabilization. Swirling flows can in themselves generate several 

different types of flow and flame stability. Strong efforts are currently undertaken for the 

Numerical simulation of swirl-stabilized flames with the intentional use for the design of 

improved gas turbine combustors.

In this chapter, the concept of using lean premixed combustion to reduce the emissions in gas 

turbines is discussed and it is shown that LPMC is encountered by instability problems. The 

stability problem and the flashback definitions are presented in the context of discussing the 

causes of flashback and instability, whilst discussing methods of alleviation. Swirl flows and 

combustion are discussed with a review of the research work in the area.
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As a new technique that can be used for stabilizing hydrogen rich fuel mixes, CO2 dilution is 

introduced. Previous researchers observed that the laminar flame speed decreases when the CO2 

dilution rate increases with methane combustion and thus these studies are continued for a 

variety of fuel mixes in this thesis in the context of practical swirl burners.

Hydrogen fuel mixes can give substantial advantages in terms of emission reduction and thus 

are being extensively studied at the moment as they allow existing equipment to be used with 

alternative fuels with minimal redesign and modification. The main problem with hydrogen is 

its high flame speed and its high tendency to flashback. H2/CH4 mixtures are being widely 

promoted for use in existing gas turbine systems so here the effect of the mixing percentage on 

flame stability is studied.

2.2 Premixed Com bustion and g as  turbines

Satisfactoiy combustion is attained when the exhaust flow products are clean and non toxic, and 

contain the appropriate level of excess air (up to 1 0 0 %) to give the required inlet temperature to 

the turbine section o f the gas turbine (typically up to 1400°C for the latest generation of power 

systems). Furthermore, the combustion system shouldn’t make an excessive noise. The quality 

of combustion is controlled by the proportioning of fuel and air, mixing and combustion in the 

burner head, dilution air, and available space in which combustion can be completed [9].

There are different methods of distributing the fuel and oxidizer required for combustion to a 

flame; diffusion flame and premixed flame. In diffusion flames, oxygen and fuel diffuse into 

each other; where they meet the flame occurs. Candle flames are diffusive in nature and operate 

through melting and evaporation of the candle wax which rises in a laminar flow of hot gas 

which then mixes with surrounding oxygen and combusts. In premixed flames, the oxygen and 

fuel are premixed beforehand, which results in a different type of flame. The best example of 

this type of flame is the common Bunsen flame, in which the premixed gases flow up a burner 

tube at a rate which exceeds the normal burning velocity of the mixture, a steady flame being 

maintained above the burner top [27].

In the early 1970’s, when emission controls were first introduced, the pollutant of primary 

concern to regulators shifted to NOx. For the relatively low levels of NOx reduction initially 

required, the injection of water or steam into the combustion zone produced the required 

reduction in NOx emissions with minimal performance impact. In addition, the emissions of 

other pollutants (CO, VOC) did not increase significantly. To comply with the greater NOx 

reduction requirements imposed during the 1980’s, further attempts were made to utilize

15



increased quantities o f water/steam injection to ensure compliance. These attempts proved 

detrimental to cycle performance and part lives, and the emission rates for other pollutants also 

began to rise significantly. Other control methodologies needed to be developed, which led to 

the introduction of the LPM combustor [28].

Premixed combustion has been extensively researched in the last decade. At the same time, gas 

turbines have been promoted to the fore front of power generation. There has been a strong 

interest in achieving lean premixed combustion in many practical applications for power 

generation such as stationary and other gas turbines. The Gas Turbine Association defines Lean 

Premix Stationary Combustion Turbine as “Lean premixed stationary combustion turbine means 

any stationary combustion turbine designed to operate at base load with the air and fuel 

thoroughly mixed to form a lean mixture before delivery to the combustor”. Mixing may occur 

before or in the combustion chamber. A lean premixed turbine may operate in diffusion flame 

mode during operating conditions such as startup and shutdown, low or transient loads and cold 

ambient conditions. The advantages of operating at lean mixture conditions are high thermal 

efficiency and preventing local “hot spots” within the combustor volume that can lead to 

significant NOx formation which means low emissions of NOx due to lower flame temperatures 

[28,29].

Combustion instabilities are commonly encountered in the development of LPM gas-turbine 

engines. Most LPM gas-turbine engines utilize swirling flows to stabilize the flame for efficient 

and clean combustion. One o f the most important flow features produced by a swirl injector is a 

central toroidal recirculation zone (CTRZ), which serves as a flame stabilization mechanism. 

Flows in this region are, in general, associated with high shear rates and strong turbulence 

intensities resulting from vortex breakdown. Although this type of flow has been extensively 

studied, there remain many unresolved issues, such as swirl generation, vortex breakdown, 

axisymmetry breaking, and azimuthal instability. In particular, the effect of flow swirl on 

combustion dynamics has not been well studied, at least in a quantitative sense [20,30].

2.3 Com bustion Stability and Flashback Problem

An intrinsic feature of all premixed combustion systems is a tendency toward flashback. For 

practical combustors flashback is defined as fast chemical reaction, accompanied by significant 

heat release, in the premixed section of the combustor, owing to upstream propagation of a 

flame from the main combustion zone [19].
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Flashback is also a concern as the central recirculation zone can extend back around the fuel 

injector to the burner backplate, thus increasing the risk of flashback |20,31-33J. If the Central 

Recirculation Zone (CRZ) does extend back to the injector, this can leave thick layers of 

carbonaceous deposit on the injector surfaces, reducing the efficiency and increasing 

maintenance requirements. Flashback is an important issue in lean premixed combustion 

systems that use hydrogen as an additive fuel due to the widely varying flame speeds of the 

mixtures considered. As such, the effect of fuel composition variation upon flashback depends 

upon the corresponding change in local flame speed, both laminar and turbulent [34].

Flashback occurs when the gas velocity becomes smaller than the burning velocity and the 

flame propagates upstream into the premixer passages. Since these passages cannot withstand 

high temperatures, hence hardware damage occurs [35-37]. In swirling flows, in particular, 

several potential modes of flashback can occur [38, 39]. The first mode is that of flashback in 

the boundary layer due to the low velocities. The second mode refers to flashback in the core 

flow. The two modes take place when local burning velocity exceeds the flow velocity, 

allowing the flame to propagate upstream into the premixer passages. In some cases, flashback 

can occur even though the local flame velocity is less than the flow velocity. The flame can 

cause the vortex upstream to breakdown and this creates a negative flow region to form ahead of 

it (due to adverse pressure gradients) which causes it to advance further upstream. This 

phenomenon is referred to “combustion induced vortex breakdown” and is caused by the 

temperature ratio across the flame [38, 40]. Lieuwen et al. concluded further that “combustion 

induced vortex breakdown” is not influenced by the chemical kinetic characteristics of the 

mixture [41]. Furthermore, Noble and coworkers related this phenomenon to the pressure rise 

upstream of the flame due to the divergence of the upstream flow caused by the inclined flame 

front [42]. In general, flashback is greatly influenced by the variations in fuel composition that 

affect the combustion properties of the mixture, notably, the local burning velocity [43].

2.3.1 Types of Flashback

Two main types of flashback have been identified: the first type is the flashback occurring in the 

free stream and the second type is the flashback occurring through the low velocity flow in the 

boundary layer along the surfaces of the flame holder, any support struts, and walls of the 

premixing section.

The most obvious free stream mechanism would involve flashback due to a flow reversal in the 

bulk flow through the combustor. This flow reversal could be a result of compressor surge, a 

large disturbance due to foreign object passing through the engine, or combustion instability.
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Flashback can also occur in the absence of flow reversal if the turbulent flame speed through the 

gas in the premixing section is greater than the local bulk velocity. Lean combustion tends to 

reduce flame speeds, but other factors associated with the engine cycle, such as high 

temperatures, pressures, and turbulence levels, and preignition reactions in the gas due to 

appreciable residence times at high temperature levels, cause increase flame speed. Therefore, 

flame speed may be sufficiently high to necessitate increasing minimum allowable velocity in 

premix section to unacceptable levels so as to avoid anticipated disturbances of the combustion 

process [19].

The boundary layer mechanism involves flashback through retarded flow in a boundary layer. 

Important relevant parameters include the wall temperature and temperature distribution and 

boundary layer structure, turbulence, and thickness.

Generally, flashback can be initiated by the four following causes, [39,44-46]:

• Flame propagation in the boundary layer,

• Turbulent flame propagation in the core flow,

• Violent combustion instabilities, and

• Combustion induced vortex breakdown (CIVB).

L Flashback in the Boundary Layer

This type of flashback is often predominant in non-swirling low-turbulence flows due to low 

flow velocities in the boundary layer which promote the upstream flame propagation whereas 

the heat loss to the wall can cause flame quenching [44]. For laminar flows, Lewis and von Elbe 

[47] balance the velocity gradient gv at the wall with the laminar flame speed Sl divided by the 

quenching distance dq, that is defined as the critical size that the inflamed volume must attain to 

propagate unaided, as the flashback criterion, 

du
„ " d .8v dr

= 2.4.1
q

According to equation (2.4.1) a critical velocity gradient gv < (Si/dq) leads to upstream flame 

propagation near the wall. In order to generalize the experimental results, a dimensionless 

relation was proposed as a flashback criterion [48]. In this framework, the balance of the 

downstream convective transport and the upstream flame propagation with heat loss to the wall 

is expressed in terms of Peclet numbers. The velocity gradient is replaced by an average 

velocity and a characteristic length scale. Although the theories can also be formally applied to 

turbulent boundary layers, it is known that the same criteria do not apply in the turbulent case.
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The critical velocity gradient is much higher than the laminar one, since the axial turbulent 

diffusion above the laminar sub-layer increases the flame speed 137j.

ii. Turbulent Flame Propagation in the Core Flow

If the turbulent burning velocity exceeds the local flow velocity in the core flow, flashback is 

the consequence. The turbulent burning velocity depends on the chemical kinetics and the 

turbulence structure, i.e., the length scales and the local velocity fluctuations. Many studies on 

the correlation of the turbulent burning velocity with the turbulent velocity fluctuations in the 

flow have been published. However, the results obtained from different correlations scatter 

widely and the proper determination of turbulent flame velocities remains a challenging task 

because of the complex interaction of turbulence and chemistiy [44].

Swirling flames have a highly wrinkled and corrugated structure, which increases the flame 

surface considerably above the surface o f a laminar flame. Mainly this effect is responsible for 

the increase of the turbulent flame speed above the laminar value. Whether distributed reaction 

zones or even well stirred local zones are of strong significance under gas turbine conditions 

could not be demonstrated yet. If these effects exist, they have an additional effect on the 

turbulent flame propagation. Turbulent burning velocities show a correlation with the laminar 

flame speed. This implies that, while burning fuels with high laminar burning velocities, burners 

with a low turbulence level are more appropriate than high swirl designs in order to give a 

sufficient margin against flashback [49].

For stable fuels like natural gas at moderate mixture temperatures, flashback in the core flow is 

less critical even in highly turbulent flows due to the low laminar flame speed. A simple design 

rule for the optimum safety against flame propagation in the main flow is to avoid local zones of 

low axial flow velocity and wake regions in the mixing zone [48].

iii. Flashback due to Combustion Instabilities

Combustion instabilities can be responsible for the upstream flame propagation, both in the 

boundary layer and in the core flow. The driving force for noise and pulsations in gas turbine 

combustion systems is the fluctuating heat release of the reacting mixture in the primaiy zone. 

Four different mechanisms can contribute to the noise spectrum peaks. First of all, the turbulent 

noise produces a background noise level. This broad-band excitation can be considerably 

amplified at die eigenfrequencies of the combustion system so that they produce distinct 

pulsation. Swirling flows particularly tend to form natural coherent flow structures like 

processing vortex cores [50] or vortices generated near the transition from the mixing section
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into the combustion chamber. This second physical phenomenon can result in flow oscillations 

at specific Strouhal numbers even in the isothermal flow and leads to an amplification of the 

combustion noise if the excitation meets an eigenfrequency of the system. The third driving 

mechanism are forced coherent flow structures. They are observed if the flow instabilities 

respond to the triggering by velocity perturbations with subsequent phase-locking. The classical 

mode of unstable self-excitation is the fourth potential cause of pulsations.

High amplitudes of periodic flow velocity fluctuations at the burner exit, as a result of the 

mentioned instability mechanisms, lead to a periodic displacement of the reaction zone. The 

consequence is a periodic variation o f the burner pressure loss, which again incites the 

oscillations. This feedback loop finally leads to periodic flashbacks. Pulsation initiated 

flashback requires a high pulsation level to occur, which is far beyond the acceptable noise 

levels of combustion systems. This kind o f flashback can be interpreted as the final terminating 

step of a highly unstable combustion process after sufficient amplification [44].

iv. Combustion-Induced Vortex Breakdown (CIVB)

Many gas turbine burner designs follow the basic philosophy to stabilize the flame in the 

combustion chamber and to avoid reaction within the burner. Burners with a centerbody or fuel 

lance provide a recirculation zone on the axis even without swirl. However, imposing swirl on 

the main flow leads to a strong amplification of the backflow of hot gases and a better flame 

stabilization. An advantage of designs with centerbody is that the swirl level can be selected 

over a wide window, which is primarily limited by the propagation of the vortex breakdown 

upstream and the formation of a recirculation zone around the centerbody [44].

Experimental flashback studies with CIVB are focused on burners without fuel lances in the 

center o f the mixing zone. The design of swirlers without centerbody requires a thorough 

tailoring of the swirling flow, since the flame holding capability depends entirely on the vortex 

breakdown without the aid of a bluff body. It can be shown that in tubular flows axial profiles 

with a jet on the axis are required for a stable transition of the vortex flow into its annular form 

in the combustion chamber. It is well known that a reduction of the swirl around the vortex core 

by friction or an abrupt change in the cross section leads to a pressure rise on the axis. The 

positive pressure gradient reduces the axial velocity in the vortex core, which at the same time 

effects radial transport of angular momentum. Therefore the vortex core grows and again 

supports the positive pressure gradient. These effects govern the transition of the vortex from its 

closed into its annular form [44].
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The formation o f the vortex breakdown strongly depends on the geometry and the distribution 

of the axial and circumferential velocity. When the inlet swirl-number increases, the central 

recirculation zone due to the vortex breakdown moves upstream and eventually overrides the 

wake recirculation zone. A higher swirl number tends to increase the turbulence intensity and 

the flame speed, and consequently shorten the flame length. However, excessive swirl can cause 

the central recirculating flow to enter into the inlet annulus and leads to the occurrence of flame 

flashback (301. If the swirl number exceeds a critical value, the recirculation zone is able to 

extend itself throughout the entire mixing section. It is shown subsequently for the first time that 

even if the swirl number is well adapted to prevent this effect in the isothermal flow, the 

chemical reaction can nevertheless lead to a breakdown of the flow, combined with an upstream 

flame propagation. This effect could be observed in the present work as a characteristic 

flashback mechanism in swirling flows and henceforth will be called combustion-induced 

vortex breakdown.

2.3.2 Methods of Flame Stabilization

Flame stabilization is one of the important subjects in combustion research, and many efforts 

have been made on this problem. As illustrated in Figure 2.1, conventional ways to stabilize 

flame in a high-speed stream are to insert a bluff body and to use its rear stagnation region with 

recirculation of hot burned gas or to use an opposing jet to stabilize combustion in its stagnation 

region of low-velocity. The pressure loss in the main stream, however, is significantly large 

because the drag force is proportional to the square of its velocity. To avoid this difficulty, one 

can use a recess wall or a step and a pilot flame. The flame, however, is prone to blow-off 

because the flow in the wall recess or the pilot flame is disturbed directly by the main stream; 

the hot recirculating gas in the wall recess or the pilot flame is strongly perturbed by strong 

velocity fluctuations of the main stream [51].

Another well known method for flame stabilization is by using swirl burners. Swirling flows 

may affect flame dynamics in two aspects. First, large scale unsteady motions arising from 

shear-layer instability and vortex breakdown, as well as precession of vortex core (PVC), may 

couple resonantly with acoustic waves in the combustor, and subsequently cause combustion 

instabilities. Second, flow swirl may alter the flame structure and combustion intensity, and as a 

consequence influence the heat-release behavior in a combustion chamber. The ensuing effects 

on the stability characteristics could be substantial. Several attempts have been conducted to 

investigate the effect of swirl on the flow and flame dynamics in combustion systems [30]. The 

recirculation zone created by swirl effect is shown in Figure 2.2. The recirculation bubble plays 

an important role in flame stabilization by providing a hot flow of recirculated combustion
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products and a reduced velocity region where the flame speed and floe velocity can be matched. 

The size and shape of the recirculation zone and associated region of high turbulence are critical 

for flame stability, combustion intensity and performance. More details about swirl flows are 

discussed in the following section.

A Hame Surface W

Recirculation

Main Flame D

W a ll R e c e s s
P ilo t  I- lam e

.Recirculation

Figure 2.1: Methods of flame stabilization, (A) bluff body, (B) opposing jet, (C) recess wall,

and (D) pilot flame.

The Swirler

Central Recirculatiorrxone

Figure 2.2: Axial velocity profile for swirl flow
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2.4 Swirl Flow

2.4.1 Overview

Swirl Flows are important. They are found in nature and are utilized in a very wide range of 

reacting and non reacting applications. In combustion systems, the strong favourable effect of 

applying swirl to injected air and fuel are extensively used as an aid to stabilization of the high 

intensity combustion process and efficient clean combustion in a variety of practical situations 

such as gasoline and diesel engines, gas turbine, industrial furnaces, utility boilers, and many 

other practical heating devices [2 0 ].

Modem gas turbine (GT) combustors are operated under lean premixed or partially premixed 

conditions in order to achieve low emissions of NOx. Flames are most often stabilized by 

inducing a swirling flow of the reactants, which leads to an inner recirculation of hot burned 

gases and thereby enhances ignition of unbumed gas. However, the operation of GT combustors 

under such conditions is highly susceptible to thermoacoustic oscillations, which may strongly 

affect lifetime and reliability of the GT. The mechanisms of these oscillations are still not well 

understood, and their prediction is a critical issue of combustor design [52,53].

Swirl combustors and burners are usually characterized by the degree of swirl which is 

introduced by the swirl number (S). It is a non-dimensional number representing axial flux of 

swirl momentum divided by axial flux of axial momentum, times the equivalence nozzle radius 

[20,54]. That is:

„ Axial flux of angular momentum Ge ^ 4  j
Axial flux of axial momentum x Exit Radius Gx .d / 2

where
00 _________

Ge = J (puw + pu'w') r2dr 2.4.2
0

is the axial flux of swirl momentum, including the x- 0  direction turbulent shear stress term.

Gx =J(pu2 +pu,2 + ( p - p co»rd r  2.4.3
0

is the axial flux of axial momentum and includes the x direction turbulent normal stress term 

and a pressure term (axial thrust) 

d/ 2  -  nozzle radius
u, v, w = velocity components in (x, r, 0 ) cylindrical polar coordinate directions.
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2.4.2 Generation and Effect of Swirling Flows

The three main principles of generating swirl flows are |20|:

1. Tangential entry swirl generator.

2. Guided vanes.

3. Direct Rotation.

The swirl generation method determines the size and behaviour of the Reverse Flow Zone 

(RFZ) and other vortex breakdown characteristics which very considerably depending on the 

method used [55] and hence the efficiency of the device.

The efficiency of the swirl generation is defined as the ratio of the angular kinetic energy at the 

burner throat to pressure drop between the air inlet and the throat. Axial vane swirlers have low 

efficiencies at high swirl, although this can be improved by profiling the vanes. Tangential entry 

and radial swirler have efficiencies about 70 to 80% [56]. A compilation of efficiencies is given 

by Syred and Beer [54]. In general strong evidence of high swirl phenomena is unusual with 

axial vane type swirlers.

As the degree of swirl is increased the effects of inlet flow swirl on the subsequent flow field 

produced are increasingly dramatic. The effects of introducing swirl on turbulent jets are to 

cause an increase in width, rate of entrainment and rate of decay of the jet. These effects 

increase with increasing degree of swirl. The degree of swirl can be classified as follows [20]: 

Very weak swirl (S<0.2)

Weak Swirl (S<0.4)

Strong swirl (S>0.6)

For veiy weak swirl (S<0.2), swirl velocities decay rapidly with downstream distance and axial 

sub-pressure, sub atmospheric pressure may occur. Hence a small adverse axial pressure 

gradient may occur on the axis and the weakly swirling boundary layer jet flows retain their 

main characteristics. This adverse pressure gradient is not enough to cause axial recirculation.

For weak swirl (S<0.4), the axial velocity distribution remains Gaussian in form, with the 

maximum velocity on the axis of the jet. Although there may be significant lateral (or radial) 

pressure gradient given at any axial station from the pressure distribution resulting from the 

swirl motion, they do not give rise to more than a slight longitudinal (or axial) pressure gradient. 

Jet growth, entrainment and decay are enhanced progressively as the degree of swirl is 

increased.
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For strong swirl (S>0.6), strong radial and axial pressure gradients are set up near the nozzle 

exit, resulting in axial recirculation in the form of a Central Toroidal Recirculation Zone 

(CTRZ). The CTRZ, when it occurs, is in addition to any CRZ that may be provoked by the 

sudden expansion in cross sectional area. The precise effect is found to depend on many factors 

as well as the swirl number, e.g. nozzle geometry and size of the enclosure.

The effect of strong swirl in particular can be extensively used as an aid to efficient clean 

combustion in a variety of practical situations, e.g. gasoline engines, diesel engines, gas 

turbines, industrial furnaces. Highly advantageous features of strong swirling vortex region that 

help to meet many combustor performance requirements are:

Reduction of combustion length because of high rates of entrainment of ambient fluid, fast 

mixing close to the nozzle and near recirculation zone boundaries.

Improved flame stability because of the presence of a CTRZ, which recirculates hot, 

chemically active, combustion products.

Minimized maintenance and extended life of equipment, since the blockage is aerodynamic 

and flame impingement on the solid surfaces is minimized, for example, compared with 

bluff body method.

2.4.3 Previous Work in Swirl Combustion

Swirl burners have been used for the combustion of various fuels over 200 years ago. They have 

been used to bum coal efficiently from around 1920 where suspension firing of pulverized coal 

became the preferred method of combustion in utility boilers. Pulverized coal is premixed with 

small quantities o f primary and secondaiy air and staging applied to increase the recirculation 

zone near the burner exit to improve the overall combustion efficiency and reduce the NOx 

emissions.

The effect of swirl does allow the flow to be aerodynamically staged. This may produce an area 

of fuel rich combustion at high temperature at the centre near the exit of the swirl generator. 

Here, most of the NOx formed is reduced back to N2 by reducing radicals present. Outside this 

zone there is an area of fuel lean combustion in which the final burnout occurs. The burner thus 

causes less pollution and higher combustion efficiencies.

Higher degrees of swirl result in high stability limits for combustion and may allow the 

combustion of very low calorific value fuels without the aid of additional fuels. These fuels may 

have previously been released into atmosphere causing pollution or, more recently, burned in 

combination with costly higher calorific value fuels in which case further emissions are 

produced. In both cases valuable energy is wasted.
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Early work on the swirl phenomenon has been reported by Alexander |57| and Iinoya |58|, they 

did their research on cyclones and introduced some description for the cyclone characteristics 

and pressure drop. Vonnegut (59] described the vortex whistle. He revealed that an unconfined 

swirling jet emitted a characteristic note varied with flow rate. Chanaud [60] followed them and 

tried to explain the vortex whilstle. The formation of the inner recirculation zone (IRZ) results 

from vortex breakdown of the swirling flow was described in [20,61,62J. An important aspect 

of this phenomenon is the occurrence of large-scale coherent structures such as the Precessing 

Vortex Core (PVC). The PVC is an unsteady vortex located in the shear layer of the IRZ that 

processes around the central axis. Syred and Beer [63] first defined the term (PVC) and carried 

out intensive studies on the phenomenon. The vortex core is represented by the point of zero 

velocity in the tangential flow. It does not remain close to the central axis as experimental work 

as revealed. Syred et al. found a PVC under reacting conditions and discussed its effect of 

increased mixing [64]. Fick [65] studied the characterization and the effects of the PVC in swirl 

burner/furnaces systems for both combusting and isothermal flows. He used PIV and LDA 

measurements and defined a correlation between the input flow rate and the frequency of 

precession. Vanoverberghe [33] investigates the interaction between flow structure, turbulence 

characteristics and combustion phenomena of partially premixed natural gas flames that issued 

from an annular swirl burner.

The occurrence and role of PVCs under combustion conditions is a complex issue and strongly 

depends on mode of fuel entry, equivalence ratio and combustor geometry [6 6 ]. Only few 

experimental studies have addressed the interaction of flame and PVC, and the mechanisms are 

largely unclear. Schildmacher and Koch reported the presence of a PVC under isothermal 

conditions which disappeared for the reacting case with same flow conditions [67]. Li et al. 

proposed that a PVC is the main factor driving the combustion instability in a swirl-dump 

combustor [6 8 ]. St5hr [52] found that the averaged flow field with inner and outer recirculation 

zones is typical of swirl-stabilized flames, and the instantaneous measurements show the 

presence of a helical vortex (PVC) located in the inner shear layer. The PVC, which usually 

rotates with a different frequency than any thermoacoustic oscillation, leads to an enhanced 

mixing of burned and unbumed gas and thus to stabilization of the flame.

The efficient combustion of low calorific value gas and poor quality fuels using swirl 

combustion was studied by Syred et al. [54,69,70]. A major problem arising when dealing with 

low calorific value fuels is the flame stabilization. Gupta et al. [71] used a multi-annular swirl 

burner which had a wider stability limits, turn down ratio, volumetric heat release rate etc. 

compared to the conventional single annular tangential entry (or vane type) swirl flame
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stabilizer. Grinstein et al. simulated the flow dynamics in a swirl combustor with either a 

single or triple swirlers. Emphasis was placed on the effect of inlet conditions (including swirl 

number, inlet length, and characteristic velocity) on the unsteady flow dynamics in the 
combustors.

Tangirala et al. [73] studied the influence of swirl and heat release on the flow structures and 

flame properties in a non-premixed swirl burner. Their results showed that mixing and flame 

stability can be improved by increasing the swirl number up to approximately unity, further 

increases in swirl actually reduced the turbulence levels and flame stability. Excessive swirl also 

had the disadvantage of forcing the flame to move upstream to a position closer to the burner 

walls, resulting in excessive wall heating.

Broda et al. [74] and Seo [75] performed an experimental study of combustion dynamics in a 

lean-premixed swirl-stabilized combustor. The dominant acoustic motion corresponds to the 

first longitudinal mode of the chamber. An increase in swirl number tends to decrease the 

instability amplitude. Stone and Menon [76, 77] investigated a swirl-stabilized combustor flow 

and studied the impact of varying swirl and equivalence ratio on flame dynamics.

