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Summary of Thesis
There is a need for a topical formulation for invasive forms of Basal cell 
carcinoma (BCC), a tumour caused by constitutive activation of the Sonic 
Hedgehog (SHH) signal transduction pathway. It has been shown that the 
expression of a subset of SHH target genes are augmented by EGF in GLI 
over-expressing keratinocytes suggesting inhibition of SHH and EGF 
signalling as potential targets.

Keratinocyte monolayer cultures in the presence of recombinant SHH and EGF 
were used to determine whether the subset of target genes would be increased 
when full SHH signalling was activated, a necessary requirement to test SHH 
inhibitors acting upstream of GLI. Activation of the SHH pathway was not 
fully achieved. Keratinocytes were therefore co-cultured with fibroblasts to 
find out if paracrine signalling was needed for SHH signalling induction. When 
this also did not activate the pathway, scanning electron microscopy was 
carried out to determine whether keratinocytes cultured under various 
conditions were capable of forming a primary cilium which is needed for SHH 
signalling activity. Only in co-cultures where keratinocytes were allowed to 
stratify at the air:liquid interface were primary cilia induced.

Franz-type diffusion cells were used to probe whether inhibitors to PI3K/AKT 
and MEK/ERK (LY294002 and PD98059 respectively) arms of the EGF 
pathway could successfully permeate through full thickness skin, which they 
were able to do. However, cyclopamine (SHH pathway inhibitor) proved to be 
highly insoluble and difficult to use in combination.

BCC samples were compared using immunohistochemistry of EGF pathway 
components to show whether the EGF pathway is important in BCC 
development in vivo. The results showed variable expression of EGF receptor 
and p-AKT but p-ERK was virtually absent from BCC tumours.

Despite the ability to modulate SHH signalling, EGF pathway inhibitors 
targeting p-AKT and p-ERK may not be useful for treating basal cell 
carcinoma. Alternative SHH signalling inhibitors such as those that target the 
formation of the primary cilium may be highly effective.
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1. Introduction

1.1 Skin Structure
The skin is a complex organ that protects the body from toxic substances and 

infection by micro-organisms, maintains its temperature, and regulates water loss 

(Williams, 2003). It also has immunological functions, protects against UV  

damage, synthesises vitamin D and is important for attraction and social 

interactions (Graham-Brown, 2007).

The skin has three main layers (Figure 1.1): epidermis, dermis and subcutaneous 

adipose (Candi et al, 2005). The epidermis and appendages are derived from 

embryonic ectoderm while the dermis is derived from mesoderm (Graham-Brown, 

2007).

1.1.1 Subcutaneous Fat Layer (Hypodermis)
The subcutaneous fat layer is several millimetres thick and separates the skin from 

the underlying fascia and muscle. It insulates the body, provides physical 

protection, absorbs shock and stores energy (Graham-Brown, 2007; Young, 2006). 

It consists o f  loose connective tissue and adipose cells. It contains major blood 

vessels and long hair follicles (e.g. scalp) extend into this layer (Graham-Brown, 

2007; Young, 2006).

1.1.2 Dermis
The dermis is 3-5mm thick, a major component o f  the skin and provides bulk and 

mechanical strength (Young, 2006). It consists o f  connective tissue made from 

interlacing fibres embedded in mucopolysaccharides and supports appendage 

structures such as hair follicles and sebaceous glands. The fibres are constructed 

from collagen and some elastin, which confer strength and elasticity to this tissue. 

The dermis is richly supplied with blood vessels, lymphatics, nerves and sensory 

receptors (Graham-Brown, 2007). The main cell types are fibroblasts (synthesize
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connective tissue matrix), mast cells (specialised secretory cells) and macrophages 

(phagocytic cells from bone marrow that scavenge cell debris)

Figure 1.1: The Basic Structure o f Skin (adapted from  online source: University o f  

Virginia, Cell Biology Handout: Skin, 2004).

1.1.3 Basement Membrane
The basement membrane lies immediately below the basal layer o f the epidermis. 

It is made up o f three layers: lamina lucida, lamina densa (hemidesmosomes 

attach to the lamina densa and dermal collagen) and sublamina densa. These 

layers are detailed in Figure 1.2 (Graham-Brown, 2007).
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Intracellular

Lamina lucida 

Lamina densa

Sub-basal 

lamina densa

Extracellular

Figure 1.2: Layers o f  the Basement Membrane (from Nievers et al, 1999).

1.1.4 Epidermis
The epidermal-dermal interface is not flat but undulating to increase the surface 

area o f contact and improve connectivity between these tissues. The dermis has 

cone-like projections (‘dermal papillae’) which reach into corresponding slots in 

the epidermis ( ‘rete ridges’) to form two sets o f inter-locking cones. The epidermis 

has four well-defined sub-layers (Figure 1.3): Stratum basale (or basal layer), 

stratum sp'mosum (or spinous layer), stratum granulosum (or granular layer) and 

stratum corneum (or cornified layer). The thickness o f the epidermis differs 

depending on body site, being thickest on the soles o f the feet and palms o f the 

hands (Graham-Brown, 2007). Intercellular adhesion and cohesion are mediated 

within the epidermis by adherens junctions, which connect the actin cytoskeleton 

o f neighbouring cells together and by desmosomes, which connect keratin- 

filaments (cytoskeleton) within adjacent cells together to form a continuous 

network (Candi et al, 2005).

Keratinocytes move upwards from the proliferative basal layer through the spinous 

layer, where they lose their mitotic activity and alter their gene expression to

Anchoring

Intermediate filaments (keratins 5 & 
14

Inner plaque 

Outer plaque

membrane

Collagen and laminins 

fibrils 

Interstitial Collagen
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synthesise specialised proteins. Differentiation continues into the granular layer 

where the comified envelope is formed. The cells become anucleate at this stage, 

lose their organelles and flatten to form ‘dead’ comeocytes. In normal human skin 

it takes approximately 30 days for basal cells to reach the skin surface (Young, 

2006). Thus, cell proliferation, differentiation and death occur sequentially, and 

each process is characterised by the expression o f  specific differentiation-related 

proteins (Candi et al, 2005).

1.1.4.1 Stratum Basale
The stratum basale is the deepest portion o f  the epidermis and consists o f  a single 

layer o f  cuboidal cells. Keratinocytes are continuously produced in this layer by 

sufficient cell division to generate the overlying stratified epithelial strata (Young 

et al 2006). Basal keratinocytes are anchored to the basement membrane by 

hemidesmosomes, an interaction mediated by transmembrane proteins such as 

integrins (Graham-Brown, 2007; Candi et al., 2005; Young, 2006). The 

intermediate filaments (IF) within epidermal basal cells are formed by 

polymerisation o f  two keratin proteins, K5 and K14 in basal cells, which form a 

three-dimensional network within the cells. Keratins terminate at the 

hemidesmosome (BMZ surface) and at the desmosome (lateral and apical 

surfaces). These two keratins also persist as cells move into the suprabasal layers.

MERKel cells (associated with nerve endings in touch sensitive areas) occur on 

the dermal side o f  the basement membrane. Langerhans cells are also found in the 

epidermis and these present antigens to lymphocytes in the draining lymph nodes 

thus providing the skin with constant immune surveillance (Williams, 2003).

Melanocytes produce melanin in granules (melanosomes), which is transferred to 

keratinocytes and forms a cap over the nucleus to protect DNA from solar UV  

radiation. Two types o f  melanin are present in these granules in order to absorb 

UV irradiation: a brown/black pigment called eumelanin and a yellow/red pigment 

called phaeomelanin. Darker and lighter skin types contain the same number o f
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melanocytes, but darker skinned people have more active melanocytes which 

produce increased levels o f pigment and a higher ratio o f eumelanin. However, 

chronic exposure to sunlight can also induce an increase in melanocytes numbers 

(Candi et al., 2005; Williams, 2003).

Figure 1.3: Section o f Normal Human Skin stained with Haematoxylin and Eosin to 

Demonstrate the Different Layers and Cell Types.

1.1.4.2 S tra tum  Spinosum

The spinous or prickle cell layer is so named because o f the spiky appearance of 

the cells, after histology processing. As well as keratinocytes, Langerhans cells are 

present in the spinous layer and are the first line o f immunological defence against 

environmental antigens. These cells are probably modified macrophages and 

contain ‘Birbeck’ granules (Graham-Brown, 2007). Keratin intermediate filaments 

and desmosomes increase in number in these cells (Young et al., 2006), and the 

predominant keratins expressed in this layer (K1 and K10) are termed 

‘differentiation-related’.

Stratum
Spinosum

Stratum
Basale

Papillary; 
: Dermis \

Reticular
Dermis

Stratum
Cor neum_

Stratum
Granulosum * < *  ^  ’'Epiderm is »
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1.1.4.3 Stratum Granulosum

The stratum granulosum consists o f  cells which acquire granular structures 

(keratohyalin and lamellar granules). The layer is so named because the 

keratohyalin granules (KHG) are visible by light microscopy. There are two types 

o f  KHG, F-granules that produce profilaggrin and L-granules that produce loricrin 

(a major cornified envelope protein). Filaggrin helps to bundle keratin filaments 

tightly together to promote the collapse o f the cell into a flattened comeocyte 

(Candi et al., 2005; Young, 2006). Lamellar granules (also called Odland bodies) 

contribute to barrier function o f the epidermis by discharging specialised lipids 

(e.g. ceramides) and enzymes into the spaces between granular cells. This prevents 

substances entering the tissue through channels between the dead cells o f the 

stratum com eum  (Graham-Brown, 2007) and is a m ajor com ponent o f the 

epidermal barrier.

1.1.4.4 Stratum  Lucidum

This layer is 3 to 5 cells thick and so-named because o f its translucent appearance 

when viewed under the microscope. It is only present in areas o f  thick skin such as 

the soles o f  feet. The cell nucleus disintegrates in this layer and there is increased 

keratinisation and cell flattening (Graham-Brown, 2007).

1.1.4.5 Stratum  Corneum

The stratum corneum  is a horny layer o f flattened keratinised cells, with no nuclei 

or cytoplasm ic organelles. The keratin filaments have been cross-linked by 

formation o f  disulfide (S-S) bonds and tightly bundled by the action o f  filaggrin. 

Transglutam inase (a Ca2+ dependent enzyme) covalently links glutamine to lysine 

in adjacent polypeptides, forming isopeptide cross-links between envelope 

proteins to provide mechanical strength (Candi et al., 2005; Young, 2006). The 

cornified cell envelope provides further mechanical strength as well as forming an 

important part o f  the essential barrier function (Graham -Brown, 2007). Cells are 

locked together where adjacent cells overlap their margins and the high lipid 

content between the cells acts as a permeability barrier (Young, 2006). With
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general wear and tear, as well as the activity o f  specialised proteases, the cells are 

sloughed o ff  the skin surface in an active process called desquamation (Graham- 

Brown, 2007).

1.1.4.6 Epiderm al Appendages

During embryonic development, the epidermis produces appendages by down- 

growth and specific re-programming o f  epithelial cells. During this time, 

molecular signalling between the epidermal cells (keratinocytes) and dermal cells 

(fibroblasts) is essential. These epithelial-mesenchymal interactions produce three 

main appendage structures: hair follicle, sebaceous gland and eccrine sweat gland 

(Figures 1.4 and 1.5). This region also contains an area termed the “bulge” that 

represents a stem cell niche and contains multipotent, slow cycling cells which act 

as a renewal source for the hair follicle, sebaceous gland and probably the sweat 

gland. In addition, during wound repair, these cells can also migrate to repopulate 

damaged epidermis.

The hair follicle is an invagination and down-growth o f  epidermal keratinocytes. 

This initially forms the infundibulum and then the outer root sheath (ORS) o f the 

hair follicle. The sebaceous duct branches o ff the hair follicle below the 

infundibulum. Epithelial cell down-growth from the epidermis also forms the 

eccrine sweat gland and duct. Eccrine glands are innervated to regulate body 

temperature by secreting water containing NaCl to cool the body by evaporation. 

Apocrine glands in skin produce sweat and open into the hair follicle canal. They 

are larger than eccrine sweat glands and are only present in certain areas such as 

the arm pit and groin.

The pilosebaceous unit (PSU) is a term that describes the hair follicle, arrector pili 

muscle and sebaceous gland, as a single structural entity (Figures 1.4 and 1.5). 

While PSUs are present over most o f  the body, large PSUs are particularly 

prevalent on the face, chest and back and PSUs are absent from the hands and feet. 

The arrector pili muscle is a bundle o f  smooth muscle fibres, which attaches to the 

follicle below the sebaceous gland and just beneath the epidermis (BMZ o f  rete
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ridges). Contraction produces erection o f the hair as experienced during fright. The 

sebaceous gland discharges an oily secretion (sebum) into the hair follicle via the 

sebaceous duct, and this coats the hair fibre and skin surface with lipid (Young, 

2006). PSU o f the face, back and chest only have small vellus hair follicles and 

principally excrete sebum onto the skin surface.

*

--v:
r  'x/pv. 

/  ■ *

i t - ' '

Infundibulum

—/  A, .

Bulge

Sebaceous 
* Gland

Hair Follicle ORS
M r  » : a

Figure 1.4: Haematoxylin and Eosin Stained Section o f Normal Human Skin showing 

the Infundibulum, Upper Hair Follicle, Sebaceous Glands and Bulge.
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Figure 1.5: Diagrams o f  the Lower Hair Follicle, Eccrine Sweat Gland and Sebaceous 

Gland (adapted from  online source: University o f Virginia, Celt Biology Handout: Skin, 

2004).

The hair follicle is continuous with the epidermis and separated from the dermis 

by a basement membrane and collagen capsule. There are two types o f hair follicle
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present in human skin: vellus (fine) hair and terminal (thick) hair. The terminal 

hair follicles on the scalp are larger than the vellus follicles on the body but the 

structure is basically the same (Figures 1.5 and 1.6).
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Root
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Figure 1.6: Haematoxylin and Eosin Stained Section o f Normal Human Skin showing 

the Lower Hair Follicle.

There are 3 bumps on the original epidermal invagination during appendage 

formation, which form the sebaceous gland, apocrine sweat gland and bulge. Cells 

from the bulge produce the entire hair follicle including the hair fibre, inner root 

sheath (IRS) and companion layer (CL). Cells from the bulge move down the ORS
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and populate the bulb matrix region. Epithelial-mesenchymal interactions between 

the dermal papilla and matrix induce all seven distinct lineages o f  specialised hair 

follicle cell layers which all have distinct differentiation programmes and are able 

to produce the hair fibre and the follicle.

The inner three epithelial layers (medulla, cortex and cuticle) undergo 

keratinisation to form the hair shaft and the outer three layers (cuticle, Huxley, 

Henley) form the inner root sheath (IRS). The inner root sheath is separated from 

the outer root sheath (ORS) by the companion layer (CL). The ORS is surrounded 

by a glassy membrane, which is a specialised basement membrane. At the base o f  

the follicle, a mass o f  epithelial cells (hair matrix) surrounds the dermal papilla, an 

inductive mesenchymal cluster (Young, 2006). This mass o f  cells produce progeny 

which terminally differentiate to form all layers o f  the hair shaft and inner root 

sheath (Alonso and Fuchs, 2006).

The cortex o f  the hair fibre is composed o f  trichocytes that express hair specific 

keratins. Nails have a similar structure to the hair fibre but are formed as a flat 

(curved) plate o f  hair specific and epithelial keratins which originate from the nail 

fold, also an invagination o f  the epidermis (Graham-Brown, 2007; Bowden, 1987; 

Bowden, 1993).

Hair follicles undergo cycles o f  growth, regression and rest (Figure 1.7), known as 

anagen, catagen and telogen respectively (Alonso and Fuchs 2006). Anagen can 

last 2-3 years and determines the length o f  the hair fibre, while catagen lasts for 

approximately 2-3 weeks and telogen 2-3 months. During the early anagen phase, 

there is down-growth o f  the hair follicle and from mid anagen, proliferation in the 

bulb (matrix) produces the hair shaft (HS), inner root sheath (IRS) and companion 

layer (CL). The cells o f  the HS and IRS gain high tensile strength because they are 

packed with keratin filaments cross-linked to high sulphur matrix proteins 

(keratin-associated proteins or KAPs). The IRS supports the HS until the upper
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During catagen, the lower part o f  the follicle regresses by apoptosis o f  the ORS 

and bulb epithelial cells. The bottom o f  the HS forms a rounded structure called 

the club, this regresses upwards to the upper part o f  the follicle (Alonso and Fuchs,

2006). Club hairs are only loosely attached and are easily shed. During telogen the 

follicle remains in a resting phase until anagen is initiated by the activation o f  one 

or two quiescent stem cells at the follicle base. This enables proliferation o f  cells 

close to the dermal papilla (DP) and formation o f  a new hair bulb, after which IRS 

and HS differentiation returns.

1.2 Cancer
Cancer is a collection o f  diseases which all feature the unrestrained growth o f  

cells, but while a malignant tumour invades other tissues, a benign tumour is not 

invasive but remains “m situ” (Pasternak, 1999). The rate o f  death from cancer is 

second only to cardiovascular disorders, and most frequently caused by disruption 

o f  vital organs due to extensive growth o f  invading cancer cells (metastasis) but 

release o f  toxins into the circulation can also contribute (King and Robins, 2006). 

There are many causes o f  cancer, including inherited genetic defects and lifestyle 

factors such as exposure to UV (ultraviolet) light, diet and smoking (King and 

Robins, 2006). Pathology is used to distinguish between benign and malignant 

growth to define cancer subtypes which can help to determine the prognosis as 

well as aiding selection o f  appropriate therapy. Epidemiology can also give clues 

to the cause o f  some cancers by looking at the incidence in different populations 

(King and Robins, 2006).

Cancer is caused by loss o f  cell proliferation control and lack o f  DNA damage 

repair usually due to an accumulation o f  different gene mutations in a single cell. 

Changes in oncogenes (regulatory genes, whose activity is increased after genetic 

alteration o f  one allele causing a change in protein function) or tumour suppressor 

genes (encode inhibitory proteins) are major contributory factors. Thus, in simple 

terms, mutation o f  p53 affects the cell cycle check point, allows unrestricted 

growth o f  cells which then form a tumour (usually monoclonal in origin). Cancer
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cells also continue to change their behaviour as they develop due to genetic 

instability. A  tumour cell mass can be influenced by several factors including cell­

cell contacts, immune attack, cell death, proliferation, differentiation, blood supply 

and the extracellular matrix.

1.2.1 Skin Cancers
Skin cancers, are generally classified into malignant melanoma and a collection o f  

non-melanoma skin cancers, including squamous cell carcinoma (SCC) and basal 

cell carcinoma (BCC). Non-melanoma skin cancers tend to be less aggressive and 

are rarely lethal. BCC is the most common cancer in Caucasians (90% o f  all skin 

cancers indentified) and the major causative factor is UV  light (Daya-Grosjean and 

Couve-Privat, 2005). Other causes include: X-rays, y-rays, industrial oils, tars, 

bitumen and soot. UV B damage causes C to T (or CC to TT) structural changes in 

the DNA o f  epidermal basal cells (Athar et al., 2006). BCCs are thought to have a 

deeper origin in skin than SCCs and the most likely cause o f  this difference is 

based on wavelength dependent penetration o f  UV (Lacour, 2002).

Tumorigenesis usually requires an accumulation o f  changes that often involve 

more than one gene in a cell. Also, as these changes are usually required in both 

alleles, tumours are actually quite a rare occurrence, usually developing in later 

life probably due to accumulated age-related errors in DN A repair and long-term 

UV exposure. However, the risk is increased if  one allele is already changed, such 

as in patients with Gorlins Syndrome (Basal Cell Nevus Syndrome) who are bom  

with a mutation in one allele o f  either the patched (PTCH) or smoothened (SMO) 

gene. There is also a predisposition for those with some genetic conditions that 

affect repair mechanisms, such as xeroderma pigmentosm (an autosomal recessive 

genetic disorder o f  DN A repair in which the body's normal ability to remove 

damage caused by U V  light is deficient) or in immunosuppressed individuals 

because the immune system normally removes defective cells (Graham-Brown,

2007).
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While it is unusual for mutations in a single gene to cause a tumour, in the case o f  

BCCs, homozygous mutations in PTCH, or occasionally SMO genes are sufficient 

to cause tumorigenesis, making BCCs a common tumour. Additional mutations 

may also occur (in p53 for example) but these are thought to affect tumour 

aggressiveness and growth patterns rather than initiating tumorigenesis.

1.2.2 Basal Cell Carcinoma
BCCs are malignant but not generally metastatic and often referred to as 

carcinoma in situ. They generally grow slowly, but can be unpleasant for the 

patient if  not removed, because they can grow very large and may bleed (Daya- 

Grosjean and Couve-Privat, 2005). The incidence increases with age and most 

patients are over 50 years old when referred (Bastiaens et al., 1998).

There are 3 broad categories o f  BCC: nodular, morpheaform and superficial. 

Nodular lesions on the skin surface (60% o f  cases) appear smooth, round and 

waxy. The surrounding skin is thin, bleeds easily and lesions are generally slightly 

raised, red and ulcerated with a pearly border (Figure 1.8A). The histology o f  

these tumours shows that they grow into a nodular morphology pushing down into 

the dermis (Figure 1.8D). Morpheaform BCCs (30% o f  cases) are fast growing 

and appear flat, shiny, and yellow on the surface (Figure 1.8B). Histology shows 

they extend deep into the skin with tiny root like projections (Figure 1.8E). 

Superficial BCCs (10% o f  cases) appear as a red mark on the skin surface (Figure 

1.8C) and histology shows only superficial growth along the basement membrane 

(Figure 1.8F). Superficial BCCs are the most accessible to topical treatment.
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Figure 1.8: Three Broad Categories o f Basal Ceil Carcinoma (Nodular, Morpheaform 

and Superficial). Clinical appearance o f BCC (A-C) and typical histology after staining 

with haematoxylin and eosin (D-F). Nodular BCC (A, D), morpheaform BCC (B, E) and 

superficial BCC (C, F). (Data from online sources.aafp, 2004; skin cancer guide, 2004; 

treat skin cancer: basal cell carcinoma, 2004; emedicine: Medscape: Basal Cell 

Carcinoma, 2004; Loyola University: Strith School o f Medicine: Med Dean, 2004)

1 .2 .3  S u r g ic a l T r e a tm e n t o f  B C C

Surgery is often the treatment of preference in order to remove the tumour prior to 

further growth. However, this leads to scarring, is inconvenient to the patient, and 

costly in terms o f health care professional time and equipment requirements.

1 .2 .4  D r u g  T h e r a p y

A topical formulation would be useful for treating BCCs on areas o f skin where 

surgery is not advised (e.g. eyelids or close to the ear), for reducing the size o f 

large tumours prior to excision, and to prevent tumour recurrence (possibly caused 

by altered stem cells that remain after surgery). A major benefit o f topical 

formulations is that they are specific to the area o f application and therefore any 

side effects caused by the drugs will be localised.
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Imiquimod cream (Aldara) has been used to treat superficial BCCs o f  less than 

2cm in diameter (Vidal and Alomar, 2004). It activates the immune system 

through toll-like receptor 7 (on the surface o f  antigen presenting cells), leading to 

secretion o f  pro-inflammatory cytokines. Clinical trials have shown that 

imiquimod is too toxic to be the treatment o f  choice, as it causes unpleasant but 

transitory adverse effects: erosion, ulceration, eiythema, oedema, flaking/scaling, 

scabbing and inflammation (Quirk et al., 2006). Imiquimod is not indicated for 

treating nodular or morpheaform subtypes due to recurrence o f  these tumour types 

at the same site after treatment, which may be partly due to inadequate delivery to 

these deeper BCCs (Chang et al., 2005).

1.3 Sonic Hedgehog (SHH) Signal Transduction Pathway 

and Mutations in BCC Lesions

1.3.1 Sonic Hedgehog (SHH)
Sonic hedgehog is required for embryonic development o f  hair follicles (Sato et 

al., 1999) and postnatally for development beyond the germ stage o f  hair follicle 

morphogenesis (Chiang et al., 1999). The anagen phase o f  hair follicle cycling is 

induced by SHH (Paladini et al., 2005; Sato et al., 1999) and studies suggest that 

SHH responsiveness is restricted to the growth phase (anagen) in mouse hair 

follicles (Oro and Higgins, 2003).

Epidermis derived SHH functions as a paracrine signal regulating development o f  

the mesenchymal component o f  the hair follicle (Chiang et al., 1999). It has also 

been suggested that SHH signals the epithelial cells o f  developing follicles, as it is 

required for the initial down-growth o f  epidermal keratinocytes (Chiang et al., 

1999; St-Jacques et al., 1998).

Hedgehog (HH) is a protein originally identified in drosophila development and so 

named because D. melanogaster embryos develop as prickly round shapes
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(resembling a hedgehog) when HH signalling is lost (Nusslein-Volhard and 

Wieschaus, 1980). Drosophila is a model organism which has been used to 

identify many developmental genes including Notch and Wnt. It is particularly 

useful for genetic experiments because it has a short reproductive cycle and is easy 

to handle in the laboratory (Hausman, 2004). There are three homologues o f  

hedgehog in humans (Ingham and McMahon, 2001): Sonic Hedgehog (SHH), 

Indian Hedgehog (IHH) and Desert Hedgehog (DHH). Holoprosencephaly is a 

phenotype which arises from mutations that affect SHH signalling, producing a 

phenotype o f  close set eyes with a common scleral rim. Sonic the Hedgehog, a 

computer game character, also has these characteristics which led to the gene 

being named after him.

The hedgehog signalling pathway is essential during embryonic development, but 

is switched o ff  in most adult tissues (Athar et al., 2006). However, SHH maintains 

stem cell populations and regulates the growth o f  hair follicles and sebaceous 

glands in adults (Athar et al., 2006). SHH is needed for down-growth o f  the 

epidermis and morphogenesis o f  the hair follicle (St-Jacques et al., 1998). SHH is 

also veiy important for other aspects o f  embryogenesis, including neural tube 

patterning, formation o f  the adjacent ventral somites, development o f  left-right 

symmetry, polarising activity in the limbs as well as morphogenesis o f  the axial 

skeleton, limbs, lungs, skin, hair and teeth (Athar et al., 2006). In the adult, SHH is 

also required for hair growth and is expressed in the hair follicle during the anagen 

(growth) phase (Chiang et al., 1999).

SHH is a 45kDa protein, which induces epidermal hyperplasia and keratinocyte 

proliferation when it is over-expressed. Importantly, SHH signalling is also 

activated in many neoplasms. Cells with mutations in PTCH or over-expression o f  

SHH cannot leave the S and G2/M phases o f  the cell cycle, so proliferation is 

sustained (Athar et al., 2006).
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Transport o f active hedgehog from the signalling cell to the responding cell occurs 

in three steps (Figure 1.9). First is the formation o f a soluble multimeric hedgehog 

complex, second is the release o f the lipid anchored protein from the signalling 

cell by the enzyme dispatched (Disp) and finally, Tout-velu-dependent synthesis 

o f heparin sulphate proteoglycan enables movement across the plasma membrane 

o f the responding cell (Burke et al., 1999; Zeng et al., 2001). The active hedgehog 

ligand is double lipid modified with a C-terminal cholesterol moiety and an N- 

terminal palmitate, which results in activation o f the signalling portion, after which 

the SHH-C terminal portion can diffuse away (Porter et al., 1996).

 *. P-SHH-NC
Dispatched

Multi meric Form 

Palmitoylation P-SHH-N C

Autoprocessing SHH-N C

SHH

SHH

Figure 1.9: Autoprocessing Reaction o f Sonic Hedgehog in a Signalling Cell. When 

SHH is released from the signalling cell by dispatched, it travels along the plasma 

membrane and interacts with proteins such as PTCH on a responding cell.

In the absence o f SHH, patched (PTCH), a 12-pass transmembrane protein located 

at the cell surface inhibits smoothened (SMO), a 7-pass transmembrane protein 

located in intracellular endosomes. Once pathway activation occurs, then SMO can 

move to the cell surface membrane and initiate signalling.
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When the SHH ligand binds to its receptor (PTCH), the receptor is internalised and 

destabilised causing activation o f  smoothened (SMO). SMO translocates to the 

plasma membrane and activates GL1 zinc finger transcription factors via other 

signalling proteins such as Suppressor o f  Fused (SUFU) causing their translocation 

to the nucleus (Figures 1.10 and 1.11).

Mammalian cell culture experiments showed that phosphorylation by Grk2 causes 

internalisation o f  SMO and this also involves Arrb2. GLI is maintained in its 

repressor form by direct binding o f  SUFU (suppressor o f  fused), a tumour 

suppressor (Pearse et al., 1999; Stone et al., 1999). GLI activation by 

phosphorylation enables GLI to regulate the expression o f  SHH target genes such 

as PTCH, SMO, GLI1, GLI2, FOXM1, FOXE1 and HIP (Huangfu et al., 2003; 

Daya-Grosjean and Couve-Privat, 2005).

There is a balance between the antagonism o f  SHH and PTCH. Their 

concentrations are altered with respect to each other because up-regulation o f  

PTCH expression causes PTCH protein at the cell membrane to sequester SHH 

and limit its spread beyond the cells in which it is produced, creating a negative 

feedback loop (Cohen, 2003). It is o f  note that where most cancers require a 

collection o f  mutated genes, sporadic BCCs can be induced by homozygous 

mutations in both alleles o f  either PTCH or SMO and extremely rarely, SUFU, 

which is downstream o f  SMO (Reifenberger et al., 2005).

1.3.2 Hedgehog Signalling Defects in Gorlins (BCN) Syndrome
Aberrant hedgehog signalling was first discovered to be the underlying cause o f  

BCC due to a study o f  Gorlin’s or Basal Cell Nevus (BCN) Syndrome (Hahn et 

al., 1996; Johnson et al., 1996).
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ILI
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GLI R  1 HH target genes

Figure 1.10: Sonic Hedgehog Signalling Pathway in the Absence o f Sonic Hedgehog

(GLIR is the repressor form of GLI).

SUFU

PTCH
G p ro te in?

GLI A » HH targ e t g e n e s

I--------------

Figure 1.11: Sonic Hedgehog Signalling Pathway in the Presence o f Sonic Hedgehog

(GLI A is the active form of GLI).
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Gorlin’s Syndrome is an inherited disorder, where numerous tumours occur 

(including BCCs), along with other developmental defects. Linkage mapping 

narrowed down the gene underlying Gorlin’s Syndrome to the PTCH locus on 

chromosome 9 (9q22) and frequent loss o f  heterozygosity at 9q was observed in 

BCCs from Gorlin’s patients. Mutations in the PTCH gene were then found to be 

associated with sporadic BCCs (Gailani and Bale, 1997; Unden et al., 1996; Daya- 

Grosjean and Couve-Privat, 2005; Lupi, 2007). PTCH mutations were present in 

both hereditary and sporadic BCC with p53 mutations found in all sporadic and 

nearly half o f  hereditaiy tumours by one group o f  researchers (Ling et al., 2001). 

Mutations in p53 are generally correlated with tumour aggressiveness but findings 

in BCC vaiy and there are very few recent publications, so the role o f  p53 is still 

not clear (Ansarin et al., 2006). Gailani and co-workers (1996) agreed that 

inactivation o f  PTCH is probably a necessary step in BCC development. Northern 

blots and RNA in situ hybridization showed that PTCH was expressed at high 

levels in tumour cells but not in normal skin, suggesting that mutational 

inactivation o f  the gene leads to over-expression o f  a mutant transcript owing to 

the failure o f  a negative feedback mechanism (Gailani et al., 1996).

Mutations caused by UV light leading to BCCs may vary within the PTCH or 

SMO genes. Unden and colleagues (1996) found different types o f  mutations in 

one patient’s BCCs. They later used fine mapping to identify a region that might 

contain PTCH mutations to within 1Mb at 9q22.3 (Unden et al., 1996; Unden et 

al., 1997). These findings were confirmed and extended by Reifenberger and co­

workers (1998) who found that loss o f  heterozygosity due to various SMO 

mutations (second allele lost, the loss o f  the first allele was inherited) could also 

lead to BCCs. However, they later found that only 40% o f  BCC causative 

mutations in PTCH, SMO or SUFU had UV signatures (Reifenberger et al., 1998; 

Reifenberger et al., 2005). Another research group also found various UV  

signature mutations for PTCH and p53 in BCCs (Soehnge et al., 1997). Allelic loss 

was frequently found in sporadic BCCs, suggesting that factors other than UVB  

may be a cause. Only one third o f  BCCs demonstrating allelic loss also had a
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mutation likely to be caused by UVB in the remaining allele, inferring that other 

factors are probably involved (Gailani and Bale., 1997; Daya-Grosjean and Couve- 

Privat, 2005).

SHH signalling was shown to be hyper-activated in sporadically occurring BCCs 

that had high levels o f  GLI1 and PTCH mRNA in tumour cells (Dahmane et al., 

1997; Unden et al., 1997). Sonic hedgehog pathway activation can also cause BCC 

formation in mouse models and epithelial cell down-growth in organotypic 

cultures using HaCaT cells (Bigelow et al., 2005; Daya-Grosjean and Couve- 

Privat, 2005). Over-expression o f SHH in normal human keratinocytes was 

enough to induce BCC-like features in regenerated murine skin transgenic for long 

terminal repeat-driven SHH on immune-deficient mice (Oro et al., 1997). 

Furthermore, the lack o f  collective mutations could explain the lack o f  

aggressiveness, slow growth, and lack o f  metastases in BCCs (Fan et al., 1999).

GLI accumulation was observed in induced murine BCCs, but GLI destruction 

signals were also identified and removal o f these signals enabled increased tumour 

formation (Nilsson et al., 2000; Huntzicker et al., 2006). GLI2 over-expression in 

transgenic mice under the control o f a bovine K5 promoter (active in basal layer 

and hair follicle outer root sheath keratinocytes) led to multiple skin tumours, 

many resembling BCCs. There was ajso up-regulation o f  SHH target genes 

(Grachtchouk et al., 2000) and together these results showed that the expression o f  

GLI transcription factors due to active SHH signalling was required for BCC 

tumour formation.

PTCH and SMO mutations have also been shown to cause BCCs in xeroderma 

pigmentosum patients (Bodak et al., 1999; Couvet-Privat et al., 2002; Daya- 

Grosjean, 2000). These patients have a high rate o f  BCCs due to their inability to 

repair UV-associated DNA damage. Activating mutations in SHH (leading to 

activation o f  the SHH signalling pathway) may also cause these BCCs (Couve- 

Privat, 2004; Daya-Grosjean and Couve-Privat, 2005). However, it has been

24



shown that activation o f  SHH occurs very rarely in sporadic tumours, while 

deactivation o f  PTCH is extremely common (Teh et al., 2005).

1.3.3 SHH Signalling in the Hair Follicle
The role o f  SHH pathway signalling is well established in the hair follicle, not just 

during morphogenesis but also in the adult. Hair follicle induction is independent 

o f  SHH, but SHH is essential for down-growth o f  epidermal cells and 

consequently for morphogenesis o f  the hair shaft (Hutchin et al., 2005). In adults, 

SHH is expressed in the matrix and the developing germ, and cyclopamine (SHH 

pathway inhibitor) blocks cyclic regeneration o f  hair (Blanpain and Fuchs, 2006; 

Silva-Vargas et al., 2005).

In GLI2_/‘ mice, hair follicle development was arrested, while upon GLI2 

activation in transgenic rescue experiments, hair follicles developed, showing that 

hair follicle down-growth requires GLI2, a SHH pathway effector. GLI2 was 

shown to be effective only when constitutively expressed in SHH ' skin, otherwise 

no hair follicles would develop (Mill et al., 2003). SHH'/_ and control embryos 

showed epidermal placodes and associated dermal condensates but further hair 

follicle development did not occur. In addition, PTCH and GLI1 expression were 

also reduced but interestingly late-stage follicle differentiation markers were 

detected in SHH /_ skin grafts, as well as cultured vibrissa explants treated with 

cyclopamine which would effectively block SHH signalling (Chiang et al. 1999). 

Furthermore, anti-hedgehog monoclonal antibody treatment caused a hairless 

phenotype in mice (Wang et al. 2000).

1.3.4 Origins of BCC
Many researchers believe that BCCs originate from hair follicles. The expression 

o f  hair follicle stem cell markers in human BCCs led to the idea that BCCs could 

be derived from the undifferentiated outer root sheath (ORS) cells o f  the hair 

follicle (Reis-Filho et al., 2002). SHH and PTCH mRNA accumulate in follicular, 

but not in interfollicular skin in normal mice, supporting the argument for BCCs
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originating in the hair follicle. Further support for this idea has come from 

examining SHH expression in hair placodes o f  embryonic skin and finding that 

SHH promotes interfollicular basal cell proliferation and hair follicle down-growth 

(Adolphe et al., 2004; St-Jacques et al., 1998).

It has been suggested that epithelial-mesenchymal interactions are required for the 

development o f  epithelial invaginations, as seen in hair follicles and BCCs (Hardy 

et al., 1992; Schmidt Ullrich and Paus., 2005). Mice conditionally over-expressing 

GLI2 gave rise to BCCs, but nearly all o f  these were derived from hair follicles 

and not interfollicular epidermis as judged by haematoxylin and eosin staining and 

K17 immunocytochemistry. In situ hybridisation for K15 (a marker o f  

undifferentiated follicular epithelium, including stem cells, in adult mice) showed 

high expression in early tumours located close to a hair follicle but decreased as 

the tumours grew larger. Once GLI2 expression was removed and tumour cells 

had regressed, an inductive mesenchyme led to hair follicle formation (Hutchin et 

al., 2005). This shows a close relationship between SHH signalling in both hair 

follicles and BCCs. PTCH, SMO, GLI 1-3 are all expressed in mesenchymal cells, 

and interactions involving the SHH pathway between the epithelium and the 

mesenchyme which are important for down-growth o f  the hair follicle, may also 

be necessary for BCC down-growth (Millar, 2002). In mice expressing GLI2, 

nearly all BCCs arose from hair follicles demonstrating that BCCs are likely to be 

caused by aberrant follicle organogenesis (Hutchin et al., 2005).

GLI2 also regulates the expression o f  cyclins D1 and D2 (required for cell cycle 

progression and interaction with tumour suppressor proteins), which may be 

involved in tumour progression (Mill, 2003). However, Silva-Vargas and co­

workers (2005) showed that interfollicular epidermal cells can acquire 

characteristics similar to those o f  bulge stem cells by using p-catenin and SHH 

expression gradients to induce hair follicle formation (Silva-Vargas et al., 2005).
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There are still discrepancies concerning which part o f  the hair follicle may be the 

origin o f  BCCs. Researchers have shown that BCCs may originate from 

undifferentiated cells o f  the outer root sheath. Hutchin and colleagues (2005) 

found that they can arise from follicular ORS epithelium in the proximal hair 

follicle, leading them to believe that ‘BCCs represent an aberrant form o f  follicle 

organogenesis’. They found that when conditionally expressing GLI2 in mice, 

nearly all BCCs arose from hair follicles (Hutchin et al., 2005). A separate group 

used GHADn (mutant GLI responsive promoter) transgenic mice to show that 

small BCC-like proliferations developed which appeared to come directly o ff the 

hair follicle (Huntzicker et al., 2006). Over-expression o f  SHH in the skin was 

found to result in epidermal hyperplasia by antagonising p21 (cyclin-dependent 

kinase inhibitor 1A) cell cycle arrest. This also resulted in the proliferation o f hair 

follicle like structures into BCC like growths (Fan and Khavari, 1999; Oro et al., 

1997). Also, pTCHneo67/+ (neo cassette heterozygote) mouse skin irradiated in early 

anagen (hair follicle down-growth phase), showed a higher rate o f  BCC induction 

compared to telogen hair follicles. Immunohistochemistry showed that these BCCs 

appeared to be derived from the follicular ORS (Mancuso et al., 2006). In a 

separate study, immunohistochemistry showed similar expression profiles between 

BCC and the follicular ORS compared to BCC and epidermis (including 

expression o f  basal differentiation markers K5 and K14 and no expression o f K8, 

K1 and K10) again hinting that BCCs may be derived from part o f  the hair follicle 

(Kruger et al., 1999).

However, there are several publications which are in conflict with the hair follicle 

origin hypothesis and suggest that BCCs may actually originate in the basal layer 

o f  the epidermis. Hedgehog-induced proliferation was found to be restricted to the 

epidermal basal cell compartment (Adolphe et al., 2004). Also, some 

immunohistochemistry data has shown that PTCH induced skin tumours originate 

from the basal cell compartment (Adolphe et al., 2006). In humans and mouse 

BCC models, ‘many tumours arose with no visible connection to the hair follicle’, 

suggesting that ectopic SHH target gene expression in interfollicular cells can
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induce hair follicle differentiation (Hu et al., 2003; Oro and Higgins, 2003). It was 

observed that initiating events in the epidermis can induce BCC features (using 

SHH expressing keratinocytes to regenerate human skin transgenic for long 

terminal repeat-driven SHH on immune deficient mice), without any inductive 

influence from mesenchymal cells and therefore hair follicle structures are not 

required for BCC development (Fan et al., 1997).

Some believe that BCCs may in fact originate from putative epidermal stem cells, 

SHH has been shown to have involvement in cell-fate specification and 

proliferation o f  stem cells. BCCs also grow slowly and share similarities in gene 

expression profile to stem cells along with continuous cell renewal (Parisi and Lin, 

1998; Tumbar et al., 2004). The action o f  HH as a stem cell factor in drosophila 

embryos suggested the importance o f SHH in human stem cells as well as in BCCs 

(Owens and Watt, 2003; Blanpain and Fuchs, 2006). It was also demonstrated that 

drosophila ovary stem cells cannot proliferate in the absence o f  HH signalling, 

inferring that HH is a stem cell factor (Zhang and Kalderon, 2001). Human 

tumours caused by SHH signalling may have resulted from the expansion o f  stem 

cell pools as it had been shown that SHH can regulate human putative epidermal 

stem cell proliferation. These epidermal stem cells underwent increased 

proliferation when grown in the presence o f SHH (conditioned media from SHH- 

N expressing cells) and proliferation was decreased in the presence o f  the SMO 

inhibitor, cyclopamine (Zhou et al., 2006). BCCs are thought by some to be 

derived particularly from the interfollicular basal cell layer o f  the epidermis 

(Adolphe et al., 2006; Youssef et al., 2010). Tumour cells in the epidermis would 

be lost by terminal differentiation if  they didn’t reside in the epidermis long term, 

so stem cells are a likely point o f origin (Owens and Watt, 2003).

BCCs and the lower hair follicle region have similar keratin expression (K5, K6 

and K14) as well as a2 and pi integrins. Epidermal cells with high levels o f  pi 

integrin can be passaged for a long time, an important “stem cell” property (Fuchs 

et al., 2008). If BCCs were derived from interfollicular basal stem cells, the
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undifferentiated phenotype o f  BCCs could be explained. It has been shown by 

expressing SMO selectively using K15, K17 and K19 promoters in subsets o f  

mouse epidermal keratinocytes in different skin compartments, that BCCs did not 

arise in hair follicle bulge cells, but in the majority (93% in this region) from 

interfollicular epidermis (Youssef et al., 2010). It may be expected that because 

stem cell associated keratins (K15 and K19) are expressed in BCCs and in the hair 

follicle ORS, then the hair follicle may indeed be a likely location for the origin o f  

BCCs. However, BCC formation was not induced by activation o f SMO in hair 

follicle bulge stem cells o f  mice, but BCCs were found to arise from long-term 

resident progenitor cells o f  the interfollicular epidermis and the upper 

infundibulum by clonal analysis (Youssef et al., 2010).

1.3.5 Mouse Mutations in SHH Pathway
Mouse models have contributed considerably to the understanding o f  SHH 

function in the hair follicle and in BCC. Skin o f  SHH'7' mice showed inhibition o f  

hair follicle morphogenesis, with no dermal papillae, almost no GLI1 present and 

reduced PTCH expression in primary hair germs (Chiang et al., 1999). This 

showed that activation o f the SHH signalling pathway was essential for hair 

follicle morphogenesis. A separate research group used SHH'7' mice to show that 

hair follicle development initiated correctly, but did not proceed normally in the 

absence o f  SHH. The follicular structures were abnormal and no hair was formed 

(St-Jacques et al., 1998). SHH'7' skin grafts on nude mice (lack T-cells) had 

hairless pigmented skin after 2-3 weeks, further supporting a role for SHH 

signalling in hair follicle morphogenesis. This group also found that skin grafts 

from SHH'7' embryos were abnormal and formation o f  the hair follicle arrested 

after hair bud formation, supporting the findings o f  Chiang and co-workers (1999). 

SHH present in the proximal tip is thought to be involved in down-growth o f  the 

hair follicle, and probably involved in epithelial-mesenchymal interactions with 

the underlying dermis. These publications showed that SHH is not required for 

placode formation or initiation o f  down-growth, but is essential for hair follicle 

formation. Therefore, it is likely that loss o f  SHH blocks essential epithelial-
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mesenchymal interactions which are involved in early hair follicle morphogenesis 

(St-Jacques et al., 1998).

C57BL/6 mice (postnatal day 19) showed activation o f SHH signalling in skin 

with concomitant increase in expression o f  SHH, PTCH and GLI1 (Sato et al., 

1999). Severe combined immunodeficiency (SCID) mice also showed abnormal 

BCC-like features when grafted with human keratinocytes expressing SHH (Fan 

and Khavari, 1999). Furthermore, BCCs were induced in mice over-expressing 

SHH (Dahmane et al., 1997) and features o f  basal cell nevus (Gorlin’s) syndrome 

have been observed in mice expressing SHH (Oro et al., 1997). Thus, these reports 

suggest that expression o f  SHH in skin leads to activation o f  the SHH pathway 

which can then induce the formation o f  BCCs.

Mice over-expressing wild type GLI2, under the control o f  a K5 promoter, 

developed BCCs, whereas mice over-expressing a mutant form, GLI2AN2 (GLI2 

without N-terminal domain) developed a range o f  skin tumours, even though the 

SHH pathway was activated in both types o f  mice. This showed that the N- 

terminal domain may have a specific function and an impact on the type o f tumour 

formed, possibly via interactions with G lil (Sheng et al., 2002).

