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Abstract
Two research areas have received significant attention from the groundwater modelling 

community in recent years.

Firstly, the need for numerical techniques that are capable of generating accurate 

groundwater fluxes has been recognized in several groundwater related applications. 

The traditional approach is based on the solution of a second order problem which 

only provides an approximation for the potential. This is subsequently post-processed 

to derive an approximation of the groundwater fluxes. However, these approximations 

of the fluxes tend to be inaccurate. Mixed finite element methods (MFEM), based 

on the approximation of a first order problem, have emerged as a suitable alternative 

to the traditional approach since they provide accurate approximations for both the 

potential and the groundwater fluxes. However, the discrete linear systems obtained 

using mixed methods is indefinite and its solution is generally considered a source of 

problems. A variation of standard mixed methods enables the indefinite system to 

be transformed into a positive definite one for which standard iterative solvers can be 

used. In this thesis a comparison of the computational cost incurred in solving the 

indefinite and positive definite systems is presented. It is shown that the success of 

one method over the other is largely dependent on the choice of preconditioner used 

within the iterative scheme. Further evidence is provided which demonstrates that the 

Schur complement preconditioner proposed by Powell (2003) and Powell & Silvester 

(2003) for the indefinite system is robust and optimal for a class of conductivity 

coefficients often encountered in groundwater modelling applications.

Secondly, we provide an assessment of numerical methods for describing model 

uncertainty. This field of research has developed incredibly fast in the last decade
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with new advances being continuously proposed. In the context of groundwater mod­

elling, uncertainty arises predominantly from scarce and erroneous knowledge of the 

hydraulic parameters of an aquifer. In a probabilistic framework these coefficients 

are modelled as spatial random fields and the deterministic partial differential equa­

tions (studied in the first part of the thesis) become stochastic in nature. In this 

thesis we study recently proposed methodologies to tackle uncertainty quantification. 

These belong to the large family of Stochastic Galerkin methods which use poly­

nomial chaos expansions for the unknown solution. The conductivity coefficient is 

approximated by means of Karhunen-Loeve expansion (KLE) or by polynomial chaos 

expansion. The slow decay of the eigenvalues of the KLE for random fields with small 

correlation lengths poses a significant limitation to the applicability of this method 

since, in these circumstances, a large number of terms in the expansion (random 

variables) are required to attain reasonable accuracy. We show that this limitation 

can be overcome through a decomposition of the physical domain into regions whose 

sizes correspond approximately to the correlation lengths of the material parameters. 

This approach allows the deployment of expansions using a limited number of ran­

dom variables. In this thesis we explore solution strategies for stochastic Galerkin 

methods. The characteristic structure of the discrete linear systems obtained when 

the underlying Galerkin method is either the Finite Element Method (FEM) or the 

mixed finite element method is described. The performance of iterative solvers pre­

conditioned with traditional mean-based preconditioners is studied and it is shown 

that their performance deteriorates significantly for random fields characterized by 

large variances. For the stochastic primal formulation an alternative preconditioner 

based on a block symmetric Gauss-Seidel scheme is proposed and it is shown that it 

outperforms mean-based preconditioners for all settings considered in this work.

Our work concludes with the development of a numerical model for a real case
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study in the United Kingdom. A calibrated deterministic model for the site is de­

veloped using FEM and MFEM and then the calibrated model is used to obtain a 

probabilistic representation of the conductivity field. Thus stochastic technologies are 

deployed to quantify model uncertainty for the site. The reported case study is one of 

the first examples of formal characterization of model uncertainty for an actual site.
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Chapter 1

Introduction

Groundwater models have, in recent decades, emerged as important tools used 

extensively by policy-makers and stakeholders in the sustainable management of wa­

ter resources. Environmental regulators across the globe have adopted groundwater 

models to improve and support their decision-making. The United Kingdom (UK) 

has been at the forefront of these efforts. By 2006 the Environment Agency of Eng­

land and Wales had sponsored the development of 34 catchment size groundwater 

models which altogether cover most of the major and some minor aquifers in the 

country (Van Wonderon &; Wilson 2006).

Many processes in the physical sciences are mathematically described by partial 

differential equations (PDE). The movement of water in a porous medium is one of 

those processes. In fact, the combination of Darcy’s Law and conservation of mass 

gives a second order partial differential equation. Provided that suitable boundary 

conditions are specified, its solution allows for the prediction of pressure and velocities 

everywhere in the physical domain under investigation. Generally, simple problems 

constituted by simple geometries and parameters admit analytical solutions. However, 

most often the modelling effort involves complex three-dimensional geometries and

1
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spatially varying parameter sets. In those circumstances analytical solutions are not 

available and one has to rely on numerical methods to obtain approximations for the 

quantities of interest.

Depending on the characteristics of the parameter datasets, boundary conditions 

and source /  sink terms, numerical models can be either deterministic or stochas­

tic. In the former case parameters, such as hydraulic conductivity are deemed to 

be known with certainty everywhere in the model domain. In the latter case it is 

recognized that such detailed knowledge is not available, thus the system parameters 

are described in probabilistic manner. In this thesis we investigate both modelling 

approaches. The deterministic approach is largely established and by far the most 

widely used in applications. Thus we deal with a specialised subfield - accurate ap­

proximation of groundwater fluxes by mixed finite element methods - in that area 

which has, however, significant relevance in specific groundwater modelling contexts. 

The stochastic approach has received extensive attention in the last decade due to 

the emergence of novel technologies. Therefore we investigate one of these technical 

advancements - stochastic Galerkin methods for uncertainty quantification - in a more 

holistic manner.

M ixed and Hybrid Finite Elements: A Computational Comparison

Since numerical methods are not exact and they only provide an approximation of 

the actual solution, the research community has extensively focused on how to improve 

numerical model solutions. The accurate approximation of groundwater fluxes by 

sophisticated finite element methods represents an example of such achievements. 

Groundwater fluxes are often the variable of primary interest and their accurate 

evaluation is of crucial importance in many applications. As an example, the case 

of nuclear waste disposal can be considered. In this context groundwater velocities
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or fluxes are critical in determining the likely pathways and timings of radionuclides 

through the geological deposits, should they escape from the repository in which they 

are contained. Considering that the UK Government is aiming at nuclear energy 

as the primary source of its future energy supply and that geological disposal is the 

preferred option for dealing with nuclear waste, the research involved in predicting the 

fate of radionuclide dispersion in the underground is destined to increase significantly 

in the future.

Numerical methods that provide simultaneous accurate approximations of ground­

water velocities and pressure head are available. Mixed Finite Element methods 

(MFEM) (Brezzi & Fortin 1991) were introduced in the early nineties and have been 

studied extensively in the last two decades. In the mixed formulation the coupled 

system of equations given by Darcy’s Law and the conservation of mass is solved. 

This is different from the conventional approach where a single partial differential 

equation is solved for the pressure head and its post-processing gives the velocity 

solution. In the mixed approach, the velocity variable is defined explicitly by specific 

vectorial basis functions, thus no further post-processing is required. Importantly 

continuity conditions on the fluxes are imposed at the element level, thus making 

the method locally conservative and particularly suited for highly heterogeneous and 

discontinuous conductivity coefficients.

The fact that velocity approximations obtained using MFEM are superior to those 

obtained using traditional numerical methods has long been recognized and theoret­

ical and discrete error estimates have mathematically proven it. However, it appears 

that the groundwater modelling community is generally unaware of locally conserva­

tive methods and instead software based on traditional numerical schemes are used 

for those applications (e.g. nuclear waste disposal) for which they are neither best 

suited nor recommended.



Chapter 1: Introduction 4

One of the reasons why MFEM have not gained the popularity that other methods 

have, is related to the fact that the associated discrete linear systems are indefinite 

and therefore generally more difficult to solve than symmetric positive definite (SPD) 

systems (generally obtained with traditional methods). Indefinite systems are con­

sidered problematic, making researchers to investigate ways to convert the indefinite 

systems to SPD ones. A popular approach is the hybridization method (Arnold & 

Brezzi 1985, Brezzi & Fortin 1991), also known as the Mixed Hybrid Finite Element 

Method (MHFEM).

Several authors (Younes & Fontaine 20086, a) have compared the computational 

performance of various vectorial finite element schemes, but generally the hybrid 

version is considered in these studies. The original mixed method is discarded as 

the solution of a saddle-point system is considered, in principle, computationally 

too expensive and because the system of equations generated is larger than the one 

obtained with the hybrid method. However, there are several aspects that determine 

the computational cost of an iterative solver. The size of the system of equations is 

certainly one. Nevertheless, it would be superficial to discard one method based only 

on that criterion. In fact, considerations of the properties of the system of equations 

are equally important. The condition number, for example, gives an indication of 

the magnitude of change in the solution of a problem given small changes to model 

input parameters. Thus the condition number is influenced by several factors such 

as the size of the computational domain and more importantly the characteristics of 

the conductivity coefficient. If a system is ill-conditioned (large condition number), 

the iterative solver chosen for a specific problem is likely to perform poorly. In 

those cases its performance can be improved significantly, for example, by using a 

preconditioner. Therefore the number of unknowns is not a sufficient condition to 

determine if a method is more or less computationally expensive than another. In
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fact, a large system of equations can require a small number of solver iterations (and 

therefore computational cost) if an efficient preconditioner exists. Equally a small 

system of equations can require a large number of solver iterations if the condition 

number is large and an effective preconditioner is unavailable.

Following this discussion it is apparent that further investigation is required. 

Therefore, this thesis seeks to answer the following question for non-stochastic prob­

lems: under which circumstances is solving the indefinite system computationally 

more expensive than solving the positive definite system obtained with the hybrid 

approach?

In order to successfully answer this question, we consider iterative schemes equipped 

with state of the art preconditioners. The analysis includes test problems with vari­

ous levels of mesh refinement, structured /  unstructured meshes and heterogeneous, 

anisotropic and discontinuous conductivity coefficients. Each of the test problems 

considered possesses an analytical solution, and discrete error estimates are also in­

cluded in the analysis.

The codes developed to carry out the numerical experiments associated with this 

analysis have all been developed within the MATLAB environment and the computa­

tions are all performed in serial. The development of the same algorithms in a parallel 

architecture is matter for future work and development.

Stochastic Galerkin M ethods for Uncertainty Quantification in Ground­

water Flow Problem s

The second part of this thesis is dedicated to the fascinating research area of un­

certainty quantification (UQ). This topic has received significant attention in the last 

ten years as its relevance spans a variety of research areas of numerical analysis. The 

reviews by Najm (2009) and Le Maitre &; Knio (2010), for example, give an excellent
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overview of uncertainty quantification in computational fluid dynamics. Sudret & 

Der Kiureghian (2000) summarise the strengths and weaknesses of various method­

ologies with application to elasticity problems. An overview of innovative methods 

for uncertainty quantification in several areas of engineering and physical sciences is 

given by Stafanou (2009).

Deterministic models assume that coefficients, such as hydraulic conductivity or 

transmissivity and boundary conditions and source /  sink terms are known with cer­

tainty in the physical domain. Unfortunately, this is never the case, for data used by 

numerical models are ordinarily uncertain. In fact, observed data are generally scarce 

and this leads to extrapolation to larger scales (often of the size of the computational 

domain) which is intrinsically uncertain. The lack of knowledge of the system param­

eters requires that uncertainties are quantified in a proper and satisfactory manner.

When the variables and coefficients of the groundwater flow equations are rep­

resented by random variables or random fields, the deterministic groundwater flow 

equations which are considered in the first part of this thesis become stochastic in 

nature. The efficient solution of stochastic PDE’s (SPDE) poses a serious challenge as 

the number of equations which are solved are generally of several orders of magnitude 

larger than in deterministic problems. It becomes apparent that when uncertainty 

quantification is required for problems which are very large in nature (such as cli­

mate, ocean, reservoir or mantle models) the computational cost to carry out that 

task becomes prohibitively large.

Stochastic modelling of groundwater flow' has been traditionally associated with 

Monte Carlo methods (MCM). This approach is straightforward for it involves the 

implementation of a large number of sequential deterministic simulations from which 

statistics of the numerical solutions can be derived. It is clear that the conclusions 

drawn in the first part of the thesis have immediate relevance to MCM, for their
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(computational) performance is directly proportional to the computational cost of 

solving the individual deterministic system.

However, traditional MCM are computationally expensive for a large number of 

simulations is generally required to compute meaningful statistics. This has led the 

research community to investigate alternative, faster converging methods or ways to 

accelerate the slow convergence of MCM. The latter research direction has resulted in 

the development of Multilevel Monte Carlo and Quasi-Monte Carlo methods which 

are giving very promising results (Cliffe et al. 2011, Graham et al. 2011). These 

methods are particularly suitable for those applications in which the stochastic be­

haviour requires a large number of degrees of freedom in probability space to be fully 

described. Situations of this kind are encountered in problems with rough coefficients 

(i.e spatial random fields with large variance and /  or small correlation lengths). In 

such applications other methods such as Stochastic Finite Element method (SFEM) 

or Stochastic Galerkin method (SG) (Ghanem & Spanos 2003) and Stochastic Collo­

cation method (SC) (Babuska et al. 2007) suffer from what is generally called ‘curse 

of dimensionality’ whereby the computational cost grows rapidly (factorially) with 

the dimension of the stochastic space.

Although this limitation of SFEM or SG is generally recognized, they continue 

to be widely used in engineering applications. In fact, in this thesis we aim to show 

that these methods can be successfully used in the context of groundwater modelling. 

Several studies have already reported work of various kinds in this specific area. How­

ever these are generally mathematical and somewhat technical. Often the examples 

used are ‘toy’ problems whose usefulness is restricted to the numerical analysis con­

text. Therefore, we aim to apply these techniques to the Cardiff Bay case study and 

give one of the first examples of formal uncertainty quantification in a real-life situ­

ation. To achieve this, we assume that the highly heterogeneous conductivity field
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can be decomposed into sub-domains in which the material parameter has a quasi- 

homogeneous behaviour. This assumption which is perfectly justifiable and in line 

with approaches generally undertaken in applications, allows us to reduce the number 

of random variables required to approximate the conductivity field.

There are several ways material parameters can be described in a probabilistic 

manner. Generally, Gaussian, uniform or lognormal random variables are used for 

this scope. In the case of SFEM /  SG methods the linear systems obtained from the 

variational formulation are significantly different depending on the distribution used 

to characterise the uncertain parameter/s. Thus if Gaussian and uniform distribu­

tions (‘stochastically linear case’) are employed the structure of the discrete system 

is considerably different from the case in which lognormal distributions are employed 

(‘stochastically non-linear case’). In this thesis numerical analysis based on both cases 

is reported.

To be able to achieve our objective, which is the effective and efficient implementa­

tion of Stochastic Galerkin methods in groundwater modelling applications, there are 

several challenges which need to be overcome. First, given that the obtained discrete 

linear system of equations is of several orders of magnitude larger than its deter­

ministic counterpart, the memory requirements for assembling such a large system 

pose serious challenges. However, as will be shown, this limitation can be overcome 

following the pioneering work of Ghanem & Kruger (1996).

Second, the system of equations has to be solved efficiently. We can build from our 

expertise with deterministic solvers investigated in the first part of the thesis. How­

ever, the stochastic Galerkin systems, in both stochastically linear and non-linear 

cases, are ill-conditioned with respect to the mesh size and the parameters defining 

the conductivity field. Thus, to effectively tackle the solution of such systems, precon­

ditioners are required. A popular choice, which has been extensively exploited in the
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past, is the so called ‘mean based preconditioner’. We assess its performance for a set 

of test problems, highlight the weaknesses and propose an alternative preconditioner 

for these challenging problems.

The code implementation of Stochastic Galerkin methods associated with the per­

formance analysis presented in this thesis have all been developed within the MAT- 

LAB environment and in serial. The development of the same algorithms in a parallel 

architecture is matter for future work and development.

Structure o f the Thesis

The aim of this work is to analyse numerical methods for groundwater modelling, 

with special emphasis on finite elements, as these evolve from deterministic to stochas­

tic formulation. Therefore the dissertation is structured around those two themes. 

Building on the extensive literature about classical FEM in the first part of the thesis 

we start our investigation with the mixed finite element method and report a com­

parison of computational performance between the classical MFEM and the hybrid 

approach. Considering the relative novelty of the stochastic approach, in the second 

part of the thesis we primarily focus on SFEM and advance subsequently to Stochas­

tic Mixed Finite Element Method (SMFEM) which is currently an actively evolving 

field of research. A thorough comparison of solvers’ performance is reported for both 

stochastic methods. The thesis concludes with an application of these methods to 

the Cardiff Bay case study, thus providing one of the first examples of the utilisation 

of stochastic technologies in a real-life scenario.

Following this general logic in Chapter 2 the theory of the mixed finite element 

method is presented. The derivation of the discrete linear system and the exten­

sion to the hybrid approach are described. Solution strategies for both methods are 

presented with particular emphasis on the state of art solvers currently available in
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the literature. Chapter 3 reports numerical experiments on the computational cost 

of solving the linear systems obtained by MFEM and MHFEM. The analysis is per­

formed on structured /  unstructured triangular and rectangular elements and for 

heterogeneous, anisotropic and discontinuous conductivity coefficients. MFEM dis­

crete error estimates are reported for each test problem. Chapter 4 describes the 

theory of stochastic Galerkin methods for the stochastically linear case. The struc­

ture and properties of the the discrete linear systems for SFEM, SMFEM and the 

hybrid version of SMFEM are studied in depth. Existing solution strategies and in­

novative approaches are presented. The validation of SFEM and SMFEM against 

traditional MCM for a pair of test problems is given in Chapter 5. This chapter only 

serves as validation for SG methods and it is not intended to give a formal compu­

tational comparison between MCM and SG methods. Numerical experiments for the 

stochastically linear case are reported in Chapter 6. The first part of the chapter 

deals with SFEM and the second part with the SMFEM. Various solvers are tested 

and compared and the chapter ends with concluding remarks on which one is the 

most robust and computationally efficient. Chapter 7 follows the structure of the 

previous chapter, but considers the stochastically non-linear case. The first part of 

the chapter describes the derivation of the global linear system as this differs substan­

tially from the linear case. Chapter 8 discusses the Cardiff Bay case study. The first 

part of the chapter outlines the conceptual model for the site and the second part 

shows the numerical simulations. Both deterministic finite element and mixed finite 

element simulations are included, as well as their stochastic counterparts. The thesis 

concludes with Chapter 9 which summarises the findings of this work, highlights the 

unanswered questions and outlines possible directions of future research.



Chapter 2

Mixed and Hybrid Finite Element 

Theory

2.1 Introduction

The importance of accurate approximation of fluxes in groundwater modelling 

has been at the heart of debates in this field for the last two decades. Accurate 

computation of the fluxes is important not only when the computed flow solution 

is used to solve the contaminant transport equations, but also when accurate water 

balances are required for the problem at hand. The finite element method (FEM), 

the finite difference method (FDM) and the finite volume method (FVM) are the 

most widely used numerical techniques for the approximation of groundwater fluxes. 

These numerical methods, first solve for the potential and then obtain the flux by 

numerical differentiation using Darcy’s Law. A review of different Darcian post­

processing methods is given by Goode (1990), Cordes & Kinzelbach (1992), Srivastava 

& Brusseau (1995), Dogrul & Kadir (2006). Whilst post-processing techniques might 

be suitable for problems with relatively homogeneous hydraulic conductivity, they

11
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are not appropriate for heterogeneous aquifers (Kaasschieter & Huijben 1992, Mose 

et al. 1994). They are particularly prone to error when the hydraulic conductivity 

coefficient is discontinuous with large contrasts in different regions of the problem 

domain.

Mixed finite element methods (MFEM) (Arnold & Brezzi 1985, Brezzi & Fortin 

1991) represent an alternative to traditional numerical schemes which allow the accu­

rate simultaneous approximation of potential and groundwater fluxes. Mixed methods 

are based on the choice of vectorial basis functions as a suitable approximation space 

for the normal components of fluxes across each finite element edge or face. Addi­

tionally, scalar basis functions, which are element-wise constant, are chosen for the 

approximation of the potential. Mixed methods have the important advantages of 

being locally conservative and of enforcing continuity on the normal components of 

the fluxes at the finite element boundaries.

Groundwater fluxes obtained by mixed methods are generally more accurate than 

those obtained through Darcian post-processing and this has been demonstrated by 

several authors (see Durlofsky (1994), Kaasschieter (1995) for example). This is 

achieved at the expense of larger computational cost, simply because the number of 

degrees of freedom in the mixed formulation is larger than traditional methods. In 

fact, using the mixed method the number of unknowns corresponds to the sum of 

the number of elements and edges in which the physical domain has been discretized. 

Conversely in traditional methods the number of unknowns corresponds to either the 

number of element or nodes (FDM /  FVM and FEM, respectively). This important 

drawback was one of the arguments used against mixed methods in the early works 

of Cordes & Kinzelbach (1992), Srivastava &; Brusseau (1995).

Additionally, the discrete linear system obtained using the mixed formulation is 

indefinite and therefore, generally, not easy to solve. This issue was resolved by
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augmenting the discrete linear system by means of Lagrange multipliers, resulting 

in what is known as the mixed-hybrid finite element method (MHFEM) (Brezzi & 

Fortin 1991). The discrete linear system obtained by MHFEM is symmetric positive 

definite (SPD) and therefore can be easily solved using the conjugate gradient (CG) 

method. Furthermore, the size of the system of equations is reduced (to the number 

of edges) as the pressure and velocity unknowns are algebraically eliminated. Hence, 

just based on the size of the discrete linear system, the MHFEM is computationally 

less expensive than MFEM but still more costly than traditional methods.

Obviously, nowadays the computational cost is less of a problem than it was twenty 

years ago. In fact problems of the order of 106 degrees of freedom can be easily solved 

on standard dual-core laptop PC with 4GB of RAM (see Chapter 3). Larger prob­

lems of the order of 107 - 108 unknowns require, in general, parallel computations 

independent of the method used for the approximation. Examples of parallel com­

putation of groundwater flow in heterogeneous media can be found in Cliffe et al. 

(2000), de Dreuzy et al. (2007). If any existed, the concerns about CPU cost and 

time efficiency for the mixed methods have been overcome. Furthermore, considering 

that mixed methods provide a very accurate velocity solution and that this is of criti­

cal importance in many practical applications, the additional computational expense 

required to solve the linear systems obtained by mixed methods seems to be justified.

Although some of the limitations of mixed methods have been resolved, it is a mat­

ter of fact that these methods have not been frequently used in real-life applications 

and are not part of popular computer software such as MODFLOW (Harbaugh Ik Mc­

Donald 1996, Harbaugh et al. 2000) and FEFLOW (Diersch 1996), extensively used 

in the groundwater modelling community. In fact, the issue of accurate groundwater 

fluxes and locally conservative numerical methods is arguably unknown to practition­

ers who tend to develop groundwater models based on the approximation techniques
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deployed by commercially available softwares (generally FDM, FEM and FVM).

To the author’s knowledge, it appears that a publicly available computer program 

(for groundwater modelling applications) based on mixed methods has not yet been 

developed. The programming codes currently existing such as PIFISS (Silvester k  

Powell 2007) or the MATLAB (MATLAB 1997) scripts of Bahriawati & Carstensen 

(2005) are a useful starting point and of great research interest. However they are far 

from being tools usable in applications. On the other hand, the mathematical theory 

underpinning the mixed formulation is well-developed and mature (see Raviart & 

Thomas (1977), Nedelec (1980), Arnold &; Brezzi (1985), Chavent & Jaffre (1986), 

Roberts & Thomas (1991), Chavent &; Roberts (1991), Brezzi &; Fortin (1991), for 

example). Therefore, there exists a gap between the theory and the application.

In addition to mixed methods there are several other numerical techniques that 

are locally conservative and provide accurate approximations for the (groundwater) 

fluxes. A review' of some of these techniques is given by Klausen k, Russell (2004). The 

authors look at the relationship between traditional MFEM, control-volume mixed 

finite element method (CVMFEM) (Cai et al. 1997), enhanced cell-centered finite 

difference method (ECCFDM) (Arbogast et al. 1997, 1998) and multi-point flux ap­

proximation (MPFA) (Edwards & Rogers 1998, Aavatsmark, T., Bpe & Mannseth 

1998a,6, Aavatsmark, T. & Mannseth 1998, Edwards 2002, Aavatsmark 2002, Ed­

wards k  Pal 2008, Edwards k  Zheng 2008, Friis et al. 2008, Edwards k  Zheng 2010, 

2011). The study of locally conservative numerical methods is a very active area of 

research (see Edwards (2002) and all articles therein) and it is outside the scope of 

this chapter to review all the work which has been carried out on the subject.

Error and convergence analysis for the lowest order Raviart-Thomas {RTo) mixed 

finite element method is well established (see Brezzi k  Fortin (1991), Arbogast et al. 

(1996), Demlow (2002), Radu et al. (2004), for example). Similar papers axe available
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for the MPFA method (Klausen &; Winther 20066,a, Klausen et al. 2008). Bause 

et al. (2010) compared the quality of the flux approximations of the two methods 

and showed that although the MFEM is slightly superior to MPFA, generally the two 

methods are qualitatively very similar. Crucially however, for MFEM approximations 

(BTq or Brezzi-Douglas-Marini BDMi  (Brezzi et al. 1985)) existence and uniqueness 

of the discrete solution is guaranteed for any mesh (triangular type was considered 

in the paper) and diffusion full-tensor. The same has not yet been proven for MPFA 

methods on unstructured grids (Remark 3.1, Bause et al. (2010)). Existence and 

uniqueness on cell centred triangles is reported in Friis et al. (2008).

Similar studies have focused not only on error estimates for MFEM and MPFA 

but also on their computational cost. It should be said that the majority of the 

research focuses on the computational comparison of the hybrid version of the MFEM 

(the SPD version) with other techniques (see for example Kaasschieter & Huijben 

(1992), Younes et al. (1999), Younes & Fontaine (20086,a)). Several studies have 

tried to link mixed formulations with standard finite volume methods with the aim 

of reducing the number of unknowns of MFEM (see Edwards (2002), Chavent et al. 

(2003), Younes et al. (2004), Brezzi et al. (2004), Edwards & Pal (2008), for example). 

Similarly, the link between MPFA and mixed methods is given in Vohralik (2006), 

Klausen & Russell (2004), Wheeler & Yotov (2006), Younes & Fontaine (20086,a). 

The effort made in the last ten years or so to produce a numerical method which 

would give piecewise constant approximations for the pressure in each finite element 

and pressure dependent expressions for the fluxes has produced a large number of 

different numerical schemes.

In contrast, studies on the classical MFEM for which the associated discrete linear 

system is indefinite are significantly, less common (than the SPD version) and repre­

sent a somewhat specialist area of research. The saddle-point problem obtained from
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the mixed formulation can be solved using the minimal residual method (MINRES) 

(Paige & Saunders 1975). If MINRES is preconditioned with efficient symmetric pre­

conditioners then the solution of the symmetric indefinite system can be very efficient 

(see Rusten & Wither (1992), Vassilevski &; Lazarov (1996), Powell (2003), Powell & 

Silvester (2003), Powell (2005)). Of course, for MINRES to be competitive the choice 

of preconditioner is crucial.

It is clear that the essential prerequisites for the numerical methods used in this 

work are:

• Locally conservative (at the finite element level);

• Accurate in the computation of fluxes;

• Robust with respect to heterogeneous and discontinuous conductivity coeffi­

cient;

• Ideally also robust with respect to anisotropic conductivity coefficients as re­

cently achieved with MPFA methods (Edwards & Zheng 2008, 2010, 2011).

It is equally clear that there are several methods that satisfy these conditions 

some of which have been mentioned in the previous section. However, it should be 

kept in mind that the main objective of this thesis is to study stochastic Galerkin 

(SG) methods and, as we will show in Chapter 4, these build from the approximation 

method used for deterministic problems. Therefore the choice of numerical methods 

to use in our (deterministic) work is intrinsically linked with the requirements of SG 

methods.

In methods such as MPFA, CVMFEM and ECCFDM the fluxes are obtained 

through explicit expressions which are functions of the pressure. The MFEM does 

not have such explicit expressions. Although the explicit representation of the fluxes
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can be advantageous, for example in the field of multiphase flow (Klausen &; Russell 

2004), it is not entirely certain that such a representation is possible in a stochastic 

framework. To the author’s knowledge most of the work in the field of SG methods 

has used FDM, FEM and MFEM approximations for the deterministic operator. An 

extensive review of SG methods is given in Chapter 4, §4.1.

Given the aforementioned motivations, in this thesis we are concerned with classi­

cal MFEM formulations. In this chapter we review the theory of the MFEM including 

the hybrid formulation. This is standard material and extensive references have been 

provided throughout this introduction. A review of solution strategies for these meth­

ods is given in §2.5.3 and §2.6.1, respectively. Chapter 3 compares the computational 

efficiency of MFEM and MHFEM for a range of numerical examples. For the MFEM 

(indefinite case) we use practical preconditioners proposed in Powell (2003), Pow­

ell &; Silvester (2003). For the MFEM (SPD case) we use an approximation of the 

coefficient matrix as a preconditioner for CG. The analysis includes test problems 

with full-tensor, anisotropic coefficients on structured and unstructured triangular /  

quadrilateral meshes.

2.2 The mathematical model

The steady-state flow of water in porous media is described by a scalar second- 

order partial differential equation, the solution of which, when supplemented with 

suitable boundary conditions, gives the distribution of a scalar potential u (potential 

head) over a specific domain, D. Let D be a domain in Rd, d =  2,3, bounded 

by T = r D U r N, where T# and denote the portion of T where Dirichlet and 

Neumann boundary conditions are prescribed, respectively. We seek a solution (u)
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to the second-order elliptic problem

—V CVw =  /(x )  in D, (2.1a)

u = g(x) on TD, (2.1b)

CVu • n  =  0 on IV, (2.1c)

where C is a d x d symmetric positive definite coefficient tensor representing the

hydraulic conductivity specific to the problem at hand, n denotes the unit outward 

normal vector to IV  and g(x) represents the prescribed constant head on Td- /(x ) 

represents a sink or source term.

Traditionally, finite difference or finite element methods are used to discretise 

problem (2.1). In such methods it is common to post-process the approximation to 

the potential, u, to obtain the fluid discharge (flux) or velocity, q, according to Darcy’s 

Law. Whilst this is commonly done, many authors have shown that the computed 

fluxes are not accurate due to errors introduced by numerical differentiation (see Mose 

et al. (1994) and Kaasschieter & Huijben (1992), for example).

Very often, in applications, q is the variable of primary interest. Hence, a nu­

merical scheme which guarantees an accurate approximation of the fluxes is required. 

This can be achieved re-stating problem (2.1) by explicitly introducing Darcy’s Law. 

We now seek the simultaneous solution (q, u) to the coupled first-order problem

C 1 q — V u  =  0 in D, (2.2a)

V • q = - / ( x )  in D, (2.2b)

u = g(x) on IV, (2.2c)

q • n = 0 on VN. (2.2d)

The solution of problem (2.2) using mixed finite element methods allow us to obtain 

a simultaneous approximation for the potential and the flux everywhere in D.
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In the next section an outline of the mixed finite element theory is given, which, 

although somewhat technical, is needed for a complete presentation of the subject.

The notions reported in this section are standard and well accepted definitions

subsequent works such as in Powell (2003). These definitions, although available in 

those references, are included in this thesis as they form the basis of our analysis and 

derivation of the weak formulation for the first order problem (2.2).

Let D be a bounded and connected domain in MP, V  = 2,3, with Lipschitz 

continuous boundary T =  Td U

Define the Lebesgue space L2(D) of scalar square integrable functions over D ,

2.3 Preliminary Definitions

and follow the rigorous analysis originally reported in Brezzi & Fortin (1991) and

L2(D) = {w : w is defined on D and / w2dD < oo}. (2.3)
Jd

L2(D) is a Hilbert space with the inner product

and associated norm

Similarly, for vector functions v =  (i>i,. . . ,  Vd)T, we define the Lebesgue space, 

L2(D)d, of vectorial square integrable functions over D ,

L \ D ) d =  {v : Vi € L2(D), i = (2.5)

L2(D)d is a Hilbert space with the inner product,



Chapter 2: Mixed and Hybrid Finite Element Theory 20

and associated norm,

I M I l W  =  ( ^ J ^ d D ' j  = (v ,v )^ .  (2.6)

In order to derive the weak variational formulation of problem (2.2), we need to 

define the following Sobolev space

H \ D )  = { w . w e  L2(D) and 6 L2{D),i =  1 , . . . ,  d}. (2.7)
(JOCi

This is a Hilbert space with inner product,

(w ,s )=  /  (ws +  Vu> ■ Vs) dD ,
J d

and associated norm,

=  (  f  w2 +  |Vtu|2 dD ) . (2.8)

A well known subspace of H X(D) is the subspace Hq(D) of functions that vanish 

at the boundary T of D ,

Hl(D) =  {w E H \ D )  : w =  0 on T}. (2.9)

Functions belonging to Hq(D) satisfy the Poincare-Friedrich’s inequality (see Braess 

(1992) for definition and proof), thus ensuring uniqueness of the solution. The set of 

functions vanishing on the Dirichlet portion of T belong to the Hilbert space

H l D{D) = {w <E H \ D )  :w = 0 on TD}. (2.10)

The following Hilbert spaces are required for the mixed variational formulation 

of problem (2.2). Define the space H(div\ D) of square-integrable vectorial functions 

whose divergences are also square-integrable

H(div ; D) =  { v : v G  L2(D)d and V • v  G L2(D)}, (2.11)
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this space is equipped with the inner product,

(v > u )div =  (v > u) +  (V ■ v , V • u ) ,

and associated norm,

IM Idtv =  | |v | |x , 2 (jr,)d +  | |V  • v | |£ ,2 (D ). ( 2 .1 2 )

Define wr, to be the trace of any scalar function w E H l {D). Thus the set of all 

traces determines the following Hilbert space

Hi(T) = {g : g = wr for some w E H l (D)}. (2.13)

Similarly, for vectorial functions v  E H(div ; D), (v • n)r defines the normal trace, 

where n is the normal outward pointing unit vector to I \ Therefore the set of all such 

functions determines

tf -5 ( r )  =  {q : q = (v • n )r for some v  E H{div\ D)}. (2-14)

Following Powell (2003), for any function g E H*(D) and q E (•,•)

represents the duality pairing

{g,q} =  J^gqds, (2.15)

and we can define and important subspace of H(div; D) in which the solution for the 

flux and /  or velocity q is sought

H0iN(div; D) =  {v  E H(div; D) : (v • n, w) = 0 Vu; E Hq D(D)}. (2.16)

2.4 Continuous Weak Form

Define W  = L2(D) and V = H(div; D). Multiplying (2.2b) by a scalar basis 

function w E W  and integrating over D yields

[  ( ^  ' q)w dD = — I f w  dD.
J D  J D
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Define the bilinear form b(-, •) and the linear functional L( ) by

b(q, w) = /  (V • q )w dD,
Jd (2.17)

LM  = J  fw  dD = {f,w)L2{D)

Now multiply (2.2a) by a vectorial basis function v 6 V  and integrate over D to 

give

f  C-1 q  • wdD — f  V u  ■ v  dD = 0.
Jd Jd

Using the following version of Green’s formula (see Brezzi & Fortin (1991))

[  V • vwdD = — f  v - V w d D +  [  {v -n )w dT  Vw <E H \ D )  (2.18) 
Jd Jd J r

we obtain the following bilinear forms

a(q ,v) =  f  C-1(q • v) dD,
Jd

b(v, w) =  /  V • vw dD.
Jd

Finally, the weak formulation of the mixed variational problem (2.2) is : find (q,u) € 

V  x W  such that

a(q, v) +  6(v, u) =  (g, n • v)pD Vv € V
(2.19)

6(q,w) =  — ( / ,w) Vine W.

The weak formulation has a unique solution (q. u) e  V  x W  provided the bilinear forms 

a (•, •) and b (•, •) satisfy the following inf-sup condition (also called the Ladyzhenskaya- 

Babuska-Brezzi (LBB) condition)

L wS7 • v
inf sup -r-D  > 0 ,  (2.20)

w e w veV  || w  llwll v || v

where the constant /? > 0 (for a proof of this condition see Brezzi k, Fortin (1991)).
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2.5 Mixed Finite Element Approximation

Let T h be a partition of D defined by closed sub-domains, finite elements, Ki,i = 

1, . . . ,  n, such that,
n

T h = \ j K k
1

where h denotes the discretisation parameter which describes the size of the finite 

elements in T h. Let E h be the collection of numbered edges ( V  = 2) or faces (T> = 3), 

ei, i = 1 where m  is the total number of edges in T h. According to the

Galerkin method we define the finite dimensional subspaces Vh C V  and W h C W. 

The discrete variational formulation of (2.19) is: Find (qh,uh) e V h x W h such that

a (qh, v h) + b (v fc, uh) =  (g, n • v*)rD Vvh E V h
(2 .21)

b (qh, w h) =  — ( / ,  w h) Vwh E W h

2.5.1 R av iart-T h om as A pproxim ation

A family of local spaces that can be used to construct a suitable subspace Vh C 

V = Hotff(div\ fl) was proposed by Raviart & Thomas (1977) for R2 and by Nedelec 

(1980) for R3. Let RT°  denote the space of linear vectorial functions i = 1, . . . ,  /, 

where I  is the number of edges or faces associated with a finite element K.  Therefore, 

we have

KT°(K) =  Span{Vi}'=1.

The value of I  depends on the type of finite element chosen for the discretisation of 

D , so that 1 = 3 and I  = 4 for triangular and rectangular elements, respectively, and 

7 = 4 and I  = 6 for tetrahedra and parallelepipeda, respectively.

It is common practice to define the vectorial basis functions on a reference element 

K.  Thus the definition of vectorial basis functions on a general element follows from
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the reference element through an affine transformation. In such circumstances the 

well-known transformation rules for vectorial and scalar basis functions apply (see 

Brezzi & Fortin (1991), §111.1.3). Let RT°(K)  denote the local /-dimensional space 

of vectorial basis functions v* defined on K.  It follows that

RT°(K) v(x) =  5 ^  V £ € AT and v € RT°(K ) \ , (2 .22 )

where £ is the local coordinate system and J  is the determinant of the Jacobian of 

the transformation B. We can now define the global spaces

RT°(D ; T*) =  {v € H(div, D) : v |*  e  RT°(K) VK € T h}, (2.23)

and

(2.24)M °  =  {v  e  L2(D)d and qlx € RT°(K) VK  6 T h} .

A suitable subspace for the approximation to the flux q is

V h = M °  n  H0,N(div; D) = {v  <E RT°(D ; T h) and v  • n |rN = 0} . (2.25)

For triangular and tetrahedra elements the vectorial basis functions v € RT°(K)  have 

the special form

/ a +  c£ |
b-her) 

e +  cQ

respectively, and for rectangular and parallelepipeda elements the form

v = V  =

V )

f  O.a +
v = v =

\

b-h dr)

e + /C

respectively. The coefficients a, 6, c, d, e, and/  are some constants chosen so that the 

integral of the normal component of v on the edge or face of K  is equal to some 

constant d.
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Finally, the pressure u is approximated by piecewise constant functions w. Let 

M°(K)  denote the one-dimensional space of constant scalar basis functions on K. 

Hence, a suitable subspace W h C W  =  L2(D) is

W h = {w e L2(D) : w\K E M°(K)  V K e  T h}. (2.26)

2 .5 .2  Linear System

For each element K  we associate a scalar basis function <f)j, i = 1, . . . ,  n, which is 

element-wise constant. The potential uh can therefore be approximated in terms of 

the global scalar basis functions,

u
j=l

(2.27)

where <pj is the characteristic function on Kj  i.e. it satisfies the following condition

(2.28)(j)j
1 if (f)j E Kj 

0 elsewhere

Globally, for each edge or face e E E h we fix oriented normal vectors i/i} i =  1, . . . ,  m, 

where m  is the total number of edges in Eh. Now, we define a direction index so 

that f

+1 ifn
sK - < (2.29)

-1  if *4  =  -!/)<■

where denotes the set of unit outward normal vectors at the edges e* 6 Eh.

The vectorial (flux) basis functions if>i E V h are defined with respect to a reference 

element K  so that,
f

1 if k =  iL (pi ■ Okds — < (2.30)
0 if k i
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Note that this is the condition which ensures continuity of the normal components 

of the flux q  across the interelement edges of Eh. Finally, we can approximate qh in 

terms of the global vectorial basis functions <£>*,
m

= Y l qi(pi- (2-31)
i= 1

The mapping &  i-> (pi follows from (2.22). Additionally, the global basis functions 

ipi are multiplied by the index s* before the system is assembled. The source /  sink 

term /(x ) is also approximated in terms of the global scalar basis functions (pi,
n

/(x )  (2-32)
1—1

Substituting expansions (2.27), (2.31) and (2.32) into (2.21) we obtain

m  n

^  v QjA i,j T ^   ̂UkB^k = g 
j=l 1 (2.33)

Z=1
where Aitj is constructed from the element contributions

A i j  =  a ((P j , (Pi)K =  [  C - ' i p f t p f d K ,  i , j  = l , . . . , I ,  (2.34)
JK

where I  is the number of edges or faces on K.  Given an element K, <pK = 1, hence 

the element contributions to the global matrix B k>i are given by

B *  =  j  <fi • n* de, i =  l , . . . , 7 ,  (2.35)

and

0 if ei g Kk
Bk,i = <

s*k if ei G K k 

The elements of the right-hand side vectors defined by

(2.36)
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The system (2.33) can be re-written in matrix notation as follows

/ , \ /Q

\ U

A B T

B  0
(2.38)

where u  = [gi,. . . ,  qm]T and u  — [iq, . . . ,  un]T. The matrix A is generally referred 

to as a weighted velocity matrix and the matrix B  is considered to be a discrete 

representation of the divergence operator.

Given that A is symmetric and positive definite, we have,

q = A 1 (g -  B tp ) ,

which if substituted into the second equation of (2.38) gives

(2.39)

BA~l BTp> = BA~lz - i .- l . (2.40)

Matrix BA~l B T is also symmetric and positive definite (see Chavent & Jaffre (1986) 

and Kaasschieter & Huijben (1992) for an alternative proof). This aspect is very 

important in terms of the choice of scheme to implement to solve the linear system 

(2.38).

2 .5 .3  S o lu tion  Strategies

A review of solution strategies for the linear system (2.38) is given by Scheichl 

(2000) and Powell (2003). The solution of system (2.40) by the conjugate gradient 

method is advocated by Kim (2001) and Ewing h  Wheeler (1983). However, the 

computation of A-1 is expensive for general meshes and full-tensor C and the Schur 

complement BA~l B T is not sparse. When rectangular meshes and diagonal C are 

used the element contributions AK are block-diagonal (see Powell (2003)), hence 

the computation of Aj}  is cheap and the system (2.40) can be solved efficiently by 

CG. Additionally, it can be shown that if the trapezoidal quadrature rule is used



Chapter 2: Mixed and Hybrid Finite Element Theory 28

(Kaasschieter & Huijben (1992)) on rectangular meshes, A becomes diagonal. For 

these special cases the solution of (2.40) using CG is recommended.

There have been various attempts to solve the saddle-point problem (2.38) us­

ing iterative methods. The Uzawa method is a well-suited iterative scheme to solve 

saddle-point systems. However, this method requires the computation of the inverse 

of the coefficient matrix which becomes infeasible for practical applications (unstruc­

tured meshes and full-tensor coefficients). Fortin & Glowinski (1983) introduced 

the augmented Lagrangian method which applies an Uzawa algorithm to a modified 

saddle-point problem.

Algebraic approaches to solve (2.38) were introduced by Rusten & Wither (1992) 

and several preconditioners are proposed in Rusten & Wither (1993) and Rusten et al. 

(1996). Powell (2003) and Powell &; Silvester (2003) proposed an ideal and practical 

preconditioner of the form

P =
^ diag(A) 0 ^

(2.41)
y 0 Bdiag(A)~lB T 

The Schur complement Bdiag{A)~lB T can be solved exactly or approximated by one 

V-cycle of black-box Algebraic Multi-Grid (AMG).

We recall that a preconditioner is defined to be h-optimal when the solver iteration 

count is independent or almost independent of the discretisation parameter h. Powell 

& Silvester (2003) showed that the preconditioner defined by (2.41) is h-optimal for 

isotropic C on structured triangular and rectangular meshes. However /i-optimality 

is lost for diagonal anisotropic coefficients on triangular meshes. Furthermore, (2.41) 

is never /i-optimal for general full-tensor coefficients.

The definition of C-optimality follows from above. The preconditioner (2.41) is 

C-optimal, but only for some special cases. In fact, its efficiency decreases drastically 

for anisotropic diagonal and full tensor coefficients on structured triangular meshes.
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For structured rectangular meshes (2.41) is more efficient showing C optimality also 

for anisotropic diagonal coefficients. Currently, a preconditioner for (2.38) which is 

C-optimal for anisotropic full tensor coefficients has not yet been found.

Furthermore, the efficiency of (2.41) has not yet been tested on unstructured two- 

dimensional meshes and structured and unstructured three-dimensional meshes.

An approach which has been extensively used in the literature (see Kaasschieter 

(1995)) is the hybrid method, introduced by Fraeijs de Veubeke (1965) and further 

developed by Arnold k  Brezzi (1985) and Brezzi &; Fortin (1991). This is discussed 

further in the next section.

2.6 Mixed Hybrid Finite Element Method

Arnold k  Brezzi (1985) presented a way to derive a symmetric positive definite 

coefficient matrix for problem (2.2). The continuity condition on the normal compo­

nents of the flux q  across the finite element edges or faces is relaxed, i.e. q is now 

discontinuous across element interfaces. The continuity condition (required for the 

type of problems herein investigated) is subsequently re-established by introducing 

Lagrange multipliers A at those interfaces. The velocity space, being discontinuous, 

can be eliminated obtaining a system with unknowns uh and Lagrange multipliers 

\ h. Note that the Lagrange multipliers are themselves the solution for the potential 

u at the element interfaces. Furthermore the unknowns uh can also be eliminated to 

obtain a system of equations depending only on the Lagrange multipliers \ h. This 

final system is positive-definite and of size m  x m, where m  is the number of edges 

or faces in T h. Hence the conjugate gradient can be used to solve the discrete linear 

system efficiently.

In the following discussion we use the notation of Brezzi &; Fortin (1991). Let
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Ao(e) denote the space of constant functions on e, Ve E E h. We define the multiplier 

space

A0 (Bh) =  {A* : Ak|« 6 A0(e)Ve € £"} , (2.42)

and the subspaces of multipliers that either vanish or approximate g on To

Ao,r0 = {A € A (Eh) : A =  0 on ,
(2.43)

^g,I'd = {A 6 A (Eh) : A =  gh on VD} ,

where

J  (gh - g ) d s  = 0, Ve € r D.

The flux approximation qh is now sought in A4° and the Lagrange multipliers are

defined in Ao(e). Hence the following bilinear forms are defined

c (/Aq'1) = E  /  n d r K
(2.44)

b ( q * X ) fc =  E  /  (V ' 1*) w "  d KJKK e T h

The hybrid version of the lowest-order Raviart-Thomas mixed method for problem 

(2.2) reads: Find (qh, uh, \ h) E x W h x Ao,^ such that

a (qh, v h) +  b ( v h,uh) h =  c(A/l, v /l) ,  Vv71 E M°,

b(qh,wh)h = — ( f ,w h) , Vwh E W h, (2.45)

c(Aft,q /l) =  0 , VA71 e  A0,rD-

Given the space A4° as defined in 2.24 and the vectorial basis functions defined in

§2.5.1, the approximation for the flux, q/l(x), can be expressed as follows

iK

«‘ (x ) = E E W '  <2-46)
K e T h 1= 1

where, 7 =  3,4 depending on the choice of finite elements for the discretisation of T h.
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The potential u(x) is approximated as in (2.27). Before expressing the approxi­

mation for the Lagrange multipliers, let T h c  Eh be the collection of numbered edges 

(V  =  2) or faces (T> =  3), e*, i = 1 , of {e 6  Eh : e <£ Tp}. I denotes the 

total number of edges in l h. The space Ao,rD is spanned by scalar basis functions pi, 

i = 1, . . . ,  Z that satisfy the following condition

Pi —I 1 if e, e  l h
(2.47)

0 elsewhere

The approximation of the Lagrange multipliers, Ah, can now be stated as follows

A/l(x ) =  XiVi- (2.48)
i=l

Problem (2.45) can be re-stated in matrix notation as follows 

/  . _

\

A B t c 7

B 0 0

C 0 0 /

/  \ (  \
q g

u = f

K ° l

(2.49)

The clear distinction between (2.49) and (2.21) is the choice of the approximation 

space for the flux q. The space M °  does not require the continuity condition • n 

which characterizes the space V h and in a more general sense the spaces H{div\D). 

The basis for A4° is chosen so that v h \ x  7̂  0 only in K  and vanishes elsewhere. The 

important advantage of defining v* in a discontinuous space is that the matrix A 

becomes block-diagonal and q can be eliminated at the element level as follows

q =  A ' 1 (g -  B t u -  CTA) (2.50)

Note that, inverting A corresponds to invering its diagonal blocks, thus this can be 

carried out at the element level with little computational expense. Now, using (2.50)
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to eliminate q from (2.49) we obtain the following system

-1e — f 1
(2.51)

^ BA~iBT BA~tCT ^ (  •• \  - 1

CM-'B7- CA~iCT j C A - 'x

u 

A

Now the matrix BA~l B T is symmetric and positive definite (see Brezzi &; Fortin 

(1991) and Kaasschieter & Huijben (1992) for the proof) and also diagonal (Kaass- 

chieter & Huijben 1992). Therefore, we can eliminate the unknown u and obtain

u =  (BA~1B T)~1 (BA~l% -  BA~lCTX -  f ) . (2.52)

Using (2.52) in (2.51) we obtain the discrete linear system

DA =  r, (2.53)

where

D = CA~lCT -  CA~l B T (BA~1B t )~1 BA~lCT (2.54)

and

r =  CA~lg +  C A ^ B 7 (BA~l B TY 1 (f -  BA~lg ) . (2.55)

The matrix D is symmetric and positive definite, hence (2.53) can be solved using 

the conjugate gradient method.