Huang et al. [30,78-81] investigated stable flame evolution, the flame bifurcation phenomenon, 

and unstable flame dynamics for a fixed inlet swirl number but with different inlet flow 

conditions. They numerically investigated the effect of inlet swirl on the flow development and 

combustion dynamics in a lean-premixed swirl-stabilized combustor using a large-eddy- 

simulation (LES) technique along with a level-set flamelet library approach. They studied the 

effect of swirl on flow development, acoustic properties, and flame evolution; and investigated 

the interactions between turbulent flame dynamics and flow oscillations. Their results indicate 

that when the inlet swirl number exceeds a critical value, a vortex-breakdown-induced central 

toroidal recirculation zone is established in the downstream region. In their system as the swirl 

number increases further, the recirculation zone moves upstream and merges with the wake 

recirculation zone behind the centerbody. Excessive swirl may cause the central recirculating 

flow to penetrate into the inlet annulus and lead to the occurrence of flame flashback. A higher 

swirl number tends to increase the turbulence intensity, and consequently the flame speed. As a 

result, the flame surface area is reduced. The net heat release, however, remains almost 

unchanged because of the enhanced flame speed. Transverse acoustic oscillations often prevail 

under the effects of strong swirling flows, whereas longitudinal modes dominate the wave 

motions in cases with weak swirl. The ensuing effect on the flow/flame interactions in the 

chamber is substantial.
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2.5 C 0 2 Addition to M ethane Flames

2.5.1 Advantages of Adding C02 to Methane Combustion

Recently, the addition of significant amounts of CO2 into the fresh gases of premixed 

combustion in stationary gas turbine has become an important research topic. There are several 

reasons that urge adding CO2 to gaseous fuels such as methane. The first reason is related to fuel 

flexibility issues. In order to diversify fuel resources and to move away from fossil fuels, gas 

turbines can be fed by gaseous fuels containing CO2 . Such fuels may have several origins such 

as biogas generated from the anaerobic digestion of biomass organic waste or industrial waste 

gases containing hydrogen and C 0 2 [24]. The second reason for popularizing C 0 2 addition 

studies in turbulent premixed combustion is the reduction of NOx emissions by using flue gas 

recirculation (FGR) technique. The external recirculation of the hot product gases enables the 

reduction of flame temperature and therefore NOx emissions [82]. When exhaust gas 

recirculation (EGR) is used in IC engines, a flame is formed under conditions of not only low 

oxygen concentration but also under conditions of high pressure and high temperature because 

the mixture is compressed before combustion. It is therefore supposed that EGR of IC engines 

has features similar to those of so-called high-temperature air combustion (HiTAC). Turbulent 

flames under HiTAC conditions with reduced oxygen concentration are characterized by a time- 

averaged heat release region. It is therefore expected that if turbulent flame characteristics under 

HiTAC conditions are realized at high pressure, the stable operation of premixed-type gas- 

turbine combustors will be possible [83]. It is also expected that by reducing the heat release 

rate in the combustion chamber, the stable flame regime can be extended to mixtures with lower 

equivalence ratios. This turbulent combustion regime is therefore close to the so called extended 

or distributed combustion zone regime [84]. Another reason which prompted the investigation 

of CO2 addition studies is related to carbon capture and sequestration technologies in large 

thermal plants. The present carbon capture technologies are best applicable when the CO2 

concentration in the fuel gases is above a threshold of the order of 15% by volume. Therefore, 

internal or external recirculation of C 0 2 in gas turbines is envisaged in order to increase the C02 

concentration and ease the application of carbon capture technologies at reduced cost [6 , 84]. 

For all these reasons it is necessary to properly understand the effects of CO2 addition in 

premixed combustion.

2.5.2 Previous Work on CO2 Addition to Flames

Some studies have been made recently to study the effect of CO2 dilution in methane 

combustion. Most of these studies are concerned with the effect of CO2 addition on burning
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velocity. One o f the first studies in this area was conducted by Gelfand et al. |85j with lean H2-  

COr-air premixed flames. They used a spherical bomb experimental setup, which enabled them 

to collect flame velocity data at a maximum pressure of 0.5 MPa and turbulence intensity up to 

10 m/s. Their results show that turbulent premixed flames in the mixtures diluted with CO2 

exhibit turbulent quenching The flame speed increases initially with turbulence up to a point 

where this speed decreases just prior to quenching of the flame The extinction limits in turbulent 

flames of hydrogen-air-carbon dioxide mixtures were at concentrations of hydrogen and carbon 

dioxide close to the limiting concentrations obtained in the experiments with laminar flames. 

The variation of initial pressure from 0.1 to 0.5 MPa did not affect the turbulent combustion 
rate.

A recent comprehensive work on this topic is that of Kobayashi et al. [83, 8 6 ] with CH4-CO 2-  

air flames. The mixture was preheated up to 573 K and the maximum pressure is 1 MPa. The 

main results from this work are that the turbulent burning velocity, St, normalized using laminar 

burning velocity, SL, became smaller when the mixture was diluted with C 02. They also 

realized that the combustion intensity ST/SL and the mean fuel consumption rate decrease with 

the C 0 2 dilution ratio. The results imply that exhaust gas recirculation for high-pressure, high- 

temperature turbulent premixed flames is effective for restraining combustion oscillation of 

premixed-type gas-turbine combustors.

Other works on C 0 2 diluted flames [82, 87-89] concern mainly counterflow diffusion flames. 

These studies have shown that CO2 dilution implies a decrease of the flame temperature, and 

consequently that of the thermal NO formation. Finally all studies observed that the laminar 

flame speed decreases when the C 0 2 dilution rate increases. The methodology developed in this 

study is to keep parameters under control by changing one parameter at a time and work under 

conditions close to gas turbine operation modes and parameters.

Cohe' et al. aimed in their work [84, 90] to contribute to the characterization of fuel lean CH4-  

COr-air premixed laminar and turbulent flames at different pressures and C 0 2 addition rates by 

studying laminar and turbulent flame propagation velocities, the flame surface density and the 

instantaneous flame front wrinkling parameters. They studied the pressure effects on the flame 

structure. They derived an experimental data set for C 0 2 added to laminar Cftyair flames using 

an axisymmetric Bunsen type burner. Their analysis shows that although the height of the 

turbulent flame increases with the C0 2 addition rate, the flame instantaneous structure is quite 

similar for all C 0 2 addition rates. This implies that the flame wrinkling parameters and flame 

surface density are indifferent to the 0O 2 addition. However, the pressure increase has a drastic 

effect on both parameters. This is also confirmed by a fractal analysis of instantaneous images.
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It is also observed that the combustion intensity ST/SL increases both with pressure and the CG2 

addition rate. Finally, the mean fuel consumption rate decreases with the C 0 2 addition rate but 

increases with the pressure.

In this thesis, the focus of the research is concentrated on the factors that affect flashback limits 

of the flame. The effect of mixture mass flow rate, equivalence ratio, pressure and temperature 

are studied. Also the effect of adding C 0 2 to CH4 flame flashback is studied.

2.5.2

N2

2.5.3 Combustion Equation with CO2 Addition

The stoichiometric combustion of hydrocarbon in air is described by the following equation: 

CxHy+ ^ x + ^ j(0 2+3.76N2)-^xC 02+ ^ j H 20+3.76^x+^jN 2 2.5.1

For C 0 2 added to hydrocarbon/air flames, the stoichiometric burning equation of hydrocarbon 

with diluted CO2 is:

(l-P)C xHy + pC02 + ( l-p )^ x + ^ j(0 2 + 3.76N2)->

xC02 + ( 1  -  p / £ ) h 20 +3.76(1 -  P)f x + £  

where {3 is the C 0 2 mole fraction in the fuel diluted with C 0 2 i.e., (3 is defined as:

P = -------------  2.5.3
n (CIH , ) + n (CO,)

For excess air combustion with a  excess air parameter, the global combustion reaction is:

(1—P)CxHy +PC02 + (l-p )| x + 4 + o l(0 2 + 3.76N2)->
V 4 ) 2.5.4

xC0 2 + ( 1  -  p / | ) h 20 +3.76(1 -  p)^x+ ^  jhl2 + ( l-P )^ x + |+ a J ( 0 2 + 3.76N2)

The air to fuel ratio (AFR) for the combustion with excess air for hydrocarbon with diluted C0 2 

can be calculated in mass base as:

(1 -  p / x  + £  + a 1(32 + 3.76 x 28)
AFR = -------       2.5.5

( 1  -  p) x (12x + y) + p x 44

For C 0 2 added to CHU/air flames, the combustion equation becomes:
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( 1 - P ) C H 4 + P C 0 2 +(l -P)(2  + aXO: + 3.76N: )-+

CO 2 + (1 -  P)(2)H 20  + 3.76(1 -  P)(2)N 2 + (1 -  P)(2 + a X 0 2 + 3.76N 2)

AFR for stoichiometric combustion (a=0) for CH« with diluted CO2 can be calculated on a mass 

basis as:

AFR (1-P)(2)(32 + 3.76x28) 
(1 -  P) x (16) + P x 44

ATO 274.56 (1 -p )AFR-. = ---------- -— —  2.5.7
* 16(1-P) + 44P

For example,

- for pure CH4 combustion: (p = 0) , AFR* = 17.16

- for (85% CH4 + 15% C02): (P = 0.15) , AFR* = 11.55

- for (70% CH4 + 30% CO2): (P = 0.30) , AFR* = 7.88

2.6 Hydrogen Com bustion 

2.6.1 1ntroduction

Hydrogen shows considerable promise as a primary energy carrier for the future. First it can be 

produced directly from all primary energy resources, enabling energy feedstock diversity for the 

transportation sector. These alternative energy resources include wind, solar power, and biomass 

(plant material), which are all renewable fuel sources. H2 can be produced directly through 

electrolysis of water or thermo-chemical cycles [22,91]. While this process is not economically 

attractive at current cost, if the electricity required to convert H20  to H2 is provided by wind or 

solar power, then the H2 is produced without creating C 0 2. Given the intermittent nature of 

wind and solar power sources, surplus energy produced during very windy or bright sunny days 

could be used to produce H2 that is stored for later use. Under these conditions the stored H2 

becomes an energy carrier that can be used later to produce power where it is needed, either in 

conjunction with a fuel cell to produce electricity or in the combustor to produce power by gas 

turbines or internal combustion engines.

Alternatively, H2 can be produced through coal gasification, or by steam reforming of natural 

gas, both of which are non-renewable fossil fuels but are abundantly available throughout the 

world. Combining the latter technologies with carbon capture and storage would provide a 

significant increase in sources of clean burning H2 while at the same time eliminating green gas 

emissions [2 2 ].
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2.6.2 H 2 / C H 4  Combustion

Methane combustion is of great interest, because of its low molar ratio of carbon to hydrogen 

signifies that it can generate power with fewer greenhouse gases emissions. But there are two 

problems in using lean methane combustion: a large increase in misfires and a substantial 

decrease of laminar burning velocities (SL). Several attempts have been made to lessen these 

two problems, such as using higher ignition energy or stratified combustion. Though these 

attempts can certainly improve lean premixed combustion performance to some extent, to bum 

even leaner mixtures at higher burning velocities requires other methods. This motivates the 

hydrogen addition, because H2 has a very low lean flammability limit with high burning 

velocities [92].

Hydrogen-methane blends are receiving attention as alternative fuels for power generation 

applications for two main reasons. The first reason is related to the opportunity of adding 

hydrogen to methane in order to improve performance, to extend operability ranges and to 

reduce pollutant emissions of lean combustion in both stationary and mobile systems [93]. The 

second reason is due to concerns about global warming and the prospect of using hydrogen in 

both fuel cells and combustion devices [94-97]. However, stringent problems of safety and 

storage strongly complicate the use of pure hydrogen. To bypass these difficulties, substitution 

of hydrogen with methane or other hydrocarbons has been proposed as an interim solution 

towards a fully developed hydrogen economy [98].

Karim et al. [99] and Nagalingam et al. [100] found that the performance of a spark ignition 

engine fuelled with methane can be improved significantly through mixing some hydrogen with 

the methane. The output power and engine indicated efficiency increase with the increase of 

hydrogen percentage in the mixture, while the exhaust gas concentrations of CO, CO2 are 

decreased. However they found an increase in NOx emissions due to high temperatures in the 

engine, not unexpectedly.

2.6.3 Technical Challenge for H2 Combustion in Gas Turbine

The higher flame speeds found with H2 as a fuel could require some design modifications for 

optimum gas turbine combustor performance. Since flames typically stabilize, or anchor, in 

regions where the local flow velocity is near the local flame speed, the higher flame velocities 

may have to be taken into account in both combustor geometry and the manner in which the 

premixed reactants are introduced.
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The laminar flame speed for pure hydrogen is very high compared with the laminar flame speed 

of methane at the same conditions. For example, at the standard temperature and pressure (STP) 

and an equivalence ratio of 0 .6 , the laminar flame speed of H2 is about 1 m/s while for methane 

is about 0.1 m/s. So, the use of H2 may require combustor modifications since the flame 

stabilization location is largely determined by flow mechanics (i.e., where low velocity, 

recirculation regions are established). The higher flame speed of H2 may tend to flashback 

which could lead to significant overheating and damage to the premixer and other engine 

hardware.

2.6.4 H2 Combustion Research Work

The laminar burning velocity of hydrogen and hydrogen-methane/air premixed flames may be 

considered as the most important parameter to be studied in hydrogen combustion. It has been 

experimentally measured at different values of equivalence ratio and fuel composition. In 1959, 

Scholte and Vaags [101] carried out the first measurements by means of the tube burner 

method. Together with the more recent work by Liu et al. [102], this is the most extensive 

experimental study since it investigates a wide range of equivalence ratios at hybrid fuel 

compositions varying from pure methane to pure hydrogen. All the other experimental papers 

may be classified into two categories: the first deals with the study of the effect of hydrogen 

addition to methane [102-106] and the second with the effect of substitution of hydrogen by 

methane [98,107].

Chiesa et al. [91] studied the possibility to bum hydrogen in a large size, heavy-duty gas turbine 

designed to run on natural gas as a possible short-term measure to reduce greenhouse emissions 

of the power industry. They applied some strategies and recommended the usage of H2 in gas 

turbine with little modifications in the system.

Schefer et al. [108-110] and Wicksall et al. [ I l l]  studied the combustion characteristics of a 

premixed, swirl-stabilized flame to determine the effects of enriching methane with hydrogen 

under fuel-lean conditions. The results show that the addition of a moderate amount of hydrogen 

to the methane/air mixture increased the peak OH concentration. Hydrogen addition resulted in 

a significant change in the flame structure, indicated by a shorter and more robust appearing 

flame. Also, hydrogen addition significantly improves flame stability and allows stable burner 

operation at the lean fuel/air ratios needed for reduced NOx emissions.

Jackson et al. [112] studied experimentally and numerically the influence of H2 on the response 

of lean premixed CH4 flames. Furthermore, Kido et al. [113] used a small amount of hydrogen
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as an additive to improve turbulent combustion performance of lean hydrocarbon mixtures. 

They correlated turbulent burning velocities, ST, with pressure-time measurements in an 

explosion-type burner, similar to the explosion bomb used by Bradley and co-workers at Leeds 

University [114]. Though the aforementioned studies have shown the advantages of hydrogen 

addition for lean premixed methane turbulent combustion, such as the increase of burning 

velocities, the extension of lean flammability limit of methane combustion, and the reduction of 

unbumed hydrocarbons, several unresolved problems still remain.

Many studies are concerned on the measurement of flame velocities, laminar and turbulent, 

experimentally or analytically. The results of this work are discussed in the next chapter. Other 

studies are performed on many other aspects such as the effect of hydrogen addition on methane 

combustion characteristics and ignition temperature [115-117], non-premixed hydrogen flames

[118].

2.6.5 Combustion Equation for Hybrid HJCH4 Fuel

If H2 is combusted in air the stoichiometric combustion equation for H2 become: 

H2+ ^ ] ( 0 2+3.76N2)->H 20 + ^ N 2 2.6.1

The stoichiometric combustion equation for CH4 is:

CH. +(2)(Oj +3.76N2)-»C 02 +(2)H20  + 3.76(2)N2 2.6.2

For hybrid H2/CH4 fuel, the stoichiometric burning equation is:

( l-y )C xHy +yH2 + [ (1 -y /x  + ̂ + | y X 0 2  +3.76N2)->

( l-y )x C 0 2 + [ a - y / | j + y ] H 20  + 3 .7 6 [ ( l - r^ x + ^ J + iy ]N  

where y is the H2 mole fraction in the hybrid fuel consists of H2 and CH4 i.e., y is defined as:

2.6.3

'2

y  — ”<"■>_______  2.6.4
n (C .H ,) + n (H ,)

AFR for stoichiometric H2/CH4 combustion can be calculated on a mass basis as:

[0-rX2)+^T](32 +3.76x 2S) 
AFR. = -  2-------------------( l - r )x(16) + yx2
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For example,

- for pure H2 combustion: (y = 1) , AFR« = 34.32

- for (15% H2 + 85% CH<): (y = 0.15) , AFR* = 17.53

- for (30% H2 + 70% CH,): (y = 0.30) , AFR« = 18.03

2.7 Summary

In this chapter, a literature survey has been carried out for some important topics related to 

combustion in gas turbines and associated flame stability. The following can be concluded:

Lean premixed combustion is considered as one of the most promising concept for 

substantial reduction of gas turbine emissions, especially NOx, while maintaining high 

efficiency.

The main problem for all premixed combustion systems is the instability problem and the 

tendency of the combustible mixture toward flashback.

Most of gas turbines use swirl burners to reduce but not eliminate such problems.

CO2 dilution in methane combustion is a new research topic. It can be used for NOx 

emission reduction as a result of reducing the flame temperature. The effect of CO2 dilution 

in methane combustion on flashback limits is studied here.

Hydrogen combustion has attracted much attention recently because of the need for clean 

alternative energy source. H2 is a carbon-free energy carrier, so it plays an important role in 

serving the constraints on greenhouse gas emissions.

The challenge on using H2 is its high burning velocity that results in its high tendency to 

flashback or locating the flame in regions of relative high velocity where methane flames 

will not stabilize.

H2/CH4 hybrid fuel may have advantages over certain ranges of equivalence ratios.
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Chapter 3

C o m b u s t i o n  M o d e l l i n g  b y  CFD

3.1 Introduction

The use of computational fluid dynamics (CFD) to predict internal and external flows has risen 

dramatically in the past decade. The widespread availability of engineering workstations 

together with the efficient solution of algorithms and sophisticated pre- and post- processing 

facilities enable the use of commercial CFD codes by graduate engineers for research, 

development and design task in industry. Increasingly CFD is becoming a vital component in 

the design of industrial products and processes. Also the rapid progress in generating high- 

powered super-fast computers helps in creating more efficient CFD software that have higher 

accuracy and more efficient prediction with lower cost [119].

CFD packages are generally comprised of two programmes, one for geometry drawing, mesh 

creation and boundaries and zones assignment and the other program for defining the operating 

conditions, parameters, and materials. Also it contains the solver, fluid mechanic, heat transfer, 

chemical reactions and combustion calculations and etc. In this investigation the CFD code, 

FLUENT 6.3.26, was utilised and is the most recent addition to the Fluent series of solvers. The 

geometry and mesh creation tool used in this study was GAMBIT 2.3.16. Gambit allows 

physical geometries to be modelled and can mesh them into smaller elements to allow interior 

flows and heat transfer to be modelled by a finite difference method, as used by Fluent. 

Geometries are created by constructing a series of major shapes and editing them using the 

programmes tools and functions to create a single volume. Once a volume has been created it 

needs to be meshed into smaller elements. Complex geometries such as swirlers can be meshed 

by dividing its volume to smaller volumes that are connected together. The new small volumes 

are meshed with the required type and with the suitable number of elements. The more elements 

contained in the geometry, the more accurate the results will be. However, this will also be more 

computationally expensive in terms of time and memory.

For this study, there are two models that were needed to be meshed. The first model was for the 

original combustion system. This model was initially meshed using 800,000 elements. The 

second model was for swirl burner. The first trial to mesh this model was by using 700,000 

elements which consumes about one week for the solution to reach the convergence in the 

Fluent solver. After many trials and refinements both models were used but now with about
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130,000 elements. But for some special cases, for partial flashback, the swirl model is found 

producing better results with 440,000 elements.

In this chapter, CFD description, how CFD works, and how to plan the simulation work are 

discussed and the basic CFD governing equations are presented. As there is no single turbulence 

model that can resolve the physics at all flow conditions, the turbulence models are reviewed. 

Also the combustion models that are offered by Fluent are surveyed.

The utilization of CFD code "FLUENT” is initially discussed, starting with model preparation 

(drawing and meshing) by Gambit software, followed by running the solver and settling the 

boundary conditions, and finally checking the model convergence and stability.

The laminar flame speed is considered as an important modelling variable in combustion. It is 

required as an input in turbulent combustion modelling. Thus, at the end of this chapter, a 

general review of the methods used for calculating the laminar flame speed of methane and 

hydrogen and their blends are presented.

3.2 CFD Definition and A dvantages

Computational Fluid Dynamics (CFD) is the analysis of systems involving fluid flow, heat 

transfer and associated phenomena such as chemical reactions by means of computer based 

simulation. The technique is veiy powerful and spans a wide range in industrial and non­

industrial application areas such as aerodynamics of aircrafts, hydrodynamics of ships, 

environmental engineering and combustion in internal combustion engines and gas turbines 

[119].

The ultimate aim of developments in the CFD field is to provide a capability comparable to the 

other Computer-Aided Engineering (CAD) tools such as stress analysis codes. The main reason 

why CFD has lagged behind is the tremendous complexity of the underlying behaviour; at the 

moment this precludes a complete description of fluid flows and assumptions of time averaged 

flows is commonly made to give representative solutions that are at the same time economical 

and sufficiently complete. The availability of affordable high performance computing hardware 

and the introduction of user friendly interfaces have led to recent upsurge of the interest in CFD 

for use in many different research and industrial communities.

There are several advantages of CFD over experiment-based approaches to fluid systems design

[119]:
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Substantial reduction o f lead times and costs of new designs.

Ability to study systems where controlled experiments are difficult or impossible to 

perform (e.g. very large systems)

Ability to study systems under hazardous conditions at and beyond their normal 

performance limits (e.g. safety studies and accident scenarios)

Practically unlimited level of detail of results.

The other reasons behind the introduction and increased importance of CFD are [120]:

1. Insight: There are many devices and systems that are very difficult to prototype. Often, CFD 

analysis shows you parts of the system or phenomena happening within the system that would 

not otherwise be visible through any other means. CFD gives you a means of visualising and 

enhanced understanding of your designs.

2. Foresight: Because CFD is a tool for predicting what will happen under a given set of 

circumstances, it can answer many ‘what if?* questions very quickly. You give it variables. It 

gives you outcomes. In a short time, you can predict how your design will perform, and test 

many variations until you arrive at an optimal result. All of this is done before physical 

prototyping and testing. The foresight you gain from CFD helps you to design better and faster.

3. Efficiency: Better and faster design or analysis leads to shorter design cycles. Time and 

money are saved. Products get to market faster. Equipment improvements are built and installed 

with minimal downtime. CFD is a tool for compressing the design and development cycle.

4. Cost: Cost of Experimentation- experimentation, the only alternative to simulation is very 

costly.

5. Practicality: Impossibility of experiments - in some instances, experiments are impossible to 

conduct. For example, atmospheric nuclear explosions and biomedical situations that would 

endanger patient life.

6 . Computer speed and memory: In 1965, Intel cofounder Gordon Moore made a memorable 

observation. When he started to graph data about the growth in memory chip performance, he 

realized there was a striking trend. Each new chip contained roughly twice as much capacity as 

its predecessor, and each chip was released within 18-24 months of the previous chip. In 

subsequent years, the pace slowed down a bit, but data density has doubled approximately every 

18 months. At the same time, algorithm development continues to improve the accuracy and 

performance of models.
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3.3 How does a CFD code work?

CFD codes are structured around the numerical algorithms that can tackle fluid flow problems. 

In order to provide easy access to their solving power all commercial CFD packages include 

sophisticated user interfaces to input problem parameters and to examine the results. Hence all 

codes contain three main elements: a pre-processor, a solver and, a post-processor.

L The pre-processor:

Pre-processing consists of the input of a flow problem to a CFD program by means of an 

operator-friendly interface and the subsequent transformation of this input into a form suitable 

for use by the solver. The user activities at the pre-processing stage involve [119]:

Definition of the geometry of the region of interest.

Grid generation: This means the subdivision of the region (the computational domain) into a 

number of smaller, non overlapping sub-domains. This process generates a grid (or mesh) of 

cells (or control volumes or elements)

Selection of the physical and chemical phenomena that need to be modelled.

Definition of fluid properties.

Specification of appropriate boundaiy conditions at cells which coincide with or touch the 

domain boundaiy.

i i  The solver:

There are three distinct streams of numerical solution techniques: finite difference, finite 

element and spectral methods. In outline the numerical methods that form the basis of the solver 

perform the following steps [119,121]:

Approximation of the unknown flow variables by means of simple functions.

Discretization by substitution of the approximations into the governing flow equations and 

subsequent mathematical manipulations.

Solution of the algebraic equations.

The main differences between the three separate streams are associated with the way in which 

the flow variables are approximated and with the discretization process.

Finite Difference Method:
Finite difference methods (FDM) describe the unknown <)> of the flow problem by means of 

point samples at the node points of a grid of co-ordinate lines. Truncated Taylor series
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expansions are often used to generate finite difference approximations of derivatives of <J> in 

terms of point samples of <|> at each grid point and its immediate neighbours. Those derivatives 

appearing in the governing equations are replaced by finite differences yielding an algebraic 

equation for the value of <)> at each grid point.

Finite Element Method:
Finite element methods (FEM) use simple piecewise functions (e.g. linear or quadratic) valid on 

elements to describe the local variations of unknown flow variables <)>. The governing equation 

is precisely satisfied by the exact solution <j>. If the piecewise approximating functions for <|> are 

substituted into the equation it will not hold exactly and a residual is defined to measure the 

errors. Next the residuals (and hence the errors) are minimised in some sense by multiplying 

them by a set of weighting functions and integrating. As a result a set of algebraic equations for 

the unknown coefficients is obtained.

Finite Volume Method:
The Finite Volume Method (FVM) was originally developed as a special finite difference 

formulation. It is one of the most versatile discretization techniques used in CFD. Based on the 

control volume formulation of analytical fluid dynamics, the first step in the FVM is to divide 

the domain into a number of control volumes (aka cells, elements) where the variable of interest 

is located at the centroid of the control volume. The next step is to integrate the differential form 

of the governing equations (veiy similar to the control volume approach) over each control 

volume. Interpolation profiles are then assumed in order to describe the variation of the 

concerned variable between cell centroids. The resulting equation is called the discretized or 

discretization equation. In this manner, the discretization equation expresses the conservation 

principle for the variable inside the control volume [1 2 2 ].

The most compelling feature of the FVM is that the resulting solution satisfies the conservation 

of quantities such as mass, momentum, energy, and species. This is exactly satisfied for any 

control volume as well as for the whole computational domain and for any number of control 

volumes. Even a coarse grid solution exhibits exact integral balances.

Spectral Method:
Spectral methods approximate the unknown by means of truncated Fourier series or series of 

Chebyshev polynomials. Unlike the finite difference or finite element approach the 

approximations are not local but valid throughout the entire computational domain. Again the 

unknowns are replaced in the governing equation by truncated series. The constraint that leads
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to the algebraic equations for the coefficients o f the Fourier or Chebyshev series is provided by 

a weighted residuals concept similar to the finite element method or by making the approximate 

function coincide with the exact solution at a number of grid points.

iii. The post-processor:

CFD packages are equipped with versatile data visualisation tools. These include:

Domain geometry and grid display 

Vector plots

Line and shaded contour plots 

2D and 3D surface plots 

Particle tracking

View manipulation (translation, rotation, scaling, etc.)

Colour postscript output.

3.4 Planning CFD Analysis

When using CFD to look at fluid dynamic problems, it is important to give consideration to the 

following steps [123]:

1. Definition of the modelling goals -  What specific results are required from the CFD model 

and how will they be used? What degree of accuracy is required form the model?

2. Choice of the computational model - What are the boundaiy conditions? Can a Two 

Dimensional model be used or are Three Dimensions required? What type of grid topology is 

best suited to the model?

3. Choice of physical model - Is the flow inviscid, laminar, or turbulent in nature? Is the flow 

steady or unsteady? Is heat transfer important?

4. Determination of the solution procedure - How long will the problem take to converge on 

your computer? Can convergence be accelerated with a different solution procedure?

Consideration of these steps will reduce computer-processing time and contribute to the success 

of the modelling.
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3.5 Conservation Laws of Fluid Motion

The governing equations of fluid flow represent mathematical statements of the conservation 
laws of physics [25,26,119|:

The mass of fluid is conserved.

