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Abstract

This study demonstrates the mechanism of regulation of IL-18 function by the pro- 

and anti-inflammatory cytokines, TNFa and TGFpi respectively. The importance of 

the antagonistic interaction between these two cytokines, to control IL-18 signalling, 

has been demonstrated using an in vitro model of dendritic precursor cells, which 

have the ability to produce IFNy and potentially mature upon stimulation with IL-18. 

The ability o f TNFa to sensitise the cells and promote IL-18-induced IFNy 

production was suppressed in the presence of TGFpi, in part via a mechanism of IL- 

18 receptor regulation. TNFa stimulation increased the levels of both mRNA and 

surface protein o f IL-18 receptor, whereas the addition of TGFpi resulted in 50% 

reduction of the surface expression of the receptor. Further work confirmed the 

counter effects of these cytokines on IL-18 signalling, through p38 MAPK activation 

and T-bet expression. The importance of TNFa and TGFpi in controlling the 

maturation process of dendritic cells, by regulating their early IL-18-induced IFNy 

production, led to the hypothesis that blocking IL-18 could dampen Thl immune 

response in chronic inflammatory conditions, through the regulation of dendritic cell 

maturation. Therefore, a soluble recombinant human heterodimeric receptor was 

generated and was confirmed to bind strongly to IL-18. Preliminary in vitro work 

showed that this soluble decoy receptor was active and able to suppress IL-18 

function. Further studies to investigate the effects of this receptor in vivo may lead to 

the development of a potential anti-cytokine therapy for chronic inflammation.
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1 General Introduction

1.1 Principles of Innate and Adaptive Immunity

The principles of immunity were acknowledged back in ancient civilisations, where 

Thucydides wrote about the plague of Athens during the Peloponnesian War in 

430BC, and noted that people who had recovered from a previous attack of the 

disease could foster the sick, without being infected for a second time. However, the 

origin of immunology as a scientific theory is relatively new, and arose quite recently 

with the discovery of vaccination by Edward Jenner (1796). Nowadays, the rate of 

development in the field has revealed the complexity of the immune system and the 

major goal o f research in immunology is the regulation of immune responses, i.e. 

whether to suppress them, when unwanted or to stimulate them, when necessary to 

fight infectious diseases.

1.1.1 Bacterial infection induces inflammation by activating innate immunity

As soon as pathogens enter the epithelial surfaces, which are considered to be the 

first line of defence against infection, they are recognised, ingested and killed by 

macrophages and neutrophils, through the production of phagolysosomes and 

respiratory burst (Hampton et al., 1998). Tissue damage and cytokine release in 

response to lipopolysaccharide (LPS), induce an inflammatory response, where 

inflammatory cells such as neutrophils, monocytes, eosinophils and lymphocytes 

enter the site of infection to initiate killing of pathogens. The activation of the kinin 

system increases vascular permeability for the complement system of plasma 

proteins (complement components and anaphylatoxins) to enter from circulation and 

start bacterial killing, through osponisation of pathogens and recruitment of 

inflammatory cells (Lambris et al., 2008). At the same time the coagulation system is 

triggered in response to damage in blood vessels and leads to the formation of a clot 

that prevents any microorganisms to enter the blood stream (Sun, 2006). Cytokines 

of the early immune response induce the expression of co-stimulatory signals on
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macrophages and dendritic cells, enabling them to prime lymphocytes and initiate the 

slower and more specific adaptive immune response.

1.1.2 Activation of specialised antigen presenting cells bridges innate and 
adaptive immunity

Dendritic cells (DCs) are the most potent specialised antigen presenting cells (APCs). 

These cells function as effector cells in innate immunity, play a role in the induction 

of peripheral immunological tolerance and activate adaptive immunity by taking up 

bacterial antigens at the site of infection and presenting them to T cells; thereby 

inducing their clonal expansion and their differentiation into effector cells regulating 

the types o f T cell responses (Banchereau and Steinman, 1998).

The functional diversity of DCs depends on the different DC subsets and lineages 

and on the functional plasticity of DCs at the immature stage. The CD34+ 

haematopoietic stem cells (HSC) in the bone marrow differentiate into common 

myeloid progenitors (CMP) and common lymphoid progenitors (CLP). The CMPs 

further differentiate into CD34+CLA+ and CD34+CLA' that become C D llc+CDla+ 

Langerhans immature DCs (iDCs) upon their migration to epidermis, and 

C D llc+CD la' interstitial iDCs upon their migration to dermis and other tissues, 

respectively (Strunk et al., 1997, Ito et al., 1999). There are also another two types of 

DC precursor cells (pre-DCs) that come from the HSCs during haematopoiesis; the 

CMP-derived monocytes (myeloid pre-DC 1) and the CLP-derived plasmacytoid cells 

(lymphoid pre-DC2) (Liu et al., 2001b).

DCs are the most potent activators of naive T cells. Upon encountering an antigen 

(Ag), immature DCs residing in the peripheral tissues migrate to lymphoid organs, 

where they mature into professional antigen-presenting cells capable of the efficient 

activation of T cells. Pattern recognition receptors (PPRs), such as Toll-like receptors 

(TLRs), expressed by immature DCs (iDCs) facilitates microbial antigen (Ag) 

recognition and induction of their maturation process (Kaisho and Akira, 2001). 

Maturing DCs rapidly lose their endocytic ability, undergo an increase in the
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expression and stability of major histocompatibility complex class (MHC) I- and II- 

peptide complexes, up-regulate expression of adhesion and co-stimulatory molecules 

(CD40, CD54, CD80, CD83 and CD86) and secrete pro-inflammatory cytokines 

such as interleukin (IL)-18, IL-1, IL-12, IL-6 and IL-23 that facilitate conversion of 

naive T cells into effector cells. Maturing DCs express chemokine receptors, such as 

CCR7, that drive their migration into T cell areas of the draining lymph nodes, where 

they screen for antigen-specific naive T cells and stimulate them to initiate primary 

immune responses and the differentiation into armed effector T cells (Sallusto and 

Lanzavecchia, 2000).

There are two groups o f signals that activate iDCs to promote T helper (Th) 1, Th2 

Thl7 or Treg cell differentiation. Pathogenic molecules such as LPS, bacterial CpG 

DNA and double stranded viral RNA, along with T cell signals such as CD40 ligand 

and interferon (IFN)-y, are signals that activate iDCs to produce IL-18 and IL-12 in 

order to drive Thl cell responses or IL-1, IL-21, IL-23, TGFp and IL-6 to induce 

Thl7 cell responses (Mills, 2008). Conversely, inhibition of iDC maturation by the 

anti-inflammatory molecules TGFpl, IL-10, prostaglandin E-2 (PGE-2) and 

corticosteroids, suppress IL-12 production driving Th2 or regulatory T (TReg) cell 

responses (Kalinski et al., 1999).
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1.2 Cytokine Networks Drive T Cell-Mediated Immunity

1.2.1 Cytokines determine lineage commitment of T helper cells and their
effector functions

The Thl-Th2 theory, which has hitherto supported the adaptive CD4+T effector cell 

responses (Mosmann and Coffman, 1989, Murphy and Reiner, 2002), has been 

recently revisited. Depending on the cytokine milieu, CD4+ T helper (Th) precursor 

cells (ThO or naive CD4+ T cells) differentiate into the three lineages of Thl, Th2 

and the recently identified Thl 7 cells, all three of which produce different cytokines 

to facilitate the adaptive immune response. T h l7 is the third lineage of CD4+ T cells 

that has been recently identified (Bettelli et al., 2006) and is the only additional 

subset o f effector CD4+ T cells to be described since the original discovery of Thl 

and Th2 cells. T h l7 cells produce distinct effector cytokines such as IL-17 (or IL- 

17A), IL-17F, and IL-6, and promote clearance of pathogens not targeted by Thl and 

Th2. T h l7 cells are distinct from Thl and Th2, but similar to TRegs they require 

TGFp for their development and action (Weaver et al., 2006).

Differentiation of Thl cells, which are important for the clearance of intracellular 

pathogens, release IFNy and IL-12 effector cytokines (Hsieh et al., 1993, Scharton 

and Scott, 1993), whereas Th2 cells that are responsible for clearing parasites, 

produce IL-4, IL-5, IL-10 and IL-13 (Mosmann and Coffman, 1989, Min et al., 2004, 

Shinkai et al., 2002). IFN-y produced by Thl cells promotes the differentiation of 

ThO to Thl cells, and inhibits the proliferation of Th2 cells. On the contrary, IL-4 

produced by Th2 cells can drive Th2 cell proliferation, and IL-10 can indirectly 

inhibit the secretion of IFNy by Thl cells (Fitch et al., 1993).

1.2.2 Interferon-y production influences the functional differentiation of CD4+ T

cells and the commitment to Thl lineage

As described above, interferon (IFN)-y is a critical Thl cytokine that induces the 

differentiation of naive CD4+ T cells into Thl effector cells that mediate cellular
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immunity against infection. Mice deficient in IFNy are highly susceptible to both 

intracellular bacterial infections, such as Listeria (Harty and Bevan, 1995), 

Salmonella (John et al., 2002), and viral or protozoan infections (i.e. Toxoplasma and 

Leishmania) (Dalton et al., 1993, Huang et al., 1993, Jouanguy et al., 1999). 

Decreased levels of IFNy production resulting from gene deficiencies in IL-12, IL-23 

and IFNy pathways are associated with increased susceptibility to mycobacterial and 

Salmonella infections in humans (Filipe-Santos et al., 2006, Casanova and Abel, 

2002, de Jong et al., 1998). IFNy is also involved in protection of the host against 

tumour growth (Ikeda et al., 2002, Rosenzweig and Holland, 2005). Apart from the 

protective role of IFNy in host defence, the aberrant up-regulation of IFNy has been 

associated with the pathogenesis of chronic inflammatory and autoimmune diseases, 

such as inflammatory bowel disease (IBD), multiple sclerosis (MS), and diabetes 

Mellitus (Bouma and Strober, 2003, Neurath et al., 2002, Skurkovich and 

Skurkovich, 2003).

During immunological synapse, i.e. when an APC comes in contact with a 

lymphocyte, IFNy binds to its receptor on the surface of the cells and induces ST AT 

signalling. In CD4+ T cells, phosphorylation and nuclear translocation of STAT-1, 

together with TCR and CD28 co-stimulatory signals, induces T-bet transcription 

factor expression (Lighvani et al., 2001), which is important in driving Thl 

differentiation (Szabo et al., 2000). T-bet-deficient mice lack Thl cells and exhibit a 

large Th2 compartment (Szabo et al., 2002). T-bet induces two transcription factors, 

Hlx (Mullen et al., 2002) and Runx3 (Djuretic et al., 2007) to regulate IFNy 

transcription. T-bet and Runx3 bind to IFNy promoter to induce IFNy transcription, 

but they also bind to the IL-4 silencer to facilitate commitment to Thl lineage 

(Djuretic et al., 2007). Hlx promotes chromatin accessibility at the IFNy promoter 

(Mullen et al., 2002) and facilitates the expression of the IL-12Rp2 chain (Afkarian 

et al., 2002). Binding of IL-12 (p35 and p40) to IL-12Rpl and IL-12Rp2, 

subsequently induces phosphorylation of Jak2/Tyk2 signalling and nuclear 

translocation of STAT4 (Trinchieri et al., 2003), which is able to induce IL-18R 

(Ahn et al., 1997, Nakahira et al., 2001), thereby conferring responsiveness to IL-18
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by mature Thl cells. IL-12 also signals through p38 MAPK, and loss of its activity in 

T cells by using a specific pharmacological inhibitor or p38 MAPK deficiency 

inhibits IFNy production in response to IL-12, but not in response to T cell receptor 

(TCR) stimulation (Berenson et al., 2006). The IL-12-driven component of Thl 

immune response results in effector cells that produce IFNy through either TCR- 

dependent or TCR-independent (IL-12 and IL-18) pathways (Robinson et al., 1997, 

Yang et al., 1999). The combination of IFNy, IL-12 and IL-18 signals can optimise 

activation and expansion of Thl cells (Grogan and Locksley, 2002, Ho and Glimcher, 

2002, Murphy and Reiner, 2002).

1.2.3 IFNy-inducing cytokine Interleukin-18

As described above, the production of IFNy is induced by IL-18 in synergy with 

other Th-1 pro-inflammatory cytokines such as IL-12, IL-2, IL-15 and IL-23 

(Robinson et al., 1997, Okamoto et al., 2002, Nakahira et al., 2002, Okazawa et al., 

2004). IL-18 is a member of the IL-1 superfamily (Dinarello, 1999), together with 

IL-1 a , IL-ip, IL-1 receptor antagonist (IL-IRa) and the recently described IL1F5 to 

IL-1F10 cytokines (Dinarello, 2004, Grade et al., 2003). IL-18, previously known as 

IFNy-inducing factor (IGIF), was initially described as an unidentified soluble factor 

present in the serum of Afycobacterium bovis BCG-infected mice challenged with 

lipopolysaccharide (LPS). This cytokine was able to induce high levels of IFNy in 

cooperation with IL-2 in macrophage-depleted murine splenocytes (Nakamura et al., 

1989). The cloning of IL-18 from a murine liver cell library generated from heat- 

killed Propionibacterium acnes and LPS challenged animals, has resulted in the 

sequencing of a 192 amino acid precursor polypeptide lacking a conventional signal 

peptide and a 157 amino acid mature protein that had the ability to induce IFNy 

production in T cells (Okamura et al., 1995b). Cloning of the human IL-18 from 

normal human liver cDNA libraries has revealed 65% homology with the murine IL- 

18 and subsequent expression of the cloned cDNA in E. coli has resulted in the 

purification of the rhIL-18 that also induced IFNy production in mitogen-activated 

PBMCs (Ushio et al., 1996).
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1.2.3.1 Role of IL-18 in host defence and disease

Studies utilising IL-18 deficient mice (Takeda et al., 1998, Wei et al., 1999) have 

demonstrated the important role of IL-18 in host defence and chronic inflammation. 

IL-18 knock-out (ko) mice have demonstrated increased susceptibility to Leishmania 

major (Wei et al., 1999, Ohkusu et al., 2000), Streptococcus pneumoniae (Lauw et 

al., 2002) Mycobacterial (Sugawara et al., 1999), Plasmodium berghei (Singh et al., 

2002) and Cryptococcus neoforms (Kawakami et al., 2000) infection. In the animal 

model of Collagen induced arthritis (CIA), the incidence and severity of disease was 

significantly decreased in IL-18 ko mice compared to the heterozygote or wild type 

(wt) counterparts (Wei et al., 2001). Similar result was obtained with the 

experimental model of MS of autoimmune encephalomyelitis (Shi et al., 2000). In 

these two studies protection has been attributed to the impaired capability of 

leukocytes to produce tumour necrosis factor (TNF)-a and IFNy due to the IL-18 

deficiency. Mice deficient in IL-18 have reduced NK cell response and lower levels 

o f IFNy production (Takeda et al., 1998). Mice deficient in IL-18R also 

demonstrated defective NK cell activity, showed decreased levels of IFNy production 

and impaired Thl development (Hoshino et al., 1999). Loss of IL-18 was also 

beneficial for animals with experimental autoimmune diabetes (Lukic et al., 2003) 

and with 2,4,6-trinitrobenzene sulfonic acid-induced colitis (Kanai et al., 2001).

1.2.3.2 Regulation of IL-18 expression and production

The transcriptional regulation of IL-18 gene expression has been reviewed by Grade 

et al., 2003. The first 2 of the 7 exons that comprise the IL-18 gene are non-coding. 

The promoter activity upstream of exon 2 acts constitutively, whereas that of exon 1 

is up-regulated by LPS in activated macrophages and T cell lines (Tone et al., 1997). 

As opposed to all the other cytokines, the two promoters of IL-18 are TATA-less and 

G+C poor type, which could explain why IL-18 is expressed in various cell types, 

even non-immune cells. The 3’-untranslated region (UTR) of human IL-18 mRNA 

lacks the AUUUA destabilisation sequence, which could be responsible for the 

constitutive mRNA expression of IL-18 in PBMCs and mouse splenic macrophages
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(Puren et al., 1999). The IFN-consensus sequence-binding protein (ICSBP) and PU.l 

transcription factors have been identified upstream of exon 1 and 2, respectively and 

are important for the activation of IL-18 promoter, as they are found to be up- 

regulated by IFNy (Kim et al., 1999, Weisz et al., 1994, Sharf et al., 1997, 

Shackelford et al., 1995). Activator protein 1 (AP-1) and ICSBP elements are also 

induced by IFNy stimulation of macrophages (Kim et al., 2000b).

IL-18 requires post-translational enzymatic processing in order to be biologically 

active. It is produced as a 24kDa inactive precursor (pro-IL-18) that lacks a signal 

peptide. Pro-IL-18 is cleaved by IL-lp-converting enzyme (ICE; caspase-1) after 

Asp35 to generate the 18kDa biologically active mature form of IL-18 (Ghayur et al., 

1997, Gu et al., 1997). The importance of IL-18 activation by ICE is demonstrated in 

splenocytes isolated from ICE knock-out mice which do not produce IFNy 

production upon LPS stimulation (Fantuzzi et al., 1998). Additionally, mice deficient 

in ICE are protected from ischemic acute renal failure (Melnikov et al., 2001). 

Similar to IL-ip, another mechanism of IL-18 secretion is through the ATP regulated 

P2X-7 receptor, as P2X-7R-deficient macrophages do not produce IL-18 upon ATP 

stimulation (Perregaux et al., 2000). DCs constitutively produce IL-18 upon T cell 

interaction via a CD40 signal, since an agonistic antibody against CD40 also 

stimulates IL-18 secretion (Gardella et al., 1999). Proteinase-3 release of active IL- 

18 has also been implicated in regulating IL-18 secretion in the presence of LPS in 

IFNy primed oral epithelial cells (Sugawara et al., 2001).
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1.2.3.3 IL-18 receptor and signalling

The IL-18 receptor consists of an IL-18Ra chain responsible for extracellular 

binding and an IL-18RP chain responsible for signal transduction (Torigoe et al., 

1997, Hoshino et al., 1999, Pamet et al., 1996). The IL-18Ra and IL-18RP chains 

both belong to the IL-1R super-family and have an extracellular domain consisting of 

Ig-folds (~340aa), a signal peptide (~15aa), an intracellular domain (~200aa) that is 

homologous to the cytosolic motif o f the Drosophila Toll protein and a 

transmembrane domain (~220aa) (Pamet et al., 1996, Bom et al., 1998, Debets et al., 

2000). The presence of IL-18 activates its receptor through the heterodimerisation of 

the two structurally related but distinct Ig-like chains, to form a complex required for 

IL-18 signal transduction (Bom et al., 1998, Debets et al., 2000). A study by (Kato et 

al., 2003) using NMR spectroscopy and mutants for the 50 surface-exposed residues 

o f IL-18, has revealed two residues on IL-18 (sites I and II) that are important in 

binding of IL-18 to IL-18Ra (Fig. 1.1) and a third one that is involved in the cellular 

response and potentially binds to IL-18Rp but not to IL-18/IL-18Ra. Another study 

looking at the carbohydrate recognition activities of IL-18 in KG-1 cells revealed the 

presence of a single GPI-anchored protein, CD48, that forms a complex with IL- 

18/IL-18Ra and immediately binds to IL-18Rp to induce IFNy production 

(Fukushima et al., 2005).

IL-18Ra is expressed on Thl, NK cells, as well as macrophages, dendritic cells, 

neutrophils, basophils, endothelial cells, smooth muscle cells, synovial fibroblasts, 

chondrocytes and epithelial cells (Yoshimoto et al., 1998, Nakamura et al., 2000, 

Gerdes et al., 2002, Leung et al., 2001, Moller et al., 2002, Sims, 2002, Gutzmer et 

al., 2003). Upon binding of IL-18 to IL-18Ra, IL-18Rp is recruited to form a higher 

affinity signalling complex (Fig. 1.2) (Kim et al., 2001b, Debets et al., 2000). The 

approximation of the cytoplasmic Toll-IL-1 receptor (TIR) domains of the receptors 

triggers signal transduction (O’Neill, 2000), via the recruitment of the myeloid 

differentiation (MyD)-88 adaptor molecule and auto-phosphorylation of the IL-1R- 

associated kinase (IRAK) (Wesche et al., 1997, Kanakaraj et al., 1999, Adachi et al.,
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1998). IL-18, thus, shares common downstream signalling pathways with important 

regulatory molecules, such as Toll-like receptor (TLR) that are implicated in 

regulating IL-18 expression (Seki et al., 2001, Akira et al., 2001), providing feedback 

loops to control IL-18 function. IRAK then dissociates from the receptor complex to 

interact with the adaptor protein tumour necrosis factor receptor (TNFR)-associated 

factor 6 (TRAF) (Cao et al., 1996, Kojima et al., 1998). Phosphorylation of NFkB- 

inducing kinase (NIK) and rapid degradation of IkB, through activation of IkB 

kinases 1 and 2 (IKK1/2), result in the release of the p50 and p65 components of 

NFkB and its subsequent nuclear translocation (Robinson et al., 1997, Matsumoto et 

al., 1997) to regulate IFNy expression, as shown in KG-1 cells (Kojima et al., 1999).

Additional signalling pathways have been described in IL-18 stimulated human 

NK92 cells through the activation of p38 MAPK and extracellular signal-related 

kinases p44 and p42 (ERK1/2) (Kalina et al., 2000, Yang et al., 2001, Wyman et al., 

2002, Lee et al., 2004, Shapiro et al., 1998). IL-18 has also been shown to signal 

through MAPK-ERK kinase 4 (MEKK4) in Thl cells (Yang et al., 2001). 

Additionally, Tyk2'/‘ mice demonstrated decreased NK cell activity and IFNy 

production in response to IL-18 implicating an alternative signalling pathway similar 

to IL-12 (Shimoda et al., 2002).
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Figure 1.1: Modelled crystal structures o f  IL-18 and IL-18Ra.

Crystal structure o f  IL-18 (NMR derived from structure PDBj ljOs) (a). Surface 

representation o f IL-18 site I and II residues responsible for binding IL-18Ra. IL- 

18Ra model based on IL-lp-IL-RI structure (EMBL-EBI entry litb) (b). Ribbon 

drawing o f the NMR structure o f  IL-18Ra showing the corresponding Ig-like 

domains that constitute its extracellular domain Distribution o f the electrostatic 

potential o f  IL-18 (a, bottom) and IL-18Ra (b, left), where blue corresponds to 

residues with positive potential and red to negative potential residues (figure 

provided by Dr. K. Beck).
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The expression of IL-18Ra and IL-18RP chains is up-regulated by cytokine signals 

such as IL-2 and IL-12, but inhibited by IL-4 (Yoshimoto et al., 1998, Hoshino et al., 

1999, Sareneva et al., 2000, Smeltz et al., 2001, Neumann and Martin, 2001, 

Nakahira et al., 2001, Smeltz et al., 2002). It has been extensively demonstrated that 

IL-12 regulates IL-18 via up-regulation of IL-18RP expression, and the synergistic 

effects between IL-18 and IL-2, IL-12, IL-15, IL-21 and IL-23 can be explained 

through the same mechanism (Neumann and Martin, 2001, Strengell et al., 2002, 

Strengell et al., 2003, Hoeve et al., 2003).

IL-18 shares sequence homology with IL-1F7, which is considered to be member the 

anti-inflammatory member of the IL-1 family, as it has recently been shown to 

reduce the levels of LPS-induced pro-inflammatory cytokines such as TNFa, IL-1 a  

and IL-6 by translocating to the nucleus after caspase-1 processing (Sharma et al., 

2008). The function of IL-1F7 is currently poorly understood. In vivo, adenoviral- 

mediated gene transfer of IL-1F7 in murine tumours results in significant suppression 

of tumor growth, demosrating a role in anti-tumor immunity (Gao et al., 2003). This 

cytokine is also shown to interact with IL-18BP leading to the reduction of IL-18 

activity measured by IFNy production (Fig. 1.2). IL-1F7 can bind IL-18Ra with low 

affinity, but it does not recruit IL-18Rp chain to initiate signalling (Bufler et al., 2002, 

Kumar et al., 2002). Therefore, there is a possibility that IL-18Ra binds to other 

ligands and recruits different co-receptors to induce signal transduction. This 

hypothesis is supported by evidence in a mouse model of inflammatory encephalitis 

that gene deletion of IL-18Ra results in resistance to disease, whereas IL-18 gene 

deletion does not change susceptibility to disease in these mice (Gutcher et al., 2006).
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1.2.3,4 Natural inhibitors of IL-18

There are several natural inhibitors for IL-18, such as soluble IL-18Ra and IL-18 

binding protein (BP). The levels of the sIL-18Ra in the human serum are not known 

but in vitro assays have demonstrated that this soluble receptor binds IL-18 with low 

affinity and is only able to neutralise its function at an 80-fold molar excess of IL-18 

and in the presence of IL-18Rp (Reznikov et al., 2002). Conversely, IL-18BP can 

neutralise IL-18 activity down to 50% at equimolar concentrations, reaching 

complete inhibition at a 2-fold molar ratio in vitro (Kim et al., 2000a, Kim et al.,

2002). In addition to IL-18BP, there are several viral proteins identified that are able 

to suppress IL-18 activity in vitro, such as p l3  a homologous protein to IL-18BP that 

is encoded by ectromelia poxvirus (Bom et al., 2000), and two Molluscum 

contagiosum viral proteins, MC53/54 (Xiang and Moss, 1999). However, both in 

vitro and in vivo studies have demonstrated that IL-18BP inhibits IL-18- and LPS- 

induced IFNy production respectively (Novick et al., 1999, Aizawa et al., 1999), 

indicating that it is a more potent antagonist for IL-18 and it will be discussed in 

detail below.

IL-18BP is a novel naturally occurring inhibitor that is constitutively expressed and 

secreted to bind IL-18 with high binding affinity (Kd~400pM) to suppress IL-18- 

induced IFNy synthesis and regulate Thl immune response (Kim et al., 2000a, 

Novick et al., 1999, Aizawa et al., 1999). IL-18BP binds only mature IL-18 and not 

pro-IL-18 according to ELISA and plasmon resonance binding studies (Novick et al., 

2001, Kim et al., 2000a). Apart from IL-18 it can also bind IL-1F7 (Bufler et al.,

2002). IL-18BP is not a soluble form of IL-18Ra protein but it is distinct from IL-1 

super-family member proteins, as it comprises of one rather than three Ig-like 

domains with only one amino acid identity found in the third Ig domain of IL-18Ra 

(Colotta et al., 1994, Kim et al., 2002). Located on the human chromosome 1 lq l3, 

the IL-18BP gene is highly expressed in immunologically active tissues such as 

spleen and intestine, and it encodes for at least four isoforms (IL-18BPa, b, c and d) 

derived from mRNA splice variants. There are two isotypes of the murine IL-18BP 

(Kim et al., 2000a). The isoforms that retain their Ig domain intact are the ones that
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are able to bind and neutralise IL-18 function, such as human IL-18BPa and c, but 

not b and d, whereas both murine IL-18BP isoforms c and d can bind and neutralise 

IL-18 (Kim et al., 2000a). Using mutational studies, two (glutamic acid 35 and lysine 

89) residues on IL-18 are identified that are important for binding both IL-18Ra and 

IL-18BP and result in neutralisation of IL-18 function (Kim et al., 2002, Kim et al., 

2001a).

IFNy is implicated in the transcriptional regulation of IL-18BP transcript and protein 

release that is confirmed using histone deacetylase inhibitor sodium butyrate in a 

human colon carcinoma epithelial and a keratinocyte cell line, and in several 

intestinal cell lines (Paulukat et al., 2001). The promoter of IL-18BP has two IFNy 

regulatory elements, indicating a negative feedback loop for the regulation of IL-18- 

induced IFNy through the activation of IL-18BP (Hurgin et al., 2002).

IL-18BP is found elevated in several chronic inflammatory and autoimmune diseases 

such as rheumatoid arthritis (RA), Crohn’s disease, hepatitis C and in chronic liver 

diseases (Corbaz et al., 2002, Moller et al., 2002, Kawashima et al., 2001, Moller et 

al., 2001, Bresnihan et al., 2002, Kaser et al., 2002, Ludwiczek et al., 2002). The 

levels of IL-18BPa in healthy human serum are 2.15 ± 0.15 ng/ml (range 0.5-7 

ng/ml), whereas in patients with sepsis and acute liver failure they increase to 21.9 ± 

1.44 ng/ml (range 4-132 ng/ml) (Novick et al., 1999). The levels of IL-18 in healthy 

subjects is 64 ± 17 pg/ml and -85% was in free form, whereas in sepsis the levels of 

both IL-18 and IL-18BPa are elevated (1.5 ± 0.4 ng/ml and 28.6 ± 4.5 ng/ml 

respectively), but there is still some free IL-18 in the serum of the patients that is 

higher compared to the healthy individuals (Novick et al., 1999). This indicates that 

administration of an exogenous antagonist to inhibit IL-18 could be beneficial in 

reducing the circulating IL-18 activity.
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1.2.4 Pro-inflammatory cytokine Tumour Necrosis Factor-a

Tumor necrosis factor (TNF)-a was initially identified in 1975 as an endotoxin- 

induced glycoprotein in the serum that caused haemorrhagic necrosis of sarcomas 

transplanted into mice (Carswell et al., 1975) and the TNFa cDNA was cloned later 

in 1985 (Pennica et al., 1985). Physiological levels of TNFa play a fundamental role 

in the host defence to bacterial, viral and parasitical infections, but inappropriate or 

excessive production contributes to the pathogenesis of autoimmune disorders, such 

as RA. TNFa together with IL-6 and IL-8 are produced by human synovial cells 

stimulated with IL-17, implicating the importance of Thl7 cells in regulating TNFa 

to promote inflammation in RA (Fossiez et al., 1996, Kotake et al., 1999).

IL-18 is also found in significant levels in RA synovium (Gracie et al., 1999), where 

it has the ability to sustain Thl immune response and promote TNFa production 

leading to tissue injury. In particular, IL-18 induces CIA by activating and attracting 

neutrophils through the production of TNFa, which in turn induces the synthesis of 

leukotriene B4 (LTB4) (Canetti et al., 2003), a well known chemoattractant of 

neutrophils (Dahlen et al., 1981, Ford-Hutchinson, 1990). Thus, TNFa has been an 

attractive target for immunotherapy for RA. Monoclonal antibodies (i.e. infliximab 

and adalibumab) and soluble TNF receptor:Fc fusion protein (i.e. etanercept) have 

been used in clinical trials for effectively reducing the symptoms and signs of RA. 

Blockade of TNFa results in amelioration of cartilage or bone damage (Bathon et al., 

2000, Lipsky et al., 2000). TNFa therapy is found to be safe for most patients 

although a higher risk of mycobacterial infection has been implicated (Keane et al., 

2001).

TNFa is produced predominantly by activated macrophages and T lymphocytes as a 

26kDa type II transmembrane precursor arranged in stable homotrimers. It is 

displayed on the plasma membrane and is proteolytically cleaved by the 

metalloprotease TNFa converting enzyme (TACE) between alanine -1 and valine +1, 

to produce a biologically active 17kDa mature form of TNF (Kriegler et al., 1988)
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that exists as a 51kDa trimer in solution (Smith and Baglioni, 1987). Both 

membrane-bound and soluble form of TNFa can bind to TNF-R1 (TNF receptor type 

1; CD 120a; p55/60) and TNF-R2 (TNF receptor type 2; CD 120b; p75/80) resulting 

in the release of SODD (Silencer of death domain protein) and the formation of a 

receptor proximal complex consisting of adaptor proteins TRADD (TNF receptor- 

associated death domain protein), TRAF2 (TNF receptor-associated factor 2), RIP 

(receptor-interacting protein) and FADD (Fas-associated death domain protein). 

These molecules then in turn recruit enzymes such as caspase-8 and IKKp to the 

complex where they are activated leading to the activation of NFkB, p38 MAPK and 

JNK (Wajant et al., 2003).

A small amount of research has also been documented looking at the effect TNFa on 

IL-18 signalling and function. In T lymphocytes and NK cells, IL-18 directly 

stimulates the gene expression and synthesis of TNFa (Puren et al., 1998). IL-18 

neutralisation during carrageenan-induced acute inflammation in vivo completely 

suppresses TNFa expression (Leung et al., 2001). Recent reports have indicated the 

role of these two cytokines in the pathogenesis of several inflammatory diseases. IL- 

18 is present in significant levels in RA synovium, where it promotes Thl immune 

responses and TNFa production (Grade et al., 1999). IL-18 knockout mice show 

reduced incidence and severity of CIA compared to wild type and are associated with 

suppressed TNFa production and Thl immune responses ex vivo, which is 

completely reversed by the administration of rmIL-18 (Wei et al., 2001). In addition, 

this cytokine promotes the inflammatory response in CIA by activating neutrophils 

through the production of TNFa, which in turn induces the synthesis of leukotriene 

B4 (LTB4), resulting in the recruitment of neutrophils at the site of inflammation 

(Canetti et al., 2003). It has also been shown that IL-18 induces human CD4+ T cell 

chemotaxis in vitro and mononuclear cell recruitment in vivo (Komai-Koma et al.,

2003). The expression of CD54 on dendritic cells causes naive T cells expressing 

LFA-1 (CDlla:CD18 heterodimeric a ijh  integrin) to adhere strongly and cease 

migration at the site of inflammation. The up-regulation of CD54 induced by IL-18 

has been detected on PBMCs (Yoshida et al., 2001). Specifically, monocyte-derived
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DCs (Mo-DCs) isolated from human PBMCs express IL-18R and are chemoattracted 

to IL-18. In these cells, IL-18R is up-regulated by IFNy but not TNFa, and IL-18 

induces CD54 (ICAM-1) expression pronounced by IFNy stimulation (Gutzmer et al.,

2003). In addition, KG-1 cells (Kohka et al., 1998) and RA synovial fibroblasts 

(Morel et al., 2001) also show increased CD54 expression in response to IL-18.

The biological importance of TNFa as a regulator of immunity has been validated by 

TNF or TNF receptor deficient studies. It can either contribute to or protect the host 

from tissue damage in chronic inflammatory conditions. This differential role of 

TNFa depends on the type of the tissue, the cellular context, the TNF-R expression 

and the timing and duration of TNFa action in vivo.

TNF, IL-1 and IL-10 are shown to increase expression of TNFR2, but down-regulate 

the expression of TNFR1 (Kalthoff et al., 1993, Winzen et al., 1992, Winzen et al., 

1993). TNFR1 deficiency in mice leads to resistance to lethal doses of LPS or 

Staphylococcus aureus enterotoxin B. However, infection with Listeria 

monocytogenes in these mice results in lethality, as they are impaired to clear the 

pathogen (Pfeffer et al., 1993, Rothe et al., 1993). TNF-deficient mice are protected 

against cerebral malaria and display increased Thl immune response, demonstrating 

the contribution of TNFa in the pathogenesis of parasitic infections through the 

ICAM-1 (CD54)-dependent recruitment of mononuclear cells (Rudin et al., 1997). 

On the contrary, local production of TNFa and IL-lp is enhanced by IL-17 in the 

lungs and resulted in neutrophils recruitment and clearance of Klebsiella pneumoniae 

infection (Ye et al., 2001).

A two-edge role of TNFa in vivo is also demonstrated in mouse models of liver 

regeneration after partial hepatectomy (surgical removal of the 70% of the liver). 

TNF-R 1 knock-out mice show decreased hepatocyte DNA synthesis, indicating that 

TNFa is involved in liver regeneration (Yamada et al., 1997). Conversely, TNFa 

through TNF-R 1 contributes to liver destruction in models of acute hepatotoxicity 

(Bradham et al., 1998). Additionally, the differential role of TNFa in neuronal

19



Chapter 1 -  General Introduction

diseases is prominent as demonstrated in a murine model of retinal ischemia, where 

TNF-R 1 exacerbated tissue damage, whereas TNF-R2 signalling protected the host 

through activation of PKB/Akt (Fontaine et al., 2002). The complex mechanism of 

action and pathophysiological responses o f TNFa, demonstrated by in vivo and 

clinical studies, reveal the importance of this cytokine in regulating immunity.

1.2.5 Anti-inflammatory cytokine Transforming Growth Factor-pi

TGFpl exists as an inactive precursor form of lOOkDa produced from the 

dimerisation of 50kDa monomers. This dimeric precursor is cleaved by furin 

proteases to yield the 25kDa active TGFpl dimer, which remains coupled to the 

remaining portion of its own pro-form, the so-called latency-associated peptide 

(LAP, 75kDa) forming the secreted latent form of TGFp 1 (Annes et al., 2003, Nunes 

et al., 1995). A large latent complex is formed by other proteins binding the latent 

form of TGFp, such as latent TGFp-binding protein (LTBP) or a2 macroglobulin 

important in targeting TGFp to the ECM or associated with circulating TGFp (Annes 

et al., 2003). Intergrin-family members (Munger et al., 1999, Annes et al., 2004), 

oxygen or nitrogen free radicals (Vodovotz et al., 1999), and heat (Barcellos-Hoff 

and Dix, 1996) are involved in the process of dissociation and degradation of LAP 

proteins to activate latem TGFpl by mechanisms that are not fully understood 

(Massague, 1990, Annes et al., 2003). Hydrophobic interactions and an inter-subunit 

disulphide bond stabilises the active form of TGFpl in a homodimer (Hinck et al., 

1996).