2.6 .1  S o lu tion  Strategies

As already anticipated the discrete linear system (2.53) can be solved using the 

CG solver. There is a vast number of choices for a preconditioner based on D to be 

used with CG. Among those choices are simple Successive Over-Relaxation (SOR or 

/  and the symmetric version SSOR) preconditioning, and incomplete factorisations 

of D (ILU) (see Saad (2003)).

A performance analysis for (2.53) using an incomplete Cholesky factorization of 

D is available in Kaasschieter & Huijben (1992). Several authors use CG for (2.53)
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equipped with various preconditioners. Younes & Fontaine (20086) use the efficient 

Eisenstat’s implementation (Eisenstat 1981) of CG. The numerical experiments re­

ported do not show either h-optimality nor C-optimality. To the best knowledge of 

the author, an efficient preconditioner for (2.53) is currently not available.

Multigrid methods for symmetric and positive definite systems have been largely 

studied, and theory, implementation and applications are available in standard ref­

erence books (see Briggs et al. (2000), Hackbush (2003), for example). Convergence 

results for multigrid methods for nonconforming finite elements are given in Brenner 

(1989, 1992) and Braess & Verfiirth (1990). Further results and comparison with 

mixed methods are given in Chen (1996). Although numerical results presented in 

these works show /i-optimality, analysis of the effect of C is not included. The effect 

of the conductivity coefficient on AMG convergence is considered in Powell (2003). 

However, results for unstructured and 3-dimensional meshes are not provided.

In this work, we follow the ideas presented in Powell (2003) approximating D 

by one V-cycle of AMG as preconditioner for (2.53). We extend the analysis on 

unstructured meshes.

The efficient solution of problems (2.1) and (2.2) for full-tensor, highly anisotropic 

coefficients remains an open question. Some authors have used sparse direct solvers 

for this purpose. Recently Younes & Fontaine (2008a) demonstrated the efficiency of 

sparse direct solvers based on unifrontal/multifrontal methods (Davis & Duff 1997, 

1999) to solve (2.53) on quadrilateral meshes. Comparison with iterative methods is 

not provided.

The efficiency of sparse direct solvers such as UMFPACK (Davis 2004) depends 

on the size of the problem. The general consensus is that sparse direct solvers are 

very efficient for 2-dimensional problems, but their performance deteriorates for 3- 

dimensional problems. Certainly the trade off at which sparse direct solvers become
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less efficient than iterative solvers is problem dependent. In relation to this work, 

experiments only using iterative solvers are reported.



Chapter 3 

Mixed and Hybrid Finite Element 

Numerical Experiments

3.1 Introduction

In this section the computational cost required to solve the linear systems obtained 

by the MFE and MHFE discretisations derived in Chapter 2 is evaluated. We use 

state-of-the-art iterative solvers equipped with efficient preconditioners. The compu­

tational cost is evaluated based on number of iterations N it, required by the solver to 

achieve convergence, and the CPU time tcpu in seconds.

The codes herein deployed have been developed within the MATLAB environment 

(MATLAB 1997) and the computations are all performed in serial. The development 

of the same algorithms in a parallel architecture is matter for future work and de­

velopment. The implementation of the Preconditioned Conjugate Gradient (PCG) 

algorithm follows Saad (2003) and the MINRES implementation was modified from 

Fischer (1996). The tolerance within the solvers is set to 10-10 and the maximum 

number of iterations is set to maxit  =  104. All numerical experiments have been

35
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carried out using a standard dual-core laptop PC with 4GB of RAM.

The scope of this chapter can be summarised with the following question: Is 

solving the hybrid problem more efficient than solving the indefinite system generated 

by the mixed method? Given the review on solution strategies (see §2.5.3 and §2.6.1), 

it appears that the answer to this question is strictly dependent on the problem being 

considered.

Therefore, several test problems, each differing in terms of the conductivity coeffi­

cient C, will be analysed. Numerical simulations are carried out on structured/unstructured 

triangular and rectangular meshes to assess the effect of discretisations on the solvers’ 

performance. Throughout the discussion, emphasis is given to those problem settings 

where h and C optimality is achieved.

Two tables are presented for each test problem. The first table includes results for 

preconditioned MINRES using (2.41) with a direct solver for the Schur complement.

The preconditioned CG solver is used for the MHFE formulation (2.49) using an 

incomplete Cholesky factorisation of the matrix D as preconditioner. These solvers 

are referred to as p  — M I N R E S  and P C G  in the tables and following sections, 

respectively. In the second table results are presented for MINRES with one V- 

cycle of black-box AMG used for the approximation of the Schur complement. The 

preconditioner for CG is the AMG approximation of the coefficient matrix D. These 

solvers are referred to as p — M I N R E S amg  and PC Gam g  in the tables and following 

sections, respectively.

The AMG solver we use is publicly available from the PIFISS (Silvester & Powell 

2007) solvers library, written in MATLAB. Other versions written in FORTRAN /  

MATLAB such as the H SL  MI20 (Boyle et al. 2007, 2009) are also freely available 

for academic use. Two types of smoothing functions are available in the library, 

these are the point Gauss-Seidel (PGS) and the point damped Jacobi (PDJ). In the
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following experiments we use the latter with two sweeps per iteration. Note that there 

is no attempt at tuning the several AMG parameters and that experiments with PGS 

were not carried out.

Note that the setup time for some of the preconditioners used in this chapter can 

be significantly large especially for fine meshes. In the tables included in the following 

sections the setup time has been reported as well as the solvers’ solution timings.

The author would like to express his gratitude to Professor E.F. Kaasschieter for 

his help with the computer implementation of the MHFEM and for providing useful 

MATLAB functions to develop the code used for the experiments presented in this 

chapter and in this work in general.

3.2 Numerical experiments on triangular meshes

The numerical experiments are carried out on square domains. Structured meshes 

are obtained by partition of D into regular squares of area h2. Each square is fur­

ther subdivided into two right angled triangles. Unstructured meshes are created by 

perturbation of structured meshes as explained in §3.2.5.

The analytical and numerical solutions for each test problem are presented. How­

ever, given that the MFE and MHFE solutions are equivalent, we only show results 

for the former method. The same applies for the potential and velocity L2-norm error 

estimates. The L2 error estimates are given by

llq-q^llw = | ^ | 7 i l  (q«-q,',)2|  , (3.1)

I l 0 - 0 i y  =  { £ m i ( & - ^ ) 2j  , (3.2)

where |Tj| is the area of the finite element and q is evaluated at the centroid of

each finite element using Darcy’s Law. The numerically computed fluxes (normal
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components of the flux at the edge mid-sides) are post-processed to obtain values 

for qh =  (qx,qy)h at each element centroid. The analytical and numerical potential 

solution is evaluated at the centroid of each finite element.

The same experiments presented in this section are reported for structured and 

unstructured rectangular meshes in §3.3.

3.2 .1  P rob lem  1: h eterogen eou s, isotropic and diagonal C

The first test problem is similar to the one presented in Kaasschieter &; Huijben 

(1992). The conductivity coefficient is isotropic but heterogeneous (i.e. it varies 

spatially) and it is given by

a(x) 0 

0 a(x)
K  =

where

a (x) = (3.3)
1 +  2ecos(7rn:) cos(7ry) +  e2 cos2 (717/)

The case of hydraulic conductivity with sudden jumps (discontinuous case) is reported 

in §3.2.4. Given a source term /  =  0 and boundary conditions defined by

and

9 d { * )  =  ? r ( l  - y ) ,  x e f z )

Td =  {x  6 T : y  =  0 or y =  1),

gN(x) =  0 , x e r N

r N =  (x  6  r  : x =  0 or x =  1},

(3.4)

(3.5)
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the boundary value problem (2.1) has potential and velocity analytical solutions given 

by

u(x) =  7r(l — 2/) — ecos(7ra:) sin(7ry).

(3.6)
q(x) =  -a (x )

/ \
7re s in (7 r x )  s in (7 r y )

—7r — e cos(7ra;) cos(7ry)
\  /

The MFEM potential and velocity solutions for h = ^  and e =  0.9 are depicted 

in Figure 3.1.
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(a) Potential u and velocity q solutions (b) Log of conductivity field C(x)

Figure 3.1: Numerical solutions and conductivity field for e =  0.9 - Test problem 1

Table 3.1 shows L2(Dh) error estimates for the potential and the x  and y compo­

nents of the velocity field. The error estimates are in agreement with results presented 

by other authors (Kaasschieter & Huijben 1992) and with theoretical results (Brezzi k, 

Fortin 1991). Second order convergence, 0 (h 2), is observed for the potential solution 

and first order convergence, 0(h),  for the velocity solutions.

The conductivity coefficient varies from (1 — e)~2 to (1 +  e ) - 2 . When e —> 1, a(x)
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becomes singular and therefore the rate of convergence of the potential and velocity 

solutions deteriorates significantly (see Table 3.2 and 3.3). In fact, for e =  0.999 

the y component of the velocity solution does not converge. An analysis of the error 

distribution for the velocity components reveals that this is concentrated in the upper 

left and lower right corners of the domain. This location corresponds to the regions 

where the highest variation in the coefficient a(x) occurs (see Figure 3.1b). This 

limitation could be resolved with local mesh refinement for the upper-left and lower- 

right regions of the domain.

Table 3.1: L2{Dh) error estimates for the u , qx and qy for test problem 1, e =  0.9
h | |u  — U; I U 2 Rate I k *  -  Qx \\l 2 Rate I k y  -  Qy IU * Rate
1
16 4.34£ - 0 3 — 2.44£ - 01 — 6.27E -  01 —
1

32 9.25 E - 0 4 2.23 1.15 E - 01 1.09 2.97E -  01 1.08
1

64 2.25 E - 0 4 2.04 5.72E  - 02 1.00 1.411? — 01 1.07
T 5.61 E - 0 5 2.00 2.85E  - 02 1.01 7.02E  -  02 1.011^8

256 1.4015 - 0 5 2.00 1.4215- 02 1.00 3.51 E -  02 1.00

Table 3.2: L2(Dh) error estimates for the u, qx and qy for test problem 1, e =  0.99

h | |u  — U ll-£<2 Rate I k *  -  Qx I U 2 Rate I k y  — Qy\ | l 2 Rate
l
16 1.09£ 02 — 7.431? - 01 — I M E  A 00 —
1

32 3.17 E 03 1.78 5.521? - 01 0.43 1.641? + 00 0.00
1

64 8.191? - 0 4 1.95 3.591? - 01 0.62 1.511? + 00 0.11
1 1.74 E - 0 4 2.24 1.87E  - 01 0.94 1.20£  + 00 0.341^8

256 3.27 E - 0 5 2.41 8.51 E - 02 1.13 6.18 E - 01 0.96

Table 3.3: L2(Dh) error estimates for the u, qx and qy for test problem 1, e =  0.999
h || 1/ -  u f1\\l 2 Rate I k *  -  Qx \\l 2 Rate I k y  ~  Qy \\l 2 Rate
i
16 1.22 E - -0 2 — 8.28E  - 01 1.9115 +  00
1

32 3.97E --03 1.62 6.92E  - 01 0.26 2.19£ +  00 < 0
1

64 1.29E --03 1.63 5.741? - 01 0.27 2.481? +  00 < 0
1 4.09E --04 1.65 4.6515 - 01 0.30 2.691? + 00 < 01^8

256. 1.25 E - -04 1.72 3.57E - 01 0.38 2.75 E  +  00 < 0

The numerical experiments using Krylov subspace methods for problem 1 are 

reported in Table 3.4. The table includes the number of iterations required to attain



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 41

convergence, Nit, and the solution timings. For the CG, the set-up time for the 

preconditioner, i.e the time required to perform the incomplete Cholesky factorisation 

of the coeffcient matrix, is reported separately.

The post-processing time (MHFEM only) whereby the potential and velocity so­

lutions are obtained from the Lagrange multipliers solution should also be considered. 

However this is negligible if compared with the set-up and solution times reported 

in Table 3.4. In fact, for a fine mesh, h = the post-processing time is only 0.15 

seconds.

The data reported in Table 3.4 can be summarised as follow:

1. MINRES, equipped with the Schur complement preconditioner (2.41) is h- 

optimal and C-optimal, when C is an isotropic diagonal tensor;

2. CG using an incomplete Cholesky factorization of the coefficient matrix D as 

preconditioner, is C-optimal but not h-optimal. Nit grows linearly with h leading 

to large CPU times for fine meshes;

3. On average the PCG CPU cost per iteration is lower than that required for 

preconditioned MINRES. Although this is a significant advantage of PCG, it is 

the overall number of iterations Nit which determines the total CPU cost tcpu\

4. The results presented indicate that heterogeneity has no effect on the perfor­

mance of preconditioned MINRES. Conversely, although relatively small, an 

increase of Nit and consequently tcpu is recorded using PCG for either small 

or large values of c.

The numerical experiments using algebraic multigrid as preconditioner are pre­

sented in Table 3.5. The main results can be summarised as follow:
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Table 3.4: Iteration count and timings (set-up+solution time) for p — M  I N  R E S  and 
PCG - Test problem 1

P - M I N R E S PCG
h e Nit tcpu Nit tcpu
r

64 e =  0.999 43 0.97 135 1.11 + 1.35
e =  0.99 43 0.97 139 1.10+1.42
e =  0.9 44 1.03 138 1.11 +  1.42

" l
128 e =  0.999 43 5.54 256 17.97+11.63

e =  0.99 43 5.46 255 17.99 + 11.87
e =  0.9 43 5.58 270 18.09 + 12.10

1
256 e =  0.999 43 28.38 525 285.16 + 113.93

e =  0.99 43 28.34 495 281.56 +  108.26
e =  0.9 43 28.36 535 284.56 +  117.26

1. Inverting the Schur complement by AMG is more efficient than using sparse 

direct solvers. This determines lower CPU times than recorded in Table 3.4 

even though the number of MINRES iterations is larger;

2. The computational efficiency of the AMG precoditioner is partly nullified by the 

large CPU time required to construct the coarse grids. This CPU cost grows 

linearly with the mesh size;

3. CG solution times and iteration counts are significantly reduced when one V- 

cycle of AMG code is used to approximately invert the MHFEM coefficient 

matrix;

4. As for the MINRES case the efficiency of AMG is partly nullified by the large 

computational cost of constructing the coarse grids for the approximation. Note 

that the coarsening process implemented on the MHFEM linear system is twice 

as expensive as the one implemented on the Schur complement system;

5. Both AMG implementations are /i-optimal and C-optimal;

6. Heterogeneity has no effect on the performance of both solvers.
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Table 3.5: Iteration count and timings (set-up+solution time) for p — M I N R E S a m g  

and PCG a m g  - Test problem 1
v - M INRESamg PCG amg

h e Nit tcpu Nit tcpu
...1

64 e =  0.999 49 1.33 +  0.98 9 1.93 +  0.13
e = 0.99 51 1.37 +  1.05 9 1.94 +  0.13
e =  0.9 51 1.29 +  1.04 9 1.95 +  0.13

1
128 e =  0.999 51 8.04 +  4.21 10 13.98 +  0.50

e =  0.99 52 8.28 +  4.38 9 14.10 +  0.43
e =  0.9 51 8.04 +  4.28 9 13.88 + 0.42

1
256 e =  0.999 56 110.60 +  22.42 9 269.54 +  2.20

e -  0.99 56 109.60 +  22.62 10 281.54 +  2.34
e =  0.9 54 108.31 +  22.03 9 268.47 + 2.29

3.2 .2  P rob lem  2: h eterogen eou s, anisotropic and diagonal C

The second test problem considers an heterogeneous, anisotropic and diagonal 

tensor. The conductivity coefficient C(x) is given by

C(x) = (3.7)
ax2 +  y2 0

0 x2 +  y2

The anisotropy degree of the conductivity field varies depending on the values of 

the coefficient a. When a = 1, the conductivity field is isotropic.

The potential and velocity analytical solutions are chosen so that homogeneous 

Dirichlet boundary conditions are prescribed on T. These are,

u(x) =  (x -  x2)(y -  y2),

( \
(;y2 +  x2a ) ( - l  +  2x)y ( - \  +  y) (3.8)

q (x )=  -

 ̂ (x2 +  y2) x ( - 1 +  x ) ( - l  +  2y) ^

The source term is obtained by substituting (3.8) and (3.7) in (2.1), so that

/(x )  =  —2 xay  + 2 xay2 +  6x2ay  — 6x2ay2+

2y3 — 2y4 — 2xy +  6xy2 +  2x2y -  6x2y2 +  2x3 — 2x4.
(3.9)
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The MFEM potential and velocity solutions for a = 1 is depicted in Figure 3.2(a). 

The source term corresponding to (3.9) is illustrated in Figure 3.2(b).
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(a) Potential u and velocity q solutions (b) Source term /(x )

Figure 3.2: MFEM solutions and source term - Test problem 2

Tables 3.6, 3.7 and 3.8 show L2(Dh) error estimates for the potential and the 

x and y components of the velocity field, for a  =  10- 2, 1 ,102, respectively. As for 

the previous test case second order convergence, 0 ( h 2), is recorded for the potential 

solution and first order convergence, G(h), for the velocity solutions. Note that, 

although the convergence rates are preserved for all values of a , for the anisotropic 

case the absolute errors are two orders of magnitude larger for the potential solution 

and one order of magnitude larger for the velocity solutions when compared to the 

isotropic case.

The tables also include the minimum value for the potential solution, umin. Ac­

cording to (3.8), u(x) is always positive and it ranges from 0, at the domain bound­

aries, to 0.0625 at the center of the domain. Interestingly, for large anisotropic factors 

(a =  102) unphysical negative oscillations in the potential solution are recorded (see
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Table 3.8) for all values of h. The same behaviour is not recorded for small values of 

a  (see Table 3.6).

Table 3.6: L2{Dh) error estimates for the u, qx and qy for test problem 2, a = 10-2

h ||u -  uh \ \L 2 Rate ||qx -  g j \ \ L 2 Rate \\qy -  qy \ \ L 2 Rate
X  
¥
1
at1̂ 8

-256

1 .0 5 £ - 03 - 3.44E - 03 — 4.14E -  03 - 3 .1 5 E -0 4
2.80E - 04 1.91 1.73 E - 03 0.99 2.09E -  03 0.99 8.02£ -  05
7.11 E - 05 1.98 8.69E - 04 1.00 1.05E -03 1.00 2.02E -  05
1.78 E - 05 2.00 4.35E - 04 1.00 5.24E -  04 1.00 5.07E -  06
4.46E - 06 2.00 2.17 E - 04 1.00 2.62E  -  04 1.00 1.27E -  06

Table 3.7: L2{Dh) error estimates for the u, qx and qy for test problem 2, a = 1 

~~h \\u -  uh \ \ L 2 Rate \\qx -  qx \\^ Rate \\qy -  g j \ \ L 2 Rate umin

1
1
at1̂ 8

-256

1 .8 5 E - 04 — 4.32E - 03 — 4.32E -  03 - 3.22E -  04
4.65E - 05 1.99 2.18E - 03 0.99 2.18E -  03 0.99 8 .H E  — 05
1.16J5 —05 2.00 1 .0 9 E - 03 1.00 1 .09E -03 1.00 2.03E -  05
2.90E - 06 2.00 5.47E - 04 1.00 5.47E -  04 1.00 5.08E -  06
7.26E - 07 2.00 2.74E - 04 1.00 2.74E -  04 1.00 1.27E -  06

5.38E - 03 - 3.57E - 01 - 3.00E - 01 - - 8.10E - 03
1 .3 5 E - 03 1.99 1 .7 9 E - 01 0.99 1 .5 1 E - 01 0.99 -2 .1 9 E - 03
3.39E - 04 2.00 8.97E - 02 1.00 7.53E - 02 1.00 -5.65E - 04
8.47E - 05 2.00 4.49E - 02 1.00 3.77E - 02 1.00 -1 .4 3 E - 04
2 .12E - 05 2.00 2.24E - 02 1.00 1.88E  - 02 1.00 -3.58E - 05

Table 3.8: L2(Dh) error estimates for the u, qx and qy for test problem 2, a = 102 

~ h  ||u -  uh \ \ L 2 Rate \\qx -  q* \ \ L 2 Rate \\qy -  q% \ \ L 2 Rate u ~
X  
16 
J_
32 X 
64 1
1̂ 8 
256

The computational cost of solving the MFEM and MHFEM linear systems for 

diagonal anisotropic conductivity coefficients is reported in Tables 3.9 and 3.10.

Following the same structure used for test problem 1, Table 3.9 reports the com­

putational cost of MINRES using the exact version of preconditioner (2.18). For the 

MHFEM system, CG is used in conjunction with an incomplete Cholesky factorisation 

of the coefficient matrix.

The numerical experiments were carried out with anisotropic coefficient a ranging 

from 10-2 to 102. The main results reported in Table 3.9 are summarised as follows:
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1. Anisotropy deteriorates the performance of both preconditioned MINRES and 

CG. The number of p — M I N R E S  iterations for a =  10-2 and a = 102 is 

between five to six times larger than for the isotropic case;

2. For finer meshes (h =  the factorisation of the coefficient matrix becomes 

increasingly costly, determining larger CPU costs than preconditioned MINRES;

3. In general, the solvers are not C-optimal. However, fixing a, MINRES is h- 

optimal. The CG iteration count varies largely also for fixed a.

Table 3.9: Iteration count and timings (set-up+solution time) for p — M I N R E S  and 
PCG  - Test problem 2

V - M IN R E S PCG
h Oi Nit tcpu Nit tcpu
l

64 P II t—* o to 240 5.93 78 0.99 +  0.92
a = 1 43 0.82 112 1.08 +  1.13

a  =  10"2 211 5.10 110 1.03 +  1.10
1

128 a  =  102 246 32.51 155 15.80 +  6.94
a = 1 43 5.40 219 17.45 +10.03

a  =  10“2 226 29.66 225 16.39 +  10.38
..”1 "

256 a  =  102 248 166.29 313 242.93 +  67.91
a  =  1 43 28.68 435 266.38 +  94.77C41oII8 233 155.29 465 248.99 +100.43

The results for the numerical experiments using AMG as preconditioner for CG and 

MINRES are reported in Table 3.10. These can be summarised as follow:

1. In contrast to the isotropic case, the overall CPU cost (AMG coarsening and 

MINRES solution time) is lower than the exact version (see Table 3.9);

2. Similarly to test problem 1, the solution timings and iteration counts recorded 

for CG preconditioned by the AMG approximation of the coefficient matrix 

are by far the smallest among all methods considered. The AMG efficiency is 

partly nullified by the large cost of constructing the grids for the approximation.



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 47

This is twice as much as implementing the coarsening on the Schur complement 

system;

3. The experiments show that, for a  ^  1, the number of CG iterations varies 

slightly with respect to the isotropic case. Conversely, the MINRES iteration 

count is between five to six times larger.

Table 3.10: Iteration count and timings (set-up+solution time) for p —M I N  R E S  a m g  

and PCG a m g  - Test problem 2

h a
p — M I N R E S a m g PCG a m g

Nit tcpu Nit tcpu
" l '

64 a  =  102 235 2.81 10 1.96 +  0.15
a  =  1 50 0.61 9 1.96 +  0.13

a =  10~2 212 2.51 11 2.04 +  0.15
1

128 a =  102 242 10.56 12 12.75 +  0.56
a =  1 52 2.17 9 14.36 +  0.44

P II ►-» o i to 227 10.11 12 14.01 +  0.56
..1 "
256 a =  102 245 54.91 13 241.33 +  3.18

a =  1 54 11.73 10 256.18 +  2.43
a =  IQ”2 232 52.73 12 251.11 +  2.88

When the conductivity coefficient is a diagonal anisotropic tensor, MINRES pre­

conditioned by (2.41) is not C-optimal. The reason for this is associated with the 

structure of the element stiffness matrix. It can be shown, in fact, that each row 

of the element stiffness matrix (triangular elements) is scaled with respect to both 

coefficients of the diagonal tensor, C (see Powell (2003)). This causes a significant de­

terioration in MINRES performance and loss of C-optimality which would otherwise 

be the case with isotropic coefficients. As we will see in §3.3.2, such a situation does 

not occur if rectangular elements are used.
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3.2.3 Problem  3: heterogeneous, anisotropic and full-tensor C

This test problem is reported in Younes & Fontaine (20086,o), Younes et al. (2010). 

The conductivity field is described by a full-tensor given by

y2 -1- ax2 (a — 1 )xy 

(a  — 1 )xy x2 -I- ay2 

The analytical solution for the potential is given by

(3.11)

C(x) = (3.10)

u(x) =  exp(-207r((a: -  +  -  i f ) ,

and the velocity vector is obtained using Darcy’s Law <?(x) =  C(x)Vu. The source 

term is obtained from /(x ) =  —V • C(x) Vu.

The MFEM potential and velocity solutions for h = ^  are depicted in Figure 

3.3(a) and the source term for a  =  1 is illustrated in Figure 3.3(b).
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(a) Potential u and velocity q solutions (b) Source term /(x )

Figure 3.3: MFEM solutions and source term for a  =  1 - Test problem 3

Note that the source term is symmetric with respect to y = x  and that the 

symmetry of the numerical solution improves with mesh refinement.
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Error estimates for a = 1,102,103 are reported in Tables 3.11, 3.12 and 3.13, 

respectively. Second order convergence for the potential and first order convergence 

for the velocities is confirmed also for the full-tensor case. However the magnitude 

of the errors increases significantly as the order of the anisotropy factor a increases. 

For a =  1000 the error in the potential and velocity solutions is three orders of 

magnitude larger than for the isotropic case. Hence, for large anisotropy the solution 

is unphysical and should be considered with care.

A proof of this is given by the minimum and maximum values of the potential 

solution. This is always positive and ranges from approximately zero close to the 

boundaries to one at the centre of the domain. For a  =  102 and a = 103 the minimum 

and maximum values of the numerical solution are significantly below and above the 

physical limits of the analytical solution. These unphysical oscillations become less 

severe for finer meshes, indicating that local mesh refinement could potentially resolve 

this problem.

Note that spurious oscillations are also present for the isotropic case. This is 

discordant with results obtained for test isotropic case in test problem 2 (see Table 

3.7). Although this is somewhat surprising it largely agrees with results presented by 

other researchers. Younes & Fontaine (20086) shows that for the same test problem 

spurious negative oscillations are present on isotropic and anisotropic numerical ex­

periments not only for the MFEM but also for the MPFA method. In the isotropic 

case the spurious oscillations disappear with mesh refinement, in fact for the case 

of h = gig (n°t shown in Table 3.11) negative oscillations are of the order of 10~7. 

Reasons for negative oscillations in the isotropic case are not reported by Younes & 

Fontaine (20086) and this matter requires further future investigation.



Table 3.11: L2(Dh) error estimates for the u , qx and qy for test problem 3, a = 1
h | | u  — vH i t Rate I k *  -  Qx I U 2 Rate I k y  -  i )\\it Rate Umin ^moi
l 4.295 - 0 3 — 1.25 5 - 01 — 1.25 5 - -01 — -2.90 5 - -03 9 .2 5 5 - 01

32 1.08 E - 0 3 1.98 6.12 5 - 02 1.03 6.125--0 2 1.03 -6.03E --04 9 .8 1 5 - 01
1

64 2.72 E - 0 4 2.00 3.04E - 02 1.01 3.045 --0 2 1.01 -1.21 5 - -04 9 .9 5 5 - 01
1 6.80 E - 0 5 2.00 1.52 5 - 02 1.00 1.525 --0 2 1.00 -2 .485  --05 9.995 - 011|8

256 1.70 E - 0 5 2.00 7.59E - 03 1.00 7.595 --03 1.00 -5 .1 7 5 --06 1.005 + 00

Table 3.12: L2(Dh) error estimates for the u , qx and qy for test problem 3, 102

h | l u - u ' W v Rate l k * - g J I U * Rate I k y  — 9 y  IIl 2 Rate Wmin Umax
" T - ""

¥
¥
¥
1^8
266

5 .1 2 5 -0 1  
1.585 -  01 
4.435 -  02 
1 .1 7 5 -0 2  
2.995 -  03

1.70
1.84
1.92
1.97

1.155 + 01 
5.435 + 00 
2.545 + 00 
1.235 + 00 
6.075 -  01

1.08
1.10
1.05
1.02

1.155 +  01 
5.435 +  00 
2.545 +  00 
1.235 +  00 
6.075 -  01

1.08 -  
1.10 -  
1.05 -  
1.02 -

1.565 + 00 
5.205 -  01 
1 .4 3 5 -0 1  
3.745 -  02 
9.425 -  03

4.595 +  00 
2.175 + 00 
1.325 +  00 
1.085 +  00 
1.025 +  00

Table 3.13: L2(Dh) error estimates for the u , qx and qy for test problem 3, a  =  103

h \ \ u - u h \ \L 2 Rate I k *  -  t f l U * Rate h y - Q y W ^ Rate U m in U m ax

\ 6
¥
614
1^8

256

5.225 +  00 
1.635 +  00 
4.655 -  01 
1.255 -  01 
3.275 -  02

1.68
1.81
1.89
1.94

1.175 +  02 
5.535 +  01 
2.575 +  01 
1.235 +  01 
6.085 +  00

1.08
1.10
1.06
1.02

1.175 +  02 
5.535 +  01 
2.575 +  01 
1.235 +  01 
6.085 +  00

1.08 -  
1.10 -  
1.06 -  
1.02 -

1.645 +  01 
6.205 +  00 
1.845 +  00 
4.995 -  01 
1 .3 1 5 -0 1

3.825 +  01 
1.315 +  01 
4.305 +  00 
1.855 +  00 
1.215 +  00
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The computational cost of solving the linear systems of equations using p — 

M I N R E S  and PCG  is reported in Table 3.14. The main results of this table can be 

summarised as follows:

1. As previously observed for test problem 2, for large degrees of anisotropy the 

performance of the MINRES solver deteriorates significantly. The larger the 

value of a the worse it performs;

2. Conversely, CG behaves quite differently for full tensor coefficients. Namely, 

CG solution timings and iteration counts seems to decrease for increasing a. 

This behaviour is considered to be problem related;

3. For small and medium size meshes, PCG  is largely more efficient than p — 

M I N R E S .  However, for finer meshes (h =  the cost of implementing the 

Cholesky factorisation grows significantly. Thus for a =  102, MINRES is more 

efficient than CG and vice versa for a = 103.

Table 3.14: Iteration count and timings (set-up+solution time) for p — M I N R E S  
and PCG - Test problem 3

p - M I N R E S PCG
h a Nit tcpu Nit tcpu
l
64 a  == 103 460 11.57 12 0.94 +  0.16

a  == 102 271 6.61 21 0.95 +  0.24
a = 1 43 1.01 113 1.10 +  1.17

1
128 a == 103 380 49.37 14 15.56 + 0.67

a  == 102 316 41.25 37 15.36 +  1.73
Q; = 1 45 5.69 220 17.09+10.02

1
256 a == 103 474 316.87 18 238.50 +  4.13

a = II ►—±
 

o to 334 222.67 73 238.48 +  16.31
a = 1 45 29.40 441 266.61 +  97.68

The numerical experiments results using AMG are reported in Table 3.15. These can 

be summarised as follows:
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1. The efficiency of the iterative solvers when used with AMG preconditioners is 

confirmed also for problems with general full tensor coefficients;

2. In contrast to Table 3.14, the number of CG iterations and solution timings 

increase with increasing anisotropic coefficient;

3. The CG iteration count is between seven to twenty-one times larger than the ref­

erence isotropic case, a = 1. This differs significantly from the results recorded 

for diagonal anisotropic coefficients and indicates that the AMG  approximation 

of the coefficient matrix is not a robust preconditioner for CG when general full- 

tensor coefficients are used;

4. As for Table 3.14 it is evident that no one solver consistently performs better 

than the others. Instead, the solvers’ performance depends on the size of the 

mesh and the degree of anisotropy. Thus p — M I N R E S a m g  performs better 

for fine meshes, h = ^ 5, and PCG a m g  performs better for medium to small 

size meshes.

Table 3.15: Iteration count and timings (set-up+solution time) for p — M I N R E S a m g  

and PCG a m g  - Test problem 3
P ~ M I N  R E S  a m g PCG a m g

h a Nit tcpu Nit tcpu
1

64 a = 103 475 1.58 +  4.50 195 2.22 +  1.94
a = 102 285 1.60 +  2.84 64 2.18 +  0.66
a — 1 50 1.27 +  0.46 8 1.97 +  0.12

1
128 a  =  103 415 9.63+18.63 192 14.73 +  8.84

a  = 102 345 9.51 +  15.32 65 15.03 +  2.93
a = 1 52 8.14 +  2.19 9 14.39 +  0.43

1
256 a = 103 546 102.33 +  129.59 192 249.91 +  49.38OrHIIe 383 101.38 +  91.70 66 252.64 +  17.03

a  =  1 54 111.51 +  11.36 9 271.42 + 2.14
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3 .2 .4  P rob lem  4: d iscon tin u ou s, anisotropic and full-tensor C

This test problem was originally presented in Crumpton et al. (1995). Using this 

example we intend to assess the efficiency and accuracy of MFEM for cases in which 

the conductivity coefficient is strongly discontinuous. This is a situation which is 

very often encountered in applications and therefore of significant importance for this 

work.

Define D =  [—1, l ]2 and C is given by

9 1
(3.12)

The parameter a controls the strength of the discontinuity at x = 0. The exact 

solution for this test problem is given by

1 0 2 1
c = for x < 0, C = a for x > 0

0 1 1 2

u(x) = < (3.13)
(2 sin(y) +  cos(y))ax T- sin(y) for x < 0,

exp(rr) sin(y) for x > 0 .

The MFEM solutions for a  =  1 and a = 100, for h = ^  are illustrated in Figure

3.4.

Error estimates for a =  1 are reported in Table 3.16. For this test problem 

we observe the loss of one order of magnitude in the rate of convergence for the 

potential solution. However, the velocity solution retains the characteristic first order 

convergence rate which was recorded also for the other test problems. The error for the 

potential solution is located at the discontinuity and it vanishes as h is progressively 

refined. Local mesh refinement at the location of the discontinuity should enhance 

the rate of convergence in the potential solution.

Tables 3.17 and 3.18 report discrete error estimates for a  =  101 and a =  102. 

Interestingly, the magnitude of the errors in the potential solution are of the same 

order as those reported for a = 1. In contrast, the velocity errors are one and two
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(a) a  =  1 (b) a  =  102

Figure 3.4: MFEM solutions for a = 1 ,102 - Test problem 4

orders larger, respectively. Noticeably, the potential convergence rate is slightly lower 

than one for a  = 10 and h =  ^  and it approaches 0(h%)  for a  = 100 and h =

Table 3.16: L2(D h) error estimates for the u, qx and qy for test problem 4, a  = 1 
~ h  | | tt -  uh\\v  Rate \\qx -  q*\\& Rate ||gy -  q* \ \ L 2  Rate 
==X =

I  
£
¥
1J8

8.06E -  03 — 1.77E - 01 — 1.712? -  01 —

3.35E -  03 1.27 8.912? —02 0.99 8.552? -  02 1.00
1.63£ -  03 1.04 4.462? - 02 1.00 4.27E  -  02 1.00
8.27E  -  04 0.98 2.23E  - 02 1.00 2.13£ -  02 1.00
4 .1 9 £ -0 4 0.98 1.12 E  - 02 1.00 1.07£ -  02 1.00

Table 3.17: L2(D h) error estimates for the u, qx and qy for test problem 4, a  =  101 

~~h ||u -  uh \ \ L 2  Rate \\qx -  q£ \ \ L 2  Rate \\qy -  q* \ \ L 2  Rate

1  
£

ip  
_25fL

1.342? --0 2 — 1.77 E  + 00 — 1.73£ +  00 —

4.62E  --03 1.54 8.92E  - 01 0.99 8.67 E - 0 1 1.00
2 .22E  --03 1.06 4.472? - 01 1.00 4.332? - 0 1 1.00
1.17 E - -03 0.93 2.242? - 01 1.00 2.17 E - 0 1 1.00
6.05E  --04 0.95 1.122? —01 1.00 1.082? - 0 1 1.00

Solver performances for test problem 4 are reported in Tables 3.19 and 3.20. The
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Table 3.18: L2(Dh) error estimates for the u , qx and qy for test problem 4, a = 102

h ||ix — uh\\l2 Rate II Qx 11x \\l? Rate Iky -  Qy IU2 Rate
l
16 1.17 5 - 01 — 1.77 E +  01 — 1.745 +  01 -
1

32 2.90E  - 02 2.01 8.94 E +  00 0.99 8.695 +  00 1.00
1

64 7 .1 4 5 - 03 2.02 4.485 +  00 1.00 4.345 +  00 1.00
1

128 1.89 5 - 03 1.92 2.24 E +  00 1.00 2.175 +  00 1.00
I

_236 6.60E  - 04 1.52 1.12 E +  00 1.00 1.095 +  00 1.00

results reported in these two tables can be summarised as follows:

1. MINRES iteration count for problems with discontinuities is larger (between 

30% to 40%) than for continuous problems. The same behaviour is observed 

for the exact and approximated versions of preconditioner (2.41);

2. It appears that the exact version of p — M I N R E S  is by far the most efficient 

solver for problems with discontinuities. For all other methods considered the 

CPU time required to either implement the factorisation or construct the coarse 

grids significantly penalises the performance of the solvers;

3. For all methods the order (governed by a) of the discontinuity has virtually no 

effect on the solvers performance. It appears that for larger a, i.e. sharper vari­

ation in the conductivity at the discontinuity, the number of iterations is smaller 

than for smaller a, i.e. more homogeneous conditions at the discontinuity;

3.2 .5  P rob lem  5: d istorted  trian gu lar m esh

In this section the behaviour of the numerical methods on distorted meshes is 

assessed. Although the mesh is distorted the finite element connectivity is regular,

i.e. any node has the same number of neighboring nodes. Experiments on irregular 

connectivity are not reported in this thesis.
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Table 3.19: Iteration count and timings (set-up+solution time) for p — M I N R E S  
and PCG - Test problem 4

P ~ M I N R E S  PCG
h a Nn tcpu Nu tcpu
£  a  =  102 65 1.23 85 0.97 +  0.87

a  =  101 68 1.31 84 0.95 +  0.85
a = l  68 1.32 83 0.94 + 0.83

^  a =  10̂  65 8^69 165 15.48 +  7.47
a  == 101 67 8.77 165 15.27 +  7.62
a  =  1 68 9.26 162 15.33 +  7.27

a = 10‘} 64 4+08 325 240.71 + 73.00
a  =  101 67 48.45 323 238.17 + 73.01
a  =  l  68 45.95 318 245.11 +  71.28

Table 3.20: Iteration count and timings (set-up+solution time) for p —M I N  RE S  a m g  

and PCG a m g  -  Test problem 4
p — M I N  R E S  a m g   PCG a m g

h a Nit tcpu N it tcpu
a  =  102 78 1.33 +  0.75 12 2.12 +  0.16
oc — 101 82 1.38 +  0.78 12 2.08 +  0.16
a = l  83 1.35 +  0.74 12 2.12 +  0.16

^  a = 102 79 8.15 +  3.21 12 14.63 +  0.64
a  =  101 83 8.08 +  3.36 12 14.76 +  0.58
a  =  1 84 8.04 +  3.44 12 15.03 +  0.61

2̂  a  =  102 78 102.86 +  20.72 13 278.41 +  3.70
a = 101 85 108.85 +  21.10 13 252.37 +  3.28
a = 1 85 114.45 +  21.39 12 260.69 +  2.93

The test problem is taken from Arnold et al. (2005). The analytical solution on 

the unit square domain is u = x{l — x)y{ 1 — y). The conductivity coefficient is a unit 

scalar. Therefore, (2.1) simplifies to the Poisson’s equation in this case.

The distorted mesh is created perturbing the node coordinates of the original 

structured mesh according to

unst — X st +  z h

where z is a uniformly distributed random number in the range [—0.5,0.5] and a 

regulates the order of the perturbation. Distorted meshes are created at each dis­

cretisation level.
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An example of structured and unstructured meshes used for this test problem is 

given in Figure 3.5. For the experiments herein considered a  =  1.2.

08

0.4

0 0.1 02 03 0.4 0.5 03 0.7 0.8 0.9 1

1

0.7

0.S

0.4

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08  08  1

(a) Structured mesh (b) Distorted mesh

Figure 3.5: Structured and perturbed triangular finite element mesh for h = - Test
problem 5

Discrete error estimates for the structured and unstructured cases are reported in 

Table 3.22. It appears that the magnitude of the errors and the convergence rate are 

not affected by the irregular meshing. Hence the potential converges with rate 0 ( h 2) 

and the velocities with rate 0(h) .  It is clear tha t the mixed method is also suitable 

for accurate approximations on distorted meshes.

The performance of the solvers is reported in Tables 3.22 and 3.23. The results 

reported in the tables can be summarised as follow:

1. Both versions of preconditioned MINRES are h-optimal. For the unstructured 

case the iteration count is slightly larger and some small variations with h are 

recorded.

2. CG using the incomplete Cholesky factorisation of the coefficient matrix is not
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Table 3.21: L2(Dh) error estimates for the k, qx and qy for test problem 5

Structured Meshes
h ||U -  Uh\\L2 Rate IIQx ~ qx \\l* Rate Iky -  4 IU2 Rate
l"
16 6.32E -  05 — 4.08E  -  03 — 4.08£ -  03 —
1
32 1.59£ -  05 1.99 2.05£ -  03 0.99 2.05£ -  03 0.99
1
64 3.98£ -  06 2.00 1 .0 3 £ -0 3 1.00 1 .03E -03 1.00
T
128 9.97£ -  07 2.00 5 .1 3 £ -0 4 1.00 5.13E -  04 1.00
I

256 2.49E  -  07 2.00 2.57E  -  04 1.00 2.57E  -  04 1.00
Unstructured Meshes

h ||u -  uh \ \ L 2 Rate \\Qx -  tflU* Rate Iky ~ Qyh* Rate
l
16 6 .9 1 E -0 5 — 4.511? — 03 — 4.90E -  03 —
1
32 1 .7 8 £ -0 5 1.96 2.41£ -  03 0.90 2.37E -  03 1.05
1
64 4.30£ -  06 2.05 1 .1 6 E - 0 3 1.06 1 .1 6 ^ -0 3 1.03
1

128 1 .0 6 £ -0 6 2.02 5.66E1 -  04 1.03 5.65£ -  04 1.04
I

256 2.60£ -  07 2.02 2.77E -  04 1.03 2.77E -  04 1.03

h-optimal. Also for this method a larger iteration count is recorded for unstruc­

tured meshes.

3. The AMG  version of CG is h-optimal. As for the other test problems the 

efficient performance of CG is penalised by the large CPU cost of creating the 

AMG  grids;

Table 3.22: Iteration count and timings (set-up+solution time) for p — M I N  RES  
and PCG  - Test problem 5

Structured Meshes
P ~ M I N R E S PCG

h Nit tcpu Nit tcpu
i
¥
1|8
256

43
43
43

0.82
5.43

28.78

91
164
310

0.96 +  0.95 
15.01 +  7.83 

243.92 + 70.11
Unstructured Meshes

P ~ M I N R E S PCG
h Nit tcpu Nit tcpu
1".

¥
ip
256

52
51
49

0.99
6.56
32.68

97
190
369

0.97+1.04 
15.25 +  9.24 

237.46 +  82.39
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Table 3.23: Iteration count and timings (set-up+solution time) for p —M I N R E S amg 
and PCGamg - Test problem 5

Structured Meshes
P ~ M I  N  R E S amg PCGamg

h Nit tcpu Nn tcpu
l
64
1̂ 8
256

48
48
48

1.28 +  0.45 
8.01 +  2.02 

112.57+10.81

9 1.97 + 0.15
9 13.65 +  0.46
10 224.68 +  2.63

Unstructured Meshes
P ~ M I N R E S amg PCGamg

h Nit tcpu Nu tcpu
1
¥
1J8
256

63
61
63

1.62 +  0.66 
9.05 +  3.08 

112.91 +  15.00

16 2.56 +  0.30 
16 17.39 +  0.85 
14 277.21 +  3.47

3.3 Numerical experiments on rectangular meshes

In this section the numerical experiments previously carried out on triangular 

meshes are performed on rectangular meshes. It is worthwhile to anticipate that all 

findings highlighted in the previous sections are also valid for rectangular meshes. 

However, for some test problems, there are some major differences with respect to 

the triangular case.

3.3.1 P rob lem  1: h eterogen eou s, isotrop ic  and diagonal C

Tables 3.24, 3.25 and 3.26 report discrete error estimates for e = 0.9,0.99,0.999, 

respectively. For the case of small heterogeneity, i.e. e = 0.9, the solutions con­

verge with order larger than second. In fact, the convergence rate for the potential 

is 0 (h 2m) and for the x  and y components of the velocity field are G(h216) and 

<D(h221), respectively. This is significantly different from the convergence rates ob­

served on triangular meshes, whereby first order convergence was recorded for the 

velocity solution (see §3.2.1).

Furthermore, for the same level of discretisation, the magnitude of the error po­
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tential for the rectangular case is lower than the triangular case. For the velocity 

solution this is two orders of magnitude lower.

For the case of moderate heterogeneity, i.e. e =  0.99, larger convergence rates 

are recorded for the potential solution, 0 ( h 2'28). However the velocities components 

converge at rates 0 ( h 102) and 0 ( h 146), respectively. Although these rates are lower 

than for the case of e =  0.9, these are significantly better than the triangular case.

For the case e =  0.999 the convergence rates and the magnitude of the error are 

comparable to those recorded for the triangular case.

Table 3.24: L2(Dh) error estimates for the u , qx and qy for test problem 1, e =  0.9
~ h  ||u -  uh \ \ L 2 Rate \\qx -  q% \ \ L 2 Rate \\qy -  q% \ \ L 2 Rate 
= T=

1  
£
Vip  

256

2 M E  -  03 — 1 .6 6 E - 01 — 8.34£ -  02 -
6.10E — 04 2.27 3.45E  - 02 2.27 9.47JF -  03 3.14
1 .4 9 £ -0 4 2.03 6.87E  - 03 2.33 2.96E -  03 1.68
3.72E -  05 2.00 1.69 E - 03 2.03 7.29E -  04 2.02
9 .3 1 E -0 6 2.00 4.20E  - 04 2.01 1.81E — 04 2.01

Table 3.25: L2(Dh) error estimates for the u, qx and qy for test problem 1, e =  0.99
h ||u — U IU2 Rate h x  -  i i n * Rate \\Qy {1 IU2 Rate
l
16 8.57E - 03 — 6A2E --0 1 — 1.56 E + 00 —
1

32 2A3E - 03 1.82 4.82 E - -0 1 0.41 1A8E + 00 0.07
1

64 5.88 E - 04 2.05 3.14E--0 1 0.62 1.04 E + 00 0.50
1 1.0 6 E - 04 2.47 1A7E - - 01 1.10 3 M E — 01 1.521|8 

_256 . 1.54 E - 05 2.78 3.77E --0 2 1.96 2.72 E - 02 3.74

Table 3.26: L2(Dh) error estimates for the u , qx and qy for test problem 1, e =  0.999 
h \\u — uh \ \ L 2 Rate || qx — qx \\tf Rate \\qy — qy \\L2 Rate

9.78E --03 — 7.11 E - -0 1 — 1.87£ + 00
3.18 E - -03 1.62 5.98E --0 1 0.25 2.18£ + 00 < 0
1.02 E - -03 1.64 5.00E --0 1 0.26 2A8E + 00 < 0
3.22E --04 1.67 4.07E --0 1 0.29 2.69 E + 00 < 0
9.50E --05 1.76 3.15 E - -0 1 0.37 2.67 E + 00 0.01

The solvers performance is recorded in Table 3.27. The same findings summarised 

in §3.2.1 for triangular meshes also apply to rectangular meshes. In addition to those
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it should be noted that:

1. Solvers’ CPU timings for the rectangular case are significantly lower than the 

triangular case. This is obviously associated with the smaller size of the coeffi­

cient matrix in the former case. For the same reason the cost of implementing 

the Cholesky factorisation is considerably lower;

2. p — M I N R E S  iteration count for the rectangular case is comparable to the 

triangular case. Although a slightly larger variability is recorded, h-optimality 

and C-optimality is preserved;

3. In contrast to the MINRES solver, the CG iteration count for the rectangular 

case is significantly smaller than the triangular case.

Table 3.27: Iteration count and timings (set-up+solution time) for p — M I N R E S  
and PCG - Test problem 1

P ~ M I N R E S PCG
h e Nit tcpu Nit tcpu
l

64 e = 0.999 45 0.65 88 0.55 +  0.62
e = 0.99 46 0.62 89 0.57 +  0.62
€ = 0.9 44 0.67 97 0.56 +  0.70

1
128 € = 0.999 45 3.35 170 8.72 +  5.45

e = 0.99 46 3.31 173 8.66 +  5.48
€ = 0.9 39 2.78 189 8.77 +  5.98

1
256 e =  0.999 44 15.72 336 132.36 +  50.83

e =  0.99 45 16.63 337 136.88 +  52.07
€ = 0.9 34 12.29 371 135.56 +  57.25

The results for the AMG experiments are reported in Table 3.28. The considerations 

highlighted in §3.2.1 regarding Table 3.5 are equally valid for rectangular meshes. 

Additionally we note that:

1. The CPU cost of constructing the AMG grids is significantly lower than the 

triangular case. Specifically, it is four times smaller for the Schur complement 

and three times smaller for the MHFEM coefficient matrix;
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2. Given the smaller size of the system of equations MINRES and CG CPU cost 

are significantly lower than the triangular case;

3. For isotropic coefficients, the AMG versions of MINRES and CG are efficient 

and robust solvers. However, their overall performance is penalised by the CPU 

cost of creating the AMG grids which is not negligible also for rectangular 

meshes.

