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A b s tra c t

Hepatitis C virus (HCV) chronic infection represents one of the major and 

still unresolved health problems. HCV infecting 3% of the world population, 

leading to chronic hepatitis, liver cirrhosis and hepatocellular carcinoma in 

addition to the extrahepatic manifestations.

No efficient therapy exists; the standard dual treatment with peg IFN-a 

and ribavirin is effective only in 55% of the selected cases with substantial 

side effects in addition to the high cost. To date, there is no vaccine 

against HCV due to the high variability of the RNA genome. NS3 helicase is 

one of the non-structural proteins whose activity is indispensable for viral 

RNA replication and its inhibition is estimated to arrest viral proliferation 

and indirectly stimulate a cellular antiviral response against ds RNA. In our 

project we proposed to use structure based knowledge of the x-ray crystal 

structure of helicase enzyme to design and synthesise different scaffolds of 

novel potential HCV NS3 helicase inhibitors. Using different computer 

software packages, we manage to design a number of small focused 

libraries of compounds, which were used for docking simulations. The 

results obtained in silico guided the selection of two series of promising 

compounds for synthesis. In the first series; several quinazoline derivatives 

were prepared and evaluated for antiviral activity in subgenomic replicon 

assay showing EC50 in the low pM range with relatively high selectivity 

index. In the second series of pyrrole or phenyl based compounds, 

irreversible inhibition of helicase is assumed through addition to the 

electrophilic warheads of the a p unsaturated ketones, thiols or 1,2,4 

thiadiazoles based inhibitors. Among the synthesised compounds a number 

showed a sub pM activity in the helicase enzyme assay.

These promising findings are considered to be a starting point for further 

optimisation of structure, activity and toxicity relationships.
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C h a p te r  1

In tro d u c t io n

1.1 HCV: T h e  B e s t o f  a B a d  V irus

In the mid-1970s, it was noticed that the world's supply of blood was 

contaminated with an unidentified agent causing post-transfusion non-A, 

non-B hepatitis. Yet it was not until 1989 that the first sequences of 

hepatitis C virus (HCV) were identified u .

Hepatitis C virus (HCV) infection is a global health problem, being the 

second most common chronic viral infection in the world is the cause of 

emerging worldwide epidemic of chronic liver disease with serious medical, 

social and economic burden. Hundreds of thousands of people die each 

year from liver failure and cancer caused by this infection 3. Currently, it is 

estimated that HCV has a global prevalence of about 3%  (about 200 

million people), nearly five times more than human immunodeficiency virus 

(H IV) infected individuals, and 3-4 million new infections are added each 

y e a r4 (Figure 1.1).

Figure 1.1 Global prevalence of hepatitis C Virus3
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1.2 Clinical spectrum o f  the “S ilent K iller*

HCV is a blood borne virus, transmitted by infected body fluids, in most 

of the infected individuals (85%). This remarkable RNA virus evades the 

immune system. HCV establish a chronic infection that can lead to both a 

hepatotropic and a lymphotropic manifestations causing on one hand, 

chronic hepatitis, cirrhosis and hepatocellular carcinoma and on the other 

hand several extrahepatic diseases like endocrine dysfunction 5.

The most frequently occurring of these endocrine disorders are thyroid 

autoimmunity, hypothyroidism and thyroid cancer. Also, HCV infection 

could lead to the development of type 2-diabetes mellitus, possibly as a 

result of HCV-induced metabolic disturbances. In fact, the association 

between hepatic (hepatocellular carcinoma) and extrahepatic (lymphoma, 

thyroid cancer) malignancies has justified the inclusion of HCV among 

human cancer viruses. The pathogenesis of HCV-related sequelae (hepatic 

or extrahepatic) is not fully understood and hence representing a challenge 

of prime importance 5,e.

HCV is sometimes called a "silent killer" because many patients do not 

realize the infection until chronic liver damage is manifested 1-3 decades 

after the initial contraction of the virus 5. However, high viral loads are 

observed during the first few weeks of HCV infection and inflammatory 

processes leading to liver injury are usually occurring after 2-3 months7. 

Liver transplant recipients generally have favourable short-term outcomes 

despite efficient allograft reinfection and high levels of viraemia owing to 

immunosuppression. These observations have led to the idea that HCV is 

relatively noncytopathic and that liver disease is mainly immune-mediated. 

Nevertheless, studies on infected livers indicated that this organ is a 

veritable battleground of ongoing viral replication and host antiviral 

defences 8~n .
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Although the liver (the body metabolic engine) is the major site of HCV 

replication, evidence exists for systemic reservoirs including lymphoid 

cells12'14, epithelial cells in the g u t15 and the central nervous system 16.

This extrahepatic infection contributes to the immune-mediated 

pathogenesis of chronic liver disease and the development of autoimmune 

diseases, including mixed cryoglobulinaemia, which is the presence of 

abnormal proteins called cryoglobulins in blood that can cause a syndrome 

marked by varying combinations of fatigue, muscle and joint aches, 

besides arthritis, skin rash, neuropathy and glomerulonephritis, which is 

kidney disease affecting the capillaries of the glomeruli characterised by 

oedema, raised blood pressure and excess protein in the urine 12'14.

1.5 Lim itations fo r  HCV research

Until recently the development HCV therapy has been severely hampered 

by several factors. One of these is the lack of small animal model for the 

assessment of the preclinical efficacy of novel drugs. While the only non

human animal that can be reliably infected with HCV is chimpanzee (Pan 

troglodytes), whose genome has a 98.77% sequence homology with the 

human genome, the use of this endangered species, as a laboratory 

animal is for ethical and economical reasons not evident17.

Recently, an important achievement has been made by the propagation of 

HCV in mouse models using either immunocompromised mice engrafted 

with human hepatocytes isolated from fresh livers 17 or otherwise using 

human liver fragments infected with HCV ex vivo before being transplanted 

into immunocompromised mice 18.

Nevertheless, the greatest limitation for HCV research has been the 

unsuccessful cell culture system that supports the efficient and reliable 

propagation of the virus 19. However, the advent of the subgenomic 

replicon system, first reported by Lohman et al in 1999, established 

persistent HCV replication in a human hepatoma cell line (Huh-7).
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The inefficiency of the RNA replication initiation in this system limited its 

utility, but this breakthrough provided a basis for further optimisation 20,21. 

This will be discussed in more details in chapter 5.

Moreover, the extremely exceptional genetic diversity of HCV as it is 

currently classified into six major genotypes, which diverge by about 30%  

at the nucleotide sequence level with more than 30 subtypes throughout 

the world. These six distinct genotypes show marked differences in 

geographic distribution, disease progression and response to therapy22.

In chronically infected patients viral loads typically range from 103-1 0 7 

genomes/mL of serum. Mathematical modelling of viral dynamics indicates 

that HCV virions turn over rapidly (with a half-life about 3 hours), and up 

to about 1012 viruses are produced per day. This is about 100-fold greater 

than the rate reported for HIV 23,24. This unusual high replication rate 

together with lack of proof reading function of RNA dependent RNA 

polymerase (RDRP) result in explosive expansion of the virus and evolution 

of numerous viral Quasispecies. Quasispecies is a family of closely related, 

but slightly different, viral genomes that differ mainly in the hypervariable 

regions (HVR1 and -2) of the E2 gene. Thus, the virus produces a constant 

stream of escape variants with no corresponding receptors in the 

immunological repertoire 25'28. Despite all these obstacles, there is a 

considerable progress in HCV study in the last years (Figure 1.2).

M  Delineation o f HCV i l i n t  
Description of j i geoome organiration infectious
non-A. non-B andpolyprotein clone o f HCV
hepatitis processing constructed

Production of 
recombinant infectious 
HCV in tissue culture

w M E S m m

Identification 
of HCV

 ----   *" ......   | '--------------- I j-------- -*-----------------
First three- dimensional I Inrerferon-n j Proof-of-concept
structure of an HCV i and ribavirin : clinical studies of an
protein (KSf serine combination; HCV protease inhibitor
protease) I therapy | ~ T  "

;--------------------- : Functional HCV
pseodopartictes described js

Figure 1.2 Milestones in hepatitis C virus (HCV) research 29
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\ A  C u r re n t tre a tm e n t; In te r fe ro n  (IF N l-a ) /  R iba v irin

In the absence of an effective antiviral or vaccination strategy against 

HCV, the single FDA approved therapy is Interferon-a (IFN-a).

1.4.1 D is c o v e ry

Interferon was discovered in 1957 during the analysis of the effects of viral 

infection on cells in a tissue culture. It  was noticed that cells already 

infected with a virus appeared to be resistant to infection by other viruses 

for a certain period of time. The first infection was said to "interfere" with 

the second and the protein isolated from these cell cultures was therefore 

given the name interferon (IFN). It  is now known that these substances 

belong to a class of proteins produced by leucocytes as soon as the body is 

exposed to attack by viruses, other microorganisms, or tumour cells. Being 

a crucial mediator of the antiviral immune response IFN-a was a natural 

choice for the treatment of HCV30.

1.4.2 S tru c tu re  and C la s s if ic a tio n

IFNs composed of 165 /  166 amino acid residues can be classified on the 

basis of their structure into three types. Among type I (IFN), IFNs-* 

occupy a central position which include at least 15 subtypes that share 

between 70 and 80 %  amino acid 

sequence identity. IFNs-« exhibit a 

conserved secondary structure of five 

alpha helices designated A to E, which 

pack together as a helical bundle and 

maintained in their folded shape by 2 

conserved disulfide bonds: Cysl-Cys99 

and Cys29-Cys39 30 (Figure 1.3).

Figure 1.3 Diagram showing the secondary 
structure of Interferon alpha
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1.4.5 M echanism

Basically, IFN-oc is a cytokine that facilitates recognition of viral antigens by 

the immune system, activates natural killer cells and macrophages, and 

directly inhibits viral replication 30'33.

1 .4 .4  D ra w b a cks

Unfortunately, therapy with IFN-oc alone had only 15% sustained 

virological response (SVR), which is the continued lack of detectable serum 

HCV RNA six months after the completion of treatment 34. Furthermore, 

IFN-oc monotherapy is limited by adverse side effects, these range from 

nausea through to flu-like symptoms; fever, headache, chills, and muscle 

pain, blood changes; leukopaenia (reduced leucocyte count in blood), 

thrombocytopaenia (reduced platelets number in blood). Nevertheless, 

autoimmune diseases, depression and hair loss are common 35.

1.4.5 R ib a v ir in  (R 5V )

A major advance came with the addition of the broad-spectrum antiviral 

agent ribavirin, which is a synthetic guanosine nucleoside analogue, to 

IFN-oc treatment (Figure 1.4). This combination therapy resulted in SVR of 

40%  but with other side effects including haemolytic anaemia due to 

accumulation of RBV in erythrocytes 36~38.

HN

HO HO'

OH OH
Viramidine

HO HO
Ribavirin

Figure 1.4 Chemical structures of ribavirin and viramidine
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In search for ribavirin analogues with better safety profile, Viramidine was 

identified (Figure 1.4). Viramidine is a prodrug, which is converted to 

ribavirin by adenosine deaminase, an enzyme abundant in the liver39.

The exact mode of action of ribavirin remains unknown, but multiple 

mechanisms have been proposed:

• Direct inhibition of HCV replication; As a guanosine analogue, RBV is 

phosphorylated and misincorporated into HCV RNA by RNA polymerase 

causing chain termination, and inhibition of replication.

• Inosine-monophosphate-dehydrogenase inhibition; Intracellularly, RBV 

monophosphate (RMP) is a competitive inhibitor of inosine 

monophosphate dehydrogenase (IMPDH), which in turn leads to 

depletion of intracellular levels of GTP required for HCV RNA synthesis.

• Mutagenesis and error catastrophe; A recent study suggested that while 

the diversity of HCV Quasispecies (virions with minor genomic 

differences) is caused by the high frequency of mutations that occur 

during viral replication owing to the lack of proofreading activity of the 

HCV RNA dependent RNA polymerase (RDRP), RBV acts as a viral 

mutagen, causing a higher frequency of mutations, pushing viruses 

toward the threshold of 'error catastrophe' and dramatically reducing viral 

infectivity 40,41.

\.+.6 Pegylation

Further improvement has been achieved by the development of pegylated 

interferon, in which a large molecule of poly ethylene glycol (PEG) is 

covalently attached to recombinant IFN-oc, resulting in an active molecule 

with a longer half-life, hence less frequent administration, improved 

toxicity profile and better rate of virological response 42-45.

Generally, rearrangement of molecular structure with the aid of PEGs 

allows the molecular properties of a drug to be altered. Protein pegylation 

is achieved via stable covalent bonds between an amino or sulfhydryl
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group on the protein and a chemically reactive group (carbonate, ester or 

aldehyde) on the PEG. The resulting structures can be linear or branched 

(Figure 1.5).

CHsOCCHtCHjO *  — o  
mPEG

Lysine

NHS

Figure 1.5 A branched PEG molecule created by coupling a monofunctional PEG (mPEG) to lysine, 
conjugation of which to IFN-a results in better pharmacokinetic profile. NHS, /V-hydroxysuccinimide

This technique improves stability, biological half-life, water solubility, and 

immunologic characteristics. Pegylation increases the size of a small 

molecule to such an extent that it is less readily excreted through the 

kidneys and therefore persists in the body for longer.

In addition, as they are more or less surrounded by the attached PEGs 

(Figure 1.6, Roche), pegylated proteins are less rapidly broken down by 

the body's enzymes than are unmodified proteins these changes ultimately 

lead to increased half-life and hence reduce the frequency of injections a 

patient requires. They also reduce the rapidity and intensity of the body's 

immune reaction against the interferon molecules.

Standard interferon Pegylated interferon

Figure 1.6 3D structure of standard IFN molecule and pegylated one
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The combination of pegIFN-oc with ribavirin yields sustained response rates 

of 55%. These results are heartening, but they also mean that about 40%  

of patients do not have lasting improvement with treatm ent46'48. 

Furthermore, combination therapy is expensive, associated with 

troublesome side effects, and contraindicated in many patients i.e. this 

response rate of 55% apply to selected populations without the co

morbidities that often accompany FICV. The ideal patient in terms of 

likelihood of recovery is young and thin, was infected only recently, has a 

low concentration of virus, shows little cell damage in the liver biopsy, and 

is infected with virus of a favorable genotype. Unfortunately, these criteria 

are met by only 10 - 20 %  of patients.49'51.

\.J M a v iv ir id a e  fa m ily  and  HCV life  cyc le

HCV is an enveloped positive-stranded RNA virus (Figure 1.7) possessing a 

genome of approximately 9000-9300 nucleotides and is classified as 

Hepacivirus genus of Flaviviridae family 52.

Envelope gtycoproter* 2
Envelope glycoprotein 1

RNA genome

Figure 1.7 Model structure of HCV; left-hand side; viral surface of envelope lipids and 
glycoproteins; right-hand side; RNA genome encased by capsid proteins 53

The virus family was named after the jaundice occurring in the course of 

Yellow fever virus (YFV) infection, the first identified virus of the fam ily54. 

Flaviviridae family of viruses is associated with both human and animal
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diseases and comprises three distinct genera: pestiviruses, which cause 

diseases in cattle and pigs; flaviviruses, which are the most important 

cause of diseases such as dengue fever and yellow fever; and 

hepaciviruses, whose sole member is HCV55.
*. I n f r a c t io n  w ith  m m * c *H

Figure 1.8 The proposed HCV life cycle; + is (+RNA); + /- is minus-strand replicative intermediate 
associated with positive-strand genomic RNA 56

On the basis of analogies to the closely related members of the Flaviviridae 

family and the recent advances in understanding the replication key steps, 

a model for HCV life cycle has been proposed, although many steps remain 

enigmatic.

Extracellular HCV virions interact with receptor molecules at the cell 

surface (a) and undergo receptor-mediated endocytosis (b). Following HCV 

glycoprotein-mediated membrane fusion, the viral single-stranded (ss), 

positive-sense RNA (+RNA) genome is released into the cytoplasm (c). The 

genomic RNA acts as mRNA for the translation of the viral single large 

polyprotein that is processed into the 10 mature HCV proteins in 

association with a virus-derived membrane structure termed the



C hapter 1 Introduction 12

membranous web, the translation of the polyprotein is directed by an 

internal ribosomal entry site (IRES) (d). Translation is interrupted by an 

unknown signal that activates a reaction leading to the formation of a 

replication complex on membranes of the endoplasmic reticulum. As a 

consequence, the mRNA is transformed back to a genome that now acts as 

a template for the synthesis of minus strand replicative intermediate (- 

RNA) to produce progeny (+RNA). A portion of this newly synthesized RNA 

is packaged into nucleocapsids and associated with the HCV glycoproteins, 

leading to budding into the ER (f). Alternatively, the rest of (+RNA) 

undergo a new round of RNA amplification. Virions follow the cellular 

secretory pathway and during this transit, maturation of particles occurs 

(g). Mature virions are released from the cell (h) (Figure 1 .8 ).56 58

\.6 HCV genome organisation

HCV genome (9.6 kbase) consists of a single stranded (+RNA) encoding a 

single large open reading frame (ORF), flanked by structured 5' and 3' 

NCRs (noncoding regions)59.

The translation of ORF, via the activity of an internal ribosomal entry site 

(IRES) in the NCR 5', generates a large multidomain polyprotein of roughly 

3,000 amino acids that is organized with structural proteins in the amino- 

terminal of the polyprotein, followed by the non structural (NS) replication 

proteins. The structural proteins are used for the assembly of new-progeny 

virus particles, whereas most of the nonstructural (NS) proteins participate 

in the replication of the viral genome. The polyprotein undergoes a 

complex co- and post-translational series of cleavage events, catalysed by 

both host and viral proteases, to produce 10 individual HCV proteins 

(Figure 1 .9 ).56
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*1*1
B>

c)
Protein Function

NS3 Serine protease & RNA helicase

NS4A Cofactor for NS3 Serine protease

NS4B Formation of membrane web

NS5A phosphoprotein (IFN sensitivity)

NS5B RNA dependent RNA polymerase

Protein Function

Core Genome encapsidation

El Envelope glycoprotein

E2 Envelope glycoprotein

P7 Ion channel

NS2 Cysteine protease

Figure 1.9 A) HCV genome and encoded viral proteins B) Topology of the HCV proteins relative to 
the ER membrane C) HCV encoded proteins and their respective functions 56

The amino-terminal one third of the polyprotein encodes the virion 

structural proteins: a core (C) protein, and two envelope glycoproteins El 

and E2. After the structural region comes a small integral membrane 

protein, p7, as an ion channel. Then six non-structural (NS) proteins, NS2, 

NS3, NS4A, NS4B, NS5A and NS5B, which are essential enzymes or 

accessory factors for viral replication, translation, and polyprotein 

processing and thus believed to be potential drug discovery targets. 59‘62 

In addition, the genome contains two nontranslated/noncoding regions 

(NTRs/NCRs); the first is the 5'-domain that functions as an internal
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ribosomal entry site (IRES), and the second site located at the 3'-end that 

probably plays a role in initiating replication of negative stranded RNA62. 

During RNA replication, the viral genome acts as a template for the 

synthesis of negative-stranded RNA, which, in turn, is a template for the 

production of excess amounts of positive-stranded RNA progeny.63 

Mainly two viral enzymes catalyse this process; the NS3 helicase, which 

'melts' double-stranded RNA into single strands in an ATP-dependent 

manner, and the NS5B RNA-dependent RNA polymerase (RDRP). 64~69

1.7 HCV Vaccine Developm ent

HCV vaccine development is a challenging task partly due to the lack of 

small animal models and cell culture systems capable of supporting reliable 

HCV replication, but predominantly because of the rapid evolution of the 

virus which continuously produce mutants that escape immune 

surveillance 70.

Attempts are being made to develop prophylactic as well as therapeutic 

vaccines against HCV infection. Therapeutic vaccines work by stimulating a 

suppressed immune system to produce more protective T-cells and 

antibodies 71.

As yet, no prophylactic vaccine is available for HCV, but extensive studies 

of a recombinant vaccine in chimpanzees showed encouraging results. 72 

Several approaches are also being taken to develop therapeutic vaccines. 

For example, a clinical-grade HCV El protein has been evaluated in clinical 

trials 73,74. Cellular immune responses were boosted, including a significant 

T-cell response. However, these cellular immune responses were not 

accompanied by any significant reductions in serum HCV RNA.73'76 Other 

approaches to therapeutic HCV vaccines include the use of the 

recombinant core protein, which elicited an unusually strong T-cell 

response to HCV in rhesus macaques.77
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1.6 Viral targets  fo r  fu tu re  therapies

Recently, a number of advances have come about, owing to the 

development of HCV-replicon systems and the availability of the three- 

dimensional structures of several of the key virally encoded enzymes, in 

some cases in complex with substrates, cofactors and inhibitors.78 

In vitro assays have been developed to examine viral enzymatic activities 

for the testing and development of antiviral agents.78 

Potential processes for viral inhibition include virus entry into the host cell, 

proteolytic processing, RNA replication, and the assembly and release of 

the new virions. Among the most promising new agents in development 

are the protease and polymerase inhibitors. The structural viral envelope 

proteins El and E2, as well as their assembly, represent other potential 

antiviral targets 79.

1.6.1 Protease Inhibitors

HCV possesses two proteases NS2/3 and NS3/NS4A. However, NS2/3 has 

received little attention as an antiviral target because of incomplete 

knowledge of the NS2/3 cleavage process. Furthermore, NS2/3 processing 

is partially mediated by host cell proteases, making it a less attractive 

target for drug development.80,81

On the other hand, the non-structural protein NS3 has a protease domain 

that is responsible for polyprotein processing and is a potential target for 

antiviral intervention. Despite the catalytic site being a shallow and largely 

hydrophobic groove, making it difficult to target, several compound 

inhibitors of the NS3 protease have been successfully designed and 

reached preclinical and clinical stages, for example, BILN 2061, Intermune 

(ITMN-191), telaprevir (VX-950) and boceprevir (SCH503034) 3112202 

(Figure 1.10).
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Figure 1.10 Structures of some NS3 protease inhibitors

The proof-of principle for this class of compounds was provided by BILN 

2061, an NS3 protease inhibitor that provides at least a 2-3 logio decrease 

in HCV load within 48 hours 82. However, the clinical development of BILN 

2061 was stopped owing to significant side effects83-87.

1.5.2 Poly merase inhibitors

NS5B protein functions as a RNA-dependent RNA polymerase (RDRP), 

which is virus specific with no functional homologues in the host and 

therefore its inhibitors expected to be less toxic. 88 

RDRP is the key enzyme for synthesis of a complementary minus strand (- 

RNA), using the genome (+RNA) as a template, and the subsequent 

synthesis of genomic (+RNA) from this (-RNA) template.88
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Two separate classes of compounds have shown inhibitory effects on the 

NS5B through two distinct mechanisms:

• First, nucleoside polymerase inhibitors, which directly inhibit the active 

site causing chain termination for example, valopicitabine (NM-283), 

PSI-6130, MK-0608 and R1626 87 (Figure 1.11).

• Second, non-nucleoside polymerase inhibitors, which cause allosteric 

inhibition resulting in a conformational change of the protein for 

example HCV-796 87 (Figure 1.11).

Preclinical and clinical studies have shown that agents targeting the HCV 

RNA polymerase are associated with significant reductions in serum HCV 

RNA when used either as monotherapy or in combination with pegIFN-a. 

However, due to the unfavourable risk-benefit profiles, the development 

of several polymerase inhibitors is on hold.89-92

nr'

Valopicitabine NM-283 PSI-6130

HO OH

MK-0608 R1626

HCV-796

Figure 1.11 Structures of some NS5B polymerase inhibitors
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1.5.5 Im m une m o d u la to rs

Other mechanisms that are under investigation include immune 

modulators targeting the cellular immune response, which plays a major 

role in HCV infection. Examples include agents that promote an effective 

immune response, such as the toll-like receptor (TLR) agonists, which 

mediates induction of interferon IFN-oc production. However, improved 

SVR results have not been reported so far and the clinical development is 

currently on hold owing to preclinical safety issues; induction of a general 

inflammatory response in animals.93,94 

1.5.4* P u r th e r  n o ve l in v e s t ig a t io n a l a g e n ts

The effectiveness of inhibitors of cyclophilin B, a host factor involved in 

viral replication, is being evaluated in patients with HCV. A cyclosporin A 

analogue, suppresses HCV genome replication in a cell culture system and 

may provide a novel strategy for anti-HCV treatment95'97.

Recently, it has also been reported that NS4A, a cofactor for the NS3 

protease, is a valid therapeutic target for chronic HCV infection, inhibiting 

the correct proteolytic processing of the HCV polyprotein and thereby the 

formation of a functional replication complex, consequently decreasing 

viral RNA synthesis, although reversible nephrotoxicity precluded further 

development.98

Finally, the 5' NTR region is an internal ribosomal entry site (IRES) that 

binds to the ribosomes of the infected cell allowing the proviral RNA 

translation. 99 The IRES is highly conserved from isolate to isolate, with 

greater than 85% sequence identity among the various genotypes, making 

it an outstanding target for drug development. 100 

Nucleic acid based therapies, designed to target the HCV IRES, have 

shown substantial success at inhibiting the HCV life cycle. Examples of this 

strategy are;
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• Antisense oligonucleotides, which are synthetic nucleic acid polymer 

whose base sequence is complementary to the target RNA sequence 

(sense strand), thus it would bind to it and effectively turning it "off'. 

This is because RNA has to be single stranded to be translated e.g. a 

sense segment " 5'-AAGGUC-3' " would be blocked by the anti-sense 

RNA segment" 3'-UUCCAG-5' ".101

• Ribozymes, which is also known as ribonucleic acid enzyme, RNA 

enzyme or catalytic RNA, is an RNA molecule that catalyses the 

hydrolysis of RNAs phosphodiester bonds. 102

• Small interfering RNA (siRNA) also known as short interfering or 

silencing RNA, is a natural process used by eukaryotes to recognize and 

destroy abnormal or exogenous RNA. siRNA is triggered by double 

stranded RNA regions (dsRNA) and in average consist of 20-25 

nucleotide-long double-stranded RNA (dsRNA) with 2-nt overhangs on 

either end:

Each strand has a P (5' phosphate group) and a OH (3' hydroxyl group) to 

bring about the specific knockdown of a gene of interest. 103

However, some of the main issues regarding the success of the RNA-based 

therapies are the delivery of big synthetic RNA polymers to the appropriate 

cells besides the stability towards nucleases.101"103
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C h a p te r  2

H e lic a s e  E nzym e; O v e rv ie w

2.1 H e licases  (T h e  U n w in d in g  M ach ines)

The discovery of the structure of DNA double helix, proposed by Watson 

and Crick was a pivotal event in modern biology, showing two paired DNA 

strands that are tightly base-paired with the complementary nucleotides on 

the opposite strands. However, during DNA replication or gene 

transcription, a single stranded DNA is at least transiently required to 

convert a closed duplex into two open single strands so that other protein 

machinery can access the sequence of bases buried in the interior of the 

double helix. In fact, the unwinding of double-stranded polynucleotides is 

catalyzed by helicases that are present ubiquitously in all kingdoms of life 

from virus to man. Viruses, like all other organisms, synthesize their DNA 

or RNA genomes in a template-dependent manner. In addition to DNA or 

RNA polymerases, a helicase is therefore required to displace the single

stranded genome after replication, thus leading to the formation of 

progeny viral particles 104 (Figure 2.1).

Polymerase

Helicase

Polymerase

New HepC RNA

Figure 2.1 The polymerase synthesizes new RNA (red) from old RNA (gray). The helicase unwinds 
new RNA from old RNA so more RNA can be produced (adapted with permission from Dr. D. Frick)
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2.2  C lassification, S tru ctu re  and function

Since the discovery of the first helicase in E. coli in 1976 many other 

similar enzymes have been isolated from viruses, prokaryotic and 

eukaryotic cells. At the most basic level, Helicases function as molecular 

motors that couple the consumption of chemical energy from NTP 

hydrolysis to mechanical force to unwind double stranded (ds) nucleic 

acids 105-108.

Further classification depends on a number of biochemical criteria; 

whether they can bind single stranded (ss) nucleic acid, unwind RNA, DNA, 

or both, the polarity of unwinding (31 to 51 or 5' to 3') and the presence of 

certain conserved motifs in the primary sequence. Generally, helicases 

have been divided into three superfamilies (SF1, SF2 and SF3) based on 

sequence comparisons. There are seven highly conserved motifs between 

the two largest families (SF1 and SF2)109.

Although, the conserved motifs are associated with conserved helicase 

function, structural analyses have identified crucial residues that are 

conserved only in space, but not in the primary sequence no.

The structure of a number of helicases has been solved to show that the 

total number of domains can vary from two up to four. Domains 1 and 2 

form a core that is conserved in all helicases, and contain most of the 

conserved sequence motifs required for binding and hydrolysing NTP at 

the interface between them i n .

NS3 HCV helicase belongs to superfamily 2 (SF2) RNA helicases, which is 

also called DEA(D/H)-box helicases (acronyms for Aspartate, Glutamate, 

Alanine and Aspartate/Histidine) after the signature sequence of Walker B 

motif. The exact changes in physical conformation and the path the RNA 

or DNA takes as one strand is destabilised and 'unwound' from the other 

are not well understood, but they do not seem to be conserved between 

different helicases. Complicating matters further, some helicases seem to
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function as monomers (HCV helicase), others as dimers and yet others as 

hexamers 112'113. Functionally, Helicases show a number of intrinsic 

biochemical activities:

2.2.1 NTPase activ ity

The hydrolysis of NTP to convey the chemical energy into mechanical force 

to move the helicase unidirectionally along the DNA is dependent on the 

presence of an NTP and a divalent cation, commonly Mg2+. Basically, all 

helicases bind NTP using two structural elements at the interface between 

domains 1 and 2;

• Phosphate binding, P-loop, motif I or Walker A motif.

• Mg2+ co-factor binding loop, motif I I  or Walker B motif.

It  is still not clear whether the energy derived from NTP hydrolysis is used 

for translocation or destabilising the initial ds DNA segments or both 114.

2.2.2 Nucleic Acids Binding

To date, the most striking feature of helicases is that DNA or RNA binding 

is allosterically regulated by nucleotides (ATP or ADP) 115. Also apparently 

there is a mechanistic distinction between SF1 and SF2 helicases in the 

nature of their interactions with polynucleotide substrates. In SF1 the ss 

polynucleotide binds mainly through a series of hydrophobic contacts 

formed by aromatic side chains stacking against the polynucleotide bases. 

However, a different mode is utilised by SF2 helicases where the protein 

polynucleotide interaction is predominantly through the phosphate 

backbone (sequence independent)116.

2.2.3 Unwinding A ctiv ity

The process of separating the complementary polynucleotide strands can 

be described in a number of terms;

Polarity is an intrinsic character of a given helicase and described as the 

directionality of unwinding that could be either 3'-5’ or 5'-3'.
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Processivity is the ability to repetitively continue the catalytic function 

without dissociating from the DNA substrate. Some helicases exhibit a high 

processivity with a separation of 42.3 kilo base pairs of DNA per binding 

event; other helicases can only separate several bases.

Unwinding Step-Size; A helicase unwinds DNA through a number of steps 

resulting in the unwinding of certain number of base pairs during each 

reaction cycle in which chemical energy is consumed and coupled to a 

mechanical energy 117'118.

2.2.4* Translocating &  Removing Proteins

An increasing body of evidence has shown that many helicases can 

translocate unidirectionally along ss polynucleotide track without 

unwinding activity. In fact, the removal of proteins from nucleic acid 

appears to be a core function of enzymes of the helicase families 104.

2.2.^ Annealing A ctiv ity

In recent years, several DNA and RNA helicases have been shown to 

possess strand-annealing and even strand exchange activities in addition 

to their helicase activities m .

2.5 Viral Hel leases as antiviral drug targets

Many viral pathogens, including hepatitis C virus (HCV), herpes simplex 

virus (HSV), human papillomavirus and severe acute respiratory syndrome 

(SARS), encode helicase enzymes, which are essential for viral replication 

and pathogenesis 119123.

The necessity of unwinding activity mediated by the NTPase/helicase 

enzymes in the viral life cycle has recently been reported in "knock-out" 

experiments that demonstrated unambiguously that the switch-off of the 

helicase activity abolishes the virus propagation of flaviviridae viruses like 

bovine diarrhea virus (BVDV) and of dengue fever virus (DENV)124'125. 