Active TGFpi then binds TGFp-type II receptor (TGF-pRII), which then 

transphosphorylates the type I receptor (TGF-pRI) to phosphorylate receptor- 

regulated SMADs (R-SMADs), that is SMAD2 and SMAD3, at two serine residues 

within their C-terminus. The latter form heteromeric complexes with a common- 

partner SMAD (Co-SMAD), known as SMAD4 (Shi and Massague, 2003, Wrana et 

al., 1994). Accumulation of the SMAD2/SMAD4 and SMAD3/SMAD4 complexes 

to the nucleus to control gene expression by binding to the promoter regions of
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TGFpl-responsive genes (Hata et al., 1997). The N-terminal regions of SMAD3 and 

SMAD4 are able to bind directly to the core sequences of GTCT or AGAC of DNA, 

but SMAD2 does not bind. SMADs bound to the promoter are responsible for 

maintaining a balance in gene expression by recruiting both transcriptional co

activators and co-repressors (Derynck et al., 1998, Liu et al., 2001a, Prunier et al., 

2003, Takeda et al., 2004, Wotton and Massague, 2001). The TGFpR remains 

activated for ~3-4 hours following initial phosphorylation and continuous activation 

of the receptor results in the accumulation of complexes within the nucleus that 

regulate gene expression (Inman et al., 2002). TGFpi signal transduction is also 

mediated through p38 MAPK activation in a SMAD-independent mechanism 

(Bhowmick et al., 2001, Yu et al., 2002). TGFpl suppresses IFNy production 

(Bellone et al., 1995, Bright and Sriram, 1998, Espevik et al., 1987, Pardoux et al., 

1999, Sudarshan et al., 1999) partly through the inhibition of T-bet transcription 

factor expression (Gorelik et al., 2002, Lin et al., 2005, Neurath et al., 2002).

In contrast to pro-inflammatory cytokines, TGFpi is the most potent 

immunosuppressive cytokine that is produced by almost all leukocytes, especially 

NK cells (Horwitz et al., 1997, Letterio and Roberts, 1998) and it has been shown to 

play an important role in the regulation of T cell and DC functions (Rubtsov and 

Rudensky, 2007), as it is a negative regulator of IFNy production by T and NK cells 

(Dennler et al., 2002, Letterio and Roberts, 1998). It has recently been documented 

that IL-18 in combination with IL-12 or IL-15 are able to antagonise the TGFpi 

signalling pathway in NK cells via the down-regulation of TGFpRII, SMAD2, and 

SMAD3 (Yu et al., 2006). The balance between pro- and anti-inflammatory 

cytokines correlates with the level o f inflammation in chronic inflammatory 

conditions such as RA, as demonstrated by the levels of TNFa, IL-ip, IL-6 and 

TGFpi in the joint of DBA/1 mice with CIA (Marinova-Mutafchieva et al., 2006). 

TGFpi is thus one of the dominant ant-inflammatory cytokines that ameliorates the 

inflammatory response induced by the pro-inflammatory cytokines by inhibiting the 

maturation of DCs and promoting the differentiation of CD4+CD25+Foxp3+ TRegs
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(PrucThomme and Piccirillo, 2000, Peng et al., 2004, Fantini et al., 2004, Li et al., 

2006).

The anti-inflammatory effect of TGFpl has also been demonstrated by the group of 

A. Flavell, who has used dnTGFpRII-transgenic mice using a transgene expressing 

only the extracellular and transmembrane domains of TGFpRII to block TGFpl 

signalling in NK cells, resulting in the production of large amounts of IFNy 

responsible for Thl development and protection from Leishmania major infection 

(Laouar et al., 2005). TGFpl was also shown to inhibit the IL-18-induced IFNy 

expression in a murine NK cell line (Hayashi et al., 2003). Additionally, TGFpl 

suppresses IFNy responses in primary murine CD4+ T cells by inhibiting the 

phosphorylation of IFNy-induced Jak-Stat signalling proteins and by inhibiting the 

induction of the T-bet and IRF-1 transcription factors (Park et al., 2005).

However, IFNy has also been shown to inhibit TGFpl signalling via the up- 

regulation of SMAD7, which competes for SMAD3-mediated downstream signalling 

that is induced by TGFpi (Ulloa et al., 1999). Another mechanism of inhibition of 

TGFpl signalling by IFNy proposed is blocking SMAD transcriptional activity via 

the sequestration of the nuclear coactivator p300/CREB by Stat-1, which prevents it 

from associating with SMADs (Ghosh et al., 2001). Another study has provided 

evidence that endogenous IFNy can negatively regulate TGFp 1 signalling during the 

wound healing process. IFNy-deficient BALB/c mice exhibit increased levels of 

TGFpl expression and signalling at wound sites (Ishida et al., 2004).
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1.3 Overall Aims of the Thesis

Findings from both in vivo and in vitro studies have supported the idea that the IL- 

18-induced IFNy derived from dendritic cells contributes to infection control through 

the activation of Thl immunity. However, aberrant expression of IL-18 has been 

implicated in the pathology of many inflammatory and autoimmune diseases 

(Dinarello, 2007). Whereas the central role of IL-18 in immune regulation is clear, 

the detailed mechanism giving rise to the response is in many cases not understood. 

The complexity of cytokine and cellular interactions in the human body makes it 

difficult to decipher the role of cytokine action on individual cell populations. 

Therefore, simple single-cell model systems that allow the uncomplicated 

investigation of the synergistic or antagonistic interactions between cytokines in 

isolation must be employed that provide important mechanistic clues. In order to 

enhance the patient's immune response, the provision of IFNy and TNFa was 

highlighted as a potentially useful combination for cancer and HIV therapy in Phase 

I/II clinical trials (Demetri et al., 1989, Agosti et al., 1992). This combination 

implicates IL-18 signalling as a potential target for therapeutic intervention. This led 

to the hypothesis that the understanding of the regulation of IL-18 signalling by other 

cytokines could provide checkpoints that can be targeted to improve anti-cytokine 

therapy with the aim to control chronic inflammation and autoimmunity. These may 

be elucidated in in vitro model systems.

The aim of this project was primarily to understand the mechanisms of regulation of 

IL-18 function in order to devise novel strategies for the blockade of IL-18-driven 

inflammation. Work in the study has focused on investigating the IL-18 signalling 

and ways in which this can be regulated by stimulatory or inhibitory cytokines, such 

as TNFa and TGFpi. Based on the concerns of lymphoid cell impurities in primary 

DCs, which could account for the IL-18-induced IFNy production, the in vitro model 

of myeloid pre-dendritic KG-1 cells were utilised in studies within this project to 

establish the role o f cytokine combinations on the myeloid-derived IFNy production 

in response to IL-18.
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IL-18, TNFa and TGFpl are important cytokines driving autoimmunity and 

inflammation that play important roles in regulating dendritic cell differentiation and 

action. The fundamental question that needs to be answered in order to study the role 

of IL-18 in the pathogenesis of autoimmune and inflammatory diseases is what 

makes this cytokine protective or harmful for the host. To investigate this, I studied 

the role of IL-18, TNFa and TGFp in pre-dendritic cells. I hypothesised that IL-18 

drives dendritic cell responses by inducing IFNy production, that is is promoted by 

TNFa and inhibited by TGFpl. Blockade of IL-18 using a soluble decoy receptor 

could be a potential strategy of reducing IL-18-induced inflammation.

To conclude, the overall aims of my thesis are:

■ To investigate the mechanism of regulation of IL-18-induced IFNy 

production in dendritic precursor cells by studying the role of the pro- and 

anti-inflammatory cytokines TNFa or TGFpi.

■ To attempt the blockade of IL-18-induced inflammatory response in pre- 

dendritic cells by generating a high affinity soluble decoy receptor.
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2 Materials and Methods

All materials were purchased from Sigma-Aldrich Foundation UK, unless otherwise 

stated within the description of the methods.

2.1 Cell Culture and Maintenance

2.1.1 KG-1 cells

The human bone marrow derived acute myelogenous leukemia (AML) pre-dendritic 

cell line KG-1 was obtained from the American Type Culture Collection (ATCC- 

LGC Promochem, UK) and maintained in complete RPMI 1640 (stands for Rosewell 

Park Memorial Institute) growth medium containing L-Glutamine and 25mM 

HEPES (Gibco, Invitrogen Ltd., UK) and supplemented with 10% heat-inactivated 

FBS (fetal bovine serum, Gibco, Invitrogen Ltd., UK), 50UI/mL penicillin (Gibco, 

Invitrogen Ltd., UK) and 50pg/mL streptomycin (Gibco, Invitrogen Ltd., UK) at 

37°C with humidified air with 5% CO2. Cells were grown in suspension and 

maintained in T-75 flasks (Greiner Bio-One Ltd., UK) at a density between 2 x 105 

and 1 x 106 viable cells/mL. Cells were passaged by centrifugation at 300 x g for 5 

minutes at room temperature for media renewal every 2 to 3 days and were split 1:2 

to 1:4 for re-seeding.

2.1.2 Chinese Hamster Ovarian (CHO) Cells

The epithelial-like CHO (Chinese Hamster ovary) and the fibroblast-like African 

green monkey kidney COS-7 cell lines were maintained in D-MEM (Dulbecco’s 

modified Eagle’s medium) containing 4500mg/L Glucose and L-Glutamine (Gibco, 

Invitrogen Ltd., UK) supplemented with 10% FBS, 50UI/mL penicillin and 50pg/mL 

streptomycin (all Gibco, Invitrogen Ltd., UK) at 37°C with humidified air with 5% 

CO2. Cells were passaged on attaining 70% to 90% confluency and split 1:3 to 1:5 

for reseeding. Cells were detached with 1.5mL of 0.5% Tryspin-EDTA (Gibco, 

Invitrogen Ltd., UK) per T-75 flask (Greiner Bio-One Ltd., UK). Trypsin activity
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was stopped by addition of 15mL full growth media and cells were collected by 

centrifugation at 300 x g for 5 min at room temperature. Cells were re-suspended in 

growth medium and re-seeded at a density of 1 - 3 x 104cells/cm2.

2.1.3 COS-7 Cells

The fibroblast-like African green monkey kidney Cos-7 cell line was derived from 

CV-1, a simian cell line (Cercopithecus aethiops), by transformation with an origin- 

defective mutant of SV-40 (Gluzman, 1981). Cos-7 cells were cultured in the same 

conditions as the CHO cells (section 2.1.2).

2.1.4 Freezing, Storing and Thawing Cells

Freezing and storing cell line stocks

KG-1 suspension cells were harvested and Cos-7 or CHO adherent cells were 

trypsinised from a T75 flask (Greiner Bio-One Ltd., UK) and centrifuged at 300 x g 

for 5 minutes. Cells were then resuspend in 3 ml of full growth medium containing 

10% DMSO and 1ml aliquots of the cell suspension (about 2.5 x 106 cells/ml) were 

placed into freezing vials on ice. The samples were transferred to a pre-cooled 

freezing polycarbonate container Nalgene® Mr. Frosty (Sigma-Aldrich, UK) 

containing isopropyl alcohol and foam insert that provided repeatable 1 °C/min 

cooling rate required for successful cryopreservation of cells. After storing at -80°C 

overnight, the frozen cells were transferred to liquid nitrogen.

Thawing frozen cell line stocks

The vials containing the frozen cells were taken out of the liquid nitrogen and 

immediately kept at 37°C. The thawed cell suspension was then transferred into 10 

ml of pre-warmed full growth medium and the cells were pelleted by centrifugation. 

The cell pellet was resuspended in 10ml fresh full growth medium and cultured in a 

T25 flask (Greiner Bio-One Ltd., UK).
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2.2 Cell Stimulation with Cytokines and Growth Factors

2.2.1 KG-1 Cell Bioassay

To examine the amount of IFNy produced from IL-18 stimulated KG-1 cells, the 

cells were cultured at a density of 2 x 105 cells/well in a U-bottom 96 well plate, 

together with increased concentrations of recombinant human IL-18 (MBL 

International Corporation Ltd., Japan) for 24 or 48 hours. The supernatant was 

collected for IFNy ELISA (section 2.6). In some tests, KG-1 cells were pre-treated 

with different concentrations of TNF-a and/or TGFpl for 24 hours. The pre-treated 

cells were washed with full medium to get rid of the residual TNFa and TGFpi 

before their stimulation with 50 or lOOng/ml of IL-18.

2.2.2 ERK1/2 and p38 MAPK Phosphorylation Assays

KG-1 cells were cultured at a concentration of 2 x 106cells/ml and stimulated with 50 

or 100 ng/ml of IL-18. 2 x 105cells were harvested after stimulation with IL-18 for 5, 

10, 15, 30 and 60 minutes; the cells without stimulation were used as time 0 control. 

In the experiment to study the role of ERK1/2 and p38 MARK in IFNy production 

induced by IL-18, the cells were treated with increased concentrations of ERK1/2 

specific inhibition (PD98059, Invitrogen Ltd., UK) and p38 MAPK specific inhibitor 

(SB203580, Invitrogen Ltd., UK) for 30 minutes and then stimulated with 50ng/ml 

IL-18 for 72 hours. The cell culture supernatants were collected and stored at -20°C 

to be used for IFNy ELISA (see section 2.6). The cells were lysed with Cell 

Signalling Buffer I (refer to Table 2.4 for buffer constitution) to be used for Western 

Blotting as described in section 2.5.

2.2.3 T-bet Expression in KG-1 Cells

To investigate the regulation of T-bet expression in KG-1 cells by pro- and anti

inflammatory cytokines, 1.5 - 3 x 107cells/ml were added to each well of a 12 well 

plate containing stimulation with the appropriate concentrations of TNF-a or IL-18
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and/or TGFpi for 24h. The cells were then harvested by centrifugation at 300 x g for 

5min, washed once in PBS and resuspended in 50-100pl of Cell Signalling 

Extraction Buffer I (refer to Table 2.4 for buffer constitution).

2.2.4 IL-18Ra and IL-18Rf3 Expression in KG-1

To examine the expression levels of human IL-18Ra and IL-18RP mRNA and cell 

surface protein, the cells treated with TNF-a and/or TGFpi at a density of 5 x 

106cells/ml for RNA analysis and 1 x 107cells/ml for FACS analysis in 6-well plates 

for 16 or 24 hours. The cells were collected by centrifugation at 300 x g for 5min and 

washed with PBS to be used for total RNA extraction (section 2.4) or FACS staining 

(section 2.7).

Cytokine Cat. No. Source Stock Concentration

rhIL-18 PHC0186 BioSource, Germany, S.A. lOOpg/ml

rhTNF-a 11343013 ImmunoTools, Germany lOpg/ml

rhTGFpi T1654 Sigma-Aldrich, Inc. UK lpg/ml

Table 2.1: List of cytokines and growth factors used for KG-1 stimulation. 

2.3 MTT KG-1 Cell Proliferation Assay

MTT [3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide or 

Methylthiazolyldiphenyl-tetrazolium bromide] (Sigma-Aldrich, UK) is a water 

soluble tetrazolium salt yielding a yellowish solution. Dissolved MTT is converted to 

an insoluble purple formazan by cleavage of the tetrazolium ring by dehydrogenase 

enzymes (SLATER et al., 1963). This water insoluble formazan can be solubilized 

using isopropanol or other solvents and the dissolved material is measured 

spectrophotometrically yielding absorbance as a function of concentration of 

converted dye. The cleavage and conversion of the soluble yellow dye to the 

insoluble purple formazan has been used to develop an assay system for 

measurement of cell proliferation. Active mitochondrial dehydrogenases of living
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cells will cause this conversion. Dead cells do not cause this change. Modification 

has improved the sensitivity (Denizot and Lang, 1986).

In this experiment, MTT working solution was prepared in sterile PBS (5mg/ml), 

filtered through a 0.2 pm filter and stored at 4°C for frequent use or frozen for 

extended periods. Proliferation assays were carried out in triplicates and lOOpl of 

cells were plated at 1 x 105cells/well in flat bottom 96 well plates and 50pl of 

appropriate cytokine stimulation in complete medium was added to each of them. 

150pl of complete growth medium alone (without cells) was used as a negative 

control. After stimulation, 38pl of MTT was added into 150pl cell suspension or 

complete growth medium as negative control and incubated for 4 hours. At the end 

of the incubation period the cells were checked microscopically; live cells 

metabolised MTT and converted it into a black substance intracellularly. 75 pi of cell 

medium was carefully removed from each well without disturbing the cells. The 

converted dye was solubilised with lOOpl o f acidified cell lysis buffer (20% w/v SDS, 

50% v/v NN Dimethylformamide, 2.5% acidic mix, pH 4.7 and water up to 50ml,) 

i.e. containing 2.5% of acidic mix (80% v/v acetic acid glacial, 0.025N HC1, distilled 

water to 100ml) and incubated overnight in the dark at 37°C with humidified air and 

5% CO2. Absorbance at the wavelength of 540nm was measured using a Microplate 

reader (EL311, BioTek Instruments, Winoosky, VT, USA).

2.4 RT-PCR and Real-time PCR for mRNA Detection

2.4.1 Isolation of Total RNA

Human KG-1 cells were cultured at a concentration of 5 x 106cells/ml and stimulated 

as described in section 2.2.1 for 16 or 24 hours. After stimulation cells were pelleted 

by centrifugation for 5 min at 300 x g. The total RNA was isolated and purified from 

any contaminating reagents such as DNA, DNases and other cytoplasmic 

contaminants, using the RNeasy® Mini protocol for isolation of tRNA from animal 

cells (Qiagen, UK). The supernatant was carefully removed and cells were disrupted 

by the addition of 350 pi RLT buffer, a highly denaturating guanidine isothiocynate
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were added to lOpl of each 1:20 diluted (in water) cDNA sample. Target sequence- 

specific oligonucleotide primer pairs were then added to a final concentration of 

20ng/ml (usually 2.5pl of a 40pg/ml solution) and distilled water added to 49pl final 

volume, lp l (5U/pl) of recombinant GoTaq®Flexi DNA polymerase from Thermus 

aquaticus was finally added (Promega, UK). The 50pl reaction mixture was 

subjected to thermal cycling under the following standard conditions: Denaturation at 

95°C for 1 min, primer binding at 56°C for 2 min and sequence extension at 72°C for 

3 min for 35 cycles; 1 cycle of 72°C for 10 min.

PCR was also performed on cDNA and genomic DNA samples without the 

requirement for reverse transcription. In these experiments, 0.1 ng - 50ng of target 

cDNA or genomic DNA were mixed with 2 pi 50mM MgCl2, lOpil lOx concentrated 

PCR buffer (200mM Tris-HCl, pH 8.3; 500mM KC1), 2pl of dNTP (lOmM each 

dATP, dCTP, dGTP, dTTP), 20ng/ml of each specific primer, 1 pi (5U/pl) of GoTaq® 

Flexi DNA polymerase and distilled water to 50pl. The same cycling conditions 

described above were used.

2.4.4 TaqMan Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted using the RNeasy Mini Kit (Qiagen, UK) (see section

2.4.1), genomic DNA was digested with RNase free/DNase I and reverse transcribed 

to cDNA using Superscript™ II RNase H' reverse transcriptase (Invitrogen, Paisley, 

UK) as described in section 2.4.3. Negative control samples (no first strand synthesis) 

were prepared by performing reverse transcription reactions in the absence of reverse 

transcriptase. Real-time PCR amplification of IL-18Ra, IL-18Rp and human acidic 

ribosomal phosphoprotein P0 (h36B4) was performed using AmpliTaq Gold® PCR 

Master Mix (Applied Biosystems, UK).

The mastermix was prepared on ice containing 1.25U AmpliTaq Gold® DNA 

Polymerase, 0.2mM dNTP mix, 2mM MgCh, 1 x TaqMan buffer, lp l of diluted 

cDNA (0.5 - lOng per reaction) and the appropriate concentrations of gene-specific

33



Chapter 2 -  Materials and Methods

primers and probes listed in Table 2.2 in a total volume of 25pi made up with 

nuclease-free double distilled water. The reactions were carried out using an ABI 

Prism® 7700 sequence detection system (Perkin Elmer Applied Biosystems, Fostor 

City, CA). The amplification conditions were the same for all the different genes 

(94°C for 7 min; 40 cycles of 94°C for 30sec, 55°C for 45 sec and 72°C for 45 sec; 

72°C for 7 min). cDNA levels during the linear phase of amplification were 

normalised against h36B4 endogenous controls.

Absolute quantitation using a standard curve with known concentration for each set 

o f reactions was used. Plasmids containing the full length hIL-18Ra and hIL-18Rp 

were used for the generation of the standard curve starting from 6.43 and 23.6ng per 

reaction respectively. Determination was carried out in triplicates and expressed as a 

mean copy number per total RNA + SD. The primers (f, forward; r, reverse; Sigma 

Genosys Co., UK) and dual-labelled TaqMan® probes (Applied Biosystems, UK) 

that were used to detect expression of the corresponding human genes are listed in 

Table 2.2. Different combinations of primer-pair and probe concentration matrices 

(Table 2.1) were used to optimise the annealing temperatures, extension times and 

cycle numbers.
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Oligonucleotide Name Oligonucleotide Sequence

IL-18Ra forward S'CAA CAG CAC ATC ATT GTA TAA GAA CTG3’

IL-18Ra reverse 5'CAA GAA GAA CCG GAA CTA TAT TAC TGC3

IL-18Rp forward S'CCG CAT CAC ATA AGC AAG ACC3'

IL-18Rp reverse 5'g a t  TCG GTT GCT CCT TTC CAC3'

IL-18Ra Probe 5 6 - FAM - CCG AGT TTG AAG ATC AGG GGT 
ATT ACT CCT GCG TG - TAMRA3'

IL-18RP Probe 5 6 - FAM - CTC AGC TGC CAA AGT GAT GTA 
CAA AGT CCA G - TAMRA3'

Table 2.2: Primer and probe sequences used for real time PCR of hIL-18Ra and Rp.

Gene Prim er f/r [nM] Probe [nM]

Human 36B4 300/300 nM 100 nM

Human IL-18Ra 600/600 nM 150 nM

Human IL-18Rp 300/150 nM 150 nM

Table 2.3: Optimised concentrations of primers and probes used for real-time PCR.
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2.5 Pull down Assay and Western Blotting for Detection of Protein 

Expression in Cell and Cell Culture Media

Protein G Pull Down Assay

T ||

Protein G Sepharose 4 Fast Flow (GE Healthcare; Amersham Biosciences, UK) is 

recombinant Streptococcal protein G lacking albumin-binding region, produced in E. 

coliand coupled using the Cyanogen Bromide Activation (CNBr) method to 

Sepharose 4 fast Flow, which is a highly cross-linked 4% agarose derivative with 

unique chemical and physical stability. The molecular weight of the ligand is about

17,000 Da and has two binding sites for IgG. The binding capacity of the Protein G 

Sepharose™ 4 Fast Flow for IgG depends on the source species of the particular 

Immunoglobulin (refer to Appendix 8.3 for a Table with the relative binding 

strengths of antibodies from various species to Protein G as measured in a 

competitive ELISA test). Protein G binds specifically to the Fc portion of IgG from 

most mammalian species. In this experiment, Protein G Sepharose 4 Fast Flow was 

used for the isolation and precipitation of shIL-18Ra, shIL-18Rp and shIL-18Rap-Fc 

for their subsequent detection with Immunoblotting.

1 ml of stably transfected CHO cell culture media containing shIL-18Ra-Fc, shlL- 

18Rp-Fc or shIL-18Rap-Fc was centrifuged at 300 x g for 5 min to get rid of cell 

debri and mixed with 30pl of already balanced Protein G Sepharose™ 4 Fast Flow 

beads incubated rotating overnight at 4°C. In order to balance the Protein G 

Sepharose™ 4 Fast Flow, 500pl of beads were washed 3 times with 1ml sterile PBS, 

pH 7.4 at 3,300 x g for lmin and resuspended in the appropriate volume of PBS. The 

following day, the samples containing the beads were washed 3 times with 500pl 

PBS by centrifugation at 3,300 x g for 1 min in order to discard the non-bound 

material. After the final wash, the pellet comprising of the beads bound to the protein 

of interest was resuspended in 25jil PBS plus 25jil of 2x Laemmli buffer (0.2M Tris- 

HC1, pH 6.8; 4% w/v SDS; ImM EDTA; 30% glycerol; 0.3% w/v bromoethanol blue; 

5% p-mercaptoethanol). The beads with the reducing sample buffer were incubated
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at 90°C for 5 min so that the protein is released from the beads. After spinning at 

16,100 x g for 10 min, the 50pl supernatant containing the protein precipitated with 

the beads was carefully removed to be used for SDS-PAGE (section 2.11) and 

subsequently Immunoblotting using antibodies against IL-18Receptor a  or p chain or 

IgG-Fc (see Table 2.5 for a list of antibodies). The pelleted beads were discarded.

To test the efficiency of the purified shIL-18Ra-Fc, shIL-18Rp-Fc or shIL-18Rap-Fc 

to bind rhIL-18, the same procedure was followed after different concentrations of 

the receptors were incubated with 50ng/ml rhIL-18 for 1 h at 37°C, prior to the
TM

addition of Protein G Sepharose 4 Fast Flow beads. Then a monoclonal specific 

antibody against IL-18 (refer to Table 2.5) was used to detect the amount of IL-18 

precipitated with the shIL-18R-Fc using the pull down assay.

Western blotting

The cells were lysed with the appropriate lysis buffer (Table 2.4) and the protein 

concentration was determined by BCA assay (section 2.4.1). Following SDS-PAGE 

(section 2.11), gels were placed onto Protran® nitrocellulose membrane (Schleicher 

and Schuell, Germany) and proteins were transferred to the membrane in lx transfer 

buffer (192mM Glycine, 20% methanol, 25mM Tris-HCl, pH 8.3) for 2h at 25mV,
TM

160mA using X-Cell II blot module in Novex XCell SureLock Mini-Cell system, 

power supply Novex PowerEase® 500 (Invitrogen, UK). The membrane was 

removed and blocked overnight at 4°C in 5% non-fat dried milk (NFDM, Marvel 

dried milk powder) in TBS (137mM NaCl, 20mM Tris-HCl, pH 7.4) containing 

0.05% Tween® 20, unless otherwise indicated. The membrane was washed three 

times between incubations with TBS/0.05% Tween® 20 for 5 min. Primary antibody 

incubations were performed overnight at 4°C (Table 2.5) and all the secondary 

horseradish perosidase (HRP) - conjugated antibody incubations were performed for 

90 minutes at room temperature. When the primary antibody was Biotin-conjugated, 

2pg/ml Extravidin-Peroxidase was for detection. Proteins were visualised by 

chemiluminescence using ECL Plus™ Western blotting reagents (GE Healthcare, 

Amersham Biosciences). It consists of a lumigen PS-3 acridan substrate, which is
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converted to an acridinium ester intermediate when catalyzed by HRP. The ester 

intermediate reacts with peroxide in alkaline conditions and emits light, which was 

detected by autoradiography (Hyperfilm ECL, Amersham Biosciences). Solution A 

(substrate solution containing Tris buffer) and solution B (acridan substrate solution 

in dioxane and ethanol) of the kit were mixed in 40:1 ratio.

Antibody stripping and re-probing o f  membranes

In order to re-probe an already probed membrane with a different set of antibodies, 

the stripping procedure was followed. The membrane was washed in TBS / 0.05% 

Tween® 20 to get rid of the ECL detection reagents and was rolled into a 50 ml 

falcon tube with 20ml Stripping Buffer [4ml 10% SDS; 1.25 ml 1M Tris-HCl, pH 

6.8; 140pl p-ME; 14.6ml distilled water] rotating for 30 min at 50°C. After the 30 

min incubation, the membrane was washed in TBS / 0.05% Tween® 20 a few times 

and was blocked to be used for Immunoblotting as described above.
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Cell Lysis Buffer Buffer Constitution

Cell Signalling Buffer I 20mM HEPES, 150mMNaCl, l%NP-40, lm M Na3V 04, 
20mM P-glycerophosphate, 20mM P-nitrophenol 
phosphate, 2mM NaF, 0.25% Na-deoxycholate, ImM 
EGTA, ImM PMSF, lOpg/ml leucipeptin, lOpg/ml 
aprotinin, and 10ml glycerol and 1 tablet of Complete 
Protease Inhibitor Cocktail (Roche Applied Science, UK)

1 x RIPA Buffer 5ml of the 2 x RIPA stock, 0.5M NaF, 0.5M EDTA, 
0.2M NaH2P0 4 '2 H2 0 , 5% v/v ethylene glycol and 1 
tablet of Complete Protease Inhibitor Cocktail (Roche 
Applied Science, UK)

1 x RIPA buffer was made fresh for each experiment 
from the 2 x RIPA stock (lOOmM HEPES; pH 7.4, 
300mM NaCl, 2% TritonX-100,1% Na-deoxycholate 
and 2% SDS)

Cell Lysis Buffer II 50mM Tris-HCl; pH 8.0, 150mM NaCl, 1% NP-40 
(Roche Applied Science, UK), 0.5% Deoxycholate, 0.1% 
SDS and 1 tablet of Complete Protease Inhibitor Cocktail 
(Roche Applied Science, UK) (Fukushima et al., 2005)

Table 2.4: List of different cell lysis buffers used in experiments.
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1° Antibody [final conc.] Ig Type Cat. No. Source

PhosphoDetect™ Anti-human 
p38 MAP Kinase (pThr180, 
pTyr182) [1/1000]

Rabbit IgG 506119 Calbiochem®, UK

Anti-human p38 MAP Kinase 
(341-360 amino acids) [1/1000]

Rabbit IgG 506123 Calbiochem®, UK

Anti-mouse, rat and human Tbet 
(Thl-specific T box transcription 
factor) [2pg/ml]

Mouse IgGl 14-5824 eBioscience, Inc.

Anti-human p-tubulin [1/500] Mouse IgGl T4026 Sigma-Aldrich, UK

Anti-human IL-18Ra [0.2pg/ml] Goat IgG AF840 R&D Systems, UK

Anti-human IL-18Rp [0.2pg/ml] Goat IgG AF118 R&D Systems, UK

Anti-human IgG-Fc (Fc 
specific)-Biotin [1/1000]

Mouse
IgG2a

B3773 Sigma-Aldrich, UK

Anti-human IL-18 [1/500] Mouse IgG D3D4 In-home (Dr. Wei)

2° Antibody [final conc.] Ig Type Cat. No. Source

Anti-Rabbit IgG-HRP [0.2pg/ml] Swine IgG P0399 DakoCytomation, UK

Anti-goat IgG-HRP [0.25 pg/ml] Rabbit IgG P0449 DakoCytomation, UK

Anti-mouse IgG-HRP [1/1000] Rabbit IgG P0260 DakoCytomation, UK

Table 2.5: List of antibodies used for the Immunoblotting experiments.
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2.5.1 Protein Concentration Determination

Cell lysates were sonicated if required and centrifuged at 15,000g for lOmin. The 

protein concentration in the supernatants was determined using the bicinchoninic 

acid (BCA) protein based assay (Smith et al., 1985), where BCA is mixed with 

cupric sulfate pentahydrate (CUSO4 5 H2O) solution (Pierce International). In the 

presence of protein, Cu2+ is reduced to Cu+ in an alkaline environment. One 

monovalent cuprous cation is chelated by two molecules of BCA, forming a purple- 

coloured reaction product (Fig. 2.1). This reaction is mediated by cysteine,

tryptophan and tyrosine residues, by peptide bonds and additionally by overall

protein structure (Wiechelman et al., 1988). 10pl of protein of unknown 

concentration were mixed with 190pl of protein assay reagent containing 4% Q 1SO4 

in a 96-well microtitre plate (Greiner Bio-One Ltd., UK). Samples were incubated at 

37°C for 30 minutes and the plate was read at 540nm on a 96-well microplate reader 

(EL311, BioTek Instruments, Winoosky, VT, USA). Protein concentration was 

calculated using known concentrations of BSA at 31.25, 62.5, 125, 250, 500, 1000, 

2000 pg/ml on the same plate to generate a standard curve.

Protein + Cu2+ 0H ? » Cul+

Cu1+ + 2BCA --------- ► purple-coloured BCA - Cu+ chelate

Figure 2.1: Reactions taking place in BCA assays.

2.5.2 Densitometric Analysis

Where required, quantitative analysis of Western blots was performed using Image 

Quant software (Amersham Biosciences). Densitometric values represent the ratio of 

the value of each sample normalised against appropriate housekeeping controls for 

each sample, in order to measure the relative increases or decreases obtained for 

samples in the presence and absence of stimulation.

41



Chapter 2 - Materials and Methods

2.6 Sandwich ELISA for the Detection of Soluble Protein in Cell Culture 

Media

The cell supernatants were placed into in U-bottom 96 well plates and stored at - 

20°C to be used for ELISA. In this study, the levels of cytokines in culture 

supernatants were measured by ELISA, using paired antibodies listed in Table 2.6. 

The cytokine levels [pg/ml] were determined according to the standard curve. Briefly, 

anti-cytokine monoclonal antibodies were diluted from 2pg/ml to lOpg/ml in coating 

buffer (0.1M NaHCC>3, pH 8.2) and 50pl/well applied to high protein binding (600ng 

of IgG per cm2) flat bottom 96 well ELISA microplate (Greiner Bio-one Ltd., UK) at 

4°C overnight.

The plates were washed three times with PBS / 0.05% Tween® 20 as washing buffer, 

and blocked with lOOpi/well of 10% FCS in PBS for 2 hours at 37°C, then washed 

three times with washing buffer. 50pl of the supernatant from the cell culture and 

diluted standard cytokine were added to the plate at 37°C for 2 hours or at 4°C 

overnight. After washing five times with washing buffer, 50pi of biotinylated anti

cytokine detecting antibody (1 pg/ml) was added and incubated for 1-2 hours at 37°C. 

The plates were washed six times with washing buffer before adding 50pl of the 

extravidin-peroxidase (2pg/ml) and incubated for 1 hour at 37°C.

The plates were washed six times and the blue colour was developed by adding 50 pi 

of SureBlue™ TMB microwell peroxidase substrate (KPL, USA) for 10-30 minutes 

and changed to yellow with 50pl of TMB stop solution (KPL, USA). The absorbance 

of the stopped reaction was read at a wavelength of 450nm using a FLUOstar 

OPTIMA microplate based multi-detection reader (BMG Labtech, Germany) and 

protein concentration was calculated by the OPTIMA BMG Labtech software based 

on the standard curve.
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Antibody [final conc.] IgG Type Cat. No. Source

Anti-human IFNy [2pg/ml] Mouse IgG I k MD-1 eBioscience, Inc.

Anti-human IFNy-Biotinylated 
[0.5pg/ml]

Mouse IgG I k 13-7319 eBioscience, Inc.

Anti-human IL-18Ra [ 1 pg/ml] Goat IgG AF840 R&D Systems, UK

Anti-human IL-18Rp [ 1 pg/ml] Goat IgG AF118 R&D Systems, UK

Anti-human IgG-Fc (Fc specific) - 
Biotinylated [1/1000]

Mouse IgG2a B3773 Sigma-Aldrich, UK

Anti-human IgG-Fc [0.8pg/ml] Goat IgG G-102-C R&D Systems, UK

Anti-human IL-18Ra [1 pg/ml] Mouse IgGl MAB 840 R&D Systems, UK

Anti-human IL-18Ra [1 pg/ml] Goat IgG AF840 R&D Systems, UK

Anti-human IL-18Rp [1 pg/ml] Goat IgG AF118 R&D Systems, UK

Anti-goat IgG-HRP [0.5pg/ml] Rabbit IgG P0449 DakoCytomation,
UK

Anti-human IL-18 mAb 
[0.5 pg/ml]

Mouse IgGl 125-2H MBL International 
Corporation

Anti-human IL-18 mAb - 
Biotinylated [0.5pg/ml]

Rat IgG2a 159-12B MBL International 
Corporation

Protein Standards Sensitivity Cat. No. Source

rhIFNy 10-0.16ng/ml 11343536 ImmunoTools,
Germany

rhlgGl-Fc 20-0.6ng/ml 110-HG R&D Systems, UK

rhEL-18 2000-3 lpg/ml PHC0186 BioSource,
Germany

Table 2.6: List of antibodies and standards used for the ELISA experiments
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2.7 Flow Cytometry for Detection of Cell Surface Protein Expression

KG-1 cells with or without stimulation were counted using a haemocytometer to 

adjust the cell density to 1 x 107cells/ml in FACS buffer (1 x PBS, pH 7.4,2.5% FCS, 

5mM EDTA); 50 pi of the cell suspension was mixed with 1 pi of the fluorochrome- 

conjugated antibody for 30min at 4°C in the dark. Subclass controls were used at the 

same concentration to adjust for non-specific antibody binding and in the case of 

multiple colour staining, compensation controls (combination of a single positive 

fluorochrome and subclass control reagents) were used to adjust for spectral overlap 

(refer to Table 2.7 for a list of antibodies used for staining). The cells were topped up 

with 1ml of FACS buffer and centrifuged at 300 x g at 4°C. The supernatant was 

discarded and the cell pellet was resuspended by gentle vortexing. The cells were 

washed again for two more times and resuspended in 300pl of FACSFix buffer 

(FACS buffer containing 2% paraformaldehyde). The samples were analyzed the 

within 24 hours by collecting 10,000-25,000 events using a BD FACSCalibur™ flow 

cytometer (BD biosciences).
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Antibody [final conc.] IgG Type Cat/clone No Source

Anti-human IL-18Ra-PE 
[0.5pg/ml]

Mouse IgGl FAB840P R&D Systems, 
UK

Anti-mouse IgGl-PE (isotype- 
matched control for IL-18Ra) 
[0.5pg/ml]

Mouse IgGl PPV-06 Euro
BioSciences,
Germany

Anti-human IL-18Rp [0.5pg/ml] Mouse IgGl MAB1181 R&D Systems, 
UK

Anti-mouse IgGl-FITC (as 
secondary for IL-18Rp) 
[14pg/ml]

Rabbit IgGl 672321 ICN

Anti-human CD80-FITC Mouse IgGl MEM-233 ImmunoTools,
Germany

Anti-human CD14-FITC Mouse IgGl MEM-18 ImmunoTools,
Germany

Anti-human CD58-FITC Mouse IgGl MEM-63 ImmunoTools,
Germany

Anti-human CD50-FITC Mouse IgGl MEM-171 ImmunoTools,
Germany

Anti-human CD54-FITC Mouse IgG2b 1H4 ImmunoTools,
Germany

Mouse IgGl-FITC isotype- 
matched control

Mouse IgGl PPV-06 ImmunoTools,
Germany

Mouse IgG2b-FITC isotype- 
matched control

Mouse IgG2b PFR-02 ImmunoTools,
Germany

Table 2.7: List of antibodies used for FACS analysis.
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2.8 Construction of Expression Plasmids for shIL18Receptor

2.8.1 Amplification of Target DNA and TA Cloning into pCR®II

The soluble forms of human DL18Ra and IL18RP were cloned into expression 

vectors obtained from Invitrogen. The cDNA sequence of shIL18Ra-Fc and 

shIL18Rp-Fc was amplified by using standard PCR with the proofreading Pfu DNA 

polymerase (Promega, UK) for higher fidelity of DNA amplification and lower error 

rate. The pcDNA3.1A and pBlaCrepA backbone vectors containing the full length 

human EL18Ra and IL18Rp sequences respectively (constructed by Dr. Wei XQ) 

were used as templates for amplification.

