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SUMMARY

Monitoring systems represent an important tool to support efforts aimed at improving
productivity and quality, reducing waste and enhancing safety in manufacturing.
Modern technologies including electronic devices, communication technology, the
Internet, database systems and modern computer technology represent resources that
can provide flexible and cost accessible attractive and efficient solutions for the

implementation of distributed and intelligent monitoring systems.

A new generation of microcontrollers offer a high level of integrated devices and
operate at low power, making them the ideal choice for many embedded industrial
applications. However, the development of application software for microcontroller-
based implementations has normally been a restrictive factor. Before this work this

has resulted in most process and condition monitoring systems being PC based.

This research presents an intelligent and distributed monitoring system based on
microcontroller technology, specifically the PIC18C452. The system uses a flexible
architecture that can be adapted to the necessities of different monitoring applications.
“Monitoring Modules” that can be deployed according to the application requirements
were developed. Industrial networks and Internet technologies are employed to
enhance communication, therefore allowing monitoring records to be made available
in a remote database. The Petri-net concept is used to represent the monitoring task in
such a way as to provide independence from the system’s hardware and software.
Extensions to the original Petri-net theory and new modelling elements, including the
acquisition of analogue signals, required to support the use of this method in a
microcontroller-based environment, are presented. These enhancements represent a

major contribution of this research.

Finally, the benefits of the system are considered by means of three application
examples; a simple Press Rig to illustrate the general features and use of the system, a
more complicated Assembly Process Rig to show the flexibility of the modelling
approach, and finally a CNC Milling Machine tool changer is used to demonstrate the

system in a real manufacturing application.
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Chapter 1 — Introduction

CHAPTER 1

INTRODUCTION

Present day competition in manufacturing requires the deployment of new and
efficient methods and techniques to obtain the best results. New machines and
equipment are capable of high speed production to high quality standards. However,
to achieve the best results when exploiting such features, adequate management of

resources is required.

Monitoring systems have become an important element in this context. They can be
used to provide information in order to allow engineers to manage assets and control
industrial processes. They can follow process events and monitor machine conditions,
thus providing the means to prevent losses, help in predicting critical situations and to
enable efficient planning. As a consequence machine manufacturers should be able to
monitor their deployed equipment all over the world and provide their customers with

fast and efficient maintenance and updating services.

This research investigates the development of low-cost monitoring systems, that are
capable of being deployed and embedded in manufacturing process and machines.
These are provided with the required level of processing capabilities and intelligence,
based on modern technology. It was considered that such systems require the
capability of providing precise records that can be further integrated within a wider

range of applications, from remote monitoring to top-level management.

Each of these areas is dealt with in this thesis, which is organised in 12 chapters that
cover the technology, techniques and methods employed and presents a range of

examples that demonstrate the results obtained from the use of the proposed system.

The aims of this research are presented in Chapter 2 based upon the demands and

requirements of modern manufacturing systems. It considers why it is that, although
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the technology is available and the benefits well known, the use of monitoring

techniques is still restricted.

Chapter 3 provides a review of several aspects related to monitoring techniques.
Condition Monitoring, an important sector within the monitoring area, has generated a
large number of investigations and still offers a number of opportunities due to the
area’s complexity. Fault diagnostics is another important area that has found added
impetus with the development of artificial intelligence tools. The integration of such
techniques, under the designation of monitoring systems, is also experiencing
increased interest. Initially Condition Monitoring was limited to stand alone
computers, however new networking technologies and protocols have increased
flexibility and reduced restrictions. At the same time, compact and powerful
processors enable the development of a distributed concept in the control and

monitoring field.

The technology on which this research was based is reviewed in Chapter 4. It
introduces important aspects of the PIC18C452 microcontroller, that forms the core of
the monitoring system implemented as result of this investigation. CAN bus and
Internet protocols, which represent important elements used in order to enable the
development of a distributed monitoring concept, are also introduced in this chapter.
A brief description of some aspects related to database systems is also presented, as
they become an important component in the System’s structure for the analysis,

presentation and integration of the information produced.

An important element of the System is the modelling technique that enables the
design of the monitoring task. The Petri-net concept was selected in this research for
this purpose. Two chapters, 5 and 6, were dedicated to the topic. The first one
considers the fundamental aspects of the theory and the extensions introduced in order
to improve its use in practical applications. Chapter 6 describes particular extensions
that were required as a result of this research, in order to enable the use of the method

as a modelling technique for monitoring purposes.

The structure and development aspects of the System are presented in Chapter 7.

Different components were required to allow monitoring records to reach a remote
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database over the Internet. Hardware and software aspects of the Monitoring Module,
Connectivity Module and Management Application are provided in detail. These

represent the structure of the distributed concept implemented in this research.

The use of the produced System is described in the following three chapters. In
Chapter 8 a laboratory-based functional model of an Asea Press, referred to herein as
the Press Rig, was monitored by the System to show how maintenance and
managerial information can be produced and presented using a web page based
approach. Particularities of the application and modelling technique are also

described.

In Chapter 9, another experimental application task is presented, using further
laboratory-based equipment, namely the Conveyor Rig. This represents a very
important example, as it provided a good level of complexity to test and subsequently
demonstrate the System’s capabilities in terms of modelling flexibility and generality.
From the records produced by the Monitoring Module, a wide range of information is

presented to meet different managerial requirements.

In the last example, in Chapter 10, a tool changer on an industrial milling machine is
used as a monitoring application. A CNC machine tool changer is an important
component and its operation and failure can significantly affect the efficiency of the
machining process. The monitoring system was deployed to monitor the operation of
this tool changer. Using this system’s special resources, the actual cutting tool usage
was monitored in order to provide additional management information to help in their

assessment.

Chapter 11 is dedicated to the discussion of different aspects of this research.
Questions related to the capabilities and limitations of microcontrollers for such
applications are considered. The importance of the System’s architecture in achieving
the final results is also analysed. Similarly, the Petri-net approach as a modelling
method for monitoring purposes and its flexibility in dealing with real situations
represented by the application examples is considered. The potential and the range of

applications of the System emerge as a result.
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Finally in Chapter 12, the conclusions and future work suggestions are presented. The
conclusions are based on the different aspects addressed by the research: the
microcontroller, architecture, modelling method and System’s capabilities. The
continuity and enhancements of the System are presented as future work topics and
give an indication of the opportunities resulting from this research in the investigation

and development of flexible and feasible monitoring technology.
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CHAPTER 2

RESEARCH MOTIVATION

The demand for systems and processes that can operate without failures and errors
continuously provides motivation for new research in all areas of manufacturing. The
main motivation for such research is based on economic factors. However, any
implementation of new technologies and techniques to support the manufacturing
process will also result in a more efficient use of resources and thus is

environmentally friendly.

Business competitiveness is directly affected by manufacturing factors such as cost,
quality, flexibility and timing, as indicated by the results of a manufacturing strategy
survey [2.1]. As a result of this, machine manufacturers are continuously encouraged
by their customers to develop machines that allow higher levels of productivity whilst
at the same time providing better quality outputs. Such machines require repeatability,
flexibility and must operate with minimum downtime in order to lower production
costs. These requirements imply that machines must run faster and be capable of
operating in a more precise way. Therefore, modern machines and their controllers are
becoming more complicated. In addition it is becoming increasingly vital that the
operating conditions of these complicated machines should be kept close to their
optimum specifications [2.2]. Hence the need for more accurate and cost effective

maintenance and monitoring tools.

Swanson [2.3] carried out research to identify the impact of new technologies in
manufacturing processes with respect to maintenance activities. This indicated that
modern processes may integrate several operations into one single step. This creates a
bigger dependency on equipment, with high cost implications in the case of failure.
Processes with higher levels of automation rely much more on efficient maintenance
practises. Considering all the implications, Swanson stated that “maintenance
resources must be quickly and properly directed to solve problems”. The survey

enabled Swanson to conclude that “preventive and predictive maintenance allow the
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maintenance function to better support equipment availability and performance”.
There was also an indication that the integration of the information process between
maintenance and production management is equally important to enable rapid, right-

first-time responses to improve overall equipment performance.

An investigation attempting to quantify the financial benefits of condition monitoring
based maintenance indicated that direct repair cost of machinery can be 80% higher
without the use of such techniques [2.4]. In their research the authors only considered
measurement methods based upon the use of hand held devices that require human
intervention to collect the data. Clearly these savings can be further increased by the
deployment of fully automated techniques for such a purpose. These methods can
extend the intervals between maintenance, manage plant degradation in a controlled
way, avoid wasteful maintenance routines and reduce maintenance induced failures

and thus decrease lost production time [2.5].

In considering all the factors concerning modern manufacturing and maintenance
requirements, it is becoming essential that computerised tools should be deployed in
order to achieve high production standards [2.2, 2.3, 2.6, 2.7, 2.8]. Such tools can help
to diagnose existing faults, or even better, monitor the system and manage any

measured degradation in a controlled fashion.

Looking from another perspective, information can be seen to be a crucial asset in
modern manufacturing enterprises. Gunasekaran and McGaughey [2.6] indicated the
importance of information in a new manufacturing configuration, called virtual
manufacturing, where partners, normally located at different sites, have to react
together in response to market demands. In many cases, the concept of manufacturing
for stock, based on economic batch quantities, has now been replaced by production
models that prize flexibility [2.9]. To support these developments, real-time process
monitoring at different levels (machine health, process efficiency, etc) is increasingly
being identified as a key issue in order to provide accurate information regarding the
process and in supporting decisions that need to be made concerning production
dynamics [2.10].
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From the point of view of machine manufacturers competitiveness is also associated
with their capability to provide customers with an efficient after sales support [2.2]. In
an article de Vicq indicated that as businesses spread all over the world, Internet
based technologies should be considered as an mechanism to support remote
maintenance activities and to facilitate actions aimed at reducing the downtime due to
breakdowns. In doing this the machine manufacturers will also generate databases
capturing data gathered from different machines at diverse customers sites. From this

they can build the required knowledge to answer customers’ requests quickly.

Similar opinion was issued in another article [2.8]. Here it was suggested that
competitiveness could be improved by establishing a positive relationship between
supplier and customers. The article considers that new generation of machines will be
supplied with embedded monitoring capabilities using Internet technology. In such a
scenario, the machine manufacturers would be able to remotely monitor and compare
machines at different locations. A consistent database built on data provided by
different machines and locations would allow the prediction of machine faults or
identify corrections, therefore helping customers to achieve higher levels of
performance with less downtime. The same article indicated that remote diagnostics
might also reduce maintenance intervention costs due to expertise allocation at
faraway sites. Tulpule [2.11] described the use of such an implementation in the
Heating, Ventilation and Air-Conditioning (HVAC) manufacturing sector, calling it
“e-service”. He considered that the deployment of this sort of technology is vital for

manufacturer’s competitiveness.

The idea of employing Internet technology to improve maintenance capabilities was
also supported by Lofall [2.12]. He argues that information can be shared over the
web using a widely employed interface such as a web browser and that other
technologies, for instance e-mails, are already available to supply timely information
to specific users. In this way powerful web based condition analysis tools could be
deployed, reducing costs (by sharing expensive software) and training requirements.
Davies and Greenough [2.7] conducted a survey which showed that among
Computerised Maintenance Management Systems (CMMS) users, 50% indicated that
such systems should include better integration with web and office based

technologies, in order to improve their application. Another argument in favour of
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such technology is the indication that web based applications represent the fastest
growing information systems in the manufacturing industry [2.13], showing that it is

becoming the preferred platform for information sharing.

Despite all the new developments that may enhance manufacturing technology, it was
suggested by Dunn [2.14] that in terms of condition monitoring, the technology still
has not addressed business needs and that it has “a long way to improve”. He
considered that managers are not fully convinced of the benefits of the technology and
that in many cases return-on-investment is difficult to assess. In his analysis, Dunn
considered some points that should be addressed to improve existing condition
monitoring technology. Among these the necessity of considering the real-time
equipment operating conditions when assessing specific information and also the
requirement for a more accessible technology in terms of cost were suggested. He also
considered that the equipment efficiency is a parameter that should be monitored in
order to support condition-based maintenance. The most promising and important
trends in the area, as indicated by Dunn, are the development of low-cost and online
monitoring devices that will permit cost-effective monitoring of key equipment parts.
At a higher level in the monitoring activity it is sensible that high-level software tools,
that are often expensive, should be based in central organisations where expertise can

be deployed to analyse the monitored data.

In considering all these aspects and also taking into account the support provided by
existing technology and new breakthroughs, this research proposes to investigate the
engineering of a new type of monitoring system to overcome existing limitations and
meet these requirements. The following outlines how the research aims to approach

the main considerations:

a) Cost:

It is proposed to utilise microcontroller technologies in order to deal with the cost
factor restricting the take-up of current monitoring systems. This was seen to be
timely since continuous development within the electronics industry is providing such
devices with ever increasing processing capabilities. This will enable their use in

many applications until recently restricted to computers.
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b) Reusability:

The use of microcontrollers in a practical way for such applications requires the
development of an approach that enables the modelling of monitoring tasks to be
undertaken in a straightforward manner. It is essential for this approach to support the
reusability of basic hardware and software in different implementations. In this
research it is proposed that the use of a developed Petri-net concept as a modelling

tool will provide reusability and easy implementation.

¢) Flexibility and Integration:

The capability of adapting the basic hardware and software to form a complete
monitoring system to meet application specific requirements is to be achieved by
providing data communication facilities. Industrial networks, in the specific form of
Control Area Network (CAN) bus, are to be used as the basis for communication to
enable several monitoring modules to be joined and dedicated to perform a major
task. In this way, the individual modules can be deployed where they are required
within the system in a flexible manner, each one monitoring a specific part of the

process, whilst communicating with each other in order to remain synchronised.

d) Data Acquisition and Presentation:

In order to make the monitored data available for further use, such as the deployment
of analysis tools or to support other management application tasks, remote database
storage and access is proposed. This will be based on Internet connectivity, current
database technology and the use of tools such as Structured Query Language (SQL).
Such standards, which are becoming more widely used, enable different applications
to access the data and information obtained from process or machine monitoring. The
same structure will provide a way to present information on a general and widely used

environment represented by Internet web browsers.

In proposing this research it is recognised that, considering the complexity concerning
such a wide research area, it is not possible to solve all the current problems. What is
intended is that this work should support the development of process and condition
monitoring system. This can be used to provide examples of the use of these systems
and thus help in the establishment of this type of approach, which is clearly much

needed.
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Chapter 3 — Literature Review

CHAPTER 3

LITERATURE REVIEW

3.1 — Introduction

Monitoring systems have numerous applications in many different areas. They are
seen as a growth area in building technology [3.1], the environment [3.2] and human
health [3.3] for example. This research and hence this literature review concentrates
specifically on industrial applications, although the resulting benefits may be of use in

the other application fields.

Monitoring in industrial environments is becoming an increasingly important issue,
since companies have to pursue many different ways of cost reduction and efficiency
improvement, in order to remain competitive. Process and condition monitoring are
useful tools in achieving these targets, because of their capability of providing key
information that is necessary to plan production in a strategic and efficient way. Some
functions such as maintenance that are not value adding production activities are
being continuously pushed to reduce their cost, while keeping machinery and
equipment running as long as possible without interruption. Condition monitoring is
one tool that enables such actions by reducing part replacement costs, machinery

downtime and hopefully, avoiding catastrophic damage to a company’s assets.

This chapter is structured to present a review of some important topics that should be
considered when implementing or deploying a monitoring system. The review
concentrates on the ability of such systems to supply process and machine information
required for their management and assessment. These systems should provide not

only cost benefits, but also more environment friendly industrial processes.

The chapter is divided into sections that consider the evolution of modern process

monitoring and management systems.

12
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Section 3.2 considers the tools that can be used for Fault Diagnostics. It presents an
overview of the different approaches that have been taken to identifying and

diagnosing possible fault conditions.

Section 3.3 presents a review of both sensor and non-sensor based Condition
Monitoring. This includes an overview of the initial contributions made to this field
by the Intelligent Process Monitoring and Management Centre, within which this

research was conducted.

Section 3.4 considers how condition monitoring technology has been integrated to
form more complete Integrated Monitoring Systems that have process monitoring and
management functions. These systems normally run using PC based technology, and

this section considers the benefits and disadvantages this brings.

Section 3.5 outlines the evolution of Distributed Monitoring Systems, which make
best use of the ever more effective and accessible tools that are available to connect
and integrate computing power. The resulting systems operate with monitoring
functions being distributed around the process, so that timely and accurate monitoring

actions may be enabled.

Section 3.6 considers how the availability of powerful microcontroller technology has
been used to develop low-cost distributed monitoring systems. Microcontroller based
Monitoring Systems are being developed using this technology that distributes

microcontroller-based measurement and processing functions within the process.
Finally, Section 3.7 on Future Directions considers the steps that are being taken to

support the development of the next generation of such systems, including the work

that forms the basis of this research.
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3.2 — Fault Diagnostics

The complexity of modern manufacturing systems requires the deployment of
techniques such as Fault Detection and Isolation (FDI) to support the achievement of
high quality standards, to facilitate fast recovery from fault states and to enable the
timely detection of the development of part and equipment fault conditions. FDI
development has therefore been the objective of several reported research programs

aiming to investigate different methods to better achieve such goals.

In outlining approaches to be deployed within the development of FDI systems
Stephanopoulos and Han [3.4] considered that the non-linear behaviour normally
associated with real systems was a source of complexity that must be recognised
when trying to implement fault diagnostic systems. Different methods were applied,
depending upon the specific application requirements. They considered pattern
recognition to represent the best approach for fault diagnosis. This category included
look-up tables relating symptoms and faults; neural networks to compute a pattern
representing the system state; and decision trees, which were stated to be direct and
open to human interpretation, since knowledge is organised in a hierarchical way,
where a sequence of “questions” and “answers” within the knowledge base lead to the

decision process [3.5].

Meziane et al [3.6] provided a review that considered the employment of intelligent
systems in the manufacturing area. It indicated that for the specific application of
maintenance and fault diagnostics researchers have mainly concentrated on
Knowledge Based Systems (KBS) and Neural Networks (NN). KBS were largely
used for fault classification and diagnostics due to their capability to incorporate
human knowledge. NN were presented as a better alternative for the cases where

domain expertise is not available, due to their learning capabilities.

3.2.1 — Fault Tree Analysis Approaches

Fault Tree Analysis (FTA) represents one of the most natural ways to analyse and
classify faults. Fault trees have the ability to model a physical system failure as a

combination of components failure with associated failure rates, but their analysis can
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become computationally intensive [3.7]. Raaphorst et al [3.8] described the
implementation of an automated fault tree generation algorithm for fault diagnostic
purposes. The proposed model was based on an indexed network method where the
input nodes were associated to symptoms. Questions were then presented by the
system in reaction to existing symptoms. The provided answer could lead to further
questions or to the matched fault. New or updated facts would result in an automatic

regeneration of the network indexes in order to ensure system efficiency.

A CAD system for fault diagnostics in chemical processes was reported by Kav¢i¢
and Juri¢i¢ [3.9]. Two approaches based on Fault Tree Analysis were introduced. In
the first one a fault tree representing the process components considered the deviation
of the process variables from their modelled output as an indication of abnormality.
For this approach the variable could not be part of a control loop. In such a case, a
special template tree was necessary to model the specific variable. Kav¢i¢ and Juricié
argued that this approach would result in much time-consuming processing, especially
when a set of interrelated faults was detected (affecting many different process
variables). Therefore, a second approach, identified as an event tree, was presented.
This approach consisted of representing the fault symptoms at the root of the tree.
Branches were associated with the process variables, and were grouped by
component. Dubious process measured variables provided a set of fault candidates,
each one associated with a “believe” index. Rules were created to match the fault

most likely to be related with the root symptom.

Andrews and Dunnett [3.10] compared the traditional FTA method with a new
approach, termed a Binary Decision Diagram (BDD). They argued that traditional
methods require considerable computer processing capabilities, particularly in cases
of large fault trees. The new method, in which the events were ordered in a way that
allows only two paths (true or false) to be followed after each event, was suggested to

overcome such limitations.

Hu et al [3.11] employed FTA for fault diagnostic purposes in Flexible Manufacturing
Systems (FMS). The developed diagnostic model enabled the description of the fault
propagation process in terms of a tree. The system was divided into subsystems,

which depending on complexity and modularity factors, could be further divided into
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sub-levels. They also proposed the modularisation of the knowledge, in order to
improve the reasoning process. To do this a specific knowledge base would only be
considered at a specific sub-level. A functional fault symptom was considered as
representing the root of the tree. Following the tree structure, functional modules were
assessed in terms of the system controllers’ signals that were expected to be present at
this specific state. Finally, expert knowledge represented in terms of rules, was

deployed to suggest the best matching cause and the required actions.

In related work considering a FMS application, Hu et al [3.12] proposed another
method. They considered that in such an application, the correct process operation
could be characterised by a sequence of states and events. In this approach the process
controllers’ signals and switches are an important source of data in order to diagnose
faults. The resulting approach to diagnostics was based on the acquisition of digital
data and analogue parameters and a “diagnostic expert system”. The proposed system
was based on numerical computation, symbolic reasoning and a management module.
Analogue sources were classified in two categories of behaviour: slow and fast
changing. Amplitude, variance and mean value were features of interest in the first
“slow” category. The fast category considered features of interest to be the changing
rate (gradient) and trends of the analysed signals. Thresholds were established for
each feature in order to detect abnormal conditions. The system knowledge was
structured based on fault trees, control information, condition monitoring and the
collection of domain expertise. Fault classification and cause detection was reported
to be achieved by searching functional trees. Fault diagnostics was based on linked

rules in the knowledge base.

Hu et al [3.13] further reviewed their previous approaches [3.11, 3.12] to concentrate
on operational fault diagnostics. Here a sequential model, representing the sequential
changes in the machine operating states, was employed to investigate faults based on
knowledge of the actual states. A logical diagnostic model was used to provide the
fault source indication, by matching the controller’s signals against the expected
(modelled) states. This approach only considered digital sources. Although an
example was described, it was not made very clear whether the signals were retrieved
from the controller or monitored using a specific hardware structure, in order to

enable the implementation of the sequential diagnostic approach.
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3.2.2 — Model Based Approaches

The further development of systems that monitored processes via an indication of
states may be considered in the guise of approaches based upon the deployment of
Petri-nets. A Petri-net model which integrated parameter trend and fault trees, was
proposed by Yang and Liu [3.14] to support early fault detection and isolation. Here
fault trees were converted into Petri-nets, making use of their concept to describe the
evolution and the state of system degradation. Petri-net places were associated with
process parameters and warning levels were used to provide the marking state of
these places. The existence of these conditions would lead to events (fired transitions),
resulting in a new state in the system description. Threshold conditions associated
would therefore provide the level of information required to plan and undertake
maintenance activities. Following this approach early detection was provided by the
system, which had the capability to issue alarms. Fault isolation would be achieved by
the system state description (marking vector). Shutdown capabilities were also
supported, in order to prevent further equipment damage, if maintenance had failed to

intervene.

Another approach that investigated the use of the Petri-net concept for fault detection
and isolation was described by Prickett [3.15] and Davey et al [3.16]. Here the
processes were modelled as Petri-nets, with process events characterised as
transitions. Faults were detected when the operating time associated with an event
was exceeded. Fault isolation could then be performed based on the indication of the
process signal that had prevented the event from proceeding within the established
time. Such an approach is restricted to discrete signals, although it could also be used
to indicate the development of faulty conditions by recording changes in the timed

process intervals.

Ajtonyi and Terstanszky [3.17] described fault diagnosis methods based on system
models. Their approach considered that, once a process was modelled, the variation of
the process parameters, when compared with the models, could be an indication of
faults. Another method presented considered the process signals as inputs of a
stochastic model, which could thus evaluate faults based on the residual between the

model output and the actual physical parameter. Ajtonyi and Terstanszky considered
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that such approaches would enable the prediction of faults. Concerns were raised on
the requirements of the computational system to provide a real-time response for such
implementations. Therefore, they suggested a parallel processing method, which in
their view had to take into account each individual application in order to identify the
sources of parallelism to define the tasks. Also, arguing that real process models were
difficult to obtain, they suggested the modelling of individual process parameters and

deployed methods aimed at establishing relations between them.

3.2.3 — Intelligent System Based Approaches

The formulation of expert system rules for a generic fault diagnostic application is
considered to be a complex task, especially in cases where process parameters vary in
a dynamic way according to the different process settings. It has been suggested that
one approach to ease the difficulties experienced with such an application
development is to dynamically generate the set of rules for each process task [3.18].
Here the possible faults were defined in terms of fault-trees and symptoms are then
correlated to them. Off-line processing was employed to build the rules required for
the fault diagnostic process. The required knowledge base would be selected in

accordance with the process settings.

Wang et al [3.19] aimed to generate rules from a fault event database, using
probabilistic networks. Although presenting a case employing an automatic method,
they considered that a semi-automatic approach was more appropriate when large
databases were involved. In such a case, domain knowledge was said to be required to
define the highest and lowest layers of a decision tree, therefore providing means to

orientate the rule construction.

The use of neural networks in this context can be illustrated by Lennox et al [3.20].
They employed neural networks to detect and predict the failure of a melt vessel.
They considered this to be the best approach. It was based on the dynamics of the
process, which indicated that the vessel’s thermal properties were affected by its age.
However, they added that the implementation only became possible due to the
acquisition of existing previous data records that enabled the neural network training

process. Failure prediction was based on the error relation between the measured and
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the predicted temperature, obtained from the neural network model. The error was

then compared against defined thresholds to issue alarms.

Benefits from the use of neural networks for fault diagnostics come from their parallel
processing capabilities (providing a quick response to the process measurements),
non-linear mapping capabilities, the ability of learning from examples and robustness.
Mageed et al [3.21] reported a method employing artificial neural networks in fault
detection, isolation and identification. They contended that industrial systems
represent a complex environment due to the large number of measurements and
possibilities of faults. This could result in oversized networks, making the learning
process extremely difficult. Their approach proposed consisted of a two level neural
network. The first level was required to provide fault detection and isolation. The
second one, using the first level outputs, provided the indication of the different levels
of fault in terms of the probability of occurrence of each specific fault mapped to

happen.

Fault diagnosis was investigated in order to improve the quality standards in a flash
smelting process [3.22]. The presented method was based on neural networks, in the
form of Self-Organising Maps (SOM), and heuristic rules. The method described
considered specific neurons that were labelled accordingly the process state they most
likely represent. Based on an input vector representing the process parameters, the
labelled neurons would indicate the existence of the specific state based on probability
indices. A rule-based implementation was said to provide process diagnostics based
on the state changes detected by the neural network. Messages were issued whenever
rules were matched. It was argued that fault detection could be improved by
increasing the number of labelled neurons. However, it was recognised that this could
also result in an increase in false alarms. Therefore, more precise process

measurement and a good knowledge base to provide robust rules would be required.

The use of fuzzy based models was the object of research of Ballé and Isermann
[3.23]. Their approach was proposed as an alternative for use with non-linear systems.
It consisted of representing a non-linear function as the sum of discrete linear

segments. Symptoms were generated on the basis of residuals and ratios between
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process measurements and the respective model outputs. A knowledge base system,

with rules relating symptoms to faults, was employed for fault decision purposes.

Chafi et al [3.24] described a similar approach in which residuals were generated by
comparing actual process measurements with the output of the respective parameter
model. To overcome the non-linearity characteristics of the process parameters, the
models were based on fuzzy clusters. Arguing that residuals might be corrupted by
noise, a fuzzy decision method was applied in order to extract the process symptoms.
Finally, symptoms were applied as inputs to a neural network to establish a fault

confidence index, therefore providing the most probable fault cause.

To summarise, although several different methods for fault diagnostics have been
investigated, there is not an agreement about the best one. Geropp [3.25] considered
that despite recent research having concentrated on novel methods, such as neural
networks and fuzzy logic (or the conjunction of both), it is still required that
application particularities be taken into account when selecting the approach to be
used. He also argues that to apply such methods, a significant amount of
representative data is required for training purposes. The use of knowledge-based
systems only becomes possible if enough rules exist to be activated, in order to
classify and diagnose faults. Therefore, a good knowledge of the process and the

application requirements are necessary to obtain the best results.

3.3 — Condition Monitoring

Condition monitoring represents one of the areas where use of monitoring systems has
been widely investigated. Normally, in such applications, the systems are supposed to
predict and detect any particular “abnormal” conditions. This information can then be
incorporated into attempts aimed at preventing losses that might result from machine
damage, the manufacture of poor quality products and from the large downtimes

currently needed to recover from faulty states.
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3.3.1 — IPPM Centre Research

IPPM researchers have previously considered a wide range of applications of
condition monitoring to machine tools and process plants. Sharif and Grosvenor
[3.26] produced a review focused on the vital components and measurement
techniques to support such application. Temperature, level and flow rate sensors were
indicated as the most commonly used in industrial applications. The work proposed
that different sensing and transmitting methods should be selected according to cost

and accuracy requirements.

Sharif and Grosvenor also included monitoring techniques for vital plant parts. In
particular, infrared thermography, Acoustic Emission (AE) and vibration were
reviewed as monitoring methods for valves and actuators. A method developed by the
same authors that considers historical operating data was also presented. For pumps
and motors, measurement methods such as vibration, supply current and temperature
were considered. Current and temperature based monitoring was indicated to perform
better in enabling the early detection of faults, when compared to vibration. It was
suggested that vibration should be used together with one of the other methods, in
order to provide accurate fault detection. For some specific applications, the review
presented research that obtained good results using AE. In such cases, the signal

spectrum tended to change with the development of faults.

In terms of fault diagnosis, the review presented some techniques still under
investigation. Knowledge-Based Systems (KBS) and Expert Systems (ES) were
included in the category of those that rely on previously assimilated information or
existing plant experts’ acquired knowledge, to support a rule based diagnosis strategy.
The dependency on plant experts to enhance system performance was indicated as one
of the methods main drawbacks. Statistical methods, based on properties such as
mean value, variance and standard deviation of the measured signal were also
reviewed for diagnosis purposes. It was stated that fault development could be
detected based on changes on the signals’ statistical properties, since process
parameters were held unchanged. Model-based techniques, using mathematical
models that describe the plant’s behaviour, were considered to be of a high level of

complexity and therefore it was contended that this approach could result in some
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errors in systems that do not response linearly. It was suggested the use of the
statistical properties of the monitored parameters in order to improve the model
results. With the same purpose, investigations using fuzzy logic were also reviewed,
as a way to deal with the existing non-linearity. Neural networks were considered as a
good method for fault diagnosis, capable of dealing with non-linear systems
responses, since sufficient training could be provided. Finally, state transition
diagrams (Petri-nets), were indicated for those cases where the process events could

be sequentially represented.

3.3.2 — Machine Tool Condition Monitoring

Much of the research undertaken in this area relates directly to machine tools. A
review of the approaches for end milling tool monitoring was presented by Prickett
and Johns [3.27]. It described the investigation of different sensing techniques, feature
extraction methods and decision-making approaches. Indirect measurement methods
were considered the most appropriate for tool monitoring, since they allow dynamic
assessment, without requiring the stopping of the cutting process. Dynamometer and
spindle motor current signals were indicated as the most appropriate in order to assess
cutting forces, which were considered as a good parameter to monitor tool wear. For
tool breakage detection, vibration measurement was said to give a better indication of
such sort of fault. Acoustic emission was also mentioned, but its use was suggested in

conjunction with other signals in a multi-sensor approach.

Several references that investigate time series modelling for feature extraction were
presented. The method that consists in the analysis of the measured signals over a
period of time indicated good results in detecting broken teeth. However, it was
indicated as being of limited practical use due to the computational processing time
required. A good number of references investigated by Prickett and Johns employed
the method of real-time signal monitoring. The method described was based on using
threshold conditions of the measured signals to detect the faulty conditions, indicating
a better performance in tool wear monitoring. The last method for feature extraction
considered was the one based on frequency domain analysis. Although representing a
method with increasing interest in the detection of tool breakage, its required

processing time was considered to be a constraint, since that sort of fault detection
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demands immediate reaction to avoid further damage. It was further stated that the
method requires a good understanding of the measured signal to identify the process’s

natural frequencies in order to prevent false alarms.

The same authors also reviewed the use of artificial intelligence as decision-making
methods. In some cases, the combination of different methods, such as neuro-fuzzy or
neural networks and mathematical modelling were reported to give the best results.
Nevertheless, in all cases processing and training time were considerably high. It is
finally suggested that better results could be obtained by employing sensor-fusion

techniques, providing different views of the same phenomenon in the cutting process.

3.3.2.1 — Sensor-based Systems

The choice of the adequate sensors to provide the best signal is clearly important to
improve confidence in sensor-based monitoring systems. Dimla [3.28] provided a
review of sensor signals for tool condition monitoring in cutting processes. The
subject was considered to be of high complexity due to process dynamics and
variations, such as cutting conditions, work piece and tool characteristics. Acoustic
Emission (AE) was found to be of use to investigate both tool wear and tool breakage,
within different cutting processes. Root Mean Square (RMS) was identified as the
most popular method for AE feature extraction purposes. Higher levels of AE were
found to be released with tool breakage or fracture, suggesting that AE based
monitoring may be used for such purposes. However, AE techniques were also said to
be difficult to deploy, mainly due to the consideration of the path followed by the

signal. As such its use is suggested as complementary to other techniques.

Methods based on temperature were also reviewed in the same paper. Direct
temperature measurements were considered difficult under most circumstances when
moving parts etc. make the use of a thermocouple impractical. Therefore, most
practical temperature sensing methods were based on non-contact techniques, such as
infrared imaging. The review shows that the method could perhaps be applied to
detect tool wear. However, temperature distribution was known to be affected by the
process dynamics and thus, complicated mathematical models are required. Another

method employed for tool wear detection is to monitor cutting forces using a
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dynamometer. Cutting force signal feature extraction methods have evolved,
normally based on time and frequency analysis. Statistic analysis was used in many
cases to provide relationships to enable tool wear detection. Although the method
seems to provide a good indication of tool wear, difficulties associated with the
process dynamics were found. Dimla considers that a good knowledge is required for

a good estimation of the static and dynamic forces.

Vibration signatures were also considered in the same review [3.28]. These are said to
be difficult to analyse since vibration frequencies and levels can be expected to
change due to the many variations in parameters experienced during a normal cutting
process. The signal power in the time domain and the power spectrum in the
frequency domain were the feature extraction methods mostly employed. The review
also indicated that the use of this technique was largely associated with tool wear.
Electric motor current and power measurements were reviewed. Some of the features
analysed were the signal waveform, peak value, and mean and accumulative sum

power. Also, spectral energy fluctuation was said to be an indication of tool wear.

The conclusion of Dimla’s review points out that forces and vibration are the most
widely used measurement parameters. Nevertheless, the process dynamics imposes
severe difficulties in detecting tool faults. Therefore, sensor-fusion is indicated as an

alternative to improve condition monitoring systems reliability.

In another example of a process that is considered important, the methods applied to
condition monitoring in drilling processes were reviewed by Jantunen [3.29].
Justifying that direct measurements are not very efficient in economical and technical

terms, he targeted those methods that indirectly measure sudden failure and tool wear.

Based on the reviewed research, Jantunen placed the measurement methods into three
main groups. The first one considered cutting parameters such as the torque, feed
force and drift force. This indicated that such signals tend to change with the
increasing amounts of tool wear. However factors such as work piece hardness cause
similar variations, which can affect the confidence in this measurement method. The
second group consisted of vibration and sound measurements. Such methods were

considered adequate for rotating machines and were said to be easy to implement in
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terms of sensor deployment. Vibration measuring was also considered very reliable.
Changes in the signal could normally be associated with faults, since process
parameters were not changed. The group also included AE and ultrasonic vibration. It
was stated that AE sensors should be deployed very close to the work-piece in order
to avoid signal attenuation. The use of such methods, especially AE, was thus found
to be limited to those cases where signals with very high frequencies had to be
measured. The last group focused on spindle motor and axis feed drive currents.
Current measurement was found to be easier to implement and gave better results.
For the spindle motor these were comparable to the results obtained by measuring the

torque.

Jantunen’s review then considered the subject of signal analysis. Time domain based
methods usually employed by the researchers were the raw signal (real-time) analysis,
Root Mean Square (RMS), mean value and peak value. Statistical analysis was in
many cases applied to detect tool failure indication. Frequency domain based methods
were said to be more sophisticated and found to provide a better picture of the tool
condition, for both wear and breakage. The counter point indicated was the required
processing power for frequency-based methods, which in many cases made it difficult
to produce fast responses for existing or developing failures. Finally, some diagnostic
methods applied to the signals and features were considered by the review. The
simplest methods were based on the comparison to predefined parameters. An
evolution of those methods was the use of thresholds with defined trend limits. Neural
networks, although capable of dealing with the process non-linearity, were seen to
require huge amounts of data for training purposes, if all process dynamics were to be
considered. However, it seems that neural network was the method that provided the
best results. Jantunen concluded that satisfactory results were normally achieved
when the process parameters (cutting conditions, work-piece) were kept unchanged.
Since this cannot normally be assured during real-life processes sensor-fusion was

suggested to reduce such dependency.

Turning is another very important manufacturing process that has attracted
researchers. Sick [3.30] carried out a review that surveyed 138 publications related to
the subject. Only online and indirect methods were considered for both, tool wear and

fracture. As a result, forces and vibration were indicated as the process parameters
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mostly employed, followed by AE. In the particular case of forces, the spindle current
measurement was suggested as the preferred method in terms of implementation cost,
when compared with specific sensors. AE was indicated as problematic, in cases of

parallel processes with several tools.

In his investigation, Sick observed that those researches employing multi-sensor
approaches performed the information processing at the tool wear model level. Many
different methods were employed for feature extraction. The extracted features were
employed as inputs to different types of neural network configurations, therefore

providing the model implementation to identify the tool condition.

Sick in his remarks indicated that there was not much agreement about the best
features and models to be selected. Just a few researches were said to consider cutting
condition in their models. The use of such process dynamics would increase the
complexity of the tool condition model, resulting in higher training and processing
power requirements. He also considered that multi-sensor approaches could provide
better results, by comparing process parameters obtained from different sensor’s
sources. However, in his view such approach should be applied at earlier stages of the

monitoring system in order to provide reliable input information.

3.3.2.2 — Non-sensor Based Monitoring

An approach for condition monitoring based on a machine’s existing signals was
presented by Prickett and Grosvenor [3.31]. They considered processes that can be
described as a set of machine states and events, and can thus be represented in terms
of a Petri-net [3.32]. In such a case, the digital levels of the machine controller signals
and embedded process sensors are monitored in order to detect events and update
states. A method was suggested to monitor machine operation, extract performance
information and contribute to the identification of eventual faults. The basis of this
approach is that the actual process state and former events could give an indication of

the fault cause.

Prickett and Grosvenor also implemented the non-added-sensor method in cutting

process monitoring. The existing signals of the cutting machine axis feed driver were
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used to monitor the tool condition. They argued that the machine controller reacts in
order to keep operation close to the process set parameters. Therefore, by for example,
monitoring the tachometer of the X axis of a CNC machine, the signal signature
would provide evidence to distinguish a healthy tooth from a broken one. Some
different cutting conditions were tested, with the method giving an indication of

efficiency.

The use of those existing signals, rather than the deployment of special sensors, was
presented as an alternative to traditional condition monitoring methods. Arguments in
favour were the fact that it does not require process disruption for the implementation,
since all signals are already present. Further economic benefits were said obtained due

to the high cost of traditional methods.

Although representing an area within which a number of researchers are active,
condition monitoring still has to progress. The reviewed investigations indicated that
despite the range of different methods employed, process dynamics play an important
role when analysis methods are deployed to distinguish a normal from an abnormal
condition. The requirement, in some cases, of a rapid reaction in order to immediately
detect a faulty state, makes it even more difficult, since cross linked information may
not be possible due to time constraints. Therefore, methods and techniques may vary

accordingly the application requirements, benefits and cost considerations.

3.4 — Integrated Monitoring Systems

Many factors, ranging from technological developments to consumer demands [3.33,
3.34], have resulted in increase levels of complexity for modern manufacturing
processes. The management of such industrial processes requires the use of tools that
enable immediate responses to critical events or the capability to intervene in a
planned way to reduce as quickly as possible the negative effects of fault or drift

conditions.

In the early nineties, Tonshoff et al [3.35] presented what they called a new approach

to machine monitoring and diagnosis. The work, which concerned process dynamics
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stated that monitoring systems should no longer be based on the analysis of individual
signals, but should consider the effect of several process variables that together could
provide a better picture of the process health. The approach was also concerned with
flexibility, proposing the deployment of separate modules for monitoring and
diagnostic tasks. A common database was also included, providing the means by
which to acquire process knowledge. Although technology has since improved the

main concepts pointed out still have relevance to current investigations.

During recent years, the development of online monitoring systems in response to
complex process requirements has increased. This has been facilitated by the
availability of new hardware and software tools based on computers (PC) and
operating systems with graphic support. The implementation time, even in case of
complex systems, can now be reduced by putting together parts and components
based on or provided with standard libraries. The online system described by
Ramakrishna [3.36], for example, used a PC with standard data acquisition cards. This
system was used to monitor vibration of hydro turbines in a power plant. The
monitored signals provided records that were processed at configurable time intervals,
supplying a set of information that allowed the assessment of turbine performance.
The application software also provided a schematic display of the turbine and specific
parameters. The increased capabilities of modern PCs and associated hardware and
software enabled an integrated monitoring system to be deployed. Furthermore, the
PC used in the application was installed 100 metres away from the sensing points.
However, the use of such a system is often a relatively high cost solution and
therefore can find its use restricted to applications where the plant itself is very
expensive or where critical events may result in catastrophic situations. Ramakrishna
described the system as an online monitoring system, making it clear that all the
processing was based on batches of acquired data. It enabled the analysis of the
condition of the turbine and the establishment of predictive maintenance schemes.
The development of critical or catastrophic events could also be monitored at early
stages of their development. Only a true real-time system, based on process events,
would be able to detect an unpredicted event immediately when it happens.
Depending on the complexity of the application, such system would probably require

more resources than those provided by a single computer.
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In another reported example of an online system, Jeng and Wei [3.37] described the
implementation of a condition monitoring and diagnosis system for feed rolls in plate
mills. They stressed the importance of such a monitoring system, since, depending on
the completed processing and future process requirements, the scheduled replacement
of some parts might be inappropriate. By considering the monitored data and
production settings, such as rolling speed and load, the system provided means to
assess the condition of parts and thus support decisions related to part replacement
tasks. This had the effect of reducing maintenance costs, enabled programmed
interruptions of the production line and helped to reduce the waste of materials. They
further described the system’s capability to utilise specific settings such as filters of a
specific range of frequencies, thus simplifying data analysis and fault diagnosis
methods. The derived parameters, in certain operating conditions, might then indicate
the development of a faulty condition. However, they made it clear that a good
knowledge of the monitored system or process was fundamental. The system was
based on specific sensors applied to the process. A front end employing industrial PC
hardware was used for process signal conditioning and data acquisition. The front end
was provided with a network card enabling monitored data to be transferred to an
office computer, where data analysis and associated fault diagnosis could be

continuously displayed. Figure 3.1 shows the system diagram.

In this system tasks were split between the two PC’s. At the shop floor end a robust
device was deployed. A PC with more graphical, computational and software tools,
that could also be interfaced with production planning and maintenance management
systems, was used at the office-based location. Such a configuration increased the
overall capability and reliability and made the updating of any individual module
much easier. Despite all the reported benefits, no cost details were outlined. It is fairly
obvious that the cost of such an implementation can become high, especially if it is
considered that only a specific part of the whole process is monitored. This must
however be set against the previously raised considerations of plant cost and the

possible impact of breakdowns.

The deployment of a system that covers a single part of a process may also be feasible
in cases where this part may represent a production bottleneck. Therefore, a

comparison between investments and the resulting benefits should be considered on
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the basis of the cost to the organisation as a whole of any process related failures. This
must also consider the way in which process reliability and product quality can be
enhanced by timely actions, such as can be made by real-time integrated monitoring

systems.
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Figure 3.1: Monitoring and diagnosis system for feed rolls [3.37].

Alexandru [3.38] reports the implementation of a real-time system. She discussed the
requirements of supervisory functions in modern systems, as they relate to increasing
complexity and growing production demands. Fault detection and isolation were
considered essential to maintain performance levels of such industrial applications.
Alexandru thus suggested an online and real time system focused on fault tolerance
and diagnosis, based on early detection and “fault time behaviour”. To achieve the
required results, she proposed the implementation of three methods. The first
considered the measured signals (which although providing ways of detecting faults,
were considered inappropriate for early detection of faults). The second method used
mathematical models that represented the physical parameters of the process. It
allowed comparison of the current system behaviour with established fault

dictionaries. The modelling of the entire system’s “ideal” behaviour and fault states
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was described as being very hard to achieve, particularly when considering large and
complex systems. The third method proposed as a complement to the former
methods, was based on a description of rules and facts obtained from human
observation. This method was therefore potentially capable of describing the system’s
behaviour under initially unknown conditions. It was suggested that such method
enabled the use of system symptoms, rather than just output signals, to identify faulty
conditions. Intelligent decision making techniques were then required to perform the

system evaluation.
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Figure 3.2: Architecture of the fault detection and diagnosis system [3.38].

A schematic diagram of the system implemented in [3.38] is shown in Figure 3.2.
Considering the different methods employed in the system implementation, it is seen
that considerable computational resources were required, especially when the real-
time nature of the system is taken into account. User interface, data acquisition,

databases and expert system functions would better fulfil their purpose if based on a
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distributed structure that could provide each part with the required resources. Such an
implementation, if totally based on PC hardware, could become very costly and thus

such applications are usually restricted to very specific processes.

As a rule based system, inclusions of new rules that describe unknown system states
were required. A system domain expert may be required to input a reasonably large
initial number of rules or to later acquire the knowledge from the system behaviour
based on its real operation. This can result in a long term learning process, if little or
no initial knowledge is available. The system could benefit from a shared knowledge
base, constructed from the knowledge of other existing systems with similar
behaviour. This would require a distributed environment where databases could be
shared, speeding up the process of acquiring system behaviour knowledge. This
secondary effect, with the sharing resources, could result in an overall system cost
reduction. Depending on the application, cost may not be the most important issue,
but the rapid use of the system, exploring its full capabilities, is certainly very

important, especially in cases of complex and strategic applications.

Many other systems have been developed to provide application specific support for
fault detection and isolation. For example, Angeli [3.39] presented an online expert
system for fault diagnosis in hydraulic systems. The implemented system provided
data acquisition, data processing and expert system capabilities. Hardware and
software specific developments were made by considering the application
requirements. A diagram of the system components and their relations is shown in
Figure 3.3. Digital and analogue sensors captured the process signals that were then
used in calculations based on the mathematical model of the system, thus providing
information that enabled the recognition of system faults or unacceptable process
deviations. Angeli argued that it could be considered almost impossible to create a
mathematical model that completely described the system’s behaviour. Therefore, the
method used acquired experimental knowledge to compensate for the mathematical

model constraints.

The scientific model produced was employed for detection, prediction and fault
compensation, while experimental knowledge was used to isolate and diagnose faults.

The comparison between the system measurements and the results of the
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mathematical model was indicated as a way to detect faulty conditions. Fault
prediction was achieved by comparing the results of the measured signals applied to
the mathematical model against existing information in the knowledge base. Fault
compensation was presented as a way used by the expert system to provide parameter
compensation to certain worn parts of the process, overcoming efficiency losses. To
benefit from this approach, a mathematical model of the specific part was required to
calculate the appropriate compensation factor. Fault diagnosis was based on a
knowledge acquisition system, using a qualitative model to provide diagnosis based

on reasoning procedures and thus making it possible to associate faults with symbolic

language.
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Figure 3.3: The interaction scheme between the modules [3.39]

Angeli also made it clear that “scientific knowledge of model-based systems cannot
cover the whole range of diagnostic tasks since diagnostic activity is mainly based on
experience”. Thus, the integration of both methods, scientific and experimental,
should be used to maximise results. Reasoning was provided by the use of rules that
are generated and grouped in topics that might be correlated in terms of sub-problems.
It was recognised by the Angeli that fast responses were critical due to several tasks
being executed, besides the processing requirements of a reasoning system based on

knowledge bases.
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It is true to say that the implementation of this system if based on a distributed
structure, such as those outline in the next section, could offer an alternative and
would improve efficiency. Nevertheless, it seemed that several functions and
parameters were intrinsic to the application. For instance, there were no references of
means that enable the adjustment of parameters in the mathematical model, despite of
using a second method to complement this one. System replaced parts might behave
in a slightly different manner and adjustments might be required. Some dynamic
factors, such as production setting, could in some cases result in a different behaviour,
conflicting with faulty conditions previously established. The design of such a system
should consider the flexibility of dynamic factors, thus increasing its potential

benefits.

