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Overview of the thesis

In this thesis I have investigated the profile and significance of nitric oxide metabolites in 

two human models: 1) Across healthy human coronary and pulmonary vascular beds 2) 

In the peripheral venous blood from patients with type 1 diabetes mellitus.

Chapters 1-3 offer a comprehensive background detailing issues of relevance to the rest 

of this work. Chapter 4 outlines precise methodological protocols and materials used. The 

results of the above clinical and laboratory studies are presented and discussed in 

Chapters 5 and 6 . Chapter 7 attempts to summarise the results obtained, drawing together 

conclusions and highlighting perspectives for future research.

I found that nitric oxide was dynamically metabolised across the heart and that the 

compartmentalisation of its metabolites between plasma and erythrocytes was driven 

primarily by the oxygen saturation of the blood. Study of the changes in coronary arterial 

diameter and flow in response to exercise and inhibition of nitric oxide generation 

suggested the presence of an endothelium derived hyperpolarising factor-like activity in 

the epicardial coronary arteries.

Among patients with type 1 diabetes, blood levels of nitric oxide metabolites were 

generally lower compared to controls; and lower in those with microvascular 

complications comparing to those without. Vessel relaxation experiments suggested the 

existence of a red blood cell-related vasodilating factor (RRVF) which was present in
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both diabetics and controls but exerted stronger vasodilator activity when erythrocytes 

from the former group were added to aortic ring preparations in a hypoxic tissue bath 

system ex vivo. Another novel finding was a positive correlation between this RBC- 

related vasodilator activity and HbAic; which was stronger in that group of patients who 

were generally younger with shorter duration of disease.
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CHAPTER O N E

Nitric oxide: history, chemistry,
metabolism



History

Nitric Oxide2'4

Nitric oxide (NO) was first prepared by the Belgian physician and scientist Jan Baptist 

van Helmont (1577-1644) in 1620. British scientists Robert Boyle (1627-1691) and 

Robert Hooke (1635-1703) independently generated NO in the 1660s. In 1772, Joseph 

Priestly (1733-1804), also the discoverer of oxygen, found that NO (nitrous air) was 

incompatible with plant life. J.A. Murray gave “nitrous air” its modem name- nitric 

oxide- in 1806.
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Thereafter, NO was mainly known as an important air pollutant generated by fuel 

combustion, especially in motor vehicles and power plants, with a major role in the 

formation of photochemical smog. It was not until mid 1970s when scientists started 

to recognise its role in human physiology.

In 1977, Dr Ferid Murad from the University of Virginia found that organic nitrates 

like sodium nitroprusside and glyceryl trinitrate (GTN), which had been used as 

antianginal agents for nearly 100 years, released NO, which relaxed smooth muscle 

cells and resulted in vasodilation.

In 1980, Robert F. Furchgott from the State University of New York hypothesised 

that endothelial cells produce an unknown signal molecule that makes vascular 

smooth muscle cells relax. He called the signal molecule EDRF, or endothelium- 

derived relaxing factor. Later he suggested that EDRF may be NO.

Finally in 1987, Salvador Moncada from University College London and Louis J. 

Ignarro from University of California, through a series of experiments confirmed that 

EDRF was identical to NO.

In 1992, 372 years after its discovery; NO was voted “Molecule of the Year” by 

Science magazine.

In 1998, the Noble prize in Medicine and Physiology was awarded jointly to 

Furchgott, Ignarro, and Murad for their discoveries concerning NO as a signalling 

molecule in the cardiovascular system.
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The new nomenclature of inorganic chemistry designates NO as “nitrogen monoxide”. 

However, in biomedical and biochemical circles, it is still mainly known as “nitric 

oxide”.

Glyceryl trinitrate (GTN)2'4

No history of nitric oxide is complete without mention of GTN, the most widely used 

antianginal agent in the world.

In 1847, GTN, also known as nitroglycerine, was first synthesised by the Italian 

chemist Ascanio Sobrero (1812-1888) when he was an assistant to Professor J.T. 

Pelouze in Paris. GTN, which was produced by mixing glycerine with sulphuric and 

nitric acid, turned out to be a highly explosive liquid. Sobrero considered GTN to be 

too dangerous to be of any practical use. He also noticed putting a small amount of 

GTN on the tongue can cause severe headache.

In 1851, Alfred Nobel (1833-1896) who had gone to Paris to work for Professor 

Pelouze, met with Sobrero and became very interested in GTN and its potential use in 

excavations and construction work. He soon found that mixing GTN with silica would 

turn the liquid into a more stable paste which could be shaped into rods of a size and 

form suitable for insertion into drilling holes. He called his new invention dynamite.

In 1867, Thomas Lauder Brunton, the father of modem pharmacology, used amyl 

nitrite to relieve angina.
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In 1876, William Murrel, a London doctor, was the first to prescribe GTN as a 

treatment for the relief of anginal pain. GTN was soon established as the mainstay of 

angina pectoris relief.

Ironically, neither Nobel nor Murrel agreed to take GTN when they suffered from 

angina pectoris and heart failure.

In the early 1900s and following the flourish of GTN industry, two new medical 

conditions- “Monday disease” and “Sunday heart attacks” were described in workers 

exposed to high levels of nitrates during the week. Nitrate tolerance and nitrate 

withdrawal phenomena were recognised and taken responsible for the above 

conditions respectively.

In 1977, Dr Ferid Murad suggested that the activation of the enzyme guanylate 

cyclase by sodium nitroprusside and GTN might be due to the formation of nitric 

oxide.

While GTN remains the treatment of choice for angina pectoris, even today the actual 

mechanism of NO release from it is unclear. Several nonenzymatic and enzymatic 

systems have been found capable of metabolising GTN5. Recently mitochondrial 

aldehyde dehydrogenase has been suggested to have an important role in GTN 

bioactivation6.
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Chemistry710

General

NO is a colourless, hydrophobic gas with a low water solubility. It is a free radical 

with a single unpaired electron and can react rapidly with other molecules that contain 

unpaired electrons. NO can also interact with transition metals to produce an 

enormous range o f complexes that have both theoretical significance and practical 

im portance1

NO

: N = 0

Figure 1.1: M olecular structure o f nitric oxide.

The half life o f  NO in the blood is less than 5 seconds1113. In vitro , in aqueous, 

haemoglobin-free solutions, NO has been reported to have a half life o f at least 8 

m inutes1415. The half life o f  NO in plasma in vitro is 68±12 seconds16.

The maximum solubility o f NO (at latm  partial pressure) in water at room 

temperature (25°C) and pressure is approximately 2mM which is slightly higher than 

the solubility o f  O 2 in water. Due to its lipophilic properties, NO is 6-8 times more 

soluble in nonpolar solvents and lipid membranes compared to water. This property
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makes NO highly diffusible across cell membranes and allows it to elicit its effects 

relatively far from its site of production.

Air

In air NO is almost immediately oxidised to NO2 which then dimerises to N2O4 :

2NO + 0 2 —► 2N02 —► N20 4 

Aqueous Solutions

N2O4 (from air) in water forms nitrite and nitrate in roughly equal amounts:

N20 4 + H2O-+NO2' + NO3 + 2H+

However, when NO is directly introduced into water, the result is almost exclusively 

comprised of nitrite ions and protons:

N0 + H20 ^  N02‘ + 2H+

This suggests the presence of an intermediate N2O3 in aqueous solutions as below:

2NO + O2-* N2O4 

N20 4 + 2N 0^2N 20 3 

N2O3 + H20 —>2N02‘ + 2H+
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Oxidative Stress

Oxidative stress (or oxidant-derived tissue injury) occurs when production of oxidants 

or reactive oxygen species (ROS) exceeds local antioxidant capacity17.

In the presence of oxidative stress, reactive oxygen species (ROS) like the superoxide 

anion can combine with NO to yield peroxynitrite which can degrade into nitrate. This 

happens even in the absence of haemoglobin. The more the oxidative stress in the 

fluid the higher the production of nitrate.

NO + .O2 ->ONOO

ONOO ' + H+ -»> ONOOH -*• NO3' + H+

Because peroxynitrite is physiologically less active than NO, this reaction essentially 

represents an inactivation mechanism for NO and has been utilised as a biological 

marker or evidence of oxidative stress.

NO+ and NO’918

As stated above, NO has an unpaired electron in its highest molecular orbit. Loss of 

this electron through oxidation forms the nitrosonium cation (NO+). Gaining an 

additional electron through reduction forms the nitroxyl anion (NO ).

NO+ reacts readily with water to form nitrous acid (HNO2) which is a strong oxidising 

agent. Nitroso- compounds act as NO+ equivalents and can be regarded as NO+ 

carriers in physiological conditions. The most important form of nitroso- compounds 

in biological systems is S-nitrosothiols. In addition, NO+ can form N-nitroso 

compounds with amines. However, ordinary amines are usually protonated at
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physiological pH to prohibit the nitrosation. S-Nitrosothiol can release NO 

spontaneously but in true chemical terms is an NO+donor:

2RS—-N=0 — R -S S -R  + 2NO

Little is known about the potential nitrosative and nitrative chemistry of the nitroxyl 

anion (NO'/HNO). Angeli's salt (AS; Na2N2 0 3), a well-known nitroxyl donor, has a 

large variety of biological effects including positive cardiac inotropy19, selective 

venodilation in vivo, relaxation of vascular smooth muscle in vitro, and reducing 

blood pressure in vivo9. The latter two properties of AS have been associated with the 

formation of iron-nitrosyl complexes.

While NO'/HNO is an integral component of the redox biology of NO, its 

physiological chemistry is not well-understood.

NO production in vivo8:9

NO is produced in various tissues in the body. It is synthesised from the semi­

essential amino acid L-arginine by the enzyme nitric oxide synthase (NOS). The 

nitrogen atom of NO is derived from the guanidino group of the arginine side chain, 

and the oxygen atom of NO is derived from molecular oxygen (Figure 1.2)

L-arginine + O2 —► L-citrulline + NO
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Figure 1.2: Nitric oxide synthesis from  L -arginine.

As it can be seen in figure 1.2, the main substrates for NOS are L-arginine, oxygen, 

and NADPH (nicotinamide adenine dinucleotide phosphate). The main known 

cofactors are BH4 (tetrahydrobiopterine), FAD (flavin adenine dinucleotide), FMN 

(flavin mononucleotide), haem, and zinc.

Endothelial cells constantly produce NO at a rate o f  l-4nM /s20.

Nitric Oxide Synthases (NOSs)9

Nitric oxide synthase (NOS) is the general term for a group o f haem- and flavin- 

containing enzymes that catalyse the synthesis o f NO in the body. They all convert L- 

arginine to L-citrulline and NO is produced in the process. The NOSs are functional 

dimers and consist o f  two major domains; a haem containing oxygenase domain and a 

flavin containing reductase domain. The domains are connected by a calmodulin- 

binding site which upon the binding o f calmodulin acts as a bridge for electron 

transfer from the reductase to the oxygenase domain (Figure 1.3).
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Oxygenase domain Reductase domain

Figure 1.3: Schem atic structure o f nitric oxide synthase (N O S).

The electron donor is NADPH which donates two electrons to FAD, which are then 

passed to FMN. The reaction starts when calmodulin binds to the enzyme, allowing 

the electrons to reach the oxygenase domain and reduce the haem iron to its ferrous 

form, to which oxygen can then bind.

The oxidation o f L-arginine to L-citrulline is a 2 step process. Arginine is first 

oxidised to N-hydroxy-L-arginine which is then oxidised to L-citrulline and NO.

For calmodulin to bind the enzyme, an influx o f calcium is required to increase 

intracellular calcium and hence the binding o f calcium to calmodulin. Calmodulin 

does not bind NOS at basal intracellular calcium levels. The exception is iNOS 

(NOS1I) (see below).

If arginine is not present, the electron transferred to the haem will reduce oxygen and 

form superoxide. If  the second electron is transferred before superoxide is released,
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the peroxy form of oxygen will be generated, which dissociates as hydrogen peroxide. 

Therefore, in the absence of arginine, NOS activity can produce hazardous reactive 

oxygen species. This mechanism may have an important role in ischaemia/reperfusion 

injury.

NOS Isoforms

There are three major Isoforms of NOS:

1. NOS I or nNOS (n for neuronal)

2. NOS II or iNOS (i for inducible)

3. NOS III or eNOS (e for endothelial)

Table 1.1 summarises the properties of NOS isoforms. The net effect of the NO 

produced by NOSs is dependant on where it is being produced, regulation of its 

production, how much is being produced, and which other reactive species are 

present.

nNOS iNOS eNOS

Molecular mass 160kD 130kD 135kD

Expression Constitutive Inducible Constitutive

Cell fraction Cytoplasmic Cytoplasmic Membrane-bound

Dependence on Dependent Independent Dependent

calcium influx

Physiological Neurotransmission Cytotoxicity Vasodilation

action

Table 1.1: Properties of NOS isoforms.
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nNOS- is found primarily in neurons and skeletal muscle. The NO produced by 

nNOS serves as a neurotransmitter in the peripheral and central nervous system. In the 

central nervous system, NO has been implicated in neural signalling, neurotoxicity, 

synaptic plasticity, learning and memory, and perception of pain. In the peripheral 

nervous system, NO is involved in gut motility and control of the pyloric sphincter, 

bronchodilation pathway in the human pulmonary system, and neural control of the 

cerebral blood flow. It is also involved in urethra and bladder control and in penile 

erection9.

In the skeletal muscle, NO serves as a mediator of contractile force. Activation of 

nNOS requires an influx of calcium to raise the intracellular calcium concentration, 

allowing calmodulin to bind to the enzyme9.

iNOS- is found primarily in activated neutrophils and macrophages, astrocytes, and 

hepatocytes. iNOS is induced at the transcriptional level by cytokines, such as 

interferon-y, interleukin 1, and tumour necrosis factor-a, or endotoxins such as 

lipopolysaccharides. iNOS is involved in the early immune response and its induction 

occurs over several hours via the inflammatory NFkB pathway. Calmodulin is bound 

to iNOS under basal physiological conditions (i.e. independent of calcium influx), so 

the enzyme is always activated once it is synthesised. The amount of NO produced by 

iNOS is approximately 1000 times greater than that of either nNOS or eNOS.

The NO produced by iNOS is a potent cytotoxic agent and its principal role is to 

destroy intracellular pathogens engulfed by neutrophils and macrophages (e.g. 

plasmodia, leishmania, mycobacteria, fungi, and even tumour cells). NO reacts with

18



various proteins and metabolic enzymes in these pathogens to alter their function. It 

also forms highly reactive nitrogen and oxygen species- such as peroxynitrite- which 

can damage the pathogen’s DNA.

Overproduction of NO by iNOS has been implicated in septic/cytokine-induced 

circulatory shock. Excess NO leads to massive systemic vasodilation- via activating 

soluble guanylate cyclase and relaxing smooth muscle cells- which results in severe 

hypotension and may lead to the potentially fatal condition of “multiple organ 

failure”.

It is of note that exogenous NO exerts regulatory effects on neutrophils function and 

may thus act as a local modulator in the inflammatory process. High concentrations of 

exogenous NO increase endothelial-neutrophil adhesion21. Exposure to NO donors 

inhibits human neutrophil functions22.

iNOS is also present and active in a number of chronic inflammatory conditions such 

as rheumatoid arthritis and Crohn’s disease.

eNOS- is found primarily in vascular endothelial cells and cardiac myocytes. It is 

bound to the cell membrane and like nNOS is constitutively expressed and is activated 

by the influx of calcium. The influx of calcium is a response to either receptor- 

dependent agents such as acetylcholine, histamine, bradykinin, ATP, insulin...or 

shear stress. Shear stress is the mechanical force of blood flow on the luminal surface 

of the vascular endothelium. Increased blood velocity stimulates calcium influx which 

activates eNOS to generate NO. The mechanisms by which flow-imposed shear stress 

elevates intracellular Ca2+ in endothelial cells are not fully understood. A recent study
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by Yamamoto et al. on human pulmonary artery endothelial cells suggested that shear 

stress stimulates endothelial cells to release ATP, which activates Ca2t influx via a 

subtype o f ATP-gated cation channels also known as P2X* receptors2\

NO diffuses out o f  the endothelial cells and into the adjacent smooth muscle cells 

where it activates the cytosolic enzyme soluble guanylate cyclase (sGC) by binding to 

its haem group. sGC transforms GTP (guanosine triphosphate) to cGMP (cyclic 

guanosine monophosphate). cGMP acts as a second messenger to activate protein 

kinase G. Protein kinase G phosphorylates a variety o f channels and receptors, all 

leading to inhibition o f calcium influx into the smooth muscle cells. Decreased 

intracellular calcium concentrations leads to smooth muscle cell relaxation and 

vasodilation (Figure 1.4).

R e ce p to r -d e p e n d e n t
agents S h e a r  s tres s

Enothelia l  c e l ls

Sm ooth  muscle  
R elaxat ion  ------ c&  MP

Figure 1.4: Endothelial NO production and vasorelaxation .

The NO produced by eNOS has a crucial role in maintaining normal vascular tone. 

Although endothelial-derived NO serves mainly as a vasodilator, it also exerts anti­

platelet and anti-inflammatory functions by inhibiting platelet and leukocyte adhesion
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and aggregation, respectively. EC50 for NO-mediated relaxation of intact and 

endothelium-denuded aortic rings is 10.5nM and 13nM respectively24.

Biological effects and fate of NO9 11 2526

Direct and indirect effects

The effects of NO in biological systems can be divided into two major categories: 

direct and indirect effects (figure 1.5).

Direct effects-are those reactions that are fast enough to occur between NO itself and 

specific biological molecules. The most important direct effects of NO are the 

reactions between NO and haem containing proteins.

Indirect effects-do not involve NO, but are rather mediated by reactive nitrogen 

oxide species (RNOS) formed from the reaction of NO either with oxygen or 

superoxide (O2 ). The range of reactions mediated by RNOS include nitrosation (when 

NO+ is added to an amine, thiol, or hydroxyl aromatic group), oxidation (when one or 

two electrons are removed from a substrate), or nitration (when NO2 ) is added to a 

molecule.
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■Direct
e f f e c t s

Reaction with haem -containm g proteins  
Reaction with o x y g en  ( 0 2 )  and su p ero x id e  anion ( 0 2 - )  
Activation o f  adenos in e  d iphosphate- r ib o s y l t r a n s fe r a s e s  
Reaction with LOO

RNOS

Ind irect
e ffec ts

In ter a c t io n  with thiol groups  
In tera ct io n  with amine groups  
Lipid perox id ation  
Damage to  DNA
N itration  ( o f  tyros ine  and P G I 2  syn thase)

Figure 1.5: D irect and ind irect effects of NO  (LOO*: lipid peroxyl radical, PCI2: prostacyclin , 
RNOS: reactive nitrogen oxide species).

At low concentrations (< luM ), the direct effects o f NO predominate. At higher 

concentrations (> luM ), the indirect effects mediated by RNOS prevail.

Fate of NO in biological systems

The biological fate o f NO is determined by two main factors: 1. NO concentration and 

source o f production. 2. The surrounding milieu in which NO is released.

In cell types that contain eNOS and nNOS, NO is produced in relatively low 

concentrations and is therefore mainly engaged in its direct effects. Where iNOS is 

induced, NO is produced in high concentrations and the indirect and often pathologic 

effects o f  NO predominate.

The biological fate o f  NO can be summarized in 7 basic pathways:
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1. Reaction with haem-containing proteins-NO binds easily with proteins that 

contain the haem group through the formation of dinitrosyl complexes with iron. This 

includes those haem proteins such as haemoglobin, guanylate cyclase, cytochrome 

P450, cytochrome c oxidase, catalase and NOS. NO can also interact with nonhaem 

iron-containing proteins and zinc containing proteins.

A. Reaction with haemoglobin27528: This is the principal metabolic (and 

detoxification) pathway for endogenous NO. NO has a remarkable affinity for 

haemoglobin which is 1500 times greater than carbon monoxide. In the blood, NO is 

immediately taken up in the red blood cells and is transformed to nitrate by reaction 

with oxyhaemoglobin:

Oxyhaemoglobin + NO —► Nitrate + Methaemoglobin 

(Hb02 + NO —► NOf + metHb)

MetHb is then reduced back to normal Hb by the house-keeping enzyme 

methaemoglobin reductase- also known as NADH-cytochrome b5 reductase.

Overall, 75-90% of all NO formed in the body converts to nitrate which is then 

eliminated via the kidneys. The half life of nitrate in plasma is about 5 hours29.

Some NO will meet non-oxygenated haemoglobin in the blood and nitrosylate the 

Fe2+ to a fairly stable HbNO (nitrosylhaemoglobin) adduct (half life ~ 30-40 

minutes)29530.

Hb + NO —► HbNO
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The above reaction mainly happens when NO is liberated into partly deoxygenated 

blood. As a result, the concentration of HbNO depends on the degree of oxygen 

saturation of haemoglobin31.

NO reaction with cell-free haemoglobin is nearly 1000-fold faster than the reaction 

with RBCs.

S-nitrosohaemoglobin (Hb-S-NO) -  NO can interact directly with the thiol groups 

on haemoglobin (S-nitrosation of Hb 6 - chain cysteine 93) to produce SNO-Hb. 

However, this happens relatively slowly compared to the quicker oxidation rate of NO 

alluded to above. Oxides of NO (including nitrite, N2O3) can transfer quickly the NO+ 

to form SNO-Hb by a favourable process termed transnitrosation.

SNO-Hb may play an important role in the control of blood perfusion and oxygen 

delivery to tissues, as discussed later in this chapter.

B. Soluble guanylate cyclase (sGC)32;33: Most of the biological effects of NO- 

including its muscle relaxant properties- are mediated through soluble guanylate 

cyclase. NO activates sGC by binding to its haem group. Binding of NO to sGC 

increases its activity by up to 500 fold. sGC transforms guanosine 5’-triphoshphate 

(GTP) to cGMP which acts as a second messenger and facilitates vasorelaxation and 

phosphorylation of various proteins by activating cGMP-dependent protein kinases.

sGC is activated by fairly low concentrations of NO, i.e. 10-100nM34 (EC50 of 

~10nM24) which reflects the high affinity of NO for the sGC haem moiety.

C. Cytochrome P45035: NO inhibits cytochrome P450 enzymes in two ways, 

reversibly (by direct binding of NO to haem) and irreversibly (as an action of reactive
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nitrogen species). The inhibition of cytochrome P450 isoforms alters the hepatic 

metabolism of many drugs and can have deleterious effects in high NO-production 

conditions such as septic shock.

D. Cytochrome c oxidase25;36: NO inhibits mitochondrial respiration by binding and 

inhibiting cytochrome c oxidase (CcO) in a reversible fashion. CcO is one of the 

enzymes in the mitochondrial respiratory chain with both haem and copper groups in 

its structure. Which metal group binds NO and causes the inhibition is still not clear.

Inhibition of mitochondrial respiration by NO is regarded as one mechanism of 

macrophage-derived cytotoxicity.

E. Catalase37: Catalase is a haem protein which is critical in protecting cells against 

hydrogen peroxide damage. NO can reversibly bind to the haem moiety of catalase 

molecule and inhibit its activity. This will result in increased hydrogen peroxide 

concentrations and enhance the cytotoxic effect of NO.

F. NOS38: NO can also attenuate NOS activity, serving as a negative feedback to 

control NO production. NO binds the haem group associated with NOS and prevents 

the binding of oxygen to the active site and thus inhibits the oxidation of arginine. 

nNOS and eNOS are more sensitive than iNOS to the inhibitory action of NO

2. Reaction with oxygen (O2) and superoxide anion (O2 )9: NO reacts with O2 and 

O2' to form reactive nitrogen oxide species (RNOS).

25



Oxygen- In aqueous solutions NO can undergo autoxidation (i.e. reaction with 

oxygen) to produce N2O3. N2O3 is the predominant RNOS formed from the 

autoxidation of NO in biological systems. N2O3 is rapidly hydrolysed to nitrite with a 

half-life of 1ms. The resultant nitrite is taken up by RBCs where it is further oxidised 

to nitrate and released back to plasma39.

Superoxide anion (O2' ) 40 -In physiological conditions O2" concentrations are kept 

low by its neutralisation by superoxide dismutase (SOD), antioxidants, and by its 

extremely rapid reaction with NO (almost diffusion limited). However, under 

pathological conditions (e.g. atherosclerosis, myocardial ischaemia, sepsis, distressed 

lung, inflammatory bowel disease, and amyotrophic lateral sclerosis) when the levels 

of 0 2 ' may be very high, NO combines rapidly with O2" to form peroxynitrite. 

Peroxynitrite (ONOO) is itself toxic and acts as a selective oxidant and nitrating agent 

to modify proteins (e.g. tyrosine—> nitrotyrosine), lipids, and nucleic acids.

Two major sources of ONOO' formation in our body are mitochondria and immune 

cells. In mitochondria, ONOO' is produced as a result of aerobic respiration. The 

generation of ONOO' in the mitochondria is intensely controlled by several regulatory 

mechanisms including manganese superoxide dismutase (MnSOD). The primary 

source for large amounts of ONOO' is immune cells through either NADPH oxidase 

or xanthine oxidase. Neither enzyme is directly inhibited by NO. Therefore as NO 

migrates near the source of O2', it reacts to form peroxynitrite. However, as 

peroxynitrite moves from its source, it is converted by excess NO to N2O3 . Thus, the 

primary chemistry of ONOO' would be within close proximity of the superoxide 

source.
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Nitrotyrosine40- Nitrotyrosine is frequently used as a marker of in vivo production of 

ONOO'. It is formed by the nitration of tyrosine by ONOO". Nitrotyrosine levels are 

increased in conditions associated with increased oxidative stress. Nitrotyrosine has 

been found in atherosclerotic plaques, motor neurons of patients with ALS, rejected 

renal allografts, inflammatory bowel disease, the synovial fluid of arthritis patients 

and the placental tissues from pre-eclamptic pregnancies. Animal studies have 

demonstrated nitrotyrosine formation in ischaemia-reperfusion injury in the heart.

Nitration of prostacyclin synthase41-Nitration of endothelial prostacyclin synthase 

by ONOO' inhibits its activity and impairs vasorelaxation.

3. Interaction with thiol (-SH) groups9*25: Nitrosation of thiols in proteins such as 

albumin results in long-lived S-nitrosothiols (RSNO) with a variety of different 

effects in biological systems. Peptides with thiol groups have strong affinity for N2O3. 

This makes thiols the primary target for reactive nitrogen oxide species (RNOS) in 

biological aqueous solutions.

The amino acid cysteine, which is found in most proteins, contains a thiol group. S- 

nitrosylation of cysteine residues resulting from the addition of a NO+ group has been 

shown to modify the activity of several proteins. Although it is unlikely that NO acts 

directly on the cysteine residue, NO interacts with O2 or 0 2 ’ to produce RNOS capable 

of nitrosylating cysteine residues. Nitrosylation is a non-enzymatic chemical reaction.

In recent years RSNOs have attracted increasing attention as possible preservers of 

NO bioactivity in the circulation. They prevent loss of NO from oxidative degradation 

and also create bioactive low molecular weight nitrosothiols such as S-

21



nitrosoglutathione (GSNO) which demonstrate vasodilator properties that are equal to 

native NO. RSNOs provide a reservoir of NO bioactivity that might be utilised in 

states of NO deficiency.

96% of plasma RSNOs are S-nitrosoproteins of which 82% is S-nitroso-albumin11.

4. Interaction with amine groups9: RNOS can also nitrosate the amine group of 

proteins to form nitrosamines (R2NNO). Nitrosamines have a stable structure and are 

well known for their carcinogenic and mutagenic properties.

5. NO modifications of lipids: NO derivatives may react with unsaturated lipids to 

oxidise or nitrate them. One example is the low density lipoprotein (LDL) which is 

converted to its atherogenic form by oxidation and nitration.

The reaction between nitric oxide (NO) and lipid peroxyl radicals (LOO*) has been 

proposed to account for the potent inhibitory properties of NO toward lipid 

peroxidation processes42.

6. NO damage to DNA9: NO is not reactive enough to damage DNA directly, but its

derivatives (i.e. RNOS) can reach the nucleus to oxidise, nitrate, or deaminate

genomic DNA, resulting in strand breaking and mutations. One apparent suspect is

ONOO'. ONOO' can travel up to 9pm and easily pass through biological membranes 

to reach the nucleus and modify DNA- preferentially reacting with guanine. Another 

powerful reactive nitrogen species is the nitrosating agent N2O3 which can damage 

DNA through reactions with its amines.
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Chemical modification of DNA by RNOS may be an important contributor to the age- 

and inflammatory-related development of cancer or other diseases.

7. Activation of adenosine diphosphate- ribosyltransferases25: This leads to

ribosylation of ADP which may have a role in the control of vascular tone via a 

mechanism independent of cGMP.

It has been suggested that reduced NO bioavailability increases vascular tone by two 

mechanisms. An acute decrease in NO levels leads to vasoconstriction due to a 

decrease in cGMP production. If NO levels continue to decrease for a longer time, 

ADP-ribosylation by NO is altered which leads to an increased sensitivity to 

vasoconstrictor agents such as endothelin.

NO transport in the bloodstream, role of NO reservoirs

Given the short life of NO in the blood, the presence of NO reservoirs which can 

preserve NO bioactivity and provide an “NO back up” in the circulation has been both 

the subject of much interest and controversy in the past 15 years. This mechanism of 

NO transport in the blood stream may be of particular importance when NO 

production or bioavailability is reduced and during increased tissue oxygen demand.

NO bioavailability, i.e. the availability of NO to exert its physiological activities, is 

determined by the balance between NO production and its degradation into other 

molecules which are either physiologically inert or have different physiological 

properties to NO.

The role of intravascular NO metabolites in the preservation of NO bioactivity is 

supported by NO inhalation studies. With the extremely short half life of NO in the
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blood, one would expect a merely local pulmonary vasodilator effect for inhaled NO. 

However, animal studies have shown that inhaled NO can induce several extra- 

pulmonary cardiovascular effects43"47. Of interest, is a human study by Cannon et al. 

which showed NO inhalation results in peripheral vasodilation targeted to regions 

with pharmacologically reduced NO production48.

While there is broad unanimity among scientists regarding the existence of NO 

reservoirs in the blood, the actual nature of these compounds has been a subject of 

ongoing debate; with S'-nitros(yl)ated proteins (particularly haemoglobin) and the 

anion nitrite being the main candidates. Two alternative theories have formed around 

these two metabolites:

1. S-nitrosohaemoglobin theory: S-nitrosohaemoglobin serves as a stable storage 

form of intravascular NO.

2. Nitrite theory: NO is formed from the anion nitrite by the nitrite reductase 

activity of deoxygenated haemoglobin.

These theories will be discussed in detail below.

Both theories also try to explain the underlying mechanism of hypoxic vasodilation,

i.e. local vasodilation in response to tissue hypoxia. Tissue hypoxia occurs when a 

region of the body is deprived of adequate oxygen supply. Hypoxic vasodilation is 

discussed in additional detail in CHAPTER TWO.

The main NO metabolites of interest and their significance in vascular physiology are 

discussed below. Methods of quantitative analysis of nitric oxide metabolites are 

discussed in CHAPTER FOUR.
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Can NO transport as NO?-Nitric oxide produced by the endothelium diffuses both 

into the lumen and to the smooth muscle cells according to the concentration gradient 

in each direction. The rapid reaction between NO and oxyhaemoglobin (kHb= 3-5 x 107 

M1 s'1), raises the question of how NO can escape from this large trap in the blood 

vessel lumen to reach and relax vascular smooth muscle cells. If specific mechanisms 

were not in place to reduce NO consumption by RBCs, NO would not have been able 

to exert any direct physiological effects locally. Moreover, a longer-than-expected 

survival of NO in the blood may mean that NO can travel as NO from its site of 

synthesis to many other tissues.

Several mechanisms have been proposed to explain the preservation of authentic NO 

bioactivity in the circulation. The most important mechanisms are:

1. A RBC-free zone near the vessel wall which reduces the consumption of 

NO by RBCs49.

2. Limited extracellular diffusion by an unstirred layer surrounding each 

RBC50.

3. A submembrane consisting of the RBC cytoskeleton and other relatively 

NO inert proteins such as methaemoglobin which can reduce NO uptake rate 

by RBCs51.

Plasma NOx (NO/ + N03)

Definition- NOx accounts for the most abundant NO end products in the plasma, 

nitrate (NO3') and nitrite (NO2 ). To measure NOx, nitrate is typically first reduced to
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nitrite. Because nitrate levels in plasma are about 100 times greater than nitrite, NOx 

mainly reflects plasma nitrate levels.

Source- Nitrate is an inert by-product of NO metabolism in the circulation. Its plasma 

level not only depends on NO production from various endogenous sources (eNOS, 

iNOS, etc.) but also on exogenous sources such as food and water.52

Nitrate is a normal component of the human diet and is principally derived from green 

leafy vegetables. It is absorbed rapidly and almost completely from the stomach and 

proximal small intestine into the plasma53;54. Approximately 25% of absorbed dietary 

nitrate undergoes enterosalivary circulation, recirculates in the blood, and is 

concentrated in saliva subsequently55.