The amplification primers (Sigma-Genosys Ltd, UK see Table 2.8) were designed to 

incorporate restriction enzyme sites to both the 5’ and 3’-ends of the cDNA 

sequences in order to assist in the sub-cloning of the insert. Kozak consensus 

sequence was also added to the 5’-end of the primers after the restriction sites and 

prior to the start codon (ATG) in order to improve the mammalian protein expression 

o f the cloned cDNA fragments. Four additional nucleotides were incorporated at the 

beginning of the 5’-end of both primers for efficient cleavage, as restriction enzymes 

may not cleave DNA if the recognition site is less than 3 nucleotides from the start of 

the DNA fragment. The amplified products were run on a 1% agarose gel to confirm 

the correct product size as described in section 2.8.4.

The Pfu DNA polymerase-generated blunt-end shIL18Ra and shIL18Rp fragments
(6)were purified as described in section 2.8.5 using the QIAquick PCR purification kit 

and amplified using a standard PCR reaction with Taq DNA Polymerase, which 

added a single 3’-A overhang residue to the each end of the PCR products. The A- 

tailed PCR products were then TA cloned into the pCR®II vector (Invitrogen Corp., 

UK; Appendix 8.2.1) to confirm sequence identity and in frame expression of the 

insert. After ligation (section 2.8.6) the products were transformed into DH5a E. coli 

competent cells and the recombinant plasmids with the inserts were selected with 

blue-white screening as described in section 2.8.8. Glycerol stocks were prepared
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from the colonies grown and the DNA purified using the QIAprep® Miniprep DNA 

purification kit according to the manufacturer’s protocol (see section 2.8.9). Purified 

DNA was tested with EcoR I, Bgl n  and Hind HI for shIL18Ra and EcoR I, Bgl n  

and BamH I for shIL-18Rp restriction enzyme digests as described in section 2.8.2. 

The concentration of the resulting plasmid was measured as described in section 

2.4.2, before sequencing to confirm identity of the sequence using the T7 and SP6 

promoter sequencing primers (see section 2.8.10).

Prim er Name Prim er Sequence

shIL 18Ra-BglII-EcoRI-Kozdk forward 5 ATC TAG ATC TGA ATT CCA CAA 
CCA TGA ATT GTA GAG AAT 
TAC3’

shlLl 8Ra -BgUI reverse 5 TGA TAG ATC TTC TTG TGA AGA 
CGT GGC CTG GGA TA3'

shIL 18Rfi-BglII-EcoRI-Kozak forward 5 GAT GAG ATC TGA ATT CCA 
CAA CCA TGC TCT GTT TGG GCT 
GGAT3’

shIL 1$Rfi-BglII reverse 5 GCA CAG ATC TTC TCT TTT CTT 
TCA GTT GGA CG3'

Table 2.8: List of primer sequences encoding the soluble form of DL18Ra and Rp 

with the appropriate restriction endonuclease sequences at the 5’-end (the start 

codons are indicated in bold red).

2.8.2 Restriction Endonuclease Digestion of DNA

Restriction enzymes, also referred to as restriction endonucleases, are enzymes that 

recognize short, specific (often palindromic) DNA sequences. They cleave double

stranded DNA (dsDNA) at specific sites within or adjacent to their recognition 

sequences. Several restriction endonucleases with their supplied buffers (Promega, 

UK) were used to digest DNA into required fragments. For a list of the enzymes used 

and their buffers refer to Table 2.9. All the restriction endonuclease reactions of 

dsDNA were carried out for 2 hours at 37°C. In general, up to 1 pg of the cloned and
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purified DNA was digested in the presence of 2 pi of 10 x supplied Buffer, 1-2 pi of 

the enzymes (lOU/pl) and water to a volume of 20pl.

Restriction Endonuclease lOx Buffer Recognition Sequence

BamH I E 5’- G / GATCC -3’

Bgl n D 5’- A / GATCT -3’

EcoR I H 5’- G / AATTC -3’

EcoR V D 5’- G / ATATC -3’

HindUl E 5’- A / AGCTT -3’

K pnl J 5’- G G T A C /C -3’

X b a l D 5’- T / CTAGA -3’

Xho I D 5’- C /TCGAG -3’

Table 2.9: List of restriction endonucleases used and their buffers and restriction 

sequences. 10 x Buffer E was used for all the digestions with restriction enzyme 

combinations used in this project [i.e. BamH  I and EcoR I; BamH I and Hind IE; 

EcoR I and Hind III].

2.8.3 Dephosphorylation of DNA

The dephosphorylation reaction was performed directly after the restriction 

endonuclease digestion and purification of the vector and before ligation with the 

insert. During ligation, DNA ligase will catalyze the formation of a phosphodiester 

bond between adjacent nucleotides only if one nucleotide contains a 5’-phosphate 

group and the other a 3’-hydroxyl group. Recircularization of plasmid DNA can 

therefore be minimized by removing the 5 ’ phosphates from both ends of the linear 

DNA with calf intestinal phosphatase (Seeburg et al., 1977, Ullrich et al., 1977, 

Ullrich et al., 1992). As a result, neither strand of the duplex can form a 

phosphodiester bond. However, a foreign DNA segment with 5’-terminal phosphates 

can be ligated efficiently to the dephosphorylated plasmid DNA to give an open

48



Chapter 2 - Materials and Methods

circular molecule containing two nicks. Because circular DNA (even nicked circular 

DNA) transform much more efficiently than linear plasmid DNA, most of the 

transformants will contain recombinant plasmids. So, 40pl of purified eluted vector 

DNA (1 - 3|ig) (see section 2.8.5 for DNA purification) were mixed with 2pi (lU/pl) 

of CLAP, 5 pi of 10 x reaction buffer [50mM Tris-HCl (pH 9.3 at 25°C), ImM MgCh, 

O.lmM ZnCh and ImM spermidine] (Promega, UK) and water to 50pl. The reaction 

was incubated for 2 hours at 37°C and purification of the dephosphorylated plasmid 

DNA followed prior to ligation.

2.8.4 Agarose Gel Electrophoresis

Nucleic acids were routinely analysed by agarose gel electrophoresis. Agarose gels 

were prepared at a concentration range from 1% to 1.5% depending on the size of the 

fragment and amount of DNA. For the digestion of plasmid DNA during sub-cloning 

and analysis of PCR products 1% agarose gels were used. For the process of 

optimisation of qPCR primers 1.5% agarose gels were used. Gels were made up by 

dissolving the required amount of agarose dry powder (Invitrogen, UK) in 0.5 x TBE 

buffer from the 5 x TBE stock [450mM Tris-HCl, pH 8.4; 450mM Boric acid; lOmM 

Ethylenediamine tetra-acetic acid (EDTA)] by heating in a microwave oven. The 

melted gels were allowed to cool to 45°C and 500ng/ml final concentration of 

ethidium bromide was added. The gels were cast in tanks with combs where they 

were allowed to set for 30 min. The gels were then submerged in TBE buffer and the 

well-forming combs were removed. The DNA samples were mixed with 6 x loading 

buffer (0.75% bromophenol blue; 150mM Tris-HCl, pH 8.0; 6mM EDTA; 30% 

glycerol) and loaded into the relevant wells on the gel. 250pl of lkb DNA ladder 

(lpg/pl) (Invitrogen, UK, Appendix 8.1.1) was mixed with 250pl of 6 x loading 

buffer and lOOOpl of TE (25mM Tris-HCl, pH 8.0; ImM EDTA) and 6pl of that was 

loaded on the gel. The gels were run at a constant current of lOmA/cm gel-length or 

a constant voltage of l-5V/cm of gel-length until the bromophenol blue had migrated 

the required distance. The gels were then analysed and photographed under ultra

violet light (254nm wavelength).
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2.8.5 Agarose Gel DNA Extraction and Simple DNA Purification

The QIAquick® Gel Extraction Kit protocol (Qiagen, UK) using a microcentrifuge 

was followed to extract and purify DNA from standard agarose gels in TBE [450mM 

Tris-HCl pH 8.4, 450mM Boric acid, lOmM Ethylenediamine tetra-acetic acid 

(EDTA)] buffer (section 2.8.4). All centrifugation steps were carried out at 15,700 x 

g in a conventional table-top microcentrifuge. DNA bands were visualised with 

Ethidium Bromide by short-wave UV illumination. The relevant DNA band was 

excised with a clean, sharp scalpel and placed in an already weighed eppendorf tube. 

The eppendorf tube containing the gel slice was weighed again and the weight of the 

gel slice was estimated. Three volumes of QG buffer were added to one volume of 

gel (IOOjj.1 ~ lOOmg) and incubated at 50°C for 10 min. After the gel slice was 

dissolved completely, the colour of the mixture was turned into yellow, as QG buffer 

contains a pH indicator which yellow at pH < or = 7.5 and orange or violet at higher 

pH, allowing optimal pH for DNA binding. The same method was used for purifying 

cDNA after digestion, vector dephosphorylation or Klenow blunt-ending of DNA 

without having to incubate the samples 50°C for 10 min, as there is no gel to dissolve.

One volume of isopropanol was then added to increase the yield of DNA fragments 

<500bp and >4kb. The sample was applied to the QIAquick® column already placed 

into a 2ml collection tube and centrifuged for 1 min. The flow-through was discarded 

and 500|il of QG buffer were added to remove all the traces of agarose. If the DNA 

was to be used for salt sensitive applications, such as blunt-end ligation, 750pl of PE 

buffer was added for 2 - 5 min to the column before centrifuging for 1 min to wash. 

The flow-through was discarded and an additional centrifugation step was performed 

to remove the residual ethanol containing PE buffer. The QIAquick® column was 

placed into a clean microcentrifuge tube and 40pl of water was added to the centre of 

the membrane for 1 min, which was then centrifuged for 1 min for the elution of 

bound DNA.
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2.8.6 DNA Ligation

Following restriction digestion and purification, T4 DNA Ligase (Invitrogen, UK) 

was used to join DNA fragments with staggered or blunt ends and to repair nicks in 

double-stranded DNA having 3’-hydroxyl and 5’-phosphate ends. The enzyme is 

isolated from E. coli lambda lysogen NM989. A molar ratio of 3:1 insert to vector 

was used for the rapid ligation of DNA inserts to the appropriately digested and 

purified plasmid DNA to produce circular recombinant molecules. Approximately 

75ng insert and 25ng vector were mixed and incubated with lp l of T4 ligase (5 U/pl) 

and 4pl of 5X DNA Ligase Reaction Buffer [250 mM Tris-HCl (pH 7.6), 50 mM 

MgCh, 5 mM ATP, 5 mM DTT and 25% (w/v) polyethylene glycol-8000] to a total 

volume of 20pl with water. Control ligations, replacing the cDNA fragments with 

water but retaining the plasmid DNA were also set up to calculate the degree of self

ligation. Reactions without T4 DNA ligase and insert were used as negative controls 

to check for partial digestion of the plasmid. Ligations were incubated either 

overnight at 14°C or at room temperature for 1 hour. The resulted circular DNA 

plasmids were immediately used for bacterial transformation.

2.8.7 Cloning of shlL18Ra and shIL18Rp into the pcDNA4/TO-IgGlFc Vector

For the purpose of Protein A purification of the shIL-18Ra, Rp and Rap, they had to 

be Fc-tagged and expressed in CHO cells. To do that the shIL18Ra and shIL18Rp 

were inserted into a pcDNA4/TO/myc-HisA vector (Invitrogen Ltd., UK; Appendix

8.2.2) manipulated to contain an IgGl-Fc sequence (provided by Wei XQ). 

Construction of this vector for transfection required multiple steps which have been 

illustrated in Fig 2.2.
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Figure 2.2: Cloning summary o f  shIL-18Ra-Fc and shIL-18Rp-Fc.

Summary o f  the procedure carried out for the generation o f constructs encoding 

inserts for shIL-18Ra-Fc (a) and shIL-18Rp-Fc (b) to be expressed in CHO cells for 

the expression and purification o f shIL-18Ra-Fc and shIL-18Rp-Fc.
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Sub-cloning the insert shIL18Ra into thepcDNA4/TO-hIgGJFcplasmid

The pcDNA4/T0-IgGlFc vector was digested with BamH I to be linearised (see 

section 2.8.2) and purified as described in section 2.8.5. After dephosphorylation 

(section 2.8.3) and subsequent purification, the plasmid was ready for the ligation 

reaction with the shDL-18Ra insert. The shIL-18Ra insert was digested with Bgl II 

restriction enzyme (section 2.8.2) to be released from the pCR®II plasmid (Invitrogen, 

UK) and following Agarose Gel DNA extraction (section 2.8.5), the purified lkb 

insert was ready for the ligation reaction with pcDNA4/TO-IgGlFc plasmid above.

Sub-cloning the insert shIL18RJ3 into thepcDNA4/TO-hIgGlFc plasmid

The pcDNA4/TO-IgGlFc vector was digested with Hind El to be linearised (see 

section 2.8.2) and after purification using the QIAquick® kit (section 2.8.5) it was 

blunt-ended using Klenow enzyme (DNA Polymerase I Large Fragment; Roche, 

Germany). Klenow enzyme consists of a single 75,000 Da polypeptide chain purified 

from a recombinant strain of E. coli. It carries the 5’ —► 3’ polymerase activity and 

the 3’ —► 5’ exonuclease activity of the intact E. coli DNA Polymerase I but lacks the 

5* —► 3* exonuclease activity of the native enzyme (Joyce and Grindley, 1983). The 

5* —► 3* exonuclease activity can be used to generate blunt ends from a 3’-overhang. 

The fill-in reaction mix was prepared on ice, mixed gently and centrifuged briefly to 

bring the contents to the bottom of the tube before incubation for 30 min 37°C. The 

reaction was terminated by the addition of lp l of 0.6M EDTA (20mM final 

concentration). The blunt-ended plasmid was purified and subsequently digested 

with BamH I to create one sticky end. After gel purification (described in section 

2.8.5) the one sticky- and one blunt-ended plasmid was ready for the ligation reaction 

with the shIL-18R(3 insert. The shIL-18Rp insert was digested with Bgl II together 

with EcoR V (as described in section 2.8.2) (Invitrogen, UK). Agarose Gel DNA 

extraction followed (section 2.8.5) for the purification of the lkb insert, which was 

ready for the ligation reaction as described in section 2.8.6.
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2.8.8 Transformation of DH5a £. Coli Competent Cells

Subcloning Efficiency™ DH5a™ Competent E. coli Cells (Invitrogen, UK) were 

used for routine subcloning into plasmid vectors. Initially, a heat shock method was 

used whereby 5pl (approximately 500ng of DNA) of the ligation mixture was mixed 

with 50pl competent bacterial cells and incubated on ice for 30 min in an eppendorf 

tube. The DNA-cell mixture was then incubated at 37°C for 40 seconds before a 

second incubation for 2 min on ice. 1ml of 2 x YT broth (Invitrogen, UK) was added 

to the transformation mix and this was then incubated at 37°C with vigorous shaking 

for 1-2 hour. The bacteria were pelleted by centrifugation at 13,000 x g for 10 

seconds at room temperature and resuspended in 100pl of 2 x YT broth. The 

bacterial cells were then plated onto 85mm petri dishes (Sterilin) containing Luria- 

Bertani (LB) agar (lOg/L bacterial peptone 140, 5g/L yeast extract autolysed low 

sodium, 5g/L NaCl and 12g/L agar, pH 7.5) and 100 jig/ml Ampicillin. Plates were 

incubated overnight at 37°C and the following day was examined for the growth of 

colonies of transformed bacteria. The bacterial cells that contained the plasmid with 

the ampicillin resistant gene will survive in the LB-agar containing ampicillin.

For the TA-cloning experiments using the pCR®n plasmids that carry the X-gal gene, 

the LB-agar contained 50pg/ml isopropyl thio-P-D-galactoside (IPTG) (Invitrogen, 

UK) and 40pg/ml 5-bromo-4-chloro-3-indolyl-p-D galactoside (X-gal) (Invitrogen, 

UK). This allowed the selection of bacteria carrying the recombinant plasmids by the 

appearance of white colonies. Those not carrying an inserted DNA fragment retained 

the ability to metabolise galactose analogues and therefore produced blue colonies 

due to the presence of IPTG and X-gal.
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2.8.9 Plasmid DNA purification

Plasmid DNA was isolated using the QIAprep® Spin Miniprep kit protocol (Qiagen) 

using a microcentrifuge. The procedure is based on alkaline lysis of bacterial cells 

followed by adsorption of DNA onto the QIAprep® silica membrane in the presence 

of high salt (Vogelstein and Gillespie, 1979) and the efficient washing and elution of 

purified plasmid DNA. Colonies carrying a putative plasmid of interest were 

inoculated into 3ml of 2 x YT broth containing lOOpg/ml ampicillin and grown with 

vigorous shaking for 16 hours at 37°C.

a). Harvesting and resuspension: At the end of the growth period, 2ml of the 

bacterial culture were harvested into an eppendorf tube and centrifuged at 16,100 x g 

for 2 minutes at room temperature. The bacterial cell pellet was resuspended in 250pl 

of PI buffer with RNase A added to it.

b). Bacterial cell lysis: The resuspended bacterial pellets were then lysed in 250pl of 

NaOH/SDS containing P2 buffer in the presence of RNase A (Bimboim and Doly, 

1979, Bimboim, 1983). SDS caused solubilisation of the phospholipids and protein 

components of the membrane leading to cell lysis and release of cell contents. The 

alkaline environment was suitable for the denaturation of the chromosomal and 

plasmid DNA and proteins. Optimised lysis time was important for the maximum 

release of plasmid and not chromosomal DNA.

c). Lysate neutralisation and adjustment to high-salt binding conditions: 350pl of the 

high-salt N3 buffer was added to the lysate and mixed thoroughly and gently to 

ensure complete precipitation and avoid contamination of the plasmid DNA with the 

chromosomal DNA. This step resulted in the neutralisation of the lysate and the 

adjustment in high-salt binding conditions, which caused precipitation of denatured 

proteins, Sodium Dodecyl Sulphate (SDS), cell-wall bound chromosomal DNA and 

cellular debris. The smaller plasmid DNA renatured correctly and stayed in solution. 

The lysates were then cleared by centrifugation for 10 min at 15,700 x g.
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d). DNA adsorption to the QIAprep® membrane: The supernatants were then applied 

to QIAprep® columns with silica-gel membrane for selective-adsorption of plasmid 

DNA in high-salt buffer and elution in low-salt buffer. Binding of DNA was thus 

ensured, while centrifugation for 1 min at 15,700 x g resulted in the release of RNA, 

cellular proteins and metabolites in the flow-through, which was discarded.

e). Washing o f  plasmid DNA: To efficiently remove all endonucleases the column 

was washed with 500pl PB buffer for 1 min at 15,700 x g and another wash with 

750pl of ethanol-containing PE buffer ensured efficient salt removal. To remove the 

residual ethanol from the wash buffer that may inhibit subsequent enzymatic 

reactions, the flow-through was discarded with an additional 1 min centrifugation 

step.

j). Elution o f  plasmid DNA: The purified plasmid DNA was then eluted in 50pl TE 

buffer (25mM Tris-HCl, pH 8.0; ImM EDTA) to the centre of the membrane, let 

stand for 1 min and centrifuged for 1 min to be eluted into a clean 1.5 ml 

microcentrifuge tube. These so-called 'mini-prep' generated DNA samples were 

stored at -20°C and were suitable for subsequent restriction enzyme digestion. 5 to 

20 pg of plasmid DNA was obtained from the 2 ml overnight culture, depending on 

plasmid copy number per cell, the individual insert in a plasmid, growth medium 

used for the bacterial culture, the elution volume and the elution incubation time.

2.8.10 DNA Sequencing

All sequencing was performed by the Wellcome Trust Central Biotechnology 

Services support facility (Henry Wellcome Building, Cardiff University, UK) using 

the ABI Prism® 3100 Genetic Analyser (Applied Biosystems, UK). Sequencing
<R)reactions were prepared according to the ABI Prism BigDye Terminator v3.1 Cycle 

sequencing kit protocol (Applied Biosystems, UK). This involves the use of a ready 

reaction mix containing dNTPs, AmpliTaq DNA Polymerase, MgCh and dye 

terminators. The concentration of the purified plasmid DNA was measured as
(R)described in section 2.4.2. The reaction mix consisted of 4pi of 5 x BigDye
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Terminator ready reaction mix, 2pl of 5 x BD3.1 sequencing buffer, 0.5 - lpg of 

plasmid DNA, 20pmol of forward or reverse primer (for sequencing primers see 

Table 2.10) and DNase-free water to make the reaction up to 20pl. Samples were 

briefly vortexed and spun before being subjected to 94°C for 1 min and 30 cycles of 

94°C for 15 sec, 50°C for 30 sec, 60°C for 5 min.

DNA extension products from the PCR were precipitated to remove any 

unincorporated BigDye® Terminators by adding lp l of 3M sodium acetate and lp l 

0.5M EDTA. The samples were briefly vortexed and washed with 80pl of 95-100% 

chilled ethanol to remove any remaining residual salts prior to centrifugation at

16,000 x g for 15 min. The supernatant was decanted and 200pl of 70% chilled 

ethanol was added. Another centrifugation step followed and the supernatant was 

decanted to add 100pi of 70% chilled ethanol to the samples.

Samples were sent to the Wellcome Trust Central Biotechnology Services support 

facility, where they were spun in a Fisher AccuSpin Micro bench top centrifuge at 

15,700 x g for 2 min. The samples were then placed in a Thermo Savant DNA110 

SpeedVac on a medium setting and run until dry. For denaturation, the samples were 

resuspended in lOpl of ABI HiDi® Formamide (Applied Biosystems, UK), briefly 

vortex-mixed and then spun in bench top centrifuge as before. The samples were 

subsequently pipetted into ABI MicroAmp 96-well reaction plate (Applied 

Biosystems, UK) and Sequencing Analysis was carried out on an ABI 3130x1 

Genetic Analyzer using ABI Foundation Data Collection Version 3.0 (Applied 

Biosystems, UK). Resulting sequencing chromatograms were analysed using the 

computer software program, ABI Sequence Analysis Version 5.2 (Applied 

Biosystems, UK). The data were examined for sequence identity for the detection of 

mutations on the National Centre for Biotechnology Information (NCBI) database 

using the search engine BLAST (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi).
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Prim er Name Prim er Sequence

T7 5't a a  t a c  g a c  t c a  c t a  t a g  g g 3'

SP6 5'a t t  t a g  g t g  a c a  c t a  t a g 3'

CMV forward s'CGC AAA TGG GCG GTA GGC3

BGH reverse 5’t a g  a a g  g c a  c a g  t c g  a g g 3'

Table 2.10: List of primer sequences used for sequencing.

2.9 Cell Transfection and Cloning

2.9.1 Generation of transiently transfected Cos-7 cells and stably transfected 

CHO cells expressing shIL-18Ra-F, shIL-18Rp-Fc and shIL-18Rap-Fc

The GeneJuice® transfection reagent (MERCK Biosciences, Novagen, UK), 

composed of a non-toxic cellular protein and a small amount of a novel polyamine, 

was used for the efficient DNA transfer in both stable and transient transfection of 

Cos-7 and CHO cells respectively with plasmids containing shIL-18Ra-Fc and shlL- 

18Rp-Fc.

The day before transfection, 2 x 105 cells in mid-log phase were plated per well in a 

6-well plate and in 5 ml of complete growth D-MEM media. Cells were incubated 

overnight at 37°C (5% CO2) to reach 50 - 80% confluence before transfection. 

GeneJuice® alone was used as a negative control. For each well to be transfected, 3 pi 

of GeneJuice® was added into 100pi of serum-free media in a sterile tube, mixed 

thoroughly by vortexing and incubated at room temperature for 5 min. The DNA to 

be transfected was at a concentration of 0.5 - 1 pg/pl, so that lpg DNA was added to 

GeneJuice®/serum-free medium mixture, mixed by gentle pipetting and incubated at 

room temperature for 15 min. The entire volume of GeneJuice®/DNA mixture was 

added drop-wise to the cells in 3ml of complete growth medium for Cos-7 cells and 

serum-free medium for CHO cells. The plate was gently rocked to ensure even
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distribution of the drops. The transfection mixture was removed after 6 h incubation 

to be replaced with 5 ml of full growth medium.

Transient transfection o f  Cos-7 cells

After 48 h incubation of Cos-7 cells at 37°C (5% CO2) following transfection, the 

supernatant was harvested and centrifuged at 300 x g for 5 min to get rid of any cell 

debri. The supernatant was used for characterisation assays to confirm expression 

and secretion of shIL-18Ra-Fc, shIL-18Rp-Fc and shIL-18Rap-Fc.

Stable transfection o f  CHO cells

For stable CHO cell line selection, 24 h after transfection the cells were transferred in 

75mm Petri-dishes and sub-cultured in complete growth medium plus 700jig/ml 

Zeocin for about 3 weeks, allowing for growth and selection of the desired cells. 48 

single Zeocin resistant colonies were picked up using a tip with 40pl PBS and 

transferred into 24-microwell plates containing full growth medium. Cells were 

expanded for 10 more days and half of these were used for functional analysis in 

order to determine the highest expression colonies. The highest expression colonies 

were then expanded in a T75 flask (Greiner Bio-One Ltd., UK) and half of the cells 

were frozen in situ (section 2.1.4) and the rest were expanded for protein purification 

using HiTrap™ Protein A Affinity Chromatography (section 2.10).

2.10 Single Step Affinity Purification of the Soluble Human IL-18 

Receptor

Chinese hamster ovarian (CHO) cells transfected with either shIL-18Ra-Fc, shlL- 

18Rp-Fc or shIL-18Rap-Fc (desribed in section 2.9.1) were expanded in five T75 

flasks (Greiner Bio-One Ltd., UK) in complete growth media, before they were 

cultured in 1L of D-MEM media containing 4500mg/L Glucose and L-Glutamine 

and supplemented with 10% Ultra low IgG fetal bovine serum, 50UI/mL penicillin 

and 50|ig/mL streptomycin (all Gibco, Invitrogen Ltd., UK). Conditioned media
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were collected after 7 to 10 days of culture and centrifuged at 4,000 x g for 20 

minutes at room temperature to pellet cell debris.

The supernatant was filtered using 0.2pm pore size polyethersulfone (PES) 

membrane filter units (Fisher Scientific, VivaScience AG, Germany) and 1 litre of 

media was immediately used for purification by single step affinity chromatography
TM

using lmL HiTrap Protein A HP column (Amersham Biosciences, GE Healthcare, 

UK) coupled to an AKTAprime™ plus chromatography system. Purification was 

carried out at 4°C and the column was equilibrated in buffer A (20mM Sodium 

Phosphate Buffer, pH 7.4) at flow rate lmL/min. The shIL-18R-Fc culture media 

was applied overnight at a flow rate 0.7mL/min. After loading, the column was 

washed with buffer A (20mM Sodium Phosphate Buffer, pH 7.4) at a flow rate of 

lmL/min until stable conductivity was reached. Buffer B (0.1M Glycine-HCl, pH 3.0) 

was applied at a flow rate of lmL/min to elute the bound material in lmL fractions 

that were neutralised in 50 - 200pl buffer C (2M Tris-HCl, pH 9.0). After elution was
TM

complete, the HiTrap Protein A matrix was regenarated with 20% ethanol in buffer 

A.

Forty fractions were collected and analysed for the amount of protein present using 

BCA assay as described in section 2.5.1. The fractions containing the purified protein 

were pooled and buffer exchanged by dialysis (changed 4-5 times every 4h) into 

sterile PBS, pH 7.4 (phosphate buffered saline, Dulbecco A tablets, Oxoid, 

Basingstoke, UK) using Spectra/Por® Biotech regenerated cellulose dialysis 

membrane with MWCO of 15,000Da (Spectrum Laboratories Inc. SDS-PAGE
TM

analysis and Coomassie staining (Bio-Safe Coomassie stain, Bio-Rad Laboratories, 

UK) were used to confirm the presence of shIL-18R and estimate the purity of the 

protein purified. The purified protein (0.5 - 2.0mg/mL) was aliquoted and stored at - 

80°C to avoid loss of activity due to repeated freeze-thaw.
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2.11 Sodium Dodecyl Sulphate-Polyacrilamide Gel Electrophoresis 

(SDS-PAGE) Analysis and Coomassie Blue Staining

Protein concentration was determined as described in section 2.5.1 by BCA assay. 

Samples of 15pl or 20 - 50pg cell lysates were added with the appropriate amount of 

2x Laemmli sample buffer (0.2M Tris-HCl, pH 6.8; 4% w/v SDS; ImM EDTA; 30% 

glycerol; 0.3% w/v bromoethanol blue; 5% P-mercaptoethanol) and denatured at 

95°C for 5 minutes. Proteins were separated on a pre-cast 4-20% Tris-Glycine 

polyacrilamide gel (1.5mm x 15well Novex®, Invitrogen, UK) in 1 x running buffer 

(25mM Tris-HCl, pH 8.3; 190mM glycine; 0.1% SDS) and at 125V (limit 40mA) for 

90 minutes or until proteins had sufficiently separated, using a Novex X-Cell 

SureLock Mini-Cell system, power supply NovexEase 500 (both Invitrogen, UK). 

6pi of a pre-stained molecular weight marker (SeeBlue Plus2 prestained standard, 

Invitrogen, UK; Appendix 8.1.2) was also loaded to visualise protein separation. 

Proteins were visualised by Coomassie staining using Bio-Safe™ Coomassie stain 

(Bio-rad Laboratories, UK) or were transferred to nitrocellulose for Western blotting 

(section 2.5 Western Blotting).

2.12 Statistical Analysis

The standard deviation of the mean was calculated for each group of samples done in 

triplicates. Statistical significance was calculated using one-way ANOVA with 

Tukey-Kramer or Bonferroni multiple comparisons post-tests. One-way ANOVA 

compares the means of three or more groups, assuming that the data are sampled 

from Gaussian population. If the overall one-way ANOVA P value is small then it is 

likely that the differences observed are not due to random sampling. This means that 

at least one but not necessarily all the means differ from the rest. Post tests were 

performed to identify where these differences lied. Probability values of P > 0.05 

were not considered significant (ns), whereas P values of * P < 0.05 were considered 

statistically significant, ** P < 0.01 very significant and *** P < 0.001 highly 

significant compared to the unstimulated control unless otherwise stated.
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3 Regulation of IL-18 signalling by TNFa

3.1 Background

In chronic inflammatory conditions, host immune responses are orchestrated by 

networks of cytokines that determine the outcome of the disease. The important role 

of IL-18 in regulating chronic inflammation has been demonstrated in several disease 

models (Grade et al., 2003, Dinarello and Fantuzzi, 2003, Dinarello, 2007). 

Investigating the mechanisms of interplay between IL-18 and other cytokines is 

important in identifying critical interactions that could provide novel therapeutic 

approaches for the treatment of chronic inflammatory diseases.

Studies carried out to date have paid special attention to the combinational effect of 

IL-18 and IL-12, due to their remarkable synergy. This synergy results in the 

induction of IFNy by B and T lymphocytes, NK cells, macrophages and DCs 

(Takeda et al., 1998, Yoshimoto et al., 1997, Munder et al., 1998, Okamura et al., 

1995b, Fukao et al., 2000, Stober et al., 2001). The synergy of IL-18 and IL-12 

occurs mainly through the up-regulation of IL-18R expression on T cells, Thl cells 

and B cells after IL-12 stimulation (Yoshimoto et al., 1998). Mice treated with IL-18 

together with IL-12 show significantly higher incidence and severity of CIA 

compared to each cytokine alone. However, the mechanism of action of IL-18 to 

promote CIA differs from that of IL-12 (Leung et al., 2000). Thus, in order to 

examine IL-18 signalling, without synergistic effects from IL-12, we used human 

monocyte-like dendritic precursor KG-1 cells that do not respond to IL-12 (Konishi 

et al., 1997).

As described in the general introduction, IL-18 was initially characterised by its 

ability to induce IFNy production in mice with endotoxin shock (Nakamura et al., 

1989, Okamura et al., 1995a, Okamura et al., 1995b). Based on this characteristic of 

IL-18, the human myelomonocytic cell line, KG-1 has been used to establish a 

simple, accurate and sensitive bioassay to study the role of IL-18 in regulating the 

immune response in both humans and mice (Konishi et al., 1997, Taniguchi et al.,
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1998). This simplified model system of pre-dendritic KG-1 cells that respond to IL- 

18 for the production of IFNy is an important tool for studying the role of other 

cytokines on the function of IL-18 to induce the maturation of DCs.

KG-1 was isolated from the bone marrow of a 59-year old Caucasian male patient 

with erythroleukemia (FAB M7) undergoing myeloblastic relapse, which eventually 

developed into myelogenous leukaemia (Koeffler and Golde, 1978). A subline, KG- 

la, was established by serial passage of KG-1 (Koeffler et al., 1980), which is 

arrested at a less differentiated stage than KG-1 based on criteria such as surface 

phenotype, gene expression and growth factor unresponsiveness (Fukuda et al., 1981, 

Furley et al., 1986). Like the committed CD34+ myeloid DC/macrophage progenitors 

of DC (Ryncarz and Anasetti, 1998), KG-1 cells are MHC HfCD34+CD86+, whereas 

KG-la are MHC n  CD34+CD86* (St Louis et al., 1999).

The level of bioactive IL-18 in culture supernatants, cellular extracts and body fluids 

can be determined by measuring the amount of IFNy produced in the culture 

supernatant of KG-1 cells using ELISA. In this model system, IL-18 has been shown 

to dose-dependently induce IFNy production. Another sensitive and useful IL-18 

assay using human mitogen-stimulated PBMCs has also been established (Ushio et 

al., 1996), but apart from the difficulty of isolating PBMCs, the variability between 

PBMC donors may present difficulties in the establishment of a standard range for 

the bioassay. Moreover, PBMCs have also been shown to produce IFNy in response 

to human IL-12 stimulation (Kobayashi et al., 1989), as opposed to KG-1 cells 

(Konishi et al., 1997), making the KG-1 assay a simpler model to study IL-18 

function.

The important role of IFNy in the control of intracellular pathogens has been 

demonstrated in IFNy'7' and IFNy receptor'7' mice, and in studies using anti-IFNy 

antibodies (Schroder et al., 2004). Initially, it was believed that only lymphoid 

derived cells such as CD4+ T helper type I (Thl) lymphocytes, CD8+ cytotoxic T 

cells and NK cells produced IFNy. However, it has recently been demonstrated that

64



Chapter 3 -  Regulation o f  IL-18 signalling by TNFa

myeloid derived cells such as mature DCs also produce IFNy (Fukao et al., 2000, 

Pashenkov et al., 2000, Rescigno et al., 2000).

Mature dendritic cells (DCs) are professional antigen-presenting cells and the key 

players that drive the immune response in chronic inflammatory conditions. These 

cells activate adaptive immunity by taking up bacterial antigens and presenting them 

to naive T cells; thereby inducing their clonal expansion and differentiation into 

antigen-specific effector T cells. The process of DC maturation is regulated by 

various co-stimulatory factors and cytokines including IL-18 and TNFa. KG-1 cells 

are known to express CD54, which is up-regulated by IL-18 (Kohka et al., 1998). As 

previously mentioned, the up-regulation of CD54 by IL-18 has been described on 

other human cell lines, such as PBMCs (Yoshida et al., 2001), PBMC-derived 

dendritic cells (Gutzmer et al., 2003) and RA synovial fibroblasts and endothelial 

cells (Morel et al., 2001). Both IL-18 and TNFa induce the maturation of dendritic 

precursor KG-1 cells by up-regulating the expression of the co-stimulatory molecules 

CD83, B7.1 (CD80), B7.2 (CD86), CD40, CD54 and the major histocompatibity 

complex class II (MHC II) (Li et al., 2004b). Due to the difficulty of isolating 

homogenous monocyte or DC populations from PBMCs, we chose KG-1 cells that 

have similar multipotent properties to PBMCs and the capacity to mature into both 

macrophages (Koeffler, 1983) and dendritic-like cells (St Louis et al., 1999, 

Ackerman and Cresswell, 2003). KG-1 cells are therefore considered to be a good 

model for studying human DC-specific processes (Berges et al., 2005).

The interplay between EL-18 and TNFa has been reported in inflammatory synovitis, 

where E L -18 promotes the release of TNFa, which in turn up-regulates the 

expression of IL-18 in fibroblast-like synoviocytes (Gracie et al., 2003). It has also 

been reported that IL-18 induces the synthesis of TNFa from non-CD 14+ isolated 

PBMCs (Puren et al., 1998). Moreover, TNFa has been shown to up-regulate the 

expression of IL-18R on KG-1 cells (Nakamura et al., 2000, Wu et al., 2003).

Groups studying the role of TNFa in regulating EL-18 signalling have focussed on 

the regulation of IL-18 receptor expression. TNFa has been shown to up-regulate the
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expression of IL-18R on KG-1 cells (Nakamura et al., 2000, Wu et al., 2003). 

However, it is not clear whether the induction of the IL-18 receptor complex is a 

direct or indirect consequence of TNFa. Recent studies have shown that TNFa 

regulates both E L -18 and IL-18R mRNA expression in a time dependent manner in 

fully differentiated human SGBS (Simpson-Golabi-Behmel syndrome) adiposities 

(Wood et al., 2005) and in lung and renal epithelial cells (Krasna et al., 2005). Work 

by (Nakamura et al., 2000) has investigated the expression of IL-18R using a large 

panel of hematopoietic cell lines and has shown that 24 out of 39 cell lines tested 

express IL-18R but only KG-1 showed the ability to produce IFNy, GM-CSF and IL- 

6 upon IL-18 stimulation. This cell line responds to IL-18 and produces IFNy in the 

absence of IL-12 (Konishi et al., 1997), which makes it a less complicating bioassay 

to characterise IL-18R and study the signal transduction mechanisms of IL-18. 