Recently, a preclinical proof of concept for helicase inhibitors as antiviral
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agents has been obtained for Herpes simplex virus HSV 120 123. Using high- 

throughput screening (HTS) and optimization of the screening hits resulted 

in compounds that inhibited HSV growth in cell culture with little 

cytotoxicity and which were also orally active in an animal models 126 132. 

Over the past decade, significant progress has been made in the 

development of selective helicase inhibitors. Figure 2.2 shows a number of 

viral helicase inhibitors that have been developed and used in clinical 

studies as antiviral and anti-cancer drugs 104.

Virus species Helicase
name

Helicase
family In  vitro activity Inhibitor

Herpesvirus UL5 1 DNA 5-3' DNA 
helicase

T-157602 l2°, BAY 7561293 130, BILS- 
179BS132

papillomavirus El 3 DNA helicase Biphenyl-4-sulfonyl acetic acid 133

SARS Nspl3 1 5'-3' RNA/DNA 
helicase, RTPase

Bananin,iodobananin,vanillinbananin 
and eubananin 134

HCV NS3 2 3-5' RNA/DNA 
helicase RDP, RTP 126, TBBT 135 and QU663137

HOs'
CHj Biphenyl-4-sulfonyl acetic acid

N  9 ■*-

BAY-57-13M

Baiun in (BAN)

HDOC—\

r O O

Iodobjiunin (EKV)

HO OH

VamBinbanani n < \ l iX )  Enbananm (EUB) OH

Figure 2.2 Examples of different Viral Helicase Inhibitors
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2 .+  HCV NS5 Helicase

The first HCV protein crystallised was the non structural protein (NS3) 

helicase (Figure 2.3), whose activity is thought to be required for melting 

secondary structures prior to initiation of RNA synthesis either to separate 

ds RNA intermediates formed during viral RNA synthesis or as a 

translocase that can remove proteins bound to viral RNA. 138 

Strand separation is an energy-dependent reaction driven by ATP 

hydrolysis. Therefore, all RNA helicases have ATPase activity; this activity 

of NS3 RNA helicase can hydrolyse non-specifically any nucleoside 

triphosphate (hence known as "NTPase").139-142

Caps id Envelope Protease/h el icase Polymerase

Figure 2.3 The encoded 10 proteins of HCV genome

2.^.1 S tru ctu re  o f  HCV NS5 helicase

Unlike other systems where mechanistic experiments were carried out long 

before protein-substrate interactions were viewed at an atomic resolution, 

the first crystal structures of HCV helicase were solved only a few years 

after the protein was first purified.143146

The NS3 helicase forms three domains. When viewed as a Y shaped 

triangular molecule, the N-terminal domain (domain 1) and the middle 

domain (domain 2) are above the C-terminal domain (domain 3). 116,146 

A short DNA oligonucleotide is bound to the helicase in the cleft that 

separates domain 3 from domains 1 and 2 (Figure 2.4). The interactions 

between the protein and nucleic acid are not sequence-specific and 

primarily involve the phosphate backbone of the nucleic acid. 116 

In several structures, a sulfate molecule is seen bound between domains 1 

and 2, in a position where ATP has been seen in high-resolution structures 

of similar helicases. 147‘149



Chapter 2 Helicase Enzyme; Overview 27

The enzyme contains the seven conserved motifs associated with the 

Superfamily 2 (SF2) class of NTPases and RNA helicases. 150-152 These 

include the phosphate-binding P-loop, Walker motif A or motif I, located on 

the surface of domain 1, which binds the terminal phosphate group of the 

NTP and the Mg2+ co-factor binding loop, Walker motif B or motif I I  also 

on domain 1, and, responsible for the chelation of the Mg2+ io n .143 

On the other hand, Domain 2 possesses a highly conserved arginine-rich 

motif, which has been implicated in RNA binding; however, it has also 

been suggested that it may have a direct involvement in the binding of 

ATP. Unlike both domains 1 and 2, domain 3 is predominantly oc-helical 

possessing no helicase-conserved motifs. 152,153

Domain 2

RNA bindingNTP &  Mi 
binding 4

DNA oligonucleotide

mamty a-Helical

Figure 2.4 Surface diagram of the HCV RNA helicase showing Domain 1 (pink), Domain 2 (orange), 
Domain 3 (green) and DNA oligonucleotide (blue).

2 .4 .2  M echanism  o f  HCV NS5 H e licase  a c tio n

Two alternative mechanisms of the unwinding reaction have been 

postulated. Both models predict that the enzyme binds and subsequently 

hydrolyzes NTPs in a well-defined NTP binding pocket: In  the active 

mechanism; the energy released from the reaction is utilised in the 

translocation of the enzyme along the DNA or RNA structures, and the 

unwinding reaction results from capturing single strand regions that arise
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due to fluctuations at the fork. Alternatively, the passive mechanism', the 

energy could be transferred to the fork and used for disruption of the 

hydrogen bonds that keep the strands together. 116»143,150-154

2 .4 .5  H ost vs Viral Helicases (Selectivity Window)

Comparison of the primary sequence of two SF2 helicases e.g. HCV 

helicase and human DDX3 reveals a paucity of identical residues and a 

tremendous divergence in sequence outside of the conserved motifs. The 

differences in primary sequence and tertiary structure between the 

helicase of a viral pathogen and that of cellular helicases can be exploited 

to confer specificity to an antiviral inhibitor. 110

Another example is the Eukaryotic initiation factor 4A (eIF4A), which is a 

human RNA helicase. eIF4A hydrolyses only ATP or dATP in the presence 

of RNA, unwinds RNA or RNA/DNA but not DNA duplexes, and acts in both 

3'-5' and 5'-3' directions. In contrast, HCV NS3 helicase can hydrolyse all 

ribo- and deoxyribo-NTP in an RNA-independent manner, is capable of 

unwinding RNA, RNA/DNA, or DNA duplexes and exhibits a 3'-5' 

unidirectionality.119,155

The explanation for the lack of specificity of NS3 Helicase is the fact that 

the interaction between the protein molecule and the DNA or RNA 

substrate is mediated by phosphate groups and not by the nucleotide base 

or sugar moieties. 116,143

It is believed that the observed structural and functional differences 

between the human and viral helicases may prove to be useful in 

designing selective inhibitors.

2 .4 .4  HCV NS5 Helicase as D rug  T a rg e t

The HCV NS3 helicase has been a more challenging target for drug 

development than other non-structural proteins (NS5B polymerase or NS3- 

NS4A protese), mainly because its mechanisms of action are not well
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understood. There is also a problem with selectivity for compounds that 

inhibit via the ATP binding site and these compounds are likely to be 

cytotoxic to the host. At the technical level, traditional assays for screening 

helicases are very time consuming. New assays using DNA substrates have 

recently been developed in a high-throughput format but few options are 

available for assays using RNA as a substrate. 123 

Moreover, NS3 helicase has broad substrate specificity, unwinding DNA- 

DNA, RNA-RNA and RNA-DNA heteroduplexes. This peculiar lack of 

substrate specificity of NS3 NTPase and helicase activities makes 

identification of a specific inhibitor a really challenging task.138 

In principle inhibition of the helicase enzyme has the potential not only to 

terminate the proliferation of the virus but also indirectly stimulate a 

cellular antiviral ds RNA sensing machinery because of the expected build 

up of intracellular ds RNA intermediates 126 128. But because of the above- 

mentioned shortcomings, there are only a few HCV helicase inhibitors 

reported so far. Generally, strategies of helicase inhibition can be 

tentatively classified into three categories:

2.4.4.1 D ire c t/A llo s te n c  fnhibi'tion o f NTPase Activ ity

It is believed that the ATPase cycle not only supplies the energy for the 

helicase unwinding reaction but also causes conformational changes in the 

nucleic acid binding site to drive the movement of the helicase along the 

length of the nucleic acid chain. Therefore, a reduction of accessibility to 

the NTP-binding site may lead to decreased NTPase activity and hence to a 

respective reduction of the unwinding rate.123

A wide range of competitive NTPase inhibitors such as ribavirin 5'- 

triphosphate (RTP) and ribavirin 5'-diphosphate (RDP) (Figure 2.5) have 

been tested as potential helicase inhibitors. Surprisingly, although the IC50 

values possessed by each of these compounds against NTPase activity lie



C hapter 2 Helicase Enzyme; Overview 50

in the low micromolar range, they demonstrate only moderate inhibitory 

action against the unwinding activity of HCV helicase.67

OH OH OH OH

Ribavirin 5'-triphosphate (RTP) Ribavirin 5'-diphosphate (RDP)
IC50 180 n.M IC50 250 nM

Figure 2.5 Structure of Ribavirin 5'-triphosphate and Ribavirin 5'-diphosphate

This phenomenon was also observed with paclitaxel (Figure 2.6), an 

antimitotic agent derived from the Western yew plant. Paclitaxel has been 

shown to compete with ATP at the ATP-binding domain, displaying an IC5o 

of 17 nM against the NTPase activity of the enzyme. However, when tested 

for helicase inhibitory activity, paclitaxel was not capable of inhibiting the 

enzyme below 1 mM. This partial inhibition mediated by these competitive 

NTPase inhibitors is common to all members of the class, and the basis for 

the phenomenon remains unclear.156
o

PHOH
H
NPh

Ph

HO o  | |

c APh

Figure 2.6 Structure of Paclitaxel (IC50 >1 mM)

It  was recently reported that halogenated benzimidazoles and 

benzotriazoles were identified as inhibitors of NTPase/helicase activities of 

HCV during the course of a random screening study. Among these 

compounds, the 4,5,6,7-tetrabromobenzotriazole (TBBT), known as a
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potent highly selective inhibitor of protein kinase 2 and 5,6-dichloro-l(|3-D- 

ribofuranosyl)benzotriazole (DRBT) (Figure 2.7), displaying an inhibitory 

effect to the unwinding activity with IC50 values of 20 and 1.5 jrM, 

respectively, but not to the ATPase activity. Further kinetic study in 

combination with the structural comparison of ATP-binding sites has 

revealed that these compounds inhibit the unwinding activity through 

occupation of an allosteric binding site, rather than inhibition of the 

catalytic ATP-binding site. 135'136

An additional class of nucleoside analogues known as ring-expanded (REN 

or "fat") nucleosides were reported to be active against the helicase 

unwinding reaction. A number of RENs such as 1 and 2 (Figure 2.8) 

displayed IC50 values in the micromolar range. 157

Br OH OH

(TBBT) IC50 20 nM (DRBT) IC50 1.5 |aM

Figure 2.7 Structure of TBBT and DRBT

O

OH OH

1 (IC50 12 |xM) 2 (IC50 5.5 nM)

Figure 2.8 Structure of ring expanded nucleosides (REN)
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The REN 5'-triphosphates such as 3 and 4 (Figure 2.9), on the other hand, 

did not influence the unwinding reaction but instead exerted their 

inhibitory effect on the ATPase activity of the enzyme 157.
n h 2

ip y ii ii ii © ©
" , /  M O  P O P O  P o  Na

" i  L f  I l I
¥  j  OH 0H OH

OH OH

3, IC50 0.55 nM 

N O O O
\  II II II e o
/  O  P O P O  P O HNEt3

t o r i i iO L " 0 ^  OH O OH

f  HNEt3

OH OH
4, IC50 1.5 jaM

Figure 2.9 Structure of ring expanded 5-triphosphate nucleosides

The partial inhibition mediated by the competitive NTPase inhibitors may 

be avoided by utilising compounds chemically unrelated to NTP, which 

reduce the accessibility to the NTP-binding site in a non-competitive 

manner 158. An example of such an inhibitor is the calmodulin antagonist 

Trifluoroperazine (Figure 2.10). Although the molecule is known to interact 

with domain 1 of HCV helicase, it is uncertain if inhibition results from 

conformational changes or from blockage of the ATP-binding site. 156

c f 3

Figure 2.10 Structure of Trifluoroperazine (IC50 0.6 - 0.7 mM)
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2.4r.4r.2 Inhibition o f  Unwinding through Intercalation

There is increasing evidence that DNA or RNA duplexes, together with an 

intercalated agent, are more stable than their unbound counterparts by 

increasing the energy required for duplex unwinding. 159161 

Therefore, DNA or RNA intercalating compounds such as Epirubicin and 

Nogalamycin (Figure 2.11), which are both members of the anthracycline 

family of anticancer/antibiotics, are effective inhibitors of the unwinding 

reaction catalysed by the helicase enzyme. Unfortunately the high 

cytotoxicity of such compounds and their weak penetration into the cell 

limit their application in the treatment of chronic viral infection.126

During the initial studies of HCV helicase activity, it was observed that 

numerous polynucleotides elicited an inhibitory response on the helicase 

enzyme. This is believed to result from the competition of the 

polynucleotides with DNA or RNA substrates, which could possibly be 

mimicked by synthetic macromolecules. 156 In an attempt to emulate this 

response, two series of compounds containing aminophenylbenzimidazole 

(5) and piperidinylbenzimidazole (6) moieties attached to symmetrical 

linkers were synthesised 162 (Figure 2.12).

(h3q2n

* coch2oh

r'OH

Epirubicin (IC50 0.75 nM) Nogalamycin (IC50 0.1 nM)

Figure 2.11 Structures of Epirubicin and Nogalamycin

2 .+.+.3 Competitive Inhibition o f RNA Binding
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^ u

/ =

5 (IC50 0.7 nM)

6 (IC50 7 ^M)
Figure 2.12 Structures of aminophenylbenzimidazole (5) and piperidinylbenzimidazole (6)

Preliminary SAR studies of these compounds demonstrated a dramatic 

decrease in potency with the replacement of the benzimidazole moiety in 5 

and 6 with the benzoxazole 7 a, c, d (i-v) and benzothiazole 7 b , e  (i-v) 

moieties (Figure 2.12, 2.13). Similarly, the linker was also implicated in 

inhibitor activity because replacement of the diamide linkage in 5 with the 

diurea one, 9a and 9b (Figure 2.12), led to diminished potency. Thus, the 

SAR data indicate that the benzimidazole ring, the benzene group at the 

C2 position of the benzimidazole moiety, and the nature of the linker are 

essential for inhibitory activity. 163
o

111-V

Compound Z Y Ri Rz

7a 0 CH H H

7b s CH H H

7c 0 N H H

7d 0 CH c h 3 H

7e s CH H c h 3

Figure 2.13 Structures of aminophenylbenzimidazole and benzothiadiazole derivatives
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8 a (n= 2), b (n= 4)

9 a (n= 4), b (n= 6)

Figure 2.14 Structures of two aminobenzimidazole-derived diamides (8a, b) and two 
aminophenylbenzimidazole diureas(9a, b)

Recently, Maga et al have discovered QU663, a quinoline derivative (Figure 

2.15) as a potent selective inhibitor of the NS3 helicase activity (Kj=0.75 

nM). The study of the inhibition mechanism has revealed that QU663 is a 

competitive inhibitor of the strand-displacement activity, but without 

affecting the ability of NS3 helicase to hydrolyse ATP.137

Chachulska and coworkers have reported a new class of tropolone 

derivatives that possess HCV NS3 helicase inhibitory activity. The most 

potent derivative was 3,7-dibromo-5-morpholinomethyl tropolone (DBMTr, 

Figure 2.16) (IC5o=17 jiM). The mechanism of DBMTr may involve 

allosteric interaction with the enzyme but it is also probable that it 

competes with the enzyme for chelation of metal ions and ATP binding .164

Figure 2.15 QU663 (Ki = 0.75 nM)
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,0H

Figure 2.16 structure of 3, 7-dibromo-5-morpholinomethyltropolone (DBMTr)

More recently, a series of acridone-4-carboxylic acid derivatives (12, 13, 
Figure 2.17) was reported to have anti-HCV replication activity, which was 

partially attributed to NS3 helicase inhibition in an uncertain mechanism. 

Nevertheless, intercalation of ds DNA is not completely excluded 165.

O 0

N
N = \

12 (ICso= 9 jiM) 13 (ICso=3 pM)

Figure 2.17 Structure of acridone-4-carboxylic acid derivatives
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2.5 R e a se a rcb  o b je c t iv e s

The standard treatment for chronic HCV infection so far is the dual 

pegylated IFN-a/ribavirin therapy 166. Although the mechanism of action of 

these drugs is debated, with both antiviral and immunostimulatory 

mechanisms being implicated, the sustained response rates are far from 

ideal. Moreover, there is substantial associated toxicity and the likelihood 

of success depends on viral and host factors that are often beyond the 

control of patients and physicians, in addition to the high cost 167 169.

Among hepatitis C viral proteins, NS3 helicase is a valuable but yet largely 

unexplored target. NS3 helicase inhibition is a promising strategy because 

it has the potential not only to terminate the proliferation of the virus but 

also to indirectly stimulate a cellular antiviral response against double

stranded RNA 126 128'170.

NS3 helicase enzyme has multiple functional domains that present 

multiple potential mechanisms of action for the design of an inhibitor. RNA 

binding site was chosen because other strategies suffer from either lack of 

correlation with the unwinding activity or substantial cytotoxicity.

In this project, design and synthesis of a series of novel potential HCV NS3 

helicase inhibitors was proposed. Starting from the structure of the small 

number of the reported compounds that target the RNA binding site, 

different computer software packages were used to design new families of 

compounds to block the action of the enzyme.

A small library of the newly designed compounds will be used for docking 

simulations. The results obtained in silico will guide the selection of the 

most promising compounds for synthesis then followed by subgenomic 

replicon and enzyme assays, starting a virtual "Design-synthesis-testing- 

optimisation" cycle.
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Chapter 3 

P a rt i

M o le c u la r m odelling

During the 1960s, a limited number of scientists explored the use of 

mathematical techniques to derive relationships between observed activity 

and chemical structure. By 2007, computational chemistry was fully

integrated into almost every aspect of the chemical research enterprise. 

Molecular modelling science refers to a range of theoretical methods and 

techniques, which aim to simulate the behaviour of molecules using the 

equations of quantum and classical physics. Nowadays, molecular

modelling is virtually synonymous with computational chemistry, given the 

diversity of different computational methods available to perform molecular 

modelling studies 171'172.

Computational chemistry thus comprises all computer-based methods such 

as quantum mechanics (QM), molecular mechanics (MM), molecular

dynamics (MD), and conformational analysis, among others, used to 

understand and predict the molecular behaviour. Computational chemistry 

programs allow scientists to generate and present molecular data including 

geometries (bond lengths, bond angles, torsion angles), energies (heat of 

formation, activation energy, etc.), electronic properties (dipole moments, 

charges, ionisation potential, electron affinity), spectroscopic properties 

(vibrational modes, chemical shifts) and bulk properties (volumes, surface 

areas, diffusion, viscosity)173'174.

It is a rather new branch of theoretical chemistry and is evolving very fast, 

following the evolution of computing hardware that provides the

computational power to carry out more and more complex calculations. 

The drug discovery made by screening natural and synthetic compounds is 

an expensive and laborious process. In contrast, the impact of molecular
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modelling on the process of drug discovery is significant, and destined to 

become even more important because virtual experiments are cheaper, 

faster, and safer than real experiments, and the data can help scientists to 

eliminate compounds that would not perform the required function 172.

In the age of human genome being deciphered and the rapidly growing 

number of available three dimensional structure of therapeutically relevant 

macromolecules, coupled with the huge number of small non-peptide 

potential drug candidates easily available (over 7 million compounds), the 

need of using computer-aided techniques for the efficient identification and 

optimisation of novel hit compounds is highlighted 172'173.

In drug design, potential compounds may be conceptualised for the 

performance of required function based on essential characteristics 

(pharmacophores), including idealised structural and physical properties. 

Molecular models of compounds can be built, and virtual (in silico) tests 

may be run to assess their suitability before an expensive synthesis 

attempt is made. One successful example is the development of zanamavir 

(Relenza®), a potent Influenza neuroaiminidase inhibitor171174.

Computer aided drug design (CADD) approaches are traditionally divided 

into two major categories: structure based (SBDD) and ligand based 

(LBDD). Structure based approaches are based on the key-lock metaphore 

for ligand-target interaction. They are increasingly used due to the large 

number of target proteins with known structure, mainly obtained by X-ray 

crystallography and NMR spectroscopy, becoming more available 173.

On the other hand, ligand based approaches are generally used when the 

structures of the target receptors are not known. They rely on 

chemometric functions to compute various descriptors from the 2D or 3D 

structure of a set of molecules and use statistical methods to build 

correlation models to predict biological properties (such as activity) of
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compounds. Pharmacophore search and quantitative structure activity 

relationship "QSAR" studies are examples of LBDD 173.

As with all models however, the chemist's intuition and training is 

necessary to interpret the results appropriately as paraphrased by Henry 

Bent "A model must be wrong, in some respects, else it would be the thing 

itself, the trick is to see where it is right". Comparison to experimental 

data, where available, is also important to guide both laboratory and 

computational work 173.

The following sections summarise the background for the methods used in 

the present work, and also the specific application of molecular modelling 

techniques to drug design.

5.1.1 M o le c u la r  M e ch a n ics  (M M )

The term molecular mechanics (MM) refers to the application of Newtonian 

mechanics to the modelling of molecular systems. MM methods calculate 

the energy of a system as a function of the nuclear position of the atoms. 

This is possible due to the Born-Oppenheimer approximations, which 

states that due to the large difference in mass between nuclei and 

electrons, the latter move much faster and adjust instantaneously to the 

positions of the former 173 176.

Thus MM methods ignore the electronic movements and allow calculations 

on large systems (e.g. proteins), which would be virtually impossible and 

extremely time-expensive were QM methods used. This is because the 

latter explicitly represent the electrons in the calculations, thus implying a 

much larger number of particles to be considered, when compared to MM 

methods 173' 176.

In order to lower its complexity, the physical mathematical description of 

molecules in a MM simulation adopts several simplifications, some of the 

most important are:
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• Molecules are treated as balls-and-springs systems.

• Bonds are unbreakable.

• Electrons are not considered.

• Atoms are treated as solid spheres with fixed radius (typically the Van 

der Waals radius) and charge.

• Atoms differ among themselves for atom-type (depending on atomic 

number, hybridisation and chemical properties), a molecule is therefore 

reduced to a set of atom types and a bonding list.

Although most MM applications consider each atom as a separate entity, 

variations on this theme are possible; for example, many simulations have 

historically used a "united-atom" representation in which methyl and 

methylene groups were represented as a single particle, and large protein 

systems are commonly simulated using a "bead" model that assigns two to 

four particles per amino acid. Inside the wide environment of molecular 

mechanics several specific applications can be performed. The following 

sections describe some of the most important ones in computer aided drug 

design (CADD)173.

5.1.2 P o rce  f ie ld s

MM force fields are sets of mathematical equations, which have been 

developed to compute various properties from atomic coordinates and 

atom types. Force fields are usually parameterised directly to reproduce 

potential energies.

Force fields compute both bonded and non-bonded interaction energies 

using both ab initio QM (from classical physics equations) and empirical 

functions and parameters (from experimental or calculated data, thus 

providing the total potential energy of a molecular system as a 

mathematical function of its inner variables (usually atom coordinates). 

Many of the force fields functions (the total molecular mechanics energy of 

a system, Emm) currently in use can be calculated from the contributions of
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a fairly simple four-component picture of the inter- and intra-molecular 

forces within the system such as bond stretching, bending and torsion, and 

also from interactions between non-bonded atoms such as electrostatic 

and van der Waals interactions (Figure & Equation 3 .1 )173;

The bond stretching term (Ebond) in the more simplistic form is given by the 

application of Hooke's law, where the bond is treated as a spring, the 

potential energy being proportional to the deviation from the equilibrium 

point. The bond angle energy (Eangie) can also be treated in a simplistic 

form where it is proportional to the square of the displacement from 

equilibrium. The torsion angle energy (Et0rsion) models the change in energy 

with rotation of the bond, incorporating the energy barrier to rotation, 

dependent on the torsion angle defined by the four atoms involved.

The energy terms of the non-bonded parts of the system (Enon-bond) are 

modelled in two components; electrostatic and van der Waals interactions. 

Electrostatic interactions are calculated using Coulomb's law (Equation 3.2) 

following assignment of partial charges to atoms in a molecule. The 

electrostatic energy (Eeiec) decreases when the distance r between two 

atoms of partial charges Qi and Q2 increases. It  is also dependent on the

Emm — Ebond + Eangie Etorsion + Enon-bond + Emiscellaneous (Equation 3.1) 

Noibtomltd interaction! 

(van dec Waal!)

Figure 3.1 The four key contributors to a molecular mechanics force field 173
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dielectric constant e of the medium. Partial charges are used due to the 

unequal distribution of charge in molecules, caused by the differences in 

electronegativity of atoms, and can be determined in numerous ways, 

varying significantly between different force fields.

On the other hand, van der Waals interactions are due to dispersive 

(attractive) forces, arising from instantaneous distortion of the electron 

clouds, generating dipoles, which in turn induce dipoles in neighbouring 

atoms and thus cause an attractive effect. There are also repulsive forces, 

which increase very rapidly as atoms become too close, due to overlapping 

of their electron clouds. The most common used van der Waals potential is 

the Lennard-Jones 12-6 function (Equation 3.3, Figure 3.2) where e is the 

depth of the potential well, a is the (finite) distance at which the 

interparticle potential is zero and r  is the distance between the particles. 

The exp(12) term of the equation is responsible for small distance 

repulsion, whereas the exp(6) provides an attractive term which 

approaches zero as the distance between the two atoms (r) increases,. 

More sophisticated force fields may have additional terms (Emisceiianeous)/ but 

they invariably contain these four components 173'174.

77 , 1 QlQ%rLelec = — -------- (Equation 3.2)e r

(Equation 3.3)

Van der Waais energy

LU

Distance

Figure 3.2 Lennard-Jones potential (12-6) function 174
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Energetic penalties are associated with the deviation of bonds and angles 

away from their "reference" or "equilibrium" values. Several force fields 

have been developed to address specific problems, thus emphasising 

parameters, which are important for those systems. Therefore, there is not 

a single force field, which is best; rather there are force fields, which are 

more appropriate for specific study objectives than others 173'174. 

Parameterisation and transferability are key issues in force fields. Force 

fields parameters are generally derived from experimental data {empirical) 

or from quantum mechanical calculations {ab initio) for small molecules. 

The transferability assumption implies that these parameters can be 

applied to larger molecules with the same functionalities 175'177. The choice 

of force field depends on the task to be done and the system to be 

studied. For example, the AMBER force field 178 was designed for the 

simulation of proteins and nucleic acids, whereas MMFF (Merck Molecular 

force field) aimed to achieve high accuracy for small organic molecules but 

also for large proteins 179.

5.K5 E n e rg y  M in im is a tio n

Energy Minimization is used synonymously with geometry optimization. 

Force fields compute the total potential energy of a molecular system 

(Emm) but this has no much meaning if there is no knowledge about the 

state of the system in study. Molecules can assume different 

conformations, i.e. different relative positions of its atoms, due to rotations 

about single bonds. Lower energy conformations are of most interest as 

they represent more stable states of the system. Energy minimisation 

algorithms search for optimum conformations, found at the energy 

minima. The minimum with the lowest energy is known as the global 

energy minimum 173'175.

The general idea of minimisation algorithms is walking downhill on the 

energy surface from a starting point until you reach a minimum point. In a
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simplistic way, minimisation algorithms involve consecutive small 

adjustments in the geometry of the molecules followed by energy 

calculation. Changes that result in increased energy are discarded as the 

method searched for lower energies, and the process continues to iterate 

until a minimum is found. This happens when any change made in the 

molecule's geometry invariably results in increased energy.

Obviously this method can just find one minimum point, the one nearest to 

the starting point. Sometimes, however, it is important to find the global 

minimum, for instance to predict the most stable conformation of a 

molecule under given conditions, therefore conformation search methods 

should be used in conjunction with energy minimisation algorithms using 

either systematic or stochastic approaches to generate starting points for 

several minimisation runs 173'174.

Analytical study of the energy function (known also as energy surface or 

energy landscape) provides important insight on the conformational states 

of a particular molecule. A minimum point in the energy function (local 

minimum) is associated with a stable state of the system. Flexible 

molecules generally contain more local minima than more rigid ones 173'174. 

Minimisation algorithms are classified in two major groups: non-derivative 

methods (e.g. simplex method), which don't require the calculation of the 

derivative of the potential energy surface, and derivative methods (e.g. 

steepest descent, conjugate gradient, Newton-Raphson), which use these 

derivatives to guide the process to the next state (geometry) of the 

molecule. 173,175

Energy minimisation finds its application in several MM and MD 

experiments, such as in generating good quality conformations of a given 

molecule or in refining molecular docking results or homology models. 174
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5 - 1 Doc l c i ng  S im u la tio n

Docking of small molecules to protein binding sites was pioneered during 

the early 1980s. In molecular docking simulations modelling techniques are 

used to predict how macromolecules (typically a protein) interact with 

other molecules (may be other proteins, nucleic acids or small drug-like 

molecules). The process involves the prediction of ligand conformation and 

orientation (posing) within a binding site 180.

Small molecule-protein docking (usually known as protein-ligand docking) 

is the most frequently used as the smaller dimensions of the system allow 

for a higher accuracy of the mathematical description and a higher 

reliability of the model. Therefore, it is used as the base of structure based 

drug design approaches (SBDD). Protein-protein docking is still at its 

beginning, as its high requirements of computational power has long made 

it too slow or too inaccurate 181.

Docking and scoring technology is applied at different stages of the drug 

discovery process for three main purposes: (1) predicting the binding 

mode of a known active ligand; (2) identifying new ligands using virtual 

screening; (3) predicting the binding affinities of related compounds from 

a known active series. Of these three challenges, the first represents the 

most straightforward and is the area where most success has been 

achieved. Docking can also contribute to the analysis of drug metabolism 

using structures such as cytochrome P450 isoforms 182'183.

The docking process consists of two stages: the first stage is Searching 

and Filtering using docking algorithms for a step-by-step search through all 

the possible docking poses (not only the conformational, but also the 

orientational space) in the active site. This is followed by stringent filtering 

criteria, which retain only a fraction of the possibilities. The second stage is 

Scoring via scoring functions to evaluate the likelihood of each retained
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solution of being an accurate model of the complex between compounds 

and potential targets 173,184.

These are complex issues since docking a ligand into a binding site models 

several degrees of freedom; the six degrees of translational and rotational 

freedom of one body relative to another and then the conformational 

degrees of freedom of the ligand and of the protein 174. Sampling these 

degrees of freedom should be both accurate and fast enough to permit the 

evaluation of up to thousands of compounds in a given docking run 184'185. 

It should also be noted that ligand-binding events are driven by a 

combination of enthalpic and entropic effects, and that either entropy or 

enthalpy can dominate specific interactions.

Enthalpic contributions result from ligand binding not in its global 

minimum, but its "bioactive" conformation, which might be significantly 

different and higher in energy. Furthermore, polar ligand groups have to 

break bonds to solvent molecules before binding to the protein. The 

entropic contributions are related to losses of rotational, translational and 

conformational freedom during the ligand binding process (entropy penalty 

for immobilisation of rotatable bonds).

This often presents a conceptual problem for contemporary scoring 

functions, because most of them are much more focused on capturing 

energetic rather than entropic effects. In addition some factors like, limited 

resolution of crystallographic targets, inherent flexibility, induced fit or 

other conformational changes that occur on binding, and the participation 

of water molecules in protein-ligand interactions add to this challenge 173.

D o c lcm g  A lg o r ith m s

Docking algorithms are used as search methods to treat ligands flexibility 

and, to some extent protein flexibility. Treatment of ligand flexibility can be 

divided into three basic categories 186:
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• S ystem atic  m ethods

Incremental construction and Multiconformer database 

Exploring all degrees of freedom in a molecule, will lead to the problem of 

combinatorial explosion because the exhaustive search calculation by 

varying systematically each of the torsional angles of the molecule in order 

to generate all possible conformations will yield huge amount of data 173. 

Therefore, ligands are often incrementally grown into active sites. A 

stepwise or incremental search can be accomplished in different ways for 

example, by splitting into different rigid fragments and perform an 

incremental construction of the solution by linking them covalently (used in 

de novo ligand-design strategy) or, alternatively, by dividing ligands into 

rigid (core fragment) and flexible parts (side chains). In the latter case, 

once the rigid cores have been defined, they are docked into the active 

site. Next, flexible regions are added in an incremental fashion 187 189. The 

docking of single fragments is much easier than the one of a full molecule, 

as they can be treated as rigid bodies. An approach of this kind is 

employed by DOCK and FlexX 190. Another method of systematic search is 

Multiconformer docking, which is performed by pre-generating a library of 

low-energy conformations for the input molecule. Library conformations 

are typically only calculated once and the search problem is therefore 

reduced to a rigid body docking procedure as used in FRED 174.