The rate of change of momentum equals the sum of the forces on a fluid particle 
(Newton’s second law).

The rate of change of energy is equal to the sum of the rate of heat addition and the rate 

of work done on a fluid particle (first law of thermodynamics).

з.5. f. Mass conservation in three dimensions

The mass balance for a fluid element or the continuity equation states that the rate of increase of 

mass in fluid element equals to the net rate of flow of mass into fluid element. This can be 

expressed mathematically by:

ap ( d(pu) ( d(pv) t d(pw) Q 3  5 1

dt dx. dy dz

Or in more compact vector notation

— + div(pU) = 0 3.5.2
at

where

p = Fluid density

t = Time

и, v, w = Velocity components in x, y, and z respectively

U = Velocity vector

Equation (3.5.2) is die unsteady, three-dimensional mass conservation or continuity equation at 

appoint in a compressible fluid. The first term on the left hand side is the rate of change in time 

of the density (mass per unit volume). The second term describes the net flow of mass out of the 

element across its boundaries and called the convective term.

3.5.2. Momentum Equation

Newton’s second law states that the rate of change of momentum of a fluid particle equals the

sum of the forces acting on the particle. Applying this to a fluid passing through an

infinitesimal, fixed control volume, yields the following equations:
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(The x-component of the momentum equation):

D u , 3 - P  + t. )

Dt dx d y d z

(The y-component of the momentum equation):

Dv d(-P + iw ) &*zvp—  = ~ +  * ' +-TT- + V  3.5.3.bDt dx dy dz y

(The z-component of the momentum equation):

Dw f r  3( - p + td )
p _ _ _ _ _ —  +  _ —  + -----------   +  aw z 3.3 .3 .C

Dt ax dy dz

where

P = The static pressure

x ~ Viscous stress

ty = Viscous stress component acts in the j-direction on a surface normal to i-direction.

Smj = The body force in indirection

In a Newtonian fluid the viscous stresses are proportional to the rates of deformation. The three 

dimensional form of Newton’s law of viscosity for compressible flow involves two constants of 

proportionality: the dynamic viscosity, p, to relate stresses to linear deformations, and the 

viscosity, X, to relate stresses to the volumetric deformation. The viscous stress components are 

related to p. and X. By substituting the values of viscous stress in the momentum equations 

yields the s-called Navier-Stokes equations:

P ^ 7  = - | j f  + div(n grad u) +
Dt OK

p ^  = “  + div(Mgrady) + SM, 3.5.4

P ^  = - ^  + div(ngradw) + SMj

3.5.3. Energy Equation

The energy equation is derived from the first law of thermo dynamics which states that the rate 

of change of energy of a fluid particle is equal to the rate of heat addition to the fluid particle 

plus the rate of work done on the particle.

DEThe rate of increase of energy of a fluid particle per unit volume is given by p-—  • While the
Dt

total rate of work done on a fluid particle by a surface force can be expressed as
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[-div(pU )] +
d(uT,

dx
) d(ux

-  + yx

dy
) d(ux1
-  + 3 )

9(vx^) | d(vxn ) 
dx dy

dz

a(VT^)  ̂ a(WT„) 1 d(WT„) | 5(WT„) 
dz dx dy cfe

3.5.5

And the net rate of heat transfer to the fluid particle due to heat conduction across element 

boundaries: can be written as

- div q = div (k grad T) 3.5.6

If there any source of energy exists with energy SE per unit volume per unit time, the energy 

equation will be:

DE ...p    -div(pU)+
Dt

afoO  t d(uy) | a(uT„) 
dx dy dz

| [ S j ^ y y )  t 1 a (W T „) ( d C w y )  t 9(W T„)

dx dy dz dx dy dz
+ div (k grad T) + SE

3.5.7

3.5.4. General Transport Equation

It is clear that there are significant commonalities between the various equations. If a general 

variable <)> is introduced, the conservative form of all fluid flow equations can usefully be 

written in the following form:

+ div (p<|>U) = div <T grad <t>) + S4  3.5.8
dt

In words
Rate o f increase Net rate o f flow Rate o f increase o f Rate o f increase

o f <p o f fluid  + o f <f> out o f fluid — (p due to diffusion + o f <f>due to
element element sources

The equation (3.5.8) is the so-called transport equation of property <|>. It is clearly highlights the 

various transport processes: the rate of change term and the convective term in the left hand side 

and the diffusive term (T : diffusion coefficient) and the source term respectively on the right 

hand side.

44



3.6 Turbulence Modelling

3.6.1 The Nature of Turbulence

When laminar conditions exist, flows can be entirely described by Navier-Stokes equations and 

a suitable method of closure. With steady flows, the flow will not vary with time and will 

characterise real flows with Reynolds number below the critical which is specific to each 

particular case, and which must be determined experimentally.

The study of turbulence is an interdisciplinary activity, which has a very large range of 

applications. Although most flows occurring in nature and engineering applications are 

turbulent it is difficult to give a precise definition of turbulence. Turbulent flows are irregular, 

contain vorticity, three-dimensional and unsteady. According to Hinze [124], “Turbulent fluid  
motion is cm irregular condition o f flow in which the various quantities show a random 
variation with time and space co-ordinates so that the statistically distinct average values can 
be discerned*. The characteristics of turbulence depend on its environment. Because of this, 

turbulence theory does not attempt to deal with all kinds and types of flows in a general way. 

Instead theoreticians concentrate on families of flows with fairly simple boundary conditions, 

like boundary layer, jets and wakes.

The first aim of the turbulence theory is the prediction of turbulent flow and properties in 

various applications. Turbulent flows have been investigated for more than a century, but no 

general approach to the solution of the problems in turbulence exists. Therefore the theory of 

turbulence is quite far away from a solution, through the transport equations of fluid mechanics, 

which are part of the classical fundamental physical laws. One problem is the solution of the 

non-linear equations, which describe three-dimensional flows without simplification e.g. 

linearization. The theory of turbulence includes methods of mathematical statistics and 

probability theory may well relate to the small turbulent scales, which have the best prospect of 

being universal or quasi-universal.

Turbulent flows are characterised by velocity fields of a fluctuating nature. These fluctuations 

mix transported quantities such as momentum, energy and species concentration and cause 

those quantities to fluctuate as well. However, these fluctuations can be of small scale and high 

frequency and are too computationally expensive to simulate directly. Instead, the exact 

instantaneous governing equations can be averaged in a number of ways in order to remove the 

small scales resulting in a set of equations that are less resource consuming to solve. However, 

these new equations contain a set of unknown variables and turbulence models are needed to 

determine these new variables in terms of the known quantities [125].
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The majority of flows of interest to engineers are turbulent. The minimum scale of this 

turbulence will generally below the scale of the fluid elements used with CFD modelling, for 

reasons of economy, as computing power is still a finite resource. Given sufficient resources 

and time it is possible for a model to be constructed of the most simple of engineering problems 

with sufficiently small elements and time steps for turbulent flow to be completely described. 

This method is referred to as Direct Numerical Solution (DNS), and though it could be 

considered the ideal use of the Navier-Stokes equations. But this method is primarily of 

academic interest at the moment and not relevant to commercial engineering CFD modelling. 

To successfully model turbulent flows, a method enabling consideration of the effect of viscous 

turbulence on the mean flow is necessary.

3.6.2 Turbulence Models

The general questions of turbulent flow are “what are the characteristics o f turbulence motion 
in turbulent flows?” and “Can these characteristics be predictedfrom equations governing fluid  
motion?”. Many publications have been produced to answer these questions [124, 126-133]. 

The conclusion that may be summarized is that we can use some models that can describe the 

highly approximated behaviour of turbulence motion but there is no general model that is able 

to solve all the turbulent flow problems. A model which can be described as a very good fit in 

solving a certain case may fail to solve another case. Many different techniques have been used 

to address different questions concerning turbulent flows.

A turbulent model is a computational procedure to close the system with mean flow equations 

so that a more or less wide variety of flow problem can be calculated [119]. For most 

engineering purposes it is unnecessary to resolve the details of the turbulent fluctuations. Only 

the effects of the turbulence on the mean flow are usually sought. For a turbulence model to be 

useful in a general purpose CFD code it must have wide applicability, be accurate, simple and 

economical to run. The choice of turbulence model will depend on considerations such as the 

physics encompassed in the flow, the established practice for a specific class of problem, the 

level of accuracy required, the available computational resources, and the amount of time 

available for the simulation. To make the most appropriate choice of model for a specific 

application, it is needed to understand the capabilities and limitations of the various options 

[1231.
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The most common turbulence models are 11 1 2 3 ,  127, 132. ii33|:

i. Classical Models: Those are based on (time-average) Reynolds equation:

1. Zero-equation model -  mixing length model

2. One-equation model -  Spalart-Allmaras model

3. Two-equation model -  k-e model and k-co model

4. Reynolds stress equation model

5. Algebraic stress model

ii. Large Eddy Simulation (LDS): That is based on space-filtered equations.

The classical models use the Reynolds equations and from the basis of turbulence calculations 

in currently available commercial CFD codes. These models have a comparatively reduced 

computational time and are widely adopted for practical engineering applications.

Large Eddy Simulations (LES) are turbulence models where the time dependant flow equations 

are solved for the mean flow and the largest eddies and where the affects of the smaller eddies 

are modelled. It was argued earlier that the largest eddies interact strongly with the mean flow 

and contains most of the energy so this approach results in a good model of the main effects of 

turbulence. LES are at present at the research stage and the calculations are too costly to merit 

consideration in general purpose computing at present, although anticipated improvements in 

computer hardware may change this perspective in the future.

3.6.3 Modelling Turbulent Flows in Fluent

Fluent provides a wide variety of models to suit the demands of individual classes of problems. 

The choice of the turbulence model depends on the required level of accuracy, available 

computational resources, and the required turnaround time. The turbulent models available in 

Fluent 6.3.26 are [1231:

♦ Spalart-Allmaras model

♦ k-e models

- Standard k-e model

- Renormalization-group (RNG) k-e model

- Realizable k-e model

♦ k-co models

- Standard k-co model

- Shear-stress transport (SST) k-co model

♦ o2- /  model
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♦ Reynolds stress model (RSM)

♦ Detached eddy simulation (DGS) model

♦ Large eddy simulation (LES) model

Key features of the commonly used turbulence models available in Fluent are described in the 

following table [123,134].

Model Features
Spalart-Allmaras
model

One-equation model Designed specially for 
aerospace applications, 
involving wall-bounded high 
speed flows.

Standard k-e model Simplest of two-equation models Robust. Suitable for initial 
iterations.

(RNG) k-e model -  Variant o f standard k-e
-  Has an additional term in e 
equation.

Accurate for rapidly strained 
and swirling flows.

Realizable k-e model -  Variant of Standard k-e model
-  New formulation for turbulent 
viscosity
-  New transport equation for e

Accurate for spreading of both 
planar and rounded jets. 
Recommended for flows with 
boundary layers under strong 
adverse V/>, separation and 
recirculation.

Standard k-co model Solves for k-co
oo = Specific dissipation rate (e/k )

Recommended for low-Re 
flows, wall bounded boundary 
layer, and for transitional flows.

(SST) k-co model -  Variant of Standard k-co model
-  Behaves like k-co in near wall 
region
-  Behaves like standard k -s in 
the free stream

More accurate and reliable for a 
wider class of flows, like 
adverse Vp in airfoils, transonic 
shock waves, etc.

Reynolds stress model -  Five-equation model
-  Avoids isotropic formulation of 
turbulent viscosity

Suitable for complex 3D flows 
with strong swirl/rotation. Run 
time and memory intensive.

3.6.4 Shear-Stress Transport (SST) k-w model

The most suitable turbulent model for the research in this thesis is the RSM. It is suitable for 

complex 3D flows with strong swirl. The main problem with this model is the run time to reach 

convergence. It closes the Reynolds-average Navier-Stokes equations by solving transport 

equations for the Reynolds stress together with an equation for the dissipation rate. This means 

that five additional transport equations are required in 2D flows and seven additional transport 

equations must be solved in 3D. So, for the primary runs here, the RSM is used and the other 

models are compared with its results. It is found that the closest results to RSM are produced
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when using the shear-stress transport (SST) k-oj model. Thus due to the huge number o f runs 

needed, the SST k-<o model is chosen to continue the modelling in the rest o f the thesis.

The shear-stress transport (SST) k-co model was developed by Menter [135]. It is so named 

because the definition of the turbulent viscosity is modified to account for the transport of the 

principal turbulent shear stress. It has feature that gives the SST k-co model an advantage in 

terms of performance over both the standard k-co model and the standard k-e model. Other 

modifications include the addition of a cross-diffusion term in the co equation and a blending 

function to ensure that the model equations behave appropriately in both the near-wall and far- 

field zones [123].

The SST k-co model has a similar form to the standard k-co model. The turbulence kinetic 

energy, k, and the specific dissipation rate, cd, are obtained from the following transport 

equations:

1 ^ )  + ̂ . ) = ^  * )  + Gk - Y k + Sk 3.6.1
dt oXi dXj oXj

and

|-(p<o) + A (po)u ) = A  + G„ -  Ya + D* +S„ 3.6.2
at ox. j dx- dx-

where

Gk represents the generation of turbulence kinetic energy due to mean velocity gradients. Gm 

represents the generation of oo. Tk and T0  represent the effective diffusivity of k and co, 

respectively. Yk and Yro represent the dissipation of k and co due to turbulence. Dro represents 

the cross-diffusion term. Sk and S0  are user-defined source terms. Calculations for all previous 

terms have been fully described in [123].

3.7 Com bustion Modelling

During combustion a fuel (e.g. a mixture of hydrocarbons) reacts with an oxidant stream (e.g. 

air) to form products of combustion. The products are not usually formed in a single chemical 

reaction; the fuel components and the oxidant undergo a series of reactions. For example, over 

40 elementary reactions are involved in the combustion of methane (CH4), the simplest 

hydrocarbon fuel. In addition to all flow equations, the transport equations for the mass fraction 

mi of each species i must be solved. The species equation can be written down by using the 

general transport equation [119]:
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d(ftffi) + div (pmi U) = div (T gradm^ + Sj 3.7.1
dt

The volumetric rate of generation (or destruction) of a species due to chemical reactions appears 

as the source (or sink) term Sj in each of their transport equations.

In simple chemical reaction system, infinitely fast chemical reactions are assumed and the 

intermediate reactions are ignored. The transport equations for the fuel and oxygen mass 

fraction may be written as:

 ̂+ div (pmfU) = div (Tf grad mf ) + Sf 3.7.2
dt

+ div (pm0 U) = div (r0 grad m0) + S0  3.7.3
ot

where the subscript "f " refers to fuel and "o" refers to oxidizer.

Under the assumption of equal diffusivities Tf = r o = T , the species equations can be reduced to 

a single equation for the mixture fraction,/

7  - 7f=  ±!—± lfi*— 3.7.4
^ijud - Z j , m

where Z* is the elemental mass fraction for element, i. The subscript “ox” denotes the value at 

the oxidizer stream inlet and the subscript fuel denotes the value at the fuel stream inlet.

The reaction source terms in the species equations is cancelled, and thus /  is a conserved 

quantity. While the assumption of equal diffusivities is problematic for laminar flows, it is 

generally acceptable for turbulent flows where turbulent convection overwhelms molecular 

diffusion.

3.7.1 Combustion Models in FLUENT

FLUENT 6.3.26 provides several models for chemical species transport and chemical reactions. 

It can model species transport with or without chemical reactions.

FLUENT provides five approaches to modelling gas phase reacting flows [123]:

>  Generalized finite-rate model

>  Non-premixed combustion model

> Premixed combustion model

>  Partially premixed combustion model

>  Composition PDF Transport model
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i. Generalized Finite-Rate Model

This approach is based on the solution of transport equations for species mass fractions. The 

reaction rates that appear as source terms in the species transport equations are computed from 

Arrhenius rate expressions. Chemical kinetic mechanisms can be used from the FLUENT 

database, can be created, or imported a mechanism in Chemkin format. For turbulent flows, 

turbulence-chemistry interaction can be ignored using the Laminar Finite-Rate model, or 

modelled with the Eddy Dissipation {136] or EDC models [137]. The Generalized Finite-Rate 

Model is suitable for a wide range of applications including premixed, partially premixed, non­

premixed turbulent combustion, and ignition delay in diesel engines.

This model is suitable to be used for cases involving the mixing, transport, or reaction of 

chemical species, or reactions on the surface of a wall or particle (e.g., chemical vapour 

deposition).

ii. Non-Premixed Combustion Model

In this approach individual species transport equations are not solved. Instead, transport 

equations for one or two conserved scalars (the mixture fractions) are solved and individual 

component concentrations are derived from the predicted mixture fraction distribution. This 

approach has been specifically developed for the simulation of turbulent diffusion flames and 

offers many benefits over the finite-rate formulation. In the Non-Premixed Combustion Model, 

turbulence effects are accounted for with the help of an assumed shape Probability Density 

Function (PDF). Reaction mechanisms are not required; species and temperature can be 

modelled as in chemical equilibrium. Alternatively, the steady Laminar Flamelet model can 

include local finite-rate kinetic effects due to straining by the turbulence.

This model is suitable to be used for reacting systems involving turbulent diffusion flames that 

are near chemical equilibrium where the fuel and oxidizer enter the domain in two or three 

distinct streams

ilL Premixed Combustion Model
This model can be applied to turbulent combustion systems that are of the purely premixed type. 

In these problems perfectly mixed reactants and burned products are separated by a flame front. 

The “reaction progress variable” is solved to predict the position of this front. The influence of
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turbulence is accounted for by means o f a turbulent flame speed. This model is suitable to be 

used for cases with a single, perfectly premixed reactant stream.

iv. Partially Premixed Combustion Model

The partially premixed combustion model has been developed for turbulent reacting flows that 

have a combination of non-premixed and premixed combustion. The mixture fraction equations 

and the reaction progress variable are solved to determine the species concentrations and 

position of the flame front, respectively. This model is suitable to be used for cases involving 

premixed flames with varying equivalence ratio in the domain.

v. Composition PDF Transport Combustion Model
The composition PDF transport model simulates realistic finite-rate kinetic effects in turbulent 

flames. Arbitraiy chemical mechanisms can be imported into FLUENT, and kinetic effects such 

as non-equilibrium species and ignition/extinction can be captured. This model is suitable for 

use in turbulent flames where finite-rate chemistry is important. It is applicable to premixed, 

non-premixed, and partially premixed flames. It is, however, computationally expensive.

3.7.2 Non-Premixed Combustion Modelling

In non-premixed combustion, fuel and oxidizer enter the reaction zone in distinct streams. This 

is in contrast to premixed systems, in which reactants are mixed at the molecular level before 

burning. Examples of non-premixed combustion include pulverized coal furnaces, diesel 

intemal-combustion engines and pool fires.

Under certain assumptions, the thermochemistry can be reduced to a single parameter: the 

mixture fraction. The mixture fraction, denoted by f  is the mass fraction that originated from 

the fuel stream. In other words, it is the local mass fraction of burnt and unbumt fuel stream 

elements (C, H, etc.) in all the species (C02, H20 , 0 2, etc.). The approach is elegant because 

atomic elements are conserved in chemical reactions. In turn, the mixture fraction is a conserved 

scalar quantity, and therefore its governing transport equation does not have a source term. 

Combustion is simplified to a mixing problem, and the difficulties associated with closing non­

linear mean reaction rates are avoided. Once mixed, the chemistry can be modelled as in 

chemical equilibrium, or near chemical equilibrium with the laminar flamelet model.

The non-premixed modelling approach has been specifically developed for the simulation of 

turbulent diffusion flames with fast chemistry. For such systems, the method offers many 

benefits over the eddy-dissipation formulation. The non-premixed model allows intermediate
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(radical) species prediction, dissociation effects, and rigorous turbulence-chemistry coupling. 

The method is computationally efficient in that it does not require the solution of a large number 

of species transport equations. When the underlying assumptions are valid, the non-premixed 

approach is preferred over the eddy-dissipation formulation.

Restrictions on the Mixture Fraction Approach
The chemical system must be of the diffusion type with discrete fuel and oxidizer inlets 

(spray combustion and pulverized fuel flames may also fall into this category).

The Lewis number must be unity. (This implies that the diffusion coefficients for all species 

and enthalpy are equal, a good approximation in turbulent flow).

When a single mixture fraction is used, the following conditions must be met:

• Only one type of fuel is involved.

• Only one type of oxidizer is involved.

When two mixture fractions are used, three streams can be involved in the system. Valid 

systems are as follows:

• Two fuel streams with different compositions and one oxidizer stream.

• Mixed fuel systems including gas-liquid, gas-coal, or liquid-coal fuel mixtures with a 

single oxidizer. In systems with a gas-coal or liquid-coal fuel mixture, the coal volatiles 

and char are treated as a single composite fuel stream.

• Coal combustion in which volatile and char off-gases are tracked separately.

• Two oxidizer streams with different compositions and one fuel stream.

• A fuel stream, an oxidizer stream, and a non-reacting secondary stream.

The flow must be turbulent.

3.7.3 Premixed Combustion Modelling

In premixed combustion, fuel and oxidizer are mixed at the molecular level prior to ignition. 

Combustion occurs as a flame front propagating into the unbumt reactants. Examples of 

premixed combustion include aspirated internal combustion engines, lean premixed gas turbine 

combustors, and gas-leak explosions.

Premixed combustion is much more difficult to model than non-premixed combustion. The 

reason for this is that premixed combustion usually occurs as a thin, propagating flame that is 

stretched and contorted by turbulence. For subsonic flows, the overall rate of propagation of the 

flame is determined by both the laminar flame speed and the turbulent eddies. The laminar 

flame speed is determined by the rate that species and heat diffuse upstream into the reactants
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and burn. To capture the laminar flame speed, the internal flame structure would need to be 

resolved, as well as the detailed chemical kinetics and molecular diffusion processes. Since 

practical laminar flame thicknesses are of the order of millimetres or smaller, resolution 

requirements are usually unaffordable. The effect of turbulence is to wrinkle and stretch the 

propagating laminar flame sheet, increasing the sheet area and, in turn, the effective flame 

speed. The large turbulent eddies tend to wrinkle and corrugate the flame sheet, while the small 

turbulent eddies, if they are smaller than the laminar flame thickness, may penetrate the flame 

sheet and modify the laminar flame structure.

Limitations of Using the Premixed Model
The following limitations apply to the premixed combustion model:

The segregated solver must be used. The premixed combustion model is not available with 

either of the coupled solvers.

The premixed combustion model is valid only for turbulent, subsonic flows. These types of 

flames are called deagrations. Explosions, also called detonations, where the combustible 

mixture is ignited by the heat behind a shock wave, can be modelled with the finite-rate 

model using the coupled solver.

The premixed combustion model cannot be used in conjunction with the pollutant (i.e., soot 

and NOx) models. However, a perfectly premixed system can be modelled with the partially 

premixed model which can be used with the pollutant models.

It cannot be used to simulate reacting discrete-phase particles, since these would result in a 

partially premixed system. Only inert particles can be used with the premixed combustion 

model.

Premixed Combustion Theory
Premixed combustion is much more difficult to model than non-premixed combustion. As 

discussed above the reason for this is that premixed combustion usually occurs as a thin, 

propagating flame that is stretched and contorted by turbulence. For subsonic flows, the overall 

rate of propagation of the flame is determined by both the laminar flame speed and the turbulent 

eddies. The laminar flame speed is determined by the rate that species and heat diffuse upstream 

into the reactants and bum.

The turbulent premixed combustion model, based on work by Zimont et al. [138-141], involves 

the solution of a transport equation for the reaction progress variable. The closure of this 

equation is based on the definition of the turbulent flame speed.
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The flame front propagation is modelled by solving a transport equation for the density- 

weighted mean reaction progress variable, denoted by c [139]:

|- (p c )  + V.(puc) = V .(^ !-V c) + pSc 3.7.5
ot oc,

where

c = mean reaction progress variable 

Set = turbulent Schmidt number 

Sc = reaction progress source term (s'1)

The progress variable is defined as a normalized sum of the product species,

3-7 «i-l i-l

where

n = number of products

Yj = mass fraction of product species i

Yi,eq -  equilibrium mass fraction of product species i

Based on this definition, c = 0 where the mixture is unbumt and c = 1 where the mixture is 

burnt. The value of c is defined as a boundary condition at all flow inlets. It is usually specified 

as either 0  (unbumt) or 1 (burnt).

The mean reaction rate in equation (3.7.5) is modelled as

pSc =P„ST|Vc| 3.7.7

where

pu = density of burnt mixture 

ST = turbulent flame speed.

The turbulent flame speed is computed using a model of wrinkled and thickened flame fronts:

( Y/4
ST = A(u')3 /4 S[_'2 a _l/V t/ 4  = Au' 3.7.8

V X c  J

where

A = model constant

iT = root-mean-square (RMS) velocity (m/s)

SL = laminar flame speed (m/s)

a  = K/pcp= molecular heat transfer coefficient of unbumt mixture (thermal diffusivity)

(m2/s)

= turbulence length scale (m)

i t = £t /u '=  turbulence time scale (s)

x = a /S 2 = chemical time scale (s)c L
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The turbulence length scale / ,  is computed from

t , =CD^ ~  3.7.9
8

where e is the turbulence dissipation rate.

The model is based on the assumption of equilibrium small-scale turbulence inside the laminar 

flame, resulting in a turbulent flame speed expression that is purely in terms of the large-scale 

turbulent parameters. The default values of 0.52 for A, 0.37 for Cd are recommended by Zimont 

et al. [139], and are suitable for most premixed flames.

Non-adiabatic premixed combustion model is considered. The energy transport equation is 

solved in order to account for any heat losses or gains within the system. These losses/gains 

may include heat sources due to chemical reaction or radiation heat losses.

The energy equation in terms of sensible enthalpy, h, for the fully premixed fuel is as follows:

J~(Ph) + V • (poh) = V
k + kt Vh 

c„ + Sh,chcm + 3.7.10

Shjad represents the heat losses due to radiation and Sachem represents the heat gains due to 

chemical reaction:

Sh,chem ”  P ScHjombYjui 3.7.11

where

Sc = normalized average rate of product formation (s'1)

Hcomb = heat of combustion for burning 1 kg of fuel (J/kg)

Yfiiei = fuel mass fraction of unbumt mixture

3.7.4 Partially Premixed Combustion Modelling

Partially premixed combustion systems are premixed flames with non-uniform fuel-oxidizer 

mixtures (equivalence ratios). Such flames include premixed jets discharging into a quiescent 

atmosphere, lean premixed combustors with diffusion pilot flames and/or cooling air jets, and 

imperfectly mixed inlets.

The partially premixed model in FLUENT is a simple combination of the non-premixed model 

and the premixed model. The premixed reaction-progress variable, c, determines the position of 

the flame front. Behind the flame front (c = 1), the mixture is burnt and the equilibrium or 

laminar flamelet mixture fraction solution is used. Ahead of the flame front (c -  0), the species 

mass fractions, temperature, and density are calculated from the mixed but unbumt mixture
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fraction. Within the flame (0 < c < 1), a linear combination of the unburnt and burnt mixtures is 

used.

Limitations of Using Partially Premixed Model
The underlying theory, assumptions, and limitations of the non-premixed and premixed models 

apply directly to the partially premixed model. In particular, the single-mixture fraction 

approach is limited to two inlet streams, which may be pure fuel, pure oxidizer, or a mixture of 

fuel and oxidizer. The two-mixture-fraction model extends the number of inlet streams to three, 

but incurs a major computational overhead.

Both nonpremixed and premixed systems are considered in this research. For the nonpremixed 

systems, the nonpremixed model is used for simulation. In the case of premixed systems, even it 

is suitable to use the premixed model for the simulation but it is preferred to use the partially 

premixed model to simulate the premixed combustion as it is possible to extend the analysis to 

perform pollutant analysis. The pollutant analysis is restricted with the premixed models but it 

can be performed with the partially premixed model.