Nakamura et al., 2000, were also the first group that presented evidence that TNFa 

has modulating effects on IL-18R expression. Thus, in this study KG-1 cells were 

used as a model system to study the role o f TNFa in regulating DL-18 signalling.

Recent studies on the molecular mechanisms regulating INFy gene expression in T 

cells have shown the importance of the p38 mitogen-activated protein kinase (MAPK) 

pathway. Several phase E-in clinical trials are underway to evaluate selective 

inhibitors of p38 MAPK, particularly for the treatment of RA (Kumar et al., 2003, 

Palladino et al., 2003, Miwatashi et al., 2005). IFNy expression in Thl cells depends 

upon the p38 MAPK signalling pathway (Rincon et al., 1998) and is induced by IL- 

18 and IL-12 (Berenson et al., 2006). Another group showed that DL-12 activates p38 

MAPK but not ERK1/2 that is required for normal IFNy expression in activated T 

cells (Zhang and Kaplan, 2000).

In mature DCs, IL-12 induces a basal level of p38 MAPK activity that is enhanced 

by IL-18 and is required for IFNy production (Fukao et al., 2000). More importantly, 

a recent study done in KG-1 cells has demonstrated that IL-18 activates p38 MAPK 

and NFkB to induce T-bet (T-box expressed in T cells) expression and function 

(Bachmann et al., 2007). T-bet is a Thl-specific transcription factor required for the
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generation of Thl cells through IFNy expression, as it was established by Glimcher 

et al., 2007, through the generation of T-bet deficient and overexpressing mice 

(Szabo et al., 2000, Szabo et al., 2002, Glimcher, 2007). T-bet is potently induced by 

IFNy in human monocytes and myeloid dendritic cells (Lighvani et al., 2001). DCs 

from mice deficient in T-bet show significantly impaired capabilities to produce 

IFNy (Lugo-Villarino et al., 2003b).

The objective of this study was to examine the role of TNFa in the expression of IL- 

18R in the KG-1 cell-based model system in correlation with IL-18-induced 

signalling and DC maturation. Understanding the mechanism by which IL-18 

mediates its effects and is regulated by other cytokines will be of importance in 

considering therapeutic approaches to prevent the maturation of dendritic cells by 

targeting IL-18 signalling.
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3.1.1 Aims and Objectives

1. In order to study IL-18 signalling, the initial objective of this project was to 

confirm that our KG-1 cell bioassay model system is functional and the cells 

respond to IL-18 stimulation to secrete IFNy.

2. To investigate the role of the pro-inflammatory mediator, TNFa, in regulating 

IL-18 signalling by studying its effects on IL-18R expression in KG-1 cells.

3. To investigate the consequences of TNFa regulation of IL-18R on IL-18 

downstream signalling in KG-1 cells. Specifically, to determine whether IL- 

18 induced p38 MAPK or ERK1/2 phosphorylation and whether the 

activation of these kinases would be required for the subsequent IFNy 

production in the KG-1 cell bioassay.

4. Also, to define the role of TNFa in regulating T-bet transcription factor 

expression in KG-1 cells.

5. To better understand the mechanism of DC maturation induced by TNFa and 

IL-18 stimulation.
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3.2 Results and Discussion

3.2.1 IL-18-induced secretion of IFNy in the KG-1 cell model system

The simple and sensitive KG-1 bioassay was used for the detection of IFNy secreted 

in the culture media of the cells after stimulation with IL-18 (Konishi et al., 1997). In 

order to confirm the functionality of our assay, KG-1 cells were stimulated with 

increasing doses of IL-18 for 48 hours and the amount of IFNy secreted in the cell 

supernatant was quantified using ELISA. The result in figure 3.1 confirmed that IL- 

18 induced IFNy production in KG-1 cells in a dose dependent manner, reaching a 

significant increase of 2ng/ml IFNy in response to lOOng/ml IL-18 stimulation 

compared to unstimulated.

3.2.2 Role of IL-18 In pre-dendritic KG-1 cell maturation

Following the confirmation that the cells respond to IL-18, we examined the effect of 

this cytokine on the maturation of the pre-dendritic KG-1 cells by investigating the 

expression of co-stimulatory molecules. Human dendritic cells are a heterogeneous 

population derived from the differentiation of two distinct subpopulations of 

haematopoietic progenitor cells (HPC); the CD14+ monocytes (Zhou and Tedder, 

1996, Pickl et al., 1996, Kiertscher and Roth, 1996) and the CD34+ bone marrow 

cells. Lymphoid DCs derive from CD34+CD10+ HPC (Galy et al., 1995), whereas 

myeloid DCs from CD34+CD86+ HPC (Ryncarz and Anasetti, 1998). Mature DCs 

are typically characterised by the expression of MHC class I and H, the B7 family 

co-stimulatory molecules CD80 (B7.1) and CD86 (B7.2), and the DC lineage marker 

CD83 (Hart, 1997).
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IL-18 [ng/ml]

Figure 3.1: IL-18 induced the production of IFNy in KG-1 cells 

in a dose-dependent manner.

KG-1 cells were stimulated with different concentrations of IL-18 

for 48h. IFNy produced in the culture media was determined by 

ELISA. Data shown are expressed as mean ± SD of triplicates of a 

representative experiment. ** P < 0.01 by Tukey-Kramer post-test 

compared to unstimulated cells.
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It is known that IL-18 stimulation facilitates the maturation of the CD34+ pre- 

dendritic KG-1 cells by up-regulating CD83, HLA-DR (MHC II) and CD54 by day 3. 

Marked increase of the co-stimulatory molecules CD83, CD80, CD86, CD40, CD54 

and HLA-DR upon IL-18 or TNFa stimulation for 9 days has been reported. This 

effect was likely not due to endogenous TNFa production as it was not prevented in 

the presence of an antibody against TNFa (Infliximab) (Li et al., 2004b).

Flow cytometry was used to examine the effect of IL-18 on the expression of co

stimulatory molecules on KG-1 cells one day after their stimulation. CD80 is a co

stimulatory molecule expressed on professional APCs that belongs to the B7-CD28 

family and is crucial for the regulation of activation and tolerance of T cell immunity. 

DL-18 only slightly up-regulated CD80 expression on KG-1 cells after one day of 

stimulation (Fig. 3.2a). It was also confirmed that KG-1 cells do not express the 

monocyte marker CD 14 and thus they belong to the CD34+ bone marrow lineage 

pre-dendritic cells (Fig. 3.2b).

To investigate the ability of KG-1 cells to express adhesion molecules, we used 

FITC-conjugated antibodies against human CD54, CD50 and CD58 and performed 

FACS. CD58 was expressed on KG-1 cells but IL-18 did not have any effect on the 

up-regulation of this molecule (Fig. 3.2c). Interestingly, the staining with CD50 

revealed two sub-populations of KG-1 cells with opposite expression levels before 

and after stimulation with IL-18 (Fig. 3.2d). This could be due to the differential 

characteristics of the cells as a result of the differentiation and maturation of 

precursor DCs induced by IL-18. As expected, IL-18 up-regulated the expression of 

CD54 on KG-1 cells (Fig. 3.2e). As shown in figure 3.2e, the priming of the cells 

with TNFa prior to IL-18 stimulation further induced the up-regulation of CD54 

expression on these cells indicating that the interaction between IL-18 and TNFa 

may contribute to the inflammatory response.
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Figure 3.2: Expression and regulation of 
co-stimulatory and adhesion molecules on 
KG-1 cells.
KG-1 cells were primed with or without 
20ng/ml TNFa for 24h and further stimulated 
with or without lOOng/ml IL-18 for another 
24 h. Flow cytometry was used to detect the 
expression o f CD80 (a), CD 14 (b), CD58 (c), 
CD50 (d) and CD54 (e) on unstimulated and 
TNFa and/or IL-18 stimulated cells. The 
appropriate isotype-matched antibodies were 
used as a control in each case (Table 2.7).

72



Chapter 3 - Regulation o f  IL-18 signalling by TNFa

3.2.3 TNFa increased the sensitivity of KG-1 cells to IL-18 stimulation

As demonstrated in figure 3.2e, TNFa and IL-18 work in synergy to promote the IL- 

18-induced up-regulation of the expression of CD54 on KG-1 cells. However, the 

role of TNFa in regulating IL-18-induced IFNy production in KG-1 cells has never 

been investigated.To study the role of TNFa in IL-18 signalling, KG-1 cells were 

primed with 20ng/ml TNFa for 24 hours and further stimulated with different doses 

of IL-18 for 48h. These results demonstrated a significant increase in IFNy 

production in an IL-18 dose dependent manner (Fig. 3.3). One-way ANOVA 

indicated that the difference between the mean concentration of secreted IFNy in the 

KG-1 cell supernatant after stimulation with different concentrations of IL-18 was 

highly significant (P < 0.001), compared to unstimulated (see Fig. 3.3). Tukey- 

Kramer multiple comparisons post-test showed that 25, 50 and lOOng/ml IL-18 

produced significantly higher amounts of IFNy compared to the negative control 

without any IL-18 (P < 0.001, Fig. 3.3). Thus, either 50 or lOOng/ml IL-18 were used 

to stimulate KG-1 cells in future experiment using this model system depending on 

the experimental parameters.

To examine the effect of TNFa on modulating the responses of KG-1 cells to IL-18 

stimulation, the cells were cultured with increasing concentrations of TNFa for 24 

horns followed by stimulation with 50ng/ml of IL-18 for 24h. Increased amounts of 

TNFa resulted in a 6-fold increase of IFNy production in response to 50ng/ml of IL- 

18 stimulation compared to IL-18 alone (Fig. 3.4). These results demonstrated that 

TNFa sensitised KG-1 cells to IL-18 stimulation via a mechanism that is currently 

unknown.
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Figure 3.3: IL-18 stimulated IFNy production in TNFa primed cells in a dose- 

dependent manner.

KG-1 cells were stimulated with 20ng/ml TNFa for 24h followed by stimulation 

with different concentrations of IL-18 for 48h. IFNy produced in the culture media 

was determined by ELISA. Data shown are expressed as mean ±SD of triplicates of a 

representative experiment. * P < 0.05; *** P < 0.001 by Tukey-Kramer post-test 

compared to unstimulated cells.
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Figure 3.4: TNFa dose-dependently increased the sensitivity o f  KG-1 cells to IL-18 

stimulation.

KG-1 cells were stimulated with increasing amounts o f TNFa for 24h followed by 

stimulation with 50ng/ml o f IL-18 for 24h. IFNy produced in the culture media was 

determined by ELISA. Data shown are expressed as mean ±SD of triplicates o f a 

representative experiment.
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3.2.4 Mechanism of regulation of IL-18 signalling by TNFa

3.2.4.1 TNFa significantly up-regulated IL-18Ra and IL-18Rp mRNA 

expression

It has been reported that TNFa up-regulates IL-18R expression on the surface of 

KG-1 cells (Wu et al., 2003). Thus, we wanted to investigate whether this effect was 

due to gene expression or presentation of the receptor. Therefore, in order to study 

the mechanism of sensitisation of KG-1 cells by TNFa, we examined the expression 

of IL-18Ra and IL-18Rp in KG-1 cells after stimulation with TNFa. The level of 

expression of IL-18Ra and IL-18Rp transcripts were measured by semi-quantitative 

PCR and quantified by real time PCR. We also assessed the effect of IL-18/TNFa on 

endogenous expression of IL-18.

Total RNA was extracted from KG-1 cells primed with or without 20ng/ml TNFa 

for 24h and then stimulated with different doses of IL-18 for 24h or 48h. Using 

primers specific for human IL-18, we showed that IL-18 transcript was not up- 

regulated in TNFa-primed cells (Fig. 3.5). We showed that the stimulation of TNFa- 

primed KG-1 cells with IL-18 up-regulated the gene expression of IL-18Ra, 

indicating that IL-18 has an effect on the transcriptional regulation of IL-18Ra. 

Conversely, DL-18 did not have any major effect on the gene expression of IL-18Rp 

(Fig. 3.5), which was already expressed at very high levels.
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Figure 3.5: Regulation o f hIL-18, hIL-18Ra, hIL-18Rp and shIL-18Ra gene 

expression in TNFa primed KG-1 cells stimulated with IL-18.

Cells were stimulated with or without TNFa (20ng/ml) for 24h and then with IL-18 

(0, 0.1, 1, 10, 100 ng/ml) for 24h or 48h. Gene expression was detected by PCR. 

Samples derived from RT-PCR o f total RNA without reverse transcriptase were used 

as a cDNA negative control. Lanes: 0 [lkb DNA Ladder]; 1 [cells only (24h)]; 2-6 

[20ng/ml TNFa (24h) + 0, 0.1, 1, 10, 100 ng/ml IL-18 (24h)]; 7 [cells only (48h)]; 8- 

12 [20ng/ml TNFa (24h) + 0, 0.1, 1, 10, 100 ng/ml IL-18 (48h)].
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The levels of IL-18Ra and IL-18RP gene expression did not seem to be affected 

before and after TNFa priming in the absence of IL-18 stimulation (Fig. 3.5). 

However, there is evidence that TNFa up-regulates the protein expression of both 

IL-18Ra and IL-18RP on KG-1 cells (Wu et al., 2003). In order to better assess the 

effect of TNFa on the gene expression of the receptor, KG-1 cells were stimulated 

with TNFa alone for 16 hours and expression of IL-18R was measured using real

time PCR (Fig. 3.6). IL-18Ra was increased significantly in response to lOng/ml, but 

not 1 ng/ml TNFa stimulation, apparently reaching the maximal increase in 

expression at approximately 15 to 20-fold at lOng/ml. However, the expression of 

IL-18Rp transcript showed a modest increase of 2-fold only at lOOng/ml TNFa 

stimulation (Fig. 3.6).

3.2.4.2 TNFa up-regulated IL-18Raprotein surface expression

To confirm expression of IL-18Ra at the protein level, FACS analysis was 

performed by using specific anti-IL-18Ra antibodies. A significant increase in the 

membrane form of IL-18Ra (Fig. 3.7a), but not IL-18RP (Fig. 3.7), was detected on 

the cells after stimulation with TNFa. As mentioned above, a study by Wu et al., 

2003 has shown that TNFa induces the expression of both IL-18Ra and IL-18Rp on 

KG-1 cells. These results together with our gene expression studies indicated that 

TNFa sensitised KG-1 cells to IL-18 stimulation via the up-regulation of IL-18R.
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Figure 3.6: IL-18Ra mRNA transcript was upregulated by lOng/ml TNFa treatment, 

while IL-18Rp was not.

KG-1 cells were stimulated with increasing doses o f TNFa for 16h. hIL-18Ra (a) 

and hIL-18Rp (b) mRNA expression was quantified by qPCR using TaqMan assay. 

Data shown are expressed as means o f duplicates o f a representative experiment.
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Figure 3.7: IL-18Ra, but not IL-18RP, protein surface expression was induced by 

TNFa in KG-1 cells.

KG-1 cells were stimulated with lOng/ml TNFa for 24h. hIL-18Ra (a) and hlL- 

18RP (b) protein expression was quantified by FACS analysis. For the detection o f  

IL-18Ra chain, a directly conjugated anti-IL-18Ra-PE mAb was used and compared 

to an isotype-matched Ab control. For IL-18Rp chain, a mAb against IL-18Rp was 

used and detected with a secondary (2°) anti-mouse IgG-FITC Ab. In this case, the 2° 

Ab alone was used as a control.
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3.2.4.3 IL-18-inducedp38 MAPK and ERK1/2 activation

To further investigate the mechanism of DC maturation by TNFa and EL-18 we 

looked at the downstream signalling of the EL-18R and its regulation by TNFa. It is 

known that the IL-18R induces a signalling cascade of sequential recruitment of 

myeloid differentiation 88 (MyD88) and IL-lR-associated kinase (IRAK), followed 

by activation of NFkB and the regulation of IFNy gene expression. Recent studies on 

the molecular mechanism regulating IFNy gene expression in DCs, T and NK cells 

have demonstrated the importance of mitogen-activated protein kinases (MAPKs). 

Specifically, p38 MAPK is required for EL-18- and IL-12-induced IFNy production 

in these cells (Fukao et al., 2000, Zhang and Kaplan, 2000, Berenson et al., 2006, Yu 

et al., 2003, Mavropoulos et al., 2005). IL-18 has also been shown to induce 

MEK/ERK1/2 activation for the production of monocyte chemoattractant protein 1 

(MCP-1) in macrophages (Yoo et al., 2005). More importantly, TNFa has been 

shown to promote the maturation of DCs through the activation of p38 MAPK but 

not ERK1/2 (Arrighi et al., 2001, Boisleve et al., 2005), underlying the importance of 

the cytokine-induced MAPK activation for the regulation of DC maturation.

Thus, we investigated the downstream signalling induced by IL-18 in KG-1 cells and 

looked at the effect of TNFa. Whole cell lysates were run on SDS-PAGE under 

reducing conditions and immunoblotting was used to detect p38 and ERK1/2 

MAPKs. A rabbit polyclonal antibody against a conserved sequence of human p38a, 

p, y MAPK phosphorylated at Thr180/Tyr182 was used to detect the activated form of 

p38 MAPK. A rabbit polyclonal antibody against the total human p38 MAPK (341- 

360) was used as a loading control. For the detection of the activated form of 

ERK1/2 (p44/p42) phosphorylated at T hr^/Tyr204 rabbit anti-human antibody was 

used and the rabbit anti-human antibody for the total ERK1/2 was used as a loading 

control.

We found that IL-18 induced ERK1/2 and p38 MAPK phosphorylation within 10 

minutes. The peak phosphorylation of ERK1/2 was seen at 15 minutes and p38
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MAPK at 30 minutes after IL-18 stimulation (Fig. 3.8). As expected, the priming of 

the cells with TNFa resulted in the earlier 15 minute peak activation and more 

pronounced phosphorylation of p38 MAPK, possibly not only through the direct 

induction of p38 MAPK activation by TNFa, but also through the mechanism of up- 

regulation of IL-18R expression described above. TNFa priming did not seem to 

have an effect on ERK1/2 phosphorylation.

3.2.4.4 IL-18-induced activation o f  p38 MAPK but not ERK1/2 was necessary 

fo r  IF N y expression

The use of a specific p38 MAPK inhibitor in vitro profoundly inhibited the 

phenotypic and functional maturation of immature DCs obtained from peripheral 

blood, whereas an ERK1/2 inhibitor had no effect (Nakahara et al., 2004). Using 

these specific inhibitors for p38 MAPK (SB203580) (Cuenda et al., 1995) or for 

ERK1/2 (PD98059) (Alessi et al., 1995), we determined whether these signalling 

molecules are required for IL-18-induced IFNy production in KG-1 cells and 

examined the effect of TNFa priming in this process. IL-18-induced IFNy 

production was only blocked by a specific p38 MAPK inhibitor (SB203580) (Fig. 

3.9), but not ERK1/2 inhibitor (PD98059) (Fig. 3.10), both in the TNFa-primed (Fig. 

3.9b; Fig. 3.10 b) and non-primed (Fig. 3.9a; Fig. 3.10a) KG-1 cells. The results 

demonstrated that p38 MAPK is a key cell signalling molecule for IL-18-induced 

IFNy production in human pre-dendritic KG-1 cells.
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Figure 3.8: IL-18 induced rapid activation o f  p38 MAPK and ERK1/2.

KG-1 cells were stimulated without or with 20ng/ml TNFa for 24h followed by 

stimulation with lOOng/ml o f  IL-18 for 5, 10, 15, 30 and 60 minutes or without IL-18 

(0 min). In the case o f TNFa priming, 0 min represented the level o f p38 or ERK1/2 

after TNFa stimulation and before the addition o f IL-18. Whole cell lysates were 

prepared and Western blotting was performed using phospho- and non-phospho- 

specific anti-human p38 MAPK (a) and anti-human ERK1/2 (b) rabbit polyclonal 

antibodies (designated as p and np respectively). The non-phosphorylated MAPK 

antibodies were used as loading controls. Densitometric analysis is shown in (a).
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3.2.4,5 IL-18 induced T-bet expression that was up-regulated by TNFa

To better understand the downstream signalling events involved in the regulation of 

IFNy expression by IL-18 and TNFa for the induction of DC maturation we 

examined the expression of the T-bet transcription factor in KG-1 cells. T-bet is a 

recently discovered member of the evolutionary conserved T-box transcription factor 

family that controls Thl lineage commitment (Szabo et al., 2000).

T-bet also prominently determines the function of dendritic cells and is a crucial gene 

transcription factor for IFNy production. IFNy is potently induced by T-bet in human 

monocytes and myeloid DCs (Lighvani et al., 2001), and DCs isolated from T-bet 

gene knockout mice failed to produce IFNy (Lugo-Villarino et al., 2003b). A recent 

study by Bachmann et al. using KG-1 cells, demonstrated that IL-18 directly 

activates the expression and function of T-bet via the activation of p38 MAPK 

(Bachmann et al., 2007). However, ERK1/2 did not phosphorylate T-bet protein in 

vitro (Hwang et al., 2005).

In order to confirm that the expression of T-bet in KG-1 cells is induced by IL-18 

and to look at the effect of TNFa priming, cells were stimulated with different doses 

of TNFa for 24 hours and/or IL-18 for another 24 hours. T-bet expression was 

detected by Western blotting using an affinity purified anti-human T-bet antibody on 

whole KG-1 cell extracts after stimulation with increasing doses of IL-18. A basal 

level of T-bet expression was detected. IL-18 alone, at a concentration of lOOng/ml, 

induced higher expression of T-bet (Fig. 3.11). TNFa alone did not have any major 

effect on T-bet expression, whereas, as expected, TNFa priming of IL-18 stimulated 

KG-1 cells further induced the expression of T-bet (Fig. 3.11). From these results we 

could conclude that IL-18 could induce IFNy production in KG-1 cells via activation 

of p38 MAPK and T-bet expression, but not ERK1/2, and this signalling cascade 

could be further promoted by TNFa priming.
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Figure 3.11: IL-18 induced T-bet expression in KG-1 cells that was up-regulated by 

TNFa priming.

KG-1 cells were stimulated with or without TNFa for 24h followed by stimulation 

with different concentrations o f IL-18 for another 24h. Whole cell lysates were run 

under reducing conditions and a specific anti-human T-bet antibody was used for 

Western blotting. Antibody for p-tubulin was used as a loading control. 

Densitometric analysis is shown below the Western blot.
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3.3 Conclusions

A normal inflammatory response due to injury or infection results in protective 

immunity that is beneficial to the body. However, recurrent bacterial infection in 

chronic inflammatory conditions can lead to uncontrolled inflammation and severe 

tissue damage that is promoted by pro-inflammatory cytokines such as IL-18 and 

TNFa. Understanding the mechanisms of interplay between cytokines is important in 

providing therapeutic approaches that could regulate immune responses and control 

inflammation and infection.

The significance of IL-18 has been demonstrated in the model of collagen induced 

arthritis (CIA), where the deficiency of this cytokine results in significantly less 

inflammation present in the joints of mice due to their inability to induce T cell 

activation. These mice, however, are more susceptible to bacterial infection (Wei et 

al., 2001, Wei et al., 2004, Wei et al., 1999). IL-18 is one of earliest cytokines 

produced as a result of infection and tissue injury and is critical for inducing the 

maturation of dendritic cells (Li et al., 2004b).

This chapter aimed to further investigate IL-18 signalling using the pre-dendritic 

KG-1 cell model system, as well as to address the effects of TNFa in regulating IL- 

18 signalling and thus promoting the maturation process of DCs. This work has 

demonstrated the ability of KG-1 cells to respond to IL-18 for the production of IFNy 

and the ability of TNFa to sensitise these cells to produce more IFNy in response to 

IL-18.

Data obtained from the flow cytometry experiments demonstrated some up- 

regulation of CD80 expression on KG-1 cells after stimulation with IL-18 for only 24 

hours, suggesting that IL-18 has the ability to potentially initiate the maturation 

process of the pre-dendritic KG-1 cells. Similarly, it has been demonstrated by 

Gutzmer et a l that Mo-DCs derived from PBMCs, after stimulation with GM-CSF 

and IL-4 do not show any up-regulation in the expression of CD80 or CD40 after 2
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days of stimulation with IL-18. These cells also show little up-regulation of CD83, 

CD86, HLA-DR expression (Gutzmer et al., 2003). Thus, it could be speculated that 

IL-18 does not have an effect on the maturation of DCs during acute inflammatory 

responses, whereas in conditions of chronic inflammation, where it is constantly 

present, it promotes immunity by inducing the maturation of DCs.

IL-18 might play a potential role in immunoregulation by inducing maturation of 

dendritic precursor cells infiltrated into the tissues, and it may also mediate the 

infiltration of these inflammatory cells. This cytokine has been shown to act as a 

chemoattractant of CD4+ T cells in polarized morphology in vitro and of synovial 

CD4+ T cells from patients with RA ex vivo. Injection of rhIL-18 in the foot pad of 

DBA/1 mice resulted in an increase of mononuclear cell infiltrate in vivo (Komai- 

Koma et al., 2003). IL-18 also has a direct migratory effect on Mo-DCs derived from 

PBMCs in Boyden chamber experiments and induces the up-regulation of the 

intercellular adhesion molecule CD54 (Gutzmer et al., 2003). In this study, levels of 

CD54 were found to be significantly up-regulated in the presence of IL-18 in KG-1 

cells, with an even greater increase after priming with TNFa. Since the FACS results 

above suggested the capacity of IL-18 to induce DC maturation and immune cell 

infiltration at sites of inflammation, we further investigated IL-18 signalling and 

regulation by TNFa.

PCR experiments using primers against both IL-18Ra and Rp demonstrated that 

TNFa regulated the mRNA expression of IL-18Ra, but not IL-18Rp. However, this 

technique is non-quantitative and therefore experimentation using quantitative PCR 

was required to confirm such an effect. IL-18Ra mRNA expression appeared to be 

up-regulated in the presence of lOng/ml TNFa, whereas IL-18RP mRNA expression 

was only significantly up-regulated at a much higher concentration of lOOng/ml 

TNFa compared to the physiologically relevant one, suggesting a mechanism of 

post-transcriptional or post-translational modification of IL-18Rp by TNFa in the 

body. This could be due to the fact that the IL-18RP transcript is so much more 

abundant than IL-18Ra that high doses of TNFa are required to induce its
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expression. Flow cytometry experiments confirmed the up-regulation of protein 

expression of IL-18Ra on KG-1 cells, demonstrating a mechanism of EL-18 

regulation by TNFa through the direct up-regulation of the receptor gene and protein 

expression.

Experiments using phosho-specific antibodies against p38 MAPK and ERK1/2 

demonstrated that IL-18 signalled through the activation of both of these two distinct 

kinases. Priming of the cells with TNFa prior to IL-18 stimulation induced only p38 

MAPK and not ERK1/2, possibly through up-regulation of the IL-18 receptor, 

suggesting the importance of p38 MAPK signalling in the IL-18 induced 

inflammatory response. Additionally, the use of specific inhibitors in the KG-1 

bioassay that block the phosphorylation of these molecules demonstrated that only 

p38 MAPK activation and not ERK1/2 was important for mediating EL-18-induced 

IFNy production. Moreover, antibodies against T-bet, a transcription factor important 

for IFNy gene expression, revealed that this IL-18-induced expression of IFNy was 

promoted by TNFa priming of KG-1 cells, possibly through the mechanism 

demonstrated in figure 3.12.

IL-18 is a critical player in chronic inflammation, since it can promote both Thl and 

Th2 cell responses depending on the presence or absence of IL-12 in the micro

environment and on the genetic background (Wei et al., 2004). As shown in this 

study and illustrated in figure 3.12, IL-18 plays a central role in the control of 

inflammation through p38 MAPK- and T-bet-activated IFNy production, a signalling 

cascade enhanced by TNFa via a mechanism of up-regulation of IL-18R expression. 

Blocking TNFa by using a soluble TNFa receptor (Etanercept) or neutralising 

antibodies results in reduction of inflammation, especially in RA. TNFa blockers 

have been widely used in clinical trials to suppress the activity of TNFa, which 

could then inhibit the IL-18-induced maturation of DCs via the mechanism 

demonstrated in this study (Fig. 3.13).
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Figure 3.12: Mechanism by which TNFa enhances the IL-18-induced inflammatory 

response.

IL-18 signals through p38 MAPK and T-bet to activate IFNy production. This 

signalling is enhanced by TNFa, via a mechanism o f up-regulation o f IL-18Ra 

expression.
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Figure 3.13: TNFa promotes the IL-18-induced maturation o f dendritic precursor 

cells into professional antigen-presenting cells that promote both Thl and Th2 cell 

responses.
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3.3.1 In summary

■ The KG-1 bioassay was used to demonstrate that the cells respond to the 

stimulation with IL-18 by production of IFNy.

■ Even the short stimulation of KG-1 cells with IL-18 alone was enough to induce 

some up-regulation of the co-stimulatory molecule CD80, which is found to be 

expressed on APCs, suggesting a role for this cytokine in the maturation of 

dendritic precursor cells into professional APC.

■ TNFa promoted the DL-18-induced up-regulation of CD54 expression; an 

adhesion molecule important for mediating immune cell infiltration at sites of 

inflammation.

■ TNFa promoted the IL-18-induced inflammatory response via a mechanism of 

up-regulation of IL-18Ra mRNA and protein expression. IL-18RP mRNA 

expression was only significantly up-regulated by higher doses of TNFa, whereas 

protein expression was increased by 20ng/ml TNFa stimulation (Wu et al., 2003), 

suggesting a post-translational mechanism of regulation.

■ IL-18 induced the expression of T-bet and the production of IFNy in KG-1 cells. 

TNFa priming promoted this signaling cascade presumably by sensitizing cells to 

IL-18.

■ Activation of p38 MAPK, but not ERK1/2, was necessary for IFNy production 

induced by IL-18. The phosphorylation of p38 MAPK by IL-18 was promoted by 

TNFa.

■ In conclusion, this study demonstrates that IL-18 plays a central role in the control 

of inflammation through p38 MAPK- and T-bet-activated IFNy production. This 

signalling is enhanced by TNFa via a mechanism of up-regulation of IL-18R 

expression.
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4 Regulation of IL-18 Signalling by TGFpi

4.1 Background

The antagonistic interaction between pro- and anti-inflammatory cytokine signalling 

pathways operating in human DCs and the outcome of which one will prevail 

determines the prognosis of chronic inflammatory diseases and cancer. The 

prevalence of signalling of an active anti-inflammatory cytokine such as TGFp 1 that 

results in the suppression of pro-inflammatory immune activation by IL-18 and 

TNFa would be important in maintaining a balance to prevent the aberrant activation 

of DCs that leads to chronic inflammation. In the previous chapter, we investigated 

the role of the pro-inflammatory cytokine TNFa in regulating IL-18 signalling and 

function. In this chapter, we aim to study the effect of the anti-inflammatory cytokine 

TGFpi in controlling IL-18 signalling in the presence of TNFa.

Several studies have shown that TGFpi inhibits the activation and maturation of 

DCs by suppressing the up-regulation of T cell co-stimulatory molecules on the 

surface of DCs and reducing their capacity for antigen presentation. Other 

contrasting in vitro and in vivo TGFpi knock-out studies have shown that TGFpi is 

required for the function and differentiation of the immature epithelial-associated 

DCs (Langerhans cells) from their progenitor cells (Strobl and Knapp, 1999, 

Borkowski et al., 1996). Epithelial Langerhans cells (LCs) were the first population 

of immature DCs to be characterised for their maturation process occurring during 

migration from peripheral tissues to lymphoid organs (Steinman, 2007, Randolph et 

al., 2008). TNFa has been demonstrated to induce maturation of immature DCs 

generated in vitro from CD34+ progenitors (Szabolcs et al., 1996, Caux et al., 1996, 

Ryncarz and Anasetti, 1998, Canque et al., 1998, Luft et al., 1998), but this 

maturation of DCs is suppressed by TGFpi even in the presence of TNFa 

(Yamaguchi et al., 1997, Strobl et al., 1997, Zhang et al., 1999, Geissmann et al., 

1999). An analysis of the global gene expression profile of LPS-treated bone 

marrow-derived DCs, when their maturation process is inhibited by TGFpi, has
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demonstrated that IL-18 mRNA expression is up-regulated by TGFpi (Fainaru et al., 

2007). This suggests a link between TGFpi and IL-18 signalling in DCs.

The importance of TGFpi in regulating IFNy production was established by TGFp- 

deficiency studies. BALB/c TGFpi'7' mice develop spontaneous CD4+ T cell- 

mediated necroinflammatory liver disease and show increased levels of IFNy in the 

liver (Rudner et al., 2003). IFNy plays a critical role for the development of this 

disease as TGFpi-IFNy-double deficiency results in the protection of BALB/c mice 

(Gorham et al., 2001). Constitutive IFNy signalling in tissues isolated from TGFP'7' 

mice indicates the importance of TGFp 1 in inhibiting IFNy production (McCartney- 

Francis and Wahl, 2002).

In a recent study by Yu et a l , the pro-inflammatory cytokines IL-12 and IL-18 or IL- 

15 were able to antagonise the immunosuppressive response of TGFpi to inhibit 

IFNy production through the down-regulation of TGFpRJI, SMAD2 and SMAD3 in 

both NK-92 and primary human NK cells. IL-18 alone did not affect SMAD2 and 

SMAD3 expression in these cells. They also showed that TGFpi suppresses IL- 

18/IL-12-induced IFNy production by inhibiting pro-inflammatory cytokine-induced 

T-bet expression through SMAD signalling (Yu et al., 2006). It appears therefore that 

the respective signalling pathways are coupled through negative feedback.

Besides canonical SMAD-mediated transcription, TGFpi activates other SMAD- 

independent signalling pathways such as p38 MAPK pathways. This MAPK 

activation can be independent of SMAD signalling as indicated by SMAD4'7' studies 

or expression of dominant negative SMADs. A study performed by the group of YE 

Zhang in 2002 demonstrated that cells carrying mutated TGFpRI that are defective in 

SMAD activation are able to induce p38 MAPK phosphorylation in response to 

TGFpi (Yu et al., 2002). However, TGFp-induced activation of MAPK can also 

result in SMAD activation allowing convergence of TGFp-induced SMAD and 

MAPK pathways (Derynck and Zhang, 2003).
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TGFpi is known to suppress the expression of IFNy (Espevik et al., 1987, Bellone et 

al., 1995, Bright and Sriram, 1998, Pardoux et al., 1999, Sudarshan et al., 1999, Yu 

et al., 2006) in part through the inhibition of the T-bet transcription factor (Gorelik et 

al., 2002, Neurath et al., 2002, Lin et al., 2005, Park et al., 2007). T-bet deficient 

DCs are impaired in their capacity to produce IFNy in response to stimulation with 

IL-18 and IL-12. These mice are also incapable of activating Thl immune response 

of adoptively transferred T cells in vivo (Lugo-Villarino et al., 2003a). However, the 

expression of T-bet is in turn controlled by IFNy in both DCs (Lugo-Villarino et al., 

2003a) and CD4+ T cells (Park et al., 2005), providing a positive feedback loop to 

maximise Thl immunity. The study by Park et al., also showed that TGFpi inhibits 

the induction of T-bet expression via IFNy in these cells.

It has only recently been established that IFNy is produced by antigen presenting 

cells (Frucht et al., 2001). The role of TGFpi in the regulation of IL-18-induced 

signalling pathway resulting in IFNy production by pre-dendritic cells has never been 

investigated. Studying the molecular mechanisms that form the basis of the 

antagonistic relationship between pro- and anti-inflammatory cytokines is important 

for understanding the delicate balance between tolerance and autoimmunity.
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4.1.1 Aims and Objectives

1. To understand the mechanism by which combinations of pro- and anti

inflammatory cytokines can act synergistically or competitively to modulate 

pre-dendritic KG-1 cell function.

2. To examine the role of the anti-inflammatory cytokine TGFpi in regulating 

IL-18-induced IFNy production in the KG-1 cell bioassay model system.

3. To investigate the effect of TGFpi stimulation in regulating the protein and 

gene expression of IL-18 receptor induced by TNFa.

4. To study the antagonistic relationship between the pro- and anti-inflammatory 

cytokines, TNFa and TGFpi, in regulating the IL-18-induced p38 MAPK 

activation and T-bet expression.
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4.2 Results and Discussion

4.2.1 TGFpi suppresses IL-18-induced IFNy production in KG-1 cells

4.2.1.1 TGFpi inhibited the stimulatory effect of TNFa in IL-18 signalling

From the results described in chapter 3, it is apparent that the pro-inflammatory 

cytokine IL-18, especially when combined with TNFa, is a strong inducer of IFNy 

production in pre-dendritic KG-1 cells. To examine the effect of TGFpi in the 

regulation of IL-18 signalling in the presence of TNFa, two experiments were 

performed using the human pre-dendritic KG-1 cell line (Fig. 4.1). Initially, TGFpi 

was added together with TNFa in the priming phase of the experiment for 24 hours 

prior to the stimulation with IL-18 for another 24 hours and IFNy production was 

measured by ELISA. In the second experiment, TGFpi was added together with IL- 

18 to stimulate the TNFa-primed KG-1 cells to produce IFNy. By adding TGFpi 

either with TNFa in the priming-phase or with EL-18 in the subsequent stimulation 

phase, we aimed to dissect the effect of this anti-inflammatory cytokine in different 

aspects of the regulation of IL-18 signalling.

TGFpi significantly suppressed the IL-18-induced IFNy production in a dose 

dependent manner both when given prior to IL-18R induction and also when given 

simultaneously with IL-18 (Fig. 4.1). A concentration of 300pg/ml of this cytokine 

was sufficient to induce a significant reduction of IFNy in both cases. Interestingly, 

TGFpi showed a stronger suppressive effect on the response to EL-18 when it was 

added at same time with TNFa. These results demonstrated that TGFpi inhibited the 

IL-18-induced upregulation of IFNy to nearly 100% at lOng/ml, despite the presence 

of the pro-inflammatory cytokine TNFa. However, as shown in figures 3.1 and 3.3, 

KG-1 cells did not produce any IFNy in the absence of IL-18, indicating that 

although TGFpi can very potently suppress IFNy production, it did not reach full 

inhibition.
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Figure 4.1: TGFpi inhibited the IL-18-induced IFNy production in TNFa-primed 

KG-1 cells in a dose dependent manner.