Table 3.28: Iteration count and timings (set-up+solution time) for p —M I N  R E S amg 
and P C G amg - Test problem 1

v - M I N  R E S amg P C G amg
h e Nit tcpu Nit tcpu
i

64 e =  0.999 57 0.71 +  0.33 12 0.19 +  0.12
e = 0.99 56 0.71 +  0.34 13 0.19 +  0.13
e =  0.9 55 0.66 +  0.30 12 0.19 +  0.13

1
128 e =  0.999 57 3.18 +  1.05 13 6.55 +  0.43

e =  0.99 57 3.24+1.06 12 6.52 +  0.39

05OII 57 3.21 +  1.11 13 6.60 +  0.42
1

256 e = 0.999 59 25.11 +  6.67 13 99.00 +  2.09
e = 0.99 61 25.21 +  7.11 13 99.13 +  2.09
e =  0.9 57 25.25 +  6.62 13 98.75 +  2.10

3.3 .2  P rob lem  2: h eterogen eou s, an iso trop ic  and diagonal C

The settings for this test problem are described in §3.2.2. The error estimates on 

rectangular meshes are reported in Tables 3.29, 3.30 and 3.31 for a = 10_2,1,102. 

Second order convergence 0 ( h 2) is recorded for the potential and velocity solutions. 

Note that the same convergence rates are obtained for all values of the anisotropic 

coefficient, a. Furthermore the errors are approximately of the same order of magni­

tude.

As explained for the triangular case, the potential solution for this test problem 

is always positive and specifically it is 0 at the boundaries and 0.0625 at the center of 

the domain, so that 0 < u(x) < 0.0625, Vx 6 D. On triangular meshes and for a ^  1
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(see Table 3.28), the numerical solution presents unphysical negative oscillations. 

According to results shown in Tables 3.29, 3.30 and 3.31, the potential solution does 

not exhibit this erroneous behaviour on rectangular meshes.

Table 3.29: L2(Dh) error estimates for the u, qx and qy for test problem 2, a =  10 2

h || u  — U Rate Ik* -  qi IU2 Rate h y - q y IU2 Rate Umin
l
16 1.00# - 0 4 - 1.17 E - 04 — 2.40E  - 04 — 8.28E  - 04
1

32 2.55 E - 0 5 1.97 2.96E - 05 1.99 6.03E  - 05 1.99 2.021? - 04
T
64 6.39 E - 0 6 1.99 7A2E - 06 2.00 1.51jE7 —05 2.00 4.951? - 05
1 1.60 E - 0 6 2.00 1 .8 6 E - 06 2.00 3.781? - 06 2.00 1.22 E - 051̂ 8

256 4.00E - 0 7 2.00 4.64E  - 07 2.00 9A5E - 07 2.00 3.03 E - 06

Table 3.30: L2(Dh) error estimates for the u , qx and qy for test problem 2, a = 1
h ||u — Uh\\L* Rate Ik* -  qi 1U2 Rate Iky -  qy 1U2 Rate 'Umin
i

16 1.461? - 0 4 - 2.98E - 04 — 2.98 E - 04 — 7.69E - 04
1

32 3.70E - 0 5 1.98 7.501? - 05 1.99 7.50E  - 05 1.99 1.82 E - 04
T
64 9.291? - 0 6 1.99 1.88E - 05 2.00 1 .88E - 05 2.00 4.37E  - 05
1

128 2.32 E - 0 6 2.00 4.70E - 06 2.00 4.70 E - 06 2.00 1.061? —05
I

256 5.811? - 0 7 2.00 1.17 E - 06 2.00 1.17 E - 06 2.00 2.601? - 06

Table 3.31: L2(Dh) error estimates for the u , qx and qy for test problem 2, a = 102

h || u — uhI U 2 Rate I k *  -  q‘c)\\* Rate I k y  -  qy I U 2 Rate Umin
... l ■

16 6.08E - 04 — 4.91 E - - 0 2 — 1.07 E - 03 — 5.41 E - 04
1

32 1.5 6 E - 04 1.97 1.24 E - - 0 2 1.98 2.72E - 04 1.98 1.17 E - 04
1

64 3.88E - 05 2.00 3.11 E - -03 2.00 6.82E - 05 2.00 2.58E  - 05
1 9M E  - 06 2.00 7.79E --04 2.00 1.71 E - 05 2.00 5.861? —061^8

256 2A1E —06 2.00 1.95 E - -04 2.00 4.27 E - 06 2.00 1.37 E - 06

The solvers’ computational performance for problem 2 on rectangular meshes is 

presented in Table 3.32 and can be summarised as follows:

1. As opposed to the experiments carried out on triangular meshes (see Table 

3.9), preconditioned MINRES is C-optimal when the conductivity coefficient is 

diagonal and anisotropic;
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2. MINRES performance (in terms of Nu and tcpu) is completely independent of 

the degree of anisotropy;

3. CG performance is comparable to the one reported for triangular meshes, i.e. 

it is neither h nor C optimal;

Table 3.32: Iteration count and timings (set-up+solution time) for p — M I N R E S  
and PCG  - Test problem 2

P - M I N R E S PCG
h a Nit tcpu Nit tcpu
1

64 a = 10'2 38 0.65 68 0.57 +  0.49
a = 1 36 0.58 81 0.59 +  0.57CS1OrHII$ 37 0.58 83 0.56 +  0.59

1
128 a =  10'2 33 2.54 136 8.82 +  4.35

a = 1 33 2.53 158 8.66 +  4.99

P II o
i to 33 2.56 170 8.65 +  5.35

1
256 a  =  102 29 10.51 274 133.96 +  42.05

a = 1 29 10.51 311 135.29 +  47.04
a  =  10-2 30 10.78 353 139.34 +  54.00

The results for the AMG numerical experiments are reported in Table 3.33. The 

optimality of preconditioned MINRES, previously discussed, is also valid when the 

Schur complement is approximated by one V-cycle of black-box AMG. In addition to 

this, it is evident from Table 3.33 that:

1. In contrast to the experiments on triangular meshes, the number of MINRES 

iterations is approximately constant for a ^  1. Not surprisingly, for the isotropic 

case, Nu is generally lower;

2. For a ^  1, the number of CG iterations varies considerably. This is not the 

case for the experiments on triangular meshes (see Table 3.10). Reasons for the 

difference in performance between triangular and rectangular meshes are given 

below.
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Table 3.33: Iteration count and timings (set-up+solution time) for p —M I N  RE S amg 
and P C G amg - Test problem 2

P ~ M  I N  R E S amg PCGamg
h ex. Nit tcpu Nit tcpu
l

64 o =  102 52 0.77 +  0.35 12 1.27 +  0.13
0 = 1 47 0.67 +  0.28 15 1.23 +  0.14

a  =  10-2 54 0.73 +  0.33 19 1.24 +  0.17
1

128 a  =  102 56 3.73 +  1.23 13 6.15 +  0.54
0 = 1 46 3.16 +  0.87 15 6.66 +  0.49CS1OIIe 53 3.36 +  1.04 20 6.62 +  0.62

1
256 o =  102 59 28.74 +  7.25 14 87.01 +  2.62

0 = 1 46 25.61 +  5.34 16 100.19 +  2.74
o =  10~2 56 26.48 +  6.30 21 95.46 +  3.37

As pointed out in Table 3.33, the number of CG iterations varies considerably for

1. This is due to the fact that the coefficient matrix D is not an M-matrix for 

anisotropic diagonal tensors and rectangular meshes (Powell 2003). The black-box 

AMG code used in this work is set up to work with M-matrices. When this condition 

is violated the performance of black-box AMG can deteriorate significantly.

For triangular elements with diagonal-anisotropic coefficients, the Lagrange mul­

tiplier system D is always an M-matrix, hence AMG behaviour is not erratic and 

the number of CG iterations tends to vary only slightly for o ^  1 (see Table 3.10). 

Furthermore, as proved by (Powell 2003), the Schur complement (B A B T), which 

is used as preconditioner for MINRES, is always an M-matrix, hence the optimal 

performance of the AMG code is always guaranteed.

Preconditioned MINRES is C-optimal for diagonal anisotropic conductivity coef­

ficients on rectangular meshes due to the structure of the element stiffness matrix 

Ak • Powell (2003), Powell h  Silvester (2003) showed, in fact, that Ax  for rectangu­

lar elements has diagonal blocks and each block is scaled by a different entry of the 

coefficient C. This is very different from triangular elements where every row of Ax  

is scaled by all entries of the coefficient C.
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3.3 .3  P rob lem  3: h eterogen eou s, anisotropic and full-tensor C

L2(Dh) error estimates for test problem 3 on rectangular meshes are reported in 

Tables 3.34, 3.35 and 3.36 for various values of a.

Second order convergence rates for the potential and velocity solutions are also 

confirmed for problems with full-tensor, anisotropic coefficients. As for triangular 

meshes, the magnitude of the discrete errors increases with larger anisotropic coeffi­

cients.

As for the triangular case negative oscillations for the potential solution are also 

recorded for rectangular elements. Younes & Fontaine (2008a) reported numerical 

experiments using the MFEM and MPFA for the same test problem reported in this 

section. The authors show numerical results which are largely consistent with the 

results reported in Tables 3.34, 3.35 and 3.36, i.e spurious negative oscillations are 

present not only for the anisotropic case but also for the isotropic case. For the 

isotropic case the spurious oscillations disappear with mesh refinement, in fact for 

the case of h = ^  (n°t shown in Table 3.34) negative oscillations are of the order 

of 10~8. Reasons for negative oscillations in the isotropic case are not reported by 

Younes & Fontaine (2008a) and this matter requires further future investigation.

The solvers’ performance for test problem 3 on rectangular meshes is reported in 

Table 3.37. The main findings of this table can be summarised as follows:

1. As for triangular elements, the performance of MINRES deteriorates signifi­

cantly for large values of a;

2. Conversely, CG behaves quite differently for full tensor coefficients since the 

CPU cost seems to decrease with increasing a. Similar results were obtained 

for triangular meshes;

3. For a  ^  1 CG outperforms MINRES for all discretisation levels;



Table 3.34: L2(Dh) error estimates for the u , qx and qy for test problem 3, a = 1
h || u — uh\U 2 Rate Ik* -  q x IU 2 Rate \\% -  Qy 1U 2 Rate Umin Umaa
1

16 1.25 E - 02 — 9.29E  - 02 — 9.29E  - 02 — -9 .2 9 E --04 8.10 E - -01
T
32 3.35E - 03 1.91 2.43E  - 02 1.93 2A3E - 02 1.93 -2 .34£  --04 9A4E --01
1

64 8.51 E - 04 1.98 6.15 E - 03 1.98 6.15 E - 03 1.98 -3.71 E - -05 9.85 E - -01
1

128 2 . U E - 04 1.99 1.54 E - 03 2.00 1.54E  - 03 2.00 -5.09E --06 9.96E --01
r

266 5.35E  - 05 2.00 3.86E - 04 2.00 3.86E  - 04 2.00 -4.21 E - -07 9.99E --01

Table 3.35: L2(Dh) error estimates for the u , qx and qy for test problem 3, a = 102

h || 1A — V Rate Ik* -  <& IU2 Rate \\% ~ Qy IU2 Rate Hmin ^max
~ l

16 1.73 E - 0 1 - 7.22 E + 00 - 7.22 E  +  00 — -4 .92E --01 2.03 E + 00
1

32 4.83 E - 0 2 1.84 1.9 6E + 00 1.88 1.96£ +  00 1.88 - 1.20 E - -01 1.3 8E + 00
T
64 1.26 E - 0 2 1.94 5.04E - 01 1.96 5.04E -  01 1.96 -2.71 E - -02 1.10 E + 00
1

128 3.18 E - 0 3 1.98 1.27 E — 01 1.98 1.27E  -  01 1.98 -6.62E --03 1.02£  + 00
I

266 7.98 E - 0 4 1.99 3.20 E - 02 1.99 3.20£ -  02 1.99 -1.60 E - -03 1.01E + 00

Table 3.36: L2(Dh) error estimates for the u, qx and qy for test problem 3, a = 103

\ \ u - u h \ \ L 2 Rate lk*-< i \ IU2 Rate Iky *
Jiiiy \U2 Rate Umin Umax

1.88£ + o o — 7.30 E + 01 — 7.30 E + 01 — -5.82 E  +  00 I M E + 01
5.31 E - 0 1 1.83 2.00 E + 01 1.87 2.00£ + 01 1.87 - 2 .02£  +  00 5.24 E + 00
IA0E - 0 1 1.93 5.20 E + 00 1.94 5.20 E + 00 1.94 -4.95E  --01 2.13 E + 00
3.57 E - 0 2 1.97 1.34 E + 00 1.96 I M E + 00 1.96 —1.06£--01 1.28 E + 00
9.01 E - 0 3 1.99 3A9E — 01 1.97 3.40£ — 01 1.97 -2.57E --02 1.07 E + 00
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Note that for a = 1, the conductivity coefficient is equivalent to that of test 

problem 2. The only difference between the two problems is associated with the right- 

hand side of the PDE. In such circumstances it is normally expected for MINRES to 

converge with approximately the same number of iterations. However, from Table 3.37 

it is evident that the number of iterations required to solve problem 3 on rectangular 

meshes is significantly lower than problem 2. This behaviour is not observed for 

triangular meshes.

Table 3.37: Iteration count and timings (set-up+solution time) for p  — M I N R E S  
and PCG  - Test problem 3

p - M I N R E S PCG
h a Nh tcpu Nit tcpu
l

64 a == 103 351 5.07 12 0.57 +  0.13
a  =

CNor“HII 254 3.81 22 0.55 +  0.18
a = 1 22 0.33 79 0.54 +  0.55

1
128 a == 103 466 38.08 14 8.63 +  0.50

a == 102 283 21.82 40 8.64 +  1.29
a =  1 18 1.37 154 8.58 +  4.77

1
256 a == 103 554 204.61 20 133.07 +  3.06

a - = 102 300 111.65 77 134.12 +  11.60
a = 1 13 4.76 306 134.98 +  45.43

Results for the AMG numerical experiments are reported in Table 3.38. The most 

important observations for this table can be summarised as follow:

1. The MINRES iteration count grows rapidly with increasing a , hence the solution 

timings are quite large. However, given that the CPU cost of constructing the 

coarse grids for the AMG approximation is quite cheap on rectangular meshes, 

p — M I N  R E S amg is the better performing solver among all considered;

2. The performance of CG is significantly different from the one reported for tri­

angular elements. On triangular meshes, although C-optimality is not obtained, 

CG is h-optimal. On rectangular meshes neither C nor h optimality is estab­

lished. This aspect is associated with the violation of the M-matrix condition
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for problems with full-tensor coefficients;

Table 3.38: Iteration count and timings (set-up+solution time) for p —M I N R E S a m g  

and P C G a m g  - Test problem 3
P ~ M I N R E S Amg P C G amg

h a Nit tcpu Nit tcpu
l " 

64 a  = 103 369 0.73 +  2.19 120 2.52 +  1.25
a  = 102 267 0.77+1.60 39 2.47 +  0.42

a  =  1 45 0.66 +  0.26 14 1.20 +  0.14
1

128

COorHII0 495 3.52 +  11.27 136 13.61 +  7.66orHII0 300 3.60 +  6.93 51 13.62 +  2.87
a  =  1 42 3.11 +  0.80 15 6.60 +  0.46

1
256 a  =  103 601 27.29 +  75.95 207 130.16 +  58.57

a  =  102 323 27.35 +  39.92 96 131.03 +  27.39
a  = 1 42 25.46 +  4.79 16 97.42 +  2.46

3.3 .4  P rob lem  4: d iscon tin u ou s, an isotrop ic  and full-tensor C

Table 3.39 reports error estimates for a = 1 for test problem 4 on rectangular 

meshes. The problem discontinuity causes the loss of one order of magnitude in the 

rate of convergence of both the potential and velocity solutions.

Interestingly, whilst the magnitude of the errors for the potential solution are 

comparable to those recorded for triangular meshes, the velocity errors tend to be 

one order of magnitude lower.

Error estimates for a = 10 and a  =  100, are listed in Tables 3.40 and 3.41. 

Although first order convergence rates are also recorded, the discrete errors tend to 

be larger for increasing a.

The solvers’ performance for test problem 4 on rectangular meshes are reported 

in Table 3.42. The results of the experiments for the AMG version of the solvers is 

given in Table 3.43. The main findings of these two tables can be summarised as 

follows:
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Table 3.39: L2(Dh) error estimates for the u, qx and qy for test problem 4, a. =  1
h | |u  — Vn \ » Rate Ik* -  <£IU2 Rate 11% -  Qy IU2 Rate
1
16 9.28 E - 0 3 — 3 .1 9 5 - 02 — 2.81 5 - 02 —
1

32 4.88 E - 0 3 0.93 1 .6 7 5 - 02 0.94 1.43 5 - 02 0.97
1

64 2.50 E - 0 3 0.96 8.555 - 03 0.96 7.265 - 03 0.98
1

128 1.27 E - 0 3 0.98 4.335 - 03 0.98 3.665 - 03 0.99
I

256 6.37 E - 0 4 0.99 2 .1 8 5 - 03 0.99 1.835 - 03 0.99

Table 3.40: L2(Dh) error estimates for the u , qx and qy for test problem 4, a = 101 

~~h ||u -  uh \ \ L 2 Rate \\qx — qx \\^ Rate \\qy -  q* \ \ L 2 Rate
i
16 1.675 - 0 2 — 4.065 - 01 — 3.535 - 01 —
1

32 7.765 - 0 3 1.10 2 .1 4 5 - 01 0.93 1 .8 1 5 - 01 0.96
1

64 3.815 - 0 3 1.03 1 .1 0 5 - 01 0.96 9.205 - 02 0.98
1 1.905 - 0 3 1.01 5.575 - 02 0.98 4.645 - 02 0.991^8

256 9.495 - 0 4 1.00 2 .8 1 5 - 02 0.99 2.335 - 02 0.99

1.41: L2(Dh) (error estimates for the u, qx and qy for test problem 4,
h ||u — u Rate Ik* - I!l2 Rate 11% -  Qy I U 2 Rate
l

16 8.185 - 0 2 — 4.255 + 00 — 3.675 + 00
1

32 2.235 - 0 2 1.88 2.245 + 00 0.92 1.895 + 00 0.96
1

64 6.825 - 0 3 1.71 1.155 + 00 0.96 9 .6 1 5 - 01 0.98
1 2.525 - 0 3 1.44 5.845 - 01 0.98 4.845 - 01 0.991^8

256 1.095 -0 3 1.20 2.945 - 01 0.99 2.435 - 01 0.99

1. As for triangular meshes, the MINRES iteration count is larger for discontinuous 

problems than for continuous problems (see, for example, test problem 1). The 

same aspect is observed for PCG amg but not for PCG\

2. The degree of the discontinuity does not affect the performance of the solvers;

3. Hence the exact version of MINRES is the most efficient solver for this type

of problems. However, it should be noted that the approximated version of

MINRES is also very efficient given that for rectangular meshes the AMG set­

up time is relatively small;

For very fine meshes (problems with d.o.f of the order of 106-107) the CPU cost
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of exactly inverting the Schur complement becomes prohibitively expensive. Hence, 

approximately inverting the Schur complement using AMG should become more ef­

ficient in this context. Obviously, this consideration applies to all test problems and 

not only to the discontinuous case.

Table 3.42: Iteration count and timings (set-up+solution time) for p — M I N R E S  
and PCG - Test problem 4

P ~  M I N R E S  PCG
h a Nit tcpu Mu tcpu
T  a  =  102 64 0.83 81 0.60 +  0.60

a  =  101 66 0.94 80 0.58 +  0.57
a = l  66 0.92 81 0.56 +  0.59

^  a  =  10  ̂ 64 +64 162 8.60 +  5.26
a  =  101 66 4.72 162 8.61 +  5.24
a  =  1 66 4.74 163 8.61 +  5.32

2§6 a  =  102 63 23.41 328 137.32 +  51.22
a  =  101 64 23.48 326 135.34 +  50.45
a = l  66 24.71 325 134.91 +  50.29

Table 3.43: Iteration count and timings (set-up+solution time) for p —M I N R E S  a m g  

and P C G a m g  - Test problem 4
p — M I  N  R E S amg   P C G amg_____

h a Nu tcpu Nit tcpu
= ^  q =  102 70 0.71 +  0.39 15 1.73 +  0.17

a = 101 71 0.71 +  0.41 15 1.73 + 0.17
a = 1 71 0.69 +  0.42 15 1.73 + 0.17

^  a  =  102 70 3.31 +  1.41 16 9.48 +  0.66
a = 101 72 3.34 +  1.50 16 9.37 +  0.64
a = 1 71 3.18 +  1.47 15 9.23 + 0.60

2̂  a = 102 70 25.50 +  8.11 17 115.07 +  3.28
a =  101 73 26.26 +  8.98 16 115.35 +  3.10
a  =  l 73 26.22 +  8.54 16 115.63 +  3.13

3.3 .5  P rob lem  5: d istorted  rectan gu lar  m esh

Distortion of rectangular meshes is obtained in a similar fashion to that explained 

for triangular meshes (see §3.2.5 and Figure 3.5). Although the mesh is distorted 

the finite element connectivity is regular, i.e. any node has the same number of
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neighboring nodes. Experiments on irregular connectivity are not reported in this 

thesis. Discrete error estimates for test problem 5 on structured and unstructured 

rectangular meshes are listed in Table 3.44.

On structured rectangular meshes the potential and velocity solutions converge 

with rate G(h2). This confirms the results of the previous experiments (excluding 

discontinuous problems where velocities converge with rate 0{h)).

On distorted rectangular meshes the potential solution retains second order con­

vergence. In contrast, the experiments show the loss of one order in the convergence 

rates of the velocity solutions. Thus the x-component of the velocity converges with 

rate 0 ( h 116) and the y-component with rate 0 ( h 131).

The loss of accuracy in velocity solutions obtained by MFEM and MHFEM on 

quadrilateral meshes is well-known and solutions to this issue have been proposed 

by Shen (1994), Arnold et al. (2005) and more recently by Younes et al. (2010), for 

example.

The problem lies in the fact that the Piola transformation of vectorial basis func­

tions defined on a square reference element to the actual element is not affine for 

quadrilateral elements (Arnold et al. 2005). This causes loss of convergence for the 

approximation of the fluxes. The same situation does not occur on triangular ele­

ments.

The loss of convergence reported in Table 3.44 refers to a simple problem with 

unit conductivity coefficient and trivial geometry. Therefore it is expected that this 

would be more severe on problems with general coefficients and complex geometry.

The solvers’ performance for test problem 5 on structured and unstructured meshes 

are reported in Tables 3.45 and 3.46. The findings of those tables are summarised as 

follows:
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Table 3.44: L2(Dh) error estimates for the u , qx and qy for test problem 5
Structured Meshes

h | |u  — U h l b Rate I k *  - < £ \ b Rate I k y  ~  Qy I U 2 Rate
l
16 s m E  - 05 — 2.59E  -  04 — 2.59E -  04 —
1

32 2.02E  - 05 2.00 6.47E  -  05 2.00 6.47E -  05 2.00
1

64 b M E  - 06 2.00 1.6225 — 05 2.00 1.62E -  05 2.00
1

128 1.26 E - 06 2.00 4.05£ -  06 2.00 4.05E -  06 2.00
I

256 3.15 E - 07 2.00 1 .0 1 £ -0 6 2.00 1.0125 -  06 2.00
Unstructured Meshes

h | | l i  — uh\1L2 Rate I k *  - ? J l b Rate I k y  -  Qy l b Rate
l ' 
16 8.54E - 05 — 1 .9 3 £ -0 3 — 2.03E -  03 —
1

32 1.98 E - 05 2.11 9.70£ -  04 0.99 9.5625 -  04 1.09
1

64 5.33E  - 06 1.89 4.0925 -  04 1.25 4.0625 -  04 1.23
T
128 1.30 E - 06 2.04 1.81J57 — 04 1.18 1.7725 -  04 1.20
I

256 3.33E  - 07 1.96 7.85E  -  05 1.21 7.85E -  05 1.17

1. The MINRES iteration count for problems with unstructured meshes is ap­

proximately twice as that for problems with structured meshes when the Schur 

complement is inverted exactly. For the AMG case, instead, the difference in 

iteration count is less marked;

2 . The PCG iteration count also varies only slightly between structured and un­

structured meshes. The same can be stated for CG with the AMG precondi­

tioner;

3. Once again, MINRES with the exact version of preconditioner (2.41) is the best 

performing method.

3.4 Conclusions

The aim of this chapter was to report results on numerical experiments based 

on mixed finite element methods and compare the approximations with exact solu­

tions. This, in addition to investigating MFEM convergence performance, allows the
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Table 3.45: Iteration count and timings (set-up+solution time) for p — M I N R E S  
and PCG - Test problem 5

Structured Meshes
P ~ M I N R E S PCG

h Nit tcpu Nit tcpu
l
¥
1J8

256

26
23
20

0.33
1.77
7.24

71
133
251

0.58 +  0.52 
8.71 +  4.29 

137.05 +  39.89
Unstructured Meshes

V - M I N R E S PCG
h Nit tcpu Nit tcpu
1

614
1^8

256

43
42
40

0.54
3.12
14.76

81
157
279

0.56 + 0.59 
8.75 + 5.19 

136.51 +  43.62

Table 3.46: Iteration count and timings (set-up+solution time) for p — M I N R E S  amg 
and P C G a m g  - Test problem 5

Structured Meshes
P ~ M I  N R E S a m g P C G a m g

h Nit tcpu Nu tcpu
r
¥
ip
256

36
36
36

0.68 +  0.27 
3.14 +  0.75 

25.05 +  4.00

14
15 
15

1.26 +  0.14 
6.93 +  0.55 

96.13 + 2.56
Unstructured Meshes

V - M I N  R E S a m g P C G a m g

h Nit tcpu Nit tcpu
" 1 "

¥
1̂ 8
256

48
48
48

0.70 +  0.35 
3.16 +  1.15 
25.18 +  5.64

15
16 
18

2.41 +  0.17 
11.74 +  0.75 
118.08 +  3.41

validation of the codes developed in this work.

We have seen that MFEM possesses a second order convergence for the potential 

and first order convergence for the velocities on structured and unstructured triangu­

lar meshes. For discontinuous problems there is a loss of one order of convergence for 

the potential solution while the rate of convergence for the velocity solutions is unal­

tered. The MFEM possesses second order convergence for the potential and velocity 

solutions on structured rectangular meshes. The loss of approximately one order of 

convergence (or more is expected on complex problems) is recorded for unstructured



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 75

meshes. For discontinuous problems there is a loss of one order of convergence for 

both the potential and velocity approximations.

The approximation for the potential tends to have spurious negative values for 

problems with diagonal anisotropic and full-tensor anisotropic coefficients on trian­

gular meshes. This also occurs for problems with full-tensor anisotropic coefficients 

on rectangular meshes. Furthermore we have seen that, in agreement with results 

presented by other researchers (Younes & Fontaine 2008b,a), spurious negative oscil­

lations are present in all cases (isotropic, anisotropic full-tensor) in test problem 3. 

For the isotropic case the magnitude of the oscillations tend to zero as the mesh is 

progressively refined.

In addition to the error analysis the chapter reports the computational cost of 

solving the indefinite linear system obtained with MFEM and the symmetric positive 

definite system obtained with MHFEM. Throughout the chapter the focus was on 

the robustness of the solvers with respect to the conductivity coefficient C and the 

discretisation parameter h.

For problems with isotropic, heterogeneous coefficients, MINRES using the exact 

version of the Schur complement preconditioner is the most efficient method in terms 

of CPU cost. This is also valid for problems with anisotropic diagonal tensors but 

only on rectangular meshes. In these cases, MINRES is h-optimal and C-optimal. 

Thus solving the indefinite system is the cheapest approach to solving the mixed 

formulation in these special instances.

MINRES using the AMG version of the Schur complement preconditioner is also 

very efficient. Specifically, the number of iterations and thus the CPU cost of the 

solvers is significantly lower when AMG is used. However, the cost of creating the 

coarse grids for the AMG approximation is not negligible either for the Schur comple­

ment system or for the Lagrange multiplier system. The last is larger for the Lagrange
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multiplier than the Schur complement and larger on triangular meshes than on rect­

angular meshes.

The performance of the AMG preconditioners is also linked with the M-matrix 

condition. The Schur complement is always an M-matrix, hence MINRES using the 

AMG version of the Schur complement preconditioner will never fail. In contrast, the 

Lagrange multiplier system is an M-matrix only for problems with scalar and diagonal 

coefficients and triangular elements. For general coefficients and triangular elements 

the Af-matrix condition does not hold. Furthermore for rectangular meshes the M- 

matrix condition does not hold in any circumstance for the SPD system. Hence, 

using the AMG approximation of the coefficient matrix as preconditioner for CG on 

rectangular meshes does not guarantee success and could potentially fail.

For general full-tensor coefficients the results are more difficult to summarise. It 

appears that AMG preconditioners are generally better performing. On rectangular 

meshes the Schur complement preconditioner (AMG version) is the cheapest approach 

among all those considered. The same applies to triangular meshes on fine discretisa­

tions while the AMG approximation of the Lagrange multiplier system is the cheapest 

on medium to coarse meshes. However, for the latter case the success of black-box 

AMG depends on the extent by which the M-matrix condition is violated. Thus, its 

performance is problem dependent.

The results for the test cases presented show that that generally solving the in­

definite system is cheaper than solving the Lagrange multiplier system. The existing 

misconception that tackling the solution of an indefinite system is a source of trouble 

should be reconsidered. This work shows that the choice of the preconditioner for 

the iterative scheme is crucial in determining the success of a solver independent of 

whether the system is indefinite or positive-definite.
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3.5 Relevance for the stochastic modelling

The experiments reported in this chapter and the findings associated with those 

are important not only in the context of deterministic modelling of groundwater flow 

in porous media but also to the stochastic work undertaken in the following chapters.

Stochastic modelling of groundwater flow has been traditionally associated with 

Monte Carlo methods (MCM). This approach is straightforward and it involves the 

implementation of a large number of sequential deterministic simulations from which 

statistics of the numerical solutions can be derived. It is clear that the conclusions 

drawn in this chapter have immediate relevance to Monte Carlo methods since their 

computational performance is directly proportional to the CPU cost of solving the 

individual deterministic system.

Monte Carlo methods are dealt with only very briefly in this thesis (see Chapter 5) 

while most of the attention is dedicated to other stochastic techniques which belong 

to the wide family of Stochastic Galerkin (SG) methods (see Chapters 4, 6 and 7).

Stochastic Galerkin methods require the solution of only one system of equations 

the size of which is considerably larger than deterministic Galerkin methods. As will 

be explained in the following chapter the stochastic global system of equations pos­

sesses a characteristic block structure. Generally, its solution requires preconditioners 

which efficiently exploit that structure. An example is the so called mean-based pre­

conditioner which uses the the block diagonal components of the global system of 

equations.

It turns out that any fast deterministic solver can be used to invert the blocks of 

the leading diagonal. Hence the considerations and conclusions of this chapter will 

be used to select and investigate efficient solvers for SG systems.

A consideration which is worthwhile anticipating is related with set-up time re­



Chapter 3: Mixed and Hybrid Finite Element Numerical Experiments 78

quired for some of the solvers used in this chapter. It has been repeatedly pointed out 

that the cost of factorising or constructing the AMG grids can significantly penalise 

the solvers overall CPU cost. For the SG systems, the block diagonal components are 

given by the mean stiffness matrix weighted by some polynomial basis. Thus, the set­

up time for the preconditioner only involves the factorisation or AMG approximation 

of the mean stiffness matrix. Crucially this is performed only once.

Therefore set-up times become computationally less important in the context of 

SG methods when compared to the overall solution time. For MCM, instead, the fac­

torisation or AMG approximation has to be computed for every individual simulation, 

thus contributing significantly to the overall CPU cost.



Chapter 4

Spectral Stochastic Finite Element 

Theory

4.1 Introduction

The first part of this thesis has dealt with partial differential equations (PDE) 

in which the input parameters (such as hydraulic conductivity) are considered to be 

known with certainty everywhere in the discretised domain. This approach, in which 

model parameters can be regarded as averaged quantities, is very easy to implement 

and hence widely used in applications.

In the last decade there has been a growing awareness that data used by numeri­

cal models are often dominated by uncertainty. In fact, observed data are generally 

scarce and this leads to modelling assumptions and data interpretation which are in­

trinsically uncertain. In the case of groundwater modelling, material parameters such 

as hydraulic conductivity are estimated locally by means of pumping /  slug tests or in 

laboratories by means of permeameters. Although these measurements are represen­

tative only to the specific scale at which the test /  experiment were undertaken, often

79
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these are extrapolated to larger scales (often of the domain’s size). Even though this 

is more a necessity than bad practice, driven by the lack of knowledge and scarcity 

of data, any extrapolation of this kind is dominated by uncertainty. Furthermore it 

should also be remembered that the measurements themselves could be affected by 

errors which should be taken into account in the development of the model.

Following these considerations, the idea of quantifying the uncertainty of model 

parameters and passing such information to the solution of the PDE has created a vast 

interest in the scientific community. In such a framework the model input parameters 

are described as random variables and the PDE is converted to a stochastic partial 

differential equation (SPDE). When the SPDE is equipped by suitable boundary 

conditions, which can also be defined as stochastic processes, then its solution is also 

a stochastic process. This method allows one to present model outputs as statistical 

quantities, these generally being the first (mean) and second (variance) moments of 

the solution.

The most widely used approach to the solution of SPDE is the Monte Carlo 

Method (MCM). This approach is based on constructing an ensemble of realizations 

for the model random input parameters. The PDE is therefore solved for each realiza­

tion of the ensemble and statistical quantities are obtained from the set of solutions. 

This approach is easy and non-intrusive, i.e the method used to discretise the PDE 

is not modified. Generally, MCM requires a large number of realizations to create 

meaningful statistics and therefore can be computationally very expensive. This lim­

itation has lead the research community to investigate alternative methods to MCM 

and /  or to find ways to improve the performance of MCM.

Among the alternative methods is the pioneering work of Ghanem &; Spanos (2003) 

on the classic stochastic finite element method (SFEM) where the conductivity coeffi­

cient is described as a Gaussian process. The method was subsequently generalised to
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other probability distributions in the work of Xiu h  Karniadakis (20026) and analysed 

by Sudret h  Der Kiureghian (2000), Deb et al. (2001), Babuska & Chatzipantelidis

(2002), Babuska et al. (2004), Matthies & Keese (2005). The idea of the SFEM is to 

restate the SPDE as a variational problem in a similar fashion to traditional FEM 

formulations. However in this case, in addition to the space of deterministic func­

tions, the space of random variables is also defined and the solution is sought in their 

tensor product space. One crucial aspect of this method is that the deterministic 

and stochastic spaces are discretised separately. Therefore the conventional finite el­

ement theory and implementations still applies and in general any Galerkin method 

can be used for the discretisation of the deterministic part, so that the SFEM can be 

generalised to the stochastic Galerkin method (SG).

Similarly to classical FEM, the discretisation of SPDE by SFEM technologies 

results in a single linear system of equations. However, the system is significantly 

larger and possesses a characteristic block structure. This aspect of the method 

represents a fundamental limitation. In fact, the dimension of the problem grows 

factorially with the number of random variables used to describe the input spatial 

random field. As consequence of this, the solution of high dimensional problems 

becomes computationally infeasible, a phenomenon known as curse of dimensionality. 

More recent technologies such as stochastic collocation (Babu§ka et al. 2007, Nobile 

et al. 2008) and multilevel Monte Carlo seem to have overcome this limitation.

The idea of multilevel Monte Carlo is to combine the concepts of multigrid tech­

nologies with traditional MCM. The acceleration in convergence is guaranteed as most 

of the MC simulations are carried out on the set of coarse grids and only a very lim­

ited amount of time is performed on the finer grids. Multilevel MC have been applied 

to the solution of ordinary differential equations (see Giles (2008), Giles &; Water­

house (2009)) and PDE (see Graham et al. (2011), Cliffe et al. (2011)). The latter
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papers clearly show that Multilevel MC methods are incredibly efficient for problems 

with rough coefficients (i.e spatial random fields with large variance or /  and small 

correlation lengths). These types of problems, common to radioactive waste disposal 

applications, require a large number of random variables (> 100 modes of Karhunen 

Loeve expansion) in probability space to accurately represent the variability of the 

spatial random field. Their solution by SG methods is infeasible due to the curse of 

dimensionality, previously mentioned.

Despite the essential limitation of the method, SFEM or SG are widely used 

for engineering applications (a review of SFEM /  SG engineering implementations 

is given by Stafanou (2009)). Equally we aim to show that this method can be 

successfully used in the context of groundwater modelling. Clearly, if for example the 

conductivity field is homogeneous the method can be used without any restrictions. 

Conversely, if the conductivity field is largely heterogeneous, such variability can 

be resolved by identifying areas (sub-regions) in which the material parameter has a 

quasi-homogeneous behaviour (which can be accurately described by a limited number 

of random variables). The same idea applies to spatial fields with small correlation 

lengths. Practically the model domain is decomposed into many sub-domains and 

in each sub-domain a spatial random field (using for example KLE), with different 

statistical parameters, is computed. In this work we follow this approach.

Assuming that the conductivity field can be accurately represented by a discontin­

uous random field, other challenges remain for the efficient implementation of SFEM 

or /  and SG methods. In fact, it is crucial to use efficient solvers and preconditioners 

to solve the large stochastic Galerkin systems obtained from these methods.

Solution strategies depend on the choice of basis functions for the stochastic space. 

There are two popular choices. The first uses global complete polynomials, com­

monly referred to as polynomial chaos, which are orthogonal. This is the classical
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SFEM approach as outlined in the original work of Ghanem & Spanos (2003). In 

this approach a large and highly structured linear system has to be solved. For this 

purpose Krylov subspace iterative solvers are a popular choice. Ghanem k  Kruger 

(1996), Pellissetti & Ghanem (2000) proposed an efficient implementation of SFEM, 

without assembling the global stiffness matrix. They used a block-diagonal precon­

ditioner (subsequently referred to as ‘mean-based preconditioner’) for CG based on 

an incomplete factorisation of the mean stiffness matrix. Powell k  Elman (2009) 

replaced the incomplete factorisation with a black-box algebraic multigrid (AMG) 

solver. In Ernst et al. (2009) the implementation of the mean-based preconditioner 

was extended to the solution of stochastic mixed finite element systems (SMFEM). 

Ullmann (2008) proposed a Kronecker product preconditioner for the stochastic linear 

(Gaussian /  uniform random fields) and non-linear (lognormal random field) cases. 

The implementation of the Kronecker preconditioner was recently extended to the 

stochastic mixed finite element method in Powell k  Ullmann (2010). The precondi­

tioner reduces significantly the number of iterations of CG and MINRES. However, 

its implementation is more expensive than mean-based preconditioners. A review of 

a large number of iterative solvers, including one-level iterative methods, multigrid 

methods and multilevel methods (for the stochastic discretisation) has been recently 

reported by Rossell k  Vandewalle (2010).

The other choice uses global tensor product polynomials (Babuska et al. 2004). 

This implementation has the attractive advantage of allowing for the decoupling of the 

global Galerkin system. However, as pointed out by Ullmann (2008), this is restricted 

to problems in which the conductivity coefficient is approximated by normal or uni­

form random fields. There is no evidence that for the case in which the conductivity 

field is approximated by a lognormal random field (a very common assumption in the 

groundwater modelling community) the global Galerkin system can be decoupled.
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Furthermore, it has the disadvantage that the size of the stochastic space grows more 

rapidly than in the complete case. Solution strategies for this choice are reviewed 

by Ullmann (2008) and involves iterative solvers based on Krylov subspace recycling 

techniques.

In this work we consider the classic SG (SFEM /  SMFEM) methods based on com­

plete orthogonal polynomials. Whilst the mixed method was extensively discussed in 

Chapters 2 and 3, the standard Galerkin method (FEM) was not treated. Reasons 

for this include the fact that its deterministic implementation has already been ex­

tensively studied and there are limitations associated with the lack of flux continuity 

(see Chapter 2 for further discussion). Nonetheless the stochastic implementation 

of standard Galerkin methods is relatively recent and it is currently a very active 

research area despite the aforementioned flux limitation. Therefore the discussion 

concerning stochastic numerical methods in groundwater flow problems reported in 

the following chapters focuses on both standard Galerkin and mixed finite element 

methods.

The methodology for the primal and mixed formulations (linear case) is reported 

in detail in the following sections. The derivation of the global Galerkin system is 

described and solution strategies that take full advantage of its characteristic block 

structure are proposed.

Chapter 5 compares numerical results for SG with those obtained by traditional 

MCM for a selection of test problems. This chapter is only intended to validate 

the SG implementation against a method which is purely based on the deterministic 

implementations of FEM and MFEM. The chapter does not report a thorough com­

putational comparison of the two methods, in view of the new developments within 

the field of multilevel Monte Carlo methods.

Numerical results for the SG methods, linear case, are reported in Chapter 6
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for a selection of test problems. Not only the performance of CG equipped with a 

mean-based preconditioner is recorded but also using the proposed block Gauss-Seidel 

preconditioner. The latter can also be implemented as a stand alone solver, hence its 

performance in those settings is also evaluated. The chapter terminates by reporting 

the performance of preconditioned MINRES on the same set of test problems.

The non-linear case is dealt with in Chapter 7. The theory partly deferring from 

the linear case is summarised in the initial sections. Similarly to Chapter 6, we first 

report the solvers performance for the primal formulation followed by results for the 

mixed formulation. The test problems used are similar to those described in Chapter 

6 . However, in this case the conductivity is approximated by a lognormal field.

The numerical implementation of the stochastic Galerkin methods has been coded 

by the author within the MATLAB environment and the computations are all per­

formed in serial. The development of the same algorithms in a parallel architecture 

is matter for future work and development. The derivation of the polynomial chaos 

basis was obtained explicitly using the MATLAB symbolic toolbox in a similar man­

ner to that explained in Ghanem &; Spanos (2003). The discretization of spatial 

random fields using Karhunen Loeve expansion method was possible adapting some 

MATLAB-based functions provided by Sudret & Der Kiureghian (2000).

4.2 The mathematical model

The steady-state flow of water in porous media, whose material parameters are 

assumed to be unknown, is described by a scalar second-order stochastic partial dif­

ferential equation (SPDE). In the context of groundwater flow modelling the most 

uncertain parameter is the hydraulic conductivity. If it is not a function of the spatial 

variable x, the conductivity coefficient can be represented by a set of uncorrelated ran­
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dom variables (white noise approach) Ci(uj), i = 1, . . . ,  No, where Nd is the number 

of subdomains having different hydraulic properties. Alternatively, the conductiv­

ity coefficient C(x,u;) is a spatial random field such that for a fixed spatial location 

x 6 D , C(-,(jj) is a random variable and for a fixed realization u> €E D, C(x, •) is a 

spatial field.

Let D be a domain in R d, where d = 2,3, bounded by T = Tp U rjv, as defined 

for the deterministic problem (see §2.2). Let Q be the set of random events that 

together with the minimal cr-algebra, S, and the probability measure, Pr, denotes 

the probability space (Q,S, Pr). We seek a random field solution (u(x, u) G D x Q) 

to the second-order elliptic problem

—V • C(x,a;)Vit(x, cj) =  / (x )  in D x Q,

u(x , uj) — g(x.) on Td x Q, (4-1)

C{x , lj)'Vu{x , lo) • n  =  0 on x Q,

where n denotes the unit outward normal vector to g(x) represents the deter­

ministic prescribed constant head on Tjr, and / (x )  represents a deterministic source 

or sink term. Note that /(x )  and g(x) could also be (spatial) random functions.

The solution to Problem (4.1) gives the mean potential or pressure head u and 

the associated standard deviation, everywhere in D. As in the deterministic case, the 

potential can be used to derive the fluid discharge (flux) or Darcian velocity q using 

Darcy’s Law. The limitations of this approach are highlighted in §2.2 and these apply 

equally to the stochastic formulation.

A more suitable approach which allows us to derive accurate approximations for 

the fluxes, is obtained by restating Problem (4.1) by explicitly introducing Darcy’s
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Law and seeking the solution (u(x,uj) ,q(x,u))  e  D x Q of the problem

C *(x, o;)q(x, u)  +  Vw(x, lj) =  0 in D x Q,

V • q(x, u) =  /(x ) in D x Q,

u(x, a;) =  tf(x ) on Td x Q,

q(x,w) • n =  0 on Tn  x £1.

The solution to problem (4.2) gives the mean potential (or pressure) and normal fluxes 

and their associated standard deviations, everywhere in D. Problems (4.1) and (4.2) 

can be solved using stochastic Galerkin (SG) methods (Ghanem &; Spanos 2003, Xiu 

&; Karniadakis 20026). In these methods the deterministic and stochastic spaces are 

discretised separately. Traditional Galerkin methods are used for the approximation 

of the deterministic space and a polynomial chaos expansion (PCE) is employed for 

the stochastic space. Hence, the theoretical definitions presented in Chapter 2 apply 

also to the following discussion.

4.3 Hydraulic Conductivity Coefficient Approxima­

tion

In this thesis we use two approaches to represent the conductivity coefficient. The 

first approach, herein referred to as coloured noise, assumes that the conductivity 

coefficient varies randomly from one point of D to another point according to a 

given correlation function. Given the advantages discussed by Ghanem & Spanos

(2003), Powell & Elman (2009), Deb et al. (2001), Matthies & Keese (2005) we use 

the Karhunen-Loeve expansion (KLE) to approximate continuous and discontinuous 

spatial random fields.

The second approach, herein referred to as white noise, assumes that the conduc­
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tivity coefficient varies randomly and independently from one point of D to another. 

Although the hydraulic conductivity is spatially correlated it is common practice in 

applications to represent it by piecewise constant subdomains with each subdomain 

possessing hydraulic properties pertaining to a specific hydro-geological unit.

Since the white noise approach assumes spatial independence, thus making it 

theoretically unsuitable to approximate parameters such as hydraulic conductivity, 

it has been rarely used in the research community. In fact the literature is rich on 

the implementation of SG techniques using KLE methods (see Xiu & Karniadakis 

(2002a), Ghanem &; Dham (1998)).

Coloured Noise. The conductivity field C(x,o;), is approximated by a truncated 

Karhunen-Loeve expansion (Loeve 1977)
d

C(x, w) «  Cj(x, f  M )  =  /i(x) +  a \/A ^ A (x ), (4.3)
1 = 1

where A(x) and A* are the eigenfunctions and eigenvalues of the covariance function 

and are obtained from the solution of the eigenvalue problem

[  p(-x.,x!)f3i{x.')dD* = AiPi(x), i = 1, . . .  ,oo, (4.4)
J D

£i are random variables, p(x) and a are the mean and the standard deviation of 

C(x,u;), respectively. p(-, •) is the correlation function of the spatial random field C. 

When the conductivity coefficient is assumed to be a Gaussian process, the

random variables ft in (4.3) are normally distributed. In these circumstances the 

random variables have the desirable property of being uncorrelated and independent. 

However this also makes problems (4.1) and (4.2) ill-posed since the diffusion coeffi­

cient is not bounded below and above by positive constants (Powell & Elman 2009). 

In fact, it is well known that the conductivity field is required to be strictly positive 

and bounded, i.e.

0 < ki < C(x, lj) <  < +oo. (4.5)



Chapter 4- Spectral Stochastic Finite Element Theory 89

Although Gaussian functions possess an infinite spectrum, it can be shown that well- 

defined discrete solutions can be obtained if a relatively small variance is used .

Alternatively, condition (4.5) can be satisfied by transforming the Gaussian ran­

dom field into a lognormal one by expanding the d-terms of the KLE into the polyno­

mial chaos of order less than or equal to p. This procedure was proposed by several 

authors (see Ghanem &; Spanos (2003), Sudret & Der Kiureghian (2000)). However, 

this implementation has some important drawbacks. For example, the coefficient ma­

trix arising from the discretisation of (4.1) and (4.2) using lognormal random fields 

becomes block dense and ill-conditioned, which makes the linear system very difficult 

to solve.

Xiu &; Karniadakis (2002a) have used uniform random variables, hence ensuring 

that C£(x,u;) is bounded between two positive values with probability 1. A conse­

quence of this approach is that the random variables in (4.3) are not guaranteed to 

be independent, thus this condition needs to be assumed explicitly (Xiu & Karni­

adakis 20026). Other distributions, such as the Gamma and Beta distributions, can 

be employed. In this thesis we use random variables which are assumed to be either 

uniformly or normally distributed. A separate discussion is provided for lognormal 

distributions.

Different statistical parameters can be assigned to different regions of D , thus 

reflecting the diverse hydraulic behaviour of natural deposits. We perform a coarse 

subdomain decomposition of D and define a continuous random field for each Dk, 

k = 1, . . . ,  No, such that

n d

c£ (* ,€ M ) =  U ca . (*.£("))■
1

where No is the number of sub-domains in D. Now, each sub-domain D&, which 

may be of irregular shape, is enclosed by a rectangular-shaped domain Dk such that,
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Dk C Dk, for k = 1, . . . ,  N d • The ‘fictional’ domain Dk can be the smallest rectangle 

enclosing Dk or can be larger than Dk. A Karhunen-Loeve expansion is implemented 

for each sub-domain Dk but the eigenvalue problem (4.4) is solved with respect to 

Dk. The hydraulic conductivity discontinuous random field is defined as
n d

C*(x,€(u»)) = U
k=1

dk
M x )  +  crfc y/KtiPi (x )

2 = 1

(4.6)

When the exponential correlation function and a square /  rectangular domain are 

considered, there exists closed form solutions to the eigenvalue problem (4.4) (Ghanem 

&; Spanos 2003). In this thesis we make full use of the closed form solutions, thus only 

random fields whose correlation function is of exponential or square-exponential type 

are considered. Examples in which the eigenvalue problem is solved numerically can 

be found in Lu &; Zhang (2007) and description of numerical algorithms are reported 

in Ghanem & Spanos (2003). Note that in such cases the computational cost of 

solving the eigenproblem (4.4) needs to be evaluated.

White Noise. The white noise approach is often used to approximate parameters 

such as rainfall or groundwater recharge which (generally) do not show strong spatial 

correlation. Although the hydraulic conductivity is a function of x, in practice a very 

complex spatial distribution can always be reduced to a (finite) set of subdomains 

with constant parameter values.

From a mathematical point of view the white noise approach has significant ad­

vantages with respect to KLE based approaches. We will see in the next sections that 

the linear systems obtained with this approach have a (favourable) block-tridiagonal 

structure (Constantine 2009). Hence, block diagonal preconditioners can be efficiently 

used to solve these problems.