3.8 CFD Code

In the following subsections the question, “How is the CFD simulation performed in this 
research study? ”, will be answered. But before answering the question, let us first define the 

aims and objectives of the modelling in our case and how can they be achieved.

The modelling goals are:

to built a reliable model grid that is able to be applicable for different solver 

applications as some grids fall to achieve the simulation for some models or do not give 

a converged solution.

to study the isothermal behaviour of the model.

to simulate three dimensional swirl burner which is turbulent in nature.

to use different types of combustion modelling.

to simulate the combustion of different gases with different compositions and 

characteristics.

to simulate the combustion at different operating conditions (pressures, temperatures,

and equivalence ratios)

to have a balanced fast and accurate model.

In this research, FLUENT 6.3.26 software is used to achieve the modelling and simulation. The 

pre-processor used to construct the model grid is GAMBIT 2.3.16.
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Fluent is a programme that uses the mesh created in its pre-processor Gambit, and applies the 

governing equations of fluid dynamics. Fluid dynamics is concerned with the dynamics of 

liquids and gases. The analysis of the behaviour of fluids is based upon the fundamental laws of 

applied mechanics, which relate to the conservation of mass-energy and the force momentum 

equations, Douglas et al [142]. Obviously, these equations vary depending on the properties of 

the flow in question and additional equations are solved for flows such as this one involving 

heat transfer and species transport. In addition, transport equations are also solved if the flow is 

turbulent. These equations are then replaced by equivalent numerical descriptions that are 

solved by a finite volume method, to give solutions for the flow at discrete locations within the 

flow field [123].

3.8.1 Mesh Construction

GAMBIT software was used for establishing the pre-processing phase of modelling i.e. drawing 

the model, constructing the grid and defining the boundaries and zones. GAMBIT was designed 

to help in analyzing and designing of mesh building models for computational fluid dynamics 

(CFD) and other scientific applications. GAMBIT receives user input primarily by means of its 

graphical user interface (GUI).

3.8.1.1 The Finite Volume Grid
One of the first steps in computing a numerical solution to the equations that describe a physical 

process is the construction of a grid (which is essentially a sub-division of the computational 

domain). Gambit is one of the pre-processing programs compatible with the Fluent solver. Here 

the geometry shape is created, the boundaries are identified and the shape is meshed. The 

computation domain is created using standard tools building blocks and by the use of Boolean 

operations (subtract, unite, etc...).

The mesh is critical to the modelling process. Without it, the finite volume method used in 

solving the governing equations could not be utilized as the mesh dictates where the equations 

are to be applied. For 2D applications, quadrilateral and triangular cells are accepted, and in 3D, 

hexahedral, tetrahedral, pyramid, and wedge cells can be used. Figure 3.1 depicts each of these 

cell types. Both single-block and multi-block structured meshes are acceptable, as well as 

hybrid meshes containing quadrilateral and triangular cells or hexahedral, tetrahedral, pyramid, 

and wedge cells [123].
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Triangle Quadrilateral

(a) 2D Cell types

Tetrahedron Hexahedron Prism/Wedge

(b) 3D Cell types
Pyramid

Figure 3.1: Cell types

After meshing is complete, the final stage is to specify appropriate conditions at cells, which 

coincide with or touch the domain boundaiy. The accuracy of a CFD solution is governed by the 

number of cells in the grid.

In general, the larger the number of cells the better the solution accuracy. Both the accuracy of a 

solution and its cost in terms of necessary computer hardware and calculation time are 

dependant on the fineness of the grid [123,125].

3.8.1.2 Mesh (Grid) Quality
The quality of die mesh plays a major role in the stability and accuracy of the numerical 

computation. Mesh quality is where the CFD analyst has the largest impact on solution quality - 

after all, the numerical algorithms and physical models are dictated by choice of the solver. A 

high quality mesh increases the accuracy of the CFD solution and improves convergence 

relative to a poor quality mesh. Therefore, it's important for a mesher to provide tools for 

obtaining and improving a mesh. Some meshing software uses hundreds of unnecessary blocks 

as a crutch to obtain a decent mesh [143].
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The features associated with mesh quality are node point distribution, smoothness and skewness 

which can be discussed as follow:

Node Point Distribution: The degree to which the salient features of the flow are resolved

can dramatically alter the flow characteristics. For example, the resolution of the boundary layer 

(i.e., mesh spacing near walls) plays a significant role in the accuracy of the computed wall 

shear stress and heat transfer coefficient. Proper resolution of the mesh for turbulent flows is 

also very important. Due to the strong interaction of the mean flow and turbulence, the 

numerical results for turbulent flows tend to be more susceptible to grid dependency than those 

for laminar flows.

Smoothness: Rapid changes in cell volume between adjacent cells translate into larger 

truncation errors. Truncation error is the difference between the partial derivatives in the 

governing equations and their discrete approximations.

Skewness: The shape of the cell (including its skewness and aspect ratio) has a significant 

impact on the accuracy of the numerical solution. Skewness can be defined as the difference 

between the cell's shape and the shape of an equilateral cell of equivalent volume. Highly 

skewed cells can decrease accuracy and destabilize the solution. For example, optimal 

quadrilateral meshes will have vertex angles close to 90 degrees, while triangular meshes should 

preferably have angles of close to 60 degrees and have all angles less than 90 degrees. The 

aspect ratio is a measure of the stretching of the cell. For highly anisotropic flows, extreme 

aspect ratios may yield accurate results with fewer cells. However, a general rule of thumb is to 

avoid aspect ratios in excess of 5:1.

Grid quality can generally be monitored by the definition of two characteristics describing the 

mesh. These are Equiangle Skew and Equivolume Skew [125].

The Equiangle Skew (Qeas)
It is a normalized measure of skewness that is defined as follows:

where Omu and 0 ,^  are the maximum and minimum angles (in degrees) between the edges of 

the element, and Oeq is the characteristic angle corresponding to an equilateral cell of similar

depends on the density and distribution of nodes in the mesh. Poor resolution in critical regions

max 3.8.1
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form, fo r triangular and tetrahedral elements, 9eq= 60. For quadrilateral and hexahedral 

elements, 6eq= 90.

The Equivolume Skew (Q evs)

It is a measure of skewness that is defined as:

q evs= ^
®q

where V is volume of the mesh element, and K , is the maximum volume of an equilateral cell 

the circumscribing radius of which is identical to that of the mesh element.

By definition,

0  <  Q eas /Q e v s  -  1 3.8.3
where Q eas or Q ev s = 0  describes an equilateral element, and Q eas or Q evs =  1 describes a 
completely degenerate (poo rly shaped) element.

Table 3 . 1  outlines the overall relationship between skew and element quality.

Table 3.1: Skew vs. Mesh Quality

Skew Quality

Skew = 0 Perfect (Equilateral)

0 < Skew < 0.25 Excellent

0.25 < Skew <0.5 Good

0.5 < Skew <0.75 Fair

0.75 < Skew < 0.9 Poor

0.9 < Skew < 1 Very Poor

Skew = 1 Degenerate

In general, high-quality meshes contain elements that possess average Q eas or Q evs values of 

0.1 for (2-D) and 0.4 for (3-D) (1231.

3.8.2 CFD Code (Fluent) Solver

Fluent uses a well-developed technique known as a finite volume method (or control volume) 

method, which replaces the continuous computational domain with a set of nodes or grid points. 

It is these non-overlapping control volumes, or cells in which formal integration of die 

governing equations of fluid flow occur to construct algebraic equations for the discrete 

dependent variables (“unknowns”) such as velocities, pressures, temperature, and conserved
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scalars. Following this the discrete, non-linear governing equations are linearized to produce a 

system of equations for the dependant variables in every computational cell. The resultant linear 

system is then solved to yield an updated flow-field solution.

The governing equations are linearized using an implicit form with respect to the dependant 

variable of interest. In other words, for a given variable, the unknown value in each cell is 

computed using a relation that includes both existing and unknown values from neighbouring 

cells. Therefore each unknown will appear in more than one equation in the system, and these 

equations must be solved simultaneously to give the unknown quantities.

Two numerical methods are allowed in Fluent; segregated solver and coupled solver. The 

segregated solver is the solution algorithm in which the governing equations are solved 

sequentially (i.e., segregated from one another). Because the governing equations are non-linear 

(and coupled), numerous iterations of the solution loop must be performed before a converged 

solution is obtained. Each iteration consists of the steps illustrated in Figure 3.2.

The coupled solver solves the governing equations of continuity, momentum, and (where 

appropriate) energy and species transport simultaneously (i.e., coupled together). Governing 

equations for additional scalars will be solved sequentially (i.e., segregated from one another 

and from the coupled set). Because the governing equations are non-linear (and coupled), 

several iterations of the solution loop must be performed before a converged solution is 

obtained. Each iteration consists of the steps illustrated in Figure 3.3.

In both the segregated and coupled solution methods the discrete, non-linear governing 

equations are linearized to produce a system of equations for the dependent variables in every 

computational cell. The resultant linear system is then solved to yield an updated flow-field 

solution.
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Update properties.

Solve momentum equations.

Solve energy, species, turbulence, and other 
scalar equations.

Solve pressure-correction (continuity) equation. 
Update pressure, face mass flow rate.

Figure 3.2: Overview of the Segregated Solution Method [123]

^  Converged? ^ W  Stop

Update properties.

Solve turbulence and other scalar equations.

Solve continuity, momentum, energy, and 
species equations simultaneously.

Figure 3.3: Overview of the Coupled Solution Method [123]
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3.8.3 Convergence and Stability

The accuracy and numerical stability of the solution will obviously depend on the density and 

distribution of the grid, as well as on the interpolation or differencing schemes and their ability 

to resolve the variation between the cells. Convergence can be hindered by a number of factors. 

Large numbers of computational cells, overly conservative under-relaxation factors, and 

complex flow physics are often the main causes. Sometimes it is difficult to know whether you 

have a converged solution.

There are no universal metrics forjudging convergence. Residual definitions that are useful for 

one class of problem are sometimes misleading for other classes of problems. Therefore it is a 

good idea to judge conveigence not only by examining residual levels, but also by monitoring 

relevant integrated quantities such as drag or heat transfer coefficient.

The Residual
At the end of each solver iteration, the residual sum for each of the conserved variables is 

computed and stored, thus recording the convergence history. After discretization, the 

conservation equation for a general variable <|> at a cell P can be written as [123]:

a p < j > p = £ a iib4>nb+b  3.8.4
nb

where ap is the center coefficient, anb are the influence coefficients for the neighboring cells, and 

b is the contribution of the constant part of the source term.

The residual R* computed by Fluent’s segregated solver is the imbalance in Equation 3.8.4 

summed over all computational cells P. This is referred to as the “unsealed” residual and is 

given by:

* ♦ =  I
cells p

l ^ n b + n b  + b - a p<l>l
nb

3.8.5

In general, it is difficult to judge convergence by examining the residuals defined by Equation

3.8.5 since no scaling is employed; therefore, Fluent scales the residual using a scaling factor 

representative of the flow rate of <)> through the domain. This “scaled” residual is defined as:

I
r 4 _  cells p

+  b _ a p(t,[
nb

cells p

3.8.6
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For the momentum equations the denominator term ap<J>p is replaced by apUp, where up is the 

magnitude of the velocity at cell P. For the continuity equation, the unsealed residual is defined 

as:

Rc = ^T|Rateof mass creation in cell P| 3.8.7
ceils p

And the segregated solver's scaled residual for the continuity equation is defined as:

R®iteration N 3 8  8
Rc^  iteration 5

The denominator is the largest absolute value of the continuity residual in the first five 

iterations.

The scaled residuals described above are useful indicators of solution convergence. It is 

sometimes useful to determine how much a residual has decreased during calculations as an 

additional measure of convergence. For this purpose Fluent allows the residual to be normalized 

(either scaled or un-scaled) by dividing the maximum residual value after 5 iterations (the 

denominator in Equation 3.8.8).

For most problems, the default convergence criterion in Fluent is sufficient. This criterion 

requires that the scaled residuals defined by Equation 3.8.6 decrease to 10~3 for all equations 

except the energy and P-l equations, for which the criterion is 10"6. Unfortunately, this 

convergence criterion often failed in this research application. Convergence of a problem can be 

affected by a number of factors. Large numbers of computational cells, overly conservative 

under-relaxation factors, and complex flow physics are often the main causes.

Under Relaxation
In the iterative solution of the algebraic equations or in the overall iterative scheme employed 

for handling non-linearity, it is often desirable to slow down the changes, from iteration to 

iteration, in the values of the dependent variable. This process is called under-relaxation. In a 

simple form, the new value of the variable <|> within a cell depends upon the old value, <j>0id, the 

computed change in <}>, A<|>, and the under-relaxation factor, a, as follows [123]:

<|> = <(>0id + a  A<|> 3.8.9

When the relaxation factor a  in Equation 3.8.9 is between 0 and 1, its effect is under relaxation 

and when greater than 1, over-relaxation is produced. The optimum value of a depends on a 

number of factors, such as the nature of the problem, the number of grid points, the grid
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spacing, and the iterative procedure used. Usually, a suitable value of a can be found by 

experience and from exploratory computations for the given problem.

3.9 Laminar Flame Speed

Laminar flame velocity (SL) of a premixed flame is defined as the propagation velocity of a 

plane, undisturbed flame without heat loss and buoyancy effect. Although such flame may be 

difficult to produce experimentally, the definition is veiy suitable for numerical calculations 

using detailed kinetic reaction schemes. Laminar burning velocity is a constant under conditions 

of specific pressure and temperature and can provide reliable data on global flame propagation.

The laminar burning velocity is an important property for several reasons. The knowledge of Sl 

becomes important in the trade off between combustion stability and pollutants emissions. For 

example at very fuel lean conditions the laminar burning velocity decreases sharply and the 

flame is becoming less stable due to the partial or complete quenching (blow-out) of flames. 

This affects the emissions of carbon-monoxide and unbumt hydrocarbons. Hence, in lean 

premixed combustion a choice has to be made, in determining how lean one should operate. 

There is a trade-off between low pollutant emissions by operating at very lean conditions and a 

higher power output at slightly richer conditions. A higher power output gives more carbon 

monoxide and unbumt hydrocarbon emissions by avoiding flame quenching. Also related to the 

stability of flames is the so-called flash back phenomenon. In combustion systems flashback is a 

dangerous aspect which can for example occur when operating a system in a modulated manner, 

e.g. by changing the equivalence ratio, altering fuel composition or preheating of the fuel [144].

The laminar burning velocity is also an important parameter in turbulent combustion modelling. 

Often turbulence models assume that combustion takes place in the so-called flamelet regime 

[145]. Such flames can be considered as a front which is locally propagating as a stretched 

laminar flame. This flame stretching due to turbulence increases the flame surface which results 

in an increase of the (turbulent) burning velocity. For very low turbulent velocities the ratio 

between turbulent and laminar burning velocities St/Sl increases almost linearly with the ratio 

u7Sl . For stronger turbulence and thus higher u' the turbulent burning velocity St increases less 

fast with u' or can even decrease [146].

This can be explained by increased flame quenching of the flame due to locally highly stretched 

flames. Here, the production of flame surface is competing with local flame quenching. This 

different behavior at various turbulence intensities demands different modeling approaches, 

although Lipatnikov and Chomiak [147] showed in a comprehensive evaluation of turbulent
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premixed combustion models that the laminar burning velocity is commonly considered as an 

essential parameter characterizing the turbulent burning velocity.

Fuels such as methane and hydrogen very often serve as alternative fuels for combustion studies 

in gas turbines Therefore, there is a need for reliable data of burning velocities for these fuels at 

high pressure and preheat temperatures and at various equivalence ratios. Many studies are 

concerned on the measurement of flame velocities, laminar and turbulent, experimentally or 

analytically [93,103,116,148-156].

3.9.1 Calculation of Laminar Flame Speed In Fluent

Both premix and partially premix models require the laminar flame speed as a material property. 

Laminar flame speed depends strongly on the composition, temperature, and pressure of the 

unbumt mixture. For perfectly premixed systems, the reactant stream has one composition, and 

the laminar flame speed is approximately constant throughout the domain. However, in partially 

premixed systems, the laminar flame speed will change as the reactant composition 

(equivalence ratio) changes, and this must be taken into account.

Accurate laminar flame speeds are difficult to determine analytically, and are usually measured 

from experiments or computed from ID simulations. FLUENT uses fitted curves obtained from 

numerical simulations of the laminar flame speed [153,157]. These curves were determined for 

hydrogen (H2), methane (CH4), acetylene (C2H2), ethylene (C2H4), ethane (C2H6), and propane 

(C3H8) fuels. They are valid for inlet compositions ranging from the lean limit through unity 

equivalence ratio (stoichiometric), for unbumt temperatures from 298 K to 800 K, and for 

pressures from 1 bar to 40 bars.

FLUENT fits these curves to a piece wise-linear polynomial. These flame speed fits are accurate 

for air mixtures with pure fuels of H2, CH4, C2H2, C2H4, C2H6, and C3H8. If an oxidizer other 

than air or a different fuel is used, if the mixture is rich, or if the unbumt temperature or 

pressure is outside the range of validity, then the curve fits will be incorrect. So, it is not 

possible to run with the values of laminar flame speed that are calculated by default for other 

fuels that are not mentioned before, mixtures leaner than the lean limit or richer than the rich 

limits, and/or mixtures that have conditions outside the specified pressure and temperature 

limits.

The laminar flame speed must be specified by using another source such as experimental 

measurements or chemical kinetics software with detailed ID simulations. The required inputs
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are values for the mean mixture fraction (/) at 10 laminar flame speeds. The minimum and 

maximum mixture fraction limits for the laminar flame speed are the first and last values of /  
that are input.

3.9.2 Methane and Hydrogen Laminar Flame Speed

Laminar flame velocity of a premixed flame is defined as the propagation velocity of a plane, 

undisturbed flame without heat loss and buoyancy effect. Although such flames may be difficult 

to produce experimentally, the definition is very suitable for numerical calculations using 

detailed kinetic reaction schemes. Laminar burning velocity is a constant; under specific 

pressure and temperature, that provides reliable data on global flame propagation.

Fuels such as methane and hydrogen veiy often serve as fuels for combustion studies in gas 

turbines. Therefore, there is a need for reliable data of burning velocities for these fuels at high 

pressure and preheat temperatures and at various equivalence ratios.

Peters et al. [150] considered methane, ethylene, ethane, acetylene, and propane flames, 

numerically generated burning velocities were approximated using an algebraic expression that 

had been derived for methane-air flames by asymptotic methods [158]. The approximation uses 

the inner layer temperature as an auxiliary variable and thereby provides a means of calculating 

effective Zel'dovich numbers as a function of equivalence ratio, pressure, and preheat 

temperature. Their work is extended to include n-heptane, iso-octane, and methanol in [153, 

157]. They also report predictions of the response of laminar premixed flames to stretch, 

characterized by Markstein numbers, for methane, ethylene, ethane, propane, and iso-octane/air 

flames. The Markstein number predictions are compared with measurements reported by others. 

A technique is described by Kwon et al. [159] to eliminate this difficulty of comparison 

between the results in [153,157] and those of other authors.

By this method of approximation, the burning velocities of lean methane-air mixtures can be 

calculated in the range of preheat temperatures between 298 K and 800 K and pressures 

between 1 bar and 40 bar. The equation that can be used for the burning velocity SL of 

stoichiometric methane-air flames has the general form

o r
SL =A(T°)YP” i Tb - r  

 ̂Tb — Tu j
3.9.1

where, T° is the inner layer temperature, representing the crossover temperature between chain- 

branching and chain-breaking reactions. Within the temperature profile of a premixed flame it
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marks the transition from the inert preheat zone to the reaction zone, and it is therefore the point 

where the second derivative vanishes and the slope is maximum. The function A(T° ) only 

depends on thermodynamic and kinetic properties and YF>U is the mass fraction of the fuel in the 

unbumt gas. The temperatures Tu , and Tb are those in the unbumt and the burnt gas, 

respectively, m and n are constants for the fuel.

The relation between the inner layer temperature and the pressure and the function A(T°) are 

approximated as

or simply

*J*0 _

3.9.2

3.9.3

and,

A ( T )  = F exp(-*)
And the adiabatic flame temperature can be calculated for lean flames as: 

Tb = aTu + b + c<J) +d<j>2 + e<f>3, <J> < 1

3.9.4

3.9.5

The parameters for methane and hydrogen:

a b [K] c [K] d [K] e [K]

CH4 0.627 1270.15 -2449 6776 -3556

h 2 0.522 673.8 807.9 2515.6 -1765.9

B [bar] E[K] m F [cm/s] G [K] N

CH4 3.1557*10* 23873 0.565 22.176 -6444.27 2.516

h 2 30044.1 10200.9 1.08721 1292880 2057.56 3.535

3.9.3 Hydrogen/Methane Laminar Flame Speed

If H2/CH4 blend is considered as a fuel with hydrogen and methane mole fractions n H 2  and 

n CH4 respectively then the hydrogen volumetric fraction y is defined as: 

nu
7 = 3.9.6

n„ +n CH.
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Sarli and Benedetto calculated the laminar burning velocities of hydrogen-methane/air 

mixtures at NTP conditions using the CHEMKIN PREMIX code with the GRI kinetic 

mechanism. Their results show that the values of the blends laminar burning velocities are 

always smaller than those obtained by averaging the laminar burning velocities of the pure fuels 

according to their molar proportions. The linear combination of the laminar burning velocity of 

the pure fuels can be calculated as follows:

SLJmear (<}>, Y) = Y • SLJfiOlO + 0  “  Y) • Sl_CH4(<|>) 3.9.7
where Sl_h2 and SL Ch4  are the laminar burning velocity of hydrogen and methane evaluated at 

the same equivalence ratio of the hybrid fuel (<)>).

It appears that the computed values of the mixture laminar burning velocity are always well 

below those obtained by averaging the flame speeds of the constituent gases in molar 

proportions This implies the presence of strong non-linear effects in chemical kinetics that 

emphasize the weight of the more slowly reacting methane in the composite fuel combustion. 

Moreover, in lean mixtures the hydrogen addition enhances the methane reactivity slightly, 

while a strong inhibiting effect of the hydrogen substitution by methane is observed at rich 

conditions.

A correlation for evaluating the laminar burning velocity of hydrogen-Hmethane/air mixtures at 

NTP conditions as a function of equivalence ratio and fuel composition has been proposed by 

Yu et al. [106] for hydrogen mole fraction in the fuel up to 0.7. The authors have been able to 

linearly correlate the laminar burning velocity of the hybrid flames with the burning velocity 

without hydrogen addition and a single parameter indicating the extent of the hydrogen content. 

More precisely, hydrogen has been considered to be present only in stoichiometrically small 

quantities, its combustion requiring four times less oxygen than methane. Consequently, they 

have assumed that there is enough air to facilitate a complete oxidation of hydrogen, while the 

remaining air is used to oxidize methane. An effective methane/air equivalence ratio, <|>f ,  has 

been therefore defined as follows:

. CF /[C A — CH /(CH / C A )rt ] 3 9 8
(CF/C A)rt

while the relative amount of hydrogen addition, /fe, has been expressed according to

r  — + C h / ( ^ h 3 9 9
H CF +[CA -C „ /(C „ /C A),,]

where CA, CF and CH are the initial mole fractions of the air, methane and hydrogen, 

respectively (the subscript ‘st’ denotes the stoichiometric conditions). In the explored ranges of
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<|>f  (0.51-1.37) and /?H (0-0.5), the laminar burning velocity (SL) has been then correlated by the 

following equation:

SlO^Rh) = SL((j»F, 0 ) + 0.8Rh (m/s) 3.9.10

More recently, El-Sherif [149] has numerically reproduced the experimental results by Yu et al. 

[106] at <|>f ranging from 0.62 to 1.2 and RH varying up to 0.4. In this parameter range he has 

proposed the following correlation:

S l(4>f.R h)  =  0J8+F-®-35 ejrp[-5.5(<t>F -  1 .1 )2] +  0.84R h (m/s) 3.9.11

w ith  <|>f  and Rh defined  acco rd ing  to  (3 .9 .8 ) and  (3.9.9), respectively.

Equation 3.9.11 is similar to Equation 3.9.10, but it presents the explicit dependence of the 

laminar burning velocity without hydrogen on the fuel/air equivalence ratio (<|>f). Equations 

3.9.10 and 3.9.11 are able to take into account the linear trend of the laminar burning velocity 

with hydrogen addition on the methane rich side. Due to the expressions of the parameters <|>f 

and /fa defining the composition of the hybrid fuel/air mixtures, these equations are intrinsically 

valid only for low hydrogen contents.

Another correlation for laminar burning velocities of H2/CH4 mixture was proposed by Liu et al. 

[102]. The correlation uses Le Chatelier’s Rule-like formula that can be expressed according

s ^ l c ( * . t ) = —  -------1 1-T  3 9 1 2

$ L _ H 2  010 SLCH4(<}>)

where Sl_h2 and Sl_ch4 are the laminar burning velocity of hydrogen and methane evaluated at 

the same equivalence ratio of the hybrid fuel (<j>).

Sarli and Benedetto [93] tested the feasibility of a Le Chatelier’s Rule-like formula at different 

values of inlet pressure (1,5 and 10 atm) and temperature (300,350 and 400 K), respectively. A 

good prediction is obtained, except for rich mixtures with high hydrogen contents. With this 

limitation, the proposed formula is successfully applied also to mixtures at higher than normal 

values of initial pressure (up to 10 atm) and temperature (up to 400 K). They do think that the 

Le Chatelier’s Rule-like formula 3.9.12 is able to take into account the kinetic interaction 

between radicals. However, at rich conditions when dealing with high hydrogen (and then H 

radicals) contents the interaction is too strong to be reproduced by Equation 3.9.12 and a more 

sophisticated formula is required.
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3.9.4 CHEMKIN-PRO software package for calculation of the laminar 
burning velocity

An unstretched laminar burning velocity of methane methane/carbon dioxide and 

methane/hydrogen flames has been calculated using CHEMKIN-PRO (160] software package. 

CHEMKIN-PRO consists of a set of different application models, which are used to solve 

various chemical kinetic problems. “Flame Speed Calculator” reactor model has been used to 

determine the laminar speed of one-dimensional freely propagating flame. PREMIX [161] code, 

which has been developed by Sandia National Laboratories, has been used to run this model.

“Flame Speed Calculator” model with “Parameter Study Facility” option has been utilised to 

perform the numerical burning velocity calculations. The model simulates a freely propagating 

flame in which the point of reference is a fixed position on the flame, thus the flame speed is 

defined as the velocity of unbumed gas moving towards the flame [160]. This model uses 

mixture averaged transport properties with correction velocity formulation. Equivalence ratio 

has been chosen as variable parameter. A number of runs have been performed for different 

temperature and pressure conditions. The domain length of 10 cm has been specified and the 

grid of 200 points has been selected, which has facilitated faster convergence. Adaptive grid 

control parameter based on gradient GRAD = 0.1 and adaptive grid control parameter based 

curvature CURV = 0.1 have bee selected. An Initial grid based on temperature profile estimate 

has been specified. Mixture averaged transport, correction velocity formalism with automatic 

estimation of temperature profile options have been used.

Different kinetic models should be used for different gas mixtures as no one mechanism can be 

considered as universal model for all possible gas mixtures. GRI-Mech [162] mechanism is 

often used in the research of methane and methane based gases combustion. It considers 53 

species and 325 elementary reactions. This mechanism has been developed to investigate 

methane and natural gas flames and has been validated extensively at various pressure and 

temperature conditions. The researchers have reported that this mechanism could also be 

suitable to some extent for biomass gasification-derived producer gas [163], methane hydrogen 

mixtures [164, 165] and for hydrogen air mixtures [166, 167] at atmospheric conditions. 