KG-1 cells were primed with 20ng/ml TNFa in the presence or absence o f different 

concentrations o f TGFpi for 24 hours and further stimulated with IL-18 in the 

presence or absence o f different doses o f  TGFpi for 24 or 48 hours as indicated. 

TGFpi inhibited IFNy production both when added with TNFa in the priming phase 

(■) and with IL-18 in the subsequent stimulation phase (■). The amount o f IFNy 

produced in the culture media was analyzed by ELISA. Data shown are expressed as 

mean ±SD o f triplicates o f a representative experiment (PO.OOOl, one-way 

ANOVA). * P < 0.05; *** P < 0.001; by Bonferroni post-test compared to cells 

without TGFpi.
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4,2.1.2 TGFfil suppressed the IL-18 response less potently in the absence o f  

TNFa

To examine whether TGFpi was able to inhibit the strong pro-inflammatory capacity 

of IL-18 and suppress IFNy production in the absence of cell activation with TNFa, 

KG-1 cells were stimulated with increasing doses of TGFpi in the presence of 

50ng/ml IL-18 without preceding TNFa priming (Fig. 4.2). ELISA was used to 

determine the levels of IFNy secreted in the supernatant. As demonstrated in figure

4.2 when TNFa was not present, TGFpi inhibited IL-18-induced IFNy production 

less potently compared to the effect shown in figure 4.1. Without TNFa priming, a 

higher concentration of TGFpi (2.5ng/ml) was required to induce an inhibitory 

effect (Fig. 4.2). This observation indicated that TGFpi could affect the TNFa- 

induced regulation of IL-18 receptor expression. This is also consistent with the 

strong suppressive effect when added during cell priming as compared to addition of 

TGFpi during induction of IL-18 signalling (see Fig. 4.1).

However, before undertaking the investigation into IL-18R, we firstly examined 

whether the addition of IL-18 subsequent to TGFpi treatment had the ability to 

abrogate the inhibitory effect of TGFpi. To investigate this, KG-1 cells were primed 

with 20ng/ml TNFa for 24 hours. The following day the cells were washed and 

stimulated with lOng/ml TGFpi for 0 (0 min represents the addition of TGFpi and 

EL-18 at the same time), 15, 60, 120, 240 minutes prior to the subsequent addition of 

20 or 50ng/ml EL-18 for another 24 hours. TNFa (20ng/ml) cells primed for 24 hours 

were stimulated with 20 or 50ng/ml IL-18 for another 24 hours and were used as 

controls. The amount of IFNy produced in the culture media was analyzed by ELISA 

(Fig. 4.3).
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Figure 4.2: TGFpi less potently inhibited the IL-18-induced IFNy production in 

non-TNFa-primed KG-1 cells.

KG-1 cells were stimulated with 50ng/ml IL-18 and different concentrations o f  

TGFpi for 48 hours (■). Cells primed with 20ng/ml TNFa (24h) and stimulated with 

50ng/ml IL-18 (48h) was used as a control (■). The amount o f IFNy produced in the 

culture media was analyzed by ELISA. Data shown are expressed as mean ±SD o f  

triplicates o f a representative experiment. ** P < 0.01; *** P < 0.001; by Bonferroni 

post-test compared to control.
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Figure 4.3: The addition o f IL-18 was not sufficient to abrogate the suppressive 

effect o f TGFP 1 in TNFa-primed KG-1 cells.

KG-1 cells were primed with 20ng/ml TNFa for 24 hours. Next day, the cells were 

washed and stimulated with lOng/ml TGFpi for 0 [0 min represents the addition o f  

TGFpi and IL-18 at the same time], 15, 60, 120, 240 minutes and then the 

subsequent addition o f 20 (■) or 50 (■) ng/ml IL-18 for another 24 hours. TNFa 

(20ng/ml) primed cells for 24 hours stimulated with 20 (■) or 50 (■) ng/ml IL-18 for 

another 24 hours were used as controls. The amount o f IFNy produced in the culture 

media was analyzed by ELISA. Data shown are expressed as mean ±SD o f triplicates 

o f a representative experiment (P<0.0001, one-way ANOVA vs. control). * P < 0.05; 

*** p < 0.001 by Bonferroni post-test compared to control.
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It was a necessary control to use and to confirm again that the addition of TGFpi 

resulted in an extremely significant down-regulation of the IL-18 response to induce 

IFNy production even in the presence of TNFa (refer to the black and dark grey bars 

corresponding to two different concentrations of 20 or 50ng/ml IL-18 respectively in 

figure 4.3). However, it was interestingly unexpected to observe that the addition of 

IL-18 at different time-points (0, 15, 60, 120, and 240 minutes) after TGFpi 

stimulation was not able to overcome its suppressive effect even when added 240 

minutes later. Taking into account that activated TGFpi has a half-life of only 2-3 

minutes (Wakefield et al., 1990), it is even more surprising that IL-18 with a much 

longer half-life of 16-24h (Hosohara et al., 2002) was not capable of reversing the 

phenotype. Hence, it is clear that TGFpi stimulation has long-term effects on cells. 

The inability of IL-18 to overcome the inhibitory effect of TGFpi in this assay may 

be linked to the down-regulation of IL-18 receptor.

4.2.2 TGFpi suppressed the lL-18-induced IFNy production via down- 

regulation of the surface IL-18Ra expression

4.2.2.1 TGFfil did not have any effect on the regulation o f  the IL-18R  

transcript induced by TNFa

To further investigate the mechanism of TGFpi-induced down-regulation of IL-18 

response in KG-1 cells, the mRNA levels of both IL-18Ra and p chains were 

examined by PCR. Standard PCR showed that lOng/ml TGFpi has decreased IL- 

18Ra mRNA expression but did not seem to have any effect on the gene expression 

of IL-18RP in the presence of 20ng/ml TNFa (Fig. 4.4a).
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Figure 4.4: TGFpi did not regulate either IL-18Ra or Rp mRNA.

KG-1 cells were stimulated with 20ng/ml TNFa and increasing doses o f TGFpi for 

24h. hIL-18Ra and hIL-18Rp mRNA expression was examined initially by PCR (a) 

and quantified by real time PCR using TaqMan assay (b). Data shown are expressed 

as means o f duplicates o f a representative experiment.
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To substantiate the down-regulation of IL-18Ra we used quantitative PCR. However, 

increased TGFpi did not result in significant down-regulation of either IL-18Ra or 

IL-18RP gene transcription induced by TNFa (Fig 4.4b). Nevertheless, the tendency 

to down-regulate IL-18Ra mRNA levels observed in figure 4.4a by TGFpi in the 

presence of TNFa using semi-quantitative PCR was confirmed by QPCR (Fig. 4.4b), 

but according to one-way ANOVA and Bonferroni post-tests these differences did 

not reach significance. These results demonstrated that TGFpi did not regulate the 

transcription of either the IL-18Ra or DL-18RP gene previously shown to be induced 

by TNFa.

4.2.2.2 TG Fpi reduced the surface IL-18Ra protein levels even in the 

presence o f  TNFa

Having determined that TGFpi did not regulate the mRNA levels of IL-18R, the 

effect of this cytokine on the regulation of the protein levels of the receptor was 

examined. I have shown in chapter 3 that TNFa was a strong inducer of IL-18Ra 

protein expression on the surface of KG-1 cells. Flow cytometry was performed to 

investigate the effect of TGFpi on the amount of IL-18Ra detected on the surface of 

KG-1 cells stimulated with TNFa. KG-1 cells were stimulated with 20ng/ml TNFa 

and increasing doses of TGFpi for 24h (Fig. 4.5).

The amount of IL-18Ra induced by TNFa on the cell surface was reduced in 

response to lOng/ml TGFpi stimulation even in the presence of TNFa (Fig. 4.5a). 

FACS data were represented as a percentage of the relative cell number in a gated 

area (Rl) in relation to different doses of TGFpi in figure 4.5b. TGFpi dose 

dependently reduced the TNFa-induced expression of IL-18Ra on the surface of the 

cells. The levels of the TNFa-induced surface expression of IL-18Ra were reduced 

to approximately 50% by TGFpi (Fig. 4.5b).
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Figure 4.5: TGFpi induced the down-regulation o f IL-18Ra surface expression in 

KG1 cells.

Cells were stimulated with 20ng/ml TNFa and different doses o f TGFpi for 24h. 

The detection o f IL-18Ra protein levels was determined by flow cytometry using an 

anti-human IL-18Ra-PE antibody. TGFpi (lOng/ml) reduced expression o f IL-18Ra 

compared to the isotype-matched control (a). FACS results were represented as a 

percentage o f the relative cell number in a gated area (R l) in relation to different 

doses o f TGFpi (b).
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These results did not completely explain the almost 100% inhibition of the IFNy 

production induced by TGFpi in response to IL-18 stimulation in TNFa-primed 

KG-1 cells (Fig. 4.1). The mechanism of the anti-inflammatory regulation of the EL- 

18 response by TGFpi was only partly explained through down-regulation of the EL- 

18Ra levels. To further investigate the mechanism of TGFpi suppression of EL-18- 

induced IFNy production, different intracellular signalling pathways induced by 

TGFpi were considered and we decided to further examine the expression of the T- 

bet transcription factor.

4.2.3 TGFpi suppressed IFNy production in response to IL-18 stimulation via 

the down-regulation of T-bet expression in KG-1 cells

Having shown previously in chapter 3 that KG-1 cells express T-bet in response to 

TNFa and IL-18 stimulation, we examined whether TGFpi regulated the expression 

of this transcription factor in these cells. This evidence would provide an additional 

mechanism, potentially explaining the almost complete suppression of IL-18-induced 

IFNy production by TGFpi, described earlier in figure 4.1. KG-1 cells were primed 

with 20ng/ml TNFa in the presence or absence of increasing doses of TGFpi for 24 

hours and subsequently stimulated with lOOng/ml IL-18 again in the presence or 

absence of increasing doses of TGFpi for another 24 hours. The level of T-bet 

expression was detected by Western blot (Fig. 4.6).

T-bet protein expression was down-regulated by TGFpi stimulation, and more 

effectively so when TGFpi was added during the priming phase together with TNFa 

(Fig. 4.6). These results suggested that TGFpi inhibited EL-18-induced EFNy 

production via a dual mechanism of down-regulation of both IL-18R and T-bet 

expression.
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4.2.4 The inhibitory effect of TGFpi on IL-18 signalling was not due to 

decreased viability of KG-1 cells

At this point, it was necessary to confirm that all the suppressive effects observed in 

the presence of TGFpi were not due to any toxicity of the employed cytokine 

dosages on KG-1 cells. MTT in vitro toxicity assay was performed using increasing 

concentrations of TGFpi for 24 hours (Fig. 4.7c). TNFa did not affect the viability 

of the cells (Fig. 4.7b) and neither did IL-18, which was used as a negative control 

(Fig. 4.7a). Increasing densities of cells without any stimulation were also used to 

verify the functionality of the assay (Fig. 4.7d). This experiment confirmed that the 

anti-inflammatory effect of TGFpi to suppress IL-18 function via the down- 

regulation of IL-18R and T-bet expression was not a result of toxicity.
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Figure 4.6: TGFpi induced down-regulation o f T-bet expression in IL-18 stimulated 

KG-1 cells despite the presence o f TNFa.

Cells were primed with 20ng/ml TNFa in the presence or absence o f increasing 

doses o f  TGFpi for 24 hours. The following day, the cells were washed and further 

stimulated with lOOng/ml IL-18 in the presence or absence o f different 

concentrations o f TGFpi for another 24 hours. Whole cell extracts were subjected to 

SDS-PAGE under reducing conditions and a specific anti-human T-bet antibody was 

used for Western blotting. Antibody for P-tubulin was used as a loading control. 

Densitometric analysis was performed and shown below the Western blot.
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TNFa [ng/ml]IL-18 [ng/ml]

0.03 0.06 0.12 0.25 0.5

KG-1 cell num ber (x105)TGFpi [ng/ml]

Figure 4.7: TGFpi stimulation did not affect KG-1 cell viability.

MTT proliferation assay was performed using 1x10s KG1 cells for stimulation with 

increasing doses o f IL-18 (a), TNFa ( b )  or TGFpi (c) for 24 hours. Increasing 

number o f KG-1 cells without any stimulation was used as a control (P<0.0001, one

way ANOVA) ( d ) .  Data shown are expressed as mean ±SD o f triplicates o f  a 

representative experiment. * P < 0.05; *** P < 0.001 by Bonferroni post-test. P 

values refer to comparisons with unstimulated cells (a-c), or when no cells were 

present ( d ) .
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4.2.5 TGFpi antagonised the IL-18-induced p38 activation even in the presence 

of the pro-inflammatoty cytokine TNFa

Based on the idea that TGFpi can activate downstream signalling mechanisms 

independent of SMADs but through the MAPK signalling pathways (Derynck and 

Zhang, 2003), we addressed the effect of this cytokine on the activation of the IL-18- 

induced p38 MAPK pathway. To better characterise the function of TGFpi in the 

regulation of the TNFa-primed IL-18 signalling in the pre-dendritic KG-1 cells, we 

looked at the effect of TGFpi in the IL-18-induced p38 MAPK phoshorylation by 

Western blotting. TGFpi was either added at the priming phase of KG-1 cells 

together with TNFa or together with IL-18 at the subsequent stimulation phase. In 

detail, in the first experiment KG-1 cells were stimulated with or without 20ng/ml 

TNFa in the presence or absence of 5ng/ml TGFpi for 24 hours. The next day, the 

cells were washed and further stimulated with 50ng/ml IL-18 for 5,10, 15, 30 and 60 

minutes. The 0 minute time-point represents the p38 MAPK activation without any 

IL-18 stimulation (Fig. 4.8). Cells were harvested at the indicated time-points, 

resuspended in lysis buffer and snap frozen in dry ice. Whole cell extracts were 

separated by SDS-PAGE and Western blotting was performed using phospho- and 

non-phosho- specific p38 MAPK antibodies as described in section 3.2.4.3 of the 

previous chapter.

The Western blot in figure 4.8a and the densitometry analysis of this result 

representing the ratio of phosphorylated over non-phosphorylated p38 MAPK (Fig 

4.8b) has demonstrated that the addition of TGFpi in the priming phase of 

stimulation of KG-1 cells reduced the activation of p38 MAPK for the first 10 

minutes of stimulation with 50ng/ml IL-18. The levels of p38 MAPK activation 

reached similar levels after 15 minutes and up to 60 minutes of IL-18 stimulation 

(Fig. 4.8). This result could indicate that the delayed activation of p38MAPK by 

TGFpi stimulation could be the outcome of the down-regulation of the EL-18Ra 

expression by TGFpi described earlier (Fig. 4.5).
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To further address the suppressive function of TGFpi in the regulation of IL-18 

signalling, a similar experiment was performed where TGFpi was added together 

with IL-18 to stimulate p38 MAPK activation in TNFa-primed KG-1 cells. 

Specifically, KG-1 cells were stimulated with 20ng/ml TNFa for 24 hours. The 

following day, the cells were washed and stimulated with or without 5ng/ml TGFp 1 

followed by immediate simulation of 50ng/ml IL-18 (Fig. 4.9). The levels of p38 

MAPK activation were determined using Western blotting as described above. As a 

control, TGFpi or IL-18 alone was used to stimulate the cells for 30 minutes in the 

presence of absence of TNFa priming (last three lanes in Fig. 4.9).

This result showed that stimulation of pre-dendritic KG-1 cells with TGFpi alone for 

30 minutes did not activate p38 MAPK (Fig. 4.9). Moreover, the same figure 

demonstrated that the presence of TGFpi delayed the phosphorylation of p38 MAPK 

induced by IL-18 in the first 15 minutes in TNFa-primed KG-1 cells. The results in 

figures 4.8 and 4.9 collectively indicate that TGFpi suppressed the activation of the 

p38 MAPK signalling pathway either by interfering directly or indirectly as a result 

of the down-regulation of IL-18R expression.
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Figure 4.8: TGFpi delayed the IL-18-induced phosphorylation previously promoted 

by TNFa.

KG-1 cells were stimulated with 20ng/ml TNFa in the presence or absence o f  

5ng/ml TGFpi for 24h. The next day stimulation with or without 50ng/ml o f IL-18 

followed for 0, (before the addition o f IL-18) 5, 10, 15, 30 and 60 minutes. Whole 

cell lysates were prepared and Western blotting was performed using phospho- and 

non-phospho-specific anti-human p38 MAPK rabbit polyclonal antibody (designated 

as p and np, respectively). The non-phosphorylated p38 MAPK antibody was used as 

a loading control (a). The degree o f p38 phosphorylation (normalised to np-p38) was 

quantified by densitometry ( b ) .
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Figure 4.9: TGFpi delayed the IL-18-induced activation o f p38 MAPK in TNFa- 

primed KG-1 cells.

Cells were stimulated with or without 20ng/ml TNFa for 24h, followed by 

stimulation with or without 5ng/ml TGFpi in the presence o f 50ng/ml IL-18 for 5, 

10, 15, 30 and 60 minutes. TGFpi or IL-18 stimulation alone for 30 minutes, in 

TNFa-primed or non-primed cells were used as controls. Whole cell lysates were 

prepared and Western blotting was performed using phospho- and non-phospho- 

specific anti-human p38 MAPK rabbit polyclonal antibody (designated as p and np 

respectively). The non-phosphorylated p38 MAPK antibody was used as a loading 

control. Densitometric analysis was performed and shown below the Western 

blotting.
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4.3 Conclusions

TGFpi has emerged as a signal that controls DC development and maturation (Strobl 

and Knapp, 1999). Our central finding here is that TGFpi controls DC function 

through the regulation of IL-18-induced EFNy production in the presence of the 

strong pro-inflammatory cytokine TNFa. I have shown that TGFpi suppressed the 

IL-18-induced IFNy production in the human pre-dendritic KG-1 cell line and that it 

could antagonise the pro-inflammatory cytokines by inhibiting the effect of TNFa to 

increase the cell surface expression of IL-18Ra. A chief pursuit in the field of DC 

differentiation is to delineate the factors that regulate the function of DC to drive Thl 

and Th2 immune response. Here, evidence is provided that TGFpi could participate 

in this process through the down-regulation of the DC-derived EFNy production 

induced by IL-18 and promoted by TNFa (Fig. 4.11).

This chapter aimed to address the outcome of the interaction between pro- and anti

inflammatory cytokines such as TNFa and TGFpi, and their ability to regulate IL-18 

signalling in the pre-dendritic KG-1 cell model system. This work has demonstrated 

that TGFpi suppresses the ability of TNFa to sensitise the cells to produce more 

IFNy in response to IL-18 and inhibits IFNy production to almost 100%. To 

investigate the mechanism of the antagonistic action of TGFpi against TNFa, we 

studied the effect of these two cytokines in the regulation of the IL-18R expression. 

The expression of the IL-18R transcript induced by TNFa was not altered by TGFpi, 

suggesting a mechanism of post-transcriptional or post-translational modification of 

EL-18R by TGFpi. Flow cytometry experiments demonstrated that TGFpi induced a 

dose-dependent down-regulation of the protein expression of IL-18Ra on KG-1 cells, 

suggesting a mechanism of antagonistic interaction between TNFa and TGFpi to 

control IL-18 signalling through the regulation of IL-18Ra expression (Fig. 4.10). 

Western blotting analysis has also been attempted during the course of this study to 

investigate the total protein expression levels of IL-18R in KG-1 cells, but technical 

problems related to antibody specificity or sensitivity of the assay were encountered. 

Moreover, antibodies against T-bet, a transcription factor important for IFNy gene
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expression, revealed that TGFpi suppressed the IL-18-induced expression even in 

the presence of TNFa possibly through the mechanism described above and 

schematically demonstrated in figure 4.10.

Using Western blotting and a phosho-specific antibody to detect p38 MAPK we 

showed that TGFpi delayed the activation of p38 MAPK induced by IL-18. Priming 

of the cells with TNFa in the presence of TGFpi prior to EL-18 stimulation 

suppressed the phosphorylation of p38 MAPK possibly through the down-regulation 

of the receptor. However, IL-18-induced p38 activation was not completely inhibited 

upon TGFpi treatment. The use of specific inhibitors and Western blotting would be 

an appropriate experiment to test whether TGFpi also utilised the p38 MAPK 

signalling pathway to inhibit the IL-18-induced IFNy production in KG-1 cells. The 

inhibitory effect of TGFpi was not due to decreased proliferation of KG-1 cells.

To conclude, TGFpi was able to almost completely inhibit IL-18-induced IFNy 

production in KG-1 cells. However, the mechanism of almost full inhibition of IL-18 

signalling was only partially explained from the results obtained in this chapter. In 

view of the results obtained in this chapter, neither the down-regulation of IL-18Ra 

expression, nor the reduction in T-bet expression or p38 phosphorylation would be 

enough to explain the almost complete inhibition of IFNy production in KG-1 cells. 

Further experiments are required to elucidate the mechanism behind the strong 

immunosuppressive effect of TGFpi on IL-18 signalling in KG-1 cells.
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Figure 4.10: Mechanism by which TGFpi suppresses the IL-18-induced 

inflammatory response.

IL-18 signals through p38 MAPK and T-bet to activate IFNy production. This 

signalling is enhanced by TNFa and suppressed by TGFpi via a mechanism o f  

counter-regulation o f IL-18R and T-bet expression.
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Figure 4.11: TGFpi inhibits the IL-18-induced maturation o f dendritic precursor 

cells into professional antigen-presenting cells that are able to promote both Thl and 

Th2 cell responses.
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4.3.1 In summary

■ TGFpi suppressed the IL-18-induced IFNy production in KG-1 cells by 

inhibiting the stimulatory effect of TNFa in IL-18 signalling. However, 

TGFpi suppressed the IL-18 response less potently in the absence of TNFa.

■ TGFpi suppressed the IL-18-induced IFNy production via the down- 

regulation of the surface IL-18Ra expression even in the presence of the 

strong pro-inflammatory cytokine TNFa.

■ TGFpi did not have any effect on the regulation of the IL-18R transcript 

induced by TNFa, but reduced the surface expression of IL-18Ra in a dose- 

dependent manner.

■ TGFpi suppressed IFNy production in response to IL-18 stimulation via the 

down-regulation of T-bet expression in KG-1 cells.

■ TGFp 1 antagonised the DL-18-induced p38 MAPK activation.

■ The inhibitory effect of TGFpi on IL-18 signalling was not due to decreased 

viability of KG-1 cells.
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5 Generation of a Human Soluble Heterodimeric Decoy 
Receptor for IL-18

5.1 B ackground

5.1.1 IL-18 is a potential therapeutic target in many inflammatory diseases

This chapter addresses the possibility of inhibiting the IL-18 pro-inflammatory 

response by directly neutralising IL-18 function in the KG-1 in vitro cell model 

system (Konishi et al., 1997) through the generation of a soluble decoy heterodimeric 

receptor with high affinity to IL-18. Several in vitro and in vivo studies of different 

disease models established the contribution of IL-18 to the pathogenesis of many 

clinical conditions such as rheumatoid arthritis, type I diabetes, multiple sclerosis, 

systemic lupus erythematosus, Crohn’s disease, psoriasis, graft-versus-host disease, 

ischemia, atherosclerosis, and chronic hepatitis (Dinarello and Fantuzzi, 2003, 

Dinarello, 2007, Boraschi and Dinarello, 2006, Gracie et al., 2003).

There are several anti-cytokine therapies available in clinical trials targeting different 

cytokines in different inflammatory and autoimmune conditions, such as anti-TNFa 

monoclonal antibodies (infliximab, adalimumab, nerelimomab, golimumab), 

chimeric soluble type I or II TNFa receptors (etanercept, PEG-rhsTNF-RI, lenercept), 

soluble TNFa binding protein, anti-IFNy antibodies, IFNy/IgG-Fc fusion protein; 

anti-IL-12p40 monoclonal antibody, IL-1 receptor antagonist (IL-lra; anakinra), 

anti-IL-ip monoclonal antibody (ACZ885), IL-1 Trap; IL-lRI/IgG-Fc fusion protein; 

anti-IL-6R antibody (MRA, tocilizumab), anti-IL-15 monoclonal IgGl antibody 

(AMG 714, Amgen), TGF-pRII/IgG-Fc fusion protein, and many others. However, 

patients with no or only partial responses are not uncommon, and they can 

experience a recurrence of the inflammatory disease upon discontinuation of 

treatment. This exemplifies the clinical necessity for the further generation of novel 

and pathogenesis-led therapeutic approaches.
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IL-18 has been demonstrated to be a potential therapeutic target in several studies of 

IL-18 gene-targeting using animal disease model, as described in chapter 1. Different 

approaches have been developed to inhibit IL-18 in experimental models and in 

clinical trials for inflammatory and autoimmune diseases that include the use of 

neutralising antibodies against IL-18, IL-18 receptor blocking antibodies, IL-18 

binding protein (IL-18BP), and caspase-1 inhibitors.

5.1.2 Neutralising antibodies to IL-18

With the aim to target IL-18 inflammatory response, a rabbit polyclonal anti-mouse 

IL-18 IgG has been generated and used in the model of Collagen Induced Arthritis 

(CIA) to demonstrate a significant decrease in the disease progression of established 

synovitis in wild type DBA/1 mice (Plater-Zyberk et al., 2001). A study using the 

model of streptococcal cell wall (SCW)-induced arthritis in C57BL/6 or BALB/c 

mice shows that the i.p. injection of a rabbit anti-mouse IL-18 antibody results in 

significant suppression of joint inflammation and decreased concentrations of 

endogenous IL-18 and synovial TNFa and IL-ip (Joosten et al., 2000). IL-18 is 

highly associated with intestinal inflammation in patients with Crohn’s disease and 

an anti-mouse IL-18 antibody i.p. treatment in the model of dextran sulphate sodium 

(DSS)-induced colitis of C57BL/6 or BALB/c mice has resulted in a dose-dependent 

reduction in the severity of the disease (Siegmund et al., 2001). The generation of the 

first anti-IL-18 complete human antibody that blocks IL-18 signalling by binding to 

the potential association site with EL-18Rp has recently been reported. This antibody 

inhibits the production of IFNy in KG-1 cells, providing a potential therapeutic 

approach for IL-18-induced chronic inflammatory diseases (Hamasaki et al., 2005). 

Treatment of BALB/c mice inoculated with Propionibacterium acnes and challenged 

with LPS with anti-IL-18 mouse antibodies results in prevention of hepatic toxicity 

and endotoxemia (Okamura et al., 1995b). Neutralisation of IL-18 using mouse anti- 

IL-18 antibody treatment protects against LPS-induced myocardial dysfunction in 

C57BL/6 mice (Raeburn et al., 2002).
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5.1.3 IL-18 binding protein

IL-18BP is in clinical trials for rheumatoid arthritis and other autoimmune diseases. 

A recent study by Faggioni et al. has demonstrated that a fusion protein of human IL- 

18BP linked to human IgGl Fc (IL-18BP:Fc) has the ability to bind human, mouse 

and rat IL-18 with a Kd of 0.3-5nM and neutralise its function. Mortality is 

significantly reduced in mice treated with IL-18BP:Fc ten minutes before the 

administration of an E. co/z-derived LPS with a lethal dose of 90% and decreased 

levels of IFNy were detected in these mice. Treatment with IL-18BP:Fc even six 

days before LPS challenge is able to abrogate the LPS-induced IFNy production, due 

to the long half life of the Fc fusion proteins in plasma (Faggioni et al., 2001). The 

same study has also demonstrated that IL-18BP:Fc reduces expression of Fas -ligand 

and hepatic injury in these mice. IL-18BP:Fc also prevents P-acnes-induced 

granuloma formation and reduces the production of the chemokines macrophage- 

inflammatory protein (MlP)-la and MIP-2 in the liver. IL-18 mediates the hepatic 

damage caused by intravenous injection. IL-18BP:Fc protects against the 

Concanavalin A, Pseudomonas aeruginosa exotoxin A or anti-Fas agonistic 

antibody-induced liver damage and results in the reduction of Fas-ligand mRNA 

expression (Faggioni et al., 2001). IL-18BP:Fc has also been demonstrated to reduce 

the severity of CIA, (Banda et al., 2003), which is consistent with studies using 

neutralising anti-IL-18 antibodies. Other experimental autoimmune disease models 

have demonstrated the ability of sIL-18BP:Fc to ameliorate disease progression, by 

inhibiting IL-18 (Sivakumar et al., 2002, Zaccone et al., 2005).

5.1.4 Caspase-1 inhibitors to block IL-18 maturation

Recent therapeutic developments that may indirectly interfere with IL-18 activity 

include the inhibition of caspase-1 or caspase-1-activating multiprotein complexes 

known as inflammasomes (Randle et al., 2001, Siegmund, 2002, Faubel and 

Edelstein, 2005, Linton, 2005, Comelis et al., 2007). Orally active caspase-1 

inhibitors such as VX-740, or pralnacasan, and VX765 have gone into clinical trials 

for their efficacy as anti-inflammatory drugs (Clinical trial databases:
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www.centerwatch.com and www.biospace.com) (Stack et al., 2005, Wannamaker et 

al., 2007). Pralnacasan, a masked aldehyde, was the first ICE (IL-1 p converting 

enzyme) inhibitor to enter phase II clinical trial as an anti-inflammatory agent for the 

treatment of rheumatoid arthritis, but it was suspended after the detection of long

term liver abnormalities in treated animals. VX-765 is a reversible covalent caspase- 

1 inhibitor that has been in trials for the treatment of rheumatoid arthritis, 

osteoarthritis and psoriasis (World Intellectual Property Organisation website: 

http://www.wipo.int/about-wipo/en/what is wipo.html). This drug has been reported 

to be effective in blocking the hyper-reactivity of monocytes to inflammatory 

stimulation in patients with familial cold auto-inflammatory syndrome (FCAS), in 

which there is excessive caspase-1 activation due to a mutation in the cryopyrin 

(NALP3), gene a member of the nucleotide-binding oligomerisation domain (NOD)- 

like receptor family (NLR) (Stack et al., 2005).

5.1.5 Generation of a soluble human lL-18/IgGFc decoy receptor to block IL-18

The generation of a soluble fragment of murine IL-15Ra has been demonstrated to 

successfully inhibit the onset of CIA in susceptible DBA/1 mice (Ruchatz et al., 

1998). Moreover, the chimeric soluble TNFR fusion protein, etanercept, is currently 

in Phase ID clinical trials for the treatment of RA. However, the generation of a 

decoy soluble heterodimeric receptor to bind IL-18 with high affinity and neutralise 

its function has never been attempted. According to plasmon resonance studies, IL- 

18Rp cannot bind on its own to either IL-18 or IL-18Ra, whereas, when IL-18 is 

present, IL-18Rp is capable of binding to IL-18Ra, forming a ternary complex (Kato 

et al., 2003). This ternary complex shows higher affinity binding of IL-18 compared 

to binding of IL-18 to IL-18Ra alone (Kato et al., 2003). The main aim of this study 

was to develop a soluble heterodimeric IL-18RaP-Fc (shIL-18Rap-Fc) decoy protein 

that can bind IL-18 with higher affinity compared to either shIL-18Ra-Fc or shlL- 

18Rp-Fc (Fig. 5.1). Thus, this new decoy protein would block IL-18 function, 

providing a potential therapeutic approach for targeting IL-18 mediated 

inflammatory responses that normally result in disease pathogenesis.
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Figure 5.1: Schematic diagram o f the soluble human IL-18 receptor a  and p 

heterodimeric decoy protein tagged with hlgGlFc.

A mixture o f shIL-18Raa-Fc, shIL-18Rpp-Fc homodimers and shIL-18RaP-Fc 

heterodimers will be formed through binding o f the disulphide bonds present in the 

hinge region o f the Fc fragment (a). The heterodimeric shIL-18RaP-Fc is expected to 

bind IL-18 with higher capacity compared to the homodimers (b).
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5.2 Aims and Objectives

■ To develop constructs of the soluble human IL-18 receptor, tagged with human 

IgGlK Fc fragment, and transiently transfect them into COS-7 cells to confirm 

protein expression in frame with IgGl-Fc.

■ To generate CHO cell lines stably expressing shIL-18Ra, shIL-18Rp, or shlL- 

18Rap-Fc and confirm protein expression and secretion in each cell line.

■ To purify the shIL-18Ra, p and aP-Fc using affinity purification and 

demonstrate specific binding to IL-18.

■ To test the therapeutic potential of the shIL-18Rap-Fc by determining whether 

it can attenuate the function of IL-18 to induce p38MAPK phosphorylation and 

subsequent IFNy production in the KG-1 cell bioassay described in Chapter 3 

and 4.
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5.3 Results and Discussion

5.3.1 Design and Preparation of pCR®II-shIL-18Ra and pCR®II-shIL- 

18Rp Expression Constructs

5.3.1.1 Isolation of Soluble Human IL-18Ra and IL-18R/3cDNA

In order to amplify the shIL-18Ra and shIL-18RP cDNA for cloning, primers 

flanking the extracellular immunoglobulin domains of the human full length IL- 

18Ra and IL-18Rp (Fig. 5.2a and b) were designed to encode the soluble IL-18Ra 

and Rp, respectively. In order to assist sub-cloning and control the orientations of the 

inserts, the forward primers for both receptors were designed to encode Bgl n  and 

EcoR I sites and the reverse primers a Bgl II site. To facilitate the initial binding of 

the mRNA to the small subunit of the ribosome during the initiation of translation 

and improve expression levels of the inserts, the Kozak consensus sequence 

(CACAACC) was also added directly upstream of the start codon of each of the 

forward primers (refer to Table 2.8 for primer sequences).

Plasmid DNAs previously confirmed to contain the correct inserts encoding the full 

length human IL-18Raand P (pcDNA3.1/hIL-18Ra and pBla/hIL-18Rp plasmids 

provided by Wei XQ) were used as a template in the ensuing PCR reaction in order 

to generate PCR products with the restriction sites and Kozak sequences added to 

them. The cDNA used for the initial amplification of the fiill length hIL-18Ra and 

RP in these plasmids was generated from KG-1 cells, as these cells are shown to 

express both receptors (Nakamura et al., 2000, Wu et al., 2003, Zhang et al., 2003). 

A proofreading DNA polymerase was used to ensure that no mutations were 

introduced within the sequence. Clear bands observed at 1020bp and 1089bp on a 

1% agarose gel (Fig. 5.3a and b) correspond to the mRNA sequence encoding the 

soluble part of the full length IL-18Ra and IL-18RP, respectively (see Fig. 5.2a and 

b).
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Figure 5.2: Diagram showing the genomic and protein representation o f the full 

length human IL-18Ra and IL-18Rp.

The hIL-18Ra (top) and hIL-18Rp (bottom) gene is represented with the exons 

numbered E l-9 and indicated by solid boxes (a). The primers flanking the soluble 

region o f each receptor are also indicated. The full length preceptors are also 

demonstrated in (b), indicating the conserved fragments and the part that constitutes 

the soluble part o f the receptor encoded from the corresponding genes in (a). Derived 

from Genbank core nucleotide entry NM003855 and NM003853, for IL-18Ra and p 

respectively (SP, signal peptide; E l-9, exon; PI, forward primer; P2, reverse primer; 

Ig CAM, immunoglobulin cell adhesion molecules; TM, transmembrane domain; 

TIR, Toll-Interleukin 1 receptor).
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Figure 5.3: Amplification o f human soluble IL-18R mRNA with Pfu DNA  

polymerase from plasmid DNA containing the full length receptor.

The PCR products for shIL-18Ra (a) and shIL-18Rp (b) were run on 1% agarose gel. 

Lanes indicate lkb DNA ladder (1), PCR fragment (2, 3) and water as negative 

control (4).
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5.3.1.2 Restriction Digestion Analysis o f  the TA-cloned DNA Encoding the 

shIL-18R a  and RJ3 Fragments

TA cloning technology was implemented to confirm the sequence identity and 

homology of the inserts, to identify the inserted restriction sites designed in the 

primers and to assist further sub-cloning of shIL-18Ra and Rp into the pcDNA4/TO- 

IgGlFc expression vector.

Amplified DNA for shIL-18Ra-Fc and shIL-18Rp-Fc were separately inserted into 

pCR®n vectors. The resulting bacterial DNA plasmids were tested with restriction 

digestion analysis in order to confirm the insertion of the correctly sized DNA and 

identify the clones to be used for sequencing. Plasmid DNA from six different clones 

containing the pCR®n-shIL-18Ra plasmid and only one clone containing the 

pCR®II-shIL-18Rp were digested with EcoR I and Bgl n  restriction enzymes (Fig. 

5.4a and b). The expected DNA fragment sizes were the same for both orientations 

of fragment insertion and are listed in Table 5.1. EcoR I restriction sites are located 

in the MCS (Multiple Cloning Site) of the pCR®II vector, upstream and downstream 

of the PCR product insertion site, and were used to demonstrate the presence of the 

insert in all the clones (Fig. 5.4a). According to the Bgl II digestions, clones 3 and 6 

contained the shEL-18Ra insert and thus clone 3 was selected for sequencing (Fig. 

5.4b). In the case of the only pCR®n-shIL-18Rp clone, a ~2000bp fragment was 

released after Bgl II digestion that led to the hypothesis that one of the two Bgl II 

restriction sites designed in the primers was missing and thus the plasmid DNA of 

clone 8 was used for sequencing (Fig. 5.4b).

Restriction Expected Band Sizes for Expected Band Sizes for

Enzyme pCR®II-shIL-18Ra (4991bp) pCR®II-shIL-l 8Rp (5060bp)

EcoR I 21, 1015 and 3955 bp 21,1084 and 3955 bp

Bgl n 997, 1006 and 2988 bp 983,1089 and 2988 bp

Table 5.1: Restriction digestion products of pCR®II-shIL-18Ra and pCR®II-shIL- 

18RP plasmids.
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Figure 5.4: Restriction digests o f pCR®II-shIL18Ra and pCR®II-shIL18Rp 

plasmid DNA.