The conductivity field can be defined as follow
N d

c(-,f) = (J **(«)• <4-7)
2 = 1
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where &t(0, 2 =  Nd , is a set of random variables. These could be normally or 

uniformly distributed (other distributions are also possible). For the case in which 

ki(£) are uniformly distributed, these have the form

fc(0 = g (.*»-*!) + (fa+  *0 ^ f / [ _ i , l ]  (4.8)

where k\ and &2 are defined as in (4.5) and £ are uniform random variables defined 

in the interval [—1, 1].

Depending on the choice of random variables the basis functions of the probability 

space are chosen so that they are orthogonal with respect to the probability measure 

associated with the random variables. For example, in the case of uniform random 

variables, the basis functions are univariate Legendre polynomials (for the case in 

which the KLE is implemented, the basis functions are multi-dimensional Legendre 

polynomials). If normal random variables are used the basis comprises univariate 

or multivariate Hermite polynomials depending on the approach that is used to ap­

proximate the conductivity field. A list of Wiener-Chaos polynomial bases and the 

underlying random variables (including their support) is given in Xiu & Karniadakis 

(20026, a).

4.4 The weak formulation

The weak formulation of problem (4.1) is given by Powell &; Elman (2009), while 

that for the mixed formulation (4.2) is given by Furnival (2008). We briefly summarise 

this derivation in the following sub-sections. Although the treatment is somewhat 

technical, this is needed for a complete presentation of the topic.

Before stating the weak formulation of problems (4.1) and (4.2), some considera­

tions regarding random variables are required. Suppose that A is a random variable
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defined in (Q, Pr) and denoting the density function by /x(z)? we can express the 

mathematical expectation as

{ X ) =  f  X d P =  [  x f x (x)dx. (4.9)
Jn J r

Similarly, for a finite set of random variables {fi, • ■ -, £d} € Q, we can define a function 

g(y), so that

(#(£)) =  f  g(€)dP = [  g{y)f9(z){y)dy, (4.10)
Jn J~d

where f g(£)(y) is the joint probability density function of the random variables, E C R, 

and y £ Rd.

4.4.1 P rim al F orm ulation

The weak formulation of the primal variational problem is: find u £ W  such that

{a(u,w)) = (L(w)), \fw £ W  (4.11)

where

(a(u,w)) =  [  [  K(x . ,£ )Vu(x ,Z)-Vw(x ,£ )dD  
Jn U d

(L ( w )) =  [  [  /(x)iu(x, £)dD dP.
Jn U d

The solution space W  is the tensor product space

W  = H l0{D) ® L2(Q), 

where the subspace Hq(D) is defined

Hi(D) = { w : w £  H l (D) and w =  0 on T},

dP,

and

H l {D) = { w : w £ L 2(D) and ^ £ L 2(D),i = l : . . . , d } 1

L2(D) = {w : w is defined on D and I w2dD < oo},
Jd

L2(Q) = {in : w is defined on Q and I w2dQ < 00}.
J n

(4.12)

(4.13)

(4.14)

(4.15)
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The Lax-Milgram lemma can be used to prove that there exists a unique solution to 

this problem provided that condition (4.5) is satisfied.

4.4 .2  M ixed  F orm ulation

The weak formulation of the mixed variational problem is: find (u, q ) 6 V x W  

(a(q,v)) + ( 6(v,u)) =  ( ( # ,n -v ) r0), Vv G V
(4.16)

W q ,w)) = - ( ( / ,  w)), Vw e w

where

(a(q,v))
=  L I L k ^ ) ^

• v(x, £)dD dP,

(&(v,w)) =  [  \ (  V . v ( x ) W x , P  
Jn U d

dP,

((2 >n -V)Tu) =  [ \ [  ^(x)(n- v(x,£))dD  
Jn lJrD

dP,

< ( . /» ) = | j f / ( x M x ,£)dD dP.

The solution spaces W = L2(D) <S> E2(Q), where L2{D) and L2(Q) are defined in 

(4.15). The solution space V is the tensor product space

V  =  {v(x, £) € H(div\ D) <g> L2(Q) : v(x, Q - n  =  0 o n T ]Vxfi},  (4.18)

where, given the vector function v =  {ui , . . . ,  Vd},

H(div, D) =  {v : v € L2(D)d, a n d V - v e  L2(D)}, (4.19)

and L2{D)d is the Hilbert space

L2(D)d =  {v : Vi E L2{D), i = 1 , . . . ,  d}. (4.20)

There exists a unique solution to this problem providing that the bilinear forms are 

continuous and coercive and the inf-sup inequality is satisfied (see Brezzi & Fortin
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(1991)). Furthermore condition (4.5) needs to be satisfied, i.e.

0 < r   ̂ i? r — \ ^  r  < +0°' (4-21>ki K2

4.5 Stochastic Finite Element Approximation

The implementation of the spectral stochastic finite element method (SSFEM) for 

problem (4.1) involves the separate discretisation of the deterministic and stochas­

tic spaces. The deterministic space Hq{D) is discretised by means of polynomials 

defining the classical finite element basis functions 0*(x), i = 1 , . . . ,  Nu, where Nu is 

the number of finite element nodes. These basis functions are piecewise linear on a 

partition Z h of D defined by triangular finite elements A *, i =  1, . . . ,  JVe, such that,

Ne

Zh = [jA j ,
i—1

where Ne denotes the number of finite elements. Here h denotes the discretisation 

parameter and describes the size of the finite elements in Z h. Let E h be the collection 

of numbered edges ( V  = 2), e*, i = 1 , . . . ,  N edg, where Nedg is the total number of 

edges in Z h.

The stochastic space L2(Q) is discretised by means of polynomial chaos of order 

less than or equal to p in d random variables £*. According to the Galerkin method 

we define the finite dimensional subspaces S h C Hq(D) and T h C L2(Q) such that 

W h =  S h® T h c  W  = Hq(D) <g>L2(Q). The discrete variational formulation of (4.11) 

is: Find uh E W h such that

(a(uh,wh)) = (L(wh)). \/wh E W h (4.22)
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4.5.1 P o lyn om ia l C haos

The basis for subspace T h contains multidimensional polynomials of degree less 

than or equal to p , T h =  span{\i,  • • •, Xp } where

(4-23)

and d represents the number of random variables (number of terms retained in the 

KLE expansion). The polynomial chaos basis is chosen so that the following orthog­

onality condition is satisfied

(XiXj) = {Xi)2$i,j- (4-24)

In this thesis the probability measure corresponds to that of either a d-dimensional 

uniform distribution or d-dimensional normal distribution. Hence, the basis for T h 

consists of d-dimensional Legendre or Hermite polynomials. Note that the one­

dimensional case is a special form of these larger spaces.

Legendre Polynomials

Multidimensional Legendre polynomials are defined as products of univariate Leg­

endre polynomials, {I/»(£j)}, i = 0 , . . .  ,p  and j  = 1 , . . . ,  d. Let us associate to each 

basis function {x*}5 * =  1, . . . ,  1°, a multi-index a  =  a(*j), where the components 

represent the degree of the univariate polynomials (Lj(fj)}. For example, given the 

univariate Legendre polynomials of degree less than or equal to 3, we have

M O  =  l M O  =  ? M O  =  \  (3?2 -  !) M O  =  I  (5f3 -  3 0  , (4.25)

and considering two-dimensional polynomials, i.e. d =  2, we have the indices a*, 

k =  1 , . . . , 1 0

C*1 =  <2(0,0) <22 =  <2(1,0) <23 =  <2(0,1) <24 =  <2(2 ,0) <25 =  <2(1,1)

<26 =  <2(0,2) <27 =  <2(3,0) <28 =  <2(2,1) <29 =  <2(i ,2) Ckio =  <2(0,3)-

(4.26)
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The basis functions defined in subspace T h = {xan • • • ,Xai0} are

X.O‘1 = 1 X(*2

X 0 /5

Xai3 ^ 2

Xc*4 = I ( 3 & - 1 )

XoT =  I (5ff -  3$,) 

X«.„ = |( 5 f 23 - 3 { 2).

X«8 =  §(3£? -  l f e

X«6 =  I  (3«| -  1) 

X,., =  j^i (3?j -  1)

(4.27)

Hermite Polynomials

Similarly, multidimensional Hermite polynomials are obtained as a product of 

univariate Hermite polynomials, {-Hi(fj)}, i — 0, . . .  ,p and j  =  1,. . .  ,d. Following 

the previous example, the univariate Hermite polynomials of degree less than or equal 

to 3 are given by

H0(O = l # i(? ) =  f  H2( 0  =  £2 - l  H3( 0  = e ~  3?. (4.28)

Considering the indices (4.26), the basis functions for the stochastic space T h are

given by

Xax = 1

Xa4 =  f l  -  1

X a 7 =  3Cl

Xot2 Xoc3 C2

Xaio = €2 — 3C2-

4.5 .2  Linear System

To obtain the discrete linear system associated with the weak formulation (4.22) 

the potential uh is approximated by

p  n u

(4.30)
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Substituting uh using expansion (4.30) in (4.22) we obtain the linear system of equa­

tions

Au = f , (4.31)

where A is a sparse matrix of size NUP  x  NUP  with a block-structure

A =

Ai,i Al# - ■ ■ A\tp

A2,l A2,2 •  * * A2,P

P, 1 Ap, 2 • • l p , p

and

(4.32)

(4.33)

The block structure of A has been described by other authors (see Powell k, Elman 

(2009), for example). We include a brief description for completeness. Consider the 

case p = 2 and d = 3, then P = 10. The structure of A  for this example is illustrated 

in Figure 4.1.

(a) Block structure of A (b) Sparsity pattern of A

Figure 4.1: Block structure of the global stiffness matrix A  for the second order 
problem
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The diagonal blocks A* (red squares) are defined as products of the mean stiffness 

matrix, K0, and ( \ i )2 so that the ith diagonal block, A*ti, is

Al> = {x i>2 »*■<>, t =  l , . . . , P ,  (4.34)

where

(F0)r,s = [  /iV0r (x)V0s(x)dx, (4.35)
J D

and p denotes the mean value of the conductivity field C(x, £).

The off-diagonal blocks A*j, i ^  j ,  are products of the stiffness matrices, K\, with 

the coefficients of the polynomial chaos expansion, Cijj = (£iXiXj)i h j  =  1, - - •, 

and I = 1, . . . ,  d
d

Ah  = J 2  ® K', (4.36)
1 = 1

where

(Ki)r,s = <ry/\] J  A (x)V 0 r (x)V 0 s(x)dx. (4.37)

The coefficient matrix A can be expressed in matrix notation. Following Powell & 

Elman (2009) we have
d

A = G0 & K q +  ^   ̂Gk Kk (4.38)
k =1

Note that in Figure 4.1a different colours are assigned to different blocks of A. Each 

colour represents the tensor product operation of a stochastic matrix Gk with Kk, 

k = 0 , . . . ,  d.

It is evident that the sparsity of the global stochastic coefficient matrix A is

governed by the coefficients of the polynomial chaos expansion. The sparsity of the

blocks of A is determined by the sparsity of the deterministic finite element stiffness 

matrix. Figure 4.1b shows the sparsity of A for the case in which h = \.

For the case where the conductivity coefficient is approximated by (4.8), the basis 

for T h consists of one-dimensional Legendre polynomials of degree less than or equal



Chapter 4- Spectral Stochastic Finite Element Theory 99

to p. In this particular case A has size Nup x Nup and has the following (tridiagonal) 

structure,

A\ At

A =

A *  A* A*stp-i stp-l Sif

(4.39)

A * A*AP AP
The diagonal blocks A* are given by (4.34) and the off diagonal blocks A* take 

the form

K j  =  (kXiXj) ® K, (4.40)

where

K {r , s )=  [  V 0r (x)V0s(x)d(x), (4.41)
JD

and A: is as defined in (4.7).

4.5 .3  Im plem entation  and S o lu tio n  S tra teg ies

The global coefficient matrix A is never fully assembled. In fact, its dimension 

grows quickly with the order of the polynomial basis p and the number of random 

variables d making its full assembling unfeasible from a memory point of view. As 

originally observed by Ghanem & Kruger (1996), it is necessary to store d+ 1 matrices 

of size Nu x Nu corresponding to Kk, k = 0 , d, in (4.38) and the non-zero entries 

of the stochastic matrices Gk• Depending on the size of the problem these can be 

stored either on RAM or disk.

The discrete linear system can be solved by the conjugate gradient method CG. 

However, most often a preconditioner, V , is required to increase the efficiency of the 

solver. The earlier attempts of Ghanem & Kruger (1996) and Pellissetti & Ghanem
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(2000) involved incomplete factorization schemes for the diagonal blocks of A  Using 

the notation of §4.5.2, we can define the block-diagonal preconditioner Vbdiag and the 

mean preconditioner Vmean as

Vbdiag =  G0 <g) K q, Vmean = /  ® K q■ (4.42)

At each CG iteration the computation of V~lr is required, where r  is the residual 

vector. This operation involves the solution of P  sub-systems of equations (within 

the action of the preconditioner) of size Nu x Nu with coefficient matrix K0.

As pointed out by Powell & Elman (2009) any efficient deterministic solver can 

be used for the solution of the P  sub-systems. These authors proposed the use of 

one V-cycle of black-box algebraic multigrid (AMG). The crucial advantage of using 

black-box AMG is that the computational cost of one V-cycle of AMG is linearly 

proportional to the discretisation parameter h.

It is observed (see Powell & Elman (2009)) that, when Gaussian random variables 

are employed, the preconditioned system is positive definite only when the variance 

and the order of the polynomials is small. This is a consequence of the infinite support 

of the Gaussian distribution and the violation of condition (4.5) for the conductivity 

coefficient. Preconditioned CG breaks down when this criteria is violated. Therefore, 

the use of Hermite polynomials is limited to problems with small variances. Uniform 

distributions, however, have finite support and condition (4.5) can be easily satisfied.

For the SFEM method to be computationally efficient and competitive with re­

spect to traditional sampling methods, the CG method needs to be equipped with 

robust preconditioners which are optimal with respect to h, d, p and especially C. 

It is well known that the performance of preconditioners (4.42) (see the numerical 

experiments presented in Chapter 6) deteriorates for problems in which C has a large 

standard deviation. This is due to the fact that the off-diagonal blocks of A be­
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come increasingly important (for large variances) and they are not included in the 

preconditioner, V.

To overcome this important limitation a new preconditioner which fully exploits 

the block structure of A is proposed. At each CG iteration the computation of V~lr 

involves all blocks of the coefficient matrix A. This is achieved by adding an internal 

loop to the preconditioning operation which essentially implements a full inversion of 

the global stiffness matrix A using a block symmetric Gauss-Seidel algorithm. The 

preconditioner, which to the author’s knowledge has not been used in the SFEM 

context before, takes the form,

d
'PbSGS ~  Go <8> K q +  y ]  Gk 0  Kk- (4-43)

k=l

However, the preconditioner VbSGS is neither assembled nor inverted directly. An 

example should make this process more clear. Let us consider the case in which d = 2 

and p = 2. The global stiffness matrix takes the form

*1,1 *1,2 *1,3 0 0 0
*2,1 *2,2 0 *2,4 *2,5 0
*3,1 0 *3,3 0 *3,5 *3,6
0 *4,2 0 *4,4 0 0
0 *5,2 *5,3 0 *5,5 0
0 0 *6,3 0 0 *6,6

At each CG iteration, we iterate over k =  1,2,3, . . .  and progressively solve the 

system of equations block by block for zi, Z2, . . . ,  zq, as follows

*1,1 0 0 0 0 0 '4~ ri 0 *1.2 *1,3 0 0 0
*2,1 *2,2 0 0 0 0 *2 r2 0 0 0 *2,4 *2,5 0
*3,1 0 *3,3 0 0 0 z3 r3 0 0 0 0 *3,5 *3,6

0 *4,2 0 *4,4 0 0 z4 r4 0 0 0 0 0 0
0 *5,2 *5,3 0 *5,5 0 4 r5 0 0 0 0 0 0
0 0 *6,3 0 0 *6,6. .4. ■r6. 0 0 0 0 0 0

where z° is an initial guess and r  is the residual vector obtained at each CG iteration. 

The terms at the (k — l)th  level are known from the previous iteration and hence 

they become part of the right hand side of the system of equations. The k terms
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are obtained successively by solving P  sub-problems of size Nu x Nu using either 

UMFPACK or one V-cycle of AMG or any fast solver for the deterministic problem 

under consideration.

The internal Gauss-Seidel iteration has to be symmetric to be used as a precondi­

tioner for CG. Hence the forward sweep illustrated in (4.5.3) needs to be followed by 

a backward sweep. Hence for each iteration of the Gauss-Seidel algorithm, one sweep 

in each direction is required to guarantee the symmetry of the preconditioner for CG.

Two stopping criteria are used for the proposed algorithm. Ideally the iterative 

method stops when

where e =  10~8. Alternatively, when a maximum number of iterations maxitb is 

achieved the current approximation for z is the preconditioned residual needed within 

the current CG iteration.

The algorithm used in the numerical experiments reported in Chapters 6 and 

7 is given below. Algorithm 1 shows the forward sweep and 2 the backward one. 

When Gauss-Seidel is used as a preconditioner for CG both sweeps are used and the 

convergence test is carried out only at the end of the backward sweep. Note that in 

the presented algorithm we have used the non-zero blocks of A as inpu t in order to 

simplify its description. However in the actual implementation the blocks of A are 

computed every time. In fact, only d -1-1 (K q and Kk) stiffness matrices and the 

stochastic matrices Gk are stored.

In general, this algorithm should decrease the number of CG iterations and, in 

particular, it should improve the iteration count for those problems for which the 

off-diagonal blocks of A  are important, i.e. problems in which the spatial random 

field has a large standard deviation.
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A lgorithm  1 Gauss-Seidel forward sweep 
input: Aitj, i = j  = 1, . . . ,  P  {Non-zero blocks of A)

inpu t: r*, i =  1, . . . ,  P  {CG residual vector}

rep ea t

inpu t: Zj, j  =  1, . . . ,  P  {Initial guess} 

for i = 1 to P  do 

for j  = 1 to i — 1 do

rhSj =  r{ -  AijZj

end for

for j  = i +  1 to P  do

rhSi =  r* -  A i j Z j -1

end for

A^izk = rhsi {Solve with UMFPACK or one V-cycle of AMG code} 

end for

u n til convergence or maxitb is reached

A lgorithm  2 Gauss-Seidel backward sweep
inpu t: Zj, j  = 1 , . . . ,  P {Vector obtained from forward sweep}

for i = P  to 1 do

for j  = 1 to i — 1 do

rhsj =Ti — Aij  zj

end for

for j  = i +  1 to P  do

rhsi = T i -  AijZ1*+1 

end for

Ai}iZk+1 =  rhSj {Solve with UMFPACK or one V-cycle of AMG code} 

end for
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On the other hand, it is clear from the presented algorithm that the number of 

matrix-vector operations increases significantly. Thus, to improve the computational 

cost of the solution process we seek a substantial reduction in the number of CG 

iterations with the aid of a small number of internal Gauss Seidel iterations.

The performance of VbSGS and its comparison with mean-based preconditioners 

(4.42) is reported in Chapters 6 and 7.

4.6 Stochastic Mixed Finite Element Approximation

The approach to SMFEM is similar to the one presented in the previous section. 

However, the mixed finite element approximation requires the definition of subspaces 

for H{div\D) in addition to L2(D). In this we consider the Raviart-Thomas space 

of lowest order RTq as a suitable space for the approximation of the velocity solution 

and Mq{K) is defined to be the space of piecewise constant functions. These are 

defined in §2.5.1.

As previously presented (see §4.5.1), the stochastic space L2(Q) is discretised 

by means of polynomial chaos. The spaces for the stochastic approximation are 

consequently given by V h = Y h® T h C V = H(div\ D)<g>L2(Q) and W h = X h®Th C 

W  = L2(D) <g) L2(Q).

The discrete variational formulation of (4.16) is: find qh E V h and uh E W h such 

that

(a (q/l,v /l)) -f (b(vh,uh)) =  ((g, n  • v )rD), Vvft(x ,Q  G
(4.45)

(b(cih,wh)) =  ~ ( ( f , w h)). V u^x, £) E W h
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4.6.1 Linear System

The potential uh and flux (or velocity) qh are expressed in terms of the expansions

p  n k p  Nedg

r0r(x)x*(£), qft(x,£) =  E E i * .  rVv(x)xs(£). (4.46)
s = l  r = l  s = l  r = l

Substituting for uh and qh using expansions (4.46) into (4.45), we obtain the discrete 

linear system
A r t  n  < r

(4.47)

where A is a sparse symmetric matrix of size NedgP  x NedgP  with block structure

and B  is an unsymmetric sparse matrix of size NeP  x NedgP  with block diagonal

structure. For the example in which p = 3 and d = 2, the block structure of C , where 

A BT

A B T q g

B 0 u f

C =
B  0

is illustrated in Figure 4.2a.

(a) Block structure of C (b) Sparsity pattern of C

Figure 4.2: (a) Block structure and (b) sparsity pattern of the global stiffness matrix 
C - first order problem SMFEM

The structure of C is governed by the coefficients of the polynomial chaos expan­

sion (see Figure 4.6.1), whilst the sparsity of each of the blocks of C  (see Figure 4.2b)
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corresponds to the sparsity of the deterministic velocity matrix and the deterministic 

divergence operator. For the case of h = \  the sparsity of C is illustrated in Figure 

4.2b.

The diagonal blocks A* are products of the mean velocity matrix, K q, and (xf)

Ali = { X i? ® K a,

where

{K o ) r,s =  I  i v ,r(x)^s(x)d3  
Jd F

The off-diagonal blocks A* are given by
d

Ah  = KC/XiXi)] <8> K h
i=i

where

{ K l ) r , s  =  J  A (x)'0r(x )V 's(x )d x .

The block diagonal matrix B is given by

Biti = (Xi)2 ® Bq,

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

where

Bo(r ,s)= f  0r (x)V • ^ a(x)d(x). (4.53)
Jd

When the conductivity coefficient is approximated by (4.8), A reduces to size 

NedgP x NedgP and has a tridiagonal structure and B  reduces to size Nep x NedgP- 

Then, C has the following structure

A \  A J  

AJ AJ AJ

A p - l  A p - i  A p  

A l  A l

B1
B2

(4 .5 4 )

B p - !

Bp
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The diagonal blocks A* are given by (4.34) and the off-diagonal blocks A* have 

the form

matrices Gk, we also store the matrix B0 of size Ne x Nedg.

The efficient solution of the saddle-point system (4.47) is an active field of research 

(see Furnival (2008), Ernst et al. (2009) and Elman et al. (2010)). Our approach fol­

lows from our understanding of the deterministic system (see §2.5.3). In Chapter 3 we 

used MINRES equipped with a practical preconditioner based on the approximation 

of the Schur complement by sparse direct or algebraic multigrid methods.

For the stochastic system we use a preconditioner which follows from its deter­

ministic version (2.41) and it is given by

^  * = (kkXkiX 'j)®K, (4.55)

where

(4.56)

and k is as defined in (4.8).

4.6 .2  Im p lem en ta tion  and  S o lu tio n  S trateg ies

As for the SFEM method the coefficient matrix C = [ ̂  ] is never assembled.

In addition to storing d + 1 matrices of size Neag x Nedg and the entries of the stochastic

(4.57)

where

N  = diag(A) =  G0 <g> diag(K0) (4.58)

and

V = B N ~ lB T =  G0 0  [B0diag{KQ) - lBl]  . (4.59)
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Following the discussion for the second order problem carried out in §4.5.3, the 

preconditioner (4.57) is expected to be efficient only for problems in which the spatial 

random field is characterised by small or moderate standard deviation. The fact 

is that, to date, a robust preconditioner in terms of cr, for the mixed stochastic 

formulation has not yet been proposed.

Due to the structure of C , the new developments reported in §4.5.3 are not equally 

applicable to the first order problem. The stochastic version of the mixed-hybrid 

method could provide the solution to this drawback. This is discussed further in the 

next sections.

4.7 Stochastic Mixed Hybrid Formulation

We have seen that, in the deterministic case, the indefinite discrete linear system 

obtained by mixed methods can be reduced to a positive definite system of equations. 

The success of the hybridization technique relies on the fact that the matrix A is 

diagonal, hence the computation of A~l is cheap. Furthermore, the Schur complement 

BA~lBT and its inverse are also diagonal and efficiently computed. The resulting 

matrix D is sparse and positive definite.

The stochastic global system of the mixed hybrid method has a similar form to 

the one associated with the deterministic counterpart (2.49). However, the global 

matrix A  is now a block matrix whose sparsity is governed by the coefficients of 

the polynomial chaos expansion. Note that each block of A is diagonal. Its block 

structure is shown in Figure 4.3(a) for the case of d =  3 and p = 2. Its sparsity 

pattern is shown in Figure 4.3(b).

The global stochastic matrices B  =  (\ i )2 ® B0 and C = (Xi)2 ® C0, i = 1, . . . ,  P, 

where B0 and Cq are the corresponding deterministic global matrices, are block diag­
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onal. Their block structure and sparsity pattern is also shown in Figure 4.3(a) and 

Figure 4.3(b).

Figure 4.3: (a) Block structure and (b) sparsity pattern of the global stiffness matrix 
for d = 3 and p = 2 - first order problem SMHFEM

The global matrix A is sparse and posses a block structure but, contrary to the 

deterministic version, has diagonal entries for every non-zero entries of the stochastic 

matrices <7*, k =  0,..., d in 4.38. Several blocks of A  are zero reflecting the sparsity 

of the polynomial chaos coefficients. However, the inverse of A  is diagonally domi­

nant (having diagonal entries for every block) as shown in Figure 4.4a. It becomes 

apparent that the computation of A~x is still feasible but it is less computationally 

straightforward than for the deterministic case.

In addition to the computation of the inverse of A, the inverse of the Schur comple­

ment (2.54) needs to be performed. The operation BA~1B T and its inverse produce 

matrices exhibiting the same sparsity pattern as A~l (see Figure 4.4a).

Given the structure and sparsity patterns of the inverse matrices, the global 

stochastic matrix D (obtained using the post-processing technique (2.54)) has en­

tries for each block. Its sparsity pattern is illustrated in Figure 4.7. Each block has

(a) Block structure (b) Sparsity pattern
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(a) Sparsity pattern of A 1 (b) Sparsity pattern of D

Figure 4.4: Sparsity patterns for A~l and D

non-zero entries corresponding to the sparsity pattern of the deterministic matrix D.

4.7.1 Im p lem en ta tion  and S o lu tion  S trateg ies

Cases for which the SMHFEM has been implemented are not available in the 

literature. In fact, it appears that most of effort has concentrated on the efficient 

solution of SMFEM and, as far as I know, the stochastic mixed-hybrid implementation 

is yet to be explored.

The attractiveness of this method is due to the fact that the global matrix D, 

although having non-zero contributions for each block, has a structure similar to the 

second order problem. Consequently the preconditioners which are proposed in §4.5.3 

can be used to solve this system of equations efficiently.

However, there are some very important matters to consider. Firstly, the effective 

applicability of the method depends on the efficient inversion of A and BA~1B T. This 

could be achieved using block Gaussian elimination. In fact, only multiplications of 

diagonal matrices are required and this should be very fast and efficient. Secondly, it



Chapter 4' Spectral Stochastic Finite Element Theory 111

appears that all the blocks of the coefficient matrix need to be stored in contrast to 

the other implementations. In the SFEM and SMFEM implementations only d +  1 

matrices and the entries of the stochastic matrices Gk need to be stored. It seems that 

the same implementation is not possible for the SMHFEM, due to the post-processing 

with which D is ultimately obtained. The memory required to store a large number 

of matrices represents a significant limitation of this method.

In this thesis we do not present numerical simulations for the stochastic version of 

the mixed-hybrid finite element method. The two challenges mentioned above have to 

be evaluated carefully to understand if the implementation of this method is feasible. 

This topic requires further research.



Chapter 5 

A Comparison of Stochastic Galerkin 

and Monte Carlo Methods

5.1 Introduction

The aim of this chapter is to compare the solutions obtained by means of Stochastic 

Galerkin methods (SFEM /  SMFEM) with those obtained by traditional Monte Carlo 

methods (MCM). The comparison of solutions give us the possibility to validate the 

SG numerical development. For the Monte Carlo simulations we use the deterministic 

mixed method which was validated in Chapter 3 using test problems with known 

analytical solutions. Therefore, the statistics obtained by sequential deterministic 

simulations (MCM) represent a suitable data-set against which to validate the results 

obtained with SG methods.

It should be noted that the numerical solutions for the test problems presented in 

this chapter (see §5.2 and §5.3) using SG and MCM do not ‘exactly’ converge to the 

results but some (small) differences are expected. The primary objective is to show 

that the numerical examples produce physically meaningful and comparable results.

112



Chapter 5: A Comparison of Stochastic Galerkin and Monte Carlo Methods 113

In addition to validation purposes the chapter also includes a convergence anal­

ysis for the two methods. Specifically, we consider the methods to have converged 

if there is no significant change in the solution for progressively larger polynomial 

orders (SFEM /  SMFEM cases) and number of simulations (MCM case). Ideally, 

the methods are considered to have converged if the first four significant digits of the 

solutions do not vary with increasing polynomial order p and number of simulations 

Nr. Although, this analysis could be considered subjective, it is our aim to highlight 

the different convergence rates of the two methodologies.

For each of the test problems presented in this chapter the performance asso­

ciated with both methodologies is reported. Although a robust comparison of the 

computational cost required by the two methods is feasible, this is outside the scope 

of this thesis. In fact the numerical codes implemented in this work are prototypes 

and still under development. A formal comparison between MCM and SG requires 

state-of-the-art algorithms and solvers and therefore this is an objective for future 

work. The timings listed in the tables should only give the reader an indication of the 

CPU cost required by that specific method. The simulations have all been carried out 

in serial within the MATLAB 7.4 on a laptop PC with 4Gb of RAM. A comparison 

of CPU performance for the numerical experiments based on parallel implementation 

algorithms is not considered in this thesis.

Additionally, it should be borne in mind that for the MCM the time required 

to create Nr spatial random field realizations can be very large and in some cir­

cumstances greater than the actual solution time. However, it is recognized that this 

computational time depends largely on the algorithm and method chosen to discretize 

the random field. Therefore, this CPU cost is omitted from the MCM timings re­

ported in the tables. The timings reported for the SG simulations are total times and 

they also include the CPU cost required to discretise the spatial random fields.
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Two test problems are considered in this chapter aimed at validating the SG 

implementation based on Gaussian and uniform distributions. The test problems 

also address the methods convergence behaviour for various settings. In particular 

we look at cases with mixed boundary conditions and small and large variances. A 

comparison of MCM and SG methods for test problems in which the conductivity 

coefficient is modelled by lognormal distributions is reported in Chapter 7.

The author would like to acknowledge the use of some of the MATLAB-based 

functions made available by Sudret & Der Kiureghian (2000) for the experiments 

carried out in this chapter.

5.2 SFEM vs Monte Carlo Simulations

For the SFEM the conjugate gradient method, preconditioned with P[sgs based 

on ( UMFPACK), is used (see §4.5.3). For the MC method a sparse direct solver 

(UMFPACK) is used. This is a suitable choice given that the mesh used in the 

following experiments is relatively coarse (h = ^ ) .

5.2.1 T est P ro b lem  1 - H erm ite  p o lyn om ials

This test problem is taken from Deb et al. (2001). We consider the square domain 

[—0.5,0.5] x [—0.5,0.5] and source term f ( x , y ) =  2(0.5 — x2 — y2). The stochastic 

system of equations to be solved is given in (4.1) with homogeneous Dirichlet bound­

ary conditions defined everywhere in T. The problem is solved on a regular triangular 

mesh with discretization parameter h =

The spatial variability of the conductivity coefficient Cfc(x,f(w)) is described by 

an exponential correlation function in which the correlation lengths are lx =  ly = 1.0. 

The spatial random field is assumed to be normally distributed with p =  1 and
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a  =  0.1. The eigenvalues and eigenfunctions of the Karhunen-Loeve expansion of 

C are available as analytical expressions (Ghanem & Spanos 2003, Powell & Elman 

2009). These can be expressed as the products of those of two corresponding ID 

problems. Closed form solutions to the eigenvalue problems are given in Ghanem 

& Spanos (2003). Note that closed form solutions are only available for the cases 

in which the covariance function is exponential /  square exponential or triangular 

and for squared or rectangular domains. Figure 5.1a shows the decay of the first 10 

eigenvalues obtained from the KLE as well as their summation. Figure 5.1b illustrates 

a realization of the conductivity field for test problem 1.

Random fiekl realization

(a) KLE eigenvalues for exponential covariance (b) Sample realization of spatial random field 

and lx =  ly =  1

Figure 5.1: KLE eigenvalues and sample realization of C(x, f) for test problem 1

Normally distributed random variables are used in this test problem. Hence the 

basis functions for the stochastic space are d-variate Hermite polynomials of order less 

than or equal to p. The spatial domain is discretised by a triangulation consisting of a 

32x32 grid of squares each of which is further divided into two triangles. Thus, the size
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of the deterministic problem corresponds to the number of nodes, Nu = 1,089. Table 

5.1 reports the overall number of equations solved using MCM and the dimension of 

the stochastic space and global stiffness matrix obtained using SFEM.

Table 5.1: Dimension of MCM and SFEM for test problem 1
Nr 10,000 20,000 40,000

MCM#eq. 10,890,000 21,780,000 43,560,000
P 2 3 4
P 28 84 210

SFEMfteq. 30,492 91,476 228,690

The mean and variance solutions for the potential obtained using SFEM (with 

d — 6 and p = 4) on a 32 x 32 uniform grid are shown in Figure 5.2.
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(a) Mean u solution (b) Variance u solution

Figure 5.2: SFEM mean and variance solutions for the potential, u(x,y), for test 
problem 1

Figure 5.3 shows the mean and variance solution profiles along the horizontal 

centreline of the domain for several values of polynomial order p and number of MC 

simulations Nr. Note that Figure 5.3 presents data only for the interval [—0.25 < 

X  < 0.25], which is the part of the domain furthest away from the boundaries.
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Figure 5.3: Comparison of solution profiles for SFEM and MCM for test problem 1

Table 5.2 shows the value of the mean and variance at location (0.5,0.5) for several 

values of Nr and p. The SFEM converges rapidly to the desired solution. Hermite 

polynomials of second-order (p = 2) are sufficient to achieve convergence to the 

fourth significant digit for the mean solution. Polynomials of order three are required 

to obtain the same level of accuracy for the variance solution.

Although the spatial random field is characterized by a small variance, the Monte 

Carlo method converges slowly. Table 5.2 shows that 20,000 simulations are sufficient 

to achieve convergence to the third significant digit for the mean solution. However 

the variance solution requires 30,000 simulations (sample variance 0.000022762) to 

converge to the second significant digit. Note also that in contrast to the SFEM 

solution the MC variance solution is not symmetric (see Figure 5.2).

Table 5.2 also reports CPU times required to solve one single discrete linear system 

(SFEM) and Nr deterministic problems (MCM). The CPU timings indicate that 

for this test problem SFEM is significantly more efficient than MCM. However, it
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Table 5.2: Convergence analysis of MCM and SFEM for test problem 1
Nr = 10,000 20,000 Nr =  40,000

Sample Mean 0.062915 0.062928 0.062904
Sample Variance 0.000023290 0.000023257 0.000022881

tcpu(sec.) 15.82 31.64 63.29
p = 2 p = 3 p = 4

Mean 0.062855 0.062856 0.062856
Variance 0.000023348 0.000023377 0.000023378

tcpu(sec-) 0.39 1.54 3.96

should be kept in mind that more efficient algorithms could be developed for both 

methodologies, providing different time estimates. Therefore, the timings reported 

serve as an indication of efficiency only and do not provide a robust comparison 

between the two methodologies. Furthermore, it should be noted that the linear 

growth in CPU time reported for the MCM is not observed for the SFEM. In fact, 

for the latter method the dimension of the stochastic discrete linear system increases 

factorially with the maximum order, p, of the polynomials used to discretise the 

stochastic space.

5.2.2 T est P rob lem  2 - L egendre p o lyn om ia ls

The second test problem is similar to the one presented in Powell &; Elman (2009). 

We consider the square domain [0.0,1.0] x [0.0,1.0] with source term f{x ,y)  = 1. 

Dirichlet boundary conditions are imposed on the left and right edge of the square 

domain such that TD =  {0,1} x [0,1]. Homogeneous Neumann boundary conditions 

are imposed on the upper and lower edge of the domain so that the flow is tangent 

to these boundaries. The system of equation defined in (4.1) is solved on a regular 

triangular mesh with discretization parameter h =

The spatial model for C/l(x, f(w)) is the same as the one described for test problem 

1. However for this test problem we set the standard deviation to a — 0.7.
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In this test problem random normal variables cannot be employed because when 

a large standard deviation is deployed the discrete linear system and preconditioned 

system become indefinite. In fact it can be shown that when Hermite polynomials are 

used, the positive definiteness of the coefficient matrix is never guaranteed. (Powell 

&; Elman 2009) showed that when Hermite polynomials are used, for fixed values of 

h, d and a there is always a value of p that determines the coefficient matrix A to be 

indefinite. Furthermore the author showed that for small values of o the link between 

A being SPD and the order of the Hermite polynomials p is not evident.

Thus, given that in this test problem a is large, normal distributions cannot be 

used. Therefore, independent and uniformly distributed random variables, defined in 

the interval (—1,1), are used. Hence the basis functions for the stochastic space are 

d-variate Legendre polynomials of order less than or equal to p. Let us set d = 4 

(four random variables) and use polynomials up to order eight. The spatial domain is 

discretised by the same triangulation described in test problem 2. Table 5.3 reports 

the overall number of equations solved using MCM and the dimension of the stochastic 

space and global stiffness matrix obtained using SFEM.

Table 5.3: Dimension of MCM and SFEM for test problem 2
Nr 10,000 20,000 40,000 80,000

M CM#eq. 10, 890,000 21,780,000 43,560,000 87,120,000
P 5 6 7 8
P 126 210 330 495

SF E M #eq . 137,214 228,690 359,370 539,055

The mean and variance solutions for the potential obtained using SFEM with 

p =  8 and d = 4 on a 32 x 32 uniform grid are illustrated in Figure 5.4.

Figure 5.5 shows the mean and variance solution profiles along the horizontal 

centreline of the domain for several values of polynomial order p and number of MC 

simulations Nr. As for test problem 1 the solution profiles obtained by the two
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Figure 5.4: Mean and variance solutions for the potential for test problem 2

methods are very similar and converge to the same values for increasing sampling 

size, Nr, and polynomial order, p.
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Figure 5.5: Comparison of solution profiles for SFEM and MCM for test problem 2
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Table 5.4 shows the value of the mean and variance at location (0.5,0.5) for several 

values of Nr and p. Legendre polynomials of order four (not shown in Table 5.4) are 

sufficient to achieve convergence to the fourth significant digit for the mean solution. 

Polynomials of order seven, instead, are required for the variance solution to achieve 

the same level of accuracy. Hence, not surprisingly, the first moment solution always 

converges more rapidly than the second moment solution, no matter how large the 

variability of the spatial random field is.

For random fields with large variance the Monte Carlo method converges very 

slowly. Table 5.4 shows that 40, 000 simulations are required for the sample mean to 

converge. Furthermore, the maximum size of the sample used in this study (Nr = 

80,000) is not sufficient to achieve convergence for the variance solution.

Table 5.4: Convergence analysis of MCM and SFEM for test problem 2
Nr = 10,000 Nr = 20,000 Nr = 40,000 Nr = 80,000

Sample Mean 0.64132 0.64087 0.64072 0.64070
Sample Variance 0.0075964 0.0075244 0.0075556 0.007530

tcpu(sec.) 25.70 51.40 102.80 205.61
p = 5 p = 6 p = 7 p = 8

Mean 0.64114 0.64115 0.64115 0.64115
Variance 0.0077580 0.0077639 0.0077650 0.0077653

tcpu(sec-) 5.40 13.26 19.78 21.54

The CPU times reported in Table 5.4 indicate that the SFEM method is signif­

icantly more efficient than the MCM when large standard deviations and Legendre 

polynomials are used. Although the results presented in test problems 1 and 2 are 

not directly comparable, SFEM using Legendre polynomials is generally more effi­

cient than using Hermite polynomials. Furthermore, in the latter case the positive 

definiteness of the coefficient matrix is guaranteed only when the standard deviation 

and polynomial order are not too large. Thus it would not be possible to obtain a 

solution for test problem 2 if Hermite polynomials were used.
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5.3 SMFEM vs Monte Carlo Simulations

For the SMFEM and for each MC simulation, MINRES equipped with a Schur 

complement preconditioner based on AMG is used (see §2.5.3 and §4 .6 .2). For the 

deterministic case this choice is motivated by the outcomes of Chapter 3. For the 

stochastic problem instead this is the most efficient and practical preconditioner cur­

rently available.

5.3.1 T est P rob lem  1 - H erm ite  p o lyn om ials

The settings for this test problem are described in §5.2.1.

The solution of the stochastic mixed formulation provides, in addition to the 

mean and variance of the potential, the mean and variance of the two components 

of the velocity field. In fact, as explained in Chapter 2, simultaneous solutions are 

obtained for the potential, at the centroid of the finite elements and for the normal 

fluxes at the edges of the triangulation. Thus, the size of the deterministic problem 

corresponds to the sum of the number of elements, Ne =  2,048, and number of edges, 

Nedg = 3,136. Table 5.5 reports the overall number of equations solved using MCM 

and the dimension of the stochastic space and global stiffness matrix obtained using 

SMFEM.

Table 5.5: Dimension of MCM and SMFEM for test problem 1

Nr 10,000 20,000 40,000
M C M #eq. 51,840,000 103,680,000 207,360,000

P 2 3 4
P 28 84 210

SF E M jfeq . 145,512 435,456 1,088,640

The mean and variance for the potential solution are similar to those obtained 

using SFEM and they are illustrated in Figure 5.1. The mean and variance solutions
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for the two components of the velocity field obtained using SMFEM (with d = 6 and 

p = 4) on a 32 x 32 uniform grid are shown in Figure 5.6.
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Figure 5.6: Mean and variance solutions for test problem 1 for h = ^

The mean and variance profiles for the X  component of the velocity field along 

the horizontal centreline of the domain for several values of polynomial orders p and 

number of MC simulations Nr are illustrated in Figure 5.8. The profiles for the Y
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component along the vertical centreline are also illustrated in the same figure. As for 

the second order problem the mean and variance of the velocity field for the MCM 

and SMFEM converge to the same solution for increasing sampling size, Nr, and 

polynomial order, p.
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Figure 5.7: Solution profiles along the horizontal and vertical centerline

Table 5.6 shows the values of the mean and variance solutions sampled at locations
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(—0.5,0.0) and (0.0, —0.5) for several values of Nr and p, for the V-component and 

Y-component of the velocity field, respectively.

The SMFEM converges at the same rates reported for the SFEM case, i.e. poly­

nomials of order two are sufficient for the mean velocity solutions and polynomials 

of order three are required for the variance velocity solutions to achieve accuracy 

to the fourth significant digit. Note also that the qx and qy solutions are perfectly 

symmetric.

The Monte Carlo mean solution of the velocity field converges rapidly and it 

appears that 10,000 simulations are sufficient to achieve convergence. However, the 

variance solution for the velocity components converges slowly and it appears to be 

not symmetric (see Table 5.6 and Figure 5.5). Consequently, the rate of convergence 

for the X  and Y velocity components differ, slightly. Results presented in Table 5.6 

indicate that 20,000 simulations are sufficient to achieve convergence to the third 

significant digit for qy. However, 40,000 simulations or more are required to achieve 

the same level of accuracy for qx.

Table 5.6: Convergence analysis of MCM and SMFEM for test problem 1

Nr =  10,000 Nr = 20,000 Nr = 40,000
Sample Mean -0.24694 -0.24699 -0.24692

Qx Sample Variance 0.000043008 0.000043567 0.000043320

Qy
Sample Mean -0.24706 -0.24696 -0.24694

Sample Variance 0.000042770 0.000042982 0.000042947
tcpu(sec.) 2,023 4,046 8,092

p = 2 p = 3 p =  4

Qx
Mean -0.24688 -0.24688 -0.24688

Variance 0.000042547 0.000042584 0.000042585

Qy
Mean -0.24688 -0.24688 -0.24688

Variance 0.000042547 0.000042584 0.000042585
tCpu{sec.) 11.02 44.77 160.82

The CPU cost per simulation is significantly more expensive for the first than for 

the second order problem. In a stochastic context, where several thousand simulations
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are required, the MC method becomes computationally very expensive. This is clear 

from Table 5.6, where the reported data show that more than two hours are required 

to solve 40,000 linear systems of equations on a relatively coarse grid (h = ^ ) . It 

should be noted that in real life applications the size of the sample will be significantly 

larger than the one considered in this test problem.

On the other hand, the SMFEM is significantly more efficient. Note, however, that 

this conclusion cannot be generalized as the random field used in this test problem 

has a low standard deviation. The next example shows that the SMFEM solution 

time increases significantly for problems with larger standard deviations.

5.3 .2  Test P rob lem  2 - variab le  a

The settings for this test problem are described in §6.2.2.

Table 5.7 reports the overall number of equations solved using the MC method 

for test problem 2. The table also includes the dimension of the stochastic space and 

the global stiffness matrix obtained using SMFEM.

Table 5.7: Dimension of MCM and SMFEM for test problem 2

Nr 10,000 20,000 40,000 80,000
M C M #eq. 51,840,000 103,680,000 207,360,000 414,720,000

P 5 6 7 8
P 126 210 330 495

SF E M #eq . 653,184 1,088,640 1,710,720 2,566,080

The mean and variance solution for the potential are very similar to those obtained 

with the second order problem and these are illustrated in Figure 5.4. The mean and 

variance solutions for the components of the velocity field for d =  4 and p = 8 on a 

32 x 32 uniform grid are shown in Figure 5.8. Note that for this test problem the 

flow is predominantly from left to right, hence the T-component of the velocity field 

is equal or close to zero and therefore it is omitted from Figure 5.8.
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Figure 5.8 also includes the solution profiles for various order of Legendre polyno­

mials p and various Monte Carlo samples, Nr. For the mean velocity (^-component) 

solution the profile presented is along the direction Y  =  0.5 and for the variance so­

lution is along the direction X  =  0.5. An in-depth convergence study for a sampling 

point having coordinate (0.5,0.5) is reported in Table 5.8.
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Legendre polynomials of order four (not shown in Table 5.8) are sufficient to 

achieve convergence to the fourth significant digit for the mean solution. Polynomials 

of order six, instead, are required for the variance solution to achieve the same level 

of accuracy. This is in agreement with the convergence rate of the mean and variance 

solution for the potential recorded for the second order problem (see Table 5.4).

Noticeably it is apparent from the data presented in Table 5.8 that the Monte 

Carlo mean solution for the X  component of the velocity field does not converge 

for the sample size considered in this test problem. This is somewhat discordant 

if compared with the convergence rate of the potential solution for the first (not 

shown in Table 5.8) and second order problem (see Table 5.4). Equally the variance 

solution does not converge for the maximum sample size herein considered. However, 

convergence to the third significant digit is achieved for just 10,000 simulations.

Table 5.8: Convergence analysis of MCM and SMFEM for test problem 2
N r = 10,000 N r =  20,000 Nr = 40,000 Nr = 80,000

Sample Mean 
^  Sample Variance

1.12083
0.16755

1.12182
0.16756

1.11799
0.16777

1.11835
0.16795

tCpu(sec.) 1,437 2,874 5,748 11,496
p = 5 p  = 6 p = 7 p = 8

Mean 1.12517 1.12516 1.12515 1.12515
Variance 0.17491 0.17488 0.17489 0.17489

tcpu(sec.) 374.67 605.13 1,649.94 2,331.29

The data on computational performance reported in Table 5.8 reveal that the 

performance of the solver used for the SMFEM deteriorates significantly for problems 

in which the spatial random field possesses a large standard deviation. This aspect is 

extensively covered in §4.6.2 and §4.5.3 and is the focus of the discussion in Chapter
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5.4 Conclusions

The primary objective of this chapter was to validate the numerical results ob­

tained using Stochastic Galerkin methods with those obtained by traditional Monte 

Carlo methods.

We have shown that good agreement between the two methods has been achieved 

for problems in which the conductivity coefficient is described by Gaussian and uni­

form distributions. A similar analysis is carried out in Chapter 7 for problems with 

lognormal distributions. Other types of distributions such as Gamma or Beta are not 

considered in this thesis for they are less relevant for application in the groundwater 

modelling context.

In addition to our validation work, the chapter also reported an in-depth conver­

gence analysis of SFEM/SMFEM and MCM. The main findings of this analysis are 

summarised as follows.

Generally, low order polynomials (up to fourth order for large standard deviation) 

are sufficient to achieve mean solution convergence to the fourth significant digit 

for Stochastic Galerkin methods. Conversely, the variance solution converges more 

slowly and higher order polynomials are generally required (up to seventh order for 

large standard deviation).

Monte Carlo methods show slow convergence rates even when the spatial random 

field is characterised by a small standard deviation. The numerical experiments sug­

gest that for the variance solutions to converge a very large sample of realisations is 

generally required.

It is evident that the Monte Carlo method is computationally very expensive. In 

fact, for a specific problem the overall number of equations to be solved can be very 

large depending on the number of realisations considered. In comparison, the number
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of equations to be solved in a stochastic Galerkin implementation is typically just a 

fraction of that.

Nevertheless, the efficient use of SG methods is limited to problems where the 

conductivity coefficient is accurately approximated by a small number of random 

variables. This class of problems arises when the correlation lengths of the spatial 

model are of the same size as the physical domain or larger. In these circumstances 

the eigenvalues of the KLE decay rapidly, thus a small number of random variables 

are sufficient to accurately approximate the random field. For cases in which the 

correlation lengths of the spatial field are small and thus a large number of random 

variables need to be considered, the implementation of SG becomes impracticable.

Furthermore, we have shown that for problems in which the spatial random field 

is characterised by a large standard deviation, the performance of the solvers used for 

the SG methods deteriorates significantly. The preconditioners used are, in fact, not 

robust for this class of problems. It is therefore crucial that, in order for SG methods 

to be computationally competitive in all settings (small and large standard deviation), 

the chosen iterative solvers are equipped with robust and efficient preconditioners. 