However there have been larger discrepancies observed between experimental data and 

numerical calculations using GRI-Mech kinetic mechanism for pure and diluted hydrogen at 

higher pressures [166,168].
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Another well known kinetic mechanism, which has been developed by University of California 

in San Diego [65], has been used this research. This kinetic mechanism considers 46 species and 

235 elementary reactions and is often used for hydrocarbon combustion research.

There are several kinetic mechanisms, developed for hydrogen combustion. The group of 

researchers from Princeton University [169], O’Conaire et al. [168] and Konnov [170] have 

developed hydrogen combustion models, which have been validated at different experimental 

conditions [171]. Konnov reviewed [171] currently existing hydrogen combustion mechanisms 

and pointed out the remaining uncertainties of these models.

The O’Conaire et al. mechanism has been developed to simulate the combustion of hydrogen 

and oxygen in a variety of combustion environments and over a wide range of temperatures, 

pressures and equivalence ratios. The O’Conaire kinetic mechanism comprises 8  species and 19 

elementaiy reactions. The temperature ranges from 298 to 2,700 K, the pressure from 0.05 to 87 

atmospheres, and the equivalence ratios from 0.2 to 6 . StrOhle and Myhrvold reported [166] that 

Li et al. [169] and O’Conaire et al. [168] chemical kinetics mechanisms provide much more 

accurate results in comparison with experimental data at elevated pressures whilst GRI-Mech 

underpredicts laminar flame speed considerably. They also showed that the San Diego 

mechanism yields reasonable results for helium diluted high pressure hydrogen flames. Lafay et 

al. [172] have utilised the GRI-Mech and San Diego mechanisms to calculate flame thickness. 

They have shown that these mechanisms are in good agreement with the experimental data at 

atmospheric conditions at equivalence ratios above 0.55. Sarli and Benedetto [93] found that the 

GRI-Mech kinetic mechanism, used in their simulation, underpredicted laminar burning 

velocity at high hydrogen content with methane-hydrogen mixtures. They identified three 

different regimes in flame propagation depending on hydrogen mole fraction in the fuel mixture.

Taking into account the above it has been decided to use different mechanisms for different 

methane/hydrogen fuel mixtures. The GRI-Mech mechanism has been used for 

methane/hydrogen with hydrogen content up to 50%, because it is believed that methane 

combustion kinetics prevail in the combustion process. The San Diego mechanism has been 

chosen for the investigation of methane -  hydrogen mixtures with the hydrogen content above 

50%, because it has been shown [166] that this mechanism predicts hydrogen laminar flame 

speed more accurately at elevated pressures. The O’Conaire at el. mechanism has been utilised 

for laminar flame speed calculation for pure hydrogen, as its accuracy has been supported by 

various researchers [166,168].
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3.10 Summary

Computational Fluid Dynamics (CFD) techniques have emerged with the advent of digital 

computers. Since then, a large number of numerical methods have been developed to solve flow 

problems using this approach. The main purpose of a flow simulation is to find out how the 

flow behaves in a given system for a given set of initial and boundary conditions. In many 

design and analysis applications, it is preferable to use CFD methods as they are cheap (in cost 

and maintenance), fast (in time) and safe (in hazard design processes) and often give 

satisfactory results, when suitably calibrated against available experimental data.

In this chapter, CFD is introduced as an important tool in designing combustion systems in gas 

turbines. Features of CFD modelling, turbulent models and combustion models are surveyed. 

The following can be concluded:

CFD is an important tool for analysing systems involving fluid flow, heat transfer and 

combustion.

The commercial CFD packages contain three main elements: a pre-processor, a solver and, 

a post-processor.

CFD codes are structured around the numerical algorithms that can tackle fluid flow 

problems. The solution is based on solving the main flow governing equations.

There is no general turbulent model that is able to perfect for all turbulent flow problems. 

Many Turbulent models are available in Fluent software. One must choose the turbulent 

model that can perform the modelling requirements with acceptable accuracy and time. 

Fluent provides several models for chemical species transport and chemical reactions. The 

choice of the suitable combustion model must consider the system physics and the model 

restrictions.
The model preparation (mesh construction) plays an important role in the simulation 

accuracy and the solution convergence.

Fluent uses segregated solver to solve the combustion models problems.

Laminar flame velocity is an important parameter in both laminar and turbulent 

combustion modelling.

There are many studies concerned about the measurement and analysis of flame velocities, 

both laminar and turbulent.

Fluent provides data for laminar flame velocity that can be used for CH4 and H2 

combustion simulation from lean mixtures up to stoichiometric mixtures.
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For fuel blends, such as H2/CH4, laminar flame speed must be calculated by other mean 

(chemical kinetics software, analytically or experimentally) and then fed to Fluent as an 

input data to establish a PDF table for turbulent combustion calculations.
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Chapter 4

C o m b u s t o r  M o d e l l i n g  a n d  S i m u l a t i o n  S e t -u p

4.1 Introduction

This chapter and the following chapters describe the work achieved in this research study. The 

combustion system considered in this research is an original burner as fitted to the system, then 

a generic swirl burner to fit into the high pressure optical combustor (HPOC) rig at the gas 

turbine research centre of Cardiff University in Port Tabot. This is complemented with a veiy 

similar generic swirl burner system for use at atmospheric pressure and temperature in the 

laboratories at Cardiff University. Differences between the high pressure generic swirl burner 

for use in the HPOC and laboratory based system at atmospheric pressure arise from safety 

consideration and the use of premixed air gas mixtures

The HPOC combustion system comprises of a burner and combustion chamber. The HPOC 

simulation and analysis are performed on two types of burners. The first burner is the original 

burner installed in the system and is a simple Bunsen type burner which is used to perform 

primary calculations for the system. The second burner considered is a generic swirl type burner 

representative of industrial practice. Most of the flashback analyses are performed on this 

generic swirl burner as it is has the inherent advantages of swirl burners described in Chapter 2 

for flame stability and emissions reduction. Finally the third burner was designed for calibration 

purposes at atmospheric pressure and temperature conditions, fired on natural gas so that 

matches between predictions and experimental data can be assessed, allowing more confidence 

to be had in the predictions made for high pressure and temperature.

In this chapter, the combustion system used in this research is described. The initial analysis 

was performed on the original burner system installed in the HPOC. The model development, 

model quality, calculation parameters and the numerical description of the original system are 

described. The CFD analyses for the original system are performed based on experimental data 

produced by the working team in the research centre.

The flow chart shown in Figure 4.1 summarizes the work carried out, outlining the main topics 

discussed in the following chapters.
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4.2 The High Pressure Optical Combustor (HPOC)

A High Pressure Optical Combustor (HPOC) Test Module has been designed for use on the 

High Pressure Combustor Rig (HPCR) which is located at the Gas Turbine Research Centre 

(GTRC) of Cardiff University in Port Talbot, Wales, UK.

The HPOC consists o f a single horizontal burner and an axi-symmetric chamber. The burner is 

firing into an inner combustion chamber, enclosed within an optical pressure casing as shown in 

Figure 4.2. The pressure casing is a cylindrical geometry with four diametrically opposed quartz 

windows, affording excellent optical access. The optical combustion section is fitted with a heat 

exchanger, allowing combustion air to be preheated to required operating temperatures. The 

inner combustion chamber consists of two jointed parts. The first part is the optical section 

while the other is the non optical part. Both parts have the same shape and dimensions with 

square cross sections, to allow good optical access for combustion diagnostics; each (152 x 152 

mm) and 208 mm long. All edges are chamfered at 24 mm at each comer. The optical part has 

four internal quartz windows which align with the outer casing, giving full optical access to the 

combustion chamber. It is fitted with a heat exchanger, allowing combustion air to be preheated 

to required operating temperatures.

Pressure Casing

Figure 4.2: High Pressure Optical Combustor
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Figure 4.1: Outlines of the research work



The HPOC has the flexibility to be fired with variable quality gaseous and liquid fuels. The 

original system burner consists o f  a premixed main with diffuse CH4 pilot. It is supplied by a 

range of heavy-duty industrial components and control systems, including a compressor, large- 

scale heat exchanger, high-speciflcation pipe-work with a dedicated control room. The air 

supply for both the HPOC and burner is pressurized by the main facility compressor which is 

capable of delivering 5 kg/s at 16 bar absolute pressure. Seeded air for combustion is delivered 

by an auxiliary compressor. Fuel gases are supplied from premixed cylinders.

The combustion facility operating range for the optical combustor are:

Air flow rate: < 5 kg/s 

Absolute Pressure: <16 bar 

Preheat temperature: < 900 K 

The realistic working section operating conditions up to ~2.5kg/s air through combustor head at 

IS bar & 875K

The Flexible premixed burners for HPOC are: 

lOg/s < air flow < lkg/s, and 

0.5g/s < fuel flow < 30g/s

The original gas burner fitted in the HPCR is a simple Bunsen type burner that is fired into the 

combustion chamber through a 25 mm diameter nozzle. The burner is fed a premix of fuel and 

air via a turbulence mixing plate, 50 mm diameter, which is fitted inside the mixing chamber 

shown in Figure 4.3. Two turbulence plates are used for simulation. The first is shown in Figure 

4.4 (a) and is used to produce high turbulence via with 82 holes each of 1 mm diameter. The 

second turbulence plate is shown in Figure 4.4 (b) and is used to produce low turbulence via 53 

holes each of 1.5 mm diameter, blockage ratio 95%. This claimed to create a uniform turbulence 

and aid in the mixing of the reactants. The preheated air and fuel gas supply are connected to a 

mixing chamber upstream of this plate. The preheated air is delivered radially through the 

preheater to the top of the mixing chamber of the burner while the fuel is fed axially from the 

centre. The burner is fitted with an annular pilot which supplies a methane diffusion flame to aid 

stability while adjusting the operating conditions. This pilot is switched off prior to making 

measurements. The assembly of the system is shown in Figure 4.5 and a photo for the rig during 

operation is shown in Figure 4.6.
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4.3 The HPOC Model

The first step of CFD simulation is to prepare the model for analysis. This means defining the 

flow domains of the physical system and splitting them into smaller subdomains (made up of 

geometric primitives like hexahedra and tatrahedra in 3D, and quadrilaterals and triangles in 

2D) and discretized governing equations are solved inside each of these portions of the domain. 

That is generally refers to constructing a model grid or mesh.

The mesh generation normally affects the final solution. Choosing the grids type and the method 

of constructing the mesh is very important to reach an accurate solution. As the number of the 

cells is higher, the accuracy of the solution is normally higher. On the other hand the processing 

time is higher. So, choosing the suitable mesh which gives satisfactory results with a reasonable 

time is complicated especially for complex systems. The model development may be repeated 

several times until reaching the semi-optimum mesh.

The HPOC considered in this research is modelled as one unit consists of two connected parts 

(zones); the burner and the combustion chamber. These two zones describe the flow fields in the 

system as shown in Figure 4.7. The first zone is the burner or mixing cylinder in which the air 

and fuel are mixed together and the turbulence is produced by using a turbulence disc. There is 

no combustion in this zone under the normal combustion conditions, nor is it desired. The other 

zone is the combustion chamber which includes both optical and non-optical parts. Combustion 

is achieved within this zone in the normal combustion conditions.

Gambit 2.3.16 is used for constructing the model mesh. A three dimensional model is used for 

the simulation. Due to the symmetry of the model, it was preferred to simulate only half of the 

system to reduce the computational time. The complete system can be easily meshed by a 

tetrahedral unstructured mesh but it leads to higher number of elements generated which 

translates to longer computational times, whilst die solution is not stable for some viscous 

models. A hexahedral mesh can give faster and stable solutions so it is preferred to be used 

more than tetrahedral mesh. The main problem in this model was constructing the mesh for the 

tiny holes of the turbulence plate. Hence a mixed mesh is used but mainly a hexahedral mesh is 

used for the combustion zone and a part of the mixing zone as shown in Figures 4.8.a, 4.8.b and 

4 .8 .c. while tetrahedral mesh is used for the other part of the mixing zone which contains the 

turbulence plate as shown in Figures 4.8.c and 4.8.d. The mesh in Figure 4.8.d is then modified 

to include a higher number of hexahedral cells and limit the tetrahedral cells to be only around 

the turbulence plate as shown in Figures 4.8.e. The total number of cells in this model was 

1,058,012 cells.
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During the CFD simulation o f this model the presence of reversed flow was found at the end of 

the combustion chamber; this affects both the convergence and the accuracy of the solution. To 

solve this problem it was suggested to add an extension to the combustion chamber as shown in 

Figures 4.9. The extension was chosen to have the same dimensions of the non-optical part of 

the combustion chamber (which is similar to the optical part too). This extension increased the 

total number of the cells by 83,940 cells and then the total number of cells was 1,141,952 cells.

The main problem with this model was the huge number of cells which affects the time for the 

solution to become converged. Roughly, the consumed time for only one run was about 15 days. 

Hence the volume of the cells was increased to reduce their number, via the modifications as 

shown in Figure 4.10. The number of cells was reduced to 775,945 cells which still gave too 

long a time for a converged solution. Several trials are done until the suitable mesh was 

constructed as shown in Figure 4.1 1. The final mesh was satisfactory from both the accuracy 

and consumed time view points and it contains 178,530 cells which consumed about one day for 

the solution to be converged.

The optical part

The turbulence plate

Figure 4.7: The HPOC combustor flow fields



Figure 4.8: The HPOC combustor mesh
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4.4 Grid Quality

It's important to check the grid quality to ensure good quality results. The grid of Figure 4.9 is 

checked based on the volume-weighted average method. The cell equiangle skew for the 

combustion zone is 0.1528 and for the mixing zone is 0.162 and hence the net cell equiangle 

skew for the whole model is 0.153. Furthermore the cell equivolume skew for the combustion 

zone is 0.1528 and for the mixing zone is 0.14677 and hence the net cell equivolume skew for 

the whole model is 0.15269. So, referring to table 3.1, the mesh quality is considered as 

excellent.

The cell equiangle skew histogram for the model shown in Figure 4.9 is plotted in Figure 4.12 

and the cell equivolume skew histogram in Figure 4.13. The data from these plots show that the 

grid quality is within the range o f good and excellent.

Note: y-axis is the percentage o f the number o f cells to the total number of cells (%).

0 8.1 0.2 0.3 0.4 0 .5  0 .6 0.7 0.8 0.9 1

Figure 4.12: The cell equiangle skew histogram for the model shown in figure 4.9
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Figure 4.13: The cell equivolume skew histogram for the model shown in figure 4.9
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For the final model with reduced number o f elements that is shown in Figure 4.11, based on the 

volume-weighted average method, the cell equiangle skew for the combustion zone is 0.165 and 

for the mixing zone is 0.1886 and hence the net cell equiangle skew for the whole model is 

0.156. Furthermore the cell equivolume skew for the combustion zone is 0.165 and for the 

mixing zone is 0.181 and hence the net cell equivolume skew for the whole model is 0.1657. So, 

refereeing to table 3.1, the mesh quality is considered as excellent again.

The cell equiangle skew histogram for the model shown in Figure 4.11 is plotted in Figure 4.14 

and the cell equivolume skew histogram is plotted in Figure 4.15. The data from these plots 

show that the grid quality is within the range o f good and excellent. So, the model with reduced 

number of cells has the same mesh quality as the original model shown in Figure 4.9.
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Figure 4.14: The cell equiangle skew histogram for the model shown in Figure 4.11
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Figure 4.15: The cell equivolume skew histogram for the model shown in Figure 4.11
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Figure 4.16: The simulation of stable flame for CR* combustion at 7.11 bar and 674 K
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Figure 4.17: The simulation of flashback flame for (85%CH4 +15% C 02) combustion at

3.01 bar and 674 K
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different mass flow rates for the system with high turbulence plate



4.5.2 Low Turbulence Model

The combustor was then fitted with another turbulence plate to develop lower turbulence. This 

turbulence plate was shown in Figure 4.4.b. Two samples of the runs are selected to show the 

combustion behaviour for the system with the new low turbulence plate. Methane is considered 

as the fuel in both runs. The first run is performed at operating pressure of 7.12 bar and initial 

preheated air temperature at 473 K. The total mass flow rate is 12.16 g/s with equivalence ratio 

of 1.01. The second run is performed at operating pressure of 3.07 bar and initial preheated air 

temperature at 477 K. The total mass flow rate is 4.453 g/s with equivalence ratio of 0.96. The 

boundary conditions are taken as 700 K for all of the combustion chamber walls in both runs.

The results of the above cases did not show flashback. The mixing is achieved inside the burner 

while the combustion starts after the nozzle in the combustion chamber. Contours of static 

temperature, CH4 mass fraction and 0 2 mass fraction for the first case are shown in Figures

4 .1 9 .a , 4.19.b and 4 .1 9 .C  respectively and for the second case are shown in Figures 4.20.a,

4 .2 0 .b  and 4.20 .C  respectively. From these Figures it is noticed that methane and air mixture are 

not mixed homogeneously as in the case of high turbulence plate. Methane with lower density 

moves upward while air with higher density moves downward. The mixture again seems be 

more consistent at the nozzle exit due to the contraction at this region. The combustion starts at 

the nozzle exit and it is not completely symmetric.

The main problem with such burner is still the non-homogeneous mixture and the combustion 

may start inside the mixing zone before the nozzle. This pre-combustion causes flashback. The 

flashback was then examined for stoichiometric methane at the atmospheric pressure and 

mixture temperature of 300K with various mixture mass flow rates. The results are shown in 

Figure 4.21. It is noticed that flashback happen in the last two cases with the lowest mass flow 

rates. These two cases are corresponding to the lowest velocities of flow as to be expected.

When comparing the flashback of CH4 flames at atmospheric pressure and 300 K when using 

high turbulence plate, represented by Figure 4.18, and when using low turbulence plate, 

represented by Figure 4.21, it can be concluded that the flashback phenomenon depends on the 

turbulence of the flow. The tendency of the flame to flashback increases with the increase of the 

turbulence as the turbulent flame speed also increases.
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Figure 4.19: The simulation o f CH4 combustion at 7.12 bar and 473 K
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Figure 4.20: The simulation o f CH4 combustion at 3.07 bar and 477 K
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Figure 4.21: Contours o f Static Temperature in [KJ for stoichiometric CH4 combustion at

different mass flow rates for the system with low turbulence plate
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4.6 Flashback A ssessm en t Model Validation

The experimental program that was performed in the GTRC aimed mainly to measure the flame 

velocity for different gaseous fuels. There was a problem realized regarding flashback which 

causes some severe damage in the burner, especially in the turbulence plate.

The experiments were performed over a range of pressures and temperatures. They were run 

and monitored remotely from a control room. LDA and laser planar tomography systems were 

controlled from their own specialized computers, and the facility was controlled from its own 

PLC system. Fuel, combustion air and seed air were measured simultaneously using suitably 

ranged Coriolis flow meters. All experimental conditions, such as: pressure, temperature, air 

flow and gas flow were recorded by a facility data acquisition system. Measured temperatures 

and pressures were reasonably steady with fluctuations not exceeding 5% and 3% of the 

nominal values for pressure and temperature respectively.

During the experiments many cases are reported with flashback. A sample of CH4 combustion 

experiments are chosen to check the CFD combustion simulation of the combustion system 

under various operating conditions. Table 4.1 shows the flashback assessment for methane at 

different conditions. It is realized that all of the simulation cases are compatible with the 

experiments. This indicates that the established CFD combustion model has the capability to 

predict flashback at various operating conditions.
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Table 4.1: Flashback assessment validation under various combustion conditions

Case

No.

Fuel P

(bar)

T

(K) (g/s)

m f

(g/s)

♦ Flashback

Experiment Modelling

1. 10.19 580 22.30 1.246 0.96 No No

2 . 7.12 473 11.48 0.673 1 . 0 1 No No

3. 7.01 576 13.83 0.814 1 . 0 1 No No

4. 3.07 477 4.5 0.253 0.96 No No

5. CH4 3.0 470 10.90 0.84 1.32 No No

6. 1 0 680 5.0 0.18 0.62 Yes Yes

7. 7.11 678 17.14 0.986 0.99 Yes Yes

8 . 7 476 10.5 0 . 6 6 1.08 Yes Yes

9. 2.96 486 2.17 0.182 1.44 Yes Yes
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4.7 Summary

In this chapter, the physical model in which the research is performed is introduced. Various 

trials to construct a good mesh which is able to produce good results at a reasonable time are 

performed. The original combustion system is simulated at different combustion conditions. The 

following notes can be reported:

■ The cell type must be chosen carefully as it affects the solution accuracy and time.

■ It is important to make a balance between the number of the mesh cells and the time 

consumed by the model to reach the convergence.

■ The turbulence plays an important role in flame stabilization. The presence of 

turbulence significantly increases the flame speed due to the increase of mixing rates 

and, through flame surface wrinkling, the flame surface area.

■ The flashback exists at certain combustion conditions depending on some variables. 

These variables include the fuel mixture, operating pressure, mixture temperature, 

equivalence ratio, mixture mass flow rate and the turbulence plate used. The effect of 

these variables on flashback will be studied in the next chapter.

■ The original HPOC gas combustion system is suitable for turbulent flame speed 

calculations although it has some drawbacks. The main problem with it is that it is not 

able to produce homogeneous mixture for premixed combustion and this issue needs to 

be addressed. A generic swirl burner will be considered in the next chapters as being 

indicative of behaviour in realistic gas turbine combustors.
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C h a p te r s

F l a s h b a c k  L i m i t s  D e t e r m i n a t i o n  

i n  S w i r l  B u r n e r s

5.1 Introduction

Amongst the most promising technologies used to reduce the impact and production of NOx, 

lean premixing and swirl stabilized combustion are regarded as veiy good options. However, 

premixing is not perfect because usually fuel and air are mixed shortly before entering the 

combustion chamber leading to a significant degree of unmixedness. This generates a complex 

process that creates thermoacoustic instabilities which would feedback into the mixing-reaction 

process of combustion. Swirl flow technologies have shown to give high flame stability taking 

advantage of coherent structures such as comer and central recirculation zones which anchor the 

flame, recirculating hot products and active chemical species whilst also increasing their 

residence time, allowing the use of low equivalence ratios thus giving lower flame temperatures 

and NOx emissions. However, there are some gaps in the entire understanding of these flames.

A problem of swirl combustion, especially with premixed flames, is the flashback produced by 

high swirl systems, with a phenomenon observed at the tip of the burner where injectors are 

positioned for diffusive flames, as for complete flashback into the fuelling system in premixed 

combustion. The latter is defined as the point where the flame physically propagates upstream 

of the region where it is supposed to anchor and into premixing passages that are not designed 

for high temperatures. This occurs when the turbulent flame speed exceeds the flow velocity 

along some streamline, often occurring in the boundary layers, which usually are the point of 

lowest flow velocity. However, in swirling flows the process is not only influenced by the 

turbulent flame speed, but also by combustion instabilities and the axial reversed flow in the 

central recirculation zone, which can easily extend backwards over the injector under certain 

conditions and cause the flame to propagate undesirably upstream. It must be remember that 

flashback is not a continuous upstream propagation but is composed of numerous movements or 

jumps of the flame from the combustion chamber into the mixing zone. Resistance to these 

effects have also been linked to preheating temperature, laminar flame speed and fuel 

composition.

It has been recognised that the shape of the CRZ can influence the final stability of the system. 

However, vortical structures can be modified by geometrical factors and flow conditions, as
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well as by the interaction of unburnt gases and the reaction zone, complicating even more their 

part in flashback occurrence and avoidance.

Another problem related to partial flashback in recent studies (especially with liquid fuels) is the 

amount of deposit produced by the high concentration of carbon radicals generated in the CRZ 

during the combustion process, due to the increased residence time which augments the soot 

growth nucleation. If the CRZ extends back to the injector, this can leave thick deposits on the 

injector surfaces, reducing the efficiency and increasing maintenance requirements.

In this chapter, a swirl burner is introduced to perform flashback analysis. Both partial and full 

flashbacks are considered with nonpremixed and premixed flames. Two modifications for the 

swirling model with different nozzle geometries are suggested. The modifications are aimed to 

eliminate the partial flashback. They are used with the possibility of both premixed and 

diffusive fuel injection. Both modifications are simulated and compared with the original swirl 

model with different operating conditions. One of these two modifications is selected to 

continue the simulation and flashback research as it gives better results than the original swirl 

model.

To determine the stability limits of flames, the effect of combustion operating conditions on 

flashback is studied. Also, the size and shape of the recirculation zone associated region of high 

turbulence are studied as they are critical to flame stability, combustion intensity and 

performance. The operating pressure, temperature, equivalence ratio, and mixture mass flow 

rate are considered as crucial variables that affects flashback and recirculation zone and hence 

the stability limits of flames.

5.2 Swirl Burner Model

A swirl burner is used to improve the mixing characteristics and to stabilize the flame. In this 

burner a swirler is used to achieve die flame stabilization. The new burner is primarily simulated 

with both non-premixed and premixed combustion.

The swirl burner components are shown in Figure 5.1, and the assembly of these components is 

shown in Figure 5.2.
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Figure 5.1: The swirl burner components
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Figure 5.2: The swirl burner assembly
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5.2.1 The Swirl Number

As was discussed in Chapter 2, the swirl combustors and burners are usually characterized by

the degree of swirl. The swirl number (S) is the variable that is usually introducing the degree

of swirl. The swirl number was presented by equation 2.4.1 as:

g _ Axial flux of angular momentum _ G0
Axial flux of axial momentum x Exit Radius Gx .d / 2

where
oo

G0 = J (puw + p u V ) r2dr
o

is the axial flux of swirl momentum, including the x-0 direction turbulent shear stress term.
oo __

Gx = J(pu2 + p u ' 2 + ( p - p a0))rdr 
o

is the axial flux of axial momentum and includes the x direction turbulent normal stress term 

and a pressure term (axial thrust) 

d/2 = nozzle radius

u, v, w = velocity components in (x, r, 0) cylindrical polar coordinate directions.

However, as the flow patterns in the swirl burner are complicated, it is difficult to define one 

specific swirl number. The swirl number varies with the burner because the axial and tangential 

flow rates change at different levels within the burner. It is hence generally impractical to use 

local values of the swirl number, since this would require detailed velocity, and pressure 

measurements. To determine more practical and comparable value, various simplifications have 

been used, resulting in the geometric swirl number (Sg). The following assumptions have been 

made:

The calculation is under isothermal conditions.

The static pressure (p) is assumed to be constant across the exit and can thus be omitted. 

The density (p) is assumed to be constant through the burner.

The mean axial velocity (u) is calculated as the overall flow rate (Q) divided by the exit 

area (A* ).

The mean swirl velocity (w) is taken as the inlet velocity (Q/Ai).

The radius of the burner is the exit radius (rc= Do/2).
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Figure 53: The swirler configuration

Hence, the geometric swirl number can be expressed as:

S _ G9 = eff 
8 Gx.d/2 m0u0r0

_  W ircff

(Q /A 0)r0

= A0reff
Airc

.2 J w  t
K( ro “  Fp X ri - “ )

S = ------------------ 2 - 5.2.1
8 (4 • t • h)r0

where
rc is the radius of the swirl burner at exit, rp is the radius of the internal pipe (if found), r* is the 

radius of the swirl burner at inlet (in this case rj = rc), t is the flow passage width between the 

blades, h is the highet of the flow passage.

The geometrical swirl number (Sg) was calculated based on the geometrical configurations 

given by equation 5.2.1 and it was 1.78.

107



5.2.2 Mesh Construction

A complete three dimensional model is used for the simulation. The complete system can be 

easily meshed by a tetrahedral unstructured mesh but it leads to higher number of elements 

generated which translates to longer computational times, whilst the solution is not stable for 

some viscous models. A hexahedral mesh was used to give fast and stable solutions. The 

simulation of the intake pipe starts just prior the swirl passage after a flame arrest protruded 

edge as shown in Figure 5.4.a. Figure 5.4.b shows a cross section of the swirler grid and the 

hexahedral elements are shown clearly.