Approximately 20% of salivary nitrate (5-8% of nitrate intake) is reduced to nitrite by 

oral bacteria. In the acidic stomach, nitrite is further reduced to bioactive nitrogen 

oxides, including nitric oxide (NO), which increase with oral nitrate intake55.

Increased dietary intake of nitrates therefore may have beneficial (e.g. antimicrobial 

activity56) as well as possibly deleterious (e.g. carcinogenesis by forming nitrosamines 

in the stomach57) effects on human health58. Classen et al. suggested that a nitrate- 

derived NO formation pathway is a possible mechanism for the hypotensive effect of 

vegetable- and fruit-rich diets59.

Excretion- Most of the nitrate is eventually excreted in the urine. Wagner et al. 29 

studied the metabolic fate of an oral dose of 1 ̂ -labeled nitrate in humans over a 

period of 48 hours. An average of 60% of the 15N0 3 _ dose appeared in the urine as 

nitrate within 48 hours. Less than 0.1% appeared in the faeces. The 15 N  label of nitrate
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was also found in the urine (3%) and faeces (0.2%) in the form of ammonia or urea. 

The fate of the remaining 35% of the 15NC>3' dose administered remained unknown. 

The half-life of nitrate in the body was found to be approximately 5 hours, and its 

volume of distribution was about 30% of body weight. Daily endogenous biosynthesis 

of nitrate was estimated to be about 1 mmol/day.

Nitrate as an index of NO formation- Considering its diverse sources, nitrate is not 

a sensitive nor specific index of endothelial NO production.

Plasma nitrate can be used as an index of in vivo formation of NO provided that the 

oral intake of nitrate is restricted for at least 48 hours. Due to the large distribution 

volume and the low clearance of the ion, wide-spread, marked, and chronic changes in 

NO formation are required to significantly affect the levels of nitrate in blood60. For 

the same reason as well as the inert nature of nitrate, no arterial-venous gradient exists 

for circulating nitrate61 ;62.

In disease states, such as heart failure, in which renal blood flow and extracellular 

volume are altered, caution should be exercised when plasma nitrate is evaluated as an 

index of NO formation63.

Plasma nitrite

History- It has been known for many years that nitrites are active in biological 

systems and can relax smooth muscle cells. Brunton wrote in 187064:

“It has been known for many years that the nitrites produce vasodilation . . . due to a 

direct action o f the drug upon the vessel walls
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Vasodilator properties of nitrites were investigated further in early 20th century and 

high doses of sodium nitrite and amyl nitrite were found to dilate the coronary 

arteries65;66. Before the advent of modem and more effective antihypertensives, 

sodium nitrite was used in the treatment of hypertension. Today, sodium nitrite is used 

medically to treat cyanide poisoning.

Nitrite-mediated vasodilation is believed to occur through NO formation67.

Physiology versus pharmacology- It is important to differentiate between 

physiological and pharmacological effects of nitrite. Physiological concentrations of 

plasma nitrite (<500nM68) do not induce vasodilation in bioassays69 or in vivo61’70. 

Although Cosby et al. reported that infusion of physiological concentrations of 

sodium nitrite into the brachial artery in 1 0  human subjects increased forearm blood 

flow, the actual nitrite levels achieved in their study were 2564± 462nM; several folds 

higher than physiological concentration.

Source- Two major sources of nitrite in our body are oxidation of NO by oxygen; and 

reduction of nitrate by bacteria in the digestive system (see above). In addition, small 

amounts of body nitrite come from food, such as cured meat. Nitrite is primarily 

absorbed in the small intestine53.

Biochemistry- The half-life of nitrite in human blood is about 110 seconds71. Plasma 

nitrite constantly enters the RBCs72 where it reacts with oxyhaemoglobin to form 

nitrate and methaemoglobin (equation l)27. The average elimination half life of nitrite 

following an oral dose of sodium nitrite was reported to be 30 minutes73. When nitrite
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is added to human blood ex vivo, it is completely converted to nitrate within 1 0 - 1 2

74*75minutes ’ .

Hb (Fe II2+) 0 2 + 2N02' MetHb (Fe III3+) + 2N03‘ (Equation 1)

Excessive intake of nitrite may result in methaemoglobinaemia, especially in young 

infants whose methaemoglobin reductase system is not yet mature58.

In low oxygen conditions- such as venous blood- some of the nitrite will react with 

deoxyhaemoglobin to form HbNO28. Under fully deoxygenated conditions, the 

product stoichiometry is 1:1 (methaemoglobin: HbNO)76. In vivo formation of HbNO 

following intravenous infusion of nitrite is inversely proportional to haemoglobin 

oxygen saturation77. Adding nitrite to blood, either in vivo or ex-vivo, also produces 

SNO-Hb in concentrations lower than HbNO?7;78.

Physiology- There has been an increasing interest in the physiological effects of the 

nitrite anion in recent years. Recent studies have shown that plasma nitrite reflects 

constitutive NOS activity68 and may possibly be an index of regional endothelium- 

derived NO production61’79. In addition, nitrite has been proposed to be a potential 

circulatory pool of NO bioactivity with a possible role in regulating NO-dependent 

hypoxic vasodilation67. Consistent with this theory is the finding that hypoxia 

facilitates NO-dependent vasodilation by nitrite in vitro80. This theory tries to link 

reduced tissue O2 with release of NO from NO stores.
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It has been suggested that in low oxygen conditions deoxyhaemoglobin acts as a 

nitrite reductase to produce NO (equation 2 ) 28;81'83 through an allosterically controlled 

reaction between its haem moiety and nitrite84 which in turn stimulates 

vasodilation62;67.

Hb (Fe II2+) + N 02' + H+—► MetHb (Fe III3+) + NO + OH‘ (Equation 2)

Since NO is immediately scavenged by haemoglobin (equation 3) to form 

nitrosylhaemoglobin (HbNO) (k3 ~ 4 x 107 M 1/s' 1) 76 it has been difficult to conceive a 

mechanism whereby nitrite-derived NO inside RBC can stay away from rapid 

inactivation reactions with haemoglobin and translocate to the extracellular domain 

subsequently.

Hb (FeII2+) + NO—> Hb (FeII2+) NO (Equation 3)

Moreover, as recently discussed69, given the rapid arterial to venous transit time of 

RBC across the physiological 0 2 gradient, it is unlikely that plasma nitrite enters this 

cycle of events in arteries and proceeds via the above system in time to deliver and 

recycle plasma NO to arterioles in the same vascular bed.

It is entirely possible that nitrite (or the HbNO produced inside the RBC) produces 

SNO-Hb, for which a mechanism already exists to translocate the “SNO” across RBC 

membrane via an anion exchange protein.
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Another possibility is that the vasoactive effect of nitrite is intrinsic to the smooth 

muscle cells, i.e. nitrite first enters the smooth muscle cells and then causes 

vasodilation. Dalsgaard et al.80 who recently proposed the latter, whilst confirmed the 

NO-dependant nature of nitrite vasoactivity, showed that nitrite-dependent 

vasodilation is independent of known NO-generating nitrite reductase nominees in the 

field, namely haemoglobin, xanthine oxidase, eNOS and the bcl complex of the 

mitochondria. This theory is further supported by earlier studies which showed 

endothelium (which may act as a barrier to nitrite) removal augments vasodilation to 

sodium nitrite in a rat aortic ring bioassay85.

One possible explanation for the above findings is the intracellular reduction of nitrite 

to NO in acidic conditions. It is a well-known phenomenon that nitrite, when 

acidified, dilates vessels through the release of NO86. Intracellular pH of smooth 

muscle cells decreases significantly (^pH 6 .6 87) during hypoxia/ischaemia and 

increased metabolic activity. In these acidic conditions, NO can be generated from 

non-enzymatic reduction of inorganic nitrite86 to activate sGC and relax the smooth 

muscle cells. Of note is that nitrite levels in tissues (e.g. 10pM in rat aorta88) are 

generally much higher than in plasma and comparable to the levels which induce 

vasodilation in bioassays.

The same mechanism may apply to the ischaemic tissue, e.g. during myocardial 

ischaemia. NO derived from nitrite in the acidic environment of the ischaemic 

myocardium can diffuse out and into the coronary vascular smooth muscle cells to 

induce vasodilation. It is likely that the major bioactive pool of NO in the body is 

intracellular rather than circulatory nitrite.

37



Arterial-venous gradients- Gladwin et al.62 reported significantly higher levels of 

nitrite in arterial blood compared to venous blood across the forearm circuit of 3 

human subjects. They took this as an evidence for nitrite bioactivity (delivery or 

metabolism) in the peripheral circulation. Similar results were reported by Kelm et 

al.79. Nonetheless, higher arterial nitrite levels may simply reflect higher eNOS 

activity and NO production on the arterial side, or a greater consumption of nitrite in 

veins.

Plasma N-nitrosamines (RNNO)

It has been known for many years that RNNOs are generated endogenously at various 

sites of the body such as the stomach (as a result of the reaction of nitrite in an acidic 

environment with amino groups of food constituents) and chronically infected or 

inflamed organs89.

Most low-molecular-weight RNNOs are potentially mutagenic and have traditionally 

been associated with an increased risk for cancer90’91 , however, epidemiological 

evidence of the carcinogenic potential of nitrosamines in humans remains 

inconclusive92.

Recently, Feelisch et al found that N-nitroso proteins are also present in the plasma of 

healthy subjects, suggesting that they may serve a physiological role such as a novel 

NO storage and/or delivery system.92.

Further studies are required to elucidate the potential role of RNNOs in cardiovascular 

physiology.
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Plasma S-nitrosothiols (RSNO)

Biochemistry- Nitrosation of thiols in proteins such as albumin and peptides such as 

glutathione results in long-lived S-nitrosothiols (RSNO) with a variety of different 

effects in biological systems. Incubation of plasma with increasing concentrations of 

NO results in a significant and concentration-dependent formation of nitrite and 

RSNOs93. Similarly, intravenous infusion of NO increases plasma levels of nitrite and 

RSNO94. As the reaction between NO and free thiols is very slow, it is believed that 

the production of RSNOs in above conditions is mainly due to oxidation of NO to 

N2O3 which is a strong nitrosating agent and reacts with thiols to yield RSNO and 

nitrite95.

Once formed, circulating RSNOs can release NO96 in a reaction catalysed by reducing 

agents such as thiols, transition metal ions, or direct light97. They can also transfer 

NO+ to another thiol via so-called transnitrosation reactions98. In the absence of 

reducing agents, spontaneous decomposition of RSNO is rather slow92.

Physiology- Biological activities of RSNOs are comparable to NO. Similar to NO, 

RSNOs possess strong vasodilator and antiplatelet properties. Intravenous 

administration of the low molecular weight nitrosothiol GSNO, increases brachial 

artery diameter and forearm blood flow and decreases systemic blood pressure in a

dose-dependent manner99. RSNOs inhibit platelet aggregation by stimulating platelet-

s G C 100-102

The role of S-nitrosothiols- and mainly S- nitrosoalbumin (SNO-albumin) and S- 

nitrosohaemoglobin (SNO-Hb)- as stable long distance transporters of NO bioactivity 

in the circulation was first proposed by Stamler in 1992103 and has been promoted by
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him and his team ever since104;105. They first discovered the presence of a circulatory 

pool of SNO-albumin in plasma whose levels were coupled to NO synthase (NOS) 

activity and hypothesised that it may serve as a reservoir of NO bioactivity103. Next, 

they found S-nitrosoglutathione (GSNO) - a low molecular weight SNO- to be a more 

potent relaxant than SNO-albumin. GSNO -unlike NO-can retain its vasodilatory 

activity in the presence of haemoglobin105;106. In due course, the S- 

nitrosohaemoglobin (SNO-Hb) Hypothesis was developed (see below).

While the S-nitrosohaemoglobin hypothesis and the contribution of SNO-Hb to the 

“hypoxic vasodilation” phenomenon remains controversial (see below), there is 

substantial evidence for the role of RSNOs in conserving and transporting NO 

bioactivity39;97;107;108.

S-nitrosohaemoglobin (SNO-Hb)

Biochemistry- SNO-Hb is formed by the S-nitrosation of Hb 6 - chain cysteine

^ 109;110

Physiology- SNO-Hb, similar to other RSNOs, possesses antiplatelet111 as well as 

vasodilator properties both in vitro and in vivo at lower oxygen saturations112.

Structure of haemoglobin; R and T states- Haemoglobin is a tetrameric protein. 

Each haemoglobin molecule consists of 2 pairs of polypeptide chains (globin 

subunits), i.e. 4 chains in total. The major form of human adult haemoglobin, HbAi, 

consists of two a and two |3 chains. Each chain contains a haem prosthetic group with 

an iron atom in its centre that can bind an oxygen molecule (O2). Therefore, there are 

four 0 2 -binding sites in each haemoglobin molecule. Binding oxygen can only occur 

when the iron atom is in its ferrous (Fe2+) state. Haemoglobin has a high affinity for



NO. Ferric (Fe3+) haemoglobin, also known as methaemoglobin (metHb) is not 

functional and does not bind oxygen or NO. The deoxy conformation of haemoglobin 

is the “tense” or T conformational state. The oxy form with higher oxygen affinity is 

the “relaxed” or R conformational state. The equilibrium between these two states 

controls the delivery of O2 and CO2 to their appropriate sites.

S-nitrosohaemoglobin hypothesis- It has been postulated that haemoglobin may 

serve as a carrier and preserver of NO bioactivity in the circulation. It has been shown 

that NO can react with Hb in two rather different ways: binding to haem-Fe2+ in a 

process comparable to the binding of O2; and forming an adduct with surface-exposed 

Cys93 p side chains.

According to the model described by Stamler105;110;113- also known as S- 

nitrosohaemoglobin hypothesis- NO is first captured by the Fe2+ at the haem and then 

transferred to the sulfhydryl (-SH)group of the P-chain cysteine-93 (pCys93) residues 

to form SNO-Hb. The haem iron preferentially binds NO when in the T (deoxy-) 

conformation. The NO is transferred to pCys93 when Hb is in the R (oxy-) 

conformation. Then when R changes again to the T conformation to deliver O2 to the 

tissues, NO is also released in an allosterically dependant manner114 and transferred 

(via trans-nitrosation reactions) to the sulfhydryl groups of small sulfhydryl molecules 

(X-SH) such as glutathione to form X-S-NO. X-S-NOs, while having the same 

vasodilator properties as free NO, are resistant to scavenging by haemoglobin. Inside 

the RBCs, there is equilibrium between NO bound to the thiol of glutathione and 

reactive thiols (cysB93) of haemoglobin on the one hand, and NO bound to the thiols 

of haemoglobin and membrane-associated band3 protein (AE1), on the other hand. In
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low oxygen tensions, NO is transferred from SNO-Hb in the cytosol to the membrane 

to form membrane-SNO which can induce vasodilation105.

The net effect is the conversion of unstable free NO to relatively stable X-S-NO 

which is oxygen-sensitive and can release NO in low oxygen conditions to relax the 

vascular smooth muscle cells and dilate the arteries (hypoxic vasodilation).

Stamler and colleagues have reported several observations that support the S- 

nitrosohaemoglobin hypothesis that have yet to be countered convincingly by other 

groups. First and foremost, they demonstrated the very existence of S- 

nitrosohaemoglobin in the circulation113 and that SNO-Hb can be produced in vitro 

when Fe(II)NO species are subjected to mild oxidation115. The same group reported a 

significant arterio-venous gradient of SNO-Hb suggesting its cyclic metabolism in the 

circulation116;117.

Challenges to the S-nitrosohaemoglobin hypothesis-Many aspects of the S- 

nitrosohaemoglobin hypothesis have been questioned by other groups. Other 

laboratories have not been able to measure the micromolar concentrations and artery- 

to-vein gradient of SNO-Hb reported by the Stamler group62’118,119. (A previous paper 

from our laboratory reported increased levels of SNO-Hb with oxygenation across the 

pulmonary circulation in patients with congestive heart failure but not in healthy 

controls120.) Nor have they been able to reproduce the observation of preferential 

binding of NO on the deoxyhaems of R-state (oxygenated) haemoglobin (i.e., 

allosterically controlled association kinetics) or even the oxygenation dependent 

transfer of the NO from the 6 -chain haem to the cysteine 93 and the deoxygenation- 

dependent transfer of NO from the cysteine 93 back to the haem (i.e., cycling)84;121.
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Nitrosylhaemoglobin (HbNO)

Most o f the NO which enters the erythrocytes will react with oxyhaemoglobin to form 

nitrate and methaemoglobin. Nonetheless, some NO will meet non-oxygenated

9 -4- 7 7 * 1  7 9  •haemoglobin and nitrosylate the Fe" to a fairly stable HbNO adduct ’ (in vivo half 

life ~ 40 m inutes123’124). HbNO is also produced from the reaction between the 

continuous flux o f plasma nitrite into the erythrocytes and non-oxygenated 

haemoglobin28. Therefore, HbNO is a co-index o f NO and nitrite uptake by 

erythrocytes at any given haemoglobin oxygen saturation.

HbNO is eventually oxidised by O2 to methaemoglobin and nitrate in three steps as 

shown by Herold and R ock125:

Hb (Fell2+) NO + 0 2 «-► Hb (Fe2+) + NO + 0 2 <-► Hb (FeII2+) 0 2  + NO —> MetHb + 

NO 3" (Equation 4)

NO u q  OM*
C j f e >  ♦ o ,  C p £ >  ♦ O* ♦ NO £ = ?  O f "  • ♦ N O '  ♦ *°:>

HD Nb Hb Hb

Figure 1.6: T hree-step  degradation o f H bNO  to nitrate and m etH b. (From  H erold and Rock  

2005125)

HbNO is one o f the many molecules proposed to serve as potential preservers o f NO 

bioactivity in the circulation. By binding to haemoglobin, NO avoids degradation to 

nitrate. However, HbNO does not show vasodilator properties in v ivo122,126 nor is 

there any evidence that it can dissociate efficiently to deliver NO to tissues directly.

HbNO has a characteristic EPR (electron paramagnetic resonance) spectrum. EPR has 

been widely used to measure changes in HbNO levels following addition o f NO or its 

metabolites to blood, in both in vitro and in vivo studies. However, because the level
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of HbNO present in both arterial and venous samples at base line are below the 

detectable level by EPR (<0.5 pM), EPR studies have not been able to show any 

measurable A-V gradient in HbNO levels121,123. Our triiodide studies show higher 

HbNO levels in venous blood (see CHAPTER FIVE).

RBC nitrite

Plasma nitrite constantly enters the RBCs72. Inside the erythrocytes, nitrite can either 

react with oxyhaemoglobin to form methaemoglobin and nitrate (Equation 3); or with 

deoxygenated haemoglobin to form methaemoglobin and nitrosylhaemoglobin 

(HbNO)76;78 (Equation 4):

Hb02 + 2N02" —> MetHb + 2N03' (Equation 5)

4Hb + 2N02" + 2H+ -► 2MetHb + 2HbNO + 2H20  (Equation 6)

Nitrite concentrations in RBCs were long thought to be negligible because of the rapid 

kinetics of the above reactions. However, recent studies by Kelm/Gladwin/Feelisch 

teams have shown substantial levels of intraerythrocytic nitrite (200-500nM)68,127. 

Virtually all nitrite was located in the cytosol as bound to proteins. They also found an 

artery-to-vein gradient of RBC nitrite across the human forearm circulation, consistent 

with their previous finding of artery-to vein-gradient in plasma.

Nitrated lipids (Nitrolipids)

Unsaturated fatty acids are nitrated endogenously to produce nitrated lipids128. Recent 

studies have shown that these nitrated lipids may directly or through transnitrosation 

reactions act as NO-releasing agents129. Nitrolipids relax rat aortic rings in a 

concentration-dependent manner while releasing nitric oxide129. Nitrolinoleate, a
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synthetic nitrated lipid, has been shown to inhibit platelet aggregation, probably 

through a non-NO dependant mechanism130.

Further studies are needed to elucidate the biological importance of nitrated lipids.
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CHAPTER TWO

Coronary physiology, role o f nitric
oxide
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The heart as a pump: anatomy and physiology

The main task of the heart is to force blood throughout the circulation, supplying 

oxygenated blood to tissues and draining deoxygenated blood from tissues for 

reoxygenation in the lungs1.

Deoxygenated blood from all over the body is carried to the right atrium by the 

venous system. Three main veins enter the right atrium. The two larger veins are 

called superior and inferior vena cava and drain the upper and lower limbs, 

respectively. The third vein, coronary sinus, drains the heart muscle itself131’132.

47



From the right atrium and through the tricuspid valve, blood enters the right ventricle 

where it is pumped up to the lungs during right ventricular systole. Pulmonary artery 

carries the deoxygenated blood from the right ventricle to the lungs131'132.

Figure 2.1: A natom y o f the heart and direction o f norm al blood flo w 133.
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A fter oxygenation in the lungs, blood flows into the left atrium o f the heart via 

pulmonary veins. Oxygenated blood then enters the left ventricle (LV) through the 

mitral valve. During ventricular systole, blood is pumped into the aorta from where it 

travels throughout the circulation to reach all parts o f the body131’132 (Figure 2.1).
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Figure 2.2: Pulm onary and system ic c ircu lation s134.

As evident from Figure 2.2, normal circulation consists o f two anatomically separate 

vascular beds or circuits: pulm onary circulation and systemic circulation. The right 

ventricle drives blood through the pulmonary circulation and the left ventricle drives

111.1

it through the systemic circulation ' ’ .

In a resting man o f average size lying in the supine position, about 70ml o f blood is 

pumped out o f each ventricle at each heart beat. This is called the stroke volume. The 

output o f the heart in one minute is called cardiac output and averages about 5L/min 

in a resting supine m an131,132. Effects o f various conditions on cardiac output are 

shown in table 2.1. Variations in cardiac output can be made by changes in heart rate 

or stroke volume:
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Cardiac output= Stroke volume x Heart rate 

5L/min= 70ml x 72beats/min

Cardiac output can increase 4-7 times in strenuous exercise. As the work of the heart 

increases, the coronary blood flow increases threefold to fourfold to supply the extra 

nutrients needed by the heart135.

Condition or factor

No change Sleep

Moderate changes in environmental temperature

Increase Anxiety and excitement (50-100%) 
Eating (30%)

Exercise (up to 700%)

High environmental temperature

Pregnancy

Adrenaline

Decrease Sitting or standing from lying position (20-30%) 

Rapid arrhythmias 

Heart disease

Approximate percent changes are shown in brackets.

Table 2.1: Effects of various conditions on cardiac output131.
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Coronary circulation

Anatomy

The heart, unlike any other organ, not only provides flow to the entire organism but 

also has to generate its own perfusion pressure. This occurs through the coronary 

circulation. The main task of the coronary circulation is to match oxygen delivery to 

oxygen demand of the myocardium so that for any given oxygen need the heart will be 

supplied with a sufficient quantity to prevent underperfusion leading to ischaemia or 

infarction1.

The left and right coronary arteries originate at the base of the aorta and supply blood 

to the myocardium. The left main coronary artery divides into left anterior descending 

(LAD) and circumflex arteries which supply blood to the left ventricular muscle. The 

right coronary artery supplies blood to the right ventricular muscle as well as- in 80- 

90% of people- the posterior wall of the left ventricle. Most of the cardiac venous 

blood from the left ventricle is drained to the right atrium via the coronary sinus (CS). 

Of coronary sinus outflow, 90-95% is derived from the left coronary artery136. Venous 

blood from the right ventricle is mostly drained directly into the right atrium via small 

anterior cardiac veins (figure 2.3). A small amount of venous drainage of the heart 

drains via Thebesian veins directly into the left atrium, and the right and left 

ventricles, so contributing to the physiological arteriovenous shunt.
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Figure 2.3: Blood supply o f  the heart. (G reat cardiac vein=coronary sin u s)133

Most o f the coronary flow to the left ventricle occurs in diastole. This has two 

reasons. First and like any other muscle, contraction o f the left ventricle during systole 

compresses the intramyocardial vessels and squeezes the blood out o f the coronaries. 

Second, increased intraventricular pressure during systole stops subendocardial blood 

supply. Compressive forces are much smaller in the right ventricle; therefore right

• • • 1 3 1 - 1 3 2
ventricular perfusion is reduced but not interrupted during systole ’ .

Conductance versus resistance vessels

From a physiological point o f view, there are two major types o f arterial vessels in the 

coronary circulation: conductance arteries and resistance arterioles. Conductance 

arteries are the larger arteries that govern the quantity o f blood arriving at the 

resistance vessels. Resistance arterioles are narrower (<150pm in diameter) and 

constitute the m ajor resistance to flow. Their resistance increases by a power o f four 

as their radius decreases (Poiseuille law). Resistance arterioles are the principal

52



controllers of coronary blood flow137. Coronary vascular resistance (CVR) can be 

estimated by the formula:

CVR= Aortic pressure/coronary flow

Total coronary flow at rest in humans is about 250ml/min which is about 5% of the 

cardiac output. Oxygen consumption by the heart is about 9ml/100g tissue/min at 

rest1;135.

Cardiac venous oxygen tension is very low, even at rest. (Haemoglobin oxygen 

saturation in the coronary sinus is 25-30% at rest.) This is because the myocardium 

extracts 70-80% of the oxygen from each unit of blood delivered to it (oxygen 

extraction). Little additional oxygen can be extracted from the blood in the coronaries 

and therefore increases in oxygen demand/consumption can be satisfied only by 

increases in coronary blood flow. Indeed, an increase in myocardial metabolism is 

normally accompanied by increases in coronary blood flow. Increase in coronary 

blood flow is achieved by coronary vasodilation1 ;135.

Determinants of myocardial oxygen demand/consumption

Myocardial oxygen demand/consumption is determined by three main factors1’135:

1. Myocardial contractility (inotropic state): Factors that increase myocardial 

contractility include adrenergic stimulation, digitalis, and other inotropic 

agents. At a molecular level, increased contractility is associated with either 

increased intracellular calcium or sensitisation of the contractile proteins to a 

given level of cytosolic calcium.

2. Myocardial wall tension: myocardial wall tension increases with increases in 

afterload (e.g. increased blood pressure, aortic stenosis), preload (i.e. increased
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LV end-diastolic dimensions), and myocardial wall thickness (e.g. LV 

hypertrophy). This is in accordance with Laplace law:

Wall stress** Pressure* Radius/2(Wall thickness)

3. Heart rate: Heart rate is the most important determinant of myocardial oxygen 

demand/consumption. When heart rate doubles, myocardial oxygen demand 

approximately doubles (table 2 .2 ).

Effects on MV02 of 50% increase in
Wall stress, 25%
Contractility, 45%
Pressure work, 50%
Heart rate, 50%
Volume work, 4%

Table 2.2: The table demonstrates the dominant contribution to myocardial 0 2 consumption 

(M V 02) made by pressure work and prominent effects of increasing pressure work and heart 

rate on M V 02. From Gould KL: Coronary Artery Stenosis. New York, Elsevier, 1991, p 8.135

Determinants of myocardial oxygen supply

Oxygen delivery to tissues involves a series of convective and diffusive processes. 

Convective oxygen transport refers to the bulk movement of oxygen in air or blood. 

Diffusive transport refers to the passive movement of oxygen down its concentration 

gradient across tissue barriers138. The two major factors influencing myocardial 

oxygen supply are oxygen carrying capacity and coronary blood flow1;135:

1. Oxygen carrying capacity: Satisfactory oxygen transport and delivery depends 

on:

a. Fi0 2 : fraction of inspired oxygen, the percent concentration of oxygen 
in the gas entering the lungs.

b. Lungs
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c. RBCs
d. Haemoglobin

Hypoxia from pneumonia or carbon monoxide poisoning, anaemia, and 

haemoglobinopathies can alter oxygen delivery and cause ischaemia despite normal 

coronary flow.

2. Coronary blood flow: Human coronary arteries dilate in response to exercise 

or cardiac pacing to increase the blood flow and meet the elevated myocardial 

oxygen requirements139̂ 40. Regulation of coronary circulation is discussed 

below.

Hypoxic vasodilation, active and reactive hyperaemia

Hypoxic vasodilation, active and reactive hyperaemia are all manifestations of the 

local "metabolic” blood flow regulation mechanism.

Hypoxic vasodilation- Hypoxic vasodilation is defined as local vasodilation in 

response to hypoxia. Local vasodilation leads to increase in blood flow. This is an 

acute physiological control mechanism that occurs within seconds to minutes to 

ensure adequate oxygen delivery and blood buffering capacity (including CO2 

elimination) to tissues under metabolic stress141. It is seen in myocardium, skeletal 

muscle, and many other tissues132.

Hypoxic vasodilation is caused primarily by chemical factors acting directly on 

vascular smooth muscle cells to cause relaxation. The precise identity and mechanism 

of the oxygen sensor and mediators of vasodilation remain unknown. One of the most
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important chemical factors is the tissue hypoxia itself. Hypoxia causes local arteriolar 

vasodilation both because the arteriolar walls cannot maintain contraction in the 

absence of oxygen and because oxygen deficiency causes release of vasodilator 

substances132.

Other important vasodilator mechanisms are discussed below. Recently, circulatory 

NO metabolites, namely nitrite and S-nitrosohaemoglobin (SNO-Hb), have been 

proposed to play an important role in the hypoxic vasodilation phenomenon (see 

CHAPTER ONE).

Active hyperaemia- When any tissue becomes highly active, such as an exercising 

muscle, or the brain during rapid mental activity, the rate of blood flow through the 

tissue increases. This phenomenon is called active hyperaemia. Here, the increase in 

local metabolism, depletes the cells of oxygen and nutrients rapidly and causes them 

to release large quantities of vasodilator substances. The subsequent increase in local 

blood flow supplies the tissue with additional nutrients required to sustain its new 

level of function132’142.

Reactive hyperaemia- When the blood supply to a tissue is blocked for a period of 

time and then is unblocked, blood flow through the tissue usually increases 

immediately. This phenomenon is called reactive hyperaemia and represents the local 

vasodilation which occurs in response to oxygen debt and accumulation of metabolic 

products due to interruption of blood flow132;142.
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Regulation of coronary blood flow

Coronary blood flow is regulated mostly by local vasodilation of resistance arterioles 

in response to cardiac muscle need for oxygen. Whenever myocardial oxygen demand 

is increased, regardless of cause, coronary blood flow also increases. Moreover, 

coronary blood flow increases almost in direct proportion to any additional metabolic 

consumption of oxygen by the heart. The exact means by which increased oxygen 

consumption causes coronary dilation has not been determined.

Four major interrelated mechanisms are thought to contribute to the regulation of 

coronary vascular tone:

1. Myogenic autoregulation

2. Neurohumoral control

3. Local metabolism

4. Endothelium-dependent factors

Impairment of these control mechanisms, e.g. in coronary atherosclerosis, may lead to 

myocardial ischaemia.

Myogenic autoregulation

In humans (and experimental animals) the heart has the ability to maintain coronary 

perfusion at relatively constant levels over a wide range of mean aortic blood pressure 

from 130mmHg to 40mmHg. This is due in part to the intrinsic vasoconstrictor 

response of smooth muscle to stretch. Vascular smooth muscle fibres contract when 

the blood vessels distend following a rise in intraluminal pressure. In contrast, a drop

57



in intraluminal pressure will relax the vascular smooth muscle fibres. This 

autoregulatory mechanism is called myogenic control and is present in other organs, 

most notably the kidneys. Its contribution to coronary circulation is however, small143.

Neurohumoral control

The role of the autonomic system in neurogenic control of the coronary tone is 

summarised in table 2.3. The coronary arterioles contain both a- and (3-adrenergic 

receptors, muscarinic receptors, and nonadrenergic noncholinergic receptors. 

Sympathetic innervation of coronary arteries is much more extensive than 

parasympathetic.

Innervation Messenger Receptor Site and function

Adrenergic NE a Vasoconstrictive
sympathetic (*i

« 2

Larger conductance vessels 
Resistance vessels

NE, E P
Pi
P2

Vasodilatory 
Larger vessels 
Resistance vessels

Cholinergic
parasympathetic

Ach Muscarinic Vasodilation via NO 
(vasoconstriction when 
endothelium damaged)

Nonadrenergic CGRP CGRP Modest vasodilation by
noncholinergic nerves receptors opening K a t p  channel

NE: norepinephrine; E: epinephrine; Ach: acetylcholine; CGRP: calcitonin gene related peptide

Table 2.3: Summary of coronary neurogenic control (from Opie LH, Heart Physiology from Cell 

to Circulation, page 284,4th edition, Lippincott Williams and Wilkins 2004.)

Physiologically, the net effect of sympathetic stimulation of the heart is coronary 

vasodilation. The cathecolamines norepinephrine and epinephrine mediate coronary 

vasodilation by ^-adrenergic effects. In addition, their positive inotropic effect will
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indirectly promote vasodilation by increasing the production of vasodilator 

metabolites in the myocardium. When the endothelium is dysfunctional and cannot 

generate nitric oxide, then overall vasoconstriction is more likely.

The direct effect of acetylcholine on healthy coronary arteries is vasodilation. 

However, stimulation of the parasympathetic (vagal) system decreases myocardial 

oxygen demand (by slowing down the heart and reducing contractility), and therefore 

indirectly constricts the coronary arteries.