The restriction enzymes EcoR I (a) and Bgl II (b) were used to demonstrate the 

expected fragments, as listed in Table 4.1. Lanes indicate lkb DNA ladder (1), 

pCR®II-shIL 18Ra (2-7) and pCR®II-shIL18Rp (8).
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5.3.1.3 Confirmation o f  Sequence Identity

The reading frames of pCR®II-shIL-18Ra and pCR®II-shIL-18Rp were sequenced to 

confirm that no mutations had occurred during the amplification. SP6 and T7 primers 

that sit outside of the MCS were used to amplify sequences within it. The sequencing 

data were analysed and the identity of shIL-18Ra and Rp cDNA was confirmed with 

homology to the known corresponding Homo sapiens sequences (Fig. 8.1-8.4, 

Appendix).

The sequencing results obtained from the amplification of the 3’-end of both shlL- 

18Ra (Fig. 8.2, Appendix) and Rp (Fig. 8.4, Appendix) using the SP6 primer 

revealed 100% identity. The T7 primer amplification of the 5’-end sequence of shlL- 

18Ra (Fig. 8.1, Appendix) and Rp (Fig. 8.3, Appendix) revealed the absence of 

EcoR I restriction enzyme sites designed within the shIL-18Ra and Rp forward 

primers, but showed 100% homology to the downstream coding sequences. It was 

also apparent that the Bgl II restriction enzyme site designed within the forward 

primer sequence of shIL-18Rp was lost (Fig. 8.3, Appendix), confirming the Bgl II 

restriction analysis shown in Figure 5.4b. Moreover, two point mutations one more 

common transition (C to T) and one transversion (i.e. substitution of a purine for a 

pyrimidine or vice versa) resulted from the primer design (A to C) occurred within 

the Kozak sequence upstream of the start codon of shIL-18Rp (Fig. 8.3, Appendix). 

These single base substitutions lie within the Kozak short recognition sequence in the 

non-coding region of the gene and are not expected to have any major consequences 

on gene expression. One possibility is that they can result in a slight reduction in the 

expression levels of the construct and could be a reason of the lower expression 

levels of shIL-18Rp compared to shIL-18Ra that was later shown in figure 5.7a.
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5.3.2 Design and Preparation of pcDNA4/TO-shIL-18Ra-IgGiFc and 

pcDNA4/TO-shIL-18Rp-IgGlFc Expression Constructs

5.3.2.1 Sub-cloning o f  Sequences Encoding the Fragments o f  hIL-18Ra and 

hIL-18R/3 into pcDNA4/TO-IgGjFc Expression Vectors

The sub-cloning of shIL-18Ra and shIL-18Rp into the pcDNA4/TO-IgGi Fc 

expression plasmid (provided by Wei XQ) was implemented for eukaryotic 

expression i.e. to generate stably transfected CHO cell lines expressing high levels of 

soluble human DL-18Ra, Rp and Rap, under the CMV promoter. Expressed proteins 

would be in frame with the Fc fragment of IgGj and could be purified using Protein 

A affinity purification (Andersson et al., 1989, Nelson et al., 1987, Boshart et al., 

1985).

As demonstrated in figure 2.2, the pCR®II-shIL-18Ra DNA plasmid was digested 

with Bgl II (Fig. 5.5a) and the pCR®II-shIL-18Rp plasmid was digested with Bgl n  

and EcoR V (Fig. 5.5c) to release the inserts, which were gel extracted (Fig. 5.5b and 

d) for ligation into the expression vector pcDNA4/TO-IgGiFc. The pcDNA4/TO- 

IgGiFc plasmid was linearised with BamH I digestion (Fig. 5.5a) and purified (Fig. 

5.5b) to be used for ligation with shIL-18Ra. For ligation with shIL-18Rp, the 

pcDNA4/TO-IgGiFc plasmid was digested with Hind in, followed by Klenow DNA 

polymerase treatment to fill in the recessed 3' ends of the linearised vector and finally 

BamH I digestion generating one blunt and one sticky end (see Fig. 2.2), with 

subsequent gel purification (Fig. 5.5d). The fragments were inserted downstream of 

the CMV promoter and upstream of the IgGl-Fc fragment. Once within the 

expression vectors, the resulting constructs pcDNA4/TO-shIL-18Ra-IgG i Fc and 

pcDNA4/TO-shIL-18RP-IgGiFc were transformed into DH5a bacterial cells to 

produce the required plasmid DNAs, which were purified and test digested before 

sequencing.
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Figure 5.5: Transferring shIL-18Ra and shIL-18Rp inserts from pCR®II plasmids 

into pcDNA4/TO-IgGlFc.

shIL-18Ra was released from pCR®II-shIL-18Ra with Bgl II (a) and gel extracted 

(b) to be inserted into the purified pcDNA4/TO-IgGlFc. In the same way, shlL- 

18Rp was released from pCR®II-shIL-18Rp with EcoR V and Bgl II (c) and gel 

extracted (d) to be inserted into the purified pcDNA4/TO-IgGlFc. The top o f the two 

bands around 1 lOObp in part (c) corresponds to the shIL-18Rp fragment.
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53,2.2 Restriction Analysis o f  the shIL-18Ra and RJ3 containing 

pcDNA4/TO-IgGjFc Expression Vector

For the identification of the plasmid containing the correct insert, restriction analysis 

was performed before sequencing. Restriction digests of pcDNA4/TO-shIL-18Ra- 

IgGiFc and pcDNA4/TO-shIL-18R|3-IgGi Fc with the appropriate restriction 

enzymes (Fig. 5.6a and b) demonstrated the colonies containing the correct inserts in 

the right orientation based on the expected band sizes (see Table 5.2). Based on this, 

plasmid DNA of colony #3 expressing pcDNA4/TO-shIL-18Ra-IgGiFc and #5 

expressing pcDNA4/TO-shIL-18Rp-IgGiFc were used for sequencing.

Restriction
Enzyme

Expected Band Sizes for 
pcDNA4/TO-shIL-18Ra- 
IgGlFc (6842bp)

Restriction
Enzyme

Expected Band Sizes 
for pcDNA4/TO- 
shIL-18Rp-IgGlFc 
(6920bp)

Hind m 5-3 V 266, 697, 5879 bp EcoR I 1798, 5122 bp
3-5 V 79, 266, 6497 bp

X ho l 5-3’: 1510, 5332 bp BamHl 6920 bp
3-5 978, 5864 bp (linearised)

Hind III/ 5-3 V 266, 697, 769, 5110 bp Bgl n 824, 6096 bp
EcoR I 3-5 79, 266, 1387, 5110 bp
Hind m i 5-3 110, 156, 697, 5879 bp BamHl l 783,1015, 5122 bp
BamH I 3-5’: 79, 110,156, 6497 bp EcoR I

Table 5.2: Restriction digestion products of pcDNA4/TO-shIL-18Ra-IgGiFc (both

potential orientations are shown) and pcDNA4/TO-shIL-18Rp-IgGiFc plasmids.
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sML-18RJ3-Fc were detected in the culture media compared to the negative control of 

non-transfected cells, with shIL-18Rp-Fc being expressed at about 8 times lower 

levels (0.248ng/ml) compared to shIL-18Ra-Fc (2.071ng/ml). The difference in the 

expression levels between the two receptors could be due to the difference in the 

sensitivity of the assay or due to mutations detected within the Kozak sequence of 

the shIL-18Rp plasmid described above in section 5.6.3. Significantly increased 

levels of shIL-18RaP-Fc were also detected compared to shIL-18Ra-Fc and shlL- 

18RP-Fc alone. The expression of shIL-18Ra and shIL-18Rp in frame with hFc in 

the protein G concentrated culture media of Cos-7 transfected cells was also 

evaluated using an ELISA assay employing capturing with polyclonal antibodies 

against hIL-18Ra and hIL-18Rp, respectively, and detecting with an antibody against 

Fc. The results demonstrated 40-50 fold increased levels of shIL-18Ra-Fc (Fig. 5.7b) 

and 5-8 fold increase in the level of shIL-18Rp-Fc (Fig. 5.7c) in single or double 

transfected cells compared to the IgG-Fc vector and non-transfected control groups, 

which were similar to the numbers obtained from the IgG-Fc ELISA in figure 5.7a, 

where shIL-18Ra-Fc indicated 30-fold and shIL-18RP-Fc 3.6-fold increase 

compared to Cos-7 alone.
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Figure 5.7: Confirmation o f in-frame expression o f shIL-18R with hlgGl-Fc in Cos- 

7 cells.

Cos-7 cells were transiently transfected with either shIL-18Ra-Fc alone, shIL-18Rp-Fc alone, 
shIL-18Ra-Fc together with shIL-18Rp-Fc or a control vector (pcDNA4/TO-IgGlFc). Cos-7 
cells with Genejuice® alone were used as a negative control group. Cell culture media were 
harvested after transfection and concentrated using Protein G pull down assay. ELISA 
detecting human IgG-Fc was used to confirm the in-frame expression o f the plasmids with 
the Fc fragment (a). ELISA capturing with polyclonal anti-hIL-18Ra (b) and hIL-18Rp (c) 
antibodies and detecting with an antibody against Fc were also used to confirm shIL-18Ra 
and shIL-18Rp expression and in frame with Fc. Data shown are expressed as mean ±SD o f  
triplicates o f  a representative experiment. * P < 0.05; ** P < 0.01 by student’s t-test.
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5.3.4 Generation of CHO Cell Lines Expressing Soluble IL-18 Receptors

5.3.4.1 Generation o f  CHO Cell lines Expressing shIL-18Ra-Fc and shlL-

18Rp-Fc

CHO cells were stably transfected with shIL-18Ra-Fc and shIL-18Rp-Fc constructs 

to allow the permanent expression of the receptors for purification and testing in
/g\

functional assays. Genejuice alone was used as a control group. After selection with 

Zeocin™, the culture media were tested for hlgGiFc expression by ELISA, to 

identify colonies with the highest level of transgene expressing colonies. Two 

colonies expressing 720 and 955pg/ml of conditioned medium shIL-18Ra-Fc and 

another two colonies expressing 98.55 and 107pg/ml shIL-18Rp-Fc were identified, 

selected and cultured for 3 days in media supplemented with the ultra-low IgG serum 

media to be tested for shIL-18Ra-Fc and shIL-18Rp-Fc expression by Protein G pull 

down assay and Western blotting.

5.3.4.2 Confirmation o f  shIL-18Ra-Fc and shIL-18Rp-Fc Expression in CHO

Cells

Protein-G pull down assay and Immunoblotting using polyclonal antibodies against 

hIL-18Ra (Fig. 5.8a), hIL-18RP (Fig. 5.8b) and hlgGFc (Fig. 5.8c) demonstrated 

expression of shIL-18Ra-Fc and shIL-18Rp-Fc in CHO cells. The expected 

molecular weight (calculated from amino acid sequence) of shIL-18Ra-Fc was about 

81kDa and of shIL-18Rp-Fc about 85kDa. However, due to post-translational 

modification by glycosylation, the chains migrated in SDS-PAGE with an apparent 

molecular mass of about 95kDa (Fig. 5.8).
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Figure 5.8: Generation o f cell lines expressing shIL-18Ra-Fc and shIL-18RP-Fc.

CHO cells were stably transfected with shIL-18Ra-Fc and shIL-18Rp-Fc to allow 

permanent expression o f the receptors. Proteins were isolated by Protein G pull down 

assay, separated by SDS-PAGE and subjected to immunoblotting using goat 

polyclonal antibodies against hIL-18Ra (a), hIL-18Rp (b) and mouse monoclonal 

anti-hlgGFc (Fc-specific) (c). This demonstrated the expression o f shIL-18Ra-Fc 

and shIL-18Rp-Fc in CHO cells.
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5.3.4.3 Generation o f  Double Transfected CHO Cells Expressing ShlL- 

18Rap-Fc

After confirmation of the expression of shIL-18Ra-Fc and shIL-18Rp-Fc in CHO 

cells, the generation of a CHO cell line expressing the heterodimeric shIL-18Rap-Fc 

was attempted. To achieve this, the cell line expressing the highest levels of shlL- 

18Ra-Fc was further transfected with a pcDNA3.1B-shIL-18Rp-Fc (provided by Wei 

X-Q) and selected with G418. However, this approach yielded very low expression 

of the shIL-18Rap-Fc detected with both Western blotting and Protein G pull down 

assay of the culture supernatant of CHO cells (Fig. 5.9). Thus, an alternative 

approach was used which is outlined in figure 5.10. A pcDNA3.1A-shIL-18Ra-Fc 

expression vector was thus generated by releasing the shIL-18Ra-Fc insert from the 

pcDNA4/TO-shIL-18Ra-IgGiFc and ligating it into a pcDNA3.1MycHisA (see 

Appendix 8.2.3) vector. The resulting plasmid was transfected into pcDNA4/TO- 

shIL-18Rp-IgGlFc cells were selected with G418 to generate the shIL-18Rap-Fc 

expressing cell line.

53.4.4 Confirmation o f  shIL-18Rafi-Fc Expression in CHO Cells

The colonies with the highest expression were identified and tested for heterodimeric 

shIL-18RaP-Fc expression in the culture media by capture ELISA, where the target 

was captured using a monoclonal antibody against hIL-18Ra and subsequently 

detected with a monoclonal antibody against hIL-18Rp, as shown in figure 5.11a. 

Decreasing dilutions of culture media demonstrated an increase in shIL-18Rap-Fc 

compared to the negative control expressing shIL-18Ra-Fc only (Fig. 5.1 lb).
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Figure 5.9: Low expression o f shIL-18Rp-Fc transfected in shIL-18Ra-Fc CHO 

cells.

CHO cells expressing shIL-18Ra-Fc were stably transfected with shIL-18Rp-Fc. Western 

blotting of culture supernatant of a colony expressing shIL-18Ra-Fc (a), p-Fc (P), and a.p- 

Fc (ap) (a). Protein-G pull down assay of the culture media of three of the colonies (each 

corresponding to each of the three lanes on the Western blot) expressing the highest shlL- 

18Rap-Fc levels (b). Proteins were separated by SDS-PAGE and analysed by 

immunoblotting using goat polyclonal antibodies against hIL-18Ra, hIL-18Rp and mouse 

monoclonal anti-hlgGFc (Fc-specific) to demonstrate expression shIL-18Rap-Fc in CHO 

cells. 84ng of another purified shIL-18[Ra.p]2-Fc decoy receptor consisting of two shlL- 

18Rap-Fc chains, where IL-18Ra and Rp have been cloned in frame (provided by Wei XQ; 

designated as +) was used as positive control in (a).
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Figure 5.10: Summary o f cloning procedure 

for the generation o f a pcDNA3.1Myc 

plasmid encoding shIL-18Ra-Fc.

With lOOOfig/mL Neomycin (G418) as a 
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Figure 5.11: Confirmation of expression of shIL118Rap-Fc in the supernatant of 

transfected CHO cells.

Detection of heterodimeric soluble human IL-18Ra[3-Fc by ELISA as depicted in (a). 

Culture media of CHO cell clones stably transfected with either shIL-18Ra-Fc (0) as 

a control or shIL-18RaP-Fc (■) were collected and diluted (double dilutions) to be 

measured by ELISA (b).
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5.3.5 Purification of shIL-18Ra-Fc, shIL-18Rp-Fc and shIL-18RaP-Fc for Use 
in Functional Assays

To further study the effect of shIL-18RaP-Fc in neutralising an IL-18-induced 

inflammatory response, the cell lines expressing shIL-18Ra-Fc, shIL-18Rp-Fc and 

shEL-18Rap-Fc were cultured in ultra low IgG serum media and the respective 

recombinant proteins were purified using Protein A affinity purification. Protein A is 

derived from a strain of Staphylococcus aureus, and contains five regions that bind to 

the Fc region of IgG. Protein A is coupled to Sepharose so that one molecule of 

Protein A binds to at least two molecules of IgGi, in this case with high affinity.

Fractions with the highest amount of protein as determined using the BCA assay 

were run on an SDS-PAGE gel for confirmation of the correct protein size and then 

pooled together. Estimation of the purity of the pooled protein by serial dilutions 

using SDS-PAGE revealed >97% purity (Fig. 5.12a and b). SDS-PAGE after 

Coomassie Blue staining revealed two distinct bands of -95 and ~200kDa for the 

purified shIL-18Ra-Fc and shIL-18Rp-Fc, corresponding to the monomer and dimer, 

respectively (Fig. 5.12a). In the case of shIL-18Rap-Fc, two bands also appeared at 

-95 and ~200kDa that corresponded to shIL-18Ra-Fc and shIL-18RP-Fc monomers 

under reducing conditions and dimers under non-reducing conditions (Fig. 5.12b). 

These dimers were comprised of heterodimers as well as homodimers. The purified 

shIL-18Ra-Fc under reducing conditions was used for Western blotting to confirm 

the band identity (Fig. 5.12c). Both biotinylated antibody for human IgG-Fc and goat 

anti-hIL-18Ra polyclonal antibody were used to confirm the size of the monomeric 

shIL-18Ra-Fc at ~95kDa and the dimer at ~200kDa. The dimer was seen although it 

was run under reducing conditions, indicating a possible incomplete reduction of the 

proteins run on the gel. As the gel was run under reducing conditions, the band at 

34kDa corresponds to the heavy Fc chain of IgG, which was only detected in the 

case of the anti-IgGFc blot. This band disappears as expected in the case of anti-IL- 

18Ra detection, where another band of 64kDa appears to be visible that is likely to 

correspond to shIL-18Ra without the Fc component.
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Figure 5.12: Analysis o f the purified soluble human IL-18 receptor.

shIL-18Ra-Fc and shIL-18Rp-Fc were purified using Protein A affinity 

chromatography (Serial dilution by factor 2 starting from 5pg) and visualised under 

reducing conditions with SDS-PAGE by Coomassie blue staining (a). The detection 

of shIL-18Rap-Fc under non-reducing and reducing conditions revealed the 

dimerisation of the heterodimeric receptor (b). Western blot under reducing 

conditions o f the purified shIL-18Ra-Fc serially diluted and detected with antibodies 

for IgG-Fc and IL-18Ra (c).
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5.3.6 Interaction of heterodimeric and homodimeric receptor variants with IL- 
18

After purification of the soluble receptors and before analysing their possible 

blocking effects on IL-18 signalling, specific binding to rhIL-18 was demonstrated 

by IL-18 pull down assay and competition ELISA. Recombinant human IL-18 was 

mixed with different concentrations of shIL-18Ra-Fc, shIL-18Rp-Fc or shIL-18Rap- 

Fc for one hour at room temperature. The IL-18/IL-18R-Fc complexes were pulled 

down with Protein G and subsequently denatured to release IL-18, which was then 

detected using an in-house monoclonal antibody specific to IL-18. Higher levels of 

IL-18 were pulled down by shIL-18RaP-Fc, in a concentration dependent manner, 

compared to shIL-18Ra-Fc and shIL-18Rp-Fc (Fig. 5.13). It was also evident that 

shBL-18Rp-Fc homodimers bind less to IL-18 compared to shIL-18Ra-Fc (Fig. 5.13).

The specific binding of shIL-18R-Fc was also demonstrated using a competition 

ELISA for IL-18. Recombinant human IL-18 (lOOpM) was mixed with different 

amounts of shIL-18Ra-Fc, shIL-18Rp-Fc or shIL-18RaP~Fc for one hour at room 

temperature. The unbound free IL-18 was detected with monoclonal antibody 

specific to IL-18. Free IL-18 was almost completely absent after incubation with 

6.3nM shIL-18Rap-Fc (Fig. 5.14). At these concentrations neither shIL-18Ra-Fc 

nor shIL-18Rp-Fc, respectively, had any significant effect on free IL-18.
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Figure 5.13: shIL-18Rap-Fc binds to IL-18 with higher capacity compared to the 

homodimers.

50ng/ml o f recombinant human IL-18 was mixed with different concentrations o f  

either shIL-18Ra-Fc or shIL-18RP-Fc or shIL-18Rap-Fc for one hour at room 

temperature. The IL-18/IL-18R complexes were then pulled down with Protein G 

and subsequently denatured to release IL-18, which was detected using in home 

mouse monoclonal anti-human IL-18 antibody.
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Figure 5.14: shIL-18Rap-Fc can bind and neutralise IL-18.

IL-18 can bind shIL-18Rap-Fc heterodimer, but not the shIL-18Ra-Fc or shlL- 

18Rp-Fc homodimer, suggesting that both Ra and P chain are required for IL-18 to 

bind. 100 pM o f recombinant human IL-18 was mixed with different concentrations 

o f shIL-18Ra-Fc, shIL-18Rp-Fc or shIL-18RaP~Fc for one hour at room 

temperature. The mixture was then transferred to ELISA plate coated with anti-hlL- 

18 for the unbound IL-18 to be detected using a biotynilated anti-hIL-18 Ab as 

illustrated. The concentration o f unbound IL-18 was calculated based on rhIL-18 

used as a standard.
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5.3.7 Testing the Ability of shIL-18Rctp-Fc to Neutralise the IL-18 Response in 

KG-1 Cells

As demonstrated in chapter 3, KG-1 cells respond to IL-18 stimulation to drive the 

inflammatory response through the production of IFNy; a response exacerbated by 

TNFa priming. IL-18 signals through p38 MAPK phosphorylation to induce the 

IFNy gene expression. The ability of soluble IL-18 receptors to neutralise IL-18 

function and suppress the inflammatory response was tested in the two assays 

described below. As described in section 5.1 and demonstrated in figures 5.13 and 

5.14, shIL-18RaP-Fc is expected to bind to IL-18 with higher affinity and 

demonstrate a more dramatic inhibitory effect compared to the homodimeric 

receptors.

5.3.7.7 Analyzing ShIL-18Rap-Fc Blockage o f  IL-18-Induced IF N y  

Production in KG-1 cells

To investigate the role of shIL-18Rap-Fc in regulating IL-18-induced IFNy 

production, KG-1 cells were primed with 20ng/ml TNFa overnight and subsequently 

stimulated with 3nM of rhIL-18 for 48h in the presence or absence of increasing 

doses of shIL-18Ra-Fc, shIL-18Rp-Fc and shIL-18Rap-Fc.

The level of IFNy secreted into the culture media in response to IL-18 was 

determined by ELISA. Increasing concentrations of shIL-18Ra-Fc or shIL-18Rp-Fc 

alone did not have any effect on EFNy produced from KG-1 cells (Fig. 5.15a). 

However, IFNy production was partially suppressed by increasing concentrations of 

shIL-18Ra-Fc or shIL-18RP-Fc in the presence of 25nM shIL-18Rp-Fc or shlL- 

18Ra-Fc respectively (Fig. 5.15b). More interestingly, IFNy production was almost 

completely blocked byl2.5nM shIL-18Rap-Fc in KG-1 cells stimulated with 3nM 

rhIL-18 (Fig. 5.15c). Thus, shIL-18Rap-Fc was shown to be a potent inhibitor of 

human IL-18.
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Figure 5.15: shIL-18Rap-Fc blocked human IL-18 activity in vitro.

KG-1 cells were primed with TNFa (20ng/ml) overnight before stimulation with 

recombinant human IL-18 (3nM), together with increasing doses of either shlL- 

18Ra-Fc in the absence (a, left) and in the presence (b, left) of 25nM shIL-18Rp-Fc 

or shIL-18Rp-Fc in the absence (a, right) or in the presence (b, right) of shIL-18Ra- 

Fc, or shIL-18Rap-Fc (c) for 48h. IFNy secreted in the culture media of KG-1 cells 

in response to IL-18 was determined by ELISA.
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5,3,7,2 Demonstration o f  Reduced IL-18-Induced p38 MAPK Phosphorylation 

in the presence o f  shIL-18Rap-Fc

To further evaluate the blocking effects of shIL-18Rap-Fc on IL-18 signalling, p38 

MAPK phosphorylation was detected by Western Blotting. Recombinant human IL- 

18 (3nM) was mixed with different concentrations of shIL-18Ra-Fc, shIL-18Rp-Fc 

or shIL-18RaP-Fc (starting from equimolar ratios of IL-18 and receptor proteins) for 

30min at 37°C to allow complex formation. The mixture of IL-18 and soluble IL- 

18R-Fc was then added to stimulate the cells for 30min to allow initiation of IL-18 

signalling and p38 phosphorylation. Cells were also treated with IL-18 alone as a 

positive control. Polyclonal antibodies against Thr180 and Tyr182 of phosphorylated 

p38 and against total p38 phosphorylation, as a loading control, were used for 

immunoblotting. A clear reduction in p38 phosphorylation was evident in the 

presence of shIL-18Rap-Fc in a dose dependent manner (Fig. 5.16a). Doses of 

12.5nM or higher showed substantial inhibition, that was consistent with the results 

of IFNy production (Fig. 5.15). ShIL-18Ra-Fc also resulted in a reduction of p38 

activation, though less dramatic than that seen with shIL-18Rap-Fc, whereas shlL- 

18Rp-Fc did not cause any major changes in IL-18-induced p38 phosphorylation 

compared to the positive control of IL-18 only (Fig. 5.16a). Densitometric band 

analysis was performed using ImageQuant and the ‘Rolling Ball’ background 

subtraction method, in order to normalise the band density for phosphorylated p38 to 

that of total p38. The results confirmed a 1.3-fold reduction of p38 phosphorylation 

in the presence of 25nM shIL-18Ra-Fc and a 2.7-fold reduction in the presence of 

25nM shIL-18RaP-Fc when compared to 25nM shIL-18Rp-Fc (Fig. 5.16b).
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Figure 5.16: shIL-18RaP-Fc reduced IL-18-induced p38 activation.

IL-18 (50ng/ml) was mixed with different concentrations o f shIL-18Ra-Fc, shlL- 

18Rp-Fc and shIL-18Rap-Fc for 30 min to allow complex formation, prior to 

stimulation o f KG-1 cells for 30 min. Lysate proteins were resolved on SDS-PAGE 

gel and Western blotting was performed using the anti-p38 phospho-specific 

antibody (a). An antibody against the non-phosphorylated p38 was used as a loading 

control. The intensity o f p38 phosphorylation was quantified by densitometry (b). 

The graph shows the relative densitometric values o f the p38 phosphorylated in the 

presence o f different concentrations o f soluble IL-18 receptor.
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Data from both assays described above clearly demonstrated the ability of shlL- 

18RaP-Fc to bind to IL-18 with higher affinity compared to the homodimeric 

receptors, and to suppress IL-18 response, as shown in functional assays of IFNy 

production or p38 phosphorylation in KG-1 cells. As described in section 5.1, several 

attempts have been made to block the action of IL-18 to alleviate the inflammatory 

response by generating monoclonal antibodies against IL-18 or IL-18R, inhibitors of 

caspase-I, or other soluble IL-18 receptors. However, no approaches to date have 

managed to efficiently block the IL-18 pro-inflammatory response to a degree that 

holds a promise for a successful therapeutic application.
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5.4 Conclusions

The aim of the work described within this chapter was to develop a soluble human 

IL-18 IgG-Fc fusion decoy heterodimeric receptor that directly targets IL-18 function, 

using homodimeric receptors as a control group. Several therapeutic approaches have 

been developed to date that target pro-inflammatory cytokines, with anti-TNFa 

therapy being the most successful, especially for rheumatoid arthritis. However, non- 

or partially- responding patients provide the need for further anti-cytokine 

interventions that can ameliorate disease progression, either by themselves or in 

combination with other therapies.

Constructs encoding shIL-18Ra-Fc, shIL-18Rp-Fc and shIL-18Rap-Fc were 

successfully developed and stably expressed in cell lines. Protein expression and 

secretion was confirmed prior to shIL-18R-Fc purification using Protein A affinity 

chromatography. Purity of the protein was demonstrated by SDS-PAGE and 

Coomassie blue staining. Different binding affinities and/or stability of the complex 

were confirmed by ELISA, and functional assays were used to demonstrate the 

interaction of shIL-18RaP-Fc with IL-18 as compared to homodimers of the IL-18 

subunits. In vitro studies successfully demonstrated the inhibition of rhIL-18-induced 

IFNy production using low levels of decoy heterodimeric receptor. It would be 

beneficial to test the efficacy of shIL-18RaP-Fc in naturally produced IL-18 from 

U937 or THP-1 cells. This analysis was initially attempted, but it could not be 

completed due to time limitations. Additional in vitro binding studies (e.g. surface 

plasmon resonance using the BIAcore system) are required in order to characterise 

binding kinetics of the pure heterodimeric shIL-18Rap-Fc. However, pure 

heterodimeric receptor is essential for this assay, rather than a mixture of homo- and 

heterodimers we have obtained by using Protein A affinity purification. Thus, more 

specific purification methods need to be employed to accomplish this. One approach 

will be the conjugation of large amounts of functional IL-18 on a sepharose column 

followed by affinity purification of the heterodimeric receptor, which will be 

expected to bind to the IL-18 of the column with higher affinity compared to shlL-
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18Raa-Fc and shIL-18Rpp-Fc homodimers. Another, more complex, approach is 

the conjugation of monoclonal antibodies specific for IL-18Ra and IL-18RP to 

sepharose beads. The anti-IL-18Ra column will purify the heterodimeric mixture 

from shIL-18Rpp-Fc, and the eluate containing shIL-18Raa-Fc and shIL-18Rap-Fc 

will be applied to the anti-IL-18Rp column. ShIL-18Raa-Fc will be discarded as it 

cannot bind to anti-IL-18Rp antibody and purified fractions containing pure sIL- 

18Rap-Fc could theoretically be obtained. A homogeneous population of shEL- 

18RaP-Fc could increase the efficacy of the decoy receptor and potentially induce 

complete inhibition at a two-fold molar excess, similar to IL-18BP (Kim et al., 

2000a), compared to a four-fold that is currently achieved. The next step would then 

be to test the efficacy of the shIL-18RaP-Fc in vivo. A good animal model system 

would be the mouse CIA model, since IL-18 deficiency has been shown to result in 

decreased incidence and severity of CIA (Wei et al., 2001).

There are several benefits of using this therapeutic approach compared to other 

strategies used so far. In this case, as little as 12.5 nM shIL-18RaP-Fc was enough to 

almost completely inhibit EL-18 function in vitro, whereas several in vitro and in vivo 

studies have shown that milligram levels of anti-IL-18 monoclonal antibodies are 

required to block IL-18 function (Hamasaki et al., 2005, Fantuzzi et al., 1998, 

Okamura et al., 1995b, Plater-Zyberk et al., 2001). Although monoclonal antibody 

therapeutic approaches were considered to be highly safe in terms of toxicity, recent 

Phase-I clinical trials using anti-CD28 antibody in the United Kingdom have resulted 

in exacerbated inflammatory, responses and high mortality rates. Additionally, a 

decoy heterodimeric receptor could potentially be more beneficial compared to IL- 

18BP, which is already present in high levels in the blood, making it less efficacious 

as a therapeutic target. Thus, based on primary in vitro results obtained in this 

chapter, shIL-18RaP-Fc demonstrates a potential therapeutic molecule for reducing 

inflammatory responses by specifically targeting the active form of IL-18.
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5.4.1 In summary

■ Constructs of the shIL-18Ra-Fc, shIL-18Rp-Fc and shIL-18Rap-Fc were 

successfully developed and CHO cell lines stably expressing the receptors.

■ After confirmation of protein expression and secretion by Western blotting 

and ELISA, shIL-18Ra-Fc homodimers, shIL-18Rp-Fc homodimers and 

shIL-18Rap-Fc heterodimers were purified from these cell lines, and the 

purity of the proteins assessed by SDS-PAGE and Coomassie blue staining.

■ Binding studies showed that IL-18 binds to shIL-18Rap-Fc and with higher 

binding affinity compared to the homodimers.

■ In vitro functional assays using the KG-1 cell model system demonstrated the 

ability of the shIL-18Rap-Fc decoy protein to strongly bind to IL-18 and 

neutralise its function and signalling.

■ These functional assays also confirmed the need for both the IL-18Ra and 

IL-18Rp chain of IL18R to form a stable complex with EL-18 and that mixing 

of free subunits is sufficient to achieve complex formation to a degree.
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6 Final Discussion

6.1 Background

The central dogma in cell-mediated immunity is the activation of dendritic cells and 

macrophages by lymphoid cells through cytokines and co-stimulatory signals that 

result in an increase of antigen presentation and the elimination of intracellular 

pathogens (Mackaness, 1971). Thus, apT cells (Scharton-Kersten et al., 1998, 

Andersson et al., 1998), yST cells (Kasper et al., 1996), NKT cells (Emoto et al., 

1999) and NK cells (Scharton and Scott, 1993) account for the early release of IFNy 

following their activation by IL-18 and/or IL-12 that are produced by myeloid cells 

(Fig. 6.1a). However, the origin of early (innate) IFNy when antigen-specific T cells 

are barely present and the source of signals by which lymphoid cells are primed have 

remained ill-defined. The IL-18 and IL-12-induced production of IFNy by myeloid 

cells during the early phase of the immune response following bacterial infection 

offered a potential explanation for the initiation of the antimicrobial activity (Fig. 

6.1b), during the time period when antigen-specific T cells are scarcely present 

(Frucht et al., 2001).

The idea pushed forward in the last 15 years of the autocrine activation of 

macrophages (Fultz et al., 1993, Puddu et al., 1997, Fenton et al., 1997, Munder et al., 

1998, Fukao et al., 2001, Ohteki et al., 2001, Schindler et al., 2001), neutrophils 

(Yeaman et al., 1998) and dendritic cells (Fukao and Koyasu, 2000, Fukao et al., 

2000, Fukao et al., 2001, Ohteki et al., 2001) by IFNy has been controversial. In 2005, 

two studies have demonstrated that the increased amount of IFNy shown to be 

produced by myeloid cells is a result of small numbers of contaminating lymphoid 

cells (Schleicher et al., 2005, Laouar et al., 2005). This disagreement leads to the 

necessity of sensitive single-cell cytokine detection methods of pure myeloid or 

lymphoid populations to solely investigate the regulation of IFNy production by 

other cytokines and its function to control Thl immune responses.
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(a) Classical model

pathogen

NKT cell

(b) ‘Jump start’ model

pathogen ^

NKT cell

Figure 6.1: Models o f interaction between APCs and lymphoid cells.

The classical model (a), where IFNy is o f mere lymphoid origin and ‘jump start’ 

model (b), where both lymphoid and myeloid cells produce IFNy to drive Thl 

immune response (Adapted from Frucht et al., 2001).
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In spite of the concerns about cell purity, promising results have been provided using 

adoptive transfer studies, regarding the protective role of DC-derived IFNy to control 

bacterial infection by activating Thl-cell response. The cytokine receptor common y 

subunit (yc) and recombination-activating gene (RAG) 2 double-deficient mice 

(RAG2'/'yc‘/') are protected from the lethal Listeria monocytogenes infection upon 

adoptive transfer of splenic antigen-specific cells from T, NKT, NK and B cell- 

depleted RAG*7' or IFNyR'7* mice, but not IFNy'7' mice (Suzue et al., 2003). 

Additionally, decreased amount of IFNy is produced by splenic or bone marrow- 

derived DCs from T-bef7’ mice, and RAG2'7 Tbef7" mice are not protected from the 

lethal listeria infection after the in vivo stimulation with CpG DNA compared to wt 

DCs (Lugo-Villarino et al., 2005). T-bet deficient DCs are incapable of producing 

IFNy in response to IL-12 and IL-18 stimulation and lost their ability to activate 

adoptively transferred Thl cells (Lugo-Villarino et al., 2003a).

No studies to date have investigated the combined effect of TNFa and TGFpi on IL- 

18 signalling for the production of IFNy by myeloid cells. During chronic 

inflammation and autoimmunity, TNFa is generally accepted to have a pro- 

inflammatory role, whereas an immunoregulatory role of TGFpi for the maintenance 

of peripheral tolerance has been established. However, the function of these 

cytokines can be altered depending on the profile of the immune response. A recent 

publication by Yu et al., 2006 demonstrated that the combinations of the pro- 

inflammatory cytokines IL-18, IL-12 and IL-15 can antagonise the

immunosuppressive role of TGFp 1 on IFNy expression in NK cells. The antagonistic 

interactions between the stimulatory and inhibitory signals of TNFa and TGFpi, 

respectively, on IL-18 signalling have been demonstrated within my studies. 

Moreover, the effects of TNFa and TGFpi on the expression of IL-18R and the 

activation of the downstream MAPK signalling provided a partial mechanistic 

understanding of how IL-18 signalling is regulated. The regulation of the expression 

levels of T-bet by combinations of IL-18, TNFa and TGFpi was also studied here, 

as T-bet has been previously demonstrated to be an important upstream transcription
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factor involved in regulation of IFNy production by DCs required for the optimal 

activation of antigen-specific Thl cells (Lugo-Villarino et al., 2003a).

Redundancy has made it difficult to define the optimal cytokine-targets for blockade, 

and single anti-cytokine therapies, such as anti-TNFa, have been proven partially 

effective. In order to neutralise IL-18 function, a soluble decoy receptor was 

generated that could potentially be used in combination with the existing anti-TNFa 

therapy for the treatment of autoimmune diseases. The second rationale for this was 

to generate a reagent that could be used for interfering with IL-18 signalling in cell 

assays to work out the contribution of IL-18 to complex processes. The overall 

objective of this project was, therefore, to understand the molecular mechanisms of 

regulation of IL-18 signalling by other cytokines and identify potential therapeutic 

targets for blocking IL-18 function.

6.2 The stimulatory effects of TNFa on the IL-18-induced IFNy 

production in dendritic precursor cells

Dendritic cells are central cells of the immune response as they are at the frontline of 

defence against pathogens. DC maturation is considered to be an innate response that 

leads to adaptive immunity, as DCs migrate from peripheral tissues to lymphoid 

organs. It is now clear that immature DCs (iDCs) are important for maintaining 

peripheral tolerance (Steinman et al., 2003), whereas mature DCs (mDCs) are the 

most potent antigen-presenting cells for priming naive T cells (Banchereau and 

Steinman, 1998). It has recently been demonstrated that iDCs isolated from mouse 

bone marrow express low levels of IFNy, which is up-regulated in mDCs that are 

generated with LPS stimulation in the presence of IL-4 and GM-CSF. These cells are 

effective in priming Thl immune response (Xia et al., 2007).