This is the focus of the next chapters where the performance of newly proposed and 

popular preconditioners is analysed in depth.



Chapter 6 

Solution Strategies for Stochastic 

Galerkin M ethods - Linear Stochastic 

Case

6.1 Introduction

The scope of this chapter is to review the state-of-the-art solvers for the discrete 

linear systems obtained from the Stochastic Galerkin methods presented in Chapter 

4. Similar studies have been carried out by other researchers, see for example Rossell 

et al. (2008), Furnival (2008), Powell & Elman (2009), Ernst et al. (2009), Elman 

et al. (2010) and Rossell &: Vandewalle (2010).

We study the efficiency of the conjugate gradient (CG) and minimal residual 

(MINRES) solvers when equipped with preconditioners proposed in §4.5.3 and §4.6.2. 

Additionally for the stochastic primal formulation (second order problem) we also look 

at the performance of Gauss-Seidel solvers.

As for the deterministic case, we emphasize the conditions for which h and C-

131
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optimality are achieved. Note that the conductivity coefficient depends on the statis­

tical parameters /i and a and the number of terms in the Karhunen-Loeve expansion, 

d, (see §4.3). Hence, ideally we seek a solver which is optimal with respect to all 

of these parameters. All the test cases reported in this chapter and Chapter 7 are 

based on finite element discretisations with regular connectivity, i.e. any node of the 

finite element mesh has the same number of neighboring nodes. Experiments aimed 

at assessing solver’s performance on finite element meshes with irregular connectivity 

are not reported in this thesis.

Additionally, the size of the stochastic space (and hence the size of the discrete 

problem) depends on the highest order of the polynomial basis p. Hence a solver 

which is also p-optimal possesses a very favourable property.

The algorithms used for the numerical experiments follow the implementation ini­

tially proposed by Ghanem &; Kruger (1996) whereby the linear system is never fully 

assembled. Only the non-zero entries of the polynomial chaos coefficients (appropri­

ately indexed) and d +  1 matrices (associated with the discretisation of the spatial 

random field) are stored. Hence all the non-zero blocks of A are computed again at 

every iteration. Certainly the non-zero blocks of A could be stored but this would 

cause further memory and computational limitations on the implementation of SG 

methods.

The first section concerns the solution of SFEM discrete linear systems. Overall 

twelve different methods are analysed some of which differ only in the solver used 

to invert the diagonal blocks of the coefficient matrix. In particular, we use: an 

incomplete Cholesky factorisation of K 0, using the MATLAB choline function with 

droptol =  10-4 (initially proposed by Pellissetti & Ghanem (2000)); a black-box solver 

based on AMG (initially proposed by Powell & Elman (2009)) and a sparse direct 

solver, namely UMFPACK.
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The algebraic multigrid uses the MATLAB implementation of the HSL_MI20 

library (Boyle et al. 2007, 2009). A symmetric Gauss-Seidel algorithm is used as 

smoother to remove the high frequency components of the error vector. An alternative 

choice is damped Jacobi. However, no simulations are carried out using this smoother.

The second section proposes suitable preconditioners for the solution of the stochas­

tic version of the mixed problem. We only analyse the efficiency of a mean-based 

preconditioner which uses either UMFPACK or AMG  to invert the Schur comple­

ment. Other preconditioners such as the Kronecker product preconditioner and the 

augmented-type preconditioners, have been recently proposed (see Powell & Ullmann 

(2010)). However, their implementation is not trivial and they require further inves­

tigation.

The simulations have all been carried out in serial within the MATLAB environ­

ment installed in the SRIF-3 Cluster machine (Merlin) at Cardiff University.

6.2 SFEM solvers

6.2.1 B lock -d iagon al p recon d ition er  

Test p roblem  1 - variab le  h

The boundary conditions and source term for this test problem are described in 

§5.2.1.

Table 6.1 reports the size of the stochastic space P  and the total number of 

unknowns associated with each value of the discretisation parameter h.

Table 6.2 reports iteration counts and times for CG equipped with the incomplete 

Cholesky (choline) and algebraic multigrid (AMG) versions of the block-diagonal 

preconditioner ('Pbdiag)• The set-up times for the problem and the preconditioners
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Table 6.1: Dimensions of P  and total number of unknowns - Primal Formulation
p = 2 p = 3 p = 4

d = 4
P 15 35 70HSH

S 
II 

II

16,335 38,115 76,230
63,375 147,875 295,750

h = —  n  128 249,615 582,435 1,164,870
d = 6

P 28 84 210-ISH
3

II 
II -e

30,492 91,476 228,690
118,300 354,900 887,250

cs

ii-e 465,948 1,397,844 3,494,610

are reported in Appendix A (Table A .l). The set-up for the preconditioners, i.e. the 

construction of the coarse grids and the computation of the factorisation of Ko, is 

performed only once.

Results for the choline and AMG versions of the mean preconditioner (Vmean) a-re 

included in Appendix B (Table B .l).

Table 6.2: CG iterations and solution timings for Vuiag - Test Problem 1

P '  2 P =  3 P = 4
h Nit t cpu

(sec.)
Nit tcpu

(sec.)
Nu tcpu

(sec.)iII"a

l
32 11 0.58 17 0.53 31 2.02

choline 1
64 13 0.75 22 3.12 38 10.77
1

128 19 10.22 29 38.21 55 151.07
r
¥
64

9 0.61 10 0.83 11 1.8
AMG 9 0.68 10 1.79 11 4.03

1
128 9 3.11 10 8.43 11 19.18

d = 6
1

¥
64

11 0.27 18 1.41 31 6.75
choline 14 1.49 22 7.75 39 36.91

1
128 20 20.56 29 92.34 55 457.25
r
32 9 0.58 10 1.99 11 5.62

AMG 1
64 9 1.26 10 4.47 11 12.89
1

128 9 5.95 10 21.16 11 60.88

The results from Table 7.2 can be summarised as follows:



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear Stochastic
Case 135

1. The block-diagonal preconditioner is very efficient. However, this problem rep­

resents a special case in which the variance of the coefficient C is small;

2. The AMG  version of the block-diagonal preconditioner is more efficient than 

the choline version, especially for fine discretisations;

3. The AMG  version is h-optimal and d-optimal. Only small variations in Na are 

observed for increasing polynomial order;

4. The choline version is neither h-optimal nor p-optimal. Only small variations 

in Nit are observed for increasing d.

The AMG version of the mean preconditioner (see Table B.l) is significantly less 

efficient than the AMG version of the block-diagonal preconditioner. Interestingly 

the same is not observed for the choline versions.

Test problem  2 - variab le o

The specification for test problem 2 is described in §6.2.2.

For this test problem the discretization parameter is fixed, h =  The dimension

of the stochastic space and the total number of unknowns are reported in Table 6.1.

Table 6.3 reports CG iteration count Nit and timings tcpu  for varying d, p and a. 

The problem and preconditioner (both AMG  and choline versions) set-up times are 

listed in Appendix A.2 .

The same simulations were performed using the mean preconditioner and the 

results are listed in Appendix B (Table B.2).

The results in Table 6.3 can be summarised as follows:

1. The preconditioner Vbdiag is not robust with respect to the standard deviation 

of the spatial random field a. Its performance deteriorates significantly with
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Table 6.3: CG iterations and solution timings for Vbdiag - Test Problem 2

a
P =  2 P = 3 P =  4

Nit tcpu
(sec.)

Nit tcpu
(sec.)

Nit tcpu
(sec.)

II

0.3 17 0.66 29 0.94 46 3.16
choline 0.5 19 0.25 33 1.08 54 3.7

0.7 24 0.32 43 1.4 73 5
0.3 10 0.47 10 0.91 11 2.01

AMG 0.5 12 0.47 14 1.26 16 2.92
0.7 16 0.61 20 1.79 25 4.59

d = 6
0.3 17 0.43 29 2.42 47 10.68

choline 0.5 19 0.48 34 2.82 57 13
0.7 24 0.6 44 3.65 92 21.19
0.3 10 0.72 11 2.41 12 6.82

AMG 0.5 12 0.86 15 3.29 17 9.66
0.7 16 1.14 23 5.04 33 18.74

increasing cr;

2. Both versions of the block-diagonal preconditioner are not h, d and p-optimal.

Similar observations are obtained from the data associated with the mean precon­

ditioner (see Table B.2).

For large standard deviations of C, the matrices K k become increasingly more 

important as they contain information on the fluctuations of the spatial random field. 

That information is not included in the Vbdiag and Vmean preconditioners. Hence, 

their performance worsens for increasing a.

Test problem  3 - d iscon tinuous-istrop ic  conductiv ity  field

In this test problem the domain D = [0,1] x [0,1] is partitioned into four subdo­

mains namely: D\ =  [0.0,0.5] x [0.0,0.5], D2  = [0.5,1.0] x [0.0,0.5], D3 = [0.5,1.0] x 

[0.5,1.0] and D 4  = [0.0,0.5] x [0.5,1.0]. A Karhunen-Loeve expansion with exponen­

tial covariance and correlation lengths lx = ly =  0.5 is performed for each sub-domain.
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Dirichlet boundary conditions are imposed on the left and right edge of the square 

domain such that Tp =  {0,1} x [0,1]. Homogeneous Neumann boundary conditions 

are imposed on the upper and lower edges of the domain.

The conductivity coefficient C is a spatially discontinuous uniform random field. 

Thus, independent and uniformly distributed random variables, defined in the interval 

(—1,1), are used in this test problem. Hence the basis functions for the stochastic 

space are d-variate Legendre polynomials of order less than or equal to p.

Four cases are analysed, three of which have constant coefficient of variation 6  and 

one with spatially variable 5. The Gaussian distributions have the following statistical 

parameters:

1st CASE <

2nd CASE

3rd CASE

1

P D i =  0.1, (J d \ =  0.03, P D 2 =  100, & d 2 =  30, 

HDn —  1000, <tD3 =  300, f i p 4 =  1,0£>4 =  0.3;

P D i =  0.1, <t d x =  0.05, p d 2 —  100, g d 2 =  50, 

p D 3 =  1000, g d 3 =  500, p D4 =  1, g Da =  0.5;

V D i =  0-1, crD l =  0.07, ~  100, g d 2 ~  70,

p Dz =  1000, cr£>3 =  700, p d 4 =  1, g d 4 =  0.7;

Ath CASE
pDl — 0.1, o-jDj =  0.07, pd 2 =  100 ,&d2 =  50, 

pDs = 1000, g D s = 600, pDi = 1 , g D4 = 0.7;

The discretisation parameter is fixed, h = and the size of the problem is given 

in Table 6.1. Iteration counts and timings for CG preconditioned with the AMG and 

choline versions of Vbdiag and Vmean are given in Table 6.4 and Appendix B (Table 

B.3), respectively. The set-up time for the problem (building stiffness matrices and 

polynomial coefficients) and the preconditioners is reported in Appendix A (Table
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A.3).

Table 6.4: CG iterations and solution timings for Vbdiag - Test Problem 3

V =  2 V =  3 V = 4
6  = zt* Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nit tcpu

(sec.)
d = 4

0.3 20 0.28 33 1.02 53 3.45
choline 0.5 23 0.29 39 1.2 61 3.97

0.7 25 0.31 44 1.39 74 4.81
0.7,0.5,0.6,0.7 24 0.3 42 1.29 69 4.52

0.3 8 0.68 9 0.66 10 1.52
AMG 0.5 10 0.31 12 0.88 13 1.94

0.7 13 0.4 17 1.23 20 2.99
0.7,0.5,0.6,0.7 12 0.37 15 1.09 17 2.52

d =  6
0.3 19 0.45 33 2.58 55 12.01

choline 0.5 21 0.5 37 2.91 62 13.42
0.7 25 0.59 46 3.63 83 18.01

0.7,0.5,0.6,0.7 25 0.59 43 3.37 75 16.25
0.3 8 0.46 9 1.61 10 4.67

AMG 0.5 10 0.57 13 2.32 15 6.97
0.7 13 0.74 19 3.42 25 11.62

0.7,0.5,0.6,0.7 12 0.68 16 2.85 21 9.76

Remarks on the data presented in Table 6.4 are very similar to those summarised 

for test problem 2. However, it should also be noted that the data for test problem 3 

shows that the preconditioners are robust with respect to discontinuities in the mean 

value of C. In fact, if we compare the number of iterations for the case of 5 =  0.3 

(discontinuous field) and the case of a = 0.3 in test problem 2 (continuous field), 

it is easily understood that discontinuities have little or no negative impact on the 

performance of the solver. The same conclusions are inferred for all other cases.

6.2.2 B lock  S ym m etric  G au ss-S eid el P recon d ition er

The block symmetric Gauss-Seidel preconditioner (VbSGS) is proposed to overcome 

some of the limitations of the popular mean and block-diagonal preconditioners. Each
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Gauss-Seidel internal iteration includes a forward and backward sweep to guarantee 

the symmetry of the preconditioner for CG. The algorithm used in the experiments is 

described in §4.5.3. A fixed number of iterations maxitb is used as stopping criteria. 

For the results listed in this section we use maxitb = 2.

Note that only experiments based on the symmetric version of the Gauss-Seidel 

algorithm are presented in this chapter. In fact, the theory of the Conjugate Gradient 

method (Saad 2003) requires the preconditioner to be symmetric and positive def­

inite. The implementation of a non-symmetric Gauss-Seidel preconditioner for CG 

is straightforward however it was decided to not carry out experiments using such 

solver as this would be inconsistent with theoretical concepts.

The immediate advantage of the bSGS preconditioner is the fact that all blocks 

of A are included in the preconditioned system. Therefore, it is expected to perform 

well for the case in which the standard deviation of the spatial random field a is large.

As for Vbdiag and Vmean, the preconditioner’s sub-systems can be approximately 

inverted using either an incomplete Cholesky factorisation of Kq or one V-cycle of 

AMG code. The results of the previous section show that the AMG version always 

outperforms the choline one. Therefore, in this section we replace the latter method 

with a multi-frontal sparse direct solver UMFPACK.

The settings for each of the test problems are as described in §6.2.1.

Test problem  1 - variab le  h

Table 6.5 lists the number of iterations Nit and the CPU time tcpu for CG 

equipped with the UMFPACK and AMG versions of VbSGS• The set-up time for 

the problem and preconditioner {AMG case only) is reported in Appendix A (Ta­

ble A.4). The UMFPACK version of the preconditioner does not require any set-up 

time as the coefficient matrix is inverted exactly. The AMG  version instead requires
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the construction of the coarse grids and smoother for the multigrid approximation. 

However, this is performed only once.

Table 6.5: CG iterations and solution timings for VbSGS - Test Problem 1

V =  2 V =  3 V = 4
h N it tcpu

(sec.)
Nit tcpu

(sec.)
Nit tcpu

(sec.)
d = 4

i
¥
64

3 0.47 4 0.5 4 1.03
UMFPACK 3 0.74 4 2.4 4 4.82

1 3 5.8 4 14.43 4 29.261|8

¥
64

6 0.82 6 0.88 6 1.8
AMG 6 0.83 6 2.03 6 4.22

1
128 6 3.62 6 8.87 6 18.36

d =  6
1
¥
64

3 0.3 4 1.24 4 3.22
UMFPACK 3 1.41 4 5.9 4 15.03

1 4 11.42 4 35.14 4 89.921̂ 8
32 6 0.69 6 2.17 6 5.64

AMG 1
64 6 1.62 6 5.21 6 13.75
1

128 6 6.91 6 22.15 6 58.24

The results presented in Table 6.5 can be summarised as follows:

1. Both versions of the Gauss-Seidel preconditioner considerably reduce the num­

ber of CG iterations;

2. The comparison of the data with those presented in Table 6.2 show that the 

AMG version of VbSGS only slightly improves the solution times of the block- 

diagonal preconditioner;

3. The UMFPACK version is more efficient than the AMG one only for very coarse 

meshes. This is a reflection of the fact that the latter methodology has the 

advantage that the computational cost grows linearly with the problem size.
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Test problem 2 - variable a

Table 6.6 lists the iteration count and solution times for test problem 2. The 

problem set-up time and the AMG  cost are reported in Appendix A (Table A.5).

Table 6 .6: CG iterations and solution timings for VbSGS - Test Problem 2

a
P =  2 P =  3 P = 4

Nit tcpu
(sec.)

Nit tcpu
(sec.)

Nit tcpu
(sec.)

d = 4
0.3 3 0.18 3 0.4 3 0.82

UMFPACK 0.5 4 0.22 4 0.53 4 1.09
0.7 5 0.28 6 0.79 8 2.18
0.3 6 0.48 6 1 6 2.05

AMG 0.5 7 0.48 7 1.16 7 2.39
0.7 8 0.55 9 1.5 10 3.4

COII"C3

0.3 3 0.32 3 1 3 2.58
UMFPACK 0.5 4 0.42 4 1.32 5 4.27

0.7 5 0.52 7 2.31 10 8.49
0.3 6 0.79 6 2.45 6 6.35

AMG 0.5 7 0.92 7 2.86 8 8.44
0.7 8 1.05 10 4.08 13 13.75

The results presented in Table 6.6 can be summarised as follows:

1. Both versions of the block symmetric Gauss-Seidel preconditioner show a signif­

icant improvement in terms of the number of CG iterations. This improvement 

becomes more evident for large values of <r;

2. The comparison of the AMG data with those of Table 6.3 (block-diagonal pre­

conditioner) reveals that the Gauss-Seidel preconditioner is generally compu­

tationally cheaper and the improvement in performance increases with larger

<r;

3. The UMFPACK version is more efficient than the AMG one. However, this is 

due to the fact that, in this experiment, the discretisation parameter is fixed
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at h = For finer discretisations (larger problems), the multigrid version is 

generally more efficient (see Table 6.5) than the exact version.

Test problem 3 - discontinuous-isotropic conductivity field

Results for this test problem are very similar to test problem 2 and therefore the 

observations summarised for Table 6.6 are also valid for Table 6.7. However, this test 

problem is primarily designed to assess the effect of a discontinuous conductivity field 

on the performance of the solver. As for the block-diagonal and mean preconditioners 

we observe that ‘jumps’ in the conductivity coefficient have little or no impact on the 

solver performance. Note that in this example the mean conductivity p  varies over 

four orders of magnitude in the domain. However, the number of iterations of the 

solver tends to be lower than for the continuous case (see Table 6 .6). This is associated 

with the large mean values used for some of the subdomains in this test problem. In 

the continuous case (Test Problem 2), instead, a constant mean value (pc = 1.0) is 

used everywhere in the domain.

Performance analysis

The experiments presented so far show that using VbSGS significantly reduces the 

number of CG iterations for convergence. However, this does not necessarily result 

in an overall improvement in the computational time. It should be noted that the 

performance of CG depends on the chosen stopping criteria for the Gauss-Seidel 

algorithm. The results for the experiments presented in the previous sections are 

obtained using a fixed maximum number of iterations, maxitb =  1. One iteration 

comprises one forward and one backward sweep.

In this section we look at the performance of CG when more iterations are allowed 

for the block symmetric Gauss-Seidel algorithm. Consider test problem 2 with fixed
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Table 6.7: CG iterations and solution timings for VbSGS - Test Problem 3

6 = i
V =  2 V =  3 V = 4

Nit tcpu
(sec.)

Nit tcpu
(sec.)

Nit tcpu
(sec.)

d = 4
0.3 2 0.2 2 0.29 2 0.56

UMFPACK 0.5 3 0.19 3 0.42 3 0.83
0.7 4 0.24 5 0.68 5 1.37

0.7,0.5,0.6,0.7 4 0.24 4 0.55 5 1.37
0.3 6 0.53 6 1.14 6 2.31

AMG 0.5 7 0.58 7 1.33 7 2.68
0.7 7 0.57 8 1.51 9 3.44

0.7,0.5,0.6,0.7 7 0.57 7 1.33 8 3.06

II"*3

0.3 2 0.23 2 0.68 2 1.75
UMFPACK 0.5 3 0.33 4 1.32 4 3.44

0.7 4 0.44 5 1.65 7 5.99
0.7,0.5,0.6,0.7 4 0.44 5 1.65 6 5.15

0.3 6 0.91 6 2.78 6 7.08
AMG 0.5 7 1.06 7 3.22 7 8.26

0.7 8 1.2 9 4.13 11 12.91
0.7,0.5,0.6,0.7 7 1.06 8 3.69 10 11.78

p =  4 and examine the performance of the algorithm for successively larger values of 

maxitb, maxitb = 1,2,3, . . . ,  until only one CG iteration is required for convergence. 

The CG iteration count and timings for these serial experiments with d = 4 and 

d = 6, are reported in Table 6 .8 . Note that for this analysis the UMFPACK version 

of the preconditioner was used.

The results reported in Table 6.8 for d = 4, show that the best solution times are 

obtained for low values of maxitb (specifically maxitb = 1 ) .  In contrast, the results 

for d = 6 suggest that for large a the best computational time is achieved for large 

values of maxitb (specifically maxitb = 21).

The case in which maxitb is large and tcpu  is small corresponds to the situation in 

which convergence is obtained in one CG iteration. It is clear that in this circumstance 

the bulk of the computational work is done by the preconditioner (VbSGs) and very
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Table 6.8: CG iterations and solution timings (sec.) for VbSGS f°r various values of 
maxitb - Test Problem 2

maxitb a =  0.3 a =  0.5 a = 0.7
d = 4 Nit tcpu Nit tcpu Nu tcpu

1 3 0.82 4 1.09 8 2.18
2 2 1.00 3 1.50 5 2.51
3 1 0.73 2 1.45 4 2.91
4 1 0.95 2 1.90 3 2.86
5 1 1.18 2 2.37 3 3.55
6 1 1.41 1 1.41 3 4.23
8 1 1.86 1 1.86 2 3.74
10 1 2.38 1 2.38 2 4.77
12 1 2.80 1 2.80 2 5.62
14 1 3.24 1 3.23 1 3.23

d = 6

1 3 2.58 5 4.27 10 8.49
2 2 3.11 3 4.66 7 10.87
3 1 2.27 2 4.52 6 13.53
4 1 2.96 2 5.93 5 14.82
5 1 3.66 2 7.31 4 14.59
6 1 4.36 2 8.73 4 17.44
7 1 5.02 1 5.01 3 15.06
10 1 7.35 1 7.36 3 21.40
15 1 10.99 1 10.94 2 21.71
21 1 5.98 1 5.99 1 5.99

little by the main solver (CG). Given that the preconditioner should serve only as a 

means to improve the conditioning of the system matrix, the results showing just one 

CG iteration should not be taken into consideration in relation to the performance 

analysis carried out in this section. On the other hand, this aspect reveals that 

an independent Gauss-Seidel (symmetric or not symmetric) solver could be a very 

efficient alternative to Krylov subspace iterative schemes. In §6.2.3 results obtained 

using Gauss-Seidel solvers are reported for all test problems considered in this chapter.

Excluding the data associated with one CG iteration, Table 6.8 show that for all 

values of a the best computational performance is achieved for maxitb =  1. Figures 

6.1a and 6 .1b show CG iterations versus CPU times for maxitb =  1,2,3 for d =  4 

and d =  6, respectively. The figures indicate that there is a clear linear relationship
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Figure 6 .1: Performance analysis of CG preconditioned with VbSGS for Test Problem 
2

between CG (preconditioned with VbSGs), & and tcpu- Out of the three best fit 

lines pictured the one for maxitb = 1 shows the best convergence rate. Given these 

considerations one Gauss-Seidel iteration was chosen as stopping criteria for all the 

numerical experiments.

6.2 .3  G auss Seidel Solvers

The experiments carried out for CG equipped with a block symmetric Gauss- 

Seidel preconditioner revealed that this methodology could also be effective when 

used as a stand alone solver. We perform simulations based on a symmetric (bSGS) 

and a non-symmetric (bGS) block Gauss-Seidel solver. The symmetric case includes 

a forward and a backward sweep per iteration and the non-symmetric case only a 

forward sweep.

As explained in §4.5.3, there are several possible re-orderings for the block struc­

ture of A and a Gauss-Seidel algorithm could perform differently according to such
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re-orderings. Examples of reordering aimed at reducing the bandwidth of A using a 

reverse Cuthill-McKee algorithm are given in Keese (2004). In our implementation 

we retain the structure as presented in Figure 4.1 and obtained by the summation 

of progressive (i =  1, . . .  ,d) Kronecker terms (see 4.38). This ordering is the most 

natural choice as it represents the summation of decreasing Karhunen-Loeve modes 

(see 4.3).

As for Vbdiag and VbSGS preconditioners, there can be various versions of the 

GS algorithm depending on the method used to solve the P  linear sub-systems of 

equations. In the main text we report experiments based on algebraic multigrid 

whilst Appendix D lists the results based on UMFPACK.

As for CG, the tolerance for the GS solvers is set to 10-8. In each table we list 

iteration count Nit and solution times tcpu  for both bSGS and bGS.

Test problem  1 - variab le  h

Table 6.9 lists iteration count and solution times for test problem 1. Results from 

this Table are summarised as follows:

1. GS solvers are also optimal with respect to the discretisation parameter h\

2. Both AMG versions of bSGS and bGS are computationally more efficient than 

CG with either Vbdiag or VbSGS  preconditioners;

3. For this test problem the non-symmetric implementation of the Gauss-Seidel 

solver (bGS) is computationally more efficient than the symmetric implemen­

tation (bSGS).

It should be noted that the cost per iteration of bGS is approximately half that 

of bSGS given that bGS only performs a forward sweep. One bSGS iteration involves



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear Stochastic
Case 147

Table 6.9: bSGS and bGS iterations and solution timings (AMG case) - Test Problem 
1

P =  2 P =  3 P = 4
h Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nit tcpu

(sec.)
<2 =  4

i
¥
64

4 0.24 4 0.53 4 1.06
bSGS 4 0.48 4 1.16 4 2.34

1
1J8 5 2.4 5 5.69 5 11.59

¥
64

6 0.18 6 0.4 6 0.8
bGS 6 0.37 6 0.87 7 2.02

1
128 6 1.46 7 4.04 7 8.22

<2 =  6
1

¥
64

4 0.43 4 1.27 4 3.2
bSGS 4 0.93 4 2.85 5 9.07

1
128 5 4.51 5 13.89 5 35.55

¥
64

6 0.33 6 0.96 6 2.43
bGS 6 0.7 6 2.12 7 6.45

1
128 6 2.74 7 9.84 7 25.47

two sweeps. Therefore, 5 iterations of bSGS in Table 6.9, for example, corresponds 

to 10 sweeps. When this is compared with bGS sweeps we see that the latter is up 

to 30% cheaper in terms of computational time.

Test problem  2 - variab le o

Table 6.10 lists the iteration count and solution times for test problem 2. Results 

for the UMFPACK version of the Gauss-Seidel solvers are included in Appendix D 

(Table D.2).

The main findings from this table can be summarised as follows:

1. Gauss-Seidel solvers are less efficient than CG preconditioned with VbSGS for 

all values of a (see Table 6 .6);

2 . The results of the performance analysis section seemed to indicate that a Gauss- 

Seidel solver would perform better as a stand alone solver than as a precon­

ditioner for CG. However, this initial observation was not confirmed by the
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Table 6.10: bSGS and bGS iterations and solution timings (AMG case) - Test Problem 
2

o
P =  2 V =  3 P =  4

Nit tcpu
(sec.)

Nit tcpu
(sec.)

Nit tcpu
(sec.)

d = 4
0.3 5 0.34 6 0.91 6 1.81

bSGS 0.5 8 0.52 9 1.36 10 3.01
0.7 11 0.71 15 2.24 22 6.57
0.3 7 0.24 8 0.61 8 1.22

bGS 0.5 10 0.33 12 0.91 14 2.11
0.7 15 0.49 22 1.65 34 5.13COII"<3

0.3 6 0.72 6 2.17 6 5.49
bSGS 0.5 8 0.96 10 3.61 11 10.04

0.7 12 1.43 19 6.83 38 34.65
0.3 7 0.43 8 1.46 9 4.14

bGS 0.5 10 0.61 13 2.36 16 7.34
0.7 16 0.96 27 4.87 59 26.97

consequent analysis, results of which are presented in this table.

Test problem 3 - discontinuous-isotropic conductivity field

For completeness the results of the Gauss-Seidel simulations for test problem 3 are 

presented in Table 6.11. These results are similar to those obtained for Test Problem 

2 , hence the same conclusions apply also to this problem.

Additionally, it should be noted that in contrast to the other solvers there is little 

or no difference in terms of Na and tcpu  between the case with variable 5 and the 

one with constant 5 = 0.7. Therefore, we can deduce that for spatially variable a the 

performance of the Gauss-Seidel solver is entirely dependent on the highest value of 

a in the domain.



Chapter 6: Solution Strategies for Stochastic Galerkin Methods - Linear Stochastic
Case 149

Table 6 .11: bSGS and bGS iterations and solution timings (AMG case) - Test Problem 
3

V =  2 P = 3 P =  4
6 = zM Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nu tcpu

(sec.)
d = 4

0.3 5 0.38 6 1.03 6 2.05
bSGS 0.5 7 0.52 8 1.36 9 3.06

0.7 10 0.73 13 2.2 17 5.77
0.7,0.5,0.6,0.7 10 0.73 13 2.2 17 5.77

0.3 7 0.27 8 0.69 8 1.37
bGS 0.5 10 0.37 11 0.94 13 2.22

0.7 13 0.48 19 1.61 26 4.43
0.7,0.5,0.6,0.7 13 0.48 18 1.53 25 4.24

d = 6
0.3 6 0.82 6 2.45 6 6.21

bSGS 0.5 8 1.09 9 3.67 11 11.35
0.7 11 1.49 16 6.52 28 28.83

0.7,0.5,0.6,0.7 11 1.49 16 6.51 28 28.89
0.3 7 0.48 8 1.65 8 4.16

bGS 0.5 10 0.68 13 2.66 15 7.77
0.7 15 1.02 23 4.7 43 22.23

0.7,0.5,0.6,0.7 15 1.02 23 4.69 43 22.23

6.3 Comparison and Conclusions

In the previous sections a large number of methods have been tested to identify 

the most efficient solver for the stochastic formulation of the diffusion problem (linear 

case). To identify the methods which are the most efficient and robust with respect 

to h, a and discontinuous /i, the data presented in the previous tables are summarised 

in Figures 6.2, 6.3 and 6.4. Only the case for p =  4 is considered and d =  4 ,6. The 

methods included in the figures are listed below.

1. CG with Vbdiag {AMG) 4. CG with Vmean {AMG)

2. CG with Vhdiag {UMFPACK) 5. CG with Vmean {UMFPACK)

3. CG with Vbdiag {choline) 6. CG with Vmean {choline)
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7. CG with Vbscs {AMG) 10. bSGS ( UMFPACK)

8. CG with Vbsos ( UMFPACK) 11. bGS (AMG)

9. bSGS (AMG) 12. bGS (UMFPACK)

Note that for the AMG and choline cases the time required to construct the grids

and smoother for the approximation and the time required for the factorisation of 

Kq is added to the solution times. The UMFPACK case does not require any set-up 

time.

Figure 6.2 shows that a block Gauss-Seidel solver with algebraic multigrid is the 

most efficient method for problems on medium to fine discretisations and small a. 

The UMFPACK version is more efficient than the AMG  one only for coarse meshes. 

Although CG with VbSGS performs better than the block-diagonal and mean precon­

ditioners, these methods are always outperformed by Gauss-Seidel solvers.

Figures 6.3 and 6.4 show that a conjugate gradient solver with VbSGs (UMFPACK 

version) is the most efficient method for problems with medium /  large standard de­

viation and discontinuous conductivity. However, this is true only for coarse discreti­

sations which indicates that a better performance of the AMG version is expected for 

finer meshes. The performance of all versions of the Gauss-Seidel solvers deteriorates 

significantly when the standard deviation is large.

Generally it appears that, although Gauss-Seidel solvers perform well for variable 

meshes they are not robust with respect to o. The block diagonal preconditioner 

(AMG version), part of the family of mean-based preconditioners, performs well for 

variable h, variable a and discontinuous conductivity. The same can be concluded 

for the AMG version of VbSGS (method 7).

The outcome of this analysis reveals that the AMG version of VbSGS is very efficient 

and the most robust solver considered in this work and therefore it should generally
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be used for the solution of SFEM linear systems (linear case). The AMG version 

Vbdiag is a valid alternative and it possesses the important advantage of being easy to 

implement.

6.4 SMFEM solvers

6.4.1 Schur com plem ent preconditioner

In this section we report the performance of MINRES equipped with the Schur 

complement preconditioner, Vschur> described in §4.6.2. The computation of diag{A)~l 

is inexpensive and it is computed directly using the back-slash MATLAB functional­

ity. As for the deterministic case the Schur complement part of the preconditioner 

can be solved exactly (using e.g. UMFPACK) or approximated by using one V-cycle 

of AMG code.

Test problem  1 - variable h

The settings for this test problem are described in §5.2.1. Table 6.12 reports the 

size of the stochastic space P  and the total number of unknowns for each level of 

discretisation. As for the primal formulation the size of the global system grows very 

quickly with p. Note that the size of the problem is significantly larger than for the 

primal formulation (see Table 6.1). This is obviously a consequence of the fact that 

with the mixed method, in addition to the element-wise potential approximation a 

solution for the normal fluxes at each discrete edge is also obtained. Table 6.12 reports 

the size of the stochastic space and the total number of unknowns associated with 

each value of the discretisation parameter h. The size of the linear systems reported 

in the table follow from (4.46) and (4.47).

Table 6.13 reports the MINRES iteration count and timings for test problem
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Table 6.12: Dimensions of P  and total number of unknowns - Mixed Formulation
p = 2 p = 3 p = 4

d = 4
P 15 35 70

h = —n  32 77,760 181,440 362,880
309,120 721,280 1,442,560

h  ~  128 1,232,640 2,876,160 5,752,320
d = 6

P 28 84 210
h  =  32
h = S64

145,152 435,456 1,088,640
577,024 1,731,072 4,327,680

^  == 128 2,300,928 6,902,784 17,256,960

1. The table reports results for experiments carried out using the exact version 

( UMFPACK) of Vschur and the approximated version (AMG). The set-up times for 

the problem and the preconditioner are reported in Appendix E (Table E.l). The 

set-up time for the preconditioner, i.e. the CPU cost of constructing the coarse grids 

for K0, is performed only once.

Table 6.13: MINRES iterations and solution timings for Vschur - Test Problem 1

V =  2 V = 3 p = 4
h Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nu tcpu

(sec.)
d =  4

i
¥
64

43 3.21 44 8.43 47 22.71
UMFPACK 43 13.33 45 36.17 47 84.74

1 43 79.72 45 198.92 47 453.241̂ 8

¥
64

45 3.19 48 8.63 49 22.34
AMG 45 9.25 48 26.96 51 67.1

1
128 47 41.02 48 108.98 51 268.15

d = 6
1

¥
64

43 6.26 45 30.21 47 135.22
UMFPACK 43 26.83 45 103.38 48 392.67

1
128 43 148.77 45 533.73 48 1,830.21
I
¥
64

45 6.35 48 30.98 49 137.85
AMG 47 19.88 49 85.32 51 346.05

1
128 47 80.69 49 325.83 52 1,276.01

The results presented in Table 6.13 can be summarised as follows:
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1. The Schur complement preconditioner is optimal or almost optimal with respect 

to h and d. However, there is a small increase in the number of iterations for 

increasing p;

2. Although having a slightly larger iteration count, the AMG version of the pre­

conditioner is more efficient than the exact version. Given that the precondi­

tioner set-up time is performed only once (see Appendix E, Table E.l), its CPU 

cost has little impact on the overall solution timings;

3. Also note that for coarse discretisations the CPU timings are very similar. It is 

only for fine discretisations that the AMG version is more efficient.

Note that for the case h = the deterministic problem has size 82,176 d.o.f. 

Considering d = 6 and p = 4, the dimension of the stochastic space is P = 210 and 

the global stochastic system has size 17,256,960 d.o.f. Despite the very large size of 

the problem, the solution is obtained in just 56 minutes.

Test problem  2 - variable o

The settings for test problem 2 are described in §6.2.2. The size of the problem 

for h =  ^  is given in Table 6.12. The performance of the Schur complement precon­

ditioner for varying a is reported in Table 6.14. As for the previous case the set-up 

time for the preconditioner is performed only once. This is reported in Table E.2 

together with the set-up timings for the test problem itself.

The results reported in Table 6.14 can be summarised as follows:

1. Similarly to the primal formulation (see §5.2.1), the performance of the Schur 

complement preconditioner significantly deteriorates for moderate and large val­

ues of <r;
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Table 6.14: MINRES iterations and solution timings for Vschur - Test Problem 2

a
P =  2 P = 3 P = 4

Nit tcpu
(sec.)

Nit tcpu
(sec.)

Nit tcpu
(sec.)

II

0.3 47 3.22 49 8.66 51 22.32
UMFPACK 0.5 58 3.84 65 11.64 70 30.73

0.7 72 4.78 91 16.44 111 48.81
0.3 49 3.74 53 9.36 55 23.61

AMG 0.5 62 4.04 69 12.24 74 32.76
0.7 77 5.08 97 17.12 119 51.45

d — 6
0.3 48 6.64 51 29.29 52 114.62

UMFPACK 0.5 59 8.21 68 39.22 76 168.56
0.7 76 10.55 100 57.95 140 312.71
0.3 50 6.78 53 30.01 56 123.4

AMG 0.5 63 8.57 71 40.27 80 177.14
0.7 80 10.93 106 60.23 147 326.64

2. The performance of the AMG and UMFPACK versions of the Schur complement 

preconditioner is similar. However, this is because the discretisation used for 

this test problem is coarse. It is expected that the difference in CPU cost will 

increase for finer discretisation levels.

Test problem  3 - discontinuous-isotropic conductiv ity  field

The settings for test problem 3 are described in §5.2.1. As for test problem 2, 

the discretisation level is fixed for h =  The solver performance for varying 5 is 

reported in Table 6.15. The problem and preconditioner set-up times are reported in 

Table E.3.

As it has already been observed for the stochastic primal formulation, the perfor­

mance of the solver and preconditioners are not affected by spatial discontinuities in 

the conductivity field. In fact, the timings reported in Table 6.15 are comparable to 

those reported for the continuous test problem in Table 6.14.
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Table 6.15: MINRES iterations and solution timings for Vschur - Test Problem 3

P =  2 P = 3 P = 4
6 = * Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nit tcpu

(sec.)
d = 4

0.3 45 3.04 48 8.59 51 22.25
UMFPACK 0.5 56 3.74 63 11.25 69 30.2

0.7 70 4.67 87 15.45 107 46.95
0.7,0.5,0.6,0.7 67 4.47 83 14.74 100 43.88

0.3 49 3.78 52 9.4 53 23.19
AMG 0.5 60 4.04 67 12.13 74 32.42

0.7 76 5.1 94 17.03 115 50.59
0.7,0.5,0.6,0.7 71 4.76 88 15.94 106 46.59

d = 6
0.3 46 6.33 49 27.7 52 114.94

UMFPACK 0.5 58 7.99 65 37.06 73 161.82
0.7 72 9.89 96 55.19 131 292.77

0.7,0.5,0.6,0.7 69 9.49 91 52.23 125 278.06
0.3 49 6.8 53 30.38 56 124.33

AMG 0.5 62 8.62 70 40.25 79 176.2
0.7 79 10.99 104 59.83 140 313.53

0.7,0.5,0.6,0.7 74 10.26 96 55.23 130 293.1

6.4.2 C onclusions

The test problems reported in this chapter are all based on structure triangular 

meshes. The case of unstructured meshes with irregular connectivity is not presented 

in this work and it is matter for future work. Although structure meshes are used the 

of the indefinite linear system obtained by stochastic mixed finite element methods 

using MINRES equipped by a Schur complement preconditioner (4.57) is computa­

tionally very expensive. As expected this is more costly than solving the linear system 

obtained with the primal formulation since, in addition to the approximation of the 

potential, a solution for the normal fluxes at the finite element edges is also obtained.

Although computationally more expensive the efficient solution of SMFEM is 

largely dependent on the preconditioner used with the chosen iterative solver. The 

numerical experiments showed that the Schur complement preconditioner is h-optimal
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not only when the complement is inverted exactly but also when it is approximately 

inverted using one V-cycle of AMG code.

The experiments also showed that the preconditioner is not robust with respect 

to the conductivity coefficient. In fact, only the diagonal of the block-diagonal blocks 

of the velocity matrix A  are used in the preconditioned system. This is sufficient for 

conductivity coefficients possessing low standard deviations but generally inadequate 

for large standard deviations. In the latter case, in fact, the off-diagonal blocks of A 

become significantly more important and these are not included in the preconditioned 

system.

This drawback is similar to the one we faced using the mean-based preconditioner 

for the solution of linear systems obtained by SFEM. In those circumstances we 

successfully proposed a way of including the off-diagonal blocks of the coefficient 

matrix A by means of a symmetric block Gauss-Seidel algorithm. Unfortunately, 

due to the structure (and specifically the presence of a zero-block) of the coefficient 

matrix C = [ ̂  ], the same approach can not be used for the Schur complement

preconditioner.

The efficient solution of discrete linear systems obtained from stochastic mixed 

formulations is currently a very active research area. The Kronecker product precon­

ditioner proposed by Ullmann (2008) significantly reduces MINRES iteration counts. 

However, this does not necessarily corresponds to improvements in CPU performance. 

In fact, the author shows that the Schur complement preconditioner performs better 

(in terms of CPU cost) than the Kronecker preconditioner also for test problems in 

which the conductivity coefficient possesses large standard deviation.

It appears that SMFEM is not a very efficient method for the approximation 

of normal fluxes for uncertain conductivity coefficients. The question as to which 

method is suitable in this situation remains unanswered.
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As was pointed out in Chapter 3, there exists several other (deterministic) methods 

that provide accurate solutions for the normal fluxes, most of which are variations of 

finite volume schemes. Their associated linear systems are symmetric and positive 

definite as should be their stochastic counterparts. Therefore, for these methods, it 

should be possible to use the proposed symmetric block Gauss-Seidel preconditioner 

and they could represent a viable alternative to SMFEM.

Another possibility is the stochastic implementation of the decoupling of the ve­

locity vector from the pressure vector in (2.38) proposed by Chavent et al. (1984), 

Chavent & Jaffre (1986) and Scheichl (2001) for deterministic problems. The advan­

tage of the latter approach is that the indefinite system is decoupled in a velocity 

system which is SPD and a triangular system for the potential approximation. Note 

that the implementation of such decoupling in the context of SG methods has not 

been reported in the literature.
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Figure 6.2: Comparison of methods for the solution of SFEM for test problem 1
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Figure 6.3: Comparison of methods for the solution of SFEM for test problem 2
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Figure 6.4: Comparison of methods for the solution of SFEM for test problem 3



Chapter 7 

Solution Strategies for Stochastic 

Galerkin Methods - Nonlinear 

Stochastic Case

7.1 Introduction

In the previous chapter the performance of a range of solvers was tested for prob­

lems in which the random conductivity coefficient is given in terms of a Karhunen- 

Loeve expansion (KLE - linear stochastic case). In this chapter the focus is on so­

lution strategies for SG methods when the conductivity coefficient is determined by 

implementing a polynomial chaos expansion of a KLE.

So far we have used polynomial chaos expansions to represent unknown variables 

such as the potential u and the normal fluxes q. However, this expansion can also 

be used equally to represent input parameters (Ghanem & Spanos 2003, Sudret h  

Der Kiureghian 2000) such as hydraulic conductivity. More importantly, polynomial 

chaos expansions have been used successfully for the representation of lognormal

161
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random fields.

Lognormal random fields are very popular among physical scientists and mod­

ellers for various reasons. Firstly, there are several studies, the data of which are 

summarised in Gelhar (1983) and Rubin (2003), that show that parameters such as 

hydraulic conductivity or transmissivity are often lognormally distributed. Secondly, 

a lognormal distribution, although having infinite upper bound, only admits the pos­

itive part of the physical spectrum. This is obviously consistent with the physical 

requirement of these parameters.

The efficient solution of stochastic Galerkin problems in which the random input 

is a lognormal field poses important mathematical challenges. It is shown in the 

next section that the structure of the coefficient matrix differs significantly from the 

one associated with the linear case (KLE) (see Chapter 4). Specifically, for the well- 

posedness of A to be guaranteed, the coefficient matrix is block dense, i.e there are 

non-zero entries for each block of A.

In Chapter 6 we have shown by experiments that a symmetric block Gauss-Seidel 

preconditioner for CG represents a valid alternative to traditional mean-based pre­

conditioners. Its advantage is that the information associated with the off-diagonal 

blocks of A are incorporated into the preconditioned system, hence improving the 

conditioning of the coefficient matrix. As a result CG requires few iterations to con­

verge. The preconditioner VbsGS is particularly efficient for those cases in which the 

off-diagonal blocks of A hold significant information on the conductivity coefficient,

i.e. problems with large values of a.

It becomes apparent that VbSGS should perform particularly well for the nonlinear 

case, given that in such circumstances A is block-dense.

The author would like to express his gratitude to E. Zander for making publicly 

available the Stochastic Galerkin library (sglib) (Zander 2010) which has significantly
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helped the developments of the codes used in this chapter.

7.2 Polynomial Chaos for Lognormal Random Field

A lognormal random field is obtained by transforming a Gaussian random field. In 

§4.3 we have seen that a Gaussian random field can be approximated by a truncated 

Karhunen-Loeve expansion. Its exponentiation gives a lognormal random field

£(x, f(w)) =  exp ^p(x) + a Y l  • (7-l)

In the context of SG methods, (7.1) is expanded by projecting the d terms of the 

KL expansion (of the Gaussian random field) onto order p polynomial chaos
p

£ (x > f  M )  =  L*(x )xfc(0> (7-2)
fc=i

where L&(x) are deterministic functions derived from (7.1) and for which closed 

forms can be obtained algebraically (see Ghanem (1999a,6), Sudret & Der Kiureghian 

(2000), Ghanem & Spanos (2003), Ullmann (2008)). Here Xk are chaos polynomials 

in d random variables (normal random variables) of degree less than or equal to p.

Following the discussion presented in §4.5.2, the solution vector is represented by 

a polynomial chaos expansion in d random variables with chaos order less than or 

equal to p, as described in (4.30). Substituting (7.2) and (4.30) into the discrete 

variational formulation (4.22), we obtain the following Galerkin matrix, A
N

a  = (7-3)
k=1

where the stochastic Galerkin matrices Gk are given by

Gkihj) = (XkXiXj) M , j  =  1 , . . . ,  P, (7.4)

and Kk are deterministic matrices obtained from the discretisation of the lognormal 

field (7.2).
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The implementation given so far considers the same maximum degree of polynomi­

als p for the polynomial chaos expansion of the solution vector u and the conductivity 

field £(x, •). In actual fact, polynomials of different orders can and should be used 

for the two expansions. In fact, it can be shown that for the Galerkin matrix A to be 

positive definite (Keese 2004, Matthies &; Keese 2005, Ullmann 2008) all polynomials 

of degree less than or equal to 2 x pu have to be included in the polynomial chaos 

expansion of C,  where the subscript u refers to the maximum polynomial order chosen 

for the solution vector. Only when this condition is satisfied, a full Galerkin projec­

tion of the polynomial chaos expansion of C  obtained. Following Ullmann (2008) the 

number of chaos polynomials used for the representation of C  is

w =  (7-5>

where d is the number of random variables used in the Karhunen-Loeve Expansion 

and pu is the maximum polynomial order used for the polynomial chaos expansion of 

the solution vector. Note that N  corresponds to the number of Kronecker products 

in (7.3). Note that the size of the stochastic space associated with the solution vector 

u maintains its size corresponding to P = • Hence, the stochastic Galerkin

matrices Gk are

Gk(i,j) = {XkXiXj) k = 1, . . . ,JV and i , j  = 1 , . . . ,P .  (7.6)

It can be demonstrated (see Keese (2004) and Ullmann (2008)) that the inner 

product (XkXiXj) is non-zero in only finitely many cases. In fact {XkXiXj) =  0 f°r 

Xk with total degree greater than 2 x pu. A consequence of this observation is that 

given a fixed number of random variables d, the infinite polynomial chaos expansion of 

C automatically truncates itself as part of the SG method (see Figure 7.1(d)). Hence, 

since the expansion truncates naturally, no error is introduced in the representation 

of C.



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - Nonlinear
Stochastic Case 165

To make this clearer, let us consider the case in which d = 3 (three random 

variables) and pu =  3 (maximum polynomial order for the solution vector). According 

to (4.23), the size of the stochastic space for the solution u is P  =  20. Therefore, the 

size of each stochastic Galerkin matrix Gk in (7.3) is 20 x 20. Now, the number of 

Kronecker products N  can take the value 20 if the same maximum polynomial order, 

pc, is used for the expansion of the lognormal conductivity coefficient. Alternatively, 

maximum polynomial orders of 4, 5, or 6 can be used to give the number of Kronecker 

products corresponding to 35, 56 or 84, respectively. Although, any value of pc can 

be used, it is only for pc =  6 (px =  2 x  pu), which corresponds to N = 84, that a full 

Galerkin projection of the lognormal random field is obtained. Furthermore, only in 

this circumstance is the global Galerkin matrix A guaranteed to be positive definite 

(see Ullmann (2008, Remark 2.3.4)).

Figure 7.1 illustrates the block sparsity of A (which corresponds to ]T)jfcLi Gk) f°r 

different values of N. Note that if polynomials of maximum order pc — 6 are used for 

the chaos expansion of the conductivity coefficient, then there is an entry for every 

block of A (see Figure 7.1(d)). If polynomials of order higher than six are considered, 

the Gk matrices corresponding to orders higher than 2 x pu would have only zero 

entries.

In Chapter 6 the performance of preconditioned iterative solvers was presented 

for SG problems in which the conductivity coefficient is described by a Karhunen- 

Loeve expansion. To be able to use the same preconditioners proposed in Chapter 

4 and implemented in Chapter 6 it is required that A is positive-definite. This is 

guaranteed only if order 2p polynomials are used for the expansion of the lognormal 

field (Ullmann 2008, Table 2.1).
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(a) N  =  20 Kronecker products (b) N  =  35 Kronecker products

0 2 4 « 8 10

(c) N  =  56 Kronecker products (d) N  =  84 Kronecker products

Figure 7.1: Block sparsity of A

7.3 Comparison of Stochastic Galerkin and Monte

Carlo Methods

In this section a comparison between numerical solutions obtained by SG methods 

and MCM when lognormal distributions are used to describe the conductivity coef­

ficient is reported. The comparison of solutions gives us the possibility to validate
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the SG numerical development in a similar manner as was reported in Chapter 5 for 

Gaussian and uniform distributions.