The installation of the swirler in the combustion chamber and the grid is shown in Figures 5.5.

The swirl burner is incorporated with the combustion chamber. It is modelled firstly with both 

optical and non-optical parts only as shown in Figure 5.6.a. The total number of cells in this 

model is 91,060 cells. During simulation it is noticed that there exists a reversed flow at the far 

outlet of the mesh. A suggested solution of eliminating the reversed flow is to extend the 

simulated volume longitudinally in the direction of flow. This extension can eliminate the 

reversed flow and helps in the model convergence, this is shown in Figures 5.6.b. The extension 

was chosen to have the same dimensions as the non-optical part of the combustion chamber 

(which is similar to the optical part too). This extension increased the total number of the cells 

by 14,588 cells giving a total number of 101,480. However the reversed flow still existed after 

adding the first extension so another extension of 10,420 cells was added to the model giving a 

total of 116,068 cells. The reversed flow at the mesh exit is completely eliminated with the new 

extension, whilst the results do not show a significant change in the combustion patterns near 

the burner i.e. there is no change in the combustion characteristics in both the optical and non- 

optical parts. The only effect of the second extension was the elimination of the reversed flow. 

So, it is preferred to omit the second extension and continue the simulation with only one 

extension.

The shape of the cells near the burner exit was also changed as they have high skew. The final 

model is shown in Figure 5.7. The complete system is shown in Figure 5.7.a. and a cross section 

in the centre line of the model is shown in Figure 5.7.b. with an enlargement around the burner 

in Figure 5.7.c. Finally this model has a total number of cells of 123,538 cells.

The selected plane for monitoring the results was the vertical plane crossing the centre line of 

the model and it is shown in Figure 5.8.
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Figure 5.5: A partially cross section showing the swirler installation in the combustion
chamber and the model grid
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[he Sw irlier

Figure 5.8: The mesh at the central section of the whole system with the swirler

5.2.3 Grid Q uality

The grid of Figure 5.7 is checked based on the volume-weighted average method. The cell 

equiangle skew for the combustion zone is 0.1969 and for the swirler zone is 0.109 and hence 

the net cell equiangle skew for the whole model is 0.1965. So, refereeing to table 3.1, the mesh 

quality is considered as excellent. It must be noted that the most of the cells that have high skew 

in the combustion chamber are those around the nut as it is difficult to adapt the hexahedral cells 

to fit the curves and cuts smoothly in these positions.

The cell equiangle skew histogram for the model shown in Figure 5.7 is plotted in Figure 5.9 

and the cell equivolume skew histogram is plotted in Figure 5.10. The data from these plots 

show that the grid quality is within the range of good and excellent.
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Figure 5.9: The cell equiangle skew histogram for the model shown in Figure 5.7
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Figure 5.10: The cell equiavolume skew histogram for the model shown in Figure 5.7
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5.3 Swirl Burner Simulation

The model with the swirl burner is used for simulating both premixed and non-premixed 

combustion. The boundaiy conditions are chosen to be 700 K for all walls. Simulations were 

not sensitive to this value apart from the exit tip of the burner. The default under relaxation 

factor was chosen.

The first sample of the results is chosen for the non-premixed combustion of methane. The 

working pressure is 7.11 bar and the initial temperature for air and fuel is 674 K. The air and 

fuel mass flow rates are 25.5 and 1.45 g/s respectively.

Hie swirl burner gives good flame stabilization, but produces Central Recirculation Zones 

(CRZs) that extend back over the central fuel injector, allowing the flame to propagate into this 

region as shown in the simulation Figures 5.11 and 5.12. The temperature contours are shown in 

Figure 5.11. It is noticed that flashback starts to exist inside the swirler. The region at which the 

flashback exists is corresponding to the region of negative axial velocity generated in the 

recirculation zone due to the swirling effect as shown in axial velocity contours Figures 5.12. 

The same results are found for the premixed combustion as well.

Flashback is defined as the combusting of the premixed mixture of air and fuel before entering 

the combustion chamber i.e., in the swirler or supply line. The partial flashback shown in Figure 

5.11 is due to the backwards extension of the CRZ over and around the fuel injector, Figure 

5.12, and the consequent recirculation of hot gases by the CRZ.

The second example for partial flashback is chosen for premixed combustion of methane with 

15%, by volume, diluted CO2 . The working pressure is 7 bar and the initial temperature for air 

and fuel is 673 K. The air and fuel mass flow rates are 23.1 and 2 g/s respectively. The 

temperature contours of such case are shown in Figure 5.13. A high temperature is realized 

around the nozzle exit and upstream mixture inside the burner. Even, in this case, the 

temperature rise in a small region at the burner exit can cause overheating of the burner material 

and may leads to full flashback after a short period of the operation under such conditions.

The full flashback is shown in Figure 5.14 where the combustion of the premixed mixture starts 

upstream of the CRZ and inside of the burner before the tangential inlets. This case runs under 

the same conditions of the previous case but the mass flow rates of air and fuel are reduced to 

the half of its nominated values. The fuel/air mixture is completely combusted inside the 

upstream burner passages.
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Figure 5.11: Tem perature contours in [K] for CH 4 nonpremixed combustion, the flame 

propagates back to the sw irler -  partial flashback
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Figure 5.14: Tem perature contours in [K] for premixed combustion, the full flashback
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5.4 Swirl Burner Modifications “Using Passive Constraints for 

Flashback Reduction”

From the above figures it can be clear that partial flashback occurs due to the CRZ extending 

back over the fuel injector. The occurrence o f flashback due to reversed flow can be avoided by 

redesign the swirler or making modifications that can help in preventing the reversed flow from 

re-entering the swirler and causing flashback. Two modifications for the original swirler are 

introduced. The first modification is to add a circumferential edge ( 2 x 2  mm) protruded from 

the tip section of the swirler face closed at the combustion chamber as shown in Figure 5.15.a. 

This modification will be referred as (SI). The other modification is to add a circumferential 

edge (2 x 2  mm) protruding from the hub section the swirler face close to the combustion 

chamber as shown in Figure 5.15.b. This modification will be referred as (S2). The aim of both 

suggested modifications is to rebuild the recirculation zone in order to prevent the back flow 

(the fluid with negative velocity) from entering the swirler around the central fuel gun and 

causing partial flashback.

(a) (b)

Figure 5.15: Swirler Modifications 

(a): Passive constraint a t the tip (SI) & (b): Passive constraint at the hub (S2)

The geometrical swirl number (Sg) was calculated based on the geometrical configurations 

given by equation 5.2.1 and it was 1.47 for SI and 1.54 for S2.

Both modifications are checked and compared with the original swirler that is referred as (SO). 

The comparison is performed for both nonpremixed and premixed combustion with more 

concentration on premixed combustion as it has more tendency toward flashback.
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For nonpremixed combustion, the simulation is performed by using methane with 15%, by 

volume, C 0 2 as a fuel dilutent. The working pressure is 7 bar and air preheat temperature at 673 

K. The air and fuel mass flow rates are 23.1 and 2 g/s respectively.

The simulation results shown in Figure 5.16 indicate that a partial flashback exists for the SO 

case. This partial flashback is eliminated by using the passive constraint at the nozzle exit as 

described by SI and S2 cases.

For premixed combustion, CH4  is used as the fuel in such comparisons. The combustion is 

achieved at various conditions of pressure and air preheat temperature. The conditions of 

simulation that are used for the comparison are tabulated in table 5.1 and correspond to 

conditions used in the Cardiff GTRC system.

Table 5.1: Simulation conditions used for (SO, SI and S2) comparison in premixed
combustion

Fuel m f

(g/s)

ma

(g/s)

Equivalence

Ratio

Pressure (P) 

(bar)

Air Preheat 

Temperature (Tj) 

(K)

1 . 0 25.74 0.667 7 673

1 . 0 25.74 0.667 7 473

(CH4) 1 . 0 34.32 0.5 7 673

0.58 9.42 1 . 0 1.01325 673

1 . 0 2 17.48 1 . 0 3 473

The simulation results are shown in Figure 5.17. The first column is for the swirl burner without 

exhaust constrictions, whilst the other two are for the constricted cases. The temperature 

contours show that the existence of flashback in (SO) case is beside the fuel gun where the 

negative axial velocity exists. The results indicate that the back extension of CRZ into the swirl 

burner body can be largely eliminated by using such SI and S2 modifications thus reducing this 

type of flashback. Moreover, the elongated shape of the CRZ, Figure 5.12, that passes back into 

the burner can be modified to occur solely downstream of the burner exhaust, reducing 

flashback and also improving the life of components by reducing flame impingement

The modified swirler operates without this type of flashback under many operating conditions 

as there is no reversed flow inside the swirler. The last case in Figure 5.17 shows full flashback
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in SO but normal combustion in both SI and S2. Both modifications operate well when 

modelled. Configuration (SI) case is the most realistic as the modification is easier to cany out 

and gives better results at low velocities.

From the above results it can be concluded that:

> Flashback resulted due to the reversed flow effect appears in the model with the original 

swirl burner.

> The modified swirl burner works without flashback due to the reverse flow zone as

there is no reversed flow returns inside the swirl burner itself.

> Both modifications operate perfectly under simulation conditions. However, case (SI)

is more realistic in practice as it is easier to make a small modification in the swirl

burner nut more than attaching a flange to the internal fuel gun of the swirl burner, 

whilst commercially there is a larger heat sink available at the outside of the burner and 

the fuel gun is more vulnerable to overheating.

> Beside the burner configuration, flashback depends on the operating pressure, 

temperature, equivalence ratio, and the combusting mixture mass flow rate.

It is noted that the results are compatible with the experimental findings in [173].
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Figure 5.16: Com parison between tem perature contours in [K] for normal swirl burner 

and burners with passive constrictions in the case of nonpremixed combustion
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Figure 5.17: Comparison between tem perature contours in [KJ for normal swirl burner 

and burners with passive constrictions in the case of premixed combustion.
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mt = 10 g/s, (J> = 1, P = 1.01325 bar, Tj = 673 K

mt = 18.5 g/s, <(> = 1, P = 3 bar, Tj = 473 K

Figure 5.17 C o n t.: Comparison between tem perature contours in [K] for normal swirl 

burner and burners with passive constrictions in the case of premixed combustion.
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5.5 Flashback determination

5.5.1 Results Normalization

In the previous section, it is shown that the swirl burner gives good flame stabilization, but can 

produce Central Recirculation Zones (CRZs) that extend back over the central fuel injector, 

allowing the flame to propagate into this region giving partial flashback. This can be largely 

eliminated by fitting a sharp step to the exhaust nozzle of the burner and helps to reduce partial 

flashback.

Full flashback is defined as the combusting of the premixed mixture of air and fuel before 

entering the combustion chamber i.e., in the swirl burner or supply line. To determine flashback, 

reference values for mass flow rate and velocity to be used for results normalization were 

derived, and then a number of complete runs are performed using methane/air with 

stoichiometric mixture ratio at standard atmospheric conditions. The mass flow rate is changed 

until flashback occurs. The difference between the mass flow rate in the case of normal 

combustion without flashback and that with flashback is less than 0 .1 % of the former.

The temperature and progress variable contours of the two cases are shown in Figure 5.18. The 

first Figure 5.18.(a) shows normal combustion. Combustion develops within the combustion 

chamber and there is no combustion in the swirl burner section as the temperature is still low 

and the progress variable (c) equals zero. Figure 5.18.(b) shows flashback. Combustion 

extended upstream and the temperature is raised inside the swirl burner passages due to 

combustion. The progress variable increased to 1 inside the swirl burner showing complete 

combustion.
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Figure 5.18: Flashback determination for stoichiometric CH4 mixture at the standard

am bient conditions (1 atm and 298K).

(a) Normal Combustion at relative mass flow of 1.005 

(b) Full flashback at relative mass flow of 0.997
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In order to provide more insight, two parameters are suggested for normalizing the results. The 

first parameter is the relative mass flow rate (mr) which is defined as: 

mr = m / moFB 5.5.1

where m is the mass flow rate of the combusting mixture and moFB is the mass flow rate at 

which flashback occurs for stoichiometric methane/air mixture at the standard ambient 

conditions (1 atm and 25°C).

The second parameter is the relative velocity (Ur) which is defined as

Ur = U /U oFB 5.5.2

where U is the average axial velocity at the burner exit which is calculated from the total mass 

flow rate and the density of the mixture at isothermal conditions. UoFB is the average axial 

velocity at the burner exit at which full flashback occurs for stoichiometric methane/air mixture 

at the standard ambient conditions (1 atm and 25°C).

5.5.2 The Effect of Com bustion Variables on Flashback

The selected modified swirl burner model is used for simulating the combustion of a mixture 

containing 85% CH4 +15% C02. Full flashback exists under some conditions. The combustion 

conditions (pressure, temperature, equivalence ratio and total mass flow rate) are changed to 

study the effect of each condition on the combustion characteristics and flashback existence.

In this section the SI model is chosen to continue the simulation as it gives good results in the 

last section. The aim of this section is to study the effect of the following variables on the 

existence of flashback:

- The effect of changing Pressure

- The effect of changing Temperature

- The effect of changing Equivalence Ratio (<j>)

- The effect of changing the total mass flow rate
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5.5.2.1 The Effect of Changing Pressure

Two pressures are chosen, 7 bar and 3 bar, to study the effect on flashback and other 

parameters. The following table show the variables at which the runs were made:

Table 5.2: Simulation conditions used for studying the effect of changing Pressure
Run P (bar) Temperature m f m a Equivalence Ratio (<{>)

(K) (kg/s) (kg/s)

A 7 673 0 . 0 0 2 Depends on E.R. 1.25,1.0,0.8,0.67,0.5

B 3 673 0 . 0 0 2 Depends on E.R. 1.25,1.0,0.8,0.67,0.5

The results are shown in Figure 5.19 where the temperature contours are plotted. It can be 

noticed that at case A, the flashback exists at equivalence ratio of 1.25, 1.0 and 0.8. These 

equivalence ratios correspond to lower total mass flow rates as the fuel mass flow rate is kept 

constant. When the pressure is changed (reduced to 3 bar in case B), the flashback exists only 

with equivalence ratio of 1.25. This means that the characteristics of flow that cause flashback 

depend on the pressure and also velocity (via density). It is noticed that as the pressure 

increases the ability of the mixture to flashback increases at the same equivalence ratio.
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5.5.2.2 The Effect of Changing Initial Temperature

To study the effect initial air (or mixture) temperature on flashback, three air preheat

temperature are chosen to perform the runs. The chosen air preheat temperatures are 300 K, 473

K, and 673 K. The operating pressure is fixed at 1.01325 bar. Two cases are checked:

Case A: with equivalence ratio of 1 and relative mass flow rate of 1.04, and 

Case B: with equivalence ratio of 0.8 and relative mass flow rate of 0.78.

The results are shown in Figure 5.20 where the temperature contours are plotted. It can be 

noticed that at case A, the flashback exists at the two higher temperatures of 673 K and 473K. 

These temperatures are the highest temperatures in the group. Case B confirms the previous 

result as the flashback exists only at the temperature of 673 K. This is temperature the highest 

temperature in the group also.

Because of that the mass flow rate is chosen to be constant for every case, it can be concluded 

that the tendency of flame to flashback at high initial temperatures is more than the tendency of 

flashback at low temperatures at the same flow rate. The higher temperatures correspond to 

lower densities and higher velocities. This means that the characteristics of flow that cause 

flashback depend on the temperature and also velocity (via density). This is to be expected from 

considerations of turbulent flame speed.

It is noticed that as the temperature increases the ability of the mixture to flashback increases at 

the same pressure, mass flow rate and equivalence ratio. Also the velocity corresponding to the 

minimum mass flow rate that is required to overcome flashback is higher at high temperature.
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5.5.2.3 The Effect of Changing Equivalence Ratio (</>)

To study the effect o f changing the equivalence ratio on the combustion characteristics and 

flashback on premixed combustion a fixed quantity of air and fuel with relative mass flow rate 

of 6.35 is taken as a base of the simulation. The pressure and temperature remain constants at 7 

bar and 673 K respectively. The equivalence ratio is changed and takes the values of 1.25, 1.0, 

0.9, 0.85, 0.8, 0.7, 0.667, and 0.6.

The contours o f temperature are shown in Figure 5.21. Flashback exists in the cases of 

equivalence ratios 1.25, 1.0, and 0.9 while for equivalence ratio of 0.85 and below there exists 

normal combustion without flashback. It can be concluded that the ability of flashback to exist 

at a certain flow rate increases as the equivalence ratio increases. This result means that there is 

a relation between the mass flow rate and equivalence ratio and the existence of flashback.
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15% C 0 2)
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5.5.2.4 The Effect of Changing the Total Mass Flow Rate

To study the effect of changing the total mass flow rate on the combustion characteristics and 

flashback on premixed combustion an equivalence ratio of 0 . 6  is taken as a base for the 

simulation. The pressure and temperature are fixed at 7 bar and 673 K respectively. The relative 

mass flow is changed and takes the values of 6.35, 4.35, 3.5, 3.16, 2.8, 2.6, 2.34, 2.18, 2.08, 2, 

1.9, and 1.7 respectively.

The contours of temperature are shown in Figure 5.22. The flashback exists in the cases of total 

relative mass flow less than 2  while for relative mass flow equals or more than 2  there exists 

normal combustion without flashback. It can be concluded that the ability of flashback to exist 

at a certain equivalence ratio increases as the total mass flow decreases. These results confirm 

that there is a relation between the mass flow rate, hence velocity and equivalence ratio and the 

existence of flashback.
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5.5.3 The Stability Limits

From the observations of the previous section, it was clear that flame stability depends on the 

operating pressure, initial temperature, equivalence ratio and total mass flow rate of the 

premixed mixture. To relate all of these variables, several runs were carried out at various 

operating conditions. The aim of these runs is to determine the conditions at which the flame 

flashes back. The main target of the flashback determination is to define the limits at which the 

flame is stable and avoiding the necessity to work under unstable conditions where flashback 

can exist.

The stability limits for various fuels under various operating conditions are determined and 

extensively discussed in the next chapters together with some suggestions to improve the 

stability limits.

A sample of the stability map is shown in Figure 5.23 for (85% CH4 & 15% CO2) flames. The 

operating conditions are 7 bar and air preheat of 673 K. In this Figure the correlation between 

the relative mass flow rate and the equivalence ratio is shown at a certain pressure and 

temperature. The correlation can be generalized for other operating pressures and temperatures.

To define the flashback limits at each equivalence ratio, many runs were performed. As shown 

in Figure 5.23, two different regions of operation are recognizable. The first region above the 

curve is the region where combustion is stable without flashback. The second region is the 

region below the curve in which flames are unstable with flashback. Flashback peaks at an 

equivalence ratio of unity, whilst operation under lean mixture conditions is clearly favourable.
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5.5.4 Recirculation Zone

One of the most significant and useful areas in swirling combustion is the recirculation zone. 

The recirculation zone plays an important role in flame stabilization by providing a hot flow of 

recirculated combustion products and a reduced velocity region where flame speed and flow 

velocity can be matched. The size and shape of the recirculation zone associated region of high 

turbulence are critical to flame stability, combustion intensity and performance. The boundaries 

of the recirculation zone and reverse flow zones of (85% CH4 & 15% CO2) combustion is 

illustrated under various conditions. The effect of changing pressure, total mixture mass flow 

rate and equivalence ratio is studied whilst other combustion parameters are fixed.

It was noticed that the boundary of the recirculation zone seems to be fixed for most cases as 

only one swirl burner with fixed swirl number is used in the simulation. However the velocity 

levels change significantly both inside and outside the recirculation zone primarily due to the 

effects of pressure.

The mean axial velocity inside of the reverse flow decreases as the pressure increases, Figure 

5.24 for 1.01325,3, 7 and 12 bar, equivalence ratio 0.7 and relative mass flow of 7 respectively. 

There are small differences in temperature profiles, Figure 5.25, maximum temperatures 

increasing with increasing pressure, but in a small area of flow in the shear flow. The decrease 

in the velocity levels in the CRZ is due to the increase of density due to pressure increase for the 

specified conditions.

To study the effect of mass flow rate on the recirculation zone, a pressure of 3 bar and 

equivalence ratio of 0.7 was chosen. The relative mass flow rate (mr) of the mixture is changed 

and is taken as 7, 3.8, 2.6, 2.4, 2.1 and 1.9 respectively. The results are shown in Figure 5.26 

and as to be expected indicates a reduction in the velocities inside the recirculation zone as the 

mass flow rate decreases, except for the last case (mr = 1.9), where flashback occurs. Flashback 

clearly affects the axial velocity distribution of reverse flow and drives it to higher levels. The 

same results are noticed when studying the effect of changing the equivalence ratio at fixed 

pressure and mass flow rates.

In the case of fixed pressure and mass flow rates with variable equivalence ratios, the shape and 

velocity distribution inside the recirculation zone does not change in normal combustion 

without flashback as shown in Figure 5.27, in the left column of equivalence ratios of 0.6, 0.7, 

0.8 and 1.5 at 7 bar and relative mass flow rate of 7. On the other hand for the flashback cases
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with equivalence ratios 0.9, 1.0 and 1.25 the boundary of the recirculation zone is wider and the 

velocity increases.
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Figure 5.26: The effect of changing the mass flow rate on the axial velocity contours in the 

recirculation zone at pressure = 3 bar and <]> = 0.7
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Figure 5.27: The effect of changing the equivalence ratio on the axial velocity contours in the 

recirculation zone at (Pressure = 7 bar & mr = 7)

138



5.6 Summary

Swirl flame stabilisation of lean premixed fuels has been studied and applied to gas turbines for 

many reasons. It gives considerable benefits in terms of reduced pollutant emission, especially 

of NOx. However, there are still problems that can occur during the combustion process 

including those related to flashback (especially with hydrogen enriched fuels) and combustion 

induced instabilities.

In this chapter, the swirl burner is introduced to stabilize the flame and obtain a good mixing for 

the Cardiff HPOC rig. The system is meshed with excellent good quality grids and simulation 

performed for both non-premixed and premixed combustion. Two types of flashback, partial 

and full flashback were found. The partial flashback is due to the extension of CRZ back to the 

burner and over the fuel injection nozzle and the existence of negative axial flow velocity that 

leads to hot products re-entering the burner and causing flashback. Full flashback back into the 

burner passages occurs in the main stream due to velocity levels falling below that of the flame 

speed for the particular fuel under consideration.

In order to eliminate the partial flashback, two modifications for the swirl burner are introduced 

by adding a constriction at the burner exit. They are simulated and compared with the original 

swirl burner under a range of different conditions. Both gave good results compared to the 

original swirl burner.

The effect of combustion variables on the existence of flashback and CRZ size and shape is 

studied. Those variables are pressure, temperature, equivalence ratio and the total mass flow 

rate. The stability limits of fuel/air combustion are defined regarding flashback and a stability 

map is introduced under specific conditions of pressure and temperature. It is well known, as 

reviewed in Chapter 2, that premixed swirl burners have the following attributes and 

advantages:

Premixed combustion gives many advantages regarding reducing emissions, although 

there can be problems due to oscillations and stability.

The swirl burner produces better stability of the flame due to the aerodynamic gas 

recirculation.

In this study the following has been found:
The flashback problem is still a barrier for combustion under certain operating 

conditions.
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Both partial flashback and full flashback are realized during simulation, matching other 

work found in the literature.

It is possible to eliminate the partial flashback using passive constraints at the swirl 

burner exit.

As the pressure increases the ability of the mixture to flashback increases at the same 

equivalence ratio.

As the air preheat temperature increases the ability of the mixture to flashback increases 

at the same equivalence ratio.

The ability of flashback to exist at a certain flow rate increases as the equivalence ratio 

increases over the range investigated.

The ability of flashback to exist at a certain equivalence ratio increases as the total mass 

flow decreases.

The boundary of the reverse flow zone seems to be fixed under various combustion 

conditions investigated. The mean axial velocity in the reverse flows decreases as the 

pressure increases and if the mass flow rate decreases.

There is no effect of the equivalence ratio on the shape or velocity distribution in the 

recirculation zone.

In the case of flashback, the boundary of the recirculation zone is wider and the velocity 

increases more than the normal combustion.

It is possible to eliminate the partial flashback by changing the burner geometry, it is 

impossible to eliminate the full flashback due to the reduction of mixture velocity below 

the local burning velocity. It is, however, possible to improve the stability limits. This 

will be discussed in the next chapters.
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Chapter 6

E f f e c t  o f  C 0 2  A d d i t i o n  t o  C H 4  F l a m e  

W i t h  E x p e r i m e n t a l  V a l i d a t i o n

6.1 I n t r o d u c t io n

The use of different fuels and/or diluents may cause potential changes in properties and flame 

velocities. The effect of many different diluents, such as N2, CO2 , H2O, on the flame 

characteristics have been studied by many researchers [174-177]. Even when large N2 dilution 

levels are used to reduce NOx, they tend to promote flashback, contrary to the intuitive 

assumption that higher levels are safer. CO2 can lower flame temperature and laminar flame 

speed, whilst fuels with similar laminar flame speed may have different turbulent flame speed. 

Air temperature is also a concern, since it has been found that the onset of flashback shifts to 

higher air temperatures with higher velocities and small injector diameters [178]. Clearly 

flashback depends on factors such as pilot fuelling rate and geometry.

In the previous chapters, it was found that flashback depends on many factors such as the burner 

geometry, the operating pressure, temperature, equivalence ratio, and mass flow rates. It has 

been shown, as mentioned in Section 2.5, that the addition of significant amounts of CO2 into 

the fresh gases of premixed combustion in stationary gas turbines has many advantages in 

addition to lowering the laminar flame speed of the fuel.

In this chapter, the stability limits of CH4 flames are determined at various operating conditions. 

The modified swirl burner model (SI) is used to determine the stability limits for methane 

flames. The feasibility of improving the stability limits of methane flames by adding CO2 to the 

fuel is studied for premixed flames. The flashback limits are modelled for pure CH4 and with 

addition of C 02 up to 30%.

An experimental work programme is performed to determine the stability limits of methane 

flames. This work is continued to check the effect C02 additions to CH4 flame stability.
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6.2 CH4 Flames Stability Limits

From the observations of the previous chapter, it was clear that flame stability depends on the 

operating pressure, initial temperature, equivalence ratio and total mass flow rate of the 

premixed mixture. All of these variables are brought together and a stability map drawn as 

shown in Figure 5.23. In this section, the stability limits for methane combustion is determined 

at different conditions. Several runs were carried out at various pressures of 1.01325, 3, and 7 

bar and various temperatures of 300, 473, and 673 K. The aim of these runs is to determine the 

conditions at which the flame flashes back and plot the stability limits of CH4 flames.

A sample of results is illustrated in Figure 6.1. In this Figure the correlation between the relative 

mass flow rate, defined by equation 5.5.1, and the equivalence ratio is shown at atmospheric 

pressure and 300 K. The curve divides the operating conditions into two regions. The first is the 

region of stable flames which is placed above the curve and the second is the region of unstable, 

flashback, flame which is placed under the curve. Again this Figure confirms the results 

obtained in Chapter 5, Section 5.5.3.
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Figure 6.1: Flash determination for methane/air combustion at atmospheric pressure and 
mixture temperature of 300 K at various equivalence ratios.
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Many runs are performed at every specific operating conditions (pressure & temperature and 

equivalence ratio) and varying the mass flow rate until 'catching’ the flashback condition. The 

final results are shown in Figure 6.2 and 6.3.

The effect of pressure is shown in Figure 6.2. Complete sets of runs were performed at 

pressures of 1.01325, 3, and 7 bar respectively, the initial mixture temperatures were 300, 473, 

and 673 K, and results are shown in Figures 6.2.a and 6.2.b. In Figure 6.2.a the correlation 

between the relative mass flow rate and the equivalence ratio is shown at different pressures. 