3.5 — Distributed Monitoring Systems

Splitting the modules outlined above and executing them on separate sites provided
with features that would be specific to the required task would allow greater
flexibility and support more effective monitoring functions. Further, such a
deployment could enhance the acquisition of the knowledge base, since several
systems could provide information resulted from individual experiences. This is the

basis of distributed monitoring systems.

Distributed expert systems were presented by Bonastre and Peris [3.40] as an
important trend in the monitoring and control of chemical analysis process. They
considered that computers are advancing rapidly both in terms of technological
developments and in the reduction of cost. As a further benefit of these developments,
it was suggested that chemical instrumentation would soon incorporate data
processing capabilities that, together with communication networks support, would
allow the implementation of local algorithms for data acquisition and analysis. This is
seen as enabling in the future the deployment of distributed structures that could
enhance the systems capabilities. It was proposed that centralised programming would
be the next step in the integration of intelligent devices. This is to be undertaken in a

user-transparent way, making it an important part of the basis of distributed systems.
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Distributed Expert Systems (DES) were defined by Bonastre and Peris as being a
technique that combines intelligent instrumentation with monitoring and analysis
systems, using local area networks to provide geographic location independence, all
in a user transparent environment. The simplest distributed topology was described as
that one where data acquisition nodes are autonomous and provide the expert system
with raw data (Figure 3.4a). The reasoning task is carried out by a centralised expert
node. In such a case, the data acquisition nodes would be provided with the
measurement algorithms and network protocols to carry out communication. Bonastre
and Peris argued that although the network could represent a bottleneck, existing

technology would make it feasible, especially for simple systems applications.

The following suggested approach considers that the measurement nodes might have
some sort of previous processing, participating in running the expert system (Figure
3.4b). In such case, a considerable level of complexity would be transferred to these
so called Control Nodes (CN). As result, flexibility and modularity would be
aggregated to the system, representing considerable fewer constraints when enlarging
it. In the specific case of this model, only relevant data would be sent by the
measurement nodes, reaching either the central expert node or any of the distributed

control nodes that might make further use of supplied data.

Bonastre and Peris [3.40] considered at this point that a certain level of complexity
would be brought forward by the use of distributed systems based on nodes provided
with local processing capabilities (Figure 3.4b). Programming an expert system based
on multiple nodes, some perhaps different from each other, could become a difficult
task. To overcome this challenge, centralised programming was proposed, with
definitions and tests performed considering an application, in which the distributed
nodes would appear as virtual devices. Afterwards, a separate task had to be executed
to distribute the rules among the nodes. It might be considered that, although
described by the Bonastre and Peris as an implementation for chemical processes,
such a system could be applied to many other areas where flexibility is a requirement.
Further benefits might be achieved if the system proposed would be able to interface
to other manufacturing functions, therefore providing more flexibility by considering

the process dynamics.
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Figure 3.4: Expert system with (a) distributed data acquisition and (b) fully
distributed expert system [3.40].

In another reference to distributed systems, Manders et al [3.41] considered the
importance of Fault Detection and Isolation (FDI) strategies. As part of supervisory
and control functions of complex engineering systems these can improve safety and
functionality. They suggested that the conventional techniques, based on hardware
redundancy and localised hardware safety mechanisms would not provide a good
result with complex systems. In such cases the process dynamics should be
considered in the fault detection and isolation procedures. Distributed Measurement

and Control (DMC) was advocated as a way to enrich complex systems supervisory
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and control tasks, especially when considering new technologies such as networked
smart transducers that can benefit equally fault detection and isolation. Having in
mind these aspects, they described a system for online fault detection and isolation of
a multitank fluid system. Smart transducer technology was employed to provide a
distributed measurement and control structure. It was made clear that the smart
sensors used in the experiment were based on the IEEE 1451 standard. This standard

is reviewed elsewhere [3.42, 3.43].

Their design was said to be one in which model-based qualitative fault isolation was
applied, requiring a signal-to-symbol transformation. This system was passed upon a
process by which continuously sampled measurement data was computed in a
symbolic form. Fault isolation based on the symbolic description was separated from
the signal-to-symbol transformation. They stated that one of the goals in building the
distributed application was realising the symbol generation on the transducer node
itself. This was seen as potentially a way to considerably reduce the network load of

monitoring and supervision tasks.

The transducer implementation in [3.41] was based on the available parts of the IEEE
1451 standard. It implemented the Smart Transducer Interface Module (STIM) and
Network Capable Application (NCAP). STIM was based on a standard
microcontroller and an embedded Ethernet controller was used to implement the
NCAP. A publish-subscribe mechanism was implemented, based on IP/multicast
[3.44]. The distributed measurement nodes published their data, thus reporting the
sensor’s signals. The system architecture diagram is shown in Figure 3.5. The
experiment reported the implementation of nodes with control functions embedded.
This task would automatically be executed by each distributed node, reacting in
response to the node measurements. The main node, responsible for the supervisory
task, subscribed the published measurement data of each distributed node. The
temporal causal graph concept [3.45] was used to model the process dynamic
characteristics in the fault detection and isolation algorithm. Fault detection was based
upon the difference between observed and predicted system behaviour. The residual
was used to generate hypothesis using temporal causal graphs. A set of possible faults

was generated, each one with an associated predicted behaviour. The method was said
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to be applicable to those components that could be modelled as parameters and

qualitatively estimated.
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Figure 3.5: FDI application architecture [3.41].

Manders et al [3.41] also indicated the existence of system limitations, most of them
related to the network interface, imposing restrictions to the system overall
capabilities. Although Ethernet is one of the most popular network standards in use,
there have been many considerations about its use for industrial applications,
especially when control tasks are focused [3.46]. The use of smart devices deployed
in a distributed environment seems to be the next step in the development of
monitoring and control technologies. This will provide flexibility and efficiency based
on shorter development time and integration facilities, resulting in lower cost of
implementations and consequently stimulating the use of these techniques in a larger

scale.

An intelligent online monitoring system for end milling has been developed by Tseng
and Chou [3.47]. It was presented as an effort to provide lower cost monitoring tools,
with the benefits obtained through the latest research in the subject area and thus
stimulate the use of intelligent monitoring techniques. This work aimed to implement
a tool to help to reduce the waste resulting from low quality cutting processes due to

tool breakages and wear problems. The proposed system required a dedicated PC to
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interface the milling machine and host the intelligent monitoring application. Rule
based techniques were employed for reasoning purposes, providing a high-level
explanation mechanism to describe the development of faulty conditions. Although
requiring specific hardware development to interface to the CNC machine electrical
levels by the computer, it was said to explore the existing process information
available in such machines by communicating throughout standard interfaces in the
deployed Direct Numerical Control (DNC) modules thus avoiding the use of further

sensors. Figure 3.6 shows details of the implementation.
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Figure 3.6: System architecture and functions [3.47].

Among the other benefits of the implementation was the capability of setting up a
remote control room. In their paper Tseng and Chou suggested that it could be easily
implemented by providing the system with Internet connectivity. With this in mind
the software development was based upon some de facto standards such as a PC

computer, and the Microsoft Windows operating system, programming tools and
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libraries. Since cost is one of the identified issues that have previously limited the
take-up of this type of system, it is worth considering how this approach can be
improved with the development of dedicated hardware to interface to the process
machine, thus avoiding the use of a PC. Such implementation should enable the
processed data to be delivered to a central system. This central system could then
provide the same functionality to several machines, implementing the distributed
system concept. A further enhancement to this approach would be to implement truly
distributed systems using the Internet as the basis for data transfer and

communication.

The use of web-based technology to help manufacturers with organisational
challenges, such as geographically spread out manufacturing plants, was presented by
Ong et al [3.48]. Information was identified in this work as a strategic resource that
becomes essential in such a situation. The employment of monitoring tools based on
Internet technologies is a way by which manufacturing activities in many regions and
even in different countries can be integrated and monitored. Among many benefits
cited, perhaps the most relevant here is that the performance of a machine or process
can be monitored and accessed from anywhere in the organisation. It was also
proposed that information of productivity, diagnosis and staff training on the effective
operation of manufacturing systems could be shared among partners at different
locations. Internet technology was praised by Ong et al due to its rapid development,

and its capacity of providing access to the most remote locations all over the world.

They [3.48] did not however support the idea of client/server architectures where a
web-page server is integrated at the machine side and remote diagnosis is carried out
using normal web browsers. This kind of implementation was criticised from the
point of view of the timing involved, when considering remote diagnosis. They
suggest the use of an agent technology, based on a peer-to-peer protocol. In this way
each agent can be focused on a specific engineering project application. Agents can
also initiate a request to other agents and carry out transactions with each other. Such
capability was indicated as being fundamental to enable the implementation of a
central knowledge base. It was considered that knowledge bases used in diagnostic
systems were normally rule based. To provide such knowledge base with a sufficient

number of rules to enable an efficient diagnostic analysis, a considerable amount of
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time might be required. A central knowledge base, shared by different users at
different locations, could be fed with the required knowledge and consequently

provide an efficient diagnostic analysis, in much less time.
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Figure 3.7: System architecture and agent components [3.48].

The system architecture proposed in [3.48] was therefore based upon a multi-agent
structure (Figure 3.7). A Diagnostic and Learning Agent (DLA) is centrally
positioned to facilitate the use of the knowledge base by remote users as they carry
out diagnosis procedures. In this way the established system “learns” from faults that
are detected and diagnosed at all sites. The Central Management Agent (CMA)
updates the knowledge information in the Central Knowledge Base (CKB). The
Machine Agent (MA) monitored the machine operation. All these agents cooperate to
enable remote monitoring and fault diagnosis, and on-line knowledge acquisition.
Fault diagnosis in the context of this system was based on the Central Management
System (CMS), the Diagnosis and Learning System (DLS) and the Remote Machine
Site (RMS). The tasks of monitoring and diagnosis were split between the Machine
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Agent and the Diagnostic and Learning Agent. Once they have been “learned”, new
events were sent to the Central Management Agent and then become available to all
the other users sharing the same central knowledge base. Confidence factors were
implemented as a way of assigning weights associated to each one of the actions taken
to diagnose a specific fault. A Learning Agent would be assigned by the central agent
in response to a machine agent request. Diagnosis would be based on existing rules in
the Knowledge Base. Unknown behaviour would be communicated in terms of an
alarm to the machine agent. Faults that were unknown to the diagnosis task might
require a local knowledge base update, provided by the Central Management Agent.
New rules should be added to the system based on the knowledge of a domain expert.
These new rules would be matched against existing ones to iron-out any kind of

conflict.

The structure proposed in [3.48] seemed to represent an advance in terms of fault
diagnosis. Based upon knowledge bases it speeds up the learning curve of the fault
diagnosis system. However, some considerations are necessary. It was indicated that
in practical terms, the network speed was not satisfactory to meet the system demands
in providing online fault diagnosis to machines that could be located far away. This
could be considered a constraint from the point of view of providing immediate
reaction to the development of critical faults. In the author’s opinion an alternative to
minimize such problem could be providing the local agent with more capabilities in
terms of abnormal behaviour detection, which in the case of the proposed work relied
completely on the Diagnostic and Learning Agent. Nevertheless, the approach might
have further application in the detection of long term fault development and process
parameter degradation. In this way it might represent a useful tool to machine
manufacturers to support their customers by deploying predictive maintenance actions
that should be taken. Potential also exists for using it as an information base to

improve future machine designs.

To achieve such goal, further investigation should be made to reduce cost
requirements for the necessary agents, possibly enabling the machine agent to be
integrated within the machine at the remote site. Another way forward would be to
reduce the cost of the various agents, particularly the machine agents, by perhaps

deploying microcontroller technology.
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3.6 — Embedded and Microcontroller-based Monitoring Systems

Compact and powerful devices are becoming available as a result of the continuous
development in the electronics industry, providing further options for the
implementation of monitoring systems. However, such implementations should take
into account the requirement of modern systems, which should not exist in isolation.
Modern and efficient fault diagnosis techniques still require powerful hardware and
software tools. A distributed system can provide a good balance, with efficient and
low-cost devices at the measurement points and powerful and friendly to use software

applications shared at higher levels.

The use of Digital Signal Processors (DSP) for fault detection was presented by
Baccigalupi et al [3.49]. Online monitoring and diagnosis of electrical and electronic
components was implemented using two DSPs, one for measurement purposes and
the second one for fault diagnosis. The fault detection approach was based on the
comparison between measured and nominal quantities. It was considered that the
implementation of the system should take into account two main problems. The first
was the computational requirements of an online monitoring and diagnosis system
that demands a high rate of measurement updates. The second concerned external
factors, such as temperature, that could induce a false diagnostic. Dedicated
processors for each proposed task dealt with the first problem, while the second one
was claimed to be solved by implementing repetitive signal sampling when an
abnormal quantity is detected. Whenever a fault was detected, a flag was sent to a PC
connected to the apparatus. The implementation of a fault detection algorithm that
uses mathematical manipulations was facilitated by the use of a DSP, a device
provided with a specific set of instructions for such a purpose. In the author’s opinion,

a limitation could be the incapability of varying the model parameters dynamically.

In their case study Roberts et al [3.50] raised questions concerned with the cost of
dedicated monitoring systems for fault diagnosis purposes, in cases where multiple
electro-mechanical assets in the manufacturing system require such a resource. They
proposed the implementation of distributed computational intelligence. It suggested
that quantitative fault detection should be carried out at the asset (or machine) level.

The data should be passed across a network, enabling remote diagnosis based on

43



Chapter 3 — Literature Review

sophisticated analysis tools, in an adequate processing environment. The system
architecture would have Fieldbus nodes at the assets level, equipped with a
transducer. A local embedded processor would receive the Fieldbus nodes data and
apply fault detection algorithms. The assessment of residuals of the comparison
between measured values and modelled behaviour of different parameters would be
used to detect the existence of a fault condition. Such a condition would be
transmitted to a higher level where a PC implementing a qualitative linguistic rule
based diagnostic system would provide fault isolation based on the parameter
residuals. Through a communication link, reports could then be made available at a
management layer. The use of a distributed structure employing dedicated devices
such as microcontrollers and embedded processors helped to achieve the main
objective, which was to conceive a low-cost system. Nevertheless, it was said that all
the monitored applications (Fieldbus nodes) were required to be of the same type,
since the local processing node (embedded processor) was provided with a single fault
detection algorithm. A suggestion to improve this structure could be providing each
Fieldbus node with its own fault detection capability. This would make it possible to

have assets with different behaviours monitored by the same system.

The use of dedicated processors applied to process and condition monitoring was
further investigated by Baek et al [3.51]. They introduced a monitoring system based
on a DSP for real time monitoring of tool failure in a milling process. The system
diagram is shown in Figure 3.8. Real time was stated as especially important for such
application, since tool breakage must, if possible, be monitored in real-time. The
system implemented two neural networks embedded in the DSP, to monitor tool
breakage and tool chipping states. The DSP was required due to its capability in
processing mathematical functions based on specific instructions, instead of requiring
software routines for such a purpose. The DSP parallel processing capability was

equally important, resulting in a more time efficient implementation.

The developed monitoring system employed the pattern classifier concept to decide
on the tool condition. Neural networks with back propagation were implemented to
function as the pattern classifier. The neural network inputs were obtained from
features extracted from the process cutting force signals. An Auto-Regressive (AR)

model was used as the signal-processing algorithm. This specific model was chosen
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due to its lower time requirements when compared with other signal processing
algorithms. Individual neural networks were implemented for each monitored
condition, tool breakage and chipping. The tool conditions would be classified as
“normal” or “abnormal” and these states indicated by a LED and on a connected PC
computer display. This implementation showed the growing capabilities provided by
new compact devices, such as a DSP and embedded microcontrollers. The possibility
of developing neural networks embedded in the processor seemed to be an indication
of such devices capabilities. Nevertheless, they agreed that processing time was
critical, causing data buffer overflow in some cases, depending on the operation
speed. Therefore, it seems that although all the increasing processing power provided
by these new generation of devices, there are still tasks that should be shifted to
appropriate environments such as a computer. Such a system would then benefit from
greater processing power, adaptability to the demands and software tools that provide

high level of flexibility.
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Figure 3.8: DSP based real time monitoring system [3.51].

Microcontrollers were also employed for measurement and control purposes in a
distributed system configuration investigated by Bolic et al [3.52]. They suggested
that PC computers represent the best choice for the central node in distributed
systems, due to the wide range of hardware and software resources available for
measurement and control implementation. Nevertheless, the use of microcontrollers
was defended in cases where instead of the processor power such as a PC computer,

the requirements were for small, low-cost and robust devices. Bearing in mind such
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points, they described the implementation of a distributed system where the individual
hardware modules were based on 8 bit microcontrollers that were provided with
communication interfaces to enable them to connect together. The system was
implemented with an application program generation and distributed units configured
from a central unit by entering the required parameters. The central unit, also based on
an 8 bits microcontroller, provided a user interface and arbitrated the tasks among the
distributed units. Different implementations of the distributed units were provided,
accordingly the devices they should support. Figure 3.9 shows a diagram of their

distributed system implementation.
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Figure 3.9: Distributed system block diagram [3.52].

The system described in [3.52] used a 3 layer (physical, transport and application)
data communication protocol, identified as a “reduced OSI model”. The central unit
would control the system communication by sending broadcast and addressed
commands. These commands would provide to or request parameters from the
distributed unit. Although presented as a system with automatic program generation,
such a feature seemed to represent an automatic selection from the configuration
menu in the central unit, based on the distributed units’ characteristics. The system
description suggested its capability of performing distributed control tasks. However,
it was not made clear if the system was capable of dealing with dynamic conditions,
where the distributed units might need to have their parameters updated. Despite
recognising earlier that a PC computer could be a better choice for a central unit in a

distributed environment, an 8 bit microcontroller implementation was used to perform
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this task. Such an implementation, especially when considering the master/slave
hierarchy, could limit the system capabilities. However, the described system showed
that for many applications where size, power consumption and cost are issues, the
new generation of microcontrollers could provide an adequate answer. A better
performance might be obtained if, rather than developing a communication protocol,
one of the existing Fieldbus standards were used. Provided that there are such device
controllers already available this will have the effect of, easing software

implementation and improving processing performance.

The importance of data communication for the development of distributed systems
was recognised by de Frutos and Giron-Sierra [3.53]. They described the
implementation of a distributed control system that exploits the power of an
embedded PC, enhanced by the use of existing and well-developed software tools that
ease such developments. The system was provided with an interactive graphic tool to
build control and measurement functions, that can be implemented in distributed
nodes. A full range of control and measurement functions for analogue and digital
I/Os were made available. The system architecture was provided with a supervisory
node, based on a PC, centralising the distributed nodes knowledge base. Data
communication was implemented using modems and standard telephone lines, since it
was considered that the distributed nodes might be located at far away locations. Each
distributed node supported 3 basic tasks: communication, data acquisition and control.
Learning capabilities were provided, enabling the distributed nodes to retrieve
information from the supervisory module. Data update was periodically requested to
the distributed nodes by the supervisory node. Figure 3.10 illustrates the system

architecture and software components.

An argument made in [3.53] was that embedded PCs represent a low-cost, whilst
powerful solution, in cases where distributed nodes required greater processing
capabilities. The high scale of integration of the current generation of electronic
components enabled such an implementation. Existing software tools and standards
helped to ease the development of such systems provided with graphical capabilities.
However, it is the author’s opinion that the system described by de Frutos and Giron-
Sierra could equally have been developed, probably in a more flexible way, using

commercially available tools [3.54].
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Figure 3.10: System architecture (3.53].

In attempting to develop the next generation of monitoring systems it is important to
be aware of current and future research and development in the area of system

architecture and possible related developments.

3.7 - Future Directions

An architecture for Distributed Fault Detection and Isolation (FDI) was proposed by
Dassanayake et al [3.55]. The system uses industrial network standards (Fieldbus) in
its implementation to provide distributed monitoring and control capabilities for assets
in buildings and manufacturing processes. Industrial networks, rather than
conventional ones, were chosen since such standards consider the requirements of
distributed control applications. The proposed architecture was based on 3 layers or

levels, as seen in Figure 3.11.

The lowest layer was identified as the Fieldbus Node (FN). This node used a
microcontroller to implement the Fieldbus communication protocol. Measurement
and control capabilities were provided by a DSP. At the middle layer, and Embedded
Processor (EP) provided fault detection to the connected FNs that had common

operating characteristics. Thus EPs had built-in Fieldbus interfaces to enable them to
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communicate with FNs at the lowest level. FNs could issue control alarms, based on
knowledge provided by the respective EP, indicating low-level fault detection. The
EP was therefore capable of assessing the consistency of the reported fault. Whenever
it was proven to be correct, a detection alarm would be passed to a Management
Information System (MIS), linked to the EP by an Ethernet network. The MIS is
capable of activating a direct high-speed data acquisition link, routing the FP that
generated the alarm through the EP. A set of data would thus be transferred to the
MIS, which could provide fault isolation based on a neural network implementation.
Previous application expertise was said to be required for network training, which

may represent a limitation in cases where the necessary data is not available.

E@‘ Fieldbus Fieldbus @j
Node | r~| Node
(FN) (FN)
E@ Fieldbus Fieldbus @:
Node | F— Node
& [ UL
] 2
@ Fieldbus | | 5 3| | Fietdbus @3
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......................................... Level
Embedded Embedded
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Maintenance Information System
System (MIS) Level

Figure 3.11: Proposed architecture for system-wide FDI [3.55].

In this proposed approach [3.55], fault detection was implemented based on the
comparison between the nominal behaviour and system measurements, taking into
consideration a predefined tolerance band. A detected fault would result in a FN data
request. The data is compared to models describing the individual parameter’s

behaviour. The resulting vector, with each specific parameter component, would be
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used as an input to the system’s neural network, thus providing fault isolation. The
proposed work showed the flexibility of a distributed system. Devices with less
processing capabilities were deployed closer to the measurement or control points,
reducing the implementation cost and improving system reliability. At the same time,
processing capabilities at lower levels could reduce the load of the upper layers. It
would enable the possibility of providing specialised services or functions to a larger
number of devices deployed at a lower level, keeping the low-cost strategy with an
increasing processing capability. At the highest level, powerful hardware and software
deployment could provide the processing power and flexibility required for an
efficient use of artificial intelligence tools. The use of adequate communication
networks in accordance with the environment and application requirements were seen
to be equally important in improving system robustness and easing implementation.
However, this implementation required all devices at the Fieldbus level to be
measurement or control devices with the same characteristics. Such requirement
seems to represent a constraint, limiting the system use. In cases where assets with
different characteristics might be present, several separate systems would be required,

reducing flexibility.

With the purpose of providing a base for the establishment of standards, some
research has been conducted to investigate the requirements of data acquisition
systems based upon distributed architecture. Work conducted by Ehrlich et al [3.56]
investigated and proposed a generic model for the deployment of smart sensors. In
this context, such devices were considered for carrying out conditioning, digitisation
and processing of signals delivered by transducers. Such tasks could therefore be
executed near to the measurement points, increasing processing power compared with
a centralised Data Acquisition System (DAS). A wider coverage area could equally be
achieved by employing industrial networks (Fieldbus) to connect together all system

components.

This investigation [3.56] suggested that the key-point in using smart sensors consisted
in their ability in responding to other system components requests. A system
employing such technology would be enabled to embody a higher level of versatility,
since the system components could be dynamically reconfigured in response to new

requirements. The work proposed a graphical software tool to support the
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implementation of the distributed data acquisition system, identified as the
“instrumentation plan”, in a generic way. The system representation was said
achieved using Data Dependence Graphs (DDG), illustrated in Figure 3.12, which
were supposed to represent specific levels of system information. In the described
approach, the smart sensors would provide signal conditioning, data processing that
takes into account local and external data (the latest provided by other system
components) and communication capabilities. A system controller was added to
provide a user interface, data storage and to allow smart sensors management based
on the system diagram. Data communication was based on Fieldbus technology,

enabling system components to be connected together and to share data resources.

Smart sensor #1 System
controller
T2
shared local T3
variableV

shared global
variable

Smart sensor #2
T4
T5

Trl) (Tr2) (Tr3) (Tr4 Tr5) (Tr6 Tr7

Figure 3.12: Data dependence graphs (DDG) for instrumentation plan [3.56].

The model proposed in [3.56] was supposed to increase the systems data processing
capabilities by providing parallel processing and allowing system variables to be
shared at a local level. The work did not reference to existing standards for the
covered area. To ensure the continuity and compatibility of the proposed model, the
smart sensor implementation should take into account standards such as IEEE 1451
[3.42, 3.43]. Another important aspect of such an implementation should concern with
the Fieldbus standard employed at the communication level ofthe system. The model
suggested the broadcast of global variables in an asynchronous way, based on events.

This would require a network specification that could support such an
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implementation. The existing standards in the field should be analysed to select the

most appropriate [3.57].

Nieva and Wegmann [3.58] proposed a model of a conceptual DAS. It was proposed
in order to support system designers with the necessary levels of abstraction for the
development of DASs, either when based on existing standards or design specific. It
was identified as a conceptual model of a generic system and was said to represent a
formal description of a system. The approach was also described as an easier way to
understand a system, since it focused on the main aspects, while hiding the low-level

details that might be difficult to comprehend.

Device Items Device Models

Observations &

Monitoring
Reports
1 I
Device Item Device Model
Monitoring Monitoring
Criteria Criteria

Figure 3.13: Conceptual model main components [3.58].

Figure 3.13 illustrates the main components of the generic DAS conceptual model, as
described in [3.58]. In the proposed model, device models were presented as
describing the model representing a set of real world devices, defining any
measurement points with their respective measurement type and the phenomenon type
(quantitative or qualitative) they represent. Device items were defined as a real world
device created in the manufacturing process. It inherits characteristics defined in the
“device model”, allowing the association of addresses to the measurement points and
enabling a phenomenon to be associated to a specific location. Device model
monitoring criteria was described as the ability of selecting data record features,

providing the DAS with the ability to define reports, with a consistent status. To
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enable this the proposed conceptual model provided trigger conditions, enabling
automatic recording based on time or system states. Three monitoring criteria were

specified, as shown in Table 3.1.

Table 3.1: Monitoring criteria and respective trigger condition.

Monitoring Criteria Trigger Condition

Device model composition Records of changes in system composition
Device model status Records at specific scheduled time

Device model event Records of certain system states

In the model proposal, monitoring criteria would be set in the device item monitoring
criteria. Two categories were provided, “predefined” and “custom”, meaning that they
could be part of the model or specific to each device. Data access mechanisms were
also provided, based on “public” and “private” categories, thus making it possible to
establish the level of access provided to the monitoring reports. Finally, Nieva and
Wegmann described observation and monitoring reports, which defined the way in
which observation records of the device item would be taken. Each observation would
be associated with a time-stamp. The conceptual model proposal presented
“measurement observations” (quantitative) and “category observations™ (qualitative).
The latest includes a Boolean category identified as “present”, aiming to represent an

indication of presence or absence of a certain condition or phenomenon.

The conceptual model presented in [3.58] must be considered in association with
concerns with the existence of standards related with the subject area. Many of them
are under development [3.59, 3.60, 3.61, 3.62]. Additionally, other technologies such
as Universal Plug and Play (UPnP) were also referred to [3.63].

The development and implementation of a model based on such a proposition would
make system developments easier by providing a so-called level of abstraction from
the field devices. Nevertheless, to provide such capabilities, field devices must be
fully compatible with the proposed technology. The paper suggested a codification

scheme, where the device model, manufacturers and serial numbers would be used to
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compose an identification method. Although such scheme would be only applicable
for new forthcoming devices, there was not a suggestion to support those that do not
fully comply with the proposed model. However, the implementation of such a model
could represent a step forward in providing ways to create data acquisition systems
based on layers, where monitoring applications would not have to directly access the
field devices. Data could be made available by means of a common interface,
provided that field devices were aware about the criteria that should be followed to
collect and deliver the data. The standards concerning the data acquisition systems
and devices, and the way in which they communicate would at this stage be very

important to enable the technology to become fully available.

3.8 — Summary

With the purpose of improving manufacturing processes productivity and quality
rates, condition monitoring and fault diagnostics methods have been intensively
investigated. Developments in PC hardware and software have provided means to
enhance such investigations, enabling the development of monitoring systems capable
of analysing and integrating the acquired data from processes and machines.
However, the dynamics associated with most of the processes still represent an
obstacle to be overcome, requiring the consideration of a large number of parameters
and variables. The development of distributed systems introduces an alternative by
spreading the knowledge and expertise to different levels within the system. Low-cost
processing devices, such as microcontrollers, emerge as an alternative, providing
remote processing capabilities and thus supporting distributed and intelligent
applications. To integrate a wide range of intelligent devices, communication
protocols and modelling models/methods that consider modern technologies such

Internet, database and artificial intelligence are required.

The next chapter of this thesis will concentrate on the technological aspects that relate
to data acquisition and monitoring systems. The development of powerful electronic
devices and communications protocols represent a step forward in the implementation
of distributed and intelligent structures required to achieve the goals aimed by most of

the research in the field.
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Chapter 4 — Technology Fundamentals

CHAPTER 4

TECHNOLOGY FUNDAMENTALS

4.1 — Introduction

The distributed monitoring system produced as a result of this research is based upon
a range of currently available technologies. The development of these new
technologies has enabled the design of systems that explore the best features of each
individual component, sharing resources in order to achieve a better final result. In
particular, new network technologies, either in terms of hardware or software
protocols, open the opportunity for the development of distributed systems.
Tanenbaum and van Steen [4.1] considered distributed systems as a large number of
computers connected by a high-speed network. They also added that such system
should be easy to expand, considering each member as independent. But they
presented as the main goal for such a distributed system “is to make it easy for users

to access remote resources’.

This present research explored the general concept of distributed systems in order to
provide the resulting monitoring system with flexibility and improved capability.
Thus, the technology required to support such an implementation becomes a very
important aspect and will be reviewed in the following sections, with special emphasis

to those components that are the most relevant in the investigation.

4.2 — Processing Technology

Processing technology represents a key element in distributed monitoring research,
since it establishes a reference in terms of a system’s capabilities and limitations. The
evolution of integrated circuit technology in the 1970s provided the means required
for the development of a generation of devices with sufficient processing capabilities.

The early generation of 4 bits microprocessors, initially designed for particular
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purposes, has developed to a range of general-purpose devices based on 8, 16, 32 and
more recently 64 bits [4.2]. Although initially conceived and concerned with
applications such as the development of microcomputers, microprocessors were soon
seen as a flexible solution for industrial applications, due to their programming
capabilities [4.3]. In general terms, a microprocessor represents the Central Processing
Unit (CPU) of a computer system and can be mainly divided into a Control Unit
(CU), an Arithmetic and Logic Unit (ALU) and a set of registers that includes the
Program Counter (PC) [4.4], as represented in Figure 4.1. Table 4.1 describes the
main functions of each element. In order to operate, a CPU requires a main memory
system (to hold execution code and data) and an input/output (I/O) system (to enable

communication with the external world).

Central Processing Unit
Operation Arithmetic and
Registers Logic Unit
Program
Counter
Control Unit

Figure 4.1: Central processing unit general diagram [4.4].

Table 4.1: CPU main parts description [4.4].

CPU Element Function Description

Control unit e Controls the computing operation.

Arithmetic and logic unit e Performs arithmetic, logic and shift operations.
Register set ¢ Holds values during computing operation.
Program counter e Holds the instruction memory address.
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Microprocessors can be classified in terms of the way they interact with the main
memory system. Models with von Neumann architecture use the same addressing and
data structure for data and instructions. Alternatively, Harvard architecture devices
provide independent pathways for data and instructions [4.4]. The concepts are
depicted in Figure 4.2. Other types of computer architecture exist but are outside the

purpose of this technology review.

Main memory system Main memory system
Data and . .
Address Instruction Instruction Instruction Data Data
athwa athwa address pathway address pathway
P Y p Y pathway pathway
Central Processing unit Central Processing unit
Operation Arithmetic and Operation Arithmetic and
registers Logic unit registers Logic unit
Program Program
counter counter
Control unit Control unit
Input/output system Input/output system
(@) (b)

Figure 4.2: Computer architecture main components (a) conventional von

Neumann and (b) Harvard [4.4].

Within microprocessors, basic arithmetic, logic and shifting operations are performed
by the Arithmetic and Logic Unit (ALU). The ALU operations in many cases affect
the CPU status registers (flags indicating the operation results, such as zero, negative,

borrow, overflow, etc.).
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The control unit executes a sequence of “instruction fetch” and “instruction
execution”. There are basically two different types: microprogrammed and
conventional (hardwired). The first type executes each instruction of the CPU
instruction set as a microprogram, which normally represents a sequence of several
microinstructions (depending on the instruction, it may require only one
microinstruction). This is usually the basis for the implementation of Complex
Instruction Set Computer (CISC) architecture. Although providing a greater level of
flexibility in terms of the instruction set, this may have a performance cost.
Conventional or hardwired control units have better performance, since instead of
using microprograms, the instruction directly interacts with the control unit logical
circuits. These units are now often the basis for the implementation of so called
Reduced Instruction Set Computer (RISC). The main features of RISC devices are
[4.4,4.5]:

° A smaller instruction set;

. Instructions have a uniform length;

o Normally, a single instruction format;
. Register-to-register instructions;

° Pipelined organisation;

° Usually, one cycle per instruction;

. Usually, based on Harvard architecture.

Arguments in favour of RISC include the fact that by simplifying the Instruction Set
Architecfure (ISA), CPUs based on the principle would result in a simpler hardware,
therefore providing means to ease design, improve processing performance and
enabling cost reduction. Baron and Higbie [4.4] considered that the improvement in
performance is also the result of changes in the electronic industry, mainly those

related with the improvements of memory devices.

The emerging RISC architectures enabled designers to concentrate on optimising
power consumption and to integrate more capabilities in a single silicon piece, making
it the industry standard for microcontroller design [4.5]. In simple terms, a

microcontroller became defined as a “computer on a chip” [4.5]. Such devices,
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besides having CPU core, provide program memory, data memory, I/O controllers
and other specific features such as timers and communication, all integrated into a
single device. The continuous evolution of the electronic industry is providing new
versions of microcontrollers with increasing processing capabilities, making them a
flexible choice for a larger range of applications. These include monitoring tasks that

might require communication and local processing abilities.

4.2.1 — The PIC18C452 Microcontroller

Of the range of microcontrollers available, those provided by Microchip Technology
Inc. were selected as being appropriate for the current research. The particular PIC™
single chip microcontroller and its capabilities are thus reviewed in this section. This
family of microcontrollers represents an example of the recent developments of the
electronic industry. Flexibility is provided by the existence of a range of 8 bit
processing devices to select from, according to the application requirements. Different
packages, memory sizes and technologies, device special features and
power/operating options are available, allowing system designers to balance cost and
performance requirements. Table 4.2 lists the main groupings within the PIC family
of microcontrollers and their characteristics. Detailed information on all devices, their

features and configurations, is available from the company’s web site [4.6].

As stated, for the context of this research, the use of this family of microcontrollers
was seen as a good alternative for the implementation of a monitoring structure, since
they are capable of providing low-cost, simple designs and deployment flexibility.
The PIC18C452 in particular became available during this research and has features
that allow its use in a wider and general range of applications. The device is provided
with 32 Kbytes program memory (16 K instructions) and 1.5 Kbytes of data memory.
The technology employed enables the device to operate at frequencies up to 40 MHz.
Each instruction requires 4 periods of clock to execute, represented by the CPU
instruction cycle described in Table 4.3. This allows the microcontroller to achieve a
performance of 10 million instructions per second (MIPS), at the maximum rated

frequency [4.7].
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Table 4.2: PIC family of microcontrollers main groups and characteristics.

Groups Package Max. Freq. Program Memory Data Memory 1/O Analogue Timers Serial /O
PIC12Cxxx 8 pins 4-10MHz 768 - 3584 bytes 25-128 bytes 6 pins 8 bits 8 bits None
512 - 2048 instr.
PIC16Cxxx 18-68pins 8-24MHz 768 - 14336 bytes 24-368 bytes 6-52pins 8,10&12 8& 16 USART/I’C
512 - 8192 instr. bits bits / SPI
PIC17Cxxx 40-84pins 33 MHz 4096 - 32768 bytes 232-902 bytes 12-52pins 10 bits 8& 16 USART/PPC
2048 - 16384 instr. bits / SPI
PIC18Cxxx 28 -84 pins 40 MHz 16384 - 32768 bytes 512 - 1536 23 -68 pins 10 bits 8& 16 USART/I’C
8192 - 16384 instr. bytes bits / SPI/ CAN
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Table 4.3: PIC18C452 instruction cycle clock period operation.

Clock Period CPU Action Description

o1

Instruction decode cycle or no operation

Instruction data read cycle or no operation

Data processing

|4

Instruction data write or no operation

No operation cycles may be required accordingly the actual instruction action.

. Cycle k | Cycek+1 |, Cyclek+2 | Cyclek+3 |
1 1 1 ] !
| PC | PC+1 | PC+n y  PC+ (n+1) A
I 1 ] ! 1
Fetch PC Execute PC
Fetch PC + 1 Flush PC+1
Fetch PC+n Execute PC + n
Fetch PC + (n + 1)‘
Execution .
affecting PC Void Cycle

PC - Program Counter

Figure 4.3: PIC18C452 instruction flow.

The device architecture design employs concepts such as two-stage pipeline,

overlapping the instruction fetch with the execution of the previous instruction. By
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utilising the Harvard architecture, instructions can be fetched using a separate bus
from the one used to access the data memory. These approaches provide the required
means to enable instruction fetch and execution to be performed in one single cycle.
Operations affecting/changing the processing unit program counter register (typically
branch type instructions) result in an “exception to the rule”. For such operations, two

cycles are required. Figure 4.3 provides a diagram of an instruction flow [4.7].

The PIC18C452 instruction set is based on a 16 bit instruction width (instruction
word). This means that the instruction pathway is also 16 bits, in contrast with the 8
bits of the data pathway. The device instruction set is composed of 77 basic
instructions. Of these, 4 require a double word instruction (32 bits) for their

codification, therefore demanding two cycles to fetch the entire instruction.

154 bits » 0

Instruction code field (Opcode)] Control field | Register address field

The fields may assume different length accordingly specific instructions

Figure 4.4: General instruction format, considering registers addressing mode.

The instructions are formatted in such way that all the microcontroller 8 bits registers
(which include the 1532 data registers and the 128 special function registers) are
addressed within the instruction. Figure 4.4 shows details of such a formatting
structure. A complete description of the PIC18C452 instruction set and the respective

format can be found within the device documentation [4.8].

The PIC18C452 data memory is organised into 16 banks of 256 bytes each (file
registers). Although representing an addressing range of 4 Kbytes, only 1.5 Kbytes are
effectively implemented as application enabled registers. These are located in banks 0
to 5. Another 128 bytes are physically implemented for device control purposes and
are called Special Function Registers (SFR), occupying the second half of the last
bank (bank 15). The map representation of the registers distribution within the

microcontroller data memory area is shown in Figure 4.5. Access to a specific register
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within each bank can be via two addressing modes. Direct addressing mode requires
the previous selection of the bank wherein the register is located. Indirect addressing
mode is provided by means of three 12 bits pointers, which provide continuous access

to the entire 4 Kbytes addressable registers.

000h
Bank 0
Bank 1
Bank 2 Access Bank
(virtual bank)
Bank 3
Bank 0 (128 bytes)
SFR
Bank 4
Bank §
5FFh
Z Unused Z
= SFR stands for Special Function
Registers
» Each bank contains 256 bytes
Unused = Registers are addressed from
Bank 13 SFR 00h to FFh within the bank
FFFh

Figure 4.5: PIC18C452 registers map organisation and access bank mode [4.8].

To ease software implementation (and support compilers), a special addressing feature
is provided with the PIC18Cxxx series. It is called an “access bank” and can be
selected by setting (or unselected by clearing) a bank access control bit, which exists
within the control field of most instructions. Setting the bit provides access to a virtual
bank consisting of the first half of bank 0 and the second half of bank 15 (device
SFR). Compilers and applications can thus have access to the SFR and also to 128

bytes (variables), without caring about the actual selected bank. The register

69



Chapter 4 — Technology Fundamentals

segmentation is a requirement for RISC processors, since a register-to-register
architecture would require a very large instruction word to accommodate the absolute

register address [4.2].

The available 32 Kbytes program memory in the PIC18C452 enables a maximum of
16,384 instructions, since each instruction has in general a length of 2 bytes. These
instructions are addressed by a program counter that is 21 bits wide, organised in 3
registers. The microcontroller is also provided with interrupt capabilities, enabling
embedded peripherals and specific external hardware lines to generate such request.
Two locations in the program memory are vectored by the interrupts accordingly their
priority, low (0008h) or high (0018h). For improved performance, a 31 level program
counter wide (21 bits) embedded stack is implemented in the PIC18C452, to support
interrupts and subroutine calls by automatically storing the returning address An
equally interesting feature is the capability of asynchronously accessing byte locations
in the program memory, organised in the form of data tables. A 21 bits wide
addressing mode to access such tables is obtained by joining 3 “table address”
registers, which can be manipulated by the application. Automatic address increment
and decrement are provided by some instructions, although 2 instruction cycles may
be required for execution. Read and write modes are supported. The device specific

documentation is the source for further details [4.8].

The microcontroller’s CPU is provided with an 8 bit ALU, responsible for the
arithmetic, logic and shifting operations. An operation with two operands requires one
of them being placed in the Working Register (WREG). The ALU of the 18Cxxx
series is also capable of unsigned 8 x 8 bits multiplications, with results up to 16 bits
wide. All such instructions are single cycle execution based. Nevertheless, further
cycles may be required, in some cases, to initialise registers or to retrieve results. An 8
bits Status Register (STATUS) holds the device flags, which indicate the resulting
effects of the operation performed by the ALU. Some examples are zero-results,

negative-results, carry states and overflow indications.

One of the benefits provided by microcontrollers is their embedded peripherals and
I/O control, allowing development of an application with minimal external hardware.

The PIC18C452 in particular is provided with 34 I/O pins, each typically with several
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multiplexed functions. The simplest use of these pins is as digital I/Os, organised in
three 8 bit, one 7 bit and one 3 bit ports. Each port can have their individual I/O lines
configured either as inputs or as outputs. These configurations can be dynamically
changed during program execution, increasing application flexibility. The PIC18C452
also provides support for analogue input signals. The multiplexing feature enables 8
of the I/O pins to be selected as analogue inputs. A single 10 bit analogue-to-digital
(A/D) converter is provided, thus requiring analogue acquisition and conversion to be
multiplexed. These characteristics were explored to implement the monitoring system

that resulted from this research.

Four timers, with 8 or 16 bit timing registers, are available with the PIC18C452. Most
of them (3), allow either an internal (system clock) or an external (input pin) clocking.
Prescaling of the clocking source is selectable, at individual rates for each timing
device. Three of the timing devices are also capable of acting as counters, triggered by
an external source. All the 4 timing peripherals have interrupt capabilities and their
registers can be read / written at any time. The capture function acquires specific timer
registers when triggered by an external signal. The compare function watches specific
timer registers and when the comparison matches, it drives high/low (configurable) a
specific I/O pin. The combined capture/compare functions can also generate
interrupts, if required. A third related function may provide a 10 bit resolution Pulse

Width Modulation (PWM) output.

Communication peripherals are also embedded within the PIC18C452. The first such
device to be considered is the Universal Synchronous/Asynchronous
Receiver/Transmitter (USART). The asynchronous mode is useful in implementing
communication capabilities in order to exchange data with other devices/equipment,
by means of a standard RS232C serial interface. In such a mode, the data transmit and
receive clock are derived from the microcontroller’s operating clock and data transfer
is full duplex. Separate 1 byte receive/transmit buffers are provided. Interrupts are
also separate for the transmitter and receiver modules and may be generated if
enabled. The transmitter interrupt is associated with the respective buffer becoming
empty event. On the other hand, the receiver interrupt is associated with the receiver
buffer full event. Start bit, stop bit and ninth bit (parity checking or multi-processor

addressing mode) are selectable. Error indications such as received frame error (stop
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bit) and buffer overrun are automatically generated. Supported baud rates range from
300 bps to 115.2 Kbps. The USART also operates in synchronous mode, acting either

in master or slave mode.

The second available serial communication method is provided by means of an
embedded Synchronous Serial Port (SSP). Two operating modes are supported: Serial
Peripheral Interface (SPI®) and Inter-Integrated Circuit (>’C®). The SPI (developed
by Motorola) can operate as master (providing clock) or as slave (clock provided by a
master). Although using separate hardware lines for data transmission and reception,
one single buffer is provided for both events (bits are continuously shifted). A single
interrupt is provided and is synchronised with the buffer full condition (8 bits shifted
in and uploaded). The data transfer clock is unique and controlled by the master
device. To receive data from a slave device, besides enabling the clock, the master
must transmit a stream of “dummy data” equivalent to the amount to be received.

Supported data transfer rates are up to 10 Mbps.

The PIC18C452 is fully compliant with the I°C specification (developed by Phillips)
[4.7]. In this operating mode the device uses one hardware line for data transfers and a
second one for the clocking signal. Master and slave modes are both supported.
Interrupts can be generated by the reception of a start bit (synchronising the beginning
of a data transfer) and by the identification of a stop bit (end of data transfer). The I*C
uses an addressing mode (7 or 10 bits long), which is automatically searched and
detected by the microcontroller’s data communication interface. Supported data
transfer rates may be as much as 1 Mbps. Further details concerning the

microcontroller’s communication peripherals may be found in [4.7].

Within this research context, the USART and SPI communication methods were
employed. As it will be seen in Chapter 7, USART became the natural choice to
communicate between third party development kits, employed in the implementation
of a “connectivity module”. In the development of a “monitoring module” (also
described in Chapter 7), SPI was selected due to design simplicity and compatibility
with other peripheral devices, such as the CAN bus controller, considered later in this

chapter (Section 4.4.2).
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The main elements concerming the PIC18C452, especially those that were
subsequently used in this research have been described in this section. The device was
the heart of the developed distributed monitoring system and provided data
acquisition, inter-chip communication and information exchange implementation. The

hardware and software developments are detailed later, in Chapter 7.

4.3 — Data Acquisition

Having identified the PIC microcontroller as the device to provide, among other
things, the data acquisition function for the distributed monitoring system, other more

general data acquisition topics were considered and are briefly reviewed.

The development of faster computers and hardware standards for computer bus
architectures has made Personal Computers (PCs) one of the preferred platforms for
data acquisition implementations. PCs become an attractive choice due to their
processing power and data storage capabilities, together with the support provided by
multi-task operating systems [4.9]. However, hardware specific implementations still
represent an important element in data acquisition design. In many cases there are
real-time requirements and the hardware specific implementations often provide local
processing and reduce the demands on the main PC processor [4.9]. Bolic et al [4.10]
suggested that there are also several applications that do not require the power of a PC
or furthermore, may require low-power consumption, low-cost or small physical

dimensions.

Figure 4.6 represents the general aspects of a data acquisition implementation. Apart
from the chosen processing platform, many considerations in terms of the data
acquisition hardware are common. Transducers are required to convert the physical
phenomena of a process into an electrical signal. Signal conditioning may be required
in many cases, in order to adapt the transducer signal to those required by the data
acquisition hardware. Table 4.4 summarises the main signal conditioning techniques.
Different sorts of transducers are available, suitable to the different physical
phenomena to be measured. The methods employed by such devices, in order to

convert measurement into a useful signal may vary according to operating range,
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accuracy and also cost. Some transducers of common use in industrial applications,
together with their sensing method, which are appropriate for automatic

measurements, are summarised in Table 4.5.

Process

4

Signal Acquisition
and Interfacing

4

Processing Unit

Figure 4.6: General representation of a data acquisition structure.

Table 4.4: Signal conditioning aspects.

Signal conditioning Purpose description

Amplification e Increase low-level electrical signals to reduce noise
ratio (full voltage range amplification for better
accuracy).

Isolation e Electrically isolate the transducer from the

processing unit, protecting equipment and avoiding
measurement noise due to ground loop.

Multiplexing e Enable several signals to be measured by a single
measurement equipment by means of multiplexing
technique (signal changing rate must be
considered).

Filtering e For DC-class signals, aims to reduce level of noise
by using low-pass filtering techniques;
e For AC-class signals, filtering methods may require
very steep cut-off rates.

Excitation e Transducers power supply requirements, such as
currents or specific voltages.

Linearisation e Compensate measurements due to non-linear
response of the sensors / transducers (some times
provided in software).
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Table 4.5: Transducers and sensing techniques (compiled from [4.3]).