Neural control of the coronary circulation is only complementary to other more 

important mechanisms. Denervation of the heart does not alter the increase in 

coronary blood flow in response to hypoxia144;145.

Local metabolism

The close relationship between coronary blood flow and myocardial oxygen 

demand/consumption suggests that one or more products of metabolism contribute to 

coronary vasodilation. These include decreased oxygen and increased local 

concentrations of adenosine, adenine nucleotides, CO2, H+, lactate, and K+ (table 2.4).
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Factor M echanism  o f  action

Adenosine A 2 receptors, fcAM P

K-a t p Hyperpolarisation, J.intracellular calcium

: io2 Opens Katp

h TH+ Direct effect on smooth muscle, sensitises the coronary 
arteries to adenosine

TC02 Tintracellular H"

Lactate 7

■; K + Neurotransmitters, adrenergic receptors, fN O

; ATP

............... ■*• ""..r "

Controversial. May not have a direct vasodilatory role1.

....: r  -.i.- i - r .- .r -  . . r  —, - •vrrz’r  •vrrr'mr.*mr . » r p r ■>;»<m ■

Table l a \ M etabolic vasodilators and their m echanism  o f  action.

Two major mechanisms shown in experimental models to mediate ischaemic/hypoxic 

vasodilation in coronary arteries are1:

1. Breakdown of ATP to adenosine.

2 . Activation o f ATP sensitive potassium channels (K Atp)

Distal precapillary resistance arterioles are the main site o f metabolic regulation o f 

coronary blood flow 135. Large conductance arteries are not affected directly by 

myocardial metabolites because o f their extramural location.

Adenosine

Adenosine- a potent vasodilator- is believed to be the principal local mediator o f 

metabolic vasodilation in coronary arteries in hypoxic/ischaemic conditions. 

Intracoronary infusion o f adenosine is associated with a significant increase in
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coronary blood flow and decrease in coronary vascular resistance146. In conditions of 

hypoxia or ischaemia, a large proportion of the myocyte’s ATP degrades to AMP; 

then small proportions of this are converted to adenosine by the enzyme 5’- 

nucleotidase. Adenosine diffuses out of the myocyte into the interstitial space where it 

interacts with its vascular A2 receptors to cause vasodilation and hence increase local 

coronary blood flow. Much of it is then reabsorbed into myocytes to be reused.

Three types of adenosine receptors have been identified:

1. Ai or myocardial receptors: inhibit the formation of cyclic AMP and 

hyperpolarise nodal cells. This is how high doses of adenosine can arrest the 

heart.

2 . A2 or vascular receptors: are present on the vascular smooth muscle cells and 

exert vasodilation by stimulating the formation of cyclic AMP.

3. A3 receptors: are present in the central nervous system. Their activation 

induces hypotension without affecting the heart rate147.

Methylxanthines, including die bronchodilators aminophylline and theophylline, are 

nonselective adenosine receptor antagonists and can inhibit vasodilation caused by 

adenosine. This property of methylxanthines has been widely used in coronary flow 

studies (including my pacing study, see CHAPTER FIVE) to investigate the role and 

contribution of adenosine on coronary diameter and blood flow at rest and following 

increased myocardial oxygen demand.
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Although the important role of adenosine in hypoxic or ischaemic conditions is 

widely accepted148, it does not seem to play a dominant role in normal physiological 

conditions, at rest or during exercise, and other vasodilator mechanisms must be 

considered. Blocking adenosine receptors does not prevent augmentation of CBF 

velocity caused by increased myocardial activity during exercise or rapid atrial 

pacing, despite eliminating adenosine’s contribution to the process149;150.

ATP sensitive potassium channels (Katp)147,151

K a tp  channels are widely distributed in many tissues and cell types including 

pancreatic islet cells and the coronary vascular smooth muscle cells. Their role is to 

couple the cell metabolic state to its membrane potential. K a tp  channels are normally 

inhibited (i.e. closed) by intracellular ATP and activated (i.e. opened) by MgADP152.

In die coronary arteries, K a t p  channels contribute to the basal coronary tone by setting 

the membrane potential153. They are also believed to play an important role in the 

vasodilation response during myocardial ischaemia in human. When intracellular 

ATP/ADP ratio falls, for example during increased myocardial activity, hypoxia or 

local ischaemia; K a tp  channels open. This generates an outward current which 

hyperpolarises the cell membrane and leads to vasodilation. Inhibition of K a tp  

channels by sulfonylureas such as tolbutamide and glibenclamide diminishes the 

vasodilation response induced by ischaemia and hypoxia154;155.

In a recent study153, Farouque et. al compared the effects of inhibition of K Atp  

channels by intracoronary glibenclamide at rest and following rapid ventricular pacing 

(150 beats per minute) in human subjects with atherosclerotic coronary disease. At 

rest, glibenclamide reduced conduit coronary artery diameter by 4% but did not
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significantly alter coronary blood flow velocity. Calculated coronary blood flow 

(CBF) showed a 9% decline; reflecting the changes in diameter. Following pacing, in 

addition to vasoconstriction, glibenclamide infusion also resulted in a trend to 

reduction of peak CBF velocity compared with 0.9% saline (42.8±4.4 versus 40.6±4.2 

cm/second; P=0.12). Peak CBF was calculated to be 17% less during glibenclamide 

infusion compared with saline infusion.

Animal studies, however, suggest that Katp channels are not essential elements of the 

coronary vascular response to exercise in the normal porcine or canine heart153;156;157.

Endothelium dependent factors

The endothelium is the largest organ in the body. It is strategically located between 

the circulating blood and the media and adventitia of the blood vessels. Endothelium 

dependent vasodilator factors include nitric oxide, prostacyclin, and EDHF 

(endothelium derived hyperpolarising factor). Endothelium also generates a powerful 

vasoconstrictor, the peptide endothelin-1 , whose effects are more significant in 

diseased atherosclerotic arteries where endothelial damage is extensive153;158.

Endothelial dysfunction is defined as an imbalance between relaxing and contracting 

factors, between procoagulant and anticoagulant mediators or between growth- 

inhibiting and growth-promoting substances131’159.

Nitric oxide (NO)

The biochemistry of nitric oxide production and its role in vascular physiology has 

been discussed in CHAPTER ONE. NO is released from endothelial cells in response 

to shear stress160.
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In addition, there are a number of pharmacologic agents including acetylcholine, 

histamine (via Hi receptors), bradykinin, VIP (vasoactive intestinal peptide), 

substance P, and some other polypeptides that exert their vasodilator properties via 

stimulation of endothelial NO release131. Released NO diffuses into vascular smooth 

muscle cells where it induces relaxation by activating the enzyme soluble guanylate 

cyclase, increasing intracellular cGMP.

NO formation can be pharmacologically inhibited by the administration of L-arginine 

analogues such as A^-nitro-L-arginine (LNNA), nitro-L-arginine (NLA), nitro-L- 

arginine methyl ester (L-NAME), and A^-monomethyl-L-arginine (L-NMMA). These 

compounds compete with the natural precursor L-arginine at the catalytic site of 

NOS136.

Contribution of NO to coronary flow regulation has been studied in human, porcine, 

and canine models, in vivo. These studies have been reviewed at die end of this 

chapter. The potential role of circulatory metabolites of NO in the regulation of CBF 

had not been studied before and was the focus of this thesis.

When endothelial dysfunction occurs, the normal vasodilation-inducing response of 

endothelium to shear stress and other factors diminishes. This reduced response is 

attributed to reduced nitric oxide generation, increased activity of endothelin-1 , 

oxidative excess and reduced production of hyperpolarising factor. Additionally, 

endothelial dysfunction initiates a proinflammatory prothrombotic state. Most forms 

of cardiovascular risk factors and diseases- e.g. hypertension, coronary artery disease,
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chronic heart failure, peripheral artery disease, diabetes, and chronic renal failure- are 

associated with endothelial dysfunction.

Prostacyclin (PGIJ

Prostacyclin (PGI2) is produced by endothelial cells from its precursor arachidonic 

acid via the cyclo-oxygenase pathway131. It is released from the endothelium in 

response to shear stress, pulsatile flow, hypoxia, and several other substances that also 

release NO such as ADP, ATP, serotonin, and thrombin136. PGI2 inhibits platelet 

aggregation and promotes vasodilation. In most blood vessels, however, its platelet 

inhibitory effects are probably more important than its vasodilatory ones136.

In healthy men with no coronary disease, oral ibuprofen (to inhibit PGI2 synthesis) 

had no effect on basal coronary tone or the coronary response to exercise149. In a 

slightly different group of patients with either coronary disease or risk factors for 

coronary disease, intracoronary aspirin (another inhibitor of cyclo-oxygenase) reduced 

resting epicardial coronary artery diameter and CBF and attenuated ventricular 

pacing-induced hyperaemia161.

Endothelium derived hyperpolarising factor (EDHF)

EDHF is another distinct endothelial pathway involved in vasorelaxation and is likely 

to play an important role in cardiovascular physiology162. Similar to NO and PGI2, 

EDHF is released from the endothelial cells in response to agonists (e.g. acetylcholine 

and bradykinin) and fluid shear stress163. The endothelial hyperpolarisation that 

initiates relaxation results from the opening of two populations of endothelial 

potassium channels, the small conductance and intermediate conductance calcium- 

activated potassium channels (SK(Ca) and IK(Ca), respectively)1625164.
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Hyperpolarisation of the smooth muscle membrane closes the voltage dependent 

calcium channels. The subsequent reduction in the influx of extracellular calcium ions 

(that normally sustains contraction) leads to vasorelaxation163.

The chemical nature of EDHF is still a matter of debate and different substances have 

been identified to act as an EDHF in different vascular beds, e.g. epoxyeicosanoids, 

potassium ions, anandamide, hydrogen peroxide or C-type natriuretic peptide165. 

Despite this heterogeneity of proposed factors it is unclear if such a factor indeed 

exists in all vessels. An alternative explanation for the EDHF phenomenon is that 

direct intercellular communication via gap junctions allows passive spread of agonist- 

induced endothelial hyperpolarisation through the vessel wall163.

Unlike nitric oxide which is dominant in larger conduit arteries, EDHF appears to be 

far more important in small arterioles166.

NO inhibits the production of EDHF167. Therefore a decrease in NO bioavailability 

may result in the upregulation of EDHF.

Segmental distribution of regulatory mechanisms

Metabolic stimuli that increase CBF by relaxing resistance arterioles, increase shear in 

the upstream conduit vessels, and produce “flow mediated” vasodilation. It has been 

shown that neurogenic, metabolic, myogenic, and shear stress-induced mechanisms 

dominate resistance at specific microvascular sites137’168. For example in pigs, 

metabolic vasodilation occurs predominantly in the smallest arterioles (<30pm), 

whereas intermediate arterioles (30 to 60pm) are the principal site of myogenic
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regulation. The large arterioles (100 to 150pm) appear to be the sites of flow- 

mediated dilation.

During metabolic stress and in response to local metabolic factors such as adenosine, 

the smallest arterioles dilate first, resulting in reduced microvascular resistance and 

increased CBF. As the upstream arteriolar pressure decreases, myogenic dilation of 

slightly larger arterioles upstream occurs and causes an additional decrease in 

resistance. Increased flow in the largest arterioles augments shear stress and triggers 

flow-mediated dilation, further reducing the resistance of this network135.

Role of NO in the coronary circulation; in vivo studies

In this section, the main in vivo studies which investigated the role of NO in the 

regulation of coronary flow are reviewed. These studies were conducted in dog, pig, 

or human subjects. When comparing results of different studies, it is important to 

realise that significant species difference exists in regard to the coronary circulation. 

For example porcine hearts-like human hearts- have a dominant right coronary 

system, whereas the canine heart has a dominant left coronary system; or the dog has 

a relatively well developed collateral circulation whereas pigs (similar to humans 

without coronary artery disease) have practically no anatomically demonstrable 

collaterals136.

While there are considerable differences between human and canine coronary 

structure, porcine heart shows a close similarity to human heart and the pig has been 

well characterised as an appropriate model for the study of coronary physiology, the 

coronary collateral circulation and exercise physiology136’169'171.
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Canine studies

In a series of experiments on chronically instrumented dogs, Bache and colleagues172" 

175 (1993-1998) studied the significance of K +a tp  channels, adenosine, and nitric 

oxide in regulating CBF under resting conditions and during increments in myocardial 

metabolic demand produced by treadmill exercise. Infusions of glibenclamide, 8 - 

phenyltheophylline (8 -PT), and A^-nitro-L-arginine (LNNA) were used to inhibit 

K +a tp  channels, adenosine receptors, and NO synthase respectively. During control 

conditions, CBF was 49±3 ml/min at rest and increased to 92±8 ml/min at peak 

exercise. The blockade of K +a tp  channels decreased CBF at rest (from 51 +/- 4 to 42 

+/- 6  ml/min) but did not impair the increases in CBF that occurred during exercise 

(although CBF was lower at each level of exercise per se). Combined K +a t p  channel 

and adenosine blockade decreased resting coronary flow to 27±3 ml/min and 

attenuated the increase in coronary flow produced by exercise. However, exercise still 

increased flow to 45±5 ml/min. Consistent with findings by Bernstein et al. (see 

below), the NO synthase inhibitor LNNA, alone or in combination with 8 -PT did not 

alter resting coronary flow and did not impair die normal increase in flow during 

exercise. Simultaneous blockade of all three mechanisms further decreased resting 

coronary flow to 2 0 ± 2  ml/min and markedly blunted exercise-induced coronary 

vasodilation so that coronary flow both at rest and during exercise was below the 

control resting level.

These studies showed that in dogs:
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1. K +a t p  channels are critical for maintaining coronary vasodilation at rest and 

during exercise. When K +a t p  channels are intact, neither NO nor adenosine- 

dependent mechanisms are obligatory for maintaining coronary blood flow.

2. When K +a t p  channels are blocked, both adenosine and NO act to increase 

coronary blood flow during exercise.

3. The residual increase in coronary flow in response to exercise after adenosine 

receptor and K +at?  channel blockade is dependent on endogenous NO.

4. In the presence of combined K +a t p  channel blockade and adenosine receptor 

blockade, NO is able to produce approximately one quarter of the coronary 

vasodilation that occurs in response to exercise when all vasodilator systems 

are intact.

In a complementary experiment176, they measured plasma NOx in aortic and coronary 

sinus blood samples to compare coronary NO production in response to treadmill 

exercise with intracoronary administration of the endothelium-dependent agonists 

acetylcholine and bradykinin. A three-stage progressive exercise protocol was 

employed. No coronary NOx production could be detected at rest or during the first 2 

stages of exercise; only at the highest level of exercise was a small increase in 

coronary NOx production measured. In contrast, coronary production of NOx was 

significantly increased in response to endothelium-dependent agonists. This study 

confirmed that coronary NO production in response to endothelium-dependent 

agonists is greater than in response to the increase in shear stress associated with 

exercise. It also supported previous evidence suggesting that NO is not essential to 

exercise-induced coronary vasodilation.
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Bernstein et al. 177 (1996) studied the changes in NO production from the coronary 

circulation in conscious dogs during exercise. Plasma NOx from aortic and CS blood 

was measured with the dog standing at rest on the treadmill and at three successively 

increasing exercise speeds. After acute exercise was performed and blood samples 

were taken, nitro-L-arginine (NLA) was given to block NO synthesis and the exercise 

was repeated. Acute exercise caused significant elevations in NOx production by the 

coronary circulation. After NLA, there was no measurable NOx production at rest or 

during exercise. There was no significant change in CBF response to exercise after the 

blockade of NO synthesis. Blockade of NO synthesis resulted in elevations in 

myocardial oxygen consumption.

In a similar study to Bache et al., Tune et al. 156 (2001) examined the effect of 

combined inhibition of K +a t p  channels (glibenclamide), nitric oxide synthesis 

(LNNA), and adenosine receptors (8 -PT) in coronary exercise hyperaemia of 10 

chronically instrumented dogs. During control exercise, myocardial oxygen 

consumption increased ~2.9-fold, CBF increased ~2.6-fold, and coronary venous 

oxygen tension decreased from 19.9 ± 0.4 to 13.7 ± 0.6 mmHg. In contrast to Bache’s 

studies, triple blockade did not significantly change the myocardial oxygen 

consumption or CBF response during exercise. Triple blockade lowered the resting 

coronary venous oxygen tension to 10.0 ±0.4 mmHg and during exercise to

6.2 ± 0.5 mmHg. Triple blockade increased coronary venous adenosine concentrations 

during exercise, but the adenosine levels did not increase sufficiently to overcome the 

adenosine receptor blockade.
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Matsunaga et al. 178 (1996) studied the effects of NO synthesis inhibition on 

myocardial metabolism in pentobarbital sodium-anaesthetised dogs at baseline and 

during atrial pacing. NG-nitro-L-arginine methyl ester (L-NAME) infusion was used 

to inhibit NO synthase. CBF and PO2 in the anterior interventricular vein at baseline 

were both significantly decreased by L-NAME. CBF was increased during pacing, 

which was not affected by L-NAME. Myocardial adenosine release remained 

unchanged during pacing before L-NAME, but it was significantly increased after L- 

NAME infusion. The experiment was repeated in dogs pretreated with the adenosine 

receptor blocker 8 -PT. Combined blockade of NO and adenosine suppressed pacing- 

induced increase in CBF.

Unlike Bernstein et al., Sherman et al. 179 (1997) showed that blockade of NO 

synthesis with either systemic or intracoronary L-NAME decreased myocardial 

oxygen consumption in dogs in vivo.

Minamino et al. 180 (1997) studied die effect of NO synthesis inhibition on adenosine 

production in canine coronary arteries. The intracoronary administration of L-NAME 

for 30 minutes increased adenosine levels in coronary venous blood.

Summary- in dogs:

1. NO is not essential to CBF increase in response to exercise.

2. Exercise increases coronary NO production.

3. Loss of NO can be compensated for by increased participation of other 

vasodilator mechanisms.
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Porcine studies

Mercus et al.181(2004) investigated the integrated contribution of K a t p  channels, 

adenosine, and NO to the regulation of CBF in chronically instrumented swine at rest 

and during exercise. Swine exercised on a treadmill (0-5 km/h), during control and 

after blockade of K a t p  channels (with glibenclamide), adenosine receptors (with 8 - 

PT), and/or NOS (with L-NNA). L-NNA, 8 -PT, and glibenclamide each caused 

coronary vasoconstriction and reduced myocardial O2 delivery and coronary venous 

O2 tension at rest and during exercise. These effects were not modified by 

simultaneous blockade of the other vasodilators. Thus in swine, loss of K a t p  channels, 

adenosine, or NO was not compensated for by increased participation of the other two 

vasodilator mechanisms. These findings suggest a parallel (additive) rather than a 

redundancy (backup) design of CBF regulation in the porcine circulation. Combined 

blockade of die above 3 vasodilator mechanisms increased myocardial oxygen 

extraction to >90%. Although CBF was significantly impaired by triple blockade, it 

still doubled in response to exercise. This indicates that other mechanisms are also in 

place to mediate metabolic vasodilation.

Human studies

Lefroy et al.182(1993) studied the effect of inhibition of NO synthesis (by L-NMMA) 

on epicardial coronary artery calibre and CBF in humans. L-NMMA caused a 

significant reduction in basal distal (but not proximal) LAD diameter and basal CBF. 

Coronary venous oxygen saturation dropped from 37.5 +/- 2.8% to 34.3 +/- 2.8% (P =

0.019).
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Quyyumi et al. 183 (1995) studied the effect of inhibiting nitric oxide synthesis with 

A^-monomethyl-L-arginine (L-NMMA) on the coronary vasodilation during rapid 

atrial pacing (mean heart rate 141 beats per minute) in patients with angiographically 

normal coronary arteries with and without multiple risk factors for coronary 

atherosclerosis (hypertension, hypercholestrolaemia, diabetes). Endothelium- 

dependent vasodilation was estimated with intracoronary acetylcholine and 

endothelium-independent dilation with intracoronary sodium nitroprusside and 

adenosine. All the measurements were repeated after intracoronary infusion of L- 

NMMA. During the control study, cardiac pacing at 141±11 bpm produced a mean 

50% increase in blood flow, 21% reduction in coronary vascular resistance, and a 9% 

increase in proximal and distal coronary artery diameters. At rest, L-NMMA produced 

a 16±25% (mean±SD) increase in coronary vascular resistance and an 11% reduction 

in distal epicardial coronary artery diameter, indicating tonic basal release of nitric 

oxide from human coronary epicardial vessels and microvessels. L-NMMA depressed 

pacing-induced decrease in coronary vascular resistance and eliminated pacing- 

induced vasodilation in the epicardial coronary arteries. Epicardial coronary dilation 

during control pacing (9±13%) was converted to constriction after L-NMMA and 

pacing (-6±9%). L-NMMA specifically inhibited endothelium-dependent vasodilation 

with acetylcholine but did not alter endothelium-independent dilation with sodium 

nitroprusside and adenosine. Patients with one or more cardiac risk factors had 

depressed microvascular vasodilation during cardiac pacing. Moreover, the inhibitory 

effect of L-NMMA on pacing-induced coronary epicardial and microvascular 

vasodilation was observed only in patients without risk factors, whereas those with 

risk factors had an insignificant change, indicating that nitric oxide contributes 

significantly to pacing-induced coronary vasodilation in patients free of risk factors
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and without endothelial dysfunction. Patients with risk factors also had reduced 

vasodilation with acetylcholine but the responses to sodium nitroprusside were similar 

in both groups.

The authors concluded that:

1. Persistent (although lower) coronary microvascular dilation with cardiac 

pacing after administration of L-NMMA, as evident by the decrease in 

coronary vascular resistance, confirms the presence of non-NO related 

mechanisms that contribute to metabolic vasodilation of the coronary 

microvasculature in humans.

2 . Failure of the epicardial coronary arteries to dilate in response to pacing after 

L-NMMA suggests that coronary epicardial vasodilation during metabolic 

stimulation of the human heart is likely to be mediated entirely by the 

endothelium-derived release of nitric oxide.

Egashira et al. 184 (1996) studied the role of NO in coronary vasodilation induced by 

rapid atrial pacing in patients without significant coronary artery disease who were 

undergoing coronary angiography for evaluation of chest pain. 80% of patients had at 

least one cardiovascular risk factor. An increase in the heart rate (120-130bpm) 

increased CBF and die coronary artery diameter. L-NMMA reduced basal CBF but did 

not significantly affect basal coronary artery diameter, arterial pressure, or heart rate. 

L-NMMA markedly attenuated the pacing-induced dilatation of the large epicardial 

coronary artery, whereas it did not affect pacing-induced increase in CBF. These 

findings suggest that:
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1. Dilatation of the large epicardial coronary arteries in response to pacing is 

mediated by NO.

2. NO may not significantly contribute to the dilatation of resistance arterioles 

and consequently the overall increase in CBF in response to rapid atrial 

pacing. Alternatively, there may be other vasodilatory systems in place in 

resistance arterioles which can compensate for the effects of NO inhibition by 

increasing their metabolic signals.

Duffy et al. 161 (1999) assessed the contribution of endothelium-derived nitric oxide 

and vasodilator prostanoids to resting blood flow, metabolic vasodilation, and flow 

reserve in the human coronary circulation. 25 patients scheduled for percutaneous 

intervention or diagnostic studies for investigation of chest pain were recruited. 

Angiographically smooth or mildly irregular coronary arteries were studied. In single­

vessel disease, the study was performed in an adjacent vessel after the percutaneous 

intervention. Metabolic vasodilation was induced by 2 minutes of ventricular pacing 

(150 beats per minute). Coronary haemodynamics were assessed before and after 

inhibition of vasodilator prostanoids and NO with intracoronary aspirin and L- 

NMMA, respectively. Aspirin reduced resting conduit vessel diameter by 11% and 

CBF by 27% and increased coronary vascular resistance (CVR) by 24%. Pacing 

increased the coronary artery diameter from 2.36±0.1 to 2.54±0.2 mm, but this 

increase was abolished by aspirin. Pacing increased CBF by 78% during vehicle 

infusion, but aspirin attenuated the pacing-induced hyperaemia to a 42% increase 

compared with before aspirin. Pacing reduced CVR by 40% during vehicle infusion. 

With ASA, CVR decreased with pacing by 27%. L-NMMA reduced resting conduit 

vessel diameter by 9% and CBF by 20% and increased CVR by 19%. Pacing 

increased coronary artery diameter (from 2.32±0.1 to 2.60±0.1 mm), but this increase
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was abolished by L-NMMA. Pacing increased CBF by 60% during vehicle infusion. 

With L-NMMA, pacing increased CBF to a similar extent (by 60%) although 

maximum pacing-induced hyperaemia was 20% less with L-NMMA. Thus, although 

the percent increase in CBF was similar after L-NMMA, the maximum CBF achieved 

was less. Pacing reduced CVR by 39% before and 32% after L-NMMA infusion. 

Thus, minimum CVR after pacing was greater with L-NMMA.

They concluded that tonic release of vasodilator prostanoids and NO contributes to 

resting conduit and resistance vessel tone and to peak functional hyperaemia and flow- 

mediated dilation after metabolic stimulation.

Summary- in humans:

1. There is a tonic basal release of NO from the coronary epicardial vessels.

2. Pacing-induced vasodilation in epicardial coronary arteries is nitric oxide 

dependent.

3. Microvascular vasodilation in response to pacing may not be exclusively 

dependent on nitric oxide.

4. Contribution of nitric oxide to coronary vasodilation is reduced in patients 

with coronary artery disease or cardiovascular risk factors and leads to a net 

reduction in vasodilation during stress.
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CHAPTER TH REE

Diabetes mellitus type 1, 
microvascular complications, and 

nitric oxide metabolism
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General

Definition

Diabetes mellitus is a group of metabolic diseases characterised by chronic 

hyperglycaemia due to defects in insulin secretion, insulin action or both185. In 2000, 

there were an estimated 171 million cases in the world, and this number is projected 

to increase to 366 million by 2030186. Symptoms include excessive excretion of urine 

(polyuria), thirst (polydipsia), constant hunger, weight loss, vision changes and 

fatigue.
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Classification

Diabetes mellitus is commonly classified as type 1 and type 2. There are also other 

less common types of diabetes, e.g. gestational diabetes.

Type 1 diabetes represents about 10% of cases of diabetes mellitus around the 

world187 and is due to insulin deficiency caused by T-cell mediated autoimmune 

destruction of the B cells in the pancreatic islets of Langerhans131. Type 1 diabetes 

usually develops before the age of 40, with a peak incidence between 10 and 14 years 

ofage188.

Type 1 diabetes is further subclassified based on the presence (type la, 90% of cases 

in Europe) or absence (type lb) of serological evidence of autoimmunity. Both 

subtypes have similar clinical presentations188.

Latent (or late-onset) autoimmune diabetes in adults (LADA) is a form of type la 

which is commonly misdiagnosed as type 2. Patients are generally older at 

presentation (>40) and may pass several years before becoming insulin-dependant. 

This form of diabetes should particularly be suspected in patients with no signs of 

metabolic syndrome188.

In contrast to type 1, type 2 diabetes has more complex and less well-understood 

aetiology. It is characterised by insulin resistance and impaired B cell insulin 

secretion131; which are believed to be the result of an interaction between various 

environmental factors and multiple diabetogenic genes189. Moreover, type 2 diabetes 

is frequently part of a wider collection of metabolic disorders (dyslipidaemia, truncal
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obesity, hypertension), i.e. the “metabolic syndrome” or “syndrome x ”189;190. These 

high risk conditions alter endothelial function and NO bioavailability independently 

and can complicate the interpretation of NO studies in diabetes.

To avoid the confounding factors frequently associated with type 2 diabetes, the focus 

of this thesis has been on patients with type 1 diabetes with no other cardiovascular 

risk factors.

Tissue damage in diabetes

Both types of diabetes are associated with long term tissue damage which can be 

categorised into macro- and microvascular complications (Table 3.1). The focus of 

this thesis is on the micro- rather than macrovascular complications of type 1 diabetes.

Hyperglycaemia (glucose toxicity) plays a pivotal role in the pathogenesis of macro- 

and microvascular complications of diabetes and there is good evidence that intensive 

glycaemic control reduces the risk of developing microvascular complications 

significantly191.

Certain types of cells are more vulnerable to the toxic effects of hyperglycaemia. 

These include capillary endothelial cells in the retina, mesangial cells in the renal 

glomerulus, and neurons and Schwann cells in peripheral nerves192. In these cells, 

glucose uptake is regulated by GLUT proteins other than GLUT-4193 and is therefore 

independent of insulin. Unlike most cells in our body, these cells are unable to down- 

regulate the transport of glucose inside the cell when they are exposed to 

hyperglycaemia194’195. This leads to highly “toxic” glucose levels inside the cell which 

can trigger several detrimental biochemical pathways.
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Microvascular complications

Retinopathy, cataract

Nephropathy

Neuropathy

Macrovascular complications

Coronary heart disease 

Cerebrovascular disease 

Peripheral vascular disease

Table 3.1 Vascular complications of diabetes mellitus.

Miscellaneous factors

There are other modifying factors which can either accelerate or decelerate the 

process of hyperglycaemia-induced tissue damage in diabetics. These include genetic 

factors, duration of disease, smoking, blood pressure, lipid profile, and von 

Willebrand factor levels.

Genetic factors play a role in determining individual susceptibility to tissue 

damage192.

The frequency of microvascular complications of diabetes increases as the duration of 

disease increases. In the EURODIAB196 study, the prevalence of microvascular 

disease was 25% in subjects with short duration of disease (<5 years) and 82% in the 

long duration (>14 years) group.
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Genetic
susceptibility

F igure 3.1: G eneral features o f hyperglycaem ia-induced tissue dam age in d iab etes

Several factors can expedite or hinder the development o f microvascular 

complications. In the same study and in the short duration group, factors associated 

with early developm ent o f  complications were cigarette smoking and a family history 

o f hypertension. Subjects free o f microvascular complications in spite o f long 

duration o f diabetes had better glycaemic control, lower blood pressure, better lipid 

profile and lower von W illebrand factor levels.

HbA1c: A measure o f long-term glycaemic control

HbAic is a m inor com ponent o f adult haemoglobin (Hb A) which forms from the non-

enzymatic attachment o f  glucose to the amino-terminal valine o f the p chain197. It was

first identified by Rahbar in late 1960s as a minor "abnormal fast-moving 

. . .  . 1 0 8
haemoglobin band" in diabetic patients . The conversion o f Hb A to H bA ic occurs 

continuously throughout the 1 2 0 -day life-span o f normal erythrocytes and is a slow
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post-translational event. This observation is supported by the low levels of H b A ic  in 

patients with haemolytic anaemias199.

Today, measurement of HbAic is an established procedure for evaluating long-term 

control of diabetes200,201.

H b A ic  reflects patient’s blood glucose control over the past 8 - 1 2  weeks (i.e. life-span 

of red blood cells)202. It is also recognised that the level of H b A ic , does not reflect the 

simple mean but reflects the weighted mean of the preceding plasma glucose levels, 

with recent events contributing more than distant ones203. The blood glucose levels in 

the one month before sampling contribute to about 50% of the HbAic value, whereas 

3-4 months previously contributes only about 10%202.

The reference range for HbAic depends on the method and laboratory. In 2002, the 

National Institute for Health and Clinical Excellence recommended that all H b A ic  

assays should be aligned with the assay used in the Diabetes Complications and 

Control Trial (DCCT). Using a DCCT-aligned HPLC-based fully automated 

glycohaemoglobin analyser (Tosoh Bioscience), normal HbAic levels in our affiliated 

hospital (University Hospital of Wales) ranges between 4%-6% of total haemoglobin. 

In diabetics it is usually above 7%.

Research value

Since its discovery, the magnitude of HbAic percentage has been widely studied in 

epidemiologic studies and found to be an independent risk factor for the development 

of microangiopathy191 and cardiovascular mortality and morbidity204;205, even in non- 

diabetics204,206,207. Some of these studies are mentioned below.
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The Diabetes Control and Complications Trial (DCCT) in 1441 patients with insulin 

dependent diabetes mellitus showed that reduction of HbAic from 9% to about 7% 

significantly reduced the development and/or progression of microvascular 

complications of diabetes191.

The Norfolk cohort of European Prospective Investigation of Cancer and Nutrition 

(EPIC-Norfolk) 204 reported on 4662 men aged 45-79, followed for 6  years. HbAic was 

continuously related to subsequent all cause, cardiovascular, and ischaemic heart 

disease mortality through the whole population distribution, with lowest rates in those 

with HbAic concentrations below 5%. An increase of 1% in HbAic was associated 

with a 28% (P<0.002) increase in risk of death independent of age, blood pressure, 

serum cholesterol, body mass index, and cigarette smoking habit.

The Rancho-Bemardo study206, a community-based study of 1,239 nondiabetic older 

adults followed for an average of 8  years, showed that glycated haemoglobin was 

significantly related to cardiovascular disease (CVD) and ischaemic heart disease 

(IHD) mortality in women but not men. The age-adjusted relative hazard for those in 

the highest quintile of glycated haemoglobin (> 6.7%) compared with women with 

lower levels was 2.37 for fatal CVD and 2.43 for IHD.