Mouse models also had an important role in unearthing the importance o f  PTCH in 

embryogenesis and in adult skin. Mice null for the ligand PTCH died during 

embryogenesis, whilst mice heterozygous for PTCH had developmental defects 

and some developed medulloblastomas (Bai et al., 2002; Goodrich et al., 1997). 

To look at the effect o f  loss o f  PTCH in adult skin, conditional PTCH knockout 

mice were created. The inducible activity o f  Cre recombinase under the control o f  

a keratin 6 (K6) promoter was used to control the expression o f  PTCH using 

retinoic acid. Normally, K6 is expressed in the companion layer o f  the hair follicle 

and ORS, but with retinoic acid treatment, it is also expressed in interfollicular 

epidermis. These experiments showed that loss o f  PTCH function was sufficient 

for tumour progression, and the tumours formed were reminiscent o f  BCCs
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(Adolphe et al., 2006; Aszterbaum et al., 1999). Together these studies confirmed 

the importance o f  SHH signalling for tumour development and showed that PTCH 

deactivation alone enabled SHH pathway activation which resulted in BCC 

induction.

Transgenic murine skin over-expressing smoothened (SMO), a downstream SHH 

pathway protein, developed abnormalities similar to BCCs. In these experiments, 

SMO was under the control o f  a K5 promoter that directed expression (and 

therefore downstream SHH signalling) to the basal epidermis and hair follicle 

ORS (Xie, 1998). As deactivating PTCH mutations and activating SMO mutations 

cause BCCs, PTCH null and SMO over-expressing mice provide the most accurate 

models for BCC.

SUFU normally represses activation o f  GLI transcription factors, so SUFU 

inactivating mutations cause constitutive SHH pathway activation. SUFU'7' mouse 

embryos were found to die in utero at -E 9.5  with developmental defects, a similar 

age to PTCH'7' embryos. This was found to be due to potent ligand independent 

activation o f  the SHH pathway, which could not be inhibited by the SMO inhibitor 

cyclopamine or increased by the SMO agonist SAG. SUFU+7' mice developed 

similar features to Gorlins syndrome including an abnormal basal cell phenotype. 

This confirmed that SUFU inactivating mutations can lead to disorders caused by 

SHH pathway signalling. Although we know that SUFU mutations are extremely 

rare in BCC patients, they may be important in other cancers in which SHH 

signalling is involved (Svard et al., 2006).

1.3.6 SHH Signalling in Cell Culture Models
There are very few publications describing BCC cell lines, suggesting that these 

cells do not grow well in culture. Therefore, several keratinocyte cell culture 

models expressing components o f  the SHH pathway have been developed for in 

vitro use. For example, an organotypic culture model using immortalised
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keratinocyte cells over-expressing SHH has been developed. In this model, 

keratinocytes were grown on a collagen lattice containing fibroblasts at the air- 

liquid interface (culture medium contacts the cells from the underside). This 

allows keratinocytes to differentiate and stratify in air as well as invade the 

collagen gel below. This model was used to view the ‘tumour-like’ down-growth 

o f  SHH over-expressing cells (observed in sections stained with haematoxylin and 

eosin). Cross-sections o f  the cultures were cut on a cryostat and dried onto glass 

slides. Immunocytochemistry with specific antibodies were used to compare the 

expression o f  various proteins (e.g. Ki67, a proliferative marker) in SHH 

expressing cells and normal cells. Treatment with an EGFR activity inhibitor 

(AG 1478) reduced the invasive phenotype and reduced Ki67 staining compared to 

untreated cells, showing that the EGF signalling pathway may be involved in 

modulating SHH signalling which could lead to increased invasiveness. In support 

o f  this, addition o f  recombinant EGF increased infiltration o f  SHH expressing 

keratinocytes into the collagen lattice containing fibroblasts. Increased MMP-9 

(matrix metalloproteinase 9) expression was also observed (Bigelow et al, 2005). 

MMP-9 breaks down extracellular matrix and is therefore associated with an 

invasive cell phenotype. This model is simple and lacks many factors such as 

immune cells and a vascular system but has the key advantage that you can see 

whether inhibitors to the SHH pathway actually inhibit tumour invasiveness.

Other models include keratinocyte cell lines over-expressing GLI transcription 

factors. Kasper and colleagues (2006) treated GLI 1 over-expressing keratinocytes 

with recombinant EGF and found that EGF signalling modulated GLI1 target gene 

expression. This seems to support the finding o f  Bigelow and co-workers (2005) 

that SHH pathway activity is modulated by addition o f  recombinant EGF to SHH 

over-expressing organotypic cultures (Bigelow et al., 2005). Additionally, a 

separate publication demonstrated a migratory phenotype in N/TERT1 cells 

expressing both EGF and GLI1, and showed that GLI1 represses ERK activity 

even when EGFR is increased (Neill et al., 2008). HaCaT keratinocytes expressing 

GLI1 and GLI2A under the control o f  doxycycline showed that c-Jun expression
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was elevated (mRNA and protein) in GLI2A expressing cells but to a lesser extent 

in GLI1 expressing cells. The same was found for N/TERT1 keratinocytes and 

primary human foreskin keratinocytes expressing GLI2 under retroviral control. 

This was supported in BCC tissue by immunohistochemistry and qPCR, which 

showed that c-Jun levels were higher than found in normal skin and located 

throughout the tumour islands (where SHH pathway components were also found) 

but not in the stroma. These results showed that c-Jun was a direct target o f  GLI 

(Laner-Plamberger et al., 2009).

Another research group found that GLI1 and EGFR co-expression in rat kidney 

cells (RK3E) induced anchorage-independent growth associated with 

tumorigenesis, but this was not achieved when GLI1 or EGFR were expressed 

individually. The tumorigenic capability o f these genes when expressed in 

combination was also demonstrated when HaCaT keratinocytes expressing GLI1 

and EGFR under the control o f  doxycycline were transformed. The importance o f  

the MEK/ERK branch (EGF pathway) was confirmed when inhibition o f  

MEK/ERK activity by adding U 0126  reduced anchorage-independent growth. 

Wortmannin, a PI3K/AKT inhibitor, was also added but had no effect, inferring 

the PI3K/AKT branch (EGF pathway) was not involved (Schnidar et al., 2009).

The drawback o f  these cell models is that in vivo BCCs have an up-regulated SHH 

pathway due to deactivation o f  PTCH or activation o f  SMO and not due to 

increased SHH ligand or activation o f  GLI transcription factors (except for rare 

cases o f  SUFU deactivating mutations, where GLI cannot be repressed). This 

model therefore bypasses the protein interactions between SHH and GLI which 

may be important for BCC development.

1.3.7 SHH Signalling Pathway Mutations in Other Disorders

SHH signalling pathway mutations in SHH, PTCH, GLI2, GLI3 and SMO have 

been reported in a variety o f  other genetic disorders (Table 1.1) and there is 

evidence that SHH may be influenced by other signalling pathways.
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Table 1.1: Genetic Disorders Caused by Defective SHH Signalling.

Disorder Clinical Presentation Publication

Holopros-

encephaly

Failure o f  the front lobes o f  the 

brain to separate

Ming et al., 2002

Greig cephalo- 

poly-syndactyly

Rare autosomal disorder 

characterised by physical 

abnormalities o f  the head, face, 

fingers and toes

Vortkamp, 1991

Pallister-Hall

syndrome

Abnormal development o f  many 

parts o f the body

Biesecker, 1997

Medulloblastoma Most common brain tumour in 

children

Erez et al., 2002; Xie et 

al., 1997; Smyth et al., 

1999

Meningioma Common benign brain tumour Xie et al., 1997

Squamous Cell 

Carcinoma

Carcinoma o f skin, lips, mouth, 

oesophagus etc.

Ping et al., 2001; 

Ahmadian et al., 1998

Tricho­

epithelioma

Small benign nodules o f  the skin 

(derived from hair follicle)

Vorechovsky et al., 1997

Oesophageal

carcinoma

Malignancy o f the oesophagus Maes aw a et al., 1998

Foetal

rhabdomyoma

Derived from striated muscle DiSanto et al., 1992; 

Klijanienko et al., 1988

Rhabdomyo­

sarcoma

Malignant tumour derived from 

striated muscle

Beddis et al., 1983

Small cell lung 

cancer

Carcinoma o f larger airways, 

often metastatic

Watkins et al., 2003

Prostate cancer Cancer that develops in the 

prostate epithelium

Karhadkar et al., 2004

Breast cancer Cancer that develops in the breast, 

various types

Xie et al., 1997
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1.4 Epidermal Growth Factor (EGF)
Epidermal growth factor (EGF) is an important molecule that stimulates cell 

proliferation in embryonic development and in the adult, but it is also involved in 

the growth o f  tumours during invasion (Bigelow et al., 2005; Hausman, 2004).

1.4.1 EGF Signalling Pathway
EGF is a 53 amino acid polypeptide that binds to a specific transmembrane 

tyrosine kinase receptor (EGFR). These enzymes modify proteins by adding 

phosphate groups to either tyrosine, or in some cases serine/threonine residues 

(Normanno et al., 2005; Cooper and Hausman, 1998). EGFR is expressed in the 

basal layer and to a lesser extent in suprabasal cells o f  the epidermis (Bigelow et 

al., 2005; Hausman, 2004) and when EGFR is blocked, cells undergo apoptosis 

(Bigelow et al., 2005).

EGFR (also known as ErbBl) belongs to the ErbBl-4 family o f  receptors and the 

other family members (ErbB2-4), also known as HER2-4 in humans, have 

different ligands. EGFR is inactive as a monomeric transmembrane protein but 

binding o f  EGF ligand to the receptor (EGFR) on the cell surface induces 

conformational changes that promote protein-protein interactions leading to 

receptor dimerisation and activation (Figure 1.12). A large number o f  

phosphorylation events are involved in the EGF signalling cascade, leading to 

functional changes in target proteins. These include increasing enzyme activity, 

cellular location or association with other proteins in the signalling cascade. Once 

dimerised, EGFR polypeptide chains cross-phosphorylate one another at tyrosine 

residues within the catalytic domain to further increase protein kinase activity.

In addition, further phosphorylation o f  tyrosine residues outside o f  the catalytic 

domain, creates binding sites for additional proteins that then transmit intracellular 

signals downstream o f  the activated receptor. These proteins bind to the receptor 

phosphotyrosine residues via src homology 2 (SH2) domains (Figure 1.12) 

leading to activation o f  various signalling cascades including PIP2/IP3, MEK/ERK
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and P13K/AKT (Bigelow et al., 2005). The SH2 domain was originally identified 

as a conserved domain in the oncogene src but was subsequently found in many 

other signalling proteins with phosphotyrosine containing target domains 

(Filippakopoulos et al., 2009).

An important part o f  the EGF pathway involves phosphatidylinositol 4, 5- 

biphosphate (PIP2), inositol 1, 4, 5-triphosphate 3 (IP3) and diacylglycerol (DAG). 

PIP2 is bound to the inner plasma membrane and close to phospholipase C (PLC). 

When cells are stimulated by EGF, the G-protein linked receptor activates PLC 

which cleaves PIP2 into IP3 and DAG at the plasma membrane (Figure 1.12). 

DAG remains at the membrane and is a physiological activator o f  protein kinase C 

(PKC) while IP3 diffuses to the endoplasmic reticulum and opens Ca2+ channels to 

release Ca2+ from storage, which then goes to the plasma membrane to co-activate 

PKC. In addition, PIP2 can also be further phosphorylated at position 3 by PI3 

kinase (PI3K) to make PIP3. The pleckstrin homology domain o f  AKT binds to 

PIP3, recruiting AKT to the inner plasma membrane for phosphorylation and 

activation by another protein kinase, PDK1 (Cooper and Hausman, 1998; Henson 

et al., 2007). AKT then regulates the function o f  many downstream targets by 

phosphorylation on serine/threonine residues to promote cellular survival (Cooper 

and Hausman, 1998).

Another important arm o f  the EGFR pathway is the MEK/ERK cascade involving 

a family o f  serine/threonine protein kinases. Ras activates Raf which then activates 

MEK (MAP Kinase/ERK Kinase). MEK then activates members o f  the ERK 

family by phosphorylation at both threonine and tyrosine residues (has dual 

specificity). ERK then phosphorylates and activates various target protein kinases 

and transcription factors. Activation o f  the ERK signalling pathway is known to 

lead to cell proliferation, survival and differentiation (Cooper and Hausman, 1998; 

Henson et al., 2005).
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Fos, part o f the AP-1 transcription complex is activated by phosphorylation o f Elk- 

1 by ERK (Schnidar et al., 2009; Laner-Plamberger et al., 2009). c-Jun represents 

the other part o f the AP-1 complex and this is normally activated by JNK, on a 

separate branch o f the RAS pathway (Figure 1.12). It has been shown that 

MEK/ERK somehow interacts with c-Jun/AP-1 and that U 0126 (MEK inhibitor) 

can abolish c-Jun phosphorylation.

[Activat< 
I PKC

PTEN

PDK1

t

MKK-7
Release]

Figure 1.12: EGF Signalling Pathway. Phosphorylation o f the EGF receptor leads to 

downstream signalling through PI3K/AKT and MEK/ERK pathways.

37



1.4.2 EGF and Cancer
The EGF pathway has previously been shown to function in cancers other than 

BCC, including epithelial cancers o f  the prostate and breast. Activation o f  the 

EGF pathway is thought to make tumours more aggressive and more likely to 

metastasize, a function linked to a role in epithelial mesenchymal transition [EMT] 

(Hardy, 2010).

EMT occurs when epithelial cells lose their epithelial characteristics and express 

mesenchymal markers (keratinocytes become fibroblast-like). Indeed, in BCCs 

and SCCs, ErbBl (EGFR) ligands were found to increase in the adjacent “normal” 

epidermis (qPCR and immunohistochemistry data). However, downstream 

ERK 1/2 and AKT were found to be activated in normal epidermis adjacent to 

SCCs, but importantly this was not observed for BCCs (Rittie et al., 2007). This 

suggests a lack o f  activation o f  either the PI3K/AKT or MEK/ERK branches o f  the 

EGF pathway in BCCs. Significant elevation o f  EGFR ligands in papillomas and 

SCCs has also been supported (Kiguchi et al., 1998). Additionally, EGFR was 

found in proliferating layers o f skin cancers (both BCCs and SCCs) and one 

research group found expression in all cells o f  BCCs by immunohistochemistry 

(IHC) on frozen sections (Kikuchi et al., 1990; Lavrijsen et al., 1989). EGF 

pathway transcription complex (AP-1) components c-Jun and c-Fos were also 

shown to be increased in BCCs, suggesting that at least part o f  the EGF pathway is 

activated. Together, these results do not clearly show that the EGF pathway is 

activated in BCCs. As the EGF pathway is generally thought to be involved in cell 

survival and proliferation, the low levels o f  p-ERK and p-AKT found previously 

are consistent with the fact that BCCs are slow growing tumours that rarely 

metastasize.

However, there is evidence for an interaction between SHH and EGF signalling 

(particularly via MEK/ERK) at the level o f GLI transcription factors, causing an 

infiltrative BCC phenotype. HaCaT cells in organotypic culture that expressed 

SHH showed increased EGFR phosphorylation compared to cells that did not.
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Furthermore, cells expressing SHH also showed an ability to invade a collagen 

matrix and this invasion was prevented when EGFR signalling was inhibited 

(Bigelow et al., 2005). Gene expression profiling (qPCR) o f N/TERT1 

keratinocytes over-expressing GLI1 and stimulated with EGF, identified a subset 

o f  GLI1 target genes modulated via MEK/ERK signalling. The same research 

group showed that GLI and EGF are both required for induction o f cell cycle 

progression and that EGF signalling inhibited GLI1 controlled stem cell marker 

expression (Kasper et al., 2006). Another research group found p-ERK in the 

tumour margin o f  one BCC sample by immunohistochemistry, suggesting that 

EGF signalling may cause invasive characteristics in some tumour cells (Neill et 

al., 2008). Interestingly, increased levels o f  the transcription factor c-Jun were 

found in BCCs in vivo and in SHH over-expressing organotypic cultures. 

However, c-Jun expression can be controlled by GLI1 and GLI2, as well as by 

EGF signalling, so c-Jun may be important for transcription o f  augmented 

downstream genes (Laner-Plamberger et al., 2009; Bigelow et al., 2005; Schnidar 

et al., 2009).

If  there are interactions between the EGF and SHH signalling pathways, inhibitors 

o f  the EGF pathway might provide an effective treatment for BCC. Research has 

been carried out with topical formulations that inhibit MAPK and PI3K/AKT 

signal transduction pathways and these successfully limited cell proliferation in 

breast cancer (Davison et al., 2008a) so it may be worth trying this approach for 

BCCs.

c-Jun is thought to be up-regulated in BCCs, and constitutive activation o f  the AP- 

1 complex can lead to cell proliferation (Figure 1.13). It is not known how c-Jun 

might be activated in BCCs but crosstalk between the MEK/ERK arm o f the EGF 

pathway (which is possibly activated) and the MEKK1/JNK arm (activated by 

inflammatory cytokines and cell stress leading to apoptosis), may play a role. 

Reducing c-Jun levels with RNAi (interference RNA; inhibit gene expression by
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inactivating specific mRNAs) in cells with active GLI and EGFR signalling 

reduced transformation inferring a role for c-Jun (Schnidar et al., 2009).

SUFU

PTCH

QUA HH targot genes

CJUN

cr

L EGF

O  0  protein?

GLI

migration 

Proliferation

Figure 1.13: Possible Interactions between SHH and EGF Signalling Pathways.

Interactions between the MEK/ERK arm of the EGF pathway at the level o f GLI 

transcription factors (possibly via AP-1 complex) could lead to modulation o f SHH 

pathway target genes by a physical interaction between c-Jun and GLI2 (and to a lesser 

extent with GLI1). This would lead to a positive feedback loop with activated GLI up- 

regulating c-Jun. Combining c-Jun and GLI may lead to up-regulation o f EGFR and SHH 

target genes, which would increase cell migration and proliferation.

GLI target genes (S100A7 and IL-1R2) have their transcription modulated by a 

physical interaction between GLI2 and c-Jun (c-Jun promoter has a functional GLI 

binding site) (Laner-Plamberger et al., 2009). When c-Jun is knocked out with 

shRNA (small hairpin RNA, used to silence gene expression), expression o f these 

genes decrease, and primary c-Jun '' keratinocytes show reduced proliferation
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(Laner-Plamberger et al., 2009; Zenz et al., 2003). Both c-Fos and c-Jun are part o f  

the AP-1 transcription complex, so transcription may be inhibited by the MEK 

inhibitor PD98059 (also inhibits c-Fos). In addition, c-Jun is also thought to be a 

target o f  MEKK1/JNK (Franklin et al., 1992).

1.5 Development Rationale for Novel Topical Treatments
There is a clinical need for a formulation which can be used to treat more invasive 

BCC subtypes in order to reduce health service costs in the western world.

The general strategy is to look at expression o f  EGF proteins in BCC biopsies to 

decide whether there is a need to target the EGF pathway in addition to using a 

SMO inhibitor such as cyclopamine. In addition to this, a cell culture model o f  

BCC will be developed which can be used to test inhibitor efficacy prior to the 

development o f  a suitable formulation.

Many possible treatments are toxic and can cause severe side effects because the 

drugs are non-specific (act on more than one part o f  a signal transduction 

pathway). If formulations targeting EGF were given orally, they would have high 

toxicity due to this lack o f  specificity. BCCs are not metastatic, so a systemic drug 

reaching organs other than the skin is not necessary and so this toxicity can be 

decreased by topical administration. This reduces first pass metabolism (when the 

drug is metabolised by the liver, reducing the amount that reaches the systemic 

circulation), so less o f  the drug is needed for topical delivery thus reducing toxicity 

(Rang, 2003). This means that the drug can be administered at home rather than in 

hospital, saving health care costs.

1.5.1. EGF Signalling Pathway Inhibitors
There are two main types o f  EGF pathway inhibitor: monoclonal antibodies and 

protein kinase inhibitors (Henson and Gibson, 2006). Suramin and Trastuzumab 

(Herceptin) are monoclonal antibodies which inhibit the whole EGF pathway and 

they have been used to treat prostate cancer and breast cancer respectively (Boylan
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et al., 1998; Harries and Smith, 2002; Kalli et al., 2004). Small molecule inhibitors 

are more specific and include PX-866 (a PI3K inhibitor which has been effective 

on lung cancer cell lines; Henson and Gibson, 2006), PD98059 (MAPK 

phosphorylation inhibitor) and LY249002 (another PI3K inhibitor), which have 

been used in combination with tamoxifen to limit breast cancer cell growth 

(Davison et al., 2008a; Ellis, 2004).

1.5.2 EGF Antagonists (PD98059 and LY294002)
PD98059 and LY294002 are EGF antagonists which may be suitable for use in a 

topical formulation (Figure 1.14). Both inhibitors have previously been used in 

the treatment o f  other carcinomas in which EGF signalling is active. LY294002 is 

a derivative o f  the naturally occurring bioflavanoid quercetin, a PI3K inhibitor. It 

acts by competitively inhibiting the ATP binding site o f PI3K, thus preventing the 

transfer o f  the terminal phosphate o f  ATP to phosphoinositol. This then inhibits 

the formation o f  PIPs and activation o f AKT. PI3K affects oncogenes such as v-src 

and v-abl so its inhibition is likely to be useful for reduction o f  tumorigenesis 

(Vlahos et al., 1994). Wortmannin is a more potent inhibitor o f  PI3K but acts 

irreversibly, whereas the action o f  LY294002 is reversible.

PD98059 is a flavonoid that acts as a potent and selective inhibitor o f MEK 

phosphorylation by cRAF or MEK kinase. This leads to inhibition o f  MAPK 

phosphorylation, directly downstream o f  MEK (Alessi et al., 1995; Dudley et al., 

1995).
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Figure 1.14: Chemical Structures ofLY294002 (A) and PD980S9 (B).

1.5.3 Cyclopamine
Cyclopamine (Figure 1.15) is a teratogenic steroidal alkaloid derived from plants 

( Veratrum genus), which induces a cephalic defect (cyclopia) in vertebrate 

embiyos by preventing the division o f  the foetal brain into two lobes 

(holoprosencephaly), giving rise to its name based on Homer’s Cyclops from 

Greek Mythology (Taipale et al., 2000).

HN CH

CH.

HO

Figure 1.15: Chemical Structure of Cyclopamine.

Its action was first discovered when sheep grazing on Veratrum californicum gave 

birth to lambs, suffering from cyclopia, on the 14th day o f  gestation. Similarities 

noticed between Fmtfrw/w-induced cephalic defects in lambs (including cyclopia) 

and holoprosencephaly-like abnormalities (Figure 1.16). These are associated with 

the loss o f  SHH pathway signalling which eventually led to the discovery that
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cyclopamine binds directly to the SMO heptahelical protein bundle. Cyclopamine 

inhibits SMO by influencing its protein conformation and thus blocking activation 

o f downstream genes in the sonic hedgehog pathway. This antagonistic action on 

SHH signalling has been shown to be SHH and PTCH independent (Chen et al., 

2002a; Chen et al., 2002b; Taipale et al., 2000).

Figure 1.16: Veratrum Californicum, Sonic Hedgehog Game Character and an 

example o f Cyclopia in Sheep.

Cyclopamine and related steroidal alkaloids have similar structures to cholesterol. 

However, steroidal alkaloids with a structure similar to cyclopamine are not all 

potent inhibitors o f SMO. There appear to be similarities between the functions of 

cholesterol and cyclopamine, which may use a common vesicular pathway for 

their actions. This is thought to be the case because PTCH and the Niemann-Pick 

Cl protein (a transmembrane molecular pump involved in cholesterol 

homeostasis), are structurally similar (Davies et al., 2000). In addition, compounds 

that block cholesterol transport by affecting the vesicular trafficking o f the 

Niemann-Pick C l protein, are also weak SHH antagonists. Furthermore, co­

localisation o f PTCH and Niemann-Pick C l protein was confirmed in vesicular 

compartments o f cells.
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1.5.4 Small Molecule SHH Pathway Inhibitors

There are a number o f small molecule inhibitors to components o f the SHH 

pathway, which may be useful for the treatment o f BCC or other cancers 

dependent on SHH signalling. Many have progressed to clinical trial (Table 1.2), 

but not all were available at the start of, or during, this study. The targets o f some 

of these inhibitors are shown in Figure 1.17.

(a) W ithout Hh (b) With Hh

Figure 1.17: Inhibitors o f the Basic Components in the Sonic Hedgehog Pathway. SHH

pathway (a) in the absence o f SHH and (b) in the presence o f SHH, and where the 

pathway would be de-activated by inhibitors (adapted from Scales and Sauvage, 2009).

Normally, in sporadic cases o f BCC, SHH inhibitors would not be useful since the 

pathway is constitutively activated in the absence o f SHH. However, in xeroderma 

pigmentosum patients, where BCCs can be caused by SHH mutations, they may be 

applicable. Most inhibitors to the SHH signalling pathway target SMO, but some 

also inhibit GLI transcription factors (Table 1.2). Inhibition o f GLI still leaves the
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pathway upstream active which has lead to the discovery o f  transcriptional 

modulation by non-canonical pathways (Jenkins, 2009).

Table 1.2: Small Molecule SHH Pathway Inhibitors in Development (adaptedfrom  

Toftgard and Tegund, 2010).

Compound Target Developmental Phase
Robotnikinin SHH Preclinical
Cyclopamine SMO Preclinical
KAAD-Cyclopamine SMO Preclinical
Jervine SMO Preclinical
IPI-609 SMO Preclinical
IPI-926 SMO Clinical phase I (advanced and/or  

m etastatic solid tum ours)
SANT1, 2, 3, and 4 SMO Preclinical
CUR-61414 SMO Clinical phase I (BCC), halted
H hA ntag691 /  H h Antag SMO Preclinical
GDC-0449 SMO Clinical phase I (advanced and/or  

m etastatic solid tumours, 
m edulloblastom a, pancreatic 
cancer)
Clinical phase II (advanced BCC, 
m etastatic colorectal cancer, 
ovarian carcinoma)

BM S-833923/XL139 Clinical phase I (advanced or 
m etastatic cancer)

GANT61 GLI Preclinical
HPI-1, 2, 3, and 4 GLI-A

function
Preclinical

1.6 Hypothesis
Inhibition o f  EGF signalling in combination with blocking SHH signalling restricts 

BCC growth.

1.6.1 Research Aims:
• To develop an in vitro cell model to test drug formulations.

• To probe EGF signalling in BCC in order to confirm the in vivo relevance 

o f  a formulation containing EGF inhibitors on all sub-types o f  BCC.

• Determine a suitable vehicle for drug deliveiy.
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Chapter 2

Sonic Hedgehog and Epidermal 
Growth Factor Signalling in 

Monolayer Cultures
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2.1 Introduction

In recent years, several research groups have been in agreement that epidermal 

growth factor (EGF) signalling cascades somehow modulate the Sonic Hedgehog 

(SHH) pathway, leading to augmented expression o f  a subset o f  target genes. It 

has been shown that the combined expression o f  EGF and SHH causes neural stem 

cell proliferation (Palma et al., 2005), which may be important in prostate 

carcinoma. More recently, however, publications have suggested that it is 

particularly the MEK/ERK portion o f  the EGF pathway which is augmenting SHH 

signalling at the level o f  GLI transcription factors (Schnidar et al., 2009).

Experiments using Glil-overexpressing N/TERT1 keratinocytes and qRT-PCR 

have shown that recombinant EGF augments the expression o f  a subset o f Gli- 

induced genes. Furthermore, five o f these genes (ARC, S100A7, IL1-R2, EGR-3 

and JAG-2) demonstrated large increases in the presence o f  recombinant EGF. In 

fact, S100A7 levels increased 2.3 fold with EGF alone, 9.8 fold with GLI1 alone 

and up to 1,300 fold with both GLI1 and EGF compared to untreated controls 

(Kasper et al., 2006). In order to confirm which parts o f  the EGF pathway are 

involved in the change o f GLI1 target gene expression, HaCaT keratinocytes 

expressing a doxycycline-regulated conditional allele o f  GLI 1 supplemented with 

recombinant EGF, were treated with a PI3K inhibitor (LY294002) or a MEK 1/2 

inhibitor (U0126). Data from qRT-PCR experiments showed that the MEK/ERK 

arm o f  the EGF pathway but not PI3K/AKT arm is involved in augmenting the 

SHH pathway (Kasper et al., 2006).

In SHH-overexpressing HaCaT keratinocytes, it has been shown that the addition 

o f  recombinant EGF allowed tumour invasion in organotypic cultures. The 

importance o f  the EGF pathway for invasion was also confirmed by showing that 

an EGFR inhibitor (AG 1478) reduced matrix infiltration. Higher levels o f  

phosphorylation o f  both the EGFR and RAF (MEK/ERK cascade o f  EGF 

pathway) were also observed in SHH expressing organotypic cultures. This is
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additional confirmation o f  the importance o f not only the EGF pathway but 

specifically the MEK/ERK arm (Bigelow et al., 2005).

EGF has also been shown to repress Glil-induced expression o f  stem cell 

characteristics (colony formation) and markers (such as EMT marker vimentin) in 

N/TERT1 cells. Cell-to-cell adhesion was increased in the presence o f GLI1 and 

E-cadherin localisation also changed from perinuclear to the plasma membrane in 

GLI1 expressing cells. In contrast to other published research, Neill and colleagues 

(2008) also found a decrease in EGFR and ERK activity associated with colony 

formation in GLI1 expressing cells. Furthermore, ERK was not increased in GLI1 

expressing cells even in the presence o f  exogenously increased EGFR (Neill et al., 

2008), which suggested a negative feedback loop between GLI1 and ERK. In 

agreement with other publications, they found no change in AKT activity.

Schnidar and co-workers (2009) showed that U 0126  (MEK 1/2 inhibitor) reduced 

anchorage independent growth and c-Jun/AP-1 induced gene expression while 

wortmannin (PI3K inhibitor) did not. They used HaCaT keratinocytes where GLI 1 

expression was under the control o f  doxycycline and this data supports a role for 

the MEK/ERK arm o f the EGF pathway (combined with GLI activation) in 

oncogenic transformation (Schnidar et al., 2009).

The same group also suggested a mechanism involving an AP-1 transcription 

factor (c-Jun) in this oncogenic transformation. The AP-1 complex can be 

activated by MEK/ERK which then augments the SHH pathway at the level o f  

GLIA (also termed GLIact) to induce GLI/EGF target gene expression and 

oncogenic transformation. This has been shown by in silico promoter analysis 

where GLI and AP-1 binding sites were both present in GLI/EGF target genes and 

this was not found in EGF-independent GLI target genes. Stimulation o f  EGFR 

signalling activates c-Jun/AP-1 via MEK/ERK, with c-Jun binding to the 

promoters o f  GLI/EGF target genes. In confirmation o f  this, inhibition o f
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MEK/ERK prevents activation o f  c-Jun, reduces GLI/EGF target gene expression 

and also reduces transformation (Schnidar et al., 2009).

GLI1 and GLI2A-expressing HaCaT and N/TERT1 keratinocyte cell lines have 

been used to show that GLI 1 and GLI2A can regulate transcription o f  c-Jun. The 

proliferative potential o f  GLI was found to be reduced in the absence o f  c-Jun 

(Laner-Plamberger et al., 2009) and c-Jun has also been found in the nuclei o f  

BCC cells, suggesting that it is important for BCC development.

The publications described above showed some discrepancies, such as whether 

ERK is increased in BCC and whether c-Jun is a transcription factor downstream 

o f  MEK/ERK. The use o f  different cell lines (HaCaT and/or N/TERT1) that over­

express different parts o f the SHH pathway could explain the variable results 

obtained in some o f  these studies. However, they all seem to agree that MEK/ERK 

is involved in BCC development but the detailed mechanisms are still to be fully 

elucidated.

The main objective in our current research is to confirm the activity o f  both SHH 

and EGF pathways after addition o f  recombinant SHH and/or EGF to N/TERT1 

keratinocytes and to show pathway activation by measuring expression o f a subset 

o f  target genes (EGR-3, IL1R2, S100A7 and PTCH).

The ERK arm o f  the EGF pathway has been shown to augment SHH signalling 

and has been considered to be a good target for treating BCC alongside inhibitors 

o f  the SHH pathway. Monolayer keratinocyte cultures activated by the presence o f  

recombinant SHH and/or EGF were therefore considered a good starting point for 

testing these inhibitors.
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2.1.2 Aims

• To determine whether SHH and EGF signalling could be activated in 

N/TERT1 cells so that an in vitro model for BCC could be developed.

• To compare levels o f SHH target genes when SHH and EGF were both 

present to determine whether EGF has an effect on SHH signalling.

2.2 Methods

2.2.1 Cell Lines
Normal human somatic cells have a limited capacity to replicate in culture, and 

quickly become senescent. In general, this is due to short telomere length or DNA  

damage, which reduces the lifespan o f the cell. However, in principal, 

immortalisation allows cells to replicate for an unlimited number o f  passages. Two 

keratinocyte cell lines have been utilised for this project, N/TERT1 (from Dr 

James Rheinwald, Brigham and Women’s Hospital, Harvard Institute o f  Medicine, 

Boston, MA, USA) and HaCaT (from Prof. Petra Boukamp, German Cancer 

Research Center [DKFZ], Heidelberg, Germany).

Normal human epidermal keratinocytes were immortalised by stable hTERT 

expression and loss o f  P16INK4a to produce the N/TERT1 cell line. hTERT is the 

activity-limiting component o f telomerase, a holoenzyme with a template for 

telomere synthesis and a catalytic protein subunit with reverse transcriptase 

activity which prevents the loss o f  telomeres in cells. P16INK4a is involved in cell 

cycle control and would normally limit the lifespan o f  cells and loss o f  P16INK4a 

prevents the change from G1 to S growth phase. However, N/TERT1 cells retain 

responsiveness to growth control and differentiation signals and histologically 

appear similar to normal human keratinocytes in organotypic cultures or when 

grafted onto mice. Their survival in the absence o f  exogenous growth stimuli is 

enhanced compared to primary keratinocytes. Therefore, they provide a useful
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model to study gene expression changes in response to well-defined stimuli 

(Dickson et al., 2000).

HaCaT cells represent a spontaneously immortalised human keratinocyte cell line. 

The cells were originally obtained in 1988 from histologically normal skin distal to 

an excised melanoma. This cell line was named HaCaT because o f  the human 

adult skin keratinocyte origin and because cells were propagated in low Ca2+ 

medium and at an elevated temperature (Boukamp et al., 1988). Spontaneous 

immortalisation o f  human cells is quite rare, probably because the genome is more 

stable than for other animal cells, such as rodents. Early in the immortalisation 

process, HaCaT cells differentiated and stratified in high calcium conditions, but 

grew as a monolayer in low calcium. Further passages reduced the effects o f  low 

calcium levels and cells that survived increased temperature were able to grow 

autonomously in culture. Marker chromosomes resulted which were able to show 

that the cell line was monoclonal by karyotyping. This also showed that HaCaT 

cells were aneuploid but many cells in late passages were polyploid. It has been 

suggested that polyploidy may be the cause o f  autonomous growth in culture.

HaCaT cells have been shown to be non-tumorigenic and non-invasive. Like 

normal keratinocytes, they grow into a well-structured epidermis when 

transplanted onto mice, having the same keratin expression profile, exhibiting 

normal differentiation and retaining all these properties at higher passages. Cells 

immortalised by virus infection (e.g. Simian Virus-40), a commonly used 

technique, tend to have altered growth properties, distorted keratinisation and 

deficient differentiation (Boukamp et al., 1988).

2.2.1.1 Maintaining Cell Lines (N/TERT1 and HaCaT)

N/TERT1 cells were thawed at 37°C in a water bath, transferred to a 20ml 

Universal tube and 9 volumes o f  DMEM (calcium-free, glutamine-free) /Ham’s 

F12 (1:1, v/v) (Gibco, Invitrogen, Paisley, UK) containing 10% FBS (Lonza, 

Slough, UK) were slowly added. After careful mixing by pipette, the cells were
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pelleted by centrifuging at 1,200 rpm for 5 minutes at room temperature (RT) and 

the supernatant was discarded. The N/TERT1 cell pellet was resuspended in 20ml 

keratinocyte serum-free medium (K-SFM) containing bovine pituitary extract 

(25pg/ml), EGF (0.2ng/ml) and 0.3mM CaCh (Gibco, Invitrogen, Paisley, UK). 

The cells were carefully mixed and incubated at 37°C (5% CO2) in a T75 culture 

flask (Coming, Fisher Scientific, Loughborough, UK). The medium was changed 

every 2-3 days but as N/TERT1 cells did not grow that well in this medium, there 

were sub-cultured at low density (30% confluency).

To subculture N/TERT1 cells, the medium was aspirated and the cells were 

washed once with dPBS. Trypsin-EDTA (Gibco, Invitrogen, Paisley, UK) was 

added (5ml) and the cells incubated at 37°C (in 5% CO2) for approximately 10 

minutes or until the cells were no longer adherent. An equal volume (5ml) o f  

serum containing medium (DMEM/Ham’s F12 [1:1, v/v] containing 10% FBS) 

was added to the cells to inhibit the trypsin. The cell suspension was carefully 

mixed, transferred to a 50ml falcon tube and centrifuged at 1,200 rpm for 5 

minutes at RT. The supernatant was discarded, the cell pellet resuspended in 2- 

10ml K-SFM and cell number counted using a haemocytometer. Cells were then 

placed into new flasks (at approximately lx l0 5cells per T75) and K-SFM was 

added to make a total o f  20ml.

HaCaT cells were thawed at 37°C in a waterbath and 20ml DMEM (Lonza, 

Slough, UK) containing 2 mM L-glutamine and 10% FBS was slowly added and 

mixed by pipetting. The cells were then incubated at 37°C (5% CO2) in a T75 

culture flask and the medium changed every 2-3 days. HaCaT cells were 

subcultured at higher density (-80%  confluency). Medium was aspirated and the 

cells washed once with PBS before adding 5ml trypsin-EDTA. The cells were then 

incubated at 37°C (5% CO2) for approximately 10 minutes or until cells were no 

longer adherent. DMEM with 10% FBS (5ml) was added to inhibit tiypsin activity 

and after careful mixing, the cell suspension was transferred to a 50ml falcon tube. 

The cells were centrifuged at 1,200 rpm for 5 minutes at RT and the supernatant
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discarded. The pellet was resuspended in 2 -10ml DMEM with 10% FBS and the 

cell number counted using a haemocytometer. Cells were placed into new flasks 

(at approximately lxlO 5 cells per T75) and DMEM containing 10% FBS was 

added to a total o f  20ml. Cells were then incubated at 37°C (5% CO2) until 

confluent (5-7 days).

2.2.1.2 Growing N/TERT1 Keratinocytes to High Confluency

In order to grow N/TERT1 keratinocytes to a level above 30% confluency, a 

different medium was required. In this case, cells were cultured in a mixture o f  K- 

SFM and DF-K media (1:1, v/v). DF-K is calcium-free, glutamine-free 

DMEM/Ham’s F I2 mixture (1:1, v/v) containing 0.2ng/ml EGF, 25pg/ml bovine 

pituitary extract and 1.5mM L-glutamine (Gibco, Invitrogen, Paisley, UK). This 

medium was replaced every 2 days and N/TERT1 cells become fully confluent 5-7 

days after subculture.

2.2.1.3 Cryopreserving Keratinocytes for Storage

In order to keep cells over a long period o f time in liquid nitrogen, a specialised 

freezing mixture is required. N/TERT1 cells were stored in a mixture o f  DMEM 

and F12 (1:1, v/v) with 16% FBS and 20% DMSO which was premade and stored 

at -80°C. The components were thoroughly mixed, allowed to stand at 4°C for 2 

hours, filter-sterilised (at 0.2pm), 1ml aliquots placed into 2ml cryovials and 

stored at -80°C.

The N/TERT1 cells were prepared by aspirating the medium and washing the cells 

with dPBS (sterile phosphate buffered saline). Trypsin-EDTA (5ml) was added 

and the cells incubated at 37°C (5% CO2) for 5-12 minutes. An equal volume 

(5ml) o f DMEM-F12 [1:1, v/v] containing 10% FBS was then added and carefully 

mixed to inhibit the trypsin activity. The cells were pelleted by spinning at 1,200 

rpm for 5 minutes at RT and the medium was aspirated. Cells were then re­

suspended in 3-4ml K-SFM and counted using a haemocytometer.
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N/TERT1 cells were frozen at the recommended cell concentration (5 x l0 4 to 

2x105 cells per ampule) by adding 1ml o f the cells in K-SFM to a 1ml freezing 

mixture aliqout (1:1, v/v). The vials were wrapped in tissue, placed in a 

polystyrene tube box and frozen at -80°C. After 24 hours, the vials were 

transferred to liquid nitrogen for long term storage.

HaCaT cells were frozen by adding culture medium containing cells directly to 

filter-sterilised (at 0.2pm) FBS containing 10% DMSO. Again, this freezing 

mixture was premade and stored in 1ml aliquots at -80°C.

HaCaT cell cultures were prepared for freezing by aspirating the medium, washing 

the cells in dPBS and then adding 5ml trypsin-EDTA. The cells were incubated at 

37°C (5% CO2) for 5-12 minutes and then an equal volume (5ml) o f  DMEM 

containing 2mM L-glutamine and 10% FBS was added to inhibit the trypsin 

activity. The cells were pelleted by spinning at 1,200 rpm for 5 minutes at RT and 

the supernatant aspirated. The cells were resuspended in 3-4ml DMEM containing 

10% FBS, counted and adjusted to a concentration o f  3 x l0 6 cells per ml o f  

medium. The cells in medium (1ml) were then added to a cryovial containing 1ml 

o f  freezing mixture. The vials were wrapped in tissue, placed in a polystyrene tube 

box and frozen at -80°C. After 24 hours, the vials were transferred to liquid 

nitrogen for long term storage.

2.2.1.4 Confirming EGF Pathway Activation

In order to cany out further experiments using recombinant EGF, it was important 

to confirm that the EGF pathway could be activated in N/TERT1 and HaCaT 

keratinocytes.

N/TERT1 cells were plated at approximately 6 x l0 5cells/dish in four 10cm dishes 

with 10ml K-SFM containing growth supplements (bovine pituitary extract 

[25pg/ml], EGF [0.2ng/ml] and 0.3mM CaCh per dish). The cells were incubated 

at 37°C (5% CO2) for 36 hours, the K-SFM aspirated, the cells washed three times
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with dPBS and 10ml K-SFM without EGF or bovine pituitary extract was added to 

each dish. The cells were incubated at 37°C (5% CO2) for 24 hours and then 

exposed to lOng/ml EGF (Gibco, Invitrogen, Paisley, UK) for 5, 10 or 20 minutes 

(3 separate dishes). Extraction buffer (0.8ml) was applied to each dish and the 

cells were scraped into 1.5ml eppendorf tubes, then boiled for 5mins and stored at 

-20°C for western blot analysis. The extraction buffer contained 1ml 0.5M Tris 

(Fisher Scientific, Loughborough, UK), 0.8ml glycerol (Sigma-Aldrich Company 

Ltd, Gillingham, UK), 1.6ml 10% SDS (Fisher Scientific, Loughborough, UK), 

0.08ml 1M dithiothreitol (Sigma-Aldrich Company Ltd, Gillingham, UK) and 

0.2ml bromophenol blue (Sigma-Aldrich Company Ltd, Gillingham, UK).

HaCaT cells were also plated (at approximately 6 x l0 5cells/dish) in four 10cm 

dishes with 10ml DMEM containing 10% FBS and incubated at 37°C (5% CO2) 

for 36 hours. The medium was aspirated, cells washed three times with dPBS and 

then 10ml DMEM (no FBS) was added to each dish. The cells were incubated at 

37°C (5% CO2) for 24 hours and then exposed to lOng/ml EGF (Gibco, 

Invitrogen, Paisley, UK) for 5, 10 or 20 minutes (3 separate dishes). Extraction 

buffer (0.8ml) was applied to each dish and the cells were scraped into 1.5ml 

eppendorf tubes, then boiled for 5 minutes and stored at -20°C for western blot 

analysis.

2.2.1.5 EGF and SHH Pathway Induction in N/TERT1 Cell Line 

N/TERT1 cells were plated at approximately 6 x l0 5 cells per 10cm dish in 10ml K- 

SFM plus growth supplements: bovine pituitary extract (25pg/ml), EGF 

(0.2ng/ml) and 0.3mM CaCI2 . The cells were incubated at 37°C (5% CO2) for 36 

hours and then the K-SFM was aspirated, the cells were washed three times with 

dPBS and 10ml K-SFM without EGF or bovine pituitary extract was added to each 

dish. The cells were incubated at 37°C (5% CO2) for 24 hours and then exposed to 

EGF (lOng/ml) and/or SHH (lOng/ml), (mouse recombinant proteins from E. Coli: 

Sigma-Aldrich Company Ltd, Gillingham, UK) in the presence or absence o f the 

agonists, LY294002 (20pM) and/or PD98059 (20pM), for 24 hours. SDS sample
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buffer (0.8ml) was applied to each dish and the cells were scraped into 1.5ml 

eppendorf tubes, then boiled for 5 minutes and stored at -20°C for western blot 

analysis. Alternatively, 0.9ml Trizol was applied to each dish and the cells were 

scraped into 1.5ml eppendorf tubes and stored at -80°C for RNA extraction.

2.2.1.6 Cell Viability Assay

This assay records luminescence signals from viable cells based on the quantity o f  

ATP present, thus showing if  there is an increase or decrease in cell viability when 

N/TERT1 keratinocytes were treated with inhibitors to the EGF pathway. 

N/TERT1 keratinocytes were plated in a 96 well plate at a density o f  approx 440 

cells/well in lOOpl K-SFM containing growth supplements. The cells were 

incubated at 37°C (5% CO2) for 24 hours to approximately 30% confluent. The K- 

SFM was then aspirated and replaced with IOOjllI K-SFM per well plus the 

treatments shown in Table 2.1 (4 replicates per treatment).

Table 2.1: Treatments usedfor N/TERT1 Keratinocyte Cell Viability Assay.