Physical phenomena

Measurement method

Sensing technique

Pressure o  Strain gauges e  Pressure applied to the strain gauge, resulting in a resistance change;

e  Variable capacitance ¢ Capacitance changes due to movement of a dielectric caused by pressure;

o Linear var. diff. transformer e  Transformer core moves due to pressure;

o Piezo-electric effect ¢ Output voltage resulting from applied pressure.
Temperature e Thermocouple ¢ Electromotive force due to dissimilar metallic junctions;

e  Thermistor s Resistance variation due to temperature changes;

e  Pyrometer e  Heat wavelength radiation.
Flow e Orifice plate e Differential pressure due to restriction in the flow area;

e Venturi tube ¢ Diff. pressure due to smooth and gradual reduction in tube diameter;

e Pilot tube o Differential pressure between static pressure and fluid flow;

e Turbine e Turbine rotor generates a electrical signal proportional to the flow rate;

e  Magnetic e Changes in the inductive voltage in a coil due to flow rate variations;

e  Ultrasonic e Measurement of acoustic wavelength changes due to flow rate variations.
Level e  ON/OFF switches e Beam breaking, capacitance, conductivity and float type level switches;

e Continuous level o Capacitance (dielectric variation), differential pressure (level column), ultrasonic

(wavelength reflection) and radioactive (absorbed radiation).
Displacement e Angular and linear e Potentiometers, capacitance (parallel metal plates), inductive coil (permeable core), pulse
counting, encoders and ON/OFF switches.

Velocity e Linear e  Time measurement based on pulse sensing;

e Angular e Pulse sensing, electro-mechanical and digital tacho-generators.
Vibration e  Magnetic e Permanent magnet within a coil field, generating electrical signal.
Acceleration Strain gauges e Changes in resistance due to applied forces;

Piezo-electric crystal ®  Voltage variations due to strain in the crystal.
Force Weight Load cells based on strain gauges principle;
Force/torque Strain gauge and magnetic permeability changes due to tension variation.
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Analogue signals represent an important source of monitored process parameters. The
processing of such signals requires them to be converted into a digital format, which
is normally carried out by an Analogue to Digital Converter (ADC). Currently ADC
functionality is usually provided by specific electronic integrated devices or as an
embedded function in many microcontrollers (e.g. PICs). The successive
approximation implementation represents the fastest ADC method and is used in the

PIC18C452 device.

Other parameters must be considered when using ADCs, of which resolution,
sampling rate, input signal range, linearity, repeatability and code width are probably
those of major importance. In simple terms, resolution expresses the number of bits
used to represent an analogue signal sample. The higher the resolution, the lower the
gap between successive levels of representation in the digital format. As an example,
an 8 bits ADC provides 256 levels of representation of an analogue signal and
therefore has a full-scale resolution of 0.39%. By using a 16 bit ADC the number of
levels increases to 65,536, with a consequent full-scale resolution of 0.0015% [4.3].
Nwagboso et al [4.11] considered that a higher resolution would result in an increase

in the data acquisition accuracy. However, other factors should be considered [4.9].

The sampling rate of an ADC indicates how often a conversion can take place and
therefore directly affects the system accuracy. A fast sampling rate can provide a
larger number of acquisitions of the analogue signal and must be considered as an
important factor for fast changing signals [4.9]. There are also devices that, although
providing several analogue channels, may share a single ADC unit among them by
employing multiplexing techniques. In such cases, the sampling rate must consider the
acquisition and conversion time and the number of analogue channels sharing the
same resource. The PIC18C452 represents an example of a device with this type of

implementation, providing one ADC for 8 analogue input channels [4.8].

Input signal range is characterised by the range of input voltages that are supported by
the device or analogue channel. Linearity expresses the relationship between the
analogue signal and the respective digital representation over the full input range and
requires a good analogue circuitry design to achieve best results [4.9]. Similarly,

repeatability becomes important in many applications where precise measurements
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are required [4.3]. The code width represents the smallest detectable change of the
voltage in the natural signal and is thus related to resolution, input range and gain. It

can be calculated by means of Equation 4.1.

CodeWidth = VoltageRange (Volts) (eq. 4.1)

Gain x zBltRcsolutlon

In recent years, a new generation of transducers have been investigated and
developed. These devices were named as “smart transducers”. Ranky [4.12] described
the term smartness as “on-board data storage/processing capability,
interfaced/integrated with the analogue and/or digital sensor”. Such devices should
also be connected to a single bus, representing a shared medium where appropriate
communication protocols would be used to deliver data in a digital format. The IEEE
1451 family of standards [4.13] provides guidance for the development and use of
smart transducers, including a network interface specification and device
characteristics, such as calibration data, sensitivity, measurement range and
manufacturer’s identification [4.12]. Ultimately, it is expected this sort of device be
capable of providing self-calibration, self-compensation, self-validation and of

communicating by means of digital networks, to deliver the measurement data [4.14].

The selected PIC microcontroller was recognised as being a solution capable of
providing most of the general data acquisition requirements. Although presenting
restrictions, mainly due to the general context of the application, the benefits
represented by the versatility of the configurable range of embedded functions and
network based communication support, suggested an attractive low-cost alternative

that is capable to overcome the restrictions identified.

4.4 — Industrial Networks

As stated before, one of the major benefits of using the PIC device was its
networkability. The technology review provided by this chapter therefore continues
with a brief and general review of industrial networks, followed by a more detailed

description of the protocol used in the monitoring system implementation.
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The development of electronic devices with networking capabilities has been
manifested, for example, in distributed control systems [4.15]. In simple terms, in
such an environment, transducers with processing capabilities are deployed
distributed across the system. As a result, the way in which the transducers
communicate with the main control elements, such as Programmable Logic
Controllers (PLCs), has been enhanced by the use of industrial networks. Jacob et al
[4.16] classified these networks in two ways: sensor buses and Fieldbus. They
considered that both are suitable for sending control and measurement signals,
however Fieldbus was evaluated as being more structured and capable of making
distinction between different classes of messages. Although many different
specifications have been proposed and implemented, all of them aim to provide a
digital network that enables communication between control and measurement
devices sharing a single bus [4.17]. Figure 4.7 illustrates such an environment. The
concept was utilised in the current research in order to provide flexibility in the

monitoring structure.

Management Actuator1 | « ++ | Actuator n
Comm. Bus
Controller Sensor1 | ¢+ | Sensorn

Figure 4.7: A distributed control system based on industrial networks.

A benefit, reported by many authors, resulting from the use of industrial networks was
the reduction of cabling costs in the automation field [4.12, 4.17, 4.18, 4.19]. Other
benefits accrued when upgrading, updating and replacing devices, since less effort
would be required with the devices being easily connected and configured [4.12, 4.17,
4.19]. However, concerns have been manifested by the same authors, regarding the
considerable range of specifications proposed and implemented, making it difficult to
establish a common standard governing the subject. A summary of the main existing

implementations can be found in [4.20].
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The Open Systems Interconnection (OSI) model of the International Standards
Organisation (ISO) provides a reference for the implementation of modern
communication systems, based on a 7 layer protocol model, as shown in Figure 4.8(a).
Tanenbaum [4.21] considered that this model provided a useful framework for the
discussion of computer networks. Nevertheless he added that the 7 layer model is very
complex, difficult to implement and has many functions repeated at different layers.
Therefore, depending on the implementation, low efficiency might be expected. In
considering all these factors and also assuming that generally there is no need to
implement complex network functions in the control field, Fieldbus specifications are
generally based on a lower number of layers [4.19, 4.22], as seen in Figure 4.8(b). The
reduced layer model is normally referred to as an Enhanced Performance Architecture
(EPA) and considers the real-time requirements of control applications. Table 4.6
summarises the functions associated to each layer. Unfortunately no agreement has
yet been reached with respect to a single Fieldbus standard and existing
implementations have included more or less layers and functionalities [4.18, 4.22].
Within this research the subject was limited to the use of an existing standard (CAN
bus) based on the reduced model, eased by the availability of electronic devices that
provide the means to implement the protocol required functions. This will be

presented later, in Chapter 7. CAN bus technology is introduced in the next section.

7 Application

6 | Presentation

5 Session

4 Transport

3 Network Application

2 Data Link Data Link

1 Physical Physical
(a) (b)

Figure 4.8: Communication networks (a) OSI and (b) reduced model.

Comparing the main existing specifications [4.20], many differences can be observed

at different levels of implementations. In terms of the physical layer, although
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twisted-pair is a supported medium by almost all specifications, different network
topologies, signalling methods (digital coding), data transfer rates and electrical levels
can be observed. Also, the maximum number of connected nodes and network length
may vary. At the data link layer there are different media access arbitration methods,
which are in many cases related with the network topology. The Cyclic Redundancy
Check (CRC) is usually employed to verify the data stream integrity, although its
length may vary from one specification to another. Also, the maximum size of the

supported data transfer field varies accordingly the specification.

Table 4.6: Reduced model layer description (compiled from [4.19, 4.21, 4.22]).

Layer Main functionality description

Physical e Define electrical and mechanical characteristics of the
physic interface and transmission medium.

Data link

e Provide medium access control;
e Implement an error-free delivery mechanism;
Data stream synchronisation.
Application e Provide communication mechanisms to exchange

messages between network pairs (response to requests,
interrupt driven, time cyclic, etc).

The communication method between network pair nodes also changes between
specifications (client/server, peer-to-peer, mastet/slave, producer/consumer, multicast,
etc), with some implementations making use of more than one method, in order to
cope with priority and hierarchy requirements. In some cases the communication
method does not obey the boundaries represented by the layer model, with some of
the functionality associated to the data link layer and others to the application layer
[4.18], depending on the provided services (cyclic messages, event based messages,
request response, etc). Fieldbus characteristics were further summarised in [4.20]. A

description of the characteristics of some specifications can be found in [4.18].

4.4.1 — Controller Area Network (CAN)

The CAN protocol was a result of application area requirements for a robust and fast

serial communication technique. It was initially developed by Robert Bosch GmbH
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and released in 1986, to be used in automotive automation systems [4.23, 4.24]. The
CAN protocol first received the standard reference ISO 11898 in the early 1990s. It
specifies the implementation of the two lowest layers of the OSI model (physical and
data link), for a serial bus application. It became the basis for some fieldbus
implementations, such as CANopen, DeviceNet and CANkingdom, which
complemented the application layer [4.23]. Despite its initial purpose, many factors
including simplicity, openness and also the number of CAN controller suppliers,
encouraged its use in a wider range of applications, including many in the industrial
area [4.23, 4.24, 4.25]. The family of PIC microcontrollers fully support this protocol,
therefore making it the adequate choice for the implementation of the monitoring

system resulting from this research.

Despite having only two defined layers, the protocol specification defines several
functions related to each one, especially within the data link layer. Table 4.7
summarises this functionality. The physical layer for practical reasons is divided into
3 sub levels, each one concerned with specific characteristics and requirements of the
entire layer. The Medium Dependent Interface (MDI) and Physical Medium
Attachment (PMA) have separate specifications from the Physical Signalling (PLS).
There is also more than one specification for the MDI/PMA, depending on the
application requirements and the body responsible for issuing the specification. Table
4.8 summarises the position with respect the existing specifications. One of the most
widely accepted is the ISO 11898-2 (high-speed). It recommends a bus topology
based on a pair of wires (CAN _H and CAN L), with a signalling method based on the
pair differential voltage (0 V for recessive polarity and 2 V for dominant), as
illustrated in Figure 4.9. It also specifies the use of bus terminator elements, in order
to reduce reflection effects. Bus transceivers are equally specified, to provide
compliance guidance. Each transmission node reads the output back from the bus.
Due to the overall philosophy, timing became an important issue in protocol
implementation. Therefore, the specification includes a relationship between data
rates and the bus length. The maximum baud rate is 1 Mbps, for a length of no more
than 40 meters. A length increment can be achieved by reducing the data transmission
rate, with maximum limit fixed at 1 Km. At the bus level, the maximum number of
nodes is dependent on the employed transceiver characteristics. However,

specifications for repeaters are included in the ISO 11898-2, in order to permit
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deployment flexibility and to provide galvanic isolation. Other mediums and

application restrictions were provided by specific standards [4.26].

Table 4.7: CAN protocol layers and functionality [4.26, 4.27].

Layer Sub-division Functionality

Data Link Layer e Logic Link Control e Acceptance filtering;
(DLL) (LLC) e Overload notification;
Recovery management.

e Medium Access e Data en-/de-capsulation;
Control (MAC) e Frame coding (stuffing/de-
stuffing);
e Medium access
management;
e Error detection and
signalling;
Acknowledgement;
Serialisation/de-serialisation.
Physical Layer e Physical Signalling e Bit encoding/decoding;
(PL) (PLS) e Bit timing;
Synchronisation.
e Physical Medium e Transceiver characteristics;
Attachment (PMA)
e Medium Dependent e Cable/connector.
Interface (MDI)

Table 4.8: Medium attachment specifications [4.26].

Application Specific Standard / Specification
CAN high speed ISO 11898-2

CAN low speed ISO 11519-1

Fault tolerant transceiver ISO 11898-3

Truck/trailer transceiver ISO 11992

Single wire SAE 2411

Fibre optical transmission Proprietary solutions
Wire-less transmission Proprietary solutions
Power-supply transmission Not commercially available
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Figure 4.9: CAN bus electrical levels.

The PLS subdivision is specified in ISO 11898-2. In particular, it defines Non-Return-
to-Zero (NRZ) as the signal coding method (Figure 4.9). Benefits represented by the
method are a larger signal bandwidth and a better immunity to noise [4.18, 4.26].
However, it may result in a lack of synchronisation at the receiving end, when a large
sequence of bits with same polarity is transmitted. Therefore, the bit stuffing
technique is employed, resulting in the insertion of a bit with inverse polarity after a
sequence of five consecutive bits of equal polarity (bit stuffing is implemented within
the MAC subdivision). The protocol proposes that each bit should be considered as 4
non overlapping segments, each one being defined as a number of discrete units of
time called time quantum (tq), representing the smallest timing resolution used by a
CAN node. Such a scheme is supposed to enable the CAN controller to provide
~synchronisation and compensate signal delays and phase errors. The protocol is
considered to be time critical and therefore it requires methods of synchronisation and
compensation, which keep the relation with transmission rates and bus length. Each
node has to provide resynchronisation [4.26]. Besides the summarised existing
standards, detailed information concerning the implementation of the concepts
referred to, can be found within the CAN controller’s data sheets [4.28], provided for

the Microchip devices.
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The standard reference ISO 11898 provides the specification for the CAN protocol
Data Link Layer (DLL). As was shown in Table 4.7, this layer has its services
organised into two subdivisions: the Logic Link Control (LLC) and the Medium
Access Control (MAC). The protocol is message-based, which means that messages
flowing on the bus do not have an address field identifying the destination node.
Rather, messages are provided with an identifier field, which each node has to check
in order to decide whether or not to accept the received message. Messages are

broadcast and all nodes can listen to them.
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Figure 4.10: Bit-wise arbitration method illustration.

The MAC implements a bus access method based on Carrier Sense Multiple Access,
with Collision Detection (CSMA/CD). It requires the node wishing to transmit to
continuously listen to the bus to detect whether or not it is free. Different to other
protocol implementations using the CSMA/CD technique, such as Ethernet (IEEE
802.3), a collision will not result in the destruction of the messages on the bus and
thus the loss of the transmission time slot. With CAN, the message with the highest
priority will remain intact, due to a bit-wise arbitration technique émployed within the
MAC. In order to implement the technique, bits are classified as recessive (1) or
dominant (0), as illustrated in Figure 4.9. The higher the priority of a message, the
lower its identifier field value will be. A collision will occur if two or more nodes start
to transmit at the same time. Each node involved will transmit, while listening to the
bus at the same time. If a dominant and a recessive bit transmitted by different nodes

reach the bus at the same time, the result will be that the dominant bit prevails. The
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node transmitting the recessive bit will detect the collision and immediately abort its
transmission, preserving the integrity of the other, higher priority message [4.24,

4.27]. Figure 4.10 summarises the bit-wise operation implemented by the protocol.

Two communication services are defined by the CAN protocol: write object
(transmission) and request object (transmission request). These services are
structured, respectively, as “data frame” and “remote frame”. The first one is
employed by a node, the producer, to broadcast data on the bus, which may be used
by the listening nodes (the consumers). The second is employed by a consumer to
request a specific message, resulting in producers owning the required data to transmit
it utilising a data frame. The serialisation and de-serialisation of the frames, including
bit stuffing, is performed within the MAC. Figure 4.11 provides a general view of the
overall frame structure. The Start Of Frame (SOF) is a dominant bit that serves to
synchronise all nodes listening to the bus. The following field, the “arbitration field”,
basically contains the message identifier (priority scheme), a frame format identifier
(standard or extended), and a frame type indicator (RTR - remote transmit request).
The field is defined with two different lengths, which are dependent on the protocol
version. Version 2.0A handles frames with 11 bits message identifiers (standard).
Version 2.0B handles both, the 11 bits identifier and 29 bits long identifiers
(extended). Extended frames enable a much larger number of different messages
identifiers, when compared with the standard frame. Version 2.0B is sub-divided into
active ahd passive. Active is fully capable of receiving and transmitting standard and
extended frames. Passive receives both, but transmits only standard frames [4.27,
4.29]. In considering the requirements of the protocol implementation in the current

research, the standard frame format (Version 2.0A) was employed.

Arbitration Control Data CRC Ack
Field Field Field Field Field

o w

E
o
F

¢ 1P 12032 —P4— 6 —P4 0108 P4 16 P& 2 P& 7>
bit bits bits bytes bits bits bits

Figure 4.11: CAN frame structure.
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Next in the “data frame”, the “control field” provides the Data Length Code (DLC)
via a 4 bits coding that identifies the number of bytes in the data field. Slight
differences are observed between the “standard” and “extended” identifier frame
formats within this field. The control field of a standard format frame includes a
reserved bit and an Identifier Extension (IDE) bit. In the extended format, the IDE
becomes part of the arbitration field (which changes in size from 12 to 32 bits) and the

bit slot left is defined as a second reserved bit [4.24, 4.27].

The “data field” then contains the data message transmitted by the producer. The
number of bytes in the field may vary from O to 8 and is defined by the DLC (in
control field). It is suggested that a frame with no data bytes (DLC = 0) might be

desirable in some cases where the message identifier is enough [4.27].

The Cyclic Redundancy Check (CRC) field is employed to validate the transmitted
message at the recipient end. The field reserves the first 15 bits for the CRC and the
last one as a CRC delimiter (recessive). The CAN protocol employs a polynom of
order 15, which is considered well suited for sequences with less than 127 bits [4.27].
Other data transfer protocols, such as Ethernet, employ a similar method, however
with polynom generators of different order. The method is considered suitable for
implementation in hardware [4.30], and is therefore normally embedded within
controllers [4.28]. CRC calculation includes SOF, arbitration, control and data fields.
All nodes on the bus calculate the CRC of the received sequence and compare it
against the one sent by the transmitter. Whenever detecting a CRC failure, the node
sends a “frame error” to make it public and thus request a retransmission. Both data

and remote frames are provided with the field.

The “acknowledgement field” (Ack) follows the CRC in the frame structure. It is two
bits long, with the first transmitted as recessive (logic high). This provides a bit slot
used by the consumer nodes to acknowledge the message reception, by transmitting a
dominant bit. Therefore, messages confirmation does not require further delay. A
message confirmed ensures that at least one node received it correctly. The second bit

represents an Ack delimiter also transmitted as recessive [4.27].
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An End Of Frame (EOF) field closes the CAN frame. It is represented by a sequence
of 7 recessive bits. This field is to provide a slot for error notification within the
message length. After a frame, a 3 bits long intermission field is required to separate

contiguous frames. These 3 bits are specified as recessive.

Error detection and reaction mechanisms are also specified within the MAC. Any
node detecting an error condition (CRC, bit stuffing, framing error) will react by
sending an error frame immediately, overwriting the message. This frame consists of
an “error flag field” (6 dominant bits) and an “error delimiter” (8 recessive bits). The
bit stuffing rule does not apply in this case and therefore all nodes listening to the bus,
including the message producer, will detect it. As a result, the producer will restart the
transmission (after an intermission) and all other nodes will discard the sequence that

was received [4.27].

The Logic Link Control (LLC), the second sub-division of the DLL, provides services
concerning message filtering, overload notification and recovery management.
Message filtering corresponds to the ability of each node to decide whether or not to
accept a received message, based on the identifier in the arbitration field. Overload
notification, which is based on “overload frames”, is specified as a mechanism that
enables a node to notify its pairs to delay the next transmission, in order to enable the
node to sort out the internal conditions that caused such a state. Overload frames are
similar to error frames in terms of structure. However, their transmission does not
overwrite a message on the bus and therefore they do not result in retransmissions
[4.27].

The LLC also considers error control features, thus enabling a management
mechanism. Receive Error Counter (REC) and Transmit Error Counter (TEC) should
be incremented by the detection of the respective errors and decreased in case of
successful events. Based on the counters values, different states were defined. The
initial and normal operation state is the “error active”, which allows a node to
participate in the bus communication, including the right to transmit error flags. Such
a state requires REC and TEC bellow 128. A counting error greater than 127 (either
REC or TEC) forces the node into an “error passive” state [4.24]. In this state, instead

of a normal error flag (also active error flag), the node is allowed to transmit passive
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error flags (sequence of 6 recessive bits). Since based on recessive bits, error passive
receivers cannot stop other transmitters, although it can still interrupt its own
transmission [4.27]. A “bus-off” state is the most critical in the system and results in
the suspension of the communication (reception and transmission) by the faulty node.
Such a state is reached whenever the TEC is greater than 255. The protocol
specification defines that bus-off recovery to an error active state should be performed
by a software-reset procedure, ensuring 128 x 11 recessive bits on the bus before
resuming transmission. Any hardware reset should be avoided, since it would not

provide such a mechanism [4.27].

The CAN protocol specification, with a detailed description, also including
recommendations and guidance for controller and driver implementations, are found

in [4.26, 4.27, 4.29].
4.4.2 — MCP2510 CAN Controller

The CAN protocol provides the basic network infrastructure required to support the
implementation of a distributed system. An important factor considered when
selecting this industrial network protocol was its acceptance for industrial application
[4.25, 4.31], thus indicating robustness; and the continuity of the technology, ensured
by the existence of a diversity of suppliers [4.20]. Among these suppliers, Microchip
provides the MCP2510, a CAN bus controller fully compatible with the PIC18C452,
easing hardware interfacing and software implementation aspects. This section will
introduce the main characteristics of this CAN bus controller, thus providing the basis

for the implementation aspects considered later in Chapter 7.

The Microchip MCP2510 CAN controller is fully compatible with the protocol
versions 2.0A and 2.0B and is capable of transmitting at 1Mbps. The device provides
all the functionality described in the protocol LLC, MAC and PLS. A Serial
Peripheral Interface (SPI) is embedded to enable the system processor to interact with

the controller (data transfers and commands).

The device is provided with 2 receive and 3 transmit buffers, each one with the

individual set of registers required to build/recover the protocol frame’s fields. The
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transmission of messages already mounted in the respective buffers can be triggered
ecither by hardware or software actions. Registers provide dynamic program
acceptance filters and masks, used by the controller to selectively load messages from
the bus. In the particular case of the masks, these indicate (by configuration) which
bits of a received message identification field should effectively be considered when

matching it against the programmed filters.

Different interrupt capabilities were also implemented in the controller. Each
reception buffer was provided with an individual hardware line to generate a “buffer
full” interrupt request. Such functionality is programmable. A general interrupt signal
was also provided. This sort of interrupt request further requires a status register to be
read, in order to identify the interrupt source. The controller interrupt sources are
listed in Table 4.9. Interrupt conditions have to be removed by servicing the source
(unloading a reception buffer) or by acknowledging it (others). Interrupt sources can
be individually enabled. A full description of the MCP2510 CAN controller, including
hardware and software programming features, can be found in the device

documentation [4.28, 4.32].

Table 4.9: MCP2510 CAN controller interrupt sources description [4.28].

Interrupt Source Description

Message error interrupt e Indicates an error during the
transmission or reception of a message.

Wakeup interrupt ¢ Indicates that the controller detected bus
activity during a sleep state.

Multiple sources error e Indicates one of several sources, such as
overflow, error passive, bus-off and
warnings (error counters values).

Transmit interrupt e Indicates that a transmission buffer
became empty, after a well succeeded
transmission. Each buffer is provided
with its individual flag.

Receive interrupt

Indicates that a message was
successfully received. Each buffer is
provided with its individual flag
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4.5 — The Internet Protocols

Another technology area that was considered in the context of this research was
Internet connectivity. The following sections provide a review of the general protocol.
This is complemented with an overview of the use of embedded Internet features

presented in Section 4.6, including the use of PIC microcontrollers for this purpose.

The necessity of sharing computer resources in a co-operative way, led to the
development of a software-based protocol suite during the1970s. Although popularly
known as TCP/IP, the set of Internet protocols actually consists of more than just

these two components. They do however represent the most often employed protocols
[4.33, 4.34].

Table 4.10: Internet main protocols (compiled from [4.33, 4.34]).

Layer Protocol Description

Network ¢ Internet protocol (IP) e Provides the required mechanisms to
send an IP frame (datagram) from the
originator to a recipient.

Transport e Transmission control e Connection-oriented transport protocol;
) protocol (TCP) o Flow control services;
Error-correction mechanisms.

o User datagram protocol e Connection-less transport protocol;

(UDP) e Does not provides error-correction and
flow control mechanism;

e High performance, with low overhead.

Application e File transfer protocol e Provides means to exchange files with

(FTP) another computer.

e Network terminal e Enables to establish a session in a
protocol (TELNET) remote computer (remote login).

e Simple message transfer e Electronic mail system, to move mail
protocol (SMTP) around the Internet.

e Hyper-text transfer e Access data stored in web servers, as
protocol (HTTP) web pages.

Basically, the set of protocols that form the Internet standard are classified in 3
groups, organised in a layered stack. The lowest layer in this stack is the

internetworking layer. In the middle, there is the transport layer and the top layer
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corresponds to the one defining application protocols, also known as TCP/IP services.
Table 4.10 summarises the main existing members of the set of protocols. Special
protocols, for support and management, are listed in Table 4.11. Internet protocol
standards are normally referred to as RFC (request for comment) numbers. A
collection of RFCs is found in [4.34] and updated lists are available on the Internet

[4.35].

Table 4.11: Internet management protocols (compiled from [4.33]).

Protocol Description

Address Resolution Protocol e  Provides means to interrogate the physical
(ARP) layer in order to locate the hardware address of
an IP node on the network.

Internet Group Management e  Provides support for multicast events.
Protocol (IGMP) Although transmitted within an IP datagram, it
is not considered as a transport layer protocol.

Internet Control Message e Provides a mechanism to notify the incapacity
Protocol (ICMP) of the network to deliver a datagram to the
destination.

Taking as reference the OSI model for network communication systems (Figure 4.8),
the IP protocol can be considered to be equivalent to the OSI’s network layer. TCP
and UDP implement functions specified in the OSI’s transport and session layers. In
the same way, functionality specified in the OSI’s application and presentation layers
were implement within the Internet application protocols. The lower layers of the OSI
model were not specified as Internet protocols. Rather, they rely on the
communication hardware within systems to provide such services. An example is
Ethernet (IEE802.3), which provides the physical and data link layer implementations

of the OSI reference model.
4.5.1 — The IP Protocol (Network Layer)
The term “datagram” is used to designate the data and the header encapsulating it, at a

specific layer. Communication is implemented by exchanging datagrams between

pairs at the same level, throughout the network. IP provides such functionality at the
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network layer. The protocols located at the layer immediately above use the IP
services to exchange their datagrams. IP adds and removes (depending whether

transmitting or receiving) the protocol header. Figure 4.12 shows the header structure.

Version E::gf; Service Total Length
Identification Flags Fragmentation Offset
Time to Live Protocol Header Checksum

Source Address

Destination Address

Z Header Options Z

(optional)

.....................................................................................................................................

Figure 4.12: IP protocol datagram structure [4.30, 4.34).

The first field in the header provides the IP version, required by other network
members to ensure compatibility. The header length provides the datagram header
size, including the header options. Such options may be used in some cases to add
special routing conditions or security requests. The service field provides priority
information for routers and hosts. The total length field informs the datagram size
(header and data). It may vary from 21 to 65,535 bytes. The identification field
provides further information that enables the original datagram to be reassembled, in
case it was fragmented due to network constraints. The flag field contains details
regarding any fragmentation or to request that such a sort of action should be avoided.
The fragmentation offset indicates the range of bytes in the specific fragment. The
time to live parameter indicates to the network how many hops the datagram should
take before considered undeliverable. The field is updated each time the datagram is
handled. The protocol field is the identification of the higher layer protocol requesting
(or provided with) the IP service. The checksum field incorporates the header
validation information used by the other nodes along the network dealing with the
message to detect data corruption. Source and destination addresses represent
respectively, the originator and the final destination of the datagram. The IP actual

version provides address fields 32 bits long. Due to increasing use and new addressing
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requirements, IPv6 is under development, in order to provide a much wider address
field (128 bits) [4.21]. Finally, the data field contains the higher layer protocol
datagram. Nevertheless, when fragmentation has occurred, it may contain just a part
of the original message. The IP header is required to have its length multiple of 32
bits. Whenever it is not, due to the use of options, bit padding is required to complete

the missing bits [4.30, 4.33].

Each Internet connection is provided with an IP address. IP provides the higher layer
(transport) with a virtual network, hiding all the complexity associated with
internetworking. Whenever a message transmission is required, the “transport
protocol” hands to the IP protocol a “transport layer datagram” (presented in
following sections) and the destination address. A header is added to the data, thus
resulting in the IP datagram, which is forwarded to the following layer in the network
hierarchy, usually provided by the local network system (e.g. Ethernet). A table
relating IP addresses and the network hardware addresses is required, in order to
enable the local network system to deliver the message properly. Such a table is
dynamically implemented, based on previously received messages or employing ARP
requests. If the destination address is not within the local network, the IP datagram
has to be “routed” across the network, permitting it to reach its final destination.
Therefore, the IP address becomes important and must to be unique within the
environment. IP addressing fundamentals are discussed in detail in [4.33]. At the
destination end, the IP header is removed and the data field delivered to the transport
protocol. The protocol field in the IP header provides this information [4.30, 4.33,
4.34].

Although using IP all over the network, the Internet is a set of sub-nets that may have
different characteristics. Such characteristics may be related with the medium or local
network protocols (data link and physical layers). Therefore, the original IP datagram
may have to be fragmented into smaller packets, in order to get across the entire
network. To enable the final destination to reassemble the original datagram, the IP
header provides the fragmentation flags and offset fields. The implementation of the
protocol requires a much deeper analysis of the aspects here considered. Detailed

information regarding the IP protocol can be found in [4.33].
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4.5.2 — The TCP Protocol (Transport Layer)

One of the most complex components in the Internet suite of protocols is TCP. With
IP providing delivery service, this protocol, located at the transport layer, provides the
application with a service that represents reliability and control. As observed with IP,
TCP applies a header to the data received from the higher layer requesting the service,
thus producing a TCP datagram. This is shown in Figure 4.13.

Source Port Destination Port
Sequence Number
Acknowledge Number
Header .
Length Reserved Control Flags Window
Checksum Urgent Pointer

Header Options
Z (optional) Z

{ TCP Data {

Figure 4.13: TCP protocol datagram structure [4.30, 4.34].

Since TCP can provide the same service to several applications, each application must
be defined by a port number. Therefore, the source and destination port fields
represent, respectively, the application requesting the service and the one receiving
the message. The sequence number field identifies the first byte in the data segment
contained by the datagram, therefore providing a means to reassemble the entire
message at the final destination, in the right order. The complement of the mechanism
is the acknowledgement number, used to confirm the accurate reception of a sequence
of data. Different to the sequence number, instead of indicating the first byte in the
data segment, the acknowledgement number confirms the reception of the data by
indicating the next expected number (sequence number of the next datagram). The
header length field specifies the size of the TCP header, including the optional field.
Such options provide extended information to end nodes. An updated list of options
can be found in [4.36]. The reserved field has no use at present and should always

remain assigned to “0”. The control flag field provides data and virtual circuit
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message control parameters. Some of these flags are “urgent”, for high priority data;
“reset”, to abort and “finish”, which ends the virtual link. The window field
dynamically informs the destination end-point about the amount of non-acknowledged
data the sender is able to receive (available reception buffer). Checksum supplies the
destination with the means to assess and validate the received data. In a different way
to IP, the TCP checksum includes header and data field. The urgent pointer field acts
as an offset within the data segment, indicating the end of urgent data. It is used in
conjunction with the urgent flag in the control flag field to indicate an urgent
datagram. The urgent pointer is represented as a relative value and must be added to
the sequence number to obtain the absolute pointer. Finally, the data field holds the
application data. It is possible TCP datagrams being used to exchange only control
information, therefore without any data. Padding may be required, in order to make

the header size multiple of 32 bits.

TCP is a connection-based protocol. It means that when an application requests a data
exchange service, TCP starts a negotiation procedure between end-points in order to
establish a virtual circuit. Such virtual links must be unique. In this initial phase, the
TCP protocol at both ends exchange empty datagrams (no data in the data field), with
appropriate settings in the control flag field, to synchronise the virtual circuit and
thereforé initiate the “session” between end applications. In the next phase, where
applications are able to exchange data, TCP performs several tasks that aim to provide
an efficient and reliable service. The protocol must be able to manage errors,

duplication, lost and out of order data [4.33].

The application data handed to TCP is, if required, broken down in smaller bits, in
order to benefit from network overall throughput (buffer size, physical medium
capability, data block size). Special techniques may be provided by the protocol
implementation to detect such a figure. These smaller segments are sequenced and
handed to IP. The TCP header provides the means required to control the connection
and the data transaction in a manner that facilitates the rebuilding of the original data
stream, even if individual segments follow different routes in the entire network. The
sender implements time control mechanisms, as a mean to retransmit data that
apparently was not delivered. Received data is validated by the checksum

mechanism. In order to enhance efficiency, the protocol enables the confirmation of

L
L
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received data within a datagram transmitting data, using the acknowledgement field
for this purpose. Also, more than one data segment can be confirmed at once (the
acknowledge number confirms all previously received data). Flow control is provided
by informing the remote end about the local reception capability, based on the

window parameter [4.33].

In considering the dynamics of an environment such as the Internet, it is easy to
perceive the complexity involved in the management of a reliable transport protocol,
which requires tight control of the mechanisms. In order to achieve efficiency,
hardware and software resources become very important. A detailed description of the
TCP protocol and its management requirements can be found in [4.33].

Implementation issues are considered in [4.30].

4.5.3 — The UDP Protocol (Transport Layer)

Besides TCP, the Internet suite of protocols specifies a second transport protocol,
UDP. Apart from the fact that both are located on the same layer in the model
hierarchy, the way they provide their service is based on different concepts. One of
the major differences is that UDP is connectionless and does not ensure delivery.
Such characteristics can easily be identified when looking the protocol header, shown
in Figure 4.14. The UDP header, as TCP, requires the source and destination
applications identification, represented in terms of port numbers. The length field
specifies the number of bytes that compose the message, including header and data. It
cannot exceed 65,535 bytes. The checksum field is equivalent to the one provided in
the TCP header and enables the remote end to validate the received data, although it is
not compulsory and can be disabled by sending the field as “0”. The data field will

contain the source application data.

Source Port Destination Port

Data Length Checksum

._|7 UDP Data {

Figure 4.14: UDP protocol datagram structure [4.30, 4.33].

96



Chapter 4 - Techhology Fundamentals

In technical terms, UDP provides a simple interface between the application and the
IP protocol. The application requests a data transfer service, supplying the port
numbers. The destination IP address is also required. UDP adds the header, calculates
the checksum (if required) and requests IP’s networking service. No previous
transactions between end-points are carried out. The transmitted messaged is
discharged from the transmitter buffer, since there is no commitment with delivery
guarantee. The remote end simply forwards the data to the application declared in the
destination port field. Messages that are not validated by the checksum matching are

not considered.

Benefits in using the UDP protocol are realised due to its simplicity. A very low
overhead is introduced by the protocol, when compared with TCP. Messages are
transmitted on demand, without establishing a virtual circuit. Asynchronous event
systems may specially benefit from such simplicity. This was taken into consideration
in the implementation of the system that resulted from this research, since the
monitoring events assume an asynchronous characteristic and the resulting records are
short and of a fixed size. However, UDP does not guarantee that the data is received.
This must be externally addressed and will be considered later in Chapter 7. Further

details related with the protocol and its implementation can be found in [4.30, 4.33].

4.5.4 — Management Protocols

To support the main task of the Internet protocols, the data exchange in a controlled
environment, a few other protocols are required. One such protocol is Address
Resolution Protocol (ARP, Table 4.11), which is mainly employed as a tool to relate
the Internet addressing model with those addresses used on the local network. The
protocol packet structure is shown in Figure 4.15. Within the ARP packet, each
medium type has a unique identification, declared in the hardware type field. The
protocol field identifies IP, when Internet protocols are used. The hardware address
field provides the number of bytes used to represent the local network hardware-
address. It is required due to the fact that IP (network layer) can be used with different
data link and physical layers, in different systems. The protocol address length is 32
bits, when using IP. The source hardware address is a variable field that is supposed to

represent the local network hardware-address of the source node. The source protocol

97



Chapter 4 — Technology Fundamentals

address is equally variable, although when using IP it will be 32 bits long. Similarly

defined are the destination addresses (hardware and protocol).

Hardware Type Protocol Type
Hard. Add. Length Prot. Add. Length Message Type
Z Source Hardware Address Z
Source IP Address
Z Destination Hardware Address Z
Destination IP Address

Figure 4.15: ARP packet structure [4.30].

When an application requests a data exchange service that involves a remote location
whose hardware address is unknown, the ARP protocol is required to build a table
relating the IP and hardware addresses. ARP requests that a message is broadcast on
the local network. All the fields in this message are set accordingly with their
meaning, except the unknown hardware address (destination), which is sent as “0”.
Such a packet is called as ARP request and is identified by the request code in the
message type field. The node on the local network that possesses the broadcast IP
address will reply with an ARP response packet providing the hardware address of
interest. Further considerations are required when considering the dynamic allocation
of IP address or the identification of hardware addresses of IP pairs located on remote

networks [4.33].

There are three ways in which IP communicates on the network with other pairs:
unicast, which involves two end nodes; broadcast, which involves all nodes; and
multicast, aimed to send messages to a selected group of nodes (hosts). Multicast,
differently from broadcast, can have several groups, with distinct interests. This
requires the management of such groups. The Internet Group Management Protocol
(IGMP) was provided for this task. By using IGMP, network hosts inform other
network pairs (servers or routers) of their interest in participating in specific groups.

The opposite is also based on IGMP, when routers search for specific group
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memberships. Membership reports are specified within the protocol. A detailed

description of the protocol is provided in [4.33].

In considering that IP does not provide any support in order to detect delivery (or
network) errors, there was a requirement for a protocol capable of such notification.
The Internet Control Message Protocol (ICMP) was thus provided and, in conjunction
with IP, provides the network nodes with the ability to diagnose and reply error
messages to the IP datagram originator. The ICMP header format is shown in Figure
4.16. The header type field indicates a specific ICMP error. The code field further
describes the error within a subclass. The checksum provides a mechanism for remote
message validation. Data is a field used within the header for specific message needs.
As an example, it could return the IP address of a preferable router. It is said to be not
in very common use [4.33]. The “original header” field will reply with the header of
the original IP datagram that could not be delivered. The “original data” field will
contain the source and destination port addresses, part of the transport protocol header

of the originator message.

Type Code Checksum Data

Z Original Header Z

Original Data

Figure 4.16: ICMP packet structure [4.30, 4.33].

ICMP messages are send within IP datagrams, with the IP protocol field set to 1.
Although in many cases delivery problems may be related with the IP addresses and
routing, there may be cases in which this is related with the remote application that for
some reason becomes unreachable. Therefore, the ICMP header provides a complete
set of information, to help the originator to identify the reason of the verified error,

avoiding further attempts or deciding for other means.
An implementation that uses ICMP is echo request, usually known as “ping”. Such an
implementation aims to test the network by sending an echo-request to a specific IP

address, using an ICMP message. The destination, if reachable, responses with an
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ICMP echo-reply. Among other explicit uses of ICMP, it is employed to fix the best
system setting, such as largest datagram supported all over the connection. Hall [4.33]
provides a detailed description of the protocol and its application. Implementation

details were described in [4.30].

4.6 — Internet Embedded Technology

Recent developments in Internet technology have stimulated the investigation of new
application areas, enhancing its use, mainly concentrated on personal computers.
Agranat [4.37] suggested that web browsers became the de facto standard user
interface for a variety of applications, replacing “traditional proprietary command-line
and graphical user interfaces”. Nath [4.38] considered the development of
applications, such as home appliances, remote monitoring and industrial control
systems, that could in some way benefit from the deployment of Internet technologies.
Requirements for embedded applications would be low-cost, low-power consumption

and size constrained implementations [4.38].

Agranat [4.37] when analysing the implementation of Internet capabilities within
embedded applications raised the point that usually resources are not available in
large scale, as they are in modern desktop computers, thus imposing difficulties that
should carefully be considered. A similar view was expressed in [4.39]. Singer [4.40]
discussed the requirements for the implementation of the full set of Internet protocols
within embedded devices, considering the integration of existing implementations
(hardware devices or software libraries). Usual implementations include the Internet
transport and network layers, normally referred to as TCP/IP stack [4.38]. The data
link layer of the reference model in many cases was based on the Point-to-Point
Protocol (PPP), suitable for use with serial links such as modems. This sort of support
makes such implementation a good option for isolated applications. Some
implementation examples based on devices with limited resources provide a good idea

of the level of complexity involved [4.39, 4.41, 4.42].

Microchip [4.6] developed an Internet Development Kit based on the PIC family of

microcontrollers, which provides Ethernet capabilities on board. More recently,
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Dallas [4.43] announced a microcontroller embedding TCP/IP stack, Ethernet and
CAN bus interfaces, indicating that low-cost and Internet capable industrial
applications are becoming a reality. A detailed analysis of some up to date existing

solutions was provided by Eisenreich and DeMuth [4.44].

4.7 — Database Systems

The remaining distributed monitoring system features to be briefly reviewed in this
chapter relate to the exchange and integration of information based on database
systems. Whittington [4.45] considered that information systems “provide a resource
that enables organizations to operate more effectively”. This larger use of information
systems requires database systems capable of providing fast responses and multi-user

access. This will be the case for online monitoring systems.

Blaha [4.46] described a database as “a permanent, self-descriptive store of data that
is contained in one or more files”. Therefore, the database contains the data structure
(description of data) and the data, where the latest one represents a dynamic element.
Modemn applications are usually based on relational databases [4.46]. In such
databases, the data is organised in tables reflecting the relation defined among the data
[4.45]. Relations may also be established between different tables within the database.
To enable the manipulation of data within relational databases, the Structured Query
Language (SQL) was developed and represents a common language supported by
most of the commercially available Database Management Systems (DBMS). SQL
commands operate on database tables, using them as input sources and output targets.
However, SQL commands specify properties and characteristics of the desired data,
rather than determine how to access the data, which is an attribution of the DBMSs.
SQL commands can be used interactively or embedded within the application

programming language [4.45].

DBMSs provide access control to databases. As illustrated in Figure 4.17, a DBMS
represents an interface through which all data definition and manipulation is carried
out, releasing application software from such task. DBMSs are available as

commercial applications and were considered “mature and reliable” [4.46]. Among

101



Chapter 4 — Technology Fundamentals

the main functionality provided by a DBMS are data validation, sharing,
manipulation, analysis and security. The last one could be further classified in
physical data protection (backups, log of activities and transaction completion) and

logical (data access control) [4.45, 4.46].

Application

!

DBMS

!
=

Figure 4.17: Database approach relations.

Although data manipulation is largely eased by the use of SQL, the way in which the
data is accessed varies among different DBMSs. Differences may be found in the
provided data types, error codes, security approaches and occasionally different SQL
syntaxes [4.47]. In considering the requirements of modern applications, such aspects
would represent a limitation, requiring many different DBMSs interfaces
implemented within an application. Open Database Connectivity (ODBC) was
proposed to solve such problem, by defining a standard that enables an application to
use a unique interface and SQL syntax. Data types and error codes should also be
unique [4.47]. Therefore, it is up to the DBMS manufacturer to supply a software
driver that complies with the ODBC standard.

Due to their special abilities in manipulating high quantities of data with efficiency,
giving simultaneous access to a large number of users and providing data security,
database systems have had their use increased with the growth of the Internet.
Therefore SQL based database systems were considered the natural choice in this
research for the storage of the monitoring system records, easing data analysis and

presentation approaches and enabling the integration of monitoring information in
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other applications. This is considered in Chapter 7, where the system’s “management

application” is introduced.

4.8 — Summary

A number of factors have been responsible for enabling the development of new and
flexible applications. The electronic industry is constantly yielding new devices with
higher levels of integration and increasing processing power. The development of
distributed systems technology greatly benefits from the existence of such empowered
devices. Efficient communication protocols became a requirement to enable the
integration of intelligent devices in such a distributed environment. At the same time,
information is a vital resource in modern management practices and the possibility of
integrating the information provided by different systems is further supported by the
capability of such systems to connect to the Internet and access databases, thus

establishing a common interface.
In order to benefit from such technological enhancements in the context of this

research, a modelling technique is required. This will be presented in the following

chapters, beginning with the introduction of the Petri-net general concept.
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Chapter 5 — Petri-net Concept

CHAPTERSS

PETRI-NET CONCEPT

5.1 — Introduction

Petri-nets were proposed in the early 1960s by Carl Adam Petri, as a result of his
investigation into a method to model and analyse the relationship between
components of a system [5.1]. Since then, several investigations have been conducted
aimed at making further use of the concept. Some of these have suggested changes
and improvements to the original idea, in order to better represent real-life situations

[5.1,5.2].

Although representing a mathematical formalism, the main feature of Petri-nets is
their capability of describing a system’s behaviour in a graphical manner [5.2],
making the approach suitable for many engineering applications. Figure 5.1 provides

and example of such graph.

Characteristics such as concurrency, sequencing and synchronisation make Petri-nets
a powerful tool for the representation and modelling of a variety of different and real
discrete event systems. Analysis methods were also developed in order to validate
such systems’ models [5.1, 5.2, 5.3]. Most recently, reports have been made of the use
of the technique for the development and implementation of Programmable Logic
Controller (PLC) programming languages [5.4] and as a graphical programming
method [5.5]. Earlier uses of the method were reported in relation to process and
condition monitoring [5.6] and for the development of fault detection and isolation

methods [5.7].
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5.2 — Petri-net Representation

Referring to the graphical representation in Figure 5.1, Petri-nets elements are
classified in places (circles p1, p2, p3, p4, pS, p6, p7 and p8), transitions (bars tl, t2,
t3 and t4) and arcs (arrows all, al3, al4, a22, a32, a43, a53, a26, a37, a64, a74 and
a48). Places are elements representing the system states, transitions represent the
system events and arcs define the relationship between places and transitions. Girault
and Valk [5.3] considered places as passive elements, such as real-life conditions and
resources. Following similar consideration, transitions were assumed as active
elements of a system (events, actions and executions). The existence of conditions or
resources within the system is represented by tokens (dots in p3, p5 and p8). Often the
diagrammatic elements will be further identified and labelled with appropriate text, in

addition to the coded numbering.

Figure 5.1: Petri-net graph representation.

The execution of a modelled system is controlled by the number of tokens and their
distribution in the Petri-net. Petri-nets execute by firing transitions. Transitions fire by
removing tokens from input places and adding tokens to output places [5.1]. In the
graph representation of Figure 5.1, the event defined by t3 would be enabled if

conditions p4 and p5 became true. Therefore, such event would require t1 to fire first,
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in order to provide p4 with the required token. The occurrence of an event determines
a new state within the system (state mapping). A Petri-net execution carries on as long

as at least one transition is enabled to fire. Otherwise, it will be halted.

The above features provide Petri-nets with the capability to represent systems as a
sequence of discrete events. Synchronisation is an intrinsic characteristic of Petri-nets,
since an event requires the existence of conditions that enable it. Parallelism or
concurrency is also a natural feature of the method, enabling the representation of

such an important characteristic, normally found in real-life applications [5.2].

Another important concept is Petri-net hierarchy, via the use of sub-nets. In
considering important features of the technique, such as synchronisation and
concurrency, a system can be modelled employing sub-nets that represent specific
parts of the system, easing modelling and analysis practices [5.1]. By employing such
notation, a set of elements of the Petri-net might be abstracted to a single element to
simplify the main net representation. A complex system based on several hierarchical
levels can be represented by nested sub-nets representing each level. Figure 5.2
illustrates the sub-net concept, showing p4, p5, t3 and p7 in Figure 5.1 being replaced
by a sub-net block.