• Random o r  s to ch a s tic  m ethods

Monte Carlo, Genetic Algorithm and Tabu search

These methods imply stochastic (random) steps in the search to speed up 

the process. They cannot guarantee to find the best solution, but are used 

to find a good one in a reasonable time. They operate by making random 

changes to either a single ligand or a population of ligands. A newly 

obtained ligand is evaluated by a pre-defined probability function. Two
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popular random approaches are Monte Carlo, where the actual 

conformation is modified randomly to obtain a new one. This is repeated 

until the desired number of conformations is obtained (AutoDock) 191 and 

Genetic Algorithms where the principles of biological evolution are adapted 

to search the conformational space (GOLD) 192 195.

Another stochastic method is tabu search. The basic idea of a tabu search 

algorithm is to take into consideration already explored areas of 

conformational space. To determine whether a molecular conformation is 

accepted or not, the root mean square deviation (rmsd) is calculated 

between current molecular coordinates and every molecule's previously 

recorded conformation (PRO LEADS) 196 198.

• S im ulation m ethods

Molecular dynamics and Energy minimization

Molecular dynamics (MD) is currently the most popular simulation 

approach. However, MD simulations are often unable to cross high-energy 

barriers within feasible simulation time periods, and therefore might only 

accommodate ligands in local minima of the energy surface. Therefore, an 

attempt is often made to simulate different parts of a protein-ligand 

system at different temperatures 199'200. Another strategy for addressing 

the local minima problem is starting MD calculations from different ligand 

positions. In contrast to MD, energy minimization methods are rarely used 

as stand-alone search techniques, as only local energy minima can be 

reached, but often complement other search methods, including Monte 

Carlo 201. DOCK performs a minimization step after each fragment addition, 

followed by a final minimization before scoring 173.

5 .1 .4 .2  S h a p e  c o m p le m e n ta r ity

The use of shape complementarity between the ligand and the active site 

as a pre filtering technique of large databases offers faster screening rates.
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Studies with this tool can be initiated with only one bioactive lead or 

receptor site 202,203.

5.1.4.5 Protein Flexibility

Available docking programs usually assume the protein structure to be 

rigid or allow limited flexibility, essentially in some amino-acid side chains. 

Flexible docking clearly outperforms rigid-body docking 202, however, the 

treatment of protein flexibility is less advanced than that of ligand 

flexibility, but various approaches have been applied to flexibly model at 

least part of the target 204, including molecular dynamics and Monte Carlo 

calculations 205, rotamer libaries 206 and protein ensemble grids 208. The 

idea behind using aminoacid side-chain rotamer libraries is to model 

protein conformational space on the basis of a limited number of 

experimentally observed and preferred side-chain conformations 207. 

Another method of treating protein flexibility is to use ensembles of protein 

conformations (rather than a single one) as the target for docking 208 and 

to map these ensembles on a grid representation 209.

5 .K J S c o r in g  F u n c tio n s

The general hypothesis of docking is that lower energy scores represent 

better protein-ligand bindings. The current pose is then accepted or 

rejected on the basis of the score for that pose. A new pose is then 

generated, and the search process iterates to an end point174'210.

The evaluation and ranking of predicted docked poses is performed by 

using scoring functions which estimates the binding affinity of potential 

ligands to their targets. This is a crucial aspect of the docking process, 

particularly in virtual screening. Like force fields, scoring functions are 

mathematical functions that link atomic coordinates to energy values. They 

are usually parameterised to reproduce the interactions of intermolecular 

complexes. Scoring functions are usually much simpler than force field
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functions, as they are the speed determining point in a docking algorithm. 

They usually focus on non-bonded interactions, and many of them 

consider bonded energies constant. Some scoring functions include empiric 

terms such as hydrogen bond energies or an estimate of the entropic loss 

of ligands upon binding or solvation effect. Essentially, there are three 

major kinds of scoring functions:

• F o rce -F ie ld -b a se d  sco rin g  fu n c tio n s

These functions are based on MM force fields, which usually quantify the 

sum of two energies, the receptor-ligand interaction energy and internal 

ligand energy (such as steric strain induced by binding). This is often 

described by using van der Waals (12-6 Lennard-Jones) and electrostatic 

(Coulomb's law) energy terms. Standard force-field scoring functions have 

major limitations, because they were originally formulated to model gas- 

phase and do not account for solvation and entropic effects, they only 

consider a single protein conformation and generally are computationally 

more costly than the other two types of scoring functions 174.

• Em pirica l sco rin g  fu n c tio n s

The idea of empirical scoring functions is to reproduce experimental 

affinity data such as binding energies and/or conformations. This is based 

on the assumption that predicted binding energies can be approximated by 

a sum of individual uncorrelated terms. The parameters of the energy 

contributions are obtained from a regression analysis using experimentally 

determined binding energies and X-ray crystal structures of a training set 

complexes. Empirical scoring functions are commonly supplemented by 

entropy penalty terms, such as the number of rotatable bonds in ligands. 

Interaction types include, for example, hydrogen bonds, electrostatic 

interactions and hydrophobic interactions. The regression analysis requires 

both known structures and binding constants, and so the available
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datasets are limited in size and often feature similar ligands and receptors. 

They are simpler and usually perform well, but they also show a strong 

dependence on the training set211'216.

• K now ledge-based sco rin g  fu n c tio n s

Knowledge-based scoring functions have become popular in the field of 

docking during the past few years. Knowledge-based scoring is grounded 

on a statistical analysis of ligand-receptor complex structures. They are 

based on the assumption that atom configurations that are often seen in 

crystallographic structures are energetically favoured. The frequencies of 

each possible pair of atoms in contact to each other are determined. 

Interactions found to occur more frequently than would be randomly 

expected are considered attractive; interactions that occur less frequently 

are considered repulsive. A number of atom-type interactions are defined 

depending on their molecular environment. So, in common with empirical 

methods, knowledge-based scoring functions attempt to implicitly capture 

binding effects that are difficult to model explicitly. However, only 

structural information rather than binding energies is necessary to derive 

these frequencies so that a greater number and diversity of structures can 

be included in the analysis. Thus, less bias is expected compared with 

empirical scoring functions. A major attraction of many knowledge-based 

scoring functions is their computational simplicity, which permits efficient 

screening of large compound databases. A disadvantage is that their 

derivation is essentially based on information implicitly encoded in limited 

sets of protein-ligand complex structures 173'174.

• Consensus sco rin g

Given the imperfections of current scoring functions, a recent trend in this 

field has been the introduction of consensus scoring schemes 217. 

Consensus scoring combines information from different scores to balance
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errors in single scores and improve the probability of identifying 'true' 

ligands. However, the potential value of consensus scoring might be 

limited, if terms in different scoring functions are significantly correlated, 

which could amplify calculation errors, rather than balance them 174.

5.1.6 S tru c tu ra l b a se d  V ir tu a l S c re e n in g

Virtual screening experiments are based on the application of molecular 

docking algorithms and scoring functions techniques to large numbers of 

molecules when the structure of the target receptor is known. It has 

become common practice to screen hundreds of thousands or even 

millions of drug-like candidates in this way to find a drug lead for a 

particular target. Compared to traditional in-vitro high-throughput 

screenings, virtual screenings are orders of magnitude faster and less 

expensive representing a pre filter tool for selection of compounds to be 

experimentally tested. Successful candidates can thus provide new ideas 

for alternative structures, unrelated to natural or known ligands 174,202. 

Pharmaceutical companies generally search their own corporate database 

of compounds and can also screen libraries of commercially available 

compounds, from different suppliers, which are generally available in file 

formats that can be used directly. Recently, the ZINC (zinc is not 

commercial) database 218 was created by compilation of databases of 

commercially available compounds from numerous suppliers, and 

converted into 3D format, in various file types. This database is freely 

accessible for academic purposes. Another database is MMsINC, which is a 

free web-oriented database of non-redundant commercially available 

chemical compounds in 3D formats for virtual screening and 

chemoinformatic applications. 219 Before docking of the compounds of the 

database into the target receptor, filters can be applied to remove 

undesirable compounds, such as Lipinski's rule of five where molecules
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with more than 5 H-bond donors, 10 H-bond acceptors, Molecular weight 

>500 Da and calculated partition coefficient (c log P) >5 are removed 220.

A virtual screening process can be divided into three phases:

• Docking phase

The binding pose for each molecule of the database is generated with 

molecular docking simulation.

• Scoring phase

Every molecule in the database is scored with one or more scoring 

functions and sorted accordingly to the predicted affinity.

• Visual inspection

The best ranking molecules are inspected by the user for specific 

interaction with the active site (e.g. specific H-bond), where the most 

promising ones are selected for synthesis and biological testing.

5.1.7 D e  N o vo  D ru g  D e s ig n

De novo drug design approaches use structural information to design 

bioactive compounds from scratch by incremental construction of a ligand 

model within the active site of the receptor or enzyme, the structure of 

which is known from X-ray or NMR data. This is to inspire medicinal 

chemists with new chemical motifs, support hit and lead identification 

efforts and widen the chemical horizon 221'222. in this context, a medicinal 

chemist and de novo molecule design software are confronted with the 

challenge of cherry picking the most promising candidates in an infinite 

chemically feasible space of drug-like molecules 100,223'225.

The ultimate outcome of de novo design process is to identify isofunctional 

structures with different backbone architectures, to obtain new lead series 

with improved properties or to circumvent intellectual property constraints, 

what is described as "Scaffold Hopping".222
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Essentially, De novo design is faced with the problem of combinatorial 

explosion due to the huge number of different element types, the way they 

can be linked, the large number of theoretically possible topologies and the 

variety of conformations for a single topology. This renders exhaustive 

search for all solutions an impossible task. For this a number of constraints 

are to be applied during the de novo design process 222.

5.1-7-1 Primary ta rg e t constraints

All information that is related to the ligand receptor interactions gathered 

from the 3D receptor structure and known ligands. First, the binding site is 

examined to derive shape complementarity constraints for a ligand, then 

specific non-covalent ligand-receptor interactions in the form of 

"hypothetical Interaction sites" are identified. Interaction sites are 

positions in space that is not occupied by the receptor and in which a 

ligand atom favourably interacts with the receptor. They are typically 

subdivided into H-bonds, electrostatic and hydrophobic interactions. 

Receptor groups capable of H-bonding are of special interest owing to its 

strongly directional nature. Key interaction sites define the explicit 

requirements for successful receptor-ligand binding and thus have a major 

role in reducing the vast number of possible structures 222 * 228.

JA ./.Z  S econdary ta rg e t co n s tra in ts

These include essential drug properties other than the binding affinity; 

such as "ADMET" properties where candidate compounds with suitable 

absorption, distribution, metabolism, excretion and toxicity can be 

predicted by filtering the designed structures with Lipinski's rule of five 22°, 

however a lowered upper limit for the molecular mass of 350 and c logP of 

3 might be more appropriate for the proposed molecules to be potential 

leads 229. Also chemical stability is sometimes addressed as a list of 

undesirable substructures. Finally, synthetic accessibility is dealt with in
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some programs via assembling the building blocks in accordance with a set 

of virtual organic reaction schemes.222 

5.1.7-3 S tru c tu re  sam pling

The basic building blocks for the assembly of candidate structures can be 

either single atoms or fragments. Atom-based approaches are superior in 

terms of the structural variety. Fragment-based design strategies, on the 

other hand, significantly reduce the size of the search space by using 

fragments that are usually common in drug molecules 222.

There are several general concepts of structure sampling; the following are 

some of them:

a. Fragment placement and Connection (Linking approach)

Building blocks are placed at key interaction sites of the receptor either by 

the de novo program itself or by another program (pre-docked building 

blocks) then automatically connected by linkers to yield a complete 

molecule that satisfies all key interaction sites 222.

b. Sequential growth (Growing procedure)

A single building block point is selected by the program, the user or given 

by a predocked fragment and placed at one of the key interaction sites of 

the receptor. The structure is then grown to provide suitable interactions 

for the other key interaction sites of the receptor. Later, substituents are 

linked to the main scaffold with user-defined attachment sites 222.

c. Atomic lattice strategy

The placement of an atomic lattice of a non-physical atoms, which can be 

either sp3 carbon atoms (diamond lattice) 230, randomly and evenly 

distributed atoms 227, or pre-docked fragments 226 in the binding site. 

Lattice atoms in the vicinity of different interaction sites are joined through 

the shortest path. Atoms that are part of the shortest path are connected 

by newly formed bonds.222
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Also few de novo design methods implement a MD simulation for structure 

sampling. Initially, building blocks are randomly positioned in the binding 

site. Covalent connections are formed among the building blocks in a 

stochastic and reversible manner to dynamically evolve candidate 

compounds. 230‘234

More recently, a haptic-driven molecular modeling software was introduced 

to the de novo drug design field, where the chemist can test his hypothesis 

by experiencing the energy profile of the protein ligand interactions in an 

intuitive way through the combined use of sight and touch 235.

3.1.5 M o le c u la r  D yn a m ics  (M D )

While Molecular Mechanics (MM) is concerned with atomic interactions, 3D 

geometries and energies in a given moment, Molecular Dynamics (MD) 

aims to predict the temporal behavior of a molecular system over time and 

thereby gives a view of the motion of the atoms. Such motion is inherent 

to all chemical processes from simple vibrations like bond stretching and 

angle bending, which give rise to IR spectra, to chemical reactions and 

ligand-receptor binding 236. MD is based on the following simplified 

assumptions: (i) the nuclei can be treated as classical particles; (ii) the 

Born-Oppenheimer approximation holds; (iii) the electronic degrees of 

freedom can be integrated out.237

In MD, simulating the evolution of a system of N particles is done by 

solving Newton's second law of classical mechanics, F = ma (F; force, m; 

mass, a; acceleration and at same time the second derivative of 

displacement with respect to time) allowing the calculations of the position 

of each atom in the system as a function of time. MD simulation is capable 

of generating successive configurations of a system of molecules and 

propagating the positions and velocities forward in time. It mimics the way 

molecules search their conformational space in reality, being particularly
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suited for the study of protein or other large molecule's conformations, 

which cannot be simulated quantum-mechanically due to their size 175.

The starting point for MD simulation should be the energy minimised 

structure of the system in study. Although MD can be carried out in 

vacuum, unlike most molecular mechanics calculation it usually uses 

explicit solvent approaches. A box filled with water molecules is generated 

around the molecule to study, and periodic boundary conditions are 

applied (the box is surrounded by identical copies of itself, so whatever 

leaves it from one side enters back from the opposite side). Usually, MD 

simulation involves 3 steps:

• Energy minimisation of the system in study.

• Solvent equilibration.

• Setting simulation parameters (temperature, pressure, control 

algorithms and time step), computing the total force that acts on 

each atom, updating the coordinates and the velocities of the atoms 

by the integration of the Newton's equation of motion.

The simulated time span depends on the computational power used. With 

the availability of modern supercomputers, it has been possible to extend 

the length of the simulations up to hundreds of nanoseconds. 

Nevertheless, there is always a trade-off between size and complexity of 

the system under study, and the length of the trajectory. Data from MD 

trajectories can be used to calculate several structural and dynamic 

properties such as displacement and fluctuation;

• Displacement

The conformational stability of a macromolecule can be estimated by the 

Root Mean Square Displacement (RMSD) of a set of N atoms at time t, 

with respect to the initial conformation. An increase of the RMSD indicates 

that the protein moves to a conformation different from the initial
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structure, which is usually used to estimate the stability of ligand-target 

complex 173,236'237.

• Fluctuation

The Root Mean Square Fluctuation (RMSF) is computed for each atom 

providing information about the atomic fluctuations throughout the 

simulation and thus indicates the most flexible regions of the protein, 

which is often relevant to the protein function 173'236'237.

5 . I .9 L ig a n d -B a s e d  D ru g  D e s ig n  (L B D D )

If  a 3D structure of the target is unavailable but one or more binding 

molecules are known, LBDD provides an alternative strategy.

One way is the derivation of a 3D ligand "Pharmacophore" model of the 

known actives. Pharmacophore is the ensemble of steric and electronic 

features that is necessary to ensure the optimal interactions with a specific 

biological target structure. Once established, it can be used to obtain a 

pseudo-receptor model to design structures that are complementary to the 

primary target constraints. The generalisation quality of a 3D 

pharmacophore model improves with the high degree of structural 

diversity in the training set of known ligands. Also, a common binding 

mode of all deployed ligands is a prerequisite for the building of a 

predective model238.

A set of known ligands can also be used for the development of a target- 

specific Quantitative Structure-Activity Relationship (QSAR) model. QSAR is 

the mathematical relationships linking chemical structure and activity of a 

series of compounds in a quantitative manner 239'244.
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Chapter 3 

Part 2

H C V  H el icase; M echan is tic  insights

There are 5 solved crystal structures of HCV helicase enzyme. Their 

corresponding PDB files are; 1HEI showing the closed conformation 143, 

80HM showing the open conformation 144, 1A1V showing the HCV helicase 

with a bound DNA oligonucleotide 116, 1CU1 which is a full-length NS3 

complex with the central portion of NS4A 145 and recently 2F55 showing 

two NS3 helicase fragments bound to the same oligonucleotide 146. These 

crystal structures, along with high-resolution NMR structures of HCV 

helicase domain 2, have greatly influenced proposals explaining how 

helicases function and have guided experiments designed to test these 

ideas 245,246.

The NS3 helicase enzyme forms a Y-shaped molecule with three domains, 

the N-terminal domain (domain 1) and the middle domain (domain 2) are 

above the C-terminal domain (domain 3). In structure 1A1V short DNA 

oligonucleotide is bound to the helicase in the cleft that separates domain 

3 from domains 1 and 2 (Figure 3.3 B) 247.

The main difference between the available HCV helicase structures 

concerns the position of domain 2 relative to domains 1 and 3. Domains 1 

and 3 share more of an interface than domain 2 shares with either of the 

other domains. Domain 2 is connected to domains 1 and 3 via flexible 

linkers, which allow domain 2 to freely rotate relative to domains 1 and 3. 

In some structures, domain 2 is rotated away from domain 1 in an "open" 

conformation, while in other structures domain 2 is closer to domain 1 in a 

"closed" conformation (Figure 3.3). The pivot point for these rotations is 

provided by additional contacts between domain 3 and an extended 13- 

hairpin originating from domain 2. It is believed that switching between



Chapter 5 Results and Discussion 62

the open and closed states is modulated by ATP binding and hydrolysis 247.

Domain 2 Domain 2

Domain 1 S'- Domain 1

Domain 3 Domain 3

Figure 3.3 Comparison of HCV NS3 Helicase structures in the open (apo) conformation, PDB file 
80HM (A) and the closed conformation with the polynucleotide strand, PDB file 1A1V (B) showing 

the relative free rotation of domain 2 upon binding to the polynucleotide strand.

In addition to the known conserved seven motifs, which essentially form 

the motor that convert the chemical energy from ATP hydrolysis into a 

mechanical force and hence leading to the disruption of DNA or RNA base 

pairs, there are a number of other motifs which are found only in HCV 

helicase and closely related viruses, including the Arg-clamp, the Phe loop, 

and all motifs in domain 3 . 247

With a hope of discovering regions that might provide binding sites for 

novel anti-HCV therapeutics, the role of two motifs in domain 2 that are 

conserved in all HCV isolates but not related proteins, were examined by 

Frick et a l138.

The rationale was that compounds that bind such sites would be relatively 

nontoxic because similar sites are not present on related cellular helicases. 

The first motif identified was centered on Arg 393, a residue that contacts 

the nucleic acid backbone (Figure 3.4 A). When Arg 393 is changed to Ala 

(R393A mutation), the protein still catalyses RNA-stimulated ATP hydrolysis 

but does not unwind DNA or RNA, suggesting that this Arg-clamp motif 

tether the protein to the nucleic acid strand on which it is translocating 247.
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The second motif found to be characteristic of only helicases from HCV 

strains, is a loop connecting two (3-sheets that extend from domain 2. The 

(3-loop structure is composed of residues Thr 430 to Ala 452, and a pair of 

residues, Phe 438 and Phe 444 "Phe-loop". Mutagenesis of the Phe's that 

flank the Phe-loop demonstrates that the loop is not involved in nucleic 

acid binding. Rather, Phe 438 and Phe 444 are important both for proper 

protein folding and for modulating conformational changes leading to the 

release of DNA upon ATP binding.246

Moreover, all helicases crystallised to date contain domains that resemble 

domains 1 and 2, but none share a domain that resembles domain 3. 

Domain 3 is missing entirely; suggesting that domain 3 might not be 

required for HCV helicase movements. This is not the case, however, and 

although its role in unwinding is only beginning to be understood, domain 

3 is clearly essential. Deletion of 97 amino acids from the C-terminus of 

NS3 results in an inactive helicase.248,249

Two key residues in domain 3 are Trp 501, which stacks against a nucleic 

acid base to act like a bookend 250'252, and Glu 493, which helps repel 

nucleic acids from the binding cleft upon ATP binding.253

Figure 3.4 A) arginine 393 clamp (blue) in contact with phosphate group (orange). B) Key residues 
contacting the oligonucleotide bound to HCV helicase in PDB file 1A1V 116

W510
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There is presently no consensus on exactly how the HCV helicase unwinds 

RNA. However, unlike SF1 helicases, which have many interactions with 

nucleic acid bases, most of the contacts of HCV helicase occur with protein 

side chains and the sugar-phosphate backbone of DNA 116. A close-up of 

the DNA binding site of structure 1A1V with key amino acids is highlighted 

in (Figure 3.4 B). Two key hydrogen bonds are donated by residues Thr 

269 from domain 1 and Thr 411 in domain 2. Mutagenesis of either residue 

affects both RNA binding affinity and unwinding rates 138.

Based on the observation that the oligonucleotide appears to be locked 

into the binding cleft because a residue in domain 3, Trp 501, is stacked 

against the 3'-terminal base, it was proposed that ATP binding, and the 

subsequent closure of the cleft between domains 1 and 2, will lead to a 

ratcheting of Trp 501 past 1 or 2 nucleotides. Consequently, the protein 

would move towards the 5'-end of the bound nucleic acid. After ATP is 

hydrolysed and Trp 501 is again locked into place acting as a bookend, the 

cleft opens and RNA slides through the other side of the protein. Similarly, 

it was proposed that the residue that acts as a 5'-bookend, analogous to 

the 3'- bookend Trp 501, might be Val 432 in domain 2 216.

5.2.1 aPropulsfon~fc>y R e p u ls io n *  m ode l

More recently, a model to explain HCV helicase movement suggesting that 

HCV helicase utilises electrostatic forces to move along DNA and RNA was 

proposed 253'254. This "propulsion-by repulsion" model (Figure 3.5) is based 

on two observations. First, DNA is tightly bound in a pocket of the enzyme 

that is highly negatively charged. Second, release of DNA from the enzyme 

is pH dependent; the enzyme binds weaker to DNA in the presence of ATP 

at a higher pH. The first observation hints that there is a potential energy 

buildup when the protein is locked onto DNA in the absence of ATP. The 

second observation suggests that ionisable residues come in contact with 

DNA upon ATP binding. It was shown using mutagenesis that one of these
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key residues is Glu 493 in the ss DNA binding cleft 253.

In this model, ATP binding leads to a conformational change such that the 

nucleic acid bases can clear the Trp 501 bookend 254. In the absence of 

ATP, RNA cannot exit the enzyme because it is blocked by Trp 501 and 

clamped in the cleft by the Arg clamp on domain 2 247. When ATP binds, 

domain 2 rotates bringing with it the positively-charged Arg-clamp. The 

Arg-clamp attracts the negatively charged phosphodiester backbone so 

that RNA moves free from the bookend. The negatively charged RNA is 

then repelled by the negatively charged binding cleft, so it moves through 

the protein until ATP is hydrolysed, and the protein clamps it tightly again 

(Figure 3.5).

Domain 1
Domain 2

Arg393

Domain 3

Figure 3.5 The propulsion-by-repulsion model; ATP binding rotates domain 2 so that a positively 
charged Arg-clamp moves the RNA so that it clears Trp 501, which is holding the RNA in a 

negatively charged cleft. When ATP is bound, the protein repels RNA past Trp 501 so that the 
protein moves in a 5' direction until ATP is hydrolysed and the protein returns to its original

conformation.
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Chapter 3 

Part 3

Q u m a zo lm e  b ased  s tru c tu re s  

3.3-1 In tro d u c to ry  rem arks

In this work the 3D X-ray crystal structure of NS3 helicase co crystallised 

with a deoxyuridine octamer; PDB entry 1A1V 116 with no water molecules 

was used as an input file for molecular modelling studies. Also the crystal 

structure of the PDB file 80HM 144 showing the open conformation was 

occasionally used for comparison purposes. The RNA binding site was 

chosen to design the potential inhibitors over other strategies because the 

latter suffer from either lack of correlation with unwinding activity (ATP 

binding site) or cytotoxicity (ATP binding site and intercalation) [Chapter 2, 

p29-33]. The target enzyme region for running the docking simulation was 

restricted to the area surrounding the polynucleotide strand (Figure 3.6).

Figure 3.6 the interaction of the backbone phosphate groups of ss DNA with NS3 helicase

In this project, facing no much available data or leads, a SBDD approach 

was carried out. Starting from the structure of the small number of the 

reported compounds that target the RNA binding site, a thorough search
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for promising binding regions was done using docking simulation modules 

within MOE 260 and FlexX 261 software packages (Figure 3.7).

\  / / H
5 IC50 0.7 nM

ii :i O  .s
" - O

6 (IC50 7 ^M) 
Viropharma Inc.162

QU663

COOH

COOHCOOH

COOH

HOOC COOH
16

Chemical structure of Diaryl dicarboxylic acid derivatives (14-16) HCV helicase inhibitors255
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Figure 3.7 Chemical structure of compounds used in searching for binding regions, compound 17
was suggested in a previous study256
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Compound 17 was previously 256 suggested by the aid of Ligbuilder214, a 

de novo drug design program. 17 was designed to fit in the area centred 

on Arg 393 clamp, which is known to play an important role in the 

unwinding activity of helicase enzyme via electrostatically tethering 

phosphate groups of the polynucleotide (Figure 3.8).

A B
Figure 3.8 A) Crystal structure of HCV NS3 helicase protein complexed with a polynucleotide 

strand. B) Arg 393 clamp electrostatically holding the negatively charged phosphate group.

5.^-2 In h ib ito r S tru c tu re  Design

Unfortunately, previous attempts to prepare 17 were not successful. Thus, 

it was proposed to enhance the properties of this compound through 

simplification and rigidification of its structure. In particular, since it was 

noticed that while 17 exhibits promising interactions with the RNA binding 

pocket of the helicase enzyme, this compound has little fidelity to the same 

site; in other words different conformations binds different regions. This 

may be because of the relative flexibility of this compound attributed to 

the number of single rotatable bonds. Bond rotation can lead to a large 

number of conformations or shapes, which in turn bind to different sites in 

the apparently wide RNA binding pocket.

• R.igidification Strategy in Drug Design

Generally, rigidification is used to increase the activity of a drug or to 

reduce its side effects. This approach can work because the more flexible a
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structure is, the more likely it will interact with more than one receptor and 

produce other biological responses (side effects). Usually, this involves 

locking the molecule into a more rigid conformation so that it cannot take 

up other shapes or conformations. Thereby, the molecule is ready to fit its 

target receptor site without the need to adjust to the correct conformation. 

There is an important consequence when it comes to the thermodynamics 

of binding as well. A flexible molecule has to adopt a single active 

conformation in order to bind to its target (more ordered). This results in a 

decrease in entropy and in turn lowers the binding affinity. A totally rigid 

molecule, on the other hand, is already in its active conformation, and 

there is no loss of entropy involved in binding to the target. If the binding 

interactions are exactly the same as for the more flexible molecule, the 

rigid molecule will have the better overall binding affinity 257.

• R ig id ifica tio n  o f  17

Since incorporating the skeleton of a flexible compound into a ring is the 

usual way of locking a conformation, this strategy was applied on structure 

17. Three possible ring systems, A, B and C were suggested to make 17 

more rigid as shown in (Figure 3.9). The suggested ring systems 

represented a core scaffold liable to further functionalisation excluding the 

Michael acceptor and keeping the major features; the benzoate group and 

the Hydrogen-bond forming atoms. In a preliminary docking simulation 

study, a particularly favourable binding mode was exhibited by the bicyclic 

ring system A as evaluated by both score and visual inspection, in addition 

to a remarkably improved selectivity to the same site of the RNA binding 

pocket. Furthermore, the modification of the chiral chromene ring in 

structure A into an aromatic bicycle ring (naphthalene) proved to give a 

better alignment of the carboxylate anchor moiety with the phosphate 

group of the polynucleotide so that it will be more likely to form a salt 

bridge with Arg 393 clamp in the active site. Therefore a scaffold



C hapter 3 Results and Discussion 70

composed of an aromatic bicydic ring attached to a benzoate group was 

proposed to provide better geometric fit into the binding pocket.
In this context a number of plausible focused databases of compounds 

were suggested to identify the most promising ring system with an 

optimised arrangement of substituents. Docking/scoring simulation 

experiments were used to evaluate the binding affinities of some of the 

aromatic bicydic ring analogues of structure A such as naphthalene, 
quinoline and quinazoline.

COOH

o
17

HO

“COOH
‘COOH

A B C
Figure 3.9 Rigidification of 17 lead to 3 main ring systems; A, B and C

The new ligand structures were built taking in consideration the charge 

adjustment of the carboxylate group then energy minimised, using the 

MMFF94x force field with 1000 iterations then saved as a small focused 

database. The active site was defined automatically as the area 

surrounding the co crystallised polynudeotide strand. Flexible ligand , 
docking using SYBYL (FlexX) 258 was carried out to search the conformation 

space and predict the orientations of each of the designed inhibitors within 

the previously defined pocket; this was followed by energy ranking of the 

different possible solutions obtained. The output database, which included
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the top scoring 30 poses for each single ligand was visualised using MOE 

compute interactions option. 259 The ranking of these conformations was 

done by the scoring function, which includes van der Waals and 

electrostatic energies among other parameters. For the visual inspection 

purposes, the Connolly surface of the enzyme pocket, which shows the 

solvent accessible area in the protein structure, was generated.

• N aph th a len e  based s c a ffo ld
The chromene ring in structure A was replaced by a naphthalene nucleus 

with one substituent at different positions to construct a small focused 

library of naphthalene based structures (Figure 3.10) this database 

underwent docking simulation study, the results of which guided the 

following structural modification steps.
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Figure 3.10 Naphthalene based focused library
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Based on the results of the docking simulation of the above database and 

in order to optimise the position of the functional groups, the database 

was enriched with structures that have extended distance between the 

benzoate group and the bicydic ring with one hydrogen-forming 

substituent at position 6 by studying the effect of inserting a methylene 

group between the two ring systems either in x or y position (Figure 3.11).
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Figure 3.11 Modifications in naphthalene based structure to enrich the first database

An optimised naphthalene based structure exhibited the following binding 

interaction with RNA binding site (Figure 3.12).

A sp 4 1 2  
m a in  c h a in

COOH
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m a in  c h a in

'  V al 4 3 2  
m a in  c h a in

Figure 3 .12 Interaction of naphthalene based optimised structure with NS3 helicase
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• Q u in o lin e  based s c a ffo ld

In an analogous docking experiment, a quinoline based focused database 

was constructed and the binding interactions with the active site were 

studied (Figure 3.13).

COOHCOOH
COOH

HOOC' HOOC'

Figure 3.13 Quinoline based focused library

An optimised quinoline based structure had the following binding pattern 

with helicase enzyme as shown in (Figure 3.14).

COOH

His 369 
main chain

Figure 3 .14  Interaction of quinoline based optimised structure with NS3 helicase
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• Q u m azo lin e  based s c a ffo ld

In our search for more synthetically feasible compounds a quinazoline 

based database (Figure 3.15) was built and docked then enriched by more 

structurally modified compounds guided by the score and the visual 

inspection of the docking results of each docking run.
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Figure 3.15 Quinazoline based focused compound database

Interestingly, a significant majority of the top scoring binding modes of 

most of the structures occupied the same region of space and in particular 

having some binding interactions with those crucial residues involved in 

tethering the phosphate backbone of the polynucleotide strand to the
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helicase enzyme namely; Thr 411, Val 432 besides the Arg 393 clamp 

(Figure 3.16).