Treatment Quantities
Control 20 j l i1 K-SFM
Inhibitor diluent 15nl D M SO + 5pl K-SFM
PI3K inhibitor 20pM LY294002 in 15pl DMSO + 5pl K-SFM
MEK inhibitor 20pM PD98059 in 15ul DMSO + 5pl K-SFM
PI3K + MEK inhibitors 20pM LY294002+20pM PD98059 in 15pl DMSO + 

5pi K-SFM

After 24 hours, an aliquot o f fresh Cell Titer-Glo (CTG) reagent (Promega UK 

Ltd, Southampton, UK) was made by mixing 10ml substrate and 10ml buffer from 

the kit. The medium was removed from the 96 well plate, cells were washed three 

times in dPBS and then lOOpl K-SFM was added to each well. The plate was 

allowed to equilibrate for 30 minutes at RT before the addition o f  lOOpl CTG 

reagent, to each well. The plate contents were mixed on an orbital shaker to induce 

cell lysis and then the plate was allowed to incubate at RT for 10 minutes to 

stabilise the signal. Luminescence was measured on a Tropix TR717 microplate 

luminometer using an integration time o f  0.5 seconds.
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2.2.2. Molecular Biology
2.2.2.1 RNA Extraction

Total RNA was extracted from skin or cultured cells using Trizol reagent (Gibco, 

Invitrogen, Paisley, UK). Briefly, 0.9ml trizol was added to cryostat cut (0.7pm) 

slices o f  normal human skin or to a 10cm plate o f  confluent cells and the contents 

were scraped into a 1.5ml eppendorf tube and vortexed for 5 minutes. An aliquot 

(0.25ml) o f  chloroform (Fisher Scientific, Loughborough, UK) was added, the 

solution was shaken for 15 seconds and then left to stand for 2-15 minutes. This 

was centrifuged at 12,000 rpm for 10 minutes at 4°C. The top aqueous layer was 

removed and transferred to a clean 1.5ml tube and 0.6ml isopropanol added, mixed 

and left to stand for 10 minutes. The mixture was centrifuged at 12,000 rpm for 4 

minutes at 4°C and the supernatant discarded. The pellet was washed with 1ml 

75% ethanol (Fisher Scientific, Loughborough, UK) and centrifuged at 7,500 rpm 

for 5 minutes at 4°C. The ethanol was discarded and the pellet air dried until it 

became translucent. The pellet was resuspended in 15-30pl nuclease-free water 

(Sigma-Aldrich Company Ltd, Gillingham, UK), and an aliquot (3-4pi) removed 

to measure the RNA concentration by spectrophotometry (absorbance at 260 nm).

2.2.2.2 Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Reverse transcription was carried out to make cDNA from total RNA previously 

extracted from cells. RNA (lp g), Oligo dT (n=15) primer ( lp l at 500pg/ml) 

(Promega Uk Ltd, Southampton, UK) and enough dFLO to make up to 6pl were 

mixed in a 0.2ml eppendorf tube and placed in thermal cycler (PTC-200 Peltier 

Thermal Cycler, GRI) for 10 minutes at 70°C. Reverse transcriptase (1 pi at lOU/pl 

from Promega UK Ltd, Southampton, UK), RNAse inhibitor ( lp l at 40U/pl from 

Promega UK Ltd, Southampton, UK) and 12pl reaction master mix were added 

and the tube returned to the cycler for 30 min at 42°C, followed by 70°C for 10 

minutes. The reaction master mix contained 4pl 5x RT buffer (Promega UK Ltd, 

Southampton, UK), 4pl dNTP mix (lOnM each from Roche Applied Science, 

Mannheim, Germany) and 4pl dFLO.
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PCR primers were designed to include intron/exon boundaries where possible (size 

increase indicates genomic DNA contamination), to have 50-60% guanine (G) and 

cytosine (C) content, preferably end on a G or C and be approximately 21 base 

pairs in length. Also, both primers should have an annealing temperature within 

5°C o f each other according to the equation: 4(G+C)+2(A+T)-5°C (where A and T 

are Adenine and Thymine and G and C are Guanine and Cytosine respectfully). 

Finally, primers were located on the cDNA 200bp to 1.5 Kb apart so the amplicon 

produced by PCR was clearly visible on an agarose gel.

Primers were prepared at a concentration o f  O.lpg/pl and the master mix was 

prepared using Qiagen HotStarTaq Plus kit reagents: 2.5pl lOx CL buffer (Coral 

Load buffer, pH 8.7 containing 15mM MgCh, KC1 and (NH ^SC^, gel loading 

reagent, red dye and orange dye), 0.5pi lOmM dNTPs, lp l cDNA (lpg/pl), 

18.72pl dH20 and finally 0.25pi 5U/pl Taq polymerase (Promega UK Ltd, 

Southampton, UK). The appropriate forward and reverse primers ( lp g  o f  each in 

lp l, see Table 2.2) were added to each tube, making a total reaction volume o f  

25pl. All tubes (including a water control) were put in the thermal cycler for 5 

minutes at 95 °C (enzyme activation step) and then left for 35-40 cycles (94°C 

denaturing, 59°C annealing and 72°C synthesis). Finally, the reaction was 

incubated at 72°C for 10 minutes to extend all remaining products to full length. 

PCRs were optimised by varying the annealing temperature by 1-2 degrees, and by 

varying the M gCb concentration (1.5mM to 5mM) per reaction. The conditions 

which gave the strongest amplicon o f  the correct size with least non-specific bands 

were chosen.
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Table 2.2: PCR Custom Primers (from Sigma-Aldrich Ltd, Gillingham, UK).

Gene NCBI 
Accession #

Type Prim er Sequence (5’ to 3’) Size
(bp)

SMO NM 005631 F TGC TGT GTG CCG TAT ACA TGC 1045
SMO NM 005631 R AAG TCG TAG AAG TGG CAG CTG
PTCH NM 000264 F TTA CTC ATG CTC GCC TAT GCC 998
PTCH NM 000264 R CTG GTT TCC CGA GGT ACA ATG
SHH NM 000193 F AGA TGT CTG CTG CTA GTC CTC 1043
SHH NM 000193 R AGC ACC CGG TTG ATG AGA ATG
GLI1 NM 005269 F TCA ACT CGC GAT GCA CAT CTC 1333
GLI1 NM 005269 R GTA TAG GCA GAG CTG ATG CTG
APRT NM 000485 F GCT GCG TGC TCA TCC GAA AG 277
APRT NM 000485 R CCT TAA GCG AGG TCA GCT CC

2.2.2.3 Quantitative PCR (qPCR)

This is a quantitative method o f  PCR, which enabled comparison o f  fold-change in 

gene expression between cells cultured under different conditions (e.g. in the 

presence or absence o f  recombinant EGF and/or SHH). Primers were designed as 

for conventional PCR except that the amplicons were smaller (ideally 100-250bp 

in size) to increase amplification efficiency (see Table 2.3 for qPCR primer 

sequences and amplicon sizes).

Reactions were run in a 96 well plate containing 6\i\ dH20, 12.5p,l Brilliant SYBR  

Green qPCR Mastermix (Agilent Technologies, West Lothian, UK), 1.25p.l 

forward primer (F), 1.25pl reverse primer (R) and finally 4pl (0.5, 1, or 1.5pg) 

cDNA per sample well. The primers (Custom Oligos, Sigma-Aldrich Company 

Ltd, Gillingham, UK) were made up to correct concentration (pg/pl) as per the 

optimisation procedure results. Reactions were run at 58°C using the ACt method 

on an MXP3000 thermal cycler with MX Pro software. Although the ideal 

annealing temperatures varied between primer pairs, a compromise had to be made 

to allow the house-keeping gene to be run at the same time. Since all annealing 

temperatures were within 5°C, it was possible to optimise all PCR reactions at 

58°C.
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Table 2.3: QPCR Custom Primers (from Sigma-Aldrich Ltd, Gillingham, UK).

Gene NCBI Accession 
#

Type Sequence (5’ to 3’) Size (bp)

PTCH NM 000264 F GAT GCA GAA TTC TGA AGT 
CGAC

114

PTCH NM 000264 R GAG AAA GTT CTA CAC CAT 
GCA G

EGR-3 NM 004430 F CAG GAT TAC CAC TCG GCC 
AAG

183

EGR-3 NM 004430 R GAA TGC CTT GAT GGT CTC 
CAG

IL1R2 NM 173343 F CAA GAG AGG ATT TGC ACA 
TGG

172

IL1R2 NM 173343 R CAC CGT CTG TGC ATC CAT 
ATT

S100A7 NM 002963 F CTG CTG ACG ATG ATG AAG 
GAG

177

S100A7 NM 002963 R GCT CTG CTT GTG GTA GTC 
TGT

ACTB NM 001101 F AGA AAA TCT GGC ACC ACA 
CCT

174

ACTB NM 001101 R ATA GCA CAG CCT GGA TAG 
CAA

TF2H NM 022011 F AAG TTC GAC TTG GAA TGA 
TGC G

97

TF2H NM 022011 R ATG ACA CGT CAG TCT ATT 
AGG CTT

ARP NM 001003 F AGC CGG TGT AAA TGT TGA 
GC

81

ARP NM 001003 R CAG ATG AGG CTC CCA ATG 
TT

APRT NM 009698 F GCT GCG TGC TCA TCC GAA 
AG

247

APRT NM 009698 R CCT TAA GCG AGG TCA GCT 
CC

Various cDNA and primer concentrations for each gene were run as a series o f  

different combinations to find the optimal concentration for the reaction (Table 

2.4). Further optimisation was carried out as necessary. Low Ct (threshold cycle) 

values were preferable. The Ct is the earliest detectable point above background 

levels and was calculated by the MX Pro software. A Ct at a low cycle number is 

only achievable with high levels o f  cDNA and if there is a large amount o f  the
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gene o f  interest in the cells. Thus, lower Ct values were more easily achievable for 

housekeeping genes such as ACTB than for EGR-3, IL1-R2, S100A7 or PTCH.

Once the cDNA and primer concentrations required to achieve the lowest Ct value 

for each gene were determined, another qPCR reaction was run using a cDNA  

dilution series (neat (0.5, 1 or 1.5pg), 1:10, 1:100 and 1:1000) and the cycle 

number for each dilution was plotted against the fluorescence to create an 

amplification curve. Amplification curves for this dilution series should give four 

equally spaced plots (one for each dilution). The Ct values (determined by the MX 

Pro software) on this graph were taken for each curve and plotted again against the 

dilution (Ct against the log quantity o f  the sample) to give a standard curve. From 

this R2, slope and efficiency values were derived by the MX Pro software. For 

good optimisation, the R2 value should be as close to 1 as possible, the slope 

should be between -3.2 and -3.5 and the efficiency should be between 90 and 

110%.

Table 2.4: cDNA and Primer Concentrations for QPCR Optimisation.

cDNA (gg) Primers (gg/pl.)
1.5 0.15
1.5 0.1
1.5 0.05
1 0.15
1 0.1
1 0.05
0.5 0.15
0.5 0.1
0.5 0.05

At the end o f  the qPCR, a melting or dissociation curve was made by heating the 

reaction to denature the dsDNA (double stranded DNA), SYBR green 

fluorescence is strong when bound to dsDNA but is very low when unbound, so 

melting the dsDNA should result in one smooth curve for all replicates
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(fluorescence plotted against temperature) if  only one product was formed in the 

reaction (no contamination and no primer dimers).

After optimisation the qPCR reactions were carried out under the optimised 

conditions for each set o f  primers to find fold changes in gene expression when 

N/TERT1 cells were grown in the presence or absence o f  SHH and/or EGF and 

also presence or absence o f inhibitors (LY294002 or PD98059). The fold change 

with each treatment was plotted as bar charts by the MX Pro software for analysis.

2.2.2.4 Statistical Analysis.

Statistical analysis was done using INSTAT by Ordinary ANOVA, Parametric, 

Tukey test. This statistical test was used because it is a single step comparison o f  

whether or not the means o f all possible pairs in unrelated groups are significantly 

different from one another.

2.2.2.5 Gel Electrophoresis

PCR reactions (lOp.1) containing coral load buffer (see section 2.2.2.2) were run on 

a 1% agarose gel to compare the expression o f  genes qualitatively. A lOObp ladder 

(5jnl; New England Biolabs, Hitchin, UK) was also run alongside to estimate the 

correct amplicon size.

Agarose gels (1%) were prepared in a VWR AGT-1 horizontal gel tank with a UV 

transparent base. Briefly, 0.5g agarose (Sigma-Aldrich Company Ltd, Gillingham, 

UK) was dissolved in 50ml 2x TAE buffer containing 0.01% v/v ethidium 

bromide (5pl stock added). The stock TAE buffer (50x) contained 242g Tris 

(Fisher Scientific, Loughborough, UK), 57.1ml acetic acid (Fisher Scientific, 

Loughborough, UK) and 100ml 0.5M EDTA, adjusted to pH8 (Sigma-Aldrich 

Company Ltd, Gillingham, UK). Gels were made from 50ml o f  agarose in TAE 

and generally contained 20 wells. The gel was immersed in approximately 50ml o f  

2x TAE electrophoresis buffer and run at 50V for approximately 1 hour. The gel
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tank (UV transparent) was placed on a 365nm transilluminator and digital images 

acquired using Alphalmager HP digital camera and software.

2.2.2.6 DNA Purification using Qiagen PCR Purification Kit

DNA amplified by PCR was purified prior to sequencing using a purification kit 

(Qiagen, Crawley, UK). Five volumes o f  buffer PB were added to one volume o f  

PCR sample and mixed. A spin column was placed into a 2ml collection tube and 

the sample was applied to the column and centrifuged at 13,000 rpm for 60 

seconds at RT. The flow-through in the collection tube was discarded and the 

column placed back in the tube. Buffer PE (0.75ml) was added to column and 

centrifuged at 13,000 rpm for 60 seconds at RT to wash the DNA. Again, the flow­

through was discarded, the column put back in the tube and centrifuged at 13,000 

rpm for 1 minute at RT. The column was then placed in a clean 1.5ml tube and 

50pl buffer EB added to the centre o f  the membrane to elute the DNA. This was 

centrifuged at 13,000 rpm for 1 minute at RT.

2.2.2.7 DNA Sequencing

Sequencing was carried out to confirm that the PCR had amplified the correct 

products and the insert had been cloned in the correct orientation. The reaction mix 

contained 2pl DNA, lp l forward primer (F) (see Table 2.1), 2pl 5x sequencing 

buffer (Amersham Biosciences, GE Healthcare Life Sciences, Little Chalfont, 

UK), 2pl big dye reagent mix (Applied Biosystems, Foster City, CA, USA) and 

3 pi dH20. Reactions were placed in a thermal cycler for one cycle (96°C 1 min, 

96°C 10s, 50°C 5s, 60°C 4 min) and then 25 cycles without the initial step (96°C 

10s, 50°C 5s, 60°C 4 min). After cycling, 25pl ice cold 95% ethanol (Fisher 

Scientific, Loughborough, UK) and lp l 3M sodium acetate (Sigma-Aldrich 

Company Ltd, Gillingham, UK) were added to the reaction mix. This was kept on 

dry ice for 10 minutes and then the tube was centrifuged at 15,000 rpm for 25-30 

minutes at 4°C and the supernatant removed. An aliquot (180pl) o f  75% ethanol 

was added, the tube centrifuged at 4°C for 2 minutes and the ethanol removed.
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This procedure was repeated with another 180pl aliquot o f  75% ethanol and the 

tube centrifuged for 2 minutes at 4°C and the supernatant removed. The pellet was 

air dried for 10-15 minutes and stored at -20°C until ready for automated 

sequencing. This was provided by Central Biotechnology Services (CBS) in the 

School o f  Medicine (Andrew Francis and Keith Hart in, Henry Wellcome 

Building, School o f  Medicine, Cardiff University). Fluorograms and sequencing 

data (text) was sent by e-mail and viewed using free software (FinchTV v 1.4.0 

from Geospiza Inc).

2.2.3 Cloning
2.2.3.1 PCR Amplification o f  SHH cDNA

Primer sequences for the two separate portions o f  SHH cDNA (named SHH 5’ and 

SHH 3 ’) are shown in Table 2.5. RNA was extracted from normal skin (see 

section 2.2.2.1) and RT-PCR was carried out using various primer combinations 

and an annealing temperature o f 59°C. PCR reactions were run on 1% agarose gels 

(2.2.2.4) and viewed on a UV light box (stained with ethidium bromide).

Table 2.5: PCR Custom Primers (from Sigma-Aldrich Company Ltd, Gillingham, UK)

Gene NCBI 

Accession #

Type Sequence (5’ to 3’) Size

(bp)

SHH 5’ NM 000193 F GATGCTGCTGCTGGCGAGAT 830

SHH 5’ NM 000193 R TTGTGCGGCGCCACAAAGAG

SHH 3’ NM 000193 F CTCACTTTCCTGGACCGCGA 655

SHH 3’ NM 000193 R CTTCAGGTGGACTTGACCGC

2.2.3.2 Ligation into Cloning Vector:

PCR products from the 5 ’ and 3 ’ ends o f SHH were ligated separately into a 

cloning vector using a pGEM-T easy kit (Promega UK Ltd, Southampton, UK). 

An aliquot (5pi) o f  each PCR reaction product was mixed with lp l vector 

(50ng/pl), lp l T4 ligase (3U/pl) and 5pl 2x rapid ligation buffer (pGEM-T easy 

kit) and then incubated at 4°C overnight.
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2.2.3.3 Transformation:

The vials containing the ligation reaction were centrifuged briefly and placed on 

ice. An aliquot (50pl) o f chemically competent bacteria (One Shot Top 10 from 

Invitrogen, Paisley, UK) were thawed on ice. Two 3 pi aliquots o f each ligation 

reaction were pipetted into separate sterile tubes and 25pi o f the competent cell 

mix was added to each, mixed and incubated on ice for 30 minutes. The bacteria 

were then transformed by heat shock at 42°C for 30 seconds and then put back on 

ice. An aliquot (250pl) o f  pre-warmed S.O.C medium (Invitrogen, Paisley, UK) 

was added to each and the vials were place in a shaking incubator at 37°C for 1 

hour (shake at 300 rpm) to allow time for expression o f the ampicillin resistance 

gene before plating. An aliquot (lOOpl) o f  each transformation mix was spread on 

a separate LB agar plate containing ampicillin (1:1000 50mg/ml stock), IPTG (4pl 

0.2% IPTG (Isopropyl (3-D-1 -thiogalactopyranoside) and 40pl X-Gal (dissolved in 

dimethylformamide at 20mg/ml) for blue/white selection (Fluka Analytical, 

Sigma-Aldrich Company Ltd, Gillingham, UK). The plates were inverted and 

incubated at 37°C overnight. A white colony was removed from each plate and 

spread down half a new LB agar plate containing ampicillin (1:1000 o f  50mg/ml 

stock) and a second colony was spread on the other half o f  the plate. The plates 

were incubated at 37°C overnight. A single colony was removed from each half 

plate and placed in separate tubes containing 5ml liquid broth with 5pl 50mg/ml 

ampicillin. The tubes were incubated overnight at 37°C while shaking at 300 rpm.

2.2.3.4 Bacterial DNA Isolation by Miniprep:

A 1.5ml aliquot o f  each bacterial culture was centrifuged at 8,000rpm for 2 

minutes at RT and the supernatant was discarded. Three buffers were used from a 

Qiagen Miniprep Kit (Qiagen, Crawley, UK). PI buffer (lOOpl) was added and 

mixed, then P2 buffer (lOOpl) and finally P3 buffer (lOOpl). The solution was then 

centrifuged at 13,000 rpm for 15 minutes at RT. The supernatant was transferred 

to a fresh tube and 900pl 100% ethanol (Fisher Scientific, Loughborough, UK) 

was added and mixed. The tubes were spun at 13,000 rpm for 15 minutes at RT, 

the supernatant discarded and the DNA pellet was washed with 70% ethanol
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(500pl). The tubes were centrifuged again at 13,000 rpm for 2 minutes at RT and 

the supernatant removed. The DNA pellet was air dried and resuspended in 50pl 

TE buffer.

2.2.3.5 Restriction Digests:

Each DNA sample ( lp l)  was digested with 0.5-1 pi o f an appropriate restriction 

endonuclease (20,000/ml) (New England Biolabs, Hitchin, UK) in 2.5pl buffer (as 

appropriate) and enough dfhO to make up to a total reaction mix o f 25pl. Where 

appropriate (depending on the restriction endonuclease used), 0.5pl BSA (10 

mg/ml, from N ew  England Biolabs, Hitchin, UK) was added. This mixture was 

incubated for 1.5 hrs at 37°C and the digestion products run on a 1% agarose gel.

Double restriction digests required addition o f  0.5-1 pi o f  a second restriction 

endonuclease (New England Biolabs, Hitchin, UK), a buffer appropriate for both 

enzymes and an appropriate reduction in dH20. If the double digest failed, then 

each cut must be done separately with a clean up and DNA precipitation between 

the two reactions.

2.2.3.6 Gel Extraction of Restriction Fragments using Qiagen Gel Extraction 

Kit.

DNA fragments were excised from an agarose gel with a clean scalpel and the gel 

slice weighed in a 1.5ml eppendorf tube. Three volumes o f  QG buffer were added 

to each gel slice (300pl per lOOpg). The gel slice was incubated at 50°C for 10 

minutes and then one volume o f isopropanol was added and the sample mixed. 

This mixture was applied to a spin column in a 2ml tube and centrifuged at 13,000 

rpm for 1 minute at RT. The initial flow-through was discarded, and a further 

0.5ml o f  QG buffer was added to the spin column which was then centrifuged at 

13,000 rpm for 1 minute at RT. Then, 0.75ml o f  PE buffer was added to the spin 

column to wash o ff the QG buffer and the tubes centrifuged again at 13,000 rpm 

for 1 minute at RT. The flow-through was discarded and the tube was centrifuged 

at 13,000 rpm for another minute at RT. The spin column was then placed into a
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clean 1.5ml tube and the DNA eluted by adding 30jxl dbhO to the column 

membrane and centrifuging at 13,000 rpm for 1 minute at RT.

The two portions (5’ and 3 ’) o f SHH cDNA were then ligated together to create a 

full length version. At the start o f  this project SHH cDNA was not commercially 

available.

2.2.3.7 Subcloning:

The SHH cDNA was ligated into a pcDNA3 expression vector (Invitrogen, 

Paisley, UK), which has a neomycin resistance gene for the selection o f  

successfully transfected cells. G418 (Geneticin from Invitrogen, Paisley, UK), an 

aminoglycoside antibiotic blocks polypeptide synthesis in all cells by inhibiting 

80S ribosomal function so the cells do not survive. The neomycin resistance gene 

in cells that were successfully transfected with pcDNA3, deactivates G418 by 

phosphorylation, enabling these cells to survive. Thus, a cell line that is stably 

transfected can be selected.

pcDNA3 vector ( lp l)  was linearised by digestion (see section 2.2.3.5) with EcoRI 

( lp l, 20,000U/ml) in enzyme buffer (2.5pl) and dH20 (21.5pl). This was 

incubated for 1.5 hours at 37°C after which lp l CIP (10,000U/ml) (calf intestinal 

alkaline phosphatase from New England BioLabs, Hitchin, UK) was added to 

remove phosphate groups from the cleaved ends o f plasmid. The tube was 

incubated at 37°C for a further hour. The linearised pcDNA3 vector was then gel 

purified (see section 2.2.3.6) to remove any uncut vector. The two sections o f SHH 

cDNA which were previously cloned in pGEM-T vectors (1.5pl o f  each) were 

linearised with EcoRI and XmnI restriction enzymes (see 2.2.3.5) and ligated into 

the linearised pcDNA3 expression vector (lp l) by incubating at 4°C overnight (see 

section 2.2.3.2) with lp l T4 ligase (3U/pl) and 5pl 2x rapid ligation buffer (pGEM 

T-easy kit). To ensure they were in a 5 ’ to 3 ’ orientation, EcoRI digests were 

carried out (see 2.2.3.5) followed by sequencing.
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2.2.3.8 Endofree Plasmid Maxi Kit

An Endofree Plasmid Maxi Kit (Qiagen, Crawley, UK) was used to purify 

endotoxin-free plasmid DNA. A single colony picked from a freshly streaked plate 

was used to make a starter culture by inoculating 3ml LB (Luria Bertani) medium 

containing 6pl ampicillin (50mg/ml) and shaking (300 rpm) in an orbital incubator 

at 37°C for 12 hours. The 250pl starter culture was placed in a 500ml conical flask 

containing 250ml LB medium and incubated in an orbital incubator at 37°C 

overnight at 300 rpm. The bacterial cells were harvested by centrifugation at 7,000 

rpm for 15 minutes at 4°C and then purified using a modified alkaline lysis 

procedure. The plasmid DNA was added to Qiagen anion-exchange resin and a 

medium-salt wash was performed to remove impurities. The plasmid DNA was 

eluted with a high salt buffer, the DNA concentrated by isopropanol precipitation 

and washed in 70% ethanol (made with endotoxin free water). The pellet was then 

resuspended in 300[il endotoxin free TE and the DNA concentration measured by 

spectrophotometry (absorbance at 260nm) before making an appropriate stock 

dilution for transfection (lpg/pl). The construct was checked by re-digestion with 

EcoRI restriction endonuclease (see 2.2.3.5) followed by sequencing.
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2.2.3.9 Electroporation (Amaxa Kit)

Culture medium was aspirated from a T75 flask o f  N/TERT1 cells grown to 80% 

confluency (see section 2.2.1.2). The cells were washed once with dPBS and then 

harvested with trypsin-EDTA. Trypsinization was stopped by adding an equal 

volume o f DMEM-F12 medium containing 10% FBS. Cells were counted using a 

haemocytometer and medium containing 2.5x106 cells was centrifuged at 1,200 

rpm for 10 minutes at RT. The supernatant was aspirated completely and the pellet 

resuspended in 100|xl nucleofector solution from the electroporation kit (Amaxa V 

from Lonza, Slough, UK) which contained 5pg o f  Tet-on advanced plasmid DNA  

(Takara Bio Europe/Clontech, Saint-Germain-en-Laye, France). The sample was 

transferred into a cuvette which was placed into the Nucleofector II (Lonza, 

Slough, UK). The U-20 program was run, which had been optimised for HaCaT 

keratinocytes (this programme was selected as both HaCaT and N/TERT1 are 

keratinocyte cell lines and time constraints did not allow separate optimisation for 

N/TERT1 cells). After electroporation, warm K-SFM medium containing 

supplements (500pl) was added to each cuvette and carefully mixed. This mixture 

was then added to two 10cm plates containing 10ml pre-warmed K-SFM medium 

(including supplements) and carefully mixed to allow even distribution o f cells.

The medium was changed after 24 hours to K-SFM plus 400pg/ml G418 per plate 

to kill all non-stable transfected cells. Medium containing G418 was then changed 

every 4 days until colonies o f stable transfected cells emerged.

2.2.3.10 N/TERT1 Transfection with MIRUS TransIT®-LTl Reagent

Cells were plated at a density o f  2 x l0 5 cells per well 24 hours prior to transfection 

in a 6 well plate containing 2ml K-SFM per well. Immediately prior to 

transfection, the serum free medium was removed and replaced with 2ml warm 

DMEM-F12 plus 10% FBS 0.2ng/ml EGF, 25|tig/ml bovine pituitary extract and 

1.5mM L-glutamine. TransIT®-LTl transfection reagent (72pl) was added to 

1500pl pre-warmed serum free medium in a sterile 5ml tube and mixed by gentle 

pipetting. After incubating at RT for 20 minutes, 14.16p.l o f  Tet-On advanced

71



vector DNA (0.5pg/pl) (Takara Bio Ltd/Clontech, Saint-Germain-en-Laye, 

France) containing SHH DNA was added and mixed by gentle pipetting. This was 

then incubated at RT for 15-30 minutes. The TransIT®-LTl reagent/DNA 

complex mixture was added dropwise to each well (264.4pl/well) o f the 6 well 

plate and again mixed by gentle pipetting. Cells were then incubated for 24 hours 

at 37°C in 5% CO2 . The success rate o f  transfection was monitored by repeating 

the transfection using a control pmaxGFP vector (Amaxa, Lonza, Slough, UK) 

which contains green fluorescent protein from the Planktonic copepod Pontellina 

plumata. An aliquot (19.2pl at 0.5pg/pl) was added in the place o f Tet-On 

advanced vector containing SHH. This pmaxGFP vector makes successfully 

transfected cells fluoresce green when exposed to blue light and cells were counted 

under an inverted microscope using a GFP filter to assess the percentage o f cells 

that had been successfully transfected.

2.2.4. Polyacrylamide Gel Electrophoresis and Western Blotting
2.2.4.1 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS- 

PAGE)

SDS-PAGE was carried out using the XCell Surelock mini-cell (Invitrogen, 

Paisley, UK). Proteins were separated on an SDS gel by electrophoresis and 

transferred to a membrane for western blotting using the XCell II Blot module. 

Immunochemistry was performed to detect the presence o f  proteins and to 

compare expression and phosphorylation levels in cells under different culture 

conditions.

Cells from each well o f  a 6-well plate (2.2.1.4) were suspended in 0.9ml SDS 

sample buffer containing 4.12ml H2O, 1ml 0.5M Tris, 0.8ml glycerol, 1.6ml 10% 

SDS, 0.08ml 1M DTT and 0.2ml bromophenol blue and boiled for 5 minutes. 

Enough mixture for two 10% separating gels was made (containing 0.1ml 10% 

SDS, 2.5ml 1.5M Tris, 3.3ml 30% acrylamide gel solution (Sigma-Aldrich 

Company Ltd, Gillingham, UK), 75pi APS (ammonium persulphate from

Fisher Scientific, Loughborough, UK) and 7.5pl N ,N ,N ’,N ’-

tetramethylethylenediamine (TEMED from Sigma-Aldrich Company Ltd,
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Gillingham, UK) and 4.1ml H2O. This was pipetted into cassettes and overlaid with 

water. Once set, the water was removed and a 4% stacking gel (50pl 10% SDS, 

1.25ml 0.5M Tris, 0.65ml 30% acrylamide gel solution, 3.05ml H2O, 50pl 10% 

APS and lOpl TEMED) was added above the separating gel. A 12 prong comb 

was placed into the top o f  the cassette and after the gel had set (about 5 minutes), 

the comb was carefully removed and the wells washed with dt^O. The cassettes 

were placed into the apparatus and lx  running buffer (30g Tris, 144g glycine 

(Sigma-Aldrich Company Ltd, Gillingham, UK), lOg SDS per litre o f H2O) was 

poured into the apparatus, ensuring that the wells were full o f  buffer. The protein 

extracts (lOpl) were loaded into the wells (volumes should give equal quantities o f  

protein in each well for comparison) and molecular weight standards loaded on the 

gel (usually the end lanes). Three markers were used in combination: lOpl 

Precision Plus protein marker (Bio-rad, Hemel Hempstead, UK) or 5 pi low 

molecular weight marker (Promega UK Ltd, Southampton, UK) together with 2pl 

Magicmark (Invitrogen, Paisley, UK). The outer and inner chambers were filled 

with running buffer and 125V at a starting current o f 25mA per gel applied until 

the tracker dye reached the bottom o f  the separating gel. Cassettes were opened 

and the gel was stained with 0.25% Coomassie brilliant blue R250 (Sigma-Aldrich 

Company Ltd, Gillingham, UK) in 40% methanol (Fisher Scientific, 

Loughborough, UK) and 10% acetic acid (Fisher Scientific, Loughborough, UK) 

for one hour. The gel was then destained for 30 minutes in 40% methanol and 10% 

acetic acid. Duplicate gels were important as one was used for staining o f  the 

protein to check for even loading while the other gel remained unfixed and was 

used for western blotting.

2.2.4.2 Western Blotting

Immobilon membrane (PDVF Millipore) was immersed in methanol and then 

vigorously shaken in water to hydrate. Whatman paper and pads were soaked in 

western blot buffer (14.4g glycine, 3g Tris and 100ml methanol per litre dH20). 

Two pads were placed in the bottom o f the western blot module, then a 

gel/membrane sandwich was assembled (Whatman paper, gel, Immobilon
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membrane, Whatman paper) and placed on top o f  the pads. The module was then 

filled with further pads and the top locked. Buffer was added to the blotting 

module and the tank filled with dthO  to keep the gel cool during transfer. Transfer 

continued for 1-2 hours at 25v with a starting current o f  approximately 100mA.

2.2.4.3 Protein Detection by Immunochemistry

Western blots on Immobilon membrane were rehydrated with methanol and 

washed in water, then placed in 5% skimmed milk (Marvel, Tesco, UK) in Tris- 

buffered saline with 0.1% Tween 20 (TBST from Sigma-Aldrich Company Ltd, 

Gillingham, UK) for 1 hour to block antigenic sites. Marvel was replaced with 

10ml 5% marvel containing primary antibody (see Table 2.6 for dilutions o f  

antibodies used) for 1 hour, then washed for five times for 5 minutes in TBST. 

Another 10ml Marvel containing the secondary antibody (see Table 2.6 for 

details) was added, left to incubate for 1 hour and then the membrane was washed 

in TBST (again five times 5 minutes).

The membrane was laid on Saran wrap in the dark room and covered with ECL 

reagent for 5 minutes. The reagent was made by combining 1ml solution 1 (1ml 

250mM stock luminol (Sigma-Aldrich Company Ltd, Gillingham, UK) in DMSO, 

0.44ml 90mM coumaric acid stock (Sigma-Aldrich Company Ltd, Gillingham, 

UK) in DMSO, 10ml Tris, pH 8.5 plus dH20 to a total o f  100ml) and 1ml solution 

2 (64pl 30% H2O2 and 10ml Tris, pH8.5 plus dH20 to a total o f  100ml). The 

reagent was poured off, the membrane wrapped in Saran film and placed in a 

cassette together with sensitive X-ray film (Amersham Biosciences, GE 

Healthcare Life Sciences, Little Chalfont, UK). This was left for 2 to 10 minutes 

(longest incubation carried out first) and then the X-ray film was placed in Kodak 

D-19 developer, water and finally Kodak Processing Chemical Fixer (Sigma- 

Aldrich Ltd, Gillingham, UK).
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Table 2.6: Primary and Secondary Antibodies for Western Blotting.

Antigen C at# Company Species WB
Dilution

Storage

ERK 9102 Cell Signalling 
Technology Inc, 
Danvers, MA, USA

Rabbit 1:1000 -20°C

P-ERK 9106S Cell Signalling 
Technology Inc, 
Danvers, MA, USA

Mouse 1:1000 -20°C

Keratin 14 LL002 Gift from Prof E.B. 
Lane

Mouse 1:100 4°C

PTCH Sc1194 Santa Cruz 
Biotechnology Inc, 
Santa Cruz, CA, USA

Goat 1:100-
1:1000

4°C

SMO Sc6152 Santa Cruz 
Biotechnology Inc, 
Santa Cruz, CA, USA

Rabbit 1:100-
1:1000

4°C

Glil Sc13943 Santa Cruz 
Biotechnology Inc, 
Santa Cruz, CA, USA

Goat 1:100-
1:1000

4°C

SHH Sc6149 Santa Cruz 
Biotechnology Inc, 
Santa Cruz, CA, USA

Goat 1:100-
1:1000

4°C

Anti-Mouse
IgG-HRP

P0161 Dako UK Ltd, Ely, UK Rabbit 1:500 4°C

Anti-Rabbit 
IgG - HRP

P0127 Dako UK Ltd, Ely, UK Swine 1:500 4°C

Anti-Goat 
IgGs - HRP

A5420 Sigma-Aldrich 
Company Ltd, 
Gillingham, UK

Rabbit 1:40000 4°C
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2.3 Results

2.3.1 SHH Signalling and Activation of the EGF Pathway.
Initially, we had to confirm that the key components o f  the SHH pathway were 

present in N/TERT1 and HaCaT keratinocyte cell lines. RT-PCR showed that 

SMO and PTCH were expressed in both N/TERT1 and HaCaT cells, although in 

HaCaT, there were miscellaneous bands in addition to a strong band o f  the correct 

size for PTCH (Figure 2.2). The product size was incorrect for SHH so it was 

concluded that this result was spurious and that no SHH was present in either cell 

line (HaCaT nor N/TERT1). Finally, GLI1 was expressed in HaCaT cells but not 

in N/TERT1 cells. GLI1 expression was relatively low suggesting there is little or 

no signalling before the addition o f commercial recombinant SHH. The absence o f  

SHH and GLI1 in N/TERT was unexpected but proved useful as PCR could be 

used to detect expression o f  SHH pathway target genes when N/TERT 1 cells were 

grown in the presence o f  recombinant SHH (see Table 2.7 for list o f  target genes 

examined). This subset o f  target genes have been specifically chosen due to the 

known increased expression in N/TERT 1 keratinocytes treated with recombinant 

EGF where GLI1 levels can be high (Kasper et al., 2006).

Ideally, western blot analysis should have been used to confirm the expression o f  

SHH pathway components. However, antibodies to these proteins (SHH, PTCH, 

SMO and GLI1) were not reliable (see Table 2.6) and could not be optimised.

In order to confirm that the EGF pathway was active after treatment o f  N/TERT 1 

keratinocytes with recombinant EGF, total protein was extracted from the treated 

cells at three time-points after treatment: 5, 10 and 20 minutes and cells with no 

EGF were used as a control. The protein extracts were separated by SDS-PAGE 

and western blots performed.
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Figure 2.2: SHH Pathway Components in Ps/TERTl and HaCaT Keratinocytes.

Ethidium bromide gel showing expression o f SHH signalling pathway components: SMO, 

PTCH, SHH and GLI1 in N/TERT1 (yellow) and HaCaT (blue) keratinocyte cells, with 

APRT control and lOObp molecular weight marker. lOpl o f each PCR product in coral 

load buffer was applied to each well.

Table 2.7: Change (foldmRNA induction) in SHH Target Genes (EGR-3, S100A7, IL-1R2 

and PTCH) in N/TERT 1 cells expressing GUI and/or EGF compared to Untreated 

Controls (data from Kasper et al., 2006).

EGF G U I EGF/GLI1
EGR-3 7.7 1.2 652.6
S100A7 2.3 9.8 1351.1
IL1-R2 2.4 9.9 999.5
PTCH -2.1 29.9 19.7

K14 is the same at all time points, which shows equal loading o f the wells because 

K14 levels should always be the same in cells o f the same type. There was little 

change in ERK1, except for a slight increase in N/TERT1 cells. ERK2 in 

N/TERT1 cells appeared to increase over time, with slightly lower ERK1/2 bands 

at the zero time point. ERK1/2 phosphorylated (N/TERT 1) was very low in 

absence o f EGF but dramatically increased in the presence o f EGF and remained
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the same for those time points. ERK1/2 in HaCaT cells remained the same at all 

time points. ERK1/2 phosphorylated in HaCaT cells was absent at the zero time 

point where EGF is absent. However, it was increased in the presence o f EGF at 

all time points. The p-ERKl band was missing at 10 and 20 minutes (Figure 2.3). 

(a) (b)

Time/
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Time/
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Figure 2.3: EGF Signalling Pathway Components in N/TERII and HaCaT 

Keratinocytes. Western blots o f ERK1/2 expression and phosphorylation in N/TERT1 (a) 

and HaCaT cells (b) at different time points after the addition o f EGF to the culture 

medium with a Magicmark protein marker. K14 control indicated equal protein sample 

loading (lOpl per well).

2.3.2. Cell Viability Tests

Baseline luminescence was extremely small in the absence o f N/TERT 1 cells 

indicating that the values achieved in the presence o f cells were a genuine measure 

o f viability (Table 2.8). The luminescence in the absence o f diluents and inhibitors 

represents the control. DMSO reduced the luminescence by about 5% but there 

was no additional effect in the presence of LY294002, this was similar to when 

DMSO was applied alone. PD98059 had a much greater effect, causing a 23% 

reduction in luminescence. The effect o f PD98059 on luminescence was increased 

in the presence o f LY294002.

44 Kb 

42 Kb

44Kb 

42 Kb

52Kb
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Table 2.8: N/TERT1 Cell Viability In the Presence o f EGF Pathway Inhibitors 

L Y294002 and/or PD98059. Cell viability decreased slightly in the presence o f  DMSO 

diluents or LY294002. However, there was a larger decrease in cell viability (23% 

reduction in luminescence) in the presence o f PD98059. Data expressed as the mean o f 4 

cell culture well replicates for each treatment. RLU = Relative Light Unit

Control (no 

DMSO, no 

inhibitors)

DMSO

(no

inhibitor

control)

20pM

LY294002

20pM

PD98059

20pM 

LY29400 

2 +

20pM

PD98059

Luminescence

(RLU)

489542 464784 473072 377220 314754

% Reduction 

Luminescence

0 5.06 3.36 22.94 35.70

Reduction -24,758 -16,470 -112,322 -174,788

2.3.3 N/TERT1 Cells treated with Recombinant SHH, EGF and EGF  

Pathway Inhibitors (PD98059 and LY294002).

Although the key components (PTCH and SMO) o f  the SHH pathway were 

present in N/TERT1 and HaCaT cell lines, it was important to confirm that the 

pathway could be activated.

The N/TERT 1 cells were grown and treated with recombinant SHH and/or EGF 

and then treated with LY294002 and/or PD98059 as described in the methods. 

Expression o f  K14 (control), EGR-3, PTCH and S100A7 was examined by RT- 

PCR (Figure 2.3). The data shown in Figure 2.3 was also analysed using Image J 

density gradient software (http://rsbweb.nih.gov/ij/) and the results were 

normalised against the K14 control data. This software was also used to compare 

reproducibility in the duplicate experiments shown. This programme measured the 

density over the area o f  bands on a DNA gel, which were then used to calculate
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the relative band density compared to the control (K14) and the data was then 

displayed in graphic form using Microsoft Excel (see Figures 2.4 to 2.6).

K14 levels are equal in all circumstances (Figure 2.3 and 2.4). PTCH was 

increased with SHH but this increase was blocked by EGF. PTCH was also 

increased with LY294002, but this increase was blocked by SHH and reduced by 

EGF. However, PTCH levels in the presence o f  PD98059 with LY294002 were 

similar to the control, with both arms o f  the EGF pathway inhibited.

EGR-3 was slightly increased in the presence o f  SHH but there was a greater 

increase in the presence o f  EGF. LY294002 completely blocked EGR-3 

expression, whereas PD98059 had no effect on the control but blocked EGR-3 in 

the presence o f  SHH or EGF. LY294002 and PD98059 combined completely 

blocked EGR-3 except when both SHH and EGF were present.

S100A7 was low in the control but increased in the presence o f  SHH or EGF. 

LY294002 caused the S100A7 control to increase. SHH or EGF increased S100A7 

further but the level was reduced when both were present. PD98059 had little 

effect on S100A7 and knocked down the effect o f LY294002 when both were 

applied. These change differed slightly between the two samples for each gene.
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Figure 2.4: RT-PCR o f SHH Target Genes (PTCH, EGR-3 and S100A7) and K14 

Control in N/TERT1 Cells. Stimulation with EGF and/or SHH for 24 hours in the 

presence and absence of EGF signalling inhibitors (LY294002 and/or PD98059). 

Duplicate experiments are shown.

There is variation between the two experiments (yellow is the first and blue is the 

second experiment). PTCH was increased with SHH, whereas EGF alone had no 

effect. However, EGF blocked the increase in PTCH caused by SHH (Figure 

2.4a). LY294002 blocked PTCH expression in the presence o f SHH and/or EGF, 

but PTCH was increased in the control cells (Figure 2.4b). PD98059 reduced 

PTCH expression slightly, blocked the SHH induced increase in PTCH, but had 

little effect on EGF modulation o f PTCH (Figure 2.4c). PD98059 and LY294002 

interfere with one another so PTCH levels in the presence o f SHH were higher and 

almost returned to the levels seen in the absence of inhibitors (Figure 2.4d).

_ + + _ _ + + _ _ + + -  + + _ 

-  -  + + _ + + - -  + + +

K14 PTCH EGR-3 S100A7

- - + + - . +  + - - + + - - + +

K14 PTCH EGR-3 S100A7
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Figure 2.5: Relative expression o f PTCH in N/TERT 1 Keratinocytes treated with 

Recombinant SHH and/or EGF in the Presence or Absence o f Inhibitors (LY294002 

and/or PD98059). Graphs show PTCH expression in two PCR experiments: blue bars 

represent one experiment (top part of Figure 2.3) while the yellow bars represent the 

other (bottom part o f  Figure 2.3).

EGR-3 was increased in the presence o f SHH or EGF, but this effect was neither 

additive nor synergistic (Figure 2.5a). LY294002 totally blocked EGR-3 

expression and inhibited the effect o f SHH or EGF (Figure 2.5b). However, 

PD98059 had little effect in the absence o f SHH or EGF but totally blocked EGR- 

3 expression in their presence (Figure 2.5c). This block was relieved in the 

presence o f SHH and EGF together when both inhibitors were used (Figure 2.5d).

These results suggest that there may be some SHH pathway activity and the small 

increase in expression in the presence o f both SHH and EGF may be evidence o f a 

mild synergistic effect but nowhere near as large as described by Kasper et al 

(2006).

82



(a) EGR-3 (no inhibitors)

14000

12000

8000

6000

4000

2000

0
SHH+EGF EGFSHH

SHH and/or EGF treatments

(b) EGR-3 (LY29406?)

C(03
c r
©
>

J5©cr

14000

12000

10000

8000

6000

4000

2000

0
Control SHH SHH+EGF EGF 

SHH and/or EGF treatments

(C) EGR-3 <PD»«0S»|

14000
12000

10000
8000

6000
4000

2000
0

Control SHH SHH+EGF EGF

SHH and/or EGF treatments

(d) EGR-3 (LY29406? and P09I6S9)

CCO
3
cr
©
>

<ucr

14000
12000
10000
8000

6000

4000
2000

Control SHH EGF
SHH and/or EGF treatments

Figure 2.6: Relative Expression o f EGR-3 in N/TERT 1 Keratinocytes treated with 

Recombinant SHH and/or EGF in the Presence or Absence o f Inhibitors (LY294002 

and/or PD98059). Graphs show EGF-3 expression in two PCR experiments: blue bars 

represent one experiment (top part o f Figure 2.3) while the yellow bars represent the 

other (bottom part o f Figure 2.3).

S100A7 was increased by SHH or EGF, but together they only caused a small 

increase in S100A7 which was not additive (Figure 2.6a). LY294002 increased 

S100A7 expression slightly in the absence and to a greater extent in the presence 

o f SHH or EGF but there was little effect when both SHH and EGF were present 

(Figure 2.6b). PD98059 increased S100A7 but SHH had no additional effect, 

whereas EGF did increase S100A7 slightly, but this was lost when both were 

applied together (Figure 2.6c). The positive effect o f LY294002 was lost in the 

presence o f PD98059 (Figure 2.6d).

83



S100A7 (No inhibitors)
(a)

I400C 
2? 12000
C  ioooa ro3 8000 
c r
a> 6000

4000
00O 2000
CC j i  r f 1

Control SHH SMH-*EGf

SHH anri/or IGf treat m enu

(c)
14000i

>, 12000 

C ! 10000

8000
03 3
c r
Q  6000-

4000

S100A7 (PO980S9)

cn Fi
SHH SHH*EGf

SHH and/or £Cf treatment*

(b)
S100A7 <LY?9400?>

&
C(03
cr
©

egr

SHH and/or EGT treatments

(d)
S1S0A7 (LY794002 and PD980S9)

&
C9
cr

Iro0)o£
Control

SHH and/or EGF treatmenta

Figure 2.7: Relative Expression o f S100A7 in N/TERT 1 Keratinocytes treated with 

Recombinant SHH and/or EGF in the Presence or Absence o f Inhibitors (LY294002 

and/or PD98059). Graphs show S100A7 expression in two PCR experiments: blue bars 

represent one experiment (top part o f Figure 2.3) while the yellow bars represent the 

other (bottom part o f Figure 2.3).

2.3.3.1 Quantitative PCR (qPCR)

Conventional PCR did not identify the large changes in expression o f GLI1 and 

EGF target genes observed by Kasper et al. (2006) but some small differences 

were apparent. These would be difficult to evaluate by conventional RT-PCR, so 

quantitative analysis was performed by qPCR to measure the fold change in gene 

expression.

The expression o f three GLI/EGF target genes (EGR-3, IL-1R2 and S100A7) and 

(one SHH target gene PTCH) was assessed in N/TERT 1 cultures by qPCR 

following primer optimisation. Cells were stimulated with recombinant SHH 

and/or EGF and then treated with either a PI3K inhibitor (LY294002) or a MEK 

inhibitor (PD98059). Each experiment was done in the presence and absence of
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inducers (SHH or EGF) and in the presence and absence o f  inhibitors (LY294002 

or PD98059) together with control data. In this way, any effect o f the inhibitors on 

gene expression could be assessed.

2.3.3.1.1 Selection o f a Suitable Housekeeping Gene

Three housekeeping genes were selected and primer pairs were optimised for 

qPCR: transcription factor IIH (TF2H), actin related protein (ARP) and adenine 

phosphoribosyl transferase (APRT). Expression o f these three genes was then 

measured during stimulation o f N/TERT 1 cells by SHH and/or EGF and any effect 

o f  the inhibitors (LY294002 and PD98059) assessed.

In all three cases, the housekeeping genes showed a major reduction in expression 

(up to 10,000 fold) when cells were treated with both inhibitors together (Figure 

2.7). Based on these results, it became clear that by inhibiting both sides o f the 

EGF pathway, expression o f many genes in the N/TERT 1 cell line are affected. 

This is a consideration with regards to the potential toxicity o f  the proposed 

formulation. The combined LY294002/PD98059 treatment was therefore not 

continued in further experiments.

Table 2.9 shows the combinations o f  recombinant SHH and/or EGF or no 

recombinant proteins applied to N/TERT 1 keratinocytes. There are four replicates 

for these combinations where N/TERT 1 cells were grown in the absence o f  

inhibitors or the presence o f PI3K inhibitor LY294002 and/or MEK inhibitor 

PD98059 in addition to the SHH and/or EGF recombinant proteins. Due to the 

complexity o f qPCR amplification plots for these experiments, a key is included in 

this table to make it clearer what each plot represents.
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Table 2.9: Combinations of recombinant SHH, EGF and signal transduction pathway
inhibitors used to treat keratinocytes.

Inhibitors Plate
no.

SHH EGF Key to amplification plots

No Inhibitors 1 - - Brown square (solid)
2 + - Blue circle (solid)
3 + + Brown triangle (open)
4 - + Turquoise diamond (open)

LY294002 5 - - Orange triangle inverted (solid)
6 + - Grey diamond (solid)
7 + + Yellow star
8 - + Purple square (open)

PD98059 9 - - Green inverted triangle (open)
10 + - Green triangle (solid)
11 + + Orange star
12 - + Grey circle (solid)

LY294002+PD98059 13 - - Purple diamond (solid)
14 + - Olive square (solid)
15 + + Blue-green triangle (solid)
16 - + Orange star
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i
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1

APRT

Figure 2.8: QPCR Data fo r  Housekeeping Gene Expression in N/TERT 1 Keratinocytes.

Amplification plots for TF2H, ARP and APRT showing expression in cultured cells in the 

presence o f LY294002 and/or PD98059. In all three cases, expression was dramatically 

decreased in the presence o f both inhibitors (LY294002 and PD98059, shown in purple, 

olive green, cyan and orange, see Table 2.9 for key).
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Optimisation o f ACTB ((3-actin) primers also showed outlying curves in the 

amplification plots when LY294002 and PD98059 were both present. However, 

when these treatments were not included all the Ct (cycle threshold) values were 

clustered together and the p-actin gene maintained stable expression (Figure 2.8). 

The alternative housekeeping genes would have also been useful where 

experiments using both inhibitors in combination were not included, however 

ACTB was chosen because the amplification plots were close together giving very 

similar Ct values at a low number of cycles.

-r* 1 1

i

a

> » n 30 M

|

3

Figure 2.9: QPCR Data for ACTB (Housekeeping Gene) Expression in N/TERT I 

Keratinocytes. Amplification plots after optimisation o f cDNA from SHH and/or EGF 

stimulated N/TERT 1 keratinocytes treated with inhibitors (LY294002 or PD98059). ACTB 

expression remained stable in N/TERT I keratinocytes under these treatment regimes.
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2.3.3.1.2. ACTB (P-actin) Optimisation

QPCR is used to measure DNA amplification because it can give more accurate 

results than end point PCR, which may continue and give results which are past 

the exponential phase o f the reaction. In qPCR, the fluorescence caused by binding 

o f  Sybr Green is measured throughout the reaction. Fluorescence increases by 

1000 fold When Sybr Green binds double stranded DNA. Measurements are used 

at the threshold cycle (Ct), which is the cycle at which fluorescence is determined 

to be statistically significant above the background. It is more accurate to measure 

the Ct value because this is the exponential phase o f the qPCR rather than the 

endpoint o f  a PCR cycle and endpoint values can be influenced by limiting 

reagents, cycling parameter differences or reaction components. Lower Ct values 

are preferable because primer dimers are more likely to occur at later timepoints, 

but high Ct values can be caused by low levels o f  DNA. QPCR optimisation 

means that it is possible to check for primer dimers, chose the conditions required 

for a low Ct value and make sure the experiment will be as accurate as possible 

using a housekeeping gene which maintains the same Ct value under all 

conditions.

The lowest Ct value for ACTB primers was obtained with lp g  cDNA and 1.5 pg 

ACTB primers, therefore, further optimisation around these values was continued. 

The dissociation or melting curve for the ACTB primers (Figure 2.9a) shows that 

when the amplification products o f QPCR were heated, there was only one melting 

point. This means that there was one product and therefore no primer dimers 

interfering with the results. The amplification plot for ACTB shows that at serial 

cDNA dilutions o f  1, 1:10, 1:100 and l:1000pg/pl, the plots were evenly spaced 

(Figure 2.9b). The Ct values taken from the amplification plots with the serial 

dilutions were then plotted against the cDNA concentrations used to make the 

standard curve, which should have an efficiency as close to 100% as possible and 

an R2 value as close to 1 as possible for the most accurate qPCR experiments. The 

standard curve for ACTB was very good, staying within the recommended range
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and thus qPCR carried out under the optimised conditions should give very 

accurate results (Figure 2.9c).

The levels o f each gene (EGR-3, IL1-R2, PTCH1 and S100A7, see Table 2.2 for 

primer sequences) when N/TERT1 cells had been treated with SHH, EGF and 

inhibitors (Table 2.9) were normalised to the levels of housekeeping gene ACTB, 

which always remains constant. The effect o f SHH, EGF, LY294002 and 

PD98059 treatments could then be compared graphically.

(a) Dissociation Curve b) Amplification Plot

(c) Standard Curve

Figure 2.10: Optimisation o f ACTB primers with cDNA from  N/TERT1 keratinocytes.

(A) dissociation curve for ACTB primers with N/TERT1 cDNA; (B) Dilution series of 

N/TERT 1 cDNA neat (l.5pg) cDNA (blue), 1:10 dilution cDNA (red), 1:100 dilution 

cDNA (green) and 1:1000 dilution cDNA (grey) with ACTB primers (C) Standard curve 

for N/TERT 1 cDNA dilution series with ACTB primers.
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p-actin is abundant in keratinocytes because it is a cytoskeletal protein and so a 

relatively low Ct value can be obtained by optimisation o f  the qPCR reaction. 

However, EGR-3, IL1-R2, S100A7 and PTCH are present in much lower amounts 

and so this makes it much harder to optimise those primers for qPCR because very 

large amounts o f  cDNA would be required.

2.3.3.1.3 EGR-3 optimisation for N/TERT1 keratinocytes.

2pg cDNA and lp g  EGR-3 primers gave the lowest Ct value so these 

concentrations were used for further qPCR o f  this gene. The dissociation curve 

showed a small extra curve (blue line), which may be caused by some 

contamination or primer dimerisation, but the rest o f the lines follow one curve so 

have no contamination or primer dimers (Figure 2.10a). The amplification plots 

show that the dilutions did not have equal spacing between them (Figure 2.10b) 

and although the R2 value was 0.995, the slope and efficiency could not be 

optimised to within the suggested limits o f  between -3.2 and -3.5 slope and 

between 90-110% efficiency, although optimisation was repeated several times 

(Figure 2.10c). This may lead to reduced accuracy in the results for expression o f  

this gene.
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(a) Dissociation Curve

(c) Standard Curve

(b) Amplification Plot
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Figure 2.11: Optimisation o f EGR-3 Primers and N/TERT 1 Keratinocyte cDNA. (a)

Dissociation curve for N/TERT 1 cDNA with EGR-3 primers, (b) Amplification plot of 

dilution series o f N/TERT1 cDNA neat (1.5pg) cDNA (blue), 1:10 dilution cDNA (red), 

1:100 dilution cDNA (green) and 1:1000 dilution cDNA (grey) and EGR-3 primers, (c) 

Standard curve for N/TERT 1 cDNA dilution with EGR-3 primers.

2.3.3.1.4 Effect o f SHH/EGF on EGR-3 expression in N/TERT1 keratinocytes.

Having optimised the EGR-3 and ACTB housekeeping gene primers, qPCR was 

run with the N/TERT 1 cDNA to compare EGR-3 expression under different 

conditions (for treatments with SHH/EGF and/or inhibitors see Table 2.9). There 

were two control conditions used, the first was from untreated N/TERT 1 cells and 

the second was not treated with SHH or EGF but was one or both inhibitors were 

applied (Figure 2.11b and c)
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EGR-3 levels did not significantly change in the presence o f  SHH and/or EGF 

when no inhibitors were present (Figure 2.11a). The PI3K inhibitor (LY294002) 

increased EGR-3 levels in response to SHH (-2  fold, p=0.05) or EGF (~1.5 fold, 

NS) compared to both controls. However, in combination SHH and EGF action 

was blocked (EGR-3 levels in the presence o f  SHH were significantly greater than 

SHH and EGF in combination, p=<0.001). The control in the presence o f  

LY294002 (PI3K inhibitor) caused reduced expression (0.5 fold EGR-3 

expression) compared to the control where no inhibitors were present (1 fold EGR- 

3 expression) but this was not significant. MEK inhibitor PD98059, reduced EGR- 

3 expression in the control and in the presence o f SHH and/or EGF (p=<0.001 for 

all) compared to the control where no inhibitors were present (Figure 2.11).

The large-fold increase in EGR-3 seen by Kasper et al. (2006) when cells are 

treated with both GLI1 and EGF is not reproduced in the current work with 

presence o f both recombinant SHH and recombinant EGF in N/TERT 1 medium. 

The 7.7 fold increase in EGR-3 expression in the presence o f  EGF alone which 

was shown by Kasper et al. (2006) was also not shown in the qPCR results o f  the 

current work (Figure. 2.11 A).
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Figure 2.12: Relative Fold Change (qPCR) in EGR-3 Levels in N/TERT I Cells treated 

with SHH and/or EGF in the Presence or Absence o f Inhibitors (PD98059 or 

LY294002). Relative fo ld  change in EGR-3 levels determined by qPCR in the absence (a) 

and presence o f two inhibitors, LY294002 (b) and PD98059 (c). Each bar represents data 

in the absence o f SHH and EGF (control), presence of either SHH or EGF or both. 

Statistical analysis was done by Ordinary ANOVA, Tukey test. * P=<0.05, ** P=<0.005, 

*** p=<o.001. Data expressed as a mean +/- SD for n=3 experiments with 3 replicates 

for each experiment.
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2.3.3.1.5 IL1R2 optimisation.

2pg cDNA and 0.5pg IL1R2 primers gave the lowest Ct value for qPCR so these 

concentrations were used for further qPCR of this gene. Optimisation provided a 

dissociation curve which showed a small peak in front o f the large clean peak for 

the melting o f the amplification products, which means there may have been a 

primer dimer or contamination in the qPCR reaction (Figure 2.12a). The dilution 

series reactions showed that the final curve (1:1000 dilution) had a very late Ct 

value which meant it didn’t even fit on the graph (Figure 2.12b). However, the 

first three Ct values for the dilution series were plotted against the dilution the 

slope and efficiency fell within the suggested guidelines (Figure 2.12c), which 

would mean that the accuracy o f qPCR experiments for this gene was high.

(a) Dissociation Curve (b) Amplification Plot

Figure 2.13: Optimisation o f 1L-1R2 Primers and N/TERT 1 Keratinocyte cDNA. (A)

Dissociation curve for N/TERT1 cDNA with IL-1R2 primers (B) Dilution series of 

N/TERT1 cDNA: neat (1.5pg) cDNA (blue), 1:10 dilution cDNA (red), 1:100 dilution 

cDNA (green) and 1:1000 dilution cDNA (grey) with IL-1R2 primers (C) Standard curve 

for N/TERT 1 cDNA dilution series with IL-1R2 primers.

(c) Standard Curve

R2 = 0.998 
Slope = -3.37 
Eff = 98%
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2.3.3.1.6 Effect o f SHH/EGF on IL1R2 expression

SHH caused no significant increase in IL1R2 levels. EGF caused a 5 fold increase 

(p=<0.001), but the effect o f EGF on IL1R2 was inhibited slightly by SHH 

(p=<0.001 when compared to the control) (Figure 2.13a).

PI3K inhibitor LY294002 led to no change in IL1R2 levels for the control or in the 

presence o f  SHH compared to the control where no inhibitors were present. EGF 

caused a 2 fold increase (p=<0.005) and there was an additive increase (~3 fold) 

when both SHH and EGF in were applied (p=<0.001). IL1R2 levels in the 

presence o f SHH and EGF are significantly greater than in the presence o f  SHH 

(p=<0.001) or EGF (p=<0.005) individually (Figure 2.12b).

MEK inhibitor PD98059 did not effect the IL1R2 levels in the controls. SHH did 

not effect IL1R2 either. EGF increased IL1R2 3 fold (p=<0.005) which was 

maintained in the presence o f SHH (p=<0.005). This was also significantly 

increased compared to in the presence o f  SHH (p=<0.001) (Figure 2.13c).

As with EGR-3, IL1R2 expression did not show the large fold increase seen by 

Kasper et al. (2006) when SHH and EGF in combination was used to treat the 

cells.
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Figure 2.14: Relative Fold Change (qPCR) in IL-1R2 Levels in N/TERT1 Cells treated 

with SHH and/or EGF in the Presence or Absence o f Inhibitors (PD98059 or 

LY294002). Relative fold change in IL1-R2 levels determined by qPCR in the absence (a) 

and presence o f two inhibitors, LY294002 (b) and PD98059 (c). Each bar represents data 

in the absence o f SHH and EGF (control), presence of either SHH or EGF or both. 

Statistical analysis was done by Ordinary ANOVA, Tukey test. * P=<0.05, ** P=<0.005, 

*** P=<0.001. Data expressed as a mean +/- SD for n=3 experiments with 3 replicates 

for each experiment.

2.3.3.1.7 S100A7 optimisation.

2pg cDNA and 1.5pig S100A7 primers gave the earliest Ct values so these 

concentrations were used for further qPCR of this gene (Figure 2.15b). 

Optimisation provided a clean dissociation curve which shows no primer dimers or 

contamination in the qPCR reaction (Figure 2.15a). However, the qPCR with a 

dilution series did not give curves at equal intervals reactions and the Ct values 

were still not early enough for a very efficient qPCR, probably due to the low 

levels of S100A7 in these cells (Figure 2.15b). Optimisation did not enable slope
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and efficiency to fall within the suggested guidelines even after repeating 

optimisation several times (Figure 2.15c), which may reduce accuracy o f QPCR 

experiments for this gene, again poor qPCR may be due to the low levels of 

S100A7 present.

(a) Dissociation Curve (b) Amplification Plot

(c) Standard Curve

r 2= l
Slope = -2.61 
Eff= 141.8%

Io

OJ 01

Figure 2.15: Optimisation o f S100A7 Primers and N/TERT1 Keratinocyte cDNA. (A)

Dissociation curve for N/TERT1 cDNA with S100A7 primers. (B) Dilution series of 

N/TERT 1 cDNA using 1.5/ug cDNA (blue), 1:10 dilution (red), 1:100 dilution(green) and 

1:1000 dilution (grey) with S100A7 primers. (C) Standard curve for N/TERT1 cDNA 

dilution series and SI00A 7 primers.
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2.3.3.1.8 Effect of SHH/EGF on S100A7 expression in N/TERT1 
keratinocytes.

SHH increased S100A7 expression 4 fold (NS) and EGF increased S100A7 12 

fold when compared to the control (p=<0.001). However, SHH blocked the effect 

o f  EGF (Figure 2.15A).

LY294002 (PI3K inhibitor) increased S100A7 1 fold (p=0.05). SHH had little 

effect, but EGF slightly increased S100A7 (p=0.05) and in combination with SHH 

there was an additive increase in S100A7 (p=0.001), which was also significantly 

larger than in the presence o f  either SHH (p=0.001) or EGF (p=0.005) (Figure 

2.15B).

PD98059 (MEK inhibitor) increased S100A7 4 fold (p=0.001). The addition o f  

SHH had little effect, EGF increased S100A7 4 fold and with SHH and EGF in 

combination the increase was 5 fold (NS; Figure 2.15C).

2.3.3.1.9 PTCH Optimisation

The 2pg cDNA and lpg PTCH primers gave the earliest Ct value so these 

concentrations were used for further qPCR optimisation for this gene. PTCH 

primer optimisation gave dissociation curves with a small peak ahead o f  the main 

large clean melting curve for each o f the treatments (SHH and/or EGF and/or 

inhibitors) which means there may have been primer dimers or contamination in 

the qPCR reaction (Figure 2.16a). The amplification plots gave equally spaced Ct 

values and therefore good slope and efficiency levels were derived from the 

standard curve (Figures 2.16b and c). These should give accurate results PTCH 

levels by qPCR.
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Figure 2.16: Relative Fold Change (qPCR) in S100A 7 Levels in N/TERTl Cells treated 

with SHH and/or EGF in the Presence or Absence o f Inhibitors (PD98059 or 

LY294002). Relative fold change in S100A7 levels determined by qPCR in the absence (a) 

and presence o f two inhibitors, LY294002 (b) and PD98059 (c). Each bar represents data 

in the absence o f SHH and EGF (control), presence of either SHH or EGF or both. 

Statistical analysis was done by Ordinary ANOVA, Tukey test. * P=<0.05, ** P=<0.005, 

*** p= < o .001. Data expressed as a mean +/- SD for n=3 experiments with 3 replicates 

for each experiment.
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(a) Dissociation Curve Amplification Plot
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(c) Standard Curve
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Figure 2.17: Optimisation o f  PTC H  prim ers on N /TE R T1 keratinocytes. (A)

Dissociation curve for N/TERT 1 cDNA with PTCH primers. (B) Dilution series o f  

N/TERT1 cDNA using 1.5fig cDNA (blue), 1:10 dilution (red), 1:100 dilution(green) and 

1:1000 dilution (grey) with PTCH primers. (C) Standard curve for N/TERT1 cDNA 

dilution series and PTCH primers.

2.3.3.1.10 Effect of SHH/EGF on expression of PTCH in N/TERT1 
keratinocytes.

SHH and/or EGF caused little change in PTCH levels (NS). However, PI3K 

inhibitor LY294002 decreased PTCH 0.2 fold, SHH had little effect and EGF 

decreased PTCH 0.4 fold, this effect was additive when both were present in 

combination with a 0.2 fold decrease in PTCH (NS). MEK inhibitor PD98059 

caused a 0.4 fold increase in PTCH, SHH and EGF had little effect but when 

present in combination there was a 0.2 fold decrease in PTCH levels.
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Figure 2.18: Relative Fold Change (qPCR) in PTCH Levels in N/TERT1 Cells treated 

with SHH and/or EGF in the Presence or Absence o f Inhibitors (PD98059 or 

LY294002). Relative fold change in PTCH levels determined by qPCR in the absence (a) 

and presence o f two inhibitors, LY294002 (b) and PD98059 (c). Each bar represents data 

in the absence o f SHH and EGF (control), presence o f either SHH or EGF or both. 

Statistical analysis was done by Ordinary AN OVA, Tukey test. * P=<0.05, ** P =<0.005, 

*** p=<o.001. Data expressed as a mean +/- SD for n=3 experiments with 3 replicates 

for each experiment.

Figure 2.17A shows no increase in gene expression in the presence o f SHH 

comparable to GLI overexpression (see Table 2.5) (Kasper et al. 2006). This 

seems to suggest a lack of activation of the SHH pathway by addition of 

recombinant SHH to N/TERT1 cells, as PTCH is a target gene upregulated in the 

event of SHH pathway activation that is important in negative feedback of the 

pathway.
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There was also no significant inhibition o f PTCH by EGF observed in GLI over­

expressing cells. Consistent with this LY294002 or PD98059 also have little effect 

on PTCH expression (Figure 2.17 B, C). Thus not confirming the conventional 

PCR data (see Figures 2.4,2.5).

The results for QPCR were not as expected. Not one o f the genes shows the large 

fold increases in gene expression for cells treated with both recombinant SHH and 

EGF in combination compared to SHH or EGF treatments individually, which was 

reported with GLI1 and EGF by Kasper et al. (2006). The unexpected results 

obtained by conventional PCR when N/TERT1 cells were treated with EGF 

pathway inhibitors, LY294002 and PD98059 including a decrease in PTCH and 

EGR-3 in the presence o f PD98059 or LY294002 were not confirmed by QPCR 

analysis.

2.3.4 Cloning

As the SHH gene is GC rich, it proved difficult to amplify a full length copy so the 

cDNA was amplified in two overlapping sections. The 5’ section was 830bp in 

length and the 3 ’ section was 655bp. They were cloned separately in the pGEM-T 

easy cloning vector. The overlapping region contained an XmnI site that cuts SHH 

only once and allows the two sections to be ligated together to create the full 

length cDNA (Figure 2.1 in methods).

The two separate pieces o f the SHH cDNA were released from the pGEM-T easy 

vector with a double digest (XmnI and EcoRI). However, since there is an XmnI 

site in the pGem-T easy vector, this digest resulted in three bands (Figure 2.19). 

Ideally the pGEM-T easy vector would have been cut on its own to prove that it 

has an XmnI site and therefore is cut into two pieces. After this digest pGEM-T 

easy should also have been run on the same gel as the two SHH sections to show 

that the two upper bands in the first and second lanes are definitely pGEM-T easy 

vector. The products were sequenced to check that there were no polymorphisms
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and XmnI sites at the beginning and end o f the SHH sections can be seen in 

Figures 2.20 and 2.21.

IPSBBPVWbMH
BBBBftSSpSBi

ana
Figure 2.19: Xmnl/EcoRl Double Digests fo r Sub-cloning into pcDi\A3. Xmnl/EcoRI 

restriction digest o f pGEM-T Easy DNA clones o f the 3 ’ section o f SHH (A) and the 5 ’ 

section o f the SHH cDNA (B) and EcoRI linearised pcDNA3 (C). The required SHH 

cDNA sections of655bp and 830bp are highlighted by the red boxes.

. ■-*-1-1-1444-14111 I I I ll-l-lt-l-H -i-t-
G  C G  C  C A  A G A A G G T  C  T T C  T A C  G T  G A T  C  G A G  A C  G C

80 90 100

Figure 2.20: XmnI site present near the beginning o f sequence for the bottom half of 

SHH sequenced with T7 primer. XmnI site is highlighted in blue.
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Figure 2.21: XmnI site was present near the end of the bottom section o f SHH sequence 

with a SHH2F primer. XmnI site is highlighted in blue, however, the DNA levels appear 

low.

The two sections were then ligated together and then ligated into the EcoRI site 

(within multiple cloning site) o f the pcDNA3 eukaryotic expression vector. 

Restriction digestion was also used to confirm the successful ligation of the full 

length SHH cDNA in to the expression vector (Figure 2.22). Sequencing 

confirmed which clones were successful in achieving the top section of SHH 

ligated to the bottom section at the XmnI site rather than two top sections or two 

bottom sections ligated together (correct orientation) (Figure 2.23). The 

sequencing was also used to confirm that no polymorphisms had been introduced 

into the sequence during transformation. A portion of SHH sequence and pcDNA3 

sequence are shown in Figure 2.24.
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Figure 2.22: Full Length SHH cDNA Cloned into the pcDNA3 Plasmid. DNA was

isolated from each o f the six clones (1-6) and cut with EcoRl. The pcDNA3 vector 

(5446bp) is present in all lanes but ligated SHH DNA (1485bp) is only present in samples 

3, 4 and 6 (highlighted by red box).
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Figure 2.23: Top and bottom sections ligated in the correct orientation as shown by 

sequencing data. XmnI sites successfully ligated together (highlighted in blue) The top 

section o f SHH is on the right o f the XmnI site, the bottom section on the left. The quality 

of the trace is poor possibly due to low DNA levels.
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Figure 2.24: EcoRI and SHH sequences.

Good quality sequence data.



Figure 2.25: EcoRI sequence leads onto SHH sequence (2F primer). Full length SHH 

successfully transfected into pcDNA3 expression vector (sequence highlighted yellow) at 

EcoRI site (sequence highlighted blue).

Although SHH was cloned successfully, attempts to transfect N/TERT1 cells were 

unsuccessful due to time limitations and cell culture infections. Two methods o f 

transfection were tried during the course of this study using a Tet-on vector 

including electroporation and Mirus transfection reagent. A GFP control vector 

was used to assess transfection efficiency. The electroporation conditions used 

were those recommended for the HaCaT cell line (not optimised to N/TERT1 

because both are keratinocytes and also due to time constraints) and therefore not 

necessarily ideal. After G418 selection no cells survived to form colonies. 

Therefore the Mirus method was attempted since this had been used successfully 

by others using N/TERT-1. Low levels o f GFP (Figure 2.26) were observed but on 

subculturing, changes in cell morphology occurred suggested the cells had been 

stressed so selection was not continued.

Due to the problems encountered and the time-consuming double selection 

required for the creating a Tet-on stable cell line SHH was cloned as described into 

pcDNA3. However, before creating an over-expressing cell line, further 

optimisation o f transfection o f N/TERT-1 with different reagents or 

electroporation conditions would be required.
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Figure 2.26: N/TERT1 cells Transfected with GFP Vector using Mirus Agent. (A)

N/TERT1 cells showed normal morphology at ~70-80% confluency [IOx magnification] 

(B) Low number o f N/TERT1 cells expressing GFP indicates poor transfection efficiency 

[lOx magnification with green filter].
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2.4 Discussion

Kasper et al. (2006) found particularly large increases in the expression o f a subset 

o f  SHH target genes (EGR-3, S100A7, IL1-R2) in N/TERT1 keratinocytes with 

doxycycline-induced overexpression o f GLI1, and the addition o f recombinant 

EGF (see Table 2.7). PTCH transcription was also up-regulated by GLI1 so up- 

regulation by SHH pathway activation alone would be expected (Daya-Grosjean 

and Couve-Privat, 2005). These genes were therefore used as markers for 

SHH/EGF pathway activation. If recombinant SHH and EGF applied to the 

N/TERT1 cells in combination showed a large increase in these target genes then 

inhibitors to SHH and EGF signalling may be useful for treating BCC.

Decreased cell viability in the presence o f PD98059 may have caused altered gene 

expression as death signalling pathways, which include parts o f  the EGF signalling 

pathway would have been activated in the cells (Jin and El-Deiry., 2005). 

However, cDNA quantities were carefully measured and equalised prior to PCR, 

so reduced cell numbers would not have affected the quantity o f  DNA actually 

used in the study. It would also have been a good idea to carry out these cell 

viability tests in the presence o f the recombinant SHH and EGF which were added 

to the cells.

Activity o f  the EGF pathway was confirmed only for the MEK/ERK branch, but it 

would also have been useful to confirm activity o f  the PI3K/AKT by looking at 

AKT phosphorylation after EGF addition by western blotting prior to use o f  the 

PI3K inhibitor LY294002 in this study.

The response to PD98059 and LY294002 in the conventional PCR experiments 

showed complete inhibition o f  PTCH and EGR-3 in the presence o f  SHH, this 

appears to be unrelated to EGF signalling. Since these are not confirmed by qPCR 

they should be interpreted with caution. These PCRs had to be carried out at 35-40 

cycles to be visable, a point at which PCRs are not quantitative. In addition it is
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impossible to know, using conventional methods, whether these reactions are 

efficient at all concentrations o f  the target gene as can be observed from the 

amplification plots obtained in QPCR. For example in Figure 2.8 an amplification 

plot for one sample for TF2H started o ff at the same CT but then failed to reach a 

similar end point.

Using Image J analysis o f the band density o f the PCR gels, similar data for target 

gene expression (PTCH, EGR-3 and S100A7) was obtained in the duplicate 

experiments (see Figures 2.4, 2.5 and 2.6). In all cases, the second experiment 

gave higher levels o f  expression, although the same amount o f  DNA was used. 

However, these results did not give the large fold increases in target gene 

expression (EGR-3 and S100A7) observed by Kasper et al (2006). This may be 

due to the fact that they used N/TERT1 cells expressing GLI1 and then treated 

with EGF, rather than trying to induce GLI1 with recombinant SHH as done in the 

current experiments. Thus, the results are not likely to be anomalous.

Although conventional PCR suggested some activity in response to SHH due to 

increased PTCH, EGR-3 and S100A7, the more accurate real time method (which 

enables you to avoid reaching a plateau when amplifying genes so a comparison 

between different treatments is more reliable) showed no significant increase in 

expression o f  any o f  these genes. The augmentation o f GLI target gene expression 

by EGF observed by Kasper et al (2006) were not observed in N/TERT1 cells 

treated with recombinant SHH and EGF in combination.

As expected, PTCH had the highest expression in the presence o f  SHH, but was 

reduced in the presence o f  EGF. However, this was not entirely inconsistent with 

Kasper et al (2006) where EGF inhibited PTCH expression (see Table 2.7).

There is some evidence for stimulation o f EGR-3 in the presence o f both SHH and 

EGF (Figures 2.3 and 2.5). S100A7 showed increased expression in the presence 

o f SHH and EGF either alone or together (Figures 2.3 and 2.6). However, these
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results do not show the same large fold increases in expression for these genes that 

were described by Kasper et al (2006) in the presence o f EGF and up-regulated 

GLI1 (see Table 2.5). The results for PTCH, EGR-3 and S100A7 in the presence 

o f  inhibitors are also hard to rationalise because PTCH expression appeared to 

decrease in the presence o f either PD98059 or LY294002 (Figure 2.4 and 2.5), 

but showed no change when cells were treated with both LY294002 and PD98059 

in combination. This work was repeated twice with the same result (Figures 2.4 to 

2.6).

The lack o f  SHH signalling found in N/TERT1 cells lines could be explained 

because SHH signalling does not occur in adult epidermal cells except for during 

the anagen (down-growth) phase o f the hair follicle. This means that the lack o f  

GLI1, a SHH pathway transcription factor also comes as no surprise. However, 

addition o f  recombinant SHH to these cell lines would be expected to activate the 

pathway and testing GLI1 levels after SHH addition by RT-PCR or western 

blotting would have been useful to confirm successful activation. A lack o f  

availability o f  useful GLI1 antibodies meant this could not be carried out 

successfully for this study. Western blotting for the SHH, PTCH, SMO and GLI 1 

proteins would also have been useful to confirm the RT-PCR results, but the same 

problems with antibodies prevented this being a useful option.

RT-PCR results seemed to show some activation o f SHH signalling, with up- 

regulation o f  PTCH upon SHH addition to the cell medium. The reduction in 

PTCH levels by EGF inhibitors PD98059 (MEK inhibitor) and LY294002 (PI3K 

inhibitor) when applied individually may show that EGF does increase SHH target 

gene expression. Addition o f  both inhibitors simultaneously to the cell medium 

seemed to cancel out any effect each had individually. This probably means that 

another part o f  the EGF pathway was instead activated in the absence o f  

MEK/ERK and PI3K/AKT or that the inhibitors actually lost their efficacy in 

combination. If this is the case it could be problematic for a topical formulation 

containing both inhibitors.
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Further evidence o f  SHH pathway activation was shown using RT-PCR by the 

small increases in EGR-3 and S100A7 in the presence o f recombinant SHH or 

EGF. However, there was not the additive effect in expression when both SHH 

and EGF were added to the medium which was found by Kasper and colleagues 

when they added recombinant EGF to GLI1 expressing cells (Kasper et al. 2006).

The effect o f  PD98059 and LY294002 were unexpected because if the EGF 

pathway really does modulate SHH signalling by increasing target gene 

expression, a decrease in S100A7 (one such target gene) would be expected when 

inhibitors to the EGF pathway are present. This would particularly be expected in 

the presence o f  PD98059 because it has been suggested in publications that the 

MEK/ERK branch o f the EGF pathway is involved in augmenting SHH target 

genes (Schnidar et al., 2009). It is interesting that the presence o f  LY294002, a 

PI3K inhibitor has seemingly increased S100A7 expression. This seems to show 

that in this case LY294002 is not inhibiting a signalling pathway which increases 

S100A7 expression, but may in fact be inhibiting a separate signalling pathway 

which would otherwise inhibit S100A7.

In the case o f  the S100A7, expression increased in response to EGF and was 

inhibited by both PD98059 and LY294002. However, what is surprising is the 

inhibition o f  the EGF response by SHH. There was no significant inhibition o f  

PTCH by EGF as seen previously which was consistent with no significant 

changes in PTCH levels in response to the inhibitors. The general decrease in 

EGR-3 expression in the presence o f PD98059 in comparison to no inhibitors 

present agrees with the conventional method o f PCR which showed very little if  

any expression in the presence o f  LY294002 and PD98059 (Figure 2.5).

There are a number o f  possible explanations why there is a little response to SHH. 

Firstly, SHH and GLI1 components o f the SHH pathway were absent from 

N/TERT1 and HaCaT keratinocytes. Other components whose presence was not
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confirmed by PCR, such as SUFU, may have also been deficient. Western analysis 

was not helpful in confirming the expression o f proteins in the SHH pathway due 

to poor antibodies. Other SHH signalling genes such as SUFU may have been 

interesting to look at in order to confirm that the pathway could be activated. The 

absence o f  GLI1 in N/TERT1 and HaCaT keratinocytes may mean that target 

genes could not be transcribed. However, one might expect an increase in GLI1 in 

the event o f  pathway activation.

Secondly, it may have been due to the recombinant SHH (20kDa N-terminal 

domain) which was added to cell culture medium because this was made in E.coli 

and therefore does not have the post translational modifications necessary for 

increased activity (palmitoylation and cholesterol attachment) (Incardona and 

Eaton, 2000; Pepinsky et al., 1998). In order to overcome this SHH was cloned to 

make recombinant SHH in cell culture medium (conditioned medium) or for 

making an N/TERT1 overexpressing cell line for comparison with the SHH 

expressing HaCaT cell line used previously (Bigelow et al., 2005). Due to time 

constraints it has not been possible to determine if  this was the reason for the lack 

o f  response. However, the recombinant SHH used had been batch tested for 

activity in C3H10Y1/2 fibroblast cells by the supplier (Sigma Aldrich Company 

Ltd, Gillingham, UK). Ideally these C3H10Y1/2 cells should have been used in 

this study as a positive control, for SHH activity and stability over the time course 

o f  the experiment, however due to financial constraints this was not possible. In 

addition a dose response curve should have been carried out for expression o f a 

GLI-responsive gene to determine the ED50 (effective dose or the amount o f drug 

that produces a therapeutic response in 50% o f the subjects taking it) for N/TERT1 

cells which may be different to C3H10Y1/2 cells. Another useful experiment 

would have been to use immunocytochemistry to view the localisation o f  GLI in 

the nucleus on treatment o f  cells with the recombinant SHH. However, 

commercially available antibodies to GLI1 are rarely effective. This may be useful 

to cany out in the future as new GLI1 antibodies are becoming commercially 

available.
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Thirdly, it could also be explained by a negative feedback loop, not relevant in 

GLI1 over-expressing cells. Normally SHH signalling up-regulates PTCH, thus 

inhibiting SMO, leading to a requirement for higher levels o f  SHH to keep the 

pathway activated. But no increase in PTCH expression was seen so this suggests 

a lack o f  activation o f  the SHH pathway signalling by SHH. Another possibility is 

that GLI3 inhibits GLI1 and GLI2 transcription.

Also, a paracrine effect may be important for SHH activation, where fibroblasts 

need to be present in order for the pathway to be activated effectively in 

keratinocytes. Using organotypic culture models Bigelow et al. (2005) 

successfully achieved tumour down-growth into the model dermis in response to 

SHH (Bigelow et al., 2005). This suggests that it is possible that a paracrine effect 

is needed for the formation o f BCC/SHH signalling.

The primary cilium, an antenna-like structure in the cell membrane, may also be 

required. It is currently thought that the primary cilium acts as a site where all the 

major components o f the SHH pathway can be gathered together to allow 

interaction to occur. PTCH is present in the cilia in the absence o f  SHH and on 

SHH addition is deactivated and moves out o f  the cilium into the cell. Smoothened 

then enters the cilium enabling downstream pathway activation. It is not known 

whether the primary cilium is present in N/TERT1 keratinocytes, this should be 

explored further based on recent publications suggesting their requirement for 

SHH signalling.

The timings used may not have been the most appropriate for maximal gene 

expression. RNA extraction was carried out 24 hours after addition o f  recombinant 

SHH and EGF because Kasper et al. added recombinant EGF to their cells 

(NTERTls expressing GLI1 under the control o f doxycycline) 24 hours prior to 

RNA extraction (Kasper et al., 2006). It seemed most appropriate to conduct a 

comparable experiment with recombinant SHH rather than expressing GLI1.
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However, although Kasper et al. did successfully find augmentation with 

recombinant EGF after 24 hours, GLI1 was constitutively active. Here the 

negative feedback loop might have produced enough PTCH to inhibit SHH 

signalling in 24 hours thus bringing levels o f Gli responsive genes to unstimulated 

levels (including PTCH). Another option would have been to show activation of  

the SHH pathway using western blotting to show increased protein expression o f  

PTCH. Unfortunately, as explained above, the PTCH antibodies available are not 

reliable and do not give clear results.

A possible problem with the attempted activation o f SHH signalling at the level o f  

the SHH ligand in a BCC model is that the signalling pathway is activated by 

PTCH or SMO mutations in BCCs.

Another potential problem is that EGFR is internalised rapidly on ligand binding, 

so it may be that EGF signalling activates transcription factors at a greater speed 

than SHH signalling. Laner-Planberger and co-workers showed that c-Jun 

interacted more strongly with GLI2 so Gli2 may need to accumulate (GLI2 

upregulates GLI1) before EGF addition, which would eventually lead to the 

activation o f  c-Jun. Using constitutive activation o f SHH signalling would have 

solved this problem because EGF could be added at any time and there would 

already be plenty o f GLI transcription factors present. Alternatively if  SHH had 

been added to the medium prior to EGF a synergistic effect between these 

pathways may have been observed. Various time points could be tested to find the 

time point for optimal GLI 1/2 signalling, where target gene expression could be 

used as a marker for activation. Care would need to be taken to select an 

appropriate gene, as there are early and late response genes (Dessaud et al. 2007). 

Ideally further time would be spent creating the constitutively expressing SHH 

N/TERT1 keratinocyte cell line as sustained SHH pathway signalling is required 

to form BCCs.

115



Cloning o f  SHH was time consuming and although eventually successful there 

was not time to successfully transfect N/TERT1 cells with the SHH containing 

vector. In order to repeat the QPCR experiments on SHH expressing N/TERT1 

keratinocytes the Mirus transfection method could be continued in future and cell 

selection completed. Alternatively, a transient transfection could be carried out on 

the N/TERT1 cell line. However, recombinant SHH addition to the culture 

medium may after all have the same effect as SHH expressing cells because SHH 

protein is released from the SHH expressing cell and then acts as a ligand to 

activate the signalling pathway in adjacent cells.
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Chapter 3

Sonic Hedgehog and Epidermal 
Growth Factor Signalling in Co­

cultures of Keratinocytes and 
Fibroblasts
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3.1. Introduction
Recent publications have implicated that paracrine signalling and the requirement 

for the presence o f  a primary cilium is required to achieve SHH pathway 

activation (Walter et al., 2010; Eggenschwiler and Anderson., 2007; Haycraft et 

al., 2005; Clement et al., 2009; Wong et al., 2009). These extra requirements may 

explain the low level o f SHH signalling activity observed in monolayer cultures 

(see Chapter 2) and perhaps the influence o f other factors on SHH signalling 

requires further consideration.

For example, it is thought that SHH is involved in pancreatic tumour development 

and progression (Walter et al., 2010; Bailey et al., 2009; Liu et al., 2007). Over­

expression o f  SHH ligand occurs in 70% o f  primary pancreatic adenocarcinomas, 

while the PTCH and SMO mutations seen in BCC, have not been observed 

(Thayer et al., 2003; Liu et al., 2007, Tian et al., 2009). SHH is not expressed in 

the normal adult pancreas, but primary and metastatic pancreatic cancer cell lines 

were found to express components o f  the SHH pathway (expression o f SHH, 

PTCH and SMO has been reported in up to 70% o f pancreatic ductal carcinomas). 

Implanting either SHH expressing primary cells or a pancreatic cancer cell line 

expressing SHH into mice results in increased tumour size and number o f  

metastases compared to cells that do not express SHH (Bailey et al., 2009). This 

shows that the more aggressive pancreatic tumours have a requirement for SHH 

expression.

Work with an epithelial pancreatic cell line (T-HPNE) reinforced this finding. 

These cells were transformed with retro-viral vectors that provide oncogenic 

insults to mimic the progression model o f  pancreatic cancer. In this model, 

inhibition o f  SHH signalling reduced tumour growth, lymphangiogenesis and 

metastasis (Bailey et al., 2009) confirming that active SHH supported tumour 

growth. The importance o f  SHH was confirmed by global gene expression analysis 

using an Affymetrix exon microarray o f  primary pancreatic carcinoma cells versus 

non-neoplastic pancreatic cells which indicated SMO over-expression in
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pancreatic cancer cells. Immunohistochemistry on primary human pancreatic 

cancer tissue not only further substantiated this finding but also suggested a 

paracrine effect by demonstrating SMO expression in human pancreatic 

adenocarcinoma stromal fibroblasts.

3.1.1 Paracrine signalling
Paracrine signalling is essential for mediating SHH pathway activity in 

development, and such epithelial-mesenchymal interactions are essential for skin 

development. SHH signalling is also heavily involved during hair follicle 

development being necessary for the cross-talk between the dermal papilla and 

epithelial components (Lacina et al., 2007; Yauch et al., 2008).

Paracrine signalling via the SHH pathway has also been identified in various 

epithelial cancers. It has been suggested that stromal cells may be stimulated by 

SHH expressing tumour cells (Walter et al., 2010; Feldman et al., 2007). 

Additionally, cancer-associated fibroblasts were shown to stimulate pancreatic 

tumour cells and SHH over-expression in mice during development resulted in 

pancreatic cancer precursor lesions (Thayer et al., 2003; Morton et al., 2007).

Xenografts (grafts from one species to another) o f human tumours highly 

expressing SHH were implanted onto mice and it was found that the stromal cells 

next to the tumour had increased GLI1, indicating the SHH pathway had been 

activated in a paracrine manner. It was also demonstrated that SHH activity in the 

stromal microenvironment can provide a growth advantage to tumour cells. It was 

found that BCC fibroblasts influence the growth and differentiation pattern of  

normal keratinocytes, pushing them towards a malignant phenotype (Lacina et al., 

2007). These interactions may be due to the influence o f soluble growth factors or 

the collagen extracellular matrix on keratinocytes. Other xenograft mouse models 

that have been used for pancreatic cancer also showed a paracrine requirement for 

the SHH pathway, as tumour cells produced SHH ligand that activated the SHH 

pathway in the stroma (Tian et al., 2008). These authors also confirmed that
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paracrine but not autocrine SHH signalling occurs in pancreatic carcinomas. This 

was demonstrated by expressing the SMOM2 allele o f SMO and a PTCH-LacZ 

reporter allele in the pancreas to activate canonical SHH signalling in a cell- 

autonomous manner. The results showed that canonical SHH signalling did not 

occur in pancreatic epithelium in an autocrine manner. Furthermore, qRT-PCR 

experiments on laser capture micro-dissected human and mouse tumour samples 

confirmed the presence o f SHH signalling in tumour stroma (Tian et al., 2009).

Another publication co-culture o f a pancreatic cancer cell line with 10T1/2 cells 

(multipotent mouse embryo cell line stably transfected with a GLI reporter 

construct) resulted in the induction o f GLI reporter activity and this correlated with 

the level o f ligand produced by the tumour cells. This demonstrated that SHH 

produced by tumour cells could act on the stromal compartment again suggesting 

paracrine signalling (Yauch et al., 2008).

The same researchers examined signalling in vivo by xenografting pancreatic cells 

expressing SHH onto PTCHl-LacZ-Rag2'/' mice and found anti-P-galactosidase 

stained stromal cells adjacent to tumour cells indicating paracrine signalling 

(Yauch et al., 2008). The same group also showed that xenografting human 

tumour biopsies onto nude mice led to the replacement o f  human-derived stroma 

by mouse stroma.

However, the situation in prostate cancer cell lines is still unclear and it is 

uncertain if  SHH signalling is autocrine and/or paracrine. Work with three cell 

lines (LNCaP, PC3 and 22RV1) transfected with activated GLI2 showed SHH 

target gene activation, but this did not occur when the same cells were transfected 

with activated SMO. Also, cyclopamine (SMO inhibitor) did not affect the 

expression o f  target genes, but did limit cell proliferation. Therefore, autocrine 

SHH signalling does not seem to regulate tumour growth in these cells (Zhang., 

2007). However, analysis o f gene expression in benign and malignant prostate 

tissue did show that SHH signalling molecules in the stroma surrounding a

120



prostate tumour did accelerate growth, mimicking SHH signalling in the 

mesenchyme during prostate development (Shaw et al., 2009).

3.1.2 Primary Cilia
There are two types o f mammalian cilia, motile and non-motile. Motile cilia can 

be found lining the trachea where they beat to clear dirt and mucus from the 

airway. Non-motile (primary) cilia generally function as sensory organelles. They 

protrude from cells into the extracellular space and many can have specialised 

functions (e.g. in the outer segments o f photoreceptors) but some do remain 

unspecialised.

Cilia have a basal body which is formed by transitional fibres, a terminal plate 

(these physically prevent entrance o f proteins into the cilia) and triplet 

microtubules which become the doublet microtubules (9+0 arrangement in 

primary cilia but 9+2 in motile cilia) in the long microtubular axenome (Figure

3.1). Generally, the cilia membrane is continuous with the plasma membrane 

(Singla and Reiter, 2006).

Ciliary
membrane

C i l i u m
Doublet

microtubule

Plasma
membrane

Transition
fibers

Terminal plate

Triplet
microtubules

Figure 3.1: Structure o f a Primary Cilium. The membrane is continuous with the plasma 

membrane and contains an array o f microtubules (Singla and Reiter, 2006).
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Cilia are formed when cells enter growth arrest and are then shed just before cells 

enter mitosis. There are three main stages of primary cilia development (Figure

3.2). First a golgi vesicle attaches to the mother centriole, enabling the centriole to 

extend and become the basal body forming the axoneme. Secondly, nearby 

vesicles join to form the cilia membrane which surrounds the axoneme. Thirdly, 

the axoneme covered in membrane reaches the cell surface, where the cilia and 

plasma membranes fuse to become continuous allowing the cilium to elongate 

further (Pedersen et al., 2008).

secondary c entriolar. 
vesicle (SCV)

centriolar 
vesicle (CV)

m other  c en tn ole

daughter centnole

axoneme

(D

primary cilium

plasma membrane

Golgi

( ? )  formation of centriolar vesicle 
(C V ) at distal end of m other 
centnole

( 2 )  centriolar m igration and fusion 
o f C V  with secondary C V s

( 3 )  docking and fusion with the 
plasm a m em brane

(4) iFT-m ediated elongation of 
the primary cilium

Figure 3.2: Development of the Primary Cilium (adapted from Pedersen et al., 2008).

Primary cilia defects lead to a variety of disorders or ‘ciliopathies’ usually caused 

by an inability of the centrioles to form the primary cilia or to migrate prior to 

ciliogenesis. Polycystic kidney disease is an example of a ciliopathy and this is 

caused by unregulated cilia function due to loss of cilia length control. This leads 

to a misalignment o f hepatic bile duct and renal tubule cells resulting in cyst 

growth that can lead to loss of kidney function (Bonnet et al., 2009).

Recently, it has been shown that the primary cilium must be present on cells for 

SHH signalling to occur. In the absence o f SHH, PTCH remains at the base of the 

cilium and SMO is inhibited. GLI2 and GLI3 are moved up and down the cilia via 

intraflagellar transport (IFT), and they are cleaved into repressor forms by the
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centrosome-proximal proteasome so they cannot activate gene transcription. When 

present, SHH binds to PTCH and this translocates PTCH out o f the cilium and 

SMO is no longer inhibited. SMO then moves into the cilium tip and interacts with 

SUFU, GLI and other proteins localised here to activate the SHH signalling 

pathway. These interactions prevent cleavage of GLI2 and GLI3, which are 

translocated to the cilium base and on to the nucleus by IFT proteins (see Figure

3.3). GLI is then able to stimulate target gene transcription in the nucleus by 

binding to GLI-promoters in various target genes (Eggenschwiler and Anderson., 

2007).

IFT proteins, which move up and down the cilium continuously are required for 

GLI activity and in their absence, modulation o f SHH/GLI target genes are 

blocked (Haycraft et al., 2005; Clement et al., 2009; Wong et al., 2009). In

Figure 3.3: SHH Pathway Signalling in the Primary Cilium. In the presence o f SHH 

(ligand), PTCH translocates out o f the cilium, releasing SMO from inhibition, enabling its 

movement to the cilium tip where it interacts with SUFU and GLI transcription factors, 

allowing GLI transportation to the cell nucleus.

< 3

GLI A  ........  HH ta rg e t  g e n e s

-  
G U  A

support o f this, mice homozygous for 

IFT88 (an intraflagella transport 

protein) survived until after birth, but 

a targeted null allele o f mouse 

IFT88/polaris (intrafl age liar transport 

component) caused lethality at mid­

gestation and mutant embryos 

displayed randomised left-right 

symmetry (under the control o f the 

SHH pathway in mammalian 

development) associated with loss of 

cilia (Murcia et al., 2000).
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Interestingly, cilia are not required for SHH signalling in Drosophila, as shown by 

mutations which block cilia formation (Han et al., 2003). However, it is not clear 

at this time how many other signal transduction pathways in humans may require 

cilia, although there is evidence that cilia are also involved in Wnt and PDGFRa 

signalling (Eggenschwiler and Anderson., 2007).

Generally, one primary (non-motile) cilium is present on almost every interphase 

or non-dividing cell in the body (Satir and Christensen, 2007), but they are rarely 

present on immortalised cells (Strugnell et al., 1996). Primary cilia were induced 

in a 3T3-L1 cell line by growing cells to high confluency and growth arresting 

them by serum starvation (Zhu et al., 2009). It is thought that cilia are more easily 

induced in polarised cells and when the cells are confluent and growth arrested 

(Satir and Christensen, 2007). As shown by Bonnet and co-workers, polarisation 

o f cells appears to be important in the normal development o f  primary cilia 

(Bonnet et al., 2009). Thus, primary cilia on polarised cells can act as location 

markers and enable cell to orient themselves in relation to their surroundings (e.g. 

in the epidermal basal layer, cells are columnar in a vertical direction).

It was not known whether the cell lines used in this study (N/TERT1, HaCaT or 

HCA2) had primary cilia or not. The current studies with SHH and EGF included 

a growth arrest stage (24 hour culture minus FBS/BPE prior to SHH/EGF 

addition), which is thought to enable cilia formation. However, work had been 

carried out whilst the cells were still sub-confluent and therefore capable o f  

proliferating on addition o f EGF and it is not certain that primary cilia were 

present under these conditions, and if not, what conditions would be required to 

induce them. It had been previously shown that co-cultures at the air-liquid 

interface (keratinocytes not covered in culture medium but fed by medium from 

below) improved cell differentiation (Dickson et al., 2000). Images o f  

differentiated epidermis formed with HaCaT or N/TERT1 cells grown on a 

fibroblast containing collagen gel showed well organised, columnar basal cells 

(Bigelow et al., 2005; Dickson et al., 2000). An alternative method utilises a filter
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insert so the medium level can be reduced once cells have adhered, to allow 

stratification at the air-liquid interface. In this method, fibroblasts may be grown in 

the well beneath to introduce additional paracrine effects.

Antibodies to cilia components such as acetylated-a-tubulin or IFT88 have been 

used to demonstrate the presence o f cilia (immunofluorescence and confocal 

microscopy). Recently, it has been shown that cilia are present in the epidermis, 

dermis and hair follicles as well as BCCs. This method has also been used to show 

that cilia are present on hair follicle cells throughout their development and that 

structural proteins in cilia co-localise with SHH pathway proteins (Wilson et al., 

2009; Wong, 2009; Clement et al., 2009; Lehman et al., 2009). Transmission 

electron microscopy (TEM) has also been used to show ciliation o f  mesenchymal 

and ectodermal cells in the mouse limb bud and in pre-cystic collecting tubule 

cells o f the kidney (Haycraft et al., 2005; Bonnet et al., 2009).

In conclusion, these studies suggest that fibroblasts may be needed to facilitate 

SHH pathway activation in keratinocytes by paracrine signalling and the presence 

o f  cilia may also be an important factor in enabling activation o f SHH signalling.

3.1.3 Aims

• To determine whether SHH pathway signalling can be activated in co­

cultures which allow epithelial-mesenchymal interactions.

• To determine by confocal microscopy and/or scanning electron 

microscopy, whether cilia are present on these cell lines under various 

culture conditions.

3.2 Methods

3.2.1 Cell lines
HCA2 fibroblasts (obtained from Professor David Kipling, Cardiff University, 

UK) are normal human diploid neonatal foreskin fibroblasts immortalised by the 

hTERT portion o f telomerase. These have been shown to maintain normal
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fibroblast characteristics with a long lifespan whilst maintaining more uniform 

populations than primary fibroblasts. Generally, primary cell change significantly 

with time and form variable populations which do not give reproducible 

experimental results (Bond et al., 1999; McSharry et al., 2001).

3.2.2 Maintaining cell lines
HCA2 fibroblasts were removed from liquid nitrogen and thawed at 37°C. The 

cells were transferred to a 50ml falcon tube and 20ml DMEM containing 10% 

FBS and 2mM L-glutamine (Gibco, Invitrogen, Paisley, UK) was carefully added 

and mixed. The cells in medium were transferred to a T75 culture flask (Coming, 

Fisher Scientific, Loughborough, UK) and incubated at 37°C in the presence o f 5% 

CO2 . The medium was changed every 2-3 days and cells were subcultured when 

they reached 70-80% confluence. Subculture was achieved by aspirating the 

medium, washing the cells with 5ml dPBS, adding 5ml trypsin-EDTA (Gibco, 

Invitrogen, Paisley, UK) and incubating at 37°C with 5% CO2 for approximately 5- 

12 minutes (or until cells were no longer adherent). An aliquot (5ml) o f DMEM 

containing 10% FBS was then added to deactivate the trypsin-EDTA and the cell 

suspension was removed from the flask.. An aliquot o f  2ml was added to a T75 

flask containing 18ml DMEM with 10% FBS and the cells were then incubated at 

37°C in the presence o f 5% CO2 .

3.2.3 Cryo-preserving HCA2 for storage
A freezing mixture was prepared with 90% FBS and 10% DMSO, filter-sterilised 

(0.2pm) and stored in 1ml aliquots (in 2ml cryovials) at -80°C.

Medium was aspirated from a T75 flask when cells were 75-80% confluent. The 

cells were washed in 5ml dPBS and then treated with 5ml Trypsin-EDTA 

(incubate at 37°C in 5% CO2 for 5-12 minutes). The trypsin was inhibited by
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adding 5ml DMEM/F12 (1:1, vol:vol) containing 10% FBS and 2mM L-glutamine 

and the cells pelleted by centrifugation (1,200 rpm for 5 minutes at RT). The 

supernatant was aspirated and the cells re-suspended in 3-4ml DMEM/F12 (1:1, 

vokvol) with 10% FBS and 2mM L-glutamine. Cells were counted by 

haemocytometer, adjusted to lxlO 5 cells per 1ml and added to cryovials containing 

lml o f freezing mixture. The vials were wrapped in tissue, placed in a polystyrene 

tube box and frozen at -80°C overnight. They were transferred to liquid nitrogen 

for long term storage.

3.2.4 Co-culture of HaCaT and HCA2 cell lines
HaCaT cells at 80% confluence in a T75 flask, were released by incubating in 5ml 

trypsin-EDTA at 37°C with 5% CO2 for 5-12 minutes (or until no longer 

adherent). Trypsin-EDTA was deactivated by addition o f 5ml DMEM containing 

10% FBS and 2mM L-glutamine and 300pl o f the mixture was removed and 

applied to each o f four 0.4pm filter inserts (Greiner Bio-One Ltd, Stonehouse, 

UK) in a 6 well plate. This was repeated for a second 6 well plate. HCA2 

fibroblasts (80% confluent) were released from a T75 flask with trysin-EDTA and 

added to the wells beneath the filter inserts o f one plate while the second plate had 

no fibroblasts added. 2ml DMEM containing 10% FBS and 2mM L-glutamine was 

added to each filter insert and the wells o f both plates. The cells were incubated for 

36 hours at 37°C with 5% CO2 . Growth medium was aspirated and the cells 

washed three times with dPBS, then 2ml DMEM with 2mM L-glutamine (but no 

FBS) was added to cells in each compartment. Cells were incubated at 37°C with 

5% CO2 to induce growth arrest. Keratinocytes and fibroblasts in both plates were 

incubated at 37°C in 5% CO2 for 24 hours in the presence o f  either lOng 

recombinant SHH, lOng recombinant EGF, or both. Control cultures had no 

recombinant proteins added. The medium was aspirated, the cells washed three 

times with dPBS and RNA was extracted using Trizol (section 2.2.2.1),
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3.2.5 Stratified Co-culture
The co-culture described in section 3.2.4 was also repeated in a modified form. In 

this case, 24 hours after plating, HaCaT cells were allowed to grow at the air- 

liquid interface by reducing the level o f medium (DMEM with 10% FBS and 

2mM L-glutamine) to the underside o f  the filter insert (to feed cells from below) 

and then incubating at 37°C with 5% CO2 for 5 days (replacing the medium every 

1-2 days) to allow stratification prior to inducing growth arrest (achieved in the 

same way as in section 3.2.4).

3.2.6 Samples for Scanning Electron Microscopy (SEM)
Scanning electron microscopy (SEM) was carried out by Chris Von Ruhland 

(Department o f Medical Genetics, School o f  Medicine, Cardiff University). Co­

cultures o f HaCaT keratinocytes and HCA2 fibroblasts were prepared as before 

(see section 3.2.5) but with slight modification. HaCaT keratinocytes (150p,l) from 

a 10ml subculture (5ml DMEM containing 10% FBS and 5ml trypsin added to a 

30% confluent T75) were added to a 12 well plate containing filter inserts. The 

same number and volume of HCA2 fibroblasts were plated in 6 o f the wells below 

the inserts. Another 2 wells remained submerged in the medium without growth at 

the air-liquid interface (see section 3.2.4) and 2 wells were grown at the air-liquid 

interface for 10 days (see section 3.2.5) to allow further stratification.

In addition, 300pl o f HaCaT from a confluent T75 flask resuspended in lOmls 

were also added to each o f two 3.3cm plates each containing 3 coverslips for 

examination o f  monolayer cultures (after 7 days o f growth for the co-cultures). 

2ml DMEM containing 10% FBS and 2Mm L-glutamine was added to each 3.3cm 

plate. The medium was aspirated and replaced with fresh medium after two days.

Co-cultured cells were serum starved after 10 days o f  growth at the air-liquid 

interface while monolayer cultures were serum starved after 36 hours. The 

medium was removed from the cells grown on coverslips or in filter inserts and 

they were washed with dPBS (3 times) and then fixed with 1% glutaraldehyde in
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lOOmM phosphate buffer for 1 hour. HaCaT cells gown on cover slips were 

washed with H2O for 10 minutes (twice), then 10 minutes each in 50%, 70% and 

90% ethanol, followed by 10 minutes in 100% ethanol (twice). The cover slips 

were rinsed three times in hexamethyldisilazane for 10 minutes each (Nation, 

1983) then allowed to air dry. The coverslips were attached to a 32mm diameter 

SEM stub with self adhesive carbon discs (TAAB Laboratories Equipment Ltd, 

BERKshire, UK). The cells were then coated with gold in an EMscope vacuum 

coater (EMScope, Ashford, UK) and examined in a JEOL 840A SEM at 5kV (Jeol 

UK Ltd, Welwyn Gardens City, UK.).

3.2.7 Samples for Confocal Microscopy
Confocal microscopy was carried out by Dr Chris George (Wales Heart Research 

Institute, School o f Medicine, Cardiff University). HaCaT keratinocytes were 

subcultured from a 30% confluent T75 flask by addition o f 5ml trypsin-EDTA and 

incubated at 37°C in 5% CO2 for 10 minutes, before addition o f 5ml DMEM plus 

10% FBS to deactivate the trypsin. An aliquot (300pl) o f HaCaT cells was 

removed and pipetted into three separate plates (3.3cm diameter) each containing 3 

glass coverslips. 2ml DMEM containing 10% FBS and 2mM L-glutamine was 

added to each plate and mixed. The plates were incubated at 37°C in 5% CO2 for 

36 hours, after which, the medium was aspirated, the cells washed in dPBS (3 

times), and serum-free DMEM plus 2mM L-glutamine was added (2ml/plate) and 

left for 24hours. The medium was aspirated, the cells were washed in dPBS (3 

times) and ice-cold acetone-methanol (1:1 vol/vol) was applied for 5 minutes. 

Acetone-methanol was aspirated and cells were washed with dH20 (3 times). 

Mouse acetylated a-tubulin antibody (T6074; Sigma-Aldrich Company Ltd, 

Gillingham, UK) in PBS (1:50 dilution) was applied for 1 hour. The cells were 

washed three times in dH20 and donkey anti-mouse alexa 488 (Sigma-Aldrich 

Company Ltd, Gillingham, UK) in PBS (1:500) was applied for 30 minutes. 

Sections were mounted in hydromount plus 2.5% DABCO (Sigma-Aldrich 

Company Ltd, Gillingham, UK) to prevent photo-bleaching. Cover slips were
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carefully placed onto microscope slide and digital images obtained using a Leica 

SP5 resonant scanning confocal microscope.

3.2.8 Real Time PCR (qPCR)

Real time PCR (qPCR) was carried out as previously described in Chapter 2 (see 

Section 2.2.2.3).

3.3 Results

3.3.1 Quantitative (Real Time) PCR on Cultured Keratinocytes
While HaCaT cells do not reflect the behaviour o f  normal keratinocytes as well as 

N/TERT1 cells (due to polyploidy), they are a commonly used keratinocyte cell 

line because they maintain “normal” epidermal differentiation in monolayer 

culture (Boukamp et al., 1988). HaCaT were chosen over N/TERT1 keratinocytes 

because they can be grown in the same culture medium as HCA2 fibroblasts, and 

HaCaT cells express more GLI1 than N/TERT1 (see Figure 2.2), which may lead 

to increased SHH pathway activation. The experiments depend on co-culture o f  

keratinocytes with HCA2 fibroblasts in the same wells, so they must both grow in 

the same medium. N/TERT1 cells must be cultured in serum-free medium which 

does not favour the growth o f  HCA2 cells. This meant that primer optimisation 

(see Table 2.4) had to be repeated since gene expression may be different in 

HaCaT cells.

3.3.1.1 O ptim ising ACTB (p-actin) Primers on HaCaT Cell cDNA

ACTB (p-actin) primer optimisation was done with cDNA from control HaCaT 

cells which had not been treated with SHH or EGF (0.5, 1 and 1.5pg per reaction). 

ACTB primers were tested at three different levels: 0.05pg/pl, O.lpg/pl and 

0.15pg/pl. The reaction which gave the lowest Ct (cycle threshold) value was 

taken as the preferred combination o f  cDNA and primer (1.5pg cDNA and 

0.15(xg/pl ACTB primers in this case) because this is the earliest detectable point
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o f product above background levels. A low Ct level was obtained for ACTB 

primers and HaCaT cDNA as (3-actin was an abundant cytoskeletal protein in these 

cells. The dissociation curves showed that the primers gave good results (Figure 

3.4a) indicating that the reactions were not contaminated and the primers did not 

dimerize during the reaction. Serial dilutions o f cDNA were made (neat, 1:10, 

1:100, 1:1,000) and the qPCR fluorescence values plotted against the number of 

cycles for each dilution. For ACTB, the amplification plots were equally spaced 

(Figure 3.4b). The Ct values for each dilution were plotted against the dilution 

value to derive a standard curve, which showed a good R2 value, slope and 

efficiency so the qPCR results appeared to be very accurate (Figure 3.4c).

(c) Standard Curve

R2 = 0.998 
Slope = -3.17 
Eff= 106.6%

(a) Dissociation Curve (b) Amplification Plot

Figure 3.4: Optimisation o f ACTB Primers and HaCaT Keratinocyte cDNA. (a)

Dissociation curve for HaCaT cDNA with ACTB primers, (b) Dilution series o f HaCaT 

cDNA using 1.5pg cDNA (red), 1:10 dilution (green), 1:100 dilution (grey) and 1:1,000 

dilution (blue) with ACTB primers, (c) Standard curve for HaCaT cDNA dilution with 

ACTB primers.
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3.3.1.2 Optimising EGR-3 primers

The primer and cDNA concentrations were optimised as detailed in Chapter 2, 

Table 2.2.

Control cDNA from HaCaT cells which were not treated with SHH or EGF was 

used for the optimisation (0.5, 1 and 1.5pg cDNA per reaction with four different 

primer amounts (0.5pg, lpg, 1.5pg and 2pg). The reaction which gave the lowest 

Ct value used ( lp g  cDNA and lp g  EGR-3 primers) was used for all subsequent 

experiments. However, these Ct values were still relatively high and this is 

probably due to the low level o f  EGR-3 in these cells.

The dissociation curves (Figure 3.5a) showed a slight second peak and a slight 

shift in the main peak suggesting that there is more than one product and possibly 

some primer dimers. The qPCR reactions were repeated using serial dilutions o f  

cDNA (neat, 1:10, 1:100, 1:1000) and the resulting fluorescence was plotted 

against the cycle number. The three dilutions showed equal spacing between the 

curves but one dilution was consistently out due to low EGR-3 levels (Figure 

3.5b). This resulted in a standard curve with poor values for the slope and 

efficiency (slope should be between -3.2 and -3.5 and efficiency should be 90- 

110%). After repeating the optimisation with EGR-3 primers several times, good 

values for the slope and efficiency could not be achieved when all the serial 

dilutions were included, so the 1:1000 dilution was removed. This then produced a 

standard curve with good R2 and slope values, but the efficiency was still slightly 

above recommended levels and might cause inaccuracies in the qPCR results.
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(a) Dissociation Curve (b) Amplification Plots

(c) Standard Curve

R2= 1 
Slope =-3  
Eff = 118%

Cytte*

Figure 3.5: Optimisation o f EGR-3 Primers and HaCaT Keratinocyte cDNA. (a)

Dissociation curve for HaCaT cDNA with EGR-3 primers, (b) Dilution series o f HaCaT 

cDNA using lpg cDNA (blue), 1:10 dilution (red), 1:100 dilution (green) and a 1:1000 

dilution (grey) and EGR-3 primers, (c) Standard curve for HaCaT cDNA dilution with 

EGR-3 primers.

3.3.1.3 Optimising PTCH primers

The primer and cDNA concentrations were also optimised as detailed in Chapter 

2, Table 2.2. The lowest Ct values were obtained with lp g  PTCH primers with 

2pg cDNA. There were no extra peaks in the dissociation curve showing that only 

one product was produced and there was no evidence for any primer dimers or 

contamination (Figure 3.6a). However, again the 1:1000 dilution was too low to 

achieve a good Ct value (ideally Ct should be at below 24 cycles) even after 

repeating the reactions several times, probably due low levels o f PTCH expression 

in HaCaT cells (Figure 3.6b). The standard curve was plotted without the data for 

the 1:1000 dilution and reasonable values were obtained, with a good R2 value but
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slope and efficiency values slightly outside the guidelines (Figure 3.6c). Thus, the 

low levels o f PTCH could lead to inaccurate data using these primer and cDNA 

concentrations.

(a) Dissociation Curve ;i

(c) Standard Curve

(b) Amplification Plots

R 2 =  0 .99  
Slope = -2.2 
Eff = 182%

5

0-01 01 I
Mi* Quant*y

Figure 3.6: Optimisation o f PTCH Primers and HaCaT Keratinocyte cDISA. (a)

Dissociation curve for HaCaT cDNA with PTCH primers, (b) Dilution series o f HaCaT 

cDNA using Ipg cDNA (blue), 1:10 dilution (red), 1:100 dilution (green) and a 1:1000 

dilution (grey) and PTCH primers, (c) Standard curve for HaCaT cDNA dilution with 

PTCH primers.

3.3.1.3 Optimising IL-1R2 primers

Primer and cDNA concentrations were also optimised for IL-1R2 as detailed in 

Chapter 2, Table 2.2. The lowest Ct values were obtained with 1.5pg IL-1R2 

primers and 1.5pg cDNA (Figure 3.7). The dissociation curves showed a slight 

second peak in front o f the main peak suggesting that more than one product 

existed, possibly due to primer dimers (Figure 3.7a). The amplification plots show 

that the Ct values for each dilution were very late, again due to low level of IL-
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1R2 expression in HaCaT cells. Thus, the qPCR results were the best possible with 

these cells but could still not be fully optimised even after several attempts 

(Figure 3.7b). The 1:1000 dilution came too late to fit on the plot and as a 

consequence the standard curve was drawn only with Ct values from the first three 

dilutions in the series. This provided R2, slope and efficiency values that were 

reasonable so these conditions should give reliable qPCR results (Figure 3.7c).

(a) Dissociation Curve (b) Amplification Plots

....... : ■' f t  /f  i  i  M .

(c) Standard Curve

R2 = 0.99 
Slope = -3.37 
Eff = 97.9%

Figure 3.7: Optimisation o f ILIR2 Primers and HaCaT Keratinocyte cDNA. (a)

Dissociation curve for HaCaT cDNA with ILIR2 primers, (b) Dilution series of HaCaT 

cDNA using 1.5pg cDNA (red), 1:10 dilution (green), 1:100 dilution (blue) and a 1:1000 

dilution (grey) and IL1R2 primers, (c) Standard curve for HaCaT cDNA dilution with 

1L1R2 primers.

3.3.1.5 Optimising S100A7 primers

The primer and cDNA concentrations were optimised for S100A7 using the same 

techniques (see Chapter 2, Table 2.2). The lowest Ct values were obtained with 

1 pg S100A7 primers and 2pg cDNA. The dissociation curve for these primers was 

very good, with only a small extra peak for one sample (Figure 3.8a), showing
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that there was no contamination or primer dimers present. The amplification plots 

were equally spaced and the Ct values were reasonable (between 25 and 34 

cycles). Lower Ct values (between 20 and 30) were not achieved even after the 

optimisation was repeated several times (Figure 3.8b). The standard curve values 

were within the recommended guidelines (Figure 3.8c). These primers appeared to 

be well optimised and should therefore provide accurate data from qPCR 

reactions.

(a) D is so c ia t io n  C urve

(c)  S ta n d a r d  C urve

R2 = 0.995 
Slope = -3.3 
Eff= 99.4%

Figure 3.8: Optimisation o f S100A7 Primers and HaCaT Keratinocyte cDNA. (a)

Dissociation curve for HaCaT cDNA with S100A7 primers, (b) Dilution series with 

HaCaT cDNA: neat (1.5/ug) cDNA (blue), 1:10 dilution cDNA (red), 1:100 dilution cDNA 

(green) and a 1:1000 dilution cDNA (grey) and S100A7 primers, (c) Standard curve for 

HaCaT cDNA dilution series with S100A7primers.

3.3.1.6 SHH and EGF Signalling in Fibroblast: Keratinocyte Co-cultures.

HaCaT keratinocytes were cultured in a filter insert in the presence or absence of 

HCA2 fibroblasts. This allowed diffusion o f growth factors between the HaCaT

(b) Amplification P lots
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keratinocyte and HCA2 fibroblast cell lines which facilitates paracrine interactions 

(Figure 3.9).

HaCaT

HCA2

Figure 3.9: Co-culture o f HaCaT Keratinocytes and HCA2 Fibroblasts, (a) HaCaT 

keratinocytes and HCA2 fibroblasts are both cultured in the same well but separated by a 

filter insert, (b) Photograph o f an insert in the well o f a tissue culture plate (adapted from 

Greiner Bio-One, Stonehouse, UK).

HaCaT keratinocytes were allowed to reach 80-100% confluency, and then treated 

with either recombinant SHH, recombinant EGF, both or neither. Keratinocyte 

RNA was extracted from the cells in each filter insert and the activity of SHH 

signalling was assessed by measuring expression levels o f SHH-responsive genes 

(EGR-3, IL-1R2, S100A7 and PTCH) by RT-qPCR.

EGR-3 expression decreased slightly (0.2 fold) in the presence o f SHH and more 

(0.6 fold) in the presence of EGF. In combination, the decrease (0.4 fold) was 

intermediate (Figure 3.10a). In the presence of HCA2 fibroblasts, EGR-3 

expression increased 0.4 fold with SHH but decreased by 0.6 fold with EGF. 

When both were present, the EGF seemed to prevent the increase observed with 

SHH alone.

SHH increased IL-1R2 expression by 15 fold while EGF increased this by 140 

fold in the absence o f HCA2 fibroblasts (Figure 3.10b). When both SHH and EGF 

were present in the cell culture medium, the values were similar to EGF alone. In 

the presence o f HCA2 fibroblasts, SHH has little or no effect but even higher 

levels o f IL-1R2 were induced by EGF (210 fold) whether SHH was present or 

not.
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There was little change in S100A7 expression when cells were treated with SHH 

alone (Figure 3.10c) but EGF reduced S100A7 levels about 10 fold (from 0.9 to 

0.1). A similar reduction was seen in the presence o f both SHH and EGF. The 

results obtained in the presence o f  HCA2 fibroblasts were similar.

The PTCH data was similar to EGF-3 and SHH appeared to have no effect on 

PTCH expression in the absence o f HCA2 fibroblasts (Figure 3.10d). Again, EGF 

reduced PTCH levels compared to the control (no recombinant proteins), however 

EGF reduced PTCH by about 5 fold but SHH ameliorated this effect slightly. In 

the presence o f HCA2 fibroblasts, SHH increased PTCH expression from 1 to 1.4 

fold while EGF decreased PTCH levels 3 fold and inhibited the effect o f  SHH 

when both were applied.
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Figure 3.10: Effects o f  Keratinocyte Co-culture with Fibroblasts on SHH Target Gene 

Expression. Results show the effect o f co-culture of HaCaT keratinocytes with HCA2 

fibroblasts on expression o f (a) EGR-3, (b) IL-1R2, (c) S100A7 and (d) PTCH. Dark blue 

boxes represent experiments carried out in the absence and light blue presence o f HCA2 

cells. Data expressed as a mean +/- SD for n=2 experiments.

Thus, EGR-3, S100A7 and PTCH expression levels do not increase in the presence 

o f SHH when fibroblasts are not present. However, expression is decreased in the 

presence o f EGF. When fibroblasts were present, similar changes were apparent 

but there was only a slight increase in EGF-3 and PTCH when SHH was added. It
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would be interesting to find out the reason for the unexpected down-regulation o f  

these genes in the presence o f EGF.

However, the response o f IL-1R2 differed. The increased expression in the 

presence o f EGF was more pronounced in the presence o f  fibroblasts. It seems that 

paracrine signalling may be enhancing the effect o f  EGF signalling already 

observed in the absence o f fibroblasts. The up-regulation o f  IL-1R2 was more 

extensive than seen earlier (see Figure 2.14), where IL-1R2 expression was also 

increased with EGF but to a lesser extent. However, these experiments were done 

on two different cell lines (HaCaT and NTERT-1) which may explain the different 

levels o f expression. It would be interesting to repeat the LY294002 and PD98059 

inhibitor experiment (Figure 2.14b, c) to determine if  PI3K and AKT are also 

controlling the expression o f this gene in HaCaT cells.

The presence o f HCA2 cells did not have a large effect on the expression o f  any o f  

these genes. Also, there was no large fold increase when SHH and EGF were 

present in combination. This data shows that the presence o f fibroblasts within a 

co-culture system does not contribute to SHH pathway activation, at least on its 

own.

There are some interesting differences and similarities between the results 

obtained with HaCaT calls (Figure 3.10a-d) and those obtained with N/TERT1 

cells (see Chapter 2). Similar results may have been expected because HaCaT and 

N/TERT1 cells are essentially both keratinocyte cell lines grown in monolayer 

conditions. The major difference between HaCaT cells grown in the absence o f  

fibroblasts in submerged cultures and N/TERT1 keratinocytes grown in monolayer 

cultures are: a decrease in expression of EGR-3, S100A7 and PTCH but a large 

increase o f  IL-1R2 in the presence o f EGF (EGF or SHH/EGFs. This changes 

were not found with N/TERT1 cells. The results for IL-1R2 in HaCaT cells 

(Figure 3.10b) resembled those obtained for seen N/TERT1 cells (see Figure 

2.14a) except the fold changes measured were much greater. For EGR-3 there was
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little variance in expression when treated with SHH or EGF in N/TERT1 (Figure 

2.12a), decreased expression in HaCaT caused by EGF (Figure 3.10a) was small 

(0.6 fold). The S100A7 results were quite different between the two keratinocyte 

cell lines, with small increases in expression in N/TERT1 in the presence o f  SHH 

or SHH plus EGF, and a larger increase in expression in the presence o f  EGF 

(Figure 2.16a) compared to no increased expression in the presence o f SHH in 

HaCaT cells (Figure 3.10c). In N/TERT1 cells, PTCH showed no significant 

difference from the control in the presence o f SHH, EGF or SHH/EGF (Figure 

2.18a), not the same as found in HaCaT cells (Figure 3.10d).

3.3.1.7 Stratified Co-culture QPCR

Since paracrine signalling alone does not result in SHH pathway activation and 

cilia appear to be required for activation o f  SHH signalling, experiments were 

performed to determine whether SHH would become activated in conditions that 

favour polarisation (a requirement for cilia formation). Keratinocytes were 

cultured at the air-liquid interface by lowering the level o f  the culture medium to 

expose HaCaT keratinocytes to the air, whilst still reaching the underside o f the 

filter insert to feed them from below (Figure 3.11). They were cultured for 5 days 

in filter inserts, allowing them to stratify (to enable polarisation o f  the cells) which 

should encourage cilia formation. HaCaT cells were also cultured in the presence 

and absence o f HCA2 fibroblasts to determine whether paracrine signalling 

contributes to the polarisation. The filter inserts allow movement o f growth factors 

between the two cell lines and may enable polarisation o f HaCaT cells.
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Figure 3.11: HaCaT Keratinocytes Cultured on a Filter Insert at the Air-Liquid 

Interface above HCA2 Fibroblasts, (a) HaCaT keratinocytes were covered in culture 

medium so that they could adhere to the filter insert, (b) After 24hours the culture medium 

level is reduced to feed the HaCaT keratinocytes from below the filter insert and leave 

them open to the air. (c) The cultures were then incubated for 5 days to allow 

stratification.

The expression of the same four SHH-responsive genes (EGR-3, IL-1R2, S100A7 

and PTCH) was assessed by qPCR in HaCaT cells under these co-culture 

conditions. EGR-3 expression in HaCaT keratinocytes in the absence of HCA2 

fibroblasts was increased slightly by recombinant SHH. IL-1R2 expression was 

decreased slightly, while S100A7 and PTCH expression remained unchanged.

In the presence of recombinant EGF (whether SHH was present or not), the 

expression o f all four genes (EGR-3, IL-1R2, S100A7 and PTCH) was reduced. In



the presence o f HCA2 fibroblasts, expression o f EGR-3 remained unchanged 

compared to control HaCaT keratinocytes in the absence o f HCA2 fibroblasts. IL- 

1R2, S100A7 and PTCH expression decreased compared to control levels for 

HaCaT keratinocytes grown in the absence o f HCA2 fibroblasts.

In the presence o f SHH, expression o f EGR-3 levels remained unchanged, while 

levels o f IL-1R2, S100A7 and PTCH levels decreased below control levels (when 

HCA2 were absent). EGF had no effect on EGR-3 expression, but expression of  

IL-1R2, S100A7 and PTCH did decrease. SHH and EGF applied to HaCaT cells in 

combination caused a further reduction in expression o f EGR-3, IL-1R2, S100A7 

and PTCH.

SHH increased EGR-3 expression compared to the control (no SHH protein). 

However, EGF decreased EGR-3 levels and inhibited the effect o f SHH (Figure 

3.12a). HCA2 fibroblasts had little effect on EGR-3 expression in control cells (no 

EGF or SHH) but the presence o f fibroblasts altered the response in the presence 

o f SHH and EGF. Thus, in the presence o f HCA2 cells, EGR-3 levels decreased 

when both SHH and EGF were present together.

SHH halved IL-1R2 levels and EGF reduced IL-1R2 10 fold (Figure 3.12b). 

When both SHH and EGF were present in combination, the reduction was also 10 

fold. In the absence o f recombinant SHH and EGF, HCA2 cells inhibited IL-1R2 

expression and the addition o f SHH or EGF separately caused little change. 

However, when both were present, IL-1R2 levels dropped by half.

SHH had no effect on S100A7 expression levels, but EGF decreased S100A7 

expression 10 fold. EGF also had the same effect when present in combination 

with SHH (Figure 3.12c). In the presence o f HCA2 fibroblasts, S100A7 

expression decreased 3 fold in the absence o f the recombinant proteins and 

addition o f SHH had no effect. However, EGF decreased S100A7 to the same 

level it did when HCA2 cells were not present.
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SHH had no effect on PTCH expression but EGF reduced expression 10 fold. The 

same decrease was apparent (10 fold) when SHH and EGF were added to the cell 

medium in combination (Figure 3.12d). PTCH levels halved in the presence o f  

HCA2 fibroblasts and SHH still had no effect. Interestingly, EGF alone had no 

effect on PTCH levels in the presence o f  HCA2 cells, but PTCH decreased 5 fold 

when both SHH and EGF were added in combination.

3.3.1.8 Scanning Electron Microscopy (SEM)

SEM was used to examine the surface o f cells in order to determine the presence 

or absence o f cilia in HaCaT keratinocytes under different conditions: co-culture 

where HaCaT were allowed to stratify at the air-liquid interface or monolayer 

culture withN/TERTl keratinocytes.
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Figure 3.12: Effects o f  Keratinocyte Co-culture with HCA2 Fibroblasts (Stratified at 

Air-Liquid Interface for 5 days) on SHH Target Gene Expression. Co-cultures of 

HaCaT keratinocytes with HCA2 fibroblasts were allowed to stratify at the air-liquid 

interface for 5 days and the expression of (a) EGR-3, (b) IL-1R2, (c) S100A7 and (d) 

PTCH was measured in the presence and absence of SHH and/or EGF. Dark blue boxes 

represent experiments carried out in the absence of HCA2 cells and light blue boxes in the 

presence o f HCA2 cells. Data expressed as a mean +/- SD for n=2 experiments.
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There were no primary cilia found on HaCaT cells in monolayer culture (Figure

3.13). HaCaT cells cultured on filter inserts at the air-liquid interface did stratify 

and differentiate further but these cells did not have primary cilia either. The cells 

appeared flattened and gaps occurred between adjacent cells but this is an artefact 

caused by dehydration during SEM processing. Cilia-like surface structures could 

be seen on HaCaT keratinocytes cultured at the air-liquid interface for 10 days in 

the presence o f  HCA2 fibroblasts (Figure 3.13c and in Figure 3.13d). There also 

appeared to be some cell surface ruffling at the bottom o f each image, structures 

that look similar to primary cilia. These cells were grown for a longer period in 

culture (10 days rather than 5 days) and this may have provided better conditions 

for cilia formation. Ideally, the experiment should be repeated under these 

conditions (HaCaT cultured for 10 days at the air-liquid interface) and qPCR used 

to determine whether SHH signalling was activated (increased) in the presence o f  

primary cilia.
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Figure 3.13: Scanning Electron Microscopy o f HaCaT Cells Grown in Culture 

Conditions to Achieve Primary Ciliation. (a) No cilia structures were observed in HaCaT 

cells grown in monolayer culture, (b) No cilia were observed in HaCaT keratinocytes 

grown on fdter inserts at the air-liquid interface for 10 days (allowing stratification) in 

the absence of HCA2 fibroblasts, (c, d) Cilia were present in 10-15% of HaCaT cell 

cultures grown in filter inserts at the air-liquid interface for 10 days (allowing 

stratification) in the presence o f HCA2 fibroblasts.

In addition, it would be preferable to use immunofluorescence with an antibody to 

acetylated-a-tubulin detected by confocal microscopy to confirm that the cilia-like 

structures seen in SEM were cilia and not due to dehydration-induced surface 

ruffling.
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Initial attempts to use confocal microscopy were carried out on monolayer cultures 

but primary cilia were not observed. No primary cilia were seen on the surface o f  

any o f  the HaCaT cells grown in monolayer culture on glass coverslips (Figure

3.14). The acetylated-a-tubulin antibody localised to the cytoskeleton and was 

particularly intense at the junctions between cells (Figure 3.14a, c). The 

cytoskeleton was particularly visible in HaCaT cells due to strong antibody 

localisation (Figure 3.14b, d).

One major concern was the lack o f specificity o f the acetylated-a-tubulin antibody 

to the primary cilium since many microtubules were labelled. This would 

potentially make it hard to distinguish the primary cilia from other microtubule 

structures. At this time, confocal appeared to be a veiy time consuming method for 

the detection o f primary cilia and a lack o f positive control to confirm that the 

method would show primary cilia against the microtubule labelling led to the use 

o f scanning electron microscopy (SEM) for more rapid results. However, the 

confocal microscopy did show a higher intensity o f labelling at cell-cell junctions 

suggesting that if  the conditions favouring cilia formation had been used it may 

have been possible to confirm the SEM results.
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Figure 3.14: Immunofluorescence with Antibodies to Acetylated-a-Tubulin in HaCaT 

Keratinocytes Grown in Monolayer Culture on Glass Coverslips. Confocal laser 

scanning microscopy (CLSM) with an acetylated-a-tubulin antibody linked to alexa 488 

(green) showed no primary cilia present on the cells. However, high levels o f acetylated 

tubulin were observed at intercellular junctions (a, b, c; arrow in d) and low levels 

immunolocalised to microtubules throughout the cytoplasm (b, d).
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3.4 Discussion

Optimisation o f  the qPCR experiments for each set o f primers with the DNA was 

challenging due to the low levels o f expression o f these genes in the HaCaT cells 

under all conditions in the cell culture experiments. This meant that for all genes 

other than the housekeeping gene (ACTB), the amplification plots for the dilution 

series were at a high cycle number and for EGR-3 and PTCH the 1:1000 dilution 

gave a plot at a cycle number which was too high to include. However, standard 

curves for all genes except PTCH were still within recommended guidelines. A 

larger quantity o f  DNA may have resolved this problem.

The results o f this study show differences in gene expression between the two 

keratinocyte cell lines (where N/TERT1 were used in Chapter 2 and HaCaT (in the 

absence o f fibroblasts and not grown at the air: liquid interface) in this chapter. 

This might be expected as they are immortalised in different ways and N/TERT1 

keratinocytes are thought to behave more like primary keratinocytes than the 

polyploidy HaCaT cell line.

It is very interesting that EGF has a large inhibitory effect on gene expression in 

HaCaT keratinocytes for EGR-3, S100A7 and PTCH but not for IL1-R2. This may 

have been caused by the presence o f HCA2 fibroblasts. The abnormal phenotype 

o f  HaCaT cells may mean that there are slightly different signal transduction 

interactions compared to in N/TERT1 cells, removing their sensitivity to EGF. It 

would be expected that EGF inhibits PTCH expression, but the inhibition o f EGR- 

3 and S100A7 expression is not continuous with N/TERT1 experimental results in 

chapter 2 or those published by Kasper et al., (2006). IL1R2 and PTCH results 

may have produced results as expected due to effects on expression caused by 

different arms o f  the EGF pathway compared to EGR-3 or S100A7. Paracrine 

signalling alone showed little effect on these results, showing that this was not 

enough to enable polarisation or cilia formation.
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Downregulation o f  all expression when there was development o f stratification in 

the presence o f  HCA2 fibroblasts confirms that paracrine signalling in 

combination with polarised cells caused changes in target gene expression. 

However, this still does not confirm that SHH signalling is activated since there 

was no increase expression in the presence o f SHH. Strangely, in the presence o f  

SHH/EGF expression was downregulated even though in the presence o f EGF 

expression was close to that o f  the control. This was true for all genes (Figure 

3.10a-d). This result o f little change in expression from the control in the presence 

o f SHH or EGF but a decrease in the presence o f both proteins shows that there 

must be an interaction between SHH and EGF, this suggests that SHH signalling 

was activated, if  only by a small amount. These results are encouraging and using 

this method with a longer stratification time (10 days rather than 5) for more cilia 

development would be the next step in moving towards a skin cell model with 

SHH pathway activation. With EGF signalling also activated, further qPCR studies 

could be carried out to find out more about augmentation o f SHH signalling. This 

would be a good reproducible cell model for testing inhibitors for the treatment o f  

BCC.

There may also be non-canonical SHH pathways that don’t need cilia for 

activation. The SHH pathway in drosophila does not require cilia and non- 

canonical pathways are known in humans (Jenkins et al. 2009).

Unfortunately due to time restrictions, these experiments were only carried out 

twice each. But if  they were to be repeated in future it would be beneficial to also 

repeat them on a more ‘normal’ keratinocyte cell line than HaCaT if possible. A 

means o f  carrying this out without the problems o f N/TERT1 and HCA2 cells 

requiring separate culture media, would be to create organotypic cultures. This 

would use HCA2 fibroblasts suspended in a collagen matrix with N/TERT1 

keratinocytes applied to the upper surface o f  the collagen. The collagen matrix 

would be lifted onto a steel mesh support so that the keratinocytes were allowed to 

grow at the air: liquid interface for stratification and the cells could be fed from the
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underside o f the collagen matrix. This means only one medium type would need to 

be used to feed the cells through the collagen and epithelial-mesenchymal 

interactions could occur (Dickson et al. 2000).