IL-18 is a crucial cytokine that bridges innate and adaptive immunity (Maxwell et al.,

2006), drives maturation of DCs (Li et al., 2004a) and is a more potent IFNy- 

inducing factor than IL-12 (Okamura et al., 1995b). Thus, we could speculate that the 

correlation between the ‘early’ (innate) IFNy produced from iDCs in response to IL-
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18 and the IFNy derived from the mDCs as part of the acquired immune response 

could be an indication of the maturation stage of DCs. The ability of a pro- 

inflammatory cytokine, other than IL-12, to regulate IL-18 function was investigated, 

by examining the role of TNFa on IL-18 signalling.

Primarily, using an in vitro model of myeloid pre-dendritic KG-1 cells it was shown 

that stimulation with IL-18 induced IFNy production. Stimulation with IL-18 alone 

for 1 day did not induce any major up-regulation of DC maturation markers on these 

cells, indicating that the conditions in this assay yielded immature DCs with the 

potential to mature after longer stimulation as discussed in chapter 3. IL-18 

significantly augmented the expression of CD54 (ICAM-1) that was amplified by 

TNFa, providing an indication of potential increased migratory capabilities required 

for iDC migration and induction of maturation, and likely mediating the mDC-T cell 

interactions. This study demonstrated that TNFa stimulation 24 hours prior to IL-18 

resulted in a dose-dependent, up to 6-fold, increase in the levels of IFNy.

The mechanism of the strong stimulatory effect of TNFa was investigated by 

looking at IL-18 signalling. TNFa stimulation resulted in significant up-regulation of 

both the IL-18Ra and IL-18RJ3 transcripts quantified by QPCR. IL-18Ra copy 

numbers were significantly increased in response to lOng/ml TNFa, whereas IL- 

18Rp required 10 times more TNFa to show a significant change. Furthermore, IL- 

18Ra expression changed by about 20-fold upon stimulation, whereas IL-18Rp 

increased only 2-fold. The abundance of the transcript for IL-18Rp as compared to 

IL-18Ra (several orders of magnitude difference) suggests that expression of IL- 

18RP in physiological conditions can be considered constitutive. My results also 

demonstrated increased levels of IL-18Ra, but not IL-18Rp on the surface of the 

cells upon treatment with TNFa by FACS analysis, and therefore established a direct 

connection between regulation of IL-18Ra-chain expression and functional receptor 

on the cell surface. As IL-18Ra-chain is essential for ligand binding this shows that 

regulation of the IL-18 signalling pathway could occur through limiting IL-18Ra- 

chain expression. Previous studies have shown that after binding of IL-18 to the IL-
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18Ra, the accessory chain, IL-18Rp is recruited into a signalling complex that 

induces signal transduction (Debets et al., 2000, Kim et al., 2001b). Whether IL- 

18Rp is present on the surface of KG-1 cells in the absence of the complex formation 

or not, has not been clarified so far. We could speculate that IL-18RP could be 

constitutively expressed in the cell cytoplasm and upon complex formation it would 

translocate to the membrane to bind to IL-18/IL-18Ra and initiate signalling. This 

hypothesis supports our result of the low levels of detection or absence of IL-18RP 

on the surface of the cells.

The work within chapter 3 also addressed the effects of TNFa on the downstream 

signalling of EL-18 using Western blotting for p38 and ERK1/2 MAPK, and T-bet 

transcription factor. IL-18 induced T-bet expression in KG-1 cells that was up- 

regulated by TNFa priming. IL-18 was also shown to induce rapid ERK1/2 and p38 

MAPK phosphorylation within 10 minutes. The priming of the cells with TNFa 

resulted in the earlier activation and more pronounced phosphorylation of p38 

MAPK, possibly not through the direct induction of p38 MAPK activation by TNFa 

but through the mechanism of up-regulation of IL-18R expression described above. 

TNFa priming did not result in any major alteration of ERK1/2 phosphorylation. 

Using specific inhibitors for each MAPK it was demonstrated that p38 MAPK but 

not ERK1/2 was required for the IL-18-induced IFNy production in human pre- 

dendritic KG-1 cells.

In summary, these experiments demonstrated the ability of TNFa to promote the 

pro-inflammatory role of IL-18 by sensitising DCs to IL-18. These data provided a 

mechanism for the synergistic action of these two cytokines on immature DCs to 

ultimately drive DC maturation and induce Thl immune response, likely through a 

positive feedback loop that allows a potent response to infection or results in 

autoimmunity (Fig. 6.2).
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6.3 The inhibitory role of TGFpi on IL-18 signalling in TNFa-primed 

dendritic precursor cells

As it was discussed earlier, the bridge between innate and adaptive immunity are 

DCs. These cells control the balance between tolerance and autoimmunity by 

regulating Thl immune responses. Maturation of DCs is the critical process by which 

iDCs take up the microbial antigen at the site of infection and deliver it to lymphoid 

tissues. In lymphoid tissues mDCs (professional APCs) present the antigen to T cells 

inducing their clonal expansion. As described in Figure 6.2, IL-18 and TNFa are 

important pro-inflammatory cytokines that drive the process of DC maturation, 

whereas several studies have demonstrated that TGFpi is a potent 

immunosuppressive cytokine that inhibits the maturation of DCs (refer to section 

4.1). However, the mechanism of TGFpi to block DC maturation has not been 

completely delineated.

Targeting cytokines to maintain the balance that is required for the sufficient 

generation of APCs is important in controlling inflammation. There are several 

disadvantages of targeting single cytokines for the treatment of inflammatory and 

autoimmune diseases. In RA, for example, therapies using either antibody for IL-18 

or IL-18BP are currently in Phase I clinical trials. These, however, do not exclusively 

bind IL-18 but also other proteins, making it impossible to predict their in vivo 

targeting. TNFa therapies such as infliximab, adalimumab (anti-TNF antibody) and 

etanercept (TNFR-Fc fusion protein) have been in widespread clinical use, but they 

increase the risk of infection (tuberculosis) and malignancy (Mclnnes and Schett,

2007). TGFp antagonists such as monoclonal antibodies and antisense 

oligonucleotides have been in clinical trials for the treatment of fibrosis and cancer 

(Yingling et al., 2004). Several studies have indicated that blocking or overruling 

TGFp by targeting its signalling using kinase inhibitors might significantly improve 

the efficacy of immunotherapy (Yingling et al., 2004). Understanding the mechanism 

of cytokine interactions for the pathogenesis of the disease is important to develop 

appropriate combination therapies with higher efficacy.
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Figure 6.2: Model o f dendritic cell maturation by their IL-18-induced IFNy 

production: Role o f TNFa and TGFpi.

At the site o f infection and upon the presence o f microbial antigens, IL-18 induces 

early IFNy production from iDCs. The levels o f early IFNy are up-regulated by 

TNFa, promoting maturation o f DCs and their translocation to lymphoid organs as 

professional APCs, in order to induce Thl immune response and provide the bridge 

between innate and adaptive immunity. This process is inhibited by TGFpi.
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Therefore, the role of TGFpi in inhibiting DC maturation by regulating the TNFa- 

promoted IL-18 signalling was investigated in this study. The results showed that 

TGFpi indeed suppressed IL-18 signalling and was capable to override the 

stimulatory effects of TNFa. Several studies have demonstrated that TGFpi inhibits 

lymphoid IFNy production, e.g. in T and NK cells (Gorelik and Flavell, 2000, Yu et 

al., 2006), but the role of this cytokine in the regulation of myeloid IFNy production 

has never been investigated. By utilising pre-dendritic KG-1 cells that produce IFNy 

in response to IL-18, we demonstrated that TGFpi completely blocked the IL-18- 

induced IFNy production even in the presence of TNFa. Interestingly, a mechanism 

of indirect inhibition by TGFpi that establishes a state of “memory” leading to 

prolonged inability of cells to be re-stimulated with IL-18 was identified. In these 

experiments, IL-18 was not capable to abrogate the suppressive effect of TGFpi, 

even at high dosages.

These results pointed to the regulation of IL-18R by TGFpi as the potential 

mechanism of inhibiting IL-18 signalling. The stimulation of KG-1 cells with TGFpi 

did not show any significant regulation of IL-18R mRNA expression by quantitative 

PCR. This was expected as the timescale of inhibition is very fast. Flow cytometry 

analysis demonstrated that the surface expression of IL-18Ra was significantly 

decreased (down to -50%) by TGFpi in a dose-dependent manner. Hence, 

regulation is by a mechanism of post-translational modification. We have attempted 

to investigate receptor shedding by proteolysis but were unsuccessful. Also 

regulation was only partial in all experiments carried out. This partial inhibition of 

the receptor has also identified a secondary mechanism of inhibition of IL-18 

signalling by TGFpi. It is well known that TGFpi suppresses the induction of IFNy 

expression in lymphoid cells partly via the inhibition of T-bet expression (Yu et al., 

2006). Western blotting data in this study has shown that TGFp 1 suppressed the IL- 

18-induced T-bet expression despite the presence of TNFa. This result provided a 

possible mechanism that accounted for the other 50% inhibition of IFNy production 

by TGFpi. Since studies have demonstrated that this cytokine can signal through 

SMAD-independent pathways such as p38 MAPK (Bhowmick et al., 2001, Yu et al.,
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2002), Western blotting was used to examine the effect of TGFpi in the IL-18- 

induced p38 MAPK expression in KG-1 cells. TGFpi was shown to delay the 

activation of p38 MAPK induced by IL-18 together with TNFa. Nevertheless, p38 

phosphorylation occurred within 10 min of IL-18 treatment and therefore suggests 

that some functional IL-18 receptor is indeed present on cells. Hence, neither the 

modulation of IL-18R nor the effect on p38 MAPK activation fully explained 

complete and sustained inhibition by TGFpi.

The mechanism for the inhibition of IFNy production by TGFpi in KG-1 cells 

appears to be a combination of events taking place simultaneously. As TGFp 1 has a 

short half life (2-3min), the fact that the reduced levels of IFNy could not be 

reconstituted with the addition of IL-18 (Fig. 4.3), indicated that TGFpi acts rapidly 

by possibly regulating the IFNy promoter, rather than by directly inactivating IL-18 

protein. TGFp is known to signal through SMAD2 and/or SMAD3, which then bind 

and activate a common SMAD4 protein to translocate to the nucleus and regulate the 

expression of target genes, by binding to their promoters recruiting activating or 

repressive complexes (Massague, 1998, Massague and Wotton, 2000). Yu et al., 

2006, have used chromatin immunoprecipitation (ChIP) to demonstrate that TGFp 1 

directly inhibits IFNy transcription by activating SMAD3/4 which then binds to IFNy 

promoter and represses transcription. TGFpi has also been shown to inhibit the 

expression of T-bet, STAT4, and IL-12Rp2 (Gorelik and Flavell, 2000, Lin et al., 

2005) that are essential for IFNy expression. Conversely, IL-18, IL-12 and IL-15 

have been shown to suppress the ability of NK cells to respond to TGFpi, via down- 

regulation of the surface and gene expression of TGFpi receptor and SMAD2/3, and 

by partially rescuing T-bet expression (Gorelik and Flavell, 2000, Yu et al., 2006). 

This could explain why T-bet expression is not completely blocked by TGFpi in our 

study.

Another potential explanation of the almost complete inhibition of IFNy by TGFpi 

could be through an indirect mechanism of post-translational modification of IL-18. 

Mature or pro-IL-18 is known to be cleaved by caspase-3 at Asp71-Ser72 and
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Asp76-Asn77, resulting in biologically inactive peptide (Akita et al., 1997). It would 

be interesting to examine the possibility that TGFpi induces the activation of 

caspases, and particularly caspase-3, to inactivate IL-18 protein. A hypothesis like 

this could be tested by using antibodies against caspases-3 to look at the expression 

levels before and after TGFpi stimulation by Western blotting.

In summary, the results in this chapter documented the inhibitory effects of TGFpi 

on IL-18 signalling and provided a possible mechanism that leads to the inhibition of 

myeloid IFNy production via the down-regulation of IL-18R. The presence of the 

strong inflammatory cytokine, TNFa, was unable to abrogate the suppressive effect 

of TGFpi. However, neither the down-regulation of EL-18Ra expression on the 

surface of KG-1 cells, nor the decrease of T-bet expression or delay in p38 

phosphorylation observed in the presence of TGFpi resulted in the same extend of 

inhibition as the one observed in IFNy production. Further experiments are required 

to elucidate the mechanism behind the strong immunosuppressive effect of TGFpi 

on IL-18 signalling in KG-1 cells. Blocking p38 activation or ERK1/2 MAPK 

activation using specific inhibitors could show whether inhibition of any of these 

signalling cascades would inhibit IFNy production to the same extend as TGFpi. 

Incomplete inhibition could indicate the involvement of SMAD signalling in 

regulating IFNy production. Under these circumstances, either siRNA studies 

blocking SMADs or competition binding studies of SMADs on IFNy promoter could 

provide further understanding of the mechanisms behind the immunosuppressive role 

of TGFpi on IL-18 signalling and on the regulation of IFNy production in myeloid- 

derived pre-DCs.

6.4 Generation of a soluble decoy receptor to neutralise IL-18 function

Early research with synovial cultures from RA patients has provided evidence that 

TNFa is an important cytokine that drives the inflammatory response (Feldmann and 

Maini, 2003). Therapeutic approaches based on anti-TNF antibodies or soluble 

recombinant TNFR-IgGFc protein have resulted in significant improvement in both
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RA (Elliott et al., 1994, Moreland et al., 1997) and D3D (van Dullemen et al., 1995). 

However, 50% of patients with chronic RA do not respond to TNFa inhibitors 

leading to the necessity for blockade of other pro-inflammatory cytokines such as IL- 

1, EL-6 and EL-15 that potentially drive the disease process. Other therapies have 

targeted the co-stimulatory molecules that are critical for the interaction between T 

and DC cells with the aim to prevent T cell activation and have been shown to 

improve symptoms in clinical trials for RA (Kremer et al., 2003).

Targeting EL-18 appears to be an attractive approach for therapy, as EL-18 is not only 

responsible for DC maturation, but is also a pro-inflammatory cytokine found in high 

levels in joints of patient with RA. A high affinity soluble decoy receptor would be a 

potentially effective way for neutralising EL-18 activity. In order to attempt the 

generation of such a recombinant protein, constructs were developed for expression 

of the extracellular ligand binding portions of EL-18R as a fusion protein with Fc 

derived from human IgGl. Cos-7 cells were transiently transfected with the plasmids 

and expression was confirmed using IgGl-Fc and hIL-18Ra or hEL-18Rp ELISA in 

the culture supernatant of cells. CHO cells were stably transfected with shEL-18Ra- 

Fc, shEL-18Rp-Fc plasmids and selected using the antibiotic Zeocin®. Expression 

was confirmed by Protein G pull down assay and Western blotting using antibodies 

against hEL-18Ra or hIL-18Rp and hlgGl-Fc. The shEL-18RaP-Fc expressing cell 

line was generated by transfecting the CHO cells already stably expressing shEL- 

18RP-Fc with shEL-18Ra-Fc and selected with the antibiotic Neomycin®. The two 

homodimeric shIL-18Ra-Fc and shEL-18RP-Fc and the heterodimeric shIL-18Rap- 

Fc proteins were purified using Protein A affinity purification. The purity (>97%) 

and identity of proteins was demonstrated by SDS-PAGE with Coomassie blue 

staining and Western blotting.

Purified proteins were used in binding studies (competition ELISA and pull down 

assay) to show that the shIL-18Rap-Fc heterodimer binds EL-18 with higher binding 

capacity compared to the respective homodimers. In vitro functional assays using the 

KG-1 cell model system demonstrated the ability of the shEL-18RaP-Fc decoy 

protein to neutralise its function to produce IFNy, and activate p38MAPK signalling.
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These results suggest the feasibility of a therapeutic approach based on a decoy 

soluble receptor to EL-18. Apart from the therapeutic potential of shIL-18Rap-Fc, it 

could be utilised as a diagnostic tool to test the role of IL-18 in several disease 

models or it could facilitate studies examining IL-18-induced DC maturation.

Several in vitro and in vivo studies have shown that milligram levels of anti-IL-18 

monoclonal antibody are required for blocking IL-18 function. Preliminary data in 

chapter 5 have shown that 12.5nM shIL-18Rap-Fc was sufficient to almost 

completely inhibit rhIL-18 function in vitro. However, in vivo function depends 

significantly on the systemic stability of the recombinant protein in addition to its 

effectiveness to interact with the target molecule. Neutralising antibody therapies 

represent an attractive approach as they offer the potential to select binding site and 

affinity in order to optimise efficacy. Therapeutic approaches targeting the receptor 

with the use of antibodies or a specific antagonist have also been utilised, although 

shared binding of IL-18Ra with other ligands such as IL-1F7 could reduce the 

specificity of this approach. Small molecule approaches such as caspase-1 inhibitors 

or inhibitors of IL-18 signalling can be beneficial, as they provide advantages in oral 

delivery, patience tolerance and cost. However, they provide limited specificity for 

IL-18 as other members of the IL-1 super-family may also be inhibited. Opposing to 

all the approaches listed above, targeting IL-18 using soluble decoy receptors offers a 

direct high affinity binding approach with specificity for IL-18.

6.5 Implications for Cytokine Therapy

It is important to point out that the data presented in this work were obtained from 

studies utilizing a single experimental in vitro model of a myeloid dendritic precursor 

cell line. Considering the enormous diversity of cytokine and inflammatory cell 

profile in different inflammatory diseases and the environment-dependent properties 

of these cytokines in different types of inflammatory response, application of these 

results to more complex in vivo experimental or clinical models should be made 

cautiously. Cytokines do not act in isolation within the inflammatory response to 

limit the cause of inflammation and lead to the repair of damaged tissue. To
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overcome the complexity of the action of cytokines mediated on target cells, a 

simplified assay was utilised to study the interactions of these cytokines in isolation, 

in order to target key signalling molecules that could be critical in regulating DC 

maturation and function.

The findings reported here not only introduce a potential mechanism of receptor 

regulation by pro- and anti-inflammatory mediators to drive chronic inflammation or 

immunosuppression, but also provide preliminary evidence for the usefulness of a 

potential therapeutic option, IL-18 inhibition using a decoy receptor, in anti-cytokine 

therapy. This approach is particularly attractive because of the various degrees of 

specificity and efficacy reported for current anti-cytokine therapies or disease relapse 

i.e. anti-TNFa therapy in RA. Moreover, given that IL-18 inhibition overrides 

chronic inflammation in response to infection or autoimmunity in in vivo models 

(Boraschi and Dinarello, 2006), this may also be a promising therapeutic approach 

for combination therapy.

6.6 Future Avenues for Investigation

Cytokines work in synergy to regulate immune responses during infection and 

inflammation. A global cytokine analysis and the examination of the molecular 

mechanism involved in the interplay between the cytokines that are important for the 

regulation of dendritic cell function will be beneficial for the clinical diagnostic or 

prognostic assessment of chronic inflammatory conditions and for providing a 

direction for potential anti-inflammatory therapies.

Experiments from this project have provided a mechanism for the 

immunostimulatory effects of TNFa and the immunosuppressive role of TGFp 1 on 

IL-18 signalling. The methods used in this study are simple and effective in 

quantifying mRNA and protein expression to study cell signalling. However, the 

nature of the experiments limited their scope to specific questions and a limited 

number of constituent proteins only. The complexity of the field has grown 

exponentially with the latest advances in cell biology. A combination of standard
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techniques, used in this study, with novel higher capacity methods now available, 

could provide a global perspective of cell signalling interactions responsible for 

triggering DC maturation.

In this study flow cytometry was used to look at alterations in the expression levels 

of IL-18 signalling receptor proteins in response to IL-18/TNFa and/or IL-18/TGFpl 

stimulation. Microscopic techniques such as immunocytochemistry could be used to 

detect the location or movement of IL-18R protein within the cell upon stimulation. 

An alternative approach to follow the movement of IL-18R expression within cells 

would be to transfect CHO cells, which do not express the receptor, with the IL-18R 

gene inserted into a GFP/YFP expression vector.

Additionally, phosphospecific antibodies and inhibitors were used to indicate that 

p38 MAPK is phosphorylated downstream of IL-18 signalling and is required for 

IFNy production. This work did not investigate a number of key signalling pathways 

linked to the cytokines employed for stimulation of cells including JAK/STAT, 

SMAD, NFkB. Furthering this work, the KG-1 cell system could be utilised as a 

model of DC maturation to identify the differences in phosphorylation patterns and 

expression levels of several proteins in response to stimuli within a cell extract using 

a pool of validated antibodies and Western blotting.

Additional work within chapters 3 and 4, investigated the effects of TNFa and or 

TGFpi on the IL-18 induced T-bet transcription factor in KG-1 cells. Using T-bet 

siRNA techniques, IL-18 has been recently shown to induce T-bet expression in KG- 

1 cells (Bachmann et al., 2007), but the effect of TNFa and TGFpi has never been 

investigated. The same study by Bachmann et al. has utilised p38 MAPK-specific 

inhibitor (SB203580) to demonstrate that p38 MAPK activation is required for T-bet 

mRNA and protein expression to regulate IFNy production in these cells. My data 

have confirmed that stimulation of KG-1 cells with IL-18 activates T-bet expression, 

which was up-regulated in die presence of TNFa and suppressed in the presence of 

TGFpi stimulation. However, it is unclear whether T-bet is the only p38 MAPK 

target important for IFNy regulation. The requirement of nuclear translocation of T-
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bet has been revealed in CD4+ T cells of T-bet"7' mice for this action (Matsuda et al., 

2007). Using Mo-DCs from T-bet"7" mice it would be interesting to investigate the 

nuclear translocation of T-bet upon stimulation with IL-18/TNFa and/or TGFpi in 

the presence or absence of p38 MAPK inhibitors. It would be interesting to utilise a 

technique that uses p-galactosidase, which has been cut into two inactive fragments 

that get activated when they come together and produce a chemiluminescent signal 

(Villalobos et al., 2007). Tagging one fragment with a nuclear localisation signal 

(NLS) and the other with T-bet we could theoretically detect the translocation of T- 

bet in transfected cells upon stimulation.

Work in chapter 5 resulted in the generation of a soluble human decoy receptor for 

IL-18. Pull down assay and competition ELISA showed that indeed shIL-18RaP-Fc 

can bind IL-18 with higher affinity compared to the respective homodimers. Further 

experiments using plasmon surface resonance spectroscopy would have provided 

more information about the affinity and kinetics of the IL-18/shIL-18RaP-Fc 

interactions. In vitro functional assays, using the KG-1 model system demonstrated 

the ability of this heterodimeric receptor to block IL-18 signalling and inhibit IFNy 

production. Time limitations only allowed preliminary experiments, which however, 

provided promising results for the functional activity of shIL-18Rap-Fc leading to 

the necessity of testing this protein in vivo. Initially, the toxicity of this compound 

should be tested both in vitro and in vivo. After determining that it is not toxic for the 

animals, it would be essential to determine the half life of the heterodimeric receptor 

in mice. Mice could be injected intravenously and the levels of the decoy receptor 

could be measured in the blood at different timepoints. Clinical studies investigating 

the ability of this protein to dampen the inflammatory response using the model of 

CIA and ameliorate the disease would be promising for therapy.
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8 Appendices

8.1 M olecular W eight Standards

8.1.1 l k b  D N A  la d d e r  (In v itro g e n ™ ,U K )

bp

1 - 1 2 , 2 1 6
4zLhl2*- 1 0 , 1 8 0

—  6 1 0 8
—  5 0 9 0
—  4 0 7 2

—  3 0 5 4

—  2 0 3 6  

— 1 6 3 6

—  1 0 1 8

—  5 0 6 , 5 1  7
—  3 9 6
—  3 4 4
—  2 9 8

Hl n f  1 f r a g m e n t s  
o f  t h e  v e c t o r

1 Kb DNA Ladder
0.5 gg.lanc
0.9%  agarose gel
stained u ith  etliidlum  brom ide

2 0 6
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8.1.2 SeeBlue Plus2 pre-stained standard, (Invitrogen™ , UK)

k D a

250

148

98

64

50

36

22
16

6

4

Protein:
Myosin

Phosphorytasc B 

BSA 

Glutamic dehydrogenase

Alcohol dehydrogenase

Carbonic anhydrase

Mynglnhin*Red 
Lysozyme 

Aprotinin 

Insulin B chain
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8 .2  V ector M aps and M ultip le C lon in g  Sites

8.2.1 pCR®Il Vector (Invitrogen™ , UK)

lacZa ATG 
M13 Reverse Primer I

CAG GAA ACA GCT ATG AC C ATG ATT ACG CCA AGC T AT TTA QGT GAC ACT ATA G \A  
GTC CTT TGT CGA TAC TG G TAC TAA TGC GGT TCG A TA AAT CCA CTG TGA TAT C IT

Sp6 Promoter

Nst I Hind III Kpn I Sac I SamHI Spe I
I I  I l l |

TAC TCA AGC TAT GCA TCA AGC TTG GTTA CCG AGC TCG GAT CCA CTA GTA ACG GCC 
ATG AGT TCG ATA CGT AGT TCG AAC CAT GGC TCG AGC CTA GGT GAT CAT TGC CGG

BstX I EcoR I

GCC AGT GTg 'CTG GAA TTC GGC 
CGG TCA CAC GAC CTT AAG CCG

EcoR I EcoR V
I I

|A GCC GAA TTC TGC AGA TAT 
T CGG CTT AAG ACG TCT ATA

BstX I Not I Xho I Nsi I Xba I Apa I
I I I  I I  I

CCA TCA CAC TGG CGG CCG CTC GAG CAT GCA TCT AGA GGG CCC AAT TCG 
GGT AGT GTG ACC GCC GGC GAG CTC GTA CGT AGA TCT CCC GGG TTA AGC

T7 Promoter M13 Forward (-20) Primer

CCC TAT
GGG ATA 

-----
AGT GAG TCG TAT TA C AAT TCA 
TCA CTC AGC ATA AT G TTA AGT

CTG GCC GTC GTT TTA C AA CGT CGT GAC TGG GAA AAC 
GAC CGG CAG CAA AAT GTT X A  GCA CTG ACC CTT TTG

Comments for pCR®ll 
3971 nucleotides

LacZa gene: bases 1-587
M13 Reverse priming site: bases 205-221
Sp6 promoter: bases 239-256
T7 promoter: bases 404-423
M13 (-20) Forward priming site: bases 431-446
f1 origin: bases 588-1025
Kanamycin resistance ORF: bases 1359-2153
Ampicillin resistance ORF: bases 2171-3031
pUC origin: bases 3176-3849
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8.2.2 pcDNA4/TO/myc-HisA Vector (Invitrogen™ , UK)

E f e l  S' 0.(0 '558'fc8'355.c.ai 1 CL I  CQlijaUjCQSXX'i l l l i l Pm
e

rvS

pcDNA4T7TO/ 
myc-His 

A, B ,C
5.1 kb

Comm ents for pcDNA4^/TO/myc-His A

5151 nucleotides

CMV promoter: bases 232-958
TATA box: bases 804-810
Tetracycline operator 2 (2X Tet02) sequences: bases 820-859 

CMV Forward priming site, bases 769-789 
Multiple cloning site: bases 968-1069 
c-myc epitope: bases 1073-1102 
Polyhistidine (6xHis) tag: bases 1118-1135 
BGH reverse priming site: bases 1158-1175 
BGH polyadenylation sequence: bases 1164-1388 
f1 origin: bases 1434-1862 
SV40 promoter and origin: bases 1867-2211 
EM-7 promoter: bases 2253-2319 
Zeocin™ resistance gene: bases 2320-2694 
SV40 early polyadenylation sequence: bases 2824-2954 
pUC origin: bases 3337-4010 (complementary strand)
6/a promoter: bases 5016-5114 (complementary strand)
Ampidllin (6/a) resistance gene: bases 4155-5015 (complementary strand)

•unique m versions A and B only 
"  Unique in version B only 
"U nique in version C only

CMV Forward priming site

7 2 1  AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATTGACG CAAATGGGCG

TATA box Tetracydine operator (TetO?)

7 8 1  GTAGGCGTGT ACGGTGGGAG GTc'rATATAA1 GCAGAGCTC'r CCCTATCAGT GATAGAGa't C

Tetracycline operator (TetOz)

8 4 1  't c c c t a t c a g  t g a t a g a g A  CGTCGACGAG CTCGTTTAGT GAACCGTCAG ATCGCCTGGA

9 0 1  GACGCCATCC ACGCTGTTTT GACCTCCATA GAAGACACCG GGACCGATCC AGCCTCCGGA

Pme I* AH II Hr)d III Asp7181 Kpn I BarrM I 8s/X I*£coR I

9 6 1  CTCTAGCGTT TAAACTTAAG CTTGGTACCG AGCTCGGATC CACTAGTCCA GTGTGGTGGA

P sfl EcoR V BstX I* Atofl Xho I X 6al A pal
I I  I I I  n ______________ X.--------- |---------------

1 0 2 1  ATTCTGCAGA TATCCAGCAC AGTGGCGGCC GCTCGAGfTCT AGAGGGCCC)T TC GAA CAA
'— = = ---------------  G lu  G in

_______________ o-myc epitope  Age I Polyhistidine (6xNs) region

1 0 7  9 AAA CTC ATC TCA GAA GAG GAT CTG' AAT ATG CAT ACC GGT CAT CAT CAC
L y s  L eu  l i e  S e r  G lu  G lu  A sp  L eu  A sn  M et H i s  T h r  G lu  H is  H i s  H is

Pme I* BGH Reverse priming site----------------- 1 I I----------------------    1
1 1 2 7  CAT CAC CAT TGA GT TTAAACCCGC TGATCAGCCT CGACTGTGCC TTCTAGTTGC

H is  H i s  H i s  * * *

*Note that there are two Pvic I sites and two BstX I sites in the polvlinker.

2 0 9
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8.2.3 pcDNA™ 3.1M yc-His(-)A Vector (In v itro g en 'U K )

m yc  epitope 6xHis

— LL. LL. v
| j U 8 g 2 $ 8 ,8 ^ & s J2  < x  x  z  to m uj qq co sc

pcDNA

Comments for pcDNA^S.I/myc-Hisf-) A: 
5522 nucleotides

CMV promoter: bases 209-863 
T7 promoter/priming site: bases 863-882 
Multiple cloning site: bases 895-1006 
myc epitope: bases 1007-1036 
Polyhistidine tag: bases 1052-1069 
BGH reverse priming site: bases 1113-1130 
BGH polyadenylation signal: bases 1116-1343 
f1 origin: bases 1389-1817 
SV40 promoter and origin: bases 1844-2152 
Neomycin resistance gene: bases 2227-3021 
SV40 polyadenylation signal: bases 3195-3325 
pUC origin: bases 3708-4381
Ampiclllin resistance gene: bases 4526-5386 (complementary strand)

There are two Apa I sites 
in version A only.

There are two Xba I sites 
in version B only.

pcDNA™3.1/myc-His A MCS

T7 promoter/priming site H/nd III to n  I BamH II------------------------------------1 I |
8 6 1  ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGT TAA GCT TGG TAC CGA GCT CGG

A l a  T r p  T y r  A rg  A la  A rg
BstX I EcoR\ EcoRV fisfX I Not I

9 2 2  ATC CAC TAG TCC AGT GTG GTG GAA TTC TGC AGA TAT CCA GCA CAG TGG CGG CCG
l i e  H i s  * * *  S e r  S e r  V a l  V a l  G lu  P h e  C y s  A rg  T y r  P r o  A la  G in  T r p  A rg  P r o

Xho I Xba I Apa I Sfu\________________________myc epitope______________________

9 7 6  CTC GAG |TCT AGA GGG CCC| TTC GAA CAA AAA CTC ATC TCA GAA GAG GAT CTg ' AAT
L eu  G lu  S e r  A rg  G ly  P r o  P h e  G lu  G in  L y s  L eu  l i e  S e r  G lu  G lu  A sp  L eu  A sn

Age I _________ Polyhistidine tag________  ̂ Pme I ^
1 0 3 0  ATG CAT ACC GGT CAT CAT CAC CAT CAC CAT TGA GTTTAAACCC GCTGATCAGC

M et H i s  T h r  G lu  H i s  H is  H i s  H is  H i s  H is  ***

BGH Reverse priming site

1 0 8 3  CTCGACTGTG CCTTCTAG

2 1 0
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8.3 Specificity Guide of polyclonal IgG to protein A and protein G 

Specificity Guide

Species Protein A binding Protein G binding

Human

IgA variable

IgD

IgE

IgG, ++++ ++■! +

IgG2 ++++ ++■( +

IgG3 - ++++

IgG4 ++++ h  i +

IgM* variable

Mouse

IgG, + ++++

IgG2a ++++ ++++

IgG2b +++ +++

IgG3 ++ +++

IgM* variable

Rabbit ++++ +++

Rat

IgG, - +

IgG ^ - ++++

IgG2b - ++

IgG3 + ++

* Purify using HiTrap IgM  Purification HP columns, 
f  Purify using HiTrap IgY Purification HP columns.
+ Relative binding strength 
- weak or no binding

The relative binding strengths o f  polyclonal IgG to protein A and protein G are listed in the 

specificity guide as measured in a competitive ELISA test. The amount o f IgG required to 

give a 50% inhibition of binding o f rabbit IgG conjugated with alkaline phosphatase was 

determined (Taken and adapted from the GE Healthcare, UK website 

http://www6.gelifesciences.comV
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8.4 Sequencing R esults

Q u e ry 8 CCTCTAGATGCATGCTCGAGTG— CGCCAGTGTGATGGATATCTGCAGAATTCGGCTT 6 4 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

pC R ® II 3 9 3 CCTCT AGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGGCTT 3 3 5
£coRI

Q u e ry 65 ATCTAGATCTGATCTTCAC 82
1 1 1 1 1 1 1 1 1 1 1 1 1 III

P r i m e r P I A TCTAGA TCTGAATTCCAC
fig/11 £<oRI Kozak

Q u e ry 83 AACCATGAATTGTAGAGAATTACCCTTGACCCTTTGGGTGCTTATATCTGTAAGCACTGC 
1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

142

S b j c t 2 1 AACCATGAATTGTAGAGAArTACCCTTGACCCTTTGGGTGCTTATATCTGTAAGCACTGC 80

Q u e ry 1 4 3 AGAATCTTGTACTTCACGTCCCCACATTACTGTGGTTGAAGGGGAACCTTTCTATCTGAA 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 2

S b j c t 81 AGAATCTTGTACTTCACGTCCCCACATTACTGTGGTTGAAGGGGAACCTTTCTATCTGAA 14 0

Q u e ry 2 0 3 ACATTGCTCGTGTTCACTTGCACATGAGATTGAAACAACCACCAAAAGCTGGTACAAAAG 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M il 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 6 2

S b j c t 1 4 1 ACATTGCTCGTGTTCACTTGCACATGAGATTGAAACAACCACCAAAAGCTGGTACAAAAG 2 0 0

Q u e ry 2 6 3 CAGTGGATCACAGGAACATGTGGAGCTGAACCCAAGGAGTTCCTCGAGAATTGCTTTGCA 
1111 1 1 1 1 11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 I I 1 1 1 1 1 1 1 1 1 1 1 1 1111 1 1 1 1 1 1 1 1 1 1 1 1 1

3 2 2

S b j c t 2 0 1 CAGTGGATCACAGGAACATGTGGAGCTGAACCCAAGGAGTTCCTCGAGAATTGCTTTGCA 2 6 0

Q u e ry 3 2 3 TGATTGTGTTTTGGAGTTTTGGCCAGTTGAGTTGAATGACACAGGATCTTACTTTTTCCA 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 8 2

S b j c t 2 6 1 TGATTGTGTTTTGGAGTTTTGGCCAGTTGAGTTGAATGACACAGGATCTTACTTTTTCCA 3 2 0

Q u e ry 3 8 3 AATGAAAAATTATACTCAGAAATGGAAATTAAATGTCATCAGAAGAAATAAACACAGCTG
1 1 111 111 II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111 11 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 4 2

S b j c t 3 2 1 AATGAAAAATTATACTCAGAAATGGAAATTAAATGTCATCAGAAGAAATAAACACAGCTG 3 8 0

Q u e ry 4 4 3 TTTCACTGAAAGACAAGTAACTAGTAAAATTGTGGAAGTTAAAAAATTTTTTCAGATAAC 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 0 2

S b j c t 3 8 1 TTTCACTGAAAGACAAGTAACTAGTAAAATTGTGGAAGTTAAAAAATTTTTTCAGATAAC 4 4 0

Q u e r y 5 0 3 CTGTGAAAACAGTTACTATCAAACACTGGTCAACAGCACATCATTGTATAAGAACTGTAA 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 6 2

S b j c t 4 4 1 CTGTGAAAACAGTTACTATCAAACACTGGTCAACAGCACATCATTGTATAAGAACTGTAA 5 0 0

Q u e r y 5 6 3 AAAGCTACTACTGGAGAACAATAAAAACCCAACGATAAAGAAGAACGCCGAGTTTGAAGA 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 2 2

S b j c t 5 0 1 AAAGCTACTACTGGAGAACAATAAAAACCCAACGATAAAGAAGAACGCCGAGTTTGAAGA 5 6 0

Q u e ry 6 2 3 TCAGGGGTATTACTCCTGCGTGCATTTCCTTCATCATAATGGAAAACTATTTAATATCAC 
11111 1 1 1 1 1 1 1 1 1 I 1 1 111111111111 1 1 1 1 1 1 1 1 1 I I 1111I I 111 1 1 1 1 1 1 1 1 II 1

682

S b j c t 5 6 1 TCAGGGGTATTACTCCTGCGTGCATTTCCTTCATCATAATGGAAAACTATTTAATATCAC 6 2 0

Q u e r y 6 8 3 CAAA-CCTTCA-TATA-CA-TAGTGGA-GATCGCAGTA-TATAGTTCTGGT-CT-CT-GG 
INI  l l l l l l  I NI  II l l l l l l l  l l l l l l l l l l  I I IIMII  III II II II

7 3 3

S b j c t 6 2 1 CAAAACCTTCAATATAACAATAGTGGAAGATCGCAGTAATATAGTTCCGGTTCTTCTTGG 6 8 0

Q u e r y 7 3 4 ACCAA-GCT-ATC-ATGT-GCAGTGGA-T-AGGAAAA— CGTA-GGCTCA-CTGCTCTGC 
11 1 1 1 III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l l l l l l l  1 1 1 1 l l l l l l  1 1 1 1 1 1 1 1 1

7 8 3

S b j c t 6 8 1 ACCAAAGCTTAACCATGTTGCAGTGGAATTAGGAAAAAACGTAAGGCTCAACTGCTCTGC 7 4 0

Q u e ry 7 8 4 TT-GCTGA-TGA-GAGGATG 8 0 0  
II 1 1 1 1 1 III l l l l l l l

S b j c t 7 4 1 TTTGCTGAATGAAGAGGATG 7 6 0

Figure 8.1: Sequencing data of shIL-18Ra TA cloned into pCR®II vector.