Figure 3.16 Top scoring docking modes of the quinazoline based structures occupying the same
region of space.

Figure 3.17 Interaction pattern of 3-(6-Nitroquinazolin-4-ylamino)benzoic acid (24) with NS3
helicase

Furthermore, common interaction features with the RNA binding pocket 

were noticed in a significant majority of the structures as exemplified by 3- 

(6-Nitroquinazolin-4-ylamino) benzoic acid (24) in (Figure 3.17).

COOH

Among these interactions is the negatively charged carboxylate group, 

which interacts with the positively charged guanidine group of Arg 393 

residue by forming an ion pair at distances ranging from 2.5 to 3.1 A. The 

N1 nitrogen of the quinazoline ring is involved in hydrogen bond 

interaction with the backbone NH of Val 432 at distances less than 3 A. On
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the other hand N3 of the heterocycle is interacting with the backbone NH 

of Asp acid 412. The central NH group forms hydrogen bond with Thr 411 

residue. In addition to the hydrophobic interactions with Thr 411, Ala 413, 

Ser 370, Lys 371, Tyr 392, Val 432, Thr 448, Asp 412.

In summary, it was quite reasonable to prepare a series of quinazoline- 

based compounds following the approach outlined in Figure 3.18.

And even more encouraged by the fact that some quinazoline based 

compounds were reported to have antihepatitis C virus activity targeting 

either one of the viral non-structural proteins 260 or one of the intracellular 

machinery components involved in HCV replication.261
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Figure 3.18 General protocol for designing quinazoline based potential HCV helicase inhibitors

5.5*5 5 lo iso stensm  o f  c a rb o x y la te  g ro u p

The carboxylate group in the above compounds is considered to be the 

major anchor moiety for its proposed interaction with the Arg 393 amino 

acid in the RNA binding site of the helicase enzyme. The tetrazole ring is 

known to be a bioisostere of the carboxylate function group principally in 

terms of its physicochemical properties related to acidity. 262 It  was 

anticipated to prepare the tetrazole analogues of the carboxylic group
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derivatives because the former is more stable and more lipophilic 263 hence 

better cell membrane permeability could be anticipated (Figure 3.19).

This assumption was even more supported by the docking results of the 

tetrazole analogues, where good alignment geometry and binding 

interactions with the key residues were exhibited. For example in 

compound 50 the tetrazole ring can form ion pair with Arg 393 guanidine 

group and quinazoline nitrogens form another two hydrogen bonds with 

Lys 371 side chain NH group and Arg 393 backbone NH group. The central 

NH group of the ligand is forming hydrogen bond with Thr 411 residue 

besides; the quinazoline ring is involved in an aromatic-cationic interaction 

with the guanidine group of the Arg 393 (Figures 3.20).

Figure 3.20 A) 2D diagram showing the predicted binding interactions of tetrazole analogue 50 
with helicase. Hydrophobic residues (green), polar residues (pink); [basic (blue ring), acidic (red 

ring)], H-bonds [(arrow); residue side chain (green), residue backbone (blue)] annotated proximity 
contour and solvent surface area exposure properties are drawn in the background of the diagram.

B) 3D depiction, polynucleotide (green)

Figure 3.19 Bioisosteric replacement of COOH group by tetrazole ring

A B
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3 .J .+  S ynthes is  o f  Q u in azo lin e  based series

A selection of Quinazoline derivatives for synthesis was based on both 

molecular modelling studies as described in the above sections as well as 

synthetic feasibility.

Mainly, the derivatives selected for synthesis have benzoate group or one 

of its bioisosteres attached to position 4 of the quinazoline ring system 

through an amino or aminomethyl linker.

Synthetic routes of the selected compounds were designed based on 

established procedures.

HCOOH

,NHZ .NH

NH2

DMF DMA NH

‘CN
‘CN

Figure 3.21 common procedures for preparation of 4-anilinoquinazolines (1 and 2) vs Tosu one (3)

In literature, 4-anilinoquinazoline derivatives are generally prepared by 

reacting substituted anilines with 4-chloroquinazolines. The 4- 

chloroquinazolines are prepared by chlorination of the corresponding 

quinazolinones, which, in turn, are prepared by heating anthranilamides 

with formic acid 264 or triethyl orthoformate 265 or by heating anthranilates 

with formamide 266. In this work the more efficient synthesis pathway
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reported by Tsou e t al 267 was adopted in which, ring cyclisation and 

incorporation of the 4-anilino group occurs in a single step (Figure 3.21). 

The ester, amide and tetrazole derivatives were prepared together with 

their free acidic counterparts in order to mask the high polarity of the 

latter and hence attain better cell membrane permeability. Also, it was set 

out to synthesise more analogues to probe the vicinal chemical space of 

this scaffold (Figure 3.22).

ID Ri R2 r 3 n ID Ri r2 r3 n

24 no2 3-COOH H 0 43 H 4'-COOH H 1

25 no2 3'-COOCH3 H 0 44 no2 4'-COOCH3 H 1

26 no2 3'-CONH2 H 0 45 H 4'-COOCH3 H 1

29 H 3'-COOH H 0 50 no2 3'-tetrazolyl H 0

30 H 3'-COOCH3 H 0 51 H 3'-tetrazolyl H 0

31 H 3'-CONH2 H 0 52 no2 4'-tetrazolyl H 0

35 no2 4'-COOH H 0 53 H 4'-tetrazolyl H 0

36 no2 4'-COOCH3 H 0 55 no2 4'-CN H 0

37 no2 4'-CONH2 H 0 58 no2 2-COOH H 0

38 H 4'-COOH H 0 59 no2 2'-CONH2 H 0

39 H 4'-COOCH3 H 0 60 H 2'-COOH H 0

40 H 4'-CONH2 H 0 61 H 2'-CONH2 H 0

42 no2 4'-COOH H 1 65 H 4'-COOCH3 ch3 0

Figure 3.22 structure of the synthesised 4-anilinoquinazoline derivatives
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N’ -(2 ~ C ija n o ~ 4 -m tro p h e n y l)~ N ,N -d i'm e tliy li'm i'c lo  fo rm a m id e

D M FD M A

20
Yield 98%

N’ -C l-C ija n o p h e rH jb -N jN -d im e th y lirm d o fo rn ia m i'd e

.CN .CN

D M F D M A

21 19 22
Yield 90.5 %

The formamidine intermediates 20 and 22 were prepared by condensation 

of 5-nitroanthranilonitrile (18) or anthranilonitrile (21) respectively, and 

dimethylformamide dimethyl acetal (DMF DMA) (23) following a reported 

procedure by Tsou 267. Compounds 20 and 22 were obtained in a very 

good yield. It  may be worth mentioning that 22 was previously prepared 

from different precursors namely; 2-amino-benzamide and DMF/POCb 268. 

A proposed mechanism for this kind of reaction is depicted in Figure 3.23.

Figure 3.23 General mechanism for the preparation of 4-anilinoquinazolines via formamidine
intermediates
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Cyclisation of N'-(2-cyanophenyl)-N,N-dimethylimidoformamide (20) or N'- 

(2-cyanophenyl)-N,N-dimethylimidoformamide (22) with the appropriate 

phenyl derivative [3-amino benzoic acid (23), methyl 3-aminobenzoate

(24), 3-aminobenzamide (25), 4-amino benzoic acid (32), methyl 4-amino 

benzoate (33) or 4-aminobenzamide (34), 4-aminomethylbenzoic acid 

(41), 3-(lH-tetrazol-5-yl)phenylamine (47), 4-(lH-tetrazol-5-yl) 

phenylamine (49), 4-aminobenzonitrile (54), anthranilic acid (56) or 

anthranilamide (57)] in acetic acid, was carried according to the general 

pathway depicted below.

.CN

AcOH HN.

reflux

X = H, N02 R = COOH, COOCH3, CONHz, CN, Tetrazolyl n = 0,1

3 - (6 -N itro c ]u in a z o lin ~ 4 -- ijla m in o ) b e n z o ic  a c id  d e r iv a tiv e s

nh 2

.CN

AcOH / reflux
NH

COR

COR

20 23-25
R= OH, OCH3, NH2

26-28
Yield 84.7-96.3%

Cyclisation of 20 with the appropriate benzoic acid derivative [3-amino 

benzoic acid (23), methyl 3-aminobenzoate (24) or 3-aminobenzamide

(25)] was attained using the general procedure to give the 3'-substituted
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anilinonitroquinazoline derivatives (26-28). The proposed reaction 

mechanism is illustrated in Figure 3.23.

5 - (Q u m a z o lm ~ 4 ~ y la m m o ) b e n z o ic  a c id  d e r iv a tiv e s

.CN

AcOH / reflux
NH

‘COR

COR

29-31
Yield 66.8 - 97.8 %

22 23-25
R= OH, OCH3, NH2

The 3'-substituted quinazolines (29-31) were obtained by following the 

general pathway using the formamidine intermediate 22 with the 

appropriate benzoic acid derivative [3-amino benzoic acid (23), methyl 3- 

aminobenzoate (24) or 3-aminobenzamide (25)]. 3-(quinazolin-4-ylamino) 

benzoic acid (29) was prepared previously following a different pathway 

that involved cyclisation of quinazolinone ring, chlorination and coupling 

with 3-aminobenzoic acid .269

(^ -N itro c ju in a z o lin -4 '- t^ la m in o )b e n z o ic  a c id  d e r iv a t iv e s

NH;
.CN

AcOH / reflux
NH

JOTCOR ROC

20 32-34
R= OH, OCH3< NH2

35-37
Yield 82 - 91.4 %

The 4'-substituted benzoic acid derivatives (35-37) were prepared from 

20 and the appropriate benzoic acid derivative [4-amino benzoic acid 

(32), methyl 4-aminobenzoate (33) or 4-aminobenzamide (34)] following
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the general pathway. 35 and 37 were also reported previously through 

different pathway.270'271

4 -- (Q u m a z o lm - 'f - i j la m m o )b e n z o ic  a c id  d e r iv a tiv e s

NH;.CN
AcOH / reflux

NH

COR
ROC

22 32-34 38-40 R= OH, OCH3, NH2 
Yield 65.6 - 80.9% .

Similarly, a mixture of 22 and the appropriate benzoic acid derivative [ 4- 

amino benzoic acid (32), methyl 4-aminobenzoate (33) or 4- 

aminobenzamide (34)] to afford (38 -40). Compound 38 was reported 

before using a different pathway.269

4-- ( (6 -N itro c ju in a z o lin -4 -~ i) Ia m in o )m e tIu jl)b e n z o ic  a c id

d e r iv a tiv e s

R'
.CN

HN.AcOH / reflux+

COOH

COOH

42, 43 R= N02 , H 
Yield 94.2, 99.2 %

20 , 22 41

Compounds 42 and 43 were prepared from a mixture of either N'-(2- 

cyano-4-nitrophenyl)-N,N-dimethylimidoformamide (20) or N'-(2-cyano 

phenyl)-N,N-dimethylimidoformamide (22) with 4-aminomethyl benzoic 

acid (41). Both products were obtained in a very good yield. 43 was
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reported before via ring cyclisation into quinazolinone, chlorination and 

substitution with amino benzoic acid.272

M e th y l 4 *-((c ju m a z o lm ~ 4 -'y la m in o ) m e th y l)  b e n z o a te  e s te rs

MeOH/SOCh

COOH
42, R=N02
43, R = H Yield 81.4 - 87.3 %

COOCH3
44, R = N02
45, R = H

The esters of 42 and 43 were prepared using dry methanol and thionyl 

chloride mixture, which produces methyl chloride, hydrochloric and 

sulphuric acids in situ.
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3 a nd  -+ ~ ( lH -te tra z o l~ 2 -y l)b e n z e n a m in e s

1) NaN3 ;  E tjN  J iC I I lohitne .

2) HC1

47 Yield 80.9 %
N H ,

1) N«N3 / E i,N H C l i  toluene

48

N 'NH 
\  /  
N = N

49 Yield 74.3%

The tetrazole derivatives 47 and 49 were prepared from the respective 

reactions of sodium azide (Na N3) with the corresponding nitriles (46 or 

48) in the presence of triethylamine hydrochloride 273. A plausible 

mechanism for this reaction is the formation of an intermediate complex 

between triethylamine hydrochloride and sodium azide [Et3N.HN3], which 

in turn reacts with the triple bond of the nitrile group 273 (Figure 3.24).

- = N H  + Et3 NH

N3
I

RC= NH.NEtf

N— N
J  l

N
H. NEt3

Figure 3.24 Mechanism of tetrazole ring formation 

4 '-A m in o (5 - (1 H - te tra z o l-^ -L jl)p h e n y l)c |u in a z o li 'n e  d e r iv a t iv e s

20, 22

AcOH

50, 51 R=N02, H 
Yield 60.9 - 64.3 %
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The tetrazole analogues 50 and 51 were prepared using either of N'-(2- 

cyanophenyl)-N,N-dimethylimidoformamide derivatives (20 or 22) and 3- 

(lH-tetrazol-5-yl)phenylamine (47) following the general pathway.

4 '-A m in o (4 '- (1 H - te tra z o l~ 5 -y l)p b e n y l)c |u in a z o lin e  d e r iv a tiv e s

n h 2.CN

AcOH NH

NH

N = N NH

N = N  
52, 53 R=N02, H 

Yield 59.9 - 73.3 %
20, 22 49

Similarly, tetrazole analogues 52 and 53 were prepared using the 

corresponding N'-(2-cyanophenyl)-N,N-dimethylimido formamide derivative 

(20 or 22) and 4-(lH-tetrazol-5-yl)phenylamine (49).

4 '- (£ -N itro c |u m a z o lm -4 -L jla m m o )b e n z o m tr ile

.CN

AcOH °2 n

NH

CN

CN

55 Yield 64.3 %54

The nitrile analogue 55 was prepared using the corresponding N'-(2- 

cyano-4-nitrophenyl)-N,N-dimethylimidoformamide (20) and 4- 

aminobenzo nitrile (54) following the general pathway.
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2 - (Q u m a z o lin - 't~ i j la m m o )b e n z o ic  a c id  d e r iv a tiv e s

,CN NH.

.COR'

.NH

58-61
Yield 57.2 - 73.3 %

56, 57
R' = OH, NH2

In this group of compounds the effect of moving the carboxylate moiety to 

the ortho position of the phenyl ring was explored. A mixture of either of 

N'-(2-cyanophenyl)-N,N-dimethylimidoformamide derivatives (20 or 22) 
and the appropriate anthranilic acid derivative; anthranilic acid (56) or 

anthranilamide (57) was used as described previously in the general 

pathway. Compounds 60 274 and 61 275 were reported previously.

Moreover, it was interesting to probe the activity of the 2-methyl 

quinazoline derivative (65), which was prepared according to the following 

scheme (Figure 3.25).

,NHj

HCI

.NH

57 62 63
.CH3

NH2

NH TEA

COOMe

65 64
COOMe

Figure 3 .25 Synthesis scheme of Methyl 4-(2-methylquinazolin-4-ylamino)benzoate
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2 ~ M e th tjlc ju m a z o lm -'<K 5 H )~ o n e

‘CON Hz

A simple one step reaction was reported by Maloshitskaya et at 276 to 

prepare 2-methylquinazolin-4(3H)-one (63) as a result of condensation of 

anthranilamide (57) and acetylacetone (62) in the presence of catalytic 

amount of concentrated hydrochloric acid due to the loss of an acetone 

molecule, however no spectral data were reported. The same compound 

63 was prepared by a different pathway, the spectral data of which was 

used to compare our results. 277 A plausible mechanism of this 

condensation reaction is shown in Figure 3.26.

Figure 3.26 Plausible mechanism of condensation of anthranilamide (57) and acetylacetone (62)

O
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4 -C h lo ro ~ 2 ~ m e th L jlc |u m a zo lm e

The corresponding 4-Chloro-2-methylquinazoline (64) was prepared by the 

reaction of 63 with phosphorus oxychloride (POCI3) 278.

M e th y l 4 - - (2 -m e th y lc ju m a z o lm -4 '~ y la rn m o )b e n z o a te

NH
COOMe

COOMe

65 Yield 48.7 %64 33

Methyl 4-(2-methylquinazolin-4-ylamino) benzoate (65) was prepared by 

the reaction between 4-chloro-2-methylquinazoline (64) and methyl 4- 

aminobenzoate (33) in the presence of triethylamine as a base and 

isopropanol as a solvent.
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C h a p te r  5 

P a r t  +

oc3 p U n s a t u r a t e d  k e t o n e s

In tro d u c to ry  rem arks

In this part the 3D X-ray crystal structure of NS3 helicase enzyme co 

crystallized with a deoxyuridine octamer (PDB entry 1A1V) 116 with no 

water molecules was used as an input file for molecular modelling studies. 

Also the crystal structure of the PDB file 80HM 144 showing the open 

conformation was occasionally used for comparison purposes. The enzyme 

region for running the docking simulation was restricted to the area 

surrounding the polynucleotide strand. Targeting this area represented a 

considerable challenge, as after removing the nucleic acid from the 

enzyme crystal structure, it was obvious that this area is relatively exposed 

to the solvent in an apparently wide RNA binding pocket, making it 

implausible for a small molecule to bind tightly without being replaced by 

water or the nucleic acid itself.

Figure 3.27 NS3 HCV helicase (1A1V PDB file) RNA binding site showing Cys 431 crystal artefact 
(adduct of p-mercaptoethanol), Arg 393 clamp (blue) and nucleic acid strand (green)
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It is not uncommon to see adventitious binding of components of the 

crystallisation buffer to certain amino acid residues in a protein. Typically 

these observations are ignored, but these 'crystallisation artefacts' 

recorded in the Protein Data Bank (PDB) files may provide a good source 

of valuable information on serendipitous binding sites 279.

An example of these crystallisation artefacts was noticed in the 1A1V PDB 

file where Cys 431 residue was implicated in the formation of a disulfide 

bond with a molecule of p-mercaptoethanol; a component of the 

crystalisation buffer (Figure 3.27). This information gave us a clue of both 

the exposure and reactivity nature of such residue. The location of Cys 431 

residue is not far from the substantial Arg 393 clamp residue (15.3 A in the 

open 80HM conformation and 16.4 A in the closed 1A1V one). As 

mentioned earlier the Arg 393 clamp plays a key role in the unwinding 

activity as proved by the detrimental effect of R393A mutation as well as 

being conserved in all HCV isolates 247.

From the crystal structure, it is perceived that Cys 341 residue is not 

directly involved in the binding of the nucleic acid strand since the latter 

was not inhibited inspite of its blockage by j3-mercaptoethanol molecule. 

However, its proximity from the RNA binding site as well as its reactivity 

made it a good candidate for designing a molecule that could react 

covalently with its thiol group. In fact these observations led to the 

hypothesis that a molecule that would interact with Arg 393 and at the 

same time form a covalent bond with Cys 431 through a chemically 

reactive group may have the potential to inhibit the helicase enzyme 

activity. In this context a molecule having an oc/ p unsaturated ketone 

(Michael's acceptor) group, which also would form hydrogen bond with the 

nearby Arg 481 and a carboxylate group to form an ionic salt bridge with 

Arg 393 clamp was suggested. By this geometric arrangemnt we would 

expect a molecule capable of forming a bridge between Arg 481, Cys 431
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and most important with Arg 393, thereby blocking the way of viral RNA 

passage through the helicase enzyme. Such a covalent binder would not 

be easy to be displaced by water or the incoming RNA (Figure 3.28).

Figure 3.28 The arrangement of the three key amino acids relative to the nucleic acid (orange)

Initially, the de novo software package LigBuilder 214 was used. 256 

Programs of this type normally require the user to define an initial "seed" 

in a binding site, after which the computer builds a series of molecules by 

adding to the growing structures the most suitable fragments taken from a 

given library in the software 222. The major drawback of this approach is 

that very often the proposed structures are highly complex and hence not 

synthetically accessible. Indeed this was the problem faced upon 

examining the results obtained. It was evident that the software attempted 

to fill the space in the large pocket generating a series of structures with 

relative complex chirality (Figure 3.29, Structure i). To overcome this 

problem, the fragment library was reduced to include only residues that, 

when combined, were less likely to generate stereocentres. Also, a virtual 

wall of dummy atoms (atoms with no physical property) was created to 

reduce the site size and to force the software to design a molecule that

a rg  3 9 3

5 .^ .2  Previous worlc overview
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would interact with the desired residues. The compounds thus generated 

were considerably simpler. Among them structure ii was able to interact 

with Arg 393 and also with another arginine located on the opposite side 

of the putative binding site, namely Arg 481. Furthermore ii was located 

close to Cys 431 and, although it does not have any functional group able 

to react with the Cys 431 amino acid, it presented an appropriate basic 

scaffold for further functionalisation. It was prepared and did not show 

promising antiviral activity 256. At this point a different approach to 

optimise the in silico design process where a series of virtual libraries were 

generated, varying the linker between the two aromatic rings whilst 

replacing one of the carboxylic acid groups with a Michael acceptor, which 

are known to react efficiently with natural thiols.

These libraries were then docked into the binding site then scored 

according to their ability to interact with the two arginines (481 and 393) 

and to place the vinyl ketone in close proximity to Cys 431 thiol. The most 

promising structure (Figure 3.29, 17) presented the reactive centre of the 

Michael's acceptor close to the sulphur atom of the Cys 431 with a side 

chain that could increase the interaction with the enzyme. A molecular 

dynamic simulation was performed on the ligand/protein complex to show 

the relative stability of the binding interactions of this compound.256,281

o
OH

Figure 3.29. Evolution in the design of a novel HCV helicase inhibitor
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5 .+ .J  In h ib ito r  S tru c tu re  D es ign

As previously mentioned, compound 17 was designed with the help of 

ligbuilder 258. Nevertheless, the stereocentre and relative structure 

complexity presented a synthetic accessibility challenge. For that a focused 

library of compounds was built to modify the core region of 17 while 

keeping the carboxylate and Michael acceptor features, which are believed 

to interact with the three key amino acids in the following pattern; Arg 393 

(salt bridge with the carboxylate group), Cys 431 (electrophilic conjugate 

addition of the «, p unsaturated ketone) and Arg 481 (hydrogen bond with 

the carbonyl group of the Michael acceptor) (Figure 3.30).
Arg481

o  Core

Cys341

Arg393

OH

Figure 3.30 Replacing the core of 17 with different ring and linker combinations
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Adopting a guided cycle of focused library design and docking simulation 

runs, structure 76 (Figure 3.31) emerged to have promising interactions in 

terms of orientation and shape complementarity within the helicase 

enzyme as examined by both scoring and visual inspection of FlexX 261 

docking output database results 281.

arg 481

COOH
arg 393

A

Figure 3.31 A) 2D depiction of p unsaturated pyrrole benzoate scaffold (76) B) proposed 
interaction patterns of 76 within NS3 helicase, C) surface representation of the proposed alignment 

of 76 (purple within NS3 helicase (green) and ss DNA (dU8) (orange)
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Compound 76 provided the required scaffold for the plausible key 

interactions; hydrogen bond between the carboxylate group and guanidine 

group of Arg 393 at 2.7 and 2.8 A, hydrogen bond between the carbonyl 

group of the vinyl ketone and Arg 481 at 2.7 A, proximity between the 

reactive point of the vinyl ketone moiety and the sulfur atom of Cys 431 

(3.1 A), This binding conformation is further stabilised by a hydrogen bond 

between the pyrrole NH and the backbone carbonyl group of Val 432 at 3 

A (Figure 3.31). A molecular dynamic simulation was then performed on 

the ligand/protein complex to show the relative stability of compound 76 

binding interactions. Encouraged by these results, compound 76 was 

synthesised and evaluated in both the subgenomic replicon and unwinding 

helicase assays.281

O „  o

COOH
76

H O
N II

J  H

\

_  (
COOH

o

77

“COOH

COOH

81

COOH

90 89
Figure 3.32 Analogues of 76, (77) 2,4 substituted pyrrole, (81) phenyl counterpart of the pyrrole 

ring, (89) and (90) N-methyl pyrrole derivatives.

Alongside with 76 , four other analogues were synthesised to probe the 

effect of such structure modifications on the activity. The first one is the 2, 

4-substituted pyrrole analogue (77 ), the second is the phenyl analogue of 

the pyrrole ring (81 ) and the N-methyl pyrrole derivatives (89 and 90)
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(Figure 3.32). The selection of these analogues to be prepared was based 

on the modeling studies and synthetic feasibility. For example, the phenyl 

analogue exhibited very similar interaction with Arg 393 and Arg 481, 

besides the proximity of the electophilic Michael's acceptor warhead to Cys 

431 residue. It  was also observed that a hydrogen bond could form 

between the amide carbonyl group and the backbone NH of Asp 412. In 

addition to the hydrophobic interactions with Leu 451, Pro 452, Val 432, 

Thr 411 and Ala 413 as depicted in Figure 3.33.

Figure 3.33 2D diagram showing the predicted binding interactions of the phenyl analogue 81 
with NS3 helicase enzyme. Hydrophobic residues (green), polar residues (pink); [basic (blue ring), 

acidic (red ring)], H-bonds [(arrow); residue side chain (green), residue backbone (blue)] annotated 
proximity contour and solvent surface area exposure properties are drawn in the background of the

diagram

Actually, compound 76 exhibited promising activity in the subgenomic 

replicon antiviral assay (EC50 = 9.2 pM), (CC50 =30 pM) as well as in the 

unwinding activity assay of helicase enzyme (IC50 = 0.26 piM). However, 

the other four analogues showed less activity in both assays. (Chapter 5) 

These findings were considered to be a starting point for further 

optimisation of structure/activity/toxicity profiles 281.

©
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5 .+ .+  P h a rm a c o p h o re  b a sed  v ir tu a l s c re e n in g

In an attempt to identify compounds of similar architecture to 76, virtual 

screening of the Enamine Database 282 was performed using the available 

structural data of NS3 helicase and the proposed scaffold orientation of 

compound 76. Using MOE 260 Pharmacophore Elucidation module, a 3D 

pharmacophore query was developed having four main features (F);

• F I, Anionic; to interact with Arg 393 residue.

• F2, F3; H-bond donors; to interact with Asp 412 and Val 432 residues.

• F4; Anionic or H-bond acceptor; to interact with Arg 481 residue.

Both features F I and F4 were set to be essential criteria being required for 

the bridge formation between the two arginines 393 and 481, while the 

other two F2 and F3 were chosen to be optional in order to widen the 

search scope. The satisfaction criterion was set to be partial match with at 

least two features to be met (Figure 3.34).

Figure 3.34 3D Pharmacophore Query based on structural data of NS3 helicase and the proposed 
binding mode of 72, showing 4 features, F I (grey), F2 (purple), F3 (yellow) and F4 (cyan)

Drug likeness filters were applied to remove compounds that fail Lipinski's 

rule of five 220 from the Enamine Database. FlexX docking simulation was 

used to virtually screen the database using the 3D Pharmacophore query 

as a pre-filter. The output database retained the best 10 conformations for 

each virtual hit. Analysis of the results was based on both the score and
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visual inspection of interactions with the active site residues, with a higher 

priority given to the chemically accessible smaller compounds, which allow 

further functionalisation in subsequent stages. Table 3.1 presents the top 

scoring sixteen virtual hits.
ID Structure ID Structure
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Table 3.1 chemical structures of top scoring compounds from the pharmacophore based virtual
screening of enamine database.
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Of particular interest was compound A1 whose predicted binding 

interactions with the RNA binding site of the helicase enzyme is shown in 

(Figure 3.35), together with its facile preparation via one step reaction as 

reported by Mani e t al 283 (Figure 3.36). Actually, this compound has a 

methyl ketone substituent, which can provide a precursor for further 

functionalisation into a Michael's acceptor group so that the effect of the 

presence of such group on the activity of the helicase enzyme could be 

probed.

Val 432

Arg 481

S NH
O ) Arg 393

Thr 433

Figure 3.35 predicted binding interactions of A l with NS3 Helicase

nh2

+
•COOH

COOHO1

Figure 3.36 Reported one-step synthesis of A l
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5 .+ .5  S y n th e s is  o f  P y r ro le  d e riv a tiv e s

.COOMeCOO Me p p c h /D M F

1,2 DCE
H2O
pyrrolidine

NH-
.COOH COOMe

KOH
MeOH

COOMe
DMAP
EDCI

COOMe
KOH
MeOH
THF

COOH

Figure 3.37 Scheme for the synthesis of pyrrole-2-(carboxamidomethyl) benzoic acid derivatives

M e th y l 5 ~ fo rm y l-1 H -p y r ro le -2 -c a rb o x y la te  

a n d  M e th y l -+ - fo rm y U lH ~ p y r ro le -2 -c a rb o x y la te

.COOMe
COOMe PQCh /  D M F .COOMe

67 Yield 65.4% 68 Yield 25.1%66

Formylation of methyl pyrrole-2-carboxylate (66) was carried out using 

Vilsmeier-Haack reaction which allows formylation of electron-rich arene.
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According to Wallace procedure, Vilsmeier reagent is formed in situ from 

anhydrous dimethyl formamide (DMF) and phosphorus oxychloride (POCI3) 

in dry 1,2-dichloroethane (DCE) (Figure 3.37). The reaction yielded a 

mixture of two isomers; the 2,5-substituted (67) and 2,4-substituted (68) 

formyl pyrrole derivatives in a 2:1 ratio. The two compounds were 

separated by column chromatography. A plausible mechanism of the 

formylation 284 is shown in Figure 3.38 and Figure 3.39.

po2c i2

p—Cl

Figure 3.38 a plausible mechanism of formation of Vilsmeier-Haack reagent in situ.

H3C00C

-H

H2O
-Me2NH2a

HjO
-Me2NH2a

H3COOC.

Figure 3.39 Mechanism of Vilsmeier-Haack reaction involving electrophilic aromatic substitution
and hydrolysis
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(E )-M c th tjl 5 -(3 -o xo b u t-1 -en y l)-1H -p t)rro le -2~carb o xy la te  and 
(E )-m eth y l 4'-(5~oxobut-1~enLjl)~1H~pyrrole-2~carboxylate

.COOMe COOMe
pyrrolidine

67 69 Yield 43.9 %

.COOMe .COOMe
H20

pyrrolidine

68 70 Yield 59.3 %

Crossed aldol condensation reaction between either of the formyl pyrrole 

derivatives (67 or 68) and acetone was conducted in aqueous medium 

and the presence of pyrrolidine (30 mol%) according to a reported 

procedure by Chimini et al 285. The reaction afforded 69 and 70 , 

respectively in a moderate yield.

( E ) - 5 - ( 3~oxobut~1~eni4l ) - 1H -pLjrro le -2 -carboxtjIi'c acid and 
(E )-m eth y l ^ '-(5 -o xobut-1 -eng I)-1H -p ijrro le~2-carboxijlic  acid

.COOMe .COOHKOH/MeOH

71 Yield 68.4 %69

.COOMe .COOH

KOH/MeOH

72 Yield 73.9 %70

Hydrolysis of Methyl pyrrole-2-carboxylate esters 69 and 70 using KOH 

yielded the free carboxylic acids analogues 71 and 72, respectively.
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M e th y l “t-C a m m o m e th y I)b e n z o a te

n h 2 NH;

SOCl21 Dry methanol

re f lu x  o j i .

COOH COOMe

41 73 Yield 96%

Esterification of 4-(Aminomethyl) benzoic acid (41) into the ester 

intermediate 71 was carried out using anhydrous methanol and thionyl 

chloride 285.

