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SUMMARY

A messenger role for carbon monoxide has been identified for the 
cardiovascular system and also possibly for neurological effects through 
activation of soluble guanylate cyclise (SGC) and consequent production 
of intracellular cyclic guanosine monophosphate (cGMP). Chronic 
exposure to carbon monoxide associated with indoor heating may affect 
this important mechanism. Therefore the differential effects upon cGMP in 
blood platelets for people residing in homes with different types of heating 
were investigated. A differential in ambient concentrations of benzene and 
nitrogen dioxide has also been hypothesized for residential areas of 
differing urbanicity in particular with respect to traffic flows. Therefore the 
differential in urinary biomarker of benzene exposure, s phenylmercaptuirc 
acid (sPMA) as well as in environmental concentrations of nitrogen dioxide 
was investigated in people residing in urban and less urban 
microenvironments.

Environmental concentrations of carbon monoxide indoors were measured 
in real-time over a period of one week and integrated measurements of 
benzene and nitrogen dioxide concentrations outdoors were obtained over 
a period of one month. cGMP was measured in the blood platelets of 
subjects and sPMA in their urine.

Environmental concentrations of carbon monoxide indoors were low but 
despite this in homes heated by liquid petroleum gas (LPG) the 
concentration of cGMP in subjects’ blood platelets were twice those in 
subjects using other types of heating. Further, for the LPG group the 
difference between paired measurements for the winter and summer 
seasons were 91%.

Substantial differences between mean concentrations of benzene (37%) 
and nitrogen dioxide (65%) were observed between urban and less urban 
areas but this differential was not reflected by any difference in toxic 
uptake as measured by sPMA in urine.

Exposure to emissions from LPG heating substantially affected cGMP 
concentrations in blood platelets but this is very unlikely to be caused by 
the low levels of carbon monoxide measured. We hypothesize that Nitric 
oxide may be responsible for the differences observed in cGMP. 
Substantial differences in outdoor benzene and nitrogen dioxide 
concentrations exist within the city of Cardiff but sPMA is not sufficiently 
sensitive to be used as a biomarker of exposure.
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ABSTRACT

Methods

To investigate indoor carbon monoxide, households were identified using 

different types of fuel for heating and visited during the winter months 

when carbon monoxide was measured in real time within the main living 

area for the duration of one week. Participants were invited to provide a 

blood sample during the week the monitor was in place and also to donate 

a second blood sample during the summer months to allow seasonal 

comparison. Blood samples were analysed both for COHb (a biomarker of 

exposure) and for cyclic CMP (a biomarker of effect). A subset of smokers 

was also recruited for whom environmental measurements were made.

To investigate outdoor benzene, healthy adult males were recruited from 

residences in two different microenvironments of differing urbanicity with 

respect to traffic flow. Benzene and Nitrogen dioxide were measured for a 

period of one month. Residents provided a urine sample which was 

analysed for s-PMA (a biomarker of exposure to benzene).

Results

The mean concentrations of carbon monoxide were low for all non­

smoking residences but were approximately 10 times higher in the homes 

of smokers. In non-smokers the mean concentration of cGMP in blood 

platelets was twice as high for the group using LPG as fuel for heating as 

for the group using gas. Further for the LPG group concentrations of
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cGMP were approximately twice as high in the winter compared to the 

summer.

The mean difference in outdoor environmental concentrations between 

urban and less urban areas in Cardiff was 37% for benzene and 65% for 

Nitrogen dioxide. However this differential was not reflected in the 

concentration of s-PMA, a urinary biomarker of benzene exposure, 

between groups.

Conclusion

The substantial difference in cGMP concentration in blood platelets for the 

group using LPG is unlikely to be caused by carbon monoxide as the 

environmental levels measured were low for this group also. We 

hypothesize that Nitric oxide emitted by LPG heating may be the cause of 

the observed difference in cGMP.

There is a substantial difference in ambient concentrations of benzene and 

nitrogen dioxide between urban and less urban areas of Cardiff. Urinary 

concentration on sPMA however is not sufficiently sensitive as a biomarker 

of exposure at the relatively low concentration of environmental benzene.



AIMS AND OBJECTIVES

The aim of this thesis was to investigate if differential in indoor exposure to 

carbon monoxide or outdoor exposure to benzene leads to a differential in 

associated biomarkers.

Objectives related to this aim were:

1. To measure chronic residential exposure of the elderly to 

Carbon monoxide in homes using different fuels and to examine 

if chronic exposure affects the enzyme cyclic GMP in blood 

platelets.

2. To measure outdoor ambient benzene concentrations in 

residential areas of differing urbanicity, in particular in respect of 

traffic flow, and to investigate if differential exposure is reflected 

in a urinary biomarker of exposure. Ambient Nitrogen dioxide 

which is known to reflect traffic flow was also investigated.
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CHAPTER 1 INTRODUCTION

The quality of outdoor air in the UK has improved considerably over the 

last decade, but it still has a detrimental effect on human health. Further 

to this since people spend the majority of their time indoors, predominantly 

in the domestic setting, the significance to health of indoor sources of 

pollution should also be considered.

1.1 Microenvironments (indoor and outdoor) of exposure to Air 

Toxics

The exposure of the general population to air toxics has been the subject 

of many studies over recent decades. Much of the research has focused 

on the outdoor environment; however there has been an increasing 

awareness of the importance of the role of indoor air pollution on public 

health. This is of particularly significance as the general public spend an 

estimated 70-90% of their time indoors (Crump, 1995, Harrison, 1996, 

Lee, 1997) and one study (Lai, 2004) found that individuals spent only 4% 

outdoors. The determination of an individual’s exposure to an air toxic is 

dependent on the duration of time that they spend in different 

microenvironments and this is of even more significance for susceptible 

groups such as the elderly and those with pre-existing disease who are 

likely to spend the majority of their time in the home. Indoor 

microenvironments contain in general, concentrations of the pollutant in 

lower concentrations than outdoors. However the presence of indoor 

sources can lead to increased indoor concentrations of certain pollutants,
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depending on the level of ventilation. If there is a high ventilation rate then 

the accumulation of indoor pollutants is reduced although conversely 

higher penetration of outdoor pollutants is expected to the indoor 

environment. It cannot be assumed that the indoor air is ‘cleaner1 than the 

outdoor air. (Chan 2002).

The landmark Harvard Six Cities Study which studied outdoor pollution but 

which also provided a platform for the understanding of residential indoor 

pollution and its contribution to total personal exposure for a number of 

pollutants. The study used a combination of outdoor and 

microenvironmental monitoring and personal exposure assessment to 

characterise the contributions of various indoor sources to total personal 

exposure (Speizer 1980).

Some of the first measurements of the indoor environment to be made 

were in the 1960’s, h 1965 Biersteker measured Nitrogen dioxide in the 

home finding high levels present in homes with gas fired combustion 

devices. The U.S EPA’s Total Exposure Assessment Methodobgy 

(TEAM) study in the 1980’s provided a model for the comprehensive 

assessment of the contributions of indoor and outdoor exposures to total 

personal exposure. This study concluded that indoor pollution sources 

were generally a far more significant contributor to total personal exposure 

for toxic volatile organic compounds than are emissions released by some 

industrial sources into the outdoor air. Further evidence was provided by

2



1.2 Sources of pollution (indoor and outdoors)

The main sources of domestic indoor pollution can be attributed to fumes 

generated from incomplete combustion associated with heating systems 

and cooking appliances. Alternatively to indoor pollution, the general 

public are also exposed to Air Toxics in the outdoor environment 

generated in the main by vehicular traffic.

Carbon monoxide (CO) -  The main source of CO exposure is from 

incomplete combustion, primarily from road transport but also from 

domestic and industrial sources. Natural background levels of CO range 

between 0.009 and 0.2ppm (0.01 and 0.23mg/m3) (WHO, 1994). In urban 

traffic environments the 8 hour Time Weighted Average (TWA) 

concentrations are generally higher, but generally lower than 17.5ppm 

(20mg/m3) and CO concentrations are generally higher inside vehicles 

than those measured in outdoor air (EPAQS, 1994).

A significant number of UK homes that use gas for cooking have short 

term levels of CO (Ross 1996, 1997) that exceed the World Health 

Organisation (WHO) one-hour time-weighted average guideline of 26ppm 

(30mg/m3) (WHO 1987). Outdoor Carbon monoxide levels can be 

determinants of indoor levels, but the main sources of CO in the home are 

fossil fuelled appliances. Other factors that can influence indoor levels 

include the presence of an attached garage, the proximity to a busy road 

and Environmental Tobacco Smoke (ETS) (IEH, CO, 1998).
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Nitrogen dioxide (N20) -  The main sources of NfeO in the UK are from 

road transport and the electricity supply industry. Nitrogen dioxide is often 

referred to within the group of oxides of Nitrogen (NOx) together with Nitric 

oxide (NO). Indoor concentrations of Nitrogen dioxide in the kitchens of 

homes with gas cookers average, over a year, around 15 ppb (29pg/m3) 

and peak concentrations may be as high as almost 600 ppb (1146pg/m3) 

over an hour. The outdoor concentration of Nitrogen dioxide is the main 

determinant of indoor concentrations in homes without gas cookers, the 

concentrations generally being somewhat lower indoors. In homes with 

such cookers, indoor levels are usually at or above outdoor levels, being 

higher in the winter months when homes are less well ventilated and more 

use is made of gas appliances. Thus people living in homes with gas 

cookers are exposed to more Nitrogen dioxide indoors than those in 

homes without Gas cookers (EPAQS, 1996).

Benzene {Cq He) -  The primary source of Benzene in the UK is from 

domestic and industrial combustion processes, from road transport and 

from cigarette smoke. Mean ambient levels of Benzene in rural areas are 

approximately 0.3ppb (1pg/m3) and 1.5-6.2ppb (5-20pg/m3) in urban 

areas. People living in cities are generally exposed to higher levels than 

those living in the countryside, estimations suggest an average air intake 

of 180-1,300pg/day (assuming a typical concentration range of 2.8- 

20ppb)(Wallace, 1995). In non-smokers the main routes of exposure are 

related to, residence in proximity to traffic, travel in vehicles; refuelling cars
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and passive smoking which all contribute to cumulative exposure, whereas 

smokers receive an estimated 90% of their Benzene exposure from 

cigarette smoking (Lagorio, 1998). An average smoker (approximately 32 

cigarettes a day) takes in about 1.8mg of Benzene per day; this is about 

10 times the average daily intake of non-smokers (ATSDR, 1997). A study 

of 800 persons in eight areas in the US identified that global average 

personal exposure was about 4.6ppb (15pg/m3) with indoor concentrations 

of the order of 3.1 ppb (10pg/m3) and outdoor concentrations 1.8ppb 

(6pg/m3). No effect on personal exposure of living dose to major fixed 

sources of Benzene could be detected. A study looking at geographical 

distribution of Benzene in air in three fixed sites in Italy identified a direct 

relationship between population density and level of contamination, 

confirming the effects of automotive traffic and industrial activities on 

Benzene outdoor pollution. Levels were also higher during the winter 

months.

1.3 Pollutant toxicology, and health effects

Carbon monoxide

Carbon monoxide is rapidly absorbed by the lungs where it combines with 

haemoglobin resulting in the carboxyhaemoglobin concentration rising 

rapidly in the coronary and cerebral arteries. The affinity of human 

haemoglobin for Carbon monoxide is about 240 times greater than for 

oxygen, so CO significantly reduces the capacity of the blood to carry 

oxygen around the body. Carbon monoxide is only eliminated through the
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lungs with the half life in the blood of sedentary adults being about 2-5 

hours. (Meredith, Vane 1988). Displacement of oxygen from haemoglobin 

is the best known property of Carbon monoxide which poisons the body in 

many complex ways (Walker 1999, Weaver 1999, Miro 1998) including 

interfering with various enzymes, binding with myoglobin to form 

carboxymyoglobin which may disturb muscle metabolism, especially in the 

heart and producing oxidative damage to neurovascular epithelium. 

Carbon monoxide is a vasodilator (Marks 1991) and the regulation of 

vascular tone is through a mechanism by which CO activates Soluble 

Guanylyl Cyclase (SGC) (Maines 1997) in a similar way to that of nitric 

oxide. It involves binding and dislocation of its haem-iron to induce a 

conformational change and activation of SGC leads to elevated 

intracellular CGMP, which in turn lead to smooth muscle relaxation 

(Schmidt 1993). In addition, CO is able to bind to the heme moiety of nitric 

oxide synthetase and thereby inhibit NO production. Although the 

vasodilator potential of CO is significantly less than that of NO, the 

resistance of certain vascular beds, such as the hepatic circulation, is 

modulated by CO rather than NO (Suematsu 1996). Carbon monoxide 

poisoning effects many organs within the body, the brain is particularly 

affected, severe poisoning produces permanent pathological changes 

similar to the affects of asphyxia. The heart is at particular risk due to its 

high oxygen consumption and the very high affinity of myoglobin for 

Carbon monoxide, which is approximately 3 times higher than that of 

haemoglobin (Astrup 1972). Those with ischemic or coronary heart
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disease are extremely vulnerable to Carbon monoxide exposure due to 

their inability to increase coronary perfusion, meaning that following 

exposure to Carbon monoxide they may suffer a myocardial infarction or 

even sudden death. The acute effects of Carbon monoxide are well 

documented. The level of risk to an individual maybe increased by the 

duration of the exposure, activity level, a high metabolic rate and their age 

-  young children are particularly susceptible to the effects of CO. Table 1 

shows the effects of acute exposure to CO: -

Duration of exposure
229mg/m3 1145mg/m3 COHb

%
Effects

2 hours 
7 hours

20 minutes 
45 minutes 
75 minutes

2 hours 

5 hours

10
20
30

40-50

60-70

Exercise tolerance reduced 
Breathlessness on exertion, 
headache
Severe headache, weakness, 
dizziness, dimness of vision, disturbed 
judgement, nausea, vomiting, 
diarrhoea, fast pulse rate 
Confusion, collapse on exertion, 
coma, convulsions
Coma, convulsions, slow pulse rate, 
low blood pressure, respiratory failure, 
death

Table 1.1 Acute effects of Carbon Monoxide Poisoning (Indoor Air 
Quality Handbook, 2001)

Repeated exposures to low levels or prolonged low exposure to CO may 

lead to long term damage, and are often misdiagnosed. Symptoms 

include headaches, tiredness, nausea and dizziness
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In controlled human studies involving patients with documented coronary 

artery disease, mean post exposure COHb levels of 3% - 6% have been 

associated with a significant shortening in the time to onset of angina, with 

increased electrocardio graphic changes and with impaired left ventricular 

function during exercise (Allred 1989, Sheps 1997, Adams 1998) Carbon 

monoxide in the home is responsible for a considerable number of deaths 

each year as well as an unknown number of sub-lethal poisonings (Chief 

Medical Officer, WAG, 2007). Many incidents of acute poisoning are 

associated with the use of badly installed, poorly maintained or 

malfunctioning domestic combustion appliances or with the use of such 

appliances, in poorly vented rooms (Bailie 1999). About 50 people die from 

acute Carbon monoxide poisoning in the United Kingdom each year (DoH 

1998) An epidemiological survey of non-intentional acute CO poisoning in 

the West Midlands between 1988 and 1994 demonstrated an annual rate 

of 1.1/100,000 (Wilson 1998). There was a strong seasonal variation 

linked to the use of domestic heaters. The elderly and very young were at 

greatest risk (The Carbon monoxide and Gas safety Society 1997). In the 

UK up to 250,000 gas appliances are condemned annually, and even if a 

small percentage of these are producing significant amounts of CO then a 

large number of people maybe experiencing chronic poisoning with non­

specific manifestations (Turner 1999).
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Nitrogen dioxide

The main effects of exposure to NO2 are to the respiratory system causing 

damage to the lining of the smaller airways. Oxidant injury appears to be 

the main mechanism of action (Samet and Utell 1990). Animal studies 

show a reduction in the efficacy of the lung defence mechanisms, 

including effects on mucociliary clearance, particle removal by alveolar 

macrophages, and immunologic function (Dawson and Schenker 1979, 

Samet and Utell, 1990). As a result there maybe a reduced clearance of 

respiratory pathogens and greater susceptibility to bacterial infections. 

The evidence suggests that exposure to low concentrations over years is 

likely to cause lung damage but specifically with respect to increasing 

susceptibility to infection, concentration is more important than duration of 

exposure (WHO 1987b). Outdoor levels of Nitrogen dioxide are known to 

influence indoor levels but the most significant source of indoor NO2 is 

from gas appliances (IEH, 1996), it has been suggested that short term 

peaks to high levels, such as those which may be experienced in the 

home, maybe important in determining health risks. Long term exposure 

may affect lung function and respiratory symptoms. It can also enhance 

the response to allergens in sensitive individuals. Levels experienced 

within the home could cause ill health including respiratory symptoms, 

susceptibility to respiratory infections, and possible impairment of lung 

function and have an adverse effect on some susceptible groups such as 

asthma sufferers. As there are no symptoms specifically attributable to 

low level NO2 exposure the evidence for an effect must be obtained from
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large epidemiological studies linking health effect to exposure. Since 

exposure to Nitrogen dioxide indoors is often an important contributor to 

the overall exposure of individuals, some studies have specifically 

investigated relationships between such exposure and health. It wasn’t 

until the mid 1970’s that a report carried out by Melia (1977) in the UK 

brought attention to the possible adverse health effects of indoor Nitrogen 

dioxide from gas cooking appliances. It found that children living in homes 

with gas stoves had a higher prevalence rate of respiratory symptoms and 

illnesses than those living in homes with electric stoves. Hasselblad et al 

1992 carried out a meta analysis of 11 studies on children, they found an 

odds ratio of 1 :2  for respiratory illness in children exposed to N02 with 

95% confidence limits of 1.1 to 1.3, implying a 20% increase in the risk of 

respiratory illness corresponding to an increase of 16ppm (30mg/m3) of 

Nitrogen dioxide. However other large studies have failed to replicate 

these results (Samet 1993, Farrow 1997). There are a lesser number of 

adult studies associated with N02 exposure. The use of gas cookers and 

other unvented gas appliances was associated with respiratory symptoms 

and impaired lung function in women but not men in a study by Jarvis 

(1996). Several studies have looked at the possible effects of low 

concentrations of N02 in persons with asthma although with conflicting 

results and no conclusive evidence.
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Benzene

Benzene has been identified as a human genotoxic carcinogen; no 

absolute safe limit has been specified in ambient air. Long term exposure 

to Benzene may result in Leukaemia, although this is normally associated 

with occupational exposure (Agency for Toxic Substances and Disease 

Registry, 1997). Inhalation exposure accounts for more than 99% of 

Benzene exposure in humans. Human inhalation studies have exposed 

individuals to 50-100ppm (160-320pg/m3) of Benzene and indicate that 

approximately 50% is absorbed of which 30% is retained from the inhaled 

dose with the rest being exhaled as unchanged Benzene.

Studies have shown an increased incidence of leukaemia in workers 

exposed to high levels of Benzene. Benzene is readily absorbed into the 

body when breathed in through the lungs, about half of it being retained. 

As it is more soluble in fat than in water, it is distributed in the body to fatty 

tissues including the brain and the bone marrow. In the absence of further 

exposure, Benzene is eliminated by chemical breakdown in the body or by 

metabolite excretion in the urine, 80% being eliminated within about two 

days (DoE 1994). Chronic exposure to Benzene can result in bone 

marrow depression expressed as leukopenia, anaemia and/or 

thrombocytopenia, leading to pancytopenia and aplastic anaemia. The 

main metabolic transformation of Benzene is oxidation by microsomal 

mixed function oxidases to Benzene epoxide, a highly reactive substance 

that can react with nucleic acids. The health effects of environmental 

exposures to low levels of Benzene have not yet been fully elucidated, due
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in part to the incomplete knowledge of the pharmacokinetic effect of 

Benzene in humans (Synder, 1996, Smith, 1996, Bois, 1996) and mainly 

to difficulties in the assessment of exposures at or below the ppm level. 

The concentrations of airborne Benzene associated with an excess 

lifetime risk of Leukaemia are 1/10,000, 1/100,000 and 1/1000, 000 are, 

respectively 5.2ppb, 0.5ppb and 0.05ppb (17, 1.7 and 0.17pg/m3) (WHO 

2002).

1.4 Biomarkers as a tool for assessing environmental exposure

Human biomonitoring is defined as the acquisition of exposure and 

biological effect data through the analysis of cells, tissues, or body fluids 

(Suk, 1996). The biochemical or biological variable measured for the 

purpose of biomonitoring is designated as the biomarker. Biomarkers can 

be useful in confirming toxic exposures, estimating their effects and 

identifying persons most likely to be adversely affected from continued 

exposure. Biomarkers of exposure in isolation do not give an indication as 

to whether an exposure has produced a biologically significant result as 

the same dose in different individuals who maybe susceptible or resistant 

to a given exposure can have different results. Biomarkers of exposure 

which are most commonly used include measuring the level of the 

pollutant in the blood, urine or other body tissue. A biomarker of effect is a 

measurable cellular, physiologic or biochemical alteration within an 

organism caused by an interaction with a pollutant. Biomarkers are an 

accepted tool in identifying occupational exposures, and the use of
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biomarkers in environmental epidemiological studies helps identify 

exposures and effects for environmental toxicants of significance to public 

health. The existence of a proven biomarker of CO (i.e. COHb) and the 

potential of biomarkers of its more systemic effects (e.g. SGC and cGMP) 

provide an epidemiological tool for investigating the potential effects upon 

health of environmental levels. Benzene epoxide can be hydrated by an 

epoxide hydratase and then condensed with glutathione to form 

mercapturic acid and measurement of urinary mercapturic acid (s-PMA) 

has been demonstrated to provide a reliable indicator of Benzene 

exposure.

1.5 Air Pollution standards

The UK Environment Act (1995) required the devolved administrations of 

Scotland, Wales and Northern Ireland to produce a National Air Quality 

Strategy containing standards, objectives and measures for improving 

ambient air quality. Since the adoption of the first Air Quality Strategy in 

1997 air quality has generally improved in the UK, with an estimated 

reduction of more than 4,200 premature deaths and 3,500 hospital 

admissions per year.

Standards relating to the effects of different pollutants on human health 

are set following advice from scientific and medical evidence. The World 

Health Organisation (WHO) published air quality guidelines in 1987, and 

have published revisions approximately every 5 years since. In the UK,
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the Expert Panel on Air Quality Standards (EPAQS) report on pollutants of 

national importance. Table 1.2 shows the standards in place within the UK 

for the pollutants of interest. These standards relate to both indoor and 

outdoor exposure. There is not an environmental standard in place for 

Nitrous oxide alone, there is an occupational standard but this far exceeds 

any levels that would be expected outside the workplace.

Pollutant Applies Objective Concentration 
measured as

Date to be achieved 
and maintained 
thereafter

Nitrogen
dioxide

UK 2 0 0 pg/m3 

not to be 
exceeded 
more than 
1 0  times a 
year

1 hour mean 31 December 2005

UK 40ug/m3 Annual mean 31 December 2005

Benzene UK 16.25pg/m3 Running annual 
mean

31 December 2003

England
and
Wales

5pg/m3 Annual average 31 December 2010

Scotland
and
Northern
Ireland

3.25pg/m3 Running annual 
mean

31 December 2010

Carbon
monoxide

UK 1 0 mg/m3 Maximum daily 
running 8  hour 
mean

31 December 2003

Table 1.2 National Air Quality Objectives (AQS 2007).
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1.6 Purpose of the research

One epidemiological study investigated chronic exposure to CO in the 

homes of elderly people using different fuels for heating. This aimed to 

explore if different environmental levels caused different biological effects 

as measured by cGMP in blood platelets.

A second epidemiological study investigated the environmental 

concentrations of NCfe, N2O and Benzene in urban microenvironments of 

differing traffic flow. It also aimed to measure if microenvironment 

exposures determined personal uptake of Benzene and N2 O.
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CHAPTER 2

Population exposure and effects from the primary pollutants CO, 

Benzene and Nitrogen dioxide

This chapter describes the main exposure sources from the primary 

pollutants Carbon monoxide, Benzene and Nitrogen dioxide. It also 

explores the health effects from the pollutants and where identified the 

biomarkers of exposure and effect.

2.1 Carbon Monoxide

2.1.1 Outdoor Carbon Monoxide

The main source of Carbon monoxide in the UK is road transport which in 

1997 accounted for almost 75% of the UK total CO emissions (Chaitman, 

2000). Annual emissions of Carbon monoxide have fallen 33% between 

1990 and 1997, due partly to stricter environmental controls.

Natural background levels of CO, in rural areas, range between 0.009ppm 

and 0.2ppm (0.01 -  0.23mg/m3), (WHO, 1994). Long term average 

outdoor levels of CO in the UK vary depending on the level of urbanisation 

and climatic conditions. In the UK Carbon monoxide is measured at 61 

automatic monitoring stations. In Wales, in 1997-1998 the maximum 

hourly Carbon monoxide reading was 12ppm (14mg/m3) and the largest 

annual mean was recorded in Cardiff at 0.78ppm (0.9mg/m3) (Welsh Air 

Quality Forum, 2000).
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Combustion engines are designed to operate efficiently when there is just 

enough air to oxidise the Carbon in the fuel. More Carbon monoxide is 

produced when the engine is cold, badly tuned or movi ng slowly; therefore 

levels of Carbon monoxide are more likely to be higher close to busy 

roads in urban areas. Roadside air quality is affected by changes in traffic 

density with time, vehicle type, vehicle composition, terrain and 

meteorological conditions.

2.1.2 Indoor Carbon Monoxide

In the home, exposure occurs from heating and cooking sources which 

have been badly installed, poorly maintained or sited in poorly ventilated 

rooms as well as from environmental tobacco smoke (ETS) (IEH, 1998).

Raw et al (2004) carried out a study for the Building Research 

Establishment (BRE) looking at exposure to air pollutants in English 

homes. A total of 876 homes were recruited through the Survey of English 

Housing (SHE) with monitoring being conducted over a full year to identify 

any seasonal differences. Carbon monoxide levels were monitored over 2 

weeks in the kitchen and bedroom using Draeger colorimetric diffusion 

tubes (the manufacturer of the tubes had tested the tubes for 

measurement of low concentrations of CO over a period of up to 15 days 

and claimed an accuracy of ±50% for a single tube reading. Carbon 

monoxide results were obtained for 830 homes, the geometric mean levels 

recorded in the kitchen were 0.41 ppm (0.47mg/m3) with a range of 0.008 -
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3.88ppm (0.01-4.45mg/m3) and in the bedroom 0.34ppm (0.39mg/m3) with 

a range of 0.008 -  3.4ppm (0.01-3.9mg/m3). Season was also shown to 

have a significant effect on the CO levels, with higher levels in the autumn 

and winter than in the spring and summer, possibly due to greater use of 

fossil fuels during the colder months and less natural ventilation as shown 

in Table2.1:-

Kitchen CO Spring Summer Autumn Winter
Gas cooking 
including gas 
oven

0.61 0.51 0 . 8 8 1.06

Gas cooking, no 
gas oven

0.41 0 .2 0 .6 0.57

No fossil fuel 
cooking

0 .2 0.14 0.44 0.39

All kitchens 0.35 0.27 0.59 0.62

Table 2.1 CO (mg/m3) by season and cooking fuel (Raw, 2004).

The study also looked at the CO levels in relation to the area the homes 

were located. There was a significant difference between areas with CO 

levels being significantly lower in rural areas compared to suburban and 

central urban areas. Taking rural areas as a baseline, it was calculated 

that CO exposure in the home is almost doubled by living in a central 

urban area.

Ross et al (1996) carried out continuous monitoring of Carbon monoxide in 

fourteen homes in the UK, over a period of one week. Six of the homes 

used gas appliances only, 2  used electricity only and 6  used a
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combination of gas and electric cooking appliances. Weekly average 

readings were calculated. Levels recorded in the kitchens of the homes 

using gas appliances were 0.3 -  2.4ppm (0.3 -  2.7mg/m3). In the kitchens 

of the homes where gas cooking was not used the levels ranged between 

0.7 -  0.8ppm (0.8 -  0.9mg/m3). In the homes with gas cookers the levels 

recorded in the living room ranged between 0 . 2  -  2 .2 ppm (0 .2  -  

2.5mg/m3). Whilst levels of indoor CO are generally low, badly installed or 

malfunctioning appliances can make dramatic increases to the measured 

levels. The study reported one home with a maximum 1-min average 

concentration of 59.8ppm (68.5mg/m3) in the kitchen and 106ppm 

(121.4mg/m3) in the living room and the levels were linked to a 

malfunctioning boiler.