The operating total mass flow rate required to avoid flashback increases with pressure. 

However, Figure 6.2.b shows that the relative velocity, defined by equation 5.5.2, at which the 

flashback exists is a weak function of pressure, typically reduced by about 20 % moving from 

1.0 bar to 7.0 bar.

In the same way, the effect of inlet raw gases temperature on the stability limits was studied. 

Complete sets of runs were performed at three different temperatures of 300,473 and 673 K for 

operating pressures of 1.01325, 3, and 7 bar. Figure 6.3.a and 6.3.b show the correlation 

between the relative mass flow rate and velocity with equivalence ratio at different 

temperatures. Flashback increases as the air preheat temperature increases in both terms of mass 

flow rate and velocity. The velocity at which the flashback occurs is a strong function of 

temperature, typically increasing by about 8 times moving from 300 K to 673 K.
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Figure 6.2: The effect of pressure variation on the stability limits for CH4 combustion at

various equivalence ratios and,

(a) The corresponding relative mass flow rates;

(b) The corresponding relative velocity at which flashback occurs.
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Figure 6.3: The effect of tem perature variation on the stability limits for CH4 combustion

at various equivalence ratios and,

(a) The corresponding relative mass flow rates;

(b) The corresponding relative velocity at which flashback occurs.
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6.3 The Swirl Model Validation

6.3.1 Experimental rig s e t  up

The swirl burner used for atmospheric conditions validation is the same as that described before 

in section 5.2. The only change that made to fit the arrangement in the combustion lab is the 

premixed mixture intake port. The new intake is suited tangentially to the swirl chamber prior to 

the swirl plate as shown in Figure 6.4. Figure 6.5 shows a photo of the burner components and 

Figure 6.6 shows the assembled burner. Air and fuel are measured simultaneously using suitably 

ranged Coriolis flow meters shown in Figure 6.7. The complete arrangement of the atmospheric 

experimental rig is shown by photo in Figure 6.8.

The burner is designed to produce premixed, nonpremixed and partially premixed flames. It is 

able to handle different typed of fuels. In this research, the premixed combustion is considered. 

The validation is performed at the atmospheric conditions.

Figure 6.4: The new swirl chamber with premixed mixture inlet
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Figure 6.5: The swirl burner components

Figure 6 .6 : The assembled swirl burner
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Figure 6.7: Coriolis flow meter

Figure 6.8: The atmospheric experiments rig
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It is realized during the experiments that partial flashback exists at some conditions, so the 

system model is reconstructed with more fine mesh especially at the swirl element of the burner 

and the burner nozzle. Figure 6.9 shows the new fine mesh for the burner and Figure 6 . 1 0  shows 

the new mesh for the whole system which comprises of the burner and the combustion domain. 

The new system is meshed using 439,609 cells. The convergence of the solution takes longer, 

but the simulation results appear to be much better as the partial flashback is realized in the 

model as well.

The grid quality of the new design is checked based on the volume-weighted average method. 

The cell equiangle skew for the combustion zone is 0.138 and for the swirler zone is 0.161 and 

hence the net cell equiangle skew for the whole model is 0.16. The cell equivolume skew for the 

combustion zone is 0.132 and for the swirler zone is 0.161 and hence the net cell equivolume 

skew for the whole model is 0.16. So, refereeing to table 3.1, the mesh quality is considered as 

excellent.

The cell equiangle skew histogram for the new model is plotted in Figure 6.11 and the cell 

equivolume skew histogram is plotted in Figure 6.12. The data from these plots show that the 

grid quality is within the range of good and excellent.

The model is adjusted to be compatible with the new design. The burner with the new inlet is 

simulated under the same previous conditions to check the effect of the new design. The new 

change in mixture inlet affects has some effect on the turbulence produced at the burner exit and 

hence affects the flashback limits of the flame. The results are matched to the results obtained 

before regarding the full flashback and produce limits about 1 0 % higher than the nominated 

values for the corresponding mass flow rates. Regarding the partial flashback, it emerged clearer 

with the higher accuracy mesh with larger number of cells as shown in Figure 6.13 produced a 

clearer visualisation of this phenomena.
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Figure 6.9: Different views for the swirler mesh

150



Figure 6.10: The mesh of the whole system, the burner and the combustion chamber.
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6.3.2 CH4 Combustion and Stability Limits

The experiments are performed for premixed methane combustion at atmospheric conditions (1 

atm and 290 K). The runs are performed to measure the stability limits of the flame. The partial 

flashback is realized due to the flow recirculation in the CRZ as shown in Figure 6.13. The 

partial flashback is realized more for lean combustion than rich combustion and for lower flow 

velocities more than higher flow velocities. The partial flashback is clearly visualised during the 

experiments with a stable flame. The partial flashback turns into full flashback as the flow 

velocity is reduced.
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Figure 6.13: Partial flashback is realized in both model and experiments

(a) Temperature contours in the model
(b) Flame photo in the experiment
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Different configurations for the stable flame are photographed and shown in Figure s . In the 

stable flames, the flame starts being located out of the burner as shown in the upper photos in 

Figure 6.14 or with partial flashback due to the gas recirculation as shown in the lower photos 

in the same figure. The partial flashback is not desirable as it causes overheating of the fuel 

injector, in the case of diffusive and partially premixed flames.

The full flashback flames are shown in Figure 6.15 where the combustion starts clearly inside 

the burner tangential inlets. The full flashback results in high temperature in the swirl element 

inside the burner and the diffusive fuel injector.

The stable and flashback flames are reported under various air and fuels mass flow rates. A 

stability map is plotted in Figure 6.16 to differentiate the stable and flashback conditions. An 

interpolation is performed to define the flame stability limits. It is realized that the flame is more 

stable, regarding flashback, for lean mixtures. The flame flashback tendency increases as the 

equivalence ratio increases up to (<|>=0.9) where the flashback tendency reaches its maximum 

and then reduced for rich mixtures.

Another problem that is realized during the experiments is the flame blow off. It is difficult to 

keep the flame alight with higher mass flow rates, and is commonly dealt with by using small 

quantities of diffusive fuel fired directly into the central recirculation zone, this stabilizing the 

system.. Another technique that can be used to improve the CFU flame blow off, is to add H2 to 

the mixture, however this does then affect the flame flashback. This will be discussed in the 

next chapter.

The comparison of the stability limits measured experimentally and determined by using the 

CFD simulation is shown in Figure 6.17. The following conclusions are derived:

The model and the experiments approximately are matched for lean mixtures up to 

(<H).8).

- The peak of the stability limits is at (<(>=0.9) experimentally where it is at (<j>=l) in the 

model.
The model gives higher values for the minimum flow rate required to overcome 

flashback over (<j>=0 .8 ) but with the same trend as the experiments.
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Figure 6.14: The stable premixed CH4 flames
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mt =  1.485, <|> =  0.79

mt =  2.175, <|> =  0.61 mt =  2.13, <|> = 0.75

Figure 6.15: The flame flashback for CH4 combustion
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Figure 6.16: The Experimental measurements of the stability limits of CH4 at atmospheric
conditions.
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Figure 6.17: Comparison between the CH4 flame stability limits measured experimentally
and determined by CFD simulation.
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6.4 C02 additions and Flashback Limits

Combustion of a premixed fuel mixture containing various percentage of CO2 was simulated 

with flashback occurring under some conditions. The chosen percentages of [C0 2 /(CH4+CC>2)] 

were 0, 15 and 30% respectively, corresponding to industrial requirements. Combustion 

conditions (pressure, temperature, equivalence ratio and total mass flow rate of premixed 

mixture) are changed to study the effect of each condition on the combustion characteristics and 

flashback existence and corresponding mixture velocity.

6.4.1 The Effect of Pressure

To study the effect of pressure on the stability limits of CH4 with diluted CO2, the percentage of 

CO2 diluted is chosen to be 15% by volume i.e., (3 = 0.15. Complete sets of runs were performed 

at three different pressures of 1.01325, 3 and 7 bar respectively with air preheat at 673K. The 

results are shown in Figures 6.18 and 6.19.

In Figure 6.18 the correlation between the relative mass flow rate and the equivalence ratio is 

shown at different pressures. It was confirmed that the mass flow rate required to overcome 

flashback increases with pressure increase. Also the relative velocity at which the flashback 

exists is a weak function of pressure, typically reducing by about 10% moving from lbar to 7 

bar. This does not conflict with the results of mass flow rate as the change in mixture density 

plays the hidden role. These results are also in accord with the previous results obtained for the 

effect of pressure on flashback of pure methane. Figure 6.19 shows that the maximum flame 

temperature increases as the pressure increase, in accord with the results of Chapter 5. This will 

be detrimental from the NOx production viewpoint and shows the importance of lean 

combustion in reducing temperatures, hence thermal NOx.
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Figure 6.18: The stability limits for (85% CHL, + 15% C 02) at various pressures with air
preheat to 673K.

(a) the corresponding relative mass flow rates 
(b): the corresponding relative velocity.
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6.4.2 The Effect of Temperature

To study the effect of air preheat temperature on the stability limits and laminar flame speed, the 

fuel is chosen as (85% CH4  + 15% CO2). Complete sets of runs are performed at three different 

temperatures of 300, 473 and 673 K respectively. Figure 6.20.a shows the correlation between 

the total mass flow rate and the equivalence ratio at different temperatures. It was found that the 

occurrence of flashback increases as the temperature increases. This confirms that flashback 

occurs at higher mass flow rates at higher temperatures.

Also Figure 6.20.b shows that the velocity at which the flashback exists is a strong function of 

temperature, typically increasing by about 7 times moving from 300 K to 673 K whilst Figure 

6 . 2 1  shows, as to be expected, that the maximum flame temperature increases as the initial 

mixture temperature increases.
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Figure 6.20: The stability limits for (85% CH4 + 15% C 02) at atmospheric pressure with
various initial mixture temperatures.

(a) the corresponding relative mass flow rates
(b) the corresponding relative velocity.
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Figure 6.21: M aximum flame tem perature for (85% CH4 + 15% C 0 2) combustion at

various initial mixture temperatures.
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6.4.3 The Effect of Higher Levels of CO2 Addition

As before, the flashback limits are modelled for CH4 with CO2 dilution up to 30%. The results 

are shown in Figures 6.22 and 6.23. Figure 6.22 shows that flashback limits are improved with 

the addition of CO2 as the mass flow rate corresponding to flashback decreases as the CO2 

addition increases, as shown in Figure 6.22.a, hence the velocity decreases as shown in Figure 

6.22.b. Similarly, at a fixed pressure and a fixed mixture initial temperature the maximum 

temperature decreases with the increase of CO2 , Figure 6.23.

The results indicate that the stability limits of CH4 combustion can be improved by CO2 

addition to the flame as the relative velocity at which flashback occurs decreases with the 

increase of C02 addition.
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Figure 6.22: The stability limits for (CH4 + 0% C 02) at atmospheric pressure with and
initial mixture temperatures of 673 K.

(a) the corresponding relative mass flow rates
(b) the corresponding relative velocity.
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Figure 6.23: Maximum flame tem perature for different ratios of C 0 2 additions to CH4.
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6.5 The Experimental Validation for C 0 2 Addition to CH4 Model

Experiments were performed to check the effect of C 0 2 addition to CR, flames at the 

atmospheric conditions. The chosen percentages of [C0 2/(CH4+C0 2)] were 15 and 30% by 

volume respectively. A complete set of runs are performed to determine the stability limits for 

each mixture.

6.5.1 The addition o f  15% C 0 2 to CH4

Regarding 15% C 0 2 addition, both stable and flashback flames are recognized. Figure 6.24 

shows a sample o f the stable flame at various flow rates and equivalence ratios and Figure 6.25 

shows the flashback at various conditions. These runs are plotted in the stability map, Figure 

6.26 where the two regions o f stable flame and flashback are defined. It is confirmed that the 

flame at lower equivalence ratio (less than 0.8) is more stable. The worst stability emerges at 

(<j>=0 .8 ) where the mass flow rate of the mixture required to overcome flashback is at the 

maximum value. The flashback tendency is reduced for lean mixtures (<|>>0.8) and for rich 

mixtures.

A comparison between the stability limits measured experimentally and determined by using the 

CFD simulation is shown in Figure 6.27. The model produce lower stability limits for the 

mixtures with equivalence ratio lower than 0.7 and higher values for the minimum flow rate of 

stable flame for the mixtures with equivalence ratio over 0.7 . The peak of the model is at the 

stoichiometric mixture while experimentally it is at (<j>=0.8). The experiments/model match is 

worse than the pure methane model.
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m t = 3.28, <J> = 1.1 m t =2.15, <|) = 0.87

r
m t =1.88, <|> = 0.858 /w, = 1 .193 ,4> = 0.97

Figure 6.24: The stable premixed (85% CH4 + 15% C 0 2) flames
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m, =  1.393, 4> =  0.83

m, =  1.92, <(> =  0.83 m, =  2.01, <|> =  0.8

Figure 6.25: The flame flashback for (85% CH4 + 15% C 0 2) flames
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Figure 6.26: The Experim ental measurements of the stability limits of (85% CH4 + 15%

C 0 2) at atmospheric conditions.
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Figure 6.27: Com parison between the flame stability limits measured experimentally and 

determ ined by CFD simulation for (85% CH4 + 15% C 0 2).
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6.5.2 The addition of 30% C 02 to CH4

Regarding 30% CO2 addition, the same experimental technique used before to determine the 

stability limits for both pure methane and methane with 15% CO2 addition is used to determine 

the stability limits for methane with 30% C 0 2 addition.

Both stable and flashback flames are recognized during the experiments. A sample of the stable 

flame at various flow rates and equivalence ratios is shown in Figure 6.28, while the flashback 

flame is shown in Figure 6.29. The runs with various flow rates and equivalence ratio are 

plotted in the stability map, Figure 6.30 where the two regions of stable flame and flashback are 

defined. It is confirmed again that the flame at lower equivalence ratio (less than 0.8) is more 

stable. This is the same as in the case of 15% addition of CO2 . The worst stability emerges at 

(<(>=0 .8 ) where the mass flow rate of the mixture required to overcome flashback is at the 

maximum value. The flashback tendency is reduced for lean mixtures (<(>>0.8) and for rich 

mixtures.

A comparison between the stability limits measured experimentally and determined by using the 

CFD simulation is shown in Figure 6.31. The model produce lower stability limits for the 

mixtures with equivalence ratio lower than 0.7 and higher values for the minimum flow rate of 

stable flame for the mixtures with equivalence ratio over 0.7 . The peak of the model is at the 

stoichiometric mixture while experimentally it is at (<(>=0.8). The experiments/model match is 

worse than pure methane model being similar to the case of 15% addition of CO2 .

6.5.3 Overall

The effect of the variation of C 0 2 addition to CH4 stability limits is shown in Figure 6.32. The 

minimum mixture mass flow rate required to overcome flashback decreases as the CO2 addition 

increases as shown in Figure 6.32.a. The corresponding velocity of the mixture of stable flame 

is also decreases as shown in Figure 6.32.b. The peak of the stability limits curve is shifted 

toward the lean mixture region to have its peak at about equivalence ratio 0 . 8  whereas the peak 

was at equivalence ratio 1 in the model.

Generally, both model and experiments proved that the stability limits of CH4 are improved by 

adding C 0 2 to the combustible mixture. The model is useful for predicting trends, but clearly 

needs improving over the pure methane model, probably in respect of the laminar and turbulent 

flame speed as discussed in the section on hydrogen addition.
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mt =7.69, (j) = 1 . 8 mt =6.72, <|) =1.7
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Figure 6.28: The stable premixed (70% CH4 + 30% C 0 2) flames
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Figure 6.29: The flame flashback for (70% CH4 + 30% C 0 2) flames
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Figure 6.30: The Experim ental measurements of the stability limits of (70% CH4 + 30%

C 0 2) at atmospheric conditions.
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Figure 6.31: Com parison between the flame stability limits measured experimentally and 

determ ined by CFD simulation for (70% CH4 + 30% CO2).
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Figure 6.32: The effect of C 0 2 addition to CR* stability limits based on the experimental 
results, (a) The corresponding mass flow rates, (b) The corresponding velocity at the

burner exit.
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6.6 Using Turbulence Plates Upstream

In this section, the effect of using turbulence plate on the stability limits of flame is studied. 

Two different plates are chosen to be inserted upstream. Figure 6.33 shows the configuration for 

both plates. The first plate (PI) is made from stainless steel with 50 mm diameter. The number 

of holes is 169 holes with 1.5 mm diameter each. The second plate (P2) is made from brass with 

50 mm diameter. The number of holes is 163 holes with 0.7 mm diameter each.

The experiments are performed at the atmospheric conditions. The fuel is chosen as CH4 with 

the addition of 30% CO2 . The stability limits are determined, the same as before, by defining the 

stable and flashback flames. Complete set of runs are performed to determine the stability limits 

when inserting each turbulence plate. The results are compared with the stability limits of 

combustion without using the plates as shown in Figure 6.34.

It is noticed that the stability limits can be improved by inserting the turbulence plate upstream. 

Turbulence plate (P2) produces lower turbulence than (PI), Bagdanavicius, A. (private 

communication) [179]. The turbulence produced affects the turbulent flame speed which is 

expected to be lower in the case of using P2 and hence the flashback is reduced, starting at 

lower mass flow rates than that corresponding to P I. The effects of the plates were unexpected, 

and primarily inserted to eliminate upstream flashback. Plate PI produced identical results to 

the system with the plate removed. Bagdanavicius’s results from the two plates when the 

resulting jet fired through simple converging nozzles used to produce Bunsen burner type 

flames showed that the centreline turbulence intensity was reduced by about 50% for plate P2 

when compared to PI. The result is important, but complicated by the inlet configuration to the 

burner downstream of the plate, which consisted of a smooth contraction, followed by a wide 

radius bend to allow the burner to operate vertically. Clearly more work is needed in this area 

with turbulence plates inserted much closer to the burner after the contraction and bend.
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Figure 6.34: The effect o f turbulence plates on the stability limits
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6.6 Summary

In this chapter, the impact of C 0 2 addition to CH4 premixed swirl combustion and the effect of 

operating pressure and initial mixture temperature have been studied. The flashback limits are 

characterised by using CFD simulation and measured experimentally. The results show that an 

improvement of the flashback limits of CH4 flames results by adding C0 2 as this cause a 

reduction in flame velocity. The flame temperature decreases with the addition of C02 which 

also tends to reduce NOx emissions. The pressure and raw gases temperature play an important 

role in flame stability. Even though the flame velocity decreases with the increase of pressure, 

flashback occurs at higher mass flow rates due to the increase of density. Care must be taken 

when scaling the gas turbine operating conditions from lower pressures tests. The velocity at 

which the flashback exists is a strong function of temperature and it increases as the temperature 

increases.

The peak of the stability limits curve was at the stoichiometric mixture in the CFD simulation 

while it was found at equivalence ratio of 0.8 experimentally. Although the CFD model shows 

similar trends to the experimental result clearly improvements in the turbulent combustion 

model are needed especially with operation removed from the lean combustion regime.

Inserting a turbulence plate upstream affects the stability limits of flames. The effect of the 

turbulence plate is to alter the turbulent intensity of the stream which affect the turbulent flame 

speed and hence the flame stability. Using plates that produces lower turbulence produces more 

stable flames.
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Chapter 7

E f f e c t  o f  c m  A d d it io n  t o  H 2 F l a m e

7.1 Introduction

Combustor reliability to hold the flame in a quiet, safe mode has always concerned the 

manufacturers. Industrial companies and research groups are focusing their efforts in the 

analysis of new fuels including biofuel blends or those with high hydrogen contents in order to 

reduce the emission of CO2 . Whilst the aviation sector is focusing its efforts on biofuels whose 

heat value content are similar to kerosene, stationary turbines are being investigated with high 

hydrogen fuel mixes in efforts to develop technologies for syngas fuels. Unfortunately, the 

study of the latter has proved to be difficult, with forced flashback tests under industrial 

conditions causing burner damage at high air velocities in tests.

Flashback is an important issue in lean premixed combustion systems that use hydrogen as an 

additive fuel due to the widely varying flame speeds of the mixtures considered. The importance 

of using hydrogen as part of the energetic variety of sources has increased due to expectations 

that oil supplies will become constrained and increase dramatically in price, with the inevitable 

increment of population and the higher concern about CO2 footprint around the globe.

In this chapter, two main topics are considered; the first is the determination of laminar flame 

speed for H2/CH4 blends and the second is the determination of stability limits of such blends 

using CFD simulation and validating the simulation at atmospheric conditions.

The laminar flame speed was calculated for H2/CH4 blends from pure methane up to pure 

hydrogen at various pressures, temperatures and equivalence ratios. This was done by using 

CHEMKIN-PRO software package with PREMIX code and an algebraic expression derived by 

asymptotic methods incorporated with Le Chatelier’s Rule-like correlation. The feasibility of 

using a new approximation for laminar flame speed of H2/CH4 blends based on the gravimetric 

mixture ratio was checked and compared with the previous calculations. The new 

approximation gave a good prediction at various conditions. The numerical values for laminar 

flame speed calculated by CHEMKIN are then fed to a FLUENT CFD model to create a PDF 

table for turbulent premixed combustion calculations and flashback studies. Flashback limits 

were defined and determined for H2/CH4 blends ranging from 0% (pure methane) up to 100% 

(pure hydrogen) based on the volumetric composition at atmospheric pressure and 300K for
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various equivalence ratios. The results show that the use of up to 50% blends -  by volume -  of 

methane and hydrogen causes fewer problems with flame stability and flashback compared with 

the use of pure hydrogen. Also, the flashback limits depend on the values for both laminar and 

turbulent flame speed. What emerges is the need for more theoretical and experimental research 
work to obtain more accurate values for flame speeds.

The stability limits of methane-dominated combustion (up to 50% blends of methane and 

hydrogen) has been extensively studied at different pressures and temperatures to show the 

effect of the combustion conditions on H2/CH4 blends flame stability [180,181].

Experimental measurements of the stability limits for H2/CH4 blends up to y=0.30 are 

performed. The measurements are carried out at the atmospheric conditions. Both stable flames 

and flashback are reported to determine the stability limits. The experimental measurements are 

compared with the simulation results.

7.2 Laminar Flame Speed

The laminar burning velocities of hydrogen, methane and H2-CH4 /air mixtures at different 

pressures and temperatures were calculated by varying the equivalence ratio from lean to rich 

conditions and the fuel composition from pure methane (y=0 ) to pure hydrogen (y=l).

7.2.1 Laminar Flame Speed of H2 and C H 4

The laminar flame speed of H2 is calculated at elevated temperatures and pressures using the 

O’Conaire, GRI-Mech and San Diego kinetic mechanisms. The results of the calculations are 

presented in Figure 7.1. Three mechanisms: O’Conaire et al. mechanism, San Diego mechanism 

and GRI-Mech, have been compared at 7 bara 473 K and 673 K. The O’Conaire et al. 

mechanism has been developed to simulate the combustion of hydrogen and oxygen in a variety 

of combustion environments and over a wide range of temperatures, pressures and equivalence 

ratios.

The GRI-Mech mechanism under predicts hydrogen flame speed in the region of equivalence 

ratio up to 1 and above 1.5 in comparison with O’Conaire mechanism. The San Diego 

mechanism predictions are more accurate in comparison with GRI-Mech. The O’Conaire 

mechanism predicts the highest flame speed.
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Figure 7.1: CHEMKIN calculated laminar flame speed of hydrogen at 7 bar; 473 K and 
673 K; O’Con -  O’Conaire mechanism, SD -  San Diego mechanism, GRI -  GRl-Mech

mechanism.

For pure methane and pure hydrogen, the laminar flame speed was calculated by CHEMKIN at 

1.01325, 3 and 7 bar each at 300, 473 and 673 K. The GRI-Mech mechanism was used for CH4 

laminar flame speed calculations while O’Conaire et al. mechanism is used for H2. The results 

are shown in Figure 7.2.a for methane and Figure 7.2.b. for hydrogen. It is recognized that the 

laminar flame speed increases as the temperature increases but decreases with pressure. This is 

applicable for both CH4 and H2 up to the stoichiometric mixture ratio (<J)=1) but for H2 rich 

mixture, the pressure proportionality is not applicable.

A comparison between the laminar flame speed values arising from Chemkin and Fluent 

analysis is performed at the same pressure and temperature range stated above for both CH4 and 

H2. The results are shown in Figure 7.3 and 7.4. It was found that the values appear to be within 

about ± 10 % deviation for lean mixtures up to the stoichiometric mixture ratio. For rich 

mixtures Fluent produces higher predicted values compared to Chemkin. Chemkin results are 

taken to be more accurate so it is used for establishing a PDF table for turbulent combustion and 

flashback analysis in the next section.
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Figure 7.2: L am inar flam e speed calculated by CH EM K IN for (a) CH 4, (b) H 2 at different

pressures and temperatures.
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Figure 7.3: Com parison between lam inar flame speed values calculated by CHEMKIN and 

FLUENT a t various pressures and temperatures for CH4.
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Figure 7.4: Comparison between lam inar flame speed values calculated by CHEMKIN and 

FLUENT at various pressures and temperatures for H2.

184



7.2.2 Laminar Flame Speed of H2/CH4 Blends

Chemkin is used to calculate the laminar flame speed for hybrid fuels containing H2/CH4 blends 

at different pressures and temperatures by varying the equivalence ratio from lean to rich 

conditions and the fuel composition from pure methane (y=0 ) to pure hydrogen (y=l).

The calculation results of H2/CH4 mixtures at elevated temperatures and pressures using GRI- 

Mech and San Diego kinetic mechanisms are presented in Figure 7.5. The results of GRI-Mech 

and San Diego mechanisms are almost identical for the 70% methane and 30% hydrogen 

mixture. At higher hydrogen levels in the mixture GRI-Mech under predicts flame speed. The 

discrepancies between these two models can be observed in the region of equivalence ratio 

below 1 and above 1.4, although in the region from 1 to 1.4 GRI-Mech produces slightly higher 

flame speed results in comparison with the San Diego mechanism.

30% hydrogen 7-673_SD - - a -  -30% hydrogen 7-673_GRI 
70% hydrogen 7-673_SD — 70% hydrogen 7-673_GRI
85% hydrogen 7-673_SD - -85% hydrogen 7-673_GRI

3.5

Q. 2 5

1.5

0.5

1.1 1.3 1.5 1.7 1.9 2.1

E q u iv a len ce  R atio  [-]
0.5

Figure 7.5: CHEM KIN-PRO calculated lam inar flame speed of methane hydrogen 

mixtures at 7 bar and 673 K. Numbers represent hydrogen amount in the mixture; SD -  

San Diego mechanism, GRI -  GRI-Mech mechanism.

From the previous calculations and analysis, the laminar flame speed of H2/CH4 Blends is 

calculated as follows:

- GRI-Mech mechanism is used for pure CH4 laminar flame speed calculations. 

GRI-Mech mechanism is used for H2/CH4 Blends (y < 0.5)

The San Diego mechanism is used for H2/CH4 Blends (0.5 < y < 1)

The O’Conaire et al. mechanism is used for pure H2.
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The calculations are performed at different pressures and temperatures. The chosen pressures 

are 1.01325, 3 and 7 bar and the chosen temperatures are 300, 473 and 673 K. The final results 

are shown in Figure 7.6. From this figure, the following can be noted:

The laminar flame speed (SL) is highly dependent on equivalence ratio.

The peak of Sl is around the stoichiometric ratio (between 1<4<1.1) for H2/CH4 blends 

(0 < y < 0.5). This peak is significantly shifted for blends with (0.5 < y) to between 

1 .7<^<1 - 8  for pure H2.

Sl increases as the temperature increases.

Sl decreases as the pressure increases.