The EURODIAB study in type 1 diabetics across Europe recognised HbAic as an 

independent risk factor for retinopathy208 and nephropathy209.

Postprandial glucose excursions- Increasing evidence suggests that excessive 

excursions of postprandial glucose might be important for the development of micro- 

and macroangiopathic complications of diabetes. Postprandial hyperglycaemia has 

been reported to be at least as important as fasting hyperglycaemia in relation to death
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from cardiovascular and coronary heart disease210 and the development of retinopathy 

and nephropathy211. One study showed that postchallenge glucose was more strongly 

associated with carotid intima-media thickness (as an index of atherosclerosis) than 

fasting glucose or HbAic level in non-diabetic subjects who were at risk of type 2 

diabetes212. There is ongoing research on how to best control postprandial 

hyperglycaemia.

Nonetheless, postprandial glucose is a single measurement and unlike HbAic does not 

reflect glycaemic control over a substantial period of time.

It is also worth mentioning that the evidence for the significance of postprandial 

glucose comes from studies on patients with type 2 diabetes. It is not known if the 

conclusions can be extended to type 1 diabetes.

Pathophysiology of microvascular complications in 

type 1 diabetes

Despite the established link between chronic hyperglycaemia and long term 

microvascular complications of diabetes, the biochemical mechanism(s) of this 

association is not well understood.

Hyperglycaemia can affect many cellular pathways. The main challenge is to identify 

those pathways that are involved in causing vascular dysfunction. The importance of 

the elucidation of these mechanisms is supported by the fact that maintaining 

normoglycaemia at all times is almost impossible throughout the life of diabetic 

patients213;214. Moreover, restoration of normoglycaemia does not always stop the 

progression of established disease215. It is therefore vital to develop therapeutic agents
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which can inhibit the intermediate biochemical pathways between hyperglycaemia 

and microvascular complications. Four such biochemical pathways have been 

discovered and studied so far:

1. Increased polyol (sorbitol) pathway flux

2. Increased formation of advanced glycation end products (AGEs)

3. Increased protein kinase C (PKC) activation

4. Increased hexosamine (glucosamine) pathway flux

Hyperglycaemia-induced overproduction of superoxide by the mitochondrial electron 

transport chain has been proposed to be a unifying mechanism linking all the above 

elements to each other192.

Increased polyol (sorbitol) pathway flux

The polyol pathway of glucose metabolism is normally relatively inactive193 and most 

of the intracellular glucose is phosphorylated to glucose 6 -phosphate by hexokinase. 

It is estimated that under normoglycaemic conditions, polyol pathway accounts for 

approximately 3% of glucose utilisation in erythrocytes216. This ratio can increase to 

about one third of the total glucose turnover under hyperglycaemic conditions.
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Aldose reductase Sorbitol dehydrogenase

Gluco~~ * Sorbitol ^  * Fructose
NADPH NADP N A D f NADH

J.NADPH causes: |N A D H /N A D + causes:
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Figure 3.2: T he polyol pathw ay and consequences o f  increased glucose flux through it. (G SH : 
G lutathione, NO S: NO  synthase, AG E: advanced glycation end products, PKC: protein  k inase C)

The polyol pathway becomes active when intracellular glucose levels are elevated

(figure 3.2). Aldose reductase, the first and rate-limiting enzyme in the pathway,

reduces glucose to sorbitol using NADPH as a cofactor. Sorbitol is then oxidised to

fructose by sorbitol dehydrogenase, which uses NAD+ as a cofactor. This is a normal

reaction sequence in testis but not other tissues which often lack sorbitol

dehydrogenase. Therefore, chronic hyperglycaemia and increased activity o f  aldose

reductase lead to accumulation o f sorbitol in these tissues217.

Several mechanisms have been proposed to explain the role o f polyol pathway in the 

pathogenesis o f diabetic tissue damage.

In the ocular lens, excess sorbitol induces hyperosmotic oedema which by disturbing 

the cell membrane leads to the leakage o f aminoacids, glutathione, and myoinositol 

which in turn provoke cataract. However, sorbitol levels in diabetic vessels and nerves 

are too low to suggest this mechanism is important in these tissues192 218.

The pathophysiology behind neuronal dysfunction in diabetes mellitus is more likely 

to be aldose reductase-induced oxidative stress219. It is believed that the excess flow
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of glucose through the polyol pathway competes with nitric oxide synthase (NOS) and 

glutathione reductase over the cofactor NADPH. Reduced intracellular levels of 

NADPH lead to the down-regulation of NOS and glutathione reductase. The 

subsequent decrease in the production of nitric oxide and glutathione -both important 

antioxidant agents- makes the affected tissue more susceptible to oxidative stress. 

Reduction in the release of NO also slows nerve conduction . This mechanism, 

however, does not seem to apply to endothelial cells. Isolated human and porcine 

coronary endothelial cells show an increase in basal NO production in response to 

acute hyperglycaemia (see below)221.

The leading role of aldose reductase in glucose toxicity has made its inhibition a 

potential strategy in preventing long term complications of diabetes, especially 

cataract, retinopathy, and peripheral neuropathy222'225. Unfortunately, most of the 

clinical trials performed so far have either failed to show a definite 

therapeutic/prophylactic role for aldose reductase inhibitors or caused various adverse 

effects.

Increased formation of advanced glycation end products 

(AGEs)

Glycation is the result of non-enzymatic reaction between the carbonyl group of a 

simple sugar (i.e. glucose, fructose and galactose) and free amino group of proteins. 

Reactive sugars can also bind to other macromolecules such as lipids and nucleic 

acids. The rate of the reaction is proportional to the concentration of sugar (mainly 

glucose) in the blood193. HbAic is an example of glycation end products in the 

circulation.
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Glycation is initially reversible but through a series of slow reactions known as 

Amadori reactions, Schiff base reactions, and Maillard reactions; leads to the 

formation of irreversibly modified molecules collectively known as advanced 

glycation end-products (AGEs). There is an increased accumulation of AGEs in 

diabetes mellitus, renal failure, and aging226.

Glycation interferes with the function of many important proteins throughout the 

body. In the renal glomeruli, advanced glycation of proteoglycans alters the selective 

filtration properties of basement membrane by inducing a decrease in the 

electronegative charge227. AGEs also increase the production of transforming growth 

factor-beta (TGF-P ) which in turn induces vascular hypertrophy and mesangial 

extracellular matrix expansion both of which play an important role in the 

pathogenesis of microvascular complications of diabetes228.

AGE-modified proteins in the circulation can affect a range of cells and tissues 

including polymorphonuclear (PMN) leukocytes, monocytes and macrophages, 

glomerular mesangial cells, and vascular endothelial cells. This effect is conveyed 

through specific receptors for AGEs (so-called “RAGE”). In endothelial cells, AGE 

binding to its receptor generates oxygen free radicals that may induce oxidative 

damage and favour coagulation. In addition, endothelial AGE receptor binding 

appears to increase vascular permeability through the induction of vascular 

endothelial growth factor (VEGF)193. The latter may play an important role in the 

pathophysiology of diabetic retinopathy. Indeed, it has been shown that inhibition of 

AGE production by aminoguanidine prevents late structural changes of experimental 

diabetic retinopathy229.
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AGEs depress superoxide production in stimulated PMN leukocytes. As superoxide 

plays an essential role in bactericidal activity, this inhibitory effect may be a 

contributory factor to the increased prevalence and severity of bacterial infection seen 

in diabetic patients. In contrast, baseline superoxide production of PMN leukocytes is 

increased by AGEs230.

AGEs can also bond together and, consequently, increase protein crosslinking. In the 

circulatory system, increased collagen crosslinking caused by AGEs increases 

cardiovascular stiffness as well as the risk for cardiovascular morbidity and 

mortality231.

Increased protein kinase C (PKC) activation

PKC is a ubiquitous family of protein kinases with at least 11 isoforms232. PKC 

phosphorylates various target proteins and its persistent and excessive activation in 

hyperglycaemia is associated with diabetic vascular disease and tissue damage.

Raised intracellular glucose levels increase PKC activity by increasing the synthesis 

of diacylglycerol (DAG) from glucose. DAG is a powerful enhancer of PKC 

activity193 (figure 3.3).

Increased activity of PKC has a variety of effects on gene expression. Endothelial 

nitric oxide synthase (eNOS) is decreased and the vasoconstrictor endothelin-1 is 

increased, leading to alteration of normal tissue blood flow. Activation of PKC-a233 as 

well as increased expression of VEGF234 enhance endothelial permeability. Increased 

expression of TGF-Pi, type IV collagen235 and fibronectin236 increase extracellular 

matrix accumulation in glomerular mesangial cells. PKC increases the production of 

reactive oxygen species (ROS) via activation of NADPH oxidase237.
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The importance o f PKC in the development o f complications o f  DM is evident from

studies in which inhibitors o f PKC have been shown to prevent early changes in the

diabetic retina238 and kidney2,9. M ost pharmacological studies are restricted to in vitro

models because common inhibitors o f PKC are non-specific and are associated with

unacceptable toxicity.

Increased hexosamine (glucosamine) pathway flux

Shunting glucose into the hexosamine pathway is the most recent proposed 

mechanism by which hyperglycaemia can cause diabetic com plications192. It has been 

shown that increased hexosamine pathway flux induces oxidative stress, apoptosis, 

and increased extracellular matrix expression in mesangial cells240.

The hexosamine biosynthesis pathway (HBP) is a relatively minor branch o f 

glycolysis241. Glucosamine-6 -phosphate, generated from fructose-6 -phosphate and
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glutamine, is converted to UDP-A-acetylglucosamine (UDP-GlcNAc), which can 

glycate transcription factors and thus enhance transcription o f genes including 

plasminogen activator inhibitor (PAI)-l and transforming growth factors a  and (3i 

(TGF-a, TGF-(3, ) 193 (Figure 3.4).
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Figure 3.4: The g lucosam ine pathw ay. (Gin: glutam ine, Glu: g lucose, Fru: Fructose, G FA T: 

glutam ine: fructose-6-p hosphate  am idotransferase, U D P-G lcN A c: U ridine d iphosphate glucose - 

A '-acetylglucosam ine, PAI: p lasm inogen activator inh ib itor, TG F: transform ing grow th factor)

The conversion o f glucose to glucosamine is catalysed by the rate-limiting enzyme 

glutamine: fructose-6 -phosphate amidotransferase (GFAT). It has been reported that 

GFAT overexpression in muscle and fat242 or liver243 results in insulin resistance.
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A unified mechanism: increased oxidative stress

The occurrence of oxidative stress in diabetes has been extensively documented244'249. 

A consistent feature common to all cell types that are damaged by hyperglycaemia is 

an increased production of reactive oxygen species (ROS); primarily superoxide250,251. 

Mitochondria are the principal source of ROS in cells as the result of uncoupled 

electron transport. Normally, only 0.1 % of total oxygen consumption leaks from the 

respiratory chain to generate ROS. ROS are degraded to hydrogen peroxide by 

mitochondrial SOD which is then converted to H2O and O2 by other enzymes. 

Intracellular hyperglycaemia enhances the mitochondrial electron transport chain 

towards overproduction of superoxide. Enhanced superoxide production pushes the 

balance such that normal cellular antioxidants are overwhelmed249.

Hyperglycaemia-induced overproduction of superoxide by the mitochondrial electron 

transport chain has been proposed to be the underlying initiating process which links 

the above four pathogenic mechanisms to each other. According to findings by 

Brownlee and his team192, intracellular hyperglycaemia increases mitochondrial 

production of superoxide. Superoxide damages nuclear DNA strands. Damage to 

DNA activates the intranuclear enzyme poly (ADP-ribose) polymerase (PARP). 

PARP is a DNA repair enzyme which is activated by damage to DNA. PARP then 

inhibits the key glycolytic enzyme glyceraldehyde-3 phosphate dehydrogenase 

(GAPDH) by modifying its molecular structure with polymers of ADP-ribose (figure 

3.5).
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Inhibition o f GAPDH activity leads to accumulation o f all the glycolytic metabolites 

that arc upstream o f GAPDH. Increased levels o f these metabolites activate the four 

pathogenic pathways described above. As seen in figure 3.5, increased levels o f  

glyceraldehyde-3-phosphate activate AGE and PKC pathways. Increased levels o f 

fructose-6 -phosphate increases flux through the hexosamine pathway. A further 

increase in intracellular glucose levels increases flux through the polyol pathway.

Other mechanisms have also been proposed to explain increased oxidative stress in 

diabetes. It has been shown that xanthine oxidase (a superoxide-generating enzyme) is 

increased in plasma and liver o f  diabetic rats. Xanthine oxidase leaks from the liver 

into plasma (only in diabetic rats and not in controls) and binds to vascular endothelial 

cells where it can produce superoxide in the presence o f xanthine. This process can be 

inhibited by heparin (which releases xanthine oxidase from the endothelial surface) 

and allopurinol, an inhibitor o f  xanthine oxidase248.
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NO activity in diabetes

Endothelial function and NO bioavailability

Both types of diabetes are associated with endothelial dysfunction and alterations in 

NO bioavailability which play an important role in the development of its 

microvascular and macrovascular complications252.

Endothelial dysfunction is an early event in diabetic vascular disease253'255 and is 

characterised by impaired endothelium-dependent vasodilation253;256;257, increased 

platelet aggregation, increased expression of leukocyte adhesion molecules, increased 

vascular smooth muscle proliferation, and increased endothelial permeability for 

macromolecules and lipoproteins258. These abnormalities accelerate atherosclerosis 

and promote the development of diabetic macroangiopathy. Clinically, the 

“syndrome” of endothelial dysfunction can be described as generalised or localised 

vasospasm, thrombosis, atherosclerosis, and restenosis259.

Several mechanisms can be considered to explain impaired NO bioavailability in 

diabetes:

1. Increased oxidative destruction of NO.

2. Decreased NO production by:

a. Reduced eNOS activity due to reduced available substrates L-arginine, 

B H 4 , intracellular NADPH.

b. Insulin deficiency: Insulin is known to stimulate vasodilation via 

increased NO production260,261. Reduced insulin levels in type 1 

diabetes may decrease NO production.

95



3. NO quenching by AGEs262.

Most of the current evidence support number 1; the oxidative stress theory253 ;256'258;263' 

265. There is ample evidence for increased oxidative stress in diabetes as discussed 

before. Acute hyperglycaemia, has been shown to increase eNOS gene expression and 

NO production in isolated endothelial cells266'268. Paradoxically, upregulation of 

eNOS in a hyperglycaemic milieu is also associated with a marked concomitant 

increase of O2' production; which is several times larger than the increase in NO 

release266. This evidence provides the molecular basis for the so-called “eNOS 

uncoupling” concept266;269 suggesting that eNOS itself in pathological states may be 

an important source of O2".

In summary, hyperglycaemia-induced imbalance between NO and O2’ and the 

subsequent destruction of NO by reacting with 0 2 ' is thought to be the main 

mechanism underlying reduced bioavailability of NO in diabetes.
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NO metabolites

NO studies in diabetes have mainly focused on its vasodilatory effects. Very few 

studies have ever looked into the biochemical fate of individual NO metabolic species 

in diabetes (table 3.2) and none has been inclusive of all the metabolites of interest. 

This is at least partly due to the lack of a general consensus over standard methods for 

the analysis of NO metabolites. The controversy extends to the very nature, in vivo 

importance, and biological levels of these metabolites.

Reference Method Study
subjects

Metabolite
measured

Levels compared 
to controls

Milsom AB et a/2™ 
(2 0 0 2 )

EPR Human HbNO Higher

Thule PM et a l 2/1 

(2006)
ESR Rat HbNO Lower

Padron J et al112 
(2 0 0 0 )

Saville, Spec Rat SNO-Hb Higher

Milsom AB et a 
(2 0 0 2 )

Saville, Spec Human RSNO Same

Table 3.2: Levels of blood NO metabolites other than NOx (nitrate + nitrite) in diabetics 

compared to controls. (EPR: Electron paramagnetic resonance; ESR: Electron spin resonance 

spectroscopy, Spec: spectrophotometry)

Where NO metabolites have been studied, the less controversial plasma NOx (nitrate+ 

nitrite) has been used as a rough and indirect estimate of overall NO turnover in the

7 7 ^ 781blood (table 3.3) * . The majority of these studies reported higher plasma levels of 

NOx in diabetics. One study255 showed lower NOx in diabetics compared to healthy 

controls. Another study282 showed similar fasting but decreased postprandial levels in 

diabetics. A previous paper from our laboratory in 2002 reported similar 

concentrations of NOx in 23 diabetics and 17 controls, however, the tendency was 

toward higher levels in diabetics (7.64±0.75 uM in diabetics versus 5.93±0.75 uM in 

controls)270.
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Reference Method Metabolite
measured

Levels compared to 
controls

Kobylianskii AG2// 
(2003)

HPLC Nitrite, nitrate Similar nitrite, higher 
nitrate

Chiarelli F"81 

(2 0 0 0 )
HPLC NOx Higher

Hoeldtke RD 
(2 0 0 2 )

ELISA NOx Higher

Hoeldtke RD^/y 
(2003)

Colorimetric Griess 
reaction

NOx Higher

Hoeldtke RDi8U 
(2003)

Colorimetric Griess 
reaction

NOx Higher

Mylona-Karayanni
c 275
(2006)

Colorimetric Griess 
reaction

NOx Higher

Savino A11 
(2006)

Colorimetric Griess 
reaction

NOx Higher

W ierusz-Wysocka
B273

(1998)

Colorimetric Griess 
reaction

NOx Higher

Farkas Kiy  
(2004)

Fluorometric NOx Similar fasting, 
lower postprandial

Milsom ABZ/U 
(2 0 0 2 )

Fluorescent
Spectrophotometer

NOx Similar

Correa RCiib 
(2003)

Colorimetric Griess 
reaction

NOx Lower

Table 3.3: List of human studies comparing plasma NOx in diabetics and controls. (NOx: nitrite

+ nitrate).

This thesis, for the first time, presents a comprehensive investigation into the profile 

of individual NO metabolites (i.e. nitrate, nitrite, RSNO, HbNO, SNO-Hb, RBC 

nitrite) in plasma and RBCs from type 1 diabetics and controls. One should bear in 

mind that changes in these metabolites do not provide concrete information regarding 

the location and source of NO production. Nonetheless, it provides an in-depth insight 

into the metabolic fate of NO in diabetics. Any correlation found between alterations 

in NO metabolism and long term microvascular complications may have application 

for the prevention and/or treatment of these complications in diabetes and other
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diseases characterised by endothelial dysfunction. In addition, such information can 

potentially be utilised to develop a screening test for the early detection of 

microvascular complications at a pre-clinical stage.
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CHAPTER FOUR

Methods and Measurement of nitric
oxide
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Introduction

Interest in NO measurement increased exponentially with the discovery that NO is the 

endothelium-derived relaxing factor (EDRF).

NO is very unstable in biological specimens. It rapidly reacts with O2, O2 radicals and 

oxidising agents such as oxyhaemoproteins. The instability of NO makes its direct 

measurement in blood and other body fluids difficult.
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Measurement of NO metabolites (e.g. nitrite, nitrate) and biological adducts (e.g. S- 

nitrosothiols) is another way to assess NO production without the measurement 

problems associated with the unstable nature of NO. These molecules are generally 

more stable than NO. Further interest in the measurement of NO biological by­

products emerged when it was proposed in 1992 that one of these adducts, S- 

nitrosothiols, may preserve and transport NO bioactivity in the circulation103. Since 

then, other NO metabolites such as nitrite and SNO-Hb have also been considered as 

potential reservoirs of NO bioactivity (see CHAPTER ONE). This has led to a 

universal appeal by different groups, including our laboratory at the Wales Heart 

Research Institute, to develop and advance reliable methods to analyse NO 

metabolites in blood.

Table 4.1 shows the methods currently employed in our laboratory to measure NO 

metabolites. The chemiluminescence assay is the most sensitive and specific of them

all.

Method Yield Reference
Fluorometry (DAN assay) NOx (nitrate + nitrite) Misko et al/ 83

Tri-iodide based 
chemiluminescence Plasma nitrite, RSNO Yang et al.284

Modified tri-iodide based 
chemiluminescence

RBC nitrite, HbNO, SNO- 
Hb Rogers et al.285

Electron paramagnetic 
resonance (EPR) HbNO Bemski et al.286

Table 4.1: Methods of NO measurement at the Department of Cardiology, Wales Heart Research 

Institute, 2007.

Electron paramagnetic resonance (EPR), the primary method for measuring HbNO286, 

is not sensitive enough to detect HbNO at physiological concentration (detection 

limit: 200123-500121nM). For this reason, I modified and improved the tri-iodide based
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chemiluminescence assay to distinguish HbNO from other haemoglobin-bound 

species and quantify its concentration in blood. The precise detail of the systematic 

testing and derivation of the assay systems for the individual NO metabolites and the 

optimised methods are described later in this chapter.

Real time assessment of NO production at a cellular level is possible using 

electrochemical (amperometric) NO-specific microelectrodes. Microelectrodes are 

placed close to the cellular source of NO. However, the practical use of 

microelectrodes is extremely limited by their time-consuming methodology as well as 

susceptibility to temperature, flow, and pH artefacts 287;288.
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Fluorometry (DAN assay)

Introduction

This is our method of choice for the measurement of plasma N O x (nitrate + nitrite). 

As mentioned in CHAPTER O N E, NO3' is abundant in certain foods, beverages and 

in most water. Therefore if one systematically studies plasma N O x in humans, a diet 

with defined NO3' content should be considered.

DAN assay was originally developed for the measurement of nitrite in biological 

samples283. To measure plasma NOx, nitrate is first reduced to nitrite using a nitrate 

reductase. Subsequently, under acidic conditions, nitrite releases NO+ which reacts 

rapidly with 2, 3-diaminonaphthalene (DAN) to form the highly fluorescent product 2, 

3-naphthotriazole (NAT) (figure 4.1). Because nitrate levels in plasma are about 100 

times greater than nitrite, NOx mainly reflects plasma nitrate levels.

DAN (2,3-diaminonaphthalene) NAT (2,3-naphthotriazole)

Figure 4.1: Reaction of nitrite with 2 ,3-diaminonaphthalene (DAN) to form 2, 3-naphthotriazole 

(NAT) under acidic conditions289.

An alternative method to measure plasma nitrate is vanadium-based 

chemiluminescence. In acidic conditions at high temperature (80-95°C), vanadium 

(III) exerts very strong reducing properties and reduces both NO2" and NO3 to NO. 

The strong reducing environment can also create problems by reducing arginine-based 

NOS inhibitors to NO. Thus, one should not use the assay in samples containing L-

104



NMMA, L-NA, etc. In my cross-heart study, half of the blood samples contained L- 

NMMA. To avoid the problems just mentioned, DAN assay was used to measure 

plasma nitrate throughout.

Protocol

Blood samples were collected into EDTA tubes. Care was taken not to use heparin as 

an anticoagulant as it inhibits nitrate reductase and could interfere with this assay290.

All chemicals were purchased from Sigma-Aldrich (UK) with the exception of DAN, 

which was available from Janssen Chimica. For composition of reagents and buffer 

see table 4.2.

Sodium
phosphate

buffer

Stock solution 1.4M (8.06 grams Na2HP0 4, 2.08 grams 
NaH2P0 42 H20  in 50ml water). Working solution 14mM. 
Dilution o f  stock solution in water

NADPH
Stock solution 30pM (0.3 grams in 1ml buffer). Diluted with 
buffer to lOpM working solution.

Glucose-6-
phosphate

Sock solution 50mM (in buffer). Diluted in buffer to a 5mM 
working solution

Glucose-6-
phosphate

dehydrogenase

Stock solution 100 units/ml (in buffer). Diluted in buffer to 1. 6  

units/ml working solution

Nitrate
reductase

Stock solution 5 units/ml (in buffer). Diluted in buffer to 0.8 
units/ml working solution

Enzyme 
m ixture 

(M aster mix)

Equal quantities o f  sodium phosphate buffer, glucose-6 - 
phosphate, glucose-6 -phospate dehydrogenase and nitrate 
reductase.

HC1 Diluted in water to a 0.62 M working solution.

DAN
Stock solution 0.5mg ml' 1 (in 0.62 M HC1). Diluted with 0.62 
M HC1 to 0.05mg ml' 1 working solution and stirred for 30 min 
before use. Both solutions protected from light.

NaOH Diluted in water to a 2.8 N  working solution.

Table 4.2: Composition of reagents for the fluorometric analysis of NOx. All solutions were

prepared fresh on the day of the experiment.
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All reagents were made at room temperature in HPLC grade water to reduce nitrite 

contamination. Fluorescence excitation and emission spectra of NAT were obtained in 

a white opaque Dynatech fluorescence 96-well microtitre plate.

1. Frozen plasma samples were thawed in a water bath at 37°C for 3 minutes.

2. Plasma was filtered through a 10,000 MWCO cut-off ultrafilter (Vivaspin filters 

from Sartorius VivaScience) at 10,000 g for 30 minutes to remove haemoglobin 

(resulting from cell lysis) and other high-molecular weight proteins. High protein 

levels exert a negative effect on fluorescence. Haemoglobin, in levels as low 

as lOpM, can completely abolish the signal283.

3. Aliquots of filtrate (50pl) were placed into 96-well plate in triplicate.

4. Standards were added in triplicate 50pl volumes into 96-well plates.

5. lOpl oflOpM NADPH was added (to initiate the reaction)283.

6 . 40pl of the following enzyme mixture (master mix) containing the following 

reagents (in 14mM sodium phosphate buffer) was added to each well:

a. 0.8U/ml nitrate reductase (NR) (isolated from Aspergillus niger)

b. 5mM glucose-6 -phosphate (G6 P)

c. 1.6 U/ml glucose-6 -phosphate dehydrogenase (G6 PD)

NADPH/NADP+ can interfere in the assay by quenching the fluorescence 

produced291. To minimise this interference, we used a lower concentration of 

NADPH than the one originally described by Misko et al. (i.e. 40pM). Instead, 

we included an NADPH recycling system in our mixture to maintain a 

constant NADPH concentration and allow the reaction to proceed for longer
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periods of time. NADP+ is recycled to NADPH by the dehydrogenation of 

G6 P to 6 -phosphoglucolactone (6 -PG). This reaction is catalysed by G6 PD292:

NR
NOj' + NADPH + H+----------- ► N 02 + NADP + H20

G6PD
H20  + NADP+ + G6P ----------- ► 6-PG + NADPH + H

7. Samples were incubated for 1.5 hours at 37°C. Plates were covered with cling 

film. During this time, nitrate was converted to nitrite by the action of nitrate 

reductase283. The rate of conversion of nitrate to nitrite is 98%289.

8 . After incubation, lOpl of freshly prepared DAN (0.05mg/ml in 0.62M HC1) 

was added to each well. Samples were further incubated for 10 minutes at 

room temperature, protected from light.

9. The reaction was terminated with 5pl of 2.8N NaOH. NaOH also enhances the
•JO -!

fluorescent signal produced by NAT . NAT is stable in alkaline solutions .

10. Formation of NAT was measured after 10 minutes, using a Perkin Elmer 

luminescence spectrophotometer. Fluorescence excitation and emission 

spectra of NAT was measured using wavelengths of 365nm and 450nm, 

respectively.

Standard curves were made daily with sodium nitrate ranging from zero to lOOpM 

(figure 4.2).
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Chemiluminescence

Introduction

Chemiluminescence reaction between NO and ozone (O3) is one of the fastest and 

most sensitive and specific assays to measure NO. It can measure NO in the gas phase 

(for example in the human breath) or NO oxidation products (NO2" and NO3 ) in 

biological fluids.

The NO chemiluminescence assay is based on the gas phase interaction between NO 

and O3 in an NO Chemiluminescence Analyzer. Some of the NO2 produced in this 

reaction is in the excited state and as the unstable electrons of NO2* return to their 

original ground state, they dissipate energy which is released as a light photon and this 

signal is amplified in a photon multiplier tube (PMT). This light emission is linearly 

related to the NO content of the sample.

NO + 0 3 —► N02* + 0 2

NO2 * —► NO2 + energy

The amount of NO in biological fluids is very small, if any, and stripping alone would 

not reflect at all the amount of NO present since most of it would already be oxidised 

to NO2' or NO3' . In an acidic environment and with strong reducing agents (such as 

KI, Nal, or vanadium III chloride) these oxides can be reduced back to NO. In body 

fluids under these reducing conditions, other bioactive NO adducts, like nitrosothiols 

and nitrosamines are reduced to NO as well.
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Nitric Oxide Analyzer (NOA)293 

Characteristics

Our chemiluminescence experiments are undertaken using a model 280i Nitric Oxide 

Analyzer (NOA®) from Sievers Instruments. This is a high-sensitivity detector for 

measuring nitric oxide based on a gas-phase chemiluminescent reaction between NO 

and ozone as described above.

Emission from electronically excited nitrogen dioxide is in the red and infrared region 

of the spectrum, and is detected by a thermoelectrically cooled, red-sensitive 

photomultiplier tube (PMT).

An electrostatic ozone generator and high voltage transformer are used to generate 

ozone at a concentration of ~2% by volume from oxygen. This large excess of ozone 

is sufficient for measurement of NO up to 500ppm.

The detection limit for measurement of NO and its reaction products in liquid samples 

is ~1 picomole (table 4.3).

Sensitivity ~1 picomole
Range nanomolar to millimolar
Repeatability ±5-10%
Sample size 0.001-5ml
Table 4.3: Some specifications of Sievers 280i Nitric Oxide Analyzer for liquid measurements.

Set up of Purge Vessel

Measurement of NO and its reaction products in liquid samples is performed using a 

glass purge vessel with a rubber septum-covered injection inlet. An oxygen-free inert
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gas (nitrogen in our studies) bubbles through chemical reducing agents (e.g. tri­

iodide) at a constant flow rate o f 200ml/min. Samples are injected through the rubber 

septum into the purge vessel and the inert gas carries the NO over to the NOA for 

detection. The carrier gas is passed through a NaOH gas bubbler trap containing 25ml 

o f 1 N NaOH before entry to the NOA. The NaOH trap filters the gas from any 

corrosives. The purge vessel is placed in a water bath heated at 50°C to speed up the 

chemical reactions (figure 4.3).

N o O H

200m l/m in

R ubber a .
sep tum  <i=

N 2

£  Sk* v&sb

Figure 4.3: O verall schem atic o f  the purge vessel system .

Injection is performed using a 500pl gas tight Hamilton syringe. Calibration is 

performed everyday by injection o f standard solutions o f sodium nitrite.
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Preparation of Nitrite Standard Solutions

To prepare 100ml o f lOmM NCL, 69mg o f NaNCL is dissolved in 100ml nitrite-free 

HPLC water. This stock solution o f lOmM NCV can be kept in an air tight glass bottle 

at room temperature for 1 week. It is stable for several weeks if stored at 4°C or lower 

and not exposed to light.

The above standard stock is used to prepare dilutions; typically 200pl injections are 

made at the following concentrations to construct a standard curve for the NOA: 

62.5nM, 125nM, 250nM, 500nM, lOOOnM. An initial injection o f HPLC water is 

performed to account for the contamination in the water used to prepare the standards 

and containers (e.g. Eppendorf tubes). Thereafter, standards are injected into the purge 

vessel in ascending order o f concentration starting from the most dilute standard 

(62.5nM ) (figure 4.4).

62.5 125 250
nM

Figure 4.4: N O A  signals from  injections o f standard sodium  nitrite solutions into tri-iodide.

To prepare a concentration-based calibration curve (figure 4.5), the same volume 

should be injected for all o f  the standards and samples.
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Figure 4.5: Standard curve o f sodium  nitrite.

Data are imported into Origin and smoothed using the Adjacent Averaging method 

(number o f data points: 150). Peak Analysis is used to calculate the area under curve 

(AUC).

Sam ple A nalysis

The procedure for sample analysis is the same as described above. In our studies, we 

measured NO metabolites in blood samples taken from human subjects. Particulars o f 

plasma and RBC measurements are discussed in the next section.

Tri-iodide (13' ) assay 

General

The tri-iodide assay is the most widely used ozone based chemiluminescence 

technique to detect NO metabolites in the blood. It has the benefit o f measuring 

several metabolites in the same plasma or red blood cell (RBC) sample in one session 

therefore reducing the variations related to analysing the samples with different 

methods on different occasions. This also saves a lot o f time which would be an
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advantage in hospital laboratory settings should the measurement of NO metabolites 

ever gain definite clinical value, e.g. in the assessment of vascular function.

The tri-iodide methodology used by most of the groups- including us- is based on the 

method first published in 1998 by Samouilov and Zweier294. Since then, tri-iodide 

based chemiluminescence has been modified and extensively validated by many 

groups.

Chemistry

The classic tri-iodide reagent contains glacial acetic acid, water, KI, and I2 . This 

reagent can release NO from nitrite, S-nitrosothiols (including SNO-Hb), N- 

nitrosamines (RNNO), and haem-nitrosyls (including HbNO). We use the classic 

triiodide reagent for the analysis of plasma samples.

When analysing RBC lysate, the sensitivity of tri-iodide assay is greatly affected by 

the high concentrations of haem in the injectate into the reaction chamber. NO is 

immediately quenched by haem iron285.