Wiech et al (1995) looked at 40 households. Carbon monoxide monitoring 

was carried out using Draeger passive diffusion tubes. The reported 

results of the average indoor readings of CO v\ere highest in the living 

room 0.21 ppm (0.24mg/m3) followed by the bedroom 0.18ppm 

(0.21 mg/m3). All levels were below 3ppm (3.4mg/m3).

Aim et al (1999) looked at personal CO levels in 194 pre-school children in 

Helsinki. Children carried a personal monitor with them for 20-24 hours at 

a time, collecting exposure data for 1-4 days excluding weekends. 

Monitoring was carried out over a 24 -week period from autumn to spring. 

A total of 449 personal exposure measurements were made, although only
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302 measurements (from 167 children) were of value due to problems with 

the monitoring equipment. Information was also collected on location of 

their home, cooking appliance, fireplace, ventilation and heating and the 

present smoking status of the parents. Half of the children lived in the 

suburban area and half lived downtown and who commuted by car or bus 

or walked. The mean level of the 1 hour and 8  hour exposure levels were 

5.24 and 2.88ppm ( 6  and 3.3 mg/m3). The WHO limits were exceeded for 

2% of the children for the 1 hour exposure level and 4% for the 8  hour 

exposure limit. During November and December the 8  hour ambient air 

quality giideline was exceeded during three days in two inversion 

situations. The children who were taken to school by car or public 

transport had higher peak exposures than those who walked to school. A 

Gas stove at home, parents smoking and living in high- rise buildings all 

increased the children’s CO exposure. Children who had fireplaces at 

home unexpectedly had lower averages than those homes without 

fireplaces, the author suggested that whilst these fireplaces were rarely 

used they were indicators of larger and more expensive dwellings in better 

environments. It was also reported that mechanically ventilated homes 

had lower levels than naturally ventilated homes, and there was little 

difference between home location (suburban vs. downtown).

Croxford et al (2005) as part of the UK Government Fuel Poverty 

programme monitored 56 homes for Carbon monoxide in 3 UK cities. The 

homes were selected as part for the fuel poverty programme so a higher
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incidence of problem gas appliances emitting a higher than average 

amount of CO than the general population might be expected. To fulfil 

inclusion criteria, occupants of the homes were either on income support, 

over 60 years old or a single parent family and were eligible to receive 

central heating systems under the Warm Front programme. Battery 

powered data loggers with electrochemical sensors to detect CO were 

specifically built for the study. The loggers monitored every minute and 

were fixed to record fifteen minute average readings. The loggers were 

positioned at head height of a seated adult, within the main living area of 

the home. The monitoring period ranged from 1 week in 4 homes, 2 weeks 

for 2 homes and the remaining 50 homes were monitored for 4-5 weeks. 

Out of the 56 homes monitored 13 (23%) had Carbon monoxide levels that 

exceeded the WHO 8  hour guidelines for outdoor ambient air (8 .6 ppm 

(9.85mg/m3)) at least once, of these 6  exceeded the WHO 1 hour level of 

25ppm (28.64mg/m3) and 3 exceeded the 30 minute guideline of 50ppm 

(57.8mg/m3). As a result of the findings a CO gas safety expert was 

employed to investigate 1 0  of the 13 homes where levels had exceeded 

guidelines. The report showed high levels were due to old, poorly installed 

and poorly maintained gas fires and gas cookers.

Laquatra et al (2005) reported on indoor air quality in homes and child 

care facilities in New York State. The study looked at rural areas, counties 

were randomly selected based on a cluster analysis including housing 

characteristics, number of occupants and proportion of houses built prior
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to 1979 and between 1980 and 1989. The total sample size was 328. A 

telephone survey was carried out to determine further characteristics and 

monitoring was carried out in 132 homes during the heating season 2 0 0 0 - 

2001. An additional 24 child care facilities were monitored. Carbon 

monoxide was measured with a Bacharach sample draw Carbon 

monoxide analyser for 10-15 minutes in the central living area of each 

household. Levels of CO monitored in the living room ranged from 0- 

9ppm (0 -  10.31 mgAn3) with a mean level of 0.39ppm (0.45mg/m3). The 

results showed a significant and negative correlation between income and 

Carbon monoxide levels in the kitchen. Lower income households were 

more likely to have older cooking appliances that had not been maintained 

and poor ventilation was also identified.

Outdoor levels of CO can influence indoor levels through influx of outdoor 

air into the indoor environment. In regard of total exposure, indoor 

sources can account for a larger proportion than traffic. pPAQS, 1994) 

although the limited data generated in the UK suggest that levels of indoor 

and outdoor CO are comparable (Harrison et al, 1988).

A Minnesota study found the presence of an integral garage increases the 

likelihood of Carbon monoxide exposure into the home from vehicle 

exhausts, the problem is exacerbated in the winter when engines are 

colder and run for longer to warm up. (Minnegasco, 1997).
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Environmental Tobacco Smoke

Mannino et al (1997) looked at ETS exposure in the home, results showed 

that 89% of people in the US aged 6  and above had levels of cotinine, 

which is a marker for ETS in their blood greater than 5ng/dl. The 

percentage of American children exposed to ETS in the home has 

decreased from 62% in 1970 to 37% in 1991. The study used data from 

41,638 adults 18 years and older from the 1991 National Health Interview 

Study.

Kirk et al (1988) carried out a study looking at environmental tobacco 

smoke in a range of smoking and non smoking environments in the UK. 

The study was carried out over 10 weeks, with 2912 samples being taken 

in the home (14%); at work (25%); at leisure (27%) and during travel 

(29%). Carbon monoxide was actively sampled over 20 minute periods 

with data being logged every 2  minutes: -

Sampling situation Smoking environment Non-smoking
environment

Travel 3.3 (2.9) 3.1 (2.7)
Work 2.5 (2.8) 2.4 (2.1)
Home 2.6 (2.3) 2 .1 (1 .8 )
Leisure 3.2 (2.8) 2.5 (2.2)

Table 2.2 Overall mean levels of Carbon Monoxide in mg/m3 (ppm) for 
particular sampling situations. (Kirk et al, 1988)

There were no significant differences between smoking and non-smoking 

environments for any of the sampling situations (p>0.05), suggesting that
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indoor levels of CO are generally determined by other sources, but in all 

cases, CO is higher in smoking environments.

Guerin et al 1992 looked at field studies of CO concentrations in smoking 

and nor>smoking locations. Mean concentrations of CO in the air of 

offices where smoking was permitted ranged from 1 .2 -  2 .8 ppm compared 

to offices where smoking was not permitted 1.2- 2.5ppm. In restaurants 

and cafeterias permitting smoking CO levels ranged from 1.2 -  9.9, 

compared with 0.5 -  7.1 ppm where smoking was not permitted.

The BMA has been instrumental in the demand for the banning of smoking 

in the workplace and public areas, following the example set by the Irish 

Government. People in lower socioeconomic groups and workers in the 

hospitality industry are disproportionately exposed to other people’s 

smoke and therefore the risk of lung cancer. (BMA 2004). Following the 

smoking ban in Ireland a survey carried out by the national quit line 

service has reported that 33% of smokers have given up smoking. (ASH) 

A full UK smoking ban in public places and work premises came into place 

on the 1st July 2007.

2.1.3 Standards

The World Health Organisation (WHO) has in place a one hour guideline 

for Carbon monoxide of 26ppm @0mg/m3) and an 8 -hour guideline of 

8.73ppm (1 Omg/m3) (WHO, 1987).

24



The environmental health criteria used for the recommendation for an 

exposure limit for the general population, were based on two groups: 

effects on non-smoking subjects with coronary artery disease exposed to 

Carbon monoxide while exercising and the potential effects on foetuses of 

non-smoking pregnant mothers exposed to ambient sources of Carbon 

monoxide. The principal cause of Carbon monoxide induced effect at low 

levels is thought to be increased carboxyhaemoglobin formation. After 

reviewing the large amount of evidence on the health effects of Carbon 

monoxide, the Expert Panel on Air Quality Standards (EPAQS) panel 

concluded that the people most susceptible to exposure to Carbon 

monoxide are those with angina and disease of the coronary arteries. The 

evidence suggests that the lowest level of carboxyhaemoglobin at which 

effects can be detected in such people lies between 3 and 4%. (EPAQS) 

have therefore concluded that ambient atmospheric concentrations of 

Carbon monoxide should be such that the concentration of 

carboxyhaemoglobin in the blood of people breathing that air over a 

prolonged period should not exceed 2.5%, thus allowing a safety margin. 

Exposure limits are therefore derived on the basis of carboxyhaemoglobin, 

with a recommendation that a carboxyhaemoglobin level of 2 .5 % should 

not be exceeded. It is possible to relate blood carboxyhaemoglobin levels 

to atmospheric concentrations of Carbon monoxide by use of 

mathematical formulae, this is a complex mathematical formula (Coburn- 

Forster-Kane (CFK) equation) (Bruce and Bruce, 2003). This relationship 

shows that carboxyhaemoglobin concentrations would be kept below 2 .5 %
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when breathing the folowing concentrations of Carbon monoxide at 

maximum levels of activity:

Concentration 
of CO (in ppm)

Time
(hours/minutes)

1 0 8

25 1

50 30
87 15

Table 2.3 EPAQS, 1994

The EPAQS recommended an Air Quality Standard for Carbon monoxide 

in the United Kingdom of 10 ppm; they recommended that a running 8 - 

hour average be used for the Standard.

Kuller et al (1983) reviewed the epidemiological bases for the CO 

standards set by the US Environmental protection Agency (EPA). The 

ambient standard is based on the effects of elevated carboxyhaemoglobin 

levels on the cardiovascular system and behavioural responses. The 

ambient standard is set at an 8 hour annual average of maximum of 9ppm 

(10.31 mg/m3), with a maximum 1 hour level of 35ppm (40.1 mg/m3).

2.1.4 Health Effects

2.1.4.1 Endogenous CO production, and carboxyhaemoglobin

Carbon Monoxide is endogenously formed from the catabolic degradation 

of heme. As red cells age they are removsd from circulation and their 

heme is degraded. The body naturally produces small amounts of CO
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when the enzyme haem oxygenase-1 (HO-1) breaks down haem. Heme 

degradation begins with oxidative cleavage and the methenyl bridge 

Carbon between porphyrin rings is released as CO. The major site of 

haem breakdown and therefore of production of endogenous CO is the 

liver. CO will form a resilient heme ligand and approximately 1% of 

hemoglobin’s oxygen binding sites are blocked by CO from endogenous 

sources even in the absence of any air pollution. The COHb level from 

endogenous CO formation, on average amounts to 0.7% corresponding to 

approximately 4ppm (4.58mg/m3) of CO in exhaled air (Coburn, 1979, 

Benowitz, 1983). Pregnant women also show a substantial increase in 

endogenous CO production related to an increase breakdown of red blood 

cells, this rapidly drops following delivery (Aubard 2000).

Inhaled Carbon monoxide binds to haemoglobin in red blood cells to form 

carboxyhaemoglobin, reducing the oxygen carrying capacity of 

haemoglobin and reducing the delivery of oxygen to the heart and other 

tissues (Chaitman, 2000). The affinity of haemoglobin for Carbon 

monoxide is 200-250 times that for oxygen (Stewart, 1976). 

Approximately 85% of the absorbed Carbon monoxide binds with 

haemoglobin to form carboxyhaemoglobin. The remaining 15% CO is 

distributed extravascularly. The concentration of COHb in blood correlates 

with the inhaled dose of Carbon monoxide that a person has breathed in 

and therefore is a useful biomarker of exposure. Carboxyhaemoglobin 

diffuses rapidly across the alveolar and capillary membrane and more

27



slowly across the placental membrane. Levels fluctuate in females during 

the menstrual cycle.

During an exposure to a fixed ambient concentration of Carbon monoxide, 

the carboxyhaemoglobin concentration increases rapidly at the onset of 

exposure and starts to level off after 3hours and approaches a steady 

state after 6 - 8  hours.

The most important variables determining the COHb level are Carbon 

monoxide concentration in inhaled air, duration of exposure, alveolar 

ventilation, health status and metabolic characteristics of the exposed 

individual. COHb can be used as a biomarker of exposure but is 

dependent on a number of assumptions including activity patterns, 

exposure duration and pre-existing susceptibility. It is also less precise as 

an indicator at low levels of CO, especially taking into consideration 

endogenous CO production
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Blood
carboxyhaemoglobin 
levels %

Observed health effects

2.5-4.0 Decreased short term maximal 
exercise duration in young 
healthy men

2.7-5.1 Decreased exercise duration due 
to increased chest pain (angina) 
in patients with ischaemic heart 
disease

2 .0 -2 0 . 0 Equivocal effects on visual 
perception, audition, motor and 
senorimotor performance, 
vigilance, and other measures of 
neurobehavioural performance

4.0-33.0 Decreased maximal oxygen 
consumption with short term 
strenuous exercise in young 
healthy men

20-30 Throbbing headache

30-50 Dizziness, nausea, weakness, 
collapse

Over 50 Unconsciousness and death

Table 2.4 Human health effects of exposure to Carbon monoxide 
(EPAQS, 1994)

On ending a period of exposure, the decline in COHb concentration 

depends on the rate of Carbon monoxide release from haem proteins, 

alveolar ventilation, oxygen concentration in inhaled air, duration of 

Carbon monoxide exposure, and the level of COHb saturation. The 

formation of COHb is a reversible process, but because of the tight binding 

of Carbon monoxide to haemoglobin, the eimination half-life while 

breathing room air is 2-6.5 hours depending on the initial COHb level. The 

elimination half-life of COHb is much longer in the fetus than in the 

pregnant mother. (WHO 2000)
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Exposure situation COHB % non- 
smokers

Measured values

Urban background exposure 0 .8

Point-duty police (after 3 hours 1.9
in busy street)
Others on foot in busy street 1 .2

Cyclists (city streets) 1.7
Motorists 1 .8

Staff in parking garages 2.4
Staff in custom sheds, ferries 1.3

Table 2.5 Mean blood carboxyhaemoglobin levels in persons exposed 
to Carbon monoxide

Lambert et al (1988) looked at the application of end expired breath 

sampling to estimate COHb in community air pollution exposure 

assessments. Twenty-eight males (39 -  72 years old) with ischemic heart 

disease gave breath and blood samples. Breath samples were analysed 

using an IL282 CO-Oximeter. 112 samples were obtained, CO ranged 

from 2 -  13.3ppm (2.29 -  15.24mg/m3)) in non-smokers and 6.1 -  

36.7ppm (6.99 -  42.04mg/m3) in smokers. COHb ranged from 0.4 -  3.2% 

in non-smokers and 2 .5- 6.7% in smokers.

2.1.4.2 Effects on Guanylate Cyclase and cyclic GMP 

production

It is only recently that the intracellular mechanisms for the actions of CO 

are beginning to be understood. It is known that CO binds to the iron of 

heme proteins and affects several intracellular signaling pathways, t has
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been shown to interact with guanylate cyclase which generates cyclic 

guanosine monophosphate (cGMP) (Kapturczak-Hill 2005).

Cyclic Guanosine IVbnophosphate (cGMP) is a cyclic nucleotide derived 

from Guanosine Triphosphate (GTP). cGMP acts as a secondary 

messenger, most notably by activating intracellular protein kinases in 

response to the binding of membrane-impermeable peptide hormones to 

the external cell surface. cGMP is a common regulator of ion channel 

conductance, glycogenolysis, and cellular apoptosis. It also relaxes 

smooth muscle tissues and in blood vessels. Relaxation of vascular 

smooth muscles lead to vasodilation and increased blood flow. Hence, 

Carbon monoxide can be considered a vasodilator similarly to nitric oxide 

(Marks 1991) regulating vascular tone through a mechanism by which it 

activates Soluble Guanylyl Cyclase (SGC) (Maines 1997). This involves 

binding of its haem-iron to induce a conformational change and activation 

of SGC leads to elevated intracellular cGMP, which in turn leads to 

smooth muscle relaxation (Schmidt 1993). It should be noted that several 

conditions have been identified as leading to increased levels of cGMP 

including various types of premalignant disease, cardiovascular disease, 

pre-eclampsia, the luteal phase of the menstrual cycle and during and 

after normal pregnancy. The biokinetics of cGMP are also influenced by 

physiological factors and pharmacological agents. Endogenous CO has 

also been shown to stimulate cGMP production (Verma et al 1993). 

Snyder et al (1998) proposed that CO similarly to nitric oxide regulates
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some of the body’s functions including contraction of the intestines and 

emptying of the stomach.

The use of cGMP as a pathophysiological marker of CO poisoning 

requires detailed knowledge about its cellular biokinetics. Activation of 

guanylate cyclase is often due to the action of nitric oxide but can also be 

initiated by CO. In terms of CO poisoning binding of guanylate cyclase 

results in the increased production of cGMP. Cyclic GMP production 

results in excitatory neurotransmitter production and cerebral vasodilation, 

clinically the observed effects are fainting and neurologic injury. This has 

been demonstrated in an animal model of CO poisoning (Verma et al 

1993).

Hernandez-Viadel et al (2004) found that chronic exposure of rats to a 

daily dose of 450-500ppm (515.5 -  572.8mg/m3) of CO for 6  hours per 

day, 5 days per week over the period of one month ddn’t change the 

content of cGMP in the cerebellum, whilst acute exposure of two groups of 

rats to 2400ppm (2749mg/m3) for 1 hour and 2400ppm(2749mg/m3) for 7 

days to CO resulted in a decrease of cGMP content in the cerebellum and 

reduced activation of soluble guanylate cyclase by nitric oxide. Acute 

exposure effects were stronger at 7 days than after 24 hours exposure 

suggesting that this delayed impaired modulation of soluble guanylate 

cyclase by nitric oxide may contribute to delayed memory loss and 

cognitive impairment in humans exposed to Carbon monoxide.
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Van Bel et al (2005) investigated whether Carbon monoxide mediated 

cGMP production was responsible for low blood pressure in neonatal 

respiratory distress syndrome. Infant RDS involves inflammatory 

processes causing an increased expression of inducible heme oxygenase 

with subsequent production of CO, the authors hypothesised that 

increased production of CO during RDS may be responsible for increased 

plasma levels of vasodilatroy cGMP. 52 infants were studied (31 with 

RDS, 21 without RDS), COHb and cGMP levels were determined at 0, 

12,48,72 and 168 hour intervals. Infants with RDS had higher levels of 

cGMP compared to infants without (p<0.001) and higher levels of COHb 

(p=0.0001). Multiple linear regression analysis showed a statistically 

significant (r=0.77, P<0.002) correlation between cGMP and COHb, with 

an overall increase of 50nmol/l of plasma cGMP per 1% increase of 

COHb.

Flo et al (1995) looked at a number of variables affecting cGMP. The 

study looked at some aspects of the cGMP transport in human 

erthrocytes. Vanllffelen et al (1996) found that CO caused a rapid and 

transient increase in the intracellular level of cGMP, and they suggested 

that CO acts as a biological signal in the immune system.

Some results indicate that cold exposure causes an increase in the 

release and metabolism of catecholamines. Prikryl et al (1982) looked at 

the effects of cold stress on cGMP in hardened and unhardened men.
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Two groups of men were studied, hardened (trained athletes) and 

unhardened (non athletes). All subjects had baseline venous blood 

samples taken; they were then exposed for 1 minute in a swimming pool 

(water temperature 7°C and outdoor temperature of S’C). Immediately 

after exposure a second venous blood sample was taken. cGMP 

increased only in the unhardened subjects.

Leppert et al (1995) looked at the effect of cold exposure on healthy 

women and women with Raynaud’s phenomenon. The study investigated 

whether healthy women had the ability to increase cGMP during cold 

exposure whilst women with Raynaud’s phenomenon do not. The healthy 

group consisted of 21 females, with the Raynaud’s group consisting of 24 

females. Baseline venous blood samples were taken; the subjects were 

then covered from chin to feet in a water-chilled blanket. A second blood 

sample was taken during cold exposure and then a third sample taken 2 0  

minutes after termination of cold exposure. There was no significant 

difference between the groups for baseline cGMP levels. There were no 

significant changes in venous cGMP during the study for the Raynaud’s 

group; however there was a significant increase in the cGMP levels in the 

healthy individuals. The data indicated that whole body cooling triggers an 

endothelial response resulting in an increase in cGMP, which prevents the 

contraction of vascular smooth muscle cells in healthy women.
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2.1.4.3 Epidemiology

Time Series studies

Poloniecki et al (1997) tested for a significant association between outdoor 

air pollution within the preceding 24 hours and emergency hospital 

admissions for circulatory diseases that would be consistent with a causal 

effect of pollution on the previous day. Data was collected on Cfe, N0 2 , 

SO2, CO and black smoke from a background monitoring site in London. 

The CO, N02 and S02 measurements were means of 24 hourly 

measurements. Temperature and humidity data was also collected from 

the meteorological office. 373,556 admissions were studied between 1st 

April 1987- 31st March 1994 (the daily median of admissions was 145). For 

diseases of the circulatory system, international classification of diseases 

9th revision (ICD-9) 390-459 was used. Analyses were performed for the 

combined group and for the following subgroups: - acute myocardial 

infarction, angina pectoris, other ischaemic heart disease, arrhythmia, 

heart failure, cerebrovascular disease and all remaining codes. Single 

Poisson models were analysed for each of the eight groupings, and a 

pollutant was said to be significantly associated with admissions if P<0.05. 

For the single pollutant Poisson models, Carbon monoxide was 

significantly associated with combined circulatory diseases P=0.004 and 

acute myocardial infarction P=0.001. With the single pollutant partial 

models, the associations became undetectable for circulatory diseases for 

CO (P=0.61), although the association with myocardial infarction remained 

consistent (P=0.0005).
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Ballester et al (2001) carried out a similar study looking at the short term 

association between cardiovascular hospital admissions and air pollution 

in Valencia, Spain between 1994-1996. Daily levels of air pollution and 

emergency admissions for cardiovascular diseases in two hospitals were 

examined controlling for the major confounding variables. The catchment 

population for the two hospitals was approximately 400,000 inhabitants. 

The number of daily admissions was obtained from the hospital databases 

and using the categories of ICD-9. Pollution data was obtained from the 

city air pollution monitoring network, The study found a clear association 

between CO and cardiovascular disease admissions; although as there 

was such a high correlation between the pollutants studied (CO, S02 and 

black smoke) the study recognised that it would be difficult to assign the 

potential causal role to an isolated pollutant. But the association was 

significant during the summer months (RR for a 1mg/m3 increase in the 

daily CO concentration of 1.068; 95% Cl: 1.007 to 1.133), which was not 

found during the rest of the year (RR 1mg/m3 CO.0.990; 95% Cl:0.959 to 

1.022). The authors suggest that during the summer months, people 

modify there activities spending greater amounts of time outdoors and 

therefore exposure being more correlated to outdoor levels.

Gouveia et al (2000) carried out a time series study looking at the 

association between outdoor air pollution and mortality in Sao Paulo, 

Brazil. The main source of air pollution in Sao Paulo is from motor vehicle 

emissions. Daily environmental levels of SO2, PM10, CO, Q3 and NO2 were
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available from the Brazilian environment agency. During the study period, 

levels of air pollution were relatively high, with most pollutants exceeding 

the recommended guidelines. The study concentrated on children under 5 

and the adults over 65years old. During the 3 year study, there were 

151,756 non violent deaths of which 49% were the elderly and 10% 

children under 5. The study showed that cardiovascular deaths were 

significantly associated with PM10, SO2 and CO. For respiratory mortality 

in children under 5 positive associations were found for SO2, CO and Q 3 ,  

and the point estimates for these pollutants were higher than the ones 

found in the elderly. In the elderly a 3-4% increase in daily deaths for all 

causes and cardiovascular diseases was associated with increased daily 

averages of particulate matter and Sulphur dioxide from the 10th to the 90th 

percentile. Cardiovascular deaths were additionally associated with 

carbon monoxide (4% increase in daily deaths). For respiratory deaths, 

the increase in mortality was higher (6 %). There was a significant trend of 

risk of death associated with age, with greater risk over 65 years of age. 

Overall the study showed that the effect of air pollution on all cause 

mortality was only statistically significant in people over the age of 65.

Mann et al (2000) also looked at how air pollution affected hospital 

admissions of persons with heart disease. The study covered a 

population of 1,515,776 in Southern California between 1988 and 1995. 

Hourly concentrations of the main pollutants were collected including CO, 

together with daily hospital admissions for Ischemic heart disease (IHD).
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Over the 8 year study period there were 54,863 admissions for IHD. A 

1ppm (1.15mg/m3) increase in 8-hr average of CO was associated with a 

3.6% increase in daily hospital admissions for CHF and a 2.99% change in 

those with a diagnosis of ARR. Analysis was also carried out for >60 

years of age and a 1ppm (1.15mg/m3) increase in 8-hr average of CO was 

associated with a 2.9% increase in daily hospital admissions for CHF. The 

study showed that concentrations of CO (and NO2) below the US National 

Air Quality Standards were associated with admissions for IHD, the 

greatest effects were found for both pollutants and both for the same day 

and 2-day moving average concentrations.

Morris et al (1995) investigated the possibility that low levels of CO may 

have a significant health effect. The study used time series models to 

demonstrate an association between ambient CO and hospital admissions 

for congestive heart failure (CHF) among the elderly in the US.

A number of other studies have found consistent results with a synergistic 

effect of temperature and CO. Pantazopoulou et al (1995) looked at 

hospital admissions for cardiovascular disease and CO fevels in Athens. 

The study found that emergency admissions in Athens for cardiac disease 

were associated with CO in the winter but not the summer. Poloniecki et 

al (1997) also looked at cardiac disease and CO levels in London. The 

study found that combined admissions for cardiovascular disease were
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significantly associated with CO, particularly with myocardial infarction in 

the winter months.

2.1.4.4 Susceptible Groups

The fetus and newborn child are particularly susceptible to Carbon 

monoxide exposure. Fetal circulation is likely to have a higher 

carboxyhaemoglobin level than the maternal circulation as a result of 

differences in uptake and elimination of Carbon monoxide from fetal 

haemoglobin. As the fetus also has a lower oxygen tension in the blood 

than adults, any further drop in oxygen from carboxyhaemoglobin could be 

extremely serious. It is still unknown as to whether chronic exposure to 

Carbon monoxide at ambient levels can compromise the already marginal 

conditions in the fetus (WHO, 1999).

2.1.4.5 Carbon monoxide poisoning

Corgi (2007) reported on the number of Carbon monoxide incidents during 

the period January 2006 to April 2007 within the UK. A total of 102 

accidental poisoning incidents were reported resulting in 50 fatalities and 

causing 218 injuries which were attributable to fossil fuel appliances. The 

overall figures for injuries are likely to be higher due to undiagnosed 

cases. The elderly (60+) accounted for 22 of the fatalities and 32 of the 

injuries. 53% of the incidents reported in 2006 were in the winter months 

(November to February) and there were 24 incidents in January and 

February 2007. The Ffealth Protection Agency annual report 2006/2007
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reported that of the 57,474 telephone enquiries to the National Poisons 

information service, 237 (0.4%) related to concerned suspected exposure 

to Carbon monoxide. No deaths were reported to the service during this 

period (HPA2007).

The Institute for Environment and Health (IEH) report (2001) reviewed 

studies and associations between short term and long term exposures to 

CO in the home and associated acute and chronic health effects. The 

report highlighted that CO symptoms were similar to other ailments and 

that it was highly likely that missed or misdiagnosis of CO intoxication is 

occurring. Other possible health effects that were identified including 

atherosclerosis promotion, changes in immune function and altered 

neuropsychological and neurotransmission functions. The report 

concluded that in some homes CO levels routinely occur that may cause 

chronic health effects particularly among sensitive groups and that there 

was significant cause for concern to increase awareness of 

symptomatology among health care professionals.

Gajdos et al (1991) carried out a 3 year study to investigate the incidence, 

mortality and causes of CO intoxication in France. 735 cases were 

reported that were linked to 291 events. The average incidence was 17.5 

per 100,000. The main mechanisms of poisoning were defective device, 

poor ventilation, or poor evacuation of combustion gases.
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Carbon monoxide poisoning is a leading cause of accidental poisoning 

deaths in America, resulting in over 500 unintentional deaths a year 

(Parmet, 2002). In addition, the US Consumer Product Safety Commission 

estimates that 8,000 to15, 000 people each year are examined or treated 

in hospitals for non-fire related CO poisoning.