P2

Sub-net

Figure 5.2: Sub-net concept illustration.
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5.3 - Petri-net Definitions

Petri-net theory formally defines places and transitions as two disjoined sets of
elements of a system. Assuming P as the set of places and T the respective set of

transitions, the following relation is established:

PNT=0 (eq.5.1)
where,
P(p1, p2, --.» Pn) is a finite set of places,n> 0
and

T(ty, ta, ..., tx) is a finite set of transitions, k> 0

The relationship between places and transitions is represented by arcs, defined in
terms of input (I) and output (O) functions. Peterson [5.1] described I(t;) as a mapping
of the input places of a transition t;, while O(t;) maps the output places of a transition
ti. The relationship between places and transitions, in terms of input and output

functions, can be described as follows:

pi is an input place of t;, if p; € I(t;);
pi is an output place of t;, if p; € O(Y;).

As an extension of such relations, the following is assumed:

t; is an input transition of p;, if tj € I(p;);
tj is an output transition of p;, if t; € O(p).

The original Petri-net formulation suggested some modelling restrictions. It was
assumed that a place could not be related more than once to a specific transition
related function. Such restriction in “multiplicity” characterises ordinary transitions.

This property is defined as follows:

#(pi, I()) < 1 (eq. 5.2)
#(pi, O(t) <1 (eq. 5.3)

where,
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pi € P and teT

Another restriction imposed in the original proposition assumes that input and output
places of a transition had to be disjoined sets. Such property was named self-loop-free

and meant that a place could not be an input and output of the same transition.
I) N O =0 (eq. 54)
By considering Equations 5.2, 5.3 and 5.4, it results that:

#(pi> 1(t)) « #(pi» O(t)) =0 (eq. 5.5)

In the early definition of Petri-net theory, such restrictions were seen as a
simplification, without use in the modelling practice. Later, the application of Petri-
nets for modelling real-life and complex systems required extended classes of Petri-

nets, which included the Petri-net restrictions as sub-classes [5.1].

Some modern applications require multiplicity and therefore do not comply with
ordinary transitions. Places with multiple occurrences would violate the set theory (a
single occurrence of each element within the set). Peterson [5.1] introduced the
concept of bags, in analogy to sets, to overcome such limitation. Bags would allow the
multi-occurrence of an element. Following this definition, a set would always be

considered a bag, but a bag would not necessarily become a set.

The use of multiplicity resulted in places allowed having multiple occurrences as
inputs or outputs of a specific transition. Restrictions imposed by Equations 5.2 and

5.3 were not considered within such extension and new relations must be proposed:

#(pi, 1(tj)) is the number of occurrences of p; in the input bag of t;.

#(pi, O(ty)) is the number of occurrences of p; in the output bag of t;.

In addition, considering the dual relationship between places and transitions, the

following is true:

#(tj, 1(pi)) = #(pi, O(t))) (eq. 5.6)
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#(tj, O(pi)) = #(pi, I(t)) (eq. 5.7)
Having established such relations, a Petri-net structure can be defined [5.1, 5.2, 5.3]:
CP, T, 1, 0)

The dynamic of the net structure is defined by the distribution of the tokens in the
places, when considering the Petri-net execution. Since the Petri-net represents a
system in terms of a sequence of events and states, the firing of transitions modifies
such states by adding (generating) and removing (destroying) tokens. The collection
of tokens that characterises the status of the system states is called as the Petri-net
mapping and is defined by the marking vector p. The marking vector and the set of
places are closely related. The p of a Petri-net C(P, T, I, O) is defined as a function of

P and is normally expressed as a vector:

1= (11, K2, -.., Hn) (eq.5.8)
where
n=|P| (eq.5.9)

is the number of places of the Petri-net and each vector’s component is defined as

pi = N(pi) 1=1,2,...,n) (eq.5.10)

where N represents the number of tokens of a place p;. The marking M of a Petri-net

C can therefore be described as M(C, p), or:
MP, T, 1,0, n)

The initial marking vector is described as u° and represents the very first marking map

within the system. Petri-net languages defined some criteria to establish p°[5.1]:

1) an initial start place marked with 1 token and 0 tokens elsewhere;
2) an arbitrary marking p specified as the initial mapping;

3) aset of initial markings.
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Despite such reference, there is not a rule that makes it obligatory such an initial map
and transitions are fired as long as there is a marking vector enabling them. If 6 is
defined as the next state (or marking) function, the following equation describes a

new marking in terms of a transition t; and the marking that enables it fire:
=8 " g) (eq. 5.11)

As a result of such a relationship, if there is an initial marking vector p? that enables a
transition tj, a new marking p! will be produced. Therefore, the execution of a Petri-
net can be defined in terms of a sequence of firing transitions (tjo, tj1, ti2, ...) and a
sequence of marking vectors (1’ p', p?, ...). Given an initial p° and the sequence of
transitions that represent the Petri-net execution, it is possible to determine the
sequence of marking vectors. Similarly, in having the marking sequence, it is possible
to establish the sequence of transitions of the Petri-net execution. The capability of
reaching a marking uk from a previous marking pf (f <k), by means of a sequence of
firing transitions, is defined as “reachability” and represents an useful property for the

analysis of Petri-nets models [5.1,5.2,5.3].

The marking vector can be further described in terms of input and output functions.
Assuming I(t;) as the input function of tj and O(t;) the respective output function of t;,

the following relation can be drawn:
k_ kel
=+ O - 1) (eq. 5.12)

Considering that O(tj)) and I(t)) represent the relationship between places and
transitions, these functions can be described as vectors of such a relationship. The
elements of such vectors are the weights (multiplicity) of the arcs linking places and
transitions. Therefore, the entire space vector of these functions can be represented in

terms of matrices, as follows;

Dj, i] = #(pi, I(t;)) (eq. 5.13)
D'[j, i] = #(pi, O(1;)) (eq. 5.14)
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In assuming e[ty, t, ..., tj, ..., ti] as the vector representing the Petri-net transitions, so

that e[j] is a unit vector where the ji element is 1 and 0 everywhere else, then:

I(t) =eljl* D (eq. 5.15)
O(t)=e[j]*D" (eq. 5.16)

Equation 5.12 can thus assume the following form:

pk=p*1 +e[j]e D' —e[j] « D (eq. 5.17)
Peterson [5.1] defined the relation D* - D™ as the changing matrix D of the Petri-net.
Therefore,

pk=p "+ e[j]eD (eq. 5.18)

Assuming that there is a p that enables a transition tj, the resulting sequence of

transitions firing can be defined as:

G = (tj1, tp, 43, ..., tix) (eq. 5.19)

The marking vector p° resulting of such sequence can be expressed as:

W=+ (efji] +efja] + ... +elix]) * D (eq. 5.20)

Defining f(0) as the firing vector of the transitions firing sequence, so that:

f(@)=e[ji] +efj2] + ... +eji] (eq. 5.21)
then

p=p+f(©)*D (eq. 5.22)

And finally, in considering the general expression introduced by Equation 5.11, a

general relation is obtained:

du, ) =p+ f(o)*D (eq. 5.23)
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This relationship can be used to determine the firing sequence vector, since the
marking vector is known. Although the main strength of Petri-nets is its graphical
representation, this sort of mathematical formalism becomes important to support
analysis methods to validate a model. Nevertheless, Peterson [5.1] considered that
such methods may not be enough to ensure the solution proposed by a model. As
examples of these limitations, the matrix D is not capable of differentiating a self-loop
(a place acts as input and output of the same transition) from a void link (place is not
linked to the transition neither as input, nor as output). This is due to the fact that the
same positions in D and D~ will be cancelled in D (D = D" - D). Also, when
Equation 5.22 is used to determine the firing sequence vector required to change a
Petri-net from an initial marking to another reachable one, it may identify how many
times a transition has been fired, without necessarily indicating the sequence in which
it happened (i.e. a specific transition may be fired more than once in the same
sequence). A level of difficulty is introduced when the number of elements and
sequences, which might result from real applications modelling, are considered. In
this context however, benefits may result from the modularity of a Petri-net, which
enables system designers to split the problem into smaller units, thus applying the

analysis methods individually to each one [5.1, 5.2].

5.4 — Petri-net Properties

There is a set of Petri-net properties that are important when modelling and analysing
systems. Among these, an important feature of Petri-nets is their capability to easily
implement or model concurrency. This is a natural characteristic of many real
applications. Peterson [5.1] named the graph elements supportive of concurrency as
“fork” and “join”, which are represented in Figure 5.3. In using a fork (Figure 5.3(a)),

parallelism is achieved by providing each output place with a token.

The join represented in Figure 5.3(b) provides the means required to the
synchronisation of parallel executions, thus representing another feature of Petri-nets.
The operation of join is similar to a logic AND, requiring both conditions (pi and pj)

to be “true”, in order to enable the transition to be fired.
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Fork Join

(@) (b)
Figure 5.3: Graph elements to support parallelism, fork (a) and join (b) [S.1].

From another perspective, Petri-nets are asynchronous event based, since events are
controlled by conditions that are time independent [5.1, 5.2]. Rather, Petri-net
execution dependence is represented by the sequence of the modelled events.
Theoretically, the firing of a transition is an instantaneous event. It is also assumed
that there are no simultaneous events. This resulted in the definition of “conflict”, as
the existence of two or more transitions enabled at the same time, having a shared
resource (token). Peterson [5.1] considered that conflict resolution in system
simulation is “a matter of philosophy”. He suggested a non-deterministic (random)
event or an external agent that provides some sort of weighting to support the decision

making method.

Mutual exclusion is a feature that enables the execution of Petri-net components or
modules in a controlled manner. DiCesare et al [5.2] referred to it as a “simple,
appealing and powerful synchronisation mechanism”, suggesting its use as a
semaphore to control the sequence in which Petri-net modules/components would
execute. There might be cases where Petri-nets modules, although independent of
each other in terms of graphical representation (parallelism), should not execute
simultaneously. Peterson [5.1] provided an example, illustrated in Figure 5.4, where
two processes are required to access a process critical section, but not simultaneously.
In the example, “m” represents a permission that avoids both processes “a” and “b”
entering the section at the same time. In firing “t1”, “t2” will be disabled until the
critical section is finished, then returning a token to place “m”. Equally, if “t2” is the

first to be fired, then “t1” will be disabled.
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critical critical
section section
! process a ; processb

Figure 5.4: Mutual exclusion example [S.1].

Reachability is a property that plays an important role in Petri-net analysis. It
represents the capability of a Petri-net to produce a specific marking p from an initial
marking p’ and an existing firing sequence. If such marking p is possible, then it is
said to be reachable [5.1, 5.2]. In many Petri-net applications, reachability is a
requirement, since a model usually aims to achieve a specific state under certain

conditions.

Reversibility is described as a “good” property of a Petri-net model and represents the
capability of the system to return to its initial marking from any reachable state [5.2,
5.3]. Other “good” properties are liveness and boundness. The former indicates the
absence of deadlock conditions in the Petri-net model, which means that for any
marking, there is at least one transition that can be fired. The latter was said to mean
the fitness of the state space [5.2, 5.3]. In other words, a place is bound if the number
of tokens it can receive is finite. These qualitative properties thus represent good

model behaviour characteristics [5.2].
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In specific applications, safeness may be an important characteristic. Peterson [5.1]
considered that a place is safe if the number of tokens never exceeds one. He cited
hardware systems, since the only permitted states of a safe place are 0 or 1. In the

original definition of Petri-nets, all places were safe [5.1].

Similarly, conservation may also be a requirement for some applications. If a Petri-net
models system resources, such as computer systems I/O devices, the tokens may
represent these resources. Therefore, tokens cannot be created or destroyed, in the
same way as real resources (that can only be allocated or released) [5.1]. It requires no

transition to change the number of tokens in the Petri-net (]I(t;)| = |O(t;))).

Many systems representations may result in very complicated models, leading to
analysis difficulties. Since the model properties are preserved, reduction techniques
can be employed in order to simplify the model. DiCesare [5.2] suggested a “basic
reduction kit”, composed of some graphic structures examples that might simplify

some blocks within the Petri-net model.

5.5 — Petri-net Extensions

Since the original proposition of Petri-nets, several extensions were made in order to
satisfy specific requirements to the modelling of real applications [5.1]. Initial Petri-
nets were considered a sequence of non-deterministic events, instantaneous and non-
simultaneous. Events with such characteristics were identified as “primitive events”.

Also, original Petri-nets allowed only one token in each place [5.1].

Peterson [5.1] considered that most real-life events take time, thus defining non-
primitive events. The representation of non-primitive events does not follow a specific
rule. He suggested as a representation example a place between two primitive events
(start and end transitions), as seen in Figure 5.5(a). He also presented Petri’s original
suggestion, that a non-primitive event should be represented as a box (Figure 5.5(b)).
However, he considered that the box symbolism should be employed to represent sub-

nets.
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Inputs
Start

Non-primitive
event

B

(@) (b)

Figure 5.5: Examples of the representation of non-primitive events as two

primitive events (a) and a box (b) [5.1].

It was also recognised that Petri-nets were limited in testing “zero” conditions. One of
the most accepted extensions is the use of inhibitor arcs, rather than arrowed ones, to
represent a zero test (Figure 5.6). Such representation was the most straightforward
for modelling purposes [5.1]. It made modelling easier by enabling the representation
of a wider range of logic operations (e.g. NOT, eXclusiveOR) and system switches

states.

inhibitor arrowed
arc ... ... are

Figure 5.6: Example of an inhibitor arc for zero testing.
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The use of a priority scheme was suggested in order to help in the decision of which
transition should be fired first, in a conflict situation, providing transitions with
priority indices [5.1]. The concept of time Petri-net was also proposed for the same

purpose, with each transition t; having 2 time constants, T and T». Therefore, t; would
only be fired after enabled for at least T; and before T», providing a scheme similar to

priority [5.1].

DiCesare et al [5.2] described timed firing, considering another timing approach. In
such case, a firing time is associated with a transition. They described the firing of a

timed transition as a 3 phase event, as follows:

1) after a transition is enabled, firing is initiated by removing tokens from input
places;
2) the firing process remains for the firing time;

3) after the firing time has elapsed, output places are updated.

Place timed Petri-nets were also approached by DiCesare et al [5.2]. In such a case, a
token received by a place could only be assumed valid after an elapsed time

associated with the place, thus representing another option for conflict resolution.

The use of Petri-nets for the modelling of manufacturing systems provided another
extension, named coloured Petri-nets [5.8]. In such systems, besides representing the
existence of resource conditions, tokens may also be required to represent a product or
a work piece that must be identified. Thus, coloured Petri-nets utilise two different
places: elementary and object. The first deals with normal tokens (basic Petri-nets),
used to control resources and provide enabling conditions, while the second one holds

coloured tokens, which are identified and represent objects within the Petri-net.

Certainly, there are more extensions to the original proposition of Petri-nets, such as
the one considered in [5.6] for process and condition monitoring, developed in order
to implement specific modelling requirements. Such continuous updating of the
method is an indication of the interest that many areas have in the use of Petri-nets as

a modelling tool.
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5.6 — Summary

Petri-nets represent a modelling method that has mathematical formalism, however its
main strength in providing graphical representations. One of the characteristics of the
method is the capability of modelling systems as sequences of discrete events and
states. To enable the method to better represent real-life systems, extensions to the

original concept were proposed.
The following chapter will outline the use of the Petri-net concept and some of its

extensions, for the implementation of a monitoring modelling tool, showing how it

was applied in this research work.
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CHAPTER 6

PETRI-NET MONITORING MODEL

6.1 — Introduction

As introduced in Chapter 5, Petri-nets have found their main application as a system
modelling and simulation tool. Much of the Petri-nets’ power is related with the
graphical representation the method enables [6.1], stimulating its use for many
engineering application [6.2, 6.3, 6.4]. The use of the Petri-net concept for process
and condition monitoring was investigated by a research group at Cardiff University
[6.5]. Due to its potential as a monitoring method, further investigations were carried
out [6.6, 6.7], resulting in a monitoring system using a graphical software tool,

running in a PC/Windows® environment [6.8].

Peng aﬁd Zhou [6.9] described a modern manufacturing process as a sequence of
discrete events, where events trigger each other and thus cause system operation to
take place. Petri-nets are suitable for the representation of discrete systems [6.1, 6.10],
where process events can be characterised as transitions and the conditions (process
states) that enable such events are represented by the Petri-net places [6.5]. Such an
approach represents an alternative way to describe the operation of a process
characterised by sequential events. It has resulted in the formulation of a method for
non-sensor based monitoring systems [6.11], where “non-sensor” was intended to
indicate the use of the already existing process signals, i.e. without deploying

additional specific sensors or transducers.

Although a monitoring system based on a microcontroller implementation may
represent a lower-cost alternative than previous, PC-based, methods in terms of
hardware investment, such benefits would be considerably reduced if new software
and hardware designs were required for each application. Thus, in this research, the
Petri-net approach was considered as a tool to be used to model and describe the

monitoring task. As a result, both hardware and software could be independent from
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the monitoring task, enabling system reusability and consequently obtaining the low-
cost benefit. In general terms, the approach employed follows the one described by
Prickett and Grosvenor [6.5], however considering the use of microcontrollers rather

than PCs.

6.2 — The Modelling Approach

The Petri-net theory, outlined in Chapter 5 defines places as conditions that enable
transitions [6.1, 6.10]. The use of this method for monitoring purposes requires that
places should be understood as being representative of the process states. In order to
identify a new process event (corresponding to a Petri-net transition), the process
signals have to be considered in conjunction with the actual process states [6.5]. Such

an approach is illustrated in Figure 6.1.

TPA4

116:‘([3)"[";\]1):3 The event characterised by
TPAS requires as firing
conditions the process state

Input D5 @ PPAS modelled as PPAS and the

ACTIVE process signals identified
as S6, D5 and D6.

Input S6

NON-ACTIVE

S

Figure 6.1: Petri-net approach for monitoring purposes (after [6.11]).

In considering this approach, it can be assumed that a Petri-net for monitoring

purposes requires two sets of conditions that have to be validated to enable a
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transition that characterises a process event. A similar approach was presented by
Peng and Zhou [6.9], when describing the use of Petri-nets as a Programmable Logic
Controller (PLC) programming method. They defined an event trigger as a
combination of places and input signal status. In following such an approach in this
research, it is necessary to define two separate sets of input conditions required to
enable a transition. If it is assumed that z is a finite number of input signals of a
system, then there is a set of input signals conditions required to enable a transition t;
represented by X(Xj1, Xj2, Xj3, .-, Xjn), 0 < h <z If the set of places of a Petri-net is
defined by P(pi, p2, pss ---» Pm), then the firing event of a transition t; is controlled by

two functions:

S = f(Xj1, X2 s Xjn),  0<h<z (eq. 6.1)

Q) = f{I(Y), n} (eq. 6.2)
where

I(t) = f(P1, P2 ---» Pn), 0<n<m (eq. 6.3)

was defined in Chapter 5 as the input function of the transition t; and p represents the

Petri-net actual marking vector.

The function S(t;) represents the logical relation of all the input signal conditions

associated to a specific transition and thus can only assume 0 (false) or 1(true).

S(t) =xj1 * Xp *Xj3° ... * Xjh (eq. 6.4)
Each x;; represents a condition of a specific input signal (i) in the domain of a specific
transition (j). Therefore, x;i can also be logically represented as 0 (false) and 1 (true).

Considering a transition t;, which requires an input signal condition x;; to be satisfied,

then x;; can be described as:

Xji = f(yi> Cji) (eq. 6.5)
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where y; is a specific input signal of the entire set Y(yi, y2, ..., ¥i> --.» ¥2) of the
process input signals and c; is the desired status of this signal in the domain of

transition t;. Thus,

Xji = 0 ifyi 75 Cii (eq. 6.6)

xji = 1 if y; = ¢;ji (eq. 6.7)
and

S(t) =1ifall x; =1 (eq. 6.8)

S(t) =0 if any x;; = 0 (eq. 6.9)

The second condition required to enable a transition t; is represented by Q(t;). There
are only two options: enabled or not enabled. Hence, the function can also be assumed
as representing two logical states: 0 for false and 1 for true. The following relations

can be obtained, considering an existing marking p:

Q) =1 if p satisfies I(t;) so that t; might be enabled (eq. 6.10)
Q(t) =0 if p does not satisfy I(t;) in order to enable t; (eq. 6.11)

Either S(t;) and Q(t;) can prevent t; from being fired, however both are required to be
true to enable t;.
S(t)) * Q(t)) = 0, then t; is not enabled (eq. 6.12)
S(t))  Q(t)) = 1, then t; is enabled (eq. 6.13)

From another perspective, considering Equation 5.12 in Chapter 5, it might be

assumed that the marking p* is possible if tj is enabled, so that

pk =kt + O(t;) - Ity), if S(t) =1 (eq. 6.14)
p =l ifSE) =0 (eq. 6.15)

It becomes clear that the marking of the Petri-net will depend only of its
representation in terms of places and transitions, the relationship between them and
the initial marking p°. It is also a requirement, since the model must represent the

process uniquely, without dependency on any signal or specific state entered by the
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process. However, transitions besides being enabled by the process actual states
(Petri-net marking), require the process signals to fulfil conditions within the
transition domain, in order to be enabled to fire. It is not enough for only the condition
provided by the process signals to be true. Neither is it enough for the process to be in
the required states. A new marking within the Petri-net is only possible if all these
conditions are present together. Therefore, process monitoring in terms of states and
events is made possible by keeping records of the process marking and taking into
account the process signals and their required status within the domain of each

specific transition of the Petri-net that models the process.

6.3 — The Model Structures

In terms of behaviour, the structures required to model a process using the approach
proposed by this research could be classified as dynamic and static. Dynamic are
those that may change their status during the execution of the Petri-net. Such category
includes. places and sub-nets. Petri-nets transitions were considered as static
structures. This is because within this approach, the transitions define the process
sequence of events and therefore do not change under any circumstance. Such
classification becomes important for the implementation of the Petri-net approach
based on a microcontroller. Static elements can use the program memory, avoiding

the use of the data memory, a valuable and limited resource in a microcontroller.

6.3.1 — Places

The Petri-net places require an identification to distinguish them from each other.
Here a continuous numbering method was employed (1, 2, 3, ..., n). Each place must
provide a container (counter) that holds the number of tokens belonging to the place.
The number of tokens will then vary (increase or decrease) during the Petri-net
execution. The maximum number is bounded by the container data type size. In
considering the use of an 8 bits microcontroller, the “byte” was selected as the place
container data type, since instructions are optimised for the processor’s natural data

format. Thus, the number of tokens of a place was bounded to 255.
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6.3.2 — Sub-nets

In the Petri-net theory presented in Chapter 5, sub-nets were introduced as a concept
to simplify the analysis of a complex network by replacing a set of elements
(transitions, places, arcs), which could be isolated and then analysed. In this research,
the term sub-net assumed a slightly different meaning, although it was kept in the
same context. It is considered that a sub-net is any Petri-net affecting or being affected
by the one executing. This opens-up the possibility of communicating (synchronise)
individual Petri-nets, running on different microcontroller’s environments. By using
this feature a larger process might be monitored by deploying several structured Petri-
net systems that are synchronised with each other. Sub-nets must be assumed as
dynamic elements within the system, since their status may change during the Petri-
net execution. For simplicity, sub-nets might be considered as a place that is bounded
to 1. Their identification follows a principle similar to places, being sequentially
numbered (1, 2, 3, ..., n).

6.3.3 — Transitions

The characterisation of the process events as transitions enables the establishment of a
Petri-net skeleton. A collection of static structures can thus be used to describe the
process Petri-net in terms of such events. These structures can be made to be auto-
descriptive to allow a totally independent execution. In considering the representation
of these structures by the Petri-net transitions, there is a need to provide in their
description the identification, pre-conditions (inputs) and post-conditions (outputs).
Within this approach, in order to capacitate the modelling method, some different
transition structures were defined and will be described in the following sections.

Particular implementation details are discussed later, in Section 6.4.
6.3.3.1 — Ordinary Transition

The first such structure was named an “ordinary transition” due to the fact that it
represents the basic structure required in the modelling process. Figure 6.2 presents
this structure diagram. The first field in the structure is the transition identification,

which is numerically represented (1, 2, 3, ..., n). The second field provides specific
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information about the transition. Flags within this field tell the system what sort of
transition it is. There is also a flag to indicate whether the firing of the transition
should become a public event (i.e. is associated with the transmission of a message),
or if it is only of interest within this Petri-net domain, to update the process marking.
Figure 6.3 shows the details of the status field flags. These two initial fields
(Transition ID and Status) are common to all transition structures, as it will be seen in

the following sections.

Transition ID
Status

Signal mask 1
Signal polarity 1

Signal mask 2 Digital input
Signal polarity 2 information

Signal mask 3
Signal polarity 3
Input sub-net ID Sub-net input info

Input place ID 1
Number of tokens

[ ]
* Input places

hd information
Input place ID n

Number of tokens
End of input places
| OutputplaceID1 |
Number of tokens

Common fields

. Output places
L information
Output place ID n
Number of tokens
For implementation End of output places
purposes, each field is Output sub-net ID Sub-net output info
considered 8 bit wide End of structure Common field

Figure 6.2: Ordinary transition data structure.

Ordinary transitions can only handle digital input signals. The following 6 (3 x 2)
alternate fields in the structure provide information regarding these signals and their
required status to enable the specific transition. The signal mask reserves 1 bit
position for each signal (0 to 7). A bit level 1 at a specific position indicates that this

signal must be taken into consideration at the given transition. The signal polarity
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field indicates the required signal status (0 or 1), i.e. is the input to the transition
required to be logically true or false, and is aligned with the respective bit position in
the signal mask field. For simplified implementation, the polarity assigned in the field
must be inverted, meaning that it is expressed as 0 when the signal is required to be
logically true. Figure 6.4 presents the relationship between the pair of digital input
fields. Figure 6.5 confirms the logic required to identify a true condition. The
existence of 3 groups of such field pairs indicates the ability of a transition to handle
up to 24 digital inputs. For implementation purposes, those signals that are of no
relevance to the particular transition the corresponding bit position polarity was
assigned as 1. Thus provided a simpler way to test an entire set of 8 inputs

simultaneously, rather than individually.

76543210 —Pp Bitfied
FTTIHTI T T I 1 | —» Transition status field

|——> Analogue transition
Delay transition
- Specific fields must be set to select a Output transition
feature
- Ordinary transitions are the default
option e
- Bits with lowest order have highest Not implemented
priority >
- Bit 7 is considered with ordinary and >
analogue transitions

-  Enable event transmission

Figure 6.3: Transition status field details.

76543210 —P Bitfield - identifies the signal
—P Signal mask field

—Jp» Signal polarity field

Figure 6.4: Ordinary transition signal mask and polarity fields’ relationship.
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Structure

i i olarity field
Signal
status

Input signal

/.
Required Structure Input Signal Meaning
polarity | polarity field signal status
1 0 0 0 FALSE
1 0 1 1 TRUE
0 1 0 1 TRUE
0 1 1 0 FALSE

Figure 6.5: Digital input signal validation method.

Continuing with the structure definition of Figure 6.2, the next field is the input sub-
net (Input sub-net ID). By definition, if this field is assigned as 0 (zero), no sub-net
input is linked to the transition; otherwise the appropriate sub-net ID code is

identified.

The collection of input places is the next information in the ordinary transition
structure. The input place ID identifies the Petri-net place that is assigned as an input
condition of the transition. The number of tokens indicates the “multiplicity” of the
arc linking the input place to the transition (a condition becomes true if the assigned
number of tokens is found in the place). An ordinary transition may have several input
places, each one with its individual multiplicity mark (limited to 255). An “end of
input places” field indicates that there are no more input places to be considered in the

domain of the specific transition.

Similarly, the next collection of fields within the structure is associated with output
places. The output place ID identifies the Petri-net place that should be updated due to
the transition firing. The number of tokens represents the multiplicity of the arc
linking the transition to the output place, thus indicating the number of tokens the
place should receive. The “end of output places” is the mark indicating that there are

no more output places linked.
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The output sub-net field identifies, if appropriate, the sub-net element requiring
notification of the specific transition firing. A value 0 in the output sub-net ID field
indicates that there is no such a requirement. The way in which the sub-net ID is made
public is a matter of system implementation. However, considering the nature of such
feature and its purpose, a message broadcast method was adopted, allowing
consumers (other Petri-nets) to decide whether or not to make use of the information.
Such a method is becoming common in the implementation of some distributed

systems, provided with local processing capabilities [6.12].

The final field of an ordinary transition structure is the end mark “end of structure”,
meaning that there are no more fields in this transition. As it will be seen, the same

field is mandatory in all the transition structures used in this Petri-net approach.
6.3.3.2 — Analogue Transition

A second modelling structure defined for the Petri-net monitoring approach was the
“analogue transition”. This handles non-logical signals, instead of discrete ones (as
ordinary. transition do). Since a transition represents an event, the analogue transition
is required to provide means that enable the identification of such an event, based on
analytical information. A method that considers two parameters was proposed, in
order to characterise such an event. The first of such parameters would represent a

threshold and the second an analysis condition (<, >, =).

Figure 6.6 illustrates the data structure of an analogue transition. The transition ID and
status fields follow exactly the same description provided for the similarly named
fields in the ordinary transition structure (Section 6.3.3.1). The condition field is the
identification of the comparison method requested (<, =, >). Further implementation

details are summarised later, in Table 6.1 (Section 6.4).

The source ID (low half of the third field) identifies which specific process analogue
source should be measured, in order to determine the firing cdndition. The analogue
transition allows only one analogue source as input condition. The next two fields
(Threshold MSB and LSB) of the data structure need to be combined to produce the

threshold value required in the comparison test.
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Transition 1D
Status
Condition | Source ID | Analog source & decision type
Threshold MSB
Threshold LSB
Input place ID 1
Num. of tokens

Common fields

Threshold information

g Input places
® . .
. information
Input place ID n
Num. of tokens
End of input places

Output place ID 1

Num. of tokens

° Output places
L information
Output place ID n

Num. of tokens
End of output places

| Output sub-net ID Sub-net output info
End of structure Common field

Figure 6.6: Analogue transition data structure.

All the following remaining fields, from “input place ID” to “end of structure”, have
exactly the same meaning and representation described for the ordinary transition
structure (Section 6.3.3.1, Figure 6.2). Although linkage to an output sub-net field was
permitted by the structure, the equivalent input field (Input sub-net ID) was not

considered to be necessary.

6.3.3.3 — Delay Transition

Although the original Petri-net theory considered that transitions were instantaneous
events [6.10], the use of the method to model real applications showed the necessity
to represent events that take time to execute [6.1]. To monitor a process through its
signals, there might be occasions where some sort of flexibility would be required.
For example, the switching action of an electrical signal can introduce noise that may
induce the misinterpretations of the signal’s levels. Therefore, this modelling

approach has provided a structure that enables the insertion of a time delay, named a
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“delay transition”. The method is based on the Petri-net extension described by

DiCesare et al [6.1], previously introduced in section 5.5.

Figure 6.7 therefore defines the delay transition data structure used. The proposed
element considers only one input and one output place. The firing is enabled by the
existence of a single token in the input place, i.e. it has arcs that do not support
multiplicity. The two first fields in the structure are as previously defined (for
ordinary and analogue transitions). The same applies to the last field (End of
structure). The input place represents the unique condition required to enable the
transition to fire. The output place field indicates which of the Petri-net places should
receive a single token when the transition is fired. The delay value is specified via a
two fields parameter (Parameter MSB and LSB). These together define the time delay
in milliseconds (ms). Immediately after being enabled, the token of the input place is
removed. After the delay expressed in the parameter field is elapsed the transition is

fired and the output place updated.

Transition ID Common fields
Status
Parameter MSB Delay information
Parameter LSB
Input place ID Linked input place
Output place ID Linked output place
End of structure Common field

Figure 6.7: Delay transition data structure.

6.3.3.4 — Output Transition

The final structure defined was required to enable the monitoring hardware to issue
local (hardware) alarms, following a modelled event. Such an element was named as
an “output transition” and its data structure is shown in Figure 6.8. In this simple
structure definition the common fields apply as before. In summary, an output
transition is enabled by only one input place (Input place ID), which requires a single
token. Although resulting in a token being removed from the input place, there is no

output place to be updated. In line with formal Petri-net theory, it could be assumed
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that an output transition, when fired, sends a token to a sub-net represented by the
monitoring hardware/software implementation. The resulting action of such an event

is then a matter of system implementation (hardware and software).

Transition ID Common fields
Status
Input place ID Linked input place
End of structure Common field

Figure 6.8: Output transition data structure.

6.4 — Implementations Aspects and Representation

In considering the way the modelling elements and the method proposed were
presented, the Petri-net monitoring approach is not restricted to a specific
implementation. It can be employed in many different developments, and could
potentially be based on different processors since following the Petri-net concept. The
way in which each Petri-net is actually executed becomes only a question of software
development. However, since one of the main objectives of this investigation is the
proposition of a low-cost monitoring system, work was focused on the use of

microcontrollers.

In order to enable the implementation of such an approach, the elements defined in
section 6.3 require a tighter description. Considering the byte as the natural data type
for many microcontrollers (including the PIC18C452), the structures earlier presented

were assumed 8 bit wide, resulting in the parameterisation shown in Table 6.1.

Place “0” has a special meaning for the system implementation. It represents the
initial state in the Petri-net, i.e. the place that should receive the first token after
initialisation. It follows Peterson’s [6.10] suggestion of a “start place” with a token
and no tokens elsewhere. A second meaning of place “0” is for a Petri-net reset
request. A reset condition is identified by an output place “0”, which should result in

the system restarting the Petri-net execution (initial start state).
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Table 6.1: Transition structures implementation definitions.

Field Size Representation  Structure Description

Transition ID 8 bits 1 to 254 All o Petri-net transition identification.

Place ID 8 bits 0 to 254 All e Petri-net place identification (input & output).

Sub-net ID 8 bits 0to 255 Ordinary & analogue e Petri-net sub-net identification (input & output).

Number of tokens 8 bits 0to 255 Ordinary & analogue e Arc multiplicity — number of tokens required from an input place or
added to an output place.

Status 8 bits - All o Defines transition structure and actions. Detailed in Figure 6.3.

Signal mask 8 bits - Ordinary o Selection of the digital signals considered in the transition domain.

Signal polarity 8 bits - Ordinary o Digital signals level, with reversed polarity - default binary 1.

Condition 4 bits =: 0000 binary Analogue e Comparing condition of a non-digital parameter in an analogue data

> : 1000 binary structure.
<:0001 binary

Source ID 4 bits 1to 15 Analogue * Non-digital input parameter identification, representing the signal
input in an analogue transition

Threshold MSB + LSB 16 bits 0 to 65535 Analogue e Value to be considered in the comparison process of an analogue
transition.

Parameter MSB + LSB 16 bits 0 to 65535 Delay ¢ Delay, in milliseconds, to be performed by a delay transition.

End of input places 8 bits 255 Ordinary & analogue e Input places delimiter.

End of output places 8 bits 255 Ordinary & analogue e Output places delimiter.

End of structure 8 bits 255 All o Defines the end of the structure.

[9POIAl SULIONUOTA] 13U-11334 — 9 J13dey)
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The description of a monitoring task within the system is represented by the transition
structure’s characterisation of the process events. In terms of an implementation, such
a set of data structures could be defined as a data table. An element named “end of
table” and represented by the numerical “0” identifies the condition that indicates the
end of such table. Figure 6.9 provides a block diagram where the use of this element

is made clear.

Transition 1

Collection of
Transition 2 transition structures
(i.e. ordinary,
analogue, delay &
output), specific to

hd each application.

Transition n
(n < 255)

End of table

Figure 6.9: Example of use of the “end of table” mark.

The modelling of the monitoring task is made easier by representing the process’
Petri-net as a graph. Although keeping the main graphical characteristics of the
original Petri-net concept, a few new elements were required in the developed
monitoring approach, in order to represent all of the structures described. Table 6.2

summarises the entire set of graphical elements, their identification and description.

6.5 — Monitoring Records

Another aspect of system implementation is the capability of the monitoring system to
report events. The possibility of issuing local alarms, using an output transition has
been considered (Section 6.3.3.4). Nevertheless, as considered in Chapter 2, modern
monitoring systems are expected to integrate the data they provide, helping in the

generation of information to support increases in process management efficiency.
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Therefore, such systems should be capable of issuing data records, using data

communication standards.

Table 6.2: Petri-net monitoring approach graphic modelling elements.

5

Representation Element Description
Toon Transition Repr.es.entation of ordinary and analogue
transitions.
Tnnn Transition Representation of a delay transition.
Tonn | Transition Representation of an output transition.
O Pnnn Place Representation of a conventional place.
Restart Place Output place indicating a restart request.
n Arc Arc with multiplicity n (number of
_ tokens). No indication means a single
token.
? Sub-net Input sub-net (from another Petri-net).
SNnon
! SNnnn Sub-net Output sub-net (to another Petri-net).
@ DSnn Digital signal Digital input with required high (1)
level.
@ DSnn Digital signal Digital input with required low (0) level.
ANnn . Analogue input, with comparison
Anal t i
®-_| Oguie tnpu method “lower than”.
ANnn . Analogue input, with comparison
® | Analogue input method “higher than”.
Analogue input Analogue input, with comparison

method “equal to”.
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In considering the Petri-net concept, the firing of a transition would be a natural
monitoring record, since it represents a “process event”. Taking into account such a
requirement, the “enable event transmission” flag (bit 7 of Figure 6.3) was
incorporated in the transition’s structure status field. Nevertheless, there are other

events that can be of interest that should be considered and reported [6.13].

Prickett and Grosvenor [6.11] referred to the use of a timeout feature, characterised by
a transition failing to fire within a defined period of time. Considering the
implementation aspects in a microcontroller environment, it was decided to associate
such a feature with places, rather than transitions. Thus, in the approach proposed by
this research, “timeout” records will be produced in response to a process state

(selected Petri-net place) lasting longer than previously recorded (or defined).

Additionally, two complementary records were defined to monitor the “beginning”
and “ending” of process specific states. Such records could provide for example,
means to enable a remote visualisation of the process operation (active or inactive) or
else, help to measure the process operating time. These ar¢ in many cases managerial

requirements [6.14].

It was also considered that Petri-net places representing process states could be used
to control the acquisition of process specific parameters, such as analogue signals.
This assumes that specific process information is of interest under certain conditions.
For example, the behaviour of a motor’s current while switched on. Therefore, the
acquisition of the specific analogue signal would be triggered by the associated
process state becoming active (Petri-net place receives first token). At the end of this
state (Petri-net place last token removed), a monitoring “special” record would be
issued providing the required signal information. Table 6.3 lists the defined
monitoring records proposed in this monitoring approach and that were presented in

this section.

Figure 6.10 shows the general format of the monitoring messages. The “event class”
field represents the identification of the messages described in Table 6.3. The
“source” field would indicate the Petri-net that generated the message. The “event ID”

field would identify the transition or place that motivated the message. The timestamp

140



Chapter 6 — Petri-net Monitoring Model

provides a time record linked to the event reported by the message. Figure 6.10(b)

shows an alternative extended record field, for use by messages as “timeout” and

“special record”, described in Table 6.3.

Table 6.3: Monitoring messages definition.

Monitoring Record Purpose Description

Process event

Beginning of a
process state

Ending of a process
state

Process state
timeout

Special record

Message issued in response to a process event (fired
transition). The event enable transmission flag of the
status field in the transition data structure (Figure 6.3, bit
7) must be set to enable such record. Only ordinary and
analogue transitions can issue this sort of message.

Enabled places issue such message when receiving the
first token, indicating the “beginning” of the associated
process state (state became active).

Enabled places issue such message when becoming empty
(last token removed), indicating the “ending” of the
associated process state (became inactive).

Messages issued by selected places to indicate that a
process state has lasted longer than expected.

Message issued at the end of a selected process state
containing a record with a feature extracted from a
process analogue signal. The signal is acquired as long as
the process state remains active (e.g. a DC motor current
mean value, to indicate the motor’s operating condition).

Event Class |Source | Event ID | Timestamp

(@

Event Class |Source | Event ID | Timestamp | Record

(b)

Figure 6.10: Monitoring messages general format.
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Within this proposed monitoring approach, Petri-net places assume greater relevance
in the implementation of special functions for the assessment of processes. Special
places require to be defined in the system implementation as a set, associated to the
function they will perform (i.e. monitor the status of process specific state by means
of “beginning” and “ending” records or triggering the acquisition of analogue
signals). This is different to transitions, which are defined individually and thus can
provide additional information within the data structure. In considering the application
based on a microcontroller, such places could be listed in a data table, using the
device program memory. Also considering implementation aspects, places should be
grouped into those that allow timeout and those that do not. This could be easily
implemented by means of a separating “mark”, dynamically defined accordingly to
the application requirements. In the same way that many transitions in the Petri-net
might represent a minor event that do not require a message, a timeout feature
associated to some places in the process monitoring model might generate a
considerable number of records with little significance. More details must be

considered at the implementation level.

6.6 — Fault Diagnostics Approach

The use of a method that follows the process events and keeps track of process states
can represent a tool in the identification of operational faults. Such an approach was
considered by Prickett and Grosvenor [6.11], suggesting that a timeout condition in

the system might represent the existence or development of a faulty state.

Hu et al [6.15] proposed operational fault diagnostics based on tree analysis, assuming
that by knowing the process states and the actual controller’s (PLC) signals, a fault

could be isolated.

The Petri-net monitoring approach provides the required characteristics to enable such
an implementation. The existence of process states timeout, since understood as a
symptom, could identify the element that requires investigation and thus isolate a
fault. Thus the Petri-net mapping (process states) together with the process model

structures (set of transitions) may provide the necessary means for an operational fault
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search. The assumption would be that faults are associated with the process signals,

though considering the actual process state.

For analysis purposes, Giarratano and Riley [6.16] described a tree as “a hierarchical
data structure consisting of nodes, which store information or knowledge, and
branches, which connect the nodes”. Peterson [6.10] showed that trees can be used as
an analysis method for Petri-nets. In considering the Petri-net monitoring approach,
the transitions’ data structures provide the required information to enable the
diagnostic process based on tree analysis, with the symptom characterised by a

timeout event indicating the tree root.

Faults could be characterised by the absence of an expected signal, within a specific
process state. Assuming that the timeout condition was originated by an input place of
a transition t;, if in the relationship represented by Equation 6.12 Q(t;) is proved true,
then tj could only be prevented from firing by S(t). A fault would then be
characterised by solving Equation 6.4. In such case, if S(t;) is false, then there should

be at least one false condition

X;i="0 (eq. 6.16)

where i represents the missing signal that prevented t; from firing.

However, if Q(tj) is false, then the fault would be related with another event
(transition). In this case, the analysis of previous missing events is required,
characterising a backward search method, considered the most appropriate for
diagnostic approaches [6.16]. In considering that to enable t; it is required a marking p

that satisfies the input function I(tj), then if

Ipkl < #(px, (I(t;) (eq. 6.17)

Pk is preventing t; from firing and therefore will represent a new branch in the analysis

tree, leading to a transition ty,, where px € O(tm).
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Based on Petri-net graph properties, which enable reversibility (Chapter 5), and also
on the limitations in terms of microcontroller’s available resources, the “breadth-first”
search method [6.16], illustrated in Figure 6.11, was considered the most appropriate.
A search should follow on until all dubious states are identified or the Petri-net initial
state reached. Since Petri-nets allow loops, the software implementation should
provide a method to flag those places that have already been set as branches in the

tree, in order to control deadlock situations.

Figure 6.11: Breadth-first search-method representation (after [6.16]).

6.7 — Summary

A sequential process can be modelled in terms of a Petri-net, based on its states and
the events that characterise the transitions between them. An extension to the
conventional Petri-net properties was required and specified in order to interface and
handle process signals. In defining a Petri-net model that describes each event as a
self-contained data structure, it was proposed a method that has no hardware
dependency. Furthermore, the Petri-net approach functionality was extended by
enabling it to trigger the acquisition of processes’ specific parameters (a matter of
implementation) and to monitor the “beginning” and “ending” of processes active
states. This extended functionality must be supported by a set of messages that enable
database records to be produced. Also, in considering the capability of the Petri-net
approach to memorise the actual state, whilst having the knowledge about the
relationship between the modelled processes states, this can be used to help in the

investigation of the source of an eventual operational fault.
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The definition of the proposed method was an important stage in the current research.
It sets the framework for the subsequent development of the required tools for the
implementation of a monitoring system. The system implementation considerations
will be presented in the following chapter, with the adoption of an 8 bit
microcontroller for the purpose. Additionally a layered architecture that, supported by
the Petri-net approach, enables the development of a distributed structure that permits

the use of the system in a wider range of applications will be presented.
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CHAPTER 7

SYSTEM DESCRIPTION

7.1 — Introduction

Chapter 6 presented a modelling method for the implementation of monitoring
systems based on the use of microcontrollers. Despite the benefits of using such
devices (cost, power consumption, embedding capabilities), it must be considered that
microcontrollers, when compared with computers, are limited in resources, processing
power and development tools. Such issues must be addressed by a microcontroller-

based implementation that aims to provide solutions for a large range of applications.

Monitored Process

v v v

Monitoring | |Monitoring Monitoring
Module 1 Module 2 Module n
y y

CAN bus

y

Connectivity Management
Module Application

|:1III!!

Server

5. ==
e

Figure 7.1: Monitoring system architecture.

Internet / ‘

Intranet

In considering these factors, this research proposes the implementation of a
monitoring system based on an architecture (Figure 7.1) that enables flexibility, data
integration and provides resource sharing capability. In this architecture, the
Monitoring Module (MM) is a data acquisition and processing module based on the

PIC18C452 microcontroller. The Connectivity Module (CM) is a hardware specific

148



Chapter 7 — System Description

development based on PIC microcontrollers and provides Internet connectivity,
therefore enabling the monitored events to be recorded in a remote database. The
Management Application (MA), a software implementation based on PCs, provides a
common interface to databases. A common communication bus (CAN) connects
together the MMs and CM, thus providing a way to address some of the critical

aspects of microcontroller-based implementations.

In providing the Monitoring System with such an architecture, cost can be kept in
proportion with the application requirement by varying the number of MMs, to those
needed to provide the application with it’s demanded resources. MMs can be
deployed close to the data acquisition points, reducing special installation needs. The
systems reusability, another important issue in terms of practical applications, is
provided by the implementation of the method previously described in Chapter 6. The
implementation of the system, with the details of each of the stated components, is

described in the following sections.

7.2 — Monitoring Module (MM)

The Monitoring Module is provided with data acquisition, communication and
processing capabilities. Individual descriptions will follow, considering hardware,

software and modelling implementation issues.

7.2.1 — Hardware Description

A block diagram illustrating the main MM components is shown in Figure 7.2. A
further detailed diagram can be found in Appendix A (A.1 and A.2). The core of the
MM is a PIC18C452 microcontroller (described in Chapter 4). At the time this
research was conducted it represented the best commercially available choice, in

terms of the relation between facilities and cost.

In order to provide the necessary flexibility and data integration capabilities,
communication assumed a great importance at different levels within the system.

Each MM implements a CAN bus node. The Microchip MCP2510 was the selected
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CAN controller, because of its full compatibility with those PIC microcontrollers
provided with a SPI interface. Such a serial link reduces considerably the hardware
design (and consequently cost), although increasing software engineering complexity.
Both, the microcontroller and CAN controller, share a single 20 MHz oscillator,
whose limit was imposed by the MCP2510. A CAN transceiver, UC5350 [7.1],
compatible with ISO 11898 physical layer specification (Chapter 4), was employed to
physically interface the CAN bus.
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O
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Figure 7.2: Monitoring Module hardware block diagram.

Monitoring Modules were provided with 3 different sources of signal input: digital,
analogue and pulse. In order to combine simple hardware design and improved system
capabilities, each MM allows up to 3 digital cards (with 8 inputs each) to be attached,
all sharing one of the PIC18C452 microcontroller’s input port (D). Therefore, each
MM is able to interface with up to 24 digital inputs. A 3 bit port (E) was used to

implement the card selection logic. Such logic was implemented in software.

Each digital input was provided with an optocoupler, in order to interface to the
process signals electrical levels and ensure equipment protection. The main
consideration in the selection of the optocoupler was the device response time. The
HCPL-2200 [7.2] is a device that, besides fast response time, is also compatible with
TTL electrical levels. An interesting feature for the proposed application is the

capability of leaving the optocoupler output in a three-state mode, as long as its enable
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pin is not selected. This characteristic reduced the digital card hardware design
complexity, since further circuit requirements were avoided. Full electrical and timing

diagrams can be found in Appendix A (A.1 and A.3).

Four analogue inputs were implemented to support special monitoring purposes.
Attention was given to the fact that the microcontroller required input voltages to be
no higher than 5 Volts. Manufacturer’s recommendation to avoid significant offset
voltages, due to analogue input pins leakage current, were taken into account [7.3].
The resulting hardware design considered the use of transducers with an output range
of 0 to 10 V. No further conditioning or signal filtering method was employed. Circuit
design details can be found in Appendix A (A.2).