(E ) -m e th y l ^ -C C ^ -O -o x o b u t - l  -e n y l) -1 H -p y r ro le ~ 2 -  

c a rb o x a m id o )  m e th y l)  b e n z o a te  a nd  (E ) -m e th y l +-(("1--(3- 
o x o b u t-1 ~ e n y l) -1 H ~ p y rro le ~ 2 -c a rb o x a m !d o )m e th y l)b e n z o a te

,n h 2

DM APrCOOH
EDC1

“COOMeCOOMe

Yield 24.4 %71 73 74

,COOH
DMAP

EDC1

COOMe
COOMe

73 Yield 28.9 %72 75

The esters 74 and 75 were prepared by condensation of the appropriate 

oxobutenyl pyrrole-2-carboxylic acid (71 or 72, respectively) and methyl 

4-(aminomethyl) benzoate (73) 286 in the presence of the coupling agent 

1-ethyl 3-(dimethyl aminopropyl) carbodiimide hydrochloride (EDCI) and 

dimethylaminopyridine (DMAP) according to the parallel synthesis protocol 

of Boger.287
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The carbodiimide (EDCI) is a dehydrating agent, which reacts with the 

carboxylic acid group in 71 or 72 to produce the O-acylisourea 

intermediate, which can be viewed as a carboxylic ester with an activated 

leaving group. The O-acylisourea will react with 73 to give the desired 

amide and urea derivative (Figure 3.40).

s '  T
0  N*
1 c J

R O + n

Cl +NH

(
X  R'0=< F r V R .

H

NH

Lh

x iNH
' M

/  isNHo

R’ +NH Cl

(O  ( | H

T O
+nh 2 *

R'
Cl +NH—

Urea derivative

iNH Cl

Figure 3.40 Mechanism of the activation of carboxylic acid group in amide bond formation by EDCI

(E )  -4 -- ( (5~ (3~oxobut~1 -e n y l)~ 1 H ~ p y rro le ~ 2 ~ c a rb o x a m id o ) 

m e th y l)  b e n z o ic  a c id  a nd  ( £ ) - + - ( O t - O - o x o b u t - l  -e n y l)-1 H ~  

p y r ro le -2 -c a rb o x a m id o )  m e th y l)  b e n z o ic  a c id

KOH

^^COOH 
Yield 94.2 %7674

COOH

Yield 96.2 %75 77
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Hydrolysis of the ester group in methyl pyrrole benzoate derivative (74 

and 75) was carried out using aqueous KOH solution to afford the 

corresponding carboxylic acid derivatives 76 and 77, respectively.

J.+.6 P re p a ra tio n  o f  Pbenyl analogues

n h 2

TEA

D C M /D M F COOR

COOR
R= H , Me tetrabutyl amm acetate 

Pd acetate 
K jC O /K C l

‘COOR

Figure 3.41 Scheme for the synthesis of phenyl analogues

4 - - (G t- Io d o b e n z a m id o )  m e th y l)b e n z o ic  a c id  a nd  M e th ij l + - ( ( + -  

lo d o b e n z a m id o ) m e th y l)  b e n z o a te

NH.

TEA

D C M /D M F
‘COOR

COOR

75, 76 Yield 42.8, 77.3%78 41, 73 41, 79 R=H
73, 80 R=CH3

The intermediates 79 and 80 were prepared by coupling 4-iodobenzoyl 

chloride (78) and either 4-aminomethyl benzoic acid (41) or its methyl 

ester (73) 286 in the presence of triethylamine.
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(E )  ( (4-- ( 3 - O x o b u t - l  -e n y l)b e n z a m id o )  m e th y l)b e n z o ic  a c id

a n d  (E ) -m e th y l 4 '- ( (4 '- (3 -o x o b u t-1 -e n y l)b e n z a m fd o )  

m e th y l)  b e n z o a te

COOR

a; tetrabutyl ammonium acetate, Pd acetate, K2C03, KCI
79.81  R =H
80 .82  R = CH3 \

Each of the aromatic iodo derivatives 79 and 80 was coupled with methyl 

vinyl ketone employing Heck's reaction conditons; palladium II acetate, 

tetrabutyl ammonium acetate, potassium carbonate and potassium 

chloride to replace the iodo group by <*, p unsaturated ketone one 

according to the procedure reported by Battistuzzi et al 288.

Heck Reaction is the palladium-catalyzed C-C coupling between aryl halides 

or vinyl halides and activated alkenes in the presence of a base 289'292 as 

illustrated in Figure 3.42.

R’ //— R’

R - X  + -
/  Pd(ll) or Pd(0) catalyst m 

/  base (B) R -----
f  + BH X

R = alkenyl, aryl, allyl, alkynyl, benzyl, X = halide, triflate (CF3S03) 

R' = alkyl, alkenyl, aryl, C02R, OR, SiR3 

Figure 3.42 General equation representing Heck alkenation reaction

High functional-group tolerance and availability of simple olefins contribute 

to the exceptional utility of the Heck arylation reaction. However the 

mechanism of this reaction is a topic of debate since its discovery.293,294

The most common reaction type would involve an electron-poor olefin (R'= 

electron-withdrawing group) and an electron rich halide (R= Ar or vinyl).
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Due to the increasing aryl-X bond strengths of the different halides, the 

reactivity of aryl halides decreases in the order I >Br > C l292'294.

The generally accepted catalytic cycle for the Heck reaction involves a 

series of transformations around the palladium catalyst (Figure 3.43). This 

coupling reaction is stereoselective with a propensity for trans coupling as 

the palladium halide group and the bulky organic residue move away from 

each other in the rotation step of the reaction sequence.290,294

Pd (ii)

■2L; 2e

reductive addition

KH C03 + KBr Pd (o) |_2

K2C03

H ------Pd (II)— I

oxidative addition 

A r  1

Ar  Pd (II)— I

o
O k

H ^Pd(ll)l_2l H ^Pd(ll)L2l
syn elimination 0 addition

H V

Ar

H H

internal rotation

Ar =
COOR 81 R = H , 82 R = CH3

Figure 3.43 Mechanistic hypothesis of the catalytic cycle of Heck olefination
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5 .+ .7  P re p a ra tio n  o f  N -M e tb y lP y rro le  derivatives

nh2

HOOC EDCI
DMAP

COOCH3

pyrrolidine

H jO / Acetone
COOCH3

KOH
MeOH

COOH

Figure 3.44 Scheme for the synthesis of N-methyl-pyrrole-benzoic acid derivatives

M e th y l 4 '- '( (1 -m e th y l-1 H ~ p ijr ro le ~ 2 ~ c a rb o x a m id o ) 

m e th tjl)  b e n z o a te

9H3CH3 .n h 2
HN

EDOHOOC.
DMAP

Yield 81.6 %8483

1-Ethyl 3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) was 

used as coupling agent between 1-methyl-lH-pyrrole-2-carboxylic acid 

(83) and methyl 4-(aminomethyl)benzoate (73) 286 in the presence of 

dimethylamino pyridine (DMAP) to give 84 in a relatively good yield.
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M e th y l 4 '- ( ( ^ - fo rm y l~ 1 -m e th y U lF y -p y r ro le -2 -c a rb o x a m id o )  

m e th y l)b e n z o a te  &  M e th y l 4 '-((4 '~ fo rm y l~ 1 -m e th y l-1 H ~ p y rro le ~ 2  

-c a rb o x a m id o )  m e th y l)  b e n z o a te

HN

COOCH3

CH3
HN

HN

CCXXX3

85 Yield 70.2% 86 Yield 17.9 %

Vilsmeier reaction was used for the formylation of 84. The reagent is 

formed in situ from anhydrous DMF and phosphorus oxychloride. The 

reaction yielded a mixture of two isomers; the 5-formyl (85) and 4-formyl 

(86) pyrrole derivatives in a 4:1 ratio. The two compounds were separated 

by column chromatography where the first to elute was Methyl 4-((5- 

formyl-l-methyl-l/fpyrrole-2-carboxamido)methyl) benzoate (85) and 

then followed by Methyl 4-((4-formyl-l-methyl-l/fpyrrole-2-carboxamido) 

methyl)benzoate (86). The identity of both isomers was inferred from their 

proton NMR pattern; the 2,5 substituted isomer (85) exhibited pyrrole 

hydrogens at 6 values of 6.57 and 6.89 ppm with J values of 4.30 and 4.25 

Hz, respectively, while its 2,4 analogue (86) showed the same at 6 values 

of 7.06 and 7.38 ppm with J values of 1.65 and 1.70 Hz, respectively. 

(Figure 3.45 A and B, respectively).



Chapter 5 Results and Discussion 111

ln rM

Fi
gu

re
 

3.4
5 

A)
 

NM
R 

ch
ar

t 
of 

M
et

hy
l 

4-
((5

-fo
rm

yl
-l-

m
et

hy
l-l

Ay
-p

yr
ro

le
-2

-c
ar

bo
xa

m
id

o)
m

et
hy

l) 
be

nz
oa

te
 

(8
5)



.COOCH

Figure 3.45 B) NMR chart of Methyl 4-((4-formyl-l-methyl-l#-pyrrole-2-carboxamido) methyl)benzoate (86)
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( f : ) -m e th y l ^ - ( ( l -m e th y l-^ -C ^ -o x o b u t - l -e n y l) -  1 /-/-p y rro le ~ 2 -  
c a rb o x a m id o ) m eth y l) b e n zo a te  &  (E )-m e th y l 't~ ( (1 -m e th y l- 't -  
(3 -o x o b u t-1 -e n y I) -1 H -p y rro le ~ 2 -c a rb o x a m id o )m e th y l)b e n z o a te

c h 3HN HN

H jO / Acetone

83
ch3

Yield 55.2 %
HNHN

H ,0 /  Acetone

86 90 Yield 79.5 %

Crossed aldol condensation of the formylpyrrole derivatives (85 and 86) 
with acetone and the presence of pyrrolidine (30% mol) base was used to 

introduce a, p unsaturated ketone moiety according to a reported 

procedure by Chimini e ta /285.

(£:) ( 0 -m e th y  l-^ ~  ( 3 - o x o b u t - l  -  e ny I) -1H -  p  y  r r o  I & -2-
c a rb o x a m id o ) m e th y l)b e n z o ic  a c id  &

( E ) - ' t - ( O - m e th y l  ( 5 - o x o b u t - l- e n y l) ~ lH - p y r r o le - 2 -  

c a rb o x a m id o )  m e th y l)b e n z o ic  a c id

KOH
MeOH

COOCHg COOH

87 Yield 87.8 %

KOH
MeOH

COOCH3 COOH

Yield 71.6 %88 90

Hydrolysis of the methyl pyrrole benzoate esters 87 and 88 was carried

out using aqueous KOH to afford 89 and 90 respectively in a good yield.
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C hapter 3 

Part 3

T b  iol d eriva tive s

3.5.1 Inh ib ito r S tru c tu re  Design

Bearing in mind the submicromolar activity of the oc, p unsaturated ketone 

derivative 74 (ICso=0.26 jiM) and the biological studies that attributed this 

activity to the probable covalent (S-C) binding to Cys 431 residue through 

Michael conjugate addition as detailed in chapters 3.4 and 5.

In this part, a different approach is adopted to improve the activity/ 

toxicity profile of 74. This was proposed by the replacement of the Michael 

acceptor group by another one capable of forming a disulfide (S-S) bond 

with Cys 431 thiol and hence inactivates the helicase enzyme 295.

Cys 431 residue has particular solvent exposure and reactivity properties 

as indicated by the adduct formation with p-mercaptoethanol molecule in 

the crystal structure 1A1V of NS3 helicase (chapter 3.4).

In this context, the suggested compound would have either a free thiol 

group for the covalent S-S bond formation such as (compound I and II)  or 

a disulfide bond in itself for exchange with the thiol group of the Cys 431 

such as (compound III-V II). In both cases, the pyrrole ring was replaced 

with a phenyl ring for better synthetic feasibility, while maintaining the 

benzoate part of the molecule for its potential interaction with Arg 393 

clamp (Figure 3.46).
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Arq481

Cvs341

Arg393

76

h 2n

HS

OH
I

HS'

OH
I I

,NH

OH
IV

.OH

OH
V

OH
VI

HOOC. NH'

OH
V II

Figure 3.46 Suggested structural modification of compound 76 aiming to target Cys 431 through
S-S bond formation

Compound I  features an aliphatic thiol group without the central aromatic 

ring to probe its importance for the anticipated activity. Compound I I  

exhibited similar binding mode to the vinyl ketone analogue as depicted in 

(Figure 3.47). This compound retained the central aromatic ring but with 

an attached thiol group instead of the vinyl ketone moiety, also it is 

perceivable that the putative interaction established between the ketone
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oxygen of the vinyl group of compound 76 and Arg 481 residue would be 

missing but this will give some insight on what role this interaction plays 

towards the activity, moreover a better toxicity profile could be anticipated. 

Also it spans the distance between Arg 393 and Cys 431 efficiently with 

interesting interaction pattern with both amino acids.

On the other hand, compounds ( I I I -V I)  with different leaving groups that 

were examined for the plausible interactions within the putative binding 

site centred around Arg 393, nevertheless their interaction was not 

satisfactory enough to be selected for the next synthesis stage. Compound 

V II  has cysteine amino acid in place of the vinyl ketone moiety, this 

particular amino acid has the potential not only to form a disulfide bond 

with Cys 431 thiol (only 4.3 A away) but also to form a hydrogen bond 

with Arg 481 via its carboxylic group and interact with Thr 295 through its 

amino group, hence overall improvement of the enzyme/compound 

interactions was anticipated. Furthermore, cysteine release following the 

disulphide exchange with Cys 431 thiol would not pose a metabolic 

concern being a natural amino acid. Based on the promising docking 

results, and as a starting point compound I I  was selected for the 

subsequent synthesis step.

Figure 3.47 The alignment of structure I I  (coloured by element type) with compound 76 (purple) 
within the putative binding site (green), the nucleic acid backbone is shown as orange line
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5 .^ .2  S y n th e s is  o f  T h io l d e riv a tiv e s

COOH HOOC COOH CIOC COCI

SOCI2

SH

COOCH3 COOCH; ,NHj

DMAP

TEA

COOCH3
DTT
DMF HS.HS.

KOH
MeOH/THF

COOHCOOCH;

Figure 3.48 Scheme 1 for the preparation of the thiol derivative (compound I I )

COOH HOOC COOH

S—:
SH

NH;
COOCH- COOCH;

S— S

EDCI

DMAP

COOCH,

KOH
MeOH/THFDTT

DMF

HS, HS,

KOH
MeOH/THF

COOH

Figure 3 .49 Scheme 2 for the preparation of the thiol derivative (compound I I )
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+ ,+ ' D ith io b is b e n z o ic  a c id

COOH COOHHOOC

+ 2

S
SH

91 92 Yield 89.7%

Self protection of the thiol group was done by oxidation of 4- 

mercaptobenzoic acid (91) with iodine into the disulfide dimer (92) 296 in a 

quantitative yield. The reaction is a reduction-oxidation type where iodine 

acts as an oxidisaing agent reduced by the mercapto benzoic acid (91). 
Triethylamine was added as acid scavenger of the produced hydroiodic 

acid.

3 ,5 ' D ith io b is b e n z o ic  a c id  & 2,2* D ith io b is b e n z o ic  a c id

.COOH

+  2
.S . + 21 + 2H*

‘S ‘HOOC'

SH

COOH

93 94 Yield 58.4%

.COOH

+ 2 + 2 1 +  2H+

‘SH
S' COOH

Yield 47.2%
HOOC

95 96

Same procedure was employed to prepare both the meta and ortho 

isomers of 92 namely; 3,3' dithiobisbenzoic acid (94) 297 and 2,2' 

dithiobisbenzoic acid (96) using 3-mercapto benzoic acid (93) and 2- 

mercapto benzoic acid (95), respectively.
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5 is  4 - - ( ( 4 - (m e th y l b e n za m id o ) m e th y l)  b e n z o a te )  d is u lf id e

COOH
COOCH- COOCH;

S— S

EPCI
DMAP

COOH

73 97 Yield 91.5%

The coupling reaction between 4,4'-disulfanediyldibenzoic acid (92) and 

methyl 4-(aminomethyl)benzoate (73) using 1-ethyl 3-(3-dimethyl

aminopropyl)carbodiimide hydrochloride (EDCI) and dimethylamino

pyridine (DMAP) was an alternative way of preparing compound 97, which 

was initially prepared from 92 via chlorination with thionyl chloride into the 

corresponding acid chloride then reaction with methyl 4-

(aminomethyl)benzoate (73) as depicted in Figure 3.50. However, the use 

of the coupling agent EDCI was more efficient than the chlorination route 

in terms of purity and yield (91.5% vs. 50%) in addition to skipping one 

step out, which means overall better atom economy.

.COOH

S'

S

COOH

92

NH;COCI

S'
I
S.

2

COOCH3COCI

Figure 3.50 Scheme showing the alternative route for the preparation of 97
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B is  3 ~ ( (+ - (m e th y l b e n za m id o ) m e th y l)b e n z o a te )  d is u lf id e

.s—s,NH;

EDCI
DMAPHOOC

HN NH
COOCH3COOH

COOCH3

94 73 97 Yield 41 %

B is  2 - ( ( 4 - (m e th y l b e n z a m id o )m e th y l)b e n z o a te )  d is u lf id e

.COOH ,NH2

“s—s

HN'NH

COOCH-
COOH

COOCH-H3COOC

96 73 99 Yield 23 %

The same procedure was used to prepare the meta (97) and ortho (99) 

isomers of 97 using the coupling reagent (EDCI). However, the yield was 

considerably lower.

M e th y l 4 - - ( (+  -m e rc a p to b e n z a m id o ) m e th y l)  b e n z o a te

HS.S— S

DTT
DMF

100 Yield 70.0%
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The oxidised disulphide dimer 97 was reduced to the thiol analogue 100 

with dithiothreitol according to a procedure reportd by Hu e ta l298. 

Dithiothreitol (DTT), cleland's reagent or reductacryl 299'300 is a strong 

reducing agent owing to its high conformational propensity to form a six- 

membered ring with an internal disulfide bond. The reduction of a typical 

disulfide bond proceeds by two sequential thiol-disulfide exchange 

reactions. The intermediate mixed-disulfide state is unstable because the 

second thiol of DTT has a high tendency to close the ring, forming oxidized 

DTT and leaving behind a reduced disulfide bond (Figure 3.51). The 

reducing power of DTT is limited to pH values above 7, since only the 

negatively charged thiolate form not the protonated one is reactive.
OH

OH

SH

s '
rSH

HS"

HO*
HCH*

"OH
Ha'(— S 

H O ^ x- ' S
SH

Figure 3.51 Structure and mechanism of the reduction of the disulphide bond using DDT

4 -  ( (4 -M e rc a p to b e n z a m id o )  m e th y l)b e n z o ic  a c id

HS.

COOCH; COOCH;
s— s

KOH
MeOH/THF

COOH 
Yield 92.1%,97 101
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It was devised to start with the hydrolysis of the ester group of 97 and 

then subsequently carry out the reduction step in order to avoid the side 

products resulting from the effect of the hydrolysis conditions on the free 

thiol group. Hydrolysis conditions were applied using aqueous potassium 

hydroxide. However it was striking surprise that compound 101 was 

obtained where hydrolysis of the ester as well as reduction of the 

disulphide S-S bond took place in one and the same step. Both NMR 

spectra as well as elemental analysis data confirmed the identity of the 

product. It is obvious that there is not enough data to accurately explain 

the mechanism of this reaction, which could be a starting point for further 

mechanistic study.

4 - (0 ~ M e rc a p to b e n z a m i'd o )m e th y l)b e n z o ic  a c id

,s—s,

HS‘
KOH

MeOH/THFHN NH

COOH
COOCH3

102 Yield 17.3'97

Same observation was obtained with the meta disulfide dimer analogue 

98, which upon the treatment with the hydrolysis conditions, compound 

102 with the free carboxylic acid and sulfhydryl signals appearing in the 

NMR spectrum. However the yield was much less than the para analogue.
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C hapter 5 

Part 6

ia d ia zo le  d eriva tives  

J .6 .1 C y s te in e ; A  s p e c ia l a m in o  a c id

The multiple oxidation states of sulfur (6, 4, 2, 0 and -2 ) have been 

explained by its ability to accommodate extra electrons in its valence shell 

by using the available d-orbitals. While the four fundamental classes of 

reactions on the carbon atom are substitution, addition, elimination and 

rearrangement, those on the sulfur atom also include oxidation and 

reduction reactions. Cysteine is the only amino acid possessing a thiol 

moiety among the 20 natural amino acids.301 306

In biological systems, cysteine thiols participate in oxido-reduction, ligand- 

metal coordination and nucleophilic reactions, such reactions have 

important physiological implications. 307 313

Since cysteine dependent enzymes are involved in a variety of diverse 

biological functions; a large number of chemical functionalities has been 

used for the irreversible modification of the cysteine thiol of these 

enzymes, thus resulting in their inactivation.314 319 

Recently, AG7088, a Michael acceptor and a cysteine protease inhibitor is 

being developed for the treatment of common cold and has advanced to 

phase I I / I I I  clinical trials (Figure 3 .52 ).302

NH

NH

OEt

AG7088

Figure 3.52 AG7088 an example of Michael acceptor inhibitor of a cysteine protease
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5 .6 .2  [1 ,2 ,4 -T h ia d ia z o le s  ( T H D s ) ]

1,2,4-Thiadiazole is a distinctive class of small heterocyclic thiol trapping 

agents that serve as an interesting pharmacophore in the design of 

inhibitors targeting the cysteine residues of proteins.320 330 

Although currently the only commercial 1,2,4 thiadiazole drug is the 

antibiotic cefozopran 321 there are a number of synthetic products related 

to this system with a broad range of biological activities for example, SCH- 

202676 was identified as a promising allosteric modulator of G-protein 

coupled receptors 322 and KC 12291 with cardioprotective action 323. 

Recently, the small heterocyclic thiadiazolidinones (TDZD-8) were 

described as the first non-ATP competitive glycogen synthase kinase 3p 

inhibitors 324 (Figure 3.53).

Basically, there are three stable chemical classes of 1,2,4-thiadiazoles 

(THDs); the monocyclic 1,2,4-thiadiazole (I) , the bicyclic imidazo[l,2-d] 

[l,2,4]thiadiazole ( I I ) ,  and the tricyclic benzo[4,5]imidazo[l,2-d][l,2,4] 

thiadiazole ( I I I )  (Figure 3.54). All can react with enzyme cysteine residue 

to form a disulfide adduct and thus inhibiting the enzyme. 331 334

Me

Bn
S -N CONP o ^ N^ o

N-S

TDZD-8

i
/  \ \  '

N,

Cefozopran (SCE-2787)

Figure 3.53 Some relevant structures with the 1,2,4-thiadiazole moiety
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One particular advantage of thiadiazole derivatives I - I I  is the lack of 

reactivity (S-N bond cleavage) with other nucleophiles such as amines and 

alcohols, which makes this heterocycle an excellent pharmacophore to be 

incorporated into lead molecules for targeting cysteine residue. 335-339

in

X

Y
I

Y

Figure 3.54 Monocyclic I, bicyclic I I  and tricyclic I I I  1,2,4-thiadiazoles

Ideally, any inhibitor must not only be enzyme specific but also active site 

directed. 1,2,4-Thiadiazoles meet this requirement as they can serve as 

both thiol trapping agents and at the same time the C3 and/or C5 

substitutents (Y and/or X) as a recognition arm to ensure the THD 

warhead is active site directed while the other substituent is reactivity 

tuner of the THD ring opening 331. However, in the case of the fused ring 

in the bicyclic ( I I )  and tricyclic ( I I I )  thiadiazoles, the C3 substituent Y can 

be used to tune both affinity and reactivity of the N-S bond towards the 

incoming thiol nucleophile.332 334

5 .^ .3  M echa n ism  o f  C y s te in e  enzym es in h ib it io n

The mechanism of this adduct formation is the enzyme cysteine thiol 

attacks the sulfur atom in the heterocyclic ring to form a disulfide bond 

with concomitant ring opening. Depending on the substituents, the 

reaction can be reversible or irreversible 302 (Figure 3.55).

Enzyme Enzyme

Figure 3.55 Depiction of S-S bond formation between cysteine thiol and [l,2,4]-thiadiazole ring. X 
and Y substituents tune both reactivity and directionality of the ring.
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J.6 A  P r o o f  o f  P rin c ip le

In biological systems cross-linking of proteins through disulfide bond 

formation increases their stability, and this is a common occurrence. Its 

disruption through the use of THD may be a viable strategy in the 

modification of enzyme cysteine residues 320. Initially, there was ample 

evidence that the N-S bond of the 1,2,4-thiadiazole moiety is cleaved and 

form a disulfide bond with organic thiols 337'341. it was reasoned that a 

similar type of reaction might occur in a biological system. However, the 

proof of principle comes from the protein X-ray crystal structure of the 

papain-Apol073 complex, which clearly reveals the formation of a disulfide 

bond between Cys 25 of papain (a cysteine protease from papaya fruit) 

and the sulfur atom of the thiadiazole moiety of Apol073 inhibitor 342,343 

(Figure 3.56).

i Gk»-19

His-159

Apol073

Figure 3.56 X-Ray crystal structure of the papain-Apol073 adduct depicting the formation of S-S 
bond between Cys 25 and sulfur atom of Apol073
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J.6 .5  In h ib ito r  S tru c tu re  D es ign

In an attempt to find a pharmacophore group with better toxicity profile 

than the Michael acceptor in 76 (Chapter 3.4). The <*, p unsaturated 

ketone moiety was replaced by the electrophilic 1,2,4 thiadaizole 

heterocycle that would maintain the interaction with Cys 431 while the 

benzoate part of the molecule was retained for the plausible interaction 

with the Arg 393 clamp (Figure 3.57).

A focused library of structures (Figure 3.58) with the general formula 

illustrated in Figure 3.57 was proposed. The THD ring was used with and 

without a methyl or methoxy substitution at position 3 of the ring. This 

was chosen partly from a synthetic point of view since the pathway of the 

intermediates 5-amino-3-methyl-l,2,4-thiadiazole (105) and 5-Chloro-3- 

methoxy-l,2,4-thiadiazole (110) is detailed by Marrano et al 339. At the 

recognition arm (C5) is attached one of the synthetically feasible linkers, 

with different length and flexibility, which in turn is attached to different 

positions of the benzoate anchor group. The amino acid residues of 

interest were located and the structures were energy minimised and 

docked simultaneously into the binding pocket using FlexX 261. The output 

database was visualised using MOE compute interactions option 26°, where 

the likelihood of the covalent S-S bond formation between Cys 431 thiol 

and the sulphur atom of the thiadiazole ring was assessed by measuring 

the distance between them.

Anchor of Arg 3931,2,4 Thiadiazole ring Linker

Figure 3 .5 7  The general formula used to build the focused library of 1,2,4-thiadiazole derivatives
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Figure 3 .58 sample of the structural changes used in building the focused virtual library
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J .6 .6  S e le c te d  co m p o u n d s  f o r  chem ica l s y n th e s is

B16

4-(4-(3-Methyl-l,2,4-thiadiazol-5-ylamino)- 4-oxot>utanamido)benzoate

B23

3-(3-(3-Methyl-l,2,4-thiadiazol-5-ylamino)-3-oxopropanamido)benzoate

h3c o ^ V ^ n

c o o c h 3

B27

Methyl 4-((3-methoxy-l,2,4-thiadiazol-5-ylamino)methyl)benzoate 

Figure 3.59 Promising candidates selected for subsequent synthesis step
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From the docking simulation results compounds (B16, B23 and B27) 
were highlighted as potential candidates based on the interaction pattern 

within the helicase enzyme particularly the positioning of the THD towards 

the sulfur atom of Cyc 431. Hence, these three structures were selected 

for chemical synthesis according to the suggested schemes in Figure 3.60.

Figure 3.62 Proposed synthetic pathways for the synthesis of B16, B23 and B27

In the case of B16 and B27, the preparation of the key intermediate, 5- 

amino-3-methyl-l,2,4-thiadiazole (101), was devised according to a two 

step procedure reported by Marrano et a l339 (Figure 3.63). The first step is 

the halogenation of acetamidine hydrochloride (111) using sodium 

hypochlorite followed by extraction of "chloroacetamide"

COOH

COOCH3

H3COOC

33 103 104 105 B16

h 3c o o c ‘

COOCH3

24 106 107 105 B23

NaOH

COOCH3

COOCH3

108 109 110 73 B27
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In spite of the reported high yield for this reaction (82%), following the 

same procedure did not result in the expected product. There was no 

obvious reason for this, however chloroacetamide being commercially 

available, was purchased from Aldrich.

The second step was carried out according to the same reference, where a 

reaction of chloroacetamide (112) with potassium thiocyanate in methanol 

took place overnight at room temperature. The reported product was 

isolated as pink crystals (98% yield) with the following spectral data JH 

NMR; methyl singlet at 6 2.20 and 13C NMR; 3 quaternary carbons at 6 

values 169.94, 133.80 and 18.48. However, applying this procedure gave 

pink crystals with clearly different spectral data; XH NMR; 6 4.02 (s, 2H), 

7.33 (br. s, 1H), 7.58 (br. s, 1H) and 13C NMR ; 6 206.5, 167.8, 42.6. It 

was also noticed that these crystals experienced colour change with time, 

which could be a hint for chemical instability. These data cast some doubt 

on the identity of the product.

Further examination of the original articles 340'341 revealed a surprise about 

the product of the halogenation step of chloroacetamidine (111). It was 

not chloroacetamide (112) as stated in the above mentioned reference 

(route A) rather it was N-chloroacetamidine (114) as illustrated in route B 

(Figure 3.61).

in

NH

NaOCI
O

KSCN A

112
113

KSCN B

114 105

Figure 3.61 synthetic pathway of 105
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The inconsistent spectral data of the product obtained from the reaction 

between chloracetamide (112) and potassium thiocyanate was attributed 

to the formation of pseudothiohydantoin (113) according to the 

mechanism depicted in Figure 3.62 and was proved by comparing the 

obtained NMR data with the reported ones for pseudothiohydantoin (113).

Figure 3.62 Proposed mechanism for pseudothiohydantoin (113) from chloracetamide (112) and
potassium thicyanate

On the other hand, 5-amino-3-methyl-1,2,4-thiadiazole (105) should have 

formed from N-chloroacetamidine (114) and potassium thiocyanate 

according to the suggested mechanism shown in Figure 3.63

Figure 3.63 Proposed mechanism for the reaction of N-chloracetamidine and potassium thicyanate

Meanwhile, in the synthesis proposal of B16, the intermediate 4-(4- 

(methoxycarbonyl)phenylamino)-4-oxobutanoic acid (104) (Figure 3.60) 

was prepared following a reported procedure 342. The identity of 104 was 

assigned by the JH NMR spectrum; with a broad carboxylic acid singlet at 6 

12.30, broad NH singlet at 6 10.27, two aromatic double doublets at 6 7.90 

and 7.72, methyl singlet at 6 3.82, two methylene triplets at 6 2.61 and 

2.54. 13C NMR showed 3 carbonyl C=0 signals at 6 174, 171 and 166, two

o,

Cl

112 113

N—S N— S

H
105
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quaternary aromatic carbon at 6 143.2 and 123.0, two aromatic CH at 6 

130.3 and 118, methyl carbon at b 51.5, and two methylene carbons at

31.2 and 28.8.

Also, in the synthesis proposal of methyl 4-((3-methoxy-l,2,4-thiadiazol-5- 

ylamino)methyl)benzoate (B27), the reported synthetic procedure of the 

intermediate 5-chloro-3-methoxy-l,2,4-thiadiazole (110) by Marrano et al 

was adopted 339. A mixture of methylisourea hydrogenosulfate (109) and 

perchloromethyl mercaptan (108) was reacted with sodium hydroxide 

solution. The resulting product was obtained as yellow oil (42% yield) and 

its identity was confirmed by 1H NMR spectral data; singlet methyl at 6

4.05 (reported 4.04) and 13C NMR; 2 quaternary carbons at 6 173.64, 

169.75 (reported 173.20 and 169.47) and methyl carbon at 6 56.46 

(reported 56.84).

The product 110 was used directly in the second step to be coupled with 

methyl 4-(aminomethyl) benzoate (73) in the presence of triethylamine, 

this reaction lead to single product as shown as a clean spot in the TLC. 

However, the identity of the product was not clear since only the ester 

methyl group singlet was seen in the XH NMR spectra at 6 3.85, together 

with the methylene doublet at 6 4.32 (d, J=6 Hz, 2H, CH2), the NH triplet 

at b 6.66 (J=6) and two aromatic double doublets at 7.39 (J=8.5 Hz) and 

7.92 (J=8 Hz).

5 .^ .7  C o n c lu s io n
Although the selected compounds of the virtual library are simple in 

structure and the synthetic pathways involved should have been 

uncomplicated using readily available starting materials, the lack of reliable 

synthetic pathway for the 1,2,4-thiadiazole ring presented a real challenge 

to prepare the compounds despite of using reported procedures.
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General Inform ation

All chemicals, reagents and solvents were purchased from Aldrich or 

purified by standard techniques.