The results o f the SEM experiments showed that HaCaT cells need to be grown at 

the air: liquid interface and allowed to stratify for 10 days (to encourage cilia 

formation) before SHH addition. This should be in the presence o f fibroblasts to 

enable successful cilia formation, which may then lead to successful activation o f  

SHH signalling. Interestingly, Strugnell et al. (1996) who found that addition o f  

Ca2+ to keratinocyte culture medium was required to achieve differentiation o f  

cells and enable cilia formation so this may be an avenue which could be followed 

to increase cilia formation (Strugnell et al., 1996). However, it had not previously 

been shown whether N/TERT1 keratinocytes form cilia in monolayer cultures or 

whether they also require the presence o f fibroblasts and growth at the air: liquid 

interface. The results o f chapter two which show little SHH pathway activation in 

monolayer cultures suggest a lack o f primary cilia, but this needs to be confirmed 

by SEM in order to determine whether this genuinely is the cause o f low pathway 

activation or whether it may be due to a lack o f GLI1.

Primary cilia are only present under certain culture conditions, (they form when 

cells aren’t dividing). It seems likely that cells that are committed to terminal 

differentiation that are truly growth arrested are more likely to produce primary 

cilia. This may be the reason for a lack o f augmentation o f GLI response genes by 

EGF in chapter 2. There were a small number o f primary cilia formed in the 

presence o f fibroblasts but none in their absence showing that fibroblasts are 

required for cilia formation. However, the time spent in culture at the air: liquid 

interface may increase stratification and polarisation leading to increased cilia 

formation. Keratinocytes appeared to be polarised (basal cells were columnar and 

well organised) in a complex culture study using HaCaT keratinocytes which were 

allowed to stratify at the air: liquid interface when they were grown on a collagen 

gel containing fibroblasts fed from the underside o f the collagen by culture
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medium, however cilia formation was not confirmed (Bigelow et al. 2005). 

Keratinocyte stratification in the presence o f fibroblasts may increase the number 

o f  ciliated pells compared to in the absence o f fibroblasts, thus increasing SHH 

activation. Cilia form when cells aren’t dividing so it follows that they must be 

growth arrested. Therefore, serum starving for a greater length o f  time may be 

required to ensure growth arrest in order to induce a larger number o f cilia 

(Pedersen et al. 2008). From the results o f this chapter we could speculate that the 

number o f cilia in the cell lines used may also be increased by direct contact with 

fibroblasts, by use o f a fibroblast feeder layer for the keratinocytes; 3D complex 

cultures such as those used by Bigelow et al. (2005) or by growing keratinocytes 

and fibroblasts on either side o f collagen coated porous nylon membranes.

Primary cilia have been found on primary mouse keratinocytes, therefore it seems 

likely that primary human cells would also have cilia and this could be tested by 

SEM. If cilia are found to be present then SHH pathway activation should be 

achievable. However, using immortalised cell lines has the advantage o f  

experimental repeatability and reliability (Wong et al., 2009).

Although SEM showed the presence o f cilia after 10 days o f growth at the air: 

liquid interface, they may be abnormal or not polarised. There may not be SHH 

signalling in cells grown at the air: liquid interface in the presence o f fibroblasts 

due to incomplete polarisation and/or abnormal protein behaviour within the cilia. 

If the IFT proteins do not behave normally the SHH pathway molecules cannot be 

transported to their sites o f  action so the GLIs may not be able to act as 

transcription factors. Tests are needed to show the ability to polarise and normal 

functionality o f  the cilia to confirm whether this is the reason that SHH signalling 

does not seem to be active even in the presence o f fibroblasts. This may include 

further SEM to confirm the cilia alignment or confocal microscopy to confirm co­

localisation o f cilia proteins and the SHH pathway proteins, although confocal 

microscopy o f cilia is very time consuming due to high levels o f  background 

fluorescence.
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Despite the low numbers o f cilia, the SHH pathway may still be active in this 

experiments carried out for this chapter. This could be shown by 

immunofluorescence with GLI antibodies to detect whether nuclear translocation 

indicating GLI activation has occurred or by western blotting to look for 

upregulated GLI expression. The reason this was not tested is that GLI antibodies 

tend to be o f poor quality.

N/TERT1 keratinocyte cell lines or primary keratinocytes may form greater 

numbers o f  cilia when allowed to stratify in the presence o f fibroblasts due to their 

more normal phenotype (they are not polyploid like HaCaT). Cilium formation 

requires the centrosome so there may be a problem with forming a primary cilium 

in polyploid cells, which would have more than one centrosome/centriole. HaCaT 

cells also have a P53 mutation, which N/TERT1 keratinocytes do not. Apart from 

P53 mutation frequency in cancers, P53 deactiviation is also known to cause 

polyploidy. (Lehman et al. 1993; (Dickson et al. 2000). The challenge here would 

be to find a culture medium in which either o f these types o f keratinocyte could 

grow in combination with fibroblasts as both N/TERT1 and primary keratinocytes 

tend to grow well in serum-free medium.

In this chapter, there has been a change in use o f immortalised cell line from 

N/TERT1 keratinocytes used in the previous chapter to the HaCaT keratinocyte 

cell line. Unfortunately HaCaT cells are polyploidy and so are thought to behave 

less like ‘normal’ keratinocyte cells than N/TERT1 keratinocytes. Polyploidy may 

be caused by the p53 deactivating mutation, which is found in this cell line. 

Abherrent cilia formation may also occur due to formation o f multiple 

centrosomes as a result o f  polyploidy (Oberringer et al. 1999; Dutertre et al. 2005). 

As explained in 3.1.2, the mother centrosome is required for cilia development. 

However, HaCaT are still a commonly used keratinocyte cell line due to their 

ability to differentiate (Boukamp et al. 1988). Another benefit o f their use in this 

study was that in co-culture experiments the keratinocyte cells needed to be grown
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in the same medium as HCA2 fibroblasts. HaCaT keratinocytes and the HCA2 

fibroblast cell line were both cultured in DMEM plus 10% FBS, whereas 

N/TERT1 keratinocytes require serum-free medium. Although use o f HaCaT was 

not ideal, due to time constraints, medium requirements and N/TERT1 

keratinocyte infections at the time o f experimentation, it was the most viable 

option. In future it would be very useful to try repeating these experiments with 

primary (more likely to have cilia than cell lines) or N/TERT1 keratinocytes, if a 

practical method could be found which could utilise both N/TERT1 and HCA2 

cell lines in a co-culture. Co-culture experiments using filter inserts allowed 

diffusion o f growth factors between the HaCaT and HCA2, therefore paracrine 

interactions could occur.

3.5 Conclusion
Primary cilia can be induced on HaCaT keratinocytes; however SHH pathway 

activation should next be confirmed under these culture conditions (10 days 

stratification at the air: liquid interface) and increased by optimisation o f  

conditions to achieve maximum primary cilia numbers. This would make an 

extremely useful model for BCC.
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Chapter 4 

Epidermal Growth Factor Signalling 

in Basal Cell Carcinomas

156



4.1 Introduction
Epidermal growth factor (EGF) signalling is thought to augment SHH signalling in 

the epidermis thus promoting tumorigenesis and BCC development (see Figure 

1.13 for details o f pathways involved). EGF receptors are expressed throughout 

the epidermis, with prominent expression on cells o f the basal layer, the postulated 

origin o f BCCs (Nanney, 1984). EGF is also required in addition to SHH for hair 

follicle development which can be disrupted by loss o f  either signalling pathway 

(Chiang et al., 1999; Murillas et al., 1995).

Organotypic culture models (in vitro studies) have shown that HaCaT cells over­

expressing SHH have the ability to invade a collagen matrix and inhibition o f EGF 

signalling blocks this cellular infiltration (Bigelow et al., 2005). Furthermore, 

while eight GLIl/EGF-regulated genes were found to have GLI binding sites in 

their promoter regions, making them direct GLI targets, they also required EGF 

signalling for activation. Also, treatment o f GLI1 expressing N/TERT1 cells with 

Gefitinib (EGFR inhibitor) caused a reduction in activation o f GLI/EGF target 

genes but not GLI target genes inferring EGFR could augment the SHH pathway 

under some conditions.

MEK/ERK activation was found to modulate SHH signalling when U 0126  

(MEK1/2 inhibitor) abolished the synergistic effect o f increased activation o f  

GLI/EGF target genes, and LY294002 (PI3K/AKT inhibitor) had no effect 

(Kasper et al., 2006). However, EGFR signalling has not been directly compared 

in different BCC subtypes, so it is possible that not all BCC subtypes express 

EGFR equally or respond to EGF signalling in the same way. Since EGF can 

affect GLI responsive genes and SHH can also affect EGF signalling, the relative 

activity o f  the two pathways could lead to differential responses and individual 

effects on cell growth patterns in vivo (Bigelow et al., 2005; Kasper et al., 2006; 

Neill et al., 2008). Although PI3K/AKT pathway activity does not appear to 

modulate SHH signalling in vitro, it is important for actin cytoskeleton function 

and may still be involved in BCC growth or invasion (Jimenez et al., 2000).
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The self-activating transcription factor c-Jun is a target o f  MEKK1/JNK 

signalling. In BCC, c-Jun may also be activated by the MEK/ERK arm o f the EGF 

pathway (inhibition o f  MEK/ERK signalling has been shown to reduce c-Jun 

expression) and both o f these arms o f the EGF pathway are activated by RAS (see 

Figure 1.12 for details; Neill et al., 2008). c-Jun is required for up-regulation o f a 

subset o f GLI target genes and is also a direct GLI 1/2 target. However, while c-Jun 

and GLI2A interact, GLI1 and c-Jun do not. Since c-Jun is activated by EGF, it 

may have an important role as one o f the transcription factors involved in EGF 

augmentation o f  GLI transduced genes (Neill et al., 2008).

The different growth patterns o f the BCC subtypes (superficial, nodular and 

morpheaform) may be explained by differences in signal transduction. PTCH 

mutations activate SHH signalling which drives BCC formation. However, as the 

level o f SHH signalling may vaiy due to different PTCH mutations or due to the 

activity o f other signalling pathways such as EGF, different phenotypes may 

result. The location o f  cells harbouring mutations (e.g. stem cells o f the hair 

follicle bulge or epidermis) may also have an effect on SHH signalling. There may 

also be some influence from paracrine signalling in the epidermis or from SHH 

signalling produced by adjacent hair follicles in the anagen growth phase.

Superficial subtypes are currently treatable with a topical formulation o f the drug 

imiquimod (Aldara™), so this study has concentrated on the more invasive BCC 

types, morpheaform and nodular. A topical formulation would be particularly 

useful for eradicating or shrinking large BCCs (prior to surgery), for treating 

BCCs in areas such as the eyelid where surgery is not advisable, or for treating 

areas where tumours recur. Also, effective topical treatment is preferable to 

surgery for multiple tumours at one or more sites.

Since it is possible that EGF signalling is involved in causing the invasive 

subtypes o f  BCC (nodular and morpheaform), it is important to identify which 

genes encoding EGF pathway components are expressed in these BCC subtypes.
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This information can then be used to confirm whether PD98059 and LY294002 

are useful in a topical formulation in addition to SHH inhibitors.

SHH and EGF signalling pathways were proposed as targets for inhibitors within a 

topical formulation because published studies show that the EGF pathway can 

augment SHH signalling and that EGF causes invasion o f SHH expressing 

keratinocytes (Bigelow et al., 2005). Therefore, it seems plausible that one or more 

components o f EGF signalling may cause more invasive BCC subtypes, making 

these particularly useful therapeutic targets.

4.1.1 Aims

• To confirm whether there are any signalling pathway differences between 

BCC subtypes that might cause variation in response to the proposed 

formulation containing SHH and EGF signalling inhibitors.

• To determine whether EGF signalling through MEK/ERK or PI3K/AKT is 

likely to be involved in the invasion o f morpheaform and nodular BCCs.
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4.2 Methods

4.2.1 Immunohistochemistry
Biopsies were collected from patients only after ethical approval was obtained 

from the South East Wales Local Research Ethics Committee. Patients were given 

a Patient Information Sheet and asked to sign a Consent form. BCCs were 

removed by curettage and rapidly frozen in liquid nitrogen within 15 minutes. In 

total, 21 samples o f  six different morphologies were analysed: 11 Nodular, 2 

combined Nodular-Micronodular, 3 Micronodular, 1 Morpheaform, 3 combined 

Micronodular-Morpheaform and 1 combined Morpheaform-Nodular.

4.2.1.1 Haematoxylin & Eosin Staining

Human BCC skin sections were cut at 5- 10pm on a ciyostat, air dried onto 

superfrost slides (Fisher Scientific, Loughborough, UK) and stored at -80°C until 

required.

Slides were brought to room temperature (RT), fixed in dried acetone (Fisher 

Scientific, Loughborough, UK) for 15 minutes at RT and washed 3 times in PBS 

(Phosphate Buffered Saline) for 5 minutes each. Sections were immersed in 

Mayer’s haematoxylin (Fisher Scientific, Loughborough, UK) for 5 minutes, 

washed in running water for 5 minutes and then immersed in 1% eosin for 1 

minute. The sections were washed quickly in water, dehydrated in graded alcohols 

for 5 minutes each (70%, 90%, 100% and 100%) and immersed in three 

consecutive baths o f  xylene (Genta Medical, York, UK) for 5 minutes each. 

Sections were then mounted in DPX (di-n-butyl phthalate in xylene) (Fisher 

Scientific, Loughborough, UK) and sealed with a cover slip.

4.2.1.2 Immunohistochemistry (IHC)

Slides were brought to RT, fixed in dried acetone at RT for 15 minutes and washed 

3 times in PBS for 5 minutes each. The sections were blocked for non-specific 

binding o f  secondary antibody in 5% o f  appropriate serum relative to the species
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in which the primary antibody was raised (donkey, rabbit or goat) diluted in 5% 

BSA (bovine serum albumin) and PBS (Sigma-Aldrich Company Ltd, Gillingham, 

UK) for 1 hour in a humidified chamber. This was followed by three 5 minute 

washes in PBS, blocking with avidin and biotin for 15 minutes each with a 5 

minute PBS wash between (Avidin Biotin Blocking Kit, Vector Labs, 

Peterborough, UK).

Sections were washed 3 times in PBS (5 minutes each), and antibodies diluted in 

PBS containing 5% BSA (see Table 4.1) were applied to the sections and 

incubated for 1 hour. The sections were washed 3 times in PBS (5 minutes each) 

and the appropriate biotinylated antibody (anti-rabbit or anti-mouse 

immunoglobulins; see Table 4.1) diluted 1:200 in PBS plus 5% BSA was applied 

for 30 minutes and then washed 3 times in PBS (5 minutes each).

Streptavidin-conjugated to horseradish peroxidise (GE Healthcare Life Sciences, 

Little Chalfont, UK) in PBS plus 5% BSA (1:100) was applied for 30 minutes, 

followed by washing 3 times in PBS (5 minutes each) and then 200jnl DAB (3, 3 ’- 

diaminobenzidine from Sigma-Aldrich Company Ltd, Gillingham, UK) solution 

(0.5ml in 4.5ml PBS/BSA and 6pl H2O2) was applied for about 10 minutes (until 

sections were sufficiently stained).

This was followed by three 5 minute washes in PBS, submersion in Mayer’s 

haematoxylin (counter stain) for 5 minutes (or light green for 1 minute when using 

the c-Jun antibody) and a 5 minute wash under running tap water. Sections were 

dehydrated by submersing slides in 70%, 90%, 100% and 100% alcohol baths for 

5 minutes each, followed by submersing slides in three consecutive xylene baths 

for 5 minutes each (clearing) and mounting in DPX with a cover slip. To test for 

non-specific binding o f  the secondary antibody and streptavidin-HRP, negative 

control sections were run without primary antibody.
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Table 4.1: Antibodies for Immunohistochemistry and Immunofluorescence.

Antigen Cat Code Company Species Dilute Store
(°C)

EGFR 1005 Sc-03 Santa Cruz 
Biotechnology Inc, 
CA, USA

Rabbit 1:50 4

EGFR-P Sc-12351-R Santa Cruz 
Biotechnology Inc, 
CA, USA

Rabbit 1:50 4

p-AKT 193H12 Cell Signalling 
Technology Inc, 
Danvers, MA, USA

Rabbit 1:200 -20

ERK 9102 Cell Signalling 
Technology Inc, 
Danvers, MA, USA

Rabbit 1:200 -20

p-ERK 9106S Cell Signalling 
Technology Inc, 
Danvers, MA, USA

Mouse 1:200 -20

c-Jun Sc-1694 Santa Cruz 
Biotechnology Inc, 
CA, USA

Rabbit 1:50 4

K14
(LL002)

Gift from Prof E.B. 
Lane, University o f  
Dundee

Mouse 1:10 4

Vimentin M0725 Dako UK Ltd, 
Cambridge House, 
Cambridge, UK

Mouse 1:100 4

Biotinylated
Anti-Mouse

IgG

RPN1001V GE Healthcare UK 
Ltd, Buckingham, 
UK.

Sheep 1:200 4

Biotinylated
Anti-Rabbit

IgG_

RPN1004V GE Healthcare UK 
Ltd, Buckingham, 
UK.

Donkey 1:200 4

Alexafluor 
488 (green) 
conjugated 
anti-mouse 

or anti­
rabbit IgG

A21206 Invitrogen, Paisley, 
UK

Donkey 1:500 -20

Alexafluor 
594 (red) 

conjugated 
anti-mouse 

or anti­
rabbit IgG

A21203 Invitrogen, Paisley, 
UK

Donkey 1:500 -20
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4.2.1.3 Immunofluorescence Microscopy

Double immunofluorescence uses two different coloured fluorochromes, which 

allows images to be overlaid to show co-localisation o f two different proteins. The 

above protocol (4.2.1.2) was followed until the addition o f a biotinylated 

secondary antibody.

This was replaced by the appropriate goat anti-mouse or anti-rabbit IgG 

conjugated to alexafluor 488 (green) or 594 (red). These were added to sections at 

a 1:500 dilution in PBS plus 5% BSA (Invitrogen, Paisley, UK) and incubated for 

30 minutes. The slides were washed three times in PBS (5 minutes each) and 

200pl DAPI (4', 6-diamidino-2-phenylindole; Roche Applied Science, Mannheim, 

Germany) was applied to each section (1:5000 in PBS plus 5% BSA) to label the 

nuclei blue. This was immediately tapped o ff onto tissue and the sections were 

mounted in hydromount (Fisher Scientific, Loughborough, UK) containing 2.5% 

DABCO (Sigma-Aldrich Company Ltd, Gillingham, UK) to prevent photo 

bleaching. Cover slips were placed gently on top and the slides were allowed to 

stand for 30-60 minutes on the bench. Sections were then viewed using a Zeiss 

microscope with fluorescence optics and digital images obtained using an 

Axiocam HRc Zeiss camera with Axiovision software on an IBM PC.
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4.3 Results

4.3.1 BCC Tumour Morphology
BCC tumours fit into three broad categories based on their morphology. It is 

important to remember that even the most infiltrative BCC grows slowly and they 

rarely metastasize. Superficial tumours grow across the epidermis, nodular 

tumours grow in large islands which may penetrate into the dermis (micronodular 

tumours are made up o f  lots o f smaller tumour islands) and morpheaform tumours 

grow with finger-like projections down into the dermis. Often a tumour is a 

mixture o f more than one subtype. The majority (20) o f  BCC samples collected for 

this study were nodular combined with micronodular although four o f  these were 

morpheaform combined with nodular or micronodular but only one was 

completely morpheaform (Table 4.2).

Typical examples o f different tumour morphologies represented in the BCC 

samples collected show how variable they were within each type o f  BCC (Figure 

4.1). This variability demonstrates how different the tumour environments may be 

between different patient samples or even within each sample. Haematoxylin and 

eosin staining showed tumour islands as blue/purple areas within a pink dermis 

(nuclei stain blue). Morpheaform tumours (Figure 4.1 a, b) have thin finger-like 

projections consisting o f thin strands only 2 or 3 cells thick infiltrating into the 

dermis and some pieces o f tumour can appear isolated from the main tumour 

islands. Nodular tumours (Figure 4.1 c-e) have large tumour islands that appear to 

be separated with larger dermal areas, where the bulk o f the tumour is much larger. 

Some nodular tumours have a very different appearance (e), with the bulk o f the 

tumour being a large but more complex in shape. Micronodular tumours have lots 

o f tiny tumour nodules (Figure 4.1 f).
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Table 4.2: Basal Cell Carcinoma Specimen Subtypes. BCC morphology according to 

visual analysis of haematoxylin and eosin stained sections. Variation was found between

tumour samples within the same subtype.

Sample Subtype Description
1 Nodular Nodules o f BCC with several tumour islands.
2 Nodular Two large nodular BCC tumour islands.
3 Morpheaform Tumour strands (only 2 cells thick) weaving 

through dermis.
4 Nodular Nodules o f BCC with several tumour islands 

with epidermis present.
5 Nodular Tumour nodules interlaced with stroma and 

epidermis present.
6 Nodular Large tumour islands with little epidermis.
7 Nodular One large tumour nodule.
8 Nodular Small tumour islands.
9 Micronodular/

Morpheaform
Thick strands o f tumour through the dermis 
with smaller tumour islands at the infiltrative 
edge.

10 Nodular/
Micronodular

Large nodular tumour islands with infiltrating 
regions o f small tumour nodules.

11 Micronodular/
Morpheaform

Small tumour with some infiltrative regions.

12 Nodular Large nodule with epidermis present.
13 Micronodular/

Morpheaform
Many small nodular tumour islands, some 
with lacy infiltrative appearance and the 
epidermis intact.

14 Micronodular Many small tumour islands with some 
epidermis present.

15 Nodular/
Micronodular

Large nodular tumour island with small 
infiltrative islands at edge and little 
epidermis.

16 Micronodular Many small nodular tumour islands with little 
epidermis.

17 Nodular Large tumour islands.
18 Nodular Small very separate tumour islands within the 

dermis.
19 Nodular Both large and very small tumour islands with 

the epidermis present.
20 Micronodular Many small nodular tumour islands with the 

epidermis present.
21 Morpheaform/

Nodular
Large tumour islands with very infiltrative 
edges.

165



(f>
t^iP»I ̂yW * v

,: (e )

teaiifi
■ . ■ • ■ t -“ '.v S I /. :- .

■ •'• •• ;,'-■ r  " • • ;.*•
lOOjxm

•!.'>.JSJb>’ *.•• :-i' » ' -------

Figure 4.1: Haematoxylin and Eosin Stained BCC Tumour Sections showing the Range 

o f Morphologies in this Study. Two were morpheaform: tumours #5 (a) and #9 (b). 

Three were nodular but had very different histology: tumour #8 had widely spaced tumour 

islands (c), #6 had large tumour islands (d) and #9 had large tumour islands which were 

‘infdtrative ’ (e). The other was micronodular with many closely spaced tumour islands, 

#20 (f). Scale bars (100pm) shown for each section.
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4.3.2 EGF Pathway Components in Normal Human Skin
The expression and phosphorylation o f proteins in the EGF signalling pathway 

have been examined in normal skin using antibodies to detect EGFR and three 

phosphorylated proteins (p-EGFR, p-ERK and p-AKT). Particular emphasis was 

placed on examining levels in the epidermis, sebaceous gland and hair follicle.

The EGFR antibody stained all the cells o f the epidermis from the lower basal 

cells to the granular layer (Figure 4.2a). Staining was particularly intense in the 

periphery o f  some cells indicating an association with the plasma membrane. The 

use o f a phospho-specific antibody to detect p-EGFR showed that not all o f the 

EGFR present in the epidermis was phosphorylated (Figure 4.2c). Staining with 

the p-ERK antibody showed that phosphorylation o f  ERK occurred mainly in the 

upper layers o f the epidermis with intense peripheral staining o f granular cells 

(Figure 4.2e). Finally, the p-AKT antibody stained cells only in the lower 

epidermis (basal and immediate suprabasal cells) again with greater intensity at the 

cell periphery (Figure 4.2g).

The sebaceous gland was also examined in the sections stained with antibodies to 

EGFR, p-EGFR, p-ERK and p-AKT. The periphery o f the individual sebocytes 

and the whole duct epithelium was stained with the EGFR antibody (Figure 4.2b). 

However, as with the epidermis, not all o f the EGFR present was phosphorylated 

(Figure 4.2d). The staining with p-ERK (Figure 4.2f) was very similar to that 

with EGFR but p-AKT differed. This antibody stained the epithelial basal cells o f  

the sebaceous duct and the epithelium between the sebocytes in the sebaceous 

gland (Figure 4.2h). The individual sebocytes remained unstained.

4.3.3 Immunoperoxidase Detection of EGFR in BCC Samples
Immunolocalisation o f  EGFR was variable in the group o f BCC biopsy specimens 

examined (Figure 4.3).
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Figure 4.2: Intmunoreactivity o f  EGF Pathway Components on Sections o f  Normal 

Human Skin. EGFR (a, b) and p-EGFR (c, d) staining was positive throughout the 

cytoplasm o f epidermal cells (a, c) and cells o f the sebaceous gland (b, d). p-ERK staining 

(e, f) was cytoplasmic in the upper epidermal cell layers and throughout the sebaceous 

gland. p-AKT staining (g, h) was positive at the cell membrane in the basal layer and in 

some suprabasal cell layers, as well as in cells o f the sebaceous gland and duct. Scale 

bars (50pm) shown for each section.
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In general, tumours showed cytoplasmic and/or membrane positive 

immunoreactivity throughout tumour islands or in patches within the islands. 

Cytoplasmic localisation o f EGFR suggests activation by EGF ligand leading to 

transcription in the cell nucleus. Membranous localisation suggests no activation 

o f EGFR. It is therefore likely that p-EGFR would be present if  EGFR is located in 

the cytoplasm. In these experiments localisation was judged by visual appearance, 

with expression being judged as membranous if  the margins o f the cells were 

stained brown with the centre lighter in colour and cytoplasmic if  the cell itself 

was stained brown.

EGFR staining in one nodular tumour (Figure 4.3a) showed a very strong 

cytoplasmic reaction throughout all tumour islands. A micronodular tumour 

(Figure 4.3b) also showed strong immunoreactivity which appears to be at the cell 

periphery in all tumour islands. However, one nodular tumour (Figure 4.3c) had 

patchy positive immunoreactivity in the cytoplasm o f one large tumour island and 

another nodular tumour (Figure 4.3d) was positive for EGFR in the cytoplasm o f  

one tumour island but was negative in the others. This shows a lack o f  correlation 

between EGFR location and the nodular subtype, although all these nodular 

tumours did vary histologically.
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Figure 4.3: Immunohistochemistry o f EGFR in Human BCC Samples from Four 

Different Patients. Nodular tumour #4 (a) with cytoplasmic EGFR expression throughout 

all tumour islands, Micronodular tumour #9 (b) with EGFR immunoreactivity throughout 

the tumour islands, Large nodular tumour #6 (c) showing patchy positive cytoplasmic 

immunoreactivity for EGFR and Nodular BCC #18 (d) showing EGFR immunoreactivity 

in one tumour island but not the others.

4 .3 .4  Im m u n o p e r o x id a se  D etec tio n  o f  p -E G F R  in B C C  S am p les

Two different tumour samples were examined (#5 and #6). EGFR 

immunoreactivity was positive in the lower epidermis and was patchy in the 

tumour islands (Figure 4.4a, c). In general cells with a basal phenotype were 

stained. EGFR is autophosphorylated to p-EGFR when activated by its ligand and
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this can be detected using a phospho-specific antibody. The same two tumour 

samples (#5 and #6) were examined for the presence o f p-EGFR but 

immunoreactivity was very low and could be considered negative (Figure 4.4b,

d).

lOOjim

Figure 4.4: Immunohistochemistry (EGFR and p-EGFR) on two Human BCC 

Samples. Variable EGFR expression and little or no p-EGFR expression were observed in 

both samples. Tumour #5 showed patchy cytoplasmic expression o f EGFR (a) but no 

staining was observed with p-EGFR (b). Tumour #5 was similar (c, d).Scale bars are 

shown for each sample (100pm).
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EGFR immunoreactivity was variable in the 21 tumours examined and was 

considered to be low in 4, moderate in 11 and high in 6 (Table 4.3). There was 

also little correlation between the level o f  immunoreactivity and tumour subtype 

and the localisation was also variable with the majority (14 tumours) showing 

cytoplasmic staining, a few (4 tumours) showing membrane staining and the others 

(3 tumours) being stained at both locations.

Immunoreactivity to p-EGFR was cytoplasmic and only observed in 8 out o f 21 

tumour samples (low in 7 and moderate in 1). The 8 positive tumours were o f all 

subtypes so there was no correlation between EGFR phosphorylation and subtype. 

The 6 tumours that showed high EGFR expression (Table 4.3) were either 

negative for p-EGFR (5) or only had very low levels o f staining (1). This would be 

expected to lead to little or no activation o f downstream pathways leading to 

reduced phosphorylation o f ERK and/or AKT and therefore little c-Jun 

translocation to the nucleus in BCCs.
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Table 4.3: EGFR and p-EGFR Immunoreactivity in BCC Tumour Samples. EGFR 

immunoreactivity is variable and unrelated to phenotype and p-EGFR immunoreactivity

in BCC tumour samples is low or absent (* = low, ** = moderate and *** = high).

Sample Subtype EGFR p-EGFR
Tissue
level

Subcellular
localisation

Tissue
level

Subcellular
localisation

1 Nodular ** Cytoplasm None N/A
2 Nodular ** Cytoplasm * Cytoplasm
3 Morpheaform ** Cytoplasm * Cytoplasm
4 Nodular *** Membrane None N/A
5 Nodular ** Cytoplasm None N/A
6 Nodular * Cytoplasm * Cytoplasm
7 Nodular ** Membrane None N/A
8 Nodular ** Membrane None N/A
9 Micronodular/

Morpheaform
*** Membrane None N/A

10 Nodular/
Micronodular

* Cytoplasm None N/A

11 Micronodular/
Morpheaform

** Cytoplasm * Cytoplasm/
Nuclei

12 Nodular ** Cytoplasm * Cytoplasm
13 Micronodular/

Morpheaform
*** Cytoplasm * Cytoplasm

14 Micronodular ♦♦♦ Membrane/
Cytoplasm

None N/A

15 Nodular/
Micronodular

** Cytoplasm None N/A

16 Micronodular ** Membrane/
Cytoplasm

None N/A

17 Nodular *** Cytoplasm None N/A
18 Nodular *** Membrane/

Cytoplasm
None N/A

19 Nodular * Cytoplasm ** Cytoplasm
20 Micronodular * Cytoplasm * Cytoplasm
21 Morpheaform/

Nodular
** Cytoplasm None N/A

4.3.5 Immunoperoxidase Detection of ERK and p-ERK in BCC
There was variable positive cytoplasmic ERK immunoreactivity in the tumour 

specimens examined, being weak in most tumours, patchy in some and positive 

throughout the tumour islands in others. ERK levels in micronodular tumours were
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weak and patchy (Figure 4.5a, b) but in nodular tumours, ERK levels were more 

variable and ranged from high (Figure 4.5c) to little expression (Figure 4.5d).

Figure 4.5: Immunohistochemistry o f ERK in Human BCC Samples. ERK levels in 

BCC tumours were variable. Low levels of cytoplasmic ERK were found in micronodular 

tumours #16 (a) and #20 (b), high levels of expression in nodular tumour #17 (c) while 

nodular tumour #19 was negative (d).

Considering all 21 BCC tumour samples (Table 4.4), moderate ERK expression 

was localised to the cytoplasm and nuclei o f 2 nodular tumours while low levels 

were found in the cytoplasm of 9 tumours (nodular, morpheaform, 

micronodular/morpheaform, micronodular) and ERK was absent in the other 10 

tumours (nodular, micronodular, nodular/micronodular and 

micronodular/morpheaform). In some tumours, nuclear staining was also noted in 

addition to cytoplasmic staining. Thus, there was little correlation between tumour 

morphology and the level and localisation o f ERK expression.
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Table 4.4: Tumour Sample Morphology and Immunoreactivity (ERK and p-ERK) in 

Human BCC Samples. Immunohistochemistry showed variable levels o f ERK (* = low 

expression, ** = moderate expression). No samples were positive with the p-ERK

antibody.

ERK p-ERK
Sample BCC Subtype Tissue

Level
Subcellular
Localisation

Tissue
Level

Subcellular
Localisation

1 Nodular * Cytoplasm/
Nuclei

None N/A

2 Nodular ♦ * Cytoplasm None N/A
3 Morpheaform * Cytoplasm/

Nuclei
None N/A

4 Nodular ** Cytoplasm/
Nuclei

None N/A

5 Nodular None N/A None N/A
6 Nodular None N/A None N/A
7 Nodular * Cytoplasm None N/A
8 Nodular * Cytoplasm None N/A
9 Micronodular/

Morpheaform
* Cytoplasm None N/A

10 Nodular/
Micronodular

None N/A None N/A

11 Micronodular/
Morpheaform

None N/A None N/A

12 Nodular None N/A None N/A
13 Micronodular/

Morpheaform
None N/A None N/A

14 Micronodular None N/A None N/A
15 Nodular/

Micronodular
None N/A None N/A

16 Micronodular * Cytoplasm None N/A
17 Nodular * Cytoplasm/

Nuclei
None N/A

18 Nodular * Cytoplasm/
Nuclei

None N/A

19 Nodular None N/A None N/A
20 Micronodular * Cytoplasm None N/A
21 Morpheaform/

Nodular
None N/A None N/A

No positive immunoreactivity was obtained using an antibody specific for the 

phosphorylated form o f ERK (p-ERK) inferring that ERK activation was not 

apparent in any o f  these BCC samples (Table 4.4).
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ERK cannot be activated by phosphorylation unless EGFR is phosphorylated 

leading to a series o f protein activations downstream o f the receptor, so p-ERK 

would not be expected in tumours that were p-EGFR negative. However, this does 

not explain the absence o f p-ERK in p-EGFR positive tumours. Some samples 

showed patchy positive expression o f both EGFR and ERK, and as ERK is 

downstream o f EGFR, it might be expected that similar patterns o f expression and 

location were observed in each sample. However, this did not seem to be the case 

because high EGFR expressing samples (4, 9, 17 and 18) showed low to moderate 

ERK expression and sample 13 showed no ERK expression at all. Also, no 

correlation by location was observed in sequential sections o f tumour sample.

Thus, ERK was expressed at low level and was not activated by phosphorylation 

in the BCC samples examined. This infers that the MEK/ERK arm of the EGF 

pathway is unlikely to be involved in modulation o f the SHH pathway at this stage 

o f  tumour growth or in promotion o f an infiltrative phenotype.

4.3.6 Immunoperoxidase Detection of p-AKT in BCC Samples
Moderate p-AKT levels were observed in spindle shaped cells o f nodular tumour 

#1, with staining o f both the cytoplasm and plasma membrane (Figure 4.6a). 

Clusters o f  p-AKT positive cells were found in micronodular tumour #2 (Figure 

4.6b) and another nodular tumour (#8) also showed small clusters o f p-AKT 

positive cells (Figure 4.6c). Finally, a small epidermal down-growth above 

nodular tumour #19 also contained a cluster o f p-AKT positive cells (Figure 

4.6d).

Positive staining for p-AKT was found in 14 tumour samples (3 had moderate 

levels) while the other 7 tumour samples had no p-AKT immunoreactivity (Table 

4.5). Generally, staining was cytoplasmic and localised at the centre and 

infiltrating edges o f  tumour islands.
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Figure 4.6: Immunohistochemistry o f Human BCC Samples with p-AKT. (a) nodular 

tumour #1 showed extensive strong p-AKT staining o f spindle shaped cells. Smaller 

numbers o f similar cells were positive in micronodular tumour #20 (b) and nodular 

tumour #8 (c). p-AKT positive cells were also observed in an epidermal down-growth 

above nodular tumour #19 (d).

Again, there appeared to be very little correlation between p-AKT staining and 

tumour morphology. The morphology o f the three samples that showed moderate 

levels o f p-AKT all differed (nodular, nodular/morpheaform and 

micronodular/morpheaform). Tissue localisation in these moderately expressing 

samples did correlate to subtype, with micronodular and morpheaform being the 

most infiltrative or aggressive. No samples had high levels o f p-AKT (Table 4.5).
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Table 4.5: Levels and Sub-cellular Localisation o f p-AKT in Human BCC Specimens.

Immunohistochemistry o f p-AKT in all 21 BCC samples showed that moderate staining 

(**) was present in 3 specimens, low levels (*) in 11 specimens and no staining (None) in

7 samples. Where p-AKT was positive, only cytoplasmic staining was observed.

p-AKT
Sample Subtype Tissue

Level
Subcellular
Localisation

1 Nodular ** Cytoplasm
2 Nodular * Cytoplasm
3 Morpheaform None N/A
4 Nodular * Cytoplasm
5 Nodular * Cytoplasm
6 Nodular * Cytoplasm
7 Nodular None N/A
8 Nodular/Morpheaform ** Cytoplasm
9 M icronodu lar/Morpheaform None N/A
10 Nodular/Micronodular * Cytoplasm
11 Micronodular/Morpheaform None N/A
12 Nodular None N/A
13 Micronodular/Morpheaform ** Cytoplasm
14 Micronodular * Cytoplasm
15 Nodular/Micronodular * Cytoplasm
16 Micronodular * Cytoplasm
17 Nodular * Cytoplasm
18 Nodular None N/A
19 Nodular None N/A
20 Micronodular * Cytoplasm
21 Morpheaform/nodular * Cytoplasm

If p-AKT positive cells were involved in infiltration and invasion, it would be 

expected that they would be located at the tumour margins. However, this pattern 

was not observed in the samples studied and p-AKT reactivity was found both at 

the margins and in the centre o f tumour islands. This p-AKT immunoreactivity is 

unlikely to be due to a lack o f  antibody specificity, as western blotting analysis 

showed reactivity with a single protein band o f the correct size (data not shown).

Interestingly, all cells positive for p-AKT were spindle shaped, more reminiscent 

o f fibroblasts than keratinocytes. Tumour cells are known to undergo epithelial-
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mesenchymal transition (EMT) and such altered cells grow more aggressively 

causing increased tumour down-growth into the dermis and subcutaneous tissues 

(Larue and Bellacosa, 2005). However, there was only one BCC with 

morpheaform characteristics (the most aggressive BCC subtype) in this study and 

this was only moderately positive.

4.3.7 Double Immunofluorescence Detection of p-AKT and 

Keratin (K14) or Vimentin
In order to ascertain whether the spindle shaped p-AKT expressing cells were due 

to EMT, the sections were treated with an antibody to vimentin (intermediate 

filament protein present in fibroblasts but not keratinocytes). Double 

immunofluorescence with the antibody to p-AKT would ascertain whether p-AKT 

positive tumour cells had converted to a fibroblast phenotype. In addition, a K14 

antibody was used to identify keratinocyte characteristics that should be found 

throughout the tumour islands as these cells are o f epidermal origin. However, if  

the p-AKT expressing cells had undergone EMT, they would express little or no 

K14 and should be vimentin positive. Tumour cells in the process o f EMT might 

express both the fibroblast marker vimentin and the epidermal cell marker K14.

Staining sections o f a nodular BCC tumour with both a K14 antibody (red 

fluorescent tag) and an p-AKT antibody (green fluorescent tag) showed that all 

cells expressed K14 in their cytoplasm but only a limited number o f spindle 

shaped cells contained p-AKT (Figure 4.7a). However, it remains unclear as to 

whether the spindle cells express K14 or not. Staining a similar section with a 

vimentin antibody (red fluorescent tag) gave only background red fluorescence 

and the spindle cells again were stained bright green showing the presence o f p- 

AKT (Figure 4.7b). A higher power view o f the tumour stained with both p-AKT 

(green) and vimentin (red) showed that these two proteins appear to be mutually 

exclusive in terms o f  expression with the spindle shaped cells being p-AKT +ve
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and vimentin -v e  while the other cells in the section were p-AKT -ve  and 

vimentin +ve (Figure 4.7d).
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F igure 4.7: D ouble Im m unofluorescence o f  p -A K T  and an Epiderm al Cell 

M arker (K14) or a Fibroblast Cell M arker (Vimentin) in N odular Human BCC  

Sam ple (#15). Nodular BCC tumour islands (a, b, c) were stained with antibody to p- 

AKT (a-d) with a green fluorescent tag and either an antibody to K14 (a,) or an antibody 

to vimentin (b, c) with a red fluorescent tag. Combined images o f both red and green 

fluorescence are shown with yellow indicating the presence o f both antigens. Scale bars 

are indicated on each section.

4 .3 .8  Im m u n o p e r o x id a se  D etec tio n  o f  c-Ju n  in B C C  S a m p les

Immunoreactivity for c-Jun was strongly positive and localised to the nucleus in 

virtually all tumour islands in all BCCs (Figure 4.8). Expression o f c-Jun was
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similar in tumours of different morphology (nodular, nodular/micronodular and 

morpheaform).

The transcription factor complex AP-1 is composed o f c-Jun and c-Fos and nuclear 

localisation suggests that the AP-1 complex is active in the BCC samples 

examined.
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Figure 4.8: Immunohistochemistry Detection o f c-Jun in Sections o f Human BCC.

Immunoreactivity o f c-Jun (with light green counter stain) showed strong nuclear 

expression in most samples: nodular tumour #1 (a), micronodular/morpheaform tumour 

#9 (b) and micronodular tumour #14 (c), but expression was low in some such as the 

morpheaform tumour #3 (3).

All 21 tumour samples in this study expressed nuclear c-Jun and levels were high 

in 15 tumours and moderate in 6. There appeared little relationship between the 

level o f c-Jun and tumour morphology (Table 4.6).
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The AP-1 transcription complex is targeted by EGF signalling and interaction 

between c-Jun and GLI2 may lead to augmentation o f  SHH signalling. 

Augmentation was originally thought to occur via the MEK/ERK arm o f the EGF 

pathway but the patchy expression o f EGFR, p-EGFR, ERK and p-ERK found in 

this study suggests that the MEK/ERK pathway did not activate c-jun. Localisation 

o f p-AKT to a few randomly spread tumour cells also suggests that activation o f  

the PI3K/AKT arm o f the EGF pathway cannot explain why all tumour cells are 

positive for c-jun. Thus, it seems likely that there is a different mechanism of 

activation in these tumours.

Table 4.6: Morphology, c-Jun Expression and Subcellular Localisation in Human BCC 

Specimens. Immunoreactivity with the c-Jun antibody was found in the nuclei o f all 

tumour island cells at a moderate (**) or high (***) level. Again there appeared little

correlation between levels o f  c-Jun and tumour morphology.

c-Jun
Sample Subtype Expression

Level
Subcellular
localisation

1 Nodular ♦♦♦ Nuclear
2 Nodular *♦ Nuclear
3 Morpheaform ** Nuclear
4 Nodular *** Nuclear
5 Nodular *♦ Nuclear
6 Nodular ** Nuclear
7 Nodular ♦** Nuclear
8 Nodular ♦** Nuclear
9 Micronodular/Morpheaform *** Nuclear
10 Nodular/Micronodular *** Nuclear
11 Micronodular/Morpheaform *** Nuclear
12 Nodular *♦ Nuclear
13 Micronodular/Morpheaform *** Nuclear
14 Micronodular *** Nuclear
15 Nodular/Micronodular *** Nuclear
16 Micronodular *** Nuclear
17 Nodular *** Nuclear
18 Nodular ** Nuclear
19 Nodular *** Nuclear
20 Micronodular *** Nuclear
21 Morpheaform/Nodular *** Nuclear
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4.5 Discussion

Signalling pathway differences between BCC subtypes were considered by 

comparison o f  a variety o f nodular and morpheaform BCC samples.

Immunoreactivity for EGF signalling components EGFR, p-EGFR, p-ERK and p- 

AKT was confined to the dermis and to structures such as the sebaceous gland. In 

BCCs they would be expected to be found within tumour islands and particularly 

at the tumour island margins o f the most aggressive phenotypes (nodular and 

morpheaform) if  they were to be involved in augmenting SHH signalling causing a 

more aggressive phenotype as hypothesised.

Immunohistochemistry has shown a lack o f EGFR auto-phosphorylation, which 

has led to reduced levels o f ERK and AKT phosphorylation (in fact no p-ERK was 

found in any o f the 21 samples) compared to levels expected in normal human 

skin.

EGFR was absent from BCCs in a study which used paraffin sections (Neill et al.,

2008), but another group who also used frozen sections (better for maintaining 

antibody epitopes) found EGFR immunoreactivity in BCCs agreeing with the 

findings in this chapter (Rittie et al., 2007). Immunolocalisation o f EGFR in this 

study was highly variable but neither location nor amount was linked to BCC 

subtypes o f  nodular, morpheaform or micronodular (Table 4.2). The different 

immunolocalisation o f this protein between BCCs (membraneous or cytoplasmic) 

may be explained by internalisation and degradation o f the protein caused by 

ligand binding. However, the lack o f phosphorylation (only phosphorylation in 8 

out o f  21 tumours) suggests that this is not true and high EGFR levels also did not 

equate to phosphorylation. Lack o f phosphorylation o f  this receptor in these 

samples meant that downstream signalling would not be activated by this pathway. 

Downstream proteins ERK and AKT may have been activated by a separate 

signalling pathway, which is quite possible as EGF-independent AKT activation
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by p38MAPK (which was activated in the absence o f EGFR by Her2) has been 

found previously in HER2 expressing human mammary epithelial cells (Diehl et 

al., 2006). In support o f this hypothesis, Her2 expression was shown in 14 out o f  

16 BCCs using RT-PCR (Krahn et al., 2001).

EGFR was commonly expressed in the tumour samples used for this study, but 

downstream signalling component ERK was expressed only at low levels and in 

few tumours with variable localisation, whereas phosphorylation o f ERK was 

absent in all o f the samples. The low levels o f ERK in BCCs in this study are 

continuous with previous observations using immunohistochemistry by Neil and 

co-workers. (Neil et al., 2008). This group also found a lack o f p-ERK except in 

one sample where they found p-ERK localised to infiltrating cells, suggesting that 

phosphorylation o f  ERK may be involved in causing tumours to be more invasive. 

However, because this result was not repeated in any o f the 21 samples analysed in 

this study, which were all nodular or morpheaform subtypes (the most invasive 

BCC subtypes) it seems unlikely that ERK phosphorylation would be involved in 

causing an invasive BCC phenotype. This is also at odds with the previously 

published observation that MEK1/2 inhibitor U 0126 abolished the synergistic 

effect o f increased activation o f GLI/EGF target genes (Kasper et al., 2006). 

Activated ERK (p-ERK) is a target o f MEK and thus MEK/ERK signalling is 

unlikely to promote an infiltrative BCC phenotype by modulation o f the SHH 

signalling.

In order to confirm or deny Neill and colleagues interpretation o f p-ERK 

expression in one tumour being the cause o f an aggressive phenotype, this study 

would require extending to a larger sample number for immunohistochemistry 

with the p-ERK antibody to further compare the characteristics o f the most and 

least aggressive BCCs. The same is true to confirm whether sub-cellular 

localisation o f  EGFR correlates to tumour subtype.
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Reduced p-ERK and p-AKT in tumour islands and the overlying epidermis 

compared to normal human skin was found in BCCs but not in squamous cell 

carcinomas by immunohistochemistry (Rittie et al., 2007). However, p-AKT levels 

were not affected by GLI expression in HaCaT cell experiments suggesting that 

this branch o f the EGF pathway is not affected by SHH signalling (Schnidar et al.,

2009). The effects seen in tumour samples may be due to a paracrine effect or 

extracellular matrix interactions in BCCs which were not present in cultures o f  

keratinocytes alone.

The spindle cell morphology o f the few p-AKT positive cells shown by 

immunohistochemistry in two thirds o f the samples in this study was particularly 

interesting because this morphology is associated with EMT. However, they were 

localised in the centre o f tumour islands as well as the margins and in tumours o f  

different morphologies, which does not correlate with an infiltrative phenotype, 

which EMT is associated with. In EMT there is a loss o f  cell to cell adhesions 

because AKT represses E-cadherin (cell junction protein), a loss o f E-cadherin 

leads to epithelial-mesenchymal transition. In that situation, cell-cell adhesion is 

reduced and so the mesenchymal cells are more invasive, thus metastases are more 

likely to occur (Julien et al., 2007). However, EMT rarely occurs in BCCs, 

possibly explaining why there was little positive immunoreactivity for AKT in 

BCC tumour specimens. If the cells positive for AKT are indicators o f EMT in the 

tumour specimens used for this study, then the low number o f affected cells would 

correlate with the slow growth and poor invasive properties o f BCCs. If this is the 

case, superficial BCC, the least aggressive subtype would likely express no p- 

AKT. However, immunofluorescence showed a lack o f  co-localisation o f  p-AKT 

with a fibroblast marker vimentin thus indicating that the p-AKT positive cells 

have not undergone EMT. Supporting this observation, it was shown that GLI1 

repressed induction o f the EMT marker vimentin in EGF-stimulated cells, making 

EMT unlikely in BCCs (Neill et al., 2008). The same group found that EGF/GLI 

expressing keratinocytes demonstrated an elongated morphology. Live cell- 

imaging confirmed that the cells could not detach or retract efficiently giving them
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a stretched appearance (Neill et al., 2008). Again, a larger BCC sample number 

with a good variety o f tumour invasiveness would be useful to repeat this 

immunohistochemistry in order to determine whether the more invasive or 

metastatic tumours have higher positive immunoreactivity for AKT and to find out 

why this would be related to a more aggressive phenotype.

The appearance o f  p-AKT immunoreactivity in cytoskeletal regions suggests that 

p-AKT may have migratory or a contraction function because it may be located on 

the stress fibres. In order to confirm or disprove the theory that p-AKT may be 

associated with EMT in BCC, double immunofluorescence with E-cadherin and p- 

AKT antibodies would be useful to confirm whether p-AKT positive cells express 

E-cadherin. If they do not express E-cadherin it is likely that they have undergone 

EMT. Unfortunately as yet we have not found a good E-cadherin antibody which 

is not the same species as the p-AKT antibody used in this study.

Previous publications have shown PI3K/AKT signalling enhanced remodelling o f  

the actin cytoskeleton (Scita et al., 2000). It has also been shown that PI3K has 

multiple roles, including the strengthening o f cell-cell adhesions; and in addition, 

p-AKT may indeed be involved in cell migration, as it has been shown to mediate 

lamellipodium formation (Cain and Ridley, 2009; Wennstrom et al., 1994). One 

report found evidence o f p-AKT and p-actin co-localisation in neural growth cones 

(Zhou et al., 2004). PI3K signalling is required for axon growth, where it is 

activated at the leading edge o f migrating neuronal cells. A PI3K regulatory 

subunit is involved in the control o f actin organisation and cell migration. 

However, co-localisation with cytoskeletal filaments is not normally seen (Cain 

and Ridley, 2009; Jimenez et al., 2000). Together, the results o f this study and 

these publications suggest that within those strangely spindle shaped cells there is 

p-AKT and p-actin co-localisation which may enable tumour cell migration deeper 

into the dermis or possibly even in the few moderately expressing tumours (3 out 

o f  21 BCCs), leading to the rare event in BCC o f  metastasis. It is unlikely that the 

p-AKT antibody did in fact cross-react with a keratin or another protein because
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this antibody has been used successfully for western blotting producing a single 

band o f the correct molecular weight. For future work immunofluorescence could 

be used to label BCC biopsies with both actin and p-AKT to confirm that they are 

co-localised.

C-Jun was strongly expressed in all BCC nuclei in all tumour samples which 

supports previously published findings where immunohistochemistry and qPCR 

also showed c-Jun expression throughout tumour islands but not in the stroma 

(Laner-Plamberger, 2008). As c-Jun is required for the up-regulation o f a subset o f  

GLI target genes, it makes sense that it is present in all BCC nuclei. The presence 

o f  c-Jun but not upstream p-EGFR or p-ERK means that it is unlikely that it was 

activated by the MEK/ERK pathway in BCCs. Therefore c-Jun must be activated 

by another means, this could be another arm o f the EGF signalling pathway, which 

is unlikely due to the lack o f p-EGFR, but may be possible as one group have 

shown in prostate cancer cells (prostate cancer is an epithelial carcinoma like 

BCC) that EGF induced mitogenic signalling could be induced by grape seed 

extract, which at the same time activated JNK, which in turn activates c-Jun 

(Tyagi et al., 2003). Therefore, it is possible that c-Jun is activated by the 

MEKK1/JNK branch o f the EGF pathway in BCCs. EGFR activation in the 

overlying epidermis is unlikely to be the cause o f c-Jun expression in all the 

tumour samples because the epidermis is often disrupted in BCC and p-EGFR 

expression was not found in the overlying epidermis. In order to confirm why c- 

Jun is present in BCCs it would be useful to complete further 

immunohistochemistry using antibodies to proteins involved in MEKK1/JNK 

signalling. Other signalling pathways and the possibility o f ligand independent 

activation o f  c-Jun may also need to be considered because signalling networks 

can be extremely complex.

The lack o f  correlation between BCC subtype and expression levels or sub-cellular 

localisation o f  all proteins considered in this study shows that MEK/ERK and 

PI3K/AKT EGF pathway components may not have any involvement in producing
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the differing subtypes as originally hypothesised. Expression levels o f other genes 

must therefore be involved in producing different tumour subtypes. One example 

which may be involved is bcl-2 (known to promote cell viability) which was found 

to be expressed in a greater number o f cells within non-aggressive BCCs than in 

aggressive BCCs (Pratistadevi et al., 2000). The stroma surrounding the tumour 

cells is another possible cause o f varying tumour morphology. In morpheaform 

BCCs the stroma may enable the 2-3 cell wide strands to infiltrate deeper into the 

normal tissue. This could be due to the structure o f the stroma allowing tumour 

cells to infiltrate, or it could be caused by protein expression. For example, avp6 

integrin, which is normally up-regulated in wound healing as well as in 

carcinogenesis, was found to be increased in morpheaform BCCs compared to 

nodular BCCs (Marsh et al., 2008). In order to confirm whether altered stroma is 

the cause o f  more invasive subtypes, further immunohistochemistry would need to 

be carried out on proteins found in the stroma to confirm whether any of these are 

up-regulated in invasive subtypes compared to non-invasive BCCs. A further 

possibility is that signalling from the epidermis overlying the tumour may be 

involved in causing the different BCC subtypes, although, overlying epidermis is 

often disrupted. Low levels or no EGF pathway components, EGFR and p-EGFR, 

ERK and p-ERK, p-AKT were expressed in the overlying epidermis o f BCCs in 

this study or in the BCCs themselves. Paracrine signalling has previously been 

shown in other epithelial carcinomas such as pancreatic cancer and was discussed 

as a possibility in BCCs in the previous chapter (Walter et al., 2010).

At this stage it is worth re-assessing the merit o f a formulation that would inhibit 

both EGF and SHH signalling. The increased activity o f EGFR in the overlying 

epidermis suggests that the keratinocytes may contribute to the tumour 

environment by paracrine signalling (Rittie et al., 2007). In chapter 3 o f this study, 

a paracrine effect upon the expression o f GLI target genes (expression was 

reduced in the presence o f fibroblasts) was observed when keratinocytes were 

allowed to stratify at the air: liquid interface. The action o f p-AKT needs to be 

confirmed in order to decide whether to include it in a topical formulation for
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treatment o f  BCC. Immunohistochemistry and qPCR and/or western blotting 

would need to be carried out to look at the expression o f proteins and cDNA on a 

larger sample o f BCCs in order to eliminate possibilities and confirm the cause o f 

invasive subtypes o f  BCC. Ideally a larger tumour sample would enable us to 

overcome the difficulty o f  making comparisons between levels o f protein 

immunoreactivity and localisation between samples which have a large amount o f  

morphological variability even within a single tumour.
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Chapter 5

In Vitro Topical Delivery of Signal 
Transduction Inhibitors
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5.1 Introduction

5.1.1 Basal Cell Carcinomas as Targets for Topical Drug Delivery
BCCs present an ostensibly accessible target for topically administered drugs. 

However, while these lesions are on the skin surface, problems developing topical 

formulations still exist due to the variable structure and depth o f different types o f  

BCC, as well as inherent variation from tumour to tumour. Penetration o f drugs 

through the epidermis o f superficial BCCs is more achievable than penetration into 

the deeper dermis, which would be essential to treat the more invasive BCCs such 

as the nodular and morpheaform subtypes.

5.1.2 Signal Transduction Pathways as Targets for Inhibition
As stated in the general introduction, constitutive activation o f the SHH signalling 

pathway by deactivating mutations in the gene encoding PTCH, or occasionally 

activating mutations in the gene encoding SMO, are the principle causes o f BCC. 

SMO inhibitors such as cyclopamine were considered useful in topical 

formulations to ‘switch o f f  the SHH pathway. However, at the start o f this 

research project, it was hypothesised that the MEK/ERK branch o f the EGF 

pathway was involved in modulation o f the SHH pathway in BCCs and may be a 

factor contributing to formation o f the more invasive subtypes. It was also thought 

possible that the PI3K/AKT pathway had some involvement in tumour formation, 

so EGF pathway inhibitors might also prove to be useful therapeutic targets. Thus, 

a cocktail o f  drugs could be developed that would theoretically prevent further 

invasion whilst inhibiting tumour growth or even killing the tumour cells.

5.1.3 Inhibitors of EGF and SHH Signal Transduction Pathways
Many natural and synthetic compounds have now been reported as highly selective 

inhibitors o f cellular signalling processes. These include LY294002 (derived from 

quercetin, a naturally occurring bioflavonoid), which is a selective PI3K inhibitor 

that can also affect AKT, a direct target o f PI3K. Another flavonoid (PD98059) is 

a potent and selective inhibitor o f MEK phosphorylation by cRAF or MEK kinase
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and this causes inhibition o f MAPK phosphorylation, directly downstream of  

MEK (Alessi et al., 1995; Dudley et al., 1995). Furthermore, cyclopamine binds 

directly to SMO, leading to reduced SHH signalling and known to inhibit 

tumorigenesis in BCCs (Chen et al., 2002a; Chen et al., 2002b; Taipale et al., 

2000).

5.1.4 Routes for Topical Delivery
Generally, there are three main routes for topical drug delivery:

1. Dermatological: epidermis is the main target

2. Transdermal: dermal microvascular system is the main target

3. Transcutaneous: drugs bypass the dermal microvascular system and go into 

the underlying tissues

For effective transcutaneous delivery, drugs must permeate the lipophilic stratum 

comeum, followed by the more hydrophilic viable epidermis and then finally 

partition into the hydrophilic dermis. The nodular and morpheaform BCC 

subtypes, which go deep into the dermis, would require a combination o f  

epidermal, dermal and subcutaneous targeting.

5.1.5 Skin Permeation
In order to maintain a fixed level o f drug within the skin, the rate o f permeation 

must not exceed the rate o f clearance by the dermal vasculature. The permeation of  

compounds can be affected by numerous physiological factors: age, body site, 

race, pathological disorders, eruptions, infections, ichthyoses and tumours (such as 

eruptive BCCs). Other important factors are related to the delivery system and 

include concentration gradient, logP (lipophilicity), drug size (molecular weight) 

and type o f vehicle (can increase or decrease speed of delivery).

The stratum comeum provides an effective skin barrier, and is very resistant to 

penetration, particularly for polar/hydrophilic compounds. It consists o f 75-80% 

protein (mostly keratin) and 5-15% lipid. The lipid content is a complex mixture o f
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ceramides, fatty acids, cholesterol, cholesterol sulphate and sterol/wax esters 

(Benson, 2005; Hatfield and Fung, 1995). It varies depending on body site and 

also from person to person. Water is homeostatic and acts as a plasticizer for the 

stratum comeum to stop it from drying out and cracking, and natural moisturising 

factors (e.g. urea and urocanic acid) retain moisture and help to preserve 

suppleness (Benson, 2005).

5.1.6 Routes of Skin Permeation
There are three main routes o f permeation through the outer layers o f the skin 

(stratum comeum and epidermis). The trans-cellular route requires passage 

through both polar and lipophilic environments. Drugs must partition through the 

lipid membranes into comeocytes which contain highly hydrated keratin 

molecules (hydrophilic or polar environment). They must diffuse through the 

keratin matrix that fills the cell and then partition out o f the cell via the lipid rich 

(hydrophobic) membranes into the lipid rich (lipophilic) intercellular spaces.

The intercellular route suits small uncharged molecules and involves passing 

through the stratum comeum by going around the epidermal cells rather than 

through them. This requires movement only through a hydrophobic (lipophilic) 

environment and it is likely that small molecule inhibitors (such as PD98059, 

LY294002 and cyclopamine) would be able to permeate the skin principally via 

this route due to their small size and lipophilicity.

The trans-appendageal route requires passage through skin appendages such as 

hair follicles and sweat ducts. However, while these structures only occupy about 

0.1% o f the skin’s surface, it can provide a faster route for larger molecules to 

penetrate deeper into the skin.

There is no known active transport system to carry compounds through the skin. 

While it is likely that drugs may use one route preferentially, in reality, they will 

probably permeate via a combination o f routes. It should also be noted when
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delivering drugs to the skin that there are enzymes present (e.g. esterases, aiyl 

hydrocarbon hydroxylases) which may be able metabolise drugs (Woolfson, 

1990). These are localised in the stratum comeum, living epidermis, sebaceous 

glands and hair follicles, and can cause drugs to lose their efficacy as they pass 

through these structures.

5.1.7 Properties of Drugs that Permeate Skin
Physicochemical properties o f compounds are important for their ability to 

permeate the skin. These properties include: lipophilicity, polarity, ionic state, 

molecular size, solubility and melting point. The compounds used in this project, 

(LY294002, PD98059 and cyclopamine) are all small lipophilic molecules. 

LY294002 and PD98059 are soluble in fish oil, DMSO and alcohol while 

cyclopamine is only soluble in DMSO and ethanol when heated to 50-60°C 

(Online source: LC Labs. (2004)). Due to their general lipophilicity, oil (with 

cyclopamine dissolved in DMSO or ethanol prior to addition), alcohols or DMSO 

would be the most useful vehicles for transporting these molecules into the skin.

5.1.8 Methods of Drug Delivery to the Skin
Drugs or other molecules may be transported through the stratum comeum by 

using creams, ointments, patches, nanogels or physically, eg microneedles. A 

cream, ointment or patch would be the most appropriate method for delivering 

drugs to the site o f BCCs because they are the most cost effective mode of 

delivery and BCCs are likely to require repeated application to the skin.

5.1.9 Franz-type Diffusion Cell
In order to model the permeability o f drugs in vivo, glass Franz-type diffusion cells 

(see Figure 5.1) can be used for in vitro permeation experiments on excised skin 

(Franz, 1975). The membrane (typically full thickness skin or heat separated 

epidermis) is sandwiched between the donor and receptor phases. The vehicle 

containing the dissolved drug is applied to the skin via the donor chamber. The
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sampling arm can then be used to remove a receptor solution containing any drugs 

that had passed through the skin.

iDonor chamber

\
Skm section

Preceptor compartment

Clamp”

Sampling aim
Stirrer bar

Figure 5.1: Franz-type Diffusion Cell. The diffusion cell consists o f two glass sections 

clamped together with excised skin in the middle. Vehicle containing drug is applied to the 

skin surface via the donor chamber and permeants are removed from the receptor 

compartment below for analysis.

5.1.10 Vehicles for Topical Delivery
Vehicles are used to increase permeant flux across the stratum corneum barrier. 

They do this by partitioning into the stratum corneum and causing changes which 

allow increased permeability. Such changes should be reversible and not affect the 

lower layers o f the skin. There are various options for vehicles o f this type, 

depending on the lipophilicity of the drugs selected.

Sulfoxides such as DMSO (dimethyl sulfoxide), give maximal penetration but can 

be skin irritants. They act by denaturing skin proteins and partitioning with 

intercellular lipid domains. DMSO damages the stratum corneum, which increases 

permeation and is known as a ‘Universal solvent’ because both lipophilic and 

hydrophilic permeants are soluble in DMSO (Williams, A C, 2003).

Alcohols (such as ethanol) can be used as an enhancing vehicle. They are often 

used for maintenance o f a concentration gradient to speed up penetration o f a drug.
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Alcohols penetrate the skin very quickly so this high solubility may need to be 

balanced with other vehicles to reduce the overall speed o f penetration.

Fatty acids such as fish oil are skin friendly enhancing vehicles as they cause no 

damage and may in fact be beneficial in terms o f moisturisation (Thomas and 

Heard, 2005). Their strong odour is a negative point from a patient perspective so 

these creams are often mixed with eucalyptol, which disguises the smell. Fish oil 

contains eicosapentaenoic acid, which reduces COX-2 expression and can also be 

used as a vehicle to deliver drugs through the skin. COX-2 activity leads to the 

formation o f prostaglandins (Kim et al., 2006) and there is evidence o f COX-2 

over expression in morpheaform BCC (Jenkins, 2009; Yu et al., 2008). However, 

it is not entirely clear whether COX-2 has a positive or negative effect on BCC 

growth. Since inflammation is part o f the innate immune response, any decrease in 

inflammation due to COX-2 inhibition, might also reduce the effectiveness o f the 

immune system in carcinoma clearance. Although COX-2 inhibitors may cause an 

increased risk o f cardiovascular disease and gastrointestinal disease, fish oil 

applied topically would carry a reduced risk, making this a potentially useful base 

for this formulation (Thomas et al., 2007).

Emulsifying ointment is a standard British Pharmacopaeia mixture o f paraffin oils 

which reduces water loss from the skin. This is a skin friendly vehicle but may 

need other vehicles added such as sulfoxides, alcohols or oil to enhance drug 

penetration.

A series o f vehicles can be tested to determine whether drugs permeate the skin 

sufficiently for effective BCC treatment and at what flux (speed). DMSO and 

ethanol represent maximal penetration for PD98059 and LY294002 due to their 

solubility in these solvents. These were therefore tested first to confirm that the 

drugs can permeate through full thickness skin. Once permeation had been 

demonstrated then a safe vehicle could be designed with the aim o f delivering
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drugs through the skin but minimising loss to the systemic circulation by slowing 

transit through the skin.

5.1.11 Flux and Dosing
Drug flux is the amount o f drug delivered across the skin at steady state, as a 

function o f application area and time. It may be increased by occlusion (increases 

stratum comeum water content by decreasing transepidermal water loss), an effect 

that has been seen for both hydrophilic and lipophilic permeants (Roberts et al., 

1993; Wester et al., 1995).

The applied dose o f drug can either be finite or infinite. A finite dose will be 

depleted over the course o f a permeation study, but can mimic ‘in-use’ application. 

An infinite dose will not be depleted over the course o f the permeation study or 

over the time o f application and steady-state permeation should be achieved.

Fick’s first law o f diffusion states that the rate o f transfer o f a diffusing substance 

through a unit area o f skin (flux) is proportional to the concentration gradient. This 

depends on the diffusion coefficient o f the permeant as in the following equation:

J = -D dc 

dx

J= flux o f permeant

D= diffusion coefficient o f permeant

dc/dx = the incremental change in concentration with distance (concentration 

gradient)

The pseudo-steady-state flux is the gradient o f the linear portion o f the permeation 

profile. The permeability coefficient (an estimate o f the permeation rate o f a solute 

across a membrane) can be determined from the concentration o f the permeant in 

the applied vehicle.
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5.1.12 Depth Profiling
Depth profiling is a method to quantify the amounts o f drug localised within zones 

or layers o f the stratum comeum and epidermis. The most common technique uses 

tape strips to repeatedly remove sequential skin tissue (layers) from the same 

surface area o f dosed skin. Typically, this commences at the stratum comeum 

although it is possible to do this in reverse and commence at the basal layer o f  

heat-separated epidermis.

The receptor solution must provide a suitable sink in which the permeants should 

be soluble, without modulating the barrier function. To ensure no retardation o f the 

flux occurs due to imbalance o f the concentration gradient, permeating species 

should not exceed 20% o f their solubility in the receptor phase. The receptor phase 

should exert no effect on the membrane, which would alter their permeation, and 

should if  possible mimic the in vivo situation.

5.1.13 Aims

• To determine the penetration of cyclopamine, LY294002 and PD98059 

into the skin and whether the inhibitors affect each other’s penetration.

• To probe which vehicles would be most appropriate for delivering these 

inhibitors to cutaneous BCCs in vivo.
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5.2 Materials

PD98059, LY294002 and cyclopamine were all purchased from LC Labs 

(Woburn, MA, USA). All solvents were from Fisher Scientific (Loughborough, 

UK).

5.3 Methods

5.3.1 Solubility and Stability of LY294002, PD98059 and 

Cyclopamine
The stability o f LY294002 and PD98059 over 48 hours at 37°C has been 

previously determined (Davison et al., 2008). However, the stability o f  

cyclopamine is unknown, and due to the lack o f a useable chromophore, this could 

not be measured by HPLC. Solubility (as determined by Davison et al., 2008) for 

LY294002, PD98059 and cyclopamine was repeated in this study (Table 5.1).

Table 5.1: Solubility o f Cyclopamine, PD98059 and LY294002. Data for cyclopamine 

taken from LC Labs data sheets and data for PD98059, and LY294002 taken from 

Davison et al., 2008.

Cetrimide 

mg m L 1

Cetrimide 

30%  

ethanol 

mg mL'1

DMSO  

mg mL'1

Fish Oil 

mg mL'1

Ethanol 

mg mL'1

Cyclopamine 0 11 4 0 20

PD98059 4.57 3 6.98 2.47 0.6

LY294002 9.42 15 14.76 5.16 25
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5.3.2 In Vitro Skin Penetration and Permeation
Porcine ear skin was used as a model for normal human skin as it closely 

resembles human skin both enzymatically and structurally (Hawkins and 

Reifenrath, 1986; Dick and Scott, 1992; Schmook et al., 2001). The stratum 

comeum is similar in thickness and has similar permeation properties (Sekkat et 

al., 2002). Porcine ears were used throughout these experiments to maintain 

consistency in the permeability properties based on body site. Fresh ears were 

always used because it had been shown previously that frozen skin has different 

permeation properties, usually allowing compounds to permeate at an increased 

rate compared to fresh skin.

Cetrimide with 30% ethanol (necessary for cyclopamine solubility) was used as 

the receptor phase in the experiments (see Figure 5.1). Heard and co-workers 

showed that cetrimide does not give rise to any adverse affects on the skin and 

does not affect drug flux (Davison et al., 2008b; Heard et al., 2002). A micro 

stirrer was used to constantly agitate the receptor phase to mimic dermal clearance 

by the vasculature in vivo.

Porcine ears were obtained from an abattoir within an hour o f  slaughter and placed 

in ice-cold HEPES modified Hanks balanced buffered salt solution (Sigma- 

Aldrich Company Ltd, Gillingham, UK). Full thickness skin was excised by blunt 

dissection and continually bathed in Hank’s buffer to maintain viability. The hairs 

were removed using clippers and the skin was cut into 2cm2 sections. In order to 

give a representation of BCC variation (some BCCs have disrupted stratum 

comeum, others do not), half o f the skin sections had the stratum comeum 

disrupted by tape stripping to mimic morpheaform or superficial BCC. This was 

achieved by pressing firmly on the stratum comeum side with adhesive tape 

(Sellotape) and then rapidly removing it (repeated 25 times with clean tape). The 

skin sections were then placed between the greased flanges o f  a glass Franz type 

diffusion cell, stratum comeum side up, and the flanges were clamped together to 

form an airtight seal. A magnetic stirrer bar and the receptor phase (30 mg mL'1
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cetrimide with 30% ethanol, degassed) were added to the receptor compartment 

via the sampling arm, ensuring the receptor solution touched the underside o f the 

skin and that there were no bubbles (can affect permeation by interfering with the 

concentration gradient). Parafilm (Fisher Scientific, Loughborough, UK) was 

placed over the sampling arm to prevent evaporation o f the receptor phase. The 

Franz cell was then placed on a VarioMag Telesystem submersible stirrer plate 

(Camlab Ltd, Cambridge, UK) in a 37°C waterbath containing virkon to prevent 

microbial contamination of the skin (Nickel Electro Ltd, Weston-super-Mare, UK, 

Fisher Scientific, Loughborough, UK). The water just covered the receptor 

compartment and did not reach the skin. The Franz cell was allowed to equilibrate 

for half an hour after which 200pl o f the donor phase (ethanol, DMSO, 200pl 

ethanol in fish oil) containing equimolar concentrations o f LY294002 (1 mg mL'1), 

PD98059 (0.8 mg mL'1) or cyclopamine (1.34 mg mL'1) was applied to the skin 

surface via the donor chamber. Parafilm was used to cover the donor chamber to 

mimic occlusion. Dosing o f the donor phase (200pl aliquots) was repeated at 3 and 

6 hour timepoints for half the Franz cells containing native skin and half the cells 

containing disrupted stratum comeum to mimic infinite dosing. The remainder o f  

the cells mimicked finite dosing. This gave four dosing protocols: normal skin 

single dose, normal skin repeat dose, tape stripped skin single dose and tape 

stripped skin repeat dose. In addition, 4-6 replicates were used for each 

measurement.

The receptor phase was removed from the Franz cells via the sampling arm using a 

glass pasteur pipette (Fisher Scientific, Loughborough, UK) and 1ml samples were 

stored in autosampler vials at -20°C to await analysis. The receptor compartment 

was immediately replenished with fresh receptor phase and samples at various 

times (3, 6, 12, 24, 36 and 48 hours) over two days.
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5.3.3 Standard Depth Profiling
Tape stripping is a method o f depth profiling used to sequentially collect cell 

layers from the stratum comeum side o f the epidermis. The cells are then removed 

from the tape and the quantity o f drug which has penetrated to different cell layers 

measured by HPLC.

Franz-type cells were set up with porcine skin and LY294002 (1 mg mL'1) added 

to 5 cells, PD98059 (1 mg mL'1) to another 5 cells and a combination o f  

LY294002 and PD98059 (0.5 mg mL'1 each) to another 5 cells. These inhibitors 

were dissolved in methanol and 300pl o f this donor phase was applied to the skin 

surface in each Franz-type cell. A receptor phase o f degassed cetrimide with 30% 

ethanol was added to the bottom o f the Franz-type cell until the solution just 

touched the underside o f the skin, taking care not to introduce any bubbles. The 

Franz-type cell was placed on a microstirrer in a 37°C waterbath containing 

Virkon to prevent microbial infection and agitated for 24 hours. The pig skin was 

removed from the Franz-type cells, a cotton bud was used to gently remove excess 

donor phase and tape strips were taken from the stratum comeum side o f the skin. 

Three sequential strips were added to a vial o f methanol until 30 strips had been 

removed (10 vials) and the final (11th) vial contained the remainder o f the skin. 

The covered vials were left overnight on a rocker to wash o ff the cells, and then 

left uncovered until all the methanol had evaporated. Methanol (1ml) was added to 

each vial to re-dissolve the drugs and the concentration was measured by reverse 

phase HPLC.

5.3.4 Reverse Phase HPLC Method for Measuring LY294002 and 

PD98059

The quantity o f LY294002 and PD98059 removed from the Franz-type cell 

receptor phase was measured by reverse phase HPLC (Agilent 1100 series 

automated system) using a Phenomenex Sphereclone 5 pm particle size column 

with a flow rate o f 0.5ml/minute. In order to quantitate the amount o f each 

inhibitor separately, a mobile phase gradient was created to enable elution at
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different time points. The mobile phase ratio started at zero with 80:20 methanol: 

dH20 and changed over 8 minutes to 70:30 methanol: dH20, at 8:01 minutes the 

ratio changed to 90:10 methanol: dfhO and remained at this ratio until 12 minutes. 

Using this protocol, PD98059 eluted at 7.3 minutes (retention time) and 

LY294002 eluted at 8.9 minutes.

The two inhibitors were detected by absorbance at 254nm and the peak areas 

under each trace (one for each Franz-type cell receptor phase removal timepoint) 

were calculated using Agilent ChemStation software. Microsoft excel was used to 

calculate the mass o f permeant (PD98059 or LY294002) with the equation (mAU 

= milli-absorbance units):

Mass o f permeant (mg cm'2) = peak area (mAU)/gradient o f calibration graph x 

receptor phase volume (ml)/area o f application (mm2)

The mean for 4-6 replicates was plotted. Steady state flux for the permeation o f  

PD98059 and LY294002 was determined by plotting the cumulative permeation 

(pg cm'2) against time. The linear portion o f the resulting plot was taken as steady 

state flux. Calibration curves were plotted using known quantities o f  each inhibitor 

against the area under the peaks o f the HPLC trace.

5.3.5 Reverse Depth Profiling
In order to clarify whether the drugs had reached the basal layer where BCCs 

reside, a different approach was used. The epidermis was heat separated from the 

dermis and then the underside o f the epidermis was tape stripped (as previously 

explained), thus removing the basal layer first (reverse depth profiling).

Pieces o f freshly excised porcine skin (2cm2) were heated to 55°C for 30-60 

seconds in a waterbath filled with distilled water. The epidermis was carefully 

separated from the dermis using forceps. The underside o f  the epidermis was 

sequentially tape stripped by applying pressure and then removing the tape. This
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was repeated for several tape strip layers applying equal pressure with the thumb 

to each strip before removing. The cells were washed o ff the tape strip into 1.5ml 

eppendorf tubes using 0.9ml SDS sample buffer (4.12ml H2O, 1ml 0.5M Tris, 

0.8ml glycerol, 1.6ml 10% SDS, 0.08ml 1M DTT and 0.2ml bromophenol blue) 

and boiled for 5 minutes. The denatured protein solution was stored at -20°C until 

analyzed by SDS-PAGE and western blotting.

5.3.6 Polyacrylamide Gel Electrophoresis and Western Blotting

Total protein extracts were separated by electrophoresis (SDS-PAGE), transferred 

to membranes and analysed with a group o f specific antibodies (western blotting).

5.3.6.1 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS- 

PAGE)

SDS-PAGE was carried out using the XCell Sure lock mini-cell (Invitrogen, 

Paisley, UK). Proteins were separated on an SDS gel by electrophoresis and 

transferred to a membrane for western blotting using the XCell II Blot module. 

Immunochemistry was performed to detect the presence o f proteins and to 

measure expression levels and the extent o f phosphorylation in cells under 

different culture conditions.

Enough mixture for two 10% separating gels was made containing 0.1ml 10% 

SDS, 2.5ml 1.5M Tris, 3.3ml 30% acrylamide gel solution (Sigma-Aldrich 

Company Ltd, Gillingham, UK), 75pl APS (ammonium persulphate; Fisher 

Scientific, Loughborough, UK) and 7.5pi NjNjN’jN’-tetramethylethylenediamine 

(TEMED; Sigma-Aldrich-Company Ltd, Gillingham, UK) and 4.1ml H2O. This 

was pipetted into cassettes and overlaid with water. Once set, the water was 

removed and a 4% stacking gel (50pl 10% SDS, 1.25ml 0.5M Tris, 0.65ml 30% 

aciylamide gel solution, 3.05ml H2O, 50pl 10% APS and lOpl TEMED) was 

added above the separating gel. A 12 prong comb was placed into the top o f the 

cassette and after the stacking gel had set (about 5 minutes), the comb was
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carefully removed and the wells washed with distilled water (dfkO). The cassettes 

were placed into the apparatus and lx  running buffer (30g tris, 144g glycine and 

lOg SDS per litre o f dt^O) was poured into the apparatus, ensuring that the wells 

were full o f  buffer. The protein extracts (lOpl) were loaded into the wells 

(volumes should give equal quantities o f protein in each well for comparison) and 

molecular weight standards loaded on the gel (usually the end lanes). Three 

markers were used in combination: 10pl Precision Plus protein marker (Bio-rad, 

Hemel Hempstead, UK) or 5pl low molecular weight marker (Promega UK Ltd, 

Southampton, UK) together with 2pi Magicmark (Invitrogen, Paisley, UK). The 

outer and inner chambers were filled with running buffer and 125V at a starting 

current o f 25mA per gel applied until the tracker dye reached the bottom o f the 

separating gel. Cassettes were opened and the gel was stained with 0.25% 

Coomassie brilliant blue R250 (Sigma-Aldrich Company Ltd, Gillingham, UK) in 

40% methanol (Fisher Scientific, Loughborough, UK) and 10% acetic acid (Fisher 

Scientific, Loughborough, UK) for one hour. The gel was then destained for 30 

minutes in 40% methanol and 10% acetic acid. Duplicate gels were important as 

one was used for staining o f the protein to check for even loading while the other 

gel remained unfixed and was used for western blotting.

5.3.6.2 Western Blotting

Immobilon membrane (PDVF from Millipore, UK) was immersed in methanol and 

then vigorously shaken in water to hydrate. Whatman paper and pads were soaked 

in western blot buffer (14.4g glycine, 3g Tris and 100ml methanol per litre dH20). 

Two pads were placed in the bottom o f the western blot module, and then a 

gel/membrane sandwich was assembled (Whatman paper, gel, Immobilon 

membrane, Whatman paper) and placed on top of the pads. The module was then 

filled with further pads and the top locked. Buffer was added to the blotting 

module and the tank filled with dH20 to keep the gel cool during transfer. Transfer 

continued for 1-2 hours at 25 v with a starting current o f approximately 100mA.
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5.3.6.3 Protein Detection by Immunochemistry

Western blots on Immobilon membrane were rehydrated with methanol and 

washed in water, then placed in 5% skimmed milk (Marvel from Tesco, UK) in 

Tris-buffered saline with 0.1% Tween 20 (TBST from Sigma-Aldrich Company 

Ltd, Gillingham, UK) for 1 hour to block antigenic sites. Primary antibody (see 

Chapter 2, Table 2.6 for dilutions o f antibodies used) in 10ml 5% marvel was 

added and left for 1 hour, after which the membrane was washed (five times in 

TBST for 5 minutes each). Another 10ml 5% marvel containing the secondary 

antibody (see Chapter 2 and Table 2.6 for details) was added and left to incubate 

for 1 hour, then the membrane was washed in TBST (again five times for 5 

minutes each).

The membrane was laid on Saran wrap in the dark room and covered with ECL 

reagent for 5 minutes. The reagent was made by combining 1ml solution 1 (1ml 

250mM stock luminol (Sigma-Aldrich Company Ltd, Gillingham, UK) in DMSO, 

0.44ml 90mM coumaric acid stock (Sigma-Aldrich Company Ltd, Gillingham, 

UK) in DMSO, 10ml Tris, pH 8.5 plus dH20 to a total o f 100ml) and 1ml solution 

2 (64pl 30% H2O2 and 10ml Tris, pH8.5 plus dH20 to a total o f 100ml). The 

reagent was poured off, the membrane enclosed in Saran wrap and placed in a 

cassette together with sensitive X-ray film (Amersham Biosciences, GE 

Healthcare Life Sciences, Little Chalfont, UK). This was left for 2 to 10 minutes 

(longest incubation carried out first) and then the X-ray film was placed in Kodak 

D-19 developer, rinsed in water and finally treated with Kodak Processing 

Chemical Fixer (Sigma-Aldrich Ltd, Gillingham, UK). Films were then left to dry.

5.3.7 Tissue Immunofluorescence
Stored slides containing frozen porcine skin (7pm thick cryostat sections stored at 

-80°C) were thawed at room temperature (RT) for 10-15 minutes, fixed in acetone 

(Fisher Scientific, Loughborough, UK) for 15 minutes, dried for 5 minutes and 

washed in PBS three times for 5 minutes each. Undiluted primary antibody raised 

to K15 (sheep) or K10 (mouse) were applied to the sections, which were then
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incubated for 1 hour in a humidified chamber and washed in PBS (three time for 5 

minutes each). Biotinylated anti-sheep (GE Healthcare, Little Chalfont, UK) 

(1:200) or anti-mouse alexa 594 (1:500) were applied, incubated for 30 minutes 

and washed three times in PBS (5 minutes each). Slides were then incubated with 

avidin alexa 488 (Invitrogen, Paisley, UK) 1:500) for 30 minutes and washed in 

three times PBS (5 minutes each). Finally, sections were mounted with 

Hydromount (Fisher Scientific, Loughborough, UK) containing 2.5 % Dabco 

(Sigma-Aldrich Company Ltd, Gillingham, UK) and a cover slip added and 

allowed to dry for at least 1 hour before viewing under a microscope. The basal 

layer (stained by K15 antibody) and the suprabasal layers (stained by K10 

antibody) o f the epidermis could then be identified by fluorescence microscopy.

5.3.8 Derivatisation
Cyclopamine has an extremely low UV absorbance, because it lacks a 

chromaphore, and only absorbs at short wavelengths. Thus, traces o f impurities 

with high UV absorbance can represent major contaminants, even though they 

were only 0.1% or less o f the material present. Also, certain potential cyclopamine 

impurities such as acyl derivatives o f the amino group are far more hydrophobic 

than cyclopamine itself, and these impurities would never elute from the column 

under the HPLC conditions typically used for cyclopamine analysis. HPLC can 

seriously under estimate and/or over estimate different types o f impurities, and 

therefore cannot give reliable analytical results. Therefore, LCMS (liquid 

chromatography-mass spectrometry) is recommended for quantification o f  

cyclopamine. However, due to the high cost o f LCMS (and its lack o f availability), 

three methods o f cyclopamine derivatisation were tested as an alternative method 

o f quantitation.

5.3.8.1 Dansylation (Bartzatt, 2001a; Bartzatt, 2001b)

An aliquot (250pl) o f cyclopamine solution [lmg/ml in 17:3 acetonitrile: dH20] 

(LC Labs, Woburn, MA, USA; Fisher Scientific, Loughborough, UK) was added 

to 250pl 2M sodium carbonate solution, p H ll (Fisher Scientific, Loughborough,
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UK) and 150pl dansyl chloride solution (1.54g/10mls H2O from Sigma-Aldrich 

Company Ltd, Gillingham, UK). The tube was kept in the dark for 1.5 hours and 

mixed occasionally. Then, 600pl diethyl ether (Fisher Scientific, Loughborough, 

UK) was added and the solution mixed again. The top (organic layer) was 

removed for reverse phase HPLC analysis using a Phenomenex Sphereclone 5 pm 

particle size column at 492nm, in a mobile phase o f 70:30 acetonitrile: dH20 run 

at 1 ml/minute for 15 minutes.

5.3.8.2 Phenylisocyanate in Pyridine

This method was adapted from previously published work (Heard and Suedee, 

1996). In brief, freeze dried cyclopamine (2mg) was reacted with an excess (1ml) 

o f  phenylisocyanate (Sigma-Aldrich Company Ltd, Gillingham, UK) in pyridine 

(10ml) at 120°C for 6 hours and then allowed to cool. The reaction mixture was 

then poured into 5ml methanol (Fisher Scientific, Loughborough, UK) to remove 

unreacted isocyanate and the quantity o f derivatised cyclopamine was measured by 

reverse phase HPLC using a Phenomenex Sphereclone column with 5 pm particle 

size at 254nm, with a mobile phase o f 70:30 acetonitrile: dH20 with 0.1% 

trifluoroacetic acid run at 1 ml/minute for 15 minutes.

5.3.8.3 4’-bromophenacyl trifluoromethanesulfonate

This method was also adapted from published work (Ingalls, 1984). In brief, a 

20pl aliquot o f 0.1 M 4 ’-bromophenacyl trifluoromethanesulfonate in acetonitrile 

(Sigma-Aldrich Company Ltd, Gillingham, UK) was added to a glass tube and 

lOpl 0.5M diisopropylethylamine in acetonitrile (Sigma-Aldrich Company Ltd, 

Gillingham, UK) was added to neutralise the acid. Then 1ml cyclopamine (5mg/ml 

dissolved in ethanol at 50-60°C) was added, mixed by vortex and the reaction kept 

at RT. The quantity o f  derivatised cyclopamine was measured at timepoints (5, 10, 

30, 60, 120 and 180 minutes) after vortex mixing, by reverse phase HPLC analysis 

using a Phenomenex Sphereclone 5pm particle size column at 254nm, with a 

mobile phase o f  70:30 acetonitrile:dH20 run at lml/minute for 15 minutes.
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5.3.9 Statistical Analysis
Flux was compared between each formulation and any differences were 

determined by using Ordinary ANOVA, Parametric, Tukey tests (Instat 3 for 

Macintosh, GraphPad Software, USA).

5.4 Results

5.4.1 In Vitro Dermal Delivery
The assessment o f drug delivery through living epidermis is complex. However, 

tape stripping can be used to collect cells from skin surface and drug levels 

measured using methods such as HPLC to assess penetration. This works well for 

the stratum comeum and upper living layers o f the skin but not so well for the 

lower epidermis due to the undulating nature o f the dermal-epidermal junction. 

This makes it difficult to selectively remove cells from a specific layer. Thus, the 

reverse tape stripping method, where cells are removed from the underside o f heat- 

separated epidermis (basal cells first) is particularly poor.

Other methods o f separating skin such as EDTA or proteolytic enzymes would not 

work well, as the aqueous solutions would leach out the drugs being assayed. 

While tape stripping is commonly used for depth profiling to assess the penetration 

o f  drugs into the epidermis, satisfactory results are not always obtained. Removal 

o f  inhibitors from cells isolated by depth profiling (on tape strips) for measurement 

by high performance liquid chromatography (HPLC) may lead to inaccurate 

results because the drugs might not have permeated as far as the basal cells 

(Figure 5.2).
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Figure 5.2: Depth Profiling o f Heat-Separated Porcine Epidermis. This haematoxylin 

and eosin stained section of skin demonstrates the convoluted nature of the epidermis, 

showing that depth profiling removes cells from more than one layer in the lower 

epidermis (adapted from online source: Melanoma, A Skin Cancer Review).

5.4.1.1 Immunofluorescence and Western Blotting with Keratin Antisera to 

Define Epidermal Layers

Immunofluorescence confirmed that porcine skin was very similar to human skin 

in terms o f keratin expression (Porter et al., 2004). K14 was immunolocalised to 

the basal layer and K10 was only present in suprabasal cell layers (Figure 5.3). 

K14 and K10 antibodies were therefore useful for determining the cells present in 

the tape stripped samples by western blotting (see section 2.2.4 for methods).

(a) K14 (Green) (b)K lO (R ed) (c) Combined Image

Figure 5.3: Immunofluorescence Detection o f Keratins in Porcine Skin. K14 (green) 

staining was prominent in the basal layer (a) while K10 (red) was specifically localised to 

the suprabasal layers o f the epidermis (b). The combined image (c) showed some dilution 

o f the K10 signal by K14 in suprabasal cells (background staining) but not the reverse.

SDS-PAGE and western blotting of proteins extracted from reverse tape stripped 

epidermis at two different sites in porcine skin was carried out to show whether 

cells could be specifically removed from the basal layer. It could then be
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determined whether the inhibitors (LY294002 and PD98059) could reach these 

cells.

Western blotting results showed high levels of K14 in the first strips (Figure 5.4: 

lanes 1, 2, 5, 6) as would be expected because these strips were taken from the 

basal layer side o f the epidermis. However, K14 was still present in the protein 

extracted from cells removed on later tape strips (lanes 3, 4, 7, 8) although at a 

decreased level. This may be because the basal layer of the epidermis undulates, 

thus causing basal cells to be removed in later tape strips and it is probable that 

cells from the spinous layer of the epidermis were also present in the first tape 

strips. However, a K10 blot would have been more useful as this would show how 

much suprabasal contamination there was in the basal layer.

M 1 2 3 4 5 6 7 8

M.Wt.
60KDa

50KDa

40KDa

30KDa

20KDa

Figure 5.4: Western Blot o f K14 in Reverse Tape Stripped Skin. K14 presence was 

shown in all tape strips. Lane M: low molecular weight marker (Promega UK Ltd, 

Southampton, UK), lanes 1 to 4: sequential tape strips starting at the basal layer and 

lanes 5-8: sequential tape strips starting at the basal layer but from a different region of 

skin. K14 levels are highest in early strips (basal layer) from both skin regions (lanes 1 

and 2, lanes 5 and 6).
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5.4.1.2 Depth Profiling Porcine Skin after Application of EGF Inhibitors

(PD98059 and LY294002) in a Fish Oil Vehicle.