Two pulse inputs were implemented. They were intended for special monitoring
purposes, as described in Chapter 6. From the hardware perspective, these pulse
inputs were connected to two of the microcontroller’s port B pins, configured as
external interrupts, therefore providing means to ease the software design. Each pulse
input was interfaced by using an optocoupler (HCPL-2200), thus enabling a wider
range of input voltages, while protecting the circuit electronics. In terms of hardware
design, maximum input frequencies are determined by the optocoupler dynamic

characteristics, superior to 10 MHz [7.2].

In order to support the “transition output” implementation (Chapter 6), one of the
microcontroller’s pins (port A, bit 6) was configured as an output. Further interfacing
may be required to adapt the electrical levels or latching mechanisms to an external

alarm-signalling device, depending on the application specifics.

In considering the requirement of a low-cost system, the number of externally added
components was kept to the minimum required. Applications that require more
resources should deploy more than one MM, exploring the flexibility offered by the
system architecture. Table 7.1 gives a general idea in terms of cost of the main
components used in a MM. The microcontroller employed was an EPROM based
device (UV window), usually required for development purposes, therefore
representing a higher cost option. A ROM or flash programming memory based

device, normally employed for production purposes, would represent a reduction of
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65% in this item cost. Also, the PIC18F458 has recently become commercially
available. It provides similar features those found in the PIC18C452 but also has an
embedded CAN controller, with cost standing at 50% of the one stated in Table 7.1

for the microcontroller.

Table 7.1: MM main components cost (prices based on [7.4]).

M Item Cost (£)

M Code Number Description Unit | /Item |/Module
Cristal 20 MHz 1{System oscilator 3.001 3.00
PIC18C452 1 {Microcontroller 20.001 20.00
MCP2510 1|{CAN bus controller 3.50f 3.50

Processor [UC5350 1|CAN bus transceiver 2.00f 2.00| 38.20
Module |{HCLP-2200 2|Optocoupler (pulse input) 1.60] 3.20
74HCTO04 1{Oscilator booster 0.50] 0.50
Others Connectors, resistors, etc 6.00f 6.00

Digital |HCLP-2200 8]Optocoupler (digital input) 1.60] 12.80] 20.80
Card |Others Connectors, resistors, etc 8.00 8.00

Prices listed represent a rough reference.
7.2.2 — Software Description

The MM software development to support the implementation of the Petri-net
monitoring approach described in Chapter 6 was based on the Microchip MPLAB®
development environment. PIC 18xxx family assembler was employed as the
programming language and the ICE2000 emulator was used to debug the software
implementations. The Microchip CAN development kit was used for the CAN node
implementation and testing. A detailed description of any of these development tools

can be found on the Microchip website [7.5].

Although mainly concerned in executing the process Petri-net, a number of other
tasks, such as data acquisition, communication and timing were required. The flow
diagram shown in Figure 7.3 illustrates the main software tasks. The microcontroller’s
interrupt capability was explored in order to reduce software complexity and increase
efficiency. The interrupt flow diagram is shown in Figure 7.4. The software

description will consider these illustrations.
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Figure 7.3: Monitoring Module application flow diagram.

The initialisation process sets variables, buffers and configures hardware devices. The
microcontroller’s memory was divided into system’s variables and stack pointer,

communication buffers and the Petri-net implementation area. Table 7.2 details this
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distribution. Interrupts were deployed to synchronise the SPI interface data
transmission/reception. A similar technique was employed in order to enable the
MCP2510 to notify CAN related events, such as transmission / reception and error

indications.

Update
Variables

Service
Interface

Set Status
Request

Yes Update

Pulse
Input? Variables

No

il

Figure 7.4: Monitoring Module interrupt service flow diagram.

Each Monitoring Module supports 254 transitions, 254 places and 255 sub-net IDs.
The implementation considered the application’s Petri-net description to be based on
three attached text formatted files. The first of such files represents the Petri-net main
structure (event descriptions), MM identification and the identification of the places
required to provide timeout events. The second file identifies the Petri-net’s places
representing the process states required to have their active status watched (and
reported). This was defined as a 32-byte structure, in which 1 bit is used to represent
each possible place. The last attached file correlates places with analogue or pulse

inputs. It contains a table with 254 inputs, sequentially representing the Petri-net’s
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places and indicating an input source, analogue or pulse (“0” meaning no source
associated), used to trigger the data acquisition of process specific parameters.

Examples of such files can be found in Appendix B (B.1 to B.14).

Table 7.2: Monitoring Module data memory distribution.

Buffer Description Buffer Size (bytes)
System variable 256
Software stack 32
SPI transmit buffer 96
SPI receive buffer 32
Transmit message buffer (built) 16
Receive message buffer (rebuilt) 16
Event record buffer 64
Petri-net places buffer 256
Petri-net places timeout control buffer 512
Petri-net sub-net buffer 32
Timeout devices buffer 150
Active places mapping buffer 32

Places were defined in the microcontroller’s data memory as a continuous set of 256
bytes (only 254 effectively used). The place identification indexes the place location
within this data structure. Each place location will hold its respective number of
tokens, being updated by the Petri-net execution. Places have also individual timeout
control, implemented as a 16 bits variable. The maximum timeout record was defined
as 65,535s. The variables will be initialised with this maximum value and updated
each time the respective place is processed. The smallest time unit is 1s. A bit map
structure was also provided, with 1 bit to represent each place, in order to control the

status of individual places and to ease status change identification.

The Monitoring Module makes public a sub-net event by broadcasting its
identification (sub-net ID). Internally, sub-nets will be assigned in a bit mapped data
structure (32 bits), with one bit representing each sub-net ID. The Petri-net execution,

when required, searches for sub-net events and updates this bit-mapped structure.

One of the microcontroller’s timers (TMRO0) was configured to generate a 1 ms time

base that is used to update the Monitoring Module date/time record. Such record
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follows the “datetime” format defined and used by Microsoft’s SQL2000® DBMS
[7.6]. The microcontroller’s interrupt functionality was employed in order to generate
a precise and reliable timing method. The same time base will be used in other tasks

that require time measurement.

Digital input updating was synchronised with the 1 ms time base generated by TMRO.
Since there are a possible 3 digital cards, all using the same microcontroller’s port
(D), switching time had to be considered. The employed procedure reads the 8 digital
inputs of the selected card and then identifies and moves on to the following one,
which will be read in the next acquisition cycle, thus ensuring enough time to make
the bus stable when the next update is carried out. By using such an approach, digital

inputs are updated every 3 ms (333.33 updates / second).

The pulse inputs were configured to automatically generate interrupts whenever such
an event is matched. Counters (one for each input) will be incremented during the
interrupt service. The counters will be read and reset by the system’s application
every 1 s, providing a monitoring parameter in term of pulses / second (Pp,). Such a
parameter might be further used by an “analogue transition” and as basis for a

“special record” (Chapter 6).

Analogue inputs were configured for 10 bits resolution. They are updated
periodically, by polling the A/D converter in the system’s application execution main
loop (Figure 7.3). Based on the microcontroller’s analogue channels specifications
and software implementations, the sampling rate is approximately 2.5 K sample / s.
Small variations may occur due to different tasks being performed in different
execution loops. The sampled analogue input data will be integrated over a period
equivalent to 256 samples, resulting in an average value, as represented by Equation
7.1. The result may be further used as an input parameter into “analogue transition”

and to calculate the mean value of the analogue channel observation (special record).

256

An=(3 Sani)/256 (eq. 7.1)
i=1
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Following the approach described in Chapter 6, Petri-net’s places could be used to
trigger the acquisition of process specific parameters, resulting in a “special record”.
In this implementation such a parameter was defined as the mean value of the
observed analogue or pulse inputs, based on observation time. To obtain such a
parameter, the system will perform a calculation based on Equation 7.2. Previous
calculations (Pp, for pulse inputs and A, for analogue inputs) will be used as inputs in
the equation (S;). Such values will be continuously added, as long as the process state

remains active. The resulting sum will be divided by the number of added samples

(n).

M=(Y Si)/n (eq. 7.2)
i=1

The coefficient n is limited in practical terms by the size of the variable that contains
it to 65,535 (16 bits). For an analogue channel, considering a sample rate of 2.5 K
samples / s and also that a new value will be added once after 256 samples (Ap), the
maximum observation time will be limited to 1 hour, 52 minutes and 36 seconds.
Since the microcontroller does not provide an instruction to perform division, a 16 bit
divisioh routine based on an algorithm for 8 bits processors presented by Leventhal

[7.7] was employed in the calculation to maximise efficiency.

The monitoring Petri-net will be run by executing the transitions defined in the Petri-
net table (text format file). The data retrieved from this table will be verified in the
transition structure context (Chapter 6), thus checking whether or not the transition is
enabled. Transition firing actions will include updating input and output places,
requests of sub-net broadcast and event messages. Transitions will execute
sequentially in the order in which they were defined in the Petri-net table, though
handling one transition each time, per cycle. For those fired transitions that require a

message, a record will be stored in the “event record buffer”.
Whenever places were updated (following a Petri-net execution), further verification

will be carried out. Such verification will aim into identify the “beginning” or “end”

of an active state of selected places or to trigger the “mean value calculation” of
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analogue or pulse input. When required, a message transmission will be requested by

inserting a record in the application “event record buffer”.

Places enabled to have a timeout control and whose active state lasted longer than has
been previously recorded will produce a timeout record, stored in the “event record
buffer”. The default approach compares the actual cycle with previous one. However,
such comparison parameters can be fixed by supplying a command, received through

the data communication interface (CAN).

Fault isolation was implemented following the approach described in Chapter 6. This
procedure will be started when a “diagnostics request” identifying the place that
provided the symptom (timeout) is received through the data communication
interface. The Petri-net will be searched in order to find a transition having the
provided place as an input. Verifications will be made to detect whether the fault
relates to the transition input signals or to other places that failed to enable this
transition. Transitions and places will be alternatively investigated using the “breadth-
first” search approach [7.8]. Successive interactions will be carried out until a result is
obtained or the entire set of transitions is investigated. Loops will be avoided by
marking places that have already been verified. Records will be placed in the “event
record buffer”, identifying the transition and the signal(s) that failed to enable the
transition. Sub-net, digital and analogue / pulse inputs are considered as possible

sources of faults.

7.2.2.1 — Data Communication Aspects

In order to improve system’s efficiency and ease software development, data buffers
were set at different levels. Referring to Table 4.2, the “event record buffer” was
implemented to hold a number of monitoring events recorded by the system. Each of
these records will be converted into a system’s message, then assembled accordingly
one of the formats shown in Figure 7.5 and stored in the “transmit message buffer”.

This buffer is capable of handling only one message each time.
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rEvent Class [SourcilEvent ID I'l‘imestampl

T : fired transition
B : beginning process state

E : ending process state

rEvent Class IﬂurﬂEvent ID lTimestampI Record J

l__> { X : exception (timeout)

S : special (signal mean value)

rEvent Class ISource l Event ID I Signal ID

l—-’ d : diaguostic

= Source: monitoring module

= Event ID: transition or place

=> Record: signal mean value or timeout record
=> Signal ID: fault diagnostics (missing signal)

Figure 7.5: Monitoring Module transmitted messages formats.

Source (Module ID)

Total of Seg| t l S t Number

(3

{ Data Field (1 to 6 bytes) {

=>Total of segments: number of segments
the message requires (1 to 15)

=>Segment Number: number of the specific
segment (1 to 15)

Figure 7.6: System’s application layer protocol with message segmentation.

At the next stage, the system’s messages are handled by a “CAN application layer”,
before being stored in the “SPI transmit buffer”. At this application layer, messages
will be sized accordingly to the CAN protocol, and split when required. A sequencing
method was developed, to enabled messages to be reassembled at the destination end.
Details relating to the “application layer protocol” are shown in Figure 7.6. A
transmission timeout feature was implemented to control message delivery.
Transmitted messages that were not acknowledged by the recipient in a predefined
time will be retransmitted. The CAN controller’s commands are required to be

appended to the application layer message, in order to properly set up the required
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task. The “SPI transmit buffer”, will also be used to request the controller’s status and

carry out configurations.

Messages received from the CAN bus, such as sub-net broadcast and system
commands, will be transferred to the “SPI receive buffer” and then reassembled in the
“receive message buffer”. Figure 7.7 shows the format of received messages
supported by an MM. Figure 7.8 shows special purpose messages formats. Once
validated, commands will be executed or will result in flags requesting further actions

(i.e. fault diagnostics).

Command ID Record
Description Command ID Record
Reset Petri-net /R Void (0 bytes)
Set time /T Actual time in ms (4 bytes)
Set date /D Actual date (4 bytes)
Sub-net /E Sub-net event (1 byte)

Figure 7.7: System commands - broadcast messages format.

Module ID | Command ID| Place ID| Record

Description Command ID Place ID Record
Set timeout t Target place Timeout parameter (2 bytes)
Fault diagnostic /d Starting place Void (0 bytes)

Figure 7.8: System command - specific messages format.
The CAN controller filtering feature, based on the protocol message priority, was

exploited to ease the software implementation. Sub-net messages are “visible” to

Monitoring Modules, but not to the Connectivity Module. Conversely, monitored
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event messages (fired transition, begin/end of places, places timeout and parameters

mean value records) will only be received by the Connectivity Module.

The Monitoring Module application required 8,426 bytes of program memory.
Considering that the data tables representing the process states to be watched
(beginning / end) and those that trigger analogue/pulse acquisition require a fixed
amount of 288 bytes (32 + 256), the representation of a process Petri-net can dispose
of 24,054 bytes. Assuming as a general example an ordinary transition with 2 input
and 2 output places, a Petri-net with a maximum of 254 of such transitions would
require 5,588 bytes of program memory, which is much less than the total available.

Appendix A (A.4) presents the software development main body, coded in Assembler.

7.3 — Connectivity Module (CM)

The CM was implemented to provide a common Internet interface to all MMs sharing
the system’s CAN bus, releasing them from heavy communication tasks such as those
related with the Internet protocols. At the same time, by concentrating the entire
monitoring task in a single Internet socket, management complexity was reduced.
This was not developed purely as a connectivity solution, but was meant to support
the distributed monitoring approach implementation. Nevertheless, in considering the
use of microcontrollers for such an application, investigations were required in order

to optimise the protocol’s implementation.

7.3.1 — Hardware Description

The CM implementation was based on the Microchip PICDEM.NET™ Internet
development kit [7.9]. The selected microcontroller was the PIC18C452, mainly due
to its data memory availability and organisation. The PICDEM.NET is capable of
interfacing an Ethernet network by means of an onboard Realtek RTL8019AS™
Ethernet controller [7.10]. This is provided with a 16 Kbytes embedded RAM, shared
as reception and transmission buffers. The network physical connection is based on a
twisted—pair (10BaseT), with data transmission rates of 10 Mbps. The operating
clocks are 20 MHz for the Ethernet controller and 19.66 MHz for the microcontroller.
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A Microchip MCP2510 CAN Development Board [7.11] was employed to implement
the CM’s CAN node. The PIC18C452 was selected as the CAN node processor. This
board uses a single 16 MHz oscillator for both CAN controller and microcontroller.
An asynchronous serial communication link, based on the RS-232C standard [7.12],

was employed to connect both modules. Figure 7.9 shows the hardware diagram.

T £
g
5 g
E 8 SP1
5 Ethernet PICISC452 > PICISC452 MCP2510
< Controller . RS-232C . @ CAN )
= [&——P RTLS019AS Microcontroller] Microcontrolier Controller

PICDEM.NET MCP2510 Dev. Kit

Figure 7.9: Connectivity module hardware block diagram.

7.3.2 — Software Description

In order to enable messages representing monitoring events to flow on the Internet
and commands flowing in the opposite direction to reach the MMs, the CM has to
implement the required gateway functionality. Figure 7.10 illustrates the different
levels of protocols and implementations necessary to interface each network, which

will be considered in the following section.

Internet Node CAN Node

v v

Application Layer
g g
E Transport Layer Application Layer g
& a
Network Layer
g § Data Link Layer Data Link Layer == A
3 e »
£E iz
& Physical Layer Physical Layer 2

Figure 7.10: Connectivity module application tasks diagram.
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Figure 7.11: CAN node implementation flow diagrams.

7.3.2.1 — CAN Node Implementation

The software implementation of the CM’s CAN node was based on MPLAB-IDE

development environment and used PIC’s Assembler as the programming language.
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The flow diagram shown in Figure 7.11 illustrates the main tasks executed. In general
terms, the application “watches” the CAN bus for MMs’ messages, reassembling,
validating and replying them with acknowledgement messages. This message will
then be forwarded to the Internet component. Similarly, messages arriving from the
Internet, will be split, sequenced and transmitted on the CAN bus. Basically, the CAN
protocol’s physical and data link layers (Figure 7.10) will be provided by the CAN
hardware. The application layer functions, such as splitting, sequencing and

reassembling messages, were implemented in the software application.

The microcontroller’s embedded communication devices were employed to support
the application. Individual interrupts were selected to synchronise the serial
asynchronous interface events. A single interrupt was used for the SPI interface. The
CAN controller MCP2510 status will be polled once each time the application main
loop is executed, in order to retrieve the device status. One of the microcontroller’s
embedded timers (TMR1) was configured to provide a 1 ms time base, used by the

CAN application layer to implement the messaging timeout feature.

Table 7.3: Data memory requirement to implement the CAN node.

Buffer Description Buffer Size (bytes)
System variable 56
Software stack 32
SPI transmit buffer 96
SPI receive buffer 32
CAN to RS-232C intermediate buffer 64
RS-232C to CAN intermediate buffer 64
RS-232C transmit buffer 64
RS-232C receive buffer 64

The software implementation required 7,398 byte of program memory, meaning that
another 25,370 bytes were left unused. In terms of data memory, it required 472 bytes,
with 1,064 remaining unused. Table 7.3 summarises the memory usage. In
considering that the PIC18C452 supports operating frequencies up to 40 MHz, it can
be seen that the microcontroller was far from its total capability. Appendix A (A.7)

presents the software development main body, coded in Assembler.
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Figure 7.12: Internet implementation flow diagram.
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7.3.2.2 — Internet Connectivity Implementation

The Internet connectivity application was developed using a C programming language
environment for PIC microcontrollers, WIZ-C version 8.05 [7.13]. The choice of such
an environment was made considering the intensive data manipulation and the use of
more complex data types required by this sort of application [7.14], with increased
software engineering complexity. Figure 7.12 shows the flow diagram, illustrating the
application’s main elements. Appendix A (A.9) presents the software development
main body, coded in “C”. Figure 7.13 shows the microcontroller’s required resources,

displayed in the compiler’s output window.

PIC RAM

Compiler Overhead : 13

Loc Opt : 4

Globals : 492

Free RAM: 1040

Start of C Program at 758 (0x02£6)
Total C & Library Program words 7868
Breakpoint Hit at main, 0394

Figure 7.13: Internet implementation required resources — compiler output.
7.3.2.2.1 — Protocols Implementation

Basically, the physical and data link layer protocols were provided by the Ethernet
hardware (Figure 7.10). However, Ethernet frames are required to be assembled in the
microcontroller’s memory, before being handed to the Ethernet controller. Such a
frame is shown in Figure 7.14. The checksum will be calculated and automatically
appended after the data field, by the controller. Although supporting interrupts, such
feature was not explored in the hardware design, therefore requiring the
microcontroller to poll the Ethernet controller in order to retrieve the interface status.
The Ethernet “level” will provide the data link layer services to the ARP and IP

protocols.
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The system needs to know the IP address of the remote location to which to send the
monitoring records (Management Application). ARP request commands will be
issued to search for the hardware address (Ethernet) of the remote IP. In considering
the application purpose, only one single destination socket will be supported. During
normal execution (after initialisation), the system will respond to incoming ARP

requests by replying with the ARP response messages (Chapter 4).

@stination I Source IProtocol IDJ Data Fieldl

l——* Message (IP datagram)

Network Protocol
-IP = 800 hexadecimal
-ARP = 806 hexadecimal

$ Source node hardware address

’ Destination node hardware address

Figure 7.14: Ethernet frame fields mounted in the microcontroller’s memory.

At the network layer, the IP protocol was implemented, following the description
provided in Chapter 4. Simplifications were made, considering the application’s
requirements. The messages exchanged by the system will never exceed the minimum
length defined in the protocol specification, therefore the implementation does not
requiring datagram fragmentation or a reassembling mechanism (data padding must
be provided). The IP implementation will provide the service to the Internet transport

layer and the Control Message Protocols (ICMP).

The system implementation of the ICMP was restricted to receiving and answering
such control messages. The ICMP will be used by the network to inform the CM

about an “unreachable” remote application (MA).

The transport layer implementation was based on the User Datagram Protocol (UDP),
rather than the Transmission Control Protocol (TCP), which is much more complex to
implement and usually employed for secure data exchange. A similar approach was
used by Al-Habaibeh et al [7.15], in an embedded monitoring application. The factors

considered for such a choice here were the system’s requirements and implementation
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simplification. The messages issued by the MMs will not require the segmentation
feature provided by TCP. Furthermore, a CM represents a single application port, thus
does not require heavy application management. Therefore UDP’s connectionless
approach was considered appropriate for the transmission of data records, since it
avoids the overhead represented by TCP in such cases [7.16], especially when the
asynchronous nature of monitoring events is considered. Nevertheless, it must be
considered that UDP, apart from the datagram checksum, will not provide any control
mechanism to ensure data delivery. Therefore, the application layer serviced by UDP

must provide such control.

The Internet application layer implementation was concerned with the message
exchange mechanism at the Internet level. At this layer, messages will have appended
a header, providing the message purpose, the sequence number and length, to enable
message delivery control. The application layer header is shown in Figure 7.15.
Messages transmitted must be acknowledged by the destination. Such confirmation
will be provided by the recipient replying with an acknowledgement message
containing the received message sequence number. Messages that are not confirmed
in an established time will be automatically retransmitted. One of the
microcontroller’s embedded timers (TMRO), configured to generate a 1 ms time base,

was deployed to provide the timeout approach required to support this control.

Message ID  |Sequence | Length |Data Field

I—-’ Monitoring event record

P> Data field length

—J» Message sequence number
(0 to 255)

U : message
> - g
U : acknowledgement

Figure 7.15: Application layer message format.
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7.3.2.2.2 — Operation Description

After initialisation, an ARP request will be issued, in order to obtain the Ethernet
address associated to the IP address of the destination node (MA). The application
layer will handle the records received from the MMs, in order to perform the
messaging control. These messages will be forwarded to the UDP and then to the IP
protocol implementations, where checksums will be calculated and respective headers
added. The Ethernet frames will be assembled and transferred to the controller, which
assumes the transmission task at the network level, providing information about the
status of the transmission. The message will be kept assembled at the application layer

level until delivery confirmation was received.

Reception of messages from the Internet, for the MM, can be described similarly.
Ethernet frames will be received by the controller, verified and forwarded to the
Internet or ARP protocols. At the IP level, checksum, source and destination
addresses will be verified. The data field will be handed to the upper layer (UDP or
ICMP) for further verification or actions complying with the protocol specifications.
At the application level, a validated message will be stored in the serial transmission

buffer, while an acknowledgement message will be returned to the sender.

Although the implementation of the connectivity module was based on two separate
microcontrollers for simplification reasons, the analysis of the resources required
showed that a single of such device would have been enough. In terms of
programming memory, the CAN node implementation required 7,398 bytes, while the
Internet protocols implementation used 15,736 bytes, which together (23,134 bytes)
still less than the 32,768 bytes available in each microcontroller. In a similar analysis
considering the data memory, it can be seen that both applications together required
968 bytes, again less than the 1,536 data memory bytes available in a single
microcontroller. Nevertheless, supposing that both applications were developed using
C programming language, the compiler overhead should be taken into account. On the
other hand, in the resulting implementation many resources were used to implement
the serial link between the two hardware modules, including some duplicated buffers.

In terms of processing power, the microcontroller supports a clock twice the one used

by the applications, thus exhibiting a factor for further improvements.
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From a cost perspective, the Connectivity Module based on the PICDEM.NET
hardware, provided with a CAN node implementation, would represent, roughly
estimating, nearly £ 210.00. This takes into consideration the module basic hardware
(Microchip reference DM163004), the CAN controller (MCP2510) and transceiver
(UC5350) [7.4]. Assuming that a single CM can provide Internet connectivity to
several MMs (at a location), the system still represents a low-cost implementation.
Additional cost benefits may arise from customised implementations, as a result from

large-scale applications.

7.4 — Management Application (MA)

The Management Application was implemented with the aim of providing a common
interface to databases where the monitoring events will be stored. This application
was developed in a Microsoft Visual C++™ 6.0 environment, making use of
Microsoft Foundation Classes (MFC®) library. It executes on any computer running
Microsoft Windows® operating system, connected to the Internet. A single
management session can be used to provide support to several remote monitoring
“structufes”, connected to the Internet at different locations. For practical reasons,

such number was limited to 10, all required to use the same database.

The requirement for such an application was based on practical reasons. The task of
directly supporting many different (commercially available) Database Management
Systems (DBMS) is a hard task for computer-based implementations [7.17]. Such a
task would become even more challenging for a microcontroller-based application,
when considering the processing power and available resources. In considering such
factors, it was concluded that a MA, benefiting from the Open Database Connectivity
(ODBC), would provide a great level of flexibility to the system implementation.

The MA is able to select a system’s database, define the local socket (IP address and
MA port number), configure the remote (CM) IP address and assign a name to the
monitoring task, which will be used by the system to create a set of tables where
monitoring records will be stored. These tables will be automatically created, being

identified by the monitoring task name, followed by “ EV” (process events), “ ST”
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(process states) and “ DG” (diagnostics table). These tables will be discussed later.
The remote application port identification (CM) is not required, since such

information is assumed static (the same for all CMs) and thus is hidden from the user.

After settings are made communication will be enabled to take place. The monitored
events, recorded by the MM, will be sent to the MA over the Internet, making use of
the CM. Records received by the MA will be displayed on the application window,
while forwarded to the database. They will therefore be available for further analysis

or presentation.

The MA can be used to issue commands toward the Monitoring Modules. Such
commands include “set time”, “set date” and “reset Petri-net”. Also, the MMs fault
diagnostics request and timeout setting will be managed by the MA. A fault
diagnostic request requires the provision of the MM identification and also the place
(symptom) to start the search. MMs’ timeout setting requires a template table
containing the timeout parameters to be supplied. Such a table must be externally

created, but must be part of the same database.

7.4.1 — System Data Tables

As introduced previously the Monitoring System employs 3 tables to store records
associated with the tasks performed by the monitoring system. The first of these tables
(prefix_EV), will store monitoring events, specifically fired transitions, timeout and
analogue/pulse monitored parameters (special record). Table main fields (columns)
include the Monitoring Module, the event (transition or place that originated it), the
class that identifies the event, the event timestamp and a record field, eventually used

to store the timeout information or an analogue/pulse mean value calculation.

A second table will store the status of the process states (prefix ST). This table is
aimed to provide time information of specific process states, indicating the
“beginning” and “ending” of such states (Petri-net places). The MA will calculate the
duration of such state after the “end record” was received. Another field was provided
to indicate those process states that remain active and those that have already finished.

Only records with class field “B” and “E” (Figure 7.5) will be inserted in this table.
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The result of a diagnostics request will be stored in a table identified as “prefix_DG”.
Each record will consist of the Monitoring Module, the transition (identification), the
signal source (“d” — digital or “a” — analogue/pulse) and the identification of the
signal to which the fault was related. Every time diagnostics is requested, the table
will be cleared. Therefore, only the records related with the last diagnostic will be
listed. Description fields were provided in order to allow further descriptive
information to be added. Such information field will not be updated by the MA,

requiring other database method to be employed (procedures, triggers, etc) [7.6].

The use of database systems to store monitoring records provides an easy way to
integrate such records within different applications, with a minimum of software
effort. Modern DBMS enable databases to be deployed in a distributed configuration
[7.18]. This provides an ideal scenario for the use of the Internet in monitoring

applications, therefore contributing to stimulate a wider use of the technology.

7.5 — System Tests and Measurements

Although it was not an aim of this research to investigate the design of data
acquisition hardware, tests were carried out in order to assess the system’s
functionality regarding the analogue and pulse inputs. The test procedure was based
on the implementation of a test-Petri-net to trigger the acquisition of the 4 analogue
channels and 2 pulse inputs, with the results stored in a database for further analysis.
Details of this implementation, such as the Petri-net diagram, descriptive text files and

graphic results can be found in Appendix A (A.14 to A.20).

7.5.1 — Linearity

Analogue input linearity was tested by applying an adjustable DC power supply and
varying the voltage progressively from 0 to 10 V. A similar approach was employed
in a regressive manner. A set of graphs showing the results of the test can be found in
Appendix A (A.17). It can be seen that best results were verified between 2 V and just
before 10 V. Low input levels were more affected by the analogue inputs offset

voltage, because of the analogue pins drain current. At the upper range (10 V), the
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saturation of the analogue input channels can be considered as the cause of such
deviation trend. The graphs also showed that the inputs behaved similarly when the

voltage was varied progressively and regressively.

Pulse input linearity was tested by using a signal generator (square wave) as an input,
varying frequencies from 0 to 65 KHz and then oppositely from 65 KHz to 0. Graphs
representing the results were included in Appendix A (A.18). The system operation
was limited in software to approximately 65 KHz. In terms of error percentage, best
results were obtained at higher frequencies. It can be justified by the fact that the
system calculation is based on integers. At low frequencies a 1 Hz deviation could
represent a considerable error percentage. In such cases performance might be
improved by increasing the acquisition time (larger number of samples). The test was
based on 15 s acquisition periods. The system behaved in a similar manner, either

varying input frequency progressively or regressively.

7.5.2 — Repeatability

The repeatability test was performed by repeating the linearity test 3 times. The sets of
data of each measurement were linearised and equations used to generate a standard
set of data, comparing the results of the first against the second and third. Graphs
showing the test results can be found in Appendix A (A.19). It can be seen that in
terms of error rates, both analogue and pulse inputs have a better performance with
higher input voltages and pulse rates, respectively. The justification for such
behaviour is the same given for the linearity deviation, with analogue inputs
compromised by the offset voltage and pulse measurement resulting in higher error

percentages and therefore affecting repeatability at very low frequencies.

7.5.3 — Analogue Input Mean Value Accuracy

In order to test the system mean value calculation approach, a test consisting of
applying a square wave form to the analogue inputs and varying the signal’s
frequency was carried out. The graph representing the result of such test can be found
in Appendix A (A.20). In considering the system’s limitation in terms of linearity, the

mean value of the input signal was set at 2.5 V. It can be seen that the system provides
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a good response at lower frequencies, with an increase in the error trend after nearly
800 Hz. The system analogue input sampling rate, around 2.5 K samples/second,
represents a constraint for a better accuracy for input signals at higher frequencies.
Similar results were obtained when increasing the input signal mean value, with errors
bellow 1 % between 0 and 800 Hz. Input signals with mean value bellow to 1.5 V
resulted in a general increase in the error level, specially at very low frequencies
(tending to DC), as it would be expected due to considerations made when analysing

the system’s linearity response.

The test results showed that the system would require further improvements in terms
of hardware design and analogue inputs sampling rates, in order to provide a better
accuracy. As it was stated before, this was not a major concern of the research.
However, such improvements could be achieved by increasing the microcontroller
operating frequency (from 20 MHz to for 40 MHz), making use of interrupt
techniques associated to the analogue acquisition and adding additional hardware

components to enhance analogue signal conditioning.

7.5.4 — System Communication Testing

The system development required the implementation of communication capabilities.
To develop and test such capabilities, tools to monitor the communication networks
were required. Microchip MCP2510 Development Kit [7.11] was employed as the
CAN bus monitoring tool. It allowed system’s messages flowing on the CAN bus to
be captured and analysed and when required, to transmit messages produced using the
Kit’s software. At the Internet side, free demonstration software, developed by
LANSIleuth [7.19], was used as the monitoring tool. This software monitoring
capabilities are those related to Ethernet and Internet protocols. Ethernet frames
flowing on the network were captured and displayed, showing the respective
protocols’ fields at the different layers. Appendix A (A.21 to A.24) shows examples

of these tools.
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7.6 — Summary

The use of microcontrollers for the implementation of the monitoring approach based
on Petri-nets was presented in this chapter. In order to provide low-cost without
compromising efficiency and capability, an architecture that explores the potentialities
of individual and specialised levels was proposed. Monitoring modules that
incorporate the task knowledge will deliver event records based on local decisions to a
communication element that concentrates a set of complex protocols. Databases are
interfaced by a PC based management application, benefiting from a set of well
developed and reliable standards and protocols, therefore easing the implementation
and dealing with critical aspects such as security, distributed data access, analysis and
presentation. In using established standards in such a development, it is ensured that
the proposed system can benefit from further technological enhancements and support

a wider range of applications.

The following 3 chapters will present examples of the use of the system in monitoring
applications. The first case considers the monitoring of the production cycle of a scale
model that mimics a hydraulic press. The second example illustrates the monitoring of
a laboratory rig representing a manufacturing system. The last example was based on
the monitoring of a tool changer of a CNC machine centre. Each example was
proposed in order to illustrate specific capabilities of the system, considered of

significance in the development of the research.
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CHAPTER 8

PRESS RIG MONITORING TASK

8.1 — Introduction

This chapter presents a monitoring application to demonstrate the effectiveness of the
Petri-net approach described previously. A laboratory rig that mimics the basic
operations of an industrial press was monitored in order to provide online process
information and to demonstrate how the Petri-net monitoring system can be used to
help identify the source of simulated faults. The demonstration further illustrates how
results are captured and processed, and how the management information that they
enable can be displayed using a web page based approach developed in conjunction

with the existing methodologies that operate within the IPMM Centre.

8.2 — Process Overview

The Press Rig, shown in Figure 8.1, is a scale module based on an ASEA industrial
hydro forming press. The Rig has two pallets, left and right, where, on the industrial
machine, work pieces can be loaded. Load/unload operations take place at a
designated “home position” at the outside end of the travel for each pallet. Each side
is provided with a safety guard, in order to ensure that the work piece cannot be

handled once the process was started.

A work piece loaded on either pallet is transported toward the central part of the
machine, where the pressing operation will be performed. Once any of the
horizontally moving pallets reaches the pressing position, the central vertical axis can
be moved down. At this point, in the real process, a high-pressure operation would be
performed, in order to mould the work piece. This operation was not mimicked
directly in the rig, but was simulated by a short delay (20 s). At the end of the pressing

operation the work piece will be transported back to the home position to be unloaded.
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Whilst the first pallet is still moving, once it has left the central area of the rig, the

opposite pallet, if loaded, can start to move toward the centre for the next operation

sequence.
1- Left hand pallet 6 - Right hand pallet DC motor
2 - Right hand pallet 7 - Left hand pallet DC motor
3 - Central pressing structure 8 - Central Structure DC motor
4 - Left hand guard 9 - Siemens S5-95U PLC
5 - Right hand guard 10 - Operation panel

Figure 8.1: Press rig and main component parts.

8.2.1 - Press Rig Component Description

The Press Rig operation is controlled by a Siemens S5-95U PLC. Proximity sensors
have been located to detect the pallets “home” and “central” positions. Limit switches
are employed to detect the vertical axis “up” and “down” positions. Limit switches
were also deployed at strategic positions for safety purposes, stopping out-of-range
movements (potentially arising from any main sensor fault). Each of the safety guards
controlling the access to the pallets was provided with a limit switch, to provide a

means of sensing all open/closed conditions.
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Three independent DC motors provide the mechanical movement of the pallets and
the vertical axis, by means of lead screws. Movement reversal is achieved by
inverting the motors polarity. Mechanically operated switches were inserted in the

motors’ supply lines, thus enabling the simulation of fault conditions.

Finally, an emergency stop button was located at the front part of the rig to
immediately stop the process operation when required. A reset button was provided to
recover the system from an emergency stop condition. In such a case, all moving parts
will be returned to their respective home positions. The controller executes the same

procedure when it is first switched on.

8.2.2 — Monitoring Task Analysis

In order to implement a Petri-net to monitor the process, an investigation of the
existing signals was undertaken. This considered the PLC outputs and deployed

sensors and switches. Table 8.1 summarises these signals and their characteristics.

Table 8.1: Press rig signals description.

Description Signal Source State
1 Emergency Stop Mechanical switch On-24V
2 Reset Push button On-24V
3 Right hand cycle start Push button On-24V
4 Left hand cycle start Push button On-24V
5 Central positioning — right hand pallet Proximity sensor On-24V
6  Central positioning — left hand pallet Proximity sensor On-24V
7 Home position — right hand pallet Proximity sensor On-24V
8 Safety — right home position Limit switch On-24V
9 Home position — left hand pallet Proximity sensor On-24V
10 Safety — left home position Limit switch On-24V
11 Up position — central structure Limit switch On-24V
12 Safety — central up position Limit switch On-24V
13  Down position — central structure Limit switch On-24V
14  Safety — central down position Limit switch On-24V
15 Right hand pallet guard Limit switch On-24V
16  Left hand pallet guard Limit switch On - 24V
17  Motor command — central up PLC output On-24V
18 Motor command — central down PLC output On-24V
19 Motor command — right pallet to centre PLC output On-24V
20 Motor command — right pallet to home PLC output On-24V
21 Motor command — left pallet to centre PLC output On-24V
22  Motor command — left pallet to home PLC output On-24V
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The task facing the monitoring system was to follow the sequential operation of the
process in order to both provide enough data to yield production information and
allow the identification of any process faults. The signals summarised in Table 8.1
provided the information source that was used to monitor process events and states.
Accessing and processing this data then enables the system to calculate parameters
such as “in process” and “stoppage” times, thus illustrating the benefits of the Petri-

net implementation.

The DC motors were considered to be critical parts of the Rig that needed to be
monitored during process operation. It was assumed that the condition of each motor
could be determined from the motor current demands. Table 8.2 shows the motor
specification. A simple circuit was produced to provide the motors parameters

measurement to the Monitoring Module (Figure 8.2).

Table 8.2: DC motors specification [8.1].

Item Description Specification

DC Motor RS 330-799 e 12Vdc
e 493 mA (maximum)
e 40 rpm

IMoIor
l ————

Amplifier

Figure 8.2: Block diagram of signal conditioning circuit.
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8.3 — Press Rig Petri-net

In order to design the Petri-net to monitor the process, signals had to be selected and
assigned to the Monitoring Module. At the same time, places representing special
features (analogue acquisition and process states status) had also to be identified.
Table 8.3 shows such details. It also shows that the timeout feature was limited to
places up to number 200, reserving those above this number for modelling purposes
that do not require this feature. This number, as described in Chapter 7, can be
dynamically assigned by the Petri-net designer and may assume different values for

different applications.

Table 8.3: Press Rig Petri-net definitions.

Representation  Description

DS 01 Emergency stop switch

DS 02 Vertical axis down motor command

DS 03 Right pallet to centre motor command

DS 04 Left pallet to centre motor command

DS 05 Vertical axis up motor command

DS 06 Right pallet to home motor command

DS 07 Left pallet to home motor command

DS 08 Reset command button

DS 09 Right guard switch

DS 10 Left guard switch

AN 1 Analogue 1 — vertical axis motor current

AN 2 Analogue 2 — right pallet motor current

AN3 Analogue 3 — left pallet motor current

T004 Emergency stop event

TO025 Vertical axis motor over current

T026 Vertical axis motor under current

T036 Right pallet motor over current

T0O38 Right pallet motor under current

T044 Left pallet motor over current

T046 Left pallet under current

P001 Left process cycle watch

P002 Right cycle process watch

P003 Left guard operation watch

P004 Right guard operation watch

P023 Analogue 2 acquisition trigger — right pallet to centre
P024 Analogue 3 acquisition trigger — left pallet to centre
P025 Analogue 1 acquisition trigger — down command
P026 Analogue 1 acquisition trigger — up command
P027 Analogue 2 acquisition trigger — right pallet to home
P028 Analogue 3 acquisition trigger — left pallet to home
P200 Last timeout enabled place
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Figure 8.3: Press rig operation Petri-net.

The process Petri-net design was divided into blocks, each considering specific

monitoring requirements. The main block, shown in Figure 8.3, follows the general

operation of the process. Describing this part of the Petri-net, transition T001

initialises several components, since “emergency stop” has not been activated. Places

P201 and P202 represent the “ready state” of each process pallet. These places

provide input conditions that enable, respectively, the “left” and “right” parts of the
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process. These events are defined by transitions T002 (left) and T003 (right) and will
be triggered by the motors’ commands (DS 04 — left and DS 03 — right). The firing of
these transitions will result in a “moving to centre” state, identified by tokens in
places PO05 and P006. The PLC was programmed to restart process operation if the
guard is opened while the respective pallet is moving. Therefore, the branch formed
by P207 (P208), T006 (T009), P209 (P211) and TO10 (T011) was required to enable
initial conditions to be restored in such case. The end of the pallet movement will fire
transition T007 (left) or TOO8 (right) and put a token in PO10, indicating that the pallet

was positioned.

At this point, a single branch represents the operation of the vertical axis and press
forming operation, between transitions T012 and TO15. This is finished when a token
reaches P015. The respective pallet will return to its home position, which will be
followed by T020 (left) and T021 (right). Again, the guards will be monitored by
TO18 / T022 (left) and T019 / T023 (right).

Places PO0O1 and P002 were included in order to enable each pallet processing cycle
time to be monitored. To do so, these places were defined in the “process states”

table, thus providing records identifying the beginning and end of these states.

WAIT P203
STOP @DS 01
| T004

P204 EMERGENCY
STOP
RESET DS 08
ON ¢
TO00S
Restart

Figure 8.4: Emergency stop monitoring branch.
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The action of pressing the “emergency stop” was implemented in a Petri-net branch
shown in Figure 8.4. Transition T004 firing will result in a “fired transition record”.

The “reset” command will fire TO0S5 and “restart” the Petri-net execution.

Since considering that loading/unloading operation time might be used as an
efficiency measurement in a real process, the operation of the pallets’ guards will be
monitored by a specific Petri-net branch, shown in Figure 8.5. Places P0O03 and P004

will provide records notifying the beginning and ending of these operations.

Left Guard Right Guard

P230 P231
(O+— —>

opEN@ﬁl" DS 90D oren
TO057 ‘ TO059 ‘
P003 Left Right P004
open open
CLOSED @EIO DS 09 CLOSED
TO58 | T060 |

Figure 8.5: Guard operation monitoring branch.

Considering that a measure of process efficiency might be required, one of the Petri-
net’s implemented branches was set up to monitor “processing time”, “available time”
and “stopped time”. It is shown in Figure 8.6. A “process-stopped” condition was
associated with the Rig stop switch, resulting in a token in place P008. The
“processing” status will be provided by P001 (left cycle) and P002 (right cycle) and
will result in a token in P009. The absence of any of the previous conditions will
result in a token in P007, indicating “process availability”. Such parameters might be
employed as a basis for the calculation of process assessment indices, such as Overall

Equipment Efficiency (OEE) [8.2].
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N
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DS 01 STOP ON ¢
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Stopped
?1&5&1@ o]
(Fig. 8.3) STOP ON
e DS 0! (Fig. 8.3)

P009 T05f1
Processing
P> ¢
i P228 / \ P229
TOS5 TO056

Figure 8.6: Equipment usage monitoring.

Individual Petri-net branches monitored the 3 DC motors. Figure 8.7 shows one of
these branches, associated with the vertical axis motor. Two “analogue transitions”
were introduced to monitor extreme operating conditions. By doing this T025 and
T026 were able to transmit a “transition record” associated with these conditions. To
avoid false alarms, due to initial transients during the motor switching-on, a delay was
introduced by means of T024. The average motor current during each operation will
be “watched” by P025 (down) and P026 (up), which will trigger the acquisition of
analogue input 1. Similar structures were implemented for the right and left pallet
motors. In these cases, based on Figure 8.7, T044 (left) / T036 (right) will play
equivalence to T025 and T046 (left) / TO38 (right) to T026. Places P024 / P028 will
trigger analogue input 3 acquisition (left motor current) and P023 / P027 analogue
input 2 (right motor current). Monitoring such parameters during process operation

might help to identify critical or degradation conditions of these specific components.
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Central Motor
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y
sV h -‘ 0.25V
TO2S T027 T026
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—P 4—

CENTRAL DS 02
MOTOR OFF

TO31
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CENTRAL ~ DS 05
MOTOR
UPON

T032

P026 Watch central
axis motor

C:’:;;%;L DS 05 Aunalogue |
UP OFF ) 4
—

T033

Figure 8.7: DC motor monitoring net.

The Petri-net implementation required 56 places and 61 transitions. Ten process
signals were interfaced, requiring 2 digital input cards. Also, 3 analogue inputs were
used to monitor the motors current. The text files that describe this Petri-net
implementation tables can be found listed in Appendix B (B.1, B.11 and B.12). Some

results of the implementation will be presented in the following section.

8.4 — Monitoring Results

A structure composed of one Monitoring Module (with 2 digital input cards), a

Connectivity Module and a Management Application was deployed to monitor the

Press Rig operation. The Management Application was executed on a desktop

computer. The monitoring records were stored in a database based on a Microsoft
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SQL 2000 Server ® DBMS, hosted by the IPMM Centre server. The same hardware
also hosts the Centre Internet’s server, which is based on Microsoft’s Internet

Information Server®.
8.4.1 — Data presentation Approach

To present the data and information retrieved from the monitoring records, the IPMM
Centre web based presentation approach [8.3] was employed. In simple terms, the
Centre web page provides a collection of hyperlinks, each one connecting to a specific
presentation task. The task is defined in terms of the display format (graphs or data
table) and an SQL statement to select and assemble the data in a way that can provide
meaningful information. The web page is periodically refreshed. Examples of such

web pages are referenced in Appendix B (B.18 [11]).

The embedded tools of the database system (triggers and procedures) [8.4] were
employed to further process the monitoring data, whenever required. Such processing
represents a simple and direct way to extract information or join the data in new

tables, therefore enhancing the web based presentation method.

PressRigStates

| DESCRIPTION

Processing right cycle
Left gunard open

Figure 8.8: Process online status information example.

8.4.2 — Monitoring Presentation Examples

It was stated in Section 8.3 above that places P001, P002, PO03 and P004 were
defined in order to provide process status information, based on beginning / ending
records. Figure 8.8 shows an example of such status information displayed on the web

page. In the example shown it is the right cycle that is being processed, while at the
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same time the left guard is kept open. An improved use of such a feature could be a

graphic display of a process, with online updates of the machine / process operation.

In another example, shown in Figure 8.9, the latest process operation records were
displayed. Each record is provided with a description, timestamp and when
appropriate, an additional parameter (e.g. timeout record). This information is
retrieved from the system’s Event Table (prefix_EV), with the description provided in
an externally defined database table. The events were sorted and associated with their
description by a database procedure that is called each time the web page is refreshed.
The example shows a transition (T004) that was fired when the rig’s “emergency
stop” was pressed; a fired transition (T025) due to an over current condition of the
vertical axis motor (Figure 8.7); and 4 timeout events (P001, P006, PO18 and P005).
Timeout events provide further information in the “EventRecord” field, indicating the

parameter (in seconds) associated to the event.

PressEvents
LL‘lescriDtion lTimeRecord IEventRecord
TO04 - Emergengy stop 2003-08-21T10:26:42
P0O01 Timeout - left cycle 2003-08-21T10:26:09 122
T025 - Central motor over carxen{2003-08-21T10:24:56
P00S Timeout - Right pallet to ce[2003-08-14T21:49:35 43
P018 Timeout - Left pallet to hoi[2003-08-14T21:27:59 45
PO0S Timeout - Left pallet to cer{2003-04-17T15:46:01 45

Figure 8.9: Process list of latest events.

Places P001 and P002 records were again used to present process productivity
information, shown in Figure 8.10. In this example a bar graph was employed to show
the number of cycles processed using the left (P001) and right (P002) pallets. The
system’s States Database Table (prefix_ST) was queried to retrieve this information,

directly manipulated by the web page defined SQL statement.
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PIC-PressRig-Cycles

Transition 1 (left pallet) - 230 cycles
Transition 2 (right pallet) - 117 cycles

Figure 8.10: Number of cycle processed by the left (1) and right (2) hand pallets.

PIC-PressRig-Usage

9013 sec. (available)
m m \s 1423 sec. (stopped)
u m 195069 sec. (processing) |

Figure 8.11: Press rig online operating time (s) information - available (7),

stopped (8) and processing (9).

Using a similar approach, further productivity information was presented (Figure
8.11) based on monitored data provided by places P0O07 (process available), P008
(process stopped) and P009 (processing) active states recorded by the system’s Petri-

net branch previously described (Figure 8.6). In Figure 8.11, besides the graphical
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representation, absolute values in terms of the time (seconds) associated with each
state are shown by the place number (7, 8 and 9). In a real manufacturing application
such information could be integrated within other systems (i.e. production
management systems) and thus further process assessment information might be

provided (e.g. OEE).