2.1.5 Methods of environmental measurement of Carbon monoxide

To enable low cost accurate monitoring of Carbon monoxide, a number of 

studies have empbyed the use of small portable data loggers utilising the 

technology of electrochemical fuel cells. The sensing mechanism relies 

upon the oxidation of the analyte gas at the sensing electrode which 

becomes anodic due to the accumulation of electrons. These may be 

applied to one end of a resistor connected to an inert counter electrode to 

complete the circuit and the output is the voltage developed across the 

load resistor. Croxford et al 2005 reported on the development of the 

ICOM monitoring device which monitors real time values of CO every 

minute and stores an average reading every 15 minutes, with a resolution 

of 0.1 ppm (0.11 mg/m3) and a maximum range of 0-500ppm (0 -  

572.8mg/m3). Experiments were carried out to look at the accuracy at low 

and high concentrations. Even at low concentrations the monitors were 

found to be accurate to ±0.2ppm (0.23mg/m3).

In summary, the literature shows that susceptible groups are particularly at 

risk from chronic low levels of CO. The elderly are at an increased risk of
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heart failure from ambient CO levels, it is suggested that a 1ppm increase 

in CO maybe increasing the level of fatalities, not from hypoxic effects but 

from more sifotle chronic and toxic mechanism. The use of biomarkers of 

effect such as cGMP may he\p to identify those at greater risk.
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2.2 Benzene

Benzene (CeHe) is a constituent of petrol and is released into the 

outdoor environment through automobile exhausts, refuelling and 

through industrial emissions and into the indoor environment through 

environmental tobacco smoke (ETS).

Benzene is not persistent in the environment, it has an atmospheric 

residence time of a few days and undergoes a number of 

degradation and transformation processes in air, water and soil. 

Benzene is ubiquitous in ambient air and most of the general 

population is exposed via inhalation over long periods.

In the UK the main atmospheric source of Benzene is the combustion 

of petrol. Published urban inventories for 2003 estimated that road 

traffic emissions accounted for 90% of Benzene concentrations at 

urban background locations. It is estimated using projected figures 

that by 2010 approximately 500 UK major road links (excluding 

motorways) could still exceed the running annual mean target of 

10ppb (3.25pg/m3) with a maximun predicted concentration of 13ppb 

(4.2pg/m3) in comparison to over 11,000 road links exceeding the 

target in 1999.

In 2004, the estimated emission total from the road transport sector 

for Benzene was 24%. In 2000, the EU maximum Benzene content in
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petrol was reduced to 1% by volume and the current average 

Benzene content in petrol sold in the UK is 0.7% by volume. 

Benzene is also produced during the combustion process from 

aromatics in the petrol. Benzene emissions have been steadily 

decreasing since 1990. The Benzene content of petrol was 

substantially decreased between 1999 and 2004, resulting in a 

corresponding decrease in emissions and due to the introduction 

since 1991 of cars equipped with catalytic converters. Emissions 

from industrial sectors are also falling, but the impact is relatively 

small compared with the changes in the emissions from transport. 

(NAEI report, 2004).

2.2.1 Outdoor Benzene

Over the last twenty years there has been a substantial decline in 

Benzene concentrations, with annual mean concentration in urban 

areas being recorded as below 5ppb (16.25pg/m3). (Air Quality 

Strategy, 1999).

The first long term time series measurements of Benzene in the UK 

were made in the 1970’s using spot measurements in rural locations, 

annual average levels ranged between 0.34 -  0.82ppb (1.11pg/m3 - 

2.63pg/m3). Figures recorded in 1996 were 0.37ppb (1.2pg/m3) and 

0.33ppb (1.07pg/m3) in 1998 at a monitoring site in Harwell, 

Oxfordshire. The national automatic hydrocarbon network provide
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hourly data on Benzene across 14 sites in the UK. In 1998 maximum 

running annual mean concentrations ranged between 0.66ppb 

(2.11pg/m3) in Edinburgh to 1.82ppb (5.82pg/m3) in Southampton. A 

maximum figure of 4ppb (13.2pg/m3) was recorded at a kerbside in 

London.

Site Year Annual mean 
lig/m3 (ppb)

Max RAM* 
pg/m3 (ppb)

Data
capture %

Cardiff East 1994 4.88 1.5 4.94 1.52 94
(urban 1995 3.97 1.22 4.91 1.51 86
background) 1996 3.9 1.2 4.45 1.37 93

1997 3.71 1.14 4.06 1.25 77
1998 3.19 0.98 3.93 1.21 95

Edinburgh 1994 2.28 0.7 2.7 0.83 91
(urban 1995 2.37 0.73 2.37 0.73 90
background) 1996 2.28 0.7 2.6 0.8 95

1997 2.24 0.69 2.37 0.73 62
1998 1.92 0.59 2.11 0.65 94

London 1994 5.79 1.78 6.08 1.87 91
(Roadside) 1995 5.49 1.69 5.79 1.78 91

1996 6.05 1.86 6.57 2.02 95
1997 5.69 1.75 6.14 1.89 92
1998 3.9 1.2 5.69 1.75 87

*Max RAM -  Maximum running annual mean recorded during the year.

Table 2.6 Annual UK Benzene concentration 1994-1998pg/m3 
(ppb) National Air Quality Strategy 2000

An analysis of trends was undertaken for the 6 national automatic 

hydrocarbon sites with more than 5 years uninterrupted data with a 

minimum of 50% data capture in a year. The three sites showing a
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statistically significant correlation between concentration and year

are shown below: -

Site Site type Statistic Years Slope
pg/m3

Estimates of 
95% Cl
Lowest Highest 
Slope Slope

Birmingham
east

Urban
background

Annual
mean

1994-
1998

-0.13 -0.49 0.03

Running
annual
mean

1994-
1998

-0.10 -0.29 0.16

Belfast south Urban
background

Running
annual
mean

1994-
1998

-0.32 -0.84 -0.03

Cardiff East Urban
background

Annual
mean

1994-
1998

-0.32 -0.91 -0.06

Running
annual
mean

1994-
1998

-0.32 -0.45 -0.03

Table 2.7 Long term trends in annual mean and running mean 
Benzene concentrations. (Air Quality Strategy 1999)

Gonzalez-Flesca et al 2002 showed that concentrations taken at 

petrol stations are dependent on traffic density, recovery systems 

operating and location.

In studies that have simultaneously measured ambient, indoor and 

personal levels, the ambient concentrations have been lower 

(Cocheo et al 2000; Bertoni et al 2002).

2.2.2 Indoor Benzene

Sources of Benzene in the indoor environment include environmental 

tobacco smoke, combustion processes and emissions from Benzene
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containing cleaning solvents. There may also be an infiltration of 

Benzene from the ambient air generated from traffic emissions 

(WHO, 2006).

Kim et al (2001) investigated Benzene concentrations in a wide 

range of urban microenvironments including homes. The sampling 

was carried out within a 3km radius of central Birmingham, 12 homes 

were sampled (6 smokers and 6 non-smokers). Sampling was 

conducted between November 1999 and February 2000 using 

adsorbent tubes operated at a flowrate of 40ml/minute. Analysis was 

carried out using a thermal desorber interfaced with a gas 

chromatograph and mass selective detector. A total of 64 samples 

were collected, with a mean concentration of 4.3ppb (13.9pg/m3) in 

the homes monitored.

Environmental Tobacco Smoke

The contribution of smoking to Benzene exposure is substantial. It 

has been estimated that the adsorbed dose of Benzene from 

smoking one cigarette is 40ng (Travis 1990), Wallace et al (1987) 

estimated in their study of exposures to Benzene from active and 

passive smoking that exposure to Benzene maybe increased for the 

approximately 60% of children and non-smokers living in homes with 

smokers.
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2.2.3 Standards

The Air Quality (Wales) Regulations 2000 set the air quality 

objectives for Wales and prescribe the periods within which they 

must be achieved. Figures from the Welsh air quality forum recorded 

that the maximum annual 1-hourly reading was recorded in Cardiff 

with a figure of 11 ppb (35pg/m3), although the running annual 

average for Cardiff was >5ppb (>16pg/m3)(April 1998-March 1999).

The Regulations introduced a second air quality objective for 

Benzene of 5 micrograms per cubic metre or less, when expressed 

as an annual mean, to be achieved by 31 December 2010. The WHO 

is currently looking at proposing an even lower guidance levels in air 

of 0.9ppb (3ug/m3) for Benzene.

Pollutant Objective Measured as To be 
achieved by

Benzene
All Authorities

16.25ng/m3 Running 
Annual mean

31 December 
2003

Benzene
All Authorities 
in England and 
Wales only

5j.ig/m3 Annual mean 31 December 
2010

Table 2.8 Summary of objectives of the National Air Quality 

Strategy

Through the Air Quality Strategy the UK Government has identified 

that it should be the objective of national policy to reduce
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concentrations of Benzene in air to as low as reasonably practicable, 

so that they represent an exceedingly small risk to human health. 

The long term aim is to reduce concentrations of Benzene to 1ppb 

(3.2pg/m3). Further reductions will be achieved through the Auto Oil 

programme by reducing the emissions for vehicles, emissions have 

already been reduced by the reduction of Benzene content in petrol 

to 1% from January 2000. The UK Government also propose to put 

greater controls on emissions from petrol station forecourts during 

the process of storage and distribution.

Gilli et al (1996) studied Benzene exposure in outdoor and indoor air 

and personal exposure at three locations in North West Italy. 

Outdoor concentrations were measured in three locations of varying 

urbanisation in 1991, prior to anticipated changes from leaded to 

unleaded in gasoline and then again in 1994. They also looked at 

the impact of meteorological factors. The study also looked at the 

relationship between outdoor and indoor Benzene pollution and 

personal exposure of residents in Turin. Lastly they also investigated 

the influence of environmental tobacco smoke on the indoor Benzene 

levels measured. Sampling was undertaken for 10 consecutive 24 

hour periods per month from January to December for the urban site 

and during March, May, July, October and December for the 

suburban site. At the rural site samples were taken in January and 

December for a consecutive week. Personal samples were also
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measured using a passive sampler equipped with a sorbent capsule 

containing yanular activated Carbon (GAC). Indoor measurements 

were taken in apartments, with outdoor levels being taken from the 

balcony or window. Personal samplers were attached to the lapel 

with records being kept of all the confined environments visited 

during the day. In addition eighty eight 14 year olds wore personal 

samplers for 24 hours to identify the impact of environmental tobacco 

smoke from their own habits, as well as from parents and 

cohabitants.

The results show a direct relationship between the level of 

urbanisation and the level of Benzene pollution. There is also a 

higher level of Benzene pollution during the winter months. The two 

annual averages measured in Turin, 6.85ppb (21.8pg/m3) in 1991 

and 6.62ppb (21.1pg/m3)in 1994, do not indicate a difference in 

Benzene pollution. During the day personal Benzene contamination 

is higher than the indoor and outdoor levels.

The results showed significant correlations between Benzene, 

Carbon monoxide and Nitrogen dioxide confirming a similar origin 

and atmospheric fate. The data observed from the 88 14 year olds 

showed that exposure to ETS increased indoor Benzene 

contamination and personal exposure. They conclude that human 

exposure to Benzene is due principally to indoor air contamination
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and depends on lifestyle, smoking and home habits including the 

level of ventilation in the home. They also recognised that due to the 

low levels of Benzene in the air, only Benzene biomarkers of 

exposure will allow studies to truly look at the environmental and 

public health concerns.

Whilst it is not possible to estimate personal exposure based on 

environmental concentrations, the analysis of micro-environments 

has provided data on the relative importance of different activities to 

personal Benzene exposure. In 1997, a study in California 

calculated that for non-smoking adults, ambient air concentrations 

contributed 48% to average Benzene exposure, followed by ETS 

(23%) and in-vehicle (16%), residential exposure from attached 

garage with parked vehicle (9%) and direct petrol vapour (4%). For 

smokers, however active smoking made the major contribution (85%) 

followed by ETS (8%), in-vehicle exposure (1%), direct petrol vapour 

(0.7%) and residential exposure from attached garage with parked 

vehicle (0.4%) (Fruin et al 2001).

2.2.4 Health Effects

Exposure to Benzene occurs via inhalation, ingestion and dermal 

contact. Of most concern is the long term inhalation exposure.
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It is not always relevant to extrapolate studies of high Benzene 

exposures to the general population; it is therefore more useful to 

look at occupational exposures to lower Benzene concentrations 

when trying to compare with the rest of the population. Lynge et al 

1997 looked at the incidence of cancers in service station workers 

exposed to petrol vapour containing around 0.2 -  0.3ppb (0.5 - 

1mg/m3) Benzene in Scandinavia, exact concentrations and 

exposures were unknown. The incidence of kidney cancer (SIR=1.3, 

95%CI=1.0-1.7), lung cancer (SIR 1.3, 95%CI=1.1-1.4) and nasal 

cancer (SIR=3.5, 95%CI=1.8-6.1) all were higher than the national 

average.

Hayes et al 1997, carried out a study In China of 74,828 Benzene 

exposed workers and 35,805 unexposed workers between 1972 and 

1987 with the aim to investigating the relationship between the extent 

of Benzene exposure and the level of risk. The results showed that 

for workers exposed to Benzene at average levels of less than 

10ppm the relative risk for all hematologic neoplasms was 2.2 

(95%C 1=1.1-4.2) and for acute nonlymphocytic leukaemia plus 

related myelodysplastic syndromes the relative risk was 3.2 

(95%CI=1.0-10.1). The authors suggest that Benzene exposure is 

associated with a spectrum of hematologic neoplasms and related 

disorders in humans, the risks for these conditions are elevated in
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average Benzene exposures of less than 10ppm (32mg/m3) and 

show a tendency to rise with increasing levels of exposure.

There is sufficient evidence that chronic exposure to Benzene can 

give rise to leukaemia and IARC have classified Benzene as group 1, 

sufficient evidence of carcinogenicity in humans (IARC, 1990).

There is no threshold value below which there is no danger for 

human health from Benzene and a Unit risk excess of 6x1 O'6 per 

ug/m3 is specified by WHO (1996): which means that if one million 

people are exposed to 1 ug/m3 for a lifetime, 6 are expected to suffer 

leukaemia at some point in their lives. However the concentrations 

with which associations with an increased risk of cancer have been 

observed are in the region of 101 ppm (325mg/m3) and above, which 

are several orders of magnitude above ambient concentrations 

(WHO 2000a; IARC, 1987; EPAQS, 1994b).

Harrison et al 1999 studied the incidence of childhood cancer in 

relation to proximity to main roads and petrol stations in the West 

Midlands between 1990 and 1994. Data for Children between the 

ages of 0-15years diagnosed with cancers (ICD-9) were analysed for 

proximity to main roads and petrol stations separately and both 

together. Odds ratios were calculated with solid tumours as a control 

and incidence ratios with population density as a control. Where
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solid tumours were used as the control, the odds ratio was 1.61 (95% 

confidence interval 0.90-2.87) and 1.99 (95% Cl 0.73-5.43) for those 

living within 100m of a main road or petrol station. The general 

population was used as a control, the estimated incidence ratio for 

leukaemia was 1.16 (95% Cl 0.74-1.72) and 1.48 (95% Cl 0.65-2.93) 

for residence within 100m of a main road or petrol station. The 

results suggested a small increase in the risk of childhood leukaemia, 

but not solid tumours for those living within 100m to a main road or 

petrol station, although the increase was not statistically significant.

Reynolds et al 2002 studied children living in California between 

1988 and 1994 and the associated risks of developing cancers in 

neighbourhoods with over 320,700 vehicle miles travelled per day 

per square mile compared to those with below 33,290 vehicle miles 

travelled per day per square mile. The results were 1.08 

(95%CI=0.98-1.20) for all cancers, 1.15 (0.97-1.37) for leukaemia 

and 1.14 (95%CI=0.90-1.45) for gliomas.

Lee et al 2002 examined haematological changes in children.

Subjects aged 8-11 years were recruited from an exposed area 

(petrochemical estate region) and an unexposed area (suburban 

region). Estimates of Benzene exposure were imprecise as 

measures of atmospheric concentrations recorded previously were
i

not consistent. Ambient air Benzene concentrations in the ejposed

54



region were between 1.06 and 53 ppb (3.38 - 169pg/m3)and in the 

unexposed region 0.08 and 6 ppb (0.25 - 19pg/m3). Total white 

blood cell, red cell and platelet counts were lower in children living in 

the exposed region.

2.2.5 Methods of environmental measurement of Benzene

The most accepted method for the measurement of Benzene in air is 

passive absorption using ATD tubes for BTEX compounds (Benzene, 

Toluene, EthylBenzene, Xylene).The ATD tubes are then analysed 

by thermal desorption-gas chromatography-mass spectrometry.

There are a number of sorbents that can be used for the sampling of 

Benzene porous polymers, Carbon molecular sieves and specially- 

constructed Carbons). Chromosorb 106 (Perkin Elmer Ltd) has been 

identified as an appropriate sorbent for diffusive sampling (Muir et al 

2001). Diffusive uptake rates for Benzene on C106 have been 

characterised fully for atmospheric sampling, the estimated diffusive 

uptake rate for Benzene using a Perkin Elmer diffusive sampler 

packed with C106 is estimated as 1.47ng ppm'1 m in1 (Brown 1998).

The Perkin-Elmer ATD stainless-steel tube fitted with the diffusion 

cap is the most widely used thermal desorption tube for diffusive 

monitoring. This system is the standard for such regulatory bodies as 

the UK HSE (Health and Safety Executive) for occupational hygiene 

applications. In diffusive monitoring, one end only of the tube is

55



exposed to the vapours to be sampled, which flow as shown through 

a special cap which has a controlled orifice. Since the dimensions of 

the cap, and the position of the packing, are manufactured to very 

close tolerances each tube performs like every other, thus ensuring 

uniformity of sampling.

soRSShrm»

p t f M M C i p

VAPOHS

Figure 2.1 Schematic of a Diffusive monitoring tube

The sorbent that is exposed to the external vapours establishes the 

uptake rate for the system. Diffusive monitors are filled with a single 

sorbent, that must be strong enough to collect sufficient sample from 

the given atmosphere, and yet not so strong that it is difficult to 

desorb reversibly.

2.2.6 Techniques of Biological Monitoring

Methods exist for measuring Benzene in breath (Gruenke et al 1986). 

The methods are sensitive and accurate for determining exposure 

levels of Benzene at which health effects have been observed to 

occur as well as for background levels in the general population. 

Methods for determination of Benzene in blood are sensitive and with
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the application of GC/MS techniques for the analysis of blood 

samples, rapid, cost effective clinical screening has been developed 

(Volatile Organic Screening Test) demonstrating levels down to 

0.1 ppb. (Antonoine et al 1986), tissues (Bechtold et al 1988).

S-Phenyl Mercapturic acid (s-PMA) and trans-trans-muconic acid are 

minor metabolites of Benzene and urinary measurement of these are 

used for the assessment of occupational exposure to Benzene.

Biomarkers of Exposure

Benzene is primarily metabolised by the liver and it is thought that 

the metabolism of Benzene by hepatic cytochrome P-450 may play 

an important role in the bioactivation and therefore the toxicity of 

Benzene. Following inhalation exposure some Benzene is excreted 

again via exhalation, some is excreted unchanged in the urine and 

some is metabolised. From this information biomarkers of exposure 

have been developed, mainly from occupational exposure in 

chemical workers and outdoor urban workers. (Hotz et al 1997, 

Fustinoni et al 1995; Brugnone et al 1998; Crebelli et al 2001; Gobba 

et al 1997). The method for measuring Benzene in body fluids and 

tissues is gas chromatography in conjunction with either mass 

spectrometry, photoionisation detection or flame ionisation detection.
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Boogaard et al (1996) investigated the suitability of S-Phenyl 

Mercapturic acid and trans-trans-muconic acid as biomarkers for 

exposure to low concentrations of Benzene. The two biomarkers 

were measured in 434 urine samples collected from 188 

petrochemical workers and 52 control workers. Exposure to 1ppm 

Benzene led to a mean concentration in end of shift samples of 21 

mol s-PMA and 1.5 mmol tt-MA per mol creatinine. Of an inhaled 

dose of Benzene, on average 0.11% (range 0.05-0.26%) was 

excreted as s-PMA with an apparent half life of 9.1 hours (standard 

error 0.7) and 3.9% (range 1.9-7.3%)as tt-MA with a half life of 5 

hours (SE 0.5). Due to its longer elimination half-life, s-PMA proved 

a more reliable biomarker than tt-MA for Benzene exposures during 

12 hour shifts. They concluded that s-PMA was superior to tt-MA as 

a biomarker for low level Benzene exposures as it is more specific, 

enabling reliable determination of Benzene exposures down to 

0.3ppm.

The use of muconic acid as a biomarker of Benzene exposure in the 

general population has been problematic in studies of adults and 

children. The ingestion of sorbic acid also produces urinary moconic 

acid (ATSDR 1997; Yu and Weisel, 1996; Amodio-Cocchieri et al 

2001; Barbieri et al 2002). In the study described the urinary 

concentrations of t,t-MA were not able to distinguish subjects with or 

without an occupational exposure to Benzene.
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Matthews et al (2001) investigated the feasibility of using urinary 

phenyl mercapturic acid (s-PMA) as a biomarker for environmental 

Benzene exposure in South Wales. The study looked at two groups 

of residents, one from a high density traffic area, and one from a 

semi rural area. Each participant completed a questionnaire giving 

details on potential sources of Benzene exposure. Each subject also 

supplied a urine sample, environmental monitoring of Benzene was 

undertaken at the same time as the biomonitoring. The mean ratio in 

the low Benzene area (21 participants) was 0.633, in the high 

Benzene area (38 participants) was 0.966 the p value was 0.019. 

The results showed that the participants living in a high Benzene 

area had a significantly higher ratio of umol/mol PMA to creatinine 

than those living in a low Benzene area.

Fustinoni et al (1995) measured blood Benzene concentrations in 

policemen working outdoor shifts (exposed) and indoors 

(unexposed). The 14 indoor non-smoking workers had similar pre 

and post shift measurements (253ng/l and 264ng/l) which did not 

differ significantly to the outdoor subjects. The study did observe that 

the pre shift levels in smokers (358ng/l) were significantly higher than 

in non-smokers (256ng/l). The mean blood Benzene levels in 243 

nonoccupationally exposed subjects (165ng/l) was significantly lower 

than that measured post-shift in 167 workers exposed in petrol 

stations or refineries (mean=420ng/l). Benzene levels in smokers
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were significantly higher than in non-smokers (264 -  123ng/l) for non 

occupationally exposed subjects (Brugnone et al 1998). Perbellini et 

al (1988) selected hospital staff as a non occupationally exposed 

group and recorded a mean blood Benzene level of 269ng/l with a 

mean alveolar air level of 14ng/l. Similar workers had a mean 

alveolar concentration of 21.8ng/l in a study by Brugnone et al (1989) 

and a mean blood concentration of 332ng/l. Blood Benzene 

measured in 155 healthy adult rural subjects was significantly lower 

(200ng/l) than that measured in urban subjects (296ng/l). The rural 

subjects were farmers and unlikely to be occupationally exposed. 

Urban workers measured included several occupational groups with 

potential exposure to Benzene including chemical workers. The 

mean level amongst white collar urban workers was 258ng/l. Further 

analysis revealed that blood Benzene levels were directly 

proportional to the number of cigarettes smoked (Brugnone et al 

1992). Breath concentrations of Benzene were similar in housewives 

living near petrol stations (mean=10.5ng/l) to those living further 

away (11.2ng/l) (Jo and Moon 1999).

In summary, no level of benzene is safe. The largest exposure 

source of Benzene to the general public in the UK is from traffic 

fumes and there is a direct relationship between the level of 

urbanisation and the increased level of atmospheric benzene, there 

is also an increased exposure level during the winter months. To
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enable estimations of health effects on the general population, 

biomarkers of exposure and effect need to be used to identify those 

potentially at higher risk, s-PMA is suggested as the most 

appropriate biomarker of effect for urinary Benzene.

2.3 Nitrogen dioxide

2.3.1 Outdoor Nitrogen Dioxide

All combustion processes in air produce oxides of Nitrogen. Nitrogen 

dioxide (N02), Nitric oxide (NO) and Nitrous oxide (N20) are together 

referred to as NOX. (DETR 2000). In the UK, the highest source of 

Nitrogen oxides is from Road transport (50%), followed by 20% from 

the electricity supply industry and 17% from the industrial and 

commercial sectors (The Air Quality Strategy, 1999). Nitrogen 

dioxide is produced with nitric oxide in large quantities by motor 

vehicles and is a good marker for vehicle generated air pollution 

(COMEAP, 1998).

Nitrogen dioxide concentrations are monitored using automatic 

instruments in 83 national network sites across the UK.

In the 1997 UK National Air Quality Strategy there were two 

objectives for Nitrogen dioxide, an annual mean objective of 21 ppb 

(40pg/m3) and an hourly mean of 106ppb (200pg/m3)- both to be
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achieved by the end of 2005, the AQS 2007 maintained these limit 

values. The EU has also set limits within the Air Quality Framework 

Directive, limit and guide values have been set for the continuous 

monitoring of Nitrogen dioxide. The Limit Value for NO2 is 106ppm 

(200pg/m3) for the 98th percentile of hourly average NO2 

concentrations over a calendar year, (measured using a continuously 

monitoring NOx analyser).

Organisation Guideline
Standard

Description Level
Units
(Mfl/m3)

Department of 
Environment, 
Transport and the 
Regions

Peak hourly 
average
concentration in a 
24 hour period

Very Good <286
Good 286-572
Poor 574-763
Very Poor >=765

World Health 
Organisation

1-hour mean Health guideline 200
Annual average Health guideline 40

European Union 98%ile of hourly 
means

Limit value 200

98%ile of hourly 
means

Guide value 135

98%ile of hourly 
means

Guide value 50

Expert Panel on 
Air Quality 
Standards

1 hourly mean Health Guideline 286

Department of 
Environment, 
Transport and 
Regions

Annual mean UK National Air 
Quality Strategy 
Objective

40

Hourly mean 
(maximum 18 
exceedences)

200

Table 2.9 Air Quality Standards and Guidelines for continuous 
monitoring of Nitrogen dioxide.

In 2005 the UK Air Quality hourly objective for NO2 was exceeded at 

4% of the monitoring stations (four sites), including Marylebone road 

in London which had 853 exceedences. The annual objective was
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exceeded at 29% of the monitoring stations (27 sites, 11 of which 

were non-roadside sites) (AQS, 2007).

The annual objective is expected to be met at all background 

locations across the UK by 2010, although it is not expected to be 

met at roadside locations under baseline conditions by 2020. The 

percentage of total major road length exceeding the objective is 

expected to reduce from 53% in 2003 to 9% in 2020.

The mean of all the 92 monitoring sites where NO2 is measured was 

18ppm (34pg/m3) in 2005. Between 1993 and 2002 the 13 longest 

running sites have shown a decrease of 3.1% per year at urban 

monitoring sites (AQS, 2007).

Levels of Nitrogen dioxide vary widely due to a continuous 

background level being present with additional exposure sources 

adding to the levels found. Levels of Nitrogen dioxide can also be 

very dependent on the weather and more specifically the wind speed, 

in London an approximate halving of NOx was observed with a 

doubling of wind speed from 5 to 10m/s.

Maximum hourly concentrations of Nitrogen dioxide in outdoor air do 

not usually exceed a maximum of 299ppb (564 pg/m3) however 

levels of up to 478ppb (900 pg/m3) have been recorded near to busy
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roads. Annual mean outdoor Nitrogen dioxide concentrations in 

urban areas are in the range 11 -48ppb (20-90pg/m3) (IEH, 1996).

The ADMS modelling indicated that exceedence of both the annual 

mean and 1997 Strategy hourly NO2 objectives are currently 

widespread throughout both Birmingham and Coventry when 

emissions data was modelled using 1994, 1995 and 1996 

meteorological data. The forecast for 2005 suggests that the situation 

will have improved significantly for NO2. This is due in a large part to 

the substantial reduction in vehicle emissions brought about by the 

Auto Oil vehicle emission and fuel quality standards which will have 

cleaned up emissions from the vehicle stock substantially by that 

time.