As explained in Chapter 5, the timings listed in the tables should only give the 

reader an indication of the CPU cost required by that specific method. The simu­

lations have all been carried out in serial within MATLAB 7.4 on a laptop PC with 

4Gb of RAM.

7.3.1 SFEM  vs M onte C arlo S im ulations

Consider the settings used in test problem 2 (see 6.2.2). Dirichlet boundary condi­

tions u = 1.0 and u = 0 are imposed at the left (x — 0) and right (x = 1) boundaries 

of the model domain, respectively. Homogeneous Neumann boundary conditions 

CVu • n = 0 are imposed to the upper (y =  1) and lower (y = 0) edge of the model 

domain. Thus the dominant flow direction is from left to right.

The spatial discretisation uses a triangular mesh with h =  ^  for the approximation 

of u. This yields a total number of unknowns Nu =  4,225. The conductivity coeffi­

cient is a lognormal random field, C =  exp C. The underlying Gaussian random field C 

has mean, p = 1, and standard deviation, a — 0.2. The spatial variability is modelled 

by an exponential correlation function with correlation lengths lx = ly = 10.0. The 

eigenvalues and eigenfunctions of the Karhunen-Loeve expansion of C are available as 

analytical expressions (Ghanem & Spanos 2003, Powell & Elman 2009). Figure 7.2a 

shows the decay of the first 10 eigenvalues obtained from the KLE as well as their 

summation. Figure 7.2b illustrates a sample realization of the conductivity field for 

this test problem.

Note that the eigenvalues of the KLE of C decay more rapidly than for the spatial 

random field simulated in test problem 1, Chapter 5 (see Figure 5.1). This illustrates
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Random fWd realization

Eigenvalue Index

(a) KLE eigenvalues for exponential covariance (b) Sample realization of spatial random field 

and lx =  ly =  10.0

Figure 7.2: KLE eigenvalues and sample realization of £(x, £)

that for large correlation lengths a small number of random variables (i.e. small 

number of terms in the KLE) are sufficient to accurately approximate the spatial 

random field. Conversely for small correlation lengths a limited number of random 

variables is generally not sufficient to fully describe the spatial random field. For 

this test problem we set d =  4 and use chaos polynomials up to order pu =  4 for 

the solution u. The polynomial chaos expansion of the conductivity coefficient uses 

polynomials of order 2 x pu so that the positive definiteness of the coefficient matrix 

is guaranteed.

The mean and variance solutions for the potential obtained using SFEM with 

pu = 4 and d = 4 on a 64 x 64 uniform grid are illustrated in Figure 7.3.

Figure 7.4 shows the mean and variance solution profiles along the horizontal 

centreline of the domain for several values of polynomial order pu and number of MC 

simulations Nr. As with the examples reported in Chapter 5, the solution profiles
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(a) Mean u solution (b) Variance u solution

Figure 7.3: Mean and variance solutions for test problem with lognormal distribution 
(SFEM)

obtained by the two methods are very similar and tend to converge to the same values 

for increasing sampling size, Nr, and polynomial order, pu.

x 10*4

a=
£

8

:>
—q — MCM (Nt = 10,000) 

A  MCM (N = 20,000) 
_ © _  MCM (Nf = 40,000) 
-B -S M FE M (pu = 2) 
-A -SM F E M (pu = 3) 
- e -SMFEM(pu = 4)

0. 5

0.1
X-direction

(a) Mean u solution (b) Variance u solution

Figure 7.4: Comparison of solution profiles for SFEM and MCM for test problem 
with lognormal distribution

_ g _  MCM (N =10,000) 
- A -  MCM (Nf = 20,000) 

O  MCM (N = 40,000)
-B -SM FE M  (pu = 2) 
- A  - SMFEM (Pu = 3)

X -direction
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Table 7.1 shows the value of the mean and variance at location (0.5,0.5) for several

values of N r and pu. Polynomials of order two are sufficient to achieve convergence to

the fourth significant digit for the mean solution. Polynomials of order three, instead,

are required for the variance solution to achieve the same level of accuracy.

As for Gaussian and uniform distributions, Monte Carlo methods converge slowly.

Table 7.1 shows that 20,000 simulations are required for the sample mean to converge.

Conversely the sample variance do not converge to the desired level of accuracy for

the maximum sample size considered for this test problem (Nr =  40,000).

Table 7.1: Convergence analysis of MCM and SFEM for test problem with lognormal 
distribution

N r = 10,000 Nr =  20,000 Nr =  40,000
Sample Mean 

Sample Variance 
tCpu(sec.)

0.54688
0.00023464

301

0.54696
0.00023648

604

0.54698
0.00023979

1,205
Pu = 2 e II 00 ^3 C II

Mean
Variance

tcpu(sec.)

0.54681
0.00023659

4.15

0.54681
0.00023683

36.70

0.54681
0.00023683

310.40

In agreement with results described in Chapter 5, the CPU times reported in 

Table 7.1 indicate that the SFEM method is significantly more efficient than the 

MCM when lognormal distributions are used.

7.3.2 SM F E M  vs M on te  C arlo S im u lations

The problem settings and boundary conditions are the same as the test problem 

presented in the previous section. However, the first order problem is solved in this 

section corresponding to the system of equations described in (4.2).

The spatial discretisation uses a triangular mesh with h =  thus the number 

of unknowns given by the mixed formulation are the sum of the number of elements, 

Ne =  8,192, and number of edges, Nedg =  12,416. The stochastic space is discretised
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in a similar fashion to the one described for the SFEM case, i.e. polynomial chaos up 

to order pu =  4 are used for the potential u and velocity solution q.

The mean and variance solution for the potential are very similar to those obtained 

with the second order problem and these are illustrated in Figure 7.3. The mean and 

variance solutions for the components of the velocity field for d =  4 and pu = 4 on a 

64 x 64 uniform grid are shown in Figure 7.5. The y-component of the velocity field 

is omitted as this is close to zero (the flow is predominantly along the X  direction).

Figure 7.5 also includes the solution profiles for various order of polynomials pu 

and various Monte Carlo samples, Nr. For the mean velocity (A-component) solution 

the profile presented is along the direction Y  = 0.5 and for the variance solution is 

along the direction X  — 0.5. An in-depth convergence study for a sampling point 

having coordinate (0.5,0.5) is reported in Table 7.2.

Polynomials of order two are sufficient to achieve convergence to the fourth signif­

icant digit for the mean solution. Polynomials of order three, instead, are required for 

the variance solution to achieve the same level of accuracy. This is in agreement with 

the convergence rate of the mean and variance solution for the potential recorded for 

the second order problem (see Table 7.1).

It is apparent from the data presented in Table 7.2 that the Monte Carlo mean 

solution for the X  component of the velocity field does not converge for the sample 

size considered in this test problem. This suggests that a larger sample is required 

to achieve a solution with adequate accuracy. Equally, the variance solution does not 

converge for the maximum sample size herein considered.

Table 7.2 also includes solution timings for the MCM and SMFEM methods. Al­

though the data show that SMFEM is more efficient than MCM this conclusion can­

not be generalized. In fact the performance of preconditioned MINRES deteriorates 

significantly for large standard deviations of the conductivity field when lognormal
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Figure 7.5: Mean and variance solutions for test problem with lognormal distribution 
(SMFEM)

distributions are used. Evidence of this is reported and discussed in §7.6.1.
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Table 7.2: Convergence analysis of MCM and SMFEM for test problem with lognor­
mal distribution

Nr = 10,000 Nr = 20,000 Nr = 40,000
Sample Mean 

Sample Variance
2.77182
0.30558

2.77526
0.30873

2.77055
0.30014

tcpu{sec.) 6,261 12,524 25,048
Pu ~  2 Pu =  3 Pu =  4

Mean 
^ x Variance

2.76780
0.29639

2.76782
0.29726

2.76782
0.29728

tcpu(sec-) 43.62 388.21 2,311.94

7.4 SFEM solvers

As for the linear case the algorithms used for the numerical experiments are struc­

tured so that the coefficient matrix is never fully assembled. Only the non-zero entries 

of the polynomial chaos coefficients (appropriately indexed) and N  matrices (associ­

ated with the polynomial chaos discretisation of the spatial random field) are stored. 

In contrast to the linear case N  is very large, if the well-posedness of A is to be guar­

anteed. Hence, the memory requirements of SG for the nonlinear case are significantly 

larger than the linear case.

In Chapter 6 it was shown that the choline version of the mean-based precondi­

tioners, Vbdiag and Vmean, is significantly less efficient than the AMG and UMFPACK 

versions. Hence, for the nonlinear case we do not present simulations associated with 

the incomplete Cholesky factorisation of K 0.

As for the simulations presented in Chapter 6, a symmetric Gauss-Seidel smoother 

is used for the AMG implementation.

The simulations have all been carried out in serial within the MATLAB environ­

ment installed in the SRIF-3 Cluster machine (Merlin) at Cardiff University. Thus 

the CPU timings reported in the following sections can be directly compared with 

those reported in Chapter 6.
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7.4.1 B lock -d iagon al p recon d ition er  

Test p rob lem  1 - variable h

The settings for this test problem are as described in §5.2.1. However, the con­

ductivity coefficient C =  exp (C) is a lognormal spatial random field. The underlying 

Gaussian random field has mean p  =  1 and standard deviation a =  0.1 and the same 

spatial model described in §5.2.1. Up to six terms of the Karhunen-Loeve expansion 

are used in (7.1).

Table 7.3 reports the size of the stochastic space used for the solution u , the total 

number of Kronecker products, TV, used in the polynomial expansion of £  and the 

total number of unknowns. Note that the number of Kronecker products is chosen so 

that the positive definiteness of A  is guaranteed (see (7.3) and discussion in §7.2).

Table 7.3: Dimensions of P, N  and total number of unknowns

Pu =  2 Pu = 3 Pu =  4
d = 4

P 15 35 70
N 70 210 495

h l

64

16,335 38,115 76,230
h 63,375 147,875 295,750
h 1

128 249,615 582,435 1,164,870
d =  6

P 28 84 210
N 210 924 3,003

h 1! 
II

30,492 91,476 228,690
h 118,300 354,900 887,250
h i

~  128 465,948 1,397,844 3,494,610

Following the argumentation presented in Chapter 6 we report conjugate gradient 

performance when preconditioned by the diagonal blocks of A. We implement the 

preconditioner using either a sparse direct solver (UMFPACK) to exactly invert Kq or 

one V-cycle of AMG code to approximately invert K 0. Iteration counts and solution 

times for various values of d, p and h are reported in Table 7.4.
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Table 7.4: CG iterations and solution timings for Vmag - Test Problem 1

Pu =  2 Pu = 3 Pu = 4
h Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nu tcpu

(sec.)
d = 4

l
¥
64

7 0.83 9 2.97 9 14.87
UMFPACK 8 2.06 9 11.11 9 48.23

1 8 11.81 9 47.54 9 195.351|8
32 9 0.63 10 3.42 11 18.26

AM G 1
64 9 1.79 10 10.99 11 56.6
1

128 9 7.17 10 42.19 11 214.86
d =  6

1

¥
64

7 1.2 9 16.05 9 123.74
UMFPACK 7 4.77 9 53.05 10 434.61

1
128 7 21.79 9 215.67 10 1703.08
I

¥
64

9 1.65 10 18.13 11 152.57
AM G 9 5.16 10 55.77 11 465.32

1
128 9 19.99 10 212.22 11 1847.39

The set-up time for problem 1 is reported in Appendix A (Table A.4). This 

increases with the size of the problem. The table also includes the set-up time for 

the preconditioner (AMG case only), which corresponds to the computational cost of 

creating the coarse grids for the AMG  approximation. This also increases with the 

size of the problem. However, as for the linear case this operation is implemented 

only once for the mean stiffness matrix, K q.

Simulation results for the UMFPACK and AMG  versions of the mean precondi­

tioner, Vmean, are included in Appendix B (Table B.4). The corresponding set-up 

times are identical to those reported for the Vbdiag case and therefore are not included 

in this dissertation.

The results from Table 7.4 can be summarised as follow:

1. Solution times for the nonlinear case are significantly larger than the linear case.

Hence, the preconditioner set-up time (AMG  case) becomes negligible;

2. The UMFPACK version of the block-diagonal preconditioner is slightly more
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efficient than the AMG version. For the linear case this behaviour was observed 

only for coarse meshes;

3. Both versions of the block-diagonal preconditioner are d-optimal and h-optimal;

4. As for the linear case the Pmean preconditioner (see B.4) is significantly less 

efficient than the block-diagonal one.

Test problem  2 - variable a

The domain size, boundary conditions and source term for this test problem are 

as described in §6.2.2. The conductivity coefficient £  is a lognormal field the spatial 

variability of which is described in §5.2.1. The underlying Gaussian distribution has 

constant mean p = 1 and four different values are assigned to the standard deviation. 

The discretization parameter is fixed at h =

The size of the stochastic space and the total number of Kronecker products are 

as those reported in Table 7.3 and the the total number of unknowns corresponds to 

those reported in Table 7.3 for h =

Conjugate gradient, preconditioned by Vbdiag> iteration count Nit and timings tcpu 

are reported in Table 7.5. The corresponding problem and preconditioner (AMG only) 

set-up times are given in Appendix A (Table A.5). Set-up times only depend on the 

size of the problem (which in this case is fixed at h = ^ ) ,  and therefore they are 

approximately equal for all values of a.

The results presented in Table 7.5 can be summarised as follows:

1. The performance of the block-diagonal preconditioner deteriorates significantly 

for large values of standard deviation;

2. Nit and tcpu show exponential growth with respect to p, for all values of d;
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Table 7.5: CG iterations and solution timings for Vuiag - Test Problem 2

Pu = 2 Pu = 3 Pu = 4
a Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nu tcpu

(sec.)
d = 4

0.3 11 0.7 14 4.73 17 28.66
UMFPACK 0.5 16 0.96 23 7.83 30 50.05

0.7 23 1.38 34 11.52 48 80.09
0.9 29 1.74 51 17.38 80 134.01
0.3 13 1.32 16 5.76 19 32.56

AMG 0.5 18 1.23 25 8.98 32 54.67
0.7 24 1.69 37 13.3 52 88.93
0.9 31 2.1 54 19.33 83 142.59

II O
i

0.3 11 1.97 14 25.48 17 239.24
UMFPACK 0.5 17 3 24 43.65 30 419.48

0.7 23 4.05 35 63.48 50 697.9
0.9 30 5.27 52 94.26 83 1158.83
0.3 13 2.51 16 29.93 19 268.52

AMG 0.5 18 3.5 25 46.61 33 468.54
0.7 24 4.6 38 70.83 52 735.08
0.9 31 5.92 55 102.78 87 1239.99

3. d-optimality for pu =  4 is lost for both versions of the preconditioner;

Simulation results for CG preconditioned with Vmean> are included in Appendix 

B (Table B.5). As for the previous case, its performance is significantly poorer than

the Vbdiag •

Test problem  3 - discontinuous-isotropic conductiv ity  field

For a description of the settings of this example refer to the corresponding test 

problem 3 in §5.2.1. The conductivity coefficient £  is a spatially discontinuous lognor­

mal random field. Four cases are presented, three of which have constant coefficient of 

variation 6  and one with spatially variable 8 . The underlying Gaussian distributions
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(one for each of the four sub-domains) have the following parameters:

1st CASE

2 nd CASE

\

I
3rd CASE

p Dl =  1.0, crD l  =  0.5, p D2 =  0.1, a D2 =  0.05,

P d 3 =  0.01, =  0.005, p d 4 =  0.0001, <jD4 =  0.00005;

P-Di —  10, a D i  —  0.7, =  0.1, crj52 =  0.07,

P>d 3 =  0.01, a =  0.007, p d 4 =  0.0001, ctd4 =  0.00007;

P m  =  1 -0 , c td i =  1 0 , /i d 2 =  0 . 1 , cfd2 —  0 -1 ,

/iDs =  0 .01 , aD3 =  0 .01 , p D4 =  0 .0001, aDi =  0 .0001;

4th CASE
pDl = 1.0, aDl -  1.0, pD2 = 0.1, crD2 =  0.07,

P>d3 =  0.01, =  0.005, pd 4 =  0.0001, <jl>4 =  0.0001.

A Karhunen-Loeve expansion is performed for each sub-domain and the number d 

of terms retained in the expansion is equal for each sub-domain. The case of different 

d in each sub-domain has not been considered in this dissertation and could be a 

subject for further research. The same spatial model (see 5.2.1) with lx =  ly =  0.5 is 

used for each sub-domain.

The discretisation parameter is fixed, h = and the size of the problem is given 

in Table 7.3. Iteration count and timings for CG preconditioned with the block- 

diagonal of A is given in Table 7.6. The corresponding problem and preconditioner 

set-up times are listed in Table A.6 . Also for this test problem the set-up times are 

approximately equal for all values of 6 .

Similar observations are drawn for this test problem as the ones highlighted in 

§7.4.1. The exponential growth of Nu and tcpu with increasing p is clear also for this 

test problem. In addition it appears that the deterioration in the performance of the 

preconditioner is exclusively due to the increase in the value of a in each sub-domain
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from case to case. In fact in all four cases the mean values Pdi,d2 ,d3 ,d4 are equal. 

This indicates that the preconditioned solver is robust with respect to discontinuities 

in the mean value of the conductivity coefficient.

Table 7.6: CG iterations and solution timings for Vbdiag - Test Problem 3

Pu =  2 Pu = 3 Pu = 4
6 = z Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nit tcpu

(sec.)

II"C3

0.5 16 1.02 22 7.47 27 45.3
UMFPACK 0.7 22 1.33 32 10.92 43 72.27

1.0 33 1.99 56 19.21 84 141.2
1.0,0.7,0.5,1.0 33 1.99 55 18.73 84 140.98

0.5 17 1.21 23 8.28 28 48.07
AMG 0.7 23 1.57 34 12.19 45 77.22

1.0 34 2.32 57 20.43 86 147.55
1.0,0.7,0.5,1.0 34 2.31 57 20.5 86 147.41COII

0.5 17 3 23 41.73 28 392.59
UMFPACK 0.7 23 4.08 34 61.76 45 633.19

1.0 35 6.19 58 105.52 90 1265.67
1.0,0.7,0.5,1.0 35 6.16 58 105.88 90 1261.79

0.5 18 3.48 24 44.69 29 420.91
AMG 0.7 24 4.61 35 65.76 47 670.45

1.0 36 6.9 61 113.85 93 1313.96
1.0,0.7,0.5,1.0 36 6.88 60 111.57 93 1320.7

7.4.2 B lock Sym m etric G auss-Seidel P reconditioner

In this section the same test problems presented in §7.4.1 are solved using a block 

symmetric Gauss-Seidel (bSGS) preconditioner for CG. The algorithm used in the 

experiments is described in §4.5.3. A fixed number of iterations maxitb is used as 

stopping criteria for VbsGS, each iteration including a forward and backward sweep. 

Similarly to the linear case, maxitb — 1 is used for the experiments reported in the 

following sections. The reason for this choice together with an in-depth analysis on 

the performance of VbsGS for several values of maxitb is given in §7.4.2.



Chapter 7: Solution Strategies for Stochastic Galerkin Methods - Nonlinear
Stochastic Case 180

Note that only experiments based on the symmetric version of the Gauss-Seidel 

algorithm are presented in this chapter. In fact, the theory of the Conjugate Gradient 

method (Saad 2003) requires the preconditioner to be symmetric and positive def­

inite. The implementation of a non-symmetric Gauss-Seidel preconditioner for CG 

is straightforward however it was decided to not carry out experiments using such 

solver as this would be inconsistent with theoretical concepts.

The UMFPACK implementation of the block symmetric Gauss-Seidel precondi­

tioner is straightforward and it is identical to the one used in Chapter 6. In con­

trast, the AMG implementation is not straightforward and requires additional pre­

processing to be implemented. In fact, differently from the linear case, the tensor 

products Gk® Kk,k  =  1, . . . ,  N, have several contributions to the blocks of the lead­

ing diagonal of the coefficient matrix, depending on the value of d and pu. So for 

example, fixing d = 2 and pu = 3, the contributions are as follows

Table 7.7: Gk x Kk contributions to the blocks of the diagonal of A

PJ) G* x Kk

(1. 1)
(2, 2) G4(2,2) x K a
(3,3) Ge x K e
(4,4) (G4 x K4) + (G„ x K u )
(5,5) (C4 x K4) + (G6 x Ke) + (G13 x K 13)
(6, 6) (Ge x K e) + (G15 x K 1S)
(7,7) (G4 x K 4 ) +  (Gn x A"n) +  (G2 2  x K 2 2 )
(8, 8) (G„ x K4) +  (Gq X Kq) +  (Gn x K n)  +  (G13 x K\s) -1- (G24 x K 2 4 )
(9,9) (G, x K4) 4- {Gq x K q) + {Gig x K\3) +  (G15 x K 4$)

(10, 10) (C6

+£X (G15 X A 1 5 )  +  (G 2 6  x  K 2 6 ) +  (G 2 8  X K 2 8 )

Note that the G\ matrix is diagonal and the product G\{i,j) x K\ contains the 

mean information (this is omitted from Table 7.7). In the linear case the AMG 

grids are constructed only once, whereas for the nonlinear case the AMG grids have 

to be computed for each block entries of the diagonal of the global system. Thus 

the AMG pre-processing is implemented P  times and the grids are stored before
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the iterative solution process begins. Clearly the preconditioner set-up time now 

contributes significantly to the solver’s CPU cost.

To avoid repetition we refer the reader to §7.4.1 for details on the settings of each 

test problem.

Test problem  1 - variable h

The iteration count and timings for CG preconditioned with a VbsGS are reported 

in Table 7.8. The problem set-up time is listed in Appendix C (Table C.4).

Table 7.8: CG iterations and solution timings for VbsGS - Test Problem 1

Pu =  2 Pu = 3 5s ii

h Nit tcpu
( s e c . )

Nit tcpu
( s e c . )

Nit tcpu
( s e c . )

d = 4
i
¥
64

3 0.48 3 1.77 3 8.79
UMFPACK 3 1.46 3 6.76 3 28.61

1
128 3 8.9 3 29.51 3 117.07
I
32 6 1.11 6 3.61 6 17.37

AMG 1
64 6 2.01 6 11.12 6 52.11
1

128 6 7.22 6 40.85 6 195.45
COII"C3

1
¥
64

3 0.92 3 9.6 3 74.58
UMFPACK 3 3.84 3 31.85 3 229.6

1
128 3 17.5 3 129.57 3 901.89
I
32 6 1.94 6 19.36 6 146.68

AMG 1
64 6 5.91 6 57.04 6 440.44
1

128 6 21.71 6 230.99 6 1,765.36

The results presented in Table 7.8 can be summarised as follows:

1. The VbSGS preconditioner is significantly more efficient than Vbdiag• For exam­

ple, for h =  ylg solution times are reduced by as much as 48% for pu =  4, 40% 

for pu = 3 and 13% for pu =  2;

2. The number of CG iterations is also reduced to about a third of that required 

using a block-diagonal preconditioner;
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3. The preconditioner is not only h-optimal and d-optimal but also p-optimal;

4. The UMFPACK version of the preconditioner is more efficient than the AMG 

version even without considering the CPU cost associated with the set-up time. 

If, however, we do consider the AMG set-up time, this is so large that it is 

actually larger than the actual solution time. Note that this applies to the non­

linear case only. In fact results reported in Chapter 6, §6.2.2, for the linear case 

show that for fine discretisations ( AMG is more efficient than UMFPACK.

Test p roblem  2 - variable a

Tables 7.9 and C.5 report CG iteration count and timings, and set-up times for 

test problem 2 .

Table 7.9: CG iterations and solution timings for VbSGS - Test Problem 2

a
Pu = 2 Pu = 3 II

Nit tcpu
(sec.)

Nit tcpu
(sec.)

Nu tcpu
(sec.)

d = 4
0.3 4 0.87 4 2.44 5 14.95

UMFPACK 0.5 6 0.65 7 4.28 8 23.9
0.7 8 0.86 10 6.11 12 35.8
0.9 10 1.07 14 8.53 18 53.73
0.3 6 1.11 7 4.35 7 20.82

AMG 0.5 8 0.94 9 5.6 11 32.63
0.7 10 1.21 14 8.71 20 59.53
0.9 14 1.64 23 14.27 46 136.93

COII

0.3 4 1.27 4 13.11 5 123.46
UMFPACK 0.5 6 1.91 7 22.9 8 198.15

0.7 8 2.55 10 32.62 12 297.21
0.9 11 3.51 14 45.85 19 473.32
0.3 6 2 7 22.94 7 171.93

AMG 0.5 8 2.68 10 32.71 12 297.72
0.7 11 3.66 15 49.01 22 546.12
0.9 15 5 25 81.93 52 1279.58

The results presented in Table 7.9 can be summarised as follows:
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1. The block symmetric Gauss-Seidel preconditioner shows a significant improve­

ment in terms of number of CG iterations. This improvement becomes more 

evident for large values of standard deviation (cr);

2. The comparison of the data with those of Table 7.5 (block-diagonal precondi­

tioner) reveals that the Gauss-Seidel preconditioner is generally computationally 

cheaper and the improvement in performance increases with larger values of <7 ;

3. Noticeably the difference in performance between the exact and approximate 

versions of the preconditioner increases for larger a. In fact for a =  0.9, the 

AMG solution times are approximately three times larger than for UMFPACK.

Test p roblem  3 - d iscon tinuous-iso trop ic  conductiv ity  field

Tables 7.10 and C.6 report CG iteration count and timings, and set-up times for 

test problem 3 using a bSGS preconditioner.

Similarly to test problem 2 a significant improvement for both Nit and tcpu is 

achieved. A large saving in computational cost was recorded for higher polynomial 

orders and large 6 . In fact the tcpu  cost is reduced by 60% if compared with re­

sults obtained using the Vbdiag preconditioner. Significant time reduction is equally 

achieved for lower polynomial orders and coefficient of variation 5. This is around 

37% for pu = 2 and 5 =  0.5, and around 53% for pu = 3 and 5 =  0.7.

As previously observed for the Vbdiag preconditioner, it appears that the discon­

tinuous conductivity coefficient (jumps in the mean conductivity value at the sub- 

domains boundaries) does not worsen the preconditioner performance. It is in fact, 

the standard deviation which has a significant negative impact on the performance of 

both Vbdiag and V bSG S• Not even using the VbSGS  algorithm and therefore including 

the off-diagonal blocks of A (which retain information on the fluctuations about the
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mean) can optimality of Nu with respect to a be achieved.

Table 7.10: CG iterations and solution timings for VbSGS - Test Problem 3

Pu =  2 Pu =  3 Pu =  4
6 = z Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nit tcpu

(sec.)
d = 4

0.5 6 0.69 7 4.27 7 20.86
UMFPACK 0.7 8 0.86 9 5.54 11 33.04

1.0 11 1.18 15 9.23 19 56.64
1.0,0.7,0.5,1.0 11 1.19 15 9.22 19 56.73

0.5 7 0.91 8 4.97 10 29.7
AMG 0.7 9 1.06 12 7.46 16 47.59

1.0 14 1.67 23 14.43 48 143.13
1.0,0.7,0.5,1.0 14 1.67 23 14.42 48 143.13

d =  6
0.5 6 1.91 7 22.82 8 198.34

UMFPACK 0.7 8 2.55 9 29.49 11 273.95
1.0 11 3.5 15 49.18 21 520.41

1.0,0.7,0.5,1.0 11 3.51 15 49.08 21 523.93
0.5 8 2.68 9 29.45 10 245.42

AMG 0.7 10 3.38 13 42.49 18 440.4
1.0 16 5.41 27 89.2 55 1348.74

1.0,0.7,0.5,1.0 16 5.39 27 88.5 55 1345.02

Performance Analysis

As for the linear case, the experiments presented so far show that CG equipped 

with a block symmetric Gauss-Seidel preconditioner is significantly more efficient than 

traditional mean-based preconditioners. This conclusion depends on the stopping 

criteria chosen for the Gauss-Seidel algorithm. The results reported in this Chapter’s 

tables are obtained using a maximum number of iterations, maxitb = 1, for the bSGS 

algorithm. This means two sweeps per iteration, one forward and one backward to 

ensure the symmetry of the preconditioner for CG.

The choice of maxitb can be optimized. Consider test problem 2 with fixed pu = 4 

and run simulations for successively larger maxitb, maxitb = 1,2,3, . . . ,  until only
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one CG iteration is required for convergence. CG iteration count and timings for 

these experiments with d = 4 and d = 6, are reported in Table 7.11. Note that for 

this analysis the UMFPACK version of the preconditioner was used.

Table 7.11: CG iterations and solution timings (sec.) for VbSGS f°r various values of 
maxitb - Test Problem 2

maxitb a =  0.3 a =  0.5 a = 0.7 a = 0.9
d = 4 Nit tcpu Nit tcpu Nit t'CPU Nit tcpu

1 5 14.95 8 23.90 12 35.79 18 53.72
2 3 13.26 5 22.11 8 35.42 13 57.57
3 2 11.79 4 23.50 7 41.14 10 58.79
4 2 14.48 4 29.00 6 43.47 9 65.13
5 2 17.39 3 26.10 5 43.45 8 69.51
6 1 10.07 3 30.13 4 40.38 7 70.65
8 1 12.99 2 25.87 4 51.83 6 77.51
14 1 21.54 1 21.54 3 64.56 4 86.06
32 1 47.26 1 47.14 1 47.17 3 141.50
75 1 108.45 1 108.56 1 108.29 1 108.17

d = 6
1 5 123.46 8 198.15 12 297.21 19 473.32
2 3 108.02 5 180.14 9 322.50 14 505.53
3 2 93.71 4 188.48 7 329.93 11 518.46
4 2 115.72 4 233.33 6 348.50 10 580.29
5 2 138.72 3 208.24 5 347.25 8 557.42
6 1 80.55 3 244.95 5 400.84 8 645.87
8 1 102.93 2 205.71 4 410.97 7 719.04
14 1 169.66 1 170.22 3 509.89 5 849.04
34 1 393.42 1 394.49 1 392.42 3 1173.16
80 1 899.37 1 906.18 1 905.44 1 905.81

The results reported in Table 7.11 suggest that the best solution times are not 

given by the same stopping criteria for all values of a. In fact it appears that for 

large standard deviations a — 0.7,0.9 the best solution timings are obtained for small 

maxitb. However, for small values of a =  0.3,0.5, the best timings are given by very 

large maxitb.

The case in which maxitb is large and tcpu Is l°w corresponds to the situation in 

which convergence is obtained in one CG iteration. It is clear that in this circumstance 

the bulk of the computational work is done by the preconditioner (bSGS) and very
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little by the main solver (CG). Given that the preconditioner should only serve as 

a means to improve the conditioning of the system matrix, the results showing just 

one CG iteration are not considered in the following analysis. On the other hand, 

this aspect reveals that an independent Gauss-Seidel (symmetric or not) solver could 

be a very efficient alternative to Krylov subspace iterative schemes. In §7.4.3 results 

obtained using Gauss-Seidel solvers are reported for all test problems considered in 

this Chapter.

19
18
17
18 
15 
14 
13

S? 12 
S 11

1“ I 9
b ;

6
5
4
3
2
1

 best A line
n o=0.3
□ o=0.5
□ o=0.7 
o o=0.9

 .<.........

d ■'

.....

16 
15 
14 
13 

=?12  
3 11

I 103  9

8J

-------best A line lm axhb*n............
a a=0.3
O o=0.5
a  o=0.7 ......................... •/.....................................................
o o=0.9

*
* I maxitb = 2 I

.........................................J . ................ f* . ...............................................
/ / Q |maxHb=3 ]

..................P........./ ...... 57*...-U r—
V  ma*

/ - ■;* , \
  tiwdto = 5.

 v rtty fe S * * .................................A r ...............................
/  . .................................

10 20 30 40 50 80 70 80 90
Solu tion  tim e, tc p u  (sec.)

100 200 300 400 500 600 700 800
Solu tion  tim e, t c p u  (sec.)

(a) d =  4 (b) d =  6

Figure 7.6: Performance analysis of CG preconditioned with VbSGS for Test Problem 
2

Excluding the data associated with one CG iteration, Table 7.4 shows that, in 

general, a small number of internal iterations for the VbSGS preconditioner are suffi­

cient to achieve the best performance for all values of standard deviation considered 

for this test problem. However it is only for a =  0.9 (d = 4,6) and a — 0.7 (d = 6), 

that the best performance is achieved using maxitb = 1. For a =  0.5 (d =  4,6) 

and a =  0.7 (d = 4), the best performance is given by maxitb =  2, and for a — 0.3 

(d = 4,6), for maxitb =  3.
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Figures 7.6a and 7.6b show CG iterations versus CPU times for maxitb  = 1,2,3,4,5,6 

for d =  4 and d =  6, respectively. The figures highlight that there is a clear linear 

relationship between the number of CG (preconditioned with VbSGs) iterations, com­

putational time and the standard deviation of the spatial random field for all values 

of maxitb. As for the linear case, both figures clearly show that the best convergence 

rate is given by m axitb = 1 and this is the reason why it was chosen as the optimal 

stopping criteria for the V bSG S  preconditioner.

7.4.3 G auss S eid el Solvers

The performance analysis carried out on test problem 2 in the previous section 

revealed that for small standard deviation (a = 0.3 and a = 0.5) the Gauss-Seidel al­

gorithm used as standing alone solver could be a valid alternative to Krylov subspace 

solvers for the solution of SFEM systems with lognormal conductivity coefficient. The 

same observation was obtained for the linear case (normal or uniform conductivity co­

efficient) in Chapter 6. In this section we present results obtained by block symmetric 

Gauss-Seidel solver (bSGS) and non symmetric Gauss-Seidel solver (bGS). We aim 

to show in what circumstances Gauss-Seidel solvers are more efficient than Krylov 

subspace solvers.

As for the linear case, the symmetric Gauss-Seidel solver includes a forward and a 

backward sweep per iteration and the algorithm is essentially the one used for VbsGS- 

The non-symmetric case only includes a forward sweep per iteration. In both cases 

the stopping criteria is determined by the error norm satisfying a specific tolerance.

The considerations on the re-ordering of the block structure of A, pointed out in 

Chapter 6 for the linear case, may not be valid for the nonlinear case. In fact most re­

orderings aim at reducing the bandwidth of the coefficient matrix which is irrelevant
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for the lognormal case given that A  is block dense. In our implementation we retain 

the structure as presented in Figure 7.1 and obtained by the summation of progressive 

(i = 1 ,. . .  ,N )  Kronecker terms (see (7.3)). This ordering is the most natural as it 

represents the summation of decreasing modes obtained from the polynomial chaos 

expansion of the conductivity coefficient (see (7.1)).

As for CG, the tolerance for the GS solvers is set to 10“8. In each table we list 

iteration count Nit and solution times tcpu  for both bSGS and bGS. Only experiments 

using UMFPACK to invert the diagonal blocks of A  are reported.

Test P ro b lem  1 - variab le  h

Table 7.12 lists iteration count and solution times for test problem 1. Results from 

this table are summarised as follow:

1. Gauss-Seidel solvers are also optimal with respect to the discretisation param­

eter h;

2. Both bSGS and bGS are computationally more efficient than CG with either 

Vbdiag or VbSGS  preconditioners. The improvement is considerably more signifi­

cant than for the linear case (see §6.2.3);

3. The bGS solver is computationally more efficient than the symmetric imple­

mentation.

Test P rob lem  2 - variab le a

Table 7.13 lists iteration counts and timings for test problem 2. The findings of 

this table are summarised as follows:

1. GS solvers are not optimal with respect to a;
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Table 7.12: bSGS and bGS iterations and solution timings - Test Problem 1

Pu =  2 Pu =  3 Pu = 4
h Nit tcpu

( s e c . )

Nit tcpu
( s e c . )

Nit tcpu
( s e c . )

d =  4
l

32 4 0.28 4 1.24 4 5.46
bSGS 1

64 4 1.38 4 5.15 4 18.7
1

128 4 8.11 4 24.3 4 82.39
I
32 5 0.18 6 0.93 6 4.08

bGS 1
64 6 1.05 6 3.85 6 14.03
1

128 6 6.86 6 18.34 6 61.77
d — 6

1
¥
64

4 0.71 4 6.09 4 43.57
bSGS 4 3.23 4 20.92 4 136.23

1 4 15.97 4 92.94 4 563.081^8

¥
64

5 0.46 6 4.56 6 32.52
bGS 6 2.6 6 15.76 6 101.74

1
128 6 11.95 6 68.84 6 415.43

2. bSGS is computationally more efficient than CG preconditioned with VbSGs 

only for small standard deviations;

3. Non-symmetric Gauss-Seidel solver (bGS) is very efficient for small and mod­

erate standard deviations. However, for large values of a it is outperformed by 

CG preconditioned with VbSGs;

4. As for the previous case, the bGS solver is consistently more efficient than the 

symmetric implementation.

Test prob lem  3 - d iscon tinuous-iso trop ic  cond u ctiv ity  field

Table 7.14 lists iteration count and timings for test problem 3. Similar observations 

to the ones highlighted for test problem 2 are derived from the data presented in this 

table. Furthermore the results show that a discontinuous conductivity field has no 

negative impact on the performance of Gauss-Seidel solvers. This becomes evident if
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Table 7.13: bSGS and bGS iterations and solution timings - Test Problem 2

Pu =  2 Pu = 3 Pu = 4
o N it tcpu

(sec.)
Nit tcpu

(sec.)
Nit tcpu

(sec.)
d = 4

0.3 8 0.58 9 2.91 9 12.6
bSGS 0.5 13 0.92 16 5.2 19 26.72

0.7 21 1.47 30 9.68 41 57.33
0.9 33 2.31 54 17.45 86 120.64
0.3 9 0.32 11 1.77 12 8.38

bGS 0.5 15 0.53 20 3.23 25 17.54
0.7 23 0.82 36 5.83 53 37.15
0.9 35 1.25 65 10.42 110 77.24

d — 6
0.3 8 1.48 9 14.06 9 99.5

bSGS 0.5 13 2.4 17 26.6 20 220.36
0.7 22 4.06 31 48.47 43 470.07
0.9 35 6.45 59 92.13 96 1057.31
0.3 9 0.84 11 8.61 12 66.24

bGS 0.5 15 1.39 20 15.66 25 138.46
0.7 23 2.12 36 28.1 53 291.58
0.9 35 3.23 65 50.82 111 610.59

we compare Nit for S = 0.5 for this problem with that of test problem 2 (continuous 

conductivity coefficient) for a = 0.5 (which corresponds to 5 =  ^ ) .

7.5 Comparison and Conclusions

In the previous sections a large number of methods have been tested to identify the 

most efficient solver for the stochastic formulation of the diffusion problem (nonlinear 

case). To identify the methods which are the most efficient and robust with respect 

to h, cr and discontinuous / i ,  the data presented in the previous tables are summarised 

in Figures 7.7, 7.8 and 7.9. Only the case for p -  4 is considered and d -  4,6. The 

methods included in the figures are listed below.
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Table 7.14: bSGS and bGS iterations and solution timings - Test Problem 3

Pu =  2 Pu =  3 Pu = 4
5 = zM Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nit tcpu

(sec.)
d = 4

0.5 11 0.78 13 4.2 14 19.64
bSGS 0.7 17 1.2 23 7.41 29 40.68

1.0 32 2.25 53 17.09 84 117.66
1.0,0.7,0.5,1.0 32 2.24 53 17.07 84 118.49

0.5 12 0.43 15 2.43 17 11.97
bGS 0.7 17 0.6 25 4.07 33 23.32

1.0 30 1.06 53 8.59 87 61.46
1.0,0.7,0.5,1.0 30 1.07 53 8.58 87 61.11

d = 6
0.5 11 2.04 13 20.29 15 178.55

bSGS 0.7 18 3.33 24 37.48 31 343.28
1.0 35 6.47 58 90.76 95 1048.38

1.0,0.7,0.5,1.0 35 6.45 58 90.82 95 1049.12
0.5 12 1.12 15 11.73 17 94.08

bGS 0.7 17 1.58 25 19.58 34 187.85
1.0 30 2.79 53 41.42 96 529.96

1.0,0.7,0.5,1.0 30 2.79 53 41.48 96 533.87

1. CG with Vbdiag {AMG) 5. CG with VbSGs {UMFPACK)

2. CG with Vbdiag {UMFPACK)
6. bSGS {UMFPACK)

3. CG with Vmean {AMG)

4. CG with Vmean {UMFPACK) 7. bGS {UMFPACK)

Note that for the AMG  case the time required to construct the grids and smoother 

for the approximation is added to the solution times. The UMFPACK case does not 

require any set-up time.

Figure 7.7 shows the block Gauss-Seidel solvers (both bGS and bSGS) are the most 

efficient for all discretisations levels. Among the CG solvers the one preconditioned 

with Vbscs is the one that performs better both in terms number of iterations and 

computational time.
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Similarly to the linear case, Figures 7.8 and 7.9 show that the conjugate gradient 

solver preconditioned with VbSGS is the most efficient method for problems with 

medium /  large standard deviation and discontinuous conductivity. Gauss-Seidel 

solvers also perform well in these circumstances and for small a they are in fact the 

best-performing methods.

Mean-based preconditioners are, in general, not robust and efficient for SFEM 

with lognormal distributions. There is very little difference in terms of performance 

between the AMG  and UMFPACK versions of the preconditioner.

The outcome of this analysis reveals that CG preconditioned with VbSGS performs 

well in all settings considered in this work and therefore should generally be used for 

the solution of SFEM with lognormal distributions. Gauss-Seidel solvers represent a 

valid alternative to Krylov subspace iterative methods.

7.6 SMFEM solvers

7.6.1 Schur co m p lem en t p recon d ition er

This section reports the performance of preconditioned MINRES (cf. Chapter 6). 

The preconditioner used is the one described in §4.6.2. As usual the Schur complement 

is computed exactly (using e.g. UMFPACK) or approximated using one V-cycle of 

AMG code.

Test p rob lem  1 - variab le h

The settings for this test problem are described in §5.2.1. Table 7.15 reports the 

size of the stochastic space P, the number of Kronecker products N  and the total 

number of unknowns for each level of discretisation. Note that pc is chosen so that 

the positive-definiteness of A is guaranteed, i.e. pc = 2pu.
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The size of the problem is the same as for the linear case (see Table 6.12). However, 

A is denser having non-zero contributions for each block.

Table 7.15: Dimensions of P , N  and total number of unknowns - SMFEM

Pu — 2 Pu =  3 Pu = 4
d = 4

P 15 35 70
N 70 210 495

h II 
II

77,760 181,440 362,880
h 309,120 721,280 1,442,560
h 128 1,232,640 2,876,160 5,752,320

d = 6
P 28 84 210
N 210 924 3,003

h _ i
32 145,152 435,456 1,088,640

h 1
64 577,024 1,731,072 4,327,680

h 1
128 2,300,928 6,902,784 17,256,960

Table 7.16 reports MINRES iteration count and timings for test problem 1. The 

table reports results for experiments carried out using the exact version ( UMFPACK) 

of the Vschur and the approximated version {AMG). The set-up times for the problem 

and the preconditioner are reported in Appendix E (Table E.4). The set-up for the 

preconditioner, i.e. the CPU cost of constructing the coarse grids for K 0, is performed 

only once.

The results included in Table 7.16 can be summarised as follows:

1. The Schur complement preconditioner is optimal or almost optimal with respect 

to h and d. However, there is a small increase in the number of iterations for 

increasing p;

2. It is more difficult to define which version of the preconditioner is more efficient. 

This seems to depend not only on h but also on the number of random variables, 

d, used for the underlying Gaussian field. For d =  6 the exact version of the 

preconditioner is more efficient than the AMG version. For d = 5 (not shown
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in Table 7.16) the timings are almost equivalent. Finally, for d =  4 the AMG 

version is more efficient for fine discretisations and less for coarser ones.

Table 7.16: MINRES  iterations and solution timings for Vscamp - Test Problem 1

Pu =  2

COII Pu =  4
h Nit I'CPU

(sec.)
Nit tcpu

(sec.)
Nit tcpu

(sec.)
d = 4

l
¥
64

43 4.92 44 28.74 47 179.78
UMFPACK 43 19.32 45 85.95 47 390.46

1 43 109.09 45 443.3 48 1,845.481̂ 8

¥
64

45 5.04 48 31.07 49 186.07
AMG 45 15.51 48 79.58 51 401.18

1
128 47 76.85 49 381.69 51 1,746.01

d =  6
1
¥
64

43 18.06 45 362.89 47 6,372.67
UMFPACK 43 56.12 45 639.56 48 8,547.29

1 43 275.82 45 2,178.21 48 19,837.921̂ 8
32 45 18.39 48 379.57 50 6,784.32

AMG 1
64 47 48.77 49 641.55 52 8,953.65
1

.. 128... 47 214.76 49 2,124.69 52 20,740.76

Note that for h = j|g and d = 6 solving the non-linear case (Lognormal field) is 

sixteen times more expensive than the linear case (Gaussian field) (see Table 6.13).

Test p rob lem  2 - variab le  a

The settings for test problem 2 are described in §7.4.1. The performance of the 

Schur complement preconditioner for varying a is reported in Table 7.17. As for the 

previous case the set-up time for the preconditioner is performed only once. This is 

reported in Table E.5 together with the set-up timings for the test problem itself. 

The results reported in Table 7.17 can be summarised as follows:

1. MINRES performance deteriorates significantly for increasing values of a. This 

is in line with all methods considered in this thesis. However for the non-linear 

case, the usage of SMFEM becomes impractical. In fact, the experiments show
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Table 7.17: MINRES iterations and solution timings for VSCOmp - Test Problem 2

a
Pu = 2 Pu = 3 Pu =  4

Nit I c p u

(sec.)
Nit tcpu

(sec.)
Nit tcpu

(sec.)
d = 4

0.3 62 7.32 75 49.05 86 330.55
UMFPACK 0.5 92 10.42 127 83.82 171 660.2

0.7 136 15.71 226 149.58 346 1,345.68
0.9 206 23.47 397 262.34 698 2,710.47
0.3 67 7.91 80 52.42 93 357.58

AMG 0.5 97 11.13 136 88.92 182 700.29
0.7 145 16.73 238 157.69 368 1,422.33
0.9 218 25.08 420 276.29 733 2,846.35

d = 6
0.3 63 25.94 76 617.75 89 12,009.58

UMFPACK 0.5 95 39.68 134 1,079.71 180 24,329.95
0.7 143 59.29 237 1,902.71 370 51,069.64
0.9 216 90.11 424 3,418.43 753 103,277.29
0.3 67 27.6 81 659.43 94 13,927.52

AMG 0.5 100 41.21 141 1,140.65 190 26,151.63
0.7 150 61.97 249 2,007.98 385 53,101.14
0.9 227 94.27 440 3,577.61 783 108,174.47

that for a =  0.9 it takes more than 30 hours to solve the stochastic linear system 

for a very coarse discretisation (h =  ^ ) ;

2. The performance of the AMG and UMFPACK versions of the Schur complement 

preconditioner is similar.

Additionally it should be noted that for a = 0.7, the CPU cost of solving test 

problem 2 with lognormal conductivity coefficient is about 170 times larger than 

using uniformly distributed spatial random fields (see Table 6.14).

Test p roblem  3 - d iscontinuous-iso tropic  conductiv ity  field

As has already been shown for other methods, the performance of the solver and 

preconditioners are not affected by spatial discontinuities in the conductivity field.
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In fact the timings reported in Table 7.18 are comparable to those reported for the 

continuous test problem in Table 7.17.

Table 7.18 shows that the solver performance depends on the largest value of <5 

included in the domain. So, for example, for the case of variable 8 (different coeffi­

cients of variation for the four sub-domains), MINRES performance is fully governed 

by the largest value of 6, i.e. 8 =  1.0. In fact the timings are almost equivalent to 

the case of constant 8 = 1.0 for all sub-domains.

Table 7.18: MINRES  iterations and solution timings for VScomp - Test Problem 3

Pu =  2 Pu = 3 Pu = 4
8 = zM Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nu tcpu

(sec.)
d = 4

0.5 88 10.12 122 80.44 161 620.97
UMFPACK 0.7 130 14.88 211 139.07 316 1,226.72

1.0 235 27.15 474 314.05 864 3,338.6
1.0,0.7,0.5,1.0 235 27.03 473 314.9 864 3,360.14

0.5 92 10.44 128 83.65 170 651.08
AM G 0.7 136 15.55 222 145.62 333 1,294.75

1.0 247 28.29 499 329.87 898 3,468.6
1.0,0.7,0.5,1.0 247 28.39 498 327.16 898 3,484.89

d =  6
0.5 91 38.03 126 1,013.49 170 23,547.75

UMFPACK 0.7 135 56.16 223 1,814.07 341 47,604.68
1.0 250 104.13 513 4,173.31 940 129,394.1

1.0,0.7,0.5,1.0 250 104.89 513 4,154.09 939 131,601.3
0.5 94 38.97 132 1,062.56 177 24,152.55

AM G 0.7 141 58.36 231 1,870.85 355 49,131.72
1.0 259 108.41 533 4,334.59 984 136,578.2

1.0,0.7,0.5,1.0 259 107.6 532 4,287.98 984 136,140.52

7.6.2 C on clusions

Whilst it was concluded that the performance of MINRES equipped with the 

Schur complement preconditioner described in (4.57) is acceptable for the solution 

of the stochastic mixed formulation (linear case), the same cannot be concluded for
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the non-linear case. The experiments reported in Tables 7.17 and 7.18 show that the 

CPU cost is too large (30 hours to solve test problem 2 on a coarse mesh, h =  for 

this method to be effectively used with lognormal random fileds.