A fault was introduced during the operation of the Press Rig, by interrupting the
current supply of the central axis motor, while in the “pressing process” state (Figure
8.3, PO13). Since executing a left hand cycle, such fault condition resulted in a
timeout event associated to place P00l (Figure 8.9). In order to illustrate the fault
diagnostics implementation, an analysis request having PO01 as a symptom was sent
to the Monitoring Module. The result of the diagnostics performed is shown in Figure
8.12. It indicates that three transitions might be related to the fault source: T054, T003
and TO14.

PressRigFault

|Even:Descrip1ion ]Sou.meDescriDtion
54-Stopped Emergency stop
3-Right process Right to centre ecmd
14-Moving up Up command

Figure 8.12: Result of a fault analysis, based on a P001 timeout event.

Analysing this result, POO1 is the input place of T028 (Figure 8.3) and T050 (Figure
8.6). Clearly, the timeout event occurred due to T028 failing to fire. However, T050
was taken into consideration, with the Petri-net analysis tracking P007, T053, P00S8
and finally reaching T054, which was enabled by P009, but missing DS01. With
respect to T028, the analysis performed by the Monitoring System followed the way
back from P205, finding two transitions, TO03 and TO14, enabled by their respective
input places (P013 and P202), but missing the process signals linked to them (DS03
and DSO05). Since the left cycle was executing, T003 / DS03 could not be the source
of the fault. This result was due to PO15, common to both cycles. Such information

provided by the system could then be employed by operators and experts.
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The result obtained shows the system capability in isolating an operational fault based
on an initial symptom. It must be considered that at the same time the diagnostics
analysis was performed, there were other places with tokens (P203, P230 and P231).
Nevertheless, the transitions enabled by them were not listed in the fault diagnostics

result.

MotorsCurrent(mA)

Place 23 — right motor
Place 24 — left motor
Place 25 — vertical axis motor

23: 49.85 24:4398 25:415.44

Figure 8.13: DC motors current measurement, using Petri-net places acquisition

trigger approach — right (23), left (24) and vertical axis (25) motors.

In a last example, Figure 8.13 shows the behaviour of the 3 DC motors in terms of
average current (mA). Such parameters were provided by using the Petri-net places
triggering feature to undertake the motors’ current acquisition under operating
conditions (Section 8.3, Figure 8.7). Place P023 was associated with the right pallet,
P024 with the left and P025 with the vertical axis movement. The results presented in
Figure 8.13 show that the vertical axis motor operates at a higher current condition
(415.44 mA), that is close to the specification limit (493 mA). This result is in tune
with the event recorded by the analogue transition T025 (Figure 8.9), which
previously recorded a peak over current condition. In this case the fact is that this
motor is “working harder” than the other two, since it is lifting the bed. The bar graph
was built considering the average of several measurements recorded in the database.
For simplification reasons, only one movement direction was considered for each

case.
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It is possible to see how the system can be used to monitor changes in behaviour from
“normal” to “abnormal”. There might be two approaches to consider here. In the first
(and simplest) one, the event produced by the “analogue transition” (T025) could be
used to produce an alarm, either locally by means of an “output transition” or by
detecting such critical event when recorded in the database. From the database it
could then be used by another application to request further actions (maintenance). As
a simple instance, specific users might be notified by means of e-mails about such
critical events. The second approach could be to follow the motors current, based on
the records provided each time these devices are operated, thus making it possible to

establish preventive actions based on the degradation of the motors condition.

8.5 — Summary

In this chapter it was explored an example that enabled to illustrate the use of the
System to monitor the Press Rig. A dynamic illustration of this example is referenced
in Appendix B (B.18 [12]). Besides the use of basic modelling structures, it was
shown the employment of analogue and delay transitions. Specific places were
selected to provide the usage of the Rig and to monitor the motors current. The
example also allowed to demonstrate the fault diagnostics approach, used to isolate a

fault whose symptom was provided by a timeout event.

It was shown the wide range of different information that can be obtained from the
records provided by the Monitoring System. By making these records available on an
open and easy to interface platform such as a database system, different applications
might use such data in order to improve management capabilities. The easy way in
which the information can be made available on the Internet opens opportunities for
process and machine remote monitoring. In the next chapter another example is
presented, further focusing on productivity data and exploring some other aspects of

the system that were not used in this first case.
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CHAPTER9

CONVEYOR RIG MONITORING TASK

9.1 — Introduction

One of the purposes of a monitoring system is to support modern maintenance
practices, by helping to establish machine performance parameters. Continuous flow
manufacturing systems have to consider the overall efficiency of the process, where
best results are achieved when all components operate at optimal conditions. This
chapter presents the use of the Petri-net based implementation to monitor and manage
such manufacturing systems using as an example process a laboratory rig, called the
“Conveyor Rig”. The work is especially focused on providing information to analyse
the performance of the process. Although not representing a real manufacturing
application, this work demonstrates the capabilities of the developments previously

outlined in this thesis.

9.2 — Process Description

The Conveyor Rig is an “Industrial Control Trainer” developed by Bytronic
International Ltd. It emulates a continuous flow manufacturing system. The basic
operation assembles components that are individually fed into the system and assesses
the quality of the end product in order to detect and reject parts that do not comply
with the established standard. In summary, the process operation, taking the notations
used in Figure 9.1, can be described as: metal pegs (2) and plastic rings (4) are placed
on the system’s input chain (1) and sequentially detected by a sensor (3). When
arriving at the “sort area” (5), the components are classified: plastic rings will be
forced into a “ring queue” (8), whereas metallic pegs continue on the chain, reaching
the “slide” (7) that leads them towards the output conveyor. It is possible for the ring
queue to become full (the maximum number of rings is 6). In this case, additional

plastic rings arriving at the sort area will not be diverted into the queue by the
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solenoid-sorting device but will remain on the chain and be rejected into the plastic

rings “reprocess” area (6).

1- Input/ loading 7 - Sorted pegs path

2 - Metallic peg 8 - Plastic rings queuing

3 - Input sensor 9 - Assembly area

4 - Plastic ring 10 - Metal sensing (output conveyor)
5 - Sorting area (metal/plastic sensing) 11 - Plastic assembled sensing

6 - Plastic rings reprocess 12 - Reject area

Figure 9.1: Conveyor Rig photo with main details.

Rings and pegs are assembled to form a single part in the “assembly area” (9), on the
lower conveyor. An actuator, in the form of a “rotate gate”, allows one ring each time
to roll into the assembly position. A peg on the output conveyor moving through the
assembly area will enter into the ring and drag it out of its pre-assembly location,

forming a single mounted unit.
The operation so far described should result in a good assembly, with a ring mounted

on top of a peg. It is possible however (for several reasons) that the assembly will be a

bad one, with rings and/or pegs moving unassembled on the lower conveyor. A faulty
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assembly operation may be due to a missing ring in the assembly position (empty

queue) or to the ring dropping off from the peg or keeling over in the assembly area.

In order to check the assembly operation, sensors are deployed along the output
conveyor. At the “metal checking area” (10), passing parts are sensed to detect the
peg component. At the next “assembly quality” checking point (11), a capacitive
sensor is employed to detect whether or not the ring was correctly assembled on the
peg. Finally, at a “reject station”, near the output (12) a sensor and actuator are
deployed in order to provide the means to reject faulty parts. Due to the process
dynamics, components on the output conveyor may move very close to each other
(without enough gap) or be positioned out of the sensing range, “confusing” the
system’s PLC programmed logic (as supplied) and resulting, in some cases, in

wrongly rejected parts.

9.2.1 — Conveyor Rig Component Description

The Conveyor Rig operation is controlled by a Siemens S5-95U PLC. Reflective
sensors are deployed in areas where a general part detecting method is required
(Figure 9.1 — 3,5, 6,9, 11 and 12). Metal detection is based on proximity (inductive)
sensors (Figure 9.1 — 5 and 10). Other sensors employed are a pass-through beam (10)
for moving parts and a capacitive sensor (11) to sense mounted rings. Solenoid based
actuators are used in areas where components are required to be moved or removed
(5, 9 and 12). Two separate DC motors provide the input chain and output conveyor

movement.

The equipment manufacturer uses specific electronics to interface sensors and
actuators to the PLC’s inputs/outputs. The DC motor drivers were also provided by

separate electronics. Mechanical switches are employed to start/stop these motors.

9.2.2 — Monitoring Task Analysis

The main purpose in monitoring the Conveyor Rig was to obtain information that
would enable productivity and efficiency analysis. It was therefore required to design

a Petri-net capable of providing the number of parts produced and those rejected or
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reprocessed. At the same time, the actual use of the assembly system was considered a

requirement in order to establish efficiency parameters.

The Petri-net implementation considered the existing process signals, which are
summarised in Table 9.1. However, two signals considered of importance to measure
the process usage had to be added. A “process stopped” (unexpected stop) condition
was obtained from the DC motors supply line. To implement this a low-pass filter
interface was necessary. The second condition, a “programmed stop”, was
implemented as a sub-net input using the Microchip CAN MCP2510 Development
Kit module to issue this command. In reality another digital input could have been
used for this purpose. However, it was deemed to be a good opportunity to illustrate
the use of a sub-net input in the Petri-net design. The MCP2510 development kit
enables the assembly of the sub-net message and its transmission on the CAN bus,
thus emulating a Monitoring Module function. In this case, it is used to enable the

recording of an actual unexpected stop as a “programmed stop”.

Table 9.1: Conveyor Rig signals description.

Description Signal Source  State
1 Motor command Mechanical switch  On- 12V
2 Part on chain (input) Reflective sensor On-24V
3 Part in sort area Reflective sensor On-24V
4 Metal in sort area Inductive sensor On-24V
5 Ring queuing actuator — sort area Solenoid actuator On-24V
6 Ring reprocess detect Reflective sensor On-24V
7  Ringin assembly area Reflective sensor On-24V
8 Ring loading actuator — assembly area Solenoid actuator On-24V
9 Metal sensing on belt Inductive sensor On-24V
10  Moving part at metal sensing area Pass through beam On-24V
11 Assembled part sensing Capacitive sensor On-24V
12 Part at capacitive sensing area Reflective sensor On-24V
13 Part at reject area Reflective sensor On- 24V
14 Part reject actuator (output) Solenoid actuator On-24V

9.3 — Conveyor Rig Petri-net

Table 9.2 shows the Rig signals assigned to the Monitoring Module and their

associated Petri-net definitions. This information was required to achieve the desired
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level of detail to meet the monitoring aims. Production outputs are classified by the
manufacturing system (Conveyor Rig). This classification is associated to actions
(accept or reject parts and reprocess rings). Such actions can be characterised as
events (good detected, bad rejected) and therefore naturally represented as transitions
in the Petri-net design. Transitions were also used to represent events resulting from

the manufacturing system making wrong decisions (wrongly rejected or accepted).

Table 9.2: Conveyor Rig Petri-net definitions.

Representation  Description

DS 01 Object on chain sensor

DS 02 Part sensor - sort area

DS 03 Mctal scnsor - sort arca

DS 04 Rotate gate actuator — ring to assembly position
DS 05 Plastic ring reprocess sensor

DS 06 Ring in assembly position sensor

DS 07 Inductive sensor - metal on belt

DS 08 Beam sensor — part moving on belt

DS 09 Part sensor - capacitive sensing arca

DS 10 Capacitive sensor

DS 11 Part sensor — reject area

DS 12 Reject actuator

DS 13 Chain DC motor command

TO009 Plastic ring reprocess detect

T028 Rejected part

T029 Failed to reject a out of standard part

TO030 Good part wrongly rejected

TO31 Good part assembled and accepted

TO35 Excessive number of continuous good parts rejected
P028 Process stopped — motors command off

P029 System processing — assembly in operation
P030 Process available — operating but not assembling
PO31 Programmed stop — external command

P200 Last timed out place

The process usage measurement was based on the time consumed by each of the
operating states (available, processing/assembling, stopped and programmed stop). To
provide such parameters, Petri-net specific places were selected and associated to
these states and configured to provide status information (beginning / ending records).
The timeout feature was disabled for those places with an identification number
higher than 200. Similarly as stated in Chapter 8, this value was selected simply to

provide a barrier to isolate places enabled to timeout from those that are not.
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Figure 9.2: Rig operation Petri-net — load and sorting.
The monitoring task was divided into blocks accordingly the part/function of the

process by them monitored. This sort of flexibility provided by the model eases

considerably the development of monitoring applications. The Petri-net representing
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the Rig operation was split into two in order to simplify its description, as shown in
Figure 9.2 and Figure 9.3. The first of these figures shows the Petri-net designed for
the monitoring of the feeding and sorting of pegs and rings. Figure 9.3 thus

concentrates on monitoring the assembly and output checking actions.

In Figure 9.2, transition TOO1 is initially fired, enabling the initiation of several
structures in the net. A token in place P201 enables the Petri-net to begin to monitor
the components loaded on the input chain. The on/off states of DS01 result in tokens
in P002, indicating a part moving toward the sorting area, while also re-enabling T002
for the next loaded component. When a component reaches the sorting area, T004 will
detect it as a peg, whereas plastic rings will be detected by T00S. The firing of either
T004 or TOOS will remove the token from P229, therefore avoiding multiple firing of
these transitions, due to components “queued” in P002. Transitions T004 and T005
will only be enabled again after the component in the sorting area has left. A further
delay of 1 s was introduced by means of a “delay transition” (T064), in order to avoid
assembly components mismatch, thus insuring that the former part has already left the

sorting area before checking the next one.

The information relating to component queues will be held by P005 (rings) and P006
(pegs). The existence of tokens in theses places will be further used to identify the
process operating states (T and U), which will be considered later. Reprocessed rings
will be monitored by the net represented by elements P203, T009, PO08 and T012. In
terms of the Petri-net execution, a token will be removed from the ring queue (P005)
each time T009 is enabled by DS05 (reprocess). Rings placed in the assembly position
will fire TO08, thus removing a token from the rings queue (P005). A ring in the
assembly position will be indicated by a token in PO11 (T014 fired). The use of this
ring will be indicated by T015 being fired and PO12 (Figure 9.3) receiving a token.
Tokens in P006 (pegs) will be removed, one each time, when the inductive sensor
(DS07) senses a peg moving on the output conveyor, thus firing TO10. This results in

another token in PO12 (Figure 9.3).

Figure 9.3 shows the Petri-net elements that monitor the assessment of the parts
flowing on the output conveyor. In order to ease the monitoring task, due to faulty

events at the assembly area (Section 9.2), pegs and rings will result in tokens in a
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common place (P012). A part arriving at the capacitive sensing area will fire TO16,
removing a token from P0O12. A second token may be removed by T017, if enabled by

the capacitive sensor (DS10). A correctly assembled part will produce a token in P16
and another in PO17.

w
PO12
X
DS09 Capac
detect area r2o07
1
P04
DS10
PO13,
S09 TO7 Capac.
sensor
Po1S
TO018 DS10
To019
Pol6 P0O17
T020 T021
P18 Po19
T022 T023
P209 Po20
TO025

DS11 S
S11 n%&
Reject Y Reject 4
area TO026 area T027
Reject 4 Reject
actuator ——— poz4 Fozs area
$12 DS11 DS12 DS11
‘; “ E E T30 y E TO31 y rl; E
T028 |Reject T029 | Failed Wrongly Good
reject reject
(Figure 9.4) E @(Figure 9.4)
Y ‘5
P026 . 27
DS11 Reject DS11 PO
— '—
T032 T033

Figure 9.3: Rig operation Petri-net — assembly and checking.
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Considering that a token in P014 will be removed by T017 firing, a “good” part
results in T021 being fired, while a “faulty” part will fire T020. Transitions
T022/T023 and T024/T025 were required to implement an “output queue”. The firing
of T026 indicates a faulty part arriving at the reject area, thus providing two
hypotheses: refusing the part (T028) or failing to refuse (T029). A well-assembled
part will imply in T027 being fired and again leading to two hypotheses: correctly
accepting a good part (T031) or wrongly rejecting it (T030).

This relatively simple assembly process is revealed by the above analysis to in fact be
rather complicated. Conventional control systems, such as the PLC used to manage
this activity, struggle to cope with the variations possible. One of the significant
benefits of the monitoring approach developed by this research is the ability of the

deployed system to be able to accurately follow the process.

The four transitions (T028, T029, T030 and T031) were enabled to transmit a record
when fired, thus allowing the monitoring of the number of good, faulty, rejected and
wrongly rejected parts. This illustrates the potential that exists within the system to
provide simple, accurate and user-friendly information. These “pseudo-transitions”

can be created to mimic the operation of the system as required.

Figure 9.4: Output transition to alarm excessive wrong rejects.
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The firing of transition T030 and T031 generates further tokens employed in a Petri-
net branch implemented to control the excessive number of “wrongly rejected” parts.
This is shown in Figure 9.4. The implementation considers that if a sequence of 3 (4
in the worse case) wrongly rejected parts are detected, transition T035 will fire,
consequently resulting in the “output transition” T037 being fired and an output
indicating that this fault sequence has arisen may be provided. This is important since
a sequence of wrongly rejected parts may indicate that the Rig’s control system has
lost synchronisation. A real-time local alarm, such as is provided here, would prevent

excessive waste.

P028/\Stop ped

@DS]S
Motor

on  T043

T062

Programmed
stop

@DSIS

T063

Figure 9.5: Stop and programmed stop implementation.
Four operating states were monitored by the Petri-net: unscheduled stop (P028),

programmed stop (P031), available (P030) and processing (P029). Figure 9.5 shows

the net branch implemented to monitor the states associated to P028 and P031. A
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“stopped” condition is detected when the conveyor motor is switched off (DS13), thus
firing TO38 and placing a token in P028. Place P219 also receives a token, enabling
T039 to fire. A “delay transition” T040 was included with the purpose of restarting
P028 every 60 seconds and thus transmitting a record to the database. The process
may be restarted and stopped while the delay is running. Transition TO61 was
therefore required to avoid multiple tokens in P219 and consequently unwanted cycles
being processed. A stop state may be ended by the motor switching on (T043) or by a
“programmed stop”, initiated by firing T062. A “programmed stop” is used to
simulate activities such as planned maintenance or repair, where some pre-determined
action is being undertaken. This is done by means of a sub-net signal (SN0OO1),
emulated from another CAN node (Development Kit). Transition T063 ends the

programmed stop by removing a token from P031 when the motor switches on.

The other two possible operating conditions, “processing” (P029) and “available”
(P030) were implemented in the Petri-net branch shown in Figure 9.6. A common
characteristic of these states is that the motor (DS13) must be on. Thus, T050 and
TO58 are required to clear these places when the motor is switched off. For
simplification reasons, it was assumed that the Rig is in the “processing” state when
there are at least one peg and one ring in each queue (after sorting). This condition
will be provided by T006 and T007 (Figure 9.2) and will result in T045 being fired.
Transitions T046/T052 ensure that rings that were reprocessed will not be considered.
Similarly, T044/T051 will remove from the queue pegs that do not have a matching
ring. The components that were already assigned to their pairs will be held in P029. A
process stop will move these tokens back to P226, representing a memory feature.
Through TO057, the condition can change from “available” to “processing”. The
implementation hierarchy will ensure that as long as there are tokens in P029
(processing), TO55 will not be enabled to fire. Such state change only happens after

the last available pair (peg and ring) crosses the beam sensor (DS08).

The different states resulting from the operation of the Conveyor Rig represent an
added level of complexity for the modelling task. However, the flexibility represented
by the Petri-net approach enables such an implementation, although requiring some
engineering effort. It required 77 places, 62 transitions and (by choice) one sub-net.

Two digital input cards were deployed to interface the 13 process signals. The text
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files required for this Petri-net implementation can be found listed in Appendix B
(B.17 [4, 5, 6]). The next section will consider the use of these monitoring events to

produce and manage process and performance information.

etal Plastic
detect detect

P225

Motor DS13
off

TO50

Inductive

TOS7

Figure 9.6: Available and processing operating states Petri-net.

9.4 — Monitoring Results

In order to present the results of the monitoring task, the web page approach
introduced in Chapter 8 was again employed. This allowed the provision of online

information from the process. A first example is shown in Figure 9.7, where a list of
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the latest events recorded by the monitoring system are displayed. The first record
(TO30 — Wrongly rejected) shows that transition T030 in Figure 9.3 was fired,
indicating that the manufacturing system made a wrong decision, rejecting a good
part. The Monitoring System was capable of detecting such a mistake. The record
could be further used to provide process statistics or to request intervention (based on
other management applications). A timeout at P01l revealed that a ring was
positioned in the assembly area longer than usual, suggesting that components might

have been loaded in an irregular sequence (more rings than pegs).

ConveyorEvents
lDescziption lTimeRecoxd lEventRecord ]
T030 - Wrongly rejected 2003-08-21T13:46:57
PO11 - Excessive wait time in ass¢{2003-08-21T13:44:21 16
TO35 - Excessive good parts rejec|2003-08-21T13:42:51
T029 - Failed to reject 2003-08-21T'13:41:26
TOO9 - Plastic ring reprocess 2003-08-21T13:05:33

Figure 9.7: Conveyor rig monitored events displayed on a web page.

As previously described, a control mechanism was modelled to detect an excessive
number of wrongly rejected parts (Figure 9.4). The record “T035 — Excessive good
parts rejected” in Figure 9.7 is an example of such event, meaning that at least 3 well
assembled parts were continuously rejected by the Conveyor Rig control system and
that such mistake was caught by the Monitoring System. A consequence of T035
firing would be the “output transition” T037 (Figure 9.4) producing a local alarm.
This reinforces the modelling flexibility allowed by Petri-nets. In a similar way, T029
(Figure 9.3) was deployed to monitor unassembled parts (poor quality) missed by the
Conveyor Rig control system. Such an event is show in Figure 9.7 by means of the
record “T029 — Failed to Reject”. Finally, the last record shown in Figure 9.7
indicates that a plastic ring could not be queued (reprocessed). This was provided by
transition TO09 (Figure 9.2), which monitors the number of plastic rings that were not
inserted in the queue due to lack of an empty slot. It can represent an important
management information, since rings were loaded in a higher number (compared with

pegs). This can affect process efficiency, since it may result in an irregular output.
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PIC-ConveyorOutput

9. 25 rings reprocessed
28:101 bad produced parts
29:3 bad accepted parts
30: 92 wrongly rejected parts

31: 902 well assembled parts

Figure 9.8: Conveyor Rig production statistics provided by the Monitoring
System and shown on the web page, indicating the number of “reprocessed
rings” (9), “bad parts output” (28), “bad accepted parts” (29), “wrongly
rejected” (30) and “well assembled parts” (31).

The records provided by the Petri-net transitions that monitored the Rig “production”
output (Figure 9.3) were employed to build a graph that can be displayed on the
IPMM web page, as shown in Figure 9.8. It can be seen that during the observation
time there were 25 reprocessed rings (T009), 101 parts rejected (T028), 3 bad parts
accepted (T029), 92 assembled parts wrongly rejected (T030) and 902 well-assembled
parts correctly accepted. This information was continuously updated on the web page,
in response to new records from the monitoring system. One interesting point here is
that a total of 95 parts (bad parts accepted and good parts rejected) were mis-managed
by the existing Rig controller (PLC) and that this, although easy to be observed by a
machine operator standing by, would remain undetected in the case of a fully
automated operation. This is a clear illustration of the advantages offered by the

deployment ofthe new system.
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PIC-ConveyorUsage

28: 5054 sec, stopped
29: 4051 sec. available
[30: 5309 sec, assembling

31: 489 sec, program, stop

Figure 9.9: Conveyor Rig utilisation provided by the Monitoring System and
shown on the web page, indicating how long (in seconds) the process remained
“stopped” (28), “available” (29), “processing/assembling” (30) and in a

“programmed stop” (31) state.

Information related to the Rig’s utilisation was provided by places P028, P029, P030
and P031 (Figure 9.5 and Figures 9.6). The graph shown in Figure 9.9 represents an
example ofthe presentation of such information. It can be seen that for a total of 5054
seconds the process remained stopped (P028), 4051 seconds were expended running
the process without assembling components (P029), 5309 seconds were effectively
dedicated to assembling loaded components (P030) and 489 seconds were used by
programmed stoppages (P031). The information displayed was obtained by means of
a simple SQL statement that totalised each individual group and was called using the
IPMM’s web page based approach. Such simplicity is a result of the way in which the

Monitoring System provides the monitoring records.
The results shown might be further employed to assess the process in terms of OEE.

The bases of such assessment are availability, performance efficiency and quality

rates (OEE = Availability x Performance x Quality Rate) [9.1]. Just as an example
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that assumed some simplifications due to the nature of the experiment, a database
procedure was used to calculate these parameters, considering a period represented by
the time elapsed during the actual date. The procedure that implemented these

calculations can be found in Appendix B (B.15).

Availability is defined as the relation between the total available time and the process

down time (breakdown and set up), as it follows:

Availability = (TotalTime — DownTime) / Total Time (eq. 9.1)

In the example here proposed, this parameter was obtained from the records provided
by places P028 (stopped), P029 (available) and P030 (assembling). Programmed
stoppages, recorded by P031 were excluded, since it was assumed that they represent
previously known conditions and thus should not be considered in the calculation of

the process availability. Therefore, in this example availability was obtained as:

Availability = (Tro29 + Tpo3o) / (Tpozs + Tro29 + Tpo30) (eq. 9.2)

Performance efficiency considers in its definition the ideal cycle time to produce a
part, the operating time (without down time) and the total output (good and defective

parts). In simple terms, it is represented as follows:

Performance = (IdealCycleTime x NumberOfOutputs) / OperatingTime (eq 9.3)

Considering the purpose of this example, to show the variety of information produced
by the Monitoring System and its use, some simplifications were made. It was
assumed that the ideal cycle is the one associated with the beginning/ending records
produced by place P030 (assembling), effectively the time consumed to produce the
total output (IdealCycle = Tpg3o / TotalOutput). Thus, performance was here obtained

as it follows:

Performance = Tpo3o / (Tpo29 + Tpo30) (eq.9.4)
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Quality rate is defined as the relation between the total produced and the defective

parts that resulted of the process operation and is represented as it follows:
Quality Rate = (TotalOutput — NumberOfDefects) / TotalOutput (eq 9.5)

The records produced by the Monitoring System enable to easily obtain such
parameters. In this particular example, the number of good parts produced is
automatically obtained from the records provided by transition TO31. Similarly, the
defective parts can be obtained from the records produced by T028 (bad parts), T029
(bad accepted) and T030 (wrongly rejected). As a result, the quality rate of the

Conveyor Rig was calculated as it follows:

Quality Rate = To31 / (Tro28 + To29 + Tro30 + T1031) (eq. 9.6)

Process OEE (%)

[ProcessID __|actualoEE [BestOEE ]

—— —

[ConvevorRig |32.37 l60.68 |

Figure 9.10: Conveyor Rig OEE parameter shown on a web page.

An example of the OEE information displayed on the web page is shown in Figure
9.10. Figure 9.11 shows a comparison between OEE measurements obtained at
different periods, considering all individual components of the calculation. Since
aimed to illustrate the use of the system, the calculation was based on a period of 24
hours, starting at midnight. It must be considered that in a real manufacturing
application further information will be probably required. However, it can be seen that
the records provided by the Monitoring System can ease considerably such task and

help to provide important management parameters.
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OEE Comparison (%)

h'heDate lAvai]aleitv h’exfomance bu.alRate bEE ]
00301124 ho.12 B7.53 53 04 1623

00302104 132 2.74 592 20 16.28

00302116 B3.60 ) 02 .02 D277

R003/02/17 B3.03 12.29 76 61 7.82

D003/02/19 884 51 69 b0.90 D2.95

2003/02/20 9 82 50.72 2 81 3935

2003/02/21 P] 48 63.51 51 64 30.01

Figure 9.11: Conveyor Rig OEE comparison, considering individual components

of the calculation.

9.5 — Summary

In this chapter it was illustrated the use of the System to monitor an automated
manufacturing process, based on a laboratory equipment. A dynamic illustration of
this example is referenced in Appendix B (B.18 [12]). The example required a high
level of flexibility from the modelling approach in order to correctly model all the
complexity represented by the application and thus making it possible to detect
misjudgements (actions) performed by the equipment’s controller. Also, the use of a
sub-net approach was introduced. In using the System’s available resources, time
measurements of process specific operating states were obtained and thus showed the
capability of the System in helping to provide management information that would be

praised in many manufacturing environments.

Although the examples so far presented were based on the use of laboratory
equipment, they served to illustrate the modelling approach and the System’s
monitoring resources. The next chapter will present the use of the Monitoring System
to monitor a tool changer of a CNC machine centre, thus illustrating a real

manufacturing application.
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CHAPTER 10

TOOL CHANGER MONITORING TASK

10.1 — Introduction

Two monitoring tasks, using laboratory rigs, were presented in the previous chapters.
These examples were presented to demonstrate the flexibility of the Petri-net based
monitoring method in modelling an application and its capability in providing online
information. This chapter will present the use of the Monitoring System in a real

manufacturing application.

In a previous investigation [10.1], it was shown that CNC machine centres were
affected by a number of disturbances that were originated by peripheral actions, with
the highest indices related to the tool changer. It is apparent that by monitoring the
sequence of events related with the operation of such devices, faults may be detected
and thus the downtime due to this sort of disturbance reduced. It should also be
possible to provide statistics based on the number of operations, helping to enhance
process efficiency. It was also intended that an indication of individual tool utilisation
and usage might be provided as an important input into a planned tool-life assessment

system.

The example provided in this chapter will illustrate the use of the Petri-net modelling
approach to monitor the operation of a tool changer of a milling machine, thus
enabling a demonstration of how the Petri-net based monitoring system is able to help

in achieving such benefits.

10.2 — Operation Description

The complex and engineered operations performed by a CNC machine require a set of

tools with different shapes and sizes. To allow the automatic selection of these tools,
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from within the CNC cutting program commands, an automated tool changer is

required. Figure 10.1 shows the main elements of a tool changer that can be involved

in such an operation.

1- Tool changer 4 - Clamped tool
2 - Carrousel 5- Tool magazine
3 - Spindle 6 - Z axis direction

Figure 10.1: Details related with tool changing operation.

Referring to the details indicated in Figure 10.1, to perform a tool changing operation,
the spindle unit (3), which is located on the “Z axis” (6), is required to be at “zero
speed” (stopped) and in the “up position” (home). The spindle must be “orientated”
(i.e. at zero degrees), in order to align the clamped tool (4) with the holder in the tool

magazine (5). Once these conditions are satisfied, the tool changer unit (1) will be
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moved forward, from the home (far left) to the front (changing) position. Once
engaged in the magazine holder, the tool will be ejected from the spindle. An air
blow-out jet based function is then activated to remove dust and residuals that may
tend to settle inside the clamping cavity. The whole tool changer unit will then be
moved down and the carrousel (2) rotated to position the tool requested in the CNC
program. Following the initial locating of the tool in the spindle, the tool changer will
be moved upwards, effectively engaging the selected tool in the spindle. The tool will
be clamped, the air blow-out stopped and tool changer unit moved back to its home
position. After this sequence, the machine will be ready to start the cutting operation.
When requested for the first time, a search operation is performed to reference (or
index) the carrousel to the tool number 1 (carrousel home position). The sequence of
operations here described can also be performed by manual command from the

machine’s controller panel.

10.2.1 — Component Description

This work was based on a Kondia machine tool, model BSOOP. This description will
only concentrate on the parts of the machine tool changer and their operation that are
of specific interest and the subject of the proposed monitoring task. This machine is
fitted with a GE-Fanuc Series O-M CNC controller, which allows automatic
(program) or manual control of the machine operation. This specific machine tool

changer magazine holds up to 18 tools.

In order to manage the sequence of events previously described, several sensors and
specific signal commands are required. A pneumatic system provides the tool
changer’s horizontal movement. This is controlled by a “feed forward” command.
Two of the deployed sensors will detect the “back™ (home) and “front” (changing)
position. A similar system manages the vertical movement, with sensors to detect the

“up” and “down” position.

The carrousel operation is controlled by a pair of signals: the rotate command and
rotating direction. A sensor was provided to detect the initial (indexed) position. To
position a new selected tool the entire set of tools is moved around until it reaches the

tool-changing operation position. A single sensor is used to implement a counting
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approach, generating a pulse each time a tool crosses the changing position. The
controller identifies the tool by counting the number of pulses relative the index (tool
1), taking into account the position where it is located before starting to rotate. The
shortest way to reach the new tool will be selected, an operation requiring incremental
and decrementing counting. A third sensor exists to detect whether or not a tool is

placed in the holder, when it is aligned with the carrousel changing position.

The tool changing operation will take place once the spindle is correctly positioned
and orientated. A sensor indicates that the “Z axis” is in the required changing
position. Further sensors detect when the tool is unclamped and clamped. Controller
commands provide signals for the “spindle orientation” (zero degree), “zero speed”

and “blow-out”.

The spindle rotation is provided by an AC motor, controlled by a servo device. The
maximum cutting speed delivered is of 6000 rpm. Two analogue outputs (0 ~ 10 V)

provide speed information and motor’s load current.

10.2.2 — Monitoring Task Analysis

The monitoring application considered the use of the existing process signals. Table

10.1 summarises the signals that were accessed for this implementation.

The Petri-net model was to be designed to follow the events related to the tool
changing operation, therefore providing real-time information to allow a fast recovery
in case of operational faults. In addition, in order to provide statistics related to the
tool usage, the implementation was also enhanced to provide a mean of indicating
how long each tool was effectively used. Similar functionality is provided by some
machine tool centres within the machine’s controller. However, by exploring the
Monitoring System’s capabilities, the potential for the development of the system into
one capable of better managing tool utilisation was further improved. This
improvement was based upon using the spindle driver analogue signals, the motor
load current and cutting speed parameters, which were used to provide more accurate
information about the cutting process being performed by the current cutting tool.

Considering such information can be made available via a database, further
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manipulation and integration within production management systems might help to

improve quality and perhaps productivity.

Table 10.1: Tool changing operation signals description.

Description Signal Source  State
1 Carrousel ON / OFF - command Relay On-0V
2 Carrousel rotate clockwise - command Relay On-0V
3 Carrousel rotate counter clockwise - command Relay On-24V
4 Carrousel feed forward - command Relay On-0V
5 Carrousel down - command Relay On-0V
6 Unlock tool — command Relay On-0V
7 Spindle orientation — command (pulse) Controller output On-24V
8 Spindle zero speed — command Controller output On-24V
9 Spindle blow-out - command Relay On-0V
10  Carrousel indexed Proximity sensor On-24V
11 Tool counter Proximity sensor On-24V
12 Carrousel is forward (changing position) Proximity sensor On-24V
13 Carrousel is back (home position) Proximity sensor On-24V
14  Carrousel is up Proximity sensor On-24V
15 Carrousel is down Proximity sensor On - 24V
16 Tool in carrousel — changing position Proximity sensor On - 24V
17  'T'ool is clamped Switch On-24V
18 Tool is unclamped Switch On-24V
19 Z axis at changing position Proximity sensor On-24V
20  Spindle motor load current Analogue 0~10V
21  Spindle rotating speed Analogue 0~10V

10.3 — Tool Changing Petri-net

The Petri-net was designed to monitor the tool changing operations and provide the
tool usage parameters. Table 10.2 shows the definitions employed in the
implementation. In considering the way the tool changing operation is carried out, the

Petri-net was divided in four branches, related to each other:

1) Tool selection and cutting process monitoring (Figure 10.2);
2) Z axis positioning and spindle orientation (Figure 10.3);
3) Tool changer horizontal movement (Figure 10.4);

4) Tool changing operation (Figure 10.5).
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Table 10.2: Tool changing Petri-net’s definitions.

Representation  Description

DS 01 Carrousel ON /OFF

DS 02 Carrousel indexed

DS 03 Tool counter

DS 04 Carrousel rotating direction
DS 05 Carrousel is back

DS 06 Spindle zero speed

DS 07 Spindle orientation command
DS 08 Z axis changing position
DS 09 Carrousel feed forward

DS 10 Carrousel is forward

DS 11 Tool in carrousel sensing
DS 12 Carrousel is up

DS 13 Carrousel is down

DS14 Tool unclamped

DS15 Tool clamped

DS16 Spindle blow-out

ANO1 Spindle motor current
ANO02 Spindle rotating speed

P201 - P218 Cutting state — tools 1 to 18
P100 Last timed out place

10.3.1 — Tool Selection and Cutting Process Monitoring

This initial section considers the selection of the tool that is to be inserted into the
machine and its subsequent usage. The beginning of the Petri-net execution is shown
in Figure 10.2. Transition TO01 will be fired if the tool changer is at the home position
(DS05) and the carrousel stopped (DS01). Following this, the Petri-net needs to
synchronise with the carrousel index position, in order to identify the tools correctly.
This is achieved by means of transition T002. The signal generated by the carrousel
home (index) sensor (DS02), together with an active indication provided by the tool
count sensor (DS03), will mean that tool number 1 is synchronised, thus resulting in a
token in place P101. The firing of T002 will also enable the other Petri-net branches
(changer movement, Z axis positioning and changing operation), thus synchronising

the entire monitoring task.

In order to position a selected tool for changing, the carrousel is turned either
clockwise or counter-clockwise. This operation requires two signals: the carrousel

command (DS01) and the rotating direction setting (DS04). The tool counting sensor
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(Figure 103) (Figure 10.5)

B (Figure 10.4)
(Figure 10.5) P127

L DSI4®

T093

Tooln

"n" - tools from 3 to 17

Tnl
DS03
@DSM DS04,
TnS
Pnd4

DS03 l PS03
@ ' i Tool 18

ANO1

! T187

030V
y TOOL18
P218 7\ CUTTING

DS14 ANO1 G

T186 T1ss O30V
Ef] P045

DS01 - carrousel ON/OFF (command)
DS02 - carrousel home (indexed)

DS03 DS03 - tool counter (proximity sensor)
| DS04 - carrousel orientation (command)
— T190 DSOS - tool changer home position (back)

DS06 - spindle zero speed (command)

DS10 - carrousel front position (proximity sensor)
DS14 - tool unclamped (switch)

AN@1- spindle current logue 0 ~ 10 V)

Figure 10.2: Tool selection and usage Petri-net diagram.
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(DS03) becoming inactive (off) indicates that the carrousel is moving between two
adjacent tools. In Figure 10.2, assuming that “tool 1” is the actual position
(represented by a token in P101), this movement is followed in the Petri-net by the
firing of either TO03 (clockwise) or T064 (counter-clockwise). A token in P00l
indicates that the carrousel is moving towards tool number 2, while a token in P045
indicates that the movement is in the direction of tool number 18. The next tool
position (2 or 18) will be detected when the DS03 (tool count) sensor becomes active
(on), which results in T004 or T191 being fired. The carrousel may stop or carry on
moving, depending upon which tool is being positioned. The representation of this
operation, in terms of the Petri-net, is similar for all tools. Thus, for simplification
reasons, Figure 10.2 provides specific representation for tool’s 1, 2 and 18 and shows
a generic model “n” for all the remaining ones (3 to 17). Table 10.3 provides a
reference for the Petri-net places and transitions represented by the generic element

tool “n”.

Table 10.3: Reference to generic element “n” in Figure 10.2.

Generic Element Associated Petri-net elements (Tool-3, ...., Tool-17)

Tnl T061, T059, TOS7, T055, T053, TO51, T049, T047, T045, T043, T041, T039,
: T037, T035, T173.
Tn2 T006, T008, TO10, TO12, TO14, TO16, TO18, T020, T022, T024, T026, T028,
T030, T032, T170.
Tn3 T096, T101, T106, T111, T116, T121, T126, T131, T136, T141, T146, T151,
T156, T161, T174.
Tn4 T099, T104, T109, T114, T119, T124, T129, T134, T139, T144, T149, T154,
T159, T164, T177.
TnS T060, T058, T0S56, T054, T052, T0S0, T048, T046, T044, T042, T040, T038,
T036, T034, T172.
Tné T007, TO09, TO11, TO13, TO1S, TO17, TO19, T021, T023, T025, T027, T029,
T031, T033, T171.
Tn7 T098, T103, T108, T113, T118, T123, T128, T133, T138, T143, T148, T153,
T158, T163, T176.
Tn8 T100, T105, T110, T115, T120, T125, T130, T135, T140, T145, T150, T155,
T160, T165, T178.
Pnl P103, P104, P105, P106, P107, P108, P109, P110, PO11, P112, P113, P114,
P115, P116, P170.
Pn2 P133, P135, P137, P139, P141, P143, P145, P147, P149, P151, P153, P155,
P157, P159, P161.
Pn3 P203, P204, P205, P206, P207, P208, P209, P210, P211, P212, P213, P214,
P215, P216, P217.
Pn4 P029, P028, P027, P026, P025, P024, P023, P022, P021, P020, P19, PO1S,
P017, P016, P046.
Pns P003, P004, PO0S, P06, POO7, PO0S, PO09, PO10, PO11, PO12, PO13, PO14,

PO15, P042, P048.
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The sequence of places 201 to 218 is used to represent the tools, respectively from
number 1 to 18, when they are in their respective cutting state (begin / end records).
Once a tool is positioned and the tool changing operation has been executed, place
P127 receives a token indicating that the tool is engaged in the spindle. Assuming that
a generic tool “n” was positioned (token in Pnl) and the changing operation carried
out (token in P127), transition Tn3 would be fired, resulting in a token in Pn2, thus

indicating that the tool is ready for use.

The analogue input 1 is representative of the spindle motor current. It was determined
by observation that, although variation obviously occurred accordingly the cutting
speed, the analogue level representing this current was normally bellow 0.3 V during
what can be called the idle state (i.e. when the cutter is rotating without cutting). This
was therefore taken as the threshold to detect the onset of cutting and then to represent
the fact that the cutter was actually cutting. Two “analogue transitions” for each tool
were employed to detect the beginning (Tn4) and the end (Tn8) of the cutting state.
Place Pn2 will retain the token if the tool is not cutting. This is an important
development that will be discussed in detail later. At this point it is worth noting
however that it would be possible, in theory, to set a series of thresholds that could be
used to represent just how much cutting the cutter is actually doing. This information
could then be used as the basis for a more accurate representation of tool usage than is

currently available.

A new tool changing operation will result in the tool changer reaching the front
position (DS10) and in the tool being unclamped (DS14), thus firing Tn7 and
returning the token to Pnl. In doing so, the tool position is memorised and the
following tool selection will be monitored considering the previously engaged tool.
The places representing the cutting state (P201 to P218) were also used to trigger the

acquisition of the analogue input channel 2, related to the cutting speed.

10.3.2 — Z Axis Positioning and Spindle Orientation

The first action in the tool changing operation is positioning the “Z axis” and
performing the spindle orientation. The Petri-net branch in Figure 10.3 shows the

monitoring sequence of this operation. Place 119 retains an initialisation token
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provided by T002 (Figure 10.2). To allow a tool changing operation to take place, a
sequence of events related to the machine’s spindle axis will be required. Initially, the
spindle must be stopped, a condition indicated by the “zero speed” command (DS06),
resulting in T065 being fired and P121 receiving a token. The next event would be the
“Z axis” moving to the changing position, recorded by T066 being fired and P122
receiving the token. In the next step, the spindle will be orientated (to zero degrees), a
condition detected by DS07. After this sequence of events, the spindle will be in the
“changing state” (P031). The spindle rotating again will indicate the end of this state.
Transitions T067 and T069 were provided, considering that for any unpredictable
reason (e.g. a manual operation), the spindle starts to rotate before a entire tool
changing sequence related to the “Z axis” was completed. In case of such an event,
the token will be returned to P119 by means of these transitions, maintaining the

Petri-net synchronisation.

Spindle stopped

Axis positioned

DS06

TO069

DS06 - spindle zero speed
DS07 - spindle orientation position
DS08 - Z axis change position

Figure 10.3: Z-axis and spindle positioning Petri-net.
10.3.3 — Tool Changer Horizontal Movement
Once the “Z axis” has been positioned the tool changer will be moved towards the

changing position. Figure 10.4 shows the Petri-net branch that monitors this sequence

of events. At initialisation (Figure 10.2, T002), P120 will receive a token. The
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detection of the tool changer at its “home position” (DS05) will fire T071 and result in
a token in P124. The “feed forward” command (DS09) will lead to a new state, “move
forward” (P032), which should be immediately followed by T073 being fired to
indicate that the tool changer has moved away from the home position (DS05). A
timeout event related to P032 would indicate a fault condition (changer is not
moving). The state represented by P033 indicates that the tool changer is on its way.
This state will be ended by the changer reaching the “front position” (T074, DS10).
Place P125 represents the tool changing operation, which will be ended with the tool
changer leaving the “front position” (T075, DS10) and returning to the home position
(T071, DS0S).

DSOS - carrousel home position
DS09 - carrousel feed forward
DS10 - carrousel forward position

Forward commanded

Moving forward

Front position

Moving back

Figure 10.4: Tool changer horizontal movement monitoring.
10.3.4 — Tool Changing Operation

The last of the Petri-net’s branches relates to the tool changing operation that actually

changes the tool in the spindle, as shown in Figure 10.5. The branch is enabled by a
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token in P118. Three conditions are required in order to enter the tool changing
sequence: Z axis at the ‘“changing position” (DS08), tool changer at the “front
position” (DS10) and the carrousel must be “up” (DS12). The next event will be the
unclamping of the engaged tool (T079, DS14). The carrousel should start to move
away from the “up position” (T080, DS12), removing the actual tool from the spindle.
The “moving down” state is represented by P037, which will be finished when the
“down position” (DS13) is reached, firing TO81 and placing a token in P038. At this
point, the tool selection operation represented in the Petri-net branch shown
previously in Figure 10.2 will take place. Since the new tool was placed in the

changing position, the carrousel will leave the “down position” (DS13), firing T082.

There is a possibility that the new selected position in the carrousel might be empty,
resulting in a wrong tool usage parameter (Figure 10.2). This condition is detected by
the “tool positioned” proximity sensor (DS11). A level of complexity arises due to the
fact that this signal must be verified before the carrousel reaches the “up position”,
since the proximity to the spindle might induce a false “tool in place” indication. It
was also observed that the tool changer starts to move up before the carrousel has
completely stopped rotating, meaning that an empty position might be sensed, even if
a tool is in place. The solution was to use a “delay transition” structure (T192) to
introduce a delay (500 ms) between the carrousel leaving the low position (T082) and
the tool sensing signal being checked (T078 and T077).

The existence of a tool (T077) will result in a token placed in P127 (Figure 10.2),
enabling the tool usage to be monitored. This token will be generated after the tool
was clamped (T167, DS15). If there is not a tool placed in the new selected position
(T078), P127 will not receive the token. Place P039 was employed as a “joined” place
to enable the next events to be monitored, whatever the “tool positioned” signal
checking result was. Transition T083 will be fired by the tool changer reaching the
“up position” (DS12). The next event would be the air blow-out (DS16) being stopped
(T166) and the tool being clamped (T084, DS15), even if there is not a tool in place.
Finally, the Petri-net branch in Figure 10.5 will monitor the tool changer returning to
the home position (DS0S5), replacing the token in P118 and thus enabling the next

cycle to be monitored.
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Beginning

Tool unclam ped

P037
Moving down .

(Figure 10.2)

DSO0S5 - carrousel home position
DSO08 - Z axis change position
DS10 - carrousel front position
DS11 - tool positioned

DS12 - carrousel up position
DS13 - carrousel down position
DS14 - tool unclamped

DS15 - tool clamped

DS16 - spindle blowout

Tool clam ped

P041

Changer is back

Figure 10.5: Tool changing operation Petri-net.

This Petri-net implementation needed, in order to monitor the entire set of 18 tools,
170 transitions and 104 places. Two digital input cards were required in order to

enable the 16 process digital signals to be interfaced. An analogue input (ANO1) was
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used to detect the cutting condition. A second analogue input (AN02) was used to
monitor the cutting speed. Places P201 to 218 were used to trigger the cutting speed
acquisition. The files describing the Petri-net definition can be found in Appendix B

(B.17 [7, 8 and 9]). The monitoring results will be presented in the following section.

10.4 — Monitoring Results

The records provided by the Monitoring System were analysed and presented using
the IPMM web page based approach. One of such examples is shown in Figure 10.6.
In this case, a database procedure was implemented to retrieve records of interest
from the system’s database tables, before organising and describing them in a way
that they could help users / operators to follow the operations that were performed by

the machine.

Cutting Events

Description [TimeRecord [EventRecord |

Blowout delayed 2003-03-12T14:09:34 64
Z-axis ready for tool change operz2003-03-12T14:08:42
Carrousel is at back position 2003-03-12T14:08:31

Slowr moving up 2003-03-12T14:08:23 8
Slowr tool changing operation - £ 3[2003-03-12T13:57:16 128
Carrousel indexed at TOOL 1 2003-03-12T13:11:23

Slow unclamp operation - check a{2003-03-06T10:47:19 256
Slow response to feed forward - ch{2003-03-06T10:42:51 654
Spindle stopped 2003-03-06T10:26:14

Carrousel is forward at change pos|2003-03-06T10:25:10

Figure 10.6: Machine operation events monitored by the system.