To overcome this problem, our group developed a modified tri-iodide reagent by 

adding potassium hexacyanoferrate K3Fem(CN)6 to triiodide285. K3Fem(CN) 6 oxidises 

haem from its ferrous (Fe2+) to its ferric (Fe3+) form which has a much lower affinity 

for NO and is thus a less potent scavenger of NO. Oxidising the haemoglobin to 

methaemoglobin also helps to cleave NO from HbNO and improves the yield of NO 

from these species.
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Pre-treatment with acidified sulfanilamide and mercuric chloride (HgCl2) is used to 

distinguish between several NO species present in the samples (table 4.4).

Pre-treatment Yield
Plasma 

RBC lysate

nil Nitrite+ RSNO+ RNNO+ haem-nitrosyls 

Nitrite* SNO-Hb + HbNO
Plasma 

RBC lysate

Acidified
Sulfanilamide

RSNO+ RNNO+ haem-nitrosyls 

SNO-Hb+HbNO
Plasma 

RBC lysate

Acidified 
Sulfanilamide + 
HgCl2

RNNO+ haem-nitrosyls 

HbNO
Table 4.4: Pre-treatment of blood samples and their associated yields of NO metabolites.

Nitrite (N02") assay- In the presence of acid, N02' is converted to the nitrosonium ion 

(NO+):

N 0 2 + 2H+ -► NO+ + H20

NO+ reacts rapidly with nucleophiles like iodide (from KI), to form NO:

NO++r->ONI

20NI -► 2NO + 12

I2 is highly soluble in the acidified KI solution and further forms I3' in the reagent:

i2+ r  — 13
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During the experiment when the reagent is bubbled with N2, some of the h  escapes 

the purge vessel as a purple-brown vapour which can stain PVC tubes. Iodine vapour 

is trapped and decolourised in the NaOH trap.

As evident from the above equations, I2 is not necessary in the reaction mixture for 

the reduction of nitrite. However, when working with biological samples where both 

nitrite and nitrosation products (RNO) are present, uncontrolled amounts of I2/I3" 

produced during the process can also reduce unknown amounts of RNOs and 

therefore make the results unpredictably inaccurate. For this reason, crystal I2 is added 

to the reagent to stabilise the yield of nitrite and RNO284 (see below).

In order to distinguish the RNO fraction from the total nitrite + RNO signal obtained 

above, samples are pre-treated with and without 5% acidified sulfanilamide. Acidified 

sulfanilamide forms a diazonium complex with nitrite which is not reducible to NO in 

the tri-iodide reagent and therefore does not produce a signal:

H2NO2S- -NH2 + NO+ H2NO2S- -N2+ + H20  

(Sulfanilamide)

Nitrite is calculated as the difference between the un-treated sample and the 

“sulfanilamided” sample.

N 02' + 2H+ -► NO+ + H20
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It is important to remember that the tri-iodide reagent is not strong enough to reduce

n o 3\

Nitrosation products (RNO) - The main nitrosation products of NO in the blood are 

S-nitrosothiols (RSNO), N-nitrosamines (RNNO) and haem-nitros(yl)ated 

compounds.

RSNO includes S-nitrosoalbumin (78% of total plasma RSNO), low molecular weight 

RSNOs like S-nitrosoglutathione (GSNO), and intra-erythrocytic SNO-Hb. I3'releases 

NO from nitrosothiols as originally described by Samouilov and Zweief294:

I3‘ + 2RSNO -► 31 + 2RS* + 2NO+

2RS- -> RS-SR

2NO+ + 21’ -► 2NOI —»-2NO + 12

The tri-iodide reagent also releases NO from RNNO and haem-nitros(yl)ated 

compounds in the plasma or RBC lysate (e.g. HbNO); the mechanism of which is still 

not confirmed. In order to distinguish the signal coming from RNNO/haem-nitrosyls 

in the samples from RSNO, samples can be pre-treated with and without mercuric 

chloride (HgCl2). The -SNO bond is mercury-labile whereas RNNO and haem- 

nitros(yl)ated compounds are stable in the presence of mercury. This forms the basis 

of Saville-Griess reaction for the detection of RSNOs in body fluids:
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RSNO + Hg2+ -> RS- + Hg+ + NO+

Mercury can displace NO+ from the thiol284. NO+ is then taken up by sulfanilamide as 

above. RSNO is calculated as the concentration difference between the sample treated 

with sulfanilamide alone and the sample treated with HgCh and sulfanilamide.

The tri-iodide method detects nitrosothiols in biological buffers or blood plasma down

197 *9R4,to lOnM concentration with high accuracy and reproducibility ’ .

A similar methodology can be used to release NO from SNO-Hb.

Feelisch et al.92 have reported that at physiological pH, complete SNO cleavage by 

HgCb would not occur if the samples are incubated for less than 20 minutes. They did 

not find any difference between sequential pre-treatment with HgCl2, followed by 

sulfanilamide/H* and coincubation with both agents under acidic conditions.

Materials

Chemicals

Iodine, potassium iodide, potassium hexacyanoferrate (K^Fe111 (CN) 6), sulfanilamide, 

sodium hydroxide, sodium nitrite, and mercuric chloride were purchased from Sigma. 

Acetic acid glacial, HPLC water, and hydrochloric acid were purchased from Fisher 

Scientific. Spray coated EDTA vacutainer tubes (VACUETTE, 1.8mg EDTA per 1 ml 

blood) were purchased from Greiner Bio-One.
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Stock solutions and reaction mixtures

Stock solutions for measuring NO metabolites in plasma and RBCs are shown in table 

4.5. Tri-iodide, potassium hexacyanoferrate, and pre-sulfanilamided water solutions 

were made fresh daily. Potassium hexacyanoferrate solution was kept on ice in dark. 

5 % acidified sulfanilamide was made weekly and kept in dark at room temperature.

For plasma measurements, 5ml of the tri-iodide reagent was put into the purge vessel.

For RBC measurements, 7.2ml of the tri-iodide reagent was mixed with 0.8ml of the 

hexacyanoferrate solution in the purge vessel immediately before analysis. N2 gas was 

bubbled through the reagent from the beginning.

Tri-iodide
•  70ml glacial acetic acid
•  650m g I2
•  20ml HPLC water
• lgKI

Potassium hexacyanoferrate
•  823 mg K3Feni(CN)6
•  10ml HPLC water

HgCl2(50mM)
•  67.9m g HgCl2
•  5ml HPLC water

5% Acidified sulfanilamide (290mM )
•  500m g sulfanilamide
•  10ml o f  IN  HC1 

Pre-sulfanilamided water
•  1ml 5% acidified sulfanilamide
•  10ml HPLC water

Table 4.5: Stock solutions for measuring NO metabolites in plasma and RBCs. Reaction mixture 

for plasma analysis: 5ml of Tri-iodide. Reaction mixture for RBC analysis: 7.2ml Tri-iodide+ 

0 .8 ml potassium hexacyanoferrate.
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Blood sample collection and preparation

Blood was collected into 4ml EDTA vacutainer tubes. Blood samples were 

centrifuged at 670g, 4°C for 5 minutes. Plasma was rapidly separated from RBCs and 

snap-frozen in liquid nitrogen. Buffy coat was discarded and the RBCs were snap- 

frozen in liquid nitrogen. Plasma and RBC samples were stored at -80°C; and left to 

defrost in dark at 37°C for 3 minutes just before analysis.

Potential concerns

1. Separation of plasma and RBCs- Care was taken to separate plasma and 

RBC compartments as soon as possible after collection. Previous studies have 

shown that plasma nitrite rapidly enters the RBCs72;75. Therefore, the more 

plasma and RBCs are left together the lower the plasma nitrite levels and the 

higher the RBC-contained NO metabolites would become.

2. Contaminating pre-treatments- Filtering, columning or adding 

chemicals/stabilisers were avoided as they are all potential sources for nitrite 

contamination. Nitrite contamination not only increases the nitrite content of 

the samples but is also metabolised by the biological samples and may lead to 

artificial production of other NO species (e.g. RSNO, HbNO and SNO-Hb) in 

vitro. Therefore, every effort was made to protect the samples from nitrite 

contamination. If nitrite reaches the samples, its thorough elimination would 

be almost impossible.

Erythrolytic solutions are another potential source of contamination. It is not 

necessary to lyse RBCs in EDTA or similar erythrolytic solutions. Simple
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shock-freezing and thawing the RBCs will lyse them without subjecting the 

samples to potential contamination associated with hypotonic lysis.

3. Freezing- Freezing the biological samples has been suggested to be a potential 

confounding factor in nitric oxide measurements295. What makes the problem 

even more challenging is the fact that in most of the clinical studies due to the 

large number of samples and/or unavailability of NO measurement facilities 

locally, blood samples cannot be analysed immediately and have to be frozen 

and stored for future analysis.

It has been reported that freezing nitrite containing biological samples may 

facilitate the conversion of nitrite to nitrate via intermediates which may also 

nitrate tyrosine to form 3-nitrotyrosine; a biomarker for peroxynitrite 

formation in vivo or nitros(yl)ate cysteines in proteins to form S-nitrosothiols: 

RSNOs. In their recent paper, Wang et al. 127 reported a 66±19% increase in 

SNO-Hb-derived chemiluminescence signal when RBCs were rapidly thawed 

at 37°C from a storage temperature of -80°C, compared to RBC lysate that was 

immediately subjected to analysis.

The underlying mechanism is believed to be based on a decrease in pH in 

sodium phosphate buffered solutions during the freezing process before the 

temperature drops below 4°C. In our methodology, we did not use any buffers 

at any stage. Moreover, snap-freezing the samples in liquid nitrogen, 

minimizes the time during which the above chemical reaction may occur.
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Sample freezing was found to have no effect on RBC or plasma NO 

metabolite stability in our studies296.

4. Exposure to air and light- Blood samples should not be left exposed to room 

air or light. Nitrogen oxides pollution in the atmosphere may react with the 

water compartment of blood/plasma to form nitrite (NO2 ) and nitrate (NO3 ).

NO in the atmosphere is immediately oxidised to form NO2 which then 

dimerises to N2O4. N2O4 dissolves in the water compartment of plasma to form 

N0 2" and NO3'7:

2NO + 0 2 -> 2 NO2—>• N20 4 

N2O4 + H20  -► N 02‘ + N03‘ + 2 H+

In our laboratory conditions, leaving the plasma samples at room temperature 

for more than 15-20 minutes increases the plasma nitrite levels by 13-17%. 

The same phenomenon is seen when a water sample is left exposed to air for a 

few hours. Air pollution would be less a problem in areas where the air is 

generally cleaner and if the laboratory is well-ventilated.

RSNOs (including SNO-Hb) are photosensitive and the samples should be 

kept in dark pre-analysis. Not only UV but even visible light can break down 

RSNOs to release NO297.
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5. Collection tubes and choice of anticoagulant- We generally prefer to collect 

our blood samples into EDTA vacutainer tubes. Heparin can be used 

alternatively but at the price of extensive foaming in the reaction chamber 

which can potentially alter the chemiluminescence signal. As explained 

earlier, heparin cannot be used in the DAN assay because it inhibits nitrate 

reductase. Vacutainer tubes protect the blood from exposure to air and keep 

the oxygen content of blood constant.

Protocol for the measurement of plasma nitrite and nitrosation 

products

Except for the initial preparations already mentioned, plasma samples were analysed 

for nitrite and S-nitrosothiols using a methodology relatively similar to the one 

described by Yang et al. 284

In summary, 200pl of plasma was injected into 5ml tri-iodide reagent in the reaction 

chamber. The associated chemiluminescence signal represented total plasma nitrite + 

protein-bound NO (RNO). 30pl of 5% acidified sulfanilamide was mixed with 300pl 

of plasma and incubated at room temperature in dark for 15minutes. Our experiments 

show that incubating plasma samples with acidified sulfanilamide for less than 15 

minutes may not eliminate nitrite from the sample completely. 2 0 0 pl of this sample 

was then injected into the reaction chamber. The produced signal represented protein- 

bound NO species (figures 4.6a and b). Plasma nitrite was calculated as the difference 

between the two signals. Before any calculations were made, areas under curves were 

computed by Origin/Peak Analysis software, read against a standard curve, and the 

concentrations corrected for dilutional adjustments.
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Figure 4.6a: Signals represent 200pl injections of plasma and sulfanilamided plasma,
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Figure 4.6b: Signals from 4.6a after being smoothed in Origin software.
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Two major components of RNO, S-nitrosothiols and iron-nitrosyl complexes, can be 

further distinguished by pretreating the sulfanilamided sample with HgCh in advance 

as described by Yang et al.284

Protocol for the measurement of RBC nitrite, HbNO, and SNO-Hb

1. ^Frozen RBCs lyse when they are thawed at 37°C for 3 minutes. lOOpl of the 

undiluted lysate is directly injected into the reaction chamber containing 8 ml 

of modified tri-iodide reagent. The resulting signal represents RBC nitrite+ 

HbNO+ SNO-Hb (figures 4.7a and b). The reagent is changed after the signal 

returns to baseline.

16-

14-

1 2 -

>  10 -

8 -

4 -
Total RBC

-50 0 50 100 150 200 250 300 350 400

Time (s)

Figure 4.7a: Signal represents lOOpl injection of undiluted haemolysate.

125



16-

14-

1 2 -

1 0 -

8 -

6 -

4 -

2 - -  

-50

Figure 4.7b: Signal from 4.7a after being smoothed in Origin software.

2. ¥lml of 5% acidified sulfanilamide is added to 10ml of HPLC water.

3. 200pl RBC lysate is diluted in 800fil pre-sulfanilamided water (mixture S).

4. 30|il of HgCl2 solution is added to 270pl pre-sulfanilamided water (mixture 

H).

5. Mixtures S and H are incubated at room temperature in dark for 15 and 25 

minutes respectively.

6 . 200(il of each of the mixtures S and H are injected into the reaction chamber 

separately. The signal from mixture S represents HbNO+ SNO-Hb. The signal 

from mixture H represents HbNO (figures 4.8a and b).
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Figure 4.8a: Signals represent 200pl injections of sulfanilamided and mercuried haemolysate

respectively.
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Figure 4.8b: Signals from 4.8b after being smoothed in Origin software.

7. Data are transferred from Liquid to Origin for smoothing. Areas under curves 

are measured by Peak Analysis and converted to concentrations by reading



them off a standard curve. Concentrations are then corrected for dilutional 

adjustments. The standard curve is plotted daily by injecting ascending 

concentrations of standard nitrite solutions into the system.

8 . RBC nitrite is calculated as the difference between the undiluted RBC lysate 

and mixture S. SNO-Hb is calculated as the difference between mixtures S and

H.

Notes

4 Direct injection of undiluted RBC lysate

To avoid adding nitrite contamination while diluting the RBC lysate, I avoided the 

initial dilution of RBC lysate (with water or buffer) altogether.

For the total RBC NO (nitrite+ SNO-Hb+ HbNO), I developed a technique to inject 

lOOpL of undiluted RBC lysate directly into the reaction chamber. Undiluted RBC 

lysate is thick and viscous. Care was taken to introduce it directly into the reagent; 

otherwise it might stick on the glassware.

¥ “Sulfanilamided” water

For the rest of the assay where RBC lysate needs to be pre-treated with sulfanilamide, 

I used a “sulfanilamided water” solution (10ml water + 1ml 5% acidified 

sulfanilamide) to both dilute the samples and eliminate contaminating nitrite. Diluting 

the RBC lysate makes it easier to aspirate and inject with the syringe. Nitrite 

contamination was not a concern anymore as the water was already treated with 

sulfanilamide.
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Sulfanilamided water prepared as above is a milder acid (pH=1.6) compared to the 

stock solution of 5% acidified sulfanilamide which contains 1 N HC1 (pH~ 0), but is 

still acidic enough to react with nitrite efficiently.

My experiments showed that sulfanilamided water can eliminate nitrite from standard 

solutions as strong as lOOpM nitrite.

The above were 2 key methodological developments that allowed the robust 

quantification and identification of specific NO metabolites with a considerable 

degree of certainty, not shown to date by other laboratories.
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CHAPTER FIVE

Results I
Coronary utilisation of a stable nitric 

oxide reservoir: importance during 
increased metabolic demand
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Introduction

The main task of the coronary circulation is to match oxygen delivery to myocardial 

oxygen demand. Coronary blood flow (CBF) normally increases in response to 

increased myocardial oxygen demand; e.g. during rapid atrial pacing. Multiple 

anatomical, physiological, and biochemical factors work together to allow this precise 

matching to occur (CHAPTER TWO).
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Endothelium-derived nitric oxide (NO) is one of the key factors for the maintenance 

of normal vascular physiology. NO is released in response to agonists and shear 

stress; and mediates vessel dilatation. Recent evidence suggests that microvascular 

NO activity may also depend upon its more stable circulating metabolites which may 

act as biological “reservoirs” to preserve NO bioactivity (CHAPTER ONE). These 

potential reservoirs could be particularly useful in conditions where vascular 

endothelium is dysfunctional, bioavailability of NO is reduced, or the metabolic 

demand for oxygen is increased.

The potential role of circulatory metabolites of NO in the regulation of CBF has not 

been studied previously. The main aims of this clinical study were to:

1. Establish the profile of NO metabolites across the healthy human heart 

and lungs, at rest and with increased oxygen demand.

2. Study the physiological importance of NO in the regulation of coronary 

blood flow.

3. Study the association of NO metabolites and their apportionment between 

RBC and plasma compartments, with blood oxygen.

NO metabolism and the vasodilator response of the coronary vasculature were studied 

across the coronary and pulmonary beds at rest and during rapid atrial pacing, before 

and after L-NMMA infusion, in patients with normal coronary arteries. TV0- 

monomethyl-L-arginine (L-NMMA) is an analogue of L-arginine that specifically 

inhibits nitric oxide synthase298. In order to address the role of NO and NO 

metabolites as distinctively as possible, the potential effect of adenosine, another
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important coronary vasodilator, was removed by administering aminophylline, a 

nonselective adenosine receptor antagonist, throughout the study.

Both blocking agents, aminophylline and L-NMMA, were administered as continuous 

systemic intravenous infusions. Intracoronary infusion would not be suitable because 

recirculation of the blocking agents would result in ever increasing coronary 

concentrations299, which might confound the measurement of changes in coronary 

diameter, coronary flow, myocardial oxygen consumption, and NO metabolites in 

response to pacing.
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Methods

Study population

Eight otherwise healthy subjects (3 men and 5 women aged 51 ±15 years) undergoing 

electrophysiology (EP) testing for paroxysmal supraventricular arrhythmias were 

studied. All subjects were in sinus rhythm with no past history of ischaemic heart 

disease, smoking, diabetes mellitus, hypertension (blood pressure>140/90mmHg) or 

hypercholestrolaemia (total cholesterol>5.2mmol/L). All gave fully informed written 

consent approved by the North West Surrey Local Research Ethics Committee and the 

Bro Taf Local Research Ethics Committee. The study was also reviewed and 

approved by the Research and Development Department at St. Peter’s Hospital, 

Chertsey. The investigation conformed to the principles outlined in the Declaration of 

Helsinki300.

Clinical study

Catheterisation laboratory study protocol

The catheterisation laboratory study protocol is summarised in figure 5.1. Prior to 

catheterisation subjects underwent an 8  hour fast during which time they were 

allowed water. Diagnostic coronary angiography was performed by the Judkins 

technique with 6  French catheters through a femoral sheath (contrast agent: 

Visipaque, GE Healthcare Limited, UK). The left heart catheter was maintained in the 

left main stem (LMS) and 2 catheters were introduced via the right femoral vein and 

positioned in the coronary sinus (CS) and pulmonary artery (PA) for further blood
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sampling. A bipolar pacing wire was placed into the right atrium via the right femoral 

vein. The position of the sampling catheters was confirmed with contrast injection.

Intravenous infusion of aminophylline (Phoenix Pharma Ltd) was commenced via a 

peripheral line at the beginning of the study and continued throughout the pacing 

protocol. Aminophylline was administered at a loading dose of 5 mg/kg body weight 

over 20 minutes followed by 500 micrograms/kg/hour maintenance dose until the end 

of the study (British National Formulary protocol).

After baseline haemodynamic parameters were maintained for 5 minutes, brachial 

blood pressure was measured and blood samples were obtained from the LMS, CS, 

and PA (baseline samples) for blood gas and NO metabolite analysis. LMS-CS 

difference was taken to reflect “transcardiac” whereas PA-LMS was taken to reflect 

“transpulmonary” exchange. Strictly speaking, “transpulmonary” should be accurately 

measured as PA to pulmonary vein; however, it is technically difficult to obtain such 

samples from healthy human subjects.

Following baseline sampling rapid atrial pacing at 65% and then 85% of maximum 

heart rate (MHR) was commenced. MHR was calculated for each subject individually 

as 220 minus age in years. Subjects were paced for 5 minutes at each heart rate. At 

the end of each 5-minute pacing interval, blood was sampled for blood gas and NO 

metabolite analysis and the left coronary angiogram was repeated.

After discontinuation of pacing and confirmation that blood pressure had returned to 

levels observed before pacing, an infusion of L-NMMA (Clinalfa, Merck Biosciences
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AG) was introduced intravenously. L-NMMA was administered as a loading dose of 

5mg/kg for 7 minutes, followed by a maintenance dose of 50 micrograms/kg/min 

throughout the rest of the study, as described by Zhang et al301., to achieve stable 

blood concentrations of L- NMMA and sustained inhibition of NOS. Blood samples 

were then taken from the same anatomical sites (LMS, CS, PA). Blood pressure was 

measured and the whole protocol was repeated (65% and 85% MHR) with the 

continued infusion of L-NMMA.

Overall, each study took about 50 minutes and therefore heparin (5000 units IV) was 

administered following insertion of left coronary catheter to prevent clot formation 

around the catheter.

At the end of the study, all the infusions were discontinued and the operator carried 

out the electrophysiology study as planned.
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Figure 5.1: Clinical protocol. CS: coronary sinus, LMS: left main coronary artery, PA: 

pulm onary artery, L: left, R: Right, MHR: maximum heart rate.

Blood collection and storage

Blood samples were collected in 10ml syringes and transferred after blood gas 

analysis into 6ml gas tight EDTA vacutainers. These were centrifuged at 600g for 10 

minutes at room temperature. The red cell fraction and plasma were immediately 

separated, snap frozen in liquid nitrogen and stored at -80°C for subsequent analysis. 

Although other authors have developed techniques to potentially inhibit in vitro
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chemistry occurring during sample processing284, we preferred to adhere to a well 

validated, strictly timed sample preparation protocol involving a centrifugation 

followed by separation of plasma/RBC and immediate snap freezing. During this 

time the samples were maintained at the given oxygen saturation in sealed 

vacutainers. This minimised potential confounding factors including nitrite 

contamination, chemical modification of the sample and sample processing time.

Blood gas and lactate analysis

Blood gas analysis was carried out immediately in the catheterisation laboratory 

(OSM3 Hemoximeter, Radiometer). In addition samples from the LMS and CS were 

assessed for lactate concentration.

Quantitative angiography 

Angiography studies

GE’s Centricity Cardiology CA1000 workstation was employed retrospectively for 

image review and analysis.

To detect changes in vessel diameter at each stage, quantitative coronary analysis 

(QCA) was performed in proximal, mid, and distal LAD and left circumflex (LCx) in 

right anterior oblique (RAO) view. Side branches of the relevant coronary artery were 

used as a reference guide to perform serial measurements at the same sites. The size 

of the intracoronary catheter was used for calibrating the arterial diameter. Cross 

sectional area (CSA) was calculated for each measurement point (CSA = n r 2, r =
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vessel radius in centimetres) and an average of the three measurements was taken as 

the mean CSA of the vessel. Each of the above measurements was repeated three 

times and the average was taken into account. Measurements were standardised by 

dividing the calculated values to the baseline diameter of the coronary artery at rest at 

the beginning of the study.

Estimation of coronary flow

The principals of TIMI frame count method302 were employed to estimate coronary 

blood flow (CBF). The number of cineframes needed for dye to reach standardised 

distal landmarks was counted for LAD and LCx separately. Frame count was 

converted to time (t in seconds) by being divided by 30, i.e. the number of frames in 

each second. The distance {d in cm) between proximal and distal landmarks was 

measured by QCA. Coronary flow velocity (CFV) was calculated as d/t (cm/s). CBF 

was taken as the product of CFV times average CSA of each LAD and LCx. Blood 

flow in LMS (LM Sbf) was calculated as the sum of blood flow in LAD (L A D bf) and 

LCx (LCxbf)-

In summary, the following formulas were used:

CBF (ml/s) = CFV (cm/s) X mean CSA (cm2)

CBF (ml/s) = [d (cm)/f(s)] [7t r (cm)2]

LM Sbf =  L A D bf LCxbf
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Calculations

Formulas for calculating myocardial oxygen extraction, oxygen consumption, 

transpulmonary oxygenation, and transcardiac consumption/production of any 

metabolite are given in table 5.1.

Variable Formula

Myocardial oxygen extraction (%) 1 0 0 (LMSO2 -  CS0 2 )/ LMS0 2

Myocardial Oxygen consumption 

(ml/min)

LM Sbf X (L M S 0 2 - C S o2)

Transpulmonary oxygenation (%) 100(LM SO2 - P A o2)/P A o2

Transcardiac “metabolite” consumption LM Sbf X (LMS[metabolite] — GS[metabolite])

O2 delivery (ml/min) LMS0 2 XBF

Table 5.1: LMS02: oxygen content in LMS (ml 0 2/ml blood), CS02: oxygen content in CS (ml 

0 2/ml blood), PAo2: oxygen content in PA (ml 0 2/ml blood), LMSBF: blood flow in LMS, LMS 

[metabolite]* metabolite level in blood from LMS, CS |mcuboiite|: metabolite level in blood from CS, BF: 

blood flow.

Biochemistry

Chemicals

Glacial acetic acid, HPLC grade nitrite free water and hydrochloric acid (HC1) were 

purchased from Fisher Scientific. The rest of the chemicals were purchased from 

Sigma.
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NO measurements

Plasma NOx was measured using the DAN assay283. Tri-iodide based 

chemiluminescence was used to measure NO metabolites in plasma and RBC samples 

as described in CHAPTER FOUR. RBC NO analysis for this study was undertaken 

before our current method which enables us to distinguish between HbNO and SNO- 

Hb was validated. Therefore RBC-related NO metabolites are reported as RBC nitrite 

and total haemoglobin-bound NO (table 5.2).

Method Yield Reference
Fluorometry (DAN assay) NOx (nitrate + nitrite) Misko et al.283
Tri-iodide based 
chemiluminescence Plasma nitrite, RSNO Yangetal.284
Modified tri-iodide based 
chemiluminescence

RBC nitrite, Hb-bound 
NO Rogers et al.285

Table 5.2: Methods of NO measurement and their yield in this study.

Data presentation and statistical analysis

All chemiluminescence signals were smoothed using Origin 7.0 and the area under the 

curve was analysed using Origin peak analysis. Data are presented as means ± SEM. 

Data were tested for normality using the Shapiro-Wilks test. To compare differences 

in means between groups a Student’s paired t test was used for normally distributed 

data and a Wilcoxon matched pairs test for non-normally distributed data. For 

multiple comparisons (i.e. LMS, CS, PA) a repeated measures one way ANOVA was 

performed. A bivariate correlation (Pearson’s correlation coefficient) assessed the 

relationship between Hb-bound NO, plasma nitrite, RBC nitrite, and Hb02Sat (%). A 

two tailed P value < 0.05 was considered significant throughout.
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Results

The procedure was well tolerated by all the patients without any complications or side 

effects. None o f the patients developed angina or 2nd degree heart block in response to 

rapid atrial pacing. None o f the patients showed evidence o f significant coronary 

artery disease on angiography.

Haemodynamic variables 

Changes in heart rate (HR)

Maximum heart rate (MHR) was calculated as 220-age. Average HR at rest and 

following atrial pacing is shown in figure 5.2. Pacing increased heart rate ffom74±4.7 

at rest to 106±4.6 and 143±5.5 at 65% and 85% MHR, respectively (PO.OOOOOOl). 

This equals 43% and 93% increase in HR from baseline, respectively. L-NMMA 

infusion did not affect heart rate.
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Resting HR 65% MHR 85% MHR
Beats per minute 74±4.7 106±4.6 143±5.5

Figure 5.2: Changes in heart rate with pacing at 65% and 85%  m axim um  heart rate (M H R).

Values represent mean ±  SEM.

■
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C hanges in blood pressure

Right arm blood pressure was measured using a standard automatic inflation 

sphygmomanometer. Mean arterial pressure (MAP) was calculated as:

MAP = [(2 x diastolic) +systolic] / 3

L-NMMA infusion increased systolic, diastolic and mean arterial blood pressure as 

summarised in table 5.3 and illustrated in figure 5.3.

Baseline +L-NM M A
Systolic BP (mmHg) 133±8 149±6** (P O .O l)
Diastolic BP (mmHg) 70±6 87±2* (P<0.05)
MAP (mmHg) 91±6 108±3** (P<0.01)

Table 5.3: Blood pressure (BP) data for subjects com paring baseline to post L-NM M A infusion. 

MAP: mean arterial pressure. * denotes significant difference.
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Figure 5.3: Systolic, diastolic and mean arterial blood pressure increased after L-NM M A

infusion (**P<0.01, *P<0.05).

Pacing did not have a significant effect on blood pressure.
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Coronary artery diameter

Summary: Inhibition of NO synthesis decreased LAD diameter. Pacing increased 
LAD diameter but reached statistical significance only after L-NMMA infusion. 
The extent of this effect was dependent on the anatomical location with smaller 
and more distal segments showing higher relative (percent) increase in diameter.

Coronary vasodilatation in response to pacing was studied before and after L-NMMA 

infusion in LAD. Overall, a similar trend was observed along the LAD: LAD 

constricted with L-NMMA and dilated with pacing. The extent of this effect was 

dependent on the anatomical location (see below). Vessel diameter measurements 

from proximal, middle, and distal LAD are given in table 5.4.

Before L-NMMA After L-NMMA

Baseline 65% MHR 85% MHR Baseline 65% MHR 85% MHR

Proximal 

LAD (mm)

3.30±

0.35

3.36±

0.33

3.45±

0.40

3.14±

0.31

3.26±

0.27

3.44±

0.25

Mid

LAD (mm)

2.52±

0.38

2.59±

0.36

2.65±

0.40

2.40±

0.37

2.50±

0.33

2.71±

0.41

Distal 

LAD (mm)

2.08±

0.40

2.35±

0.43

2.20±

0.58

1.99±

0.35

2.00±

0.36

2.42±

0.47

Table 5.4: Vessel diameter measurements from proximal, middle, and distal LAD (mm).
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Effect of L-NMMA infusion at rest- L-NMMA infusion decreased vessel diameter 

in proximal LAD by 5.6±1.3 % (P=0.06) and in mid LAD by 3.4± 1.2 % (P<0.05). 

Distal LAD did not constrict significantly in response to L-NMMA (figure 5.4).

Baseline

3 .50

£  3 .00

2 .50

.5 2.00

1.50
Before L-NMMA After L-NMMA

•Proximal LAD 

Mid LAD

-a— Distal LAD

Figure 5.4: C hanges in LAD diam eter in response to L-NM M A at rest. (+ P=0.06, * P<0.05).

Effect of pacing- (Figure 5.5) LAD diameter increased in response to pacing in all 

three segments but reached statistical significance only after L-NMMA infusion.

_ _ _  _
Baseline 85% MHR

Before L-NMMA O o
After L-NMMA O o

LAD diam eter

Figure 5.5: Changes in vessel diam eter in response to pacing before and after L -NM M A infusion.

When vessel diameters were standardised for baseline (i.e. measured vessel 

diameter/baseline vessel diameter), this increase was more significant after L-NMMA
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infusion (P value for proximal and mid LA DO .Ol, P value for distal LADO.OOl) 

(figure 5.6).
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Figure 5.6: Standardised changes in vessel diameter in response to pacing before and after L- 

NMMA infusion. (+ P<0.05, * P<0.01, **P<0.001).

Before L-NMMA infusion, pacing at 85% MHR, i.e. approximately twice the resting 

heart rate for the subjects in this study, increased proximal LAD diameter by 4±2% 

(P=0.16) and mid LAD diameter by 5±1% (P<0.05). No significant change was 

observed in distal LAD (figure 5.6).

During L-NMMA infusion, pacing at 85% MHR increased proximal LAD diameter 

by 10±2% (P<0.01), mid LAD diameter by 13±4% (P<0.01), and distal LAD by 

20±4% (P<0.001) (figure 5.6).

146



Coronary blood flow (CBF)

Summary: Pacing increased CBF in proportion to the increase in heart rate. L-NMMA 
did not affect CBF at rest. At 85% MHR, CBF was significantly lower after L-NMMA 
infusion.

Quantitative coronary angiography was used to study changes in CBF in response to 

pacing, before and after L-NMMA infusion.

Estimated CBF values in LMS (ml/min) are presented in table 5.5.