It becomes apparent that for the non-linear case it is crucial to include information 

contained in the off-diagonal blocks of the coefficient matrix into the preconditioned 

system. As already mentioned in Chapter 6, the Kronecker product preconditioner 

of Ullmann (2008) offers this possibility. Very recently (Powell & Ullmann 2010) ex­

tended its implementation to the non-linear case achieving a significant improvement 

in MINRES CPU cost. The authors also proposed H(div) preconditioning using aug­

menting schemes which, although being dependent on the choice of the augmentation 

parameter, seem to achieve very promising results.

Research in the area of fast iterative solvers for stochastic saddle-point systems is 

still at the early stages. The ideas proposed in §6.4.2 for the linear case are equally 

valid for the non-linear case and deserve attention as possible future directions for 

research.
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Figure 7.7: Comparison of methods for the solution of SFEM for test problem 1
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Chapter 8 

Cardiff Bay Case Study

8.1 Introduction

In this chapter the numerical methods presented in the previous chapters are 

utilised to approximate the distribution of head potential and groundwater velocities 

in an actual site in the United Kingdom. The location which was selected as a suitable 

case study is the area surrounding and including the city of Cardiff, capital of Wales. 

The extent of the site, which covers approximately an area of 15 km2, is shown in 

Figure 8.1.

Among the reasons this site was selected as a case study are its accessibility and 

the invaluable support given by the students and lecturers of the MSc course in hy­

drogeology at the School of Earth and Ocean Sciences in Cardiff University. This site, 

in fact, has been used over the years for educational purposes in various hydrogeology 

courses taught in the Master programme. Hence, an extensive understanding of the 

area was readily available in the department.

More importantly, given the limited extent of the site, the area is unusually rich 

in field data. This is the result of intense field work carried out in Cardiff and

201
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Figure 8.1: Location of study area

surroundings pre- and post-impoundment of the barrage across the mouth of Cardiff 

Bay, in the early nineties. The threat of a rise in groundwater levels underlying 

south Cardiff as a consequence of the installation of the barrage and impoundment 

of a freshwater lake, lead to the construction of a large groundwater monitoring 

system comprising 236 automated data loggers (Williams 2008). The construction 

of the barrage itself was supported by an extensive drilling programme from which 

geological information can be used to construct an accurate geological model for the 

area.

Furthermore, there exists a groundwater model for the area, developed by Hy- 

drotechnica Ltd. /  Entec Ltd., which was used to undertake feasibility studies, pre­

ceding the impoundment of the barrage. Although it was not possible to obtain the
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numerical model, the conceptual characterisation of the study area and a detailed 

description of the model construction are described in HYDROTECHNICA (1991), 

Heathcote et al. (1997, 2003).

8.1.1 Scope o f  G rou n d w ater  M od el D evelop m en t

The numerical model we aim at developing for the Cardiff Bay area has the pri­

mary aim to show that the methodologies presented in the previous chapters can be 

used for real applications. In particular the aim is to build a groundwater model 

which can replicate, as close as possible, the distribution and movement of groundwa­

ter in Cardiff. The mathematical models used are those described by (2.1) and (2.2) 

for the deterministic case and (4.1) and (4.2) for the stochastic case.

We will present results for the case in which the model is fully deterministic 

(transmissivity is known with certainty everywhere in the model domain), and the 

case in which the transmissivity is described by its mean value and standard deviation 

(transmissivity is a stochastic process). When the transmissivity is described as a 

stochastic process the source of uncertainty can be associated with the thickness of 

the aquifer, the hydraulic conductivity or both. Each of the three cases is analysed.

The case whereby the recharge is a stochastic process is not considered in this 

work. However the extension of the existing models to the case in which the source 

term is uncertain is a straightforward matter.

The conceptual model for urban groundwater models, such as the one we intend to 

develop for Cardiff, can be extremely complex and could include a numerous amount 

of hydrogeological features which require extensive data analysis and preparation. 

As our goal is testing and validating the numerical methodologies presented in this 

thesis, we adopt a simplified version of the conceptual model. Nevertheless, complex­
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ity can be increased during subsequent stages of model development. Although the 

conceptual model is simple, all the important hydrological /  hydrogeological features 

are considered, making it physically sound.

8.2 Data Collection and Site Characterisation

8.2.1 L ocation

The site is located in the South Wales region and includes the urban and part 

of the suburban developments of the city of Cardiff. The study area is bounded by 

the coast-line and the Cardiff Bay area in the south. The rivers Ely and Rhymney 

conveniently define the western and eastern boundaries and the A48 approximately 

defines the northern limit of the site.

The area is crossed by the river Taff discharging, similarly to the Ely river, into 

the Cardiff Bay area. The river Rhymney discharges into the Severn Estuary (see 

Figure 8.1).

8.2.2 H istory and L anduse

The city of Cardiff has undergone significant changes in landuse and landscape 

during the last century. An outstanding review of Cardiff development is given by 

Gordon et al. (2004). The increase in global demand for Welsh coal resulted in 

Cardiff growing as a coal port starting from the beginning of the 19t/l century. In 

less than seventy years the city witnessed the development of seven different docks, 

starting with Bute West Dock in 1838 and culminating with the construction of Queen 

Alexandra Dock in 1907.

The rapid development of Cardiff harbour corresponded to a dramatic increase
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in industrial activities in the the Dockland area. Extensive steel and iron works de­

veloped in the East Moors area where the elevation of the ground surface was raised 

progressively with slag and ash as the works developed and tipping extended out to the 

present day coastline (Gordon et al. 2004). Other major industries developed around 

the dockland area including a major gasworks, heavy engineering, paper manufac­

turing, oil storage terminals and shipbuilding (figures illustrating the development of 

heavy industries in Cardiff Bay can be found in Gordon et al. (2004), Deane (2010)).

This period of intense industrial growth saw several areas in Cardiff Bay being 

tipped with domestic refuse, demolition debris and material from construction sites. 

Remarkable examples are the western area of the city where the River Ely used to be 

meandering, but between 1954 and 1976, the meanders were cut off and infilled and 

the area of Ferry Road where the existing gentle hill around 25m high is constructed 

entirely of domestic refuse.

The dockland area experienced a severe period of decline starting from 1920’s due 

to the fall in the demand of Welsh coal. The whole area of Cardiff Bay soon be­

came disused and derelict. A second major phase of uncontrolled infilling is recorded 

between 1950’s and 1960’s, where several of the disused docks were infilled with in­

dustrial and domestic waste.

The initial plans to regenerate the dockland area date back to the 1980s. The idea 

of creating a barrage and impound a freshwater lake at 4.5 mAOD in the bay was 

conceived in 1993 with the Cardiff Bay Barrage Act. It became immediately evident 

that the proposed plan could have led to the rise of groundwater levels beneath the 

city above normal levels therefore causing potential for extensive flooding. As a re­

sult provisions were incorporated into the Cardiff Bay Barrage Act including amongst 

others, a requirement to monitor groundwater before, during and after construction 

and to consider its control (Williams 2008). The latter was implemented by a se­
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ries of pumped vertical wells, pumped horizontal collectors and field drains in areas 

considered particularly at risk from flooding (Williams 2008, Sutton et al. 2004).

The Cardiff Bay Barrage was impounded in November 1999 and completed in 

March 2000. Since then the areas surrounding the Bay have undergone extensive 

regeneration and is now home to some prestigious buildings such as the Senyedd, the 

Olympic Village and the Millennium Centre, as well as large volumes of residential, 

retail and leisure developments. Today, Cardiff still has a working port with three 

operational docks. The East Moors are a heavily industrialised area with a large 

industrial estate, sewerage works and the metal works. A detailed landuse map of 

modern Cardiff is provided by Deane (2010).

8.2.3 G eology

8.2 .4  Bedrock G eology

The bedrock geology in the Cardiff Bay area is illustrated in Figure 8.2. This 

comprises the Triassic formation of the Mercia Mudstone group. The sequence is 

dominated by mudstone but includes a wide range of lithologies ranging from stiff 

clay to sandstones (Gordon et al. 2004). The vertical and horizontal profiles are highly 

variable with large differences occurring over small distances.

As pointed out in Edwards (1997), the top surface of the Mercia Mudstone has a 

prominent topography with distinct features. Its surface is very close to the ground 

surface along the southern part of the river Ely, and in some instances it forms the 

western bank of the river. The superficial deposits terminate suddenly against the 

river bank.

In the northern region of Cardiff the Mercia Mudstone is at or close to outcrop. 

The continuity of post-glacial superficial deposits is interrupted at several locations
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Figure 8.2: Bedrock geology in Cardiff Bay and surroundings

by hills of Triassic and Silurian formations. The area has been also structurally very 

active with faulting systems having a significant influence on the elevation of the 

bedrock surface. Further information on the faulting systems existing in the northern 

region of Cardiff is found in Edwards (1997).

Of the 744 borehole logs analysed, 573 fully penetrate the superficial deposits 

and reach the bedrock. For the purpose of this work a large database gathering all 

geological information was created. The top surface of the Mercia Mudstone, obtained 

by interpolating the elevations collected from the geological logs, is displayed in Figure 

8.3. The figure also includes the location of the data upon which the interpolation 

was made. According to this analysis the elevation of the bedrock ranges from 30 

mAOD, in the area of Llandaff and Gabalfa west of the River Taff and the area of
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Maindy, to —15 mAOD in the Cardiff Bay region. Its depth from the ground level 

ranges from < 1 m to 15 m.

L e g e n d

Geological boreholes 

Top s u r fa c e  M ercia  M u d s to n e  
mAOD

High : 37.65

L o w :-15.4298

© Crown Copyright Ordnance Survey. An EDINA Digimap I JISC supplied service.

Figure 8.3: Top surface (mAOD) of Mercia Mudstone and location of geological 
boreholes

There are several buried valleys in the urban area. The most important are those 

following the actual river courses of the Ely and Taff.

Hydraulic Characterisation

There is evidence of the presence of a sandstone layer in the lower part of the 

Mercia Mudstone, which has been used for water supply in the past. The upper 

part, however, is mainly constituted of marl and blocky siltstone, hence acting as 

an aquiclude, preventing a significant hydraulic connection between the water in the 

sandstones and the superficial deposits.
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Although the water in the lower sandstone can be considered partly isolated, 

evidence of water circulation in the upper part of the Mercia Mudstone has been 

reported (HYDROTECHNICA 1991). Few boreholes, in the northern region of the 

site have recorded water levels and therefore the absence of groundwater movement 

cannot be discounted completely.

In general, the Mercia Mudstone can be considered as an impermeable base to 

the groundwater system in the Cardiff area. The evidence of water circulation in 

the upland areas around the periphery of the site cannot be discarded completely. 

Hence a relatively small portion of the upper part of the Mercia Mudstone should 

be considered possessing water yielding properties. From a practical point of view, a 

number of borehole logs recording weathering and solution cavities in the upper part 

of the bedrock were identified. These were subsequently used to delineate an area 

which should be considered as part of the main aquifer present in the site.

8.2.5 Superficial G eo logy

Superficial deposits overlay the top of the Mercia Mudstone and cover most of the 

study area. Their distribution is illustrated in Figure 8.4 and can be distinguished 

in river gravel and fluvio-glacial gravel. The latter is a remnant of a fluvioglacial 

outwash fan dating from the end of the Devensian glaciation (Gordon et al. 2004), 

covering most of the area, except where the bedrock outcrops and in the area of 

Cardiff East Moors and Roath Dock (Edwards 1997). The deposits are dense, poorly 

sorted, sandy gravels with cobbles. Gordon et al. (2004) shows the elevation of the 

gravel deposits and highlights those areas where thicknesses are greater than 7 m. 

These cover a significant portion of the site and remarkably locate what appears to 

be a meltwater channel (roughly corresponding to the actual Taff Valley) infilled with
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outwash deposits achieving thicknesses comprised between 7 m - 12 m.
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Figure 8.4: Superficial geology in Cardiff Bay and surroundings

South of the main railway line, the gravel deposits are overlain by a sequence 

of organic rich clays with subordinate silts, sands and gravels, dominated by soft to 

very soft clays (Gordon et al. 2004), which are generally referred to as alluvium. It is 

reported by Allen & Rae (1987) that this lithology was deposited along the margins of 

the Severn Estuary during the post-Devensian sea level rise. This post-glacial deposit 

is typical of the superficial geological sequence of the areas surrounding the Severn 

Estuary. A common feature of the alluvium is the presence of peat, generally located 

at the base of the transgressive deposits reflecting gradual inundation of the coastal 

plain (Harris & Turner 2005).

The alluvium is only present in the region south of the Swansea-Newport railway
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line. In this area it achieves thicknesses of 12 m in places (Sutton et al. 2004) and 

the upper part of the deposit is generally weathered. The alluvium is cut through by 

the river channel of the Taff and the docks. However it appears to be intact for the 

channel of the River Ely.

In addition to estuarine alluvium there are very fine sediments of more recent 

origin, deposited by the two main rivers in the area. These are poorly to moderately 

well laminated dark grey clays and silts. Stanley (1995) provided evidence that these 

are often contaminated with coal, ash, clinker, wood and also marine diatoms.

In the region north of the railway line, there are two distinct glacial tills, one 

above and one below the fluvio-glacial gravel deposits. Particularly in the northern 

region the Lower Till deposit is often indistinguishable from the weathered upper part 

of the Mercia Mudstone. The description reported for the two lithologies are often 

used in an interchangeable manner in the inspected geological logs. Similarly the 

tills are occasionally difficult to distinguish from the fluvio-glacial gravels, with which 

they are partly contemporaneous (Edwards 1997). As illustrated in Figure 8.4, the 

till deposits increasingly dominate the succession in the northern part of the coastal 

floodplain.

Hydraulic Characterisation

The river gravels, fluvio-glacial gravels and sandy tills form a widespread aquifer, 

which is the most important in the area. Results from a number of aquifer tests (see 

HYDROTECHNICA (1991) for details) suggest a typical hydraulic conductivity of 

50 m/d. This value is characteristic of the central region of the site where the gravel 

is very thick. Lower values are probably more appropriate in the northern region 

where the gravel pinches out and in the area around Cardiff East Moors, where the 

aquifer is formed by thin deposits of till or weathered Mercia Mudstone.
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The gravel is confined by the overlain alluvium deposit over most of the area south 

of the Newport-Swansea railway line. This area is characterised by downward gradi­

ents, whereby the water in the made ground moves slowly downwards to the gravel 

aquifer. This regime is stable in those locations where the alluvium is considerably 

thick, thus acting as aquiclude. However in those areas where the alluvium is thin 

or absent there exist upward hydraulic gradients. This aspect was of concern before 

and after the construction of the barrage and impoundment of a freshwater lake in 

Cardiff Bay. In fact one of the recognised risks associated with that development 

was the widespread establishment of upward hydraulic gradients as consequence of 

the new hydraulic regime. An exception to the confined regime are the lower channel 

of the Taff and the entrance channels to the Queen Alexandra Dock, at those loca­

tions the alluvium has been eroded away therefore exposing the gravel aquifer to tidal 

influences (Gordon et al. 2004, Heathcote et al. 2003).

In the northern region of the study area the gravel is largely unconfined. The 

alluvium, in fact, is limited to small areas where localized confining regimes are likely 

to exist.

Groundwater flow in the alluvium deposit is limited but not completely absent. 

Hydraulic conductivities have proven difficult to determine. Laboratory testing gave 

an average value of 1.74 x 10-5 m /d, but field pumping tests suggested a range from 

2.5 x 10-3 to 1.2 x 10-1 m /d (Heathcote et al. 2003).

8.2.6 M ade G round

The made ground is a very discontinuous lithology overlying the alluvium (see 

Figure 8.4). It varies from a thin layer of soil /  building refuse /  weathered rock, 

particularly in the north of the area, to much more substantial thickness, up to 14
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m, at some locations south of Cardiff. Fill materials vary widely in nature and 

distribution and there are no detailed maps from which the type of the fill can be 

determined (Edwards 1997).

Gordon et al. (2004) suggests that some fill is directly related to the industry 

working there at the time, therefore the East Moors have made ground consisting of 

slag and ash from the iron and steel industry. Other areas were raised using materials 

from the valley industries such as sandstone quarry waste, colliery spoil, ash and 

domestic waste. Some of the material came from excavating the docks themselves.

The made ground possesses a very short scale of variability. The lack of informa­

tion on the type and / or distribution of the filling material makes its characterisation 

extremely difficult.

Hydraulic Characterisation

The made ground forms a water-bearing layer, however it is spatially very discon­

tinuous and its yield is very poor. As reported in HYDROTECHNICA (1991), Ltd. 

(1996), water in the made ground is encountered in many locations at shallow depth. 

The head potential is almost consistently above those recorded for the gravel aquifer, 

confirming the existence of downward vertical hydraulic gradients between the two 

units.

The hydrogeologic regime was stable before the impoundment of the freshwater 

lake at a constant level of 4.5 m in the bay area. The risk of inverting the hydraulic 

gradients at some locations, with possible impacts on houses and basements, deter­

mined the installations of groundwater control systems in specific areas considered to 

be vulnerable.

Given the extreme variability of the made ground and the lack of knowledge about 

its nature and distribution, accurate estimates of its permeability are very difficult
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to obtain. Various tests have been carried out including trenches and pits. The 

answers however are very different, sometimes contradictory. The Hydrotechnica 

report HYDROTECHNICA (1991) suggests that the hydraulic conductivity varies 

over at least one order of magnitude and values of 1 m /d upwards are recommended.

8.3 Hydrology

8.3.1 R ainfall

The average annual rainfall in Cardiff is approximately 1076 mm/yr, based on 

long term average MET Office data. Studies by Ltd. (1996), have revealed that there 

are significant differences in the amount of rainfall experienced across Cardiff due 

to distinct physical differences between locations. Cardiff Harbour Authority (CHA) 

rain gauges located at Bute Park and Cardiff Docks have been recording since 1995 

and have highlighted the differences in the pattern of rainfall between the north and 

south of the study area. Available data indicate that rainfall events at the Docks 

generally occur at different times and are of differing magnitude from those recorded 

at Bute Park (Ltd. 1996).

In general rainfall at Bute Park is slightly higher than rainfall at Cardiff Docks. 

The quantitative analysis carried out by (Deane 2010) seems to suggest that there is 

an areal variation in rainfall patterns throughout south Cardiff. The average daily 

rainfall values for both locations were calculated as 2.3 mm for Bute Park and 1.7 mm  

for Cardiff Docks (Deane 2010). Corresponding rainfall totals for the same period (not 

specified by the author) were 501.8 m m  and 368.3 mm, respectively (Deane 2010). 

Both gauges are located at similar elevations. However, the location of the Docks 

gauge is very exposed to weather conditions in the Severn Estuary. The prevailing
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strong winds at this location give rise to a lower recorded rainfall than over the rest 

of Cardiff.

8.3 .2  Surface W ater B o d ies

The main two rivers flowing in the study area are the Rivers Taff and Ely. From 

an hydrological point of view the two rivers are significantly different.

The River Taff has a significant upland catchment area, approximately 510 km2 

upstream of Cardiff Bay, and flows through the steep urban areas of the Welsh valleys. 

As a result of this, the river produces very high peak flows. Low flow (exceeded 95%) 

of the time) at Pontypridd is 3.46 m3/s.

The river Ely drains a substantially agricultural lowland catchment which is ap­

proximately 163 km2 upstream of Cardiff Bay. Consequently it has much lower peaks. 

Low flow (exceeded 95%) of the time) at St Fagans is 0.53 m3/s.

According to HYDROTECHNICA (1991), there is evidence that there exists in­

terchange of water between the River Taff and the aquifer at specific locations in the 

study area. Boreholes water levels showed rapid response to change in level of the 

River Taff in response to summer rainfall events. Conversely there is less evidence 

of surface-water /  groundwater interaction for the River Ely. In fact, this flows on 

predominantly low permeable materials in most of the study area.

8.4 Conceptual Model and Model Construction

8.4.1 H ydrostratigrap h ic  U n its

The conceptual model herein presented includes the main elements of a simplified 

hydrogeological system for the Cardiff area. The top surface of the Mercia Mudstone
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represents a suitable impermeable base for the system. In those areas where the 

Mercia Mudstone is close to or at outcrop a minimum thickness to the overlying 

aquifer is assigned.

In the upland areas around the periphery of the site, the uppermost part of the 

Mercia Mudstone presents clear evidence of weathering and water circulation. Bore­

hole logs were used to define its extent and thickness. This unit is likely to have 

hydraulic properties similar to those of the overlying gravel aquifer, hence they are 

considered as a unique unit.

Conceptually the most important hydrostratigraphic unit is the gravel aquifer. 

This is confined by the Alluvium in the southern part of the site and unconfined in 

the northern part. The widespread till deposits (mainly located in the region north 

of the railway line) and river terrace deposits are added to this unit as they possess 

similar hydraulic properties.

Generally, the low water-bearing strata of the alluvium and made ground are not 

included in the model as most recent boreholes sampling surveys indicate that these 

are often dry. Only where clear signs of weathering for the alluvium and where the 

made ground is in hydraulic contact with the gravel aquifer, are their thicknesses 

added to the gravel aquifer.

The alluvium and made ground units are hydrogeologically important if, for ex­

ample, the model was constructed with the scope of investigating the interactions 

between the upper (made ground) and lower (gravel) aquifers. This is currently out­

side the scope of this work and the assumption of a single hydrostratigraphic unit 

seems to be justified. Multi-layered and /  or fully three-dimensional models, incor­

porating all the hydrogeological units in the area are matter of future work.

The thickness of the aquifer used in the model developed in this thesis is illustrated 

in Figure 8.5 alongside with the kriging interpolator error variance (Deutsch k  Journel
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1998), Figure 8.6. The latter estimate is based on the location of the data (geological 

boreholes), the amount of data present in a specified search radius and weighting 

factors assigned to each data based on their reliability.

-|

-|

8.4.2 G roundw ater L evels and F low  D irection s

In the Cardiff Bay area there is a large number of observation boreholes at which 

groundwater levels were recorded during the period preceding and following the con­

struction of the barrage. In this model development only the observed groundwater 

levels recorded after the impoundment of the freshwater lake in the bay are consid­

ered. These, in fact, are representative of the new hydraulic regime established in the 

region.

L e g e n d
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A quifer th ic k n e s s

High: 15.4727

© Crown Copyright Ordnance Survey An EDINA Dtgimap / JISC supplied service.

Figure 8.5: Aquifer thickness in Cardiff Bay
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Figure 8.6: Kriging error variance for the aquifer thickness in Cardiff Bay

Figure 8.7 illustrates average groundwater contours for the period from July 2003 

to September 2004 for the gravel aquifer. The Figure highlights some important 

features of the groundwater system in the area. The groundwater contours approx­

imately follow the topography, which is also illustrated in Figure 8.7. The latter is 

clearly influenced by the characteristic profile of the top surface of the Mercia Mud­

stone. Thus topography and /  or top surface of bedrock play an important role on 

the genaral groundwater flow directions in the area.

The primary groundwater flow direction is north to south-east. The cliffs of 

bedrock outcropping along the western boundary of the site and posessing a north­

west to south-east orientation, play a fundamental role on the groundwater flow dy­

namics in Cardiff. The water flowing along this direction finally discharges in Cardiff
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Bay.

Similarly, the interfluve existing between the Rivers Taff and Ely is a consequence 

of the bedrock’s morphology. This divides the site into two areas and although it 

is clearly present it cannot be defined precisely due to the scarcity of observation 

boreholes in the region east of Cardiff. In this work the model area is extended as far 

as the River Rhymney and one of the objectives of the model output is to identify its 

location more accurately.

Groundwater flow diverge along the interfluve, partly discharging westerly to 

Cardiff Bay and partly discharging easterly to the coastline.

-|

- f

Figure 8.7: Average observed groundwater levels for the gravel aquifer in Cardiff Bay

The groundwater contours appear to have a very flat gradient in the region corre­

sponding to central Cardiff, with depressions developing at more than one location. 

In some instances the groundwater levels are almost one metre below the level of
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© Crown Copyright Ordnance Survey. An EDINA Digimap / JISC supplied service.
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the impounded freshwater lake. This is the consequence of the groundwater control 

systems which abstract water to lower groundwater levels in specific areas of central 

Cardiff.

8.4 .3  M ateria l P a ra m eters

Based on the information collected and the study of groundwater levels, the site 

was divided into 35 zones. An initial hydraulic conductivity value was assigned at 

each zone with a particular distinction between the northern (north of the Swansea- 

Newport railway line) and southern regions. In the northen part of the domain the 

aquifer includes till deposits which are less permeable than gravel deposits. In those 

areas an hydraulic conductivity of about 5 m /d was assigned.

The areas to the east of the Docks present a thin layer of gravel deposit which is 

actually very often glacial till. Thus an hydraulic conductivity of 1 m /d was initially 

assigned in those areas.

Elsewhere an hydraulic conductivity of 50 m /d, which is typical of gravel deposits 

in the area, was assigned.

Figure 8.8, shows the 35 zones of hydraulic conductivity in the site. Note that, 

although only three values were initially assigned, each of the zones were allowed to 

change in the parameter estimation process.

8.4 .4  P o ten tia l R ech arge

In this section we report estimates of potential recharge to the groundwater sys­

tem. These approximations were obtained from the water balance calculations re­

ported by HYDROTECHNICA (1991). The analysis distinguishes between perme­

able and impermeable areas.
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Figure 8.8: Hydraulic conductivity zonation in Cardiff Bay

For the permeable areas the effective rainfall (actualrainfall—actualevaporation) 

is calculated using a simplified soil moisture model (see HYDROTECHNICA (1991)). 

The effective rainfall can produce runoff or potential recharge. Runoff will enter either 

the natural drainage or the sewer system and potentially be removed from the system. 

The sewer system is very complex in an urban area and the mechanisms whereby the 

water leaks through the brick walls of the sewers is not considered in this simplified 

water balance. The potential recharge from rainfall entering the groundwater system 

is estimated to be around 257 mm/yr.

For impermeable areas it is assumed that no recharge from rainfall occurs and that 

all rainfall results in evaporation or runoff. However, the leakage from the mains water 

supply represent another important potential input to the groundwater system. In the
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city of Cardiff the mains services are located under roads and pavements. Therefore 

it is assumed that mains water leakage is restricted to impermeable areas.

It is estimated that the actual mains water supply entering the model area is 

approximately 67,415 m3/d  (HYDROTECHNICA 1991). Of this amount, 25% is 

estimated to leak and become available as potential recharge to the groundwater 

system and 75% is actually supplied to consumers. Some of the potential recharge 

could be redirected to the sewers and subsequently removed from the system. Given 

the obvious difficulties in quantifying the latter mechanism, this is not included in 

this water balance calculation. The potential recharge from mains water entering the 

groundwater system is estimated to be around 410 mm/yr.

Finally, in Cardiff there are a number of open water body areas such as rivers and 

docks. For these areas it is assumed that no recharge from rainfall occurs and that 

all rainfall results in evaporation and runoff.

Figure 8.9 shows the distribution of the recharge areas in the city of Cardiff. Note 

that during the calibration process the permeable and impermeable areas are further 

divided into sub-domains and the recharge values are obtained through the parameter 

estimation process.

8.4.5 Surface-W ater G rou nd w ater  in teraction

The surface-water groundwater interaction has been simulated in a similar fashion 

to the River Package module in MODFLOW (McDonald k  Harbaugh 1988, Harbaugh 

k  McDonald 1996, Harbaugh et al. 2000). This approximation requires the specifi­

cation of a river stage and a river bed elevation. The river stage data are obtained 

from the Panorama DTM illustrated in Figure 8.7 and the river bed elevation was 

chosen to be 1 m below the river stage. Additionally a conductance term is required,
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Figure 8.9: Distribution of potential recharge in Cardiff Bay

which governs the amount of water which may be transferred from surface-water to 

groundwater or viceversa. The conductance term is a function of the river bed vertical 

conductivity, grid cell length, river width and river bed thickness.

Low conductance terms (0.5 m2/d) were set for the Rivers Ely and Rhymney. In 

fact, as previously explained these rivers mostly flow on the bedrock and alluvium, 

thus having a low river bed vertical conductivity. Conversely a higher conductance 

term (10 m2/d) was specified for the River Taff. This, in fact, flows on gravel deposits 

for most of its length.
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8.4 .6  B oundary C on d ition s

Figure 8.10 shows the model triangulation and the nodes at which boundary con­

ditions are specified. Only triangular meshes were considered in this chapter, however 

the extension to quadrilateral /  rectangular meshes can be easily carried out.
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Figure 8.10: Cardiff Bay model - triangulation and location of boundary conditions

The left-hand side boundary of the model correspond to the outcrop of the Mercia 

Mudstone which parallels the River Ely. Along this boundary the gravel deposits 

terminates abruptly hence a homogeneous Neumann boundary (no-flow boundary) 

condition is a very good approximation. The limited surface-groundwater interaction 

for the River Ely is approximated as a source term (volumetric inflow or outflow) in 

the adjacent elements to such boundary (see previous section).

Dirichlet BC (Cardiff Bay)
Dirichlet BC (Coastline)
Neumann BC (North)
Neumann BC (Ely/Rumney Rivers)
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The right-hand side boundary corresponding to the River Rhymney has a similar 

behaviour to the River Ely. This boundary could have been located at the ground­

water divide located in the area between the River Taff and Rhymney and visible in 

the contour plot of groundwater levels (see Figure 8.7). However, given the scarcity 

of groundwater boreholes in the area east of Cardiff it was not possible to exactly 

locate the position of such divide. Thus the River Rhymney was chosen as a safer 

option for the eastern boundary. Note, however, that the approximate location of 

the groundwater divide can be obtained by the modelling results and the location 

of the eastern boundary can always be modified in the refining stages of the model 

development.

The southern boundary corresponds partly with the Cardiff Bay area and partly 

with coastline between Cardiff and Newport. Since the freshwater lake was impounded 

at a constant level of 4.5 mAOD, this represents a convenient value for imposing 

non-homogeneous Dirichlet boundary (constant head boundary) conditions at this 

location. The coastline boundary approximately follows the mean high water level 

and thus a value of 0 mAOD represent a good approximation along that boundary.

The northern boundary of the model reflects the bedrock outcrop at some loca­

tions, such as in the Llandaff area, and cuts through the gravel aquifer elsewhere. 

In the model developed by Hydrotechnica Ltd. (HYDROTECHNICA 1991), a non- 

homogeneous Neumann boundary (specified flow boundary) condition was specified 

at few cells along the upstream parts of the River Taff. We use the value of 200 m3/d  

used in the cited reports but we spread it over all the nodes identifying the northern 

boundary of the model. Additionally, we subdivide those nodes into different groups 

depending on their location and estimate the inflow input in the calibration process.
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8.5 Numerical Model - Deterministic case

Only steady-state simulations are reported in this thesis. This allow us to be 

consistent with the theoretical discourse reported in Chapters 2 and 4. For the de­

terministic case the transient development is straightforward but for the stochastic 

formulation this might be more of a challenge and therefore further investigation is 

required.

For the deterministic case two types of numerical techniques are implemented, the 

classic finite element method (FEM) and the mixed finite element method (MFEM). 

The first uses linear basis functions for the approximation of the potential unknowns 

(hydraulic head) at the nodal points of the mesh (see Figure 8.10). The velocity solu­

tion can be approximated by means of post-processing techniques involving Darcy’s 

law. However for the reasons exposed in 2.1, the velocity approximations obtained in 

this manner can be significantly erroneous and unphysical.

The latter method uses element piecewise constant basis functions for the approx­

imation of the potential solution and vectorial basis functions for the approximation 

of the normal fluxes to element edges. Therefore with the MFEM we obtain the po­

tential at each element of the mesh and normal fluxes at each edge of the mesh (see 

Figure 8.10). The fluxes solution can be subsequently post-processed to obtain the 

velocity components at the centroid of the elements. Note, however that the latter 

post-processing does not involve any differentiation and therefore there is no loss of 

accuracy in the velocity solutions.

For the Cardiff Bay case study the mesh is composed of 3,283 nodal points, 

6,208 triangular elements and 9,490 edges. The hydraulic conductivity, potential 

recharge and river parameters (conductance) are assigned element-wise in both meth­

ods. Boundary conditions are assigned nodal-wise for the FEM and edge-wise for the
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MFEM.

The discrete linear system obtained from FEM is symmetric and positive definite 

and can be solved using the conjugate gradient (CG) method. The conditioning of 

the coefficient matrix can be improved using a preconditioner. Popular choices are 

approximations of the coefficient matrix by an incomplete Cholesky factorisation or 

one V-cycle of AMG code. In our simulations we use the second choice.

Conversely the discrete linear system obtained by MFEM is indefinite and there­

fore CG is not recommended as solver for this type of problems. Other Krylov sub­

space iterative solvers are suited for indefinite linear systems. In this thesis we use 

MINRES equipped with the Schur complement preconditoner described in §2.5.3.

All simulations are run until the solvers have converged. The solvers tolerance is 

set to 10-9.

8.5.1 C alibration and M odel R esu lts

The calibration process is sought as the first step of the model validation process. 

Validation is the process whereby the numerical model is assessed to be representative 

of the real situation in an acceptable manner. Obviously this is a mandatory measure 

if the model was to be used for predictive purposes. The second step in the validation 

process is the sensitivity analysis. This is dealt with in the next sections.

For the calibration process we interfaced the model with a publicly available pa­

rameter estimation software, PEST (Doherty 1994). The parameters selected for the 

estimation process included the hydraulic conductivity zonation (see Figure 8.8) and 

the specified flow condition at the northern boundary of the model. These parameters 

were estimated so that a reasonable match was obtained between observed (overall 

47 measurements, see Figure 8.7) and modelled groundwater levels. The fit was con­
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sidered acceptable if the residual between observed and modelled data was less than 

one metre.

The distribution of modelled groundwater elevations in the Cardiff area is illus­

trated in Figure 8.11.
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Figure 8.11: Hydraulic head solution (mAOD) for the Cardiff Bay model

The FEM approximation for the potential reproduces very well the flat hydraulic 

gradients in the central region of the study area. Also the steep gradients in the 

northern region are qualitatively comparable to those obtained by measurements (see 

Figure 8.11). The general north to south groundwater flow directions with discharge 

areas clearly identified in Cardiff Bay and the coastline, is well replicated.

The model also reproduces the groundwater divide existing between the Rivers 

Taff and Rhymney. This seems to be located just east of East Moors, passing through
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Figure 8.12: Comparison between observed and modelled groundwater levels (mAOD) 
for the Cardiff Bay model

the suburb areas of Splott and Roath. A model refinement would allow us to define 

this divide (no-flow boundary) as the eastern boundary of the model.

The calibration plot showing the comparison between modelled and observed data 

is illustrated in Figure 8.12. Note that if a perfect match existed, the points on the 

figure would all lie on a 45 degree angle straight line. An indication of the model 

‘goodness of fit’ is given by the sum of squared weighted residuals (SSR), this is 

equivalent to 6.91 m2 for the calibrated model. The SSR for the uncalibrated model 

was 214.85 m2. The largest positive residual is 0.9391 m, corresponding to borehole 

’CS337’ and the largest negative residual is —1.0245 m, corresponding to borehole 

’CS284’. Both boreholes are located in the proximity of the steep gradients in the 

northern region of the model. This might indicate that the actual configuration of 

the conductivity field does not allow one to fully reproduce the variability observed 

in that area.

Overall the calibration is very satisfactory, in fact the majority of head residuals
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(37 out of 47) are within the range —0.5 < res > 0.5, where res indicates the residual 

value (hmod — hobs) in metres. Only one residual, ‘CS284’, is outside the acceptable 

range.

In addition to the hydraulic head approximation, the MFEM approximates the 

normal fluxes at each edge of mesh. The fluxes can be post-processed to obtain the 

velocity components at the centroid of each finite element. The MFEM solution for 

the potential is very similar to the one obtained by FEM, the only difference being 

that in the latter case the head values are obtained at the nodal points of the mesh 

while in the former case they are piecewise constant on the finite elements.

The x and y components of the velocity field are pictured in Figures 8.13 and 8.14, 

respectively. The heterogeneity of the transmissivity field creates a velocity which may 

appear difficult to interpret at first sight. However some clear features emerge from 

the numerical results. First of all, the large absolute value of the velocity components 

agrees with those typical of sand and gravel deposits, which are significant in thickness 

(exceeding 10 m) and predominantly present in the west region of Cardiff. Secondly 

groundwater directions largely agree with what is expected from our understanding 

of the hydrogeologycal system (conceptual model). Positive x-component velocities 

(see Figure 8.13) and negative ^-component velocities (see Figure 8.14), indicate a 

westerly and southerly groundwater direction, respectively. This is what is expected 

in the Riverside and Grangetown areas where the discharge into the freshwater lake 

of Cadiff Bay is the dominant groundwater mechanism. As already mentioned the 

large magnitudes of the velocities at these locations are justified by the significant 

thickness of the aquifer and the large permeability of the gravel.

The northern region (north of the railway line) is characterised by low hydraulic 

conductivity (the aquifer is often constituted by till deposits) and generally smaller 

thicknesses. Thus the velocities are small in magnitude and possess a predominant
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Figure 8.13: ^-component velocity solution (m/d) in Cardiff Bay

north to south direction.

Thirdly, the groundwater divide, mentioned several times in the conceptual model 

section is clearly identified by the numerical approximation of groundwater velocities. 

Its north to south direction coincides with a zero value for the rc-component of the 

velocity field. Figure 8.13 clearly shows the groundwater divide existing between the 

Rivers Taff and Rhymney. A model refinement would allow us to define this feature 

as the eastern boundary of the model.

Although the models seem to provide physically meaningful solutions for both the 

hydraulic head and the velocity field, there are some areas in which the numerical ap­

proximation should be treated with care. In particular, the strong hydraulic gradient 

and large easterly directed velocities in the area of Queen Alexandra Dock are caused
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Figure 8.14: ^-component velocity solution (m/d) in Cardiff Bay

by the large head jump between the Cardiff Bay and coastline boundaries. This area 

should be reconsidered at the conceptual level and ways to make this transition less 

abrupt should be implemented.

In general terms the region to the east of the groundwater divide requires more 

investigation and additional hydrological-hydrogeological information. Most of the 

field investigations were in fact carried out in the region west of the groundwater 

divide. Thus only the model results associated with the latter area should be consid­

ered reliable. Future model development would redefine the eastern boundary of the 

model to correspond with the location of the groundwater divide.
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8.6 Numerical Model - Stochastic case

The stochastic implementation follows the theory discussed in Chapter 4. However 

for the reasons discussed in Chapter 7, the conductivity field (and /  or transmissivity) 

is considered to be lognormally distributed.

The numerical methods used for the uncertainty quantification of model predic­

tions belongs to the large family of stochastic Galerkin methods. The Galerkin meth­

ods used for the discretisation of the deterministic part are the FEM (with piecewise 

basis functions on triangular elements) and MFEM (with triangular Raviart-Thomas 

elements of lowest order). The stochastic part (both, solutions and conductivity coef­

ficient are stochastic processes) is discretised by means of complete multidimensional 

Hermite polynomials, commonly referred to as polynomial chaos.

A comparison with numerical solutions obtained with Monte Carlo methods for 

the case study herein discussed is not reported for such a comparison is beyond the 

scope of this chapter. A comparison, which also served as code validation, between 

SG and MCM for a number of test problems is presented in Chapters 5 and 7.

For the Cardiff Bay groundwater models presented in §8.5, there are several sources 

of uncertainty. These are associated with: the conductivity distribution, the thickness 

of the aquifer, the boundary conditions, the potential recharge to the groundwater 

system and the rivers parameters (river stage, bottom and conductance). The last 

two features are incorporated into the mathematical problem as the right-hand side 

of the PDE to be solved, and they can be thought as a source and /or sink term. The 

stochastic representation of the source term is not considered in this thesis because, 

as explained in the introduction, the mathematical challenges are concerned with the 

stochastic representation of the diffusion or conductivity coefficient.

For this case study the diffusion coefficient corresponds to the transmissivity co­
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efficient, which is the product of the conductivity field and thickness of the aquifer. 

In a stochastic framework the model input parameters are characterised by the first 

(mean value) and second (standard deviation) moments. The parameters mean values 

are directly obtained from the deterministic implementations (see zonation in Figure 

8.8), whilst the standard deviation is generally estimated from measurements.

The standard deviation is often interpreted as an indicator of the level of un­

certainty associated with a specific parameter. The error associated with the kriging 

geostatistical interpolator (Deutsch & Journel 1998) associated with the aquifer thick­

ness, illustrated in Figure 8.6, can be successfully used for this purpose. In fact the 

error (uncertainty) is higher at locations with no measurements and lower at the 

measurement locations. In the case of Cardiff Bay, there are overall 573 borehole logs 

at which the aquifer thickness was estimated. These are well-scattered in the study 

area, thus giving a good representation of the uncertainty associated with the aquifer 

thickness. Additionally, measurements of thicknesses are less prone to error than 

other physical parameters such as hydraulic conductivity. This is particularly true in 

the case of Cardiff Bay where the contact between the top surface of the mudstone 

and the overlying deposits is well identified.

The uncertainty associated with the conductivity field is more difficult to quantify. 

Ideally the standard deviation obtained from samples of conductivity measurements 

for each of the lithologies present in the study area could be used for this purpose. 

However, conductivity and /  or transmissivity data are normally scarce and often erro­

neous as they are subject to personal interpretation. Furthermore, the measurements 

are representative at the very local scale and any extrapolation to larger domains 

is often a conjecture. For the case of Cardiff Bay there are some measurements of 

hydraulic conductivity, however these are limited and clustered at specific locations. 

Consequently a representation of the uncertainty associated with the conductivity
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coefficient based only on measurements is unfeasible and difficult to obtain.

Furthermore, as illustrated in Figure 8.8, the study area has been divided into 

zones each of which has different hydraulic properties. Therefore we require estimates 

of the statistics for each of the zones considered in the parameter estimation process. 

This information is problem dependent and cannot be extrapolated from other studies 

reported in the public literature.

8.6.1 Colored N oise  A pproach

The first set of simulations consider the hydraulic conductivity as a stochastic 

process which is spatially correlated whilst the aquifer thickness is a deterministic 

function depending only on the spatial location.

The hydraulic conductivity is approximated by a discontinuous lognormal spatial 

random field. A lognormal random field is obtained by an exponential transformation 

of a Gaussian random field (defined by a Karhunen-Loeve expansion), as explained 

in §7.2. For a lognormal random field to be used in the context of SG methods, 

this is subsequently expanded into the polynomial chaos (Ghanem 1999a, b, Sudret & 

Der Kiureghian 2000, Ghanem & Spanos 2003, Ullmann 2008).

In the case of Cardiff Bay the sub-domains used in the calibration process are used 

to define the conductivity random field. These sub-domains are of irregular shape 

as illustrated in Figure 8.8. Providing that the exponential correlation function is a 

suitable spatial model for the field’s spatial variability, the closed form solutions to 

the eigenvalue problem (4.4) can still be applied to general geometries. It is, in fact, 

possible to enclose each sub-domain Dk, k = 1 , . . . , iVr (where Nr is the number of 

sub-domains), in a square /  rectangular shape domain D'k and solve the eigenvalue 

problem on the latter. Thus a Karhunen-Loeve expansion is implemented for each of
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the sub-domains using the calibrated conductivity coefficients as mean values. The 

standard deviation is obtained by fixing the coefficient of variation to be £ =  0.1.

Given that the KLE point-wise error variance is large at the boundaries of the 

discretisation domain (Sudret & Der Kiureghian 2000), when compared to other series 

expansion methods, Dk is taken larger than the size of the actual region. Thus, if 

Xmax, Vmax and xmjn, T/m*n are the maximum and minimum spatial coordinates of D k, 

respectively, then Dk is of size x̂> ^max ®x] ^ ^yi Vmax d- where

„  _  Xm ax ~ X m in  g n f - j  n  — Vma x  ~ V m i nx 4  y 4

The correlation lengths are set to the specific size of each sub-domain and the same 

number of KLE terms (d = 4, i.e four random variables) are retained. As previously 

explained, each transformed KLE is expanded into polynomial chaos. Therefore we 

have two polynomial chaos expansions, one used for the conductivity coefficient and 

one for the solution space. Complete polynomials are used in both cases. However, 

a maximum degree pc = 8 is used for the coefficient and pu =  4 for the solution (see 

§7.2).

The mean hydraulic head and velocity components are identical to those illustrated 

in Figures 8.11, 8.13 and 8.14. The standard deviation associated with the mean 

hydraulic head solution is illustrated in Figure 8.15. Given that the coefficient of 

variation is constant, the figure highlights the regions of the model in which the 

numerical solution is the most sensitive to changes in parameter values. This model 

output can be compared to the result obtained by implementing a traditional (Monte 

Carlo based) sensitivity analysis of the conductivity coefficients.

Note that the areas with larger standard deviation correspond to the areas where 

there is a strong hydraulic gradient (see Figure 8.11). These are the areas in which 

small changes in the conductivity coefficients determine large changes in the numerical 

solution. Hence these are the areas where the hydraulic head solution is the most



Chapter 8: Cardiff Bay Case Study 237

L e g e n d  

s td  o f p o te n tia l (m)
H H  0-0.003 
H I  0.003 - 0.007 

0.007 - 0.013 

H  0.013-0.020 

0.020 - 0.027 

0.027 - 0.034 

| | 0.034 - 0.042

I | 0.042 - 0.057

2 3  0.057 - 0.101

314000 310000 318000

© Crown Copyright Ordnance Survey. An EDINA Digimap / JiSC supplied service.

Figure 8.15: Standard deviation of hydraulic head in Cardiff Bay - (randomly) cor­
related conductivity coefficient

uncertain.

The standard deviation associated with the mean velocity components is illus­

trated in Figures 8.16 and 8.17. The interpretation of the standard deviation associ­

ated with the velocity solution is somewhat less straightforward. However it is evident 

that the larger uncertainty in model output approximately corresponds to the areas 

where the velocity components are large in magnitude (see Figures 8.13 and 8.14). 

These are the areas with large aquifer thickness and /or hydraulic conductivity.

8.6 .2  W h ite  N o ise  A pproach

The white noise approach considers no spatial correlation of the underlying ran­

dom field. This approach is not normally used to approximate the conductivity
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Figure 8.16: Standard deviation of ^-component of velocity field in Cardiff Bay - 
(randomly) correlated conductivity coefficient

coefficient which is generally spatial dependent.

For the Cardiff Bay case study the aquifer thickness can be approximated as 

white noise. In fact the large amount of geological information available allowed us 

to approximate its spatial variability accurately.

In this section, both the aquifer thickness and the hydraulic conductivity are 

approximated as white noise. This allow us to quantify the separate contributions of 

these two parameters to the model output uncertainty.

The white noise approach is implemented setting d = 1, thus only the first moment 

in the KLE is used in the approximation of the spatial random field. A lognormal 

random variable is defined for the conductivity coefficient and aquifer thickness for 

each element in the discretised domain (6208 finite elements). The mean values are as
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Figure 8.17: Standard deviation of y-component of velocity field in Cardiff Bay - 
(randomly) correlated conductivity coefficient

illustrated in Figure 8.5 for the aquifer thickness and as obtained from the calibration 

process for the conductivity coefficient. The standard deviation for the aquifer thick­

ness is obtained from the kriging interpolation error as illustrated in Figure 8.6. The 

kriging error was corrected so that the maximum coefficient of variation is equal to 

one. The standard deviation for the conductivity coefficient was obtained by assigning 

a constant coefficient of variation, £ =  1.0.

The standard deviation associated with the mean hydraulic head solution is illus­

trated in Figures 8.18 and 8.19. The first figure shows the hydraulic head standard 

deviation when the aquifer thickness is a stochastic process and the conductivity 

coefficient is a deterministic function of space. The second figure shows the oppo­

site situation, i.e. the hydraulic conductivity is a stochastic process and the aquifer
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thickness is a deterministic function of space.

As expected most of the model output uncertainty is due to the uncertainty in the 

conductivity coefficient. This reflects the fact that the hydraulic conductivity ranges 

over several order of magnitudes whilst the aquifer thickness is relatively constant. 

The aquifer thickness uncertainty contribution is limited to small areas in the northern 

region of the model. This of course is also a reflection of the fact that given the large 

availability of structural information it was possible to accurately define the aquifer 

thickness in the study area.

The standard deviation for the velocity components when the aquifer thickness is a 

stochastic process and the conductivity coefficient is a deterministic process are given 

in Figures 8.20 and 8.21. The standard deviation for the opposite settings are given 

in Figures 8.22 and 8.23. Similarly to the hydraulic head, most of the uncertainty in 

the solution is associated with the conductivity coefficient and only a small amount is 

due to the aquifer thickness (note that for the figures showing the standard deviation 

for the aquifer thickness, the plotting scale had to be changed).

8.7 Conclusions

In this chapter we have shown that Stochastic Galerkin methods can be effectively 

used to quantify parameter uncertainty for real-life problems. We used both finite 

element and mixed finite element techniques to discretise the deterministic part of the 

variational problem, and multidimensional Hermite polynomials for the discretisation 

of the probability space.

In the current work, we have only taken into account the uncertainty associated 

with the hydraulic conductivity. However, the stochastic representation of the source 

term and /  or boundary conditions should also be considered. If the various sources



Chapter 8: Cardiff Bay Case Study 241

Figure 8.18: Standard deviation of hydraulic head in Cardiff Bay - random aquifer 
thickness

of model uncertainty are described by the same probability distribution, the inclu­

sion of those terms in the stochastic formulation is straightforward. If, however, 

these are described by different probability distributions, the implementation might 

be problematic or potentially impossible. To the author’s best knowledge studies 

that consider uncertainty due to probabilistically different parameters have not been 

reported in the literature. This aspect which might be mathematically difficult to 

implement and could limit the implementation of the SG methodology, can neverthe­

less be important from the point of view of applications. In fact, as it has already 

been discussed, it is generally accepted that parameters, such as hydraulic conductiv­

ity, are better approximated by lognormal spatial random fields, but forcing terms, 

representing for example groundwater recharge, are generally better approximated by 

uniform spatial or non-spatial random fields. It might be possible that in order to be 

scientifically grounded these assumptions cannot be relaxed. Thus, in those cases the
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Figure 8.19: Standard deviation of hydraulic head in Cardiff Bay - random conduc­
tivity coefficient

use of SG methods should be reconsidered.