Depth profiling was carried out to demonstrate whether LY294002 (PI3K 

inhibitor) and PD98059 (MEK1/2 inhibitor) could successfully penetrate to the 

lower epidermis.

In order to determine the amount o f inhibitor which had penetrated the epidermis 

by HPLC, standard curves were made for both inhibitors (LY294002 and 

PD98059). A range o f standard solutions o f each were made up using ethanol (at 

concentrations o f 0.034, 0.068, 0.137 and 0.275 mg/ml). The inhibitors were 

separated by HPLC and detected at an absorbance o f 254nm. The data was plotted 

using Agilent Chemstation software that showed a peak on the trace where the 

inhibitors had been detected. The area under each peak was measured using 

Agilent Chemstation software and a standard curve was plotted o f area versus the 

concentration o f each inhibitor solution (see Figures 5.5 and 5.6). The value o f  

the gradient o f the graph (m, where y = mx + c) was then used to calculate the 

amount o f each inhibitor that had permeated through the skin (using the equation 

described in section 5.3.4). The R2 values for each inhibitor were both very close

to 1, which means that both calibration curves were accurate.

EGF inhibitors (LY294002 and PD98059 alone or in combination) in a methanol 

vehicle were then applied to porcine skin mounted in a Franz type diffusion cell. 

The inhibitors were allowed to permeate over 24 hours after which the skin was 

removed and depth profiling carried out using tape stripping (from the stratum 

comeum surface where the drugs were applied). Epidermal cells were washed off  

the tape strips and the inhibitors were extracted. For each drug applied, the level o f  

drug that had permeated through different cell layers was measured by HPLC. 

Agilent Chemstation software was used to measure the area under each peak o f the 

HPLC trace and the quantity o f each inhibitor in the sequential tape strips was 

calculated using the equation described above (see section 5.3.4). The quantity and
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percentage o f each inhibitor in the sequential layers o f epidermal cells was then 

plotted using Microsoft Excel.

<  12000 
E
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I  8000 -0
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0 0.05 0.1 0.15 0.2 0.25 0.3
Amount PD98059 (mg)

Figure 5.5: Standard Curve for PD98059 (n=3). Known concentrations o f PD98059 

(mg) in ethanol were plotted against the area under curve on the HPLC trace (in milli- 

absorbance units [mAU] at an absorbance of254nm).
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Figure 5.6: Standard Curve for LY294002 (n=3). Known concentrations o f LY294002 

(mg) in ethanol were plotted against the area under curve on the HPLC trace (in milli- 

absorbance units [mAU] at an absorbance of254nm).
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Depth profiling results obtained by measuring drug concentrations in ten 

consecutive tape strips showed that both drugs penetrated through the epidermis 

and into the living cells below (Figure 5.7). The profile o f drug retention was 

typical, with 25-40% remaining on the skin surface (tape strip #1), about 36% 

being retained in the epidermis (tape strips #2-10) and 23-38% penetrating into the 

remaining epidermis and dermis (layer R).

When applied alone, there was approximately 7.0 pmol (40%) o f PD98059 in the 

first tape strip (Figure 4.7a) and retention in the next two layers decreased rapidly 

(3 fold less in tape strip #2 and 2 fold less again in tape strip #3). Retention in tape 

strips #4-10 was similar (approximately 0.5 pmol per layer). Statistics showed 

there was a significant reduction in retained material in each o f the early tape 

stripped layers but deeper layers were broadly similar. The epidermis as a whole 

(tape strips #2-10) retained a total o f 6.4 pmol (36%) while the remainder (mainly 

dermis) contained about 4.0 pmol o f PD98059 (23% of total) which represents the 

amount o f drug that had penetrated the epidermal barrier.

The total amount o f PD98059 retrieved when applied in the presence o f LY294002 

was reduced by about 30% (12.1 pmol compared to 17.4 pmol) compared to 

PD98059 applied alone (Figure 4.7b). However, more PD98059 penetrated into 

the dermis (layer R) in the presence o f LY294002: 4.8 pmol (38% o f total) 

compared to 4.1 pmol (23% of total) while retention by the epidermis was broadly 

similar (4.3 pmol or 36% o f the total).

The amount o f LY294002 retained in the epidermal tape strips was much less than 

for PD98059, with all layers containing less than 0.001 pmol (1 pmol). The total 

LY294002 retrieved from tape strips 1-10 was almost 10 fold less: 1.5 pmol 

compared to 13.4 pmol for PD98059 (Figure 4.7c). The total LY294002 retrieved 

from the remaining skin was 0.7 pmol compared to 4.1 pmol o f  PD98059. 

However, this represented almost 50% o f the drug retrieved compared to 23% for 

PD98059 alone. In overall terms, the permeation profile was similar and the
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amount of drug was reduced in sequential layers. In the presence o f PD98059, the 

profile and quantity o f LY294002 uptake and retention in the epidermis was 

reduced slightly but appeared broadly similar (Figure 4.7d).
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Figure 5.7: Depth Profiling for PD98059 and LY294002 in Methanol on Porcine Skin.

Layers 1 to 10 were tape stripped from the epidermal surface ofporcine skin and layer R 

was the remaining skin after stripping, (a) PD98059 alone, (b) PD98059 with LY294002 

present, (c) LY294002 alone and (d) LY294002 with PD98059 present. Statistical analysis 

using Ordinary ANOVA Tukey Test: * P=<0.05, ** P= <0.005, *** P= <0.001. Data 

expressed as the mean +/- SD for n=3 experiments with 6 replicates for each experiment. 

Statistical data has been included to compare each layer to layer 1 and to the previous 

layer. The lowest rows of stars were compared to layer 1.

In total, less than 1% of each o f the applied inhibitors was retrieved from full 

thickness skin (layers 1 to 10 and R, the skin remainder). A total o f 150pg of each 

inhibitor was applied to the skin surface. The percentage of total drug applied that 

was then retrieved from sequential layers (1 to 10 plus the remainder, R) o f tape
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stripped skin followed a typical pattern of drug retention. These percentage values 

were plotted separately for each inhibitor (Figure 5.8) under conditions where 

both were applied simultaneously (allows for any inhibition or increase in uptake 

into the skin layers caused by the presence of both inhibitors). The values obtained 

were 0.38% for PD98059 and 0.07% for LY294002. The first layer contained the 

highest percentage of applied drug (0.072% for PD98059 and 0.011% for 

LY294002) compared to the lower epidermal layers (#2-10). There was also a 

significant decrease in the percentage of PD98059 retained in deeper epidermal 

layers when compared to layer 1 (P = <0.001), but the decrease was not significant 

for LY294002. The percentage of PD98059 retained in the epidermis as a whole 

(#2-10) was 0.173% (0.026 mg) compared to 0.0344% (0.0052 mg) for 

LY294002. The remainder of the skin (dermis) retained 0.1287% (0.019 mg) of 

the applied PD98059 and 0.0227% (0.0034 mg) LY294002.

(a)
9 U 
Oft 
0 1 4  

612 
i  ** 
*  o o t 

0 0 6  

091 
902

% applied  PD (w ith LY) in skin layers

SUM (1:10) = 0.2480%
R = 0.1287%

I I

(b)

o o t  

006 

*  004
0 03

%  a p p l ie d  LY (w ith  PO)  in  sk in  lay ers

SUM (1:10) = 0.0464%  
R = 0.0227%

I  ■
10' R

Figure 5.8: Depth Profiling for PD98059 and LY294002 in Methanol on Porcine Skin.

(a) The percentage o f applied PD98059 (in the presence ofLY294002) permeated, (b) The 

percentage of applied LY294002 (in the presence of PD98059) permeated. Statistical 

analysis was done by Ordinary ANOVA, Tukey test. * P=<0.05, ** P — <0.005, *** P= 

<0.001. Data expressed as the mean +/- SD for n=3 experiments with 6 replicates for 

each experiment. Statistical data has been included to compare each layer to layer I and 

to the previous layer. The lowest rows o f stars were compared to layer 1.
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5.4.1.3 In Vitro Skin Permeation Tests

Intact stratum comeum is the main barrier to skin permeation and disrupted 

stratum comeum enables easier penetration o f inhibitors into the skin. Some BCCs 

have a disrupted stratum comeum (especially nodular subtypes, which often have 

an ulcerated centre) but this is extremely variable between subtypes and individual 

BCCs (e.g. morpheaform BCCs rarely show ulceration). Thus, experiments were 

carried out on both native (intact) skin, and on skin which had been taped stripped 

(to cause disruption to the stratum comeum). This should mimic the best and worst 

case scenarios for permeation into BCCs.

Penetration o f LY294002 (PI3K inhibitor) and PD98059 (MEK inhibitor) through 

porcine skin using a selection o f vehicles including fish oil, DMSO and ethanol 

was carried out using Franz cells. The receptor phase was removed and replaced at 

3, 6, 12, 24, 36 and 48 hour time points. A typical HPLC trace (Figure 5.9) o f the 

receptor phase removed from a Franz cell showed separate column elution times 

for LY294002 (7.3 minutes) and PD98059 (8.9 minutes) in fish oil even though 

both compounds are o f similar size and lipophilicity (clogP: 2.57 and 3.03 

respectively). The area under each peak increased with time and was largest at the 

later time points (24, 36 and 48 hours). The peaks with elution times between 2.5 

and 5.5 minutes were due to the solvent front and skin debris.

A small shift in retention time was found for both LY294002 and PD98059 when 

individual traces for each experimental time point were overlaid (Figure 5.10). 

However, both inhibitors were clearly separated from each other at all times so 

peak areas could be accurately measured.

5.4.1.3.1 DMSO Vehicle

Tests using Franz-type diffusion cells enabled measurement (by HPLC) o f  

LY294002 and PD98059 permeation through full thickness porcine skin into the 

receptor phase. Thus, the cumulative amount o f drug permeating in a given time
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could be measured. The steady-state flux for each skin sample was also measured 

and the standard deviation between skin sample-Franz cell replicates was assessed.
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Figure 5.9: HPLC Elution Profile for LY294002 and PD98059 in a Fish Oil Vehicle.

HPLC traces for the receptor phases from one Franz cell taken at different time points (3, 

6, 12, 24, 36 and 48 hours) showing elution of PD98059 (—7.3 minutes) and LY294002 

(-8.9 minutes). The peak height (milli-absorbance units [mAU]) increased with time after 

permeation o f a single dose through tape stripped porcine skin. Peaks between 2.5 and 5.5 

minutes were caused by the solvent front and skin debris.
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Figure 5.10: HPLC Traces for LY294002 and PD98059 in a Fislt Oil Vehicle. Overlaid 

traces for the receptor phase of one Franz cell at different time points (3, 6, 12, 24, 36 and 

48 hours) showing some peak shift but peak separation for PD98059 (7.3-7.7 minutes) 

and LY294002 (8.8-9.4 minutes) was maintained. Absorbance was measured in milli- 

absorbance units (mAU) at a wavelength of254nm.

Tape stripped skin with repeat dosing in a DMSO vehicle enabled the largest 

cumulative amount of PD98059 (MEK1/2 inhibitor) to permeate through full 

thickness skin (Figure 5.11). Tape stripped skin with a single dose o f PD98059 

achieved almost the same cumulative amount of inhibitor to permeate the skin. In 

fact, the inhibitor permeated the skin slightly faster at earlier time points (12 and 

24 hours) but the cumulative amount did not increase as much between 24 and 36 

hours (not statistically significant). Native (intact) skin allowed a lower cumulative 

amount to permeate the skin at 48 hours (approximately 25% or 0.05mg cm'2 less 

than tape stripped skin with repeat dosing) and with a single dose of PD98059 

applied to the skin this was even less (0.08mg cm'2 less with native skin single 

dose than tape stripped single dose, not statistically significant).
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Cumulative amount of PD98059 in a DMSO veh icle
permeated through Porcine Skin

— Native Skin, Repeat Dose

Native Skin, Single Dose 

Tape Stripped, Repeat Dose 

Tape Stripped, Single Dose
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Figure 5.11: Cumulative Permeation o f PD98059 in a DMSO Vehicle through Porcine 

Skin. Cumulative amounts o f inhibitor permeated over 48 hours through tape stripped or 

intact (native) porcine skin with single or repeat dosing. Statistical analysis was done by 

Ordinary ANOVA, Tukey test and data was expressed as the mean +/- SD for n=3 

experiments with 6 replicates for each experiment.

Tape stripped skin had a greater flux than native skin for PD98059 and repeat 

dosing gave increased flux over a single dose (Table 5.2),

Table 5.2: Mean Flux and Standard Deviation (SD) for Permeation o f PD98059 in a 

DMSO vehicle through Porcine Skin

Mean Flux 
(mg/cm2/hr) SD

Normal (Native) Skin (Repeat Dose) 0.00455 0.00146
Normal (Native) Skin (Single Dose) 0.00390 0.00249
Tape Stripped Skin (Repeat Dose) 0.00678 0.00172
Tape Stripped Skin (Single Dose) 0.00590 0.00161

Tape stripped full thickness porcine skin with repeat dosing allowed the greatest 

permeation o f LY294002 (Figure 5.12), Tape stripped skin with a single dose 

enabled 0.05mg/cm'2 less LY294002 to permeate, which was the second greatest 

cumulative amount after 48 hours. However, there was no significant difference 

between a single dose o f LY294002 and a repeat dose. Native skin with repeat

2 2 0



dosing allowed less permeation o f the inhibitor (P<0.05 when compared to tape 

stripped repeat dose) and native skin with single dosing showed the least 

permeation (P<0.05 when compared to tape stripped skin repeat dose). Tape 

stripped skin had a slightly higher flux than native skin, but repeat dosing had little 

effect on the flux for this inhibitor (Table 5.3).

Cumulative amount of LY294002 in a DMSO vehicle  
permeated through Porcine Skin
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•Tape Stripped, Repeat Dose 
Tape Stripped, Single Dose

Figure 5.12: Cumulative Permeation o f LY294002 in a DMSO vehicle through Porcine 

Skin. Increased permeation of LY294002 was found with Tape stripped skin compared to 

native skin. Increased permeation was achieved for both tape stripped and native skin by 

repeat dosing. Statistical analysis was done by Ordinary ANOVA, Tukey test (* P<0.05). 

Data expressed as the mean +/- SD for n=3 experiments with 6 replicates for each 

experiment.

Table 5.3: Mean Flux and Standard Deviation for Permeation o f L Y294002 in DMSO 

through Porcine Skin.

Mean Flux 
(x10'3mg/cm2/hr)

SD
(x10'3)

Normal (Native) Skin (Repeat Dose) 3.17 0.67
Normal (Native) Skin (Single Dose) 3.45 1.69
Tape Stripped Skin (Repeat Dose) 3.97 0.25
Tape Stripped Skin (Single Dose) 3.97 0.25

12 24 36 48
Time/ Hours
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5.4.1.3.2 Ethanol Vehicle

Tape stripped skin with repeat dosing gave a higher cumulative amount o f  

PD98059 penetration through full thickness porcine skin when using an ethanol 

vehicle compared to DMSO or fish oil.

Tape stripped skin with a single dose o f the inhibitor gave a lower cumulative 

amount o f drug penetration at 48 hours than repeat dosing (Figure 5.13). 

However, at earlier time points the cumulative amount which had permeated the 

skin was actually higher with a single dose o f inhibitor than with repeat dosing. 

The increase in cumulative amount was greatest at between 12 and 24 hours but 

then did not seem to increase further between 24 and 48 hours.

Native (intact) skin gave the lowest cumulative amounts o f PD98059 penetration 

at 48 hours with single dosing being 0.1 mg cm'2 less than for tape stripped skin. 

The cumulative amount o f PD98059 permeation with repeat dosing was also 

reduced compared to tape stripped skin (0.2 mg cm'2 less). Repeat dosing on native 

skin gave a lower cumulative amount o f inhibitor permeation than a single dose 

after 48 hours (P<0.05 for native skin with single or repeat dosing when compared 

to tape stripped skin with repeat dosing). Tape stripped skin with repeat dosing 

gave a higher cumulative amount o f LY294002 penetration through full thickness 

porcine skin when using an ethanol vehicle compared to DMSO or Fish Oil.

Tape stripped skin had nearly twice the flux o f native skin and repeat dosing 

increased the flux over a single dose o f PD98059 (Table 5.4).
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Cumulative amount of PD98059 in an Ethanol veh icle
permeated through Porcine Skin
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Figure 5.13: Cumulative Permeation o f PD98059 in an Ethanol vehicle through 

Porcine Skin. Tape stripped skin, native skin and single dosing or repeat dosing were 

compared. Statistical analysis was done by Ordinary ANOVA, Tukey test. * P<0.05. Data 

expressed as the mean +/- SD for n=3 experiments with 6 replicates for each experiment.

Table 5.4: Mean Flux and Standard Deviation for Permeation o f PD98059 in an 

Ethanol vehicle through Pig Skin

Mean Flux (x10‘3 
mg/cm2/hr)

SD
(x1 O'3)

Normal (Native) Skin (Repeat Dose) 6.40 1.20
Normal (Native) Skin (Single Dose) 5.60 325
Tape Stripped Skin (Repeat Dose) 10.15 3.96
Tape Stripped Skin (Single Dose) 17.05 1.83

Tape stripped skin with a single dose o f LY294002 gave a slightly lower 

cumulative amount of penetration at 48 hours than repeat dosing (Figure 5.14). 

Single dosing on native skin also gave a lower cumulative amount o f penetration 

than repeat dosing on native skin. Native skin with a single dose of LY294002 

gave lower cumulative penetration of the inhibitor than tape stripped (0.2 mg cm'2 

less) at 48 hours. LY294002 cumulative permeation with repeat dosing was also 

0.2mg cm'2 less at 48 hours through native skin compared to tape stripped skin.
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Cumulative amount of LY294002 in an Ethanol
vehicle permeated through Porcine Skin
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Figure 5.14: Cumulative Permeation o f LY294002 in an Ethanol Vehicle through 

Porcine Skin. Tape stripped skin enabled increased penetration o f LY294002 compared 

to native skin. Repeat dosing gave an increase in penetration for both tape stripped and 

native skin. Statistical analysis was done by Ordinary ANOVA, Tukey test. *** P<0.001. 

Data expressed as the mean +/- SD for n=3 experiments with 6 replicates for each 

experiment.

The rate of transfer of LY294002 diffusing through a unit area o f skin (flux) was 

higher through tape stripped skin than native skin and repeat dosing provided little 

increase in flux (Table 5.5).

Table 5.5: Mean Flux and Standard Deviation for Permeation o f LY294002 in an 

Ethanol vehicle through Porcine Skin.

Mean Flux
(x10'3 mg/cm2/hr)

SD
(x10‘3)

Normal (Native) Skin (Repeat Dose) 6.23 1.55
Normal (Native) Skin (Single Dose) 9.70 5.90
Tape Stripped Skin (Repeat Dose) 15.13 2.60
Tape Stripped Skin (Single Dose) 15.13 2.61

■NativeSkin, Repeat Dose 
Native Skin, Single Dose 

■Tape Stripped, Repeat Dose 
Tape Stripped, Single Dose
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5.4.1.3.3 Fish Oil Vehicle

Fish oil was a much less effective vehicle compared to both DMSO and ethanol, 

with more than ten times less cumulative amount of PD98059 recovered from the 

receptor phase (0.06mg cm’2) compared to DMSO (0.25mg cm'2) and ethanol 

(0.4mg cm'2 ).

The largest cumulative amount of PD98059 permeation with a fish oil vehicle was 

achieved when using tape stripped skin with repeat dosing (Figure 5.15). Tape 

stripped skin with a single dose of inhibitor gave significantly poorer permeation 

at 0.025 mg cm'2 less (PO.OOl) than for repeat dosing. There was little difference 

in cumulative inhibitor permeation between tape stripped and native skin.

Cumulative am ount of PD98059 in a Fish Oil vehicle  
permeated through Porcine Skin
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Figure 5.15: Cumulative Permeation o f PD98059 in a Fish Oil Vehicle through 

Porcine Skin. An increase in permeation was achieved with repeat dosing on both tape 

stripped and native skin compared to single dosing on both tape stripped and native skin. 

Statistical analysis was done by Ordinary AN OVA, Tukey test. *** P <0.001. Data 

expressed as the mean +/- SD for n=3 experiments with 6 replicates for each experiment.

Tape stripped skin with a single dose o f PD98059 had a slightly higher flux than 

native skin treated with repeat dosing, while tape stripped skin with repeat dosing

225



had a similar flux (Table 5.6). Native skin treated with only a single dose o f  

PD98059 had the lowest flux (standard deviation low for this experiment).

Table 5.6: Mean Flux and Standard Deviation for Permeation of PD98059 in a Fish 

Oil Vehicle through Porcine Skin.

Mean Flux 
(x10'3 mg/cm2/hr)

SD 
(x10'3)

Normal (Native) Skin (Repeat Dose) 1.68 0.22
Normal (Native) Skin (Single Dose) 1.00 0.59
Tape Stripped Skin (Repeat Dose) 1.65 0.33
Tape Stripped Skin (Single Dose) 2.20 0.18

LY294002 permeated to a greater extent than PD98059 with a fish oil vehicle 

(tape stripped, repeat dosing), with a greater flux although its permeation and flux 

was still less with fish oil than with DMSO or ethanol vehicles.

When using a fish oil vehicle, tape stripped skin with repeat dosing gave the 

highest cumulative amount o f LY294002 penetration through full thickness 

porcine skin (Figure 5.16). Normal skin with repeat dosing o f LY294002 gave a 

slightly lower cumulative amount at 48 hours (0.025mg cm'2 less) and also had a 

slow cumulative increase between 24 and 36 hours, with an increased rate o f  

permeation between 36 and 48 hours. While levels in single dosed tape stripped 

porcine skin were 0.015mg cm'2 lower than repeat dosing, they were 0.050mg cm'2 

greater than single dosing with native skin. The level o f permeation through tape 

stripped skin treated with a single dose or repeat dosing was significantly higher 

than single dosing o f native (intact) skin (P<0.05).

The greatest cumulative amount o f LY294002 (0.125 mg cm'2) permeated through 

porcine skin with a fish oil vehicle after 48 hours was larger than the cumulative 

amount o f PD98059 (0.062 mg cm'2).
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Cumulative am ount of LY294002 in a Fish Oil vehicle
permeated through Porcine Skin
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Figure 5.16: Cumulative Permeation o f LY294002 in a Fish Oil Vehicle through 

Porcine Skin. An increase in penetration was achieved on repeat dosing with both tape 

stripped and native skin and single dosing on tape stripped skin compared to native skin 

with a single dose o f inhibitors. Statistical analysis was done by Ordinary ANOVA, Tukey 

test. * P<0.05. Data expressed as the mean +/- SD for n=3 experiments with 6 replicates 

for each experiment.

The lowest flux for LY294002 was on normal intact skin with a single dose and 

both repeat dosing and tape stripping almost doubled the flux (Table 5.7). The 

standard deviation was also low for these experiments. There was a reduction in 

penetration when using a fish oil vehicle compared to with DMSO or ethanol 

vehicles.

Table 5.7: Mean Flux and Standard Deviation for Permeation o f L Y294002 in a Fish 

Oil vehicle through Porcine Skin.

Mean Flux 
(x1 O'3 mg/cm2/hr)

SD
(x10'3)

Normal (Native) Skin (Repeat Dose) 4.80 0.35
Normal (Native) Skin (Single Dose) 2.85 0.08
Tape Stripped Skin (Repeat Dose) 4.08 0.070
Tape Stripped Skin (Single Dose) 5.93 0.094
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5.4.1.3.4 Cy dopam ine

HPLC estimation o f  drug molecules requires UV detection and as cyclopamine 

only has a very weak chromophore (single double bond), levels cannot easily be 

measured. LCMS is the recommended method for cyclopamine estimation but this 

was too costly to be used for the large number o f samples in these experiments. 

Therefore, methods o f derivatisation were used to boost the signal from 

cyclopamine so that HPLC could be used. However, no literature on cyclopamine 

derivatisation was found, so new methods were developed with a series of  

procedures using various agents: Dansyl Chloride (Maraschiello et al., 2003), 

phenylisocyanate in pyridine (Heard and Suedee, 1996) and diisopropylethylamine 

with 4 ’-bromophenacyl trifluoromethane-sulfonate (see methods). Unfortunately, 

none o f  these methods were successful in facilitating the UV detection of 

cyclopamine during HPLC analysis.

This was almost certainly due to unsuccessful conversion of the hydroxyl group 

present in the structure o f cyclopamine by the derivatising moieties. The reasons 

for this remain unclear, as the secondary OH would have been expected to react 

with the OH-specific reagents. However, on the grounds o f time constraints, no 

further analysis o f  cyclopamine was carried out.
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5.5 Discussion

The key finding from this study was that both PD98059 and LY294002 

successfully permeate through full thickness porcine skin (depth profiling using 

fish oil, ethanol or DMSO vehicles). This means that permeation-wise these 

inhibitors would be useful to target aggressive subtypes o f BCC which grow down 

into the dermis. Immunohistochemistry had already been used by Davison and co­

workers (2010) to show that PD98059 and LY294002 maintain their activity after 

penetration o f the stratum comeum. These inhibitors have also been found to be 

compatible and the depth profiling experiments in this study confirmed that they 

do not inhibit each other’s permeation.

Tape stripping as a method o f depth profiling has its drawbacks as demonstrated 

by the keratin distribution in Figure 5.3 and in the diagram o f the skin which 

shows that the lower epidermal layers follow the line o f the rete ridges so tape 

strips would remove cells from various epidermal layers at once (Figure 5.2 ). It 

would have been interesting to qualitatively measure the levels o f Keratin 10 and 

Keratin 14 by western blotting when conventional tape stripping was performed in 

order to confirm the depth o f  the cells collected on the strips.

As an alternative to tape stripping laser capture micro-dissection was considered. 

This enables selection o f  specific cells or areas o f cells and removing them by a 

cutting laser and then a second laser catapults these cells into a tube. Traditionally, 

these cells would be used for RNA extraction, but it seemed reasonable that this 

application could be adapted for capturing cells to quantify the amount o f drug 

which had permeated into them, as long as a large enough number of cells could 

be collected to measure the drugs. This method would allow detailed analysis o f  

penetration into the epidermis, dermis and hair follicle. However, the equipment 

available was not able to select these specific regions, so traditional tape stripping 

methods o f depth profiling were continued. Although it can be argued that tape 

stripping is a relatively crude technique, several replicates (6 Franz-type cells for
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each sample and 3 repeats for each experiment) were used and this is still the gold- 

standard experiment for depth-profiling probably because alternatives such as laser 

dissection are more costly and time consuming.

Depth profiling was carried out using a methanol vehicle for the inhibitors 

(LY294002 and PD98059) because this represents maximal penetration to show 

whether these inhibitors were capable o f penetrating through the epidermis into the 

living cells below. The results showed that approximately one third o f each 

inhibitor retrieved remained on the top layer o f skin after the excess was gently 

removed with a cotton bud. The inhibitors remaining on the surface were unable to 

penetrate the stratum comeum possibly due to saturation but also because the 

stratum comeum is the protective upper layer o f the skin which prevents 

penetration. Approximately one third o f the inhibitors were retained within the 

epidermis and one third penetrated the remaining epidermis and dermis where they 

were then retained. This is a very positive result because LY294002 and PD98059 

are able to penetrate to the site o f aggressive BCCs (throughout full thickness 

skin), but they were also retained in the skin so they would be able to act on BCC 

as long as MEK/ERK and PI3K/AKT signalling is activated. However, less than 

1% o f  each inhibitor applied was retrieved from full thickness skin, this may be 

problematic in terms o f  side effects such as irritation on the skin surface where the 

inhibitor remained, but this depends on the required quantities o f each inhibitor, 

which would be determined by tests on BCC cell culture models such as those 

discussed in Chapter 3. The inhibitors penetrated the full thickness o f the skin and 

into the receptor phase below, so the levels reaching the systemic circulation are 

equally important because they may cause side effects. LY294002 penetrated to a 

lesser extent than PD98059 and LY294002 also retarded penetration o f PD98059 

and PD98059 slightly retarded penetration o f LY294002. This means that the 

quantity o f inhibitors to be used in a topical formulation would require further 

consideration after testing their efficacy on cell culture models.
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DMSO and ethanol represented the maximal possible penetration of LY294002 

and PD98059 through intact skin because they are potent penetration enhancers. 

However, as shown by Davison and co-workers DMSO causes delamination of the 

stratum comeum and denucleation in the epidermis (Davison et al., 2008a). 

Ethanol also permeated full thickness skin quickly, with the risk o f partitioning the 

drugs into the systemic circulation. Fish oil gave a much lower flux for permeation 

o f  both inhibitors with a steady state flux o f 0.00168 for PD98059 compared to 

0.00455 for DMSO (normal skin repeat dose), but would be useful as a vehicle 

due to its safety. Fish oil permeation characteristics as a vehicle could be improved 

by the addition o f  enhancers such as 1, 8-cineole, ethanol or DMSO (in small 

amounts to reduce the deleterious effect on the stratum comeum). As cyclopamine 

is most soluble in ethanol and DMSO, one or both o f these in combination with 

fish oil would make a useful vehicle. The concentrations o f PD98059 and 

LY294002 can be increased in this sort o f vehicle because they are very soluble in 

fish oil, although cyclopamine is not. The quantity o f each drug needed would rely 

upon testing on a cell model.

It is clear from this study that ethanol and DMSO both disrupt the stratum 

comeum (the skin’s main barrier) enabling increased penetration of the inhibitors, 

as shown in published data (Oh et al., 2003; Williams, 2003). According to the 

results o f this study, ethanol doesn’t have such a disruptive effect on the stratum 

comeum barrier as DMSO but still behaves as an enhancing vehicle. Tape 

stripping the upper surface o f the skin also disrupted the stratum comeum, 

increasing the flux o f inhibitors and the cumulative amount o f permeation, 

particularly for fish oil which does not damage the stratum comeum. Increased 

percutaneous absorption through damaged stratum comeum has already been 

demonstrated (Bronaugh and Stewart. 1985). These results are important because 

inhibitor penetration into BCCs, which already have disrupted barrier function, 

will be increased compared to BCCs with an intact stratum comeum. Where the 

stratum comeum is intact enhancers will be required in the formulation (such as 

ethanol or DMSO) to increase drug permeation. Also, an increased mass o f drug or
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repeat dosing (which was shown to increase cumulative amount of inhibitors 

permeated) will be required to increase the mass o f inhibitors that permeate.

Due to the skin drying effect o f ethanol and the toxicity o f DMSO, only very small 

amounts should be used or alternative enhancers which cause fewer side effects 

should be sought. Occlusion (by use o f a patch) may also be used to increase 

permeation by reducing transepidermal water loss. Water has been shown to 

increase permeation o f  hydrophilic and lipophilic molecules through the skin by 

increasing stratum comeum water content, although the mechanism o f action for 

lipophilic molecules remains unclear. This would also protect the area from 

contact which may mb the formulation off the skin. Commercial examples of  

successful occlusion include nicotine patches and occlusive dressings for 

Lignocaine and Prilocane cream for increased speed of anaesthesia (Williams, 

2004; Benson, 2005). Alternatively, to avoid too much PD98059 and LY294002 

reaching the systemic circulation, penetration retarders such as some DMSO 

derivatives (not all DMSO derivatives act as permeation enhancers, some are in 

fact retarders to skin permeation) may be added to the topical formulation 

(Benson, 2005).

Research groups have focussed on designing methods to bypass the stratum 

comeum in order to increase penetration. These include using microneedles to 

make holes in the stratum comeum but reaching nerves in the living epidermis 

must be avoided to prevent and causing pain (Haq et al., 2009). These holes in the 

stratum comeum enable increased permeation in a similar way to the tape stripping 

method used in this study. Therefore, microneedles may be a useful method for 

delivery o f drugs to BCCs in order to enable the same formulation to be used on 

all BCCs regardless o f  the level o f stratum comeum disruption. This is may be 

unnecessary for the EGF signalling inhibitors, LY294002 and PD98059 which 

penetrated the skin well. However, only a small percentage o f PD98059 or 

LY294002 (MEK and PI3K inhibitors) penetrated the skin, so a large amount 

would remain in the topical formulation on top o f the stratum comeum rather than
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entering the skin, smaller amounts o f inhibitor could be applied using 

microneedles. If an excess o f these inhibitors is left on the skin surface there may 

be side effects (such as irritation) caused because EGF signalling affects healthy 

keratinocytes as well as carcinoma cells. Microneedles would be a useful method 

o f  delivery for cyclopamine or its derivatives which suffer from poorer solubility 

and therefore only poorly penetrate the intact stratum comeum.

Various studies for transcutaneous drug delivery have been carried out using 

assorted skin types and even skin equivalents such as graftskin™, a human living 

skin equivalent and Skinethic™, a human reconstructed epidermis. Pig skin has 

been shown to be a good model for human skin, is cost effective and easy to obtain 

(Schmook et al., 2001). A major problem is maintenance o f skin viability for the 

duration o f drug permeation experiments. The skin was less viable towards the end 

o f  the experiments, so to overcome this it would be useful to use a growth medium 

as the receptor phase in the Franz type cells. However, the inhibitors would need 

to be soluble in growth medium. It would also be beneficial eventually to confirm 

the findings on porcine skin by testing the penetration o f inhibitors for this study in 

an appropriate formulation on human skin, which can be obtained from surgery 

after ethical approval has been obtained.

PD98059 was chosen because it inhibits MEK1 phosphorylation, activation of the 

MEK/ERK branch o f  the EGF pathway (Chapter 3). An alternative would be 

U 0126, which could be used in parallel for cell experiments on a BCC culture 

model to confirm the results o f PD98059. LY294002 is specific for PI3K, an 

alternative inhibitor o f  PI3K would be Wortmannin. However, Wortmannin is a 

less specific inhibitor, but could be used to confirm experimental data in cell 

culture prior to development o f a topical formulation for LY294002.

Cyclopamine is a teratogen and possible carcinogen so it is desirable to use an 

alternative to reduce toxicity. Several dietary alkaloids with structural similarity to 

cyclopamine have been identified as weak inhibitors o f SHH signalling (Lipinski
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et al., 2007). It has been shown that solanidine, solasodine and tomatidine are all 

able to reduce PTCH expression to unstimulated levels in cells treated with 

recombinant SHH. Although cyclopamine is more potent, tomatidine was the most 

potent o f these derivatives (100 times less potent than cyclopamine; Lipinski et al., 

2007). During this study alternative cyclopamine derivatives became available 

which have more suitable characteristics for use in a topical formulation including 

reduced toxicity and increased solubility. GDC-0449, BMS-833923/XL139, 

CUR-61414 and IPI-926 are currently in clinical trials for the treatment o f BCC or 

other carcinomas which have activated SHH signalling. Furthermore, GDC-0449 

has been shown to induce tumour regression in medulloblastoma (Robarge et al., 

2009; Toftgard and Tegund, 2010).

Cyclopamine (SMO inhibitor) has a weak chromophore and is also very hard to 

measure by HPLC so alternatives such as BODIPY-cyclopamine (a fluorescent 

derivative) would be useful for future studies, although alternative SMO inhibitors 

may also be easier to assess (Chen et al., 2002b). A SMO inhibitor would be useful 

in a topical formulation for treating BCCs, because this would inhibit the majority 

o f the signalling pathway (there may be important interactions with other 

signalling pathways between SMO and the GLIs which we are currently not aware 

of). GLI inhibitors such as GANT61 and HPI-1, 2, 3, 4 would only be useful if  we 

could be sure that the SHH pathway has no upstream interactions with other 

signalling pathways such as the EGF pathways (Toftgard and Tegund, 2010).

In future, it may also be useful to conduct drug permeation through full thickness 

skin using a BCC cell model such as that described in Chapter 3. This would 

confirm that the inhibitors could successfully penetrate full thickness skin and still 

inhibit invasive tumour growth deeper in the subcutaneous layer. This is important 

because although the amount o f permeated drug in the receptor phase is 

measurable, it may not all be active due to the damaging effects o f skin enzymes. 

Although Davison et al. (2010) did previously show maintenance o f activity, it is 

not known whether the total amount o f permeants remain active. A foreseeable 

difficulty with this method is that porcine skin, although cleaned with the transport
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buffer solution, before permeation experiments, would still be colonised by micro­

organisms. Furthermore, microbial contamination must be avoided in any cell 

culture experiments. Harsher cleaning methods (with alcohols) would disrupt the 

stratum comeum thus artificially increasing permeation. To overcome this, 

0.22pm cyclopore track etched membrane or a filter insert would be used to 

separate the skin from the cell culture medium beneath. A benefit o f this approach 

is that the cell culture medium should maintain porcine skin viability for longer 

than the cetrimide receptor phase used in this study. Another option to prevent 

microbial infection would be to include antibiotics (penicillin and/or streptomycin) 

in the cell culture medium.

The cells could be grown on a glass coverslip in the base o f a Franz type diffusion 

cell or in a multi-well plate using a filter insert to separate the skin from the cells. 

This would be simple if  only a monolayer o f keratinocytes were required but to do 

this using a co-culture o f keratinocytes (at the air liquid interface) and fibroblasts 

would be much more complex. Fibroblasts could be grown on a glass coverslip in 

the base o f the receptor phase o f a Franz type cell, with keratinocytes in a filter 

insert (also in the receptor compartment), but grown at the air: liquid interface for 

10 days to allow stratification and cilia formation. Then the skin (on top o f a 0.22 

pm cyclopore track etched membrane) and donor compartment could be clamped 

on top and the medium in the receptor phase increased to cover the keratinocytes 

and reach the underside o f  the skin. Finally the inhibitors would be applied to the 

donor phase. However, there are lots o f  potential problems that could arise so this 

method would require rigorous optimisation. This idea was developed from work 

previously carried out in the laboratory, where it has was shown that MCF-7 breast 

cancer cells could be grown successfully in the base o f the receptor phase o f a 

Franz-type diffusion cell (Davison et al., 2010). Treated plastic flasks are usually 

used for growing cells in vitro. However, the keratinocytes and fibroblast cell lines 

used were successfully grown on glass coverslips for immunofluoresence work. In 

a previous study using MCF-7 cells, it is thought that cleaning the Franz-type
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diffusion cells with Decon 90 caused etching o f the glass surface making the glass 

rough, enabling the cells to successfully adhere.

Additional experiments are needed to ascertain the mass o f each inhibitor required 

for an efficacious BCC treatment and to determine the therapeutic window for safe 

administration prior to further development o f the delivery formulation. Initially, 

this would involve further development o f the in vitro BCC cell model with 

keratinocytes able to stratify in which SHH and EGF signalling could both be 

successfully activated enabling tumour down-growth to be visualised. Inhibitors to 

the SHH and EGF pathways would be added to the cell growth medium to 

discover whether they prevent growth o f the SHH expressing ‘tumour’ cells or 

cause them to regress. If SHH-expressing cell death occurred, further permeation 

studies could be carried out leading to the development o f a formulation which 

could be applied topically to carry these drugs to their site o f action without 

permeating into the systemic circulation.

Conclusions
• PD98059 and LY294002 successfully penetrate and permeate full

thickness skin.

• Ethanol and DMSO vehicles enable the fastest permeation for PD98059 

and LY294002 because they disrupt the stratum comeum, retardation may 

be required to prevent these inhibitors entering the systemic circulation.

• An alternative to cyclopamine is required to inhibit the SHH pathway due 

to its toxicity, lack o f  solubility and the challenges it presented in its 

analysis.
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Chapter 6 

General Discussion
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6.1 General Discussion

The original hypothesis stated that EGF signalling might interact with SHH 

signalling and cause augmentation o f some SHH target genes. This could have 

occurred via either branch (MEK/ERK or PI3K/AKT) o f the EGF signalling 

pathway. It was hypothesised that the interaction between EGF and SHH 

signalling might increase the invasiveness o f BCCs and therefore contribute 

directly to the more invasive subtypes (nodular and morpheaform). These types of  

BCC are currently treated by surgical removal, which is both costly and time 

consuming, so any efficacious therapy that could reduce the onset o f these types o f  

BCC would be beneficial.

In order to test a combination therapy using an inhibitor o f the EGF pathway and 

together with an inhibitor o f  SHH signalling (at the level o f smoothened), both 

pathways needed to be active in keratinocyte cell lines. Attempts to activate the 

SHH signalling pathway by the addition o f recombinant SHH protein to the cells 

or by insertion o f an SHH gene into the nucleus o f the cells was not very 

successful. The current research identified that SHH pathway activation required 

culture conditions that would allow primary cilium formation and this required 

paracrine signalling. Primaiy cilia can be induced in cultured cells by growth 

arrest (induced by starvation due to an absence o f serum in the medium). The 

SEM data presented showed that approximately 10% o f cultured cells had cilia 

under the conditions used, a positive step forward towards achieving SHH 

signalling in keratinocyte cell lines. However, higher levels o f ciliation is required 

and further efforts should be made to increase the levels o f cilia (possibly by 

longer growth arrest) in order to achieve improved SHH signalling in culture. 

Testing the original hypothesis requires that SHH and EGF signalling operate at 

reasonable levels simultaneously and this would allow comparison o f the levels o f 

downstream gene expression in the presence and absence o f EGF.
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If the lack o f  a cellular response to SHH is due partially or fully to the absence or 

reduction in numbers o f cilia on cultured cells, it could be proposed that primary 

cilia would be a particularly good target option for therapy. However, it is likely 

that this is a general mechanism so targeted therapies may well affect other signal 

transduction pathways that rely on this structure (widespread in the epidermis and 

hair follicle). This would potentially cause side effects due to a more widespread 

action than intended so systemic affects cannot be ruled out. In addition, when 

BCCs were examined directly, only 3 out o f 8 had primary cilia (Wong et al, 

2009) so these structures may not be as widespread as indicated, which may limit 

the effectiveness o f  cilia inhibitors. It was also suggested that mutations in RAS, 

an effector molecule in the EGF pathway, might somehow facilitates SHH 

signalling in the absence o f  cilia, so GLI inhibitors may be more useful in such 

cases (see Wong et al., 2009). Development o f GLI inhibitors is currently in 

progress (Teglund and Toftgard, 2010) but this also has the disadvantage of 

targeting a downstream molecule and therefore upstream effects which would not 

be inhibited (Jenkins, 2009).

Thus, at his point in time, the role o f EGF signalling in the development o f BCCs 

is still unclear. Immunohistochemistiy comparison o f EGF signalling in nodular, 

micronodular, morpheaform and mixed morphology BCCs concluded that EGFR 

signalling was not responsible for the differences between nodular and 

morpheaform subtypes. Also the reduced levels o f p-ERK and p-AKT expression 

found in BCCs does not agree with previous work that has already demonstrated 

that components o f the EGF pathway are important for augmentation o f SHH 

signalling (Bigelow et al., 2005; Kasper et al., 2006). In addition, other cancers 

that involve SHH pathway activation (such as squamous cell carcinoma and 

medulloblastoma) also have highly active EGF pathway signalling. In particular, 

medulloblastomas have increased expression o f PI3K/AKT and MEK/ERK 

indicating that both arms o f  the EGF pathway are active (Baryawno et al., 2010; 

Wlodarski et al., 2008). Thus, EGF pathway inhibitors such as PD98059 and 

LY294002 might be useful for treating these cancers. However, further work
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should be carried out to confirm that the low levels o f EGF pathway components 

in BCCs are not contributing to tumour growth. Work in this thesis has shown that 

PD98059 and LY294002 are able to permeate the skin and are reasonable EGF 

pathway inhibitors but if  levels o f EGF signalling are low in BCC, it may not be 

necessary to combine them with a SMO inhibitor for treating BCCs.

Published microarray data has suggested that RAS (downstream part o f the EGF 

signalling pathway) is activated in BCCs, which agrees with previously published 

work (Wong et al., 2009; Yu et al., 2008). It is also apparent form the work done 

by this group that other signalling pathways may be involved in BCC 

development. In particular, Wnt and Bcl-2 expression, which are important in 

apoptosis and increased p-catenin levels that have been found to be increased in 

the nuclei o f morpheaform cells (Yu et al., 2008). Thus, further research into the 

influence o f other signalling pathways on BCC development would be very 

important in order to develop the most appropriate topical formulations.

Finally, inhibitors o f  the MEK/ERK and PI3K/AKT arms o f the EGF pathway 

were tested for their ability to permeate full thickness skin. Both PD98059 and 

LY294002 successfully penetrated the skin and were retrieved from the receptor 

phase in laboratory experiments. As small molecule inhibitors easily penetrate the 

skin, they make ideal candidates for treating BCC, but this depends upon the 

action o f EGF signalling (particularly PI3K/AKT and MEK/ERK pathways) in 

these tumours. Although cyclopamine inhibits SHH signalling, it is toxic and not 

easy to measure so it would not be useful in a topical formulation. However, more 

soluble and less toxic derivatives are now becoming available and should be 

considered for future development o f a topical formulation for BCCs. These would 

have to be tested for their ability to permeate full thickness skin, and for their 

effects on a BCC cell line in which SHH signalling can successfully be activated.

In conclusion, while it seems that EGF is capable o f modulating SHH signalling, 

this pathway may not be important in BCC development, although further work
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should be done to confirm this. A cyclopamine derivative or another inhibitor of 

smoothened is likely to be useful for a formulation to treat most BCCs. Further 

work needs to be carried out in order to determine whether combination treatments 

blocking other signalling pathways would have an added benefit in BCCs. It 

would also be useful to develop a BCC cell model that can be activated by 

recombinant SHH would be ideal to test these therapeutic options.

Another alternative to topical formulations for the treatment o f BCCs which does 

not directly involve inhibition o f  signalling pathways is photodynamic therapy. It 

has been shown to be a useful non-invasive treatment for BCC. This therapy uses 

light sensitive cream, which in the presence o f intense visible laser light causes 

cancer cells to die by the creation o f reactive oxygen species. Until recently this 

therapy has only been effective on superficial BCC due to the limited penetration 

o f the active chemical (aminolevulinate). However, now that alternatives such as 

methyl aminolevulinate are available, which are thought to penetrate through the 

skin much further, this type o f  therapy is generating a lot o f interest (Foley et al., 

2009). Currently, photodynamic therapy is being tested in clinical trials, but even 

if found to be effective, this requires patients to undergo treatment in a clinical 

setting whereas the development o f  an effective topical formulation that could 

inhibit cellular signalling would be a useful alternative as treatment could be easily 

carried out at home and without the need o f a health professional to administer.
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