SL for H2 is significantly larger than for conventional hydrocarbon fuels (CH4 in this 

figure).

SL for H2/CH4 blends ( 0  < y < 0.5) is only slightly changed while for (0.5 < y < 1 ) the 

change is relatively larger. For example: Sl for stoichiometric CH4 at 1 atm and 300 K 

is about 0.4 m/s and for a bend with y = 0.5, SL equals 0 . 6  m/s (the change is about 

50%). For pure H2 (y = 1), Sl equals 2.3 m/s, about 6  times that of CH4 .
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Figure 7.6: The lam inar flame speed of H2/CH4  mixtures at different pressures and

temperatures.
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A new approximation is suggested for calculating the laminar flame speed of H2/CH4 blends. 

This approximation is based on using linear correlation of the laminar burning velocities of the 

pure compositions with respect to the mixture gravimetric analysis. The blend laminar flame 
speed then can be calculated as follows:

SlJinear (<|>> g )  ~  gH2 • S l  H2(<J>) +  (1  ~  g f f i )  • S l  CH4(<1>) 7 .2 .1

where Sl _h2 and Sl_ch4 are the laminar burning velocity of hydrogen and methane evaluated at 

the same equivalence ratio of the hybrid fuel (<|>), whilst gm is the mass fraction of hydrogen in 

H2/CH4 mixture. 

m„
g H 2 =  T 2  1 2 2

m H2 + m CH4

where mHj and mCH 4 are the mass fractions of hydrogen and methane respectively.

The values of H2 mass fraction at which calculations are performed are tabulated in Table 7.1.

Table 7.1: Mole fraction and corresponding mass fraction of hydrogen in H2/CH4 blends

H2 Mole fraction

(r)

H2 Mass Fraction

(gffi)

0 . 0 0 0 . 0 0

0.15 0.021583

0.30 0.050847

0.50 0 . 1 1 1 1 1

0.70 0.225806

0.85 0.414634

1 . 0 0 1 . 0 0

A comparison is performed between CHEMKIN (C), the asymptotic method (A) described by 

equations 3.9.1 to 3.9.5 incorporated with Le Chatelier’s Rule-like correlation stated by 

equation 3.9.12, and the new approximation (N). The results are shown in Figure 7.7 for 

different pressures, temperatures and equivalence ratios for the full range of H2/CH4 blends 

from pure methane up to pure hydrogen. A good prediction for laminar flame speed by using the 

new approximation is demonstrated especially at 1 atm and for methane-dominated combustion 

region i.e. up to y equals 0.5. The results of the new approximation are still acceptable at high 

pressure as the deviation is limited to about 15% of the Chemkin values.
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7.3 H2/CH4 mixtures and flashback

Combustion of a premixed fuel mixture containing (y H2 + (1 -y) CH4) was simulated from y = 0 

up to 1 with flashback occurring under some conditions. The simulation is performed under 

atmospheric pressure and 300 K. As was done to determine the flashback limits for methane, a 

complete set of runs was also performed to determine flashback limits at each H2 mole fraction 
in the hybrid fuel.

The results are shown in Figure 7.8 and 7.9 for different equivalence ratios. In Figure 7.8, the 

stability limits for H2/CH4 flames from lean mixtures up to stoichiometric combustion are 

shown. It was confirmed that the lean premixed flames are more stable, from the flashback 

viewpoint, than stoichiometric flames. It was also clear, as to be expected, that the flashback 

tendency for H2 flames is significantly higher than CH4 and H2/CH4 blends up to y = 0.5. For 

example, the mass flow rate required to overcome flashback at 1 atm and 300 K for 

stoichiometric H2 combustion is about 15 times for that of pure CH*.

The flashback tendency, represented by the relative mass flow rate and relative velocity shown 

in Figure 7.9, increases with the increase of H2 content in the mixture. The increase in flashback 

tendency doesn't follow a linear correlation from pure methane up to pure hydrogen. There are 

three regimes which can be identified in the hybrid blend flashback map depending on the 

hydrogen mole and mass fractions in the fuel. These three regimes are:

(1) methane-dominated combustion (0 <y <0.5) = (0< gm <0.1) mass fraction;

(2) transition (0.5 < y < 0.89) mole fraction = (0.1 < gm < 0.5) mass fraction; and

(3) hydrogen dominated methane combustion (0.89 < y <1) mole fraction = (0.5 < gm < 1) 

mass fraction.

In both regimes (1) and (3) the flashback tendency increases linearly with increasing the 

hydrogen molar content of the blend. In regime (1), the enhancement of the methane flashback 

tendency by hydrogen addition is slight. In regime (3) methane substitution to hydrogen has a 

significant decreasing effect on flashback. Thus, if the flame stability is considered when 

discussing H2 additions to CH4 it is better to work in the first region of methane-dominated 

combustion. It is confirmed that the lean mixtures have more resistance to flashback than 

stoichiometric mixtures, again as to be expected.
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7.4 H2/CH4 -  Methane Dominated Combustion Stability Limits

The methane-dominated combustion of hybrid H2/CH4 fuel (0 < y < 0.5) is thus studied here. 

The stability limits for the blend is determined at various operating pressures and initial mixture 

temperatures. The chosen pressures are 1.01325, 3 and 7 bar and the chosen temperatures are 

300, 473 and 673 K. The effect of H2 percentage in the mixture, pressure, and initial mixture 

temperature is discussed as follow:

The effect o f H2 percentage:
The flashback tendency, represented by relative mass flow rate and relative velocity, 

increases with the addition of H2 to CH4 flames or if H2 is taken as the base, it can be 

concluded that the addition of a significant amount of CH4 to H2 flames improves the 

stability of H2 flames and reduces the flashback tendency.

The mass flow rate required to overcome flashback for y = 0.5 is about twice that of 

pure CH4 at 300 K but about 1.5 at 673 K for all pressures.

The effect o f operating pressure:
The mass flow rate required to overcome flashback increases with pressure while the 

velocity decreases.

The effect o f initial mixture temperature:
The mass flow rate required to overcome flashback increases with initial mixture 

temperature and the velocity increases too.
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7.5 Experimental m easurem ents of H2/CH4 Flames Stability Limits

Experimental measurements are performed to validate the CFD simulation findings. The 

experiments are performed at the atmospheric conditions. Complete set of runs are carried out to 

determine the stability limits for H2/CH4 fuel mixtures using two mixtures with y equals 0.15 

and 0.30. The stability limits are determined by reporting both stable flames and flashback 

flames at various conditions of mass flow rates and equivalence ratios. The measured stability 

limits are compared with that resulted in the CFD simulation. Also the effect of using H2/CH4 

blends on the flame stability limits is recognized.

7.5.1 (15% H2 + 85% CH4) Combustion

The addition of 15% H2 to CH4 combustion is completely different from the combustion of pure 

methane. The improvement of the blow off is noticeable but the main concern in this study is 

related to flashback. The flashback reported with H2/CH4 fuel mixtures combustion with y of 

0.15 is more severe than the flashback in pure CH4  combustion. An acoustic noise and bangs are 

realised during flashback of H2/CH4 mixture especially at low flow rates. The flashback also is 

extended upstream where the combustion is reported inside the intake pipe line in some cases.

The mass flow rates of air and fuel are changed to obtain various equivalence ratios. The stable 

and flashback flames are reported. Figure 7.11 shows sample of stable flames and Figure 7.12 

shows sample of flashback flames. Partial flashback still occurs especially with the lean 

mixtures as shown in Figure 7.11. Each combustion case, whether stable or with flashback, is 

plotted on the stability map with respect to the total mixture mass flow rate and equivalence 

ratio to define the stability limits of the mixture combustion. The reported measurements of 

flame stability are shown in Figure 7.13. The stability limits of (85% CH4 + 15% H2) are 

determined in the same figure.

A comparison for the stability limits measured experimentally and determined using the CFD 

simulation is shown in Figure 7.14. The predicted values are closer to the measurements at the 

lean mixture region. The peak of the stability curve is at the stoichiometric conditions in both 

experiments and model. The predicted mass flow rates required to overcome flashback are 

normally higher than the corresponding measured values. The simulation of (85% CH4 + 15% 

H2) gives better results regarding the prediction of flashback than the case of CO2 addition to 

methane combustion discussed in the previous chapter.

201



rht = 5.8, § = 0.96

mt = 4.8, (|)= 1.17

•̂3  ̂ }
mt =  5.3, (}) = 1.1

mt = 4.2, <j> = 0.88

mt = 4.97, <J> = 1

mt = 3.28, (|) = 0.72 rht = 3.15, = 1.5 m, = 2.144, <J)= 1.2
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7.5.2 (30% H2 + 70% CH4) Combustion

Another complete set of runs are performed to determine the stability limits of H2/CH4  hybrid 

fuel with y of 0.3. The runs are carried out at atmospheric conditions. The combustion of this 

blend is similar to that with y of 0.15 regarding its stiff behaviour and flashback. The 

temperature of the flame was higher than with the combustion of pure methane and H2/CH4  with 

y of 0.15 which is reflected by the severe overheating of the fuel injector with both partial and 

full flashback.

Again both stable and flashback flames are reported. Figure 7.15 shows sample of stable flames 

and Figure 7.16 shows sample of flashback flames. Partial flashback again occurs especially 

with the lean mixtures as shown in Figure 7.15. Both stable and flashback conditions are plotted 

on the stability map with respect to the total mixture mass flow rate and equivalence ratio to 

define the stability limits of the mixture and the stability limits of (70% CH4  + 30% H2), Figure 

7.17.

A comparison of the stability limits measured experimentally and determined using the CFD 

simulation is shown in Figure 7.18. The predicted values are again closer to the measurements 

at the lean mixture region and much better than those with CH4/CO2  mixtures. The peak of the 

stability curve is at the stoichiometric conditions in both experiments and model. The predicted 

mass flow rates required to overcome flashback are normally higher than the corresponding 

measured values. The simulation of (70% CH4  + 30% H2 ) gives results that are closer to the 

experiments that those obtained for the case of (85% CH4  + 15% H2 ) combustion.

7.5.3 Overall
The effect of using hybrid H2/CH4  fuel on the stability limits of H2 and CH4  has been studied 

experimentally by using two different blends with y equals 0.15 and 0.3. The stability limits 

measurements are compared with the stability limits of pure methane as shown in Figure 7.19. 

The minimum mixture mass flow rate required to overcome flashback increases with the 

addition of H2 as shown in Figure 7.19.a. The corresponding velocity of the mixture of stable 

flame also increases as shown in Figure 7.19.b. The peak of the stability limits is at the 

stoichiometric mixture similar to that found by the simulation.

Generally, both model and experiments proved that the stability limits of H2 are improved by 

adding CH4  to the combustible mixture, whilst the CH4  combustion is improved regarding its
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blow off limits. The simulations produce a good prediction of the stability limits of H2/CH4 

mixture especially in the lean combustion region.
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Figure 7.15: Stable flames for (70% CH4 + 30% H2) at various conditions.

£>.27
mt =6.27, 4) = 0.81mt = 6.87, 4> = 0.83

206



I I
m, = 3.12, <|> = 0.72

•

e>.i5
mt = 3.45, <|> = 0.82

mt = 3.16, (|) = 0.96 m, = 3.24, (J> = 0.81

w, = 3.54, <|> = 0.74 m, = 3.75, <j) = 0.75
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7.6 Summary

Hydrogen combustion has attracted much attention recently because of the need for clean 

alternative energy source. H2 is a carbon-free energy carrier, so it plays an important role in 

serving the constraints on greenhouse gas emissions. The challenge on using H2 is its high 

burning velocity that results in its high tendency to flashback or locating the flame in regions of 
relative high velocity where such flames will not stabilize.

In this chapter, the modelling of swirl lean premixed H2/CH4 blends combustion is discussed. 

Firstly, the laminar flame speed of H2/CHi blends is calculated by CHEMKIN software with 

PREMIX package. The values are compared with an algebraic expression derived by asymptotic 

methods incorporated with Le Chatelier’s Rule-like correlation. Then a new approximation for 

calculating the laminar flame speed of H2/CH4 mixtures is suggested and compared with the 

previous calculations. Secondly, FLUENT software is used to simulate the combustion of pure 

methane and H2/CH4 blends in a high pressure gas turbine combustor. The effect of the blend 

ratio on the flame stability is studied. Also the flashback limits of H2/CH4 combustion are 

determined from pure methane up to pure hydrogen and combinations between. H2/CH4  hybrid 

fuel has advantages over certain ranges of equivalence ratios.

The effect of hydrogen addition to methane to give an alternative fuel is shown to gives effects 

which can be considered in three regimes:

(1) methane-dominated combustion (0 <y < 0.5) = (0 < g ^  <0.1) mass fraction;

(2) transition (0.5 < y < 0.89) mole fraction = (0.1 < gm  < 0.5) mass fraction;

(3) hydrogen dominated combustion (0.89 < y <1) mole fraction = (0.5 < gm < 1) mass 

fraction.

In regimes (1) and (3) the flashback tendency increases linearly with increasing hydrogen molar 

content of the blend. In regime (1), the enhancement of the methane flashback tendency by 

hydrogen addition is slight. In regime (3) methane substitution to hydrogen has a significant 

decreasing effect on flashback. Thus, in the context of flame stability it is better to work in the 

first region of methane-dominated combustion with existing designs of gas turbine combustor. It 

is confirmed that the lean mixtures have more resistance to flashback more than those near an 

equivalence ratio of 1 .
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The experimental measurements performed at the atmospheric conditions are used to determine 

the stability limits for H2/CH4  flames and to validate the CFD simulation findings. Also, the 

effect of mixing H2 and CH4  on the stability limits is recognized. Two blends are used with y 

equals 0.15 and 0.30. The measurements results are compatible with the predicted findings 

resulted by the CFD simulation. The measurements confirmed that the minimum mass flow rate 

required to overcome flashback increases with the addition of H2 to CH4 . Or in another words, 

CH4 additions can improve the stability limits of H2 combustion. Also, it is noted that methane 

combustion is improved regarding the blow off with the addition of H2. Of especial note is the 

point that for all the fuel blends, pure CH4  and H2 /CH4  blends and equivalence ratios <0.65 

flashback limits are similar, indicating methodologies by which combustors can be designed to 

avoid flashback, whilst blow off limits are improved when H2 is added to the fuel mix. Over this 

range the simulations are in agreement with these experimental results giving some confidence 

in extrapolation to conditions of higher temperature and pressure. As shown in Figure 7.10, the 

stability limits of H2/CH4 blends up to y of 0.5 are approximately the same at equivalence ratio 

of 0.6 at 300 and 473 K for 1.01325, 3 and, 7 bar. The stability limits have a little divergence at 

the corresponding equivalence ratio and 673 K for the same pressure range. This divergence 

results upon the fact of the exponential proportionality of the laminar flame speed with the 

temperature. So, the gas turbines designers must have to take this note into their consideration to 

create a save scheme for the working conditions and for the load control as well.

The CFD simulation prediction for CH4 and H2/CH» combustion produces better results more 

than the prediction of CH4/C0 2 combustion, discussed in the previous chapter. This is probably 

due to the use of the available extensive literature to predict laminar flame speeds for H2/CH* 

mixes, such literature does not seem to exist for CH|/C02 mixtures. More theoretical and 

experimental work is obviously required to derive more accurate results for laminar flame speed 

and stability limits for different alternative fuels.

211



Chapter 8

C o n c l u s i o n s  a n d  F u t u r e  R e s e a r c h  W o r k

8.1 C onclusions

Lean premixed combustion is promoted as one of the new technologies that when applied to gas 

turbine combustors enables significant reduction of pollutant emissions, especially NOx. The 

swirl lean premixed combustion provides the initial stability and flexibility for the system. 

However, the gains made by this combustion route can be accompanied by stability problems. 

There are still problems that can occur during the combustion process including those related to 

flashback especially for high burning velocity fuels such as hydrogen enriched fuels. The 

flashback problem may causes failure of the combustion system which makes it one of the gas 

turbine industry priority issues that needs attention.

CFD modelling can be considered as an advanced tool for design due to its advantages 

regarding cost, time and hazard conditions managements. CFD code, Fluent, is used to simulate 

the combustion in a generic premixed swirl burner that uses different types of fuels. A three 

dimensional -  finite volume model is used to study the occurrence of the flashback 

phenomenon. Experimental measurements are used to validate the CFD simulation findings.

It was realized that two different types of flashback can take place, partial flashback and full 

flashback. The partial flashback exists due to the extension of a Central Recirculation Zone 

(CRZ) back into the burner exit and that allows the hot gases to return to the burner and cause 

flashback. The other type of flashback is caused by the low velocity of the raw gases that may 

drop below the local burning velocity and thus allow full flashback. The results show the 

possibility of reducing the effect of partial flashback by using passive constrictions at the burner 

exit which can manipulate the CRZ and hence avoid partial flashback. The passive constrictions 

are not able to prevent full flashback but there are other methods that can be used to improve the 

stability limits of the flame. Full flashback can be avoided or reduced by operating at overall 

equivalence ratios < 0.65, lowering the turbulent intensity, adding carbon dioxide to the fuel 

and/or using hybrid fuel blends in hydrogen combustion.

The various factors affecting the stability limits of flame are studied. The effect of total mixture 

mass flow rate, equivalence ratio, operating pressure and, mixture temperature on the flame 

stability is investigated. The stability limits of flames regarding flashback are defined and
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represented by both total mixture mass flow rate (or mixture velocity) and equivalence ratio at a 
specific pressure and mixture temperature.

The stability limits of CH4  are determined by using CFD simulations and validated 

experimentally at atmospheric conditions. Also the effect of adding CO2 to methane flames is 

studied by simulation and experimentally. An improvement of the methane flames stability 

limits was noticed with the addition of C 0 2 in both simulations and experiments.

The feasibility of using H2/CH4 blends is studied from the view point of flame stability. An 

extensive work programme is carried out to determine the laminar flame speed of H2/CH4 

blends to feed their values to fluent and built reliable inputs for the simulation program. A new 

approximation for calculating the laminar flame speed of H2/CH4 blends based on the 

gravimetric mixture ratio is suggested. The new approximation gave a good prediction at 

various conditions when compared with the values obtained by CHEMKIN-PRO software 

package with PREMIX code and an algebraic expression derived by asymptotic methods 

incorporated with Le Chatelier’s Rule-like correlation. Flashback limits were determined for 

H2/CH4 blends ranging from 0% (pure methane) up to 100% (pure hydrogen) based on the 

volumetric composition at atmospheric pressure and 300K for various equivalence ratios. The 

results show that the use of up to 50% blends of methane and hydrogen causes fewer problems 

with flame stability and flashback compared with the use of pure hydrogen. Experimental 

measurements are performed at the atmospheric conditions to validate the CFD simulation 

findings. Also, the effect of mixing H2 and CH4 on the stability limits is recognized. The 

stability limits for H2/CH4 flames are measured for two blends with y of 0.15 and 0.30 and 

compared with the CFD simulation results. The results produced by the CFD modelling 

simulation and by experimental measurements are found to be broadly compatible with each 

other, especially for equivalence ratios less than around 0.65. Both model and experiments 

confirm that the addition of CH4 to H2 improves its stability regarding the flashback while the 

addition of H2 to CH4 improves its stability regarding the blow off, operation at equivalence 

ratios at or below 0.65 is especially beneficial as the H2/CH4 flashback curves coalesce here at 

atmospheric pressure conditions and air inlet temperatures ~300K. Subsequent simulations at 3 

bar and 7 bar and air inlet temperatures of 300K and 473K show the same trend. However for 

all operating pressures, air inlet temperatures of 673K started to produce significant separation 

between the pure CH4 results and the H2/CH4  blends for equivalence ratios less than 0.65

The conclusions can be made:
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Premixed Combustion:

Lean premixed combustion is considered as one of the most promising concepts for 

substantial reduction of gas turbine emissions, especially NOx, while maintaining high 
efficiency.

Premixed combustion gives many advantages regarding reducing emissions, although there 

can be problems due to oscillations and stability.

The main problem for all premixed combustion systems is the instability problem and the 

tendency of the combustible mixture toward flashback.

Swirl Combustion:
Most of gas turbines use swirl burners.

The swirl burner produces better stability of the flame due to the aerodynamic gas 
recirculation.

Under a certain conditions, partial and full flashback may occur in the swirl burner.

CFD Modelling:
Computational Fluid Dynamics (CFD) is an important tool for analysing systems involving 

fluid flow, heat transfer and combustion.

It is preferable to use CFD methods as they are cheap (in cost and maintenance), fast (in 

time) and safe (in hazard design processes) and often give satisfactory results, when 

suitably calibrated against available experimental data.

The commercial CFD packages contain three main elements: a pre-processor, a solver and, 

a post-processor.
CFD codes are structured around the numerical algorithms that can tackle fluid flow 

problems. The solution is based on solving the main flow governing equations.

There is no general turbulent model that is able to perfect for all turbulent flow problems. 

Many Turbulent models are available in Fluent software. The designer must choose the 

turbulent model that can perform the modelling requirements with acceptable accuracy and 

time.
Fluent provides several models for chemical species transport and chemical reactions. The 

choice of the suitable combustion model must consider the system physics and the model 

restrictions.
The model preparation (mesh construction) plays an important role in the simulation 

accuracy and the solution convergence.
The cell type must be chosen carefully as it affects the solution accuracy and time.

It is important to make a balance between the number of the mesh cells and the time 

consumed by the model to reach the convergence.
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Fluent uses segregated solver to solve the combustion models problems.

Laminar flame velocity is an important parameter in both laminar and turbulent 
combustion modelling.

Flashback:
The flashback problem is still a barrier for combustion under certain operating conditions. 

The flashback exists at certain combustion conditions depending on some variables. These 

variables include the fuel mixture, operating pressure, mixture temperature, equivalence 

ratio, mixture mass flow rate and the turbulence plate used. The effect of these variables on 

flashback is studied this thesis.

The original HPOC gas combustion system is suitable for turbulent flame speed 

calculations although it has some drawbacks. The main problem with it is that it is not able 

to produce homogeneous mixture for premixed combustion and this issue needs to be 

addressed.

The turbulence plays an important role in flame stabilization. As the turbulence increases 

the tendency of the flame to flashback increases.

Both partial flashback and full flashback are realized during simulation, matching other 

work found in the literature.

It is possible to reduce and sometimes eliminate the partial flashback using passive 

constraints at the swirl burner exit.

As the pressure increases the ability of the mixture to flashback increases at the same 

equivalence ratio.
As the air preheat temperature increases the ability of the mixture to flashback increases at 

the same equivalence ratio.

The ability of flashback to exist at a certain flow rate increases as the equivalence ratio 

increases over the range investigated.
The ability of flashback to exist at a certain equivalence ratio increases as the total mass 

flow decreases.
The boundaiy of the reverse flow zone seems to be fixed under various combustion 

conditions investigated, this needs to be validated experimentally in future work. The 

mean axial velocity in the reverse flows decreases as the pressure increases and if the mass 

flow rate decreases.
There is no effect of the equivalence ratio on the shape or velocity distribution in the 

recirculation zone.
In the case of flashback, the boundary of the recirculation zone is wider and the velocity 

increases more than the normal combustion.

215



It is possible to eliminate the partial flashback by changing the burner geometry, it is 

impossible to eliminate the full flashback due to the reduction of mixture velocity below 

the local burning velocity. It is, however, possible to improve the stability limits.

CO2  Additions:
CO2 dilution in methane combustion is a new research topic. It can be used for NOx 

emission reduction as a result of reducing the flame temperature.

The impact of CO2  addition to CH4  premixed swirl combustion and the effect of operating 

pressure and initial mixture temperature have been studied.

The results show that an improvement of the flashback limits of CH4 flames results by 

adding CO2 as this cause a reduction in flame velocity.

The flame temperature decreases with the addition of CO2 which also tends to reduce NOx 

emissions.

The pressure and raw gases temperature play an important role in flame stability. Even 

though the flame velocity decreases with the increase of pressure, flashback occurs at 

higher mass flow rates due to the increase of density. Care must be taken when scaling the 

gas turbine operating conditions from lower pressures tests. The velocity at which the 

flashback exists is a strong function of temperature and it increases as the temperature 

increases.
The CFD simulation of the addition of C 0 2 to CH4  was significantly worse than for H2/CH4  

blends, despite using the best available data for laminar and turbulent flame speed. This 

appears to be a neglected area and both fundamental experimental and theoretical analysis 

is needed to gain a better understanding of the processes occurring with CO2/CH4  fuel 

blends. Indeed this could well be important with natural gas combustion in gas turbines as 

natural gas properties are normally measured commercially by Wobbe Number, a measure 

of heating value; this work indicates that variable quantities of C 02, commonly present in 

natural gas, can well affect flame stability and flashback. This is clearly an area for further 

work.

H2  Combustion:
Hydrogen combustion has attracted much attention recently because of the need for clean 

alternative energy source. H2 is a carbon-free energy earner, so it plays an important role in 

serving the constraints on greenhouse gas emissions.
The challenge on using H2 is its high burning velocity that results in its high tendency to 

flashback or locating the flame in regions of relative high velocity where methane flames 

will not stabilize.
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There are many studies concerned about the measurement and analysis of flame velocities, 

both laminar and turbulent.

Fluent provides data for laminar flame velocity that can be used for pure CH4 and pure H2 

combustion simulation from lean mixtures up to stoichiometric mixtures.

For fuel blends, such as H2/CH4, laminar flame speed must be calculated by other mean 

(chemical kinetics software, analytically or experimentally) and then fed to Fluent as an 

input data to establish a PDF table for turbulent combustion calculations.

A new approximation of calculation H2/CH4, laminar flame speed is suggested and the 

results are matched with the other numerical methods.

H2/CH4 hybrid fuel may have advantages over certain ranges of equivalence ratios.

The experimental measurements were found to be close to the CFD simulation in the lean 

premixed region for equivalence ratios less than about 0.65. This result was then used to 

estimate flashback behaviour for pressurised combustion at different air inlet temperatures, 

little effect being found from increased pressure or air inlet temperatures up to 473K.

8.2 Future R esearch

Due to the great importance of thermal energy and its wide applications, it is required to design 

generic combustors that are able to bum different types of fuels. The flashback problem 

emerged especially with the use of premixed combustion (which is used for emissions 

reduction) and the use of hydrogen rich fuels (which is considered as a clean future fuel).

This research work focused on the flame stability and the measurements of the stability limits of 

various fuel mixes and how these limits can be improved; it also touches other important fields 

of research such as:
Using alternative fuels in gas turbines: 

o Using H2 and H2/CH4 blends.
o Using biomass and low calorific value producer gases.

Pollution reduction:
o by using lean premixed combustion, 

o by using CO2 recirculation, 

o by using clean alternative fuels such as H2.

Laminar flame speed measurements and calculations.

Combustion modelling and model validation.

So, in order to enhance the future fuels combustion technologies, this research should be 

extended. Some recommendations for the future research are as follows:
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Modelling:

Studying the effect of using different cell shape and size.

Performing a comprehensive comparison using different turbulent models.

Comparing the effects of different combustion models.

More numerical and experimental studies are needed to derive the values of laminar 

flame speed of various alternative fuels.

Studying the sources of uncertainty in the combustion modelling especially that related 

to the laminar flame speed and flame speed/turbulence correlations to produce more 

reliable results that would be compatible with the experiments.

Combustion:

Studying the effect of the nozzle exit shape on the flame stability.

Performing a comprehensive study on the optimum CO2 percentage that can be added to 

CH4  in terms of stability, flame characteristics and emissions reduction.

Studying the stability of alternative fuels that are in perspective as a new gas turbine 

feed fuels.
Determining the emissions for every fuel blend that was used to improve the 

combustion stability.
Introducing a correlations for flashback and the burner geometiy (represented by 

turbulent intensity), fuel (represented by laminar flame speed), and operating conditions 

(represented by pressure and temperature) that can be generalized for any/most burners.
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