Thin Layer Chromatography (TLC)

Silica gel plates (Merck Kieselgel 6 OF254) were used and were developed by 

the ascending method. After solvent evaporation, compounds were 

visualised by irradiation with UV light at 254 nm and 366 nm.

Col umn Chromatography

Glass columns were slurry packed in the appropriate eluent under gravity, 

with Woelm silica (32-63mm). Samples were applied as a concentrated 

solution in the same eluent. Fractions containing the product were 

identified by TLC and combined. The solvent removed in vacuo.

Hash Chromatography

Pre-filled ISOLUTE silica columns were washed with the appropriate 

solvent, and samples were applied as a concentrated solution in the same 

eluent. The samples were run on a FlashMaster Personal (K10607, Jones 

Chromatography Ltd.).

NMR Spectroscopy

1H, 13C, DEPT NMR spectra were recorded on a Bruker AVANCE 500 

spectrometer (500 MHz and 125 MHz respectively) and auto calibrated to 

the deuterated solvent reference peak. Chemical shifts are given in 6  

relative to tetramethylsilane (TMS); the coupling constants (J) are given in 

Hertz (Hz). The spectra were recorded in CDCI3 or DMSO at room 

temperature; TMS served as an internal standard ( 6  = 0 ppm) for lH NMR 

and CDCI3 was used as an internal standard ( 6  = 77.0 ppm) for 13C NMR.
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C h a p te r  +

P a r t  1

+•1 Q u in a z o lm e  b a s e d  s tru c tu re s

N T -(2 ~ C y a n o ~ 4 '-m tro p h e n ijl) -N ,N -d i'm e th y lin u 'd o  fo rm a m id e

,CN .CN

OCHg

DMF DMA

19 2018

A mixture of 5-nitroanthranilonitrile (18) (1.92 g, 0.0118 mol) and 

dimethylformamide dimethyl acetal DMF DMA (19) (3.89 mL) was stirred 

at reflux temperature for 1.5 h. The resulting mixture was cooled to room 

temperature and refrigerated. The solid was filtered, washed with several 

portions of ether, and dried in vacuo (55 °C).

Yield; 2.38 g (98%)

mp; 154 °C (lit. mp 153-155 °C) 267.

'H  N M R  (D M S O -d * )  o f  \6

5 8.84 (d, J = 2.7 Hz, 1H), 8.27 (m, 2H), 7.38 (d, = 9.3 Hz, 1H), 3.17

(s, 3H), 3.06 (s, 3H).
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N, -C 2 -C tja n o p h e n t jl) -N jN -d  im e th y li'm id o fo rm a rm d e

.CN ,CNOCH3

OCH3

D M F  D M A

21 19 22

A mixture of anthranilonitrile (21) (13.9 g, 0.118 mol) and 

dimethylformamide dimethyl acetal (19) (38.9 mL) was stirred at reflux for

1.5 h. The resulting mixture was cooled to room temperature. Ice water 

was added and the mixture was extracted with EtOAc (3 x 300 mL). The 

organic layer was washed with water (3 x 300 mL), dried (Na2S04) and 

evaporated under reduced pressure (55 °C). It was recrystalised from 

methanol.

Yield; 18.4 g (90.5%). 

mp; 45 °C (lit. mp 38.5 °C )26S.

'H  NM R  (C D C lj- d i)  o f  22

5 6.69 (s, 1H), 6.62 (d, J = 7.5 Hz, 1H), 6.51 (m, 1H), 6.09 (m, 1H), 6.05 

(d, J = 8.15 Hz, 1H), 2.19 (s, 3H), 2.17 (s, 3H).



C hapter + Experimental Chemistry 155

G e n e ra l p ro c e d u r e

nh2.CN

AcOH HN

X = H, N 02 R = COOH, COOCH3 CONH2, CN, Tetrazolyi n = 0,1

A mixture of N'-(2-cyanophenyl)-N,N-dimethylimidoformamide (20) or N'- 

(2-cyanophenyl)-N,N-dimethylimidoformamide (22) and the appropriate 

phenyl derivative [3-amino benzoic acid (23), methyl 3-aminobenzoate 

(24), 3-aminobenzamide (25), 4-amino benzoic acid (32), methyl 4- 

aminobenzoate (33) or 4-aminobenzamide (34), 4-aminomethylbenzoic 

acid (41), 3-(lH-tetrazol-5-yl)phenylamine (47), 4-(lH-tetrazol-5-yl) 

phenylamine (49), 4-aminobenzonitrile (54), anthranilic acid (56) or 

anthranilamide (57)] in HOAc was stirred at reflux for 1-3 h. The resulting 

solid was filtered, washed with ether then dried (50 °C) in vacuo.
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3 - (6 -N itro^um azo lm -4 -y lam m o)benzo ic  acid derivatives

NH;
,CN

AcOH / reflux
,NH

‘COR

COR
' •C.V

R= OH, 0CH3, NH2
20 23-25 26-28

The general procedure was adopted using N'-(2-cyanophenyl)-N,N- 

dimethylimidoformamide (20) (2.28 g, 0.011 mol) and the appropriate 

benzoic acid derivative (23-25) (0.0121 mol each).

ID R M F M w Yield % mp °C

26 OH C15H10N4O4 310 96.3 335

27 och3 C16H12N4O4 324 87.5 176

28 nh2 C15HHN5O3 309 84.7 258

’H NMR (D M S O -d £ ) o f  16

5 10.56 (br. s, 1H), 9.7 (s, 1H), 8.74 (s, 1H), 8.56 (d, J = 8.95 Hz, 1H), 

8.42 (s, 1H), 8.21 (d, J = 7.55 Hz, 1H), 7.94 (d, J = 9 Hz, 1H), 7.76 (d, J 

= 7.35 Hz, 1H), 7.55 (m, 1H).

,5C NMR (D M S O -d 6 ) o f  26

6 114.4, 131.5, 138.8, 144.6, 152.9, 167.2 (6 C, quaternary C).

6 120.8, 123.3, 125.1, 126.7, 128.7, 129.5, 157.5 (7 C, aromatic CH).



C hapter ■+ Experimental Chemistry 1+0

>H NMR (D M S O ~ d £) o f  27

5 11.70 (br. s, 1H), 9.86 (s, 1H), 8.96 (s, 1H), 8.73 (d, 7 = 9 Hz, 1H), 8.39 

(s, 1H), 8.17 (d, J = 7.9 Hz, 1H), 8.13 (d, J = 9.1 Hz, 1H), 7.87 (d, J = 

7.65 Hz, 1H), 7.65 (m, 1H), 3.9 (s, 3H).

,5C NMR (D M S O -d 6 ) o f  27

6 52.3 (CH3).

6 113.9, 130.2, 137.6, 145.4, 159.7, 165.8 (6 C, quaternary C).

5 121.6, 124.3, 124.9, 126.4, 128.4, 128.6, 129.3, 154.9 (8 C, aromatic 

CH).

’H NMR (D M S O -d ^ ) o f  13

5 9.73 (s, 1H), 8.74 (s, 1H), 8.57 (d, J = 8.95 Hz, 1H), 8.30 (s, 1H), 8.10 

(d, J = 7.75 Hz, 1H), 8.02 (br. s, 1H), 7.95 (d, J = 9.15 Hz, 1H), 7.71 (d, J 

= 7.6 Hz, 1H), 7.51 (m, 1H), 7.40 (br. s, 1H), 4.8 (br. s, 1H).

,5C  NMR (D M S O ~d £) o f  18

6 114.4, 134.8, 138.6, 144.6, 153.1, 158.8, 167.6 (7 C, quaternary C).

5 120.9, 122.3, 123.2, 125.5, 126.6, 128.4, 129.5, 157.6 (8 C, aromatic 

CH).
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(Q u m a z o lm -^ -L jla m m o )b e n z o ic  a c id  d e r iv a t iv e s

.CN

AcOH / reflux
NH

'COR

COR

22 23-25 29-31
R= OH, OCH3, NH2

The general procedure was adopted using N'-(2-cyanophenyl)-N,N- 

dimethylimidoformamide (22) (1.9 g, 0.011 mol) and the appropriate 

benzoic acid derivative (23-25) (0.0121 mol each).

ID R M F M w Yield % 3 T3
O n

29 269 OH C15H11N3O2 265 97.8 264

30 o c h 3 Ci6H13N30 2 279 6 6 . 8 226

31 n h 2 c 15h 12n4o 264 92.9 236

'H  N M R  (D M S O -d * )  o f  19

6 9.95 (br. s, 1H), 8.63 (s, 1H), 8.57 (d, J = 8.2 Hz, 1H), 8.46 (s, 1H), 

8.19 (d, J = 7.8 Hz, 1H), 7.88 (m, 1H), 7.81 (d, J = 8.15 Hz, 1H), 7.72 (d, 

J = 7.35 Hz 1H), 7.65 (m, 1H), 7.5 (m, 1H).

,5C N M R  (D M S O -d * )  o f  19

6 115.1, 131.1, 139.4, 149.5, 157.7, 167.3 (6 C, quaternary C).

6 122.9, 123.3, 124.5, 126.5, 127.7, 128.7, 133.2, 154.3 (8 C, aromatic 

CH).
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■H NMR (D M S O -d ^ ) o f  50

6 12.05 (br. s, 1H), 9.06 (d, J = 8.25 Hz, 1H), 8.99 (s, 1H), 8.36 (s, 1H), 

8.13 (m, 1H), 8.09 (d, J = 7.95 Hz, 1H), 8.05 (d, 3 = 8.3 Hz, 1H), 7.90 (m, 

2H), 7.66 (m, 1H), 3.90 (s, 3H).

,5C NMR (D M S O ~ d *) o f  50  

6 52.4 (CH3).

6 113.6, 130.1, 137.2, 138.8, 160.0, 165.7 (6 C, quaternary C).

6 119.8, 125.1, 125.6, 127.1, 128.6, 129.2, 129.5, 136.3, 151.0 (9 C, 

aromatic CH).

]H NMR (DMSO~d*) o f 51

6 10.00 (br. s, 1H), 8.61 (m, 2H), 8.32 (s, 1H), 8.10 (d, J = 7.9 Hz, 1H),

8.02 (br. s, 1H), 7.88 (m, 1H), 7.81 (d, J = 8.15 Hz, 1H), 7.66 (m, 2H), 

7.48 (m, 1H), 7.40 (br. s, 1H).

,5C NMR (DM SO -d*) o f 51

5 115.1, 134.7, 139.3, 149.6, 157.8, 167.8 (6C, quaternary C).

5 121.9, 122.5, 123.0, 125.2, 126.3, 127.8, 128.3, 133.1, 154.4 (9 C, 

aromatic CH).
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4 '-(6 ~ N itro c ju m a z o lm ~ 4 '~ y la m m o )b e n z o ic  a c id  d e r iv a tiv e s

NH
.CN OoN

AcOH / reflux
NH

j y
35-37

COR

20 32-34
R= OH, 0CH3, NH2

The general procedure was adopted using N'-(2-cyano-4-nitrophenyl)-N,N- 

dimethylimidoformamide (2 0 ) (2.28 g, 0.011 mol) and the appropriate 

benzoic acid derivative (32-34) (0.0121 mol each).

I D R M F M W Y ie ld  % m p °C

3 5  27° OH C15H 10N4O4 310 91.4 350

3 6 o c h 3 C16H12N4O4 324 82 284

3 7  271 n h 2 CisHnNsOa 309 89.3 328

]H N M R  (D M S O -d * )  o f ^

5 12.60 (br. s, 1H), 10.6 (br. s, 1H), 9.69 (s, 1H), 8.80 (s, 1H), 8.57 (d, J 

= 9.05 Hz, 1H), 8.06 (d, J = 7.95 Hz, 2H), 8.00 (d, J = 8.3 Hz, 2H), 7.96 

(d, J = 9.1 Hz, 1H).

,5C N M R  (D M S O -d ^ )  o f 35

6 114.5, 126.0, 142.7, 144.7, 153.0, 158.6, 166.9 (7 C, quaternary C).

6 120.9, 121.6, 126.7, 129.6, 129.9, 157.4 (6 C, aromatic CH).

■H N M R  (D M S O -d * )  o f *>6

5 10.55 (br. s, 1H), 9.67 (s, 1H), 8.80 (s, 1H), 8.56 (d, J = 8.95 Hz, 1H), 

8.08 (d, J = 8.3 Hz, 2H), 8.00 (d, J = 8.35 Hz, 2H), 7.95 (d, J = 9.05 Hz, 

1H), 3.85 (s, 3H).
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l5C NMR (D M S O -d *) o f  J>6

5 52.0 (CH3).

6 114.6, 124.6, 143.3, 144.6, 153.0, 158.5, 165.8 (7 C, quaternary C). 

6 120.9, 121.6, 126.7, 129.6, 129.8, 157.3 (6 C, aromatic CH).

Ci6H12N404 C% H°/o N %

Calculated 59.26 3.73 17.27

Found 59.22 3.84 17.38

'H NMR (D M S O -d*) o f 37

5 10.05 (br. s, 1H), 9.67 (s, 1H), 8.77 (s, 1H), 8.56 (d, J = 9.1 Hz, 1H), 

7.96 (m, 6H), 7.31 (s, 1H).

° C  NMR (D M S O -d < ) of 37

6 114.5, 129.7, 141.2, 144.6, 153.0, 158.6, 167.4 (7 C, quaternary C).

6 120.8, 121.7, 126.7, 128.0, 129.5, 157.5 (6 C, aromatic CH).

C15H11N5O3 C% H% N %

Calculated 58.25 3.58 22.63

Found 58.25 3.42 22.64
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4 - - ( Q u in a z o lm - 4 - ~ i j la iT im o ) b e n z o ic  a c id  d e r iv a t iv e s

NH.CN
AcOH / reflux

NH

COR
ROC

22 32-34 38-40
R= OH, OCH3, NH2

The general procedure was adopted using N'-(2-cyanophenyl)-N/N- 

dimethylimidoformamide (22) (1.9 g, 0.011 mol) and the appropriate 

benzoic acid derivative (32-34) (0.0121 mol each).

ID R M F M w Yield % m p °C

38 26 OH Ci5HnN 30 2 265 80.9 309

39 o c h 3 C16H13N3O2 279 74.3 234

40 n h 2 c 15h 12n4o 264 65.6 235

NMR (D M S O -d *) o f 33

5 10.05 (br. s, 1H), 8.70 (s, 1H), 8.61 (d, J = 8.25 Hz, 1H), 8.09 (d, J =

8.05 Hz, 2H), 7.98 (d, J = 8.35 Hz, 2H), 7.90 (m, 1H), 7.84 (d, J = 8.15 

Hz, 1H), 7.68 (m, 1H).

,5C NMR (D M S O -d*) o f 33

6 115.3, 125.6, 143.4, 149.8, 157.5, 167.2 (6 C, quaternary C).

5 120.9, 123.1, 126.5, 127.9, 129.9, 133.2, 154.2 (7 C, aromatic CH).
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’H NMR (D M S O -d *) o f  *>9

5 10.05 (br. s, 1H), 8.71 (s, 1H), 8.61 (d, J = 8.25 Hz, 1H), 8.13 (d, J = 8.2 

Hz, 2H), 8.00 (d, J = 8.55 Hz, 2H), 7.91 (m, 1H), 7.84 (d, J = 8.15 Hz, 1H),

7.69 (m, 1H), 3.85 (s, 3H).

,5C  NMR (D M S O -d ^ ) o f  39 

5 51.9 (CH3).

5 115.3, 123.8, 143.9, 146.8, 157.4, 165.9 (6 C, quaternary C).

5 120.9, 123.0, 126.6, 127.9, 129.9, 133.3, 154.1 (7 C, aromatic CH).

’H NMR (D M S O -d *) o f  + 0

6 9.95 (br. s, 1H), 8.68 (s, 1H), 8.60 (d, J = 8.25 Hz, 1H), 8.02 (d, J = 7.75 

Hz, 2H), 7.91 (m, 4H), 7.83 (d, J = 8.2 Hz, 1H), 7.68 (m, 1H), 7.29 (s, 1H).

,5C NMR (D M S O -d *) o f + 0

6 115.2, 128.9, 142.0, 149.7, 157.5, 167.5 (6 C, quaternary C).

5 121.0, 123.0, 126.4, 127.9, 128.0, 133.2, 154.3 (7 C, aromatic CH).
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4 -((^ -N itro c ju m a z o ljn -4 -y la m m o ) m eth y l)b en zo ic  acid and 4 -  

( (Q u m a z o Im -4 -y la m m o ) m eth y l)b en zo ic  acid

.CN
HNAcOH / reflux

COOH

COOH

20 , 22 41 42,43

The general procedure was adopted using N'-(2-cyano-4-nitrophenyl)-N,N- 

dimethylimidoformamide (20) or N'-(2-cyanophenyl)-N,N-dimethylimido 

formamide (22) (0.011 mol) and 4-aminomethylbenzoic acid (41) (1.827g, 

0.0121 mol).

ID R M F M w Yield % m p °C

42 n o 2 Ci6H12N404 324 94.2 318

43 272 H Ci6Hi3N302 279 99.2 320

■H N M R  (D M S O -d ^ )  o f  4 2

5 9.65 (br. s, 1H, NH), 9.45 (s, 1H), 8.60 (s, 1H), 8.50 (d, J = 9.1 Hz, 1H), 

7.91 (d, J = 7.5 Hz, 2H), 7.86 (d, J = 9.15 Hz, 1H), 7.49 (d, J = 7.75 Hz, 

2H), 4.88 (d, J = 4.8 Hz, 2H).

N M R  (D M S O -d * )  o f  4 2

5 43.7 (CH2)

6 114.0, 130.2, 143.5, 144.1, 152.8, 160.3, 167.3 (7 C, quaternary C).

6 120.6, 126.4, 127.3, 129.2, 129.4, 158.2 (6 C, aromatic CH).
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C16H12N4 0 4 C% H % N°/o

Calculated 59.26 3.73 17.27

Found 59.22 4.00 16.90

'H NMR (D M S O -d < ) o f  +3

5 8.92 (br. s, 1H), 8.45 (s, 1H), 8.32 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 7.3 

Hz, 2H), 7.79 (m, 1H), 7.72 (d, J = 8.25 Hz, 1H), 7.55 (m, 1H), 7.47 (d, J 

= 7.95 Hz, 2H), 4.85 (d, J = 4.55 Hz, 2H).

I5C  NMR (D M S O -d < ) o f 4-3 

5 43.4 (CH2)

5 114.9, 129.3, 144.6, 149.1, 159.4, 167.2. (6 C, quaternary C).

6 122.6, 125.8, 127.1, 127.5, 129.4, 132.7, 155.0 (7 C, aromatic CH).
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M e th y l 4 *-((c ju m a zo lin ~ 4 '~ y la m in o ) m e th y l)  b e n z o a te  e s te r

d e r iv a t iv e s

\
R

MeOH/SOCU

42 R = NO2

COOH COOCHg
44 R = NO2

45 R = H
J

A mixture of 4-((6-nitroquinazolin-4-ylamino)methyl)benzoic acid (42) or 

4-((quinazolin-4-ylamino)methyl)benzoic acid (43) (0.0025 mol), thionyl 

chloride (4 mL) and dry methanol (70 mL) was stirred for 4 days. The 

reaction mixture was neutralised using saturated Na2C0 3  solution, 

extracted with ethyl acetate (3 x 100 mL). The organic layer was washed 

with brine (2 x 50 mL), dried over anhydrous Na2S04 and evaporated 

under reduced pressure.

ID R M w M F Yield % mp °C

44 no2 338 C17H14N4O4 87.3 > 300 decmp.

45 H 293 Q 7H15N3O2 81.4 155

’H N M R  (D M S O ~ d *) o f  4 4

N M R  (D M S O -d * )  o f  4 4

5 43.7 (CH2)

6 52.0 (CH3)

6 114.0, 128.3, 144.1, 144.4, 152.8, 160.3, 171.8 (7 C, quaternary C). 

6 120.6, 126.4, 127.5, 129.2, 129.3, 158.2 (6 C, aromatic CH).

6 9.62 (t, J = 5.65 Hz, 1H), 9.42 (d, J = 2.3 Hz, 1H), 8.59 (s, 1H), 8.51 

(dd, J = 2.3, 9.2 Hz, 1H), 7.93 (d, J = 8.2 Hz, 2H), 7.87 (d, J = 9.15 Hz, 

1H), 7.53 (d, J = 8.15 Hz, 2H), 4.89 (d, J = 5.7 Hz, 2H), 3.84 (s, 3H).
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JH NMR (DM SO~d*) o f

5 8.97 (br. s, 1H), 8.49 (s, 1H), 8.36 (d, J = 8.2 Hz, 1H), 7.97 (d, J = 8.15 

Hz 2H), 7.84 (m, 1H), 7.76 (d, J = 8.2 Hz, 1H), 7.60 (m, 1H), 7.54 (d, J =

8.05 Hz 2H), 4.92 (d, 3 = 5.6 Hz, 2H), 3.88 (s, 3H).

,5C NMR (D M S O -d *) o f +5

6 43.3 (CH2)

6 52.0 (CH3)

5 114.9, 128.1, 145.2, 149.2, 159.4, 166.1. (6 C, quaternary C).

5 122.6, 125.8, 127.2, 127.6, 129.2, 132.7, 155.0 (7 C, aromatic CH).
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5-(1 H - te t r a z o l - 5 - t j l )  b enzenam m e a n d  4 ~ (1 H ~ te tra z o l-^ ~ y l)

b enzenam m e

l ) NaN3 / E t,N H C l / toluene

2) HQ
CN

46 47
n h 2

1) KaNJ / El̂ N -HCItolacnc
2) HQ

CN

48 49

The mixture of aminobenzonitrile (46 or 48) (1.18 g, 10 mmol), NaN3 

(0.85 g, 0.013 mol) and triethylamine hydrochloride salt (1.79 g, 0.013 

mol) in toluene (100 mL) was heated to reflux for 28 h with stirring. After 

cooling, the product was extracted with water (3 x 50 mL). To the aqueous 

layer, 36 % HCI was added dropwise to salt out the produced tetrazole. 

After filtration, the solid was dried under reduced pressure 273.

ID Yield %  mp °C
47 80.9 199

ID Yield %  m .p. °C
49 74.3 269

’H  N M R  (D M S O -d * )  o f  4 7

6 7.28 (m, 1H), 7.15 (d, 3=7.55 Hz, 1H), 6.99 (m, 1H), 6.45 (m, 1H), 4.95 

(br. s, 2H).

,5C  N M R  (D M S O -d * )  o f  4 7

6 133.1, 148.3 (2C, quaternaryC)111.8, 112.7, 114.1, 128.5. (4 C, 

aromatic CH).

'H  N M R  (D M S O -d * )  o f  4 ?

6 7.71 (d, J = 8.45 Hz, 2H), 6.69 (d, J = 8.55 Hz, 2H), 3.95 (br. s, 2H).

,5C  N M R  (D M S O - d * )  o f  4 ?

6 110.7, 151.5, 155.3. (3C, quaternary C) 113.7, 128.2. (2C, aromatic CH).
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^ -A m m o (V 0 H - te t ra z o l-5 - ( j l ) p h e n L jl) c |u m a z o l i 'n e  d e r iv a t iv e s

RlTX

20, 22

The general procedure was adopted using either of N'-(2-cyanophenyl)- 

N,N-dimethylimidoformamide derivatives (20 or 22) ( 0.011 mol) and 3- 

(lH-tetrazol-5-yl)phenylamine (47) (1.827g, 0.0121 mol).

ID R M w M F Yield 0/0 mp °C

50 no 2 334 C15H10 N80 2 64.3 > 300 (decmp.)

51 H 289 CisHnNy 60.9 > 300 (decmp.)

5 10.74 (br. s, 1H), 9.78 (d, J = 1.55 Hz, 1H), 8.78 (s, 1H), 8.63 (s, 1H), 

8.58 (dd, J = 2.05, 9.1 Hz, 1H), 8.13 (d, J = 7.95 Hz, 1H), 7.97 (d, J =

9.15 Hz, 1H), 7.93 (d, J = 7.65 Hz, 1H), 7.64 (m, 1H).

,5C  NM R (D M S O -d * )  o f

6 114.4, 125.3, 139.4, 144.6, 153.0, 157.6, 158.8. (7 C, quaternary C).

6 121.0, 121.0, 122.8, 124.9, 126.7, 129.5, 157.6 (7 C, aromatic CH). 

lH N M R  (D M S O -d * )  o f

6 10.25 (br. s, 1H), 8.74 (d, J=8.25 Hz, 1H), 8.70 (s, 1H), 8.67 (s, 1H),

8.15 (d, J=7.85 Hz, 1H), 7.90 (m, 2H), 7.82 (d, J=8.15 Hz, 1H), 7.67 (m, 

1H), 7.61 (m, 1H).

,5C  N M R  (D M S O -d * )  o f

6 115.1, 124,6, 140.1, 149.3, 155.7, 157.9. (6 C, quaternary C).

6 120.7, 122.2, 123.4, 124.8, 126.4, 127.4, 129.4, 133.2, 154.2 (9 C, 

aromatic CH).

AcOH
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4 - A m in o ( 4 - ( IH - te t r a z o l - ^ - y  I) p h e n y l)c ju in a z o lin e  d e r iv a t iv e s

.CN

AcOH
+

20, 22 49 52, 53

The general procedure was adopted using N'-(2-cyanophenyl)-N,N- 

dimethylimidoformamide derivative (20 or 22) ( 0.011 mol) and 4-(lH- 

tetrazol-5-yl)phenylamine (49) (1.827g, 0.0121 mol).

ID R M w M F Yield % mp °C

52 no 2 334 C15H10 n8o 2 73.3 290

53 H 289 Ci5Hn N7 59.9 279

’H  N M R  (D M S O -d * )  o f  ^2

5 12.15 (br. s, 1H, NH), 10.67 (br. s, 1H, NH), 9.73 (d, J = 2.25 Hz, 1H),

8.83 (s, 1H), 8.6 (dd, J = 2.4, 9.2 Hz, 1H), 8.15 (d, J = 8.7 Hz, 2H), 8.11 

(d, J = 8.8 Hz, 2H), 7.98 (d, J = 9.15 Hz, 1H).

,5C  N M R  (D M S O -d * )  o f  ^2

6 121.1, 122.8, 126.9, 127.5, 129.3, 157.3 (6C, aromatic CH).

6 115.2, 142.6, 144.7, 159.7, 167.8, 171.7 (6C, quaternary C).

’H N M R  (D M S O -d * )  o f  f t
6 10.3 (br. s, 1H, NH), 10.1 (br. s, 1H, NH), 9.07 (s, 1H), 8.7 (m, 2H), 

8.39 (m, 2H), 8.11 (d, J = 8.3 Hz, 1H), 7.74 (m, 1H), 7.55 (m, 2H), 7.43 

(m, 1H).

,5C  N M R  (D M S O -d * )  o f  f t
6 122.1, 123.0, 126.5, 127.3, 127.8, 133.3, 154.2 (6 C, aromatic CH).

6 115.2, 118.8, 142.0, 149.7, 157.5, 155.02 (6 C, quaternary C).
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4 -  (£-Nitroc]um azolm ~4'-ylam m o) benzom trile

n h2.CN

NH

CN

CN

20 54 55

The general procedure was adopted using N'-(2-cyano-4-nitrophenyl)-N,N- 

dimethylimidoformamide (20) (2.28 g, 0.011 mol) and 4-aminobenzonitrile 

(54) (1.427g, 0.0121 mol).

Yield; 1.96 g (64.3%) 

m p ;  275 °C. ( C 1 5 H 9 N 5 O 2 ) .

'H NMR (D M S O -d ^ ) o f 55

6 10.4 (br. s, 1H), 9.65 (s, 1H), 8.80 (d, J = 1.05 Hz, 1H), 8.55 (m, 1H),

8.12 (d, J=7.65 Hz, 2H), 7.96 (d, J=9.15 Hz, 1H), 7.85 (d, J=7.6 Hz, 2H).

,5C  NMR (D M S O -d *) o f  55

5 114.7, 119.1, 143.4, 144.7, 153.0, 158.5, 172.2 (7 C, quaternary C).

6 120.9, 122.2, 126.8, 129.5, 132.8, 157.1 (6 C, aromatic CH).
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2 - (Q u m a z o lm -4 '~ y la m m o )b e n z o ic  a c id  d e r iv a tiv e s

.CN NH.

.COR*

,NH

58-6120, 22
R = NOz, H

56, 57
R' = OH, NH2

The general procedure was adopted using N'-(2-cyanophenyl)-N,N- 

dimethylimidoformamide derivatives (20 or 22) (0.011 mol) and the 

appropriate anthranilic acid derivative [anthranilic acid (56) or 

anthranilamide (57)] (0.0121 mol each).

ID R R' M w M F Y ie ld  % mp

58 no 2 OH 310 C15H10 N4O4 73.3 >360 decmp.

59 no 2 nh2 309 CisHn N5O3 57.2 239

60 274 H OH 265 Ci5Hu N3 0 2 59.9 180

61 275 H nh 2 264 Ci5Hi2 N4O 62.4 179

’H N M R  (D M S O -d * )  o f  ?8
5 12.58 (br. s, 1H), 8.75 (s, 1H), 8.3 (m, 2H), 8.15 (d, J = 7.55 Hz, 1H),

8.06 (d, J = 9, 1H), 7.81 (m, 2H), 7.54 (m, 1H), 6.93 (d, J = 9.15 1H).

,5C N M R  (D M S O -d * )  o f  ?S
6 111.2, 120.8, 135.3, 147.5, 152.5, 154.6. (6 C, quaternary C).

6 116.1, 125.7, 126.8, 127.1, 134.5. (5 C, aromatic CH).
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>H NMR (DM SO~d*) o f 59
6 9.39 (s, 1H), 9.34 (d, J = 2 Hz, 1H), 8.61 (dd, J = 2.65, 8.8 Hz,lH), 8.34 

(d, J = 7.95, 1H), 8.02 (m, 2H), 7.94 (d, J = 8.15 Hz, 1H), 7.66 (m, 1H).

,5C NMR (DM SO~d*) o f  5?
6 119.0, 122.2, 143.5, 146.6, 146.8, 158.4. (6C, quaternary C).

5 120.7, 127.1, 127.3, 127.6, 127.8, 129.5, 136.4, 141.5. (8C, aromatic 

CH).

’H NMR (DM SO~d*) o f 60
6 12.45 (br. s, 1H), 9.31 (s, 1H), 8.74 (dd, J = 1.3, 8.05 Hz, 1H), 8.34 (dd, 

J = 1.35, 7.95 Hz, 1H), 8.00 (ddd, J = 1.55, 7.15, 8.5 Hz, 1H), 7.93 (ddd, 

J = 1.45, 7.15, 8.5 Hz, 1H), 7.95 (d, 7.95, 2H), 7.75 (ddd, J = 1.25, 6.95,

8.2 Hz, 1H), 7.63 (ddd, J = 1, 7.05, 8.05 Hz, 1H).

,5C NMR (D M S O -d*) o f 60
5 118.7, 121.2, 142.8, 144.4, 147.1, 158.7. (6C, quaternary C).

5 125.4, 126.5, 126.9, 127.3, 127.7, 128.8, 133.8, 135.9, 138.1 (9C, 

aromatic CH).

NMR (DMSO~d*) o f 6 \

5 9.28 (s, 1H), 8.71 (d, J = 7.95, 1H), 8.31 (d, J = 7.95 Hz, 1H), 7.97

(ddd, J = 1.3, 6.95, 8.25 Hz, 1H), 7.9 (ddd, J = 1.2, 7.05, 8.25 Hz, 1H),

7.83 (d, J = 8, 2H), 7.73 (m, 1H), 7.60 (m, 1H).

,5C NMR (D M S O -d*) o f 6\
6 118.7, 121.2, 142.9, 144.4, 147.1, 158.7. (6 C, quaternary C).

5 125.4, 126.4, 126.9, 127.3, 127.7, 128.9, 133.8, 135.9, 138.1. (9 C, 

aromatic CH).
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2 -M e th t)l c jum azolm ~4'(3H )~one

,CHanh2
HQ

,NH
“CONHe

6357 62

(1.36 g, 0.01 mol) of anthranilamide (57) was dissolved in (3 g, 0.03 mol) 

of acetylacetone (62), and one drop of concentrated hydrochloric acid was 

added on stirring. A white solid was developed after 1 h reflux 276. The 

reaction mixture was cooled and excess diketone was evaporated, the solid 

was washed with ether and recrystallised from ethanol.