Before L-NMMA After L-NMMA

Baseline 65% MHR 85% MHR Baseline 65% MHR 85% MHR

LMS flow 

(ml/min)

85 ±10 134 ±17 181± 25 77± 9 122± 18 143 ±19

Table 5.5: Estimated blood flow in LMS (ml/min) throughout the study.
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Effect of L-NMMA infusion- Coronary flow was not reduced significantly by L- 

NMMA at rest (P=0.15) or 65% MHR (P=0.35). At 85% MHR, coronary flow was 

20±5% lower following L-NMMA infusion (P<0.05) (figure 5.7).
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Before L-NMMA After L-NMMA

Figure 5.7: LM S flow before and after L-NM M A infusion. CBF was not significantly altered by 

L-NM M A at rest and 65%  M HR. W hen the heart was paced at 85% M HR, L-NM M A reduced

coronary flow by 20±5%  (* P<0.05).
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Effect of pacing- Pacing increased coronary flow both before (P<0.01) and after 

(P<0.05) L-NMMA infusion (figure 5.8).
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1  150 
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Baseline 65% MHR 85% MHR 65 % MHR 85% MHRBaseline

Before L-NMMA After L-NMMA

Figure 5.8: Changes in coronary flow (ml/min) with pacing; before and after L-NMMA infusion

(ANOVA * P<0.05, ** P<0.01).

Pacing the heart at 85% MHR, i.e. approximately twice the resting heart rate for the 

subjects in this study, increased the coronary flow by 113±15 % and 86±17% 

before(P<0.01) and after(P<0.01) L-NMMA infusion, respectively. The magnitude 

o f increase (i.e. comparing 113±15 % to 86±17%) was not statistically different 

before and after L-NMMA (P=0.3).
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Lactate

Lactate was measured in blood from LMS and CS at rest and only in CS after atrial 

pacing (normal levels in peripheral venous blood <2mmol/l). Lactate levels were 

lower in CS compared to LMS (PO .05) (figure 5.9).

1.4

LMCA

Lactate levels

Figure 5.9: Lactate levels in blood from LMS and CS. *P<0.05.

Pacing did not affect CS lactate levels (figure 5.10).

0.6
0.4
0.2

Baseline 65%MHR 85%MHR Baseline 65%MHR 85%MHR

Before L-NMMA After L-NMMA

Blood lactate levels in CS

Figure 5.10: Lactate levels in blood from CS throughout the study protocol. CS lactate levels

were not affected by pacing.
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Oxygen

Levels

Chet and HbC>2Sat of the blood samples taken during the study are given in tables 5.6 

and 5.7, respectively.

Before L-NMMA After L-NMMA

Baseline 65%MHR 85%MHR Baseline 65%MHR 85%MHR

LMS 19.9± 0.8 20.3 ±0.8 19.9 ±0.9 19.2 ±0.9 19.7± 0.8 20 ±0.7

CS 5.9 ±0.5 7.1 ±0.7 7.1 ±0.7 6.2 ±0.5 6 . 8  ±0.9 7.8 ±1.0

PA 15.5 ±0.8 15.8 ±0.8 13. 5± 1.8 15.3 ±1.1 15.1 ±0.7 14.1 ±0.8

Table 5.6: 0 2ct (ml/dl) in blood from LMS, CS, and PA before and after pacing, before and after

L-NMMA infusion.

Before L-NMMA After L-NMMA

Baseline 65%MHR 85%MHR Baseline 65%MHR 85%MHR

LMS 95.6± 0.8 94.8 ±1.4 96.4 ±0.4 93.8 ±2.2 96.7± 0.4 97.1 ±0.4

CS 28.2 ±1.3 34.1 ±3 34.4±2.4 30 ±1.5 35 ±3.2 39 ±3.4

PA 74.2 ±1.6 75 ±1.5 71.3±1.7 73.3 ±3.1 73.7 ±1.3 6 8 . 8  ±1.9

Table 5.7: Hb oxygen saturation (%) in blood from LMS, CS, and PA before and after pacing,

before and after L-NMMA infusion.

Physiological differences at baseline

At baseline heart rate, haemoglobin oxygen saturation (HbC^Sat) (%) and blood 

oxygen content (C>2Ct) (ml/dl) decreased significantly across the heart (PO.OOOl), 

increased significantly when CS effluent mixed with systemic venous return in the PA 

(P<0.0001) and increased further across the lungs (PO.OOOl) (figures 5.11 and 5.12).
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Figure 5.11: Baseline HbQ2Sat in the LMS, CS, and PA (* P<0.0001).

25.0

20.0

1  15.0 B
«  10.0 
o

5.0

0.0

Figure 5.12: Baseline 0 2ct in the LMS, CS, and PA (* P<0.0001).

Effect of L-NMMA infusion- L-NMMA infusion did not change the oxygen content 

(02Ct) or haemoglobin oxygen saturation (H b02Sat) o f blood taken from any o f the 

anatomical sites.

Pacing

Changes in 0 2ct and H b02Sat with pacing before and after L-NMMA infusion are 

illustrated in figures 5.13 and 5.14.
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Figure 5.13: Changes in 0 2ct of blood from LMS, CS, and PA with pacing, before and after L- 

NMMA infusion (* P=0.06). MHR: Maximum heart rate.
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Figure 5.14: Changes in Hb oxygen saturation of blood from LMS, CS, and PA with pacing, 

before and after L-NMMA infusion (* P=0.05, ** P<0.05). MHR: Maximum heart rate.

LMS- Atrial pacing did not affect oxygen measurements in blood from LMS.

PA- There was a trend towards a decrease in C^ct and HbC^Sat in PA blood with 

pacing which did not reach statistical significance.
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CS- Pacing the heart to 85% MHR increased C>2Ct and HbC>2Sat o f CS blood both 

before and after L-NMMA infusion. P values are given in table 5.8:

P Value

Before L-NMMA After L-NMMA

Pacing increased CS Hb02Sat 0.03 0.05

Pacing increased CS 0 2ct 0.06 0.06

Table 5.8: P values for changes in CS Hb02Sat and CS 0 2ct before and after L-NMMA infusion.

Myocardial oxygen extraction

Oxygen extraction across the heart did not change significantly with pacing or after L- 

NMMA infusion and was sustained at 67.2± 0.9 %. There was a trend toward lower 

oxygen extraction at higher pacing rates which did not reach statistical significance 

(figure 5.15).
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Figure 5.15: Changes in myocardial oxygen extraction with pacing before and after L-NMMA 

infusion. MHR: Maximum heart rate.
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Myocardial oxygen consum ption

Oxygen consumption (ml 0 2 /min) increased in proportion to increasing HR both 

before (P<0.05) and after (P<0.05) L-NMMA infusion (figure 5.16). On average, 91% 

increase in HR was associated with 100% increase in oxygen consumption before L- 

NMMA and 88% increase after L-NMMA infusion.
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Figure 5.16: Changes in myocardial oxygen consumption with pacing before and after L-NM M A  

infusion (* P<0.05). MHR: M aximum heart rate.

L-NMMA infusion reduced oxygen consumption. This phenomenon reached 

statistical significance at 85% MHR (P<0.05).

Oxygen content (02Ct) of blood from CS is the product of the balance between 

oxygen delivery by the coronary flow and oxygen consumption by the myocardium. 

This balance was maintained at an almost constant ratio at higher oxygen 

consumption rates regardless of NO production. Figure 5.17 demonstrates the ratio 

between oxygen delivery and oxygen consumption in different HR stages of the study 

protocol before and after L-NMMA infusion.
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Figure 5.17: 0 2 delivery/02 consumption ratio remained constant at all heart rates before and

after L-NMMA infusion.

NO metabolites

NOx, nitrite, and RNO were measured in plasma. Total Hb-bound NO and nitrite 

were measured in RBCs. The following data are presented for each metabolite:

• Levels: Metabolite levels at rest (baseline) and after pacing; before and after 

L-NMMA infusion.

• Effect of L-NMMA infusion: comparing metabolite levels before and in the 

presence o f L-NMMA infusion

• Effect of Pacing: comparing metabolite levels at different heart rates.

• Transcardiac: comparing metabolite levels in LMS and CS.

• Transpulmonary: comparing metabolite levels in PA and LMS.
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Plasma NOx

Summary: Plasma NOx levels were not affected by L-NMMA or pacing. The study 
provided evidence for transcardiac production o f NOx. Evidence for transpulmonary 
loss o f  NOx was observed at rest and at 65% MHR. The latter phenomenon was 
reversed at 85% MHR both before and in the presence o f L-NMMA infusion.

Levels- Fasting plasma NOx levels in blood samples from LMS, CS, and PA are 

presented in table 5.9.

Before L-NMMA After L-NMMA

Baseline 65% MHR 85% MHR Baseline 65% MHR 85% MHR

LMS 11.5±2.8 14.4±3.5 14.1*4.2 12.9*3.8 16.3*3.7 15.9*3.8

CS 14.0±3.6 15.5±3 15.5*4.2 15.5*3.7 16.9*3.8 12.7*3.7

PA 15.5*3.7 18.8±4 11.8*3.3 16.9*3.5 18.1*3.7 13.4*3.6

Table 5.9: Plasma NOx levels in blood samples from LMS, CS, and PA (pM).

Changes in plasma NOx levels with pacing before and after L-NMMA infusion are 

illustrated in figure 5.18
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85%
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MHR

Before L-NMMA After L-NMMA

Figure 5.18: Changes in plasma NOx levels (pM) with pacing, before and after L-NMMA 

infusion. Neither pacing nor L-NMMA affected NOx levels.
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Effect of L-NMMA infusion- Plasma NOx levels did not change after L-NMMA 

infusion in any of the sample sites at any pacing rate.

Effect of pacing- Pacing did not affect plasma NOx levels.

Transcardiac - There was a trend towards higher NOx levels in CS compared to 

LMS which reached statistical significance only in the resting (baseline) sample after 

L-NMMA (P<0.01). This trend reversed at 85% MHR after L-NMMA; where CS 

NOx was consistently lower than LMS (P<0.01) (figure 5.19).
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Figure 5.19: Comparing plasma NOx levels in LMS and CS. (* P<0.01)

Transcardiac gradient o f NOx, calculated by subtracting L M S n o x  from C S n o x , did not 

change significantly with pacing before L-NMMA infusion was commenced. In the 

presence o f L-NMMA, pacing reduced the gradient and reversed it at 85% MHR 

(P<0.01) (figure 5.20).
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Figure 5.20: Transcardiac gradient of NOx at rest and during pacing, before and after L-NMMA

infusion (* P<0.01).

The coronary exchange rate of NOx (nmol/min) was calculated by multiplying the 

arteriovenous difference by CBF:

Net exchange kinetics of NOx = CBF X (CSNox -  LMSnox)

As illustrated in figure 5.21, transcardiac NOx production was not affected by pacing 

or L-NMMA and remained constant until the last sampling point (85% MHR after L- 

NMMA) where a net loss of NOx was observed (P<0.01).
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Figure 5.21: Transcardiac exchange of NOx at rest and during pacing, before and after L-

NMMA infusion (* P<0.01).

Transpulmonary - A negative gradient was observed in plasma NOx levels across 

the lungs at rest (P<0.05) and at 65% MHR (PO .01), i.e. NOx levels were 

consistently lower in LMS compared to PA. The gradient reversed at 85% MHR both 

before and after L-NMMA infusion (P=0.06) (figure 5.22).
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Figure 5.22: Comparing plasma NOx levels in PA and LMS (* P<0.05, ** P<0.01, + P=0.06).
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Transpulmonary gradient o f NOx was calculated by subtracting L M S n o x  from P A n o x -  

Transpulmonary gradient changed significantly in response to pacing both before 

(P<0.05) and after (P<0.01) L-NMMA infusion (figure 5.23).
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Figure 5.23: Changes in transpulmonary gradient of NOx with pacing, before and after L- 

NMMA infusion (* P<0.05, ** P<0.01)

Plasma nitrite

Summary: Plasma nitrite levels were not affected by pacing or L-NMMA infusion. 
The study provided evidence for transcardiac loss of plasma nitrite which was 
significant before L-NMMA infusion. The study provided evidence for 
transpulmonary increase in nitrite levels in plasma.

Levels- Plasma nitrite levels (nM) in samples from LMS, CS, and PA are presented in 

table 5.10.

Before L-NMMA After L-NMMA

Baseline 65% MHR 85% MHR Baseline 65% MHR 85% MHR

LMS 396.3±50 368.3±46 363.4±26 376.3±41 311.4±23 327.5±42

CS 271.5±56 256.5±65 276.1±43 302.3±47 282.1±41 284.7±36

PA 247.1±54 281 ±68 300.3±35 269±43 234.2±29 285.1±37

Table 5.10: Plasma nitrite levels (nM).
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Changes in plasma nitrite levels with pacing before and after L-NMMA infusion are

illustrated in figure 5.24.
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Figure 5.24: Changes in plasma nitrite levels (nM) with pacing, before and after L-NMMA 

infusion. Neither pacing nor L-NMMA infusion affected nitrite levels significantly.

Effect of L-NMMA infusion- L-NMMA infusion did not affect plasma nitrite levels 

in any o f the sample sites at any pacing rate.

Effect of pacing- Pacing did not affect plasma nitrite levels.
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Transcardiac- Plasma nitrite levels were generally lower in CS than in LMS. The 

difference was significant before L-NMMA infusion at 65% MHR and 85% MHR 

(P<0.05) (figure 5.25).
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Figure 5.25: Comparing plasma nitrite levels in LMS and CS (+ P=0.15, * P<0.05).

When transcardiac nitrite gradient was corrected for flow, a general “loss” o f nitrite 

was observed across the coronary bed which was not significantly affected by pacing. 

The “loss” was a smaller amount in the presence of L-NMMA (P<0.04) (figure 5.26).
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Figure 5.26: Transcardiac loss of plasma nitrite (nmol/min) (* P<0.05).
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Transpulmonary- Plasma nitrite levels were higher in LMS comparing to PA, 

indicating a positive gradient across the lungs (figure 5.27).
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Figure 5.27: Comparing plasma nitrite levels before (PA) and after (LMS) pulmonary circulation

(+ P<0.1, * P<0.05).

Plasma RNO

Summary: Plasma RNO levels were not altered by pacing or L-NMMA infusion. No 
significant transcardiac or transpulmonary gradient was found.

Levels- Plasma RNO levels (nM) in samples from LMS, CS, and PA are presented in 

table 5.11.

Before L-NMMA After L-NMMA

Baseline 65% MHR 85% MHR Baseline 65% MHR 85% MHR

LMS 14.4±3.0 11.5±5.7 9.5±1.9 12±0.8 13.5±2.2 13.2±0.9

CS 13.2±1.8 20.7±5.3 18.5±5.0 11.2±1.0 11.2±3.2 17.1±3.0

PA 11±2.3 17.9±7.5 17.4±6.0 11.4±3.1 7.83±1.5 14.6±5.0

Table 5.11: Plasma RNO levels (nM).

□ PA 
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Changes in plasma RNO levels with pacing before and after L-NMMA infusion are

illustrated in figure 5.28.
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Figure 5.28: Changes in plasma RNO levels (nM) with pacing, before and after L-NMMA 

infusion. Neither pacing nor L-NMMA infusion affected RNO levels significantly.

Effect of L-NM M A infusion- L-NMMA infusion had no effect on RNO levels.

Effect of pacing- Pacing had no effect on RNO levels.

Transcardiac- No significant transcardiac gradient was observed.

Transpulmonary- No significant transpulmonary gradient was observed.

Total Hb-bound NO

Summary: Total Hb-bound NO levels were not affected by L-NMMA or pacing. The 
study provided evidence for transcardiac formation o f Hb-bound NO. No significant 
transpulmonary gradient was detected.

LMCA
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Levels- Hb-bound NO levels (nM) in samples from LMS, CS, and PA are presented 

in table 5.12.

Before L-NMMA After L-NMMA

Baseline 65% MHR 85% MHR Baseline 65% MHR 85% MHR

LMS 74.2±33 91 ±22 53±20 59.5±22 62.3±22 52.4±17

CS 228.2±77 188±44 170.2±71 132.2±47 149.1 ±25 127.6±27

PA 96.8±26 111.4±38 84.4±26 75.5±9 75±18 77.5±18

Table 5.12: Hb-bound NO levels (nM).

Changes in Hb-bound NO levels with pacing before and after L-NMMA infusion are 

illustrated in figure 5.29.
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Figure 5.29: Changes in Hb-bound NO levels (nM) with pacing, before and after L-NMMA 

infusion. Neither pacing nor L-NMMA infusion affected Hb-bound NO levels significantly.

Effect of L-NMMA infusion- L-NMMA infusion did not alter Hb-bound NO levels 

at any heart rate.

Effect of pacing- pacing did not affect Hb-bound NO levels in blood samples from 

LMS, CS, and PA.
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Transcardiac- Hb-bound NO levels were higher in CS than LMS at baseline and 

higher pacing rates indicating transcardiac formation o f Hb-bound NO. This pattern 

was not affected by L-NMMA infusion (figure 5.30). P values are given in table 5.13
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Figure 5.30: Comparing Hb-bound NO levels in LMS and CS (* P<0.05).

Before L-NM M A A fter L-N M M A

P values

for Hb-bound NO in 

LMS versus CS

Baseline 65% M H R 85% M H R Baseline 65% M H R 85% M H R

0.18 0 . 1 1 0.18 0.24 0.048 0.09

Table 5.13: P values for Figure 5.30, comparing Hb-bound NO levels in LMS and CS.

Transcardiac formation o f Hb-bound NO, calculated by multiplying transcardiac 

gradient by CBF, remained constant at different heart rates and was not affected by L- 

NMMA infusion (figure 5.31).
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Figure 5.31: Hb-bound NO formation across the coronary bed remained constant at different 

pacing rates before and after L-NMMA infusion.

Transpulmonary- Blood levels of Hb-bound NO were not statistically different 

across the pulmonary bed (figure 5.32).
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Figure 5.32: Comparing Hb-bound NO levels in PA and LMS. Hb-bound NO levels did not

change across the lungs.
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RBC nitrite

Summary: RBC nitrite levels were not affected by pacing or L-NMMA infusion. A 
positive transpulmonary gradient o f RBC nitrite was detected which was more 
significant at 85% MHR both before and in the presence o f L-NMMA infusion.

Levels- RBC nitrite levels (nM) in samples from LMS, CS, and PA are presented in 

table 5.14.

Before L-NMMA After L-NMMA

Baseline 65% MHR 85% MHR Baseline 65% MHR 85% MHR

LMS 105.9±25 74.2±13 129.7±27 137.8±69 86.2±37 85.0±26

CS 66.4±23 70.1 ±23 65.2±11 32.0±9.3 90.1±34 43.6±27

PA 47.3±15 38.7±20 51.7±17 41.2±16 46.6±30 16.2±7

Table 5.14: RBC nitrite levels (nM).

Changes in RBC nitrite levels with pacing before and after L-NMMA infusion are 

illustrated in figure 5.33.
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Figure 5.33: Changes in RBC nitrite levels (nM) with pacing before and after L-NMMA infusion. 

Neither pacing nor L-NMMA infusion affected RBC nitrite levels significantly.
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Effect of L-NM M A infusion- L-NMMA infusion did not alter RBC nitrite levels at 

any heart rate.

Effect of pacing- pacing did not affect RBC nitrite levels in blood samples from 

LMS, CS, and PA.

Transcardiac- RBC nitrite levels tended to be lower in CS than LMS but the 

difference did not reach statistical significance (figure 5.34). Correction for flow did 

not change the pattern, nor did it alter the significance of the findings.
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Figure 5.34: Comparing RBC nitrite levels in LMS and CS (nM).

Transpulmonary- A positive transpulmonary gradient was detected which was 

statistically significant at 85% MHR both before and after L-NMMA infusion 

(P<0.05) (figure 5.35).
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Figure 5.35: Comparing transpulmonary levels of RBC nitrite in PA and LMS (* P<0.05)
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Association of NO metabolites with oxygen

Association o f individual NO metabolites with Hb02 saturation was studied before 

and after L-NMMA infusion. Metabolite levels from all sites and pacing rates were 

plotted against their corresponding Hb0 2  saturation values.

A significant negative association was found between Hb-bound NO and Hb02 

saturation both before (r= -0.501, P<0.001) and after (r= -0.553, PO.OOl) L-NMMA 

infusion (figures 5.36 and 5.37).
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Figure 5.36: Association between Hb-bound NO and Hb02 saturation before L-NMMA infusion

(r=-0.501, P<0.001).
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Discussion

Role of NO in the regulation of CBF, profile of NO metabolites across heart and 

lungs, and the impact of oxygen on the apportionment of NO metabolites in the blood 

were studied in healthy human subjects.

In this study, systemic NOS inhibition was confirmed by the significant increase in 

blood pressure observed following L-NMMA, this being consistent with endothelial 

NO contributing to basal vascular tone.

Role of NO in coronary vasodilation and the regulation of CBF

Vasodilation- Inhibition of NO synthesis decreased LAD diameter at rest confirming 

the contribution of NO to basal coronary vascular tone. Pacing increased LAD 

diameter but reached statistical significance only after L-NMMA infusion. The extent 

of this effect was dependent on the anatomical location with smaller and more distal 

segments showing higher percent increase in diameter. This particular mode of 

coronary arterial response to pacing when NO synthesis is inhibited raises the 

possibility of the existence of EDHF-like activity in the epicardial coronary arteries. 

Two typical characteristics of EDHF favour this postulation. Firstly, EDHF is 

normally inhibited by NO167’303, and EDHF-mediated responses are most prominent 

after NO synthase inhibition. Similarly, the inhibition of NO synthesis by L-NMMA 

in this study, revealed the presence of a vasodilator mechanism which not only 

maintained but also enhanced pacing-induced vasodilation. Secondly, unlike NO, 

relaxation by EDHF is known to be more prominent in arteries with smaller 

diameters304. Similarly in this study, distal measurements in smaller segments of LAD 

showed more vasodilation in response to pacing.
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The results show that coronary vasodilation in response to increased myocardial 

oxygen demand is not exclusively NO dependent and that there are other vasodilator 

mechanisms to take over when NO synthesis is impaired. Consistent with this result, 

previous canine studies have also shown that NO is not required for exercise induced 

coronary vasodilation149;156;175;177;305;306. In contrast, previous human studies showed 

that L-NMMA attenuates the pacing-induced dilatation of the large epicardial 

coronary arteries161’182'184. Two main methodological differences exist between the 

present study and earlier human studies. First, I chose systemic rather than 

intracoronary infusion of L-NMMA to avoid the potentially confounding effects of 

recirculation of L-NMMA (as explained above) as well as the direct effect of 

intracoronary infusion on the coronary haemodynamic parameters. Second, unlike the 

other studies, adenosine receptors were blocked throughout this study.

CBF- Previous studies in canine and human models have shown that in both species 

inhibition of NO synthesis with arginine analogues results in little161:178;184or no 

change177,183,307'313 in CBF at rest. However, the importance of NO in mediating 

coronary vasodilation and matching CBF to increased myocardial oxygen demand in 

response to exercise or pacing appears to be different between the two species.

Canine studies show that inhibition of NO does not attenuate exercise-induced 

increases in CBF in response to exercise175;177;305;306;314;315.

In contrast, human studies161;182'184 show that inhibition of NO synthesis reduces CBF 

when myocardial oxygen demand is increased by atrial pacing, although the percent 

increase in CBF is preserved.
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The results of this study are in line with previous human studies. Pacing increased 

CBF in proportion to the increase in heart rate. At rest, inhibition of NO synthesis did 

not affect CBF. At 85% MHR, CBF was significantly lower after L-NMMA infusion. 

These findings would suggest that in humans, NO is not necessary for the 

maintenance of CBF at rest, but it plays an important role in enhancing the CBF in 

response to increased myocardial oxygen demand. It is also noteworthy that a 

hyperaemic response exists even in the presence of L-NMMA, consistent with the 

accepted dogma that several metabolic factors combine in order to mediate the overall 

response.

Profile of NO metabolites across healthy human heart and 

lungs

This study, for the first time, looked into the apportionment of individual NO 

metabolites in blood across 1) the coronary and 2) the pulmonary vascular beds.

Plasma NOx levels-mainly reflecting plasma nitrate- were not affected by L-NMMA 

or pacing. The study provided evidence for transcardiac production of NOx. The 

study also provided evidence for transpulmonary loss of NOx. Transpulmonary loss 

of nitrate has not been reported before. Following the ingestion of an oral dose of 15N- 

labeled nitrate in humans, approximately 65% of the 15NC>3‘ dose appears in the urine 

and faeces as nitrate, ammonia, or urea within 48 hours. So far, the fate of the 

remaining 35% of the 15NC>3' dose administered remains unknown29. Transpulmonary 

loss of nitrate describes an alternative route for nitrate excretion from the body and 

suggests that nitrate is taken up directly by the lower respiratory tract. Further 

evidence comes from a recent study from the Karolinska Institute in Sweden which
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showed that some of the ingested nitrate is excreted through the respiratory tract by 

aerosolisation of mucus and saliva. Sixty minutes after an oral dose of nitrate, nitrate 

concentrations in exhaled breath condensate (EBC) sampled from trachea increased 

by 2.5 fold316.

Plasma nitrite levels were not affected by pacing or L-NMMA infusion. The study 

provided evidence for transcardiac loss of plasma nitrite which was significant before 

L-NMMA infusion was commenced. Whether this nitrite “loss” reflects transcardiac 

consumption-e.g. by the myocardium or vascular smooth muscle cells- or is simply 

the result of higher nitrite production on the arterial side (due to higher NOS activity) 

and/or higher nitrite consumption in the venous blood (due to a presumed nitrite 

reductase activity by deoxyhaemoglobin) remains to be clarified. The study also 

provided evidence for transpulmonary increase of nitrite in plasma.

Plasma RNO levels were not altered by pacing or L-NMMA infusion. No significant 

transcardiac or transpulmonary gradient was found.

Hb-bound NO levels were not affected by L-NMMA or pacing. The study provided 

evidence for transcardiac formation of Hb-bound NO. No significant transpulmonary 

gradient was detected.

RBC nitrite levels were not affected by pacing or L-NMMA infusion. Similar to 

plasma nitrite, RBC nitrite increased across the pulmonary vascular bed. This 

phenomenon was more significant at 85% MHR both before and in the presence of L- 

NMMA infusion.
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The total NO metabolite pool excluding nitrate (i.e. plasma nitrite+ RNO+ Hb- 

bound NO+ RBC nitrite) remained unchanged across the coronary and pulmonary 

beds (P=0.91) with no significant net loss or gain o f NO across the heart or lungs. 

However, significant re-apportionment o f NO metabolites occurred between the 

plasma and RBC compartments as already described for individual metabolites. Total 

NO metabolite pool was not significantly affected by L-NMMA infusion. Findings 

are summarised in figure 5.38.
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changes in the apportionm ent of NO metabolites occurred. Error bars represent SEM  for the 

total sum of NO metabolites (excluding nitrate).
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Effect of oxygen in the apportionment of NO metabolites

In this first study to measure NO metabolites across the coronary circulation, I 

observed significant re-apportionment of NO between metabolite species in plasma 

and RBC across the coronary circulation driven by the substantial transcoronary 

oxygen gradient. The strongly negative association observed between Hb02Sat and 

Hb-bound NO was mirrored by a positive association between HbOaSat and plasma 

NO. This dynamic interplay between NO species throughout the vascular circuit 

provides evidence that NO or a related moiety could in principle be transferred from 

metabolite stores as a function of oxygen within the time constraints of blood transit 

across a single vascular bed.

Conclusion

This study revealed the profile of individual NO metabolites across the healthy human 

heart and lungs, at rest and with increased oxygen demand. I found that the total NO 

metabolite pool excluding nitrate (i.e. plasma nitrite+ RNO+ Hb-bound NO+ RBC 

nitrite) remained unchanged across the coronary and pulmonary beds (P=0.91) with 

no significant net loss or gain of NO across the heart or lungs. However, significant 

re-apportionment of NO metabolites occurred between the plasma and RBC 

compartments driven by the substantial transcoronary oxygen gradient.

The study also investigated the importance of NO in the regulation of coronary blood 

flow and found that in humans NO is not necessary for the maintenance of CBF at 

rest, but it plays an important role in enhancing the CBF in response to increased 

myocardial oxygen demand.
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Nonetheless these data do not provide direct evidence to identify the particular NO 

moiety responsible for the transfer of NO bioactivity between the plasma and RBC 

compartments. Furthermore, the study does not address whether NO metabolites may 

accrue greater importance when myocardium is compromised or when there is tissue 

ischaemia. In other words, we have dealt with a healthy heart under normal and 

stressed conditions.

A less intuitive but equally important finding was that administration of L-NMMA 

had little bearing on NO metabolite levels in arterial or venous blood in the acute 

setting (i.e. within minutes). This finding suggests that blood levels of specific NO 

metabolites (e.g. NOx or nitrite) do not accurately reflect immediate endothelial NOS 

production. This finding has far reaching implications for a large number of studies 

utilising such measurements to draw conclusions on endothelial function. Although L- 

NMMA did not affect NO metabolite levels in the acute setting, it is likely that 

chronic endothelial dysfunction (or enhancement) will result in proportional changes.
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CHAPTER SIX

Results II 
The profile of nitric oxide 

metabolites in type 1 diabetes 
mellitus; correlation with 

microvascular complications
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Introduction

Microvascular complications are major causes of morbidity and mortality in diabetes 

but their aetiology remains poorly understood.

Nitric oxide (NO) produced by vascular endothelium plays an important role in 

maintenance of normal vascular physiology by modulating haemostasis, 

inflammation, blood flow, and tissue perfusion. NO in blood rapidly reacts with 

proteins (including haemoglobin and albumin), oxygen, or reactive oxygen species 

(mainly O2 ) to form its more stable metabolites. These metabolites can potentially 

serve as NO reservoirs and transport NO bioactivity in the circulation for a longer 

duration and distance than NO itself (see CHAPTER ONE).
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Recent data suggest that abnormal NO metabolism may be pathogenic in diabetes253' 

255,317-321 Reduceci bioavailability of NO has been demonstrated in both type 1 and 

type 2 diabetes mellitus and has been attributed either to reduced production by NO 

synthase (NOS) or increased inactivation, perhaps by increased levels of superoxide

(O2 )253;317;318.

There has been limited work on NO metabolism in type 1 diabetes. None of the few 

studies which have looked into the metabolic fate of NO in type 1 diabetes has been 

inclusive of all the metabolites of interest. (For a review of published work in this 

field please see CHAPTER THREE).

In this study, I established the profile of NO metabolites in patients with type 1 

diabetes mellitus and investigated whether and how glycosylation affects 1) 

apportionment of NO between metabolic pathways 2) hypoxic release of 

bioactive NO from RBCs 3) relationship between NO metabolism and 

microvascular complications.

I studied blood/NO interaction in 2 subgroups of diabetic patients; with and without 

microvascular complications, and compared it to age- and gender-matched controls. 

RBC and plasma NO components were measured directly in venous blood samples 

and again following addition of increasing doses of NO ex vivo to test the capacity of 

blood to apportion NO to its various metabolites. An isolated aortic vessel system was 

used to assess NO release and vessel relaxation induced by RBCs from patients and 

controls under low oxygen conditions.

183



I found that NO metabolism and the apportionment of exogenous NO are altered in 

diabetics and that these abnormalities precede the clinical manifestation of 

microvascular complications. Vessel relaxation studies implied the existence of a 

RBC-related vasodilating factor (RRVF) which operates in close correlation with 

HbAic in diabetics.

New information about NO metabolism in diabetes improves our understanding of the 

pathophysiology of its microvascular complications and points to new prophylactic 

and therapeutic strategies.

Metabolites studied- The main NO metabolites of interest and their significance in 

vascular physiology are as follows.

Plasma NOx (NOz' + N 03")

NOx accounts for the most abundant NO end products in the plasma, nitrate (NO3 ) 

and nitrite (NO2 ). Because nitrate levels in plasma are about 100 times greater than 

nitrite, NOx mainly reflects plasma nitrate levels.

Nitrate is an inert by-product of NO metabolism in the circulation. Its plasma levels 

not only depend on NO production from various endogenous sources (eNOS, iNOS,

52etc.) but also on exogenous sources such as food and water.

Due to the above facts, nitrate is not a sensitive nor specific index of endothelial NO 

production.
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Plasma nitrite

Plasma nitrite, generated from the reaction of NO and oxygen, reflects constitutive 

NOS activity68. More recently, nitrite has been suggested by some groups to be the 

major bioactive NO store in human blood77.

Plasma S-nitrosothiols (RSNO)

Nitrosation of thiols in proteins such as albumin results in long-lived S-nitrosothiols 

(RSNO) with a variety of different effects in biological systems.

In recent years RSNOs have attracted increasing attention as possible preservers of 

NO bioactivity in the circulation. They prevent loss of NO from oxidative degradation 

and also create bioactive low molecular weight nitrosothiols such as S- 

nitrosoglutathione (GSNO) which demonstrate strong vasodilator properties . 

RSNOs provide a reservoir of NO bioactivity that might be utilised in states of NO 

deficiency.