Using the T7 sequencing primer, homology was confirmed with the soluble part o f  

the human hIL-18Ra mRNA sequence obtained from GenBank (NM003855). Figure 

also confirms the correct Bgl II, but not EcoR I, restriction enzyme sites within the 

forward primer for shIL-18Ra-Fc. The gaps in the coding sequence are an artefact 

due to the fact that it is towards the end o f  the readable sequence.
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Q u e r y  6 AGCTATGCATCA-GCTTGGTACCGAGCTCGGATCCAAAAGTAACGGCCGCCAGTGTGCTG 64
I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

p C R ® II 2 6 5  AGCTATGCATC' "GGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTG 324
Hindi II

Q u e r y  6 5  GAATTCGGCTT 7 5
I I I I I I I I I I I 

pC R ® II 3 2 5  GAATTCGGCTT 3 3 5
£coRI

Q u e r y  7 6  

P r i m e r  P2

Q u e r y

S b j c t

Q u e r y

S b j c t

TGATAGATCT 
I I I I I I I I I I
TGATAGATCT

BglII

85

86

1011

1 4 6

951

TCTTGTGAAGACGTGGCCTGGGATATCAGCCATGTCTGCTTTTCTCACCAAGATGAAGCT 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I  I I I I I I I I I I I I I I I I I I I I I I I

TTTGGTGTCTGTGCCTCCCGTGCTGGCCACAGTGCAATTATATAAAACATTTAGATTGCT 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
TTTGGTGTCTGTGCCTCCCGTGCTGGCCACAGTGCAATTATATAAAACATTTAGATTGCT

1 4 5

952

2 0 5

8 9 2

Q u e r y 2 0 6 TTCACCAATATTTTCAATTCTCAATACTTTTGAAGCATGCCATTTGCCTTCTGGAGTCAT 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 6 5

S b j c t 891 TTCACCAATATTTTCAATTCTCAATACTTTTGAAGCATGCCATTTGCCTTCTGGAGTCAT 8 3 2

Q u e r y 2 6 6 AATTCTCATTTCTTTCTCTTCATGTATATTAGGATCCGATCCATTTTCTTCCCCGAACAT 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 2 5

S b j c t 831 AATTCTCATTTCTTTCTCTTCATGTATATTAGGATCCGATCCATTTTCTTCCCCGAACAT 7 7 2

Q u e ry 3 2 6 CCAATAAATTACATCCTCTTCATTCAGCAAAGCAGAGCAGTTGAGCCTTACGTTTTTTCC 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 8 5

S b j c t 7 7 1 CCAATAAATTACATCCTCTTCATTCAGCAAAGCAGAGCAGTTGAGCCTTACGTTTTTTCC 7 1 2

Q u e r y 3 8 6 TAATTCCACTGCAACATGGTTAAGCTTTGGTCCAAGAAGAACCGGAACTATATTACTGCG 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 4 5

S b j c t 7 1 1 TAATTCCACTGCAACATGGTTAAGCTTTGGTCCAAGAAGAACCGGAACTATATTACTGCG 6 5 2

Q u e r y 4 4 6 ATCTTCCACTATTGTTATATTGAAGGTTTTGGTGATATTAAATAGTTTTCCATTATGATG 
1 II 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I  1 1 1 II  1 1 1 1 1 1 1 II  1 1 1 1 1 1 1 1 1 1

5 0 5

S b j c t 651 ATCTTCCACTATTGTTATATTGAAGGTTTTGGTGATATTAAATAGTTTTCCATTATGATG 592

Q u e r y 5 0 6 AAGGAAATGCACGCAGGAGTAATACCCCTGATCTTCAAACTCGGCGTTCTTCTTTATCGT 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 6 5

S b j c t 591 AAGGAAATGCACGCAGGAGTAATACCCCTGATCTTCAAACTCGGCGTTCTTCTTTATCGT 5 3 2

Q u e r y 5 6 6 TGGGTTTTTATTGTTCTCCAGTAGTAGCTTTTTACAGTTCTTATACAATGATGTGCTGTT 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 2 5

S b j c t 531 TGGGTTTTTATTGTTCTCCAGTAGTAGCTTTTTACAGTTCTTATACAATGATGTGCTGTT 4 7 2

Q u e r y 6 2 6 GACCAGTGTTTGATAGTAACTGTTTTCACAGGTTATCTGAAAAAATTTTTTAACTTCCAC 
1 1 1 111 I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I  1 1

6 8 5

S b j c t 4 7 1 GACCAGTGTTTGATAGTAACTGTTTTCACAGGTTATCTGAAAAAATTTTTTAACTTCCAC 412

Q u e ry 6 8 6 AATTTTACTAGTTACTTGTCTTTCAGTGAAACAGCTGTGTTTATTTCTTCTGATGACATT 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 4 5

S b j c t 4 1 1 AATTTTACTAGTTACTTGTCTTTCAGTGAAACAGCTGTGTTTATTTCTTCTGATGACATT 3 5 2

Q u e ry 7 4 6 TAATTTCCATTTCTGAGTATAATTTTTCATTTGGAAAA-GTAAGATCCTGTGTCATTC 8 0 2  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S b j c t 3 5 1 TAATTTCCATTTCTGAGTATAATTTTTCATTTGGAAAAAGTAAGATCCTGTGTCATTC 2 9 4

Figure 8.2: Sequencing data o f shIL-18Ra TA cloned into pCR®II vector.

Using the SP6 sequencing primer, homology was confirmed with the soluble part o f  

the human hIL-18Ra mRNA sequence obtained from GenBank (NM003855). Figure 

also confirms the correct Bgl II restriction enzyme site within the reverse primer for 

shIL-18Ra-Fc. The gaps in the coding sequence are an artefact due to the fact that it 

is towards the end o f the readable sequence.
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Q u e r y  9 

p C R ® II 3 9 1

Q u e r y  65

TCTAGATGCATGCTCGAGATCGCGCCAGTGTGATGGATATCTGCAGAATTCGGCTT 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
TCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGGCTT

E co R  V  E co R  I

64

3 3 6

Q u e r y  

S b j c t  

Q u e r y  

S b j c t  

Q u e r y  

S b j c t  

Q u e r y  

S b  j  c t  

Q u e r y  

S b  j  c t  

Q u e r y  

S b j c t  

Q u e r y  

S b j c t  

Q u e r y  

S b j c t  

Q u e r y  

S b j c t  

Q u e r y  

S b j c t  

Q u e r y  

S b j c t

72

4 8 1

1 3 2

5 4 1

1 9 2

6 0 1

2 5 2

6 6 1

3 1 2

7 2 1

3 7 2

7 8 1

4 3 2

8 4 1

4 9 2

9 0 1

5 5 2

9 6 1

6 1 2

10 2 1

6 7 1

1 0 8 1

-ATTCCAT
l l l l l l

7 3

B g l II E co R  I Kozak

AACCATGCTCTGTTTGGGCTGGATATTTCTTTGGCTTGTTGCAGGAGAGCGAATTAAAGG 1 3 1  
III I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

AACAArgCTCrG rrrG G G CrG G ArATTTCTTTGGCTTGTTGCAGGAGAGCGAATTAAAGG 54  0

ATTTAATATTTCAGGTTGTTCCACAAAAAAACTCCTTTGGACATATTCTACAAGGAGTGA 1 9 1  
I I I I I I I I I I I I I I I I I I I I  I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

ATTTAATATTTCAGGTTGTTCCACAAAAAAACTCCTTTGGACATATTCTACAAGGAGTGA 6 0  0

AGAGGAATTTGTCTTATTTTGTGATTTACCAGAGCCACAGAAATCACATTTCTGCCACAG 2 5 1  
I I I I I I I I I I I I I I I I I I I I I I I I I II I II I I I I I I II I I I I I I I I I I I I I I I I I I I I I I 

AGAGGAATTTGTCTTATTTTGTGATTTACCAGAGCCACAGAAATCACATTTCTGCCACAG 6 60

AAATCGACTCTCACCAAAACAAGTCCCTGAGCACCTGCCCTTCATGGGTAGTAACGACCT 3 1 1  
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I  I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
AAATCGACTCTCACCAAAACAAGTCCCTGAGCACCTGCCCTTCATGGGTAGTAACGACCT 7 2  0

ATCTGATGTCCAATGGTACCAACAACCTTCGAATGGAGATCCATTAGAGGACATTAGGAA 3 7 1  
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I  I I I I I I I I I I I I I I I I I I I I I I 
ATCTGATGTCCAATGGTACCAACAACCTTCGAATGGAGATCCATTAGAGGACATTAGGAA 7 8  0

AAGCTATCCTCACATCATTCAGGACAAATGTACCCTTCACTTTTTGACCCCAGGGGTGAA 4 31  
I I I I I I I I I I I I I I I I I I I I I I I I I I  I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I  
AAGCTATCCTCACATCATTCAGGACAAATGTACCCTTCACTTTTTGACCCCAGGGGTGAA 8 4 0

TAATTCTGGGTCATATATTTGTAGACCCAAGATGATTAAGAGCCCCTATGATGTAGCCTG 4 91  
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I  I I I I I I I I I I I I I I I I 
TAATTCTGGGTCATATATTTGTAGACCCAAGATGATTAAGAGCCCCTATGATGTAGCCTG 9 0 0

TTGTGTCAAGATGATTTTAGAAGTTAAGCCCCAGACAAATGCATCCTGTGAGTATTCCGC 5 5 1  
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
TTGTGTCAAGATGATTTTAGAAGTTAAGCCCCAGACAAATGCATCCTGTGAGTATTCCGC 9 60

ATCACATAAGCAAGACCTACTTCTTGGGAGCACTGGCTCTATTTCTTGCCCCAGTCTCAG 6 1 1  
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
ATCACATAAGCAAGACCTACTTCTTGGGAGCACTGGCTCTATTTCTTGCCCCAGTCTCAG 1 0 2  0

CTGCCAAAGTGATGCACAAAGTCCAGCGGTAACCTGGTACA-GAATGGAAAACTCCTCTC 67  0 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
CTGCCAAAGTGATGCACAAAGTCCAGCGGTAACCTGGTACAAGAATGGAAAACTCCTCTC 1 0 8 0

TGTGGAAAGGAGCAACCGAATCGTAGTG-ATGA-GTTTATGACTATCACCAGGGCACATA 72  8 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
TGTGGAAAGGAGCAACCGAATCGTAGTGGATGAAGTTTATGACTATCACCAGGGCACATA 1 1 4  0

Figure 8.3: Sequencing data o f shIL-18Rp TA cloned into pCR®II vector.

Using the T7 sequencing primer, homology was confirmed with the soluble part o f  

the human hIL-18Rp mRNA sequence obtained from GenBank (NM003853). Figure 

also confirms the loss o f  both Bgl II and EcoR I restriction enzyme sites within the 

forward primer for shIL-18Rp-Fc. The gaps in the coding sequence are an artefact 

due to the fact that it is towards the end o f the readable sequence.
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Q uery  

p C R ® II  

Q uery

7

2 6 5

6 6

AGCTATGCATCA-GCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTG 
I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 I ! 1 1 II 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 

AGCTATGCATCAAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTG
H indi II

GAATTCGGCTT 7 6  
1 1 1 1 1 1 1 1 1 1 1 
GAATTCGGCTT 3 3 5
£coRI

6 5

3 2 4

p C R ® II 3 2 5

Q uery 7 7 GCACAGATCT 8 6  
1 1 1 1 1 1 1 1 1 1 
GCACAGATCT

BglU
P r im e r P2

Q uery

S b j c t

8 7

1 5 5 2

TCTCTTTTCTTTCAGTTGGACGGACTGGGTTGTGTTTCCAATGGAGTTCTGGACAAAGCA 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 
rCTCTTrrCTrTCAGTTGGACGGACTGGGTTGTGTTTCCAATGGAGTTCTGGACAAAGCA

1 4 6

1 4 9 3

Q uery 1 4 7 AACAAACTTCCTGCGAAGATCACGCTGAGTGACTTTTTCCAAGATGATATTACGCTCAAT 
1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

AACAAACTTCCTGCGAAGATCACGCTGAGTGACTTTTTCCAAGATGATATTACGCTCAAT

2 0 6

S b j c t 1 4 9 2 1 4 3 3

Q uery

S b j c t

2 0 7

1 4 3 2

GATTTCATCCTTTAAAGTGGATTTAATACTTTTCGCCTCAGGTACTGAGACTTCCCACTC 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 
GATTTCATCCTTTAAAGTGGATTTAATACTTTTCGCCTCAGGTACTGAGACTTCCCACTC

2 6 6

1 3 7 3

Q uery 2 6 7 TAGGTCAGAATCTTTGATGTACCATTTTATGACAGGGTTAAAGACCCTTTCAAAGCCAAA 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 
TAGGTCAGAATCTTTGATGTACCATTTTATGACAGGGTTAAAGACCCTTTCAAAGCCAAA

3 2 6

S b j c t 1 3 7 2 1 3 1 3

Q uery 3 2 7 TCGTGCTTTGCAGCTAATAGTTAAAGGCTTTCCAAGTTCTACTTCCAGTGTGTCCTCGAC 
1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 II 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 II 1 1 1 II 1 1 1 
TCGTGCTTTGCAGCTAATAGTTAAAGGCTTTCCAAGTTCTACTTCCAGTGTGTCCTCGAC

3 8 6

S b j c t 1 3 1 2 1 2 5 3

Q uery 3 8 7 AGGATCCAGAATATCTGGTTTGAGTTTAGTGTCTCCCACAATGGTTCTCACTTGAACAAC 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

AGGATCCAGAATATCTGGTTTGAGTTTAGTGTCTCCCACAATGGTTCTCACTTGAACAAC

4 4 6

S b j c t 1 2 5 2 1 1 9 3

Q uery 4 4 7 AGCTCTGACTGTCCACGAACTCACAGTATCCGACTGAGTGTAATCACATACATATGTGCC 
1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

AGCTCTGACTGTCCACGAACTCACAGTATCCGACTGAGTGTAATCACATACATATGTGCC

5 0 6

S b j c t 1 1 9 2 1 1 3 3

Q uery 5 0 7 CTGGTGATAGTCATAAACTTCATCCACTACGATTCGGTTGCTCCTTTCCACAGAGAGGAG 
II 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II II 1 II 1 1 1 1 II 1 II II 1 1 II 1 II II II 1 

CTGGTGATAGTCATAAACTTCATCCACTACGATTCGGTTGCTCCTTTCCACAGAGAGGAG

5 6 6

S b j c t 1 1 3 2 1 0 7 3

Q uery

S b j c t

5 6 7

1 0 7 2

TTT-CCATTCTTGTACCAGGT-ACCGCTGGACTTTGTGCATCACTTTGGCAGCTGAGACT 
III 1 1 1 1 1 II 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 

TTTTCCATTCTTGTACCAGGTTACCGCTGGACTTTGTGCATCACTTTGGCAGCTGAGACT

6 2 4

1 0 1 3

Figure 8.4: Sequencing data o f shIL-18Rp TA cloned into pCR®I3 vector.

Using the SP6 sequencing primer, homology was confirmed with the soluble part o f  

the human hIL-18Rp mRNA sequence obtained from GenBank (NM003853). Figure 

also confirms the correct Bgl II restriction enzyme site within the reverse primer for 

shIL-18Rp~Fc. The gaps in the coding sequence are an artefact due to the fact that it 

is towards the end o f the readable sequence.
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Q u e r y 2 2 9 AACCATGAATTGTAGAGAATTACCCTTGACCCTTTGGGTGCTTATATCTGTAAGCACTGC 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 8 8

S b j c t 21 AACCATGAATTGTAGAGAATTACCCTTGACCCTTTGGGTGCTTATATCTGTAAGCACTGC 80

Q u e r y 2 8 9 AGAATCTTGTACTTCACGTCCCCACATTACTGTGGTTGAAGGGGAACCTTTCTATCTGAA 
1 1 1 1 1 1 1 1 1 1 1 1 I 1 I 1 1 1 1 1 1 1 1 I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

AGAATCTTGTACTTCACGTCCCCACATTACTGTGGTTGAAGGGGAACCTTTCTATCTGAA

3 4 8

S b j c t 81 1 4 0

Q u e r y 3 4 9 ACATTGCTCGTGTTCACTTGCACATGAGATTGAAACAACCACCAAAAGCTGGTACAAAAG 
I I  1 1 1 1 1 1 I I  1 1 1 I I  I I  1 1 1 I I  I I  1 I I  1 1 1 I I  1 1 1 1 I I  11 1 1 I I  I I  1 1 1 1 I I  1 1 I I  I I  1 1

4 0 8

S b j c t 1 4 1 ACATTGCTCGTGTTCACTTGCACATGAGATTGAAACAACCACCAAAAGCTGGTACAAAAG 2 0 0

Q u e r y 4 0 9 CAGTGGATCACAGGAACATGTGGAGCTGAACCCAAGGAGTTCCTCGAGAATTGCTTTGCA 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 6 8

S b j c t 2 0 1 CAGTGGATCACAGGAACATGTGGAGCTGAACCCAAGGAGTTCCTCGAGAATTGCTTTGCA 2 6 0

Q u e r y 4 6 9 TGATTGTGTTTTGGAGTTTTGGCCAGTTGAGTTGAATGACACAGGATCTTACTTTTTCCA 
1 1 1 1 1 1 I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 2 8

S b j c t 2 6 1 TGATTGTGTTTTGGAGTTTTGGCCAGTTGAGTTGAATGACACAGGATCTTACTTTTTCCA 3 2 0

Q u e r y 5 2 9 AATGAAAAATTATACTCAGAAATGGAAATTAAATGTCATCAGAAGAAATAAACACAGCTG 
1 I I  I I  1 I I  1 I I  I I  1 I I  1 1 1 1 I I  1 I I  1 1 1 I I  1 1 I I  1 1 1 I I  I I  I I  I 1 1 | I I  I | I I I | | |  I I |

5 8 8

S b j c t 3 2 1 AATGAAAAATTATACTCAGAAATGGAAATTAAATGTCATCAGAAGAAATAAACACAGCTG 3 8 0

Q u e r y 5 8 9 TTTCACTGAAAGACAAGTAACTAGTAAAATTGTGGAAGTTAAAAAATTTTTTCAGATA-C 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
TTTCACTGAAAGACAAGTAACTAGTAAAATTGTGGAAGTTAAAAAATTTTTTCAGATAAC

6 4 7

S b j c t 3 8 1 4 4 0

Q u e r y 64 8 CTGTGAAAACAGTTACTATCAAACACTGGTCA-CAGCACATCATTGTATA-GAACTGTAA 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I  1 1 1 1 1 1 1 I I  I I  1 I I  1 1 1 1 I I  1 1 1 1 

CTGTGAAAACAGTTACTATCAAACACTGGTCAACAGCACATCATTGTATAAGAACTGTAA

7 0 5

S b j c t 4 4 1 5 0 0

Q u e r y 7 0 6 AA-GCTACTACTGGAGAACAATAAAAACCCA-CGATA--GA-GA-CGCCGAGTTTGA-GA 
I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I  I I  1 1 1 1 1 1 1 1 1 1 1 1 I I  

AAAGCTACTACTGGAGAACAATAAAAACCCAACGATAAAGAAGAACGCCGAGTTTGAAGA

7 5 8

S b j c t 5 0 1 5 6 0

Q u e r y 7 5 9 TCAGGG-TAT-ACTC-TGC-TGCATT-C-TTCATCATA-TG-AA— CTATT-A-TATCAC 
l l l l l l  I I I  I I  1 1 I I I  l l l l l l  1 1 1 1 1 1 1 1 1 1 I I  I I  I I  1 I I  1 I I  1 I I  1 

TCAGGGGTATTACTCCTGCGTGCATTTCCTTCATCATAATGGAAAACTATTTAATATCAC

8 0 6

S b j c t 5 6 1 6 2 0

Q u e r y 8 0 7 CAA 8 0 9  
1 1 1

S b j c t 62 1
I 1 1
CAA 6 2 3

Figure 8.5: Sequencing data from pcDNA4/TO-IgGlFc plasmid confirming shlL- 

18R a insertion.

Sequencing data from the multiple cloning site (MCS) o f the pcDNA4/TO-IgGlFc 

vector using the CMV forward sequencing primer confirming homology with the 

soluble part o f the human hIL-18Ra mRNA sequence obtained from GenBank 

(NM003855). The gaps in the coding sequence are an artefact due to the fact that it is 

towards the end o f the readable sequence.
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Q u e r y 2 2 8 AACCATGCTCTGTTTGGGCTGGATATTTCTTTGGCTTGTTGCAGGAGAGCGAATTAAAGG 
I I I  1 1 1 1 1 1 1 1 1 1 1 1 I I  1 1 1 1 1 1 1 1 1 1 1 I I  I I  1 1 I I  I I  I I  I I  1 1 1 1 I I  1 1 1 1 1 1 1 I I  1 1 

AACAATGCTCTGTTTGGGCTGGATATTTCTTTGGCTTGTTGCAGGAGAGCGAATTAAAGG

2 8 7

S b j c t 4 8 1 5 4 0

Q u e r y 2 8 8 ATTTAATATTTCAGGTTGTTCCACAAAAAAACTCCTTTGGACATATTCTACAAGGAGTGA 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I  1 1 1

3 4 7

S b j c t 5 4 1 ATTTAATATTTCAGGTTGTTCCACAAAAAAACTCCTTTGGACATATTCTACAAGGAGTGA 6 0 0

Q u e r y 3 4 8 AGAGGAATTTGTCTTATTTTGTGATTTACCAGAGCCACAGAAATCACATTTCTGCCACAG 
1 1 I I  I I  I I  I I  1 1 1 1 I I  I I  I I  I I  1 I I  I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I  1 I I  1 1 1 1 1 1 1 I I  1 I I  1 1

4 0 7

S b j c t 6 0 1 AGAGGAATTTGTCTTATTTTGTGATTTACCAGAGCCACAGAAATCACATTTCTGCCACAG 6 6 0

Q u e r y 4 0 8 AAATCGACTCTCACCAAAACAAGTCCCTGAGCACCTGCCCTTCATGGGTAGTAACGACCT 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I

4 6 7

S b j c t 6 6 1 AAATCGACTCTCACCAAAACAAGTCCCTGAGCACCTGCCCTTCATGGGTAGTAACGACCT 7 2 0

Q u e r y 4 6 8 ATCTGATGTCCAATGGTACCAACAACCTTCGAATGGAGATCCATTAGAGGACATTAGGAA 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 2 7

S b j c t 7 2 1 ATCTGATGTCCAATGGTACCAACAACCTTCGAATGGAGATCCATTAGAGGACATTAGGAA 7 8 0

Q u e r y 5 2 8 AAGCTATCCTCACATCATTCACGACAAATGTACCCTTCACTTTTTGACCCCAGGG-TGAA 
1 1 1 1 1 1 1 1 1 1 1 I I  1 1 1 1 1 1 I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 8 6

S b j c t 7 8 1 AAGCTATCCTCACATCATTCAGGACAAATGTACCCTTCACTTTTTGACCCCAGGGGTGAA 8 4 0

Q u e r y 5 8 7 TAATTCTGGGTCATATATTTGTAGACCCAAGATGAT-A-GAGCCC-TATGATGTAGCCTG 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l l l l l l  1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 4 3

S b j c t 8 4 1 TAATTCTGGGTCATATATTTGTAGACCCAAGATGATTAAGAGCCCCTATGATGTAGCCTG 9 0 0

Q u e r y 6 4 4 T-GTGTCA-GATGATTT-AGAAGT-AAGCCC-AGACAA-TGCATCCTGTGAGTATTCCGC 
1 l l l l l l  1 1 1 1 1 1 1 1 l l l l l l  l l l l l l  l l l l l l  1 1 1 1 1 I I  1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 9 7

S b j c t 9 0 1 TTGTGTCAAGATGATTTTAGAAGTTAAGCCCCAGACAAATGCATCCTGTGAGTATTCCGC 9 6 0

Q u e r y 6 9 8 ATCACATAAGCAAGACCTACTTCTTGGGAGCACTGG 7 3 3  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

ATCACATAAGCAAGACCTACTTCTTGGGAGCACTGG 9 9 6S b j c t 9 6 1

Figure 8.6: Sequencing data from pcDNA4/TO-IgGlFc plasmid confirming shlL- 

18Rp insertion.

Sequencing data from the multiple cloning site (MCS) o f the pcDNA4/TO-IgGlFc 

vector using the CMV forward sequencing primer identity with the soluble part o f  

the human hIL-18Rp mRNA sequence obtained from GenBank (NM003853). The 

gaps in the coding sequence are an artefact due to the fact that it is towards the end o f  

the readable sequence.
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Q u e r y  2 5 0  ACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCC 3 0 9  

I I I I I I I I I I I I I I I I I I  I I I I I I I I I  I I I I I I I I I I I I I I i I I I I I I I I I I I I I I I I I I 
S b j c t  8 6  ACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCC 1 4 5

Q u e r y  3 1 0  CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTG 3 6 9  

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
S b j c t  1 4 6  CCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTG 2 0 5

Q u e r y  3 7 0  GACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTG 4 2 9  

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I 
S b j c t  2 0 6  GACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTG 2 65

Q u e r y  4 3 0  CATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGC 4 89  

I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I I I I I I I I 
S b j c t  2 6 6  CATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGGGTGGTCAGC 3 2 5

Q u e r y  4 90 GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCC 54  9 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
S b j c t  3 2 6  GTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCC 3 8 5

Q u e r y  5 5 0  AACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGA 6 0 9  

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
S b j c t  3 8 6  AACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGA 4 45

Q u e r y  6 1 0  GAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGC 6 6 9  

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I I I I I I 
S b j c t  4 4 6  GAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGC 5 0 5

Q u e r y  6 7 0  CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGGAGAGCAA 7 2 9  

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
S b j c t  5 0 6  CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGT-GGGAGAGCAA 5 6 4

Q u e r y  7 3 0  TGGGC 7 3 4  

I I I I I
S b j c t  5 6 5  TGGGC 5 6 9

Figure 8.7: Sequencing data from the multiple cloning site (MCS) o f the 

pcDNA4/TO-IgGlFc vector.

The CMV forward primer was used for sequencing o f the pcDNA4/TO-IgGlFc 

vector to confirm the homology o f the sequence with the human IgGl-Fc constant 

region sequence obtained from GenBank (E01700; subject). The gaps in the coding 

sequence are an artefact due to the fact that it is towards the end o f the readable 

sequence.
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121 AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATTGACG

7 7 1

CMV Forward priming site TATA box 
I------------- 1

CAAATGGGCG GTAGGCGTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT

8 2 1

Tetracycline operator (TetCh) Tetracycline operator (TetCh)

CCCTATCAGT GATAGAGATC TCCCTATCAG TGATAGAGAT CGTCGACGAG

8 7 1 CTCGTTTAGT GAACCGTCAG ATCGCCTGGA GACGCCATCC ACGCTGTTTT

9 2 1

9 7 1

GACCTCCATA GAAGACACCG GGACCGATCC AGCCTCCGGA CTCTAGCGTT
P m  I Afl II Hind III Asp7181 Kpn I 

I I I  I T
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c-myc epitope
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I

ACC GGT CAT CAT CAC CAT CAC CAT TGA GT TTAAACCCGC 
G lu  H i s  H i s  H i s  H i s  H i s  H i s  H i s  * * *
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1 1 5 1  TGATCAGCCT CGACTGTGCC TTCTAGTTGC

Figure 8.8: Sequencing data confirming in frame insertion o f shIL-18Ra-Fc into 

pcDNA4/TO-IgG 1 Fc.

Sequence data from the multiple cloning site (MCS) o f the pcDNA4/TO-IgGlFc 

vector confirming in frame expression o f the shIL-18Ra-Fc insert (red) with the Fc 

part o f the IgGl (green) already in the vector.
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GGTGTACACC
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ATCATTCAGG
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TCCTCTCTGT
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c-myc epitope
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TC GAA CAA AAA CTC ATC TCA GAA GAG GAT CTG AAT ATG CAT 
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BGH Reverse priming site 

1 1 5 1  TGATCAGCCT CGACTGTGCC TTCTAGTTGC

Figure 8.9: Sequencing data confirming in frame insertion o f shIL-18Rp-Fc into 

pcDNA4/TO-IgG 1 Fc.

Sequence data from the multiple cloning site (MCS) of the pcDNA4/TO -IgG lFc 

vector confirming in frame expression of the shIL-18Rp-Fc insert (blue) with the 

Fc part of the IgG l (green) already in the vector. Base-mutations are shown in

p in k .
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(GITC)-containing buffer which immediately inactivates RNases to ensure isolation 

of intact RNA), with 14.3M P-Mercaptoethanol (P-ME) added to it ensure efficient 

lysis. Cell lysates were homogenised through a QIAshredder spin column by 

cenrifugation for 2 min at maximum speed. Homogenisation shears the high 

molecular weight genomic DNA and other cellular components to reduce the 

viscosity of the cell lysates produced by disruption. One volume of ethanol was then 

added to the homogenised lysates to create conditions that provide selective binding 

of RNA to RNeasy mini columns. The samples were then applied to the RNeasy mini 

columns for total RNA to bind to the RNeasy silica-gel-based membranes by 

centrifugation.

After washing with 320pl of RW1 buffer, to eliminate DNA contamination, on- 

column DNase digestion with an RNase-ffee Deoxyribonuclease (DNase) I 

Amplification Grade (Invitrogen, UK) was performed. DNasel is purified from 

bovine pancreas and digests single- and double-stranded DNA to oligodeoxy- 

ribonucleotides containing a 5’-phosphate. lOpl of DNase I stock solution was mixed 

with 70pl of buffer RDD and applied directly onto the RNeasy silica-gel membrane 

for 15min at room temperature. After a series of washes with buffers RW1 and RPE, 

the contaminants were efficiently washed away and the purified RNA was eluted in 

40pi of RNase-ffee water by spinning at 8000 x g for 1 min. With this procedure, up 

to lOOpg of all RNA molecules longer than 200 nucleotides were isolated. The purity 

of RNA was estimated and the concentration of RNA was measured using a 

scpectrophotometer and the A260/A280 ratio as described in section 2.4.2.

2.4.2 RNA and DNA Concentration Measurement

To measure the RNA and DNA concentration and estimate the purity of the samples 

the A260/A280 nm wavelength ratio was measured using a DU 800 Spectrophotometer 

2.0. The samples were diluted at 1:50 and 1:100 in water for RNA and DNA 

respectively. Nucleic acids absorb at A260 nm, whereas both nucleic acids and 

aromatic amino acids (tyrosine, tryptophan and phenylalanine) absorb at A280 nm, 

which indicated the presence of protein contamination. Thus the A260/A280 ratio was
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used to estimate the purity of the RNA and DNA samples; a ratio A260/A280 of 1.7 to 

1.9 was desired when purifying nucleic acids. A ratio less than 1.7 indicated 

contamination by protein or organic chemicals. The concentrations of RNA and 

DNA were then calculated based on the following formulas:

- RNA concentration in pg/ml = OD260 x 40pg/ml x Dil. Factor

- DNA concentration in pg/ml = OD260 x 50pg/ml x Dil. Factor

2.43 Reverse Transcribed Polymerase Chain Reaction (RT-PCR)

Reverse transcribed polymerase chain reaction (RT-PCR) was performed using a 

commercially available Superscript™ II Reverse Transcriptase (RT) kit (Invitrogen, 

UK). Superscript™ II RT is purified from E. coli engineered to contain the modified 

pol gene of Moloney Murine Leukemia Virus (M-MLV) RT with reduced RNase H 

activity, higher yields of cDNA and increased thermal stability and specificity 

(Kotewicz et al., 1985, Gerard et al., 1986). Reverse transcription of RNA into 

cDNA was performed in two steps using lng - 5 fig of total RNA, isolated as 

described in section 2.4.1. In the first denaturation step, lpl of lOOng/pl random 

primers (Invitrogen, UK) were mixed with 11 pi (5 fig) of total RNA equalised in 

water, denatured at 70°C for lOmin and then quickly chilled on ice. For the second 

amplification step, the denatured 12pl solution was mixed with the following 

reagents supplied with the kit: 4pl of First-Strand buffer (250mM Tris-HCl, pH 8.3;
TU __

375mM KC1; 15mM MgCl2), 2pl of 0.1 M DTT, lpl of Superscript II RT (200 

U/pl) and lfil of dNTP mix (lOmM of each dATP, dCTP, dGTP, dTTP) (Promega, 

UK). This mix was incubated at 25°C for 10 min, 42°C for 50 min, 70°C for 15 min 

(to inactivate the reaction) and finally 4°C for ever. This protocol allowed annealing 

of the random primers and conversion of the total RNA (via reverse transcriptase) 

into cDNA.

Following reverse transcription, 2pi of 50mM MgCh, 2pl of dNTP (lOmM each) 

and lOpl of lOx concentrated PCR buffer (200mM Tris-HCl, pH 8.3; 500mM KC1)
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a

3 -

* * *
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SB concentration [pM]
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* * *

1 ***

* * *

0

SB concentration [|J.M]

Figure 3.9: Blocking p38MAPK phosphorylation using a specific inhibitor 

(SB203580) completely abolished IFNy production.

KG-1 cells were incubated with increasing concentrations o f the inhibitor for 30 

minutes. After that the cells were treated with 20ng/ml TNFa (a) or without TNFa 

(b) for 24h. The next day, the cells were further stimulated with lOOng/ml IL-18 for 

72h. IFNy secreted in culture media was quantified by ELISA. DMSO was used as a 

control in a dilution equivalent to the higher amount o f DMSO that the inhibitors 

were diluted in. Data shown are expressed as mean ±SD of triplicates o f a 

representative experiment. *** P < 0.001 by Tukey-Kramer post-test compared to 

cells without inhibitor treatment.
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PD concentration [pM]

PD concentration [pM]

Figure 3.10: Blocking ERK1/2 phosphorylation using a specific inhibitor (PD98059) 

did not have any significant effect on IFNy production.

KG-1 cells were incubated with increasing concentrations o f the inhibitor for 30 

minutes. After that the cells were treated with 20ng/ml TNFa (a) or without TNFa 

(b) for 24h. The next day, the cells were further stimulated with lOOng/ml IL-18 for 

72h. IFNy secreted in culture media was quantified by ELISA. Data shown are 

expressed as mean ±SD o f triplicates o f  a representative experiment. Non

significance obtained by Tukey-Kramer post-test compared to cells without inhibitor 

treatment.
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Hind HI Xho I Hind III & BamH I

6000̂  5000^= 
4000 — 
3000 —
2000 —I
1600 — I

Hind III & EcoR I

£coR I 5 am H I Bgl II

1888'“-:

wH I & ZscoRI

Figure 5.6: Identification o f the pcDNA4/TO-shIL-18Ra-IgGlFc and pcDNA4/TO- 

shIL-18Rp*IgGlFc DNA plasmids containing the right insert.

Restriction digest o f pcDNA4/TO-shIL-18Ra-IgGlFc plasmid DNA using the 

restriction enzymes Hind III, Xho I, Hind III & BamH I and Hind III and EcoR I (a), 

and pcDNA4/TO-shIL-18RP-IgGlFc using EcoR I, BamH I, Bgl II and BamH I and 

iscoRI (b). Refer to Table 5.2 for the expected sizes o f the fragments. Arrow 

indicates the clones that contained the correct insert and were used for sequencing.
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53,2,3 Confirmation of Sequence Identity

To confirm the correct identity of shIL-18Ra and shIL-18Rp fragments inserted into 

pcDNA4/TO-IgGiFc and their homology to the known corresponding human 

sequences, sequencing analysis was performed. Forward CMV primers sitting 

upstream of the MCS in the backbone of the vector and reverse BGH primers 

complementary to a site downstream of the Fc fragment were used. Analysis of the 

sequencing results confirmed the identity of shIL-18Ra (Fig. 8.5, Appendix), shlL- 

18Rp (Fig. 8.6, Appendix) and hlgGi-Fc (Fig. 8.7, Appendix). The dashes in the 

sequencing results indicate missing bases due to the lower quality sequence at the 

beginning and the end of the sequencing run. The resulting final construct sequences 

are shown in Fig. 8.8 and 8.9 in the Appendix. The mutations discussed in section

5.2.1.3 were also confirmed by these sequencing results, as shown in Fig. 8.8 and 8.9 

(Appendix).

5.3.3 Confirmation of In-frame Expression of shIL-18R with hlgGl-Fc by
Transient Transfection of COS-7 cells

COS-7 cells were transiently transfected with either shIL-18Ra-Fc alone, shIL-18Rp- 

Fc alone, shIL-18Ra-Fc together with shIL-18Rp-Fc or a control vector 

(pSecTaq2B-IgGlFc, provided by Wei XQ). Cos-7 cells with Genejuice® alone were 

also used as a negative control group. Cell culture media were collected after 

transfection and recombinant proteins isolated using a Protein G pull down assay.

Protein G is a cell wall component of Group G Streptococci and has the ability to 

bind most mammalian immunoglobulins (Ig). The amount of Ig captured is 

dependent on the concentration of Ig in the starting sample and the type and source 

of the Ig. Protein G binds to human IgGj with high affinity and is suitable to use for 

a small scale IgG purification for antibody labelling and IgG-tagged protein isolation. 

After purification using Protein G, an ELISA detecting human IgG-Fc or IL-18R was 

used to evaluate the level of expression and to confirm the in-frame expression of the 

plasmids with the Fc fragment (Fig. 5.7a). Significant levels of shIL-18Ra-Fc and
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