Yield; 1.4 g (88.5%) 

mp; 240°C. (lit 237-239)276.

'H NMR (C D C lj-dO  o f  6y, ( re p o rte d ) 2̂

6 11.5 (br. s, 1H), 8.29 (ddd, J=7.61, 1.47, 0.59 Hz, 1H), 7.77 (dt, J=8.49,

7.03, 1.47 Hz, 1H), 7.68 (ddd, J=8.79, 1.17, 0.59 Hz, 1H), 7.48 (dt, J= 8.2,

7.03, 1.47 Hz, 1H), 2.59 (s, 3H).

’H NMR (D M S O -d*) o f  6 }

6 12.20 (br. s, 1H), 8.07 (dd, J = 1.4, 7.95 Hz, 1H), 7.77 (ddd, J = 1.55, 

6.85, 8.4 Hz, 1H), 7.57 (d, J = 8.05 Hz, 1H), 7.45 (ddd, J = 1, 7, 8 Hz, 

1H), 2.36 (s, 3H).

,5C NMR (C D C l5-d ,) o f  61)

6 22 (CH3).

5 164.2, 154.37, 149.8, 121.22 (4 C, quaternary C).

6 134.5, 127.3, 126.5, 126.2 (4 C, aromatic CH).
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+ ~ cM o ro -2 -m e tl-iL jlc |u m a zo Im e

,NH

63 64

A solution of 2-Methylquinazolin-4(3H)-one (63) (4.6 g, 0,0375 mol) and 

dimethylaminopyridine (DMAP) (0.182 g, 0,0561 mol) in dry toluene (100 

mL) was refluxed for 5 min. Phosphorus oxychloride (2.5 mL) was added 

by syringe, and the resultant mixture was refluxed for 3 h ( a clear orange 

colour developed after 1 h at reflux and turned deep red after 1.5 h). the 

solution was cooled to room temerature and filtered. The insoluble 

precipitate was washed with dry toluene (40 mL). the combined filtrate 

was rapidly washed sequentially with ice water (100 mL), ice-cooled 20% 

sodium hydroxide (2xl00mL), ice water (100 mL), and saturated sodium 

chloride (100 mL). the organic layer was immediately washed with a HCI 

solution (1M, 100 mL) and water (100 mL) and dried over sodium sulfate. 

The solvent was removed in vacuo at 30 °C.

Yield; 2.3 g (35.1%) 

mp; 85 (lit 85-86) °C278.

'H  N M R  (C D C ly d , )  o f  6+
6 8.18 (d, J = 8.3 Hz, 1H), 7.95 (d, J = 9.5, 1H), 7.89 (m, 1H), 7.62 (m, 

1H), 2.82 (s, 3H, CH3).

I5C  N M R  (C D C ly -d ,)  o f  6&
6 26.1 (CH3).

6 163.6, 162.2, 151.5, 121.8 (4C, quaternary C).

6 134.9, 128.1, 128, 125.7 (4C, aromatic CH).
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M e th y l 4 --(2 -m e th y Ic ju m a zo li'n - '4 '-y la iT im o ) b e n z o a te

n h 2
.C R ,

NH
COOM e

COOMq

64 33 65

A mixture of 4-chloro-2-methylquinazoline (64) (0.25 g, 0.0014 mol), 

methyl 4-aminobenzoate (31) (0.85 g, 0.0056 mol), triethylamine (0.99 g, 

0.0098 mol) and isopropanol (50 mL) was refluxed for 12 days. After 

cooling to room temperature the mixture was extracted with ethyl acetate 

(3x50 mL), dried with anhydrous MgS04 and evaporated under vacum. 

The residue was purified by column chromatography with ethyl acetate 

and hexane (70:30).

Yield; (0.2 g, 48.7%). mp ; 176 °C.

>H NMR (D M S O -d *) o f 6?
6 9.96 (br. s, 1H), 8.59 (d, J = 8.3 Hz, 1H), 8.21 (d, J = 8.65 Hz, 2H), 8.02 

(d, J = 8.7 Hz, 2H), 7.88 (m, 1H), 7.78 (d, 1H), 7.63 (m, 1H), 3.89 (s, 3H), 

2.63 (s, 3H).

,5C NMR (D M S O -d *) o f 
6 26.1 (CH3)

6 51.8 (CH3)

6 113.3, 123.5, 144.2, 150.4, 157.3, 162.6, 165.9. (7 C, quaternary C).

6 120.6, 122.9, 125.5, 127.3, 129.8, 133.1. (6 C, aromatic CH).
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C h a p te r  +

P a r t  2

-4*.2 oc3 p U n s a tu r a te d  Icetones

M e tb y l ^ - f o r m y l - IH - p y r r o le ^ - c a r b o x y la te  

a n d  M e th y l 4 -~ fo rm y l-1 H ~ p y rro le -2 ~ c a rb o x y la te

.COOMe<jCOOMe P Q C i,/D M F

k 66 67 68
v  , *

To RBF flushed with N2 was added anhydrous DMF (7 mL, 0.09 mol) it was 

then cooled to 5-10 °C. To the cooled DMF was added POCI3 (7.8 mL, 

0.084 mol) dropwise over a couple of minutes. Dry 1,2-DCE (25 mL) was 

then added and the orange solution was cooled to 0-5°C during the 

addition of methyl pyrrole-2-carboxylate (66) (9.5 g, 0.076 mol) in dry 

1,2-DCE (50 mL). The mixture was then heated to reflux for 15 min. the 

reaction was cooled to room temperature, treated with a mixture of ethyl 

acetate (60 mL) and water (75 mL), poured into saturated NaFIC0 3  (350 

mL), and separated. The aqueous layer was washed three times with 

ether, and the combined organic extracts were washed twice with aqueous 

saturated Na2C03, dried over Na2S04, and evaporated under vacuum. The 

resulting solid was chromatographed on a silica gel flash column, eluting 

with cyclohexane/ethyl acetate (70:30) to afford two compounds in a 2:1 

ratio. The first to elute was Methyl 5-formyl-lFI-pyrrole-2-carboxylate (6 7 ) 

(C7Fl7N03), which was recrystalised from cyclohexane. The second 

compound to elute was Methyl 4-formyl-lFI-pyrrole-2-carboxylate (68) 

(C7Fl7N03), which was recrystalised from cyclohexane 284.
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M e th y l 5 ~ fo rm y U lH - p y r r o le ~ 2 ~ c a rb o x y Ia te  ( 6 / ) ;

Yield; (7.6 g, 65.4%) mp; 93°C

'H  N M R  (C D C l5-d , )  o f  6 j :
5 9.92 (br. s, 1H), 9.70 (s, 1H), 6.97 (d, J = 4.2 Hz, 1H), 6.95 (d, J = 4.15 

Hz, 1H), 3.94 (s, 3H).

,}C  N M R  (C D C l5~d,) o f  6 j :

5 52.2 (CH3)

6 128.1, 134.5, 161.0. (3 C, quaternary C).

6 115.7, 119.7, 180.3. (3 C, CH).
&

M e th y l 4 '~ fo rm y l-1 H ~ p y r ro le ~ 2 -c a rb o x y Ia te  {68}%

Yield; (2.9 g, 25.1%) mp; 93 °C

’H  N M R  (C D C l5~ d i) o f  68:

6 9.81 (br. s, 1H), 9.78 (s, 1H), 7.51 (d, J = 1.25 Hz, 1H), 7.25 (d, J = 

1.45 Hz, 1H), 3.83 (s, 3H).

,5C  N M R  ( C D C l j - d i )  o f  68:

6 52.0 (CH3)

6 124.8, 127.7, 161.2. (3 C, quaternary C).

6 114.2, 128.5, 185.6. (3 C, CH).



■<&

Chapter +  Experimental Chemistry ]62

( E ) - M e th y l 5 -(3 ~ o x o b u t-1  -e n y I) -1 H -p y r ro le -2 -c a rb o x y Ia te  and  

(E )  -m e th y l + -  ( 5 - o x o b u t - l- e n y  I) - IH - p y r r o le - 2 - c a r b o x y  la te

■COOMe H ,0 ■COOMe
pyrrolidine

6967

.COOMe ■COOMe
H,0

pyrrolidine

7068

To a stirring mixture of either of the methyl formyl-lH-pyrrole-2- 

carboxylate derivatives 67  or 68  (1.53 g, 0.01 mol), acetone (3.7 mL, 0.05 

mol), water (50 mL) and amine (30 mol %) were added. The reaction was 

stirrred overnight at room temperature and on completion as monitored by 

TLC was extracted with (3 x 50 mL) dichloromethane. The organic layer 

was washed with water (2 x 50 mL) and dried over anhydrous Na2S04 and 

evaporated to obtain crude product. Column chromatography of the crude 

on silica gel using mixture of DCM/MeOH (99:1) as eluent gave pure 

products 284. (C10H11NO3 ) M.w. 193.

ID Yield % mp °C

69 43.9 155

70 59.3 168
Jr

'H  N M R  (D M S O -d * )  o f  6$x
6 10.06 (br. s, 1H), 7.37 (d, J = 16.3 Hz, 1H), 6.85 (d, J = 3.95 Hz, 1H), 

6.58 (d, J = 16.25 Hz, 1H), 6.51 (d, J = 3.9 Hz, 1H), 3.86 (s, 3H), 2.27 (s,

3H>- *
‘>C N M R  (D M S O -d * )  o f  69:
6 27.5 (CH3).
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6 52.1 (CH3).

5 125.7, 132.7, 161.6, 197.8. (4 C, quaternary C).

6 114.5, 116.9, 125.1, 131.9. (4 C, CH).

’H NMR (D M S O ~d *) o f 69'.
5 9.56 (br. s, 1H), 7.37 (d, J = 16.1 Hz, 1H), 7/14 (m, 1H), 7.04 (s, 1H),

6.43 (d, J = 16.05 Hz, 1H), 3.81 (s, 3H), 2.25 (s, 3H).

,5C  NMR (D M S O ~d*) o f  69:
5 27.3 (CH3).

5 52.8 (CH3).

6 122.2, 124.5, 161.2, 198.4. (4 C, quaternary C).

5 113.0, 125.0, 136.5, 185.5. (4 C, CH).
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( E ) - 5 -0 ~ o x o b u t~ 1 -e n y l) - 1 H - p i jr r o le ~ 2 -c a r b o x ij l ic  a c id  and  

(E ) - m e th i j l  (5~oxobu t~1  ~ e n y l)~ 1 H -p ijf fo le ~ 2 -c a rb o x L jlic  a c id

.COOMe KOH/MeOH

69 71

.COOMe .COOH

KOH/MeOH

70

A mixture of the corresponding Methyl pyrrole-2-carboxylate ester 69 or 

70 (0.01 mol), KOH IN solution (9 mL), MeOH (30 mL) and THF (30 mL) 

was refluxed 15 h. The resulting solution was cooled to room temperature, 

water was added and pH was adjusted to pH 2, using IN HCI solution. This 

was extracted with ethyl acetate (3x 50mL). the organic layer was washed 

with brine solution and dried over dry Na2S0 4 then evaporated under 

vacuum. The crude product was purified on silica gel using increasing 

proportions of MeOH in DCM. (C9H9N03) M.w. 179.

ID Yield % mp °CV .

71 68.4 210 decomp.

72 73.9 197 decomp.

!H N M R  (D M S O -d * )  o f  71:

6 12.62 (br. s, 1H), 12.21 (br. s, 1H), 7.43 (d, J = 16.35 Hz, 1H), 6.81 (d, 

J = 16.35 Hz, 1H), 6.78 (m, 1H), 6.69 (dd, J = 2.35, 3.75 Hz, 1H), 2.25 (s, 

3H).

,5C  N M R  (D M S O -d * )  o f  71:

6 27.3 (CH3).
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6 126.6, 132.6, 161.5, 197.5. (4 C, quaternary C).

6 113.7, 116.0, 124.9, 132.4. (4 C, CH).

'H  N M R  (D M S O -d < 0  o f  72:

5 12.73 (br. s, 1H), 12.11 (br. s, 1H), 7.51 (d, J = 16.2 Hz, 1H), 7.44 (dd, J 

= 1.6, 3.1 Hz, 1H), 7.1 (m, 1H), 6.49 (d, J = 16.2 Hz, 1H), 2.24 (s, 3H).

,5C  N M R  (D M S O -d * )  o f  72:

5 26.86 (CH3).

5 120.94, 124.96, 161.56, 197.55. (4 C, quaternary C).

6 112.82, 123.80, 126.69, 137.65. (4 C, CH).

M e th y l (a m m o m e th y I)b e n z o a te

NH. NH.

S0C12 /  Dry methanol

r e f lu x  o n .

COOH COOMe

41 73

4-(Aminomethyl)benzoic acid (41) (5.0 g) was stirred with MeOH (100 mL) 

and SOCI2 (5 mL) under reflux temperature overnight. Cooling to room 

temperature followed by evaporation gave (5.2 g, 96 %) of Methyl 4- 

(aminomethyl)benzoate hydrochloride (73). 

mp 245 °C (lit 235-238 °C)285.

'H  N M R  (D M S O -d * )  o f  6h
6 8.64 (br. s, 3H), 7.99 (d, J = 8.35 Hz, 2H), 7.66 (d, J = 8.35 Hz, 2H),

4.12 (s, 2H), 3.88 (s, 3H).
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(E )  -m c th y  W -  ( ( 5 - (3 -o x o b u t~ l-e n i| I) ~1H~pijrrole~2~  

carb oxarm do)fneth ijl) b e n zo a te  and (E )~ m eth ijl 4 ~ ((4 '~ (3 ~  

o xo b u t-1~ en y l)~1H ~ p ijrro le -2 -ca rb o xam ic lo )m etb y  I) b en zo ate

n h 2

DM AP,COOH
EDCI

‘COO MeCOOMe

71 73 74
NH.

.COOH
DMAP

COOMe
COOMe

7372 75

To a solution of the corresponding oxobutenyl pyrrole-2-carboxylic acid 

derivative (71 or 74) (0.179 g, 0.001 mol) in dry dichloromethane (5 mL), 

1-ethyl 3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) 

(0.383 g, 0.002 mol) and dimethylaminopyridine (DMAP) (0.244 g, 0.002 

mol) were added. Methyl 4-(aminomethyl)benzoate (73) 286 (0.165 g, 

0.001 mol) in dry THF (5mL) was stirred for 3 min under N2 atmosphere 

then was added to the above mentioned DCM mixture. The resulting 

mixture was stirred at RT for 48 h under N2. The resulting mixture was 

evaporated under reduced pressure. The crude product was 

chromatographed using ethyl acetate as eluent. (Ci8Hi8N20 4) M.w. 326.

ID Yield % mp °C

74 24.4 208

75 28.9 218
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'H NMR (D M S O -d ^ ) o f  JAx

8 12.09 (br. s, 1H), 8.90 (t, J = 6.05 Hz, 1H), 7.94 (d, J = 8.3 Hz, 2H),

7.44 (m, 3H), 6.93 (dd, J = 2.05, 3.7 Hz, 1H), 6.75 (d, J = 16.3 Hz, 1H),

6.69 (dd, J = 2.2, 3.6 Hz, 1H), 4.54 (d, J = 5.95 Hz, 2H), 3.84 (s, 3H), 

2.24 (s, 3H).

,5C NMR (D M S O ~d*) o f 74-:

5 27.2 (CH3).

5 41.8 (CH2).

5 52.1 (CH3).

8 128.1, 129.8, 131.1, 145.4, 160.1, 166.1, 197.5 (7 C, quaternary C).

8 112.0, 113.8, 123.9, 127.4, 129.3, 132.8 (6 C, CH).

>H NMR (D M S O ~d*) o f  7?:

8 12.00 (br. s, 1H), 8.83 (t, J = 6 Hz, 1H), 7.98 (d, 8.3 Hz, 2H), 7.58 (d, J 

= 16.1 Hz, 1H), 7.49 (d, J = 8.35 Hz, 2H), 7.42 (dd, J = 1.6, 2.7 Hz, 1H), 

7.22 (br. s, 1H), 6.37 (d, J = 16.1 Hz, 1H), 4.54 (d, J = 6.05 Hz, 2H), 3.89 

(s, 3H), 2.29 (s, 3H).

,5C NMR (D M S O -d *) o f  7?:

6 26.7 (CH3).

8 41.8 (CH2).

6 52.0 (CH3).

8 120.5, 128.0, 128.1, 145.4, 160.3, 166.1, 197.4 (7 C, quaternary C).

8 108.0, 123.2, 125.6, 127.3, 129.1, 138.2 (6 C, CH).
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( E ) -4 -- ( (5~ ( 3 - o x o b u t - l  -e n ij l)~ 1 H -p y r ro le ~ 2 -c a rb o x a m id o )  

m e th tjl)  b e n z o ic  a c id  a nd  (E )-4 -~ ( ( 4 - - (3 ~ o x o b u t~ l-e n ij l) -1 H -  

p y r ro le -2 -c a rb o x a m id o )m e th t j l )  b e n z o ic  a c id

KOH
O'

COOCH3 ‘COOH

COOCH;

74

. P

76
O

COOH

O O
75 77

J

A mixture of methyl 4-((5-(3-oxobut-l-enyl)-lH-pyrrole-2-carboxamido) 

methyl) benzoate ester (74) (0.326 g, 0.001 mol), KOH IN solution (5 

mL), MeOH (30 mL) and THF (30 mL) was stirred at 45 °C for 48 h. The 

resulting solution was evaporated under reduced pressure, water was 

added and pH was adjusted to pH 2 using IN HCI solution. This was 

extracted with ethyl acetate (3 x 50 mL). the organic layer was washed 

with brine solution and dried over dry Na2S0 4  then evaporated under 

vacuum. The crude product was purified on silica gel using increasing 

proportions of MeOH in DCM (0-3%). Yield 0.294 g (94.2%) mp 274 °C. 

lH NMR (D M S O -d*) o f / 6:
5 12.75 (br. s, 1H), 12.08 (br. s, 1H), 8.87 (t, J = 6.55 Hz, 1H), 7.92 (d, J 

= 8.25 Hz, 2H), 7.44 (m, 3H), 6.93 (m, 1H), 6.75 (d, J = 16.3 Hz, 1H), 

6.68 (m, 1H), 4.53 (d, J = 6 Hz, 2H), 2.24 (s, 3H).

,5C NMR (D M S O -d *) o f 76:
5 27.2 (CH3).

6 41.8 (CH2).

6 129.3, 129.8, 131.1, 144.8, 160.1, 167.1, 197.4 (7 C, quaternary C).
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5 112.0, 113.7, 123.9, 127.1, 129.4, 132.8 (6 C, CH).

A mixture of methyl 4-((4-(3-oxobut-l-enyl)-lH-pyrrole-2-carboxamido) 

methyl)benzoate ester (75) (0.326 g, 0.001 mol), KOH IN solution (5 mL), 

MeOH (30 mL) and THF (30 mL) was stirred overnight. The resulting 

solution was evaporated under reduced pressure, water was added and pH 

was adjusted to pH 2 using IN HCI solution. This was extracted with ethyl 

acetate (3x 50 mL). the organic layer was washed with brine solution and 

dried over dry Na2S04 then evaporated under vacuum. The crude product 

was purified on silica gel using increasing proportions of MeOH in DCM (0- 

3 %). Yield 0.3 g (96.2 %) mp 225 °C

lH NMR (D M S O -d*) o f 77:
6 12.78 (br. s, 1H), 11.95 (br. s, 1H), 8.77 (t, J = 6.05 Hz, 1H), 7.91 (d, J 

= 8.25 Hz, 2H), 7.55 (d, J = 16.15 Hz, 1H), 7.43 (d, J = 8.3 Hz, 2H), 7.37 

(dd, J = 1.4, 2.95 Hz, 1H), 7.18 (t, J = 1.85 Hz, 1H), 6.34 (d, J = 16.1 Hz, 

1H), 4.52 (d, J = 6 Hz, 2H), 2.25 (s, 3H).

,5C NMR (D M S O -d*) o f 77:
6 26.8 (CH3).

6 41.8 (CH2).

6 120.5, 128.1, 129.3, 144.9, 160.3, 167.2, 197.4 (7 C, quaternary C).

6 108.0, 123.2, 125.6, 127.2, 129.3, 138.2 (6 C, CH).



Chapter -4- experimental Chemistry 170

4'~((4'~lodobenzam ido) m ethyl)benzoic acid and M ethyl + - ( ( + -  

lodobenzam ido) methyl) benzoate

NH;

TEA

DCM/DMF
COOR

COOR

79,8041, 73 41, 79 
73,80

77

A mixture of 4-iodobenzoyl chloride (78) (2.65 g, 0.01 mol) and the 

corresponding 4-aminomethyl benzoic acid derivative (41 or 73 286) (0.01 

mol) and triethylamine (1.4 mL) in dichloromethane (50 mL) was refluxed 

for 6 h. The resulting reaction mixture was evaporated under vacuum, 

water (50 mL) was added where the crude product was precipitated out, 

filtered and dried. Purification of the crude product was carried out by 

column chromatography using silica gel and (DCM: EtOAc, 70:30) as 

eluent in case of the free carboxylic acid derivative 79, or (EtOAc:hexane, 

60:40) in case of the ester counterpart 80.

ID R M w M F Yield %

79 H 323 c15h12in o 3 42.8

80 ch3 337 c16h14in o 3 77.3

4 - - (O t-Iodobenzam ido) m ethyl)benzoic acid 7$z 

'H NMR (D M S O -d *) o f  79:
6 12.90 (br. s, 1H), 9.22 (t, J = 5.95 Hz, 1H), 7.91 (d, J = 8.25 Hz, 2H), 

7.87 (d, J = 8.55 Hz, 2H), 7.7 (d, J = 8.55 Hz, 2H), 7.43 (d, 3 = 8.3 Hz, 

2H), 4.54 (d, J = 5.95 Hz, 2H).

,5C NMR (D M S O -d *) o f 79:
6 42.5 (CH2).

6 99.0, 129.2, 133.6, 144.6, 165.6, 167.1. (6 C, quaternary C).

6 127.1, 129.3, 129.4, 130.3, 137.2, 137.6. (6 C, aromatic CH).
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Methtjl 4'~((4'~fodobenzamido)methyl)benzoate o f  50:

'H NMR (DMSO~d*) o f  50:
5 7.92 (d, J = 8.35 Hz, 2H), 7.71 (d, J = 8.6 Hz, 2H), 7.45 (d, J = 8.5 Hz, 

2H), 7.31 (d, J = 8.4 Hz, 2H), 6.48 (br. s, 1H), 4.6 (d, J = 5.9 Hz, 2H),

3.84 (s, 3H).

,5C NMR (DM SO -d*) o f 50:
6 43.8 (CH2).

6 52.2 (CH2).

5 98.7, 129.6, 133.5, 143.2, 166.7, 166.7. (6 C, quaternary C).

6 127.6, 128.6, 130.1, 137.7, 137.9, 138.4. (6 C, aromatic CH).
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( E ) - + - ( ( + - 0 -O x o b u t-1  -enijI)benzam iclo) m ethyl)benzoic acid 

and (E )-m eth ijl 4'-((4 '-(5~oxobut-1~enijl)benzarm do) 
metbij I) benzoate

To a stirred solution of the appropriate iodo derivative [viz; 4-((4-iodo 

benzamido)methyl)benzoic acid (79) or methyl 4-((4-iodobenzamido) 

methyl) benzoate (80)] (0.003 mol) in DMF (5 mL) were added methyl 

vinyl ketone (0.63 g , 0.009 mol), tetrabutyl ammonium acetate (1.81 g, 

0.006 mol), potassium carbonate (0.93 g, 0.0045 mol), potassium chloride 

(0.22 g, 0.003 mol) and palladium II acetate (0.02 g, 0.09 mmol). The 

mixture was stirred at 90 °C for 9 h. After the mixture was cooled, 2N HCI 

was slowly added and the reaction mixture was stirred at room 

temperature for 10 min. then, the mixture was diluted with ether and 

washed with water. The organic layer was dried over anhydrous MgS04 

and concentrated in vacuo under reduced pressure. The residue was 

purified by column chromatography using (MeOH in EtOAc in increasing 

proportions up to 1%) as eluent in case of the free carboxylic acid 

derivative and (EtOAc: DCM 30:70) as eluent in case of the ester derivative.

ID R M w M F Yield % mp

81 H 323 c 19h 17no4 36.9 2 1 2

82 ch3 337 C20H19NO4 26.7 190

COOR

a; tetrabutyl ammonium acetate, Pd acetate, K2CO3, KCI
79 .81  R =H
80 .8 2  R = CH3
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4-~ ( (4-- (3-Oxobut~1 -eny l) benzamido) methyl) benzoic acid (51): 

'H NMR (D M S O -d *) o f  51:
6 9.19 (t, J = 5.95 Hz, 1H), 7.95 (d, J = 8.4 Hz, 2H), 7.91 (d, J = 8.25 Hz, 

2H), 7.83 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 16.4 Hz, 1H), 7.44 (d, J = 8.25 

Hz, 2H), 6.91 (d, J = 16.4 Hz, 1H), 4.56 (d, J = 5.95 Hz, 2H), 2.36 (s, 3H). 

,5C NMR (D M S O ~d*) o f  81:
6 27.4 (CH3).

6 42.5 (CH2).

5 128.5, 130.3, 135.2, 137.2, 166.5, 189.0, 198.3. (7 C, quaternary C).

6 127.2, 127.8, 128.3, 128.7, 129.4, 141.9. (6 C, aromatic CH).

Methyl ( (4*- (3-oxobut-1~eny I) benzamido) methyl) benzoate
(82):

'H NMR (DM SO -d*) o f 52:
6 9.21 (t, J = 5.9 Hz, 1H), 7.95 (m, 3H), 7.82 (d, J = 8.35 Hz, 2H), 7.66 

(d, J = 16.35 Hz, 1H), 7.46 (d, J = 8.3 Hz, 1H), 6.90 (d, J = 16.4 Hz, 1H), 

4.56 (d, J = 5.95 Hz, 2H), 3.84 (s, 3H), 2.36 (s, 3H).

,5C NMR (DM SO-d*) o f 82:
6 27.4 (CH3).

6 42.5 (CH2).

5 52.0 (CH3).

6 128.4, 135.3, 137.2, 145.1, 165.7, 166.1, 198.2. (7 C, quaternary C).

6 127.4, 127.8, 128.1, 128.3, 128.6, 129.1, 129.2, 129.7, 141.7, 141.9. 

(10 C, CH).
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M ethyl ^ -C O -m ethyU lH  -pyrro le -2 -carb oxam ido ) 
methyl) benzoate

CH,CH3 n h 2 HN

EDOHOOC.
DMAP

83 84

To a solution of l-methyl-lH-pyrrole-2-carboxylic acid (83) (2.5 g, 0.02 

mol) in dry dichloromethane (50 mL), 1-ethyl 3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDCI) (7.66 g, 0.04 mol) and 

dimethylaminopyridine (DMAP) (4.88 g, 0.04 mol) were added. Methyl 4- 

(aminomethyl)benzoate (7 3 )286 (3.3 g, 0.02 mol) in dry THF (50 mL) was 

stirred for 3 min under N2 atmosphere then was added to the above 

mentioned DCM mixture. The resulting mixture was stirred at RT for 48 h 

under N2. The resulting mixture was evaporated under reduced pressure. 

The crude product was chromatographed using (Ethyl acetate/DCM) 

(50:50) as eluent. Yield (4.4 g) 81.6% (Ci5Hi6N20 3), mp 84 °C.

>H NMR (C D C b -d ,) o f  54-:
6 8.03 (d, J = 8.25 Hz, 2H), 7.42 (d, J = 8.2 Hz, 2H), 6.77 (m, 1H), 6.59 

(dd, J = 1.65, 3.95 Hz, 1H), 6.29 (br. s, 1H, NH), 6.12 (dd, J = 2.55, 3.85 

Hz, 1H), 4.65 (d, J = 6.05 Hz, 2H, CH2), 3.99 (s, 3H, CH3), 3.93 (s, 3H, 

CH3).

NMR (C D C b -d i) o f 54-:
6 36.9 (CH3).

5 41.8 (CH2).

6 52.2 (CH3).

6 129.2, 144.0, 161.0, 166.9 (4 C, quaternary C).

5 107.3, 111.7, 127.4, 128.3, 130.0 (5 C, CH).
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M e tb y l 4 '~ ((5 - fo rm y l~ 1 -m e th y l-1 /- /-p y rro le ~ 2 -c a rb o x a rm c lo )

m e tb y l)  b e n z o a te  &
M e tb y l 4 '- ( (4 '~ fo rm y U l-m e tb y l-1 /- / -p y r ro le -2 -c a rb o x a m ic lo )

m e th y l)  b e n z o a te

\

co o c h3

84

PCX33/DMF

C O O CH 3

J

To a 250 mL RBF was added anhydrous DMF (0.7 mL, 0.009 mol) it was 

then cooled to 5-10 °C. To the cooled DMF was added POCI3 (0.78 mL, 

0.0084 mol) dropwise over a couple of minutes. Dry 1,2-DCE (25 mL) was 

then added and the orange solution was cooled to 0-5 °C during the 

addition of Methyl 4-((l-methyl-lH-pyrrole-2-carboxamido)methyl) 

benzoate (84) (2.07 g, 0.0076 mol) in dry 1,2-DCE (25 mL). The mixture 

was then heated to reflux for 15 min. the reaction was cooled to room 

temperature, treated with a mixture of ethyl acetate (60 mL) and water 

(75 mL), poured into saturated NaHC03 (350 mL), and separated. The 

aqueous layer was washed three times with ether, and the combined 

organic extracts were washed twice with aqueous saturated Na2C0 3 , dried 

over anhydrous Na2S0 4 , and evaporated under vacuum. The resulting solid 

was chromatographed on a silica gel flash column using hexane/ethyl 

acetate (50:50) to elute two compounds in a 4:1 ratio and in the following 

order;
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M ethyl 4--(C^-formyUl-methyl-1/-/-pyrroIe-2~carboxamido)
methyl) benzoate (8^) (Ci^Hj^N20+) j Yield 1.6 g, 70.2%, mp 128 °C.

’H NMR (C D C lj-d ,) 8?:
5 9.72 (s, 1H, CHO), 8.05 (dd, J= 1.75, 8.35 Hz, 2H), 7.43 (d, J= 8.45 Hz, 

2H), 6.89 (d, J = 4.25 Hz, 1H), 6.57 (d, J= 4.3 Hz, 1H), 6.39 (br. s, 1H, 

NH), 4.68 (d, J= 6  Hz, 2H, CH2), 4.29 (s, 3H, CH3), 3.94 (s, 3H, CH3).

,5C NMR (CDCb-dj) o f  8$:
6  34.6 (CH3)

5 43.3 (CH2)

6  52.2 (CH3)

6  123.6, 135.2, 141.0, 143.0. 159.7, 164.8 ( 6  C, quaternary C).

6  111.3, 122.1, 127.6, 130.2, 180.9. (5 C, CH).

M ethyl 4'-((4'~formyl-1~methyUl/-/-pyrrole~2-carboxamido)
methyl) benzoate; (C 16H 16N2O+) 82 Yield 0.41 g, 17.98 %, mp 126 °C.

’H NMR (CDCh-d,) o f  86:
5 9.76 (s, 1H, CHO), 8.05 (d, J= 8.35 Hz, 2H), 7.41 (d, J= 8.45 Hz, 2H), 

7.38 (d, J = 1.5 Hz, 1H), 7.06 (d, J= 1.7 Hz, 1H), 6.41 (br. s, 1H, NH), 

4.66 (d, J= 6  Hz, 2H, CH2), 4.04 (s, 3H, CH3), 3.94 (s, 3H, CH3).

,5C NMR (CDCb-d,) o f  86:
5 37.7 (CH3)

5 43.1 (CH2)

5 52.1 (CH3)

5 116.4, 124.3, 148.6, 150.9, 157.4, 164.6 ( 6  C, quaternary C).

6  110.6, 127.5, 130.1, 133.9, 184.8. (5 C, CH).
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(E ) -m e th y l 4 - - (0 -m e th y U ;5 - (5 ~ o x o b u t~ 1 -e n y l) -  1/- / -p y r ro l e -2~  

c a rb o x a m id o )  m e th y l)  b e n z o a te  &
(E ) -m e th y l ^ • -C (1 -m e th y l-+ - (5 -o x o b u t-1 -e n y l) -1 H ~ p y r ro le -2 -  

c a rb o x a m id o )  m e th y l)  b e n z o a te

CH; CH.HN HN
pyrrolidine

H20 /  Acetone
COOCH-

87 Yield 55.2 %
? H3 HN-— \

85

F *  HN

pyrrolidine

HaO /  A c e to n e COOCH-

Yield 79.5 %86 88

To a stirring mixture of either of the methyl formyl-lH-pyrrole-2- 

carboxamido) methyl) benzoate derivatives (85 or 86) (1.5 g, 0.005 mol), 

acetone (3.7 mL, 0.05 mol), water (50 mL) and pyrrolidine (30 mol % ) 

were added. The reaction was stirrred overnight at room temperature and 

on completion as monitored by TLC was extracted with (3x50 mL) 

dichloromethane. The organic layer was washed with water (2x 50 mL) 

and dried over anhydrous Na2S04 and evaporated to obtain crude product. 

Column chromatography of the crude on silica gel using ethyl acetate as 

eluent gave pure products. (C19H20N2O4) M.w. 340.

ID Yield % mp °C

87 55.2 108

88 79.5 134

(E)-methyl 4'-((l-methyl-;5-(3-oxobut~1-enyl)~ 1H~pyrrole~2- 
carboxamido) methyl) benzoatej

’H NMR (CDCb~d,) o f 57:
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5 8.03 (d, J= 8.25 Hz, 2H), 7.49 (d, J= 15.8 Hz, 1H), 7.40 (d, J = 8.2, 

2H), 6.63 (m, 3H), 6.41 (br. s, 1H, NH), 4.65 (d, J = 6 Hz, 2H), 4.06 (s, 

3H, CH3), 3.93 (s, 3H, CH3), 2.35 (s, 3H, CH3).

,5C NMR (CDC lj-d,) o f  57:
6 29.3 (CH3)

6 32.6 (CH3)

6 43.1 (CH2)

6 52.1 (CH3)

6 110.3, 112.4, 125.6, 127.5, 129.7, 130.1. (6 C, CH).

5 111.1, 129.5, 134.3, 143.5. 161.7, 197.4 (6 C, quaternary C).

(E )-m ethyl 4 '-((1-m ethyl-4 '-(3~oxobut-1-enyl)-1H-pyrro le-2- 
carboxamido) methyl) benzoate (33) j

‘H NMR (DM SO-d*) o f 33:
6 8.04 (d, J= 8.3 Hz, 2H), 7.42 (d, J = 8.2, 2H), 7.39 (d, J= 16.1 Hz, 1H),

7.02 (d, J = 1.55, 1H), 6.83 (d, J = 1.7 Hz, 1H), 6.46 (br. t, J = 5.7, 1H, 

NH), 6.41 (d, J = 16.1, 1H), 4.65 (d, J = 6 Hz, 2H), 3.98 (s, 3H, CH3), 3.94 

(s, 3H, CH3), 2.3 (s, 3H, CH3).

,5C NMR (DM SO -d*) o f  33:
5 27.2 (CH3)

6 37.2 (CH3)

5 43.0 (CH2)

5 52.1 (CH3)

6 109.7, 124.2, 127.5, 130.1, 130.3,136.6. (6 C, CH).

6 118.9, 129.4, 143.5, 161.2, 198.3 (5 C, quaternary C).
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(£:) -4 -  ((1-methy l-;5~ (3~oxobut-1-enijl) -1 rro le-2-
carboxamido) methyl) benzoic acid &>

(E) -4 -  ( (1-methy 1-4- (5-oxobut-1-eny I) -IH -py rro le-2- 
carboxamido) methyl) benzoic acid

CH. CH-
HN HN

KOH
MeOH

COOH

89 Yield 87.8 %

?H3 HN' \

87
CH;

HN

KOH
MeOH

COOCHg COOH

90 Yield 71.6 %88

A mixture of either of the methyl (1-methyl-lH-pyrrole) benzoate

derivatives (87 or 88) (0.34 g, 0.001 mol) KOH (0.056 g, 0.001 mol in 5 

mL water), MeOH (30 mL) and THF (30 mL) was stirred at 45 °C for 48 h. 

The resulting solution was evaporated under reduced pressure, water was 

added and pH was adjusted to pH 2 using IN  HCI solution. This was 

extracted with ethyl acetate (3x 100 mL). the organic layer was washed 

with brine solution and dried over dry Na2S0 4 then evaporated under 

vacuum. The crude produc was purified on silica gel column 

chromatography using ethyl acetate as eluent.

(E )  ((1-m e th y l-5 - (3 -o x o b u t-l-en tjl)-1 /-/-p y rro le -2 -ca rb o x
am ido)m etht)l)benzoic acid 89 
Yield; 87.8%  (dark green crystals) mp 107 °C 

'H NMR (C D C b -d ,) o f 89:
6 12.98 (br. s, 1H, COOH), 8.85 (br. t, J=6 Hz, NH, 1H), 7.91 (d, J=8.25 

Hz, 2H), 7.56 (d, J=16 Hz, 1H), 6.92 (d, J=4.3, 1H), 6.82 (d, J=4.25, 1H),
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6.63 (d, 3=15.95, 1H), 4.49 (d, J=6 Hz, 2H, CH2), 3.89 (s, 3H, CH3), 2.43 

(s, 3H, CH3).

,5C NMR (C D C lj-d ,) o f 89:
6 27.2 (CH3)

5 32.1 (CH3)

6 41.8 (CH2)

5 110.2, 113.3, 125.5, 127.1, 129.4, 130.6. (6 C, CH).

6 129.3, 129.6, 133.5, 144.9, 161.0, 167.2, 197.1 (7 C, quaternary C).

(£:)~4'-((1-methijI~4'~ (5~oxobut~1~enijl)~1/-/-pijrrole-2~carbox 
amido) methyl) benzoic acid ?Oj

Yield; 71.6% mp; 193 °C 

’H NMR (D M SO ~d*) o f 90:
5 12.8 (br. s, 1H, COOH), 8.8 (br. t, J = 6, 1H, NH), 7.9 (d, J=8.2 Hz, 2H),

7.5 (d, J=16.2 Hz, 1H), 7.4 (m, 3H), 7.2 (d, J=1.6 Hz, 1H), 6.3 (d, J=16.1, 

1H), 4.5 (d, J=6, 2H, CH2), 3.9 (s, 3H, CH3), 2.3 (s, 3H, CH3).

,5C NMR (D M S O -d *) o f 90:
6 26.8 (CH3)

5 36.6 (CH3)

5 41.7 (CH2)

5 110.5, 123.3, 127.1, 129.4, 131.0, 137.4. (6 C, CH).

6 118.1, 129.5, 129.2, 145.0, 161.0, 167.3, 192.5 (7 C, quaternary C).
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+ .5  T h io l derivatives

4*,4'’ Dithiobisbenzoic acid

? ° ° H HOOC COOH \

- • • C i  -  - 0  0 * " -

SH

91 92

4- Mercaptobenzoic acid (91) (2.5 g, 0.016 mol) and iodine (2.03 g, 0.008

mol) were dissolved in 30 ml ethanol. Triethylamine (3 ml, 0.022 mol) was

added and the solution was stirred overnight. The cloudy solution was

evaporated under vacuum then neutralised with 0.01 M HCI. the residual

precipitate was filtered out, dried then washed with ether.

Yield; 2.2 g (89.7% ). mp; >300 °C 296

!H NMR (DMSO-d*) o f ?2:

5 13.04 (br. s, 2H, COOH), 7.94 (d, J=8.2 Hz, 4H), 7.65 (d, J=8.2 Hz, 4H).

,5C NMR (DMSO-d*) o f ?2:

6 129.7, 130.3. (2 C, CH).

6 126.1, 140.8, 166.6. (3 C, quaternary C).

'
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3 ,3 ' D ith io b is b e n z o ic  a c id  &  2 ,2 ' D ith io b is b e n z o ic  a c id  

COOH

93 94 Yield; 58.4%

.COOH

SH
HOCK

96 Yield; 47.2%i /
Same procedure was used to prepare the meta (94) and ortho (96). 
structural isomers of 92 
Yield; 94; 58.4% Mp; 250°C 297 

'H  N M R  (D M S O -d ^ )  o f  5M-:

2H).

,}C  N M R  (D M S O -d < )  o f

6127.5, 128.5, 129.8, 131.3. (4 C, CH).

6 132.1, 136.3, 164.4. (3 C, quaternary C).

'H  N M R (D M S O -d * )  o f  96:

Yield; 96; 47.2%. mp; 289°C

5 8.05 (dd, J = 7.75, 1.4 Hz, 2H), 7.63 (dd, J = 8.15, 0.9 Hz, 2H), 7.56 

(ddd, J = 7.25, 7.25, 1.45 Hz, 2H), 7.34 (ddd, J = 7.75, 1.05 Hz, 2H).

,5C  N M R  (D M S O -d * )  o f  ?2:

6 124.98, 125.98, 131.54, 133.22. (4 C, CH).

6 128.09, 138.88, 167.58. (3 C, quaternary C).

6 8.05 (dd (t), J=1.65, 1.65 Hz, 2H), 7.84 (ddd (dt), J=7.8, 1.2, 1.2 Hz, 

2H), 7.75 (ddd, J=7.8, 1.98, 1 Hz, 2H), 7.52 (dd (dt), J=7.9, 1.3, 1.3 Hz,
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B is  ( ( 4 - - (m e th y l b e n za m id o ) m e th y l)b e n z o a te )  d is u lf id e

C O O H NH; C O O C H 3 CO O CH-
S — S

CO O CH-C O O H

73 97

To a solution of 4,4'-disulfanediyldibenzoic acid (92) (2.2 g, 0.0072 mol) in 

dry dichloromethane (50 mL), 1-ethyl 3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDCI) (2.76 g, 0.014 mol) and 

dimethylaminopyridine (DMAP) (1.76 g, 0.014 mol) were added. Methyl 4- 

(aminomethyl)benzoate (73) (2.4 g, 0.014 mol) in dry THF (50 mL) was 

stirred for 3 min under N2 atmosphere then in dry dichloromethane (50 

mL), 1-ethyl 3-(3-dimethylaminopropyl)carbodiimide was added to the 

above mentioned DCM mixture. This mixture was stirred at room 

temperature for 48 h under N2. The resulting mixture was evaporated 

under reduced pressure. The crude solid was partitoned between water 

and ethylacetate. The combined organic layer was washed with brine, 

dried using anhydrous sodium sulfate, filtered, evaporated and 

chromatographed using ethyl acetate as eluent.

Yield; 3.96 g of white solid (91.5%). 

mp; charring >300 °C 

!H N M R  (D M S O -d 6 )  o f  97:

5 9.19 (t, J = 6 Hz, 2H, NH), 7.97 (d, J = 8.2 Hz, 4H), 7.96 (d, J = 8.5 Hz, 

4H), 7.70 (d, J =8.5 Hz, 4H), 7.49 (d, J = 8.2 Hz, 4H), 4.59 (d, J = 6 Hz, 

4H, CH2), 3.89 (s, 6H, COOCH3).
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,5C NMR (DM SO~d6) o f 97'.

6 42.42 (CH2).

5 52.01 (CH3).

6 128.11,145.16, 165.53, 166.08. (4 C, quaternary C). 

6 126.42, 127.30, 128.33, 129.21. (4 C, aromatic CH).
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B is  3 - ( ( ^ - ( m e th y l  b e n z a m id o ) m e th y l)  b e n z o a te ) d is u lf id e

.s—s.NH;

EDCI
DMAPHOOC

HN NH
COOCH3COOH

‘COOCH-

94 73 98

Same procedure was used to prepare the meta (98) and ortho (99) 
isomers of 97
(98) mp; 135 °C. yield; 41%

’H NM R (D M S O - d ^ )  o f  9S:

6  9.21 (t, J = 5.9 Hz, 2H, NH), 8.08 (dd (t), J = 1.7,1.7 Hz, 2H, C2), 7.93 

(d, J = 8.3 Hz, 4H, C2'), 7.83 (ddd (dt), J = 7.9, 1.15, 1.15 Hz, 2H, Ce), 

7.72 (ddd, J = 7.9, 1.95, 0.9 Hz, 2H, C4), 7.52 (dd (t), J = 7.8, 7.8 Hz, 2H, 

C5), 7.44 (d, J = 8.35 Hz, 4H, C3'), 4.54 (d, J = 5.9 Hz, 4H, CH2), 3.85 (s, 

6 H, 2 COOCH3).

,5C  NM R (D M S O -d ^ )  o f  98:

5 42.50 (CH2).

6 52.01 (CH3).

5 126.21, 126.46, 127.34, 129.22, 129.64, 129.90. (6C, aromatic CH).

6 128.14, 135.25, 136.17, 145.03, 165.33, 166.06. (6C, quaternary C).
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B is  2~ ( ( 4 - - (m e th y l b e n z a m id o )m e th y l)b e n z o a te )  d is u lf id e

.COOH

“S — S‘

DMAP
HNNH

COOH
COOCH3

96 73 99

(99) mp; 142 °C. yield; 23%

’H NM R (D M S O -d £ ) :

6 9.28 (t, J = 5.9 Hz, 2H, NH), 7.95 (d, J = 8.5 Hz, 4H), 7.74 (dd, J = 7.5,

1.5 Hz, 2H), 7.67 (dd, J = 8.0, 1.0 Hz, 2H), 7.53 (d, J = 8.5, Hz, 4H), 7.46 

(m, 2H), 7.33 (ddd, J = 7.5, 7.5, 1 Hz, 2H), 4.58 (d, J = 6.0 Hz, 4H, CH2),

3.85 (s, 6H, 2COOCH3).

,5C  N M R  (D M S O ~ d 6 ):

6 42.44 (CH2).

5 52.03 (CH3).

8 125.82, 127.40, 128.00, 129.14, 131.26, 132.05. (6C, aromatic CH).

8 128.22, 133.74, 136.86, 145.03, 166.07, 167.02. (6C, quaternary C).
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M e th y l + - ( ( +  -m e rc a p to b e n z a m id o )  m e th y l)  b e n z o a te

s—s

DTT
DMF

COOCH;

1009 7

The dimer compound 97 (0.2 g, 0.00033 mol) was dissolved in 10 mL of 

DMF. Dithiothreitol (DTT) (62mg, 0.0004 mol) was added and the mixture 

was stirred at room temperature under N2 atmosphere for 16 h. the 

solvent was removed under vacuum and the residue was purified by 

column chromatography (CHCI3/MeOH 99:1).

Yield; 0.14 g (70.0%).

’H N M R (C D C l5~d,) lOO:

6 7.91 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.2 Hz, 

2H), 7.19 (d, J = 8.3 Hz, 2H), 6.57 (t, J = 5.3 Hz, 1H), 4.58 (d, J = 5.3 Hz, 

2H, CH2), 3.82 (s, 3H, OCH3), 3.50 (s, 1H, SH).

,5C  N M R (C D C b -d ,)  lOO:

6 43.60 (CH2).

5 52.13 (CH3).

5 127.58, 127.74, 129.42, 130.04. (4C, CH).

5 128.58, 131.04, 136.58, 143.45, 166.77, 166.79. (6C, quaternary C).
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4 -- ( (^ '-M e rc a p to b e n z a m id o )m e th y l)b e n z o ic  a c id

HS

COOCH; COOCH-
S— S

KOH
MeOH/THF

COOH
97

A mixture of Bis (methyl 4-((4-benzamido)methyl)benzoate) disulfide (97) 

(2 g, 0.0037 mol), KOH (0.41 g, 0.0074 mol) in 5 mL H20, MeOH (30 mL) 

and THF (30 mL) was stirred at 45 °C for 48 h. The resulting solution was 

evaporated under reduced pressure, water was added and pH was 

adjusted to pH 2 using IN HCI solution. This was extracted with ethyl 

acetate (3x 50 mL). the organic layer was washed with brine solution and 

dried over anhydrous Na2S04 then evaporated under vacuum. The crude 

product was purified by flash chromatography on silica gel using ethyl 

acetate. Yield; 1.7 g (92.1%) . mp ; 241 °C.

Ci 5H13N03S C% H% N%

Calculated 62.70 4.56 4.87

Found 63.07 4.66 4.70

’H N M R  (D M S O -d * )  o f  101:

6 12.91 (br. s, 1H, COOH), 9.08 (t, J = 5.7 Hz, 1H, NH), 7.96 (d, J = 8.3 

Hz, 2H), 7.83 (d, J = 8.3 Hz, 2H), 7.47 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 

8.3 Hz, 2H), 5.79 (s, 1H, SH), 4.58 (d, J = 5.7 Hz, CH2).

,5C  N M R  (D M S O ~ d * ) o f  101:

6 42.44 (CH2). 6 126.38, 127.13, 129.26, 129.35. (4C, CH).

5 128.35, 133.18, 139.01, 144.63, 165.50, 167.13. (6C, quaternary C)
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A - ( 0 ~ M e rc a p to b e n z a m id o )  m e th ijl)b e n z o ic  a c id

,s—s,

HS‘
KOH

MeOH/THFHN NH

COOH
H3COOC

10298

Yield; (17.3 %) . mp ; 234 °C.

’H NM R (D M S O ~ d *) o f  102:

6 12.87 (br. s, 1H, COOH), 9.34 (t, J = 5.95 Hz, 1H, NH), 8.21 (m, 1H), 

8.09 (ddd, J = 7.8 Hz, 1H), 7.92 (d, J = 8.3 Hz, 2H), 7.83 (m, 1H), 7.69 

(dd, J = 7.7, 7.7 Hz, 1H), 7.44 (d, J = 8.4 Hz, 1H), 5.63 (s, 1H, SH), 4.57 

(d, J = 5.9 Hz, CH2).

,5C  NM R (D M S O -d * )  o f  102:

6 42.52 (CH2).

6 123.38,127.18, 127.37, 129.21, 129.38, 130.09. (6 C, CH).

6 134.75, 136.85, 137.14, 146.44, 166.21, 167.16. (6 C, quaternary C).



C h a p te r  5

Replicon &  Enztjme assays 
Overview and Findings



Chapter HCV Replicon &  Enzyme assays.- Overview and Findings

Chapter 5

HCV Replicon & Enzyme assays: Overview and Findings 

5-1 Replicon

Replicon is a genetic element, which can be either DNA or RNA that can 

replicate under its own control in a cell.343

Since viruses are obligate intracellular parasites, the efficacy of an antiviral 

drug is usually evaluated in a cell culture system. Unfortunately, hepatitis C 

virus isolates taken from patients usually replicate poorly in cell culture.343 

Initially HCV replicons were autonomously replicating genetically 

engineered HCV RNA 'mini-genomes' in which the region that encodes the 

core to NS2 is replaced by a selectable marker and an internal ribosome 

entry site (IRES) that mediates translation of HCV replicase (NS3-5B). 

Transfection of this RNA in cells of the human hepatoma cell line Huh-7, 

followed by selection results in HCV cell clones. Recently, many different 

HCV replicons have been developed that allow screening of chemical 

compounds. 344 Replicon development had gone through the following 

stages;

5.2  Cell culture propagation o f  HCV

In the ideal case, a virus can be propagated in the laboratory by infection 

of cultured cell lines that are readily available. For unknown reasons, 

propagation of HCV in primary human hepatocytes has been suffering from 

low reproducibility and efficiency. 345, 346 This low efficiency made the 

specific detection of HCV viral antigens or RNA difficult. As a further 

complication, primary cells were not readily available, and the efficiency of 

infection depends on the quality of the cells, which is a parameter that is 

difficult to control. So, the usefulness of these systems for drug 

development is limited.343
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5.5 E s ta b lish m e n t o f  th e  f i r s t  HCV re p lic o n

However, encouraged by results from other positive-strand RNA viruses, 

which showed that the structural proteins are not essential for RNA 

replication, an alternative strategy based on the construction of 

subgenomic, selectable replicons was devised 347'350. in these genetically 

modified HCV 'minigenomes' the region that encodes the structural 

proteins was replaced by a selectable marker; the neo gene encoding the 

enzyme neomycin phosphotransferase (NPT), which inactivates the 

cytotoxic drug G418 (geneticin; an aminglycoside antibiotic for 

eukaryotic cell selection) was used 343 (Figure 5.1).
Structural protans Non-structural protons

n ih  ■

d CTE1 H 48 5A

El U tx    S

4A

S T - b i

S 'f T noo
EMCV

HES n 48 5A 58

Figure 5.1 a) HCV genome encoding the core structural protein (C) and the envelope 
glycoproteins (El and E2), the non-structural (NS) proteins NS2 to NS5B. b) A subgenomic 

replicon by replacing up to the NS2-encoding region by the neo gene and the internal 
ribosome-entry site (IRES) of another virus (encephalomyocarditis virus; EMCV).

These replicons are called bicistronic since they consists of two genetic 

units that are expressed as two proteins, Neomycin phosphotransferase 

(NPT) mediated by the HCV internal ribosome-entry site (IRES), whereas a 

second IRES of another virus (encephalomyocarditis virus; EMCV) is to 

direct the expression of the HCV replication proteins (NS3 to NS5B) 343. 

After transfection of the human hepatoma cell line Huh-7 with the 

subgenomic replicon RNA and subsequent selection with G418, only cells in 

which replicon was amplified to high levels expressed sufficient amounts of 

NPT, therefore, survive into a colony that can be isolated and expanded 343 

(Figure 5.2).
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Figure 5.2 Establishment of cell clones. Cells that did not take up the RNA and cells in which 
the replicon RNA does not replicate will die because of the toxic effect of G418.

B re a k th ro u g h  f o r  HCV resea rch

In the past decade, HCV replicon systems have enabled viral molecular 

biology and virus-host interactions to be probed 351'355. However, these 

systems cannot replicate in vitro without acquiring adaptive mutations, nor 

do they produce infectious virions 356*358. More recently, a system that 

replicates a full-length RNA without acquired mutations was developed and 

hence is representative of the wild-type infectious HCV virions 359’361.

Human*

^ M I H W A I  ■■■ SB

H C V  E M C V

m e n .- m
IRES IRES

\ I
Reporter gene HCV replicase

Figure 5.3 HCV subgenomic replicon encoding firefly luciferase instead of the structural proteins.

Moreover, RNA replication was measured originally by quantifying the 

amount of HCV RNA or protein in a cell, but the insertion of a reporter 

gene, such as firefly luciferase has made this process much easier by 

measuring its activity without the time-consuming selection for stable cell 

clones 362*369 (Figures 5.3).
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5-5 A pplication  in drug development

HCV replicon is a powerful tool to unravel the principles of HCV replication. 

Despite this several considerations should be made when using it. First, 

since replication of these RNAs depends on cell proliferation, compounds 

that interfere with cell growth lead to an apparent inhibition of the 

replicon; however, by using assays for cell metabolic activity, such false- 

positive hits can be excluded. Second, by using subgenomic replicons, a 

possible interference of the HCV structural proteins with the antiviral 

activity of a compound might be missed. With the availability of full-length 

genomes this possibility can be examined. Third, in bicistronic replicons, 

compounds that interfere with the internal IRES (from HCMV) also inhibit 

RNA replication. These compounds can now be excluded, because 

monocistronic replicons without an internal IRES are now available 370'371. 

5*6 Subgenomic replicon assay

Both the subgenomic replicon and cytostatic assays for the prepared 

compounds was done thankfully in Rega Institute for Medical Research, 

KULeuven, Leuven, Belgium, under the supervision of professor Johan 

Neyts, adopting a protocol reported by Paeshuyse e ta l372.

5.7  Helicase enzyme assay

This assay involves the use of a DNA duplex substrate and recombinant 

HCV NS3 helicase. The DNA duplex consists of a pair of oligonucleotides, 

one biotinylated, the other radiolabeled at their respective 5' termini. The 

assay design is based on the fact that the release strand, a 20-mer 

oligonucleotide, is radiolabeled on its 5'-end, while the template strand, a 

39-mer, is immobilized on a neutravidin-coated plate surface via its 5'-end 

biotin molecule. Helicase activity results in unwinding of the duplex DNA 

substrate and hence the release of the radiolabeled oligonucleotide, which 

translates in signal reduction with respect to control wells 373.
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J.8 A n t i-H C V  assay o f  Q u in a zo lm e  s tru c tu re s

EC50 and CC50 antiviral activity against HCV (genotype lb ) 
SI selectivity index

ECsoCpM) CCso (|*M )Compound R1 R2 R3

60 H 2'-COOH H 0

29 H 3'-COOH H 0

38 H 4'-COOH H 0

30 H 3'-COOCH3 H 0

39 H 4'-COOCH3 H 0

61 H 2'-CONH2 H 0

31 H 3'-CONH2 H 0

40 H 4'-CONH2 H 0

58 N02 2'-COOH H 0

24 no 2 3'-COOH H 0

35 no 2 4'-COOH H 0

25 no 2 3'-COOCH3 H 0

36 no 2 4'-COOCH3 H 0

59 NO2 2'-CONH2 H 0

26 NO2 3'-CONH2 H 0

37 no 2 4'-CONH2 H 0

55 no 2 4'-CN H 0

41 H 4-COOH H 1

42 NOz 4'-COOH H 1

45 H 4'-COOCH3 H 1

44 no 2 4'-COOCH3 H 1

51 H 3'-tetrazolyl H 0

50 no2 3'-tetrazolyl H 0

54 H 4'-tetrazolyl H 0

52 no 2 4'-tetrazolyl H 0

65 H 4'-COOCH3 ch 3 0

135.9 139.6 1.03
> 188.7 > 188.7 -

8 6 . 8 >188.7 2.17
78.9 89.6 1.14
32.3 >179.2 5.6
125 189.4 1.5

117.4 189.3 1 . 6

159.1 >189.3 1 . 2

>161.3 >161.3 -
64.5 >161.3 2.5
45.2 >161.3 3.6
98.8 >154.3 1 . 6

9.2 154.3 16.8
19.4 35.6 1 . 8

16.2 106.8 6 . 6

19.4 >161.8 8.3
109.9 >171.8 1 . 6

>179.2 >179.2 -
9.3 148.2 15.9

34.1 85.3 2.5
124.3 147.9 1 . 2

>173 >173 -
>149.7 >149.7 -
117.7 >173 1.5
17.9 >149.7 8.3
78.5 170.7 2 . 2

Table 5.1 Inhibition of HCV replication in the replicon system assay, showing 50% effective 
concentration (EC5 0) and 50% cytostatic concentration (CC50). EC5 0 : The effective concentration 

(pM) required to reduce luciferase signal by 50%. CC50: The cytostatic concentration (^M) required 
to inhibit cell viability by 50%. SI, selectivity index= CC50/  EC50.
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Among these 26 compounds, 6 showed EC5o values less than 20 p,M, 

namely, 36, 59, 26, 37, 42 and 52 with relatively high selectivity index 

(16.8 in case of compound 36). The general pattern of the activity of 

these compounds was in favour of the acidic group or its derivatives to be 

in position 4' of the phenyl ring like in the case of compounds 38, 39, 35,

36, 37, 42 and 52, and the nitro group in position 6 of the quinazoline 

ring system rather than its absence as exhibited by compounds 36, 26,

37, 42 and 52. Yet, some compounds, which lack the nitro group still can 

display moderate activity as in compounds 30, 39, 45 and 65. Also it was 

noticed that the introduction of the methyl group in position 2 did not 

improve the activity (compound 39 vs. compound 65).

It may also worth to note that in general the free carboxylic acid 

derivatives show less activity compared to the ester or amide counterparts 

probably due to the reduced cell permeability.

Interestingly, these compound were lacking any helicase inhibitory activity. 

This lack of conclusive prediction in the docking studies could be partly 

because of the high flexibility nature of NS3 helicase enzyme attributed to 

the relative free rotation of domain 2 in respect to domains 1 and 3. And 

partly to the approximation nature of molecular modelling techniques. 

Instead these compounds might have some other viral or intracellular 

target to have antihepatitis C activity 262'263. Additional studies are to be 

undertaken to further elucidate the exact mechanism by which this series 

of quinazolines inhibited HCV replication in the replicon assay.

In summary, we designed, synthesized and evaluated 26 quinazoline 

derivatives as anti hepatitis C virus. The results showed that some of these 

compounds possessed significant anti-HCV activity. These novel inhibitors 

are amenable to more exploration and offer a reasonable starting point for 

further drug discovery efforts.
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9*9 A n t f -H C V  assay o f  « 3 p U n s a tu ra te d  k e to n e s

ID Compound ECso
(liM )

s CC5 0  

(pM ) IC »

74
^^'COOCHj

9.2 30.7 0.26 \iM

76

^^ C O O H

93.6 >160.3 >300 nM

75
^ ^ ^  cooch3

0

76.7 >153.4 >300 pM

77

0

,̂ ^^S'COOH
0

>160.3 >160.3 >300 jxM

82
II ^  COOCH3
0

22.8 82.6 >300 (xM

81
y O D A , ' X l .

0

>154.8 >154.8 >300 pM

87
0  ̂ I

19.2 55.9 >300 nM

89
0  1 il

^  S'COOH

>154.8 >154.8 >300 nM

8 8

]| VCOOCH3 
0

63.24 67.65 >300 \iM

90

O

1.23 >153.4 >300 [xM

Table 5.2 Inhibition of HCV replication in the replicon system and helicase unwinding assays,
showing EC50, CC50 and IC50
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Michael acceptor based compounds were evaluated in a strand- 

displacement enzymatic assay based on the method of Hicham against 

purified recombinant HCV helicase. 373 Compound 74 showed an IC5o of

0.26 \iM, while the other analogues did not show any significant activity at 

a concentration as high as 300 p,M. For this, 74 was considered to be a 

potential hit and to further examine the importance of the cysteine residue 

to its binding to the helicase, the enzymatic assay was repeated in the 

presence of the thioreactive agent; NEM (N-ethylmaleimide) (Figure 5.4). 

It was observed that the inhibitory activity of compound 74 was lost when 

added to the enzyme pre-incubated with NEM (case 4 Table 5.3). Not 

surprisingly, the enzyme preserved its helicase activity in these conditions, 

probably because NEM, as mercaptoethanol, is not big enough to impede 

the nucleic acid binding site.

Figure 5.4 Chemical structure of the thioreactive agent NEM (N-ethylmaleimmide)

Exp. Helicase NEM Compound
74 Radioactivity Helicase activity

1 + - - 0.051+/-0.009 Active
2 + + - 0.053+/-0.017 Active
3 + - + 0.511+/-0.025 Inactive
4 + + + 0.062+/-0.031 Active
5 - + + 0.522+/-0.005 Inactive

Table 5.3 The effect of NEM on the anti helicase activity of 74

It should also be noted that in the original NS3 helicase crystal structure 

used, two other cysteine residues beside Cys 431 appeared to have 

reacted with mercaptoethanol (Cys 279 and Cys 499), but these are placed 

on the enzyme surface well away from the nucleic acid binding site (>20 

A), thus, making their involvement in the activity of these compounds less 

probable. The active molecule was also evaluated for a potential inhibitory
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effect on HCV subgenomic replicon replication as reported earlier 272. 

Compound 74 proved however rather cytostatic to the hepatoma cells 

(EC5o 9.2 \xM'r CC50 30.7 ^M, which was expected, given the fact that the 

vinyl ketone group is a known toxicophore. It is worth noting that the ester 

analogues were prepared and evaluated for biological activity. It is possible 

to speculate from the model that the free acid analogue 76 might have a 

better interaction with Arg 393. However, it failed to inhibit NS3 helicase in 

this particular assay conditions.

5.10 A n t i-H C V  a ssa y  T h io l d e r iv a tiv e s

ID Compound ECso
(pM )

CC50
(pH ) IC50

100

j c / ’ a x ,

71.4 >166 >300 nM

101 xr^xx. 68.3 >174 0.37 uM

Table 5.4 Inhibition of HCV replication in the replicon system assay, showing EC50, CC50 and IC50

In the case of the two thiol compounds (100 and 101) examined for 

antihelicase activity, 101 exhibited submicromolar activity (0.37 îM) in the 

helicase enzyme assay. As it could be anticipated that the free acid 

analogue 101 might have a better interaction with Arg 393 than the ester 

100.

Further studies are underway aimed for obtaining a co-crystallised 

ligand/protein complex, which might give better insight about the 

proposed mechanism of action for compounds 74 and 101.
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