One of the main objectives of the Petri-net implementations was to monitor the usage
of the cutting tools. Figure 10.7 shows the results of such an observation. Recalling
Section 10.3.1, the states of the tools in use are represented by places P201 to P218
(one for each of the 18 tools). Thus, Figure 10.7 graphically indicates that during this
test tool number 2 (202) was in use for a total of 98 seconds, number 4 (204) for 21

seconds and number 7 (207) for 248 seconds.
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Cutting Tool Use (s)

Tool 2 (202) = 98 sec.
Tool 4 (204) = 21 sec.
T0O01 7 (207) = 248 sec.

207:248

Figure 10.7: Usage parameter of tools 2, 4 and 7 (in seconds).

CuttingTool

IToolNum ITo‘lal min IAvg pm
2 163 1341 .94
4 035 1283.34
7 4.13 2320.56

Figure 10.8: Tool cutting information in terms of total usage and average speed.

The tool usage information was combined with the measurement of the cutting speed,
to produce the online information shown in Figure 10.8. It shows the total use of each
tool (in minutes), together with the average cutting speed (in rpm). The acquisition of
the cutting speed was triggered by the places representing the tools cutting states
(P201 to P208). After each cutting cycle, the measured speed was converted in an
average parameter by the Monitoring Module and stored in the system’s database
tables. Further calculations were performed using SQL statements, in order to obtain

the displayed information.
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Condition monitoring of cutting tools has been exhaustively investigated and one of
the main difficulties reported were the dynamics associated to the process (Chapter 3).
Although not concentrating on specific cutting tool condition monitoring techniques,
the features provided by this Monitoring System can help in providing additional

information to improve the accuracy of cutting tool assessment.

A parameter of interest in such process, to maintenance engineers for example, might
be the time required for each tool changing operation. By enabling place P125 (Figure
10.4) to transmit records to the database indicating the beginning and end of this
operation, such parameter could be obtained, as shown in Figure 10.9. In this
example, each tool operation recorded is shown associated with the respective
timestamp and duration. The example shows the flexibility of the Monitoring System

in producing different information.

ToolChangeOperation

[Chamze [Seconds 1

2003-03-12T14:08:11
2003-03-12T14:06.06
2003-03-12T14:05:45
2003-03-12T14:04.05
2003-03-12T14:03:45
2003-03-12T14:02:36
2003-03-12T14.02:19
2003-03-12T14:00:48
2003-03-12T14:00:186
2003-03-12T13:53:47
2003-03-12T13:47:11
2003-03-12T13:15:59
2003-03-12T13:11:18
2003-03-06T10:52:2¢9
2003-03-06T10:50:35
2003-03-06T10:48:46

28]
(=)

mnjojnnia|lalalalali &SRS

28]
o

Figure 10.9: Tool changing recorded time.
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10.5 — Summary

In this chapter a final example illustrating the use of the monitoring system that
resulted from this research was presented. An important component of the cutting
process, the tool changer, was monitored in order to enable the associated operation
events to be recorded. Additionally the cutting tools usage was also monitored to

provide detailed information that can help in the assessment of the tools condition.

Although basic examples were employed to illustrate the use of the Monitoring
System, they have helped to show the capability and flexibility provided by the Petri-
net approach implemented here. The hardware architecture enabled an easy
deployment and the use of the adequate resources at the right level. Although
microcontrollers are becoming extremely powerful, there still are many parts in the
processing hierarchy that are easier to implement and better performed at higher
levels. Such discussion will be provided in the next chapter, considering the
capabilities and limitations associated with the implementation of the model here

proposed.
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CHAPTER 11

DISCUSSION

11.1 — Introduction

The current generation of monitoring systems in general and especially of condition
monitoring systems has benefited from recent developments in computer based
technologies. Faster PCs with ever increasing resources, specific data acquisition
hardware and a new generation of software tools for system integration and signal
analysis have helped to reduce the complexity of developing monitoring
infrastructures, allowing researchers to concentrate on the analysis aspects. However,
the question that remains to be answered is how practical such implementations can

be, particularly when they are deployed in large scale applications.

A number of researchers, including those reviewed in Chapter 3, have been
investigating monitoring technology. In the particular area of condition monitoring
these investigations have concentrated mainly on the physical phenomena and signal
analysis, in order to provide the means to assess the state of the process and asset’s
operating conditions. Earlier, in Chapter 2, considerations were made with respect to
the applicability of monitoring systems, with special emphasis on cost, deployment

and data integration.

The use of these technologies in manufacturing plant monitoring applications has
raised questions related to accessibility and data integration. This led to the
proposition of models, some of them considered in Chapter 3, concerned with the
implementation of monitoring systems, taking into consideration the development and

management aspects of such systems.

The Internet has established itself and can now be seen as a mature and well-
developed environment. It is thus becoming a vital part of an ever-increasing number

of system implementations. Such a trend has also been observed in the monitoring
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field, enabling the establishment of remote monitoring deployments which can benefit
from the facilities offered by a central database, high-cost analysis tools and human

expertise that this makes accessible.

The development of these network technologies has offered the prospect of the greater
use of condition monitoring. Associated with such developments a new generation of
smart and intelligent transducers have emerged, spreading the concept of distributed
systems in the automation field. As a result standards have been proposed concerned
either with industrial network aspects or guiding the development of this new
generation of transducers. Despite all these advances in terms of technology and
development, cost is still an issue to be tackled in order to stimulate the more
widespread use of monitoring systems. These aspects were considered in the conduct

of this research, as previously presented, and will be further discussed here.

11.2 — Implementation Aspects

The use of microcontrollers in this context, besides representing a low-cost
alternative, provides further benefits by enabling low-power consumption and less
installation requirements. In many cases, depending upon the plant complexity and on
the accessibility of the machine or its relevant parts, these represent important factors
for further consideration. However the use of microcontrollers in some cases may
result in limitations, in terms of resources and in the flexibility of the applications

developed.

11.2.1 — Hardware Considerations

The use of microcontrollers as part of a process monitoring system requires
considerable effort in both hardware and software development. The benefits that
should arise from such developments, especially in terms of cost, depend strongly on
the capability of the resulting implementation being easily adaptable to meet any

application requirements.
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PIC microcontrollers are a generation of devices that offer attractive cost, together
with a reasonable number of embedded programmable functions that are normally
required in most monitoring applications. An initial investigation showed that the
implementation of a system for general-purpose applications would need the highest
specification PIC devices in terms of data and programming memory. The PIC18
family represented an advance in such terms (compared with other PIC families) and
allowed the adoption of these devices as the basis for a general and low-cost
monitoring system. In assessing the suitability of a microcontroller to undertake
monitoring functions however there are a number of hardware related factors that
must be considered. One of such factors was to base the System’s implementation on

the microcontroller’s available resources, in particular the embedded data memory.

CLRF TRISD sport D as output

MOVLW MemAddrLsb ;least significant part of the memory address
MOVWF PORTD ;sLSB of address on the PIC’s data bus

BCF PORTB,LatchLsb slatch LSB of address

MOVLW MemAddrMsb ;most significant part of the memory address
BSF PORTB,LatchLsb sunselect LSB latch

MOVWF PORTD sMSB on PIC’s data bus

BCF PORTB,LatchMsb smemory device MSB address

NOP ;no operation to allow bus levels to be latched
BSF PORTB,LatchMsb sunselect MSB latch

SETF TRISD ;port D as input

BCF PORTB,MemRead ;set memory read signal

NOP ;delay to enable stable data on bus

MOVF PORTD,W,A ;read data byte

BSF PORTB,MemRead ;release memory device

Figure 11.1: Example of a sequence of instructions required to retrieve a data

byte from an external memory device.

It may be argued that memory should not be a constraint, since an externally added
device can be employed. In fact, such consideration is valid, but the use of external
devices must be properly assessed, in order to identify the effect that their use may
have on performance. Any operation involving the microcontroller’s file register (data

memory) will generally speaking be performed in one single instruction cycle. Such
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an operation could be retrieving, testing or altering the contents of a register. The
same operation, using an external memory device, would require a sequence of
instructions to be executed. The microcontroller’s port must be configured, the
memory address latched, the control line properly set and the data retrieved. If the
result of the operation is supposed to be returned to the memory, a similar sequence
must be carried out. Figure 11.1 shows a generic example, where 15 instruction cycles

would be required to retrieve a data byte from an external memory.

In terms of hardware, additional components would be required in order to create the
external buses. Such additional requirements, including the memory device, would

probably double the cost of the monitoring module.

11.2.2 — Local Communication

This work has developed Monitoring Modules that will reside within a process. As
such it needed the associated consideration of a communication method that was able

to manage the Module-to-Module and the “external world” communication.

Communication is already of extreme importance from the viewpoint of data
integration and assumes a special role in the system architecture proposed here. The
use of multiple Monitoring Modules may be considered to meet different purposes.
Cases may exist where a single Monitoring Module would not be powerful enough to
implement the monitoring task requirements. In other cases the process signal sources
might be dispersed within the process and may therefore be better handled by separate
modules. In these and in many other cases, networking seemed the best alternative,

considering the installation aspects and the technologies already available.

There is no widely accepted agreement as to the best networking technology currently
available in the automation field, although industrial networks may be assumed to
represent the best choice for such cases. There have been investigations that suggested
the use of Local Area Networks (LAN), which are widely employed to interconnect
PCs. These arguments are based on the fact that such networks have been very widely
used and are therefore sufficiently tested and that there is an existing infrastructure in

almost all application areas, therefore providing an alternative for the integration of
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monitoring / automation and management systems. Ethernet (and Internet protocols)
has been used to implement a distributed monitoring system [11.1]. However, it was
considered that it could represent a heavy demand in terms of processing requirements
for the distributed nodes. In an attempt to tackle these problems it was suggested in
[11.2] that such requirements might be minimised by employing modern network

switching technology, reducing the traffic handled by each specific node.

A sensible argument was presented by Thomas [11.3], who considered that
communication requirements are different at specific levels. His argument was that at
the sensor level very specific and focused messages (parameters measurements or
process variables), rather than large quantities of data, will be exchanged, thus
requiring “light” protocols (that do not require complex flow control and sequencing
methods). At the upper layer, where information is normally provided in a very
friendly format (including graphs), complex protocols might be required to provide a
reliable service. Such aspects were considered in this research, resulting in the

adoption of an industrial standard to interconnect the Monitoring Modules.

Recently, CAN bus has become popular in industrial applications. The main reasons
for this are the openness of the standard, the number of available suppliers and also
the reasonable simplicity of its implementation. In this particular research other
Justifications for the use of this networking method were the full compatibility with
the PIC family of microcontrollers and the application requirements. The event based
nature of the modelling method (and monitoring tasks) have found in the CAN
protocol an adequate networking approach, reducing the system’s management
requirements and simplifying the design. Since cost was a permanent concern during

the investigation, such aspects assumed a great relevance.

The message priority based approach of the CAN protocol contributed to the
simplifying of certain aspects of the implementation. For example the hardware-
enabled message filtering methods of the CAN controller reduce the amount of
communication related processing undertaken by each network node. In this respect
perhaps a concern related to CAN might be the size of the protocol’s data field (8
bytes). Although the monitoring records issued by the system were relatively short,

these normally exceed the maximum length and thus required more than one CAN
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frame. A level of complexity was introduced in order to manage such messages, since
it must be considered that more than one Monitoring Module might try to transmit
simultaneously. This was addressed by the implementation of an application layer,

together with a timeout mechanism.

It must be considered that a more appropriate approach might have been to use one of
the existing CAN application protocols [11.4]. Although feasible, this would require a
much greater development effort, which was not considered appropriate at this stage
of the research. Nevertheless, it must be recognised that the possible use of a standard
based application layer could result in some benefits. Existing CAN based
installations could be shared, enabling some improvement of the monitoring method
by employing data provided by “CAN enabled” transducers, already deployed. These

benefits would also potentially be reflected in cost savings.

Some aspects of the network implementation represented a higher level of
complexity, mainly due to the requirement for the SPI serial link to interface to the
CAN controller. The dynamics and asynchronous nature of the data communication
arising in a typical application may result in many events happening almost
simultaneously and unpredictably. The management of a communication peripheral
handling this over a serial link required a tight control of the associated events, to
prevent deadlock situations in which microcontroller and bus controller lose
synchronisation. Perhaps considering such complexity and also due to the growth in
the use of CAN, the industry has recently begun to release microcontrollers with
embedded CAN controllers. This is the case for the Microchip PIC18 family’s latest
devices, which allow researchers to envisage further enhancements to the proposed

Monitoring System.
The increased functionality is clearly yet another factor supporting the decision to

adopt CAN since it will ensure the relevance and compatibility of the developed

monitoring systems with current and future systems.
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11.2.3 — Remote Communication

In deploying these process-based monitoring devices it must be recognised that the
information they generate should be made as widely available as possible. Internet
connectivity is becoming part of all new generation systems and therefore presented a
natural way to integrate the monitoring results with other management applications.
Research has been conducted considering the integration of industrial networks with
the Internet. In [11.5] an approach was presented to enable remote management of
networked transducers using CAN buses. Although interconnection was considered at
different levels (even with the CAN nodes supporting the Internet TCP/IP set of
protocols), a gateway device with more or less software capabilities was always
required. In [11.6] a gateway, also acting as an Internet server to the industrial
network, was the solution proposed. Again this solution considered remote
management applications and utilised the Internet to retrieve control device

information and to perform their configuration.

In considering the characteristics of the proposed system (low-cost) and consequently
the resources available to each Monitoring Module, it was proposed that a single
connectivity node should be used. This would be capable of providing Internet
facilities (a requirement) to all Monitoring Modules deployed to the same monitoring
task. Here a simple option, such as a PC based implementation, could be considered.
However, in considering the low-cost aspect of the research, it seemed a good
opportunity to assess the capabilities of a microcontroller for this purpose. So ready-
to-use hardware (Microchip’s Internet development kit) with full Ethernet capability

was employed.

At this point some important considerations become necessary. The hardware design
of the Internet development kit, although representing a useful tool for the
understanding and testing of Internet based applications, lacked a very important
feature for real-time applications such as network communication: a network
controller interrupt capability. Interrupts become an important feature when trying to
avoid unnecessary processing which may arise due to frequent status requests being
directed towards the network processor. Rather than servicing the communication

controller on demand (i.e. matched events), the microcontroller must poll the
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communication device at regular intervals in order to detect any related event. It
should also be remembered that network requests have to be handled as fast as
possible, and that the microcontroller does not provide a huge memory buffer to

queue such requests.

A consideration here is that microcontrollers (such as PICs) might not be the best
alternative for such an implementation. They are not provided with an external
address and appropriate data buses, besides other specific control signals that are
common in microprocessors, to interface a general device such as a network controller
or additional memory. However, a good hardware design can improve this situation
considerably, as has been proven through some Internet implementations based on
microcontrollers that are becoming available of which the Tini® module may be the

most successful example [11.7].

The complexity of the challenge represented by the implementation of the Internet
protocols was considered as an argument for employing a programming environment
capable of naturally dealing with different data types and structures, apart from
enabling a structured program organisation. The availability of “C” programming
language compilers for PICs microcontrollers made it the natural choice for this
purpose. It is important when adopting such an approach to consider potential hurdles.
An investigation concerning the use of high-level programming tools with embedded
processors [11.8] indicated that a “performance penalty” might be expected. Such an
effect was observed to some extend in the implementation of the Connectivity
Module. The overhead introduced by the compiler in order to deal with a number of
different situations, such as microcontroller’s unsupported data types, affected the
application considerably. As a simple example, suppose an operation needed to add
two 16 bits (integer) variables and place the result in a third one. Although stated in a
single “C” programming line (Var_ A = Var B + Var C), this would require 14
instructions when compiled with Microchip C18® compiler. The same number, of
microcontroller instructions was produced by the FED Wiz-C® compiler (employed
in this work). Coding such an operation directly in PIC’s Assembler, it would be
possible to implement it with 6 instructions. This is strong evidence that the final
application requirements must be considered when making the choice of the

programming tools that will be employed.
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Consideration of such aspects also demanded an analysis of the real requirements of
the application in order to avoid unnecessary complexity. The presence of short data
records, asynchronous events and the single application characteristic of the
Connectivity Module seemed to be sufficient arguments upon which to support the
decision to base the entire record transmission process on the UDP protocol, rather
than opting for the complexity of TCP. Such an approach has been shown to be an
alternative in similar applications, where UDP was either employed as the only
transport protocol provided (as in this research) [11.9] or else used as a combined

method to reduce the use of TCP [11.2, 11.10].

Finally some consideration related to the implementation of the Connectivity Module
may be appropriate. From a practical perspective the simplicity and support provided
by a PC (computer) would probably represent the best alternative for the
implementation of a connectivity module. However, if a dedicated hardware is a
requirement (for reasons as the presented in this research), an appropriate design and
adequate support for high-level programming languages should be provided to ensure
that efficiency is not affected. On this basis, the PICDEM.net™ represented the right
choice for the investigation of the Connectivity Module in this research, but would not

be adequate for a final (commercial) application.

11.2.4 — Data Analysis and Integration

One of the fundamental issues related to monitoring systems is their capability of
providing relevant information. Database systems, together with Internet technologies,
can become an important part of any strategy to provide this information. The use of a
Management Application within this Monitoring System was proposed to meet this
function. Important aspects, such as DBMS access and data security, are normally
supported by a wide range of PC based development tools and standards. Interfacing
a DBMS directly from a microcontroller implementation was discussed in Chapter 7
(Section 7.4). The conclusion reached was that this would be a difficult and time-
consuming software engineering task, almost certainly requiring further hardware
resources. As a result, the low-cost features of this monitoring approach would be
affected, and the added effort would be made with no guarantee of it supporting a
long lasting solution (update difficulties, new DBMSs, etc).
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In the examples provided in the previous chapters, the web based approach was
employed to present the System monitoring results. This was not supposed to
represent a complete solution, but was simply to show how easy it becomes to
integrate the monitoring records, since they are made available at the right place and
in an appropriate format. A web-based server approach, where the monitoring
structure also integrates a front end could be employed. However in this case,
although they might be easy to implement, applications would be required to query
the remote monitoring system, in order to obtain the information of interest. A further
complication would be introduced, since the server should also be capable of keeping

arecord of past events, increasing complexity and cost.

The architecture proposed in the research was intended to establish a balance between
the levels of the Monitoring Systems in order to explore the best aspects at each
specific level. Near to the process, intelligent Monitoring Modules are capable of
detecting process events and can react in response to them with meaningful records.
They can also be deployed accordingly to the application requirements, therefore
keeping costs as low as possible. At the middle level, a connectivity element was
provided with the facilities required to allow monitoring records to easily flow on the
widely available network, thus helping to make remote monitoring feasible. Finally, at
the upper layer, PC technology provides the best choice to analyse, process, integrate
and present the monitoring results. In this way, the high-cost elements can be shared,

thus resulting in a system that is accessible from many perspectives.

As a result of this work an innovative distributed monitoring system has been
developed and demonstrated. This can form the basis of future research and support
the evolution of the next generation of condition monitoring systems.

11.3 — Modelling Method Aspects

The cost benefits that might result from a monitoring system such as the one proposed

here would be considerably compromised if an entire new software development were

required for every application task. The use of a modelling technique that could
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enable the easy representation of the monitoring task became a requirement to prevent

such a drawback.

As introduced in previous chapters, Petri-nets had been mainly used for modelling and
simulation of computational systems and were investigated as a monitoring method
for sequential processes by the IPMM Centre [11.11], resulting in a PC based

software tool developed for this purpose.

The Petri-net concept seemed to represent a good method that could possibly be
employed in a microcontroller based implementation. Although supported by a
mathematical formalism, Petri-nets are mainly considered to be useful in monitoring
tasks due to being able to logically represent functions whilst allowing a direct

graphical representation of the main elements of the function.

In choosing the Petri-net method as the modelling approach in this work, transitions
became the natural option to define the Petri-net structure, since they can be
associated with the process events and represented them as individual and isolated
elements that relate input conditions to output actions. Such a characteristic easies the
modelling task, since it enables an approach that describes the monitoring Petri-net as
a set of self-contained elements that do not depend on each other. Such elements also
define a static structure (process definition) and therefore can be placed in the
microcontroller program memory, releasing the data memory and thus helping to
tackle one of the microcontroller constraints. Efficiency is not affected, since the

microcontroller’s instruction set fully supports such an approach.

A drawback of this approach might be considered to be the fact that the Petri-net data
structure must be stored within the program memory, along with the operational
software, rather than being loaded dynamically. It was considered at this stage that
technology improvements would soon provide an alternative. Such an assumption was
proven to be true, since latest microcontroller releases (not employed in the research)
are now provided with flash program memory, thus enabling the program memory to
be updated at execution time. Also, new devices are becoming available with larger

amounts of data memory, suggesting further alternatives in this direction. In all cases
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the methods used in this research may be easily adapted to take advantage of these

new innovations.

The definition of the system’s overall capabilities, in terms of the largest Petri-net
implementation, can be considered on the basis of the available resources and its
efficiency. An initial hypothesis was to base such a definition on the microcontroller’s
internal data bus width. By proposing that the processing unit is usually optimised to
its natural data type (8 bits for the PIC18C452), it was supposed that a more efficient
execution would result. Therefore, transitions, places, tokens and sub-nets were
constrained to a range from 0 to 255. The demand for control elements within the
transition data structure imposed further limits on transitions (1 to 254), places (0 to
254) and sub-nets (1 — 255). Although these might seem somewhat limiting, the
examples presented in previous chapters showed that relatively complicated Petri-net
designs can be supported with such numbers. It is perhaps possible that a reduction in
these numbers could allow more features to be added to the system, which might be a

point of future consideration.

An important characteristic of this Petri-net approach is the fact that it enables the
implementation of the distributed concept in the monitoring environment by providing
each Monitoring Module with an amount of local knowledge. Rather than monitoring
signal changes and forwarding them to some form of central processing units for
analysis, the Monitoring Modules were provided with the intelligence required to
detect process events and states, which can be made public when required. Bolic et al
[11.12] presented a measurement system, based on microcontrollers, where the
distributed nodes are configured from a central node by selecting the specific
functions to be performed. The implementation of such an approach required the
existence of specific libraries for each function. The Petri-net method however
supports a generic approach in which the distributed elements (Monitoring Modules)

become autonomous. This is seen as an important attribute of the developed system.

An important aspect in any distributed environment is the capability of the processing
elements to produce information that can be used by consumers (other processing
units) accordingly their requirements. Such a method in a client-server configuration

is referred to as “publish-subscribe” [11.1]. From this perspective, the Petri-net
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approach developed in this research implements a “producer-consumer” method,
where one Monitoring Module makes specific events public (by means of sub-net
broadcasts) and the other Modules utilise such information only if they require it in
their particular domain. Using the publish-subscribe method might improve the
system’s reliability, with sub-net events reported to a central node (server) that would

replicate it to all those nodes that subscribed to the specific event.

Despite the fact that “ordinary transitions” and places allowed the representation of a
sequence of events of a process, it soon became clear that these were not enough to
model all real situations. The first function that needed greater support arose when
trying to model events that depended on process signals having slow responses. A
“delay transition” was developed to meet this need. A few examples of “delay
transitions” were presented in the previous chapters (application examples). In one
particular case shown in Chapter 10 (Figure 10.5), the “delay transition” was of
extreme importance in overcoming the difficulty in identifying whether or not a tool
was already placed in the carrousel changing position. An extended use of the “delay
transition” was illustrated in Chapter 9, shown in Figure 9.5. To enable up to date
process information, a “delay transition” was inserted as a means of providing a
record to the database after every 60 seconds. This element considerably increased the

modelling flexibility by supporting time-dependant instructions and functions.

Although process actions are normally associated with digital signals and thus
represent the main source of evidence of process events, analogue signals are often
another important source for monitoring systems. With respect to the modelling
approach developed here, “analogue transitions” were introduced to monitor such
signals. This approach was developed on the basis of thresholds that identify specific
and pre-established conditions. Thresholds are one of the simplest methods employed
in condition monitoring, and are used in many system implementations to detect the
indication of an abnormal condition [11.13, 11.14]. Although the identification of a
fault is in many cases not so simple, it might be used to watch the behaviour of critical
parts, as was shown with the example in Chapter 8. In that case, threshold conditions
were defined to observe the motor’s operating limits. The records that the firing of
such transition provides might be used to trigger maintenance actions. In another

example, reported in Chapter 10, an “analogue transition” provided an efficient
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method of detecting the tool cutting condition. This is a typical case where digital
signals do not provide enough information. The design and use of analogue transitions
in this research is an important innovation and allowed important added functionality

to the monitoring approach.

Another structure introduced as part of this research was the “output transition”.
Although this represents a very simple element, it becomes very useful in critical
situations, such as described in the example in Chapter 9, where an unmanned process
may suddenly start to produce a high number of low-quality parts. This was missed by
the control system, but using an output transition the Monitoring Module is able to
produce a local alarm. However, it is assumed in this work that the Monitoring
Modules should not act directly on control system functions. This is because such
actions could potentially produce damaging situations and, in extreme cases, great
danger. In such cases, the records produced by the monitoring system should be used
by supervisory systems or operators to intervene in a safe way. The fact that this may
be managed locally using the distributed Monitoring Module is an important feature.
So too is the fact that any recovery actions taken locally may be directed and
monitored remotely, allowing centrally located “experts” to oversee operator centred

activities.

Although significant developments have been made there are still some areas of
potential further research. For example, it became apparent that an important
modelling element is missing in this proposition. Such an element was not defined in
the original Petri-net theory, although it has been proposed as an extension to the
theory and called an “inhibitor arc” (Chapter 5, Section 5.5). To illustrate the use of
such an element as a modelling resource, Figure 11.2 repeats the Petri-net branch
presented earlier in Figure 9.6, showing how it could be modelled if a method to test
an empty place, in order to identify a true condition, were available. The existence of
such an element would simplify the modelling task in several situations, requiring
fewer elements and therefore allowing a clearer representation. In this research, an
approach to meet this need was introduced, by enabling the process signals’ “false”
condition (digital “0”) to be tested in the transition firing process. This met the
requirements of the systems modelled in this research, however, the same capability

to test places is missing and certainly should be considered in a future development.
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Figure 11.2: Simplification that would result from an empty place test element

(arc between P029 and T055), when compared to Figure 9.6.

Despite the absence of an inhibitor arc, the Petri-net approach that was developed
allows a great level of flexibility to model a wide range of applications. The examples
used in previous chapters to demonstrate the approach were purposely selected to
present different requirements. They illustrated the level of freedom that is allowed to
the application designer in order to deliver the required solution. Furthermore, the
Petri-net approach represents a method that allows a degree of independence from the
microcontroller system used and thus, besides easing the modelling activity, does not

limit its use to a single generation of such devices.
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11.3.1 — Extended Features Supported by the Petri-net Approach

There is no doubt that Petri-nets can be used to model the sequence of events related
to a process. They can thus provide relevant records that can be used to provide
process related information of interest, as shown in the 3 example applications. An
important contribution of Petri-nets is the fact that they provide a simple way to
model the knowledge required to support more intelligent monitoring tasks. This

facility was further explored in this research.

Hu et al [11.15] argued that many PLC controlled manufacturing systems operate in a
predictable way, both in terms of the sequence of actions they manage and the time
intervals between them. They concluded that since having such knowledge,
operational faults could be detected. In the Petri-net approach developed by the IPMM
Centre, a method that makes similar assumptions was considered [11.11], in which the
Petri-net’s selected transitions may have a timeout parameter configured. This
allowed the detection of a transition that had failed to fire due to the absence of a

process signal.

Such aspects were considered in this research. A timeout feature was integrated within
the Monitoring Modules. This considers places rather than transitions, as was
previously the case. This approach was based on two reasons. The first is because
places can be associated to process states and these are the ones that consume time
(between events) and hence a direct measure of process performance may be made.
Secondly, a timeout related to a place requires predictable resources, since a state is a
fixed entity in the system, while transitions may be enabled by tokens following
different routes which can introduce different time constants. In terms of the PIC
based implementation this would represent an additional level of complexity, which,

considering the microcontroller’s resources, may not be feasible.

The timeout represents an important feature that enables the Monitoring Modules to
“understand and judge” process dynamics. The default method considers the active
state of the previously monitored cycles. Here it must be recognised that
improvements may be required, since it currently considers a single value of the time

constant rather than a more realistic range. Such an improvement would require more
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resources (which were not available at present) in the resulting implementation.
Redefining the capabilities of the Monitoring Modules in terms of maximum number
of places and transitions might be an alternative to “find” such resources. Considering
the test carried out during the research, this might be reasonable. Another point to
consider is the smallest timeout unit, presently defined as 1 second. This satisfied the
main implementation tested. However, cases may exist where a smaller unit might be
required. In consideration of all of the above the approach taken to this research was
to build-in the potential for developing the methods as the new technology allowed

these functions to be supported becomes available.

The flexibility allowed by the modelling method is directly associated to the fact that
Petri-net elements (places and transitions) can be deployed over a wide range of
process or systems without major restrictions, in order to model a specific task. In
such environments there will be instances when the timeout feature could become
undesirable. The examples reported here in this work illustrated several cases where
places were not related to any process state, but rather were used as a modelling
element to synchronise or control the Petri-net execution. In such cases an avalanche
of meaningless “timeout” records could be generated. To prevent this a “barrier” was
introduced into the parameter identification: places with an identification up to this
parameter are timeout enabled, whereas those above it are not. Both types of places

are important in modelling processes and in providing relevant information.

The research identified one further opportunity to enhance the capabilities of the
Petri-net approach. The review presented in Chapter 3 showed that many condition
monitoring applications needed to monitor analogue signals, in order to extract
specific features that can help in detecting or predicting the development of critical
conditions. Such signals are of particular interest under certain operating conditions,
normally associated to a specific process state. The knowledge incorporated within
the Petri-net model enables to detect such states and therefore provides a method that
can be used to easily trigger (and stop) signal and data acquisition. In this way
condition monitoring techniques may be focussed and managed to act only when
required to do so, representing a considerable saving in the amount of data acquired

and processed.
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An example of this was presented in Chapter 8. The press rig motor current should
sensibly only be monitored while the pallet is moving. Instead of sending every single
sample to the database, the Monitoring Module provided a signal parameter based on
the mean value calculation. There is no suggestion that this example is using the most
appropriate condition monitoring technique to diagnose motor faults, which is
understood as a very complex subject. The aim was to illustrate the potential of this
approach to generic monitoring applications. While being potentially the basis of
future intelligent monitoring systems it should be noted that at this time attempting
the Petri-net execution with the calculation of complex signal features on the same

microcontroller may not be feasible in all cases.

The anticipated further development of a new generation of processors with special
signal analysis features (such as DSPs) may allow future researchers to use a mixture
of techniques to monitor a wider range of applications. The architecture proposed in
this research provides a framework to support such an approach and shows that it can
work. Monitoring Modules with different capabilities or features could coexist within
the system, with the Petri-net based models commanding the acquisition, processing
and analysis of process parameters. Recent research conducted in the IPMM Centre
has started to investigate more advanced signal analysis methods based upon the

microcontroller implementations developed in this work. [11.16].

11.3.2 — Fault Diagnostics

Fault diagnostics is an important feature of any monitoring system. It is normally
provided in order to help reduce the time required to recover manufacturing systems
from faulty states. In research that considered such a method [11.17] it was suggested
that operational fault diagnostics could be based on a map of the process signals and
active states (in the event of a fault), using such information as inputs to an expert

system.

The Petri-net model of a process represents the knowledge required for the
investigation of operational faults. Once in operation, it contains the description of the
sequence of events followed by the process and it retains this process related

information by mapping the state of the process as a sequence of active Petri-net
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places. Chapter 8 illustrated the fault diagnostic approach implemented as a result of
this investigation. Although incapable of matching the exact cause of a fault in every
single case, it is fully capable of rapidly presenting a set of hypothesis that could be
used to further investigate such faults. Considering that such hypotheses will be
available in a database, along with all previous process fault related conditions and
associated actions, the method proposed in [11.17] could be further improved. By
targeting the fault diagnosis towards the most probable faults the Monitoring System
can help the expert system, which would be required to perform a smaller number of
interactions in order to present the most probable fault source and as a result suggest

repair actions.

The previously considered timeout method provides the diagnostic approach with an
important feature: the generation of a fault symptom. To do this however, it is
necessary to isolate the timeout events that may be related to faults and those resulting
from process operating changes. This information must be communicated to a higher
level (i.e. the database). Benefits from such an approach are the fact that information
from other systems can be integrated (e.g. maintenance and planning systems). This
information may then be used to plan subsequent action, and may also be interrogated
to identify the timeout events that have resulted from process changes that have not
been assimilated by the monitoring system yet. In this way the process based
monitoring system can effectively be used to continuously update the knowledge

concerning the process, and hence can continuously increase its effectiveness.

This is another example of the capability of this system that, although limited in
resources, is capable of providing a wide range of interesting features. Many factors
contribute to such a result, including the processing capability (and embedded
resources) of the microcontroller and the application knowledge represented by the
Petri-net. In deploying a structure that considers all such factors, the best of each

System’s elements could be explored.
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11.4 — The Research in the Monitoring Context

In their proposal of a remote data acquisition system (reviewed in Chapter 3), Nieva
and Wegmann [11.18] considered that a modern concept of such systems should
support a wide range of management applications, rather than a single one. They
indicated that the important requirements of such systems include their ability to:
timestamp any record, provide the capability of reporting events, support the
generation of quantitative (measurements) and qualitative (states) records, to detect
any abnormal conditions and to perform measurements associated with specific
events. All of these features are present at some level in the implementation that

resulted from this research.

The examples presented in the previous chapters (8, 9 and 10) showed that the
proposed Monitoring System has the particular characteristic of providing monitoring
support to different applications without requiring the adjusting or adapting of
application specific parts. This is an important aspect, since such generic
characteristics demonstrate the flexibility of the approach to modelling applications
that is fast and easy. In this way this work represents a method that can be widely
employed. It also can be said to achieve the low-cost characteristic that was one of the

initial aims of the research.

The generation of managerial information represents an important aspect of any
system. The examples discussed earlier showed that the Monitoring System would be
capable of providing direct information related to the manufacturing process, which
could support management and production planning actions. At the same time,
maintenance activities were also supported, and provided with the means to
investigate events that might affect process efficiency and with the potential to limit
and prevent excessive down time. Most importantly these different approaches can be

enabled without any special requirements for many purposes.
The systems architecture played an important role in achieving the reported results. It

supported the research that was undertaken to explore the best characteristics of each

level, while making information available to the different managerial requirements. It
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also fully supports the low-cost modular approach that allows individual systems to be

built as required to suit specific applications.

Finally, an important consideration is the fact that the Petri-net approach provides
each Monitoring Module with “independence”. This, together with the
microcontroller’s local processing capability, and the embedded knowledge of the

monitoring task, meets the requirement for an intelligent distributed system.
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CHAPTER 12

CONCLUSION AND FUTURE WORK

12.1 — Main Contributions of the Research

This research focused on the development of intelligent, distributed and low-cost
monitoring systems. It investigated a range of different technologies, models and

methods and lead to the following important contributions:

e The development of a flexible hardware / software architecture that is capable of

supporting a wide range of generic applications;

e The development of a microcontroller-based Petri-net model that provides

hardware and software independence;

e The novel incorporation of analogue signals within Petri-net models thus

enhancing the use of the Petri-net methodology for monitoring purposes;

e The development of a method that enables the use of Petri-net places to retrieve

process specific active state information from remote processes;

e The development of a method that enables the use of Petri-net places to control the
acquisition of selected process parameters which can then be used for more

detailed, oftf-line fault diagnosis.
In each case the efficacy of the approach and the flexibility of the systems produced

by this research has been demonstrated with the deployment of the resulting systems

within a range of different processes.
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12.2 — Conclusions

The important conclusions that can be drawn as result of this investigation can be

summarised as:

e The PIC18C452 microcontroller represents a reliable and flexible device for the

implementation of intelligent, distributed and low-cost monitoring systems;

e Low-cost embedded Internet technology is available and can be used in monitoring
applications. However, factors such as hardware design, programming languages
and implementation simplifications must be considered in order to achieve better

results;

e The distributed concept allows a designer to access the best features of each
component of the system, increasing processing capabilities while keeping cost in

proportion;

e The Petri-net modelling approach aggregates flexibility to the microcontroller
implementation, easing the monitoring task representation and reducing

development time;

e Petri-nets provide the elements required for the implementation of more
complicated monitoring tasks, representing a simple way to model time

measurements and to trigger the acquisition of analogue signals.

Considering each of these points in more detail, it can be said that the PIC18C452
microcontroller fulfils the requirements for the implementation of low-cost
monitoring systems. The device is equipped with the input functions and embedded
features required to support such an application. It must be clearly recognised that this
is not a reference to a data acquisition system, but to a monitoring implementation that
can be used to process data retrieved from a process and to convert it into information.
The system produced is still low-cost because very few external components were

required to enable the microcontroller to operate.
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It can also be stated that, for this particular and similar applications, based on this type
of devices, Assembler is still the best programming language, since it allows
designers to directly and efficiently manipulate limited resources. In the same context,
it was concluded that the best use of the microcontroller (already defined as a
computer-in-a-chip) is based on using its embedded resources. It is on this basis that
PICs perform the best. The use of this microcontroller in the Internet implementation
demonstrated such an aspect, where a conjunction of factors such as external high-
demanding devices (Ethernet), programming languages (C) and a restrictive hardware

design (interrupts) combined to affect the microcontroller’s performance.

The System architecture played an important role in achieving the final results. CAN
bus protocols form a good partnership with PIC microcontrollers and are conceptually
adequate for monitoring applications (enabling distributed nodes to transmit messages
triggered by events). The distributed philosophy of this architecture represents an
appropriate choice to achieve the initial proposition. By exploiting the best functions
of each of its components it provides an excellent methodology to improve results and

reduce cost.

The Petri-net approach has been developed and improved in this research, and has
been shown to work well as a modelling method for monitoring purposes. It was
initially proposed as an alternative to provide a low-cost microcontroller based
implementation with a simple modelling method and resulted, in the end, in a
powerful method that is capable of adding intelligence and flexibility to the System. It
is simple and practical and is shown throughout this thesis to be capable of allowing
engineers to represent different situations. Three examples with different
characteristics, one of them a real manufacturing application, were modelled without

major constraints, producing a wide range of useful management information.

As a consequence of this research Petri-nets may now assume a new profile. They
have been shown to be much more than a way to describe and follow events. The
Petri-net approach resulting from this research can be used to enable a simple

microcontroller to be deployed to easily obtain process status information and to
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trigger the acquisition of important parameters. They have also been developed to

support a simple method to help in the detection of operational faults.

An important consideration (as a matter of evolution) is the fact that technology will
still improve. For example, during the course of this research, new devices became
available. Hence a method bound to a specific technology would struggle to find
widespread acceptance. The Petri-net monitoring approach, as defined in this
research, does not depend on a single processor or supplier. It can be used with almost
any processor, and as device capabilities increase the method itself can be further
investigated and enhanced. The PIC microcontroller became a good choice for this
investigation and undoubtedly still represents a low-cost alternative, but certainly (and

hopefully) it will not be the last.

Based on the results obtained, it is possible to conclude that the System proposed
through this research is capable of providing a low-cost alternative for process and
condition monitoring. It fulfils the main requirements by providing information for
managerial and maintenance activities. This information can be made available on the
Internet or can be integrated in other existing management applications. In
considering the complexity of some condition monitoring requirements, the System
can be used as a qualitative method. In this context it can be used in detecting
suspicious conditions that may be further investigated using traditional condition
monitoring techniques, therefore helping to reduce the high cost that the use of this
technology normally represents. The proposed System is capable of providing the

required intelligence to support this approach.

12.3 — Future Work

In considering the potential of the final version of the Monitoring System, it becomes
evident that a further refinement would be the development of a more user-friendly
computer based application to enhance the Petri-net designing task. In the same
context the use of flash based microcontrollers should be investigated and developed,
to allow the dynamic downloading of the monitoring task into the distributed

Monitoring Modules.
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Another possible step forward in the System implementation would be the provision
of the capability to set up remote monitoring modules from a standard web page
which is interacting with the System’s Management Application. To facilitate this the
Monitoring Modules should have the CAN bus application layer improved perhaps
based on one of the existing standards. This would also enable Monitoring Modules to
explore smart sensors deployed on the same CAN bus, rather than only those sensors
and signals directly interfaced by each Module. This would also be an important step
towards integrating specialised modules, which may be provided with analogue signal

processing and analysis capabilities.

Another interesting development would be the use of artificial intelligence, probably
an expert system, which is capable of making improved use of the records produced
by the Monitoring System. This would provide an entire solution to extended and
support condition monitoring and maintenance activities. Also, during the completion
of this research, it was noticed that possible variations in process dynamics represent a
major obstacle to the implementation of fully reliable and easy to use condition
monitoring strategies. Therefore, it would be interesting if a system could be
developed that is capable of automatically retrieving process information and based
on this, generating a set up of specific parameters (that might be affected by process
settings) within the deployed Monitoring Modules. This would make the System

capable of detecting abnormal conditions more effectively and efficiently.

All of these future developments are possible to predict. They will continue to build
upon this research which has for the first time shown that real progress can be made in
this important sector with the bringing together of the separate Petri-net and PIC
based technologies to form a flexible and low-cost solution to the problem of process

monitoring. This represents a major step forward.
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APPENDIX A
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Monitering Module Software Development

o 35 e 3k ok 3k ok ok ok ok K 3 ok 3 e ok 3k ok 3Ok 3 ok 3k 3k ok o Sk ok sk k ok sk 3 ok 3k a2k ok sk ok 3k ke ok 3k 3 ok e ik ok 3 3k ke Sk ke ok ke ok 3k 3k ok ok 3k sk ke sk ke ok ok ke ok 3k ok ok ok ok ok ok ok ok
)

;* PhD Research

;* Intelligent Distributed Monitoring System
;* System Engineering Division

;* Student: Marcos R. Frankowiak

;* Supervisor: Paul W. Prickett / Roger 1. Grosvenor

* % X ¥ *

« ok ke 3k 3k ok ok 3k o o ok ok 3k ok ok e ok ak 3k ke 3k ok K ok ok e 3k e ke oK ok Ak Sk 3k 3k Ak ok ke 3k 3k ok 3k o ke s ok sk ke Sk 3k e ke sk sk ok ke s Sk ok 3k sk ek k ok 3k ok e sk ok ok ok ke sk ok ok ok ok ok %k ok
s

;* TITTLE: PICNET.ASM

*

;* DESCRIPTION: PIC based petri-net running on a PIC 18C452 microcontroller *

;* STARTING DATE: 24/09/2000

*

;* LAST UPDATE: 09/03/2003 (fault diagnostics) *

- 3k 3 3 3 o 3k 3 3k 3 ok 3 3k ke o ok ok ok 3 ok 3k ok 3k 3k ok ok 3k 3k ke 36k ok 3k Sk ke ok ok ok 3k 3 ok ok 3k k3 ke ok 3k 3k ok K ok 3 ok ok ke ok ok ok sk ok o e ok e ok ok ok sk ok ok ok ok sk ok k ok kK
’

list p=18C452

;include files

;select microcontroller

include "p18C452.inc" ;microcontrollers header
include "mcp2510.inc” ;CAN microcontroller header
include "ascii.inc" ;ascii table
include "PicDef.inc" ;pic related definitions
include "IntMacro.inc” ;specific macros for the application
include "IntVar.inc" ;defined variables and constants
;cold start
ORG h'0000’
Start
NOP ;a string of "no operation instruction"”
NOP ;to allow controller synchronisation
GOTO Main ;20 to program execution

9,

;interrupt vector addresses

;WREG, STATUS and BSR are automatically stacked up by the microcontroller

ORG h'0008' ;no priority scheme selected
SysInterrupt

BTFSC PIR1,TMRI1IF,A

CALL InterrTimer ;real time update interrupt
BTFSC INTCON,TMROIF,A

CALL InterrCANChSel  ;CAN controller chip-select delay
BTFSC INTCON,RBIF,A

CALL InterrCANRx ;CAN controller RX interrupt
BTFSC INTCON3,INTI1IF,A

CALL InterrPulsel ;pulse input update
BTFSC INTCON3,INT2IF,A

CALL InterrPulse2 ;second pulse input update
BTFSC PIR1,SSPIF,A

CALL InterrSPI ;SPI interface interrupt
RETFIE FAST ;return from interrupt restoring PIC registers
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;main program

Main

SystemlInit
Timer!Init
TimerQInit
SPIInit
CANCitrllInit
PetriNetInit

InterrConfig

;general system reset actions

;real time timer - updates an SQL datetime format
;variable (1 ms)

;configures timer used to generate a delay before
;removing the CAN controller chip select signal
;configures the SPI interface - data exchange with
;CAN controller

;MCP2510 - CAN controller operating mode

;petri_net general initialisation

;configures and enables the interrupt operating mode

;application main loop

ApplicLoop

ControllerReady
WatchController
UpdateAnallnput
UpdateDiginput
OneSecondUpdate
CheckPetriNet
TransitionMsg
BuildMessage
LoadSpiBuffer
CheckCommand
BuildCanStatusReq
CheckSpiBuffer
BuildCanBufferReq
BuildCanAck
SpiStartTx
ProcessUpdate
TimeOutUpdate
FaultDiagRequest

ProcFaultDiag

;verifies whether or not the controller was initialised
;checks if CAN controller is requesting service
;update the analogue inputs

;updates the digital inputs

;time based variables update

;checks the Petri-net table for transition firing
;conditions
;verifies if a transition was fired

;builds a message indicating that a transition was
sfired

;if a message was built, it must be loaded in the SPI
stransmit buffer

;verifies whether or not a command was received

;a message is loaded in the SPI transmit buffer to
;request the CAN controller status

;checks if there is any block of data downloaded from
;the CAN controller

;a message is loaded in the SPI transmit buffer to
;request the CAN controller receive buffer content

;a message is loaded in the SPI transmit buffer to
;acknowledge a CAN controller status indication
;begins the transmission of a new message in the SPI
stransmit buffer

;checks whether or not a place changed state

;controls message exchange timeout
;verifies if any fault diagnostic is requested

;executes fault diagnostic
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RestartPNet ;restarts the Petri-net if a token arrives the bin

;specific routine include files

include "intsub.inc" ;system subroutines
include "interr.inc" ;interrupt routines

s

;Petri-net required tables

;transition table

TRANSTABLE:

include "petrinet.inc" ;Petri-net table
PROCESSTAB:

include "process.inc" ;special states (watch status) table
WATCHTABLE:

include "watch.inc" ;special parameters — analogue acquisition table

;program end

END

The entire set of development files related to the Monitoring Module are provided in
electronic format and can be found in the attached CD-ROM. Further details are

available in the Section “Attached Documents and Files”, later in this appendix (A.25-

1).
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Connectivity Module Software Development — CAN Node

« 3k ok oK ok 3k ok ok ok ok ok 3k 3k ok 2k ke ok ok e 3k ok 3k ok ok ok ok 3K Ak 3k 3k K k k5 ok sk ok ok ok ok ok sk sk e A sk ok ok ok b ok ok ak ok 3k ok ok 2k ok ok 2k 3k ok 9k ok ok ok ok k ke sk k ok oK 3k ok ok ok
’

;* PhD Research

;* Intelligent Distributed Monitoring System
;* System Engineering Division

;* Student: Marcos R. Frankowiak

;* Supervisor: Paul W. Prickett / Roger 1. Grosvenor
= 2k ok e 3k ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ak 2k ok 3k 3k 3k 3k ok 3k ok ok 3k 3k 3k K 3k 3k ok ok ok ok ok ok 3k 2k sk 3k ok sk sk ok ok ok ok ok 3k ok 2k 3K 2k ok ok ok ok A 3k ok 3k %K ok oK ok ok ok ok ok ok ok ok 3k ok ok
b

* B X ¥ *

;* TITTLE: CAN_MN.ASM *
;* DESCRIPTION: Connectivity Module — CAN node implementation (PIC18C452) *
;* STARTING DATE: 24/03/2001 *
;¥ LAST UPDATE: 27/10/2002 (timeout control update) *
;********************************************************************************

include "p18c452.inc" ;smicrocontrollers header

include "mcp2510.inc” ;CAN microcontroller header

include "can_var.inc" ;application variables definition

include "can_cfg.inc" ;microcontroller configuration registers set up

include "can_mac.inc" ;defined macros in use by the application

include "ascii.inc" ;ASCII characters definitions

;application execution — beginning point
COLD_START ;microcontroller power-on reset
INTERRUPT_VECTOR ;microcontroller interrupt access vectors
;general set up
MAIN
INIT PIC_ REGISTERS ;sets microcontroller configuration registers

'SET_STACK_POINTER HIGH_STACK,LOW_STACK - 1 ;defines software stack-pointer

SET_UP_BUFFERS ;sets up all registers used by the application
INIT_TIMERO ;initialises timer to perform CAN chip-select delay
INIT_SPI INTERFACE ;sets up SPI interface operating mode

INIT USART ;sets up the operating mode of the RS232 interface

INIT CAN_CONTROLLER ;sets up a sequence of data in the SPI TX buffer that will
;initialise the CAN controller

INIT_TIMERI1 ;sets a device to deliver 1 ms timing

ENABLE INTERRUPT ;enables peripheral interrupts

SOFTWARE DELAY CTE1 ;performs a 2 seconds delay before reaching the main loop
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;main execution loop

MAIN_LOOP

CHECK_CAN _INT ;checks if the CAN controller generated an interrupt

CHECK_CAN_STATUS ;verifies whether or not to request CAN controller status

START SPI_TX ;checks if there is any block of data which demands
;transmission to be started

CHECK_RS REC ;checks if there is a data block in RS receive buffer

CHECK_SPI_MSG ;checks if there is a message in the intermediate buffer to be
;send through the SPI interface

CHECK RS MSG ;checks if there is a message in the intermediate buffer to be
;send through the RS interface

CHECK_CAN_RTS ;checks if any of the CAN controllers transmit buffers is
;awaiting a RTS command

CHECK_SPI_REC ;checks if there is a block of data in SPI RX buffer ready to
;be transferred

CHECK_CAN_RX ;verifies if there is data available in the controller receive
;buffers

CHECK_CAN_ACK ;checks if there is an acknowledgement to be send to the
;CAN controller

CHECK_ACK_REQ ;monitoring module acknowledge is requested

CHECK_TIMEOUTS ;controls receive buffer usage - discharge timed out message

BRA MAIN_LOOP ;repeat loop

;sub-routines an interrupt service
include "can_sub.inc" ;sub-routines file
include "can_int.inc" ;interrupt routines file

;end of application

END

The entire set of files related to the Connectivity Module CAN bus development are
provided in electronic format and can be found in the attached CD-ROM. Further
details are available in the Section “Attached Documents and Files”, later in this

appendix (A.25-2).