Nitrosylhaemoglobin (HbNO)

Most of the NO which enters the erythrocytes will react with oxyhaemoglobin to form 

nitrate and methaemoglobin. Nonetheless, some NO will meet non-oxygenated 

haemoglobin and nitrosylate the Fe2+ to a fairly stable HbNO adduct 77(in vivo half 

life ~ 40 minutes123). HbNO is also produced from the reaction between the 

continuous flux of nitrite into the erythrocytes and non-oxygenated haemoglobin. 

Therefore, HbNO is a co-index of NO and nitrite uptake by erythrocytes at any given 

haemoglobin oxygen saturation.
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HbNO is one of the many molecules proposed to serve as potential preservers of NO 

bioactivity in the circulation. However, HbNO does not show vasodilator properties in 

vivo122 nor is there any evidence that it can dissociate efficiently to deliver NO to 

tissues directly.

S-nitrosohaemoglobin (SNO-Hb)

SNO-Hb is formed by the S-nitrosation of Hb 6- chain cysteine 93109;110. SNO-Hb 

shows vasodilator properties both in vitro and in vivo at lower oxygen saturations and 

may play an important role in the control of blood flow and oxygen delivery to 

tissues112.

RBC nitrite

Plasma nitrite constantly enters the RBCs72. Inside the erythrocytes, nitrite can either 

react with oxyhaemoglobin to form methaemoglobin and nitrate (Eq. 1); or with 

deoxygenated haemoglobin to form methaemoglobin and nitrosylhaemoglobin 

(HbNO)76’78 (Eq. 2):

Hb02 + 2N02' -> MetHb + 2N03' Eq. 1

4Hb + 2N02' + 2H+ 2MetHb + 2HbNO + 2H20  Eq. 2
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Methods

Study population 

Recruitment

Patients were recruited from two specialist diabetes outpatient clinics at the University 

Hospital of Wales (Consultant Diabetologists, Dr. John Peters and Dr. Mark Evans). 

Controls were recruited from healthy volunteers working at Cardiff University and 

associated departments. 28 healthy volunteers and 46 patients with type 1 diabetes 

mellitus were recruited. The diabetic group was further divided into two subgroups: 

Group A: those without microvascular complications (n=20); and Group B: those with 

microvascular complications (n=26).

To avoid the risks of fasting diabetic patients in an outpatient setting, research 

subjects were non-fasting; with the intention of providing a mid-aftemoon blood 

sample under “normal” conditions (insulin, diet) for each individual. Controls were 

sampled in exactly the same way and the same time of the day, i.e. 2-3 p.m.

Microvascular complications- Microvascular complications were defined as 

nephropathy, neuropathy, and diabetic eye disease. Patients with at least one of the 

following complications were recruited to Group B:

1. Nephropathy: Patients were screened for diabetic nephropathy with urine dipstix, 

urine albumin, and albumin: creatinine ratio. Microalbuminuria is the earliest 

indicator of diabetic nephropathy323. Consistent with NICE guidelines323,

187



microalbuminuria was defined as albumin: creatinine ratio greater than or equal to 

2.5mg/mmol (men) or 3.5mg/mmol (women), or urine albumin concentration 

greater than or equal to 20mg/l. Proteinuria was defined as albumin: creatinine 

ratio of >30mg/mmol or albumin concentration >200mg/l.

2. Established neuropathy -  Patients were screened with history and physical 

examination for evidence of peripheral sensorimotor neuropathies (using a 10-g 

nylon monofilament), acute mononeuropathies, autonomic neuropathies 

(neuropathic bladder, erectile dysfunction), diabetic foot, and cranial nerve 

palsies.

3. Diabetic eye disease -  Patients were screened for either of background 

retinopathy, maculopathy, or proliferative retinopathy. Screening was performed 

with direct ophthalmoscopy and retinal photography.

The most common microvascular complication among Group B was retinopathy 

(88%) followed by neuropathy (15%) and nephropathy (4%). Four patients (15%) 

showed evidence of microvascular complications in more than one system.

Exclusion criteria

Patients with other modifiable cardiovascular risk factors (i.e. smoking, 

cholesterol>5.2mmol/l, triglyceride>2mmol/l, hypertension>140/90mmHg), those 

with a history of ischaemic events (angina, myocardial infarction, stroke), any acute 

illness, and those taking medications which might alter/improve endothelial function 

(e.g. ACE inhibitors) or affect vascular tone were excluded from the study.
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Demographics

Groups were matched for age and gender (table 6.1). Within the diabetic group, 

Group B were generally older than Group A (P<0.001) and had a longer duration of 

disease (P<0.001).

Age (years) Gender
Duration of 

disease (years)
n

Controls 33.36±11 14M; 14F 28

Diabetics 33.61±12 24M; 22F 15.33±11 46

Group A 27.15±8 10M, 10F 9.22± 7.36 20

Group B 38.58±12 14M; 12F 20.31±11 26

Table 6.1: Age and gender distribution and duration of disease. M: Male, F: Female. Values are 

in mean± SD.

Ethics

All subjects were provided with a detailed information sheet and asked to give fully 

informed written consent. Relevant staff at the Diabetes Clinic received an 

introductory leaflet which explained the study procedure (Appendix 2). The study was 

approved by the Local Research Ethics Committee.

Blood collection and storage

Venous blood samples were taken from an antecubital vein and stored in standard 

hospital EDTA vacutainers. HbAic was immediately measured by a fully automated 

glycohaemoglobin analyser (Tosoh's ion-exchange HPLC). This measurement is
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quoted as the “last” HbAic in this chapter. An average of HbAics over the last five 

years (HbAic-mean) was calculated using the hospital’s computer data base and taken 

as an indicator of glycaemic control over the past 5 years. Plasma glucose was 

measured with a calibrated Optium Xceed Blood Glucose Meter (Medisense).

To test the capacity of blood to metabolise exogenously added NO, the NO donor, 

NOC-9 (MAHMA NONOate, half life at pH=7.4 and 37°C: 1 minute) was added to 

the EDTA samples to provide final added concentrations of 0, 1, 10 and 100 pM NO. 

Samples were incubated at 37°C for 5 minutes. Plasma and red blood cells (RBC) 

were separated after centrifugation at 670g for 5 minutes and stored at -80°C for future 

analysis.

Care was taken to ensure all samples were treated within comparable time intervals. 

There was a 30 minute lapse between the time samples were taken in the field and the 

time they were placed in the freezer in the laboratory.

Chemicals

Iodine, potassium iodide, potassium hexacyanoferrate, sulfanilamide, sodium 

hydroxide, and mercuric chloride were purchased from Sigma. NOC-9 (MAHMA 

NONOate) was purchased from Axxora. Acetic acid glacial, HPLC water, and 

hydrochloric acid were purchased from Fisher Scientific. NaCl 0.9% was purchased 

from Fresenius Kabi Limited.
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Nitric oxide measurements

Plasma nitrate was measured using the DAN assay283. Tri-iodide based 

chemiluminescence was used to measure other NO metabolites in plasma and RBC 

samples as described in detail in CHAPTER FOUR.

Vessel relaxation experiments

In vitro, it has been demonstrated that RBCs release an NO-type species that dilates 

pre-constricted aortic vessels under low oxygen tensions116’324. Addition of RBCs to 

pre-constricted aortic vessel rings incubated under fully oxygenated conditions (95%) 

results in only a further constriction above that induced by phenylephrine (PE). 

Addition of similar RBC to aortic vessel rings incubated at low oxygen tensions 

results in vessel relaxation.

NO release and vessel relaxation induced by RBCs was studied under low oxygen 

conditions (O2 1%) in an 8-channel tissue bath system. Endothelium denuded rings of 

thoracic aorta from male New Zealand White rabbits (2-2.5 Kg) were prepared for 

isometric tension recordings. The tissues were pre-constricted with phenylephrine 

(PE: 10~6 mol/1). As soon as the response reached a plateau, 20pl aliquots of fresh 

saline-washed RBCs were added to each channel.

Relaxation was calculated as a percent of the tension induced by lO^mol/l PE for each 

aortic ring. The average from 8 channels was calculated and was taken to reflect mean 

relaxation for each subject. The responsiveness of the tissues was assessed at the end 

of each experiment by constricting with PE followed by relaxation to a standard NO 

donor, S-nitroso-glutathione (GSNO; 10'7mol/l).
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Details of the Tissue Organ Bath System protocol can be found in Appendix 3.

Statistical analysis

Data were analysed and processed using SPSS 14.0 for Windows. Shapiro-Wilks test 

was used to assess the data for normality. Mann-Whitney or Kruskal-Wallis tests were 

used to compare the mean values of the metabolites between diabetics and controls 

when indicated. One way ANOVA was used to compare the mean values of 

parametric variables (e.g. HbAic). Significance was assumed when p<0.05. Stepwise 

multiple regression analysis was used to adjust the data for age and duration. 

Correlation between variables was examined using Pearson’s correlation coefficient.
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Results

Glucose, HbA1c, cholesterol (table 6.2)

Plasma glucose and H b A ic  were higher in diabetics than controls (p<0.001). Plasma 

glucose, last H b A ic , and 5-year average H b A ic  were higher in Group A  than Group B 

(p<0.05).

Glucose (mmol/1) HbAlC (%) 5-year HbAlC 
(%)

Cholesterol
(mmol/1)

Controls 6.40±0.32 5.21±0.07 N/A 5.12±0.23
Diabetics 1 2 .2 2 ±0 .8 8 8.23±0.25 8.57±0.25 4.52±0.11
Group A 14.41±1.18 8.92±0.46 9.36±0.43 4.51±0.19
Group B 10.47±1.16 7.72±0.22 7.96±0.25 4.53±0.13

Table 6.2: Plasma glucose, last and 5-year HbAlC, and cholesterol levels. “Diabetics” represent

pooled data from groups A and B. Values are in mean +/- SEM.

In the diabetic group, mean and last HbAics were very strongly correlated (r= 0.852, 

PO.OOl) (figure 6.1).
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Figure 6.1: Correlation between HbA]C-mean (%) and HbA]C-last (%) in diabetics (P<0.001).
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HbAic increases with age- There are discrepancies in the literature regarding the 

influence of age on H b A ic  in normal subjects. While some groups have demonstrated 

an increase in H b A ic  with age , other groups have not been able to verify such a 

correlation327’328. My study, although in a relatively small group (n=28) of young non­

diabetic subjects (average age 33.36±11 years), confirmed a positive linear 

relationship between H b A ic  and age(r=0.527, P=0.004) (figure 6.2). A  similar 

correlation existed between non-fasting plasma glucose and age (P<0.05).
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Figure 6.2: Correlation between HbAlc (%) and age (years) in controls.
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NO metabolites

Basal (un-doped) levels- Means and medians of basal levels of NO metabolites in 

plasma and RBC are given in table 6.3. No significant correlation was found between 

NO metabolites and age or duration of disease. Adjusting the data for age and 

duration did not affect the statistical significance of results.

Plasma RBC

Nitrate (pM) Nitrite (nM) RNO (nM) Nitrite (nM) HbNO (nM) SNO-Hb (nM)

Controls 14.6±1.4 63.7±12.5 18.6±2.8 65.1±12 67.9±9 30.6±5.3

Diabetics 16.1±1.2 23.7±4.3 16.8±1.7 31.3±8.3 42.1±6.3 26.2±5.4

Group A 15.2±1.4 35.9±9 16.6±2.7 14.4±5.4 53.9±13.1 33.4±11.3

Group B 16.6±1.6 14.8±2.5 17.1±2.3 42.9±13 33.1±4.6 20.8±4.3

Table 6.3: NO metabolites in diabetics and controls. Values represent mean +/- SEM.
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Diabetics versus controls- Plasma nitrate (figure 6.3) was slightly higher in diabetics 

(group A + group B) than controls but did not reach statistical significance. Plasma 

nitrite was lower in the diabetic group taken as a whole (p<0.001) (figure 6.4) as were 

RBC nitrite (p<0.01) and HbNO (p<0.01) (figure 6.5). Plasma RNO (figure 6.4) and 

SNO-Hb (figure 6.5) levels were similar between the two groups.

20.0 0 -

3 ,  15.00-

10.0 0 -

5.00-

0.00
Controls Group A Group 6

Figure 6.3: Plasma nitrate levels (uM) in controls, group A, and Group B. Error bars represent

±2SEM.
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Figure 6.4: Plasma nitrite and RNO (nM) levels in controls and diabetics. *P<0.001. Error bars

represent ±2SEM.
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Figure 6.5: RBC nitrite, HbNO, and SNO-Hb levels (nM) in controls and diabetics. *P<0.01.

Error bars represent ±2SEM.

Group A versus Group B (figures 6.6 and 6.7) - Plasma nitrite was lower in Group 

B (p<0.05). Other NO metabolites in plasma and RBCs showed similar levels 

between groups except for RBC nitrite which was lower in Group A (P=0.054).
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Figure 6 .6 : Plasma nitrite and RNO (nM) in Groups A and B. *P<0.05.
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Figure 6.7: RBC nitrite, HbNO, and SNO-Hb (nM) in Groups A and B. Error bars represent

±2SEM.
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Apportionment of NO metabolites- Differences in the apportionment of NO 

metabolites between groups is demonstrated in figures 6.8, 6.9, and 6.10. In plasma, 

nitrite constituted a lower proportion of total NO metabolites in diabetics comparing 

to controls (P<0.01) and in Group B comparing to Group A (P=0.134).

Control

70%

n  Nitrite 

□ RNO

Diabetic

Nitrite

□ RNO

Group A

Nitrite

□  RNO

Group B

Nitrite

□  RNO

Figure 6.8: Apportionment of NO metabolites in plasma.
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A similar trend was observed for RBC nitrite between controls and diabetics which 

did not reach statistical significance (P=0.16). However, RBC nitrite constituted a 

lower proportion of total RBC NO in Group A comparing to Group B (P=0.082).

DiabeticControl

■  N itrite
■  H b-bound NO ■  Hb-bound NO

Group A

■  N itrite

■  Hb-bound NO ■  Hb-bound NO

Figure 6.9: Apportionment of nitrite and Hb-bound NO (HbNO+ SNO-Hb).



HbNO constituted the majority of Hb-bound NO. HbNO: SNO-Hb ratio was identical 

among all groups and subgroups.
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Figure 6.10: Apportionment of Hb-bound NO.
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Gender difference- There was no difference in NO metabolites between genders 

except for plasma RNO which was generally higher in females compared to males 

(P<0.05 for all males vs. all females) (figure 6.11).
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Figure 6.11: Plasma RNO was generally higher in females. Error bars represent ±2SEM.
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Correlation between NO metabolites

Strong correlation was found between plasma nitrite and HbNO in controls 

(r=0.762, P<0.001). The correlation became weaker in Group A (r=0.509, P<0.05) 

and was lost in Group B (figure 6.12)
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\ ( Group A 
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Figure 6.12: Correlation between plasma nitrite (nM) and HbNO (nM) in controls, Group A, and 

Group B (r2= 0.581, 0.259, 0.003 respectively).
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Plasma nitrite showed a sim ilar correlation with SNO-Hb in controls (r= 0.507, 

P=0.01) but not in the diabetic groups (figure 6.13).

■| 150.00

250.00

200.00

O

o
o

Group
^  Controls 

O  Group A 
A  Group B 

\  Controls 

\  Group A 

* Group B

m 100.00
CL

50.00

0.00 20 .00  40.00 60.00 80.00 100.00 120.00

RBC HbSNO

Figure 6.13: Correlation between plasma nitrite (nM) and SNO-Hb (nM) in controls, Group A, 

and Group B. (r2=0.257, <0.001, 0.007 respectively).

Correlation between NO metabolites and HbA1c

Among NO m etabolites, plasma nitrite and HbNO correlated with HbAic- Plasma 

nitrite showed a strong negative correlation with HbAic in controls (r=-0.655, 

P<0.001) but not in diabetics (figure 6.14).
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Figure 6.14: Correlation between plasma nitrite (nM) and the last HbAlC (%) in controls, Group 

A, and Group B. (r2=0.442, 0.004, 0.042 respectively).

HbNO was negatively correlated with HbAic in all three groups but the correlation 

and statistical significance was stronger in controls than Group A than Group B 

(controls: r= -0.591, P 0 .0 0 1 ;  Group A: r= -0.456, P=0.05; Group B: r= -0.186, 

P=0.3) (figure 6.15).
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Figure 6.15: Correlation between HbNO (nM) and the last HbAlC (%) in controls, Group A, and 

Group B. (r2=0.349, 0.208, 0.035 respectively).
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Exogenously added NO studies

Blood samples treated with the exogenous NO donor NOC-9 were analysed for 

plasma and RBC NO metabolites.

Plasma nitrate-Plasma nitrate levels increased with doping but remained identical 

among the study groups (Figure 6.16).
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Figure 6.16: Plasma nitrate levels before and after addition of ljiM, lOjiM, and lOOfiM of NO.
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Plasma nitrite- Addition o f  NO to blood increased plasma nitrite levels in all groups

(Figure 6.17).
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Figure 6.17: Plasma nitrite levels before and after addition of l|iM , lOftM, and IOOjiM of NO.

Plasma nitrite levels remained lower in diabetics compared to controls after adding 

luM  and lOuM o f NO (PO .05). However, when the blood was doped with lOOuM of 

NO, plasma nitrite levels reached statistically comparable levels in diabetics and 

controls. There was no significant difference between plasma nitrite levels in groups 

A and B after doping with 1, 10, and lOOuM o f NO.

207



Plasma RNO- Plasma RNO levels increased after doping (Figure 6.18).
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Figure 6.18: Plasma RNO levels before and after addition of lfiM, lOfiM, and lOOfiM NO.

RNO levels were lower in diabetics compared to controls. This trend reached 

statistical significance at lOuM NO.

Apportionment of NO in plasma

The apportionment o f NO between plasma nitrite and RNO after addition of 

exogenous NO was identical among controls, group A, and group B at each 

concentration o f added NO. Adding NO led to relatively higher proportions o f nitrite 

than RNO (figure 6.19 and table 6.4).
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Figure 6.19: Apportionment of plasma nitrite and RNO in healthy and diabetic 

samples before and after being doped with increasing concentrations of exogenous

NO.

nM %
C ontro ls G roup A Group B Controls Group A Group B

Controls
Nitrite 63.69 35.87 14.79 77.36 68.26 46.40
RNO 18.64 16.68 17.08 22.64 31.74 53.60

1uM NO
Nitrite 96.11 68.57 53.29 67.39 63.98 63.96
RNO 46.50 38.60 30.02 32.61 36.02 36.04

10uM NO
Nitrite 253.11 178.12 186.17 72.43 74.87 70.84
RNO 96.33 59.77 j 76.64 27.57 25.13 29.16

100uM NO
Nitrite 1369.66 967.58 1302.49 91.71 90.70 91.95
RNO 123.85 99.26 113.97 8.29 9.30 8.05

Table6.4: Levels (nM) and proportions (%) of nitrite and RNO in control and 

diabetic plasma before and after doping with NOC-9 at lpM, lOpM, and lOOpM of

NO.
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RBC NO metabolites

RBC nitrite- RBC nitrite increased incrementally with the addition o f incremental 

amounts o f NO. RBC nitrite remained lower in diabetics after the addition o f I jiM 

(P<0.01), lOpM (P<0.05) and lOOpM (P O .O l) o f  exogenous NO. RBC nitrite levels 

were comparable in groups A and B after the addition o f lpM  and lOpM NO. RBC 

nitrite levels were significantly lower in group A than group B after the addition of 

lOOpM NO (P O .O l) (Figure 6.20).
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Figure 6.20: RBC nitrite levels before and after addition of ljiM, 10fiM, and lOOfiM NO.
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RBC HbNO-Addition o f  NO to blood increased HbNO levels in all groups (Figure

6 .2 1 ) .
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Figure 6.21: HbNO levels before and after addition of lfiM, lOpM, lOOjiM NO.

HbNO levels remained lower in diabetic samples after the addition o f lpM  (P<0.01), 

lOpM (P<0.001), and lOOpM (P<0.001) NO. HbNO was lower in group A than group 

B after the addition o f lpM  (P<0.05), lOpM (P<0.05), and lOOpM NO (P<0.05).
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RBC SNO-Hb- Addition o f  NO  to blood increased SNO-Hb levels in all groups

(Figures 6.22 and 6.23).
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Figure 6.22: SNO-Hb levels after addition of ljiM, lOfiM, 100nM NO.
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SNO-Hb levels were lower in doped diabetic samples than controls. The difference 

reached statistical significance at lpM  (PO.OOl) and lOOpM NO (P O .O l).

SNO-Hb levels in doped samples from group A and group B were not statistically 

different (figure 6.23).
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Figure 6.23: SNO-Hb levels after addition of ljiM, lOjiM, lOOgM NO.
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Vessel relaxation experiments

Consistent with previous findings from our laboratory324, in a 1% oxygen 

environment, diabetic RBCs showed higher vasodilator properties compared to RBCs 

from controls (P=0.005) (table 6.5).

Group Minimum Maximum Mean SD

Controls Aortic ring 
relaxation (%)

3.14 13.02 6.65 2.51

Group A Aortic ring 
relaxation (%)

6.14 15.81 9.32 2.74

Group B Aortic ring 
relaxation (%)

1.51 17.12 9.14 3.54

Table 6.5: Aortic ring relaxation in study groups. (SD: Standard deviation)

A positive correlation was identified between the last HbAic and aortic ring 

relaxation in the diabetic groups but not controls. This correlation was stronger in 

Group A (r=0.907, P<0.001) than group B (r=0.398, P=0.142) (figure 6.24).
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Figure 6.24: Correlation between aortic ring relaxation (%) and the last HbAlC (%) in 

controls, Group A, and Group B. (r2=0.002, 0.823, 0.158 respectively).
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A similar correlation was found in the diabetic groups between aortic ring relaxation 

and the calculated average 5-year HbAic (Group A: r=0.836, P<0.001; Group B: 

r=0.358, P=0.19) (figure 6.25).
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Figure 6.25: Correlation between aortic ring relaxation (%) and average HbAlC (%) over 5 

years in Group A and Group B. (r2=0.7, 0.128 respectively).
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A much weaker correlation was observed between plasma glucose and aortic ring 

relaxation, (r=0.057, P<0.05). Aortic ring relaxation did not correlate with any of the 

measured NO metabolites except for HbNO. HbNO was negatively correlated with 

relaxation in Group A (r= -0.472, P=0.089) and more so in Group B (r= -0.532, 

P<0.05) (figure 6.26).
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Figure 6.26: Correlation between HbNO (nM) and aortic ring relaxation (%) in controls, Group 

A, and Group B. (r2=0.021, 0.222, 0.283 respectively).

2 1 6



Discussion

Effect of diabetes on NO metabolite levels

Endothelial dysfunction associated with reduced NO bioavailability is an established 

feature of diabetes mellitus. Impaired NO bioavailability can be attributed to 

decreased production of NO, increased degradation of NO, or both. Decreased 

production is less likely to be the primary cause of this apparent lack of vascular NO 

as it has been shown that hyperglycaemia increases NO production by increasing 

eNOS gene expression in endothelial cells266'268.

Ample evidence from several groups suggests that in type 1 diabetes, the main 

mechanism underlying reduced bioavailability of NO is hyperglycaemia-induced 

imbalance between NO and superoxide (O2' )and the subsequent destruction of NO by 

reacting with O2' 253;256'258;263‘265 to yield nitrate or peroxynitrite; some of which will 

eventually rearrange to form nitrate329.

Lower levels of plasma nitrite, RBC nitrite and HbNO in diabetics can be explained 

by decreased formation, increased degradation, or both (figure 6.27). Decreased 

formation- It is possible that in the presence of factors such as hyperglycaemia, 

advanced glycation end products (AGEs) and reactive oxygen and nitrogen species, 

NO metabolism is shifted away from the formation of these metabolites towards the 

formation of other by-products such as nitrate. Increased degradation- it is entirely 

possible that diabetes-related pathometabolic factors either directly react with plasma
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nitrite, RBC nitrite and HbNO to eliminate them; or affect their metabolism in a way 

to make them degrade faster. The nature and individual pathometabolic role o f these 

factors remains to be clarified.

m th o m e ta b o lic  f a c to r s  
( t  Glucose, AGEs, CV"*)

Increased
degradation

Decreased
formation

Plasma N02~ 
RBC N02" 
HbNO

Figure 6.27: Pathometabolic factors may affect both the formation and degradation of plasma 

nitrite, RBC nitrite, and HbNO in diabetics and lower their blood levels.

It is interesting to note that the levels o f nitrosoproteins in both plasma (i.e. RNO) 

and RBCs (i.e. SNO-Hb) remained stable across the groups. Nitrosoproteins display 

NO-like activity in vitro and have been proposed to be an important circulatory pool 

o f NO bioactivity (CHAPTER TWO). Whether there are mechanisms in place to 

maintain their blood levels and the potential impacts o f alterations in their levels and 

release kinetics on the cardiovascular system deserves further investigation.
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Not only the levels but also the distribution of NO metabolites in plasma and RBC 

compartments was altered in diabetes; as illustrated in figures 6.8, 6.9, and 6.10. 

Since NO metabolites are thought to have a regulatory role in microvascular 

physiology, alterations in their apportionment may potentially disturb tissue 

perfusion, especially under low oxygen conditions.

Higher plasma RNO levels in females

Plasma levels of nitrosoproteins (RNO) were higher in females in all groups. 

Physiological and metabolic differences between male and female populations are 

generally attributed to hormonal factors. It is known that oestrogen increases 

important carrier proteins in plasma such as ceruloplasmin, transferrin, and thyroxin 

binding globulin330. Albumin is the most abundant plasma protein. Early work by 

Stamler et al. on human and rabbit blood proposed S-nitroso-albumin (albumin-SNO) 

as the principal S-nitrosoprotein in mammalian plasma103. Nonetheless, albumin-SNO 

cannot be taken accountable for the increased levels of RNO in females in this study. 

Firstly, oestrogen does not affect albumin levels330. Secondly, in this study females 

showed lower levels of serum albumin compared to males (Female: 41.94± 0.75 (g/1) 

versus Male: 44.26±0.56 (g/1); P<0.05). Total serum protein was also lower in females 

but did not reach statistical significance (P=0.144). It is likely that female milieu 

promotes the formation of RNO species which are independent of plasma albumin 

and protein levels.

Correlation between NO metabolites

It is not surprising to find a strong correlation between plasma nitrite and both HbNO 

and SNO-Hb in healthy individuals. HbNO is the direct product of reaction between
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nitrite (or NO) with deo\yhaem oglobin11;28;3°. Adding nitrite to blood, either in vivo 

or ex-vivo, also produces SNO-Hb in concentrations lower than HbNO77’78. The more 

nitrite in the plasma, the more nitrite will enter the RBCs to form HbNO and SNO-Hb 

(CHAPTER ONE). Therefore it is expected that in healthy individuals, levels o f 

HbNO and SNO-Hb reflect plasma nitrite closely as well as direct formation o f these 

metabolites from NO (figure 6.28).

NO
Controls

Figure 6.28: Both NO and nitrite can react with deoxyhaemoglobin to form HbNO inside the 

erythrocytes.

The correlation becomes weaker and less predictable in diabetics where 

pathometabolic factors perturb the availability o f both NO and plasma nitrite (figure 

6.29).
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Figure 6.29: Role of pathometabolic factors in confounding the correlation between plasma 

nitrite and HbNO. In controls (figure 6.28), the relationship between NO, plasma nitrite and 

HbNO is undisturbed. In diabetics, pathometabolic factors can perturb the correlation by 

affecting biochemical pathways at all levels.

Correlation between NO metabolites and HbA1c

Consistent with the above findings, I also found that diabetes perturbs both the 

correlation between plasma nitrite and HbNO, on one hand and nitrite with HbAic on 

the other hand. The negative linear relationship observed between plasma nitrite and 

HbAic in controls did not exist in diabetics. In the case o f HbNO, the moderate 

negative correlation with HbAic in controls became gradually weaker in Group A 

and more so in Group B.

2 2 1



Exogenously added NO studies

Exogenous NO experiments in the present study provided further evidence for the 

important role o f “enhanced degradation o f NO” in diabetic blood in reducing the 

potentially bioavailable metabolites o f NO. These experiments demonstrated that the 

levels o f  nitrite and RNO in plasma remained lower in diabetic samples even after the 

addition o f exogenous NO. Levels o f HbNO, SNO-Hb and RBC nitrite were also 

lower in diabetic samples before and after the addition o f exogenous NO. These 

observations suggest that lower levels o f NO metabolites seen in diabetic blood are 

due to increased degradation o f NO rather than impaired generation. Figure 6.30 

summarises the levels o f potentially bioavailable NO metabolites (i.e. total plasma 

and RBC NO metabolites excluding nitrate) in control and diabetic groups at baseline 

and after the addition o f lfiM, lOpM, and lOOpM exogenous NO.
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Figure 6.30: Total levels of potentially bioavailable NO metabolites (i.e. total plasma and RBC 

NO metabolites excluding nitrate) in control and diabetic groups at baseline and after the 

addition of lpM, lOpM, and lOOpM exogenous NO.
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Interestingly, although the absolute levels of plasma nitrite and RNO were lower in 

diabetic samples; their apportionment in plasma was identical among all 3 study 

groups at each concentration of exogenous NO (figure 6.19).

Vasodilator properties o f diabetic blood: RBC-related 

vasodilating factor (RRVF)

Diabetic patients are known to have accelerated endothelial dysfunction which has 

been linked to abnormal metabolism of NO. Given the fact that the bioavailability of 

NO is reduced in diabetic blood, one may expect it to have lower vasodilator 

properties. Nonetheless, my observations showed that RBCs from diabetic patients 

exert stronger vasodilator properties than RBCs from controls, ex vivo. This property 

of RBCs was more significant in Group A patients who were generally younger and 

had a shorter history of diabetes. These findings may help to explain the established 

phenomenon of generalised microvascular vasodilation and the consequent increase 

in microcirculatory blood flow in early type 1 diabetes331.

It has been known for a long time that resting blood flow in the retina332'334, 

glomeruli335'337, and skin capillaries338 is elevated in early diabetes mellitus. 

Increased blood flow leads to endothelial damage, thrombogenesis (in collaboration 

with hypercoagulability state of diabetes), and also enhances protein extravasation. In 

later stages of disease, capillary lumens may become narrow or completely occluded 

due to the thickening of basement membrane, proliferation of endothelial cells, and 

the formation of microthrombi339. Injury to the endothelium leads to adaptive 

microvascular sclerosis which deters vasodilatory reserve and autoregulatory
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capacity of the microvasculature338. Blood flow may get further impaired by 

macrovascular disease in larger arteries upstream.

Microvascular vasodilation in diabetes has been attributed to several factors 

including altered levels of vasoactive substances; altered vasomotor responsiveness, 

chronic plasma volume expansion, and tissue hypoxia331. My observations suggest 

the existence of a RBC-related vasodilating factor (RRVF) which is present in both 

diabetics and controls but exerts stronger vasodilator activity when RBCs from the 

former group are added to aortic ring preparations in a hypoxic tissue bath system ex 

vivo. Moreover, this RBC-related vasodilator activity is in a strong correlation with 

HbAic; more so in my Group A patients who were generally younger diabetics with 

shorter duration of disease.

The exact nature of RRVF remains to be clarified. Previous work has suggested an 

NO-type species to be responsible for the relaxation instigated by RBCs in tissue 

bath experiments324. The results of this study neither support nor reject those 

findings. I did not find a positive correlation between aortic ring relaxation and any 

of the NO metabolites analysed in this study. Nonetheless, this does not necessarily 

exclude a role for NO metabolites in aortic ring relaxation. It is entirely possible that 

RRVF is an NO adduct which cannot be detected by the tri-iodide and DAN assays. 

It is also possible that RRVF is a distinct factor from NO (e.g. K+ or adenosine) 

which acts in parallel to RBC-NO to exert vasorelaxation.

The role and position of HbAic in the RRVF system needs to be defined. Like other 

advanced glycation end products (AGE)262;340, HbAic might be expected to inactivate
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NO more efficiently than unglycated Hb, and to mediate relative vasoconstriction. 

Paradoxically in this study RBCs with higher HbAic content showed stronger RRVF 

activity. A finding which may imply RRVF activity is not exclusively dependent on 

NO. An alternative explanation is that HbAic promotes the formation of a special NO 

adduct which is inactive in normal conditions but becomes active to exert RRVF 

activity in a hypoxic tissue bath. If RRVF proves to be independent of NO, glycation 

of Hb may still have a role in promoting the formation of RRVF or enhancing its 

release from the diabetic RBC, the mechanism of which remains to be elicited.

Finally, HbAic may not have any cause-effect relationship with vasodilation and 

simply reflect the general diabetic hyperglycaemic state. The three possible links 

between HbAic and RRVF are summarised in figure 6.31.
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Figure 6.31: Potential explanations for the correlation between HbAiC and RRVF activity. 1) 

RRVF is a NO adduct and HbAiC increases its formation by attracting more NO into RBCs. 2) 

RRVF is not a NO adduct. Increased HbAlc leads to increased RRVF activity directly or via 

non-NO dependant pathways. 3) Increased HbA]C and RRVF activity are independent features 

of diabetes mellitus. There is no direct link between HbAlc and RRVF.

The negative correlation observed between aortic ring relaxation and HbNO in 

diabetics can be explained by the co-operative nature o f the binding o f NO to 

haemoglobin as demonstrated by Gow et al.341. HbNO has a higher affinity for NO 

than free haemoglobin. This makes HbNO a stronger “NO quencher” which can 

eliminate free NO from the system more efficiently than Hb and therefore mitigate 

NO-related vasorelaxation.
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Conclusions

1. NO metabolite levels, their ratio, and their apportionment is altered in 

diabetics (table 6.6, figure 6.32). These abnormalities precede the 

clinical onset of microvascular complications.

2. Women have higher plasma RNO levels, regardless of their diabetic 

status.

3. Diabetic RBCs have stronger vasodilator properties. The RRVF 

activity increases with HbAic. Stronger RRVF activity in diabetics 

may help to explain haemodynamic abnormalities in early diabetes.

Haemodynamic abnormalities can be detected in the glomerular 

microcirculation and the retina many years before nephropathy or retinopathy 

become clinically detectable331.Correspondingly, this study demonstrated that 

alterations in NO metabolism precede microvascular complications in type 1 

diabetes. Prospective studies are required in the future to investigate a cause- 

effect relationship between altered NO metabolism and microvascular 

complications of diabetes.
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Compartment Metabolite Levels in Group A 
diabetics compared 
to controls

Levels in Group B 
diabetics compared 
to controls

Plasma nitrate

nitrite i u
RNO <—>

RBC nitrite u i

HbNO i a

SNO-Hb

Table 6.6: Summary of changes in NO metabolites in the diabetic groups in comparison to 

controls.

300

250

200

O
*  150
C

100

50

0

Figure 6.32: Summary of NO metabolites levels in controls, Group A, and Group B (plasma 

nitrate not included).
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CHAPTER SEVEN

Overall summary
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It is well accepted that endothelial NO plays an important role in the control of 

vascular tone and blood flow25. In vivo radical NO has a very short life span in the 

blood prior to its metabolism to other nitrogen oxide species. Consequently direct 

effects of NO are confined to a short distance from its site of production51. However, 

the biological metabolites of NO which circulate in the plasma and RBC are more 

stable compounds with considerably longer circulatory life spans. These species have 

been proposed to act as a potential reservoir of bioactive NO in the circulation. 

However, the identity of the metabolite(s) responsible for conserving bioactivity and
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the mechanism(s) involved in the release of bioactivity and its transport to the site of 

action still remain to be fully elucidated. Several scientific groups have studied 

various NO metabolites in plasma and RBC over the past 15 years in a quest to 

identify which metabolite(s) and what mechanism(s) play primary roles. One 

particular issue which has hindered progress in this research field has been the lack of 

a standard methodology for NO metabolite measurements. As a result, wide 

differences can be found among laboratories in the reported values of circulatory NO 

metabolites.

The focus of this PhD project

The present PhD project focused on the significance of NO metabolites both in health 

and in the pathophysiology of cardiovascular disorders. Firstly as a result of the issues 

related to methodology I examined, modified, and improved the available 

methodologies. The development of assays to analyse various NO metabolites with 

the least risk of contamination allowed collection and accurate assessment of plasma 

and RBC samples within the context of two human model systems.

Secondly I went on to examine the significance of NO metabolites in health and 

investigated the profile and dynamics of NO metabolism across the heart and lungs in 

patients with normal coronary arteries.

Finally I looked at NO metabolites in a disease state; type 1 diabetes mellitus, one of 

the most important risk factors for vascular disease.
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Cross-heart study

I studied NO metabolism across the cardiac and pulmonary beds in healthy subjects. 

In this work I explored variations in plasma and RBC NO metabolites in response to 

increased oxygen demand. To study the physiological importance of NO and its 

metabolites in the regulation of coronary blood flow, each study was repeated after 

inhibition of endothelial NO production by a systemic infusion of L-NMMA. I also 

looked at the association of NO metabolites and their apportionment between RBC 

and plasma compartments in relation to blood oxygen and the cross heart, cross 

pulmonary oxygen gradients.

I established the profile of individual nitric oxide metabolites and the dynamic 

changes in their concentration, production/consumption across human heart and lungs. 

These changes were related to coronary function and I used the TIMI-ffame count 

method to estimate coronary flow. The study provided evidence for transcardiac gain 

and transpulmonary loss of NOx -mainly reflecting plasma nitrate. The novel finding 

of transpulmonary loss of plasma nitrate may account for a fraction of the 35% 

unknown fate of ingested nitrate. In addition, this study provided evidence for 

transcardiac loss and transpulmonary addition of nitrite from/to plasma. Plasma RNO 

levels remained stable throughout the study. Contrary to the changes in nitrite, the 

study provided further evidence for transcardiac formation of Hb-bound NO and 

transpulmonary formation of RBC-nitrite.

In terms of relevance to the two main theories which propose either S- 

nitrosohaemoglobin or plasma nitrite as the stable “long-distance” transporters of NO
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bioactivity in the blood, my study did not support the S-nitrosohaemoglobin 

hypothesis as no dynamic changes nor any significant gradient were detected between 

SNO-Hb levels across the coronary vascular bed. Regarding the nitrite hypothesis, 

transcardiac “loss” of nitrite may be interpreted as transcardiac “consumption” of 

nitrite to favour a role for nitrite in coronary physiology. Together with the increase in 

intraerythrocytic Hb-bound NO, it is tempting to speculate the traffic of nitrite from 

plasma into RBC as a function of deoxygenation. However, as mentioned previously 

in CHAPTER FIVE, arteriovenous differences can be misleading and could be the 

result of higher production of nitrite on the arterial side or higher nitrite consumption 

in the low oxygen milieu of venous blood.

Consistent with previous studies, my study confirmed the important contribution of 

NO to the basal coronary tone in human subjects and demonstrated that coronary 

vasodilatation in response to increased myocardial oxygen demand is not exclusively 

NO dependent and occurs even when endothelial NO production is inhibited by L- 

NMMA. Moreover, I found that coronary vasodilator response to pacing is enhanced 

with the inhibition of NO production; particularly in more distal and hence smaller 

segments of the coronary arteries. Based on this observation, I postulate the presence 

of an EDHF-like activity in the epicardial coronary arteries. Further studies into the 

exact nature of this EDHF-like factor may have important clinical implications in the 

medical treatment of patients suffering from angina pectoris, particularly in those with 

more distal lesions in their coronary arteries which are anatomically less amenable to 

revascularisation.
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Regarding coronary blood flow (CBF), this study showed that NO is not necessary for 

the maintenance of CBF at rest, but it plays an important role in enhancing the CBF in 

response to increased myocardial oxygen demand. When the heart was paced at 85% 

maximum heart rate, CBF was reduced in the presence of L-NMMA.

Studying the role of oxygen in the apportionment of NO metabolites, I observed that 

hypoxaemic conditions favour the formation of intraerythrocytic NO metabolites at 

the cost of decreased NO metabolites in plasma. One can postulate from this 

observation that NO or a related moiety could in principle “swap” between plasma 

and RBCs as a function of oxygen. More importantly, this study shows that this 

phenomenon may occur during a single arteriovenous transit; a finding that bears 

relevance to the question whether plasma or RBC sources can diffuse quickly enough 

between intra- and extravascular compartments in order to exert meaningful 

physiological effect.

In conclusion from studying the significance of NO metabolites in the coronary 

circulation, I conclude that NO is dynamically metabolised across the heart and that 

the compartmentalisation of its metabolites between plasma and RBC is driven 

primarily by the oxygen saturation of the blood.

Diabetic study

To investigate the potential alterations in nitric oxide metabolism in a disease state, I 

chose diabetes mellitus as a model. Diabetes mellitus is associated with endothelial 

dysfunction and is a major risk factor for cardiovascular disease321. Patients with type
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1 diabetes with no other cardiac risk factors or a previous history of macrovascular 

disease were recruited to this study. The profile of NO metabolites was investigated in 

this group of patients and potential correlations were drawn between the formation of 

advanced glycation end products, alterations in nitric oxide metabolism, and the 

existence of microvascular complications of diabetes. I found blood levels of NO 

metabolites to be generally lower in diabetics compared to controls; and lower in 

those with microvascular complications compared to those without. I also discovered 

a physiological correlation between plasma nitrite and HbNO on one hand and HbAic 

on the other hand in normal subjects which is perturbed in diabetics. Studying NO 

metabolites in diabetic patients without and with microvascular complications showed 

that disturbance in NO metabolism occurs prior to clinically apparent sequelae.

My vessel relaxation experiments suggested the existence of a RBC-related 

vasodilating factor (RRVF) which is present in both diabetics and controls but exerts 

stronger vasodilator activity when RBCs from the former group are added to aortic 

ring preparations in a hypoxic tissue bath system ex vivo. Another novel but yet 

unexplained finding was a positive correlation between this RBC-related vasodilator 

activity and HbAic. This was stronger in that group of patients who were generally 

younger with shorter duration of disease. Given that no significant correlation was 

found between NO metabolites and vasorelaxation and that diabetics exhibited less 

total NO metabolites, it is unlikely that this phenomenon relates to different release 

kinetics from the RBC. A plausible explanation is that the recapture of released NO in 

the tissue bath system may be significantly reduced in type 1 diabetes and therefore 

more NO or NO moiety would be bioactively available to relax the aortic rings. Other
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possibilities are that RRVF is either not a NO moiety at all or is a NO moiety but the 

current methodology is not sensitive or specific enough to detect it.

The above findings also provide a potential basis for the development of diagnostic 

tests which can clarify the diagnosis of diabetes in uncertain cases as well as 

screening tests to identify patients who are at higher risk of developing microvascular 

disease or those who are in the subclinical phase of microvascular complications. 

Further treatment strategies can then be implemented to delay the progress of the 

pathologic process in these patients.

Propositions for future studies

This study like any other PhD project has specifically addressed a select few questions 

and simultaneously created many more.

The particular NO moiety responsible for the transfer of NO bioactivity in blood 

remains unidentified. It is entirely possible that the preservation of NO bioactivity is 

not dependent on a single moiety but occurs through interplay among a group of NO 

metabolites. The biochemistry of such an interplay and the potential impact of 

physiological (e.g. oxygen) and pathological (e.g. free radicals) factors warrant further 

investigation. In terms of existing hypotheses (Stamler versus Gladwin) the truth is 

likely somewhere in between. My study supports exchange of NO-“moiety” between 

blood metabolites and blood compartments during a single arteriovenous transit.
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It is entirely possible that the major bioactive pool of NO in the body is intracellular 

rather than circulatory nitrite. Intracellular pH of smooth muscle cells decreases 

significantly (~pH 6.687) during hypoxia/ischaemia and increased metabolic activity. 

In these acidic conditions, NO can be generated from non-enzymatic reduction of 

inorganic nitrite86 to activate sGC and relax the smooth muscle cells.

This study investigated transcardiac NO metabolism in human subjects with normal 

coronary arteries. There is evidence from the diabetic work that NO metabolites may 

behave differently in disease. Transcardiac NO metabolism in the presence of 

coronary disease needs to be explored further. It is also important to recognise my 

studies involved sampling from sites under normal oxygenation status, even at higher 

heart rates. It is entirely possible that NO metabolites may accrue greater 

physiological importance when oxygenation is perturbed, such as during ischaemia.

Another area which deserves further investigations is the observed EDHF-like activity 

in coronary arteries. Pharmacological agents which enhance this effect could 

potentially become the new class of antianginals in the future.

From the diabetic study, the RBC-related vasodilating factor (RRVF) remains to be 

identified. Why is RRVF more potent in diabetics? What is the biochemical basis of 

the correlation between HbAic, NO metabolites, and vessel relaxation? How can these 

findings be pursued to the development of clinical diagnostic and screening tests? 

Would a tighter control of hyperglycaemia rectify alterations in NO metabolism?
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Diabetes is only one of the risk factors for cardiovascular disease. The impact of other 

risk factors such as smoking and hyperlipidaemia on NO metabolism should also be 

studied.

•  •  •

Taken together, the role(s) of blood NO metabolites are interlinked and in constant 

flux. Largely based on the work presented in this thesis but also ongoing studies, it is 

our contention that most NO metabolites are in equilibrium with each other and that 

perturbation of any one particular metabolite or route has influence on the amounts 

and roles of the others. By definition, each NO metabolite can (depending on 

conditions) biochemically form any other. It has also become apparent to us that each 

NO metabolite may have distinct bioactivity that may only in part be mediated by 

classical NO pathways.

This work therefore provides new and exciting data from human subjects that are 

accurate and robust. They also provide the foundation for next generation research 

into possible ways to manipulate these processes to benefit human health.
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Appendix 1: Coronary utilisation of a stable nitric 
oxide reservoir: importance during increased 
metabolic demand.
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Infusions

1. Aminophylline250mg/10ml vials

• Loading dose: Add 5mg/kg to 100ml Normal Saline 0.9% and infuse over 20 minutes (100 
drops/minute).

• Maintenance dose: Add 250mg to 250ml Normal Saline, thus, make a 1 mg/ml solution. Infuse 
this solution at the rate of 500 pg/kg/hour using table 1:

Table 1:

Weight (kg) Maintenance dose, Infusion rate (ml/hour)

50 25
55 27.5
60 30
65 32.5
70 35
75 37.5
80 40
85 42.5
90 45
95 47.5
100 50

2. L-NMMA 260mg/vial

• Loading dose: 5mg/kg over 7 minutes.
• Maintenance dose: 50 pg/kg/minute

• Loading dose: Add 500mg (2 vials) of L-NMMA to 50ml Normal Saline 0.9 % (lOmg/ml). Infuse 
the calculated dose over 15 minutes.

•  Maintenance dose: Add 250mg to 25ml Normal Saline (lOmg/ml). Put into a 50ml syringe and 
infuse with a syringe driver. (Table 2)

Table 2

Weight (kg) Loading dose mg/7 min (drops/min) Maintenance dose (ml/hour)

50 250 (33) 15
55 275 (36) 16.5
60 300 (40) 18
65 325 (43) 19.5
70 350 (47) 2 1

75 375 (50) 22.5
80 400 (54) 24
85 425 (57) 25.5
90 450 (60) 27
95 475 (67) 30
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PA TIENT INFORM A TION SHEET

1. Study Title

Coronary utilisation of a stable nitric oxide reserve: 
Importance during increased metabolic demand.
(Measuring a messenger produced by the lining of healthy blood vessels to keep them 
open, at rest and as the heart rate is increased (pacing))

2. Invitation Paragraph

Your doctors will have told you that you need to undergo electrophysiological studies 
(EPS) to further investigate your rapid heart beat. Dr James, Professor Frenneaux, Dr 
Paul and their research groups, at the Wales Heart Research Institute and St Peter’s 
Hospital, are conducting this study. Before you decide to help with it, it is important 
that you understand what the research is about. PLEASE READ THIS 
INFORMATION SHEET CAREFULLY and discuss it with friends and relatives. 
Please ask us if there is anything that is not clear or if you would like more 
information. Take time to decide whether or not you wish to take part. You will be 
given a copy of this information and consent form if you decide to take part.
Thank you for taking the time to read this.

3. What is the purpose of the study?

The overall purpose of the study is to look at the effects of nitric oxide (NO), a 
messenger produced by the lining of healthy blood vessels to keep them open. You 
are being asked to enter this study as a healthy patient without diseased arteries to the 
heart. The necessary blood samples will be taken at the time of your 
electrophysiological studies.
The study will compare the use of the messenger (NO) in the healthy heart (yours), to 
those patients’ with diseased arteries. Patients’ in both groups will have blood samples 
taken with a resting heart rate and also when the heart rate is increased during the 
procedure.

4. Why have I been chosen?

You have been chosen because you are a healthy man undergoing 
electrophysiological studies as recommended by your doctors. Also you have had a 
normal exercise test, suggesting that you have normal arteries to the heart.

5. Do I have to take part?

Your participation in this study is entirely voluntary. Should you decide not to take 
part you will of course still have your planned electrophysiological studies. Your care 
will remain unchanged.
6. What will happen to me if I take part?
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If you decide to take part in the study you will be asked not to take any of your heart 
medication for 48 hours beforehand. You will also be asked not to eat or drink for 12 
hours before the study. We will then fully explain the procedure and ask you to sign a 
consent form.
Just before we start the study we will give you a small tablet to swallow in order to 
relax you. A slow intravenous infusion of a drug called aminophylline (which is 
commonly used in patients with asthma to help with their breathing) will be started 
and continued throughout the study. Next the skin at the top of your leg will be 
cleaned and some sterile towels placed over your legs. A small injection of local 
anaesthetic will be put into the top of the right leg to numb the area. A needle will be 
inserted into the artery and another into the vein. Plastic tubes will then be used, so 
that no further needles are required. Via these small tubes special catheters will be 
inserted around into the veins and arteries of the heart and also a wire fed around into 
one chamber. A small amount of special dye will be injected through the tubes as an 
X ray is taken. This will allow us to see the outline of your arteries clearly. After this 
we will take several small samples of blood out of the tubes.
By using the wire already in position we will the pace your heart and slowly increase 
your heart rate. During this time we will repeat the blood tests.
Finally, after a few minutes we will then, via the tubes, inject a small amount of a 
drug which stops the production of extra messenger, and repeat the slow increase in 
your heart rate.
After this Dr Paul will carry out the electrophysiological study as planned. All of the 
tubes, catheters and wire already inserted will be used for the standard procedure in 
your EPS.
The study part of the procedure will only add about 30 minutes to the procedure time.

7. What do I have to do?

Once you have read this form and had time to think about the study, you will be 
contacted by Dr Paul’s research team. If you agree to participate then you will be 
contacted again before the date of your electrophysiological study.

8. What is the drug or procedure that is being tested?

No drugs are being tested, but the amount of messenger released into your blood from 
your healthy heart is measured.

9. What are the alternatives for diagnosis or treatment?

This study does not affect your future care in any way as it is being done in addition 
to your planned management.

10. What are the side effects of taking part?

The side effects of taking part are the same as for your planned EPS. This includes, 
bleeding from the artery or vein after the procedure, and also an awareness of the 
increase in your heart rate.

11. What are the possible disadvantages and risks of taking part?
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You will feel some discomfort while the tubes are placed in your leg and possibly 
some palpitations while the catheters are placed in your heart (both should last no 
more than a few seconds)
Lying flat following the procedure can also be uncomfortable. The main risks relate 
to the bleeding from the leg (discussed above) and of rhythm disturbances 
(palpitations) caused by the catheters in your heart. If these occur for more than a few 
seconds the catheters will be withdrawn. You may notice some leg discomfort for a 
few days after the procedure and sometimes some bmising.

12. What are the possible benefits of taking part?

The benefits of taking part are that the procedure involves no further risk to you than
having the EPS alone. The benefit is that by studying a healthy heart, we are able to
better understand other patients’ with diseased arteries.

13. What if new information becom es available?

If you agree to participate in this study you are being studied as a healthy patient, and 
therefore the information obtained will be of help to those patients’ with coronary 
artery disease.

14. What happens when the research study stops?

Your care will continue as normal. You will not be asked to attend any additional 
follow up visits for the purpose of the study.

15. What if something goes wrong?

If taking part in this research project harms you, there is no special compensation 
arrangement. If you are harmed due to someone’s negligence then you may have 
grounds for legal action, but you may have to pay for it. Regardless of this, if you 
wish to complain about any aspect of the way you have been approached or treated 
during the course of this study the normal National Health Service complaints 
mechanisms may be available to you.

16. Will my taking part in this study be kept confidential?

Dr James, Professor Frenneaux, Dr Paul and their study personnel will collect 
information about you. This will remain confidential.
This data will be kept in a secure office at the University of Wales College of 
Medicine.
Anonymity will be maintained throughout th e  trial.

17. What will happen to the results of the research study?

The data from this study may be used in publications. However, vour name will not 
appear in the publications.
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18. Who is organising and funding the research?
The study is organised and funded jointly by the Cardiology Research Department’s 
at St Peter’s Hospital and the University Of Wales College Of Medicine.

19. Who has reviewed the study?

This study has been reviewed by the North West Surrey Local Research Ethics 
Committee, the Bro Taf Local Research Ethics Committee. Each of the above 
hospitals’ Research and Development Departments have also reviewed and approved 
the study on behalf of the Trusts’.

20. Contact for further information

If  you or your relatives have any questions about the study, please call 
Dr Sue Ellery or Dr V. Paul 01932 723534

YOU WILL BE GIVEN A COPY OF THIS INFORMATION SHEET AND A SIGNED CONSENT 
FORM TO KEEP.
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Centre Number 
Study Number:

Patient Identification Number for this Trial:

CONSENT FORM

Coronary utilisation of a stable nitric oxide reservoir: 
importance during increased metabolic demand.
(Measuring a messenger produced by the lining of healthy blood vessels to keep 
them open, at rest and as the heart rate is increased (pacing))

Name of Researcher: Dr Afshin Khalatbari, Dr Vince Paul, Dr Phillip James& 
Professor Michael Frenneaux

Please Initial box

1 .1 confirm tha t I have read  and  understood the information sheet □
d a te d ................................(Version................. ) For the above study and have had
the opportunity to ask questions.

□2. I understand tha t my participation is voluntary and  that I am  I

free to w ithdraw a t any time, without giving any reason, without my medical 
c a re  or legal rights being affected .

3. I a g re e  to take part in the above  study □
N am e of Patient Date Signature

N am e of Person taking consent Date Signature
(if different from researcher)

R esearcher Date Signature

1 for patient; 1 for researcher; 1 to be kept with hospital notes
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Appendix 2: The profile of nitric oxide metabolites in 
type 1 diabetes mellitus; correlation with 
microvascular complications
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Information sheet for medical and nursing staff at the

Diabetes Clinic, University Hospital of Wales, Cardiff

6  February 2005
Impaired release of Vascular Nitric Oxide (NO) by Highly Glycated 
Haemoglobin: Correlation with Microvascular Disease.

Dr Afshin Khalatbari, Dr John Peters, Dr Philip James
Wales Heart Research Institute, University Hospital of Wales

To: Staff at Diabetes Clinic/ UHW

Microvascular complications remain major causes of morbidity and mortality in 
diabetes, but the aetiology is poorly understood. Our recent data suggest that 
abnormal nitric oxide (NO) metabolism may have a pathogenetic role in 
microvascular complications of diabetes.

To study this further we need to take (up to) 40ml blood from the patients with type 1 
diabetes mellitus attending the Diabetes Clinic, who do not have any other 
cardiovascular risk factors (non-smoker, normal blood pressure, total cholesterol<5.2, 
triglyceride<2 , no history of ischaemic heart disease) and fall into one of the 
following categories:

A) 30 patients without any microvascular complications.
B) 30 patients with moderate to severe microvascular complications (neuropathy, 

nephropathy, retinopathy).
C) 30 newly diagnosed type 1 diabetics.

For groups A and B, this will be a one off blood sample. For group C, I shall see them 
in 6  months time when I take a second sample.

We also need 30 non-diabetic blood samples as our controls. This can be taken from 
healthy companions of the patients upon their consent.

Blood will be taken with a 50ml syringe via a butterfly catheter.
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Due to technical limitations, we can only take and analyse blood from one patient (or 
control) each day. I shall attend the Clinics early and review the notes beforehand to 
choose the suitable patient and record the relevant past medical history. Then I will 
speak to the patient, explain the study, and ask for his/her consent. If none of the 
patients met the criteria, I will ask a healthy relative to give blood which will be 
analysed as control.

After taking the blood, HbAlC will be measured in the Clinic and I will store the rest 
of the blood in blue (clotting) and purple (FBC) topped blood tubes and take them to 
WHRI for further analysis.

Please do not hesitate to contact me if you have any questions regarding the above 
study.

Dr Afshin Khalatbari
Clinical Research Fellow
Wales Heart Research Institute
Extension: 2912, E-mail: khalatbaria@cf.ac.uk
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PA TIENT IN FORMA TION SHEET

1. Study Title

Impaired release of Vascular Nitric Oxide (NO) by Highly Glycated 
Haemoglobin: Correlation with Microvascular Disease.

(Measuring chemicals produced by the lining of blood vessels and heart tissue and 
studying their correlation with diabetes control and chronic complications.)

2. Invitation Paragraph

Dr James, Dr. Peters, Dr. Khalatbari and their research group at the University 
Hospital of Wales and the Wales Heart Research Institute are running this study. 
Before you decide to help with it, it is important that you understand what the 
research is about. PLEASE READ THIS INFORMATION SHEET CAREFULLY 
and discuss it with friends and relatives. Please ask us if there is anything that is not 
clear or if you would like more information. Take time to decide whether or not you 
wish to take part. You will be given a copy of this information and consent form if 
you decide to take part. Thank you for taking the time to read this.

3. What is the purpose of the study?

The overall purpose of the study is to find any correlation between chronic 
complications of type 1 diabetes, level of blood sugar control, and nitric oxide 
metabolites in the blood.

4. Why have I been chosen?

You are chosen because you have type 1 diabetes with no other cardiovascular risk 
factors.

5. Do I have to take part?

Your participation in this study is entirely voluntary. Should you decide not to take 
part your care will remain unchanged.

6. What will happen to me if I take part?

We will fully explain the procedure and ask you to sign a consent form. Afterward, up 
to 40ml venous blood will be taken from a peripheral vein. The procedure will be 
similar to any routine venesection in the hospital. This is only a one-off blood sample.

7. What do I have to do?

Once you have read this form and had time to think about the study, you will be asked 
to sign the consent form.
8. What is the drug or procedure that is being tested?
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No drugs or procedures are being tested.

9. What are the alternatives for diagnosis or treatment?

This study does not affect your future care in any way as it is being done in addition 
to your planned management.

10. What are the side effects of taking part?

The side effects of taking part are the same as any routine venesection.

11. What are the possible disadvantages and risks of taking part?

There are no major risks or disadvantages.

12. What are the possible benefits of taking part?

The benefit is that by studying your blood, we are able to better understand other 
patients’ with diabetes.

13. What if new information becomes available?

If you agree to participate in this study, the new information obtained will be of help 
to those patients’ with diabetes.

14. What happens when the research study stops?

Your care will continue as normal. You will not be asked to attend any additional 
follow up visits for the purpose of the study.

15. What if something goes wrong?

If taking part in this research project harms you, there is no special compensation 
arrangement. If you are harmed due to someone’s negligence then you may have 
grounds for legal action, but you may have to pay for it. Regardless of this, if you 
wish to complain about any aspect of the way you have been approached or treated 
during the course of this study the normal National Health Service complaints 
mechanisms may be available to you.

16. Will my taking part in this study be kept confidential?

Dr James, Dr. Peters, Dr. Khalatbari and their study personnel will collect information 
about you. This will remain confidential. This data will be kept in a secure office at 
the Wales Heart Research Institute. Anonymity will be maintained throughout the 
trial.
17. What will happen to the results of the research study?

The data from this study may be used in publications. However, your name will not 
appear in the publications.
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18. Who is organising and funding the research?

The study is organised and funded jointly by the Cardiology Department at the 
University Hospital of Wales and the Wales Heart Research Institute, Cardiff 
University.

19. Who has reviewed the study?

Research and Development Office at Cardiff & Vale NHS Trust, Local Research 
Ethics Committee

20. Contact for further information

If you or your relatives have any questions about the study, please call 
Dr Afshin Khalatbari 029 2074 2912

YOU WILL BE GIVEN A COPY OF THIS INFORMATION SHEET AND A 
SIGNED CONSENT FORM TO KEEP.
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Centre Number:
Study Number:
Patient Identification Number for this Trial:

CONSENT FORM

Impaired Release of Vascular Nitric Oxide (NO) by Highly Glycated 
Haemoglobin: Correlation with Microvascular Disease.
(Measuring chemicals produced by the lining o f blood vessels and heart tissue at rest 

and after coronary angioplasty.)

Name of Researchers: Dr. John Peters, Dr Philip James& Dr. Afshin Khalatbari 

Please initial box
1. I confirm that I have read and understood the information sheet ( )

dated.................................(version.................. ) for the above study
and have had the opportunity to ask questions.

2. I understand that my participation is voluntary and that I am free to ( )
withdraw at any time, without giving any reason, without my medical 
care or legal rights being affected.

3. I agree to take part in the above study. ( )

Name of Patient Date Signature

Name of Person taking consent Date Signature
(if different from researcher)

Researcher Date Signature

1 for patient; 1 for researcher; 1 to be kept with hospital notes 
Version 1 05/03/2005 PRO/03/06
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Questionnaire

Impaired release of Vascular Nitric Oxide (NO) by Highly Glycated 
Haemoglobin: Correlation with Microvascular Disease.

Date:

Patient number: Addressograph:

□  Group A- Type 1 DM No complications
□  Group B-Type 1 DM with complications

What complications:
□  Retinopathy □  Nephropathy □  Neuropathy

□  Group C- Type 1 newly diagnosed (Return date :.................................... )

HbAlC:

Cholesterol:

PMH: DH:
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Appendix 3: Tissue Organ Bath System protocol
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Tissue Organ Bath System protocol

Radnoti 8 Channel tissue bath System was used.

1. Tissue bath was turned on and set to 37°C.

2. New Zealand white rabbits weighing 2-3kg were anaesthetised with sodium 

pentobarbital and killed.

3. The thoracic aorta was removed from the rabbit and placed immediately in 

Krebs-Ringer buffer of the following composition (mM)\ NaCl 118.7, KC14.7, 

CaCl2 2.5, MgS04 1.2, KH2P 04 1.2, NaHC03 24.8, D-glucose 10.1, pH 7.4 

and aerated with 95% 0 2 and 5% C 02 gas mixture.

4. The artery was cleared from all adherent fat and connective tissue surrounding 

the adventitia. The aorta was then cut into 8 equal rings (each 3 mm). This was 

accomplished with a slicing device consisting of five razor blades arranged in 

parallel and separated by spacers clamped rigidly in place. When part of the 

aorta was laid at a right angle over the cutting edges of the blades and the 

barrel of a plastic pipette was rolled over it, four rings of equal length were 

cut.

5. Endothelium was removed in order to avoid any influence of basally released 

endothelium derived relaxing factor(s) on the response. In order to remove 

endothelium, the intimal surface of the ring, while kept moist with Krebs’ 

solution, was rubbed gently with a shaved down wooden stick for about 45 

seconds and the ring was then mounted in the organ chamber. To ascertain the 

effectiveness of the rubbing procedure, the ring was tested with acetylcholine 

(ACh) once it had undergone initial equilibration and pre-contraction. A lack 

of relaxation response to ACh at concentrations up to luM confirmed the loss 

of essentially all endothelial cells.
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6. Each ring was placed on the hooks of the gut bath. 5 ml of oxygenised Krebs 

buffer was added to each well of the bath.

7. The computer system and the graphs were calibrated.

8. Relaxation studies were performed after a pre-contraction with phenylephrine 

(PE) (10'6 M). Relaxation was expressed as a percent of change from the pre­

contracted tension with PE.

9. When the fluid in each organ chamber was to be replaced it was sucked out 

using a syringe and replaced from the top. Each chamber was normally 

washed out three times when required.

10. The tension on each ring was continuously recorded. For rabbit experiments 

the initial tension when the ring was first mounted was set at about 3 g and as 

the ring stretched during the first hour or so, the position of the force 

transducer was adjusted at intervals to keep basal resting tension close to 2-2.5 

g, which represented the optimal resting tension for this vascular preparation.

11. Blood was collected from patients into 4ml EDTA vacutainer tubes. Blood 

samples were centrifuged at 670g, 4°C for 5 minutes. Plasma was rapidly 

separated from RBCs.

12. One millilitre of the above spun RBC sample was mixed with 0.5 ml normal 

saline and ultra-centrifuged at 6000rpm for a further 5 minutes to obtain a 

dense layer of RBCs at the bottom of the tube.

13. The concentration of O2 in the Krebs buffer (KB) bathing the tissues was 

reduced by bubbling gas of 5%C02/95% N2 mix directly into the bottom of 

the tissue baths to create a low oxygen tension medium to mimic the 

physiological O2 gradient in arterioles.
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14. 20pL of washed RBC was added to each one of the 8 aortic ring wells in the 

gut bath.

15. Additions were made with manual automatic pipettes with disposable plastic 

tips.

16. Relaxations were calculated as a percent of the tension induced by 10'6mol/L 

PE for each aortic ring and the average was calculated and recorded for each 

subject at the end.

17. The responsiveness of the tissues was assessed at the end of each experiment 

by constricting with PE followed by relaxation to a standard NO donor,

nitroso-glutathione (GSNO; 10'7mol/L).

18. Average relaxation was calculated among 8 channels.

03^06^0514:48:48.690

ID  -

6  -  -

□ -

1:40 320 500 820 1Q0

Figure 2: Sample chart window representing aortic ring relaxation in response to RBC in one of 
the chambers. Time (min) is shown on axis X. Tension (g) is shown on axis V. Dotted line marks 
the time when the RBCs were added. The dip in the tension curve represents relaxation. In organ 
chamber bioassays, RBCs dilate blood vessels at low p 0 2 (<I% 0 2), which is characteristic of 
tissues. The hypoxic vasodilator response is followed by vasoconstriction in vitro (representing 
scavenging of endothelial NO), which starts at approximately 1 min following addition of RBCs.
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