The work reported in this chapter has unfolded with a specific logic. A deter­

ministic groundwater model, a simple one in this case, was first developed supported 

by a thorough conceptual understanding of the study area. The crucial part of this 

first stage was the calibration process whereby model parameters were adjusted so 

that numerically computed approximations compared well with observed data. In 

this work we used the aid of a popular and widely recognised parameter estimation 

software, PEST (Doherty 1994). This first stage produced a model which integrated 

not only actual data (collated from field investigation) but which also included expe­

rienced knowledge (the subjective understanding that the modeller has developed of 

the site). In actual fact this model represents the most likely approximation of the 

site given the available information and understanding. The calibrated parameters 

are subsequently described in a probabilistic manner using lognormal distributions.
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Figure 8.20: Standard deviation of rc-component of velocity field in Cardiff Bay - 
random aquifer thickness

Thus the values of the calibrated data set is used to define the mean, and the stan­

dard deviation (measure of parameter uncertainty) was given a value determined by 

adopting a constant coefficient of variation. Although this approach is simplistic it 

is perfectly reasonable for the scope of this exercise which is primarily methodolog­

ical. Recently Tonkin &; Doherty (2009), Doherty (2010), Herckenrath et al. (2011) 

proposed a way to use post-calibration information to probabilistically parametrise 

model input coefficients (conductivity, transmissivity or storativity). In fact, as a 

result of the calibration process, sensitivities of model results with respect to parame­

ters are computed. Such sensitivities provide an indication of parameters’ uncertainty 

and could be used to statistically characterise the input data used in the stochastic 

formulation.

Although approaches to (statistically) characterize model parameters are still be­

ing investigated by the scientific community and a general consensus is lacking, the
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Figure 8.21: Standard deviation of y-component of velocity field in Cardiff Bay - 
random aquifer thickness

author believes that the community should agree tha t post-calibration is the required 

starting point for any uncertainty quantification. This is particularly important in 

the groundwater modelling context where calibrated models hold expert knowledge 

which is of invaluable importance in not only having a model capable of replicating 

real-life observations but also of confidently predicting future system behaviour.
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Figure 8.22: Standard deviation of x-component of velocity field in Cardiff Bay - 
random conductivity coefficient

Legend
std  y-com p velocity (m/d) 
Random Conductivity
| B |  0 -0 .0 8

H i  0 .0 6 -0 .1 3  

H  0-13 -0 .16

H i  0-16 - 0.2 

H i  0-2-038
H B  0-28 0.41 

|  0 .41 -0 .61  

I I 0 .6 1 - 0  .94

I 10 .9 4 -1 .5

6  Crawn CopyrigH CMnance Swvey. An EOINA Ogferap / JISC suppKed aenice.
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Conclusions

The work presented in this thesis addresses research questions which are of partic­

ular interest to the groundwater modelling community. We first analysed mixed finite 

element methods which are locally conservative and provide an accurate solution for 

the velocity field, which is often the variable of primary interest in many groundwater 

modelling applications. Second, we considered methods for uncertainty quantifica­

tion - a field which in recent years has emerged as an area of great interest both for 

academic and industrial communities, as well as for policy-makers. We specifically 

focused on Stochastic Galerkin methods which have emerged as a valuable alternative 

to popular Monte Carlo methods. Finally, we applied all the numerical techniques 

investigated in this thesis to a real-case study in the United Kingdom.

In this concluding chapter we summarise the findings of the study in relation to 

the underlying research questions and indicate directions for possible future research 

in relation to each of these.

246
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Accuracy of M FEM  and C om putational Comparison with the Hybrid 

M ethod

Accuracy of numerically calculated groundwater fluxes and /  or velocities has 

been at the centre of debates for several years. The groundwater modelling com­

munity agrees that for some specific applications, such as nuclear waste disposal, the 

approximations obtained by conventional numerical methods are not accurate enough. 

Methods that overcome this important limitation are available and the mixed finite 

element method is one of those.

Our experiments using mixed finite element methods show that discrete error con­

vergence is in line with theoretical results and those reported by other researchers. 

First order convergence was recorded for the velocity solution on structured and un­

structured triangular meshes. This is unaltered for problems with discontinuous, 

diagonally anisotropic and full-tensor anisotropic coefficients. Second order conver­

gence for the velocity solution is recorded on structured rectangular meshes and a 

loss of one order convergence is recorded for discontinuous coefficients. As observed 

in several published articles, the accuracy of the velocity solution deteriorates signifi­

cantly on unstructured rectangular meshes. The investigation of the approaches that 

overcome this limitation was outside the scope of this work, but the reader is referred 

to Younes et al. (2010) for an overview on the matter.

The review of the literature on mixed finite element methods reveals that often 

the hybridization approach is considered when comparison studies on computational 

performance are published. The original mixed finite element method is generally 

discarded on the basis that the discrete linear system of equations is indefinite and 

larger than the one obtained with the hybrid approach. However, iterative solvers for 

indefinite systems are available and generally the success of a solver crucially depends
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on the choice of the preconditioner rather than on the system size. Thus the original 

mixed finite element method cannot be discarded based only on those considerations.

The results of our experiments show that there is not a unique answer to the 

proposed research question: is solving the indefinite system computationally more ex­

pensive than solving the positive definite system obtained with the hybrid approach? 

In fact, the performance largely depends on the characteristics of the conductivity 

coefficient. Thus for problems with isotropic and /  or heterogeneous coefficients, on 

structured or unstructured triangular meshes, solving the indefinite system is the 

cheapest method. This is also true for anisotropic diagonal coefficients, but only on 

rectangular meshes. For more general coefficients, i.e. full anisotropic tensors, the 

experimental results are more complex to summarise. It appears that the AMG im­

plementations generally perform better than all other considered solvers. However, 

none of these solvers stands out as significantly more effective than others.

Real-life A pplication o f Stochastic Galerkin M ethods

In recent years new methodologies have been developed with the aim of improving 

the performance of slow converging Monte Carlo methods. In this work we have 

focused on Stochastic Galerkin methods. We have exposed the limitations of this 

technology and shown that with suitable assumptions the method can be effectively 

applied to the groundwater modelling context. To the best of our knowledge the 

Cardiff Bay case study represents one of the first formal attempts to fully quantify 

uncertainty in a two-dimensional areal groundwater model.

The approach to uncertainty quantification used in this thesis has evolved through 

the following steps. First, a deterministic groundwater model for the area was ob­

tained and this was calibrated against observed groundwater levels using parameter 

estimation techniques. Second, the calibrated conductivity coefficient was mathemat­
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ically described by a discontinuous spatial random field. The mean conductivity for 

each sub-regions in the physical domain was assigned the value obtained during the 

calibration process and the standard deviation was obtained by specifying a constant 

coefficient of variation. Third, the stochastic problem was formulated using stochastic 

Galerkin methods and solved.

We argue that this procedure represents a good starting point for further en­

hancement of uncertainty quantification in groundwater modelling applications. In 

our analysis only one set of conductivity values that yielded an acceptable calibration 

was considered for each sub-region. However, a range of parameter sets for which 

the calibration is deemed to be acceptable could be identified, and a stochastic for­

mulation could be implemented on each of those parameter sets. Furthermore, in 

our analysis, and as it is often done in industrial applications, the geometry of the 

sub-regions was determined based on informed subjective judgement. However, there 

might be several possible geometrical arrangements that would provide equally suit­

able calibration results. A stochastic formulation could thus be implemented on all 

of those arrangements. Considering a range of conductivity values and a range of 

sub-region geometries could thus yield a more robust quantification of parameter un­

certainty. Note that this is not the same as implementing a Monte Carlo analysis 

because the set of considered parameters or geometries are only those for which the 

model is considered (deterministically) calibrated. The current work thus highlighted 

this kind of extension of the method as one possible future research direction.

It should also be noted that the model currently used for the Cardiff Bay area 

is based on a simple conceptual model. For the purpose of the current study this 

was considered acceptable and it represents a solid starting point from which to build 

complexity and develop further. The extension of the model to three dimensions and 

/  or multilayered systems can be done. However, additional challenges in terms of
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computational cost and memory requirements are likely to be encountered. This then 

represents a further future research direction that arises from this work.

A N ew  Efficient Preconditioner for SFEM Systems

The success of using Stochastic Galerkin methods relies on efficient implementa­

tion and fast iterative solvers. The performance assessment of popular mean-based 

preconditioners revealed that these are, in general, not robust with respect to the con­

ductivity coefficient. Their performance is considered acceptable for the stochastically 

linear case but serious limitations were encountered for the stochastically non-linear 

case.

It was evident from the literature and from our analysis that mean-based precon­

ditioners cannot be robust with respect to the conductivity coefficient because they 

only include, in the preconditioned system, information associated with the mean 

value of the spatial random field. The mean information is included in the blocks of 

the leading diagonal of the global stochastic system, whilst oscillations (representing 

the variability of the spatial random field) about the mean are contained in the off- 

diagonal blocks. When the latter contributions become important the mean-based 

preconditioner performs poorly simply because this information is not included in 

the preconditioned system. For the stochastically non-linear case this situation is 

exacerbated by the fact that every block of the global system has non-zero entries.

To overcome this important limitation we proposed an alternative preconditioner 

for SFEM whereby the off-diagonal blocks of the global system are included in the 

preconditioned system using a block symmetric Gauss-Seidel algorithm. The analysis 

of the preconditioner performance revealed that for the stochastically linear and non­

linear cases a limited number of iterations for the Gauss-Seidel scheme are required 

when this is used in conjunction with the conjugate gradient method. In fact, in many
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cases the best CG performance is achieved when only one Symmetric Gauss-Seidel 

iteration (a forward and backward sweep) is implemented.

The presented computational analysis clearly showed that block Gauss-Seidel al­

gorithms used either as a preconditioner for CG or as stand-alone solvers are more 

efficient than mean based preconditioners for both the stochastically linear and non­

linear cases. For the latter case, the CPU savings are remarkable. We showed that 

for some of the test cases considered, the stand-alone standard Gauss-Seidel solver is 

the best performing solver. However, its performance seems to deteriorate at a faster 

rate for cases with large standard deviation than preconditioned CG. Therefore, we 

conclude that generally CG equipped with a block symmetric Gauss-Seidel precondi­

tioner should be used to solve SFEM systems for both the stochastically linear and 

non-linear cases.

Finally, it should be pointed out that for the non-linear case, the Gauss-Seidel 

preconditioner performance is poor if one V-cycle of AMG code is used to invert 

the sub-systems. Our experiments reveal that the AMG based preconditioner is 

significantly less efficient than the UMFPACK based preconditioner. This is not only 

due to the considerable set-up time required for the AMG case but it also appears that 

AMG is less efficient on a per-iteration basis. This finding is different to the results 

reported for the linear case experiments where AMG always outperforms UMFPACK 

on a per-iteration basis.

Considerations on Solvers for System s Obtained by SMFEM

The presented experiments show that MINRES CPU cost required to solve the 

stochastic formulation of the mixed finite element method is, in general, very large 

when a Schur complement preconditioner based on mean information is used. For the 

stochastically linear case the CPU cost is acceptable. However, it is prohibitively too
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large for the non-linear case.

The review of the literature available on this topic revealed that this is a very 

new research area and very few studies have been carried out on efficient solvers for 

the indefinite systems obtained with SMFEM. As for the deterministic case the hy­

bridization approach is also possible for the stochastic case. However, the advantages 

existing in the deterministic implementation (the velocity matrix being diagonal) are 

lost in the stochastic counterpart.

The efficient solution of SMFEM is still an open problem. Some promising results 

have recently been published by Powell & Ullmann (2010). However, their analysis 

is very complex and the preconditioners used are not easy and /  or practical to 

implement. I believe, that the decoupling of the velocity vector from the pressure 

vector, originally proposed by Chavent et al. (1984), Chavent &; Jaffre (1986) and 

more recently by Scheichl (2001) could hold the key to the efficient implementation of 

the stochastic version of mixed finite element methods, opening up an exciting new 

area of research.

Outcom es o f the research project

The outcomes of this research will be developed into three articles to be published 

in international peer-reviewed journals.

The first paper, to be submitted to Computers and Fluids, will present a compu­

tational comparison between traditional MFEM and MHFEM. Essentially the paper 

will seek to answer the research question posed at the beginning of this work: under 

which circumstances is solving the indefinite system obtained from MFEM compu­

tationally more expensive than solving the positive definite system obtained with 

the hybrid approach? The paper is a summary of the numerical work presented in 

Chapter 3 and builds upon the theory presented in Chapter 2.
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The second paper, aimed for publication in International Journal for Numerical 

Methods in Fluids, will compare the computational performance of mean-based and 

Gauss-Seidel preconditioners for the solution of the stochastic formulation of the 

groundwater flow equations (second order problem, only). The paper will present 

results reported in Chapters 6 and 7. It will also include the theory discussed in 

Chapter 4.

The third paper, aimed for publication in Water Resources Research, will present 

numerical results for the Cardiff Bay case study. In addition to presenting a concrete 

groundwater modelling application, the paper aims to establish a framework for quan­

tification of model uncertainty in groundwater models. The logical approach which 

develops from a deterministic, calibrated numerical model to a stochastic model will 

be emphasized. In order to capture the attention of the wider groundwater research 

community the paper will include examples of multi-layered groundwater and con­

fined /  unconfined systems which are further developed from the work presented in 

Chapter 8.

In addition to the aforementioned papers, the author plans to write a paper on effi­

cient solvers for the stochastic formulation of the mixed method (first order problem). 

Differently from the other three, this paper requires substantial additional work, part 

of which involves understanding whether the decoupling of the velocity vector from 

the pressure vector, proposed by various researchers in deterministic settings, is also 

feasible in the context of stochastic Galerkin methods.
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Appendix A

Set-up Time for Test Problems and

Preconditioner V hdiag

A .l Set-up tim e for test problems and V hd iag  precon­

ditioner - Linear case

Table A .l: Problem and Vbdiag set-up times (sec.) - Test Problem 1 
h p = 2 p =  3 p = 4

d = 4
J  1.21 +  0.01 0.15 +  0.01 0.15 +  0.01

choline ^  0.23 +  0.06 0.23 +  0.06 0.23 +  0.06
^  0.66 +  0.41 0.66 +  0.44 0.66 +  0.44
X  0.88 +  0.31 0.15 +  0.27 0.15 + 0.27

AMG h  0.23 +  1.08 0.22 +  1.06 0.22 + 1.08
54

0.66 +  7.31 0.66 +  7.61 0.66 +  7.31
__________________________L*o ------ — ---------------- ---------------------------------------------------------------------------------------------------

d =  6
T  0.16 +  0.01 0.16 +  0.01 0.17 +  0.01

choline ^  0.26 +  0.06 0.26 +  0.06 0.26 +  0.06
o4
^  0.83 +  0.43 0.85 +  0.44 0.87 +  0.44
X  0.17 +  0.27 0.16 +  0.27 0.16 +  0.27

AMG  ^  0.26+ 1.06 0.26 +  1.08 0.27+ 1.05
0.86 +  7.59 0.85 +  7.43 0.86 +  7.34

264



Appendix A: Set-up Time for Test Problems and Preconditioner Vbdiag_________ 265

Table A.2: Problem and Vbdiag set-up times (sec.) - Test Problem 2
a p = 2 p = 3 p = 4

d = 4
0.3 1.42 + 0.01 0.14 +  0.01 0.15 +  0.01

choline 0.5 0.15 +  0.01 0.15 + 0.01 0.15 +  0.01
0.7 0.14 +  0.01 0.14 +  0.01 0.15 +  0.01
0.3 0.58 +  0.34 0.14 +  0.28 0.15 +  0.28

AMG 0.5 0.15 +  0.28 0.14 +  0.28 0.15 +  0.28
0.7 0.14 +  0.28 0.15 +  0.28 0.15 +  0.28

d = 6
0.3 0.16 +  0.01 0.16 +  0.01 0.17 +  0.01

choline 0.5 0.15 +  0.01 0.15 +  0.01 0.17 +  0.01
0.7 0.15 +  0.01 0.15 +  0.01 0.17 +  0.01
0.3 0.15 +  0.28 0.15 +  0.28 0.17 +  0.28

AMG 0.5 0.15 +  0.28 0.15 +  0.28 0.17 +  0.28
0.7 0.15 +  0.28 0.16 +  0.28 0.17 +  0.28

Table A.3: Problem and Vbdiag set-up times (sec.) - Test Problem 3
5=?-u p = 2 p = 3 p = 4

d = 4

choline
0.3
0.5
0.7

0.7,0.5,0.6,0.7

0.17 +  0.01 
0.14 +  0.01 
0.15 +  0.01 
0.15 +  0.01

0.14 +  0.01 
0.14 +  0.01 
0.14 +  0.01 
0.14 +  0.01

0.15 +  0.01 
0.14 +  0.01 
0.15 +  0.01 
0.14 +  0.01

AMG
0.3
0.5
0.7

0.7,0.5,0.6,0.7

0.17 +  0.32 
0.15 +  0.32 
0.14 +  0.32 
0.14 +  0.32

0.14 +  0.32 
0.14 +  0.32 
0.14 +  0.32 
0.14 +  0.32

0.14 +  0.32 
0.14 +  0.32 
0.14 +  0.32 
0.14 +  0.32

d = 6

choline
0.5
0.7
1.0

0.7,0.5,0.6,0.7

0.16 +  0.01 
0.16 +  0.01 
0.16 +  0.01 
0.16 +  0.01

0.16 +  0.01 
0.16 +  0.01 
0.16 +  0.01 
0.16 +  0.01

0.17 +  0.01 
0.17 +  0.01 
0.17 +  0.01 
0.17 +  0.01

AMG
0.3
0.5
0.7

0.7,0.5,0.6,0.7

0.16 +  0.32 
0.16 +  0.32 
0.16 +  0.32 
0.16 + 0.32

0.16 +  0.32 
0.16 +  0.32 
0.16 +  0.32 
0.16 +  0.32

0.2 +  0.32 
0.17 +  0.32 
0.17 +  0.32 
0.17 +  0.32
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A .2 Set-up time for test problems and V bdiag precon­

ditioner - Nonlinear case

Table A.4: Problem and Vbdiag {AMG) set-up times (sec.) - Test Problem 1
h Pu =  2 Pu = 3 Pu = 4

d = 4
l

32 1.59 1.66 5.76
UMFPACK 1

64 1.47 4.6 12.85
1 7.15 21.57 53.751^8

¥
64

0.54 +  0.27 1.8 +  0.31 5.82 +  0.27
AM G 1.47+1.07 4.58 +  1.07 12.91 +  1.08

1
128 7.15 +  7.67 21.67 +  7.48 53.99 +  7.84

d = 6

1
32 2.01 22.92 221.02

UMFPACK 1
64 4.9 36.54 262.61
1

1 |8 21.45 109.71 625.23

¥
64

1.97 +  0.27 23.07 +  0.27 217.67 +  0.28
AMG 4.78 +  1.08 36.73+ 1.09 257.69+ 1.16

1
128 21.27 +  7.84 110.71 +  7.86 698.77+ 14.2

Table A.5: Problem and Vbdiag {AMG) set-up times (sec.) - Test Problem 2
h Pu = 2 II G

O II

d = 4
0.3 0.52 1.61 5.74

UMFPACK 0.5 0.48 1.62 5.83
0.7 0.48 1.62 5.76
0.9 0.49 1.61 5.81
0.3 1.84 +  0.36 1.61 +  0.28 5.68 +  0.28

AMG 0.5 0.48 +  0.28 1.59 +  0.28 5.66 +  0.28
0.7 0.48 +  0.28 1.59 +  0.28 5.75 +  0.28
0.9 0.48 +  0.28 1.59 +  0.28 5.59 +  0.28

d = 6

0.3 1.99 22.86 211.46
UMFPACK 0.5 1.91 22.43 212.54

0.7 1.93 22.79 215.94
0.9 1.93 22.56 223.39
0.3 1.89 +  0.28 22.78 +  0.28 216.79 +  0.29

AMG 0.5 1.88 +  0.28 22.53 +  0.28 212.85 +  0.29
0.7 1.88 +  0.28 22.21 +  0.28 221.46 +  0.28
0.9 1.87 +  0.28 22.54 +  0.28 220.42 +  0.29
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Table A.6: Problem and Vbdiag {AMG) set-up times (sec.) - Test Problem 3
6 Pu = 2 Pu = 3 II

d = 4
0.5 0.58 1.83 6.26

UMFPACK 0.7 0.56 1.81 6.2
1.0 0.56 1.83 6.19

1.0,0.7,0.5,1.0 0.55 1.82 6.2
0.5 0.58 +  0.3 1.81 +  0.29 6.3 +  0.29

AMG 0.7 0.54 +  0.3 1.81 +  0.3 6.2+  0.3
1.0 0.54 +  0.31 1.81 +  0.31 6.23 +  0.31

1.0,0.7,0.5,1.0 0.54 +  0.31 1.79 +  0.31 6.27 +  0.31
d =  6

0.5 2.13 23.49 222.3
UMFPACK 0.7 2.13 23.66 220.6

1.0 2.13 23.78 224.36
1.0,0.7,0.5,1.0 2.12 24.31 219.31

0.5 2.11 +  0.29 23.44 +  0.3 223.16 +  0.3
AMG 0.7 2.12 +  0.3 23.88 +  0.3 222.08 +  0.31

1.0 2.13 +  0.31 23.42 +  0.31 222.11 +  0.32
1.0,0.7,0.5,1.0 2.13 +  0.31 23.42 +  0.31 226.08 + 0.32
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Simulation Results for V m e a n  

Preconditioner

B .l Simulations for V m e a n  preconditioner - Linear case

Table B .l: CG iterations and solution timings for Vmean - Test Problem 1

P =  2 P =  3 P = 4
h Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nit tcpu

(sec.)
d = 4

l
¥
64

11 0.18 17 0.49 29 1.78
choline 13 0.59 21 2.27 37 8.61

1 21 9.46 35 38.98 64 157.691̂ 8

¥
64

12 0.58 19 1.39 33 4.9
AMG 12 0.78 19 2.97 35 11.44

1
128 13 3.49 20 13.23 35 48.67

IIT3

1
¥
64

11 0.27 17 1.26 30 6.16
choline 13 1.12 21 5.9 37 28.08

1 21 18.56 35 95.17 64 448.331̂ 8

¥
64

12 0.71 19 3.45 33 15.41
AMG 12 1.48 20 7.95 35 36.46

1
128 13 6.68 20 33.51 37 163.68
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Table B.2: CG iterations and solution timings for Vmean - Test Problem 2

a
V =  2 P =  3 V = 4

Nit tcpu
(sec.)

Nit tcpu
(sec.)

Nit tcpu
(sec.)

d =  4
0.3 15 0.62 22 0.66 29 1.85

choline 0.5 18 0.22 26 0.78 38 2.43
0.7 21 0.26 34 1.02 54 3.44
0.3 18 0.66 28 2.26 40 6.57

A M G 0.5 20 0.69 33 2.66 49 8.05
0.7 24 0.82 38 3.11 65 10.67

d =  6
0.3 15 0.35 22 1.71 29 6.17

choline 0.5 18 0.42 28 2.15 42 8.95
0.7 22 0.51 38 2.91 72 15.37
0.3 18 1.18 28 5.57 40 20.68

A M G 0.5 21 1.34 33 6.53 51 26.33
0.7 24 1.52 43 8.48 82 42.36

Table B.3: CG iterations and solution timings for Vmean - Test Problem 3

P =  2 P =  3 P =  4
6  = z Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nit tcpu

(sec.)
d = 4

0.3 20 0.23 33 0.63 53 2.03
choline 0.5 23 0.22 39 0.8 61 2.27

0.7 25 0.23 44 0.94 74 3.11
0.7,0.5,0.6,0.7 24 0.23 42 0.84 69 2.75

0.3 18 0.73 28 2.54 36 6.6
AMG 0.5 20 0.77 31 2.79 45 8.26

0.7 23 0.88 36 3.23 55 10.1
0.7,0.5,0.6,0.7 21 0.81 34 3.06 50 9.16

d = 6

0.3 19 0.35 33 1.84 55 6.69
choline 0.5 21 0.42 37 2.06 62 8.55

0.7 25 0.48 46 2.64 83 12.63
0.7,0.5,0.6,0.7 25 0.44 43 2.42 75 11.41

0.3 18 1.29 29 6.41 40 22.91
AM G  0.5 20 1.42 32 7.05 48 27.47

0.7 23 1.67 40 8.81 68 38.89
0.7,0.5,0.6,0.7 21 1.49 36 7.94 60 34.39
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B.2 Simulations for V mean preconditioner - Nonlinear 

Case

Table B.4: CG iterations and solution timings for Vmean - Test Problem 1

Pu =  2 Pu =  3 Pu = 4
h Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nit tcpu

(sec.)
d = 4

l
¥
64

11 1.06 17 5.56 31 50.88
UMFPACK 11 2.8 17 20.85 31 167.48

1 11 15.47 17 89.8 31 671.731^8

¥
64

12 1.01 19 6.3 35 57.54
AMG 12 2.23 20 21.41 37 186.8

1
128 13 9.28 21 86.35 38 729.57

d =  6
1

32 11 1.94 17 30.41 31 431.97
UMFPACK 1

64 11 7.54 17 100.33 31 1,349.11
1 11 33.79 17 405.59 31 5,208.411^8

¥
64

12 2.09 19 34.21 37 515.77
AMG 13 7.23 21 115.74 37 1,593.79

1
128 13 27.49 21 441.14 39 6,323.83
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Table B.5: CG iterations and solution timings for Vmean - Test Problem 2

Pu =  2 Pu = 3 Pu = 4
a Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nu tcpu

(sec.)
d = 4

0.3 15 1.15 29 9.8 58 96.53
UMFPACK 0.5 22 1.31 46 15.51 102 170.28

0.7 30 1.78 69 23.17 171 285.7
0.9 39 2.3 103 34.7 278 463.81
0.3 17 1.33 31 10.82 62 105.46

AMG 0.5 23 1.46 48 16.65 107 180.8
0.7 31 1.95 71 24.61 177 299.15
0.9 41 2.58 106 36.59 284 480.69

d = 6
0.3 15 2.62 29 53.24 60 837.37

UMFPACK 0.5 22 3.84 47 85.43 107 1,486.98
0.7 30 5.27 72 129.58 180 2,498.76
0.9 40 6.96 107 193.75 294 4,102.17
0.3 17 3.16 32 58.68 65 913.56

AMG 0.5 23 4.2 49 90.11 112 1,577.59
0.7 32 5.83 75 138.23 186 2,627.54
0.9 42 7.65 110 202.08 301 4.252.37
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Table B.6: CG iterations and solution timings for Vmean - Test Problem 3

Pu = 2 Pu = 3 Pu =  4
6  = z Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nit tcpu

(sec.)
d = 4

0.5 20 1.24 40 13.5 86 144.3
UMFPACK 0.7 26 1.54 59 19.92 138 231.21

1.0 41 2.44 100 33.79 259 434.85
1.0,0.7,0.5,1.0 40 2.38 100 33.9 259 434.39

0.5 21 1.77 42 14.5 91 153.19
AMG 0.7 28 1.94 60 20.75 142 238.62

1.0 42 2.76 101 34.89 266 448.52
1.0,0.7,0.5,1.0 42 2.67 101 34.88 265 446.67

d = 6
0.5 20 3.53 42 76.39 90 1,263.25

UMFPACK 0.7 28 4.91 61 111.51 145 2,040.56
1.0 42 7.38 105 190.57 280 3,925.73

1.0,0.7,0.5,1.0 42 7.37 105 190.74 280 3,918.66
0.5 22 4.01 43 78.62 96 1,351.2

AMG 0.7 29 5.26 63 115.41 152 2,144.95
1.0 44 7.97 107 196.11 287 4,016.72

1.0,0.7,0.5,1.0 44 8.01 107 195.57 289 4,029.83



Appendix C

Set-up Times for Test Problems and 

Preconditioner V^s g s

C .l Set-up time for test problems and V b S G S  precon­

ditioner - Linear case

Table C .l: Problem and VbSGS set-up times (sec.) - Test Problem 1
h p = 2 p = 3 p — 4

d = 4
i

32 1.6 1.64 5.8
UMFPACK 1

64 1.48 4.56 12.94
1 7.05 21.61 54.041J8

¥ 1.85 +  0.34 1.64 +  0.27 5.89 +  0.27
AMG 1

64 1.47+1.07 4.59+1.06 12.92 +  1.05
1

128 7.14 +  7.21 21.57 +  7.12 53.96 +  8.43
d =  6

1
32 1.99 23 220.26

UMFPACK 1
64 4.88 36.08 261.8
1 21.31 110.29 673.951^8

¥
64

1.98 +  0.27 22.63 +  0.27 215.64 +  0.28
AMG 4.85 +  1.1 36.15 +  1.12 263.51 + 1.08

1
128 21.42 +  7.32 110.13 +  8.37 606.56 +  12.32
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Table C.2: Problem and VbSGS set-up times (sec.) - Test Problem 2
a p = 2 p = 3 p =  4

d = 4
0.3 0.52 1.59 5.77

UMFPACK 0.5 0.48 1.59 5.81
0.7 0.48 1.58 5.77
0.9 0.48 1.61 5.7
0.3 1.6 +  0.29 1.6 +  0.28 5.64 +  0.28

AMG 0.5 0.48 +  0.28 1.58 +  0.28 5.68 +  0.28
0.7 0.48 +  0.28 1.59 +  0.28 5.68 +  0.28
0.9 0.48 +  0.28 1.59 +  0.28 5.64 + 0.28

d = 6

0.3 1.93 22.79 218.77
UMFPACK 0.5 1.9 22.73 216.69

0.7 1.89 22.9 214.72
0.9 1.89 22.84 214.83
0.3 1.9 +  0.28 22.77 +  0.28 214.76 +  0.29

AMG 0.5 1.9 +  0.28 22.59 +  0.28 214.26 +  0.28
0.7 1.9 +  0.28 22.96 +  0.28 221.55 +  0.29
0.9 1.92 +  0.28 22.69 +  0.28 218.06 + 0.29

Table C.3: Problem and VbSGS set-up times (sec.) - Test Problem 3
6 = ^ p = 2 p = 3 p = 4

d = 4
0.5 0.63 1.82 6.31

UMFPACK 0.7 0.55 1.81 6.19
1.0 0.54 1.83 6.27

1.0,0.7,0.5,1.0 0.54 1.82 6.27
0.5 1.86 +  0.37 1.81 +  0.29 6.36 +  0.3

AMG 0.7 0.56 +  0.3 1.79 +  0.3 6.27 +  0.3
1.0 0.54 +  0.31 1.81 +  0.31 6.38 +  0.31

1.0,0.7,0.5,1.0 0.54 +  0.31 1.8 +  0.31 6.24 +  0.31
d = 6

0.5 2.14 23.61 215.04
UMFPACK 0.7 2.15 23.47 223.14

1.0 2.14 24.21 220.55
1.0,0.7,0.5,1.0 2.15 23.37 218.9

0.5 2.11 +  0.29 23.56 +  0.3 219.35 +  0.3
AMG 0.7 2.11 +  0.3 23.99 +  0.3 220.22 +  0.31

1.0 2.12 +  0.31 24.04 +  0.31 222.92 +  0.32
1.0,0.7,0.5,1.0 2.1 +  0.31 23.83 +  0.32 223.62 +  0.32
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C.2 Set-up time for test problems and V b S G S  precon­

ditioner - Nonlinear case

Table C.4: Problem and VbSGS set-up times (sec.) - Test Problem 1
h p = 2 p =  3 p  = 4

d = 4
i

32 1.25 1.49 5.55
UMFPACK 1

64 1.32 4.44 12.72
1

A28 6.98 21.41 54
1

¥
64

3.23 +  3.15 1.67 +  6.48 5.88 +  12.91
AMG 1.47+14.8 4.52 +  34.19 12.84 +  69.16

1
128 7.16 +  114.43 21.5 +  269.13 54.13 +  590.05

d = 6
1

32 1.79 22.17 210.54
UMFPACK 1

64 4.66 35.88 254.69
1

1^8 21.22 109.91 565.43

¥
64

1.97 +  5.21 22.92 +  15.56 221.74 +  39.43
AMG 4.87 +  27.74 35.88 +  86.98 263.95 +  215.93

1
128 21.38 +  246.93 109.29 +  810.26 620.38 +  2014.46

Table C.5: Problem and VbSGS set-up times (sec.) - Test Problem 2
h p = 2 p = 3 p = 4

d = 4
0.3 1.86 1.47 5.7

UMFPACK 0.5 0.34 1.47 5.73
0.7 0.33 1.47 5.73
0.9 0.33 1.47 5.73
0.3 1.66 +  3.06 1.59 +  6.89 5.76 +  13.77

AMG 0.5 0.48 +  2.98 1.58 +  6.88 5.72 +  13.78
0.7 0.48 +  3 1.58 +  6.81 5.71 +  13.67
0.9 0.48 +  2.99 1.58 +  6.91 5.71 +  13.73

d = 6
0.3 1.8 23.23 223.37

UMFPACK 0.5 1.79 22.99 219.91
0.7 1.79 23.01 220.51
0.9 1.79 22.98 220.33
0.3 1.9 +  5.95 22.69+ 16.53 219.58 +  41.36

AMG 0.5 1.87 +  5.51 22.78+ 16.52 215.15 +  41.68
0.7 1.9 +  5.52 22.9+16.47 219.37 +  41.87
0.9 1.93 +  5.53 22.27+ 16.6 215.84 +  41.88
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Table C.6: Problem and VbSGS set-up times (sec.) - Test Problem 3
h p = 2 p = 3 p — 4

d = 4
0.5 0.58 1.68 6.09

UMFPACK 0.7 0.41 1.67 6.07
1.0 0.41 1.67 6.07

1.0,0.7,0.5,1.0 0.41 1.67 6.11
0.5 1.52 +  3.21 1.82 +  7.08 6.23 +  14.2

AMG 0.7 0.54 +  3.18 1.8 +  7.31 6.23 +  14.75
1.0 0.54 +  3.32 1.81 +  7.64 6.32 +  15.05

1.0,0.7,0.5,1.0 0.54 +  3.34 1.79 +  7.68 6.11 +  15.26
d = 6

0.5 1.99 23.26 214.8
UMFPACK 0.7 1.99 23.24 217.64

1.0 1.99 23.31 216.9
1.0,0.7,0.5,1.0 1.97 23.32 218.9

0.5 2.14 +  5.74 23.76 +  17.14 225.16 +  42.47
AMG 0.7 2.14 +  5.93 24.03 +  17.53 222.89 +  44.73

1.0 2.13 +  6.23 24.13 +  18.38 221.56 +  46.59
1.0,0.7,0.5,1.0 2.11 +  6.22 23.9 +  18.46 227.19 +  46.53



Appendix D

Numerical Simulations for 

Gauss-Siedel solvers

D .l Simulations for Gauss-Siedel solvers - Linear case

T a b le  D . l :  b S G S  a n d  b G S  i t e r a t i o n s  a n d  s o l u t i o n  t i m i n g s  (UMFPACK c a s e )  -  T e s t  

P r o b le m  1

P -  2 V = 3 P =  4
h Nit tcpu

( s e c . )

Nit tcpu
( s e c . )

Nit tcpu
( s e c . )

d = 4
l

32 4 0.19 4 0.43 4 0.87
bSGS 1

64 5 1.14 5 2.67 5 5.38
1

128 5 8.41 5 17.44 5 35.09
T

32 6 0.17 6 0.32 7 0.76
bGS 1

64 6 0.68 7 1.88 7 3.74
1

128 6 5.59 7 11.43 7 23.06
d — 6

1
¥
64

4 0.35 4 1.04 4 2.65
bSGS 5 2.13 5 6.45 5 16.24

1
128 5 13.91 5 41.82 5 105.89
T

¥
64

6 0.26 6 0.78 7 2.33
bGS 6 1.28 7 4.56 7 11.42

1
128 6 7.82 7 27.6 7 69.73
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Table D.2: bSGS and bGS iterations and solution timings ( UMFPACK case) - Test 
Problem 2

a
V =  2 P =  3 V =  4

Nit tcpu
(sec.)

Nit I'CPU
(sec.)

Nit tcpu
(sec.)

d = 4
0.3 6 0.29 6 0.69 6 1.38

bSGS 0.5 8 0.39 9 1.02 10 2.3
0.7 12 0.58 17 1.93 24 5.5
0.3 8 0.2 8 0.47 9 1.04

bGS 0.5 11 0.28 13 0.76 15 1.77
0.7 16 0.39 24 1.4 36 4.24

COII"C3

0.3 6 0.55 6 1.66 6 4.22
bSGS 0.5 9 0.81 10 2.76 12 8.44

0.7 13 1.17 20 5.54 39 27.37
0.3 8 0.38 8 1.14 9 3.25

bGS 0.5 11 0.51 14 1.98 17 6.17
0.7 17 0.79 29 4.07 60 21.73

Table D.3: bSGS and bGS iterations and solution timings ( UMFPACK case) - Test 
Problem 3

P =  2 P =  3 P = 4
5 = zM Nit tcpu

(sec.)
Nit tcpu

(sec.)
Nit tcpu

(sec.)
d = 4

0.3 6 0.33 6 0.69 6 1.38
bSGS 0.5 8 0.39 9 1.02 10 2.29

0.7 11 0.53 14 1.61 18 4.13
0.7,0.5,0.6,0.7 11 0.53 14 1.59 18 4.12

0.3 7 0.17 8 0.46 8 0.93
bGS 0.5 10 0.24 12 0.69 14 1.62

0.7 14 0.34 20 1.14 28 3.24
0.7,0.5,0.6,0.7 14 0.34 20 1.14 27 3.12

d = 6
0.3 6 0.55 6 1.65 6 4.21

bSGS 0.5 8 0.72 10 2.76 11 7.72
0.7 12 1.08 18 4.96 30 21.02

0.7,0.5,0.6,0.7 12 1.08 18 4.94 30 21.01
0.3 8 0.37 8 1.11 9 3.19

bGS 0.5 11 0.5 13 1.81 16 5.69
0.7 16 0.73 25 3.45 46 16.28

0.7,0.5,0.6,0.7 16 0.73 25 3.46 46 16.25
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Set-up Times for Test Problems and 

Preconditioner 'Pschur

E .l Set-up times for test problems and V s d i u r  pre- 

conditioner - Linear case

Table E.l: Problem and Vschur set-up times (sec.) - Test Problem 1
h p = 2 p =  3 p = 4

d  = 4
l

¥
64

0.72 0.18 0.18
UMFPACK 0.29 0.29 0.29

1 1.22 1.24 1.261^8

¥
64

1.02 +  0.57 0.18 +  0.49 0.18 +  0.49
AMG 0.29 +  2.5 0.29 +  2.51 0.29 +  2.46

1
128 1.23 +  22.03 1.19 +  22.44 1.2 +  22.45

d  = 6
1

32 0.19 0.19 0.19
UMFPACK 1

64 0.32 0.32 0.33
1 1.35 1.33 1.311|8

¥
64

0.19 +  0.49 0.19 +  0.49 0.19 +  0.49
AMG 0.32 +  2.63 0.32 +  2.52 0.33 +  2.53

1
128 1.32 +  22.56 1.33 +  21.98 1.34 +  22.1
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Table E.2: Problem and Vschur set-up times (sec.) - Test Problem 2
a p = 2 p = 3 p =  4

d = 4
0.3 1.36 0.18 0.18

UMFPACK 0.5 0.18 0.18 0.2
0.7 0.18 0.18 0.18
0.3 1.46 +  0.56 0.18 +  0.49 0.19 +  0.49

AMG 0.5 0.18 +  0.49 0.18 +  0.48 0.18 +  0.49
0.7 0.18 +  0.49 0.18 +  0.5 0.19 +  0.49

d = 6
0.3 0.19 0.19 0.2

UMFPACK 0.5 0.19 0.19 0.2
0.7 0.19 0.2 0.2
0.3 0.2 +  0.49 0.19 +  0.49 0.21 + 0.49

AMG 0.5 0.19 +  0.49 0.19 +  0.49 0.21 +  0.49
0.7 0.19 +  0.5 0.19 +  0.49 0.21 +  0.49

Table E.3: Problem and Vschur set-up times (sec.) - Test Problem 3
6 = za p = 2 p = 3 p = 4

d = 4
0.3 0.2 0.17 0.17

UMFPACK 0.5 0.17 0.17 0.17
0.7 0.17 0.17 0.17

0.7,0.5,0.6,0.7 0.17 0.17 0.17
0.5 1.47 +  0.71 0.17 +  0.58 0.17 +  0.57

AMG 0.7 0.17 +  0.57 0.17 +  0.57 0.17 +  0.58
1.0 0.17 +  0.58 0.17 +  0.58 0.17 +  0.58

1.0,0.7,0.5,1.0 0.17 +  0.58 0.17 +  0.57 0.17 +  0.58
d = 6

0.3 0.19 0.18 0.19
UMFPACK 0.5 0.18 0.19 0.19

0.7 0.18 0.18 0.2
0.7,0.5,0.6,0.7 0.18 0.19 0.2

0.5 0.19 +  0.57 0.18 +  0.58 0.19 +  0.58
AMG 0.7 0.18 +  0.57 0.19 +  0.58 0.2 +  0.57

1.0 0.18 +  0.57 0.18 +  0.57 0.2 +  0.58
1.0,0.7,0.5,1.0 0.18 +  0.57 0.19 +  0.57 0.2 +  0.58
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E.2 Set-up times for test problems and V s c h u r  pre- 

conditioner - Non-linear case

Table E.4: Problem and Vschur set-up times (sec.) - Test Problem 1
h pu — 2 pu 3 •X3 e II

d = 4
i

32 0.78 1.59 5.68
UMFPACK 1

64 1.32 3.9 11.32
1

...1J8 5.7 15.69 38.74
32 0.79 +  0.6 1.58 +  0.49 5.86 +  0.56

AMG 1
64 1.31 +  2.65 3.92 +  2.5 11.17 +  2.51
1

128 5.63 +  21.37 15.86 +  22.7 39.06 +  21.78
d = 6

1
32 1.95 22.6 210.17

UMFPACK 1
64 4.25 33.19 254.85
1

128 16.11 82.01 431.86
I
32 1.98 +  0.5 22.31 +  0.49 213.07 +  0.51

AMG 1
64 4.14 +  2.5 32.89 +  2.53 248.62 +  2.64
1

128 15.5 +  24.85 83.42 +  22.19 595.74 +  35.51

Table E.5: Problem and Vschur set-up times (sec.) - Test Problem 2
a IIss! II 00 II

d = 4
0.3 1.15 1.67 5.82

UMFPACK 0.5 0.52 1.65 5.75
0.7 0.53 1.64 5.73
0.9 0.53 1.65 5.66
0.3 1.56 +  0.6 1.65 +  0.51 5.81 +  0.56

AMG 0.5 0.52 +  0.51 1.66 +  0.51 5.72 +  0.53
0.7 0.52 +  0.5 1.63 +  0.51 5.81 +  0.51
0.9 0.52 +  0.51 1.64 +  0.51 5.75 +  0.52

d = 6

0.3 2.05 22.57 211.48
UMFPACK 0.5 1.95 22.81 212.87

0.7 1.97 23.37 210.49
0.9 1.99 23 216.49
0.3 1.99 +  0.51 22.8 +  0.52 209 +  0.51

AMG 0.5 1.94 +  0.51 23.11 +  0.5 214.48 +  0.62
0.7 1.95 +  0.52 22.68 +  0.51 213.19 +  0.52
0.9 1.96 +  0.52 22.88 + 0.51 212.63 +  0.51
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Table E.6: Problem and Vschur set-up times (sec.) - Test Problem 3
8 Pu =  2 e II GO II

d = 4
0.5 0.63 2.18 6.38

UMFPACK 0.7 0.6 1.84 6.25
1.0 0.58 1.86 6.32

1.0,0.7,0.5,1.0 0.58 1.88 6.29
0.5 0.73 +  0.53 1.86 +  0.5 6.33 +  0.51

AMG 0.7 0.57 +  0.51 1.9 +  0.51 6.42 +  0.51
1.0 0.57 +  0.6 1.84 +  0.51 6.25 +  0.55

1.0,0.7,0.5,1.0 0.57 +  0.51 1.86 +  0.5 6.32 +  0.53
d = 6

0.5 2.26 24.13 221.01
UMFPACK 0.7 2.19 23.92 215.01

1.0 2.2 23.57 217.12
1.0,0.7,0.5,1.0 2.18 23.39 221.24

0.5 2.27 +  0.52 24.06 +  0.51 222.52 +  0.52
AMG 0.7 2.19 +  0.52 23.86 +  0.52 216.1 +  0.53

1.0 2.19 +  0.52 23.78 +  0.53 221.73 +  0.57
1.0,0.7,0.5,1.0 2.19 +  0.52 23.99 +  0.53 220.69 +  0.55



Appendix F

Notation

F .l Notation for Chapter 2

u(x) := potential head

D := physical domain

r boundary of physical domain D

r D := Dirichlet boundary of T

r N := Neumann boundary of T

c := hydraulic conductivity tensor

n := unit outward normal vector to

s (x ) := prescribed constant head on Tp

q := fluid discharge (flux)

qx := x-component of fluid discharge

Qy := 7/-component of fluid discharge

L 2 (D) := {w : w is defined on D and JD w2dD < 00}

L 2 (D)d := {v : Vi e  L 2 (D), i =

283
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H \ D ) := {it; : w G L2(D) and g j  G L2(D ),i =  1 , . . . ,  d}

H l(D) := {re G H l {D) : w = 0 on T}

H h A D ) := {u> G i / 1(D) : w = 0 on r^ }

V ( \T

H(div; D) := {v  : v  G L2(D)d and V • v  G L2 (D)}

h H t ) := {g : g = wr for some w G H l (D)}

:= {< 1 : Q — (v  • n )r f°r some v  £ H(div\ D )}

H0 tN(div, D) :=  {v  G H(div\ D) : (v • n, u>) =  0, Vu; G #o)£>(D)}

rph :== Partition of D

K := Finite element of T h

h := Discretisation parameter

E h := collection of numbered edges (V = 2) or faces (V  =  3)

Xh C E h := {e G E h : e ^  TD}

R T °(K ) := { v  : v (x )  =  B*(c) V £ G K  and v  G i?T°(#)}

RT°(D] T h) :=  { v  G H(div; D) : v |*  G RT°(K) VK  G T h}

M ° := { v  G L 2 (D)d and q |*  G RT°(K) VK  G T h}

yh := M ° n  H 0 <N(div; D ) =  { v  G R T °(D \T h) and v  • n |r7v =

W h := {ic G L2(£>) : w\K G M °(X) V i f  G T h}

<Pj ->i 1 ■> ■ • • ? n := Scalar basis functions for W h

(fi,i = 1 ,----m ■= Vector basis functions for V h

:= global weighted velocity matrix

Bk,i := divergence operator matrix

Ao (Eh) :=  {V* : A*|e e  A0(e)Ve 6 E h}

Ao,r D i— {A € A (Eh) ; A =  0 on To} 5

Ap,r0 := { \ e K ( E h) : \  = gh on T0 }

p,j, i =  1 := Scalar basis functions for A0,r£>
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F.2 Notation for Chapter 4  and 5

f i  : =  s e t  o f  r a n d o m  e v e n t s  

3? : =  m i n i m a l  a- a l g e b r a  

P r  : =  p r o b a b i l i t y  m e a s u r e  

(0, Pr)  : =  p r o b a b i l i t y  s p a c e

it(x, lj) : =  r a n d o m  p o t e n t i a l  s o l u t i o n  

q (x , uj) : =  r a n d o m  f l u x  s o l u t i o n  

C(x,a;) : =  r a n d o m  c o n d u c t i v i t y  c o e f f i c i e n t

p (x) : =  m e a n  c o n d u c t i v i t y  v a l u e

cr : =  s t a n d a r d  d e v i a t i o n  o f  c o n d u c t i v i t y  r a n d o m  f ie ld  

/3*(x), Ai : =  e i g e n f u n c t i o n s  a n d  e ig e n v a l u e s  o f  t h e  c o v a r ia n c e  f u n c t io n  

£  : =  n o r m a l  o r  u n i f o r m  r a n d o m  v a r ia b le s  

p(x, x') : =  c o r r e l a t i o n  f u n c t i o n  o f  C(x, •)

L2(Q) := {w : w i s  d e f i n e d  o n  U a n d  /  w2dfl <  00}
J n

W  := H £ ( D ) ® L 2 (Q)

S h C Hq(D)

Th c  L2(n)

W h ■= S h ® T h <zW = H l { D ) ® L 2 (Q)

V  := { v (x , £) 6 H(div ; D) <8> L2 (Q) : v (x , - n  =  0 o n  x  fl}  

Y h c  H(div;  D)

V h := Y h <g>Th c  V = H(div\ D) <8> L2(0)

X h := L2 {D)

W h := X h ® T h C  W  = L2 (D) ® L2(S1)

:= partition of D
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( K l ) r , s

A

Nu

Ne

Nedg

V

p

WZj) 
H ite )  

{Xi}, i  =  1,- - - , P

(K o )r iS =  / D /iV^r(x)V</>s(x)rfx

& V X  JD A(x)V<pr(x)V 0s(x)dx

A

z°

r

(Ko)r,s =  SD ^ r ( x ) ^ s ( x ) d x

A i i

,s = ay/Xi / D A(x)V>r(x)^(x)rfx 

( B 0 ) r>s =  f D  0 r ( x ) V  • p s ( x ) d ( x )

Bi,i

£ ( x , u )

Pu

PC

:= Finite element of Z h 

:= number of nodes in Z h 

:= number of elements in Z h 

:= number of edges in Z h 

:= order of complete polynomials

 (d+p)\
d\p\

:= univariate Legendre polynomials 

:= univariate Hermite polynomials 

:= stochastic basis functions 

:= multi-index

:= FEM mean stiffness matrix 

:= (Xi)2 ® K o, i =

:= FEM ‘fluctuation’ stiffness matrices 

•'= X)?=1 [(6X.Xj>] ® Ki

Go ®  K 0 +  Y l L i  G » ®  K k  

:= initial guess 

:= residual vector 

:= MFEM mean stiffness matrix

:=  ( X i ) 2 ®  K o

MFEM ‘fluctuation’ stiffness matrices 

:= divergence operator 

=  ( X i ) 2 ®  B 0

:= random conductivity coefficient (Lognormal) 

:= order of complete polynomials for u 

=  order of complete polynomials for £