The London case study (Beevers and Carslaw 1998) used the high 

resolution mapping technique developed by Stedman (Stedman 

1998) to produce ‘background’ concentrations throughout the whole 

London area. Annual average NO2 concentrations were estimated for 

each 2466 1x1 km grid squares in London. These background levels 

were combined with modelled predictions of roadside concentrations 

using the dispersion element of the Dutch CAR International model, 

and information from the London Transportation Study model (LTS) 

on traffic composition, to produce annual average NO2 

concentrations at the roadside. The London case study suggests that 

by 2005, up to 48% of road links assessed by the model would

64



exceed the annual mean NO2 objective. The modelling considered 

the impact that NOx emission reductions would have on 

concentrations. It was found that with a reduction of traffic of 40% 

and a 15% increase in vehicle speed (on a 2005 base); around 16% 

of road links would still exceed the annual mean NO2 objective.

A number of studies (Hutchinson et al 1996, Buckingham et al 1997, 

Buckingham et al 1998) have indicated that road traffic emissions 

dominate Nitrogen dioxide emissions in urban areas and estimate 

that traffic contributes 90% of NOx at urban locations.

The control of public exposure is extremely important. The approach 

adopted in the Strategy is to apply the objectives where members of 

the public are likely to be exposed over the averaging time of the 

objective. This includes roadsides in the case of annual averages, 

but only where there is housing, schools, hospitals etc. along the 

road, and only then at the building facade. Nitrogen dioxide 

concentrations decrease significantly with distance away from the 

immediate vicinity of the road. In central London levels of Nitrogen 

dioxide reach background levels at about 20 to 30m from the middle 

of the road (QUARG 1993). If housing is located away from the 

immediate roadside, Nitrogen dioxide levels will be significantly lower 

than the roadside levels predicted by the models.
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2.3.2 Indoor Nitrogen dioxide

The main indoor sources of Nitrogen oxides are from sources of 

combustion. The greatest risk of indoor pollution occurring is when 

combustion sources are not vented or where the venting system is 

blocked or not working effectively.

The indoor environment contributes more to personal exposure than 

outdoor exposure due to the time spent indoors. High levels of 

Nitrogen dioxide have been shown in British homes (Goldstein 1979 

and Melia 1982) to be associated with gas pilot lights, gas fires, 

paraffin heaters and the use of gas cookers for drying clothes and 

heating. NO2 was measured for one week in the winter outside and 

inside the homes of children aged 6-7 years living and attending 

primary schools in a defined 4 square km area in Middlesbrough, UK. 

Outdoor levels of NO2 measured at 75 points within the area ranged 

from 14-24 ppb (26 - 45pg/m3) weekly average. Measurements were 

also made in 428 kitchens with gas cookers, range 5-317 ppb (9 - 

84pg/m3), mean 112.2 ppb (211pg/m3), and in 87 kitchens with 

electric cookers, range 6-188 ppb (11 - 354pg/m3), mean 18.0 ppb 

(34pg/m3). In a random sub sample of homes the range of NO2 levels 

in 107 children's bedrooms in homes where gas was used for 

cooking was 4-169 ppb (7 - 318pg/m3), mean 30.5 ppb (57pg/m3). In 

18 bedrooms in electric cooking homes the range was 3-37 ppb (6 - 

69pg/m3), mean 13.9 ppb (26pg/m3).
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Raw et al (1992) looked at Nitrogen dioxide exposure during the 

summer in homes in the Manchester area of the UK. Following an 

initial visit, 72 homes were selected (60 with natural gas cooking only 

and 12 with electric cooking only) and passive sampling diffusion 

tubes (Palmes tubes) were placed in the living room, bedroom, and 

kitchen indoors and then a further tube was placed outside the home. 

Personal exposure was also carried out by placing tubes on two of 

the occupants (one who spent the most time in the home and the one 

who spent the most time away from the home); this was carried out 

over a two week period. Data was also collected using 

questionnaires and diaries. As would be expected, outdoor 

concentration was related to area with inner city and suburban being 

higher than rural (mean level for inner city 13ppb (25.3pg/m3); 

suburban 13ppb (23.9pg/m3) and rural 8ppb (14.3pg/m3). The study 

observed that the main influences of Nitrogen dioxide in the home 

relate to the use of gas cooking and the numbers of people in the 

household. The results showed that levels were higher in the inner 

city and suburban areas than the rural areas monitored although 

neither area or outdoor levels affect indoor or personal exposures. 

Approximately 70-75% of the personal exposure was calculated as 

indoor exposure to Nitrogen dioxide.

A British study by Coward and Raw (1996) looked at Nitrogen dioxide 

levels in 174 houses, the kitchen, bedrooms and living room were
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monitored. Levels were highest in the kitchen and lowest in the 

bedroom, with outside levels being a major influence on the levels. 

The main source was from cooking with tobacco smoke and heating 

only having a negligible effect. The size of the household i.e. number 

of occupants was also identified as a factor in the greater levels of 

Nitrogen dioxide measured.

Speizer et al 1980 studied 8120 children aged 6-9 years old in 6 

American cities looking at the effects of respiratory disease and 

pulmonary function associated with NQ2 exposure from cooking and 

heating fuel. A multivariate analysis adjusted for parental smoking 

showed that the type of cooker had a significant association with 

respiratory disease before the age of two. The measures of 

pulmonary function, forced vital capacity (FVC) and forced expiratory 

volume (FEV) were reported to be significantly lower among children 

whose homes had gas cookers as a pose to those with electric 

cookers. The levels recorded by a British study were averaged out 

over a year with results of 15ppb (28.1 pg/m3) in the kitchen where 

gas was used and 8ppb (14.9pg/m3) where electricity was the fuel 

source (Berry 1996).

Harrison et al (2002) investigated the relationship between personal 

exposure monitoring of a range of pollutants including Nitrogen 

dioxide and static measurements for healthy individuals and
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susceptible groups. Eleven healthy adults and 18 susceptible 

individuals (6 schoolchildren, 6 elderly subjects and 6 with pre­

existing disease (2 with chronic obstructive pulmonary disease, 2 

with left ventricular failure and 2 with severe asthma)) were recruited. 

The results showed overall good correlation confirming a close 

relation between personal exposure and the associated 

microenvironment.

Lee et al (2002) investigated levels of Nitrogen dioxide and Nitrous 

acid concentrations in residential areas. Average Nitrogen dioxide 

indoor and outdoor levels were 28 and 20.1 ppb (53 and 38pg/m3). 

Yang et al (2003) carried out multiple measurements of NO2 to 

characterize indoor air quality in Brisbane and Seoul. Daily indoor 

and outdoor NO2 measurements were carried out in 30 houses over 

30 days in Brisbane and in 40 houses over 21 days in Seoul. The 

results for Brisbane indoor air were 2.7 -  33ppb (5.1 -  61.9jug/m3)

mean 12ppb (22.6pg/m3), and outdoor air 4 -  33ppb (7.8 -  

61.6jng/m3) mean 15ppb (29.3pg/m3). The results for Seoul indoor 

air were 10 -  59ppb (18.5 -  111.6pg/m3) mean 31ppb (58.9pg/m3), 

and outdoor air 15 -  74.5ppb (27.5 -  140.4pg/m3) mean 38ppb 

(71.0pg/m3).

Mosqueron et al (2002) investigated personal exposure of Paris 

office workers to Nitrogen dioxide. Sixty two administrative workers

69



(53 female and 9 male, age range 23-61), all non-smoking wore 

passive samplers for 48 hours. Average personal exposure 23ppb 

(43.6pg/m3) was higher than in-home concentration 17.5ppb 

(33.1pg/m3) but lower than ambient levels during the same period 

32ppb (60.1pg/m3). The results showed that on average personal 

exposure was not significantly different from occupational exposure, 

but was significantly higher than in-home concentration (p<0.001) 

and lower than background outdoor concentration (p<0.0001).

2.3.3 Health effects

When inhaled, NOz reacts with the moist linings of the respiratory 

passages to form nitric and Nitrous acids and the production of acids 

within the respiratory system damages sensitive tissues.

Studies have identified respiratory system causing damage to the 

lining of the smaller airways. Oxidant injury has been identified as 

the major mechanism of action (Samet and Utell 1990).

When humans are exposed to 998ppb (1880pg/m3) there is virtually 

no health effect, however exposure to healthy humans at rest or 

during light exercise for less than 2 hours at levels of 2495ppb 

(4700pg/m3) resulted in pronounced decrements in pulmonary 

function.
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2.3.3.1 Epidemiology

Epidemiological studies that have looked at the effects of the mixture 

of air pollutants commonly found in outdoor ambient air have tended 

not to show that Nitrogen dioxide contributes much to the overall 

effects Studies involving exposure to Nitrogen dioxide of both healthy 

volunteers and those suffering from respiratory diseases have not 

consistently revealed effects at ambient conditions. Long term 

exposure may affect lung function and respiratory symptoms. It can 

also enhance the response to allergens in sensitive individuals. 

Levels experienced within the home could cause ill health including 

respiratory symptoms, susceptibility to respiratory infections, and 

possible impairment of lung function and have an adverse effect on 

some susceptible groups such as asthma sufferers. As there are no 

symptoms specifically attributable to low level NO2 exposure the 

evidence for an effect must be obtained from large epidemiological 

studies linking health effect to exposure. (COMEAP, 1998).

2.3.3.2 Susceptible groups

Those that may be more susceptible include children and those 

suffering with conditions such as asthma.

A review of experimental studies showed that 300ppb (560 pg/m3) is 

the lowest observed level that has been reported as to affect the
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pulmonary function of asthmatics with intermittent exercise and 

without a bronchoconstrictor (WHO 1987). Patients with chronic 

bronchitis don’t appear to be more responsive to Nitrogen dioxide 

than are healthy subjects. Concentrations above 2000ppb @760 

pg/m3) raise the airway resistance of normal subjects, while lower 

levels have had effects in some but not all studies.

A meta analysis of 11 studies looking at children e>posed to low 

concentrations of Nitrogen dioxide. The results showed an odds ratio 

of 1.2 for respiratory illness in children exposed to Nitrogen dioxide 

with 95% confidence limits of 1.1 to 1.3, implying a 20% increase risk 

of respiratory illness corresponding to an increase of 16ppb 

(30pg/m3) of Nitrogen dioxide exposure (Hasselblad, 1992). Other 

large studies have not been consistent with these findings (Samet 

1993 and Farrow 1997).

2.3.4 Methods of environmental measurement of Nitrogen 

dioxide

Plaisance et al (2002) investigated the performance and application 

of a passive sampling method for the determination of NO2 in 

ambient air. Palmes tubes were used to measure NO2 and the tubes 

were placed 1.5 metres from the ground for an exposure period of 14 

days. The levels were determined with analysis by ion 

chromatography. Eight batches of tubes were exposed at each site,
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6 exposed and two blanks. Measurements were carried out at 4 

monitoring locations over a period of 10 months. Accuracy of the 

passive sampling method was determined by comparison with a 

chemiluminescent analyser. A high degree of correlation was found 

between the passive sampler and the chemiluminescent analyser. 

The study also looked at the use of a protective shelter for the tubes, 

previous studies had concluded that the diffusion efficiency was 

affected by wind-induced turbulence (Campbell, 1994, Hargreaves 

1989). The protective device was in the form of a cylinder with two 

inlets/outlets allowing a good circulation of air without turbulence 

around the tubes. The study collected 145 measurements over an 

area of 300km2 with 1 tube per km2 in urban areas and 1 tube per 4 

km2 in surburban and rural areas, all measurements were at least 50 

metres from significant sources of air pollution. The detection limit for 

NO2 over the two week period was estimated at 1.22ppb (2.3pg/m3). 

The background NO2 pollution was 21 -  24ppb (40-46pg/m3) in urban 

areas. The average NO2 level measured for all sites was 22.7ppb 

(42.8pg/hi3) and the average level measured by the 

chemiluminescent analyser in the urban areas was 23ppb (43pg/m3) 

indicating a good comparison between the monitoring techniques.

In summary, Nitrogen dioxide is a good environmental marker of 

traffic pollution. Susceptible groups including children and asthmatics 

are particularly effected by increased levels of nitrogen dioxide.
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CHAPTER 3 METHODS

This chapter describes the selection of homes and individuals in 

order to achieve the objectives listed on page xv above. The 

objective was to test the hypothesis that in homes using different 

types of fuel for heating, the levels of cyclic guanosine 

monophosphate in blood platelets would differ as a consequence of 

differing CO exposure. Therefore the method proposed was to 

identify and select homes with heating types that were likely to differ 

with respect to emissions e.g. electricity or gas heating. Further, in 

order to restrict natural variability in the proposed biomarker of effect 

the age range of subjects was restricted and also confined to the 

elderly as this group is likely to spend a greater time indoors.

Another objective was to test the hypothesis that residents living in 

homes of differing urbanicity with respect to traffic flow would have 

differing levels of a biomarker of uptake of benzene in their urine. 

Therefore the method proposed was to identify and select residences 

in proximity and at distance from heavy traffic flow and to sample 

urine from residents and measure benzene concentrations in outdoor 

air. Since Nitrogen dioxide is a known marker of motor vehicle 

pollution, this was also sampled amultaneously at residences both 

outdoor and indoor.
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3.1 Sample selection and recruitment

The main steps in both studies were:

• Selection of the areas to be included

• Selection of the individuals to be included

• Recruitment of individuals

• Measurement of environmental concentrations of pollutants

• Measurement of biomarkers

3.1.1 Sample selection and recruitment for the indoor 

environment

The study aimed to recruit 100 households to the study. The majority 

of households in the Gas and solid fuel heating type were recruited 

from Neath, Port Talbot and the surrounding Valleys.
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Figure 3.1 Sample area for Neath and Port Talbot
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A further area was identified as a static caravan residential site at 

Culverhouse Cross on the outskirts of Cardiff to allow sampling of a 

different type of household with LPG as the main fuel source.
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Figure 3.2 Sample area for the Static Caravan residential site

Selection criteria (non smoking study)

• 55-75 years of age

• Permanent resident of the sampled house

• Non-smoker in the past 5 years

• reside in a norvsmoking household

• No history of cardiovascular disease

No history of coronary obstructive pulmonary disease

• Not taking any nitrate medication
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The study aimed to investigate the effects of low levels of CO on the 

retirement population, therefore participants were recruited in the age 

range 55-75 years of age. Participants were also required to be non- 

smokers, and have been non-smokers for the previous 5 years and 

live in a smoke free home. To limit variation in the biomarker of 

effect (i.e. cGMP) from factors other than CO, as well as limiting the 

age range individuals with cardiovascular and pulmonary disease 

were excluded. Individuals who were on nitrate medication were 

excluded as it would have affected the cGMP measurements, a full 

list of the excluded medication can be seen in Appendix 1.

Prior to the recruitment process, ethical approval was sought from 

the Bro Morgannwg Ethics committee. As part of the granting of the 

approval it was stipulated that a detailed explanation was provided to 

the individuals taking part and that a consent form was completed, 

ensuring that the individual understood the implications and had an 

opportunity to ask questions. Latterly as the study moved to Cardiff, 

Ethics approval was sought from the Bro Taf Ethics committee.

Recruitment was carried out in three phrases. The first phase of 

recruitment delivered self addressed postcards to postcodes selected 

in the Neath Port Talbot Borough as part of the Housing and 

Neighbourhood and Health project (HANAH) requesting details on 

heating and cooking fuel type. The second phase of recruitment was
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obtained from addresses of solid fuel households from an existing 

database held by the Cardiff University School of Architecture. The 

third phase of recruitment was made up of a sample of fixed mobile 

homes on a private residential site in the Culverhouse Cross area of 

Cardiff. Recruitment for residential mobile homes was carried out by 

generating postcodes from the Royal Mail base for the identified site.

Invitations to participants in the study (Appendix 1) were sent to 

households and responders were then followed up with a telephone 

call to further explain the research and to arrange a suitable time to 

visit.

Households with a range of different heating sources were sampled, 

including Gas, Solid fuel, Liquid Petroleum Gas, Oil and Electricity. 

Both private and rented accommodation, were sampled.

This study chose to monitor within the main living room as it was 

perceived that this would be the room in the house where the 

occupants would spend the majority of their time, when at home. A 

full description of household layout and ventilation characteristics 

was beyond the scope of the study. Generally it is accepted that the 

greater potential source of CO in the home would be during the 

winter months when greater use is made of heating systems, 

therefore environmental monitoring of Carbon monoxide was carried 

out during the months of October to April.
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The study concentrated on non-smokers homes, as it is widely 

recognised that smokers have a higher level of COHb traceable 

within their blood due to exposure to tobacco smoke. As the study 

progressed it was decided to sample an additional group of smoker’s 

households to more clearly assess the differences between the two 

groups.

Smokers were identified from the previous recruitment processes 

where households had been rejected because of a smoker within the 

household. No biological monitoring was carried out in this group as 

it was recognised that the greater source of carbon monoxide in this 

group would be received from the cigarette smoke rather than the 

potential heating exposure.

3.1.2 Sample selection and recruitment for the outdoor 

environment

Households were selected on busy and ron-busy traffic routes in 

Cardiff, allowing a comparison of exposed ‘busy’ traffic routes and a 

control group of suburban ‘non-busy traffic routes’.

The study population consisted of healthy non smoking males in the 

age range 50-70 years. The aim was to recruit 150 males to be split 

75 into the exposed area and 75 to the unexposed area. The main 

steps in the exposure study were: -
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For the two groups the inclusion criteria are shown in Table 3.1: -

Control group Exposed Group

Minor road / cul-de-sac Major A or B road

Low traffic flow High traffic flow

At least 750metres from exposed 
road

To reside within 20 metres of urban road 
with high traffic volume

Sufficient number of houses Sufficient number of houses

Table 3.1 Criteria for Exposed and Control groups

The Local authority Transport Department provided information to 

help identify suitable monitoring areas in Cardiff, although there was 

limited data available on traffic flows. It was also important to ensure 

there were adequate households on the roads identified as having 

high or low volumes of traffic flow, local knowledge was a factor in 

identifying suitable sampling locations.
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Road AM PM Daily Road AM PM Daily

The Philog 1107 1271 2378 Ty Glas Road 1330 1394 2724

Mackintosh

place

731 619 1350 Fidlas Road 1910 1984 3894

Cowbridge 

road west

2557 2274 4831 Pendwyallt Road 1014 1098 2112

Ninian Road 579 900 1479 Sloper Road 1118 1205 2323

Llandaff

road

973 970 1943 North Road 2350 2541 4891

Bridge road 1127 1402 2529 Cowbridge road 

east

1206 1032 2238

Moorland

road

1115 572 1687 Heol Hir North 207 125 332

Planet

Street

398 426 824 Cherry Orchard 

Road

727 446 1173

Table 3.2 Traffic flow data provided by Cardiff City council

The following table highlights extra roads that were identified and 

used in the study: -

Control group Exposed group

Nant y Drope Crosswells Way 'The Philog Pendwyalt Road

Dennison Way Everswell Road 2Cowbridge Road 

West

Cowbridge Road 

East

Lon y Ffin Margarites Way Fidlas Road Ty Glas Road

Penmark Green Clos y Cwarra 2Western Avenue Mackintosh Place

Deepfield Close Ninian Road Cathedral Road Llandaff Road

Deepwood

close

Heol Hir Moorland Road

2. Air Quality Management Area -  Cardiff West (pollutant declared Nitrogen dioxide)

Table 3.3 Roads identified for the exposed and Control groups 

The data supplied in Table 3.2 was used to identify the exposed and 

unexposed roads, although at the time of the study traffic flow data
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was not routinely collected in Cardiff. Additional areas were chosen 

on the basis of local knowledge of high traffic volumes in residential 

areas. Exposed roads typically were routes into the city centre or 

routes to the motorway. Unexposed roads were typically residential 

areas including housing estates where the main traffic flow was the 

local residents.

Subject criteria:

• Male

• 50-70 years of age

• Permanent resident of the sampled house

• Non-smoker in the past 5 years

• reside in a non-smoking household

• No occupational exposure to chemicals / traffic

To further reduce variability only males in the age range 50-70 years 

were recruited. Participants were also required to be non-smokers, 

and have been non-smokers for the previous 5 years and live in a 

smoke free home, this was essential due to the plan to carry out 

urinary Benzene measurements. In support of this theme, 

participants were not accepted if they were frequently exposed to 

chemicals and worked in the transport or engineering professions.
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Ethical approval

Prior to the recruitment process, ethical approval was sought from 

the Bro Taf Ethics committee. As part of the granting of the approval 

it was stipulated that a detailed explanation was provided to the 

individuals taking part and that a consent form was completed, 

ensuring that the individual understood the implications and had an 

opportunity to ask questions.

After selecting the roads of interest the Royal Mail address finder 

was used to select residential addresses. These addresses were 

then used to form an access database from which invitations to 

participate could be sent. To ensure that the method of recruitment 

was effective, letters were sent to 3 streets from the exposed group 

to start with (Mackintosh Place, Ninian Road and Ty-Glas Road). 

Invitations to participants in the study were sent to households 

including a brief outline of the study and asking a series of questions, 

those who were interested in taking part in the study were requested 

to complete the yes / no and return to the department in a prepaid 

envelope (see appendix). Responders were then followed up with a 

telephone call to further explain the research and to arrange a 

suitable time to visit. During this initial visit the researchers informed 

the individuals of the study. A first batch of approximately 500 letters 

was sent to residences of exposed streets (Mackintosh Place and 

Ninian Road) to try and gauge the potential response. The
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information sent included a detailed information sheet providing full 

information about the study and what would be required of 

participants. Recruitment was a continuous process carried out over 

a three year period.

3.2 Environmental monitoring

3.2.1 Environmental monitoring for the indoor environment

Environmental concentrations of CO in the main living room were 

measured and data-logged every 5 minutes over a period of 7 days 

in non-smoking households and 2 days in smoker’s households, less 

time was spent monitoring in the smoking households as the aim of 

this monitoring was to obtain a snapshot of the environmental levels 

occurring in these homes. Carbon monoxide levels were monitored 

in the winter months only due to the higher incidence of central 

heating systems being on for long periods of time and reduced 

natural ventilation from windows being open. Monitoring took place 

between March and April and September and November 2002, 

February and March 2003 and for the smoking households January 

and March 2004. An electrochemical sensor using mains electricity 

supply and data logging, was attached to a tripod (see figure 3.3) and 

located within the living room. Previous studies have investigated CO 

levels in other areas of the home, notably the kitchen and bedrooms. 

This study chose to monitor within the main living room as it was 

perceived that this would be the room in the house where the
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occupants would spend the majority of their time, when at home. 

Following a discussion with the residents explaining the objectives of 

the study and allowing sufficient time to ensure checks coUd be 

made that the unit was operating effectively, the logger was activated 

before leaving the household. At the end of the monitoring period the 

data was downloaded to a laptop computer for analysis.

During the initial visit the householders were asked a series of 

questions relating to the main fuel type in the home used for heating 

and cooking; the duration that the heating was on during the winter 

months and the time spent in the main living room of the home during 

the winter months.
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Figure 3.3 Environmental Carbon monoxide monitor

Environmental Carbon Monoxide monitor

The availability of a small real-time, electrochemical Carbon 

monoxide (CO) detector utilising state-of-the-art gel electrolyte and 

membrane diffusion technology enabled the construction of the 

monitors used in the study.

The new generation of sensors used exhibit long -term stability with 

sub-part per million (ppm) sensitivity. Electrochemical sensors have 

several advantages and a few disadvantages over alternative 

methods of detecting gases. Electrochemical sensors allow for
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continuous monitoring of a wide range of gas types, with high 

sensitivity, and rapid response times.

The instrument is comprised of two main sections, the sensor and 

the supporting electronics. The role of the sensor is to provide an 

electrical output, which reflects the concentration of the gas to be 

detected. The gas diffuses into the senor where it is oxidised in the 

cell by a catalytic reaction, a current is generated in the cell by loss 

and gain of electrons, the resulting current can be measured in an 

external circuit and is directly proportional to the concentration of 

carbon monoxide.

Carbon Monoxide

CO + H20 == > CO2 + 2H+ + 2e

Four environmental Carbon monoxide monitors were built to an in 

house specification using a commercially available electrochemical 

sensor.

The particular device employed incorporated a dedicated 4-20 mA 

loop-powered transmitter enabling direct connection to a suitable 

digital display and data-logging module.

The monitors were constructed in a 152 mm x 82 mm x 50 mm die- 

cast enclosures (BIM 5000, IP65, RS 244-8634) fitted with a screwed 

lid. A City Technology Type T3E/F, 0-50 ppm CiTicel CO sensor/4-

87



20 mA loop powered transmitter was mounted at one end of the lid. A 

Lascar VA digit EL-1-12 bit, 8k, data-logging, current/voltage display 

module (RS 289-0467) was also mounted in the lid assembly close to 

the sensor module. A Lascar Panel-IR, infrared data communications 

interface was mounted adjacent to and parallel with the display 

module.

Figure 3.4 The purpose built Carbon monoxide monitor

Power for the monitor was derived from a standard domestic, 240 

Volt single phase, 50 Hz mains supply. The mains voltage was 

transformed to low voltage by a TracoTMS 05124 Power Supply Unit 

(PSU) (RS 338-2620) that supplied 24 volts d.c. to the CO sensor/4- 

20 mA loop- powered transmitter module. The latter device provided 

3.6 volts D.C. to the data-logger and infrared data communications 

interface.
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Electrochemical sensors produce a current that is proportional to the 

concentration of the target gas in contact with the sensing electrode. 

The galvanic type used in this design produced a current of 

approximately 100 nanoamps per ppm of CO. The sensing 

mechanism relies upon the oxidation of the analyte gas (CO) at the 

sensing electrode that becomes anodic due to the accumulation of 

electrons. These may be applied to one end of a load resistor 

connected to an inert counter electrode to complete the circuit, the 

output being the voltage developed across the load. In this 

arrangement no external power is required. Alternatively for greater 

sensitivity the sensor may be operated in current follower mode using 

an operational amplifier (Op-Amp) to convert the current flow into a 

voltage output. The incorporation of a third electrode producing a 

known e.m.f at constant temperature with respect to the counter 

electrode provides a means of accurately referencing cell output at 

known gas concentration, regardless of counter electrode potential.

The current signal produced in sensing a concentration of greater 

than 0.5 ppm of CO is amplified and converted into a proportional 

current having a minimum value of 4 mA and maximum of 20 mA. In 

measuring D.C. voltage signals major errors can occur due to 

variations in resistance of wires and connectors in the transmission 

line. The use of a defined current (mA) value to represent a given 

gas concentration signal overcomes the problem by eliminating the
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resistance dependence of the signal as would occur if a voltage 

signal were used. At the LCD digital display/data-logger interface an 

analogue to digital converter produced a 12 bit binary number 

corresponding to any instantaneous current value appearing at the 

input. Each digitised value was stored for later access in a non­

volatile 8k memory area. Set up and control of the data-acquisition 

and handling parameters was managed by Lascar EasyLog EL-WIN 

Control Software (RS 206-2347) provided with the Lascar EL-HL, 

hand held, infra red controller (RS 324-5666) or the RS232-IR infra­

red EL - Link -  IR serial port transceiver (RS 307-6347).

As part of the risk assessment carried out for the fieldwork, it was 

deemed advisable to operate the monitor from a Residual Current 

Circuit Breaker (RCCB) and an electrical surge suppresser. A plug 

tester was also used to check the integrity of the plug sockets prior to 

‘plugging in’ the monitors.

Calibration of environmental Carbon Monoxide monitor

The monitors were calibrated against British Oxygen Company 

(BOC) certified gas standards obtained from BOC, Special Gases 

division. Nominal concentrations of 2.5 ppm and 5.0 ppm carbon 

monoxide made up in Nitrogen balance gas were used. Other values 

were prepared from a 1000 ppm mixture by serial dilution wth clean
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air in a 50 millilitre (ml) glass syringe. The gas sensor cell was 

provided with a ported face cap with a nitrile ‘O’ seal with which a 

small void or “flow-cell” was created in proximity to the sensor 

membrane. The dead volume of the void was about 1 or 2 ml thus 50 

ml of a challenge concentration of 50 ppm of CO was more than 

sufficient to produce a stable signal at or near the maximum of the 

device measuring range. Standard CO mixtures were supplied in size 

AZ cylinders of 1.2 litres capacity fitted with BS15 valve outlets and 

HP1500B, GG-BS15 (low standards) and GG-BS4 (high standard) 

high purity, two stage pressure regulators. The analytical values of 

BOC Certified Standard mixtures were accurate to +/- 5% and were 

traceable to UK National Standards.

Gas standards were delivered to the sensor flow cell via 4mm inside 

diameter, x 6mm outside diameter. PTFE tubing. Approximate flow 

rates were measured with a bubble flow meter at the cell outlet. A 

typical gas flow rate was in the range of 150 -  200 ml per minute with 

provision for adequate ambient oxygen concentration to prevent 

sensor oxygen depletion. The date, start-time, sampling duration, 

zero and span settings of the data-logger/display module were set by 

commands generated by the EL-WIN software package.
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3.2.2 Environmental monitoring for the outdoor environment

Environmental Benzene, Nitrogen dioxide, Nitrous oxide monitoring 

was undertaken using commercially available pre-prepared passive 

diffusion sampling tubes. The tubes were placed on the external wall 

of the home.

To monitor the atmospheric Benzene commercially available BTEX 

tubes (Benzene, Toluene, and Xylene) were used. For atmospheric 

Nitrogen dioxide pre-coated tubes were used and for Nitrous oxide, 

Hewlett Packard (HP) tubes packed with molecular sieve 5a were 

used. The tubes were placed in a suitable external location to each 

household (mainly drainpipes) approximately 1 metre from the 

ground, at the front of the property and away from any garage. The 

tubes were left in place for the period of one month. The tubes were 

then collected sealed and sent for analysis by an external laboratory. 

Monitoring was carried out between August and October 2003 and 

January and April 2004.

In addition to the outdoor environmental monitoring, indoor Nitrous 

oxide measurements were carried out in a sub set of homes. The 

Molecular sieve 5a tubes were located within the main living room of 

the home, this area was chosen as theoretically the occupants of the 

house would spend the majority of time at home in this area.
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Figure 3.5 Passive Nitrogen dioxide, Nitrous oxide and BTEX
tubes in place

During the fieldwork, the repeatability of the results was not tested. 

This was due to limitations with available resources both time and 

financial. Information was requested from the commercial suppliers 

on the quality control and assurance tests in place for their products. 

The BTEX, Nitrogen dioxide diffusion tubes and Nitrous oxide ATD 

tubes were known to be robust as they are routinely used to gather 

environmental information.

Analysis of Environmental Benzene

Standard preparation and sample measurement was carried out 

according to the Harwell Scientific ‘in house’ method HS/GWI/3015.

A summary of the measurement technique is as follows,: -

1. The target analytes were collected on an adsorbent 

contained within steel diffusion tubes. The tubes were
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then returned to the laboratory from the field sealed with 

brass end fittings.

2. Each tube was uncapped and placed in a sequence 

composed of calibration standards and exposed sample 

tubes in the automatic thermal desorption (ATD) 

instrument.

3. The tubes were then taken in turn by the instrument and 

sealed within a carrier gas stream. A leak test was 

performed to ensure the tube was sealed correctly and it 

was then heated to pre-selected temperature for a pre­

selected time to thermally desorb the volatile species.

4. The desorbed compounds were then concentrated in a low 

thermal mass cold trap within the ATD prior to transfer 

through a heated line to the gas chromatograph. The cold 

trap was heated very rapidly to ensure that the sample was 

transferred to the gas chromatograph in a tight band, 

compatible with capillary GC columns.

5. The Benzene, toluene, ethylBenzene, m- and p-xylene and 

0-xylene were separated in time by the GC before 

introduction to the mass selective detector where the 

responses obtained were compared with those from the 

standard tubes. The MSD was used in scan mode to 

enable confirmation of the identity of the eluted 

compounds.
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The limit of detection (LOD) was based on the sampling times given. 

The overall uncertainty on those results significantly above the LOD, 

have been calculated to be 19% for Benzene.

Analysis of Environmental Nitrogen dioxide

Commercially available passive tubes were purchased for the 

monitoring (Harwell Scientifics). The samples were analysed in 

accordance with Harwell Scientifics standard operating procedure 

HS/GWI/1015 issue 8.

The tubes were prepared by spiking acetone: triethanolamine (50:50) 

onto the grids prior to the tubes being assembled. The tubes were 

desorbed with distilled water and the extract analysed using a 

segmented flow autoanalyser with ultraviolet detection. The analysis 

of diffusion tube samples to determine the amount of Nitrogen 

dioxide present on the tube was within the scope of the laboratory’s 

UKAS schedule. In the WASP intercomparison scheme for 

comparing spiked Nitrogen Dioxide diffusion tubes, Harwell 

Scientifics is currently ranked as a Category Good laboratory.

The limit of detection (LOD) was based on the sampling times given. 

The overall uncertainty on those results significantly above the LOD, 

have been calculated to be 0.03ug for Nitrogen dioxide (Harwell 

Scientifics).
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Analysis of Environmental Nitrous oxide

Commercially available Perkin-Elmer ATD stainless steel tubes were 

used for the study. The steel tube was packed with molecular sieve 

5a with a diffusive cap covering the exposed end.

At the end of the monitoring period the passive sampling tube was 

sealed and it was sent for analysis by thermal desorption and Gas 

Chromatography (Llandough Hospital, Toxicology Laboratory). 

Environmental sampling tubes were thermally desorbed at 165°C in 

forward flush direction for 3 minutes with a flow rate of 30 ml min "1 

helium using a Perkin-Elmer ATD-400. Analysis was performed 

using a Perkin-Elmer Autosystem XL gas chromatograph. A 60m x 

0.32 mm Gas Pro column was used with inlet pressure of 22 psi 

helium. The oven programme was: 10 minutes isothermal at 150°C, 

250°C for 2 minutes post run and Nitrous oxide elutes at 7.2 minutes. 

Detection was by electron-capture at 340°C. For calibration, a static 

2% gas mixture in air was prepared by syringe addition of 20 ml 

Nitrous oxide to an IL calibrated glass flask. Clean Molecular Sieve 

5A tubes were fitted to a spare V* inch GC port and purged with 

helium. 0.01 -  10 ml amounts of the diluted Nitrous oxide mixture 

were injected into the calibration tubes.

The limit of detection (LOD) was calculated to be 1ng for Nitrous 
oxide.
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3.3 Biological monitoring

3.3.1 Biomarkers associated with the indoor environment

In addition to the study of trace levels of Carbon monoxide in the 

indoor environment, biomarkers of exposure and effect were also 

investigated. Carboxyhaemoglobin (COHb) is the most accepted 

biomarker of exposure to Carbon monoxide, with levels of in excess 

of 5% causing medical concern. A blood sample was taken from the 

participants during the week that the environmental monitor was 

within the home to check for COHb levels. In addition to COHb, a 

further blood sample was taken to measure for cyclic Guanosine 

Monophosphate (cGMP). Participants were then requested to attend 

for a second blood sample during the summer months to assess if 

any seasonal differences in the blood levels measured could be 

identified.

On each separate occasion during the seven-day period that the 

environmental monitor was in place, the residents were requested to 

donate a blood sample. Initially it had been intended to take the 

samples within the participant’s homes to reduce the effects of the 

time away from the exposed area of the home. However it was not 

possible to get a qualified phlebotomist to attend each of the 

households, therefore the participants were requested to attend the 

phlebotomy clinic at the local hospital. Blood samples were taken
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and analysed for carboxyhaemoglobin (COHb) and cyclic Guanosine

Monophosphate (cGMP).

Carboxyhaemoglobin (COHb)

Blood samples for COHb were collected into lithium heparin 

vacutainers. All samples were marked wth the unique identification 

number allocated by the study, the vacutainers were then stored in 

the pathology laboratory refrigerator. Where practicable COHb 

samples were collected by the researcher on a weekly basis and 

returned to the Medical Biochemistry laboratory at the University 

Hospital of Wales (UHW), where the samples were analysed. 

Latterly the samples were from participants in the Cardiff area who 

attended the UHW direct and therefore samples were analysed on 

the same day.

The analysis method employed at UHW for the detection of COHb 

was the Optical system using the ABL625 series analyser. The 

optical system was based on a 128-wavelength spectrophotometer 

with a measuring range of 478-672nm. The spectrometer was 

connected via an optical fiber to a combined hemolyzer and 

measuring chamber. The method used was visible absorption 

spectroscopy (Cardiff and Vale NHS Trust, 2005)
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Cyclic Guanosine Monophosphate (cGMP) Measurements

The analysis of the cGMP was carried out by the Department of 

Pharmacology within the Welsh Heart Research Institute, University 

of Wales College of Medicine (UWCM).

Where practicable cGMP samples were collected on a weekly basis 

and returned to the Pharmacology department, UWCM, where the 

samples were analysed. Aliquots of blood samples were centrifuged 

before being frozen for subsequent analysis of cyclic GMP by 

radioimmunoassay. Latterly the samples were from subjects in the 

Cardiff area who attended the UHW direct. The samples were taken 

directly from the phlebotomy clinic to the Haematology department 

where they were spun down and frozen prior to analysis.

The vaccutainers were supplemented with Zaprinast (10microM) that 

is a cGMP phospodiesterase inhibitor. Zaprinast prevents the 

breakdown of cGMP. They were therefore added so that a ‘snap 

shot’ could be obtained of the cGMP present in the platlets at the 

time of sampling.

Platelet pellets were resuspended in 1ml of ice cold 65% (v/v) 

ethanol to extract the cGMP from the cells. Following centrifugation 

at 3000rpm for 10 minutes at 4°C the resulting supernatant was 

removed and evaporated to dryness. The pellet of cell debris was 

dissolved in 1ml of 1M sodium hydroxide solution and assayed for
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protein content using a commercially available kit (Biorad). The dried 

sample was resuspended in the appropriate assay buffer and the 

cGMP content measured by a commercially available 

radioimmunoassay kit (Amersham Biosciences). The cGMP content 

of the sample was then normalised to the total pellet protein 

concentration.

Data Analysis

An initial contacts database was set up using Microsoft Access. The 

data collected from the environmental monitoring was downloaded 

using the Lascar data reader and initially downloaded onto a laptop 

computer, using the ‘Elwin’ software. The data was then converted 

to Microsoft Excel to enable graphs to be produced for each of the 

monitoring sessions allowing the peaks and troughs to be identified; 

basic statistics were then calculated looking at the peak and mean 

levels recorded.

Information gathered from the questioning the participants was 

recorded within the SPSS spreadsheet, the key data recorded 

included the fuel type used for heating and cooking, the duration the 

heating was on over a 24 hour period during the winter months and 

an approximate time that the occupants spent in the main living room 

during a 24 hour period.
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For the main analysis all environmental and blood measurements 

were recorded in a Microsoft Excel database. In addition to the 

results obtained, information was included on I.D., age, sex, date of 

measurements, and fuel type. Statistical analysis was carried out 

following inputting the data into a SPSS database.
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3.3.2 Biological monitoring associated with outdoor 

environment

Biological monitoring of Benzene and Nitrous oxide was also 

undertaken. Two urinary samples were collected from the 

participants at the time of the interview. Samples were collected into 

a universal container for the Benzene and a sterile glass bottle 

supplied by the laboratory carrying out the analysis for Nitrous oxide. 

Once collected, the Benzene samples were delivered to the 

laboratory undertaking the analysis; the Nitrous oxide urinary 

samples were frozen prior to analysis by the toxicology laboratory at 

Llandough hospital.

Urinary Benzene

Benzene can enter the body by respiratory inhalation, ingestion and 

through absorption through the skin. A proportion of the inhaled 

benzene is excreted unchanged, the remaining proportion is 

metabolised by the microsomal cytochrome P-450 monoxgenase 

system into benzene epoxide. Benzene epoxide is metabolised in 

three different ways and excreted as s-PMA, t,t muconic acid and 

Phenols. S-Phenylmercapturic Acid (s-PMA) is a breakdown product 

of Benzene which can be measured in the urine of exposed 

individuals and derives only from Benzene. Urinary creatinine is 

measured at the same time as the PMA, as the concentration of 

urine produced by an individual varies significantly during the day,
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due to normal physiological changes that affect the excretion or 

retention of water. This affects the concentration of PMA in urine 

regardless of the amount of PMA excreted by the kidneys. 

Creatinine is the breakdown product of normal metabolism which is 

eliminated from the body via the kidneys at a constant rate 

irrespective of excretion or retention of water. In order to interpret a 

urinary PMA result by relating it to reference ranges, the urinary 

creatinine concentration is measured on each sample in addition to 

the PMA concentration. By relating the PMA to creatinine as a direct 

ratio, the effect of fluctuating water excretion can be excluded. Urine 

samples were collected by the researchers. The samples were 

returned to UWCM and frozen prior to analysis.

Analysis of s-PMA

Benzene is rapidly converted to PMA in the body, however the 

elimination half-life of PMA is approximately 9 hours. Background 

PMA / creatinine ratios for non-occupationally exposed individuals 

who are non-smokers vary from 0-1.8umolmol (mean 0.8 umol/mol). 

For non-occupationally exposed smokers the mean PMA/Creatinine 

ratio is 1.7 umolmol. An exposure to airborne Benzene of 1ppm (8 

hour Time Weighted Average) would result in a urinary 

PMA/creatinine ratio of approximately 21 umolmol. The method used 

for the measurement of PMA was developed and performed by AB 

Biomonitoring (Ball J ), this can be seen in Appendix 2.
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Analysis of Urinary Nitrous oxide

Urine was collected in a glass sample bottle with a screw cap. 

Sterile receptacles were provided for convenience of urine collection 

with subsequent decanting into the sample bottle. Once the sample 

had been collected, it was taken to the laboratory where it was either 

analysed immediately or stored in a freezer prior to analysis. 

Determination of Nitrous oxide concentration in urine was by 

headspace analysis and gas chromatography and followed the 

procedure published by Sonander (1983)

The limit of detection (LOD) was calculated to be 10ng/ml for urinary 

Nitrous oxide.

Data Analysis

An initial contacts database was set up using Microsoft access. The 

data collected from the external analysis of the environmental and 

biological monitoring was entered into a Microsoft excel database. 

The data was exported into a Statistical software package SPSS to 

carry out more detailed analysis. For the main analysis all 

environmental and blood measurements were recorded in a 

Microsoft Excel database. In addition to the results obtained, 

information was included on I.D., age, sex, date of measurements, 

and fuel type. Following inputting the data into a SPSS database 

statistical analysis was carried out including basic summary statistics,
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boxplots, ANOVA and Tukey tests to establish significance between 

the different fuel groups, and Mann Whitney U test to test whether 

there was a significant difference between the medians in the 

smoking and the non-smoking groups. In addition for the biological 

measurements, The Wilcoxon matched pairs signed ranks test was 

used to test if there was a difference between the winter and summer 

measurements. The size effect was also calculated between winter 

and summer measurements
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CHAPTER 4 RESULTS

This chapter describes the results of the monitoring undertaken to 

investigate the differences in environmental concentrations of Carbon 

monoxide for indoor environments by heating type and of differences 

of benzene and nitrogen dioxide for outdoor environments by degree 

of urbanicity. It also reports the results of the measurements of a 

biomarker of effect of exposure for CO and of a biomarker of 

exposure for benzene.

4.1 Sample selection and recruitment for the indoor 

environment 

Sample selection and recruitment for CO Study 

Non smoking households

Table 4.1 details the responses obtained from the HANAH letters 

sent to householders. Of the 140 letters, fiere were 98 responses, 

77 of which were eligible responses. However when these persons 

were contacted to take part only 47 agreed to participate in the study. 

The second batch of 533 letters was sent to households with solid 

fuel which were selected from a database held by the Cardiff 

University, School of Architecture. A very low response rate was 

achieved within this group with only 86 responses received, 45 of 

which were eligible and 17 agreed to take part. The third batch of 

219 letters was sent to the residents of static mobile homes in the 

Culverhouse Cross area of Cardiff. A low response rate was 

achieved with only 37 responses, of which 19 were eligible and 14
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agreed to take part in the study. Recruitment was a continuous 

process carried out over a three year period.

The response rate of the study was calculated by the number of 

people who participated in the study divided by the number of eligible 

individuals responding. The response rates were 58% for the 

HANAH mailings, 11% for the Solid fuel group and 74% for the Static 

homes. Nearly all of the Hannah households and static homes that 

agreed to take part were visited during the study. Only five of 17 

homes using solid fuel where residents had agreed to participate 

were recruited. This was due partly to the fact that these homes 

were further away from the University which resulted in increased 

problems arranging suitable appointments and also partly as a 

consequence of a higher number of cancelled appointments from 

participants.

Total number HANAH
Homes

Solid
fuel
Homes

Static
Homes

Totals

Letters sent out 140 533 219 892
Response received 98 86 37 221
Eligible response 
received

77 45 19 141

Households who 
agreed to take part

47 17 14 78

Households who 
actually took part

45 5 14 64

Table 4.1 Recruitment of non-smokers from the three main 
residential settings identified
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A total of 64 non smoking households were visited of both private 

and rented accommodation, and sampled for environmental Carbon 

monoxide. The mean age of the non-smoking residents was 67 

years (range 53-82 years), 17 non smokers were currently in work 

and 7 non-smoking households had an integral garage.

Smoking households

The households approached included sixty households with a 

smoker and 23 of these households agreed to participate and were 

visited and sampled for environmental Carbon monoxide. The 

households were located across the whole sample area including 

Neath, Port Talbot and Culverhouse Cross. No biological 

measurements were taken from this group. The mean age of the 

smokers was 61 (range 35-80 years), 6 smokers were currently in 

work and 2 smoking households had an integral garage.

4.1.1 Sample selection and recruitment for the outdoor 
environment

Recruitment was carried out as part of a sister study looking at other 

aspects of traffic pollution. The results of the recruitment are shown 

in table 4.16. A total of 4043 letters were sent to households in the 

trafficked areas of Cardiff. From this mail out 250 responses were 

received, with an eligible response (male, age range and medical 

status) of 90 and of these 70 agreed to participate. A total of 4276 

letters were sent to households in the sub-urban areas. On this
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occasion 189 responses were received, with an eligible response of 

68, of these 51 agreed to participate. Of the 121 households eligible 

responding, 72 were contacted by telephone of whom 70 agreed to 

take part and were monitored, 55 in exposed areas and 15 in 

unexposed areas. The response rate of the study was calculated as 

the number of people who participated in the study divided by the 

number of eligible individuals contacted. The response rates were 

61% and 22% for the exposed and unexposed groups respectively. 

It was not possible to monitor all the households who agreed to take 

part due to budget constraints

Total number (n) Urban
area
(exposed)

Suburban
area
(unexposed)

Totals

Letters sent out 4043 4276 8319
Response received 250 189 439
Eligible response 
received

90 68 158

Respondents who 
agreed to take part

70 51 121

Respondents who 
actually took part

55 15 70

Table 4.2 Recruitment from the two microenvironments

Table 4.3 details the roads monitored in the two microenvironments 

(urban and suburban) and the number of households monitored in 

each road
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Unexposed Roads 
(Number of 
households)

Exposed Roads 

(Number of households)

Nant y Drope (1) 1The Philog (5)
Dennison Way (1) ’Manor Way
Lon y Ffin (2) Ty Glas Road (6)
Penmark Green (2) Fidlas Road (7)
Deepfield Close (1) 2Western Avenue (5)
Deepwood close (3) Cathedral Road (4)
Clos y Cwarra (1) Heol Hir (1)
Margarites Way (2) Moorland Road (5)
Everswell Road (1) Ninian Road (2)
Crosswells Way (1) Llandaff Road (3)

Mackintosh Place (1)
Pendwyalt Road (5)
Cowbridge Road East (2)
2Cowbridge Road West 
(2)

Total (15) Total (55)

1. Air Quality Management Area -  The Philog (pollutant declared Nitrogen dioxide)

2. Air Quality Management Area -  Cardiff West (pollutant declared Nitrogen dioxide)

Table 4.3 Numbers of households sampled in the roads identified 
for the two microenvironments (exposed and control 
groups)

Environmental Nitrogen dioxide and Benzene were monitored 

outside, for a period of 1 month for a total of 70 households. 

Monitoring was carried out between August and October 2003 and 

between January and April 2004. The mean monitoring period was 

790 hours (range 647-965 hours)
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4.2 Environmental monitoring

4.2.1 Environmental monitoring for the indoor environment

This section reports the ambient levels of Carbon monoxide 

monitored over a period of one week in the main living area of 

homes.
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Fuel type 
(Heating)

Number of 
households

Number
of
residents

Environmental 
Grand mean 
(ppm) (SD)

COHb 
winter 
mean 
level (%) 
(SD)

COHb 
Summer 
mean 
level (%) 
(SD)

cGMP
Winter
Mean
level
(fmol/mg
protein)
(SD)

cGMP 
Summer 
Mean level 
(fmol/mg 
protein)
(SD)

Gas 37 59 0.23 0.19 0.22 266 224
(0.47) (0.75) (131.9) (100.5)

Coal 7 11 0.3 0.4 0 322 325
(1.13) (0) (176.5) (232.7)

Electricity 4 5 0.33 0.05 0 148 344
(0.1) (0) (26.5) (203)

LPG 13 21 0.49 0.11 544 284
(0.22) (506.3) (131.9)

Other 3 3 0.2 0.05 0.2 176 195
(0.12) (0) (50.5) (9.9)

Table 4.4 Summary of descriptive results -  All carbon Monoxide non-smoking results

112



Non-Smoking Households

Environmental Carbon monoxide was monitored during the winter 

months (October -  April) in 2003-2004. The CO monitor was placed 

in the living room of 64 households for 7 days. Complete 

environmental monitoring results were not available for all 

households visited; data was not available for 21 non-smoking 

households, this was due to a combination of technical problems, 

power cuts and also participants switching the equipment off in error.

The graphs produced from the environmental monitoring in each 

household displayed peaks and troughs of carbon monoxide over the 

duration of the monitoring period. Whilst detailed diaries were not 

requested from the households as to the time that cooking and 

central heating were in use, the patterns would suggest that the peak 

levels recorded on the graphs coincided with central heating systems 

coming on and with cooking taking place. In general, the exposure 

versus time graphs produced from the environmental monitoring 

sessions showed three different types of temporal pattern. Pattern 1 

(Figure 4.1) had no clearly defined peaks. In the example, the peak 

level recorded was 1.2ppm (1.37mg/m3), with a mean level of 

0.7ppm (0.8mg/m3).
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Continuous Carbon Monoxide levels in a Semi detached house - Fuel type Gas
(Household 14)

Peak level =1.2ppm 
Mean level -  0.7ppm

Midnight
Day 1

t -------------1------------- 1------------- 1------------- 1-------------r

Midnight Midnight
Day 2 Day 3

1 ------ 1------ 1------ r
Midnight Midnight

Da* 4 Time Da* 5

Midnight 
Day 7

Figure 4.1 Pattern ‘ 1 ’ ‘no defined peaks’

Pattern 2 (Figure 4.2) displayed broad peaks exhibiting concentration 

fluctuations within a single peak and some evidence of periodicity of 

peaks over the whole monitoring period. In the example shown, the 

peak level recorded was 5ppm (5.73mg/m3), with a mean level of 

1.2ppm (1.37mg/m3).
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Continuous carbon monoxide measurements in a terraced house, fuel type gas
(Household 28)

6
Peak level = 5ppm 
Mean level = 1.2 ppm

5

f&
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Midnight MidnightMidnight Midnight MidnightMidnight

Day 1 Day 2 Day 3 Day 4 Time Day 5 Day 6 Day 7

Figure 4.2 Pattern ‘2’ ‘broad peaks’

Pattern 3 (Figure 4.3) displayed narrow peaks, which often formed a 

regular pattern over each 24 hour period. In the example shown, the 

peak level recorded was 8ppm (9.16mg/m3), with a mean level of 

0.6ppm (0.69mg/m3).
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Continuous carbon monoxide measurements in a Static Mobile Home, fuel type LPG
(Household 5)
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Midnight 
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Figure 4.3 Pattern ‘3’ narrow peaks

Whilst information was not collected on the floor area of the 

households or the level of ventilation within the households it is 

accepted that this may have influenced the level of CO building up 

within the homes, for example differences between the Traditional 

brick built households and the Static mobile homes that were 

measured.

In the non-smoking households, the grand mean environmental 

concentration was 0.22 parts per million (ppm) (0.25mg/m3) with a 

grand range of 0 - 0.98ppm (0 - 1.12mg/m3). In the households 

monitored the highest peak CO level (recorded as the highest 

Carbon monoxide level during the monitoring period) ranged from 0 - 

22ppm (0 -  25.2mg/m3) (mean = 3.46ppm (3.96mg/m3)). The
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exposure versus time graphs from each of the households monitored 

can be seen in Appendix 4.

Household heating Fuel analysis

The heating (and cooking) fuel type used by the household was 

identified on the initial visit, this was potentially the largest factor 

affecting the levels of Carbon monoxide produced in the home. The 

data was tierefore analysed by the different household fuel types 

sampled (Gas, Solid fuel, Liquid Petroleum Gas (LPG), Electricity 

and Other (Oil and Wood)). The data collected on fuel type relating 

to length of time the heating was left on, reflected that on average, 

the heating was on in the living room area for 15 hours a day 

(maximum 24 hours, minimum 4 hours).The LPG homes tended to 

have their heating on for the duration of the day. Figure 4.4 shows 

the number of hours per day the heating was on in each of the five 

fuel groups: -
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O)  15

0

Heating Fuel groups (0=Gas, 1=Coal 2= Electricity, 3=LPG, 4=Other)

Figure 4.4 Mean number of hours the heating was on in each 
household for each of the five different fuel groups

The reported time spent in the living room was on average 9 hours 

(maximum 20 hours, minimum 2 hours). As shown in Figure 4.5, this 

was particularly high for the occupants of the LPG homes, this 

cannot be explained. The time reported for duration of heating left on, 

and for time spent in the living room was the same for both the non­

smoking group and the smoking group.

Figure 4.5 shows the number of hours that each of the participants 

spent in the main living room of the house during an average 24 hour 

period: -
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Heating Fuel group (0=Gas, 1=Coal, 2= Electricity, 3=LPG, 4=Other)

Figure 4.5 Mean number of hours spent in the living room between 
the five different fuel groups (norvsmoking)

The LPG fuel group had the highest incidences of the heating being 

left on for 24 hours. As the LPG homes had the greatest duration of 

heating on during a 24 hour period, a bar chart (Figure 4.6) was 

produced to view the number of hours the heating was on and the 

number of hours that the participants spent in the main living area in 

a 24 hour period in the LPG group only (All the results from the LPG 

households are included in the Chart): -
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N u m b e r  o f  h o u rs  
h e a tin g  o n
N u m b e r  o f  h o u rs  
s p e n t in th e  liv ing  
ro o m

Mi U  M  Mi M  M M  Ml M  M  Ml Mi U  M  Mi M  Mi Mi Ml M  U

LPG Households

Figure 4.6 Bar chart representing the number of hours the heating 
was on and the number of hours the participants spent 
in the living room (LPG households only)

Table 4.5 represents the different fuel types monitored in the 

households and the analysis of the environmental levels undertaken:
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Fuel type 
(Heating)

Number of 
households

Number of 
residents

Number of
Households
with
environmental
results

Highest
mean1
CO
levels
(ppm)

Grand
mean2

Range of 
mean3 
CO levels 
(ppm)

Highest 
peak4 CO 
level(ppm)

Range of 
Highest 
peak5 
CO level 
(ppm)

Gas 37 59 21 0.88 0.23 0.001-
0.88

17.0 0.031-17

Coal 7 11 5 0.65 0.3 0.003-
0.65

6.2 0.085-
6.2

Electricity 4 5 3 0.46 0.33 0.22-0.46 12.0 1.6-12

LPG 13 21 12 0.98 0.49 0.16-0.98 22.0 0.75-22

Other 3 3 3 0.24 0.19 0.12-0.55 4.0 0.55-4

2. Grand mean -  the mean of means

3. Range of mean -  the range of the Grand mean

4. Highest peak -  highest single peak CO level recorded in each fuel type

5. Range of highest peak -  the range of the highest peaks obtained in each of the households monitored in each fuel type.

Table 4.5 Carbon monoxide concentrations by heating fuel type -  non-smoking households (in parts per million)
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Table 4.5 shows the environmental Carbon monoxide levels 

recorded. The information presented includes data on the highest 

peak levels for each of the heating fuel types, the highest mean 

levels and the range of levels observed. The results show that 

throughout the sampling, the levels of environmental Carbon 

monoxide recorded were very low, the grand mean of all fuel types 

was 0.31 ppm (0.36mg/m3). On analysis by fuel type, the highest 

Carbon monoxide levels were recorded in households using LPG. 

All the LPG locations were static homes with a small floor area. 

Concentrations did not differ markedly between the fuel groups in the 

non-smoking households. For the households sampled the mean 

environmental concentration over the total period monitored ranged 

from <0.1 to 1 ppm (<0.11 -  1.15mg/m3). The highest single peaks 

recorded in each of the individual households during the 

measurement period ranged from 4ppm to 22 ppm (4.58 -  

25.2mg/m3).

Further analysis was carried out using boxplots to examine the data 

within each of the five heating fuel types (Figure 4.7). In these 

figures, the box represents the portion of the distribution falling 

between the 25th and 75th percentiles (the lower and upper quartiles). 

The line across the middle of the box represents the median and the 

whiskers extend to tie  largest and smallest values not considered 

outliers or extreme values. An outlier is a value more than 1.5 box
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lengths above or below the box and will be flagged up by SPSS, 

usually with a circle, with a number which identifies the outlying 

value. An extreme value is a value more than 3 box lengths above or 

below the box and again SPSS will flag these values with asterisks 

along with a number which identifies the outlying value.

25 00-

O  2 0 .0 0 -

15. 00-

10 .00 -

®  5 00-

0 .00 -

H o u s e h o ld  H e a t in g  F u e l  t y p e :  -  0 = g a s  1 = c o a l  2 = e le c  3 = lp g  
4 = o t h e r

Figure 4.7 Winter environmental peak Carbon monoxide 
level against heating fuel type in norvsmoking 
households

In the boxplot above (Figure 4.7), it can be seen that the data for the 

winter environmental peak values is skewed for the coal and other 

fuel groups, this maybe due to the small number of households in 

these groups. It also identifies outliers in the gas group (17ppm) 

(19.48mg/m3), coal (6.2ppm) (7.1 mg/m3) and LPG (22ppm) 

(25.2mg/m3). Further analysis was carried out using the Kruskal- 

Wallis test. This is a non-parametric test used to decide whether k
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independent samples are from different populations. This analysis 

showed that there is not a statistical difference between the winter 

peak environmental Carbon monoxide levels measured and the 5 

different heating fuel types sampled (p=0.78).

The same analysis was then carried out for winter mean 

environmental levels of CO (Figure 4.8). The data is skewed for the 

gas, coal, LPG and other fuel groups. An outlier in the gas group, 

this relates to a household where the mean winter Carbon monoxide 

level was recorded as 0.88ppm (1.01 mg/m3).

T
1 2  3 4

Household heating fuel type: - 0=gas 1=coal 2=elec 3=lpg 
4=other

Figure 4.8 Winter environmental mean Carbon monoxide 
level against heating fuel type in non-smoking 
households
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An ANOVA test linked to a Tukey test was carried out to test for the 

differences between winter mean environmental levels for the 5 

different fuel groups.

Sum of 
Squares df

Mean
Square F Sig.

Between
Groups
Within
Groups
Total

1.194

3.000

4.194

4

60

64

.298

.050

5.968 .000

Table 4.6 Results of the ANOVA test for the differences between 
winter mean environmental levels in the 5 fuel groups in 
non-smoking households

The results of the ANOVA (table 4.6) show that there is a statistically 

significant difference between winter mean environmental levels and 

the five different fuel groups. Following the results from the ANOVA 

test, a multiple comparisons test linked to a Tukey test between each 

of the five different fuel types and the associated winter mean 

environmental levels was carried out, this is shown in Table 4.7: -
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(I) 0=Gas 1=Coal 
2=Electricity 
3=LPG 4=Oil

(J) 0=Gas 1=Coal 
2=Electricity 
3=LPG 4=Oil

Mean
Difference
(l-J)

Std.
Error Sig.

95% Confidence Interval
Lower
Bound

Upper
Bound

0 1 -.11326 .08868 .706 -.3627 .1361
2 -.08251 .13521 .973 -.4628 .2978
3 -.304510 .06413 .000 -.4849 -.1241
4 .03083 .13521 .999 -.3494 .4111

1 0 .11326 .08868 .706 -.1361 .3627
2 .03075 .15139 1.000 -.3950 .4565
3 -.19125 .09355 .258 -.4543 .0718
4 .14408 .15139 .875 -.2817 .5699

2 0 .08251 .13521 .973 -.2978 .4628
1 -.03075 .15139 1.000 -.4565 .3950
3 -.22200 .13845 .501 -.6114 .1674
4 .11333 .18258 .971 -.4002 .6268

3 0 .304510 .06413 .000 .1241 .4849
1 .19125 .09355 .258 -.0718 .4543
2 .22200 .13845 .501 -.1674 .6114
4 .33533 .13845 .123 -.0540 .7247

4 0 -.03083 .13521 .999 -.4111 .3494
1 -.14408 .15139 .875 -.5699 .2817
2 -.11333 .18258 .971 -.6268 .4002
3 -.33533 .13845 .123 -.7247 .0540

• The mean difference is significant at the .05 level.

Table 4.7 Results of the Multiple Comparisons Tukey HSD test for 
the differences between winter mean environmental levels 
in the 5 fuel groups in non-smoking households

The Tukey test calculates multiple comparisons to identify which fuel 

groups are statistically significant. The results in table 4.7 show that 

the only groups where the means differ for winter mean 

environmental levels are the Gas and LPG groups which are 

statistically significant (p=0.001).

From the environmental monitoring data available, an analysis was 

carried out to establish if at any time during the monitoring periods,
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the levels recorded had risen above the WHO 8 hour standard of 

8.6ppm (11.46mg/m3). Table 4.8 details the households that 

exceeded the limit, which fuel groups they belonged to and also 

details the length of time that each of the households was above the 

limit.

Household
Identifier

Heating 
Fuel type

Peak 
level CO 
(ppm)

Time above 
8.6ppm

45 Electricity 12 5 minutes 
(16.01)

Static 13 LPG 10.5
5 minutes 
(19.19)

Static 4 LPG 22 35 minutes 
(12.17-12.47)

15 minutes 
(11.17-11.27)

25 minutes 
(12.32-12.52)

30 minutes 
(11.57-12.22)

9 Gas 17 1 hour 25
minutes
(19.06-20.26)

15 Gas 10.5 15 minutes 
(16.23-16.33)

11 Gas 13 1 hour 35
minutes
(10.48-12.18)

20 Gas 11 25 minutes 
(11.20-11.45)

Table 4.8 Duration of CO peaks above 10ppm in non-smoking 

households

Table 4.8 shows that of the 7 households where peak levels rose 

above the WHO limit of 10ppm over an 8 hour period, 4 households
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were heated by gas, 2 by LPG and one by Electricity. The highest 

peak recorded was 22ppm (25.2mg/m3) in a LPG heated static 

home, this household reported 4 occasions where the level rose 

above 10ppm (11.46mg/m3). The longest period recorded above the 

10ppm (11.46mg/m3) limit was 1 hour 35 minutes in a gas heated 

household.

Smoking households

Environmental monitoring results were not available for 3 smoking 

households visited; this was due to the monitors being switched off in 

error by the participants.

Table 4.9 details the number of households recruited in each of the 

fuel groups and the basic statistics associated with the environmental 

monitoring carried out. In the smoking subset, participants were only 

available from three of the fuel groups (Gas, Coal and LPG). The 

grand mean environmental concentration was 2.5ppm (2.86mg/m3), 

with a range of 0.2-21 ppm (0.23 -  24.06mg/m3). The peak level 

ranged from 1.8-53.6ppm (2.06 -  61.4mg/m3) (mean = 11.4ppm) 

(13.06mg/m3).
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Fuel type 
(Heating)

Number of 
households

Number of 
residents

Number of
Households
with
environmental
results

Highest
mean1
CO
levels
(ppm)

Grand
mean2

Range of 
mean3 
CO levels 
(ppm)

Highest 
peak4 CO 
level(ppm)

Range of 
Highest 
peak5 
CO level 
(ppm)

Gas 14 12 12 10.7 1.8 0.3-10.7 45.7 1.4-45.7

Coal 4 5 3 1.9 0.5 0.2-0.7 1.9 1.9-1.9

LPG 5 6 5 17.4 6.1 1-21 53.6 5.1-53.6

2. Grand mean -  the mean of means

3. Range of mean -  the range of the Grand mean

4. Highest peak -  highest single peak CO level recorded in each fuel type, followed by the grand mean peak in brackets

5. Range of highest peak -  the range of the highest peaks obtained in each of the households monitored in each fuel type.

Table 4.9 Carbon monoxide concentrations by heating fuel type (in parts per million), Smoking households
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In smoking households, the mean environmental concentration over 

the total period monitored ranged from O.lppm to 21 ppm (0.11 -  

24.06mg/m3) and the highest measurement recorded in an indivdual 

household ranged from 1.9ppm to 53.6 ppm (2.18 -  61.4mg/m3). 

Similar to the non-smoking households, the highest Carbon 

monoxide levels recorded were in LPG heated homes.

A boxplot was drawn to show the relationship between the winter 

mean environmental levels and the different fuel groups (Figure 4.9).

25.00

2  20.00

15.00

10.00

0  1 3

Household heating fuel type: - 0=gas 1=coal 2=electricity 
3=lpg 4=other

Figure 4.9 Boxplot winter environmental mean Carbon 
monoxide level against heating fuel type in 
smoking households
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An ANOVA test showed that there was no statistically significant 

difference between winter mean environmental CO levels in the 

different fuel groups; p=0.378.

None of the smoking households monitored exceeded the WHO limit 

of 26ppm (30mg/mg3) over 1 hour. With Regards to the WHO limit of 

8.6ppm (10mg/m3) over 8 hours, 4 households had peaks above 

8.6ppm, these are shown in table 4.10, together with details of which 

fuel group the households were in and the duration of time that they 

were above the WHO limit: -

Household
Identifier

Fuel Peak
(ppm)

Time above 
8.6ppm

13 Gas 19.86 1 hour 40 minutes 
(17.18-18.53)

12 Gas 11.37 5 minutes 
(14.29)

8 Gas 14 30 minutes 
(13.52-14.17)

2 LPG 53.58 5.1.04
1 hour 55 minutes 
(16.44-18.09)

6 hours 25 minutes 
(20.49-03.19)

6.1.04 
3 hours 
(7.09-10.04)

Table 4.10 Smoking Households with CO peaks above the WHO 8 
hour limit of 10ppm

Table 4.10 shows that of the 4 households where peak levels 

exceeded the WHO limit of 8.6ppm over an 8 hour period, 3 

households were heated by gas, and 1 by LPG. The highest peak
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recorded was 53.58ppm (61.4mg/m3) in a LPG heated static home, 

this household reported 3 occasions where the peak level exceeded 

the WHO limit. This household also recorded the longest period 

above the 8.6ppm limit at 6 hour 25 minutes.

Whilst it maybe expected to observe a difference between Carbon 

monoxide levels in a smoking and a non-smoking home, a boxplot 

was drawn to establish whether the winter peak environmental 

monitoring data collected confirmed this expectation. The results can 

be seen in Figure 4.10: -

6 0 .0 0 -
wffl

O101
0 1 1 8®  50.00

40.00

■X  30.00

a> 20.00

I----------------------------1--------------0 1
Smoking Household vs Non-smoking household (smoker =

1 non = 0)

Figure 4.10 Differences between smoking and non-smoking 
households for winter Peak Carbon monoxide levels
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There was a 31% difference in median values between the smoking 

(5.9ppm) (6.76mg/m3) and non-smoking (4.5ppm)

(5.16mg/m3)groups.

The next step was to test if there was a statistically significant 

difference between the smoking and non smoking households for 

peak environmental levels monitored. Statistical analysis was carried 

out using a Mann Whitney U test. This is the non parametric 

alternative to the t-test for independent samples but instead of 

comparing the means of the two groups, the Mann Whitney U test 

compares the medians. Non parametric tests can be used in place 

of their parametric counterparts and are particularly useful for dealing 

with data with extreme outlying values rather than having to exclude 

them from the analysis altogether.

The difference between smokers versus non-smokers for peak CO 

levels were not statistically significant (p=0.23) although this may 

have been due to the low numbers who participated in the smoking 

group.

The analysis was then repeated for the winter mean environmental 

levels monitored. Figure 4.11 shows the boxplot drawn for winter 

mean environmental levels in smokers and non smokers’ 

households: -
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0 1 
Smoking household vs non-smoking household (smoker = 1 

non = 0)

Figure 4.11 Differences between smoking and non-smoking 
households for winter mean Carbon monoxide levels

There was a 300% difference in winter mean CO levels between the 

smoking (1.2ppm) (1.37mg/m3) and non-smoking (0.3ppm)

(0.34mg/m3)groups, a Mann Whitney U test was carried out, and this 

was statistically significant p<0.001.

4.2.2 Environmental monitoring for the outdoor environment

This study measured and compared the environmental levels of 

Benzene, Nitrogen dioxide and Nitrous oxide experienced at 

households in two different microenvironments of vehicular traffic.
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The study also investigated the relationships between environmental 

levels and biomarkers of exposure for Benzene and Nitrous oxide. 

Table 4.11 Details the descriptive results of all the samples:-

Number
of
samples

Mean level Range Standard
deviation

Benzene 66 0.25ppb 0.1-0.57ppb 0.9
s-PMA 52 1.75umol/mol 0.2-

7.7umol/mol
1.19

Nitrogen
dioxide

68 15.4ppb 7.5-24ppb 4.3

Nitrous
oxide
(inside)

21 15.67ppb 0-152ppb 40.5

Nitrous
oxide
(outside)

25 260ppb 0-1233ppb 383.7

Urinary
Nitrous
oxide

17 183 0-1863 515.1

Table 4.11 All results Traffic study

Table 4.12 And 4.13 Present the descriptive results for the highly 

trafficked and lowly trafficked areas: -
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Number of 
samples

Mean level Range Standard
deviation

Benzene 52 0.26ppb 
(0.83 ug/m3)

0.12-0.57
(0.38-1.81
ug/m3)

0.95

s-PMA 40 1.89 0.2-7.7 1.28

Nitrogen dioxide 54 16.75
(31.9 mg/m3)

14.3-46
(0-2219
mg/m3)

3.7

Nitrous oxide 
(inside)

12 14.75
(26.5 mg/m3)

0-116
(0-208.8
mg/m3)

33.3

Nitrous oxide -  
outside

16 318
(572 mg/m3)

0-1233
(0-2219
mg/m3)

383.5

Urinary Nitrous 
oxide

12 163.5 0-1863.4 535.9

Table4.12 High'frafficked areas only

Number of 
samples

Mean level Range Standard
deviation

Benzene 14 0.19
(0.61 ug/m3)

0.1-0.31
(0.32-0.99
ug/m3)

0.7

s-PMA 12 1.32 0.3-3.4 0.76

Nitrogen dioxide 14 10.16
(19.4 mg/m3)

7.6-12.3
(14.5-23.5
mg/m3)

1.4

Nitrous oxide 
(inside)

9 16.89
(30.4 mg/m3)

0-152
(0-273.6
mg/m3)

50.6

Nitrous oxide 
(outside)

9 158
(284 mg/m3)

0-1162
(0-2092
mg/m3)

384

Urinary Nitrous 
oxide

5 232.5 0-1160 518.7

Table 4.13 Low tra fficked areas only

136



Environmental levels of Benzene

Number of 
Samples

Mean level 
ppb

Range ppb Standard
deviation

Benzene 66 0.25
(0.79 ug/m3)

0.1-
0.57ppb
(0-1.81
ug/m3)

0.9

Benzene 
(control group)

14 0.19
(0.61 ug/m3)

0.1-0.31
(0.32-0.99
ug/m3)

0.7

Benzene
(exposed
group)

52 0.26ppb 
(0.83 ug/m3)

0.12-0.57
(0.38-1.81
uq/m3)

0.95

Table 4.14 Environmental Benzene results

A total of 66 samples were collected for Benzene, with a mean of 

0.25ppb (0.79mg/m3) and range of 0.1-0.57ppb (0 -  1.81mg/m3). In 

the exposed group there were 52 samples with a mean of 0.26 

(0.83mg/m3) and range of 0.12-0.57ppb (0.38 -  1.81mg/m3) and in 

the control group there were 14 samples, with a mean of 0.19ppb 

(0.61 mg/m3) and range of 0.1 -0.31 ppb (0.32 -  0.99mg/m3).

Analysis of the normality of the data was carried out and showed that 

the Benzene in the exposed and control areas were normally 

distributed therefore a parametric t-test was chosen to test the 

environmental variables against the two microenvironments, the 

results are shown in table 4.15: -
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Test Value = 0

t df
Sig. (2- 
tailed)

Mean
Differen
ce

95%
Confidence 
Interval of the 
Difference
Lower Upper

Benzene 21.18
7 65 .000 .24667 .2234 .2699

Table 4.15 Results o f t  - test for Benzene data in exposed and 
control areas

The results of the t-test (Table 4.15) show that the mean levels for 

Benzene are statistically significantly different between the exposed 

and control areas (p<0.001).

■Qaa
»a>>

0
0 = e x p o s e d  1 = n o n e x p o s e d

Figure 4.12 Environmental Benzene in exposed and control groups
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The boxplot in figure 4.12 shows the Benzene levels monitored in the 

exposed and control microenvironments. In the exposed area there 

are two outliers, 53, which is in Moorland Road and 61, which is in 

Western Avenue. The mean level of Benzene in the exposed group 

was 0.3, with a mean level of 0.2 in the control group; the difference 

translates to an effect size of 50%.

Nitrogen dioxide and Nitrous oxide measurements

Number
of
Samples

Mean level 
ppb

Range
ppb

Standard
deviation

Nitrogen
dioxide

68 15.39
(29.4 mg/m3)

7.5-24.1
(14.3-46
mg/m3)

4.3

Nitrogen dioxide 
(control group)

14 10.16
(19.4 mg/m3)

7.6-12.3
(14.5-
23.5
mg/m3)

1.4

Nitrogen dioxide 
(exposed group)

54 16.75
(31.9 mg/m3)

14.3-46
(0-2219
mg/m3)

3.7

Table 4.16 Environmental Nitrogen dioxide results

A total of 68 samples were collected for Nitrogen dioxide, with a 

mean of 15.39ppb (29.4mg/m3) and range of 7.5-24.1 ppb (14.3 - 

46mg/m3). In the exposed group there were 54 samples with a mean 

of 16.75ppb (31.9mg/m3) and a range of (14.3 - 46mg/m3) and in the 

control group there were 14 sample, with a mean of 10.16ppb 

(19.4mg/m3) and a range of 7.6-12.3ppb (14.5 -  23.5mg/m3).
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Analysis of the normality of the data showed that the Nitrogen dioxide 

in the exposed and control areas was normally distributed therefore a 

parametric t-test was chosen to test the environmental variables 

against the samples taken in a non-exposed traffic pollution area and 

an exposed traffic pollution area, the results are shown in table 4.17:

Test Va ue = 0

t df
Sig. (2- 
tailed)

Mean
DifFeren
ce

95% Confidence 
Interval of the 
Difference
Lower Upper

Nitrogen
dioxide 29.555 67 .000 15.3911

8
14.351
7

16.430
6

Table 4.17 Results of the t - test for the Nitrogen dioxide levels in 
the exposed and control areas

The results of the t-test shown in table 4.17 show that the mean 

levels for Nitrogen dioxide are statistically significantly different 

between the exposed and control areas (p<0.001).
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O=exposed1=nonexposed

Figure 4.13 Boxplot illustrating the difference between 
environmental Nitrogen dioxide exposure in exposed 
and non-exposed areas

Figure 4.13 shows the Nitrogen dioxide levels monitored in the 

exposed and control areas. The mean level of Nitrogen dioxide in the 

exposed group was 16.7, with a mean level of 10.2 in the control 

group; the difference translates to an effect size of 64%. To test 

whether there is a statistically significant difference between the 

exposed and control areas, an ANOVA test was carried out, the

results are shown in table 4.18: -

Sum of 
Squares df

Mean
Square F Sig.

Between 
Groups 
Within Groups 
Total

482.966
752.569
1235.53
5

1
66
67

482.966
11.403

42.356 .000

Table 4.18 ANOVA test testing the significance of Nitrogen dioxide 
within the exposed group and the control group



The results of the ANOVA shown in table 4.18, show that there is a 

statistically significant difference between the Nitrogen dioxide 

monitored in the exposed and control microenvironments (p<0.001).

Within the funds available it was also decided to investigate a small 

subgroup of households where Nitrous oxide measurements were 

sampled outside and inside the home. Nitrous oxide was monitored 

in 25 households, both outside and inside, it was not possible to 

retrieve Nitrous oxide tubes from inside 4 of the households, despite 

numerous attempted contacts, due to no response.
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Number of 
Samples

Mean level 
ppb

Range
ppb

Standard
deviation

Nitrous oxide 
- outside

25 260
(469 mg/m3)

0-1233
(0-2219
mg/m3)

383.7

Nitrous oxide -  
outside (control 
group)

9 158
(284 mg/m3)

0-1162
(0-2092
mg/m3)

384

Nitrous oxide -  
outside 
(exposed 
group)

16 318
(572 mg/m3)

0-1233
(0-2219
mg/m3)

383.5

Nitrous oxide 
- inside

21 15.67
(28.2 mg/m3)

0-152
(0-273.6
mg/m3)

40.5

Nitrous oxide -  
inside (control 
group)

9 16.89
(30.4 mg/m3)

0-152
(0-273.6
mg/m3)

50.6

Nitrous oxide -  
inside 
(exposed 
group)

12 14.75
(26.5 mg/m3)

0-116
(0-208.8
mg/m3)

33.3

Table 4.19 Environmental Nitrous oxide results

The Nitrous oxide results were not normally distributed between the 

exposed and the norvexposed and also between the inside and 

outside measurements, therefore a norvparametric test was chosen. 

The Mann Whitney test was chosen to test the environmental 

variables against the samples taken in a non-exposed traffic pollution 

area and an exposed traffic pollution area.
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Nitrous oxide (Outside)

A total of 25 samples were collected for Nitrous oxide outside of 

households, with a mean of 260.44ppb (469mg/m3) and a range of 0- 

1233ppb (0 - 2219mg/m3). In the exposed group there were 16 

samples with a mean of 318ppb (572mg/m3) and a range of 0- 

1233ppb (0 - 2219mg/m3) and in the control group there were 9 

samples, with a mean of 158.11 ppb (284mg/m3) and a range of 0- 

1162ppb (0 - 2092mg/m3).

1250 00

1000.00

3  'T  750.00 o ?

I  500.00

I  s.

Exposed household vs non-exposed household 
(0=exposed 1 =non-exposed)

Figure 4.14 environmental Nitrous oxide exposures (outside 
households) in exposed and non-exposed areas

The boxplot in figure 4.14 shows the Nitrous oxide measurements 

(outside) in the two microenvironments, with levels appearing to be 

higher in the exposed area but a Mann Whitney test showed that
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there is no statistical significance between the Nitrous oxide 

measurements in the exposed roads and the measurements in the 

control roads (p=0.098) this may be due to the low numbers of 

households that took part in the Nitrous oxide monitoring.

Nitrous oxide (Inside)

A total of 21 samples were collected for Nitrous oxide inside 

households, with a mean of 15.67ppb (28.2mg/m3) and a range of 0- 

152ppb (0 -  273.6mg/m3). In the exposed group there were 12 

samples with a mean of 14.75ppb (26.5mg/m3) and a range of 0- 

116ppb (0 -  208.8mg/m3) and in the control group there were 9 

samples, with a mean of 16.89ppb (30.4mg/m3) and a range of 0- 

152ppb (0-273.6mg/m3).
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Figure 4.15 Environmental Nitrous oxide exposure (inside 
households) in exposed and non-exposed areas

Figure 4.15 shows the inside Nitrous oxide measurements in the two 

microenvironments monitored. Two outliers were observed in the 

exposed area; both 50 and 51 were in Manor Way. There was one 

outlier within the control area this was 46 which was in Denison way. 

The median level of Nitrous oxide (inside) in the exposed group and 

the control group was 0.

To observe whether there was a relationship between outside and 

inside measurements taken for Nitrous oxide a scatterplot was 

drawn, this is shown in figure 4.16: -
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Figure 4.16 Scatter plot illustrating the distribution of environmental 
Nitrous oxide levels, outside household’s against inside 
households

The scatter plot shown in figure 4.16 shows that there is a statistically

significant correlation between the exposed and control groups 

(p=0.004, r=0.603).

Nitrous oxide Nitrous oxide
inside outside

Spearman's Nitrous Correlation
1.000 .603(**)

.004

rho oxide inside Coefficient 
Sig. (2-tailed)

N 21 21
Nitrous Correlation
oxide Coefficient .603(**) 1.000
outside

Sig. (2-tailed) .004

N 21 25
** Correlation is significant at the 0.01 level (2-tailed).

Table 4.20 Results of Spearman Rank-Nitrous oxide inside versus 
outside
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The reduced number of plots illustrated on the scatter plot can be 

explained by the large number of equal results obtained (i.e. 17 

Inside and 11 outside results were Oppb).

To further look at the data relating to the exposed areas only, a 

boxplot was drawn to observe the relationship between Nitrous oxide 

levels inside and Nitrous oxide levels outside, this is shown in figure 

4.17: -

1,200 

1,000 

800 

600 

400 

200 

0

Figure 4.17 Nitrous oxide levels inside and outside households in 

exposed roads only

Figure 4.17 shows that there is an observed difference between the 

inside and outside Nitrous oxide measurements in the exposed area. 

To test whether there was a statistically significant difference a

Nitrous oxide inside Nitrous oxide outside
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Wilcoxon signed ranks test was carried out, the results are shown in 

table 4.21:

Nitrous oxide outside  
-  Nitrous oxide inside

z
A sym p. Sig. (2 - 
tailed)

-2 .3 6 6 (a )

.018
a Based on negative ranks, 

b Wilcoxon Signed Ranks Test

Table 4.21 Wilcoxon signed ranks test for Nitrous oxide inside 
against Nitrous oxide outside in exposed areas only

The results shown in table 4.21 show that there is a statistically 

significant difference between inside and outside measurements of 

Nitrous oxide in the exposed areas (p=0.018).

To repeat this for Nitrous oxide measurements taken in the control 

areas, a boxplot was drawn (figure 4.18): -

1,200-

1,000-

8 00 -

600-

400 -

200 -

0-

Nitrous oxide inside Nitrous oxide outside

Figure 4.18 Nitrous oxide levels inside and outside households in 
control roads only
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Figure 4.18 shows that there is a very small observed difference 

between inside and outside measurements of Nitrous oxide in the 

control areas and a Wilcoxon signed ranks test showed that there is 

no statistically significant difference between the inside and outside 

Nitrous oxide measurements in the control areas (p=0.109).

4.3 Biological monitoring

4.3.1 Biomarkers associated with indoor environment

Biological monitoring was carried out in the non-smoking group only. 

Each participant donated a blood sample during the week when the 

environmental monitoring took place. From the blood sample two 

biological measurements were made; the first measured 

carboxyhaemoglobin (COHb) levels and the second the enzyme 

cyclic Guanosine Monophosphate (cGMP). Blood samples were 

taken during the winter and also as a follow up in the summer to 

assess any seasonal difference.

Winter COHb results were available for 85% of subjects and cGMP 

measurements were available for 90% of subjects. Summer COHb 

results were available for 59% and cGMP data was available for 74% 

of the sample group. Both summer and winter COHb and cGMP 

measurements were available for 48% of subjects. Complete 

measurements of environmental concentrations as well as summer
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and winter COHb and cGMP measurements were available for 31% 

of the sample group. Whilst there was a high rate of attendance for 

the biological monitoring during the initial winter months and when 

the monitor was in place within the home, the recall for a follow up 

summer measurement was not as well attended. This maybe partly 

due to the original hospital having closed and greater traveling being 

required to attend the new hospital clinic.

Carboxyhaemoglobin

The majority of the CoHb results received were recorded as 0%. 

Participants had to leave the potential CO source to travel to the 

hospital for the blood sample, and carboxyhaemoglobin has a half life 

of 2-5 hours in healthy individuals. The time between the participant 

leaving their home and having their blood sample taken was not 

recorded, the time delay and exposure to outdoor air is a possible 

explanation for the zero results. Further those non zero levels 

recorded are likely to be an underestimate of COHb levels at the 

point of leaving the home. For environmental CO inhaled between 1 

and 3ppm, it would be expected to observe a COHb level of 0.5- 

0.8%, for an inhaled level of 7-50ppm, it would be expected to 

observe a COHb level of 1.5-8%. Reference ranges were obtained 

from the hospital where the analysis was undertaken for a typical 

week. In that week 2% of the COHb tests would be expected to be 

below 0.5%, 57% would be expected to be in the range 0.6-1% and
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41% of tests would be expected to be above 1.1%.Table 4.22 and 

Figure 4.19 show the winter levels of COHb measured in each 

person for each of the households, grouped by fuel type: -

Fuel type 
(Heating)

Number
of
persons

persons
with
results

COHb
Mean
(%)

Range
(%)

Standard
deviation

Gas 58 48 0.19 0-3 0.47
Coal 11 11 0.4 0-4 1.13
Electricity 5 4 0.05 0-0.2 0.1
LPG 21 18 0.11 0-0.8 0.22
Other 4 4 0.05 0-0.2 0.12

Table 4.22 Winter Carboxyhaemoglobin levels (%) of household 
residents by fuel type

0 .8 -

—  0 .6 -

49
C 0 .4 -

0 .2 -

0-

0 1 2 3 4

Household by fuel type (0=gas 1=coal 2= elec 3=lpg 4=other)

(N o te  T h e  w in te r  C O H b  s c a le  h a s  b e e n  re d u c e d  to  s h o w  th e  % ’s  in  th e  o th e r  fu e l g ro u p s . W in te r  

C O H b  le v e ls  r o s e  to  a  p e a k  o f  3 %  in  th e  g a s  g ro u p  a n d  4 %  in  th e  c o a l g ro u p )

Figure4.19 Winter COHb levels by heating fuel type
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An ANOVA test linked to a Tukey test confirmed that there was no 

statistical significance between the winter COHb results and the 

different heating fuel types (p=0.636).

Table 4.23 and Figure 4.20 show the summer levels of COHb 

measured in each of the household by fuel type.

Fuel type 
(Heating)

Number
of
persons

persons
with
summer
results

COHb
(%)

Range
(%)

Standard
deviation

Gas 58 29 0.22 0-4 0.75
Coal 11 4 0 0-0 0
Electricity 5 3 0 0-0 0
LPG 21 0 - - -

Other 4 2 0.2 0-0.4 0

Table 4.23 Summer Carboxyhaemoglobin levels (%) of household 
residents by fuel type

4 .0 -

X  2.0 -

0.0 -

0 1 2 4

Household by fuel type (0=gas 1=coal 2= elec 3=lpg 4=other)

Figure 4.20 Summer COFIb levels by heating fuel type
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 1------
cohb w inter levels

 1-------
cohb sum m er levels

Figure 4.21 COHb winter versus COHb Summer

measurements

Winter COHb concentrations ranged from 0 -  3.8% (mean = 0.18%) 

and Summer COHb concentrations ranged between 0 -  3.9% (mean 

= 0.17%) as shown in Figure 4.21. There was no statistically 

significant difference between summer and winter COHb 

measurements (Wilcoxon signed rank p=0.19). The Wilcoxon

matched pairs signed-ranks test is a non-parametric test used when 

the same or matched subjects perform under both experimental 

conditions. It is applied either to paired ranked data or to paired 

measured non-normal data, to test the null hypothesis that the paired 

observations do notdiffer.
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The median for both winter and summer carboxyhaemoglobin levels 

was zero, but from Figure 4.21 above it can be seen that there 

appears to be a greater percentage of non zero levels recorded 

during the winter months. The percentage of results for both 

seasons that were above 0.1% COHb were 10.3% for winter and 

12.1% for summer, (p=0.001) and for results above 0.2% COHb were 

10.3% for winter and 3% for summer, (p=0.009) The outliers present 

in Figure 421 were investigated further to see if there were any 

possible explanations but none were found.

Scatter plots of mean environmental levels versus COHb levels for all 

fuel groups showed no relationship but the majority of COHb results 

were zero.

To further investigate winter COHb levels against winter mean 

environmental levels, the median of means was calculated across all 

the fuel groups, resulting in a figure of 0.27ppm (0.31 mg/m3). A 

scatterplot was then drawn using all winter mean environmental data 

above this figure and plotted against all winter COHb readings. 

Figure 4.22 shows that there does not appear to be an observed 

relationship between winter COHb levels and winter mean 

environmental CO levels at readings above 0.27ppm (0.31 mg/m3).
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Figure 4.22 Winter mean CO levels above the median of means 
level for all fuel groups (0.27ppm) against the winter 
COHb levels
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Cyclic Guanosine Monophosphate

Fuel type 
(Heating)

Number
of
persons

Persons
with
winter
results

Mean
(fmol/mg
protein))

Median
(fmol/mg
protein)

Range
(fmol/mg
protein)

Standard
deviation

Gas 58 48 265.9 220.0 109.2-
646.3

131.9

Coal 11 11 321.9 255.3 131.0-
704.2

176.5

Electricity 5 4 147.9 149.5 118.8-
174.0

26.5

LPG 21 17 544.0 408.3 228-
2375.6

506.3

Other 4 4 176.1 168.8 137.2-
229.5

50.5

Table4.24 Winter cGMP levels (fmol/mg protein) of household 
residents by fuel type

Winter cGMP concentrations ranged from 109.2 -  2375.6 fmol/mg

protein (grand mean = 315.5 fmol/mg protein).

®  800.00

O 600.00

400.00

Si
c  200.00

Fuel type in non-smoking households (0=gas 1=coai 2= elec 3=lpg 
4=other)

Figure 4.23 Winter cGMP levels in the different households by fuel 
group (non-smoking households)
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The next step was to investigate which of the fuel groups were 

significant so an ANOVA test linked to a Tukey test was carried out.

Sum of 
Squares df

Mean
Square F Sig.

Between
Groups
Within
Groups
Total

1190686.071

5342496.408
6533182.479

4

84
88

297671.518

63601.148

4.680 .002

Table 4.25 Results of the ANOVA test for the differences between 
winter cGMP levels in the 5 fuel groups in non-smoking households
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Multiple Comparisons

Dependent Variable: cGMP Winter levels 
Tukey HSD
(I) O-gas 1=coal 
2=elec 3=lpg 
4=other

(J) 0=gas 1 =coal 
2=elec 3=lpg 
4=other

Mean
Difference
ib a _____

Std.
Error Sig, 95% Confidence Interv?

Lower
Bound

Upper
Bound

0
2

3

4 

0 

1

3

4

0

1
2

4

0

1

2

3

-55.16699

118.85574

277.28132
O
95.27241

55.16699

174.02273

222.11433

150.43939

118.85574

174.02273

396.13706
O
-23.58333

277.28132 
O
222.11433
396.13706
O
372.55373 

-95.27241

150.43939 

23.58333

372.55373

83.42495
130.6831 
5

70.13589

149.5933 
9
83.42495
147.2488 
0
97.58671

164.2629 
1
130.6831 
5
147.2488 
0
140.1482 
5

192.6153
4

70.13589

97.58671
140.1482
5
157.9291 
8
149.5933 
9
164.2629 
1
192.6153 
4
157.9291 
8

.964

.893

.001

.969

.964

.762

.163

.890

.893

.762

.045

1.000

.001

.163

.045

.137

.969

.890

1.000

.137

The mean difference is significant at the .05 level.

-287.7488

-245.4780

-472.8143

-321.7815

-177.4148

-236.4947

-494.1780

-307.5119

-483.1895

-584.5401

-786.8587

-560.5789

81.7483

-49.9493

5.4154

-67.7397

-512.3263

-608.3907

-513.4122

-812.8471

177.4141

483.189!

-81.7482

512.326:

287.7481

584.540

49.9493

608.390’

245.4781

236.494

-5.4154

513.412:

472.814:

494.1781

786.858

812.847

321.781!

307.511!

560.578!

67.7397

Table 4.26 Results of the Multiple Comparisons Tukey HSD test 
for the differences between winter cGMP levels in the 5 
fuel groups in non-smoking households
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The results of the Tukey test show that median winter levels of cGMP 

was statistically significantly different between fuel groups’ 0-Gas, 2- 

Electricity and 3-LPG.

Following on from these results, a scatterplot was drawn to look at 

the relationship between winter cGMP levels and environmental 

levels for the group using LPG but no correlation was observed 

(Spearman Ranks r=0.292).
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Winter mean environmental carbon monoxide levels in the LPG fuel 
group (ppm)

Figure 4.24 Scatterplot of winter mean environmental CO levels 
against winter cGMP levels in LPG households
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Fuel type 
(Heating)

Number
of
persons

Persons
with
summer
results

Mean
(fmol/mg
protein))

Median
(fmol/mg
protein))

Range
(fmol/mg
protein))

Standard
deviation

Gas 58 47 224.2 201.5 124.28-
595.52

100.5

Coal 11 10 325.4 261.5 57.83-
756.7

232.7

Electricity 5 3 343.9 458.6 109.41-
463.6

203

LPG 21 12 284.2 293.8 68.91-
550.48

131.9

Other 4 3 194.6 209.3 150.96-
223.42

9.9

Table 4.27 Summer cGMP levels (fmol/mg protein) of household 
residents by fuel type

Summer cGMP concentrations ranged between 57.8 -  756.7 

fmol/mg protein (grand mean = 250.91 fmol/mg protein).
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a
I
0
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<5
£E3 200.0 0 -

co

0 .0 0 -

0 21 3 4

Fuel type in non-smoking households (0=gas 1=coal 2= elec 3=lpg 
4=other)

Figure 4.25 Summer cGMP levels in the different households by 
fuel group (non-smoking households)
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An ANOVA Test showed that differences between median summer 

cGMP levels were not statistically significantly different between the 

different fuel groups.

1,200-

1,000-

(0 800-

200 -

0-
T0 1 

Gender 0=male 1=female

Figure 4.26 The Distribution of male and female cGMP 
Measurements taken in the winter

During the winter the median cGMP level for the male participants 

(52) was 230.8, with a median level of for the female participants (47) 

of 282, a difference of 22% as shown in Fig 4.26.
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Gender 0=male 1=female

Figure 4.27 The Distribution of the male and female cGMP 
Measurements taken in the summer

For the summer months the cGMP levels for the male participants 

were 207.8, with a median level of for the female participants of 

223.4, a difference of 7.5% as shown in Figure 4.27.

Flowever, there were no statistically significant differences in cGMP 

levels measured in women compared to men in the summer (Mann 

Whitney p=0.84) or in the winter (Mann Whitney p=0.47).



 1----
cgmp winter

I
cgmp summer

Figure 4.28 The Distribution of the cGMP measurements for the 
winter and the summer

The median for the winter cGMP levels was 250 and for the summer 

levels were 210.4, a difference of 19% as shown in Figure 4.28.

The median value for winter cGMP levels in the Gas fuel group was 

220, with a median value for the summer cGMP levels of 202; the 

difference translates to an effect size of 9%

The median value for winter cGMP for the LPG fuel group was 408, 

with a median value for the summer cGMP levels of 294; the 

difference translates to an effect size of 39%.



Seasonal D ifference in cG M P

Figure 4.29 The Histogram for the difference in cGMP 
Measurements between the winter and the summer

The Seasonal Difference in cGMP was analysed using the Wilcoxon 

Signed Ranks Test. The results of this analysis are as follows: -

cGMP summer - cGM P winter

N Mean Rank
Sum of 
Ranks

Negative Ranks 46 36.34782609 1672
Positive Ranks 26 36.76923077 956
Ties 0
Total 72

Test Statistics
cGMP summer - cGMP 
winter

Z -2.008986267
Asymp. Sig. (2- 
tailed) 0.04453859

Table 4.28 The Seasonal Difference in cGMP Summer and Winter 
cGMP levels



For the 72 subjects who submitted both summer and winter blood 

samples, the winter cGMP levels were significantly higher (Wilcoxon 

signed rank p=0.04).

This was further investigated by looking only at the gas and LPG fuel 

groups using the Wilcoxon Signed Ranks Test. The results are as 

follows: -

For the 45 subjects who submitted both summer and winter blood 

samples from the Gas fuel group, there was no significant difference 

in the summer and winter cGMP levels (Wilcoxon signed rank 

p=0.103).

N
Mean
Rank

Sum of 
Ranks

cGMP Summer -  Negative 
cGMP Winter Ranks 

Positive 
Ranks 
Ties 
Total

28(a)

17(b)
0(c)
45

23.64

21.94

662.00

373.00

cGMP summer 
-  cGMP winter

Z
Asymp. Sig. (2- 
tailed)

-1.631(a)
.103

Table 4.29 The seasonal difference in cGMP Summer and Winter 
cGMP levels in the Gas fuel group

For the 12 subjects who submitted both winter and summer blood 

samples in the LPG fuel group, the winter levels were significantly
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higher (Wilcoxon signed rank p=0.003). Whilst there was no 

correlation between the winter cGMP levels and the number of hours 

the heating was on, there was a weak correlation between winter 

cGMP levels and the time the participant spent in the living room for 

subjects in all the fuel groups. [r=0.261, p=0.013] The correlation for 

the LPG group appeared to be stronger but did not achieve statistical 

significance [r=0.386, p=0.126]

A scatterplot was drawn to see if a relationship could be observed 

between the COHb and cGMP levels taken during the winter months, 

the correlation for all fuel groups did not show statistical significance 

[r=0.187], the test was repeated for the gas group only and the LPG 

group only, again no correlation was found [r=0.535], [r=0.340].

4.3.2 Biological Monitoring associated with the outdoor 

environment

Number of 
Samples

Mean level 
umol/mol

Range
umol/mol

Standard
deviation

s-PMA 52 1.75 0.2-7.7 1.19

s-PMA (control 
group)

12 1.32 0.3-3.4 0.76

s-PMA
(exposed
group)

40 1.89 0.2-7.7 1.28

Table 4.30 s-PMA results-AII areas
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A total of 52 samples were collected for s-PMA, with a mean 

pma/creatinine ratio of 1.75 umol/mol (range 0.2-7.7 umol/mol).

In the exposed group there were 40 samples with a mean of 1.89 

umol/mol (0.2-7.7 umol/mol), and in the control group there were 12 

samples, with a mean of 1.32pma/creatinine ratio umol/mol (0.3-3.4 

s-PMA/creatinine ratio umol/mol).

O  8 .0 0 -

^8 6 .0 0 “

C  2 . 0 0 -

i  o .o o -

0 1

0=exposed1=nonexposed

Figure 4.30 Boxplot illustrating the urinary s-PMA in the exposed 
and control groups

Figure 4.30 shows s-PMA levels in the exposed and control groups. 

The median level cf s-PMA in the exposed group was 1.95, with a 

median level of 1.1 in the control group; the difference translates to 

an effect size of 77%.
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The results of a Mann Whitney test were that that there is not a 

statistical difference between s-PMA levels in the exposed and 

control groups (p=0.91).

To investigate whether there was a relationship between the 

environmental Benzene levels sampled and the urinary s-PMA levels 

obtained from the participants of the study, a scatterplot was drawn 

including all the results from both microenvironments, the results are 

shown in figure 4.31: -

0 .6 0 -
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P

Figure 4.31 Scatter plot of environmental Benzene against urinary 
sPMA (all samples)
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The results of the scatter plot shown in figure 4.31 show that there is 

no correlation between the atmospheric Benzene levels and the s- 

PMA levels, a Pearson correlation confirmed this (p=0.270, r="0.161).

Benzene s-PMA
Benzene Pearson 

Correlation 1 -.161

Sig. (2-tailed) .270
N 66 49

s-PMA Pearson 
Correlation -.161 1

Sig. (2-tailed) .270
N 49 62

Table 4.31 Results of the Pearson correlation for Benzene and &- 
PMA -  all areas

Number of 
Samples

Mean level 
ug/l

Range
ug/l

Standard
deviation

Urinary 
Nitrous oxide

17 183.8 0-1863.4 515.1

Urinary Nitrous 
oxide (control 
group)

5 232.5 0-1160 518.7

Urinary Nitrous 
oxide (exposed 
group)

12 163.5 0-1863.4 535.9

Table 4.32 Urinary Nitrous oxide results-AII areas

A total of 17 urinary samples were collected for Nitrous oxide, with a 

mean of 183.8ug/l (0-1863.4ug/l). In the exposed group there were 

12 samples with a mean of 163.49 (0-1863.4ug/l) and in the control 

group there were 5 samples, with a mean of 232.54 (0-1160ug/l).
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(Note The Urinary Nitrous oxide scale has been reduced to illustrate the differences 

between the exposed and non-exposed groups at the lower concentrations)

Figure 4.32 Urinary Nitrous oxide levels in the exposed and control 

groups

Figure 4.32 shows that there is very little difference between the two 

microenvironments for the urinary Nitrous oxide measurements. 

Nitrous oxide urine outliers are 8 which is in Ty Glas Road and, 25 

which is in Llandaff road both of which are in the exposed areas, and 

then 29 which is in Deepfield close, which is in a control area.
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4.4 Comparison between Pollutants
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Figure 4.33 Scatterplot of Environmental Benzene against 
Environmental Nitrogen dioxide for all samples

The scatterplot (figure 4.33) illustrates that there appears to be a 

correlation between the environmental Benzene and Nitrogen dioxide 

levels. A Pearson test confirmed that the correlation (r=0.65) was 

statistically significant. (p<0.001)

A further scatterplot was then drawn reducing the data to only the 

exposed areas, figure 4.34: -
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Environmental Nitrogen dioxide levels

Figure 4.34 Environmental Benzene levels against Environmental 
Nitrogen dioxide levels for exposed areas

There was a statistically significant correlation (p<0.001) between 

environmental Benzene and environmental Nitrogen dioxide levels in 

the exposed group (r=0.65).

A further scatterplot was then drawn reducing the data to only the 

control areas, figure 4.35: -



Environmental Nitrogen dioxide levels (ppm) in control group

Figure 4.35 Environmental Benzene levels against Environmental 
Nitrogen dioxide levels for control areas

There was not a statistically significant correlation between 

environmental Benzene and environmental Nitrogen dioxide levels in 

the control group (p=0.067, r=0.503).

B e n ze n e Nitrogen dioxide
B e n ze n e  Pearson A cno

Correlation \ .OUJ
Sig. (2-ta iled ) .067
N 14 14

Nitrogen P earson A
dioxide Correlation

. OUo I

Sig. (2-ta iled ) .067
N 14 14

Table 4.33 Results of the Pearson correlation for Benzene and 
Nitrogen dioxide -  all areas
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Figure 4.36 Scatter plot illustrating the distribution of environmental 
Nitrous oxide levels against environmental Nitrogen 
dioxide outside households (all results)

The scatterplot shown in figure 4.36 shows that there doesn’t appear 

to be a correlation between the environmental Nitrogen dioxide and 

environmental Nitrous oxide levels measured. A Pearson correlation 

confirmed that there was no correlation (p=0.267, r=0.247).

Nitrogen Nitrous oxide
Environm ental dioxide (outside)

Nitrogen dioxide Pearson
1 .247Correlation

Sig. (2-
.267

tailed)
N 68 22

Nitrous oxide (outside) Pearson
.247 1

Correlation
Sig. (2 -

.267
tailed)
N 22 22

Table 4.34 Results of the Pearson correlation for Nitrogen dioxide 
and Nitrous oxide (outside) -  all areas
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Figure 4.37 Scatterplot illustrating Environmental Benzene levels 
against Environmental Nitrous oxide levels in all 
samples

The scatterplot (figure 4.37) illustrates that there does not appear to

be a correlation between Environmental Benzene and Environmental

Nitrous oxide although a Pearson correlation test showed that there

was a weak correlation (p=0.037, r=0.418).
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B e n ze n e  P earson A . 4 1 8 0
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1

Sig. (2-ta iled ) .037

N 66 25
Nitrous P earso n
oxide C orrelation .4 1 8 0 1
outside

Sig. (2-ta iled ) .037

N 25 25

* Correlation is significant at the 0 .05  level (2-tailed).

Table 4.35 Results of the Pearson correlation for Benzene and 
Nitrous oxide (outside) -  all areas
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The results demonstrate that there is a correlation between Benzene 

and Nitrogen dioxide levels for all areas. There appears to be no 

identified correlation between Nitrous oxide and the other two 

environmental variables. The results also indicated that there 

appeared to be no identified correlation between the environmental 

concentration and their associated biomarkers of exposure.
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CHAPTER 5 DISCUSSION AND LIMITATIONS OF THE 

RESEARCH

An objective of the thesis was to investigate the indoor concentration 

of carbon monoxide in homes using different types of fuel for heating 

and to determine if the differential in exposure led to differences in 

the concentrations of cGMP in blood platelets. The households were 

situated in both rural and urban areas and within urban areas at 

locations with differing traffic flows. However the ambient indoor 

levels were low regardless of geographical area. The mean 

environmental concentrations over a seven day period in non­

smoking homes were less than 1 ppm (1.15mg/m3).

There was a wide variation in the individual measurements of cGMP. 

In the winter the lowest median value of cGMP was observed in the 

group using Electricity as fuel and the highest median was observed 

for the group using LPG. The results show that during the winter the 

group using LPG have much higher levels of cGMP than other 

groups and the difference between medians (86%) was statistically 

significant for the Gas and LPG groups. For summer measurements 

no statistically significant differences in median cGMP were observed 

between any of the groups and the difference between medians for 

the Gas and LPG groups was 46%.
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Further, for the group using LPG, cGMP levels were statistically 

significantly higher in the winter than in the summer with a difference 

between means in paired measurements of 91%. These findings are 

consistent with an effect of heating type on cGMP in this group. The 

environmental measurements were made over a period of 1 week 

and should be reasonably representative of the chronic exposures 

which actually determine cGMP measurements.

The significance of smoking in the home was also investigated and in 

homes containing a smoker the mean concentrations measured over 

a period of two days ranged from 0.2 -  21 ppm (0.23-24mg/m3). The 

risk posed by environmental tobacco smoke is accepted and 

reflected in legislation on smoking in Public places. However, this 

may result in more smoking in the home and importantly the potential 

exposure of children. We recorded concentrations in one smoking 

household which exceeded the WHO one-hour short-term guidelines 

value. This highlights the potential for children to be exposed to 

undesirable environmental concentrations in households with a 

smoker.

Population exposure

This data and previous studies indicate that population exposure to 

CO is relatively low. However, even a large study (Raw GJ et al., 

2004) surveyed only 830 homes and therefore the possibility remains
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that undesirable indoor concentrations could occur at a prevalence of 

as high as approximately 1 in 1000 and previous studies have not 

been large enough to detect this. Analogously a proportion of the 

250,000 domestic Gas appliances condemned annually may have 

had high levels of CO and the size of this proportion is unknown. 

Croxford et al (2005) as part of the UK Government Fuel Poverty 

programme, monitored 56 homes for Carbon monoxide, the 

occupants of the homes were either on income support, over 60 

years old or a single parent family. Out of the 56 homes monitored, 

13 (23%) had Carbon monoxide levels above the WHO 8 hour 

guidelines for outdoor ambient air 8.6ppm (9.85mg/m3), of these 6 

exceeded the WHO 1 hour level of 25ppm (29mg/m3) and 3 

exceeded 30 minute guidelines of 50ppm (57mg/m3). As a result of 

the findings a CO gas safety expert was employed to investigate 10 

of the 13 homes where levels had exceeded guidelines. The report 

showed high levels were due to old, poorly installed and poorly 

maintained gas fires and gas cookers.

Limitations of the research

Sample selection

There was little variation in the observed environmental 

concentrations of carbon monoxide in the homes heated by different 

fuel types. Very few homes using only electricity were recruited and 

therefore very useful information on homes with no carbon monoxide
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generated indoors was lacking. Future studies should ensure that 

enough people are recruited from this group. Subsequent to the 

sample selection a publication (Croxford, 2005) highlighted that 

homes and individuals suffering from fuel poverty had a higher 

prevalence of higher indoor carbon monoxide concentrations than 

other homes. Therefore such homes should be included in future 

studies to extend the range of indoor carbon monoxide 

concentralons to be studied.

Confounding

The median concentrations of carbon monoxide in the homes heated 

by LPG were almost twice those in homes heated by gas. However 

the concentrations in all homes were very low and therefore the 

absolute difference in environmental carbon monoxide between 

homes heated by gas and LPG would appear to be insufficient to 

explain the marked observed associated difference for cGMP in 

blood platelets. Therefore a confounding variable would seem to be 

responsible. Acute cold can effect measured concentrations of 

cGMP but the magnitude of the difference observed in cGMP 

between seasons for the LPG group would not seem to be explicable 

by the seasonal difference in temperature. Further to this, although 

indoor temperature was not measured, it is very unlikely that chronic 

indoor temperature difference is the explanation for the observed 

difference in cGMP in the winter between groups heating their homes
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by either gas or LPG. The most likely confounder (because of its 

known effect on cGMP) is Nitric oxide emitted by gas appliances. 

Environmental monitoring of Nitric oxide is expensive but this data 

indicates that it is necessary to incorporate environmental monitoring 

of nitric oxide into future research. The role of Nitric oxide indoors 

has been overlooked in previous research on the assumption that it 

is immediately converted to nitrogen dioxide. This is only partly true 

for the outdoor environment and possibly not true for exposure of 

individuals indoors in proximity to a constantly emitting source i.e. the 

heating source.

Timing of blood collection

Ideally one would wish to collect blood samples from an individual 

within the home to reflect the blood concentration of cGMP in 

equilibrium with the indoor environmental concentration of cGMP. 

However there are practical difficulties involved which relate to the 

researcher’s being allowed and able to take blood samples. There is 

little data on the temporal relationship between Carbon monoxide 

exposure and the concentration of cGMP in blood platelets. 

However it is unlikely that the delay (typically 0.5-1 hour) between 

leaving the home and donating a blood sample at a local hospital 

would have had an appreciable effect on the concentration of cGMP 

in blood platelets before leaving the home. A similar argument 

applies for COHb. The relationship of COHb decrease with time on
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removal from a source of exposure is known but in practice the 

subject were exposed to concentrations in ambient air when 

travelling between home and the hospital and ambient levels are 

approximately the same as measured levels.

Representativeness of sample measurements 

It was not the intention of this study to obtain a representative 

measurement of environment carbon monoxide concentration for 

different fuel types and no claim is made that the reported 

measurements are representative. The intention was to sample 

residences using particular categories of heating which it was 

believed a Priori Might have different levels of indoor carbon 

monoxide and then to investigate if such differences gave rise to 

differences in cGMP.

Carboxyhaemoglobin

The majority of the COHb results obtained for participants were zero. 

This may have been a consequence of low exposure or the 

clearance of CO from their blood in the time between leaving their 

residence and donating a blood sample at the hospital. Whilst the 

majority of results for both winter and summer were zero 

nevertheless more than 10% of measurements for winter and 

summer were in excess of 0.1% COHb and 10% of winter 

measurements and 3% of summer measurements were in excess of
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0.2% COHb. Although this (may) indicate that there are a greater 

proportion of individuals with higher levels of COHb in the winter than 

the summer the absolute values of COHb are not significant for 

health. COHb from endogenous CO formation is reported to amount 

to 0.7% on average. Individual winter and summer measurements of 

COHb ranged between 0 and 3.9% but no relationship was observed 

between environmental levels and levels of COHb. There was no 

statistically significant difference between levels of COHb in the 

different fuel groups.

Another objective of the thesis was to investigate outdoor 

concentrations of benzene in urban and more rural environments and 

to determine if the differential in exposure led to differences in sPMA 

in the urine of exposed subjects. Nitrogen dioxide was also 

determined in the two different microenvironments.

The level of air pollution within the city of Cardiff is low in comparison 

to major urban areas within the UK (e.g. Birmingham or London) and 

traffic flow even in highly trafficked areas are similarly less. Despite 

this, differences in mean levels of Benzene of 50% (p<0.001) and in 

mean levels of NO2 of 64% (p <0.001) were found between the 

heavily trafficked and miniminally trafficked microenvironments. 

There was a relatively strong correlation (r=0.65) between Benzene
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and NO2 in the trafficked microenvironment but the pollutants were 

not correlated (r=0.067) in the non trafficked areas.

The lower range of \alues recorded for Nitrogen dioxide in both the 

exposed and the control areas was the same, suggesting that there 

is a background level of approximately 7.5ppb in the Cardiff area. 

Similarly this was also the case with Benzene, again suggesting that 

0.1 ppb is the background ambient level for the city of Cardiff.

Sampling was carried in two main batches, one during the late 

winter, early spring and one during the late summer, early autumn. It 

was interesting therefore to observe a statistically significant 

difference between the two sampling periods with significantly higher 

levels for Benzene, Nitrogen dioxide and Nitrous oxide being 

recorded during the late winter, early spring. This may be explained 

by the fact that during winter, extended periods of cold, calm weather 

conditions can predominate allowing what are known as 'temperature 

inversions' to form. Temperature inversions consist of a layer of cold 

air at ground level under a layer of warm air. They occur mainly at 

night because of a rapid cooling of the earth. Air pollutants get 

trapped in the lower cold air layer, and the pollution concentrations 

build up.
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Background s-PMA/creatinine ratios for non-occupationally exposed 

individuals who are non-smokers have been reported to vary from 0- 

1.8umol/mol. The levels measured in the less urban group were 

consistent with there reported values but the levels in the urban 

group were higher. The median level of s-PMA in the urban group 

(1.95 pmol/mol) was 77% higher than in the less urban group (1.1 

pmol/mol) but the difference was not statistically significant due to the 

small sample size of control group (12) and exposed group (40). s- 

PMA may not be a sufficiently sensitive biomarker to delineate 

groups whose mean environmental exposure levels differ by 50% 

and where mean exposure is relatively low i.e. 3ppb (9.5mg/m3). The 

Benzene results from the study show higher mean environmental 

and urinary levels than a previous pilot study carried out in the city of 

Swansea (Matthews, 2001)

The results show that there was twice as much Nitrous oxide in 

urban areas than the less urban areas. Outdoor levels of Nitrous 

oxide were 20 times higher than indoor levels of Nitrous oxide and 

there was a significantly statistical difference between indoor and 

outdoor Nitrous oxide measurements in the urban group (p=0.008) 

but this relationship was not observed in the less urban group 

(p=0.109). A difference between indoor measurements for the two 

groups may have been expected as there is a hypothesis that 

outdoor levels influence indoor levels, therefore it may have been
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expected that in exposed areas, Nitrous oxide may have diffused into 

the indoor environment, increasing the levels present. This 

relationship may not have been detected due to the low numbers of 

houses monitored. Because of the small number of results collected 

for Nitrous oxide it is not possible to draw anything other than 

preliminary observations.

The results of the environmental sampling carried out in the urban 

and less urban areas within the city of Cardiff, show that there is 

compliance with the UK air quality strategy, and WHO guidelines that 

are in place for Benzene and Nitrogen dioxide.

The 2007 Air Quality Strategy reported that objectives for Benzene 

are being met, but highlight that with current projections, the UK will 

fail to meet its objectives for Nitrogen dioxide, whilst these are 

expected to be small exceedences and in highly populated areas 

therefore significant numbers of people are likely to be affected. The 

urban concentrations of NO2 have not been declining as fast as 

those of NO. The most likely explanation of this is a change in the 

percentage of road traffic emissions directly emitted as N0 2 , this can 

be linked to the increasing numbers of light duty diesel vehicles 

especially cars having been fitted with oxidation catalysts and heavy 

duty vehicles being fitted with catalytically regenerative particle traps.
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Since 1997 every local authority in the UK has been required to carry 

out a review and assessment of air quality in their area. Where the 

national air quality objectives are unlikely to be achieved the local 

authority must declare an air quality management area, and put in 

place a local air quality action plan. Two areas within the study area 

have been declared an air quality management area; The Philog in 

northwest Cardiff and Cardiff west. The pollutant declared for both 

areas is Nitrogen dioxide.

Environmental awareness amongst the general population is 

currently at an increased level due to increased media coverage and 

the governments of the developed world striving to limit the effects of 

climate change. As a result of this, in the UK there is an increasing 

awareness within the general population of the desirability of 

reducing their ‘Carbon footprint’. One of the key objectives is to 

reduce the number of car journeys, particularly single occupancy 

journeys and encourage walking and cycling and the greater use of 

public transport. Many UK cities are currently considering the 

possible implementation of congestion charges to limit the volume of 

traffic entering the city centre and therefore reducing the amount of 

pollution generated. Whilst this may have a minimal effect in the 

short term, the changing attitudes towards transport ideally will have 

a positive effect on reducing pollution levels within city centres.
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The UK Government published The Future of Transport White 

Paper’ in 2004 stating that vehicles must continue to get cleaner, 

quieter and less harmful to the environment. In the last decade, 

emissions from all road transport have fallen by approximately 50% 

despite an increase in traffic, this is due to tighter vehicle emission 

and fuel standards agreed at European level and reflected in UK 

legislation, levels are expected to fall a further 25% over the next 

decade.

Limitations of the study

Sample selection

The urban and less urban streets were selected on the basis of more 

or less trafficked microenvironments and in order to explore how 

different environmental concentrations of benzene and nitrogen 

dioxide and nitrous oxide might be between the two environments. 

An inescapable disadvantage of sitting the study in Cardiff is that 

even the more heavily trafficked residential streets are less trafficked 

than the same category of street in, for example, London or 

Birmingham.

Traffic data was obtained for 8 of the 17 streets classified as heavily 

trafficked. However no traffic data was available for the other streets 

classified as heavily trafficked or for any of the less heavily trafficked 

less urban streets. Therefore there may have been some
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misclassification of exposure category for certain streets. However 

we consider this not to have had a major effect, in particular for the 

less trafficked streets. Further, any misclassification of streets is 

likely to have led to a diluting effect and to a somewhat 

underestimate of the true differences between the two different 

microenvironments.

Representativeness of sample measurements 

Subject to the proviso outlined above, the measurements are 

representative for Cardiff but no claim is made for their general 

representativeness in terms of other cities.

Biological sampling

Only one measurement of sPMA was made in urine for each 

individual. Thus a measurement on a single day may not truly 

represent the chronic levels of the biomarker over more prolonged 

periods of time.
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CHAPTER 6 CONCLUSIONS AND FURTHER WORK

Environmental concentrations of carbon monoxide indoors were 

measured in real-time over a period of one week and integrated 

measurements of benzene and nitrogen dioxide concentrations 

outdoors were obtained over a period of one month. cGMP was 

measured in the blood platelets of subjects and sPMA in their urine. 

The first objective of the thesis aimed to measure chronic residential 

exposure of the elderly to Carbon monoxide in homes using different 

fuels and to examine if chronic exposure affects the enzyme cyclic 

GMP in blood platelets. This research investigated whether the 

elderly may be at particular risk from CO exposure by virtue of the 

protracted time they spend indoors and the amount of heating used.

The mean environmental concentrations over a seven day period in 

non-smoking homes were less than 1 ppm (1.15mg/m3). "TTiere was 

evidence that indoor ambient levels varied by type of fuel used for 

heating. The households were situated in both rural and urban areas 

and within urban areas at locations with differing traffic flows. 

However the ambient indoor levels were low regardless of 

geographical area. This data indicates that the chronic exposure of 

the elderly to CO in the home is not excessive provided heating 

devices are not incorrectly installed or malfunctioning. The majority of 

the COHb results obtained for participants were zero. The results 

show raised Carbon monoxide levels in homes utilising Liquid
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Petroleum Gas as their fuel type. This may have been a 

consequence of low exposure or the clearance of CO from their 

blood in the time between leaving their residence and donating a 

blood sample at the hospital. There was no statistically significant 

difference between levels of COHb in the different fuel groups.

Environmental concentrations of carbon monoxide indoors were low 

but despite this in homes heated by liquid petroleum gas (LPG) the 

concentration of cGMP in subjects’ blood platelets were twice those 

in subjects using other types of heating. Further, for the LPG group 

the difference between paired measurements for the winter and 

summer seasons were 91%. Exposure to emissions from LPG 

heating substantially affected cGMP concentrations in blood platelets 

but this is very unlikely to be caused by the low levels of carbon 

monoxide measured. We hypothesize that Nitric oxide may be 

responsible for the differences observed in cGMP.

The lack of correlation between cGMP and environmental 

measurements may relate to the kinetics of cGMP production and 

persistence or indeed further highlight that the effect on cGMP was in 

fact as a result of exposure to Nitric oxide rather than carbon 

monoxide. The environmental measurements were made over a 

period of 1 week and may not be representative of the chronic 

exposures which actually determine cGMP measurements.
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A differential in ambient concentrations of benzene and nitrogen 

dioxide was hypothesized for residential areas of differing urbanicity 

in particular with respect to traffic flows. The second objective of the 

thesis was to measure outdoor ambient benzene concentrations in 

residential areas of differing urbanicity, in particular in respect of 

traffic flow, and to investigate if differential exposure is reflected in a 

urinary biomarker of exposure. Ambient Nitrogen dioxide which is 

known to reflect traffic flow was also investigated.

The results of the ambient environmental sampling in the differing 

residential areas, show that there is compliance with the UK air 

quality strategy, and WHO guidelines that are in place for Benzene 

and Nitrogen dioxide for the city of Cardiff. Substantial differences 

between mean concentrations of benzene (37%) and nitrogen 

dioxide (65%) were observed between urban and less urban areas 

but this differential was not reflected by any difference in toxic uptake 

as measured by sPMA in urine.

The differential in urinary biomarker of benzene exposure, s 

phenylmercaptuirc acid (sPMA) was investigated in people residing 

in urban and less urban microenvironments. The levels of s-PMA 

recorded exceed what would normally be expected from norv 

occupationally exposed, non-smokers. The median level of s-PMA in 

the exposed group (1.95 pmol/mol) was 77% higher than in the
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control group (1.1 pmol/mol) but the difference was not statistically 

significant due to the small sample size of control group (12) and 

exposed group (40). s-PMA may not be a sufficiently sensitive 

biomarker to delineate groups whose mean environmental exposure 

levels differ by 50% and where mean exposure is relatively low i.e. 

3ppb (9.5mg/m3).

Further work

Since cGMP is recognised to be an important enzyme in the 

regulation of vascular tone and it also acts as a common regulator of 

ion channel conductance, glycogenolysis, and cellular apoptosis and 

it also relaxes smooth muscle tissues. The research findings which 

appear to show increased cGMP levels by heating type for very small 

increases in environmental carbon monoxide warrant further 

investigation. Further investigation should be made into the possible 

confounding variable, Nitric oxide, which is also emitted by gas 

appliances (because of its known effect on cGMP). Environmental 

monitoring of Nitric oxide is expensive but this data indicates that it is 

necessary to incorporate environmental monitoring of nitric oxide into 

future research. The role of Nitric oxide indoors has been overlooked 

in previous research on the assumption that it is immediately 

converted to nitrogen dioxide. This is only partly true for the outdoor
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environment and possibly not true for exposure of individuals indoors 

in proximity to a constantly emitting source i.e. the heating source.

It maybe inferred from the not inconsiderable acute domestic 

poisoning incidents that a greater number of sublimal and 

unrecognised poisoning occurs within the population. Surveys have 

shown that particular susceptible groups (Croxford) are more at risk. 

Future work should consider cGMP levels in conjunction with 

environmental monitoring of Nitric oxide and investigate the effects of 

interventions at reducing exposure in such groups.

Differences in mean levels of Benzene of 50% (p<0.001) and in 

mean level of NO2 of 64% (p<0.001) were found between trafficked 

and non-trafficked environments. This highlights that epidemiological 

studies investigating links between those exposures and health 

outcomes must take microenvironment exposure into account if 

exposure misclassification is to be avoided e.g. one or two central 

urban monitoring sites are not sufficient. Measurements shall also 

be undertaken throughout the year to identify any seasonal changes. 

S-PMA and N2O in urine do not appear sufficiently sensitive to act as 

biomarkers of environmental exposure. However since 

determination of personal exposure and uptake is an ultimate goal, 

there is a continuing need to test novel biomarkers of exposure.
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APPENDIX 1 

Recruitment information

Letter to resident / Appointment letter 

«URN»
«Housejiumber» «subnumber» «Name» «Road» 
«Deptroad»
« posttown »
«locality »
«locality2»
«postcode»

Please help us by filling in this short questionnaire.

Please tick ONE box on each line

I am willing to take part in the study and for 
someone from the University of Wales 
College of Medicine to visit my home to 
obtain more details

Yes □ No □

Does anyone in your house regularly 
smoke cigarettes, cigars or a pipe

Yes □ No □

Which fuel is used for heating your house? 

Do you have central heating?

electricity
other

□ □

gas

□

oil

□

Yes □ No □

Please tell us your telephone number 8 -----------------------------------------------------------

My name is

My date of birth is

Please tick a box to show when it would be most convenient for a 
researcher to contact you
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Weekday
Morning

Weekday
Afternoon

Weekday
Evening

Weekend
s

Anytime

The best time 
to contact me
is:

Thank you for your time. 

Dr. Ian Matthews
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Information Sheet / Telephone recruitment information -  Carbon 
monoxide

• Every form of heating (except electric heating) gives off very 
small amounts of 2 gases called Nitrogen dioxide and Carbon 
monoxide.

many people spend a great deal of time indoors particularly in 
the winter and medical researchers now think it is possible 
that even these very low levels of gases might effect health 
by:-

Making respiratory (chest) breathing problems worse 
Decreasing the ability of blood to carry oxygen from the 
lungs to the organs of the body (e.g. heart)

We are carrying out a survey which measures the levels of 
these gases in the home and in the blood.

We will visit and:
Leave a small gas monitor (size of a packet of butter) in
your living room for 7 days
Ask you to complete a 4 page questionnaire

A small sample of blood will be taken by a qualified technician 
in the normal way. We will make an outpatient appointment 
for you at Neath general hospital at a convenient time. We will 
pay 25p per mile for own car travel or arrange transport

We would then like to take another blood sample sometime in 
the summer months, and then we will compare both of these 
samples.

Smoking is known to affect the health effects we want to 
measure so we will not be investigating smokers

Certain medicines can effect the measurements on blood that 
we will make. Please tell me the names of any medicines 
which you are taking (including sprays)
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List of medications resulting in exclusion from the Carbon monoxide 
study

Angitak Isorbine di nitrate
Buccal tablets Isotard
Cedocard retard Isotrate
Chemydur MCR 50
Coro-Nitro pump spray Minitran
Deponit Modisal XL
Elantan Monit
Elantan LA MonitSR
Glyceryl Nitrate Monit XL
Glyceryl Trinitrate Monomax
Glytrin spray Monosorb XL
GTN 300 meg Nitrocine
60 Imazin XL Nitro-dur
Imdur Nitrolingual [
spray
Isib 60XL Nitromin
Ismo Nitronal
Ismo retard Percutol
Isocard Sorbid SA
Isodur Suscard
Isoket Sustac
Isoket retard Transiderm-Nitro
Isordil
Isosorbide mononitrate
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Consent form

ID

Name

Address

I have read the information sheet about the Housing and Health 
Study.

I understand that my participation is entirely voluntary and that I may 
decline to take part in any aspect of the study or withdraw from it at 
any time.

I understand that all information will be treated in strict confidence.

I agree to the following procedures (delete any that you do not agree 
to):

•  Answering a questionnaire on respiratory and cardiovascular 
symptoms

• The siting o f a small air sampler in my home for 7 days to 
measure Carbon monoxide

• To blow into a Carbon monoxide measuring meter
• To donate a venous blood sample on one occasion in the 

winter and on one occasion in the summer by prior 
arrangement and at a time which is convenient forme.

Signed:

Date:
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APPENDIX 2

Analysis methods -  Biological samples

1. Carboxyhaemoglobin

Analysis of COHb using the ABL625 series analyser.

The method used was visible absorption spectroscopy

1. The blood sample was transported to the cuvette positioned in 
the hemolyzer unit. The temperature of the cuvette was 
regulated to 37°C.

2. 1pL of the sample was ultrasonically hemolyzed in the cuvette 
at a frequency of about 30kHz in order to rupture the walls of 
the red blood cells so that their content was mixed with the 
blood plasma, giving an optically clear solution. To eliminate 
air bubbles in the sample and to enhance hemolyzation, an 
over-pressure of one atmosphere was maintained throughout 
hemolyzation and measurement.

3. Light from a 4 Watt halogen lamp was sent to the cuvette via 
an infra-red filter and a bioconvex lens.
The voltage across the halogen lamp was regulated by a 
thermostatted photodiode so that the amount of light sent to 
the cuvette had a constant intensity.

4. The light transmitted through the cuvette was guided to the 
spectrometer via an optical fiber.

5. The light passed through a slit that directed it towards a 
combined mirror and concave grating.

6. The grating separated the light into 128 single wavelengths 
and the mirror focused the 128 light signals on a photodiode 
array.

7. The photodiode array had 128 diodes or pixels, one for each 
wavelength, which converted the monochromatic light signals 
to currents.

8. The currents and therefore the intensity of the light signals 
were measured at each of the 128 diodes, which form the 
basis for the absorption spectrum for a particular sample.

9. The spectrum was sent to the analyser’s computer, where the 
calculations of the oximetry parameter values were made.
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2. Cyclic Guanosine Monophosphate (cGMP)

1. Without delay collect venous blood into 6x4ml pre-prepared 
vacutainers. When all containers are full gently invert them to 
thoroughly mix the contents. They are on no occasion to be 
shaken.

2. Centrifuge the blood samples at 1000rpm for 10 minutes.

3. Following centrifugation uncap the vacutainers and using a 
plastic (never glass) disposable pipette carefully collect the 
upper layer of platelet-rich plasma into clean 2x4.5ml plastic 
“Rohren” tubes. Equal volumes should be added to each 
tube. Plasma from individual vacutainers may be mixed to 
complete this step. Care should be taken to remove only the 
upper layer. Leave behind the layer formed between the 
plasma and the red blood cells. Recap the vacutainers and 
discard the red blood cells.

4. Cap the 2 plastic tubes containing the platelet-rich plasma and 
centrifuge at 3000rpm for 10 minutes.

5. Following centrifugation uncap the tubes and using a plastic 
disposable pipette carefully collect the upper layer of cell-free 
plasma into clean 2x4.5ml plastic “Rohren” tubes, leaving 
behind the cell pellet. Cap all tubes. There should now be 4 
tubes (2 with cell-free plasma and two with a cell pellet). 
Either place all tubes immediately on dry ice or freeze at -  
20°C. All tubes should then be stored at -70°C for long term 
storage.

Where practicable cGMP samples were collected on a weekly basis. 
Aliquots of blood samples were centrifuged before being frozen for 
subsequent analysis of cyclic GMP by radioimmunoassay.

The vaccutainers were supplemented with Zaprinast (10microM) that 
is a cGMP phospodiesterase inhibitor. Zaprinast prevents the 
breakdown of cGMP.

Platelet pellets were resuspended in 1ml of ice cold 65% (v/v) 
ethanol to extract the cGMP from the cells. Following centrifugation 
at 3000rpm for 10 minutes at 4°C the resulting supernatant was 
removed and evaporated to dryness. The pellet of cell debris was 
dissolved in 1ml of 1M sodium hydroxide solution and assayed for 
protein content using a commercially available kit (Biorad). The dried 
sample was resuspended in the appropriate assay buffer and the 
cGMP content measured by a commercially available
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radioimmunoassay kit (Amersham Biosciences). The cGMP content 
of the sample was then normalised to the total pellet protein 
concentration.
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3. S-Phenylmercapturic Acid (s-pMA)

The samples were allowed to reach room temperature before 
proceeding with the assay.

1. Open the foil bag containing the coated plate. Check the
desiccant tablet remains blue, indicating that the plate has
remained dry. Each plate has sufficiently coated wells to
assay one set of standards and quality control samples 
and 22 specimen samples.

2. Determine how many wells are required to perform the 
assay in duplicate i.e. 2 wells each for the 6 calibrators, 2 
quality control samples and each of the specimen urine 
samples.

3. Dispense 80ul reagent 1 (25ml phospate buffered saline
containing 0.004% gentomycin) to each well required for 
the assay.

4. Dispense 10ul of each of the calibrators, QC’s and
specimen urines into the appropriate wells.

5. Dispense 80ul ‘working primary antibody’ (50ul of primary
antibody with 12mls diluent) into each well.

6. Mix by holding the plate on the bench with one hand whilst
tapping the side of the plate gently with the other hand.

7. Incubate at room temperature for 2 hours.

8. Decant the contents of the wells into a sink.

9. Wash the plate 3 times with the working wash buffer and
blot on tissue paper to drain.

10. Dispense 100ul reagent 3 (15mls of secondary antibody at
working strength) into each well.

11. Incubate for one hour at room temperature.

12. Decant the contents of the wells into the sink.

13. Wash the plate 3 times with working wash buffer and blot
on tissue paper to drain.

14. Dispense 100ul reagent 4 (15mls 3,3’,5,5’-tetra-methyl-
benzidine (TMB) liquid substrate system).
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15. Read the optical densities of the wells at 650nm using a 
plate reader.

The plate reader has the facility to enter a template and calibrator 
values to calculate the unknowns. The calibrators, QC’s and 
specimen urines were positioned on the plate to correspond with the 
template.
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4. Urinary Nitrous oxide

1. A 10ml urine sample was taken from the sample bottle 
directly into a 20 ml gas-tight vial equipped with a silicone 
septum.

2. The gas-tight vial was incubated in a water bath at 37°C for 
twenty minutes and then a 50 pi sample of the headspace 
gas above the urine was taken using a gas tight syringe 
and injected directly into the gas chromatograph. All such 
Gas Chromatograph injections were performed in triplicate.

3. The gas chromatograph was a Hewlett Packard 5890, 
Series 2, fitted with Electron Capture Detection. A HP Plot 
Q, 30m x 0.53 mm I.D. column was used and the carrier 
gas was 5% methane in argon with molecular sieve and 
oxygen trap.

4. Conditions were; column flow rate 6mlmin'1, split vent 30ml 
minute'1, septum purge 3mlmin1, auxiliary gas 50mlmin'1, 
anode purge 3mlmin'1, oven temperature 30°C, injector 
temperature 80°C and detector temperature 250°C.

5. The retention time for Nitrous oxide was 3.8 minutes. 
External calibration was performed by injecting 50 pi 
Nitrous oxide calibration gas (24ppm in air) supplied by 
Alltech.
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APPENDIX 3

Standard Operating Procedure: Carbon monoxide monitors

(1) Each time a piece of sampling /monitoring equipment is to be 
used the
User should check the general condition for signs of damage and 
moisture. Any appearance of these would be a contra-indication for 
use.

(2) All electrical cables, plugs and sockets which are intended to be 
used
Should likewise be checked for signs of wear or damage, the 
appearance of any such signs would prohibit use.

(3) The users of any electrical sampling / monitoring equipment 
should be
Satisfied that the correctly rated fuses are fitted before connecting to
any
supply.

(4) Following checks (1), (2) and (3) but before connecting to the 
domestic
Mains electricity supply the item of sampling / monitoring equipment 
should
be subjected to a portable appliance test. Only on completion of 
satisfactory tests for Earth Continuity, Insulation and Current 
Leakage should any item of
equipment is considered safe for connection to the domestic 
electricity supply. These inspections and tests should be performed 
before every use of any item of sampling / monitoring equipment in a 
private domestic dwelling.

(5) All equipment should be used in accordance with agreed 
protocols and in
the form and manner intended by design and function. The use of 
other
accessories, extension cables, procedures etc. which might 
compromise operating safety should be strictly avoided.

(6) Details of all safety inspections, electrical testing and operating 
procedure should be recorded in a log-book for periodic scrutiny by 
project supervisors.
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APPENDIX 4 -  Environmental monitoring graphs of Carbon 
monoxide in non-smoking households grouped by heating fuel 
type

Gas
Continuous Carbon Monoxide measurements in Home, fuel type Gas (Household 2)
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Continuous Carbon monoxide measurements in Home, fuel type Gas (Household 21)
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Continuous Carbon Monoxide measurements in Home, fuel type Gas (Household 34)
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Continuous Carbon Monoxide measurement in Home, fuel type Gas (Household 38)
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Continuous Carbon Monoxide measurements in Home, fuel type Gas (Household 40)
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Continuous Carbon Monoxide measurements in Home, fuel type Gas (Household 42)
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Continuous Carbon Monoxide measurement in Home, fuel type Gas (Household 44)

Peak level =6ppm 
Mean level =0.07ppm

Mid light 
Day 1

Midnigh 
t Day 2

Midnight 
Day 3

Midnight 
Day 4

Midnight 
Day 5

Midnigh
tDay6

Midnight 
Day 7

Time

Continuous Carbon Monoxide measurements in Home, fuel type Gas (Household 48)
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No graphs were available for Households 5, 7, 10, 13, 16, 17, 19, 
20, 23, 25, 26, 31, 35, 39 and 41.
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Coal

Continuous carbon monoxide levels in a semi detached House, fuel type coal
(Household 6)

Peak level =3ppm 
Mean level = 0.65ppm
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Continuous carbon Monoxide measurements in Home, fuel type Coal (Household 47)
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Continuous Carbon Monoxide measurements in Home, fuel type Coal (Household 50)

Peak level =1.2ppm 
Average level =0.16ppm
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No graphs were available for Households 1 and 46.
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Electricity

Continuous Carbon Monoxide measurements in a House, fuel type Electricity (Household 45)
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Continuous Carbon Monoxide measurements in a House, fuel type Electricity (Household 27)

Peak level =2.3ppm 
Average level =0.31 ppm
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Continuous Carbon Monoxide measurements in a House, fuel type Electricity (Household 12)

Peak level = 1.4ppm 
Average level = 0.22ppm
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No graph available for Household 8
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Liquid Petroleum Gas (LPG)

Continuous Carbon Monoxide measurements in a Static Mobile Home
(Household 1)

1.4 - Peak level = 1.4ppm 
Average level = 0.5ppm
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Continuous Carbon Monoxide measurements in a Static Mobile Home 
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Continuous Carbon Monoxide measurements in a Static Mobile Home, feul type LPG
(Household 3)
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Average level = 0.3ppm
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Continuous Carbon Monoxide measurements in a Static Mobile Home, fuel type LPG 
(Household 4)
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Continuous carbon monoxide measurements in a Static Mobile Home, fuel type LPG
(Household 5)
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Continuous Carbon Monoxide measurements in a Static Mobile Home 
(Household 6)
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Continuous Carbon Monoxide measurements in a Static Mobile Home
(Household 7)
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Continuous Carbon Monoxide measurements in a Static Mobile Home
(Household 9)

Peak reading = 5.75ppm
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Continuous Carbon Monoxide measurements in a Static Mobile Home 
(Household 11)
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Continuous Carbon Monoxide measurements in a Static Mobile Home
(Household 13)
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Continuous Carbon Monoxide measurements in a Static Mobile Home 
(Household 14)

Peak level =3.75ppm 
Average level =0.41 ppm
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No graph available for Static Mobile Home (Household 12)
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Oil

Continuous Carbon Monoxide measurements in a House, fuel type Oil (Household 3)
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Continuous Carbon Monoxide measurements in a Static Mobile Home 
(Household 10)
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Continuous Carbon Monoxide measurements in a House, fuel type oil (Household 22)

0.8-1

Peak level =0.55ppm 
Average level =0.12ppm
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APPENDIX 5 -  Environmental monitoring graphs of Carbon 
monoxide in smoking households grouped by heating fuel type
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Continuous Carbon monoxide levels in a static mobile home, fuel type gas 
(Smoker Household 8)

Peak level =14ppm 
Average level =0.97ppm
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Continuous Carbon monoxide levels in a static mobile home, fuel type gas 
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Continuous Carbon Monoxide levels in a static mobile home, fuel type gas
(Smoker Household 10)
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Continuous Carbon Monoxide levels in a static mobile home, fuel type gas 
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Continuous Carbon Monoxide levels in a static mobile home, fuel type gas
(Smoker Household 12)
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Peak level = 11.37ppm 
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Continuous Carbon monoxide levels in a static mobile home, fuel type gas
(Smoker Household 16)
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Continuous Carbon monoxide levels in a static mobile home, fuel type gas 
(Smoker household 17)
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Continuous Carbon monoxide levels in a static mobile home, fuel type gas
(Smoker household 18)

peak level =1.82ppm 
average level =0.15ppm

Midnight Midnight Midnight
Day 1 Day ̂ m9 Day 3

Continuous Carbon monoxide levels in a static mobile home, fuel type gas 
(Smoker household 22)

2 0 -
Peak level =2.4ppm 
Average level =0.3ppm
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No graphs are available for Smoking Households 14, 20 and 21
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Coal

ContinuousCarbon monoxide levels in a static mobile home, fuel type coal
(Smoker Household 7)

20 Peak level =1.86ppm 
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Continuous Carbon Monoxide levels in a statslc mobile home, fuel type coal 
(Smoker household 15)

Peak level =1.93 
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No graph available for Smoking Household 19 and 23
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Liquid Petroleum Gas (LPG)

Continuous Carbon Monoxide levels in a static mobile home, fuel type LPG
(Smoker Household 1)
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Continuous Carbon Monoxide levels in a static mobile home, fuel type LPG 
(Smoker Household 2)
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Continuous Carbon monoxide levels in a static mobile home, fuel type gas
(Smoker Household 4)
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Continuous Carbon Monoxide levels in a static mobile home, fuel type LPG 
(Smoker Household 5)
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