Appendix A — Connectivity Module Code Main File: Internet Protocols

Connectivity Module Software Development — Internet Protocols

/**********************************************#*********************************

* Internet connectivity application

* Main module (PIC Wizard C compiler)

* Based on Microchip PICDEM NED demo board
* date: October 2001

* last update: November 2002
***#****************************************************************************/

* X X ¥ X

#include <P18C452.h> //microcontroller PIC 18C452 header file
#include "P18Cext.h" //microcontroller header file extension
#include "picnet.h" //application definitions and settings
#include "peripheral.h" //PIC18C452 hardware and peripherals
#include "support.h" //general functions

#include "application.h" //intermediate data layer

#include "led.h" //LCD display library

#include "ethernet.h" //ethernet interface library

#include "internet.h" //TCP/IP protocol related functions

1 local functions prototype

void main(void);
void Interrupt(void);

1/ interrupt variables

//definitions to enable multi-use of C and Assembler

#asm

x equ O ;int_flags bit 0
X equ 1 ; bit 1
t0 equ 2 : bit 2

RxIntSize equ d'100' ;initially defined as 30
TimerOLow equ d236'

#asmend
struct
{
byte tx:1; //USART TX interrupt flag
byte rx:1; //USART RX interrupt flag
byte t0:1; //TIMERQO interrupt flag
byte :1;
byte :1;
byte :1;
byte :1;
byte :1;
tint_flags; //interrupt flags
#asm
tx reqequ O ;USART status variable bit 0
rx_err equ 4 ; bit 4
#asmend
struct
{
byte tx_req:l; //USART TX request

A9



byte
byte
byte
byte
byte
byte
byte
tdev_status;

byte tx reg;

Appendix A — Connectivity Module Code Main File: Internet Protocols

e e we

//USART RX error

e e

—— 5 LML
[}
=
—_

-

/factivity status

/ltemporary register - USART TX

byte in_indx;
byte out_indx;
byte rx reg[RX INT SIZE}; / " " -USARTRX

byte *ptr rx_reg;

//byte system_status;

//interrupt backup procedure

byte bck fsr0l;
byte bck_fsrOh;

1

function declaration

//interrupt vector description - must be in the same file as main()

void Interrupt()

{

#asm

INT_INIT:

MOVFF FSROL,bck_fsr0f;
MOVFF FSROH,bck_fsrOh;

BTFSS PIE1, TXIE,0

BRA

INT_USART RX

BTFSS PIR1,TXIF,0

"BRA

INT USART_RX

MOVFF dev_status,FSROL

BTFSS FSROL,tx req,0

BRA DISABLE TX
MOVFF tx_reg, TXREG
BSF TXSTA,TXEN,0
BCF FSROL,tx_req,0
MOVFF FSROL,dev_status
MOVFF int_flags, FSROL
BSF FSROL,tx,0
MOVFF FSROL,int flags

DISABLE TX:
BCF PIE1,TXIE,0

INT_USART_RX:

BTFSS PIE1,RCIE,0
BRA INT_TIMERO
BTFSS PIR1,RCIF,0

BRA INT_TIMERO
BTFSC RCSTA,OERR,0
BRA USART RX_ERR
BTFSS RCSTA,FERR

;is the USART TX interrupt enabled?

;is it an USART TX interrupt?

;enable data transmission
;System notification

;interrupt enabled?

;checks for RX interrupt
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BRA STORE_RX DATA

USART RX_ERR:

MOVF RCREG,W,0
MOVFF dev_status,FSROL
BSF FSROL,rx_err

MOVFF FSROL,dev_status

BRA INT TIMERO

STORE_RX_DATA:

MOVFF in_indx,FSROL
MOVF FSROL,WREG,0
MOVFF ptr_rx_reg, FSROL
MOVFF ptr_rx reg+ 1, FSROH
MOVFF RCREG,PLUSWO0
ADDLW 1

MOVWF FSROL,0
MOVLW  RxIntSize
CPFSLT FSROL,0

CLRF FSROL,0

MOVFF FSROL,in_indx
MOVFF int_flags,FSROL

BSF FSROL,rx,0

MOVFF FSROL,int_flags
INT_TIMERO:
BTFSS INTCON,TMROIE,0
BRA INT END
BTFSS INTCON,TMROIF,0
BRA INT _END
MOVLW TimerOLow
MOVWF TMROL,0

BCF INTCON,TMROIF,0

MOVFF

int_flags, FSROL

BSF FSROL,t0,0

FSROL,int_flags

MOVFF
INT_END:
MOVFF bck fsrOl,FSROL;
MOVFF bck fsrOh,FSROH;
#asmend

}

void main()

{

byte system_status;

//device set up

in_indx = 0;

out_indx = 0;

ptr_rx_reg = &rx_reg[0];
pic_set_up();
system_off;

user]_off;
user2_off;

;remove data

;buffer offset index
;buffer address

;increment index

;buffer overrun position

;store index

;interrupt enabled?

;interrupt matched?

;load time constant

;clear interrupt

//rx interrupt buffer indices

//configures the microcontroller

/loperating LED's switched off
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led_init();

//RS232 buffer initialisation

usart_buf_init();
usart_init();

//other buffer initialisations
app_buffer_init();
//ethernet interface initialisation

system_status = eth_cold_start();
if(system_status == ok)

//LCD display initialisation

/ITX & RX buffer initialisation
//device operating mode set up

//initialises intermediate buffers

//performs the interface initialisation

//enable interrupt

//reception interrupt enabling
//1 millisecond interrupt
//internet initialisation

{

enable_pic_int();

usart_rx_int();

timerQ_init();

init_internet();

display message("System Status:\n");
}

while(system_status == ok)

¢

#asm
BTG PORTC,0,0;
#asmend

if(int_flags.t0)

//transmission previously started

//start a new transmission

//status must be set before enabling the

dev_status.tx_req = true;

{
timer_update();
int_flags.t0 = false;
}
if(int_flags.tx)
{
int_flags.tx = false;
if(usart_tx(&tx_reg) == ok)
{
dev_status.tx_req = true;
piel.txie = true;
}
}
else
{
if('dev_status.tx_req)
{
if(usart_tx(&tx_reg) == ok)
{
//interrupt
piel.txie = true;
txsta.txen = true;
}
}
}
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eth_virtual_int();

internet_status(); //performs internet protocols checking
eth_virtual int();

ethernet_status(); //performs ethernet checking
eth_virtual_int();

app_keeping(); //checks the data exchange between buffer

eth_virtual_int();

}

display message("Eth init error\n");
while(system_status != ok)

{
}

delay ms(10);
}
/Ntest if there is received data in buffer

byte get rx_buffer data(byte *ptr_data)

{
byte status;
if(in_indx == out_indx)
status = false;
else
{
status = true;
*ptr_data = rx_regfout _indx];
out_indx++;
if(out_indx == RX_INT_ SIZE)
: out_indx =0;
3
return(status);
}

The entire set of files related to the Connectivity Module Internet protocols
development are provided in electronic format and can be found in the attached CD-
ROM. Further details are available in the Section “Attached Documents and Files”,
later in this appendix (A.25-3).



Appendix A — Measurement Test: Description

Analogue and Pulse Inputs Test Measurement

The test procedure was based on the implementation of a test-Petri-net to trigger the
acquisition of the 4 analogue channels and 2 pulse inputs, as shown in Figure A.4.
Describing this Petri-net, each acquisition cycle was controlled by a digital signal
(DS01). Analogue channels and pulse inputs acquisition period was controlled by a
sub-net command (SN002), issued by a CAN node acting as a second monitoring
module, emulated by an MCP2510 CAN Controller Development Kit. The kit
software’s support allows building and sending CAN messages, such as the sub-net
broadcast shown in Figure A.S. The test results were stored in a test-database to
enable further analysis. Table A.1 summarises the equipments employed in the test
environment. The Petri-net descriptive files (text) are fond in the attached CD_ROM
(A.25-5).

Table A.1: Measurement test equipment set up.

Equipment Description Use Description

Stabilised power supply FARNELL E30/1, e Analogue input linearity measurement test.
0to30V/05A-0to15V/1.0A

Global Specialities Corporation 2001 ¢ Pulse input linearity measurement test;
function generator — TTL, sine and e Analogue and pulse input mean value
triangular output and offset adjust — assessment.

frequency range from 1 Hz to 100 KHz
Black Star true RMS multimeter — 200 m e Analogue inputs linearity test — DC

to 2000 Volts measurement.
Global Specialities Corporation 5001 o Pulse input monitoring — linearity
universal counter / timer — 0.01 to 10 measurement test.

seconds update rate

Digital storage oscilloscope OS4100 Gold e Periodic wave form pick and period
Advance, 2 mV to 5 V / division — 10 MHz measurement




Appendix A — Measurement Test: Description

START
P000
Sub-net SN00O1 was generated with
T001 the CAN development Kit, in order
to synchronise the acquisition
P002
. P001 SN001
DS01
T002 T003
PO11
ANALOGUEL () SN002

T004

ANALOGUE2

TO00S

ANALOGUE3

T006

ANALOGUE4

T007

P013 \
P003
P014

Figure A.4: Measurement test Petri-net.

The descriptive files related to the hardware test Petri-net can be found in the attached
CD-ROM. Further details are available in the Section “Attached Documents and
Files”, later in this appendix (A.25-5).
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= » mmLlfclxll

CAN frame
CAN Envelope: [S7DF { identification (priority)
Number of bytes in the
data field } Length: % 0 “end j
Monitoring module ID . . .
(0 for broadcast) Data 0 $0 Datad $1 Sub-net identification
Message ID -first part Data! [$11 Data 5 $0
of a single part message
Separator «/” Data 2 $2F Data 6 $0
Data 3 [$45 Data 7 |$0

Sub-net sign “E” (together
with envelope ID 7DF)

Figure A.5: Sub-net message format using CAN development kit.



Measurement (V)
=)

0.00

10

Measurement (V)
N

0.00

Appendix A - Measurement Test: Linearity

Analogue 1 - Linearity (Ascending)
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Figure A.6: Analogue-1 input linearity measurement, (a) increasing and (b)

decreasing the voltage.
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Pulse 1- Linearity (Ascending)
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Figure A.7: Pulse-1 input linearity measurement, (a) increasing and (b)

decreasing the frequency.

A complete set of graphs related to all (analogue and pulse) inputs linearity test can be
found in the attached CD-ROM. Further details are available in the Section “Attached
Documents and Files”, later in this appendix (A.25-6).
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Analogue | - Repeatability Test

150%
1%
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m
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Figure A.8: Analogue-1 input repeatability test.

Pulse 1 - Repeatability Test
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Figure A.9: Pulse-1 input repeatability test.

A complete set of graphs related to all (analogue and pulse) inputs repeatability test
can be found in the attached CD-ROM. Further details are available in the Section

“Attached Documents and Files”, later in this appendix (A.25-7).
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Mean Value Error Characteristic
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Figure A.10: Square wave mean value calculation error, having (a) 2.5 V and (b)

1.1 V as input signal mean value.



Appendix A - Communication Test Environment

CAN bus Monitoring Examples

Figure A.11 shows a set of system’s commands flowing on the CAN bus captured
with the CAN monitoring tool. The “output window” provides information regarding
the message priority, data field length and the application data. The first line displayed
represents a “set-time” command; the second a “set-date” and the last one a “reset
Petri-net”. Such commands will be broadcast to all Monitoring Modules. Thus, the

first field in the data block was assigned “0”.

| m = m |-IDIxI
Ident Fig Len DO. .D7 Time Dir
07F7 8 00 11 2F 54 02 FD EA 38 746.487 R
07F7 8 00 11 2F 44 40 E2 77 12 749.320 R
07F7 4 00 11 2F 52 755.172 R

Figure A .1l: CAN bus monitoring window display system’s commands.

Figure A.12 shows a “fired transition” record transmitted by a monitoring module.
The record was required to be split in 3 CAN frames. Frames with identification field
“7EF” have as destination the Connectivity Module. The first element in the data field
identifies the monitoring module that originated the message. The second element
identifies the specific segment of the whole message (31 - first of 3; 32 - second of 3;
33 - last of 3). In the first segment (31), the third and fourth bytes of the data field
inform the Connectivity Module the entire length (ASCII) of the record to be
transmitted over the Internet. Following are a separator (“/”’) and record class fields
(54 - “T” for transition). Other fields are the event identification and the timestamp.
After receiving all segments, the Connectivity Module will reply with a broadcast
message (identification 7F7 in Figure A.12) acknowledging the reception (41 - “A”)
to the monitoring module that originated it (01). Figure A. 13 shows another “output
window”, where a timeout record was captured. In this case, the entire message

required further 2 bytes, in order to report the timeout value.

A. 21
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n n HE B = E
Ident Fig Len DO. .D7 Time Dir
07EF 8 01 31 31 31 2F 54 01 02 859.707 R 1
07EF 8 01 32 80 A4 FF 02 12 77 859.707 R
07EF 3 01 33 83 859.707 R
07F7 S 00 11 2F 41 01 859.717 R

Figure A.12: CAN monitoring window displaying a fired transition record.

— = O a
Ident. Fig Len DO............0 tiiininnnnnn. D7 Time Dir
07EF 8 01 31 31 33 2F 58 01 03 1419.835 R
07EF 8 01 32 95 30 08 03 12 77 1419.835 R
07EF 5 01 33 95 08 00 1419.835 R
07F7 5 00 11 2F 41 01 1419.850 R

Figure A.13: CAN monitoring window displaying a timeout record.

Figure A. 14 shows two sub-net messages, identified by the last byte in the data field
(01 and 02). Sub-nets’ priority fields are identified as “7DF”, making them “invisible”
to the connectivity module. The first element in the data field (00) makes it acceptable
for all monitoring modules (broadcast). The second element indicates total and
specific segment number, while the following “/E” (2F 45) identify the message at the

application level (sub-net).

m I H H H H H 5 g " WEHm E U

Ident. Fig Len DO.......ciuieienenenennn .... D7 Time Dir
07DF 5 00 11 2F 45 01 912.481 T
07DF 5 00 11 2F 45 02 912.494 R

Figure A.14: CAN monitoring window displaying sub-net records.
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Ethernet / Internet Protocols Monitoring Examples

Figure A.15 illustrates messages exchanged between connectivity module and
management application. Figure A.15(a) shows messages captured from the Ethernet
network, where a record was sent from the Connectivity Module (1) and
acknowledged by the Management Application (2). Details of such transmissions are
shown in Figure A.15(b) and A.15(c). The first (b) shows a connectivity module
transmission carrying a monitoring module timeout record. In such case, the UDP
data field begins with a “U” character, which identifies it as a message. The next byte
in the data field represents the message sequence number (44), followed by the record
length (0D). The remaining valid bytes in the datagram data field represent the record
originated by the Monitoring Module (class, timestamp and timeout value). Figure
A.15(c) shows a similar window containing the acknowledgement issued by the
management application, indicating the correctness of the received message. Such
message will provide, in the UDP data field, two valid bytes: the first identifying the
nature of the message (AA (hexa) — complement of the “U” character characterising
an acknowledgement) and the second corresponding to the sequence number that it
will confirm. The absence of such confirmation within a defined period of time will
result in the message retransmission. Other messages exchanged by the system follow

similar patterns.
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m701%*1
'Q' fie £d* Cptue Satiis (pias Tods Window  Hilp J9IX1
elalm| VN 0|«M *H itlslLil cal*lwl d l«*ed
1: 8.681 sec later 85 bytes MAC(Accton:72A07B<-6S01B8:8388B8, type IP) IP(11.1B.5.1<-1».18.5.15, len 71)
2: 0.003 sec later 68 bytes MAC(Accton:72AD7B->85B10B:A3B868, type IP) IP(18.10.S.1->18.18.5.15, len 38)
Fa Help. press FI >NE2000-2
(a)

Pack*! -IfAcltve) SAMPtl IRC 8 6 HW)I sec talei bytes) e .
.t£ File Edk Opitont Window Help -JSJ)g
MC 00 08 E8 72 AD7B 85 81 88 A3 8 88 & 88

sre: 850100:830800 dst: Accton:72AD7B type: IP 0x886 - Ethernet II
1P: 8 BB6B 87 8 SAB00 68 11 3529 BASA S B BABAG 01

sre: 10.18.5.15 dst: 18.10.5.1 version: IP version 8 hsize: 5 type: 6

id: 858 frag: BB ttl: 100 prot: WP 17 chk: 6x3529 (ok)
wr: 08 00 08 60 60 33 9F 5C

sre: 1B28 dst: 2688 len: 51 chk: 6x9f5¢c (ok)

Data:

55 8 @68 81 8395 AD 8 63 12 77 E2 80 8606 DX ».00.

60 60 6066 66 0666 60 66 66 08 68 66 66 6686

66 66 BBEB 60 6666 06 60 66 88

m m

s/ fle £d# Qpias Window Hip

1AC: 85 61 60 A3 68 60 06 8 E8 72 DB 68 &

sre: Accton:72AD7B dst: 856186:038888 type: IP 6x866 - Ethernet II
IP: 8 BB68 IE 53 8F 68 88 28 11 29 5D 8A 9A 85 81 6A BA®S KB
sre: 18.18.5.1 dst: 18.18.5.15 version: IP version 8 hsize: 5 type: 6 len: 30
id: 21327 frag: 8x6 ttl: 32 prot: P 17 chk: 6x295d (ok)
g 08 BB 88 08 60 6A 2B 72
sre: 2888 dst: 1828 len: 16 chk: 8x2b72 (ok)
Data:
M 88 D

Extra bytes at the end:

4

... ..

Appendix A - Communication Test Environment

Figure A.15: Ethernet/Internet protocols monitoring, (a) message exchange, (b)

message details and (c) message acknowledgement details.

A. 24



Appendix A — Attached Documents and Files

ATTACHED DOCUMENTS AND FILES

The documents and files related with this appendix can be found in electronic media

format, attached at the end of this thesis. Bellow are provided the details related to

these files and documents location within the storage unit (CD-ROM).

(0))

@)

©))

)

)

(6)

Q)

Monitoring Module development files

Folder: \Development\MonitoringModule

File name: Pnet.htm (main application’s code file)

Other files can be accessed by means of the hyperlink provided within Pnet.htm.
Connectivity Module development files (CAN bus node)

Folder: \Development\ConnectivityModule\CANNode

File name: CANbus.htm (main application’s code file)

Other files can be accessed by means of the hyperlink provided within
CANbus.htm.

Connectivity Module development files (Internet protocols)

Folder: \Development\ConnectivityModule\InternetProtocols

File name: Connectivity.htm (main application’s C code file)

Other files can be accessed by means of the hyperlink provided within
Connectivity.htm.

Management Application

Folder: \Development\ManagementApplication

File name: IntMonitor.exe

Measurement test descriptive files

Folder: \AppendixA\PetriNet

File name: PetriNet.htm (Petri-net), WatchStatus.htm (begin/end states) and
WatchTrigger.htm (acquisition trigger)

Measurement test linearity graphs

Folder: \AppendixA\HardwareTests

File name: Linearity.htm

Measurement test repeatability graphs

Folder: \AppendixA\HardwareTests

File name: Repeatability.htm
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Appendix B - Press Rig Petri-net Descriptive File

APPENDIX B

MONITORING APPLICATIONS RELATED DETAILS

Press Rig Event Description File

MODULE_ID EQU 1
SPECIAL PL EQU D200
stransition 1
DB D't', B'00000000’
DB B'00000001',B'11111111"
DB  B'00000000',B'11111111"
DB  B'00000000',B'11111111"
DB D'0,D'0'
DB D'l HFF'
DB D7.D'I'
DB D201.Dl'
DB D202.D'l'
DB D203.D'l'
DB D210.D'l
DB D212'.D'l'
DB D214,D'l'
DB D230,D'I'
DB D231'.D'l'
.DB  H'FF'.,D'0
stransition 2
DB H'FF, D72’
DB  B'00000000',B'00001000'
DB B'11110111',B'00000000'
DB B'11111111',B'00000000"
DB B'l11111111'D'0
DB D201.D'l'
DB H'FF,D'S
DB D'1',D207
DB D'1.D'Tl'
DB D'1'HFF
DB DO HFF'
stransition 3
DB  D'3',B'00000000'
DB B'00000100',B'11111011"
DB  B'00000000',B'11111111"
DB B'00000000',B'11111111"
DB D'0',D202'
DB D'l'HFF
DB De¢,D'l'
DB D208.D'l'
DB D2.DTI'
DB  H'FF.D'0’
;transition 4
DB H'FF.,D4'
DB  B'10000000',B'00000001"

;monitoring module

;timeout control limited to place 200

;T1

;DSO01 — stop

;card 2 — none selected
;card 3 — none selected
;no sub-net input

;1 token

;output place 7

soutput place 201
;output place 202
;output place 203
;output place 210
;output place 212
;output place 214
;output place 230
;output place 231

;end of output places

;end of structure T'1
;ordinary, no transmission
;active state ON
;does not matter
;does not matter
;input place 201
;end of input places
;1 token

;1 token

;1 token

;no sub-net output

;T3

;DS03 - right motor
;card 2 — none selected
;card 3 — none selected
;no sub-net input

;1 token

;output place 6

;output place 208
;output place 2

;end of output places

;end of structure T3
sordinary, transmission

/ ordinary, no transmission
/ active state OFF
/does not matter
/does not matter

/ input place 0

/ end of input places
/ 1 token

/ 1 token

/ 1 token

/ 1 token

/ 1 token

/ 1 token

/ 1 token

/ 1 token

/ 1 token

/ no sub-net output

/T2

/ DS04 — left motor

/ card 2 — none selected
/card 3

/ no sub-net input

/ 1 token

/ output place 5

/ output place 207

/ output place 1

/ end of output places
/ end of structure T2

/ ordinary, no transmission
/ active state ON

/ does not matter

/ does not matter

/ input place 202

/ end of input places

/ 1 token

/ 1 token

/ 1 token

/ no sub-net output

/T4
/ DSO01 - stop
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DB  B'00000000',B'00001000'
DB B'11110111',B'00000000'
DB  B'11111111',B'00000000'
DB B'I1111111,D'0

DB D214'.D'l'

DB  H'FF',D215'

DB D'l',D24

DB D'I'HFF'

DB D'0HFF'

stransition 43

DB  D'43',B'00000010'
DB  H'l'HF4
DB D2215,D220'

stransition 44

;transition 45

;transition 46

. DB

stransition 47

;transition 48

DB  H'FF',D'44'

DB B'10000001',B'10000011'

DB H'02,H'00'

DB D220,D'l'

DB HFF,D221'

DB D'I'HFF

DB D0 HFF

DB D'45',B'00000000'

DB B'00001000,B'11111111'

DB B'00000000",B'11111111'

DB B'00000000,B'11111111'

DB D'0',D'220'

DB D'lI'HFF

DB D221'D'l'

DB HFF,DO

DB HFF,D'46'

DB B'10000001',B'00010011’
H'00"H'IA"

DB D220',D'l'

DB HFF,D221'

DB D'l'HFF

DB D'O.HFF

DB  D'47',B'00000000'

DB  B'00001000',B'11111111'

DB B'00000000,B'11111111'

DB B'00000000',B'11111111'

DB D'0',D221'

DB D'l'D24'

DB D'lI'HFF

DB D227.D'l'

DB HFF.,D0'

DB HFF,D'48'

DB B'00000000',B'01000000'

DB B'10111111',B'00000000'

DB B'11111111',B'00000000'

DB B'11111111,D0'

DB D227.D'l'

DB HFF,D?28'

DB D'l',HFF

DB D'0,HFF

;transition 49

DB  D'49',B'00000000'

Appendix B — Press Rig Petri-net Descriptive File

;ordinary, no transmission
;active state ON

;does not matter

;does not matter

;sinput place 214

;end of input places

;1 token

;1 token

;no sub-net output

;T43
;MSB parameter
;input place 215

;end of structure T43
;analogue, transmission
;MSB parameter

;input place 220

;end of input places

;1 token

;no sub-net output

;T45

;DS04 — left motor
;card 2 — none selected
;card 3 — none selected
;no sub-net input

;1 token

;output place 221

;end of output places

send of structure T45
;analogue, transmission
;MSB parameter

;input place 220

;end of input places

;1 token

;no sub-net output

:T47

;DS04 — left motor
;card 2 — none selected
;card 3 —none selected
;no sub-net input

;1 token

;1 token

soutput place 227

;end of output places

;end of structure T47
;ordinary, no transmission
;active state ON

;does not matter

;does not matter

sinput place 227

;end of input places

;1 token

;no sub-net output

;T49

B.8

/ DS04 — left motor

/ card 2 — none selected
/ card 3 — none selected
/ no sub-net input

/ 1 token

/ output place 215

/ output place 24

/ end of output places

/ end of structure T42

/ delay transition (500 ms)
/ LSB parameter
/ output place 220

/ T44

/ high edge - Analogue 3
/ LSB parameter

/1 token

/ output place 221

/end of output places

/ end of structure T44

/ ordinary, no transmission
/ active state OFF

/ does not matter

/ does not matter

/ input place 220

/ end of input places

/ 1 token

/ no sub-net output

/ T46

/ low edge - Analogue 3
/ LSB parameter

/ 1 token

/ output place 221

/ end of output places

/ end of structure 46

/ ordinary, no transmission
/ active state OFF

/ does not matter

/ does not matter

/ input place 221

/ input place 24

/ end of input places

/1 token

/ no sub-net output

/ T48

/ DSO7 - right motor

/ card 2 — none selected
/ card 3 — none selected
/ no sub-net input

/ 1 token

/ output place 28

/ end of output places

/ end of structure T48

/ ordinary, no transmission



DB

DB

DB

DB

DB

DB

DB
;transition 50

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB
stransition 51

DB

DB

DB

DB

DB

DB

DB

DB
;transition 52

DB

DB

DB

DB

- DB

DB

DB

DB

DB

DB

DB
stransition 53

DB

DB

DB

DB

DB

DB

DB

DB
stransition 54

DB

DB

DB

DB

DB

DB

DB

DB

DB
stransition 55

B'01000000',B'11111111'
B'00000000",B'11111111"
B'00000000",B'11111111"
D'0',D28'

D'I'"H'FF'

D214',D'l’

H'FF',D'0'

H'FF',D'50'
B'00000000',B'00000000'
B'11111111',B'00000000'
B'11111111',B'00000000'
B'11111111',D'0’
D'1,D'l'

D'7'.D'l'

H'FF,D'l"

D'1',D'9'

D'l" HFF'

D'0' H'FF'

D'51',B'00000000'
B'00000001',B'11111110'
B'00000000',B'11111111'
B'00000000',B'11111111
D'0,D'7'

D'I'H'FF'

D'8.D'l’

H'FF',D'0'

H'FF',D'52'
B'00000000',B'00000000'
B'11111111',B'00000000'
B'11111111',B'00000000'
B'11111111,D'0f
D2.D'1’

D7.D'1'

H'FF',D"2'

D'1,D'9'

D'1'HFF'

D'0,HFF'

D'S3',B'00000000"
B'00000001",B'11111111'
B'00000000',B'11111111'
B'00000000,B'11111111"
D'0',D'8'

D'l"H'FF'

D'7'.D'l'

H'FF',D'0'

H'FF',D'54'
B'00000000',B'00000001'
B'11111110',B'00000000'
B'11111111',B'00000000'
B'11111111",D'0’
D'9',D'l"

H'FF',.D'8'

D'l HFF

D'0',HFF’

Appendix B — Press Rig Petri-net Descriptive File

;:DS07 — left motor
;card 2 — none selected
;card 3 — none selected
;no sub-net input

;1 token

;output place 214

;end of output places

;end of structure T49
;ordinary, no transmission
;does not matter
;does not matter
;does not matter
;input place 1

;input place 7

;end of input places
;1 token

;1 token

;no sub-net output

;T51

;DS01 - stop

;card 2 — none selected
;card 3 — none selected
;no sub-net input

;1 token

;output place 8

;end of output places

;end of structure T51
;ordinary, no transmission
;does not matter
;does not matter
;does not matter
;input place 2

;input place 7

;end of input places
;1 token

;1 token

;no sub-net output

;T53

;DSO01 - stop

;card 2 — none selected
;card 3 —none selected
;no sub-net input

;1 token

;output place 7

;end of output places

;end of structure T53
;ordinary, no transmission
;active state ON

;does not matter

;does not matter

;input place 9

;end of input place

;1 token

;no sub-net output

B.9

/ active state OFF

/ does not matter

/ does not matter

/ input place 28

/ end of input places
/1 token

/ no sub-net output

/ T50

/ card 1 — none selected
/ card 2 — none selected
/ card 3 — none selected
/ no sub-net input

/ 1 token

/ 1 token

/ output place 1

/ output place 9

/ end of output places

/ end of structure TS0

/ ordinary, no transmission
/ active state ON

/ does not matter

/ does not matter

/ input place 7

/ end of input places

/1 token

/ no sub-net output

/T52

/ card 1 — none selected
/ card 2 — none selected
/ card 3 — none selected
/ no sub-net input

/ 1 token

/ 1 token

/ output place 2

/ output place 9

/ end of output places

/ end of structure

/ ordinary, no transmission
/ active state OFF

/ does not matter

/ does not matter

/ input place 8

/ end of input places

/ 1 token

/ no sub-net output

/ T54

/ DS01 - stop

/ card 2 — none selected
/ card 3 — none selected
/ no sub-net input

/ 1 token

/ output place 8

/ end of output places

/ end of structure T54



DB D'55',B'00000000"
DB  B'00000000'.B'11111111"
DB B'00000000',B'11t11111'
DB  B'00000000'.B'11111111"
DB D'0',D'9'
DB D'1'D"2228'
DB D'I'HFF
DB D7.D'l'
DB H'FF.,D'0O’

;transition 56
DB H'FF',D's6'
DB  B'00000000',B'00000000"
DB B'11111111',B'00000000’
DB B'11111111',B'00000000'
DB B'11111111',D'0’
DB D9Dl'
DB D229.D'l
DB H'FF,D'7'
DB D'I'HFF
DB D'0.HFF

stransition T57
DB D'57',B'00000000'
DB  B'00000000',B't1111111"
DB  B'00000010',B'11111111"
DB  B'00000000',B'11111111"
DB D'0,D230'
DB D'I'HFF
DB D'3'.,D'T
DB H'FF.D'0'

;transition 58
DB H'FF',D'58'
DB  B'00000000',B'00000000'
DB B'11111111',B'00000010'

~ DB B'11111101',B'06000000'

DB B'11111111'D'0
DB D'3'.D'1'
DB H'FF',DR230'
DB D'l HFF
DB D'0' H'FF

stransition 59
DB D'59',B'00000000'
DB  B'00000000',B'11111111"
DB B'00000001',B'11111111"
DB  B'00000000',B'11111111"
DB D'0,D231
DB D'l HFF
DB D4.DI'
DB H'FF'.D'0’

;transition 60
DB H'FF'.,D'60'
DB  B'00000000',B'00000000'
DB B'11111111',B'00000001'
DB B'11111110,B'00000000'
DB B'11111111',D'0’
DB D4 D'l'
DB H'FF'.,D231'
DB D'l HFF
DB DO H'FF'

;end of Petri-net
DB EndOfTable

Appendix B — Press Rig Petri-net Descriptive File

;TS5

:card 1 — none selected
;card 2 — none selected
;card 3 — none selected
;no sub-net input

;1 token

;1 token

;output place 7

;end of output places

;end of structure T55
;ordinary, no transmission
;does not matter

;does not matter

;does not matter

;input place 9

;input place 229

;end of input places

;1 token

;no sub-net output

;T57

;card 1 —none selected
;DS10 — left guard
;card 3 — none selected
;no sub-net input

;1 token

soutput place 3

;end of output places

;end of structure T57
;ordinary, no transmission
;does not matter

;active state ON

;:does not matter

;input place 3

;end of input places

;1 token

;:no sub-net output

;T59

;card 1 — none selected
;DS09 - right guard
;card 3 — none selected
;no sub-net input

;1 token

;output place 4

;end of output places

;end of structure T59
;ordinary, no transmission
;does not matter

;active state ON

;does not matter

;input place 4

;end of input places

;1 token

;no sub-net output

;end of table

/ ordinary, no transmission
/ does not matter

/ does not matter

/ does not matter

/ input place 9

/ input place 228

/ end of input places

/ 1 token

/ no sub-net output

/ T56

/ card 1 — none selected
/ card 2 — none selected
/ card 3 — none selected
/ no sub-net input

/ 1 token

/ 1 token

/ output place 7

/ end of output places

/ end of structure T56

/ ordinary, no transmission
/ does not matter

/ active state OFF

/ does not matter

/ input place 230

/ end of input places

/ 1 token

/ no sub-net output

/ T58

/ card 1 — none selected
/ DS10 — left guard

/ card 3 — none selected
/ no sub-net input

/ 1 token

/ output place 230

/ end of output places

/ end of structure T58

/ ordinary, no transmission
/ does not matter

/ active state OFF

/ does not matter

/ input place 231

/ end of input places

/ 1 token

/ no sub-net output

/ T60

/ card 1 — none selected
/ DS09 — right guard

/ card 3 — none selected
/ no sub-net input

/ 1 token

/ output place 231

/ end of output places

/ end of structure T60



DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

Appendix B — Press Rig Petri-net Descriptive File

Press Rig Process States File (Status Watching)

B'11001111',B'00000001' ;places 1 to 16
B'00000000',B'00000000' ;places 17 to 32
B'00000000',B'00000000' ;places 33 to 48
B'00000000',B'00000000' ;places 49 to 64
B'00000000',B'00000000’ ;places 65 to 80
B'00000000',B'00000000" ;places 81 to 96
B'00000000',B'00000000' ;places 97 to 112
B'00000000’,B'00000000" ;places 113 to 128
B'00000000',B'00000000' ;places 129 to 144
B'00000000',B'00000000" ;places 145 to 160
B'00000000',B'00000000' ;places 161 to 176
B'00000000',B'00000000' ;places 177 to 192
B'00000000',B'00000000' ;places 193 to 208
B'00000000',B'00000000’ ;places 209 to 224
B'00000000',B'00000000' ;places 225 to 240
B'00000000',B'00000000' ;places 241 to 256 (not processed)

Selected places:

O

O 0O OO0 O0OO0

1 — left cycle

2 —right cycle

3 — left guard

4 — right guard

7 — process available
8 — process stopped

9 — process operation



DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

D'0',D'0’
D'0,D'0'
D'0",D'0
DIO',DIOI
D'0',D'0’
D'Ol’ D'O'
DVOI’ D'Ol
D'0,D'0’
D'0",D'0'
D'0",D'0'
DlOV,D'O'

Appendix B — Press Rig Petri-net Descriptive File

Press Rig Analogue/Pulse Acquisition Trigger

D'0', ANALOGUE2 ;places 22 & 23
ANALOGUE3,ANALOGUE!1 ;places 24 & 25
ANALOGUE1,ANALOGUE2 ;places 26 & 27
ANALOGUE3,D'0’ ;places 28 & 29

D'0",D'0'
D'0",D'0’
D'0",D'0’
D'0',D'0'
D', D'’
D'0",D'0’
D'0",D'0'
D'0",D'0’
D'0",D'0’
D'0",D'0’
D'0",D'0’
D'0',D'0’
D'0',D'0'
D'0',D'0'
D'0",D'0'
D'0',D'0'
D'0',D'0"
D'0",D'0’
D'0",D'0’
D'0',D'0’
D'0",D'0’
D'0",D'0’
D'0',D'0"
D'0',D'0’
D0, D'’
D'0",D'0’
D'0",D'0'
D'0",D'0’
D'0",D'0"
D'0",D'0’
D'0",D'0'
D'0',D'0"
D'0',D'0'
D'0',D'0"
D'0',D'0’
D'0",D'0'
D'0',D'0'
D'0',D'0’
D'0',D'0’
D'0',D'0’
D'0',D'0’
D'0,D'0’



el'd

A AANdLIdSI(Y J2U-11)a By ssaid — g xipuaddy

0404
.Q.Qn»O.Q
0404
04504
—O.Qn—o.n—
—O—Qn—o.g
0404
04°0da
04504
—O.Qa.O-Q
0404
0404
—O—Qn.O.Q
0,404
0404
0404
>O.Qn.o.Q
0404
.O—Qn.o.g
04.0d
—O-Qn—O-Q
04°.0d
.O.Q«.O>Q
.O.QA—C.Q
>O.Qn—o_a
.O.Qo—o.a
04°0d
04504
0.a.0d
04.0d
04a‘.0d
04°50d
04°0d
0.a°0d
04.0d
0404
04d0d
0a.0da
0404
.C.Qn.o.a
.O.Q«.C.Q
.O-Qa.o>g
0404
0404
.O>DA»O—Q
0.4°0d
04%0.d
0404
.O-Q a—O.D
0404
.O.Q n_o_a
0.a.0d
04500
.C-Qn.O—Q
.O_Da.O.Q
_O-Qa.o_a
.O.Q n.O.Q
0440d
—O—QA—O—Q
04404

qd
q4d
ad
qgd
dd
gd
qad
q9d
qd
dd
qd
qad
qad
qad
qad
q4d
q9d
q9d
ad
qd
qad
dad
q9d
qda
ad
ad
qa
qad
qd
qad
qada
ad
qgd
qgd
ad
qd
s(el
qd
qd
qad
4a
qad
4da
qad
qad
dad
qd
qd
gd
qd
ad
qd
dd
dd
qgd
dad
4d
4a
dd
d4d
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DB D'0',D'0'
DB D'0',D'0’
DB D'OI,D'OI
DB D'0.,D'0'
DB D'0',D'0’
DB D'0,D'0'
DB D'0',D'0'
DB D'0',D'0'
DB D'0',D'0’
DB D'0,D'0’
DB D'0,D'0'

The descriptive files related to the other two applications presented as examples in
this work (Chapters 9 and 10) are part of electronic documents placed in the attached
CD-ROM. Further details are available in the Section “Attached Documents”, later in
this appendix (B.17 and B.18).

B. 14



Appendix B — OEE Calculation Script

Conveyor Rig OEE Calculation — Database Procedure

CREATE TRIGGER [StatusInsert] ON [PICuser].[ConveyorRig_ST]
FOR UPDATE

AS

DECLARE @Auvailability  real
DECLARE @Performance real
DECLARE @QualityRate real

DECLARE @OEE real
DECLARE @lIdle real
DECLARE @Stopped real
DECLARE @Processing  real
DECLARE @Good real
DECLARE @RejPeg real
DECLARE @RejRing real
DECLARE @WrongRej real
DECLARE @FailRej real
DECLARE @TheDay varchar(12)

SET @TheDay = CONVERT(varchar(12), GETDATE(), 111)

SELECT @ldle = SUM(HOW_LONG) FROM[ConveyorRig_ST] WHERE((
EVENT ID =30) AND (CONVERT(varchar(12), ENDED_AT, 111)
= @TheDay))

SELECT @Stopped = SUM(HOW_LONG) FROM[ConveyorRig_ST]
WHERE(( EVENT ID = 28) AND (CONVERT(varchar(12),
ENDED_AT, 111) = @TheDay))

SELECT @Processing = SUM(HOW_LONG) FROM[ConveyorRig_ST]

WHERE(( EVENT _ID = 29) AND (CONVERT(varchar(12),
ENDED_AT, 111) = @TheDay))

SELECT @Good = COUNT(EVENT_ID) FROM[ConveyorRig EV] WHERE((
EVENT_ID =31) AND (CLASS ='T") AND
(CONVERT(varchar(12), TIME_STAMP, 111) = @TheDay))

SELECT @RejPeg = COUNT(EVENT_ID) FROM[ConveyorRig_EV]
WHERE(( EVENT ID =28) AND (CLASS ='T") AND
(CONVERT (varchar(12), TIME_STAMP, 111) = @TheDay))

SELECT @RejRing = COUNT(EVENT_ID) FROM[ConveyorRig_EV]
WHERE(( EVENT _ID =9) AND (CLASS ='T") AND
(CONVERT(varchar(12), TIME_STAMP, 111) = @TheDay))

SELECT @WrongRej = COUNT(EVENT _ID) FROM[ConveyorRig EV]
WHERE(( EVENT _ID = 30) AND (CLASS ='T") AND
(CONVERT(varchar(12), TIME_STAMP, 111) = @TheDay))

SELECT @FailRej = COUNT(EVENT_ID) FROM[ConveyorRig_EV]
WHERE(( EVENT _ID =29) AND (CLASS ='T") AND
(CONVERT(varchar(12), TIME_STAMP, 111) = @TheDay))

IF(@Processing > 0 AND @Good > 0)

BEGIN
SET  (@Auvailability = (@ldle + @Processing) / (@ldle +

@Processing + @Stopped))
SET  @Performance = (@Processing / (@Processing + @Idle))
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SET  @QualityRate = (@Good / (@Good + @RejPeg +

@WrongRej + @FailRej))

SET  @OEE = (@Availability * @Performance * @QualityRate *

END
ELSE
BEGIN

100)

SET  @Availability = 0

SET  @Performance =0
SET  @QualityRate =0

SET @OEE=0

END
UPDATE

UPDATE

UPDATE

UPDATE

UPDATE

UPDATE

UPDATE

- SELECT

SELECT

SELECT

OEETable SET ActualAvail = @Availability WHERE ProcessID =
'ConveyorRig'

OEETable SET ActualPerform = @Performance WHERE
ProcessID = 'ConveyorRig'

OEETable SET ActualQualRate = @QualityRate WHERE
ProcessID = 'ConveyorRig'

OEETable SET ActualOEE = @OEE WHERE ProcessID =
'ConveyorRig'

OEETable SET BestAvail = @Availability WHERE((BestAvail <
@Availability) AND (ProcessID = 'ConveyorRig"))

OEETable SET BestPerform = @Performance
WHERE((BestPerform < @Performance) AND (ProcessID =
'ConveyorRig'))

OEETable SET BestQualRate = @QualityRate
WHERE((BestQualRate < @QualityRate) AND (ProcessID =
'ConveyorRig"))

@Availability = BestAvail FROM OEETable WHERE ProcessID =
'ConveyorRig'

@Performance = BestPerform FROM OEETable WHERE
ProcessID = 'ConveyorRig'

@QualityRate = BestQualRate FROM OEETable WHERE
ProcessID = 'ConveyorRig'

SET @OEE = (@Auvailability * @Performance * @QualityRate * 100)
UPDATE OEETable SET BestOEE = @OEE WHERE ProcessID = 'ConveyorRig'
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ATTACHED DOCUMENTS AND FILES

The documents and files related with this appendix can be found in electronic media
format, attached at the end of this thesis. Bellow are provided the details related to

these files and documents location within the storage unit (CD-ROM).

(1) Press rig - Petri-net diagram descriptive file
Folder: \AppendixB\PetriNet\PressRig
File name: Petrinet.htm
(2) Pressrig — state status (beginning/ending) descriptive file
Folder: \AppendixB\PetriNet\PressRig
File name: WatchStatus.htm
(3) Press rig — analogue / pulse input descriptive file
Folder: \AppendixB\PetriNet\PressRig
File name: WatchTrigger.htm
(4) Conveyor rig - Petri-net diagram descriptive file
Folder: \AppendixB\PetriNet\ConveyorRig
'File name: PetriNet.htm
(5) Conveyor rig - state status (beginning/ending) descriptive file
Folder: \AppendixB\PetriNet\ConveyorRig
File name: WatchStatus.htm
(6) Conveyor Rig — analogue / pulse input descriptive file
Folder: \AppendixB\PetriNet\ConveyorRig
File name: WatchTrigger.htm
(7) Tool Changer - Petri-net diagram descriptive file
Folder: \AppendixB\PetriNet\ToolChanger
File name: Petrinet.htm
(8) Tool Changer — state status (beginning/ending) descriptive file
Folder: \AppendixB\PetriNet\ToolChanger
File name: WatchStatus.htm
(9) Tool Changer — analogue / pulse input descriptive file
Folder: \AppendixB\PetriNet\ToolChanger
File name: WatchTrigger.htm



Appendix B — Attached Documents and Files

(10) OEE calculation database script
Folder: \AppendixB
File name: ConveyorRigOEE.htm
(11) Web page examples showing the IPMM approach
Folder: \AppendixB
File name: IPMM WebPage.htm
(12) System’s application examples (best viewed with resolution set to 1280 x 1024)
Folder: \AppendixB

File name: ConveyorRig.avi and PressRig.avi



)

@

3

@

Appendix C — List of Publications

APPENDIX C

PUBLICATIONS AND PRESENTATIONS

Frankowiak, M.R., Grosvenor, R.1., Prickett, P.W., Jennings, A.D. and Turner,
J.R. Design of a PIC Based Data Acquisition System for Process and Condition
Monitoring. In Proceedings: Comadem 2001, Manchester, UK: Elsevier Science,
2001, 481-488.

Document (paper) in the attached CD-ROM: \AppendixC\Documentl.htm
(Oral presentation in the 14" International Congress on Condition Monitoring and
Diagnostic Engineering Management, Manchester, UK)

Frankowiak, M.R., Grosvenor, R.I., Prickett, P.W. and Jennings, A.D. A
Microcontroller Based Distributed System Using a Petri-net Approach. In
Proceedings: Comadem 2002, Birmingham, UK: Comadem International, 2002,
37-44.

Document (paper) in the attached CD-ROM: \AppendixC\Document2.htm

(Oral presentation in the 15™ International Congress on Condition Monitoring and

‘Diagnostic Engineering Management, Birmingham, UK)

Jennings, A.D, Prickett, P.W., Grosvenor, R.I. and Frankowiak, M.R. Process and
Condition Monitoring Using the Internet (e-monitoring). In Proceedings:
Comadem 2002, Birmingham, UK: Comadem International, 2002, 45-52.
Document (paper) in the attached CD-ROM: \AppendixC\Document3.htm
(Oral presentation in the 15™ International Congress on Condition Monitoring and
Diagnostic Engineering Management, Birmingham, UK)

Frankowiak, M.R., Grosvenor, R.I., Prickett, P.W. and Jennings, A.D. Distributed
Monitoring System Using PIC Microcontroller Technologies. In Proceedings:
ICOM2003, Loughborough, UK: Professional Engineering Publications, 2003,
415-420.

Document (paper) in the attached CD-ROM: \AppendixC\Document4.htm
(Oral presentation in the International Conference on Mechatronics,
Loughborough, UK)



Appendix C — List of Publications

(5) Frankowiak M.R. Manufacturing Process and Machine Monitoring Employing
Microcontroller Technologies. Speaking of Science, Cardiff, 2003.
(Oral presentation in the BA Speaking of Science Conference, Cardiff, UK)
Document (abstract) in the attached CD-ROM: \AppendixC\DocumentS.htm
(6) Frankowiak, M.R., Grosvenor, R.L., Prickett, P.W. and Jennings, A.D. A Petri-net
Based Distributed Monitoring System Using PIC Microcontrollers.
Document (paper) in the attached CD-ROM: \AppendixC\Document6.htm

(Submitted to the Microprocessors and Microsystems Journal)
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