
CARDIFF
U N I V E R S I T Y

P RI F Y S G O L

CaeRDY|§>

BINDING SERVICES
Tel +44 (0)29 2087 4949
Fax+44 (0)29 20371921

e-mail bindery@cardiff.ac.uk

mailto:bindery@cardiff.ac.uk

Intelligent Distributed Process Monitoring and

Management System

By

Marcos R. Frankowiak

February, 2004

Intelligent Process Monitoring and

Management (IPMM) Centre

Cardiff School of Engineering

Cardiff University

UMI Number: U584639

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584639
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ACKNOWLEDGEMENTS

This work was carried out at the Intelligent Process Monitoring and Management

(IPMM) Centre, Cardiff School of Engineering, Cardiff University. Special thanks are

owed to Dr. R.I. Grosvenor and Mr. P.W. Prickett who originated and enthusiastically

supervised this research project, contributing with their knowledge and expertise to

properly advise and guide the activities that resulted in the realisation of this work.

Grateful thanks are offered to Dr. A.D. Jennings and Mr. J.R. Turner for their support

and contribution to this investigation, while staff members of IPMM Centre, always

helpful in facilitating the research activities.

Equally important was the support provided by my sponsor, CAPES of Brazil, giving

financial support and guidance that enabled me to fully concentrate on the important

aspects of the research activities.

Microchip Technology Inc. many times offered technical support and contributed

with samples required and employed in the research, thus easing many aspects that

resulted in the final results.

Finally, my greatest thanks go to my family specially my wife Jeanete and my son

Gustavo, that have endured patiently with me during this work.

SUMMARY

Monitoring systems represent an important tool to support efforts aimed at improving

productivity and quality, reducing waste and enhancing safety in manufacturing.

Modem technologies including electronic devices, communication technology, the

Internet, database systems and modem computer technology represent resources that

can provide flexible and cost accessible attractive and efficient solutions for the

implementation of distributed and intelligent monitoring systems.

A new generation of microcontrollers offer a high level of integrated devices and

operate at low power, making them the ideal choice for many embedded industrial

applications. However, the development of application software for microcontroller-

based implementations has normally been a restrictive factor. Before this work this

has resulted in most process and condition monitoring systems being PC based.

This research presents an intelligent and distributed monitoring system based on

microcontroller technology, specifically the PIC18C452. The system uses a flexible

architecture that can be adapted to the necessities of different monitoring applications.

“Monitoring Modules” that can be deployed according to the application requirements

were developed. Industrial networks and Internet technologies are employed to

enhance communication, therefore allowing monitoring records to be made available

in a remote database. The Petri-net concept is used to represent the monitoring task in

such a way as to provide independence from the system’s hardware and software.

Extensions to the original Petri-net theory and new modelling elements, including the

acquisition of analogue signals, required to support the use of this method in a

microcontroller-based environment, are presented. These enhancements represent a

major contribution of this research.

Finally, the benefits of the system are considered by means of three application

examples; a simple Press Rig to illustrate the general features and use of the system, a

more complicated Assembly Process Rig to show the flexibility of the modelling

approach, and finally a CNC Milling Machine tool changer is used to demonstrate the

system in a real manufacturing application.

CONTENTS

ACKNOWLEDGEMENTS i

SUMMARY ii

NOMENCLATURE viii

CHAPTER 1 - INTRODUCTION 1

CHAPTER 2 - RESEARCH MOTIVATION 5

References for Chapter 2 10

CHAPTER 3 - LITERATURE REVIEW

3 .1 - Introduction 12

3.2 - Fault Diagnostics 14

3.2.1 - Fault Tree Analysis Approaches 14

3.2.2 - Model Based Approaches 17

3.2.3 - Intelligent System Based Approaches 18

3.3 - Condition Monitoring 20

3.3.1 - IPPM Centre Research 21

3.3.2 - Machine Tool Condition Monitoring 22

3.3.2.1 - Sensor-based Systems 23

3.3.2.2 - Non-sensor Based Monitoring 26

3.4 - Integrated Monitoring Systems 27

3.5 - Distributed Monitoring Systems 34

3.6 - Embedded and Microcontroller-based Monitoring Systems 43

3.7 - Future Directions 48

3.8 - Summary 54

References for Chapter 3 55

CHAPTER 4 - TECHNOLOGY FUNDAMENTALS

4 .1 - Introduction 61

4.2 - Processing Technology 61

iii

4.2.1 - The PIC18C452 Microcontroller 65

4.3 - Data Acquisition 73

4.4 - Industrial Networks 77

4.4.1 - Controller Area Network (CAN) 80

4.4.2 - MCP2510 CAN Controller 88

4.5 - The Internet Protocols 90

4.5.1 - The IP Protocol 91

4.5.2 - The TCP Protocol 94

4.5.3 - The UDP Protocol 96

4.5.4 - Management Protocols 97

4.6 - Internet Embedded Technology 100

4.7 - Database Systems 101

4.8 - Summary 103

References for Chapter 4 104

CHAPTER 5 - PETRI-NET CONCEPT

5 .1 - Introduction 108

5.2 - Petri-net Representation 109

5.3 - Petri-net Definitions 111

5.4 - Petri-net Properties 116

5 .5 - Petri-net Extensions 119

5.6 - Summary 122

References for Chapter 5 123

CHAPTER 6 - PETRI-NET MONITORING MODEL

6.1 - Introduction 124

6.2 - The Modelling Approach 125

6.3 - The Model Structures 128

6.3.1-P laces 128

6.3.2 - Sub-nets 129

6.3.3 - Transitions 129

6.3.3.1 - Ordinary Transition 129

6.3.3.2 - Analogue Transition 133

6.3.3.3 - Delay Transition 134

iv

6.3.3.4 - Output Transition 135

6.4 - Implementations Aspects and Representation 136

6.5 - Monitoring Records 138

6.6 - Fault Diagnostics Approach 142

6.7 - Summary 144

References for Chapter 6 146

CHAPTER 7 - SYSTEM DECRIPTION

7.1 - Introduction 148

7.2 - Monitoring Module (MM) 149

7.2.1 - Hardware Description 149

7.2.2 - Software Description 152

7.2.2.1 - Data Communication Aspects 158

7.3 - Connectivity Module (CM) 161

7.3.1 - Hardware Description 161

7.3.2 - Software Description 162

7.3.2.1 - CAN Node Implementation 163

7.3.2.2 - Internet Connectivity Implementation 166

7.3.2.2.1 - Protocols Implementation 166

7.3.2.2.2 - Operation Description 169

7.4 - Management Application (MA) 170

7.4.1 - System Data Tables 171

7.5 - System Tests and Measurements 172

7.5.1 - Linearity 172

7.5.2 - Repeatability 173

7.5.3 - Analogue Input Mean Value Accuracy 173

7.5.4 - System Communication Testing 174

7.6 - Summary 175

References for Chapter 7 176

CHAPTER 8 - PRESS RIG MONITORING TASK

8 .1 - Introduction 178

8.2 - Process Overview 178

8.2.1- Press Rig Component Description 179

v

8.2.2 - Monitoring Task Analysis 180

8.3 - Press Rig Petri-net 182

8.4 - Monitoring Results 187

8.4.1 - Data presentation Approach 188

8.4.2 - Monitoring Presentation Examples 188

8.5 - Summary 193

References for Chapter 8 194

CHAPTER 9 - CONVEYOR RIG MONITORING TASK

9 .1 - Introduction 195

9.2 - Process Description 195

9.2.1 - Conveyor Rig Component Description 197

9.2.2 - Monitoring Task Analysis 197

9.3 - Conveyor Rig Petri-net 198

9.4 - Monitoring Results 206

9.5 - Summary 212

References for Chapter 9 213

CHAPTER 10 - TOOL CHANGER MONITORING TASK

10 .1- Introduction 214

10.2 - Operation Description 214

10.2.1 - Component Description 216

10.2.2 - Monitoring Task Analysis 217

10.3 - Tool Changing Petri-net 218

10.3.1 - Tool Selection and Cutting Process Monitoring 219

10.3.2 - Z Axis Positioning and Spindle Orientation 222

10.3.3 - Tool Changer Horizontal Movement 223

10.3.4 - Tool Changing Operation 224

10.4 - Monitoring Results 227

10.5-Sum m ary 230

References for chapter 10 231

CHAPTER 11 - DISCUSSION

11 .1 - Introduction 232

vi

11.2 - Implementation Aspects 233

11.2.1 - Hardware Considerations 233

11.2.2 - Local Communication 235

11.2.3 - Remote Communication 238

11.2.4 - Data Analysis and Integration 240

11.3 - Modelling Method Aspects 241

11.3.1 - Extended Features Supported by the Petri-net Approach 247

11.3.2 - Fault Diagnostics 249

11.4 - The Research in the Monitoring Context 251

References for Chapter 11 253

CHAPTER 12 - CONCLUSION AND FUTURE WORK

12.1 - Main Contributions of the Research 255

12.2 - Conclusions 256

12.3 - Future work 258

Appendix A: Development Related Details

Appendix B: Monitoring Applications Related Details

Appendix C: Publications and Presentations

Note: Additional documentation produced as a result of this research (i.e. program

listings, test set ups and results, previous publications, etc.) are provided in

electronic format and included in the attached CD-ROM.

NOMENCLATURE

AC - Alternate Current

ADC - Analogue to Digital Converter

AE - Acoustic Emission

ARP - Address Resolution Protocol

CAD - Computer Aided Design

CAN - Controller Area Network

CM - Connectivity Module

CNC - Computer Numerical Control

CRC - Cyclic Redundancy Check

DAS - Data Acquisition System

DBMS - Database Management System

DC - Direct Current

DNC - Direct Numerical Control

DSP - Digital Signal Processor

EPROM - Erasable Programmable Read-Only Memory

ES - Expert System

FDI - Fault Detection and Isolation

FMS - Flexible Manufacturing System

FTA - Fault Tree Analysis

Hz - Hertz

ICMP - Internet Control Message Protocol

IEEE - Institute of Electrical and Electronics Engineers

IP - Internet Protocol

IPMM - Intelligent Process Monitoring and Management Centre

ISO - International Standards Organisation

KBS - Knowledge-Based System

LAN - Local Area Network

LED - Light-Emitting Diode

LSB - Least Significant Byte

MA - Management Application

MM - Monitoring Module

MSB - Most Significant Byte

NCAP - Network Capable Application

NRZ - Non-Return to Zero

ODBC - Open Database Connectivity

OEE - Overall Equipment Efficiency

OSI - Open System Interconnection

PC - Personal Computer

PIC - Peripheral Integrated Controller

PLC - Programmable Logic Controller

RAM - Random Access Memory

RISC - Reduced Instruction Set Computer

RMS - Root Mean Square

rpm - rotation per minute

SPI - Serial Peripheral Interface

SQL - Structured Query Language

STIM - Smart Transducer Interface Module

TCP - Transmission Control Protocol

UDP - User Datagram Protocol

Chapter 1 - Introduction

CHAPTER 1

INTRODUCTION

Present day competition in manufacturing requires the deployment of new and

efficient methods and techniques to obtain the best results. New machines and

equipment are capable of high speed production to high quality standards. However,

to achieve the best results when exploiting such features, adequate management of

resources is required.

Monitoring systems have become an important element in this context. They can be

used to provide information in order to allow engineers to manage assets and control

industrial processes. They can follow process events and monitor machine conditions,

thus providing the means to prevent losses, help in predicting critical situations and to

enable efficient planning. As a consequence machine manufacturers should be able to

monitor their deployed equipment all over the world and provide their customers with

fast and efficient maintenance and updating services.

This research investigates the development of low-cost monitoring systems, that are

capable of being deployed and embedded in manufacturing process and machines.

These are provided with the required level of processing capabilities and intelligence,

based on modem technology. It was considered that such systems require the

capability of providing precise records that can be further integrated within a wider

range of applications, from remote monitoring to top-level management.

Each of these areas is dealt with in this thesis, which is organised in 12 chapters that

cover the technology, techniques and methods employed and presents a range of

examples that demonstrate the results obtained from the use of the proposed system.

The aims of this research are presented in Chapter 2 based upon the demands and

requirements of modem manufacturing systems. It considers why it is that, although

1

Chapter 1 - Introduction

the technology is available and the benefits well known, the use of monitoring

techniques is still restricted.

Chapter 3 provides a review of several aspects related to monitoring techniques.

Condition Monitoring, an important sector within the monitoring area, has generated a

large number of investigations and still offers a number of opportunities due to the

area’s complexity. Fault diagnostics is another important area that has found added

impetus with the development of artificial intelligence tools. The integration of such

techniques, under the designation of monitoring systems, is also experiencing

increased interest. Initially Condition Monitoring was limited to stand alone

computers, however new networking technologies and protocols have increased

flexibility and reduced restrictions. At the same time, compact and powerful

processors enable the development of a distributed concept in the control and

monitoring field.

The technology on which this research was based is reviewed in Chapter 4. It

introduces important aspects of the PIC18C452 microcontroller, that forms the core of

the monitoring system implemented as result of this investigation. CAN bus and

Internet protocols, which represent important elements used in order to enable the

development of a distributed monitoring concept, are also introduced in this chapter.

A brief description of some aspects related to database systems is also presented, as

they become an important component in the System’s structure for the analysis,

presentation and integration of the information produced.

An important element of the System is the modelling technique that enables the

design of the monitoring task. The Petri-net concept was selected in this research for

this purpose. Two chapters, 5 and 6, were dedicated to the topic. The first one

considers the fundamental aspects of the theory and the extensions introduced in order

to improve its use in practical applications. Chapter 6 describes particular extensions

that were required as a result of this research, in order to enable the use of the method

as a modelling technique for monitoring purposes.

The structure and development aspects of the System are presented in Chapter 7.

Different components were required to allow monitoring records to reach a remote

2

Chapter 1 - Introduction

database over the Internet. Hardware and software aspects of the Monitoring Module,

Connectivity Module and Management Application are provided in detail. These

represent the structure of the distributed concept implemented in this research.

The use of the produced System is described in the following three chapters. In

Chapter 8 a laboratory-based functional model of an Asea Press, referred to herein as

the Press Rig, was monitored by the System to show how maintenance and

managerial information can be produced and presented using a web page based

approach. Particularities of the application and modelling technique are also

described.

In Chapter 9, another experimental application task is presented, using further

laboratory-based equipment, namely the Conveyor Rig. This represents a very

important example, as it provided a good level of complexity to test and subsequently

demonstrate the System’s capabilities in terms of modelling flexibility and generality.

From the records produced by the Monitoring Module, a wide range of information is

presented to meet different managerial requirements.

In the last example, in Chapter 10, a tool changer on an industrial milling machine is

used as a monitoring application. A CNC machine tool changer is an important

component and its operation and failure can significantly affect the efficiency of the

machining process. The monitoring system was deployed to monitor the operation of

this tool changer. Using this system’s special resources, the actual cutting tool usage

was monitored in order to provide additional management information to help in their

assessment.

Chapter 11 is dedicated to the discussion of different aspects of this research.

Questions related to the capabilities and limitations of microcontrollers for such

applications are considered. The importance of the System’s architecture in achieving

the final results is also analysed. Similarly, the Petri-net approach as a modelling

method for monitoring purposes and its flexibility in dealing with real situations

represented by the application examples is considered. The potential and the range of

applications of the System emerge as a result.

3

Chapter 1 - Introduction

Finally in Chapter 12, the conclusions and future work suggestions are presented. The

conclusions are based on the different aspects addressed by the research: the

microcontroller, architecture, modelling method and System’s capabilities. The

continuity and enhancements of the System are presented as future work topics and

give an indication of the opportunities resulting from this research in the investigation

and development of flexible and feasible monitoring technology.

4

Chapter 2 - Research Motivation

CHAPTER 2

RESEARCH MOTIVATION

The demand for systems and processes that can operate without failures and errors

continuously provides motivation for new research in all areas o f manufacturing. The

main motivation for such research is based on economic factors. However, any

implementation of new technologies and techniques to support the manufacturing

process will also result in a more efficient use of resources and thus is

environmentally friendly.

Business competitiveness is directly affected by manufacturing factors such as cost,

quality, flexibility and timing, as indicated by the results of a manufacturing strategy

survey [2.1]. As a result of this, machine manufacturers are continuously encouraged

by their customers to develop machines that allow higher levels of productivity whilst

at the same time providing better quality outputs. Such machines require repeatability,

flexibility and must operate with minimum downtime in order to lower production

costs. These requirements imply that machines must run faster and be capable of

operating in a more precise way. Therefore, modem machines and their controllers are

becoming more complicated. In addition it is becoming increasingly vital that the

operating conditions of these complicated machines should be kept close to their

optimum specifications [2.2]. Hence the need for more accurate and cost effective

maintenance and monitoring tools.

Swanson [2.3] carried out research to identify the impact of new technologies in

manufacturing processes with respect to maintenance activities. This indicated that

modem processes may integrate several operations into one single step. This creates a

bigger dependency on equipment, with high cost implications in the case of failure.

Processes with higher levels of automation rely much more on efficient maintenance

practises. Considering all the implications, Swanson stated that “maintenance

resources must be quickly and properly directed to solve problems”. The survey

enabled Swanson to conclude that “preventive and predictive maintenance allow the

5

Chapter 2 - Research Motivation

maintenance function to better support equipment availability and performance”.

There was also an indication that the integration of the information process between

maintenance and production management is equally important to enable rapid, right-

first-time responses to improve overall equipment performance.

An investigation attempting to quantify the financial benefits of condition monitoring

based maintenance indicated that direct repair cost of machinery can be 80% higher

without the use of such techniques [2.4]. In their research the authors only considered

measurement methods based upon the use of hand held devices that require human

intervention to collect the data. Clearly these savings can be further increased by the

deployment of fully automated techniques for such a purpose. These methods can

extend the intervals between maintenance, manage plant degradation in a controlled

way, avoid wasteful maintenance routines and reduce maintenance induced failures

and thus decrease lost production time [2.5].

In considering all the factors concerning modem manufacturing and maintenance

requirements, it is becoming essential that computerised tools should be deployed in

order to achieve high production standards [2.2, 2.3, 2.6, 2.7, 2.8]. Such tools can help

to diagnose existing faults, or even better, monitor the system and manage any

measured degradation in a controlled fashion.

Looking from another perspective, information can be seen to be a crucial asset in

modem manufacturing enterprises. Gunasekaran and McGaughey [2.6] indicated the

importance of information in a new manufacturing configuration, called virtual

manufacturing, where partners, normally located at different sites, have to react

together in response to market demands. In many cases, the concept of manufacturing

for stock, based on economic batch quantities, has now been replaced by production

models that prize flexibility [2.9]. To support these developments, real-time process

monitoring at different levels (machine health, process efficiency, etc) is increasingly

being identified as a key issue in order to provide accurate information regarding the

process and in supporting decisions that need to be made concerning production

dynamics [2.10].

6

Chapter 2 - Research Motivation

From the point of view of machine manufacturers competitiveness is also associated

with their capability to provide customers with an efficient after sales support [2.2]. In

an article de Vicq indicated that as businesses spread all over the world, Internet

based technologies should be considered as an mechanism to support remote

maintenance activities and to facilitate actions aimed at reducing the downtime due to

breakdowns. In doing this the machine manufacturers will also generate databases

capturing data gathered from different machines at diverse customers sites. From this

they can build the required knowledge to answer customers’ requests quickly.

Similar opinion was issued in another article [2.8]. Here it was suggested that

competitiveness could be improved by establishing a positive relationship between

supplier and customers. The article considers that new generation of machines will be

supplied with embedded monitoring capabilities using Internet technology. In such a

scenario, the machine manufacturers would be able to remotely monitor and compare

machines at different locations. A consistent database built on data provided by

different machines and locations would allow the prediction of machine faults or

identify corrections, therefore helping customers to achieve higher levels of

performance with less downtime. The same article indicated that remote diagnostics

might also reduce maintenance intervention costs due to expertise allocation at

faraway sites. Tulpule [2.11] described the use o f such an implementation in the

Heating, Ventilation and Air-Conditioning (HVAC) manufacturing sector, calling it

“e-service”. He considered that the deployment of this sort of technology is vital for

manufacturer’s competitiveness.

The idea of employing Internet technology to improve maintenance capabilities was

also supported by Lofall [2.12]. He argues that information can be shared over the

web using a widely employed interface such as a web browser and that other

technologies, for instance e-mails, are already available to supply timely information

to specific users. In this way powerful web based condition analysis tools could be

deployed, reducing costs (by sharing expensive software) and training requirements.

Davies and Greenough [2.7] conducted a survey which showed that among

Computerised Maintenance Management Systems (CMMS) users, 50% indicated that

such systems should include better integration with web and office based

technologies, in order to improve their application. Another argument in favour of

7

Chapter 2 - Research Motivation

such technology is the indication that web based applications represent the fastest

growing information systems in the manufacturing industry [2.13], showing that it is

becoming the preferred platform for information sharing.

Despite all the new developments that may enhance manufacturing technology, it was

suggested by Dunn [2.14] that in terms of condition monitoring, the technology still

has not addressed business needs and that it has “a long way to improve”. He

considered that managers are not fully convinced of the benefits of the technology and

that in many cases retum-on-investment is difficult to assess. In his analysis, Dunn

considered some points that should be addressed to improve existing condition

monitoring technology. Among these the necessity of considering the real-time

equipment operating conditions when assessing specific information and also the

requirement for a more accessible technology in terms of cost were suggested. He also

considered that the equipment efficiency is a parameter that should be monitored in

order to support condition-based maintenance. The most promising and important

trends in the area, as indicated by Dunn, are the development of low-cost and online

monitoring devices that will permit cost-effective monitoring of key equipment parts.

At a higher level in the monitoring activity it is sensible that high-level software tools,

that are often expensive, should be based in central organisations where expertise can

be deployed to analyse the monitored data.

In considering all these aspects and also taking into account the support provided by

existing technology and new breakthroughs, this research proposes to investigate the

engineering of a new type of monitoring system to overcome existing limitations and

meet these requirements. The following outlines how the research aims to approach

the main considerations:

a) Cost:

It is proposed to utilise microcontroller technologies in order to deal with the cost

factor restricting the take-up of current monitoring systems. This was seen to be

timely since continuous development within the electronics industry is providing such

devices with ever increasing processing capabilities. This will enable their use in

many applications until recently restricted to computers.

8

Chapter 2 - Research Motivation

b) Reusability:

The use of microcontrollers in a practical way for such applications requires the

development of an approach that enables the modelling of monitoring tasks to be

undertaken in a straightforward manner. It is essential for this approach to support the

reusability of basic hardware and software in different implementations. In this

research it is proposed that the use of a developed Petri-net concept as a modelling

tool will provide reusability and easy implementation.

c) Flexibility and Integration:

The capability of adapting the basic hardware and software to form a complete

monitoring system to meet application specific requirements is to be achieved by

providing data communication facilities. Industrial networks, in the specific form of

Control Area Network (CAN) bus, are to be used as the basis for communication to

enable several monitoring modules to be joined and dedicated to perform a major

task. In this way, the individual modules can be deployed where they are required

within the system in a flexible manner, each one monitoring a specific part of the

process, whilst communicating with each other in order to remain synchronised.

d) Data Acquisition and Presentation:

In order to make the monitored data available for further use, such as the deployment

of analysis tools or to support other management application tasks, remote database

storage and access is proposed. This will be based on Internet connectivity, current

database technology and the use of tools such as Structured Query Language (SQL).

Such standards, which are becoming more widely used, enable different applications

to access the data and information obtained from process or machine monitoring. The

same structure will provide a way to present information on a general and widely used

environment represented by Internet web browsers.

In proposing this research it is recognised that, considering the complexity concerning

such a wide research area, it is not possible to solve all the current problems. What is

intended is that this work should support the development of process and condition

monitoring system. This can be used to provide examples of the use of these systems

and thus help in the establishment of this type of approach, which is clearly much

needed.

9

Chapter 2 - Research Motivation

REFERENCES

2.1 Demeter, K. Manufacturing Strategy and Competitiveness. International

Journal o f Production Economics, 2003, 81-82, 205-213.

2.2 de Vicq, A. 21st Century Machinery. IEE Manufacturing Engineer, 2001,

80(3), 104-109.

2.3 Swanson, L. An Information-processing Model of Maintenance Management.

International Journal o f Production Economics, 2003, 83, 45-64.

2.4 Rajan, B.S. and Roylance, B.J. Condition-based Maintenance - A Method of

Assessing the Financial Benefits. International Journal o f COMADEM, 2001,

4(2), 13-18.

2.5 Tinham, B. Save Money with Condition Monitoring. Control and

Instrumentation, 1995, January, 31 and 32.

2.6 Gunasekaran, A. and McGaughey, R. Information Technology/Information

Systems in 21st Century Manufacturing. International Journal o f Production

Economics, 2002, 75, 1-6.

2.7 Davies, C. and Greenough, R. The Use of Information Systems in Fault

Diagnosis. Plant Maintenance Resource Centre. Available from:

http://www.plant-maintenace.com/articles/

Information_Systems_in_Fault_Diagnosis.pdf [Accessed 14 February 2003].

2.8 Maintenance is not as Mundane as it Sounds. ManufacturingNews.com Web

Site, Available from: http://www.manufacturingnews.com/news/01/1130/

artl.html [Accessed 14 February 2003].

2.9 Manufacturing Control in Real Time. Online.com Web Site, Available from:

http://www.es2002online.com/frontpage/es2002/SpecialR.asp?ID=52 [Accessed

12 July 2002].

2.10 Jennings, A.D., Prickett, P.W., Grosvenor, R.I. and Frankowiak, M.R.

Process and Condition Monitoring using the Internet (E-Monitoring). In

Proceedings o f COMADEM 2002, Birmingham, UK:Comadem International,

2002, 45-52.

10

http://www.plant-maintenace.com/articles/
http://www.manufacturingnews.com/news/01/1130/
http://www.es2002online.com/frontpage/es2002/SpecialR.asp?ID=52

Chapter 2 - Research Motivation

2.11 Tulpule, S. E-Service - Customer Centric Maintenance. In Proceedings o f

COMADEM 2000, Houston, USAiThe Society for Machinery Failure

Prevention Technology, 2000, 895-904.

2.12 Lofall, D. Information Everywhere - Connectivity is the Future of Predictive

Maintenance. DLI Engineering Corporation, DLI Machine Condition

Monitoring Web Site. Available from: http://www.dliengineering.com/

downloads/info-everywhere-dl.pdf, [Accessed 7 March 2003].

2.13 Coronado, A.E., Sarhadi, M. and Millar, C. Defining a Framework for

Information Systems Requirements for Agile Manufacturing. International

Journal o f Production Economics, 2002, 75, 57-68.

2.14 Dunn, S. Condition Monitoring in the 21st Century. Plant Maintenance

Resource Center, Plant Maintenance Web Site, Available from: http://www.

plant-maintenance.com/articles/ConMon21 stCentury.shtml, [Accessed 10

August 2002].

11

http://www.dliengineering.com/
http://www

Chapter 3 - Literature Review

CHAPTER 3

LITERATURE REVIEW

3.1 - Introduction

Monitoring systems have numerous applications in many different areas. They are

seen as a growth area in building technology [3.1], the environment [3.2] and human

health [3.3] for example. This research and hence this literature review concentrates

specifically on industrial applications, although the resulting benefits may be of use in

the other application fields.

Monitoring in industrial environments is becoming an increasingly important issue,

since companies have to pursue many different ways of cost reduction and efficiency

improvement, in order to remain competitive. Process and condition monitoring are

useful tools in achieving these targets, because of their capability of providing key

information that is necessary to plan production in a strategic and efficient way. Some

functions such as maintenance that are not value adding production activities are

being continuously pushed to reduce their cost, while keeping machinery and

equipment running as long as possible without interruption. Condition monitoring is

one tool that enables such actions by reducing part replacement costs, machinery

downtime and hopefully, avoiding catastrophic damage to a company’s assets.

This chapter is structured to present a review of some important topics that should be

considered when implementing or deploying a monitoring system. The review

concentrates on the ability of such systems to supply process and machine information

required for their management and assessment. These systems should provide not

only cost benefits, but also more environment friendly industrial processes.

The chapter is divided into sections that consider the evolution of modem process

monitoring and management systems.

12

Chapter 3 - Literature Review

Section 3.2 considers the tools that can be used for Fault Diagnostics. It presents an

overview of the different approaches that have been taken to identifying and

diagnosing possible fault conditions.

Section 3.3 presents a review of both sensor and non-sensor based Condition

Monitoring. This includes an overview of the initial contributions made to this field

by the Intelligent Process Monitoring and Management Centre, within which this

research was conducted.

Section 3.4 considers how condition monitoring technology has been integrated to

form more complete Integrated Monitoring Systems that have process monitoring and

management functions. These systems normally run using PC based technology, and

this section considers the benefits and disadvantages this brings.

Section 3.5 outlines the evolution of Distributed Monitoring Systems, which make

best use of the ever more effective and accessible tools that are available to connect

and integrate computing power. The resulting systems operate with monitoring

functions being distributed around the process, so that timely and accurate monitoring

actions may be enabled.

Section 3.6 considers how the availability of powerful microcontroller technology has

been used to develop low-cost distributed monitoring systems. Microcontroller based

Monitoring Systems are being developed using this technology that distributes

microcontroller-based measurement and processing functions within the process.

Finally, Section 3.7 on Future Directions considers the steps that are being taken to

support the development of the next generation of such systems, including the work

that forms the basis of this research.

13

Chapter 3 - Literature Review

3.2 - Fault Diagnostics

The complexity of modem manufacturing systems requires the deployment of

techniques such as Fault Detection and Isolation (FDI) to support the achievement of

high quality standards, to facilitate fast recovery from fault states and to enable the

timely detection of the development of part and equipment fault conditions. FDI

development has therefore been the objective of several reported research programs

aiming to investigate different methods to better achieve such goals.

In outlining approaches to be deployed within the development of FDI systems

Stephanopoulos and Han [3.4] considered that the non-linear behaviour normally

associated with real systems was a source of complexity that must be recognised

when trying to implement fault diagnostic systems. Different methods were applied,

depending upon the specific application requirements. They considered pattern

recognition to represent the best approach for fault diagnosis. This category included

look-up tables relating symptoms and faults; neural networks to compute a pattern

representing the system state; and decision trees, which were stated to be direct and

open to human interpretation, since knowledge is organised in a hierarchical way,

where a sequence of “questions” and “answers” within the knowledge base lead to the

decision process [3.5].

Meziane et al [3.6] provided a review that considered the employment of intelligent

systems in the manufacturing area. It indicated that for the specific application of

maintenance and fault diagnostics researchers have mainly concentrated on

Knowledge Based Systems (KBS) and Neural Networks (NN). KBS were largely

used for fault classification and diagnostics due to their capability to incorporate

human knowledge. NN were presented as a better alternative for the cases where

domain expertise is not available, due to their learning capabilities.

3.2.1 - Fault Tree Analysis Approaches

Fault Tree Analysis (FTA) represents one of the most natural ways to analyse and

classify faults. Fault trees have the ability to model a physical system failure as a

combination of components failure with associated failure rates, but their analysis can

14

Chapter 3 - Literature Review

become computationally intensive [3.7]. Raaphorst et al [3.8] described the

implementation of an automated fault tree generation algorithm for fault diagnostic

purposes. The proposed model was based on an indexed network method where the

input nodes were associated to symptoms. Questions were then presented by the

system in reaction to existing symptoms. The provided answer could lead to further

questions or to the matched fault. New or updated facts would result in an automatic

regeneration of the network indexes in order to ensure system efficiency.

A CAD system for fault diagnostics in chemical processes was reported by Kavcic

and Juridic [3.9]. Two approaches based on Fault Tree Analysis were introduced. In

the first one a fault tree representing the process components considered the deviation

of the process variables from their modelled output as an indication of abnormality.

For this approach the variable could not be part of a control loop. In such a case, a

special template tree was necessary to model the specific variable. Kavcic and Juricic

argued that this approach would result in much time-consuming processing, especially

when a set of interrelated faults was detected (affecting many different process

variables). Therefore, a second approach, identified as an event tree, was presented.

This approach consisted of representing the fault symptoms at the root of the tree.

Branches were associated with the process variables, and were grouped by

component. Dubious process measured variables provided a set of fault candidates,

each one associated with a “believe” index. Rules were created to match the fault

most likely to be related with the root symptom.

Andrews and Dunnett [3.10] compared the traditional FTA method with a new

approach, termed a Binary Decision Diagram (BDD). They argued that traditional

methods require considerable computer processing capabilities, particularly in cases

of large fault trees. The new method, in which the events were ordered in a way that

allows only two paths (true or false) to be followed after each event, was suggested to

overcome such limitations.

Hu et al [3.11] employed FTA for fault diagnostic purposes in Flexible Manufacturing

Systems (FMS). The developed diagnostic model enabled the description of the fault

propagation process in terms of a tree. The system was divided into subsystems,

which depending on complexity and modularity factors, could be further divided into

15

Chapter 3 - Literature Review

sub-levels. They also proposed the modularisation of the knowledge, in order to

improve the reasoning process. To do this a specific knowledge base would only be

considered at a specific sub-level. A functional fault symptom was considered as

representing the root of the tree. Following the tree structure, functional modules were

assessed in terms of the system controllers’ signals that were expected to be present at

this specific state. Finally, expert knowledge represented in terms of rules, was

deployed to suggest the best matching cause and the required actions.

In related work considering a FMS application, Flu et al [3.12] proposed another

method. They considered that in such an application, the correct process operation

could be characterised by a sequence of states and events. In this approach the process

controllers’ signals and switches are an important source of data in order to diagnose

faults. The resulting approach to diagnostics was based on the acquisition of digital

data and analogue parameters and a “diagnostic expert system”. The proposed system

was based on numerical computation, symbolic reasoning and a management module.

Analogue sources were classified in two categories of behaviour: slow and fast

changing. Amplitude, variance and mean value were features of interest in the first

“slow” category. The fast category considered features of interest to be the changing

rate (gradient) and trends of the analysed signals. Thresholds were established for

each feature in order to detect abnormal conditions. The system knowledge was

structured based on fault trees, control information, condition monitoring and the

collection of domain expertise. Fault classification and cause detection was reported

to be achieved by searching functional trees. Fault diagnostics was based on linked

rules in the knowledge base.

Hu et al [3.13] further reviewed their previous approaches [3.11, 3.12] to concentrate

on operational fault diagnostics. Here a sequential model, representing the sequential

changes in the machine operating states, was employed to investigate faults based on

knowledge of the actual states. A logical diagnostic model was used to provide the

fault source indication, by matching the controller’s signals against the expected

(modelled) states. This approach only considered digital sources. Although an

example was described, it was not made very clear whether the signals were retrieved

from the controller or monitored using a specific hardware structure, in order to

enable the implementation of the sequential diagnostic approach.

16

Chapter 3 - Literature Review

3.2.2 - Model Based Approaches

The further development of systems that monitored processes via an indication of

states may be considered in the guise of approaches based upon the deployment of

Petri-nets. A Petri-net model which integrated parameter trend and fault trees, was

proposed by Yang and Liu [3.14] to support early fault detection and isolation. Here

fault trees were converted into Petri-nets, making use of their concept to describe the

evolution and the state of system degradation. Petri-net places were associated with

process parameters and warning levels were used to provide the marking state of

these places. The existence of these conditions would lead to events (fired transitions),

resulting in a new state in the system description. Threshold conditions associated

would therefore provide the level of information required to plan and undertake

maintenance activities. Following this approach early detection was provided by the

system, which had the capability to issue alarms. Fault isolation would be achieved by

the system state description (marking vector). Shutdown capabilities were also

supported, in order to prevent further equipment damage, if maintenance had failed to

intervene.

Another approach that investigated the use of the Petri-net concept for fault detection

and isolation was described by Prickett [3.15] and Davey et al [3.16]. Here the

processes were modelled as Petri-nets, with process events characterised as

transitions. Faults were detected when the operating time associated with an event

was exceeded. Fault isolation could then be performed based on the indication of the

process signal that had prevented the event from proceeding within the established

time. Such an approach is restricted to discrete signals, although it could also be used

to indicate the development of faulty conditions by recording changes in the timed

process intervals.

Ajtonyi and Terstanszky [3.17] described fault diagnosis methods based on system

models. Their approach considered that, once a process was modelled, the variation of

the process parameters, when compared with the models, could be an indication of

faults. Another method presented considered the process signals as inputs of a

stochastic model, which could thus evaluate faults based on the residual between the

model output and the actual physical parameter. Ajtonyi and Terstanszky considered

17

Chapter 3 - Literature Review

that such approaches would enable the prediction of faults. Concerns were raised on

the requirements of the computational system to provide a real-time response for such

implementations. Therefore, they suggested a parallel processing method, which in

their view had to take into account each individual application in order to identify the

sources of parallelism to define the tasks. Also, arguing that real process models were

difficult to obtain, they suggested the modelling of individual process parameters and

deployed methods aimed at establishing relations between them.

3.2.3 - Intelligent System Based Approaches

The formulation of expert system rules for a generic fault diagnostic application is

considered to be a complex task, especially in cases where process parameters vary in

a dynamic way according to the different process settings. It has been suggested that

one approach to ease the difficulties experienced with such an application

development is to dynamically generate the set of rules for each process task [3.18].

Here the possible faults were defined in terms of fault-trees and symptoms are then

correlated to them. Off-line processing was employed to build the rules required for

the fault diagnostic process. The required knowledge base would be selected in

accordance with the process settings.

Wang et al [3.19] aimed to generate rules from a fault event database, using

probabilistic networks. Although presenting a case employing an automatic method,

they considered that a semi-automatic approach was more appropriate when large

databases were involved. In such a case, domain knowledge was said to be required to

define the highest and lowest layers of a decision tree, therefore providing means to

orientate the rule construction.

The use of neural networks in this context can be illustrated by Lennox et al [3.20].

They employed neural networks to detect and predict the failure of a melt vessel.

They considered this to be the best approach. It was based on the dynamics of the

process, which indicated that the vessel’s thermal properties were affected by its age.

However, they added that the implementation only became possible due to the

acquisition of existing previous data records that enabled the neural network training

process. Failure prediction was based on the error relation between the measured and

18

Chapter 3 - Literature Review

the predicted temperature, obtained from the neural network model. The error was

then compared against defined thresholds to issue alarms.

Benefits from the use of neural networks for fault diagnostics come from their parallel

processing capabilities (providing a quick response to the process measurements),

non-linear mapping capabilities, the ability of learning from examples and robustness.

Mageed et al [3.21] reported a method employing artificial neural networks in fault

detection, isolation and identification. They contended that industrial systems

represent a complex environment due to the large number of measurements and

possibilities of faults. This could result in oversized networks, making the learning

process extremely difficult. Their approach proposed consisted of a two level neural

network. The first level was required to provide fault detection and isolation. The

second one, using the first level outputs, provided the indication of the different levels

of fault in terms of the probability of occurrence of each specific fault mapped to

happen.

Fault diagnosis was investigated in order to improve the quality standards in a flash

smelting process [3.22]. The presented method was based on neural networks, in the

form of Self-Organising Maps (SOM), and heuristic rules. The method described

considered specific neurons that were labelled accordingly the process state they most

likely represent. Based on an input vector representing the process parameters, the

labelled neurons would indicate the existence of the specific state based on probability

indices. A rule-based implementation was said to provide process diagnostics based

on the state changes detected by the neural network. Messages were issued whenever

rules were matched. It was argued that fault detection could be improved by

increasing the number of labelled neurons. However, it was recognised that this could

also result in an increase in false alarms. Therefore, more precise process

measurement and a good knowledge base to provide robust rules would be required.

The use of fuzzy based models was the object of research of Balle and Isermann

[3.23]. Their approach was proposed as an alternative for use with non-linear systems.

It consisted of representing a non-linear function as the sum of discrete linear

segments. Symptoms were generated on the basis of residuals and ratios between

19

Chapter 3 - Literature Review

process measurements and the respective model outputs. A knowledge base system,

with rules relating symptoms to faults, was employed for fault decision purposes.

Chafi et al [3.24] described a similar approach in which residuals were generated by

comparing actual process measurements with the output of the respective parameter

model. To overcome the non-linearity characteristics of the process parameters, the

models were based on fuzzy clusters. Arguing that residuals might be corrupted by

noise, a fuzzy decision method was applied in order to extract the process symptoms.

Finally, symptoms were applied as inputs to a neural network to establish a fault

confidence index, therefore providing the most probable fault cause.

To summarise, although several different methods for fault diagnostics have been

investigated, there is not an agreement about the best one. Geropp [3.25] considered

that despite recent research having concentrated on novel methods, such as neural

networks and fuzzy logic (or the conjunction of both), it is still required that

application particularities be taken into account when selecting the approach to be

used. He also argues that to apply such methods, a significant amount of

representative data is required for training purposes. The use of knowledge-based

systems only becomes possible if enough rules exist to be activated, in order to

classify and diagnose faults. Therefore, a good knowledge of the process and the

application requirements are necessary to obtain the best results.

3.3 - Condition Monitoring

Condition monitoring represents one of the areas where use of monitoring systems has

been widely investigated. Normally, in such applications, the systems are supposed to

predict and detect any particular “abnormal” conditions. This information can then be

incorporated into attempts aimed at preventing losses that might result from machine

damage, the manufacture of poor quality products and from the large downtimes

currently needed to recover from faulty states.

20

Chapter 3 - Literature Review

3.3.1 - IPPM Centre Research

IPPM researchers have previously considered a wide range of applications of

condition monitoring to machine tools and process plants. Sharif and Grosvenor

[3.26] produced a review focused on the vital components and measurement

techniques to support such application. Temperature, level and flow rate sensors were

indicated as the most commonly used in industrial applications. The work proposed

that different sensing and transmitting methods should be selected according to cost

and accuracy requirements.

Sharif and Grosvenor also included monitoring techniques for vital plant parts. In

particular, infrared thermography, Acoustic Emission (AE) and vibration were

reviewed as monitoring methods for valves and actuators. A method developed by the

same authors that considers historical operating data was also presented. For pumps

and motors, measurement methods such as vibration, supply current and temperature

were considered. Current and temperature based monitoring was indicated to perform

better in enabling the early detection of faults, when compared to vibration. It was

suggested that vibration should be used together with one of the other methods, in

order to provide accurate fault detection. For some specific applications, the review

presented research that obtained good results using AE. In such cases, the signal

spectrum tended to change with the development of faults.

In terms of fault diagnosis, the review presented some techniques still under

investigation. Knowledge-Based Systems (KBS) and Expert Systems (ES) were

included in the category of those that rely on previously assimilated information or

existing plant experts’ acquired knowledge, to support a rule based diagnosis strategy.

The dependency on plant experts to enhance system performance was indicated as one

of the methods main drawbacks. Statistical methods, based on properties such as

mean value, variance and standard deviation of the measured signal were also

reviewed for diagnosis purposes. It was stated that fault development could be

detected based on changes on the signals’ statistical properties, since process

parameters were held unchanged. Model-based techniques, using mathematical

models that describe the plant’s behaviour, were considered to be of a high level of

complexity and therefore it was contended that this approach could result in some

21

Chapter 3 - Literature Review

errors in systems that do not response linearly. It was suggested the use of the

statistical properties of the monitored parameters in order to improve the model

results. With the same purpose, investigations using fuzzy logic were also reviewed,

as a way to deal with the existing non-linearity. Neural networks were considered as a

good method for fault diagnosis, capable of dealing with non-linear systems

responses, since sufficient training could be provided. Finally, state transition

diagrams (Petri-nets), were indicated for those cases where the process events could

be sequentially represented.

3.3.2 - Machine Tool Condition Monitoring

Much of the research undertaken in this area relates directly to machine tools. A

review of the approaches for end milling tool monitoring was presented by Prickett

and Johns [3.27]. It described the investigation of different sensing techniques, feature

extraction methods and decision-making approaches. Indirect measurement methods

were considered the most appropriate for tool monitoring, since they allow dynamic

assessment, without requiring the stopping of the cutting process. Dynamometer and

spindle motor current signals were indicated as the most appropriate in order to assess

cutting forces, which were considered as a good parameter to monitor tool wear. For

tool breakage detection, vibration measurement was said to give a better indication of

such sort of fault. Acoustic emission was also mentioned, but its use was suggested in

conjunction with other signals in a multi-sensor approach.

Several references that investigate time series modelling for feature extraction were

presented. The method that consists in the analysis of the measured signals over a

period of time indicated good results in detecting broken teeth. However, it was

indicated as being of limited practical use due to the computational processing time

required. A good number of references investigated by Prickett and Johns employed

the method of real-time signal monitoring. The method described was based on using

threshold conditions of the measured signals to detect the faulty conditions, indicating

a better performance in tool wear monitoring. The last method for feature extraction

considered was the one based on frequency domain analysis. Although representing a

method with increasing interest in the detection of tool breakage, its required

processing time was considered to be a constraint, since that sort of fault detection

22

Chapter 3 - Literature Review

demands immediate reaction to avoid further damage. It was further stated that the

method requires a good understanding of the measured signal to identify the process’s

natural frequencies in order to prevent false alarms.

The same authors also reviewed the use of artificial intelligence as decision-making

methods. In some cases, the combination of different methods, such as neuro-fuzzy or

neural networks and mathematical modelling were reported to give the best results.

Nevertheless, in all cases processing and training time were considerably high. It is

finally suggested that better results could be obtained by employing sensor-fusion

techniques, providing different views of the same phenomenon in the cutting process.

3.3.2.1 - Sensor-based Systems

The choice of the adequate sensors to provide the best signal is clearly important to

improve confidence in sensor-based monitoring systems. Dimla [3.28] provided a

review of sensor signals for tool condition monitoring in cutting processes. The

subject was considered to be of high complexity due to process dynamics and

variations, such as cutting conditions, work piece and tool characteristics. Acoustic

Emission (AE) was found to be of use to investigate both tool wear and tool breakage,

within different cutting processes. Root Mean Square (RMS) was identified as the

most popular method for AE feature extraction purposes. Higher levels of AE were

found to be released with tool breakage or fracture, suggesting that AE based

monitoring may be used for such purposes. However, AE techniques were also said to

be difficult to deploy, mainly due to the consideration of the path followed by the

signal. As such its use is suggested as complementary to other techniques.

Methods based on temperature were also reviewed in the same paper. Direct

temperature measurements were considered difficult under most circumstances when

moving parts etc. make the use of a thermocouple impractical. Therefore, most

practical temperature sensing methods were based on non-contact techniques, such as

infrared imaging. The review shows that the method could perhaps be applied to

detect tool wear. However, temperature distribution was known to be affected by the

process dynamics and thus, complicated mathematical models are required. Another

method employed for tool wear detection is to monitor cutting forces using a

23

Chapter 3 - Literature Review

dynamometer. Cutting force signal feature extraction methods have evolved,

normally based on time and frequency analysis. Statistic analysis was used in many

cases to provide relationships to enable tool wear detection. Although the method

seems to provide a good indication of tool wear, difficulties associated with the

process dynamics were found. Dimla considers that a good knowledge is required for

a good estimation of the static and dynamic forces.

Vibration signatures were also considered in the same review [3.28]. These are said to

be difficult to analyse since vibration frequencies and levels can be expected to

change due to the many variations in parameters experienced during a normal cutting

process. The signal power in the time domain and the power spectrum in the

frequency domain were the feature extraction methods mostly employed. The review

also indicated that the use of this technique was largely associated with tool wear.

Electric motor current and power measurements were reviewed. Some of the features

analysed were the signal waveform, peak value, and mean and accumulative sum

power. Also, spectral energy fluctuation was said to be an indication of tool wear.

The conclusion of Dimla’s review points out that forces and vibration are the most

widely used measurement parameters. Nevertheless, the process dynamics imposes

severe difficulties in detecting tool faults. Therefore, sensor-fusion is indicated as an

alternative to improve condition monitoring systems reliability.

In another example of a process that is considered important, the methods applied to

condition monitoring in drilling processes were reviewed by Jantunen [3.29].

Justifying that direct measurements are not very efficient in economical and technical

terms, he targeted those methods that indirectly measure sudden failure and tool wear.

Based on the reviewed research, Jantunen placed the measurement methods into three

main groups. The first one considered cutting parameters such as the torque, feed

force and drift force. This indicated that such signals tend to change with the

increasing amounts of tool wear. However factors such as work piece hardness cause

similar variations, which can affect the confidence in this measurement method. The

second group consisted of vibration and sound measurements. Such methods were

considered adequate for rotating machines and were said to be easy to implement in

24

Chapter 3 - Literature Review

terms of sensor deployment. Vibration measuring was also considered very reliable.

Changes in the signal could normally be associated with faults, since process

parameters were not changed. The group also included AE and ultrasonic vibration. It

was stated that AE sensors should be deployed very close to the work-piece in order

to avoid signal attenuation. The use of such methods, especially AE, was thus found

to be limited to those cases where signals with very high frequencies had to be

measured. The last group focused on spindle motor and axis feed drive currents.

Current measurement was found to be easier to implement and gave better results.

For the spindle motor these were comparable to the results obtained by measuring the

torque.

Jantunen’s review then considered the subject of signal analysis. Time domain based

methods usually employed by the researchers were the raw signal (real-time) analysis,

Root Mean Square (RMS), mean value and peak value. Statistical analysis was in

many cases applied to detect tool failure indication. Frequency domain based methods

were said to be more sophisticated and found to provide a better picture of the tool

condition, for both wear and breakage. The counter point indicated was the required

processing power for frequency-based methods, which in many cases made it difficult

to produce fast responses for existing or developing failures. Finally, some diagnostic

methods applied to the signals and features were considered by the review. The

simplest methods were based on the comparison to predefined parameters. An

evolution of those methods was the use of thresholds with defined trend limits. Neural

networks, although capable of dealing with the process non-linearity, were seen to

require huge amounts of data for training purposes, if all process dynamics were to be

considered. However, it seems that neural network was the method that provided the

best results. Jantunen concluded that satisfactory results were normally achieved

when the process parameters (cutting conditions, work-piece) were kept unchanged.

Since this cannot normally be assured during real-life processes sensor-fusion was

suggested to reduce such dependency.

Turning is another very important manufacturing process that has attracted

researchers. Sick [3.30] carried out a review that surveyed 138 publications related to

the subject. Only online and indirect methods were considered for both, tool wear and

fracture. As a result, forces and vibration were indicated as the process parameters

25

Chapter 3 - Literature Review

mostly employed, followed by AE. In the particular case of forces, the spindle current

measurement was suggested as the preferred method in terms of implementation cost,

when compared with specific sensors. AE was indicated as problematic, in cases of

parallel processes with several tools.

In his investigation, Sick observed that those researches employing multi-sensor

approaches performed the information processing at the tool wear model level. Many

different methods were employed for feature extraction. The extracted features were

employed as inputs to different types of neural network configurations, therefore

providing the model implementation to identify the tool condition.

Sick in his remarks indicated that there was not much agreement about the best

features and models to be selected. Just a few researches were said to consider cutting

condition in their models. The use of such process dynamics would increase the

complexity of the tool condition model, resulting in higher training and processing

power requirements. He also considered that multi-sensor approaches could provide

better results, by comparing process parameters obtained from different sensor’s

sources. However, in his view such approach should be applied at earlier stages of the

monitoring system in order to provide reliable input information.

3.3.2.2 - Non-sensor Based Monitoring

An approach for condition monitoring based on a machine’s existing signals was

presented by Prickett and Grosvenor [3.31]. They considered processes that can be

described as a set of machine states and events, and can thus be represented in terms

of a Petri-net [3.32]. In such a case, the digital levels of the machine controller signals

and embedded process sensors are monitored in order to detect events and update

states. A method was suggested to monitor machine operation, extract performance

information and contribute to the identification of eventual faults. The basis of this

approach is that the actual process state and former events could give an indication of

the fault cause.

Prickett and Grosvenor also implemented the non-added-sensor method in cutting

process monitoring. The existing signals of the cutting machine axis feed driver were

26

Chapter 3 - Literature Review

used to monitor the tool condition. They argued that the machine controller reacts in

order to keep operation close to the process set parameters. Therefore, by for example,

monitoring the tachometer of the X axis of a CNC machine, the signal signature

would provide evidence to distinguish a healthy tooth from a broken one. Some

different cutting conditions were tested, with the method giving an indication of

efficiency.

The use of those existing signals, rather than the deployment of special sensors, was

presented as an alternative to traditional condition monitoring methods. Arguments in

favour were the fact that it does not require process disruption for the implementation,

since all signals are already present. Further economic benefits were said obtained due

to the high cost of traditional methods.

Although representing an area within which a number of researchers are active,

condition monitoring still has to progress. The reviewed investigations indicated that

despite the range of different methods employed, process dynamics play an important

role when analysis methods are deployed to distinguish a normal from an abnormal

condition. The requirement, in some cases, of a rapid reaction in order to immediately

detect a faulty state, makes it even more difficult, since cross linked information may

not be possible due to time constraints. Therefore, methods and techniques may vary

accordingly the application requirements, benefits and cost considerations.

3.4 - Integrated Monitoring Systems

Many factors, ranging from technological developments to consumer demands [3.33,

3.34], have resulted in increase levels of complexity for modem manufacturing

processes. The management of such industrial processes requires the use of tools that

enable immediate responses to critical events or the capability to intervene in a

planned way to reduce as quickly as possible the negative effects of fault or drift

conditions.

In the early nineties, Tonshoff et al [3.35] presented what they called a new approach

to machine monitoring and diagnosis. The work, which concerned process dynamics

27

Chapter 3 - Literature Review

stated that monitoring systems should no longer be based on the analysis of individual

signals, but should consider the effect of several process variables that together could

provide a better picture of the process health. The approach was also concerned with

flexibility, proposing the deployment of separate modules for monitoring and

diagnostic tasks. A common database was also included, providing the means by

which to acquire process knowledge. Although technology has since improved the

main concepts pointed out still have relevance to current investigations.

During recent years, the development of online monitoring systems in response to

complex process requirements has increased. This has been facilitated by the

availability of new hardware and software tools based on computers (PC) and

operating systems with graphic support. The implementation time, even in case of

complex systems, can now be reduced by putting together parts and components

based on or provided with standard libraries. The online system described by

Ramakrishna [3.36], for example, used a PC with standard data acquisition cards. This

system was used to monitor vibration of hydro turbines in a power plant. The

monitored signals provided records that were processed at configurable time intervals,

supplying a set of information that allowed the assessment of turbine performance.

The application software also provided a schematic display of the turbine and specific

parameters. The increased capabilities of modem PCs and associated hardware and

software enabled an integrated monitoring system to be deployed. Furthermore, the

PC used in the application was installed 100 metres away from the sensing points.

However, the use of such a system is often a relatively high cost solution and

therefore can find its use restricted to applications where the plant itself is very

expensive or where critical events may result in catastrophic situations. Ramakrishna

described the system as an online monitoring system, making it clear that all the

processing was based on batches of acquired data. It enabled the analysis of the

condition of the turbine and the establishment of predictive maintenance schemes.

The development of critical or catastrophic events could also be monitored at early

stages of their development. Only a true real-time system, based on process events,

would be able to detect an unpredicted event immediately when it happens.

Depending on the complexity of the application, such system would probably require

more resources than those provided by a single computer.

28

Chapter 3 - Literature Review

In another reported example of an online system, Jeng and Wei [3.37] described the

implementation of a condition monitoring and diagnosis system for feed rolls in plate

mills. They stressed the importance of such a monitoring system, since, depending on

the completed processing and future process requirements, the scheduled replacement

of some parts might be inappropriate. By considering the monitored data and

production settings, such as rolling speed and load, the system provided means to

assess the condition of parts and thus support decisions related to part replacement

tasks. This had the effect of reducing maintenance costs, enabled programmed

interruptions of the production line and helped to reduce the waste of materials. They

further described the system’s capability to utilise specific settings such as filters of a

specific range of frequencies, thus simplifying data analysis and fault diagnosis

methods. The derived parameters, in certain operating conditions, might then indicate

the development of a faulty condition. However, they made it clear that a good

knowledge of the monitored system or process was fundamental. The system was

based on specific sensors applied to the process. A front end employing industrial PC

hardware was used for process signal conditioning and data acquisition. The front end

was provided with a network card enabling monitored data to be transferred to an

office computer, where data analysis and associated fault diagnosis could be

continuously displayed. Figure 3.1 shows the system diagram.

In this system tasks were split between the two PC’s. At the shop floor end a robust

device was deployed. A PC with more graphical, computational and software tools,

that could also be interfaced with production planning and maintenance management

systems, was used at the office-based location. Such a configuration increased the

overall capability and reliability and made the updating of any individual module

much easier. Despite all the reported benefits, no cost details were outlined. It is fairly

obvious that the cost of such an implementation can become high, especially if it is

considered that only a specific part of the whole process is monitored. This must

however be set against the previously raised considerations of plant cost and the

possible impact of breakdowns.

The deployment of a system that covers a single part of a process may also be feasible

in cases where this part may represent a production bottleneck. Therefore, a

comparison between investments and the resulting benefits should be considered on

29

Chapter 3 - Literature Review

the basis of the cost to the organisation as a whole of any process related failures. This

must also consider the way in which process reliability and product quality can be

enhanced by timely actions, such as can be made by real-time integrated monitoring

systems.

Office
Personal
ConfHiter

Rolling
Mill

Feed
Roll Ethernet

Cable

Repeater
/ . Junction f Box

Control
Signal
Mire

Signal
Cable Front End Controller

1. Si&ial Pre-processor
- chaige amplifier
- lowpass filter
- highpass filter

2 Industrial PC
A Solid State relay

Signal Transmission
CableJunction

Box

Figure 3.1: Monitoring and diagnosis system for feed rolls [3.37].

Alexandru [3.38] reports the implementation of a real-time system. She discussed the

requirements of supervisory functions in modem systems, as they relate to increasing

complexity and growing production demands. Fault detection and isolation were

considered essential to maintain performance levels of such industrial applications.

Alexandru thus suggested an online and real time system focused on fault tolerance

and diagnosis, based on early detection and “fault time behaviour”. To achieve the

required results, she proposed the implementation of three methods. The first

considered the measured signals (which although providing ways of detecting faults,

were considered inappropriate for early detection of faults). The second method used

mathematical models that represented the physical parameters of the process. It

allowed comparison of the current system behaviour with established fault

dictionaries. The modelling of the entire system’s “ideal” behaviour and fault states

30

Chapter 3 - Literature Review

was described as being very hard to achieve, particularly when considering large and

complex systems. The third method proposed as a complement to the former

methods, was based on a description of rules and facts obtained from human

observation. This method was therefore potentially capable of describing the system’s

behaviour under initially unknown conditions. It was suggested that such method

enabled the use of system symptoms, rather than just output signals, to identify faulty

conditions. Intelligent decision making techniques were then required to perform the

system evaluation.

Hunan
SupervisorExperts

Operatois
Editand
Command
Instructions

Infoimution and
Technical

Local
Command
Coordination

Real-time
Monitoring
System

Subsystems
Local Command
Units

Hunan Local
Supervision

Hunan Remote
Supervision

Functional Data
Acquisition System

Monitoring
Computer 1

Monitoring
Coiqputer2

Supetviser, Diagnosis and Performance
Analysis Confmta*

Figure 3.2: Architecture of the fault detection and diagnosis system [3.38],

A schematic diagram of the system implemented in [3.38] is shown in Figure 3.2.

Considering the different methods employed in the system implementation, it is seen

that considerable computational resources were required, especially when the real­

time nature of the system is taken into account. User interface, data acquisition,

databases and expert system functions would better fulfil their purpose if based on a

31

Chapter 3 - Literature Review

distributed structure that could provide each part with the required resources. Such an

implementation, if totally based on PC hardware, could become very costly and thus

such applications are usually restricted to very specific processes.

As a rule based system, inclusions of new rules that describe unknown system states

were required. A system domain expert may be required to input a reasonably large

initial number of rules or to later acquire the knowledge from the system behaviour

based on its real operation. This can result in a long term learning process, if little or

no initial knowledge is available. The system could benefit from a shared knowledge

base, constructed from the knowledge of other existing systems with similar

behaviour. This would require a distributed environment where databases could be

shared, speeding up the process of acquiring system behaviour knowledge. This

secondary effect, with the sharing resources, could result in an overall system cost

reduction. Depending on the application, cost may not be the most important issue,

but the rapid use of the system, exploring its full capabilities, is certainly very

important, especially in cases of complex and strategic applications.

Many other systems have been developed to provide application specific support for

fault detection and isolation. For example, Angeli [3.39] presented an online expert

system for fault diagnosis in hydraulic systems. The implemented system provided

data acquisition, data processing and expert system capabilities. Hardware and

software specific developments were made by considering the application

requirements. A diagram of the system components and their relations is shown in

Figure 3.3. Digital and analogue sensors captured the process signals that were then

used in calculations based on the mathematical model of the system, thus providing

information that enabled the recognition of system faults or unacceptable process

deviations. Angeli argued that it could be considered almost impossible to create a

mathematical model that completely described the system’s behaviour. Therefore, the

method used acquired experimental knowledge to compensate for the mathematical

model constraints.

The scientific model produced was employed for detection, prediction and fault

compensation, while experimental knowledge was used to isolate and diagnose faults.

The comparison between the system measurements and the results o f the

32

Chapter 3 - Literature Review

mathematical model was indicated as a way to detect faulty conditions. Fault

prediction was achieved by comparing the results of the measured signals applied to

the mathematical model against existing information in the knowledge base. Fault

compensation was presented as a way used by the expert system to provide parameter

compensation to certain worn parts of the process, overcoming efficiency losses. To

benefit from this approach, a mathematical model of the specific part was required to

calculate the appropriate compensation factor. Fault diagnosis was based on a

knowledge acquisition system, using a qualitative model to provide diagnosis based

on reasoning procedures and thus making it possible to associate faults with symbolic

language.

• Sinwbtwn
Data

>' Acquisition

Fault compensation

'• Expert Sjystem' Data Acquisition SystemActual System

FILE:
uuthp3

MATH FILE:
outmo3

emot.txt
pilot, txt
flttxt
psl.txt
ois.txt

FILES: FILES:
fpo.txt
f pa .txt
fpb.txt
fwm.txt

EXP2

HYDRO
PRO++

SYSTEM

HYDRAUL EXP1

Figure 3.3: The interaction scheme between the modules [3.39]

Angeli also made it clear that “scientific knowledge of model-based systems cannot

cover the whole range of diagnostic tasks since diagnostic activity is mainly based on

experience”. Thus, the integration of both methods, scientific and experimental,

should be used to maximise results. Reasoning was provided by the use of rules that

are generated and grouped in topics that might be correlated in terms of sub-problems.

It was recognised by the Angeli that fast responses were critical due to several tasks

being executed, besides the processing requirements of a reasoning system based on

knowledge bases.

33

Chapter 3 - Literature Review

It is true to say that the implementation of this system if based on a distributed

structure, such as those outline in the next section, could offer an alternative and

would improve efficiency. Nevertheless, it seemed that several functions and

parameters were intrinsic to the application. For instance, there were no references of

means that enable the adjustment of parameters in the mathematical model, despite of

using a second method to complement this one. System replaced parts might behave

in a slightly different manner and adjustments might be required. Some dynamic

factors, such as production setting, could in some cases result in a different behaviour,

conflicting with faulty conditions previously established. The design of such a system

should consider the flexibility of dynamic factors, thus increasing its potential

benefits.

3.5 - Distributed Monitoring Systems

Splitting the modules outlined above and executing them on separate sites provided

with features that would be specific to the required task would allow greater

flexibility and support more effective monitoring functions. Further, such a

deployment could enhance the acquisition of the knowledge base, since several

systems could provide information resulted from individual experiences. This is the

basis of distributed monitoring systems.

Distributed expert systems were presented by Bonastre and Peris [3.40] as an

important trend in the monitoring and control of chemical analysis process. They

considered that computers are advancing rapidly both in terms of technological

developments and in the reduction of cost. As a further benefit of these developments,

it was suggested that chemical instrumentation would soon incorporate data

processing capabilities that, together with communication networks support, would

allow the implementation of local algorithms for data acquisition and analysis. This is

seen as enabling in the future the deployment of distributed structures that could

enhance the systems capabilities. It was proposed that centralised programming would

be the next step in the integration of intelligent devices. This is to be undertaken in a

user-transparent way, making it an important part of the basis of distributed systems.

34

Chapter 3 - Literature Review

Distributed Expert Systems (DES) were defined by Bonastre and Peris as being a

technique that combines intelligent instrumentation with monitoring and analysis

systems, using local area networks to provide geographic location independence, all

in a user transparent environment. The simplest distributed topology was described as

that one where data acquisition nodes are autonomous and provide the expert system

with raw data (Figure 3.4a). The reasoning task is carried out by a centralised expert

node. In such a case, the data acquisition nodes would be provided with the

measurement algorithms and network protocols to carry out communication. Bonastre

and Peris argued that although the network could represent a bottleneck, existing

technology would make it feasible, especially for simple systems applications.

The following suggested approach considers that the measurement nodes might have

some sort of previous processing, participating in running the expert system (Figure

3.4b). In such case, a considerable level of complexity would be transferred to these

so called Control Nodes (CN). As result, flexibility and modularity would be

aggregated to the system, representing considerable fewer constraints when enlarging

it. In the specific case of this model, only relevant data would be sent by the

measurement nodes, reaching either the central expert node or any of the distributed

control nodes that might make further use of supplied data.

Bonastre and Peris [3.40] considered at this point that a certain level of complexity

would be brought forward by the use of distributed systems based on nodes provided

with local processing capabilities (Figure 3.4b). Programming an expert system based

on multiple nodes, some perhaps different from each other, could become a difficult

task. To overcome this challenge, centralised programming was proposed, with

definitions and tests performed considering an application, in which the distributed

nodes would appear as virtual devices. Afterwards, a separate task had to be executed

to distribute the rules among the nodes. It might be considered that, although

described by the Bonastre and Peris as an implementation for chemical processes,

such a system could be applied to many other areas where flexibility is a requirement.

Further benefits might be achieved if the system proposed would be able to interface

to other manufacturing functions, therefore providing more flexibility by considering

the process dynamics.

35

Chapter 3 - Literature Review

Knowledge
Base Network Interface

Inference Engine Analysis
System

Control
System

Data Mining

SAN - sensor and actuator
node

SN - sensor node
AN - actuator node

B A N)(SAf(SAI (SANJ

(a)

N etw ork f —\
In te rfac e ’ '

Data Mining

(b)

Figure 3.4: Expert system with (a) distributed data acquisition and (b) fully

distributed expert system [3.40].

In another reference to distributed systems, Manders et al [3.41] considered the

importance of Fault Detection and Isolation (FDI) strategies. As part of supervisory

and control functions of complex engineering systems these can improve safety and

functionality. They suggested that the conventional techniques, based on hardware

redundancy and localised hardware safety mechanisms would not provide a good

result with complex systems. In such cases the process dynamics should be

considered in the fault detection and isolation procedures. Distributed Measurement

and Control (DMC) was advocated as a way to enrich complex systems supervisory

36

Chapter 3 - Literature Review

and control tasks, especially when considering new technologies such as networked

smart transducers that can benefit equally fault detection and isolation. Having in

mind these aspects, they described a system for online fault detection and isolation of

a multitank fluid system. Smart transducer technology was employed to provide a

distributed measurement and control structure. It was made clear that the smart

sensors used in the experiment were based on the IEEE 1451 standard. This standard

is reviewed elsewhere [3.42, 3.43].

Their design was said to be one in which model-based qualitative fault isolation was

applied, requiring a signal-to-symbol transformation. This system was passed upon a

process by which continuously sampled measurement data was computed in a

symbolic form. Fault isolation based on the symbolic description was separated from

the signal-to-symbol transformation. They stated that one of the goals in building the

distributed application was realising the symbol generation on the transducer node

itself. This was seen as potentially a way to considerably reduce the network load of

monitoring and supervision tasks.

The transducer implementation in [3.41] was based on the available parts of the IEEE

1451 standard. It implemented the Smart Transducer Interface Module (STIM) and

Network Capable Application (NCAP). STIM was based on a standard

microcontroller and an embedded Ethernet controller was used to implement the

NCAP. A publish-subscribe mechanism was implemented, based on IP/multicast

[3.44]. The distributed measurement nodes published their data, thus reporting the

sensor’s signals. The system architecture diagram is shown in Figure 3.5. The

experiment reported the implementation of nodes with control functions embedded.

This task would automatically be executed by each distributed node, reacting in

response to the node measurements. The main node, responsible for the supervisory

task, subscribed the published measurement data of each distributed node. The

temporal causal graph concept [3.45] was used to model the process dynamic

characteristics in the fault detection and isolation algorithm. Fault detection was based

upon the difference between observed and predicted system behaviour. The residual

was used to generate hypothesis using temporal causal graphs. A set of possible faults

was generated, each one with an associated predicted behaviour. The method was said

37

Chapter 3 - Literature Review

to be applicable to those components that could be modelled as parameters and

qualitatively estimated.

publishers E thernet
subscribers

Tank

Tank

Tank

M ain

press.

press. P2

T3level

T I level

T I state

T3state

T2level

M state

T I state

T3level

T1 level

Symbol G enerationResidual Com putation

Mode Tracking
And

Model Selection

Hypothesis
G eneration

And
Refinem ent

Figure 3.5: FDI application architecture [3.41].

Manders et al [3.41] also indicated the existence of system limitations, most of them

related to the network interface, imposing restrictions to the system overall

capabilities. Although Ethernet is one of the most popular network standards in use,

there have been many considerations about its use for industrial applications,

especially when control tasks are focused [3.46]. The use of smart devices deployed

in a distributed environment seems to be the next step in the development of

monitoring and control technologies. This will provide flexibility and efficiency based

on shorter development time and integration facilities, resulting in lower cost of

implementations and consequently stimulating the use of these techniques in a larger

scale.

An intelligent online monitoring system for end milling has been developed by Tseng

and Chou [3.47]. It was presented as an effort to provide lower cost monitoring tools,

with the benefits obtained through the latest research in the subject area and thus

stimulate the use of intelligent monitoring techniques. This work aimed to implement

a tool to help to reduce the waste resulting from low quality cutting processes due to

tool breakages and wear problems. The proposed system required a dedicated PC to

38

Chapter 3 - Literature Review

interface the milling machine and host the intelligent monitoring application. Rule

based techniques were employed for reasoning purposes, providing a high-level

explanation mechanism to describe the development of faulty conditions. Although

requiring specific hardware development to interface to the CNC machine electrical

levels by the computer, it was said to explore the existing process information

available in such machines by communicating throughout standard interfaces in the

deployed Direct Numerical Control (DNC) modules thus avoiding the use of further

sensors. Figure 3.6 shows details of the implementation.

SoftwareHardware

Spindle Motor Load %

Monitoring Index
On-Line

1 Data Management

Interpret Interface
Load %

NC Code

Cutting

Parameters

Photo Couple Circuit

Fanuc CNC
Machine Center

I/O B2 Card

Interface

Figure 3.6: System architecture and functions [3.47].

Among the other benefits of the implementation was the capability of setting up a

remote control room. In their paper Tseng and Chou suggested that it could be easily

implemented by providing the system with Internet connectivity. With this in mind

the software development was based upon some de facto standards such as a PC

computer, and the Microsoft Windows operating system, programming tools and

39

Chapter 3 - Literature Review

libraries. Since cost is one of the identified issues that have previously limited the

take-up of this type of system, it is worth considering how this approach can be

improved with the development of dedicated hardware to interface to the process

machine, thus avoiding the use of a PC. Such implementation should enable the

processed data to be delivered to a central system. This central system could then

provide the same functionality to several machines, implementing the distributed

system concept. A further enhancement to this approach would be to implement truly

distributed systems using the Internet as the basis for data transfer and

communication.

The use of web-based technology to help manufacturers with organisational

challenges, such as geographically spread out manufacturing plants, was presented by

Ong et al [3.48]. Information was identified in this work as a strategic resource that

becomes essential in such a situation. The employment of monitoring tools based on

Internet technologies is a way by which manufacturing activities in many regions and

even in different countries can be integrated and monitored. Among many benefits

cited, perhaps the most relevant here is that the performance of a machine or process

can be monitored and accessed from anywhere in the organisation. It was also

proposed that information of productivity, diagnosis and staff training on the effective

operation of manufacturing systems could be shared among partners at different

locations. Internet technology was praised by Ong et al due to its rapid development,

and its capacity of providing access to the most remote locations all over the world.

They [3.48] did not however support the idea of client/server architectures where a

web-page server is integrated at the machine side and remote diagnosis is carried out

using normal web browsers. This kind of implementation was criticised from the

point of view of the timing involved, when considering remote diagnosis. They

suggest the use of an agent technology, based on a peer-to-peer protocol. In this way

each agent can be focused on a specific engineering project application. Agents can

also initiate a request to other agents and carry out transactions with each other. Such

capability was indicated as being fundamental to enable the implementation of a

central knowledge base. It was considered that knowledge bases used in diagnostic

systems were normally rule based. To provide such knowledge base with a sufficient

number of rules to enable an efficient diagnostic analysis, a considerable amount of

40

Chapter 3 - Literature Review

time might be required. A central knowledge base, shared by different users at

different locations, could be fed with the required knowledge and consequently

provide an efficient diagnostic analysis, in much less time.

CMS/CMA

Update
Records

DLS/DLA

Working
Memory

user
input
data

Central
Knowledge

Base

update
request

Knowledge
Base

Inference
Engine

status
data

valuable
_™1™ ____ Report Example

Base Base

A 4

new
rules

RMS/MA

Ak —

Learning
Engine

A
i

i
* -

Rule
Builder

user
input
data

Machine with
Multi-sensor

Status
Records
Database

report
about new
rules

Figure 3.7: System architecture and agent components [3.48].

The system architecture proposed in [3.48] was therefore based upon a multi-agent

structure (Figure 3.7). A Diagnostic and Learning Agent (DLA) is centrally

positioned to facilitate the use of the knowledge base by remote users as they carry

out diagnosis procedures. In this way the established system “learns” from faults that

are detected and diagnosed at all sites. The Central Management Agent (CMA)

updates the knowledge information in the Central Knowledge Base (CKB). The

Machine Agent (MA) monitored the machine operation. All these agents cooperate to

enable remote monitoring and fault diagnosis, and on-line knowledge acquisition.

Fault diagnosis in the context of this system was based on the Central Management

System (CMS), the Diagnosis and Learning System (DLS) and the Remote Machine

Site (RMS). The tasks of monitoring and diagnosis were split between the Machine

41

Chapter 3 - Literature Review

Agent and the Diagnostic and Learning Agent. Once they have been “learned”, new

events were sent to the Central Management Agent and then become available to all

the other users sharing the same central knowledge base. Confidence factors were

implemented as a way of assigning weights associated to each one of the actions taken

to diagnose a specific fault. A Learning Agent would be assigned by the central agent

in response to a machine agent request. Diagnosis would be based on existing rules in

the Knowledge Base. Unknown behaviour would be communicated in terms of an

alarm to the machine agent. Faults that were unknown to the diagnosis task might

require a local knowledge base update, provided by the Central Management Agent.

New rules should be added to the system based on the knowledge of a domain expert.

These new rules would be matched against existing ones to iron-out any kind of

conflict.

The structure proposed in [3.48] seemed to represent an advance in terms of fault

diagnosis. Based upon knowledge bases it speeds up the learning curve of the fault

diagnosis system. However, some considerations are necessary. It was indicated that

in practical terms, the network speed was not satisfactory to meet the system demands

in providing online fault diagnosis to machines that could be located far away. This

could be considered a constraint from the point of view of providing immediate

reaction to the development of critical faults. In the author’s opinion an alternative to

minimize such problem could be providing the local agent with more capabilities in

terms of abnormal behaviour detection, which in the case of the proposed work relied

completely on the Diagnostic and Learning Agent. Nevertheless, the approach might

have further application in the detection of long term fault development and process

parameter degradation. In this way it might represent a useful tool to machine

manufacturers to support their customers by deploying predictive maintenance actions

that should be taken. Potential also exists for using it as an information base to

improve future machine designs.

To achieve such goal, further investigation should be made to reduce cost

requirements for the necessary agents, possibly enabling the machine agent to be

integrated within the machine at the remote site. Another way forward would be to

reduce the cost of the various agents, particularly the machine agents, by perhaps

deploying microcontroller technology.

42

Chapter 3 - Literature Review

3.6 - Embedded and Microcontroller-based Monitoring Systems

Compact and powerful devices are becoming available as a result of the continuous

development in the electronics industry, providing further options for the

implementation of monitoring systems. However, such implementations should take

into account the requirement of modem systems, which should not exist in isolation.

Modem and efficient fault diagnosis techniques still require powerful hardware and

software tools. A distributed system can provide a good balance, with efficient and

low-cost devices at the measurement points and powerful and friendly to use software

applications shared at higher levels.

The use of Digital Signal Processors (DSP) for fault detection was presented by

Baccigalupi et al [3.49]. Online monitoring and diagnosis of electrical and electronic

components was implemented using two DSPs, one for measurement purposes and

the second one for fault diagnosis. The fault detection approach was based on the

comparison between measured and nominal quantities. It was considered that the

implementation of the system should take into account two main problems. The first

was the computational requirements of an online monitoring and diagnosis system

that demands a high rate of measurement updates. The second concerned external

factors, such as temperature, that could induce a false diagnostic. Dedicated

processors for each proposed task dealt with the first problem, while the second one

was claimed to be solved by implementing repetitive signal sampling when an

abnormal quantity is detected. Whenever a fault was detected, a flag was sent to a PC

connected to the apparatus. The implementation of a fault detection algorithm that

uses mathematical manipulations was facilitated by the use of a DSP, a device

provided with a specific set of instructions for such a purpose. In the author’s opinion,

a limitation could be the incapability of varying the model parameters dynamically.

In their case study Roberts et al [3.50] raised questions concerned with the cost of

dedicated monitoring systems for fault diagnosis purposes, in cases where multiple

electro-mechanical assets in the manufacturing system require such a resource. They

proposed the implementation of distributed computational intelligence. It suggested

that quantitative fault detection should be carried out at the asset (or machine) level.

The data should be passed across a network, enabling remote diagnosis based on

43

Chapter 3 - Literature Review

sophisticated analysis tools, in an adequate processing environment. The system

architecture would have Fieldbus nodes at the assets level, equipped with a

transducer. A local embedded processor would receive the Fieldbus nodes data and

apply fault detection algorithms. The assessment of residuals of the comparison

between measured values and modelled behaviour of different parameters would be

used to detect the existence of a fault condition. Such a condition would be

transmitted to a higher level where a PC implementing a qualitative linguistic rule

based diagnostic system would provide fault isolation based on the parameter

residuals. Through a communication link, reports could then be made available at a

management layer. The use of a distributed structure employing dedicated devices

such as microcontrollers and embedded processors helped to achieve the main

objective, which was to conceive a low-cost system. Nevertheless, it was said that all

the monitored applications (Fieldbus nodes) were required to be of the same type,

since the local processing node (embedded processor) was provided with a single fault

detection algorithm. A suggestion to improve this structure could be providing each

Fieldbus node with its own fault detection capability. This would make it possible to

have assets with different behaviours monitored by the same system.

The use of dedicated processors applied to process and condition monitoring was

further investigated by Baek et al [3.51]. They introduced a monitoring system based

on a DSP for real time monitoring of tool failure in a milling process. The system

diagram is shown in Figure 3.8. Real time was stated as especially important for such

application, since tool breakage must, if possible, be monitored in real-time. The

system implemented two neural networks embedded in the DSP, to monitor tool

breakage and tool chipping states. The DSP was required due to its capability in

processing mathematical functions based on specific instructions, instead of requiring

software routines for such a purpose. The DSP parallel processing capability was

equally important, resulting in a more time efficient implementation.

The developed monitoring system employed the pattern classifier concept to decide

on the tool condition. Neural networks with back propagation were implemented to

function as the pattern classifier. The neural network inputs were obtained from

features extracted from the process cutting force signals. An Auto-Regressive (AR)

model was used as the signal-processing algorithm. This specific model was chosen

44

Chapter 3 - Literature Review

due to its lower time requirements when compared with other signal processing

algorithms. Individual neural networks were implemented for each monitored

condition, tool breakage and chipping. The tool conditions would be classified as

“normal” or “abnormal” and these states indicated by a LED and on a connected PC

computer display. This implementation showed the growing capabilities provided by

new compact devices, such as a DSP and embedded microcontrollers. The possibility

of developing neural networks embedded in the processor seemed to be an indication

of such devices capabilities. Nevertheless, they agreed that processing time was

critical, causing data buffer overflow in some cases, depending on the operation

speed. Therefore, it seems that although all the increasing processing power provided

by these new generation of devices, there are still tasks that should be shifted to

appropriate environments such as a computer. Such a system would then benefit from

greater processing power, adaptability to the demands and software tools that provide

high level of flexibility.

DSP

(Analog output of
tool condition)

(Input X-force)

D/AA/D

Signal processing

Cutting conditions
and weights

Forward procedure
of neural networks

Host PC

(Tool condition output)

Figure 3.8: DSP based real time monitoring system [3.51].

Microcontrollers were also employed for measurement and control purposes in a

distributed system configuration investigated by Bolic et al [3.52]. They suggested

that PC computers represent the best choice for the central node in distributed

systems, due to the wide range of hardware and software resources available for

measurement and control implementation. Nevertheless, the use of microcontrollers

was defended in cases where instead of the processor power such as a PC computer,

the requirements were for small, low-cost and robust devices. Bearing in mind such

45

Chapter 3 - Literature Review

points, they described the implementation of a distributed system where the individual

hardware modules were based on 8 bit microcontrollers that were provided with

communication interfaces to enable them to connect together. The system was

implemented with an application program generation and distributed units configured

from a central unit by entering the required parameters. The central unit, also based on

an 8 bits microcontroller, provided a user interface and arbitrated the tasks among the

distributed units. Different implementations of the distributed units were provided,

accordingly the devices they should support. Figure 3.9 shows a diagram of their

distributed system implementation.

BUS

TRANSDUCER
SENSOR/ACTUATOR

• HARDWARE CONTROL
• SIGNAL PROCESSING
• COMMUNICATION WITH THE

CENTRAL UNIT

• HARDWARE CONTROL
• SIGNAL PROCESSING
• COMMUNICATION WITH TIIF.

CENTRAL UNIT

• USER INTERFACE CONTROL
• COMMAND STRING

INTERPRETER
• COMMUNICATION WITH

DISTRIBUTED UNITS

RS-485 RS-485 EEPROM

RAM

TERMINAL

RS-485

CENTRAL UNIT DISTRIBUTED UNIT 1 DISTRIBUTED UNIT N

Figure 3.9: Distributed system block diagram [3.52].

The system described in [3.52] used a 3 layer (physical, transport and application)

data communication protocol, identified as a “reduced OSI model”. The central unit

would control the system communication by sending broadcast and addressed

commands. These commands would provide to or request parameters from the

distributed unit. Although presented as a system with automatic program generation,

such a feature seemed to represent an automatic selection from the configuration

menu in the central unit, based on the distributed units’ characteristics. The system

description suggested its capability of performing distributed control tasks. However,

it was not made clear if the system was capable of dealing with dynamic conditions,

where the distributed units might need to have their parameters updated. Despite

recognising earlier that a PC computer could be a better choice for a central unit in a

distributed environment, an 8 bit microcontroller implementation was used to perform

46

Chapter 3 - Literature Review

this task. Such an implementation, especially when considering the master/slave

hierarchy, could limit the system capabilities. However, the described system showed

that for many applications where size, power consumption and cost are issues, the

new generation of microcontrollers could provide an adequate answer. A better

performance might be obtained if, rather than developing a communication protocol,

one of the existing Fieldbus standards were used. Provided that there are such device

controllers already available this will have the effect of, easing software

implementation and improving processing performance.

The importance of data communication for the development of distributed systems

was recognised by de Frutos and Giron-Sierra [3.53]. They described the

implementation of a distributed control system that exploits the power of an

embedded PC, enhanced by the use of existing and well-developed software tools that

ease such developments. The system was provided with an interactive graphic tool to

build control and measurement functions, that can be implemented in distributed

nodes. A full range of control and measurement functions for analogue and digital

I/Os were made available. The system architecture was provided with a supervisory

node, based on a PC, centralising the distributed nodes knowledge base. Data

communication was implemented using modems and standard telephone lines, since it

was considered that the distributed nodes might be located at far away locations. Each

distributed node supported 3 basic tasks: communication, data acquisition and control.

Learning capabilities were provided, enabling the distributed nodes to retrieve

information from the supervisory module. Data update was periodically requested to

the distributed nodes by the supervisory node. Figure 3.10 illustrates the system

architecture and software components.

An argument made in [3.53] was that embedded PCs represent a low-cost, whilst

powerful solution, in cases where distributed nodes required greater processing

capabilities. The high scale of integration of the current generation of electronic

components enabled such an implementation. Existing software tools and standards

helped to ease the development of such systems provided with graphical capabilities.

However, it is the author’s opinion that the system described by de Frutos and Giron-

Sierra could equally have been developed, probably in a more flexible way, using

commercially available tools [3.54].

47

C hapter 3 - Literature Review

C ontro l
bus

block

NodeNode

Communication system
by Modem

f ---------------\

Control
system

_̂____)

/ ---------- \
Data

acquisition
system

V______ J

Figure 3.10: System architecture (3.53].

In attempting to develop the next generation of monitoring systems it is important to

be aware of current and future research and development in the area of system

architecture and possible related developments.

3.7 - Future Directions

An architecture for Distributed Fault Detection and Isolation (FDI) was proposed by

Dassanayake et al [3.55]. The system uses industrial network standards (Fieldbus) in

its implementation to provide distributed monitoring and control capabilities for assets

in buildings and manufacturing processes. Industrial networks, rather than

conventional ones, were chosen since such standards consider the requirements of

distributed control applications. The proposed architecture was based on 3 layers or

levels, as seen in Figure 3.11.

The lowest layer was identified as the Fieldbus Node (FN). This node used a

microcontroller to implement the Fieldbus communication protocol. Measurement

and control capabilities were provided by a DSP. At the middle layer, and Embedded

Processor (EP) provided fault detection to the connected FNs that had common

operating characteristics. Thus EPs had built-in Fieldbus interfaces to enable them to

48

Chapter 3 - Literature Review

communicate with FNs at the lowest level. FNs could issue control alarms, based on

knowledge provided by the respective EP, indicating low-level fault detection. The

EP was therefore capable of assessing the consistency of the reported fault. Whenever

it was proven to be correct, a detection alarm would be passed to a Management

Information System (MIS), linked to the EP by an Ethernet network. The MIS is

capable of activating a direct high-speed data acquisition link, routing the FP that

generated the alarm through the EP. A set of data would thus be transferred to the

MIS, which could provide fault isolation based on a neural network implementation.

Previous application expertise was said to be required for network training, which

may represent a limitation in cases where the necessary data is not available.

Fieldbus
Node
(FN)

Fieldbus
Node
(FN)

Fieldbus
Node
(FN)

Fieldbus
Node
(FN)

Fieldbus
Node
(FN)

Fieldbus
Node
(FN)

Component
— Level

Embedded
Processor

(EP)

Ethernet
Machine

-------------------------------------- Level

/ >

V ✓

Embedded
Processor

(EP)

Maintenance Information
System (MIS)

System
Level

Figure 3.11: Proposed architecture for system-wide FDI [3.55].

In this proposed approach [3.55], fault detection was implemented based on the

comparison between the nominal behaviour and system measurements, taking into

consideration a predefined tolerance band. A detected fault would result in a FN data

request. The data is compared to models describing the individual parameter’s

behaviour. The resulting vector, with each specific parameter component, would be

49

Chapter 3 - Literature Review

used as an input to the system’s neural network, thus providing fault isolation. The

proposed work showed the flexibility of a distributed system. Devices with less

processing capabilities were deployed closer to the measurement or control points,

reducing the implementation cost and improving system reliability. At the same time,

processing capabilities at lower levels could reduce the load of the upper layers. It

would enable the possibility of providing specialised services or functions to a larger

number of devices deployed at a lower level, keeping the low-cost strategy with an

increasing processing capability. At the highest level, powerful hardware and software

deployment could provide the processing power and flexibility required for an

efficient use of artificial intelligence tools. The use of adequate communication

networks in accordance with the environment and application requirements were seen

to be equally important in improving system robustness and easing implementation.

However, this implementation required all devices at the Fieldbus level to be

measurement or control devices with the same characteristics. Such requirement

seems to represent a constraint, limiting the system use. In cases where assets with

different characteristics might be present, several separate systems would be required,

reducing flexibility.

With the purpose of providing a base for the establishment of standards, some

research has been conducted to investigate the requirements of data acquisition

systems based upon distributed architecture. Work conducted by Ehrlich et al [3.56]

investigated and proposed a generic model for the deployment of smart sensors. In

this context, such devices were considered for carrying out conditioning, digitisation

and processing of signals delivered by transducers. Such tasks could therefore be

executed near to the measurement points, increasing processing power compared with

a centralised Data Acquisition System (DAS). A wider coverage area could equally be

achieved by employing industrial networks (Fieldbus) to connect together all system

components.

This investigation [3.56] suggested that the key-point in using smart sensors consisted

in their ability in responding to other system components requests. A system

employing such technology would be enabled to embody a higher level of versatility,

since the system components could be dynamically reconfigured in response to new

requirements. The work proposed a graphical software tool to support the

50

Chapter 3 - Literature Review

implementation of the distributed data acquisition system, identified as the

“instrumentation plan”, in a generic way. The system representation was said

achieved using Data Dependence Graphs (DDG), illustrated in Figure 3.12, which

were supposed to represent specific levels of system information. In the described

approach, the smart sensors would provide signal conditioning, data processing that

takes into account local and external data (the latest provided by other system

components) and communication capabilities. A system controller was added to

provide a user interface, data storage and to allow smart sensors management based

on the system diagram. Data communication was based on Fieldbus technology,

enabling system components to be connected together and to share data resources.

Sm art sensor #1 System
controller

T2
shared local
v ariab leV

T3
shared global
variable

Sm art sensor #2
T4

T5

T r l) (T r2) (T r3) (Tr4 T r5) (Tr6 Tr7

Figure 3.12: Data dependence graphs (DDG) for instrumentation plan [3.56].

The model proposed in [3.56] was supposed to increase the systems data processing

capabilities by providing parallel processing and allowing system variables to be

shared at a local level. The work did not reference to existing standards for the

covered area. To ensure the continuity and compatibility of the proposed model, the

smart sensor implementation should take into account standards such as IEEE 1451

[3.42, 3.43]. Another important aspect of such an implementation should concern with

the Fieldbus standard employed at the communication level of the system. The model

suggested the broadcast of global variables in an asynchronous way, based on events.

This would require a network specification that could support such an

51

Chapter 3 - Literature Review

implementation. The existing standards in the field should be analysed to select the

most appropriate [3.57].

Nieva and Wegmann [3.58] proposed a model of a conceptual DAS. It was proposed

in order to support system designers with the necessary levels of abstraction for the

development of DASs, either when based on existing standards or design specific. It

was identified as a conceptual model of a generic system and was said to represent a

formal description of a system. The approach was also described as an easier way to

understand a system, since it focused on the main aspects, while hiding the low-level

details that might be difficult to comprehend.

Device Items Device Models

Observations &
Monitoring

Reports

1 I
Device Item Device Model
Monitoring Monitoring

Criteria Criteria

Figure 3.13: Conceptual model main components [3.58].

Figure 3.13 illustrates the main components of the generic DAS conceptual model, as

described in [3.58]. In the proposed model, device models were presented as

describing the model representing a set of real world devices, defining any

measurement points with their respective measurement type and the phenomenon type

(quantitative or qualitative) they represent. Device items were defined as a real world

device created in the manufacturing process. It inherits characteristics defined in the

“device model”, allowing the association of addresses to the measurement points and

enabling a phenomenon to be associated to a specific location. Device model

monitoring criteria was described as the ability of selecting data record features,

providing the DAS with the ability to define reports, with a consistent status. To

52

Chapter 3 - Literature Review

enable this the proposed conceptual model provided trigger conditions, enabling

automatic recording based on time or system states. Three monitoring criteria were

specified, as shown in Table 3.1.

Table 3.1: Monitoring criteria and respective trigger condition.

Monitoring Criteria Trigger Condition

Device model composition Records of changes in system composition

Device model status Records at specific scheduled time

Device model event Records of certain system states

In the model proposal, monitoring criteria would be set in the device item monitoring

criteria. Two categories were provided, “predefined” and “custom”, meaning that they

could be part of the model or specific to each device. Data access mechanisms were

also provided, based on “public” and “private” categories, thus making it possible to

establish the level of access provided to the monitoring reports. Finally, Nieva and

Wegmann described observation and monitoring reports, which defined the way in

which observation records of the device item would be taken. Each observation would

be associated with a time-stamp. The conceptual model proposal presented

“measurement observations” (quantitative) and “category observations” (qualitative).

The latest includes a Boolean category identified as “present”, aiming to represent an

indication of presence or absence of a certain condition or phenomenon.

The conceptual model presented in [3.58] must be considered in association with

concerns with the existence of standards related with the subject area. Many of them

are under development [3.59, 3.60, 3.61, 3.62]. Additionally, other technologies such

as Universal Plug and Play (UPnP) were also referred to [3.63].

The development and implementation of a model based on such a proposition would

make system developments easier by providing a so-called level of abstraction from

the field devices. Nevertheless, to provide such capabilities, field devices must be

fully compatible with the proposed technology. The paper suggested a codification

scheme, where the device model, manufacturers and serial numbers would be used to

53

Chapter 3 - Literature Review

compose an identification method. Although such scheme would be only applicable

for new forthcoming devices, there was not a suggestion to support those that do not

fully comply with the proposed model. However, the implementation of such a model

could represent a step forward in providing ways to create data acquisition systems

based on layers, where monitoring applications would not have to directly access the

field devices. Data could be made available by means of a common interface,

provided that field devices were aware about the criteria that should be followed to

collect and deliver the data. The standards concerning the data acquisition systems

and devices, and the way in which they communicate would at this stage be very

important to enable the technology to become fully available.

3.8 - Summary

With the purpose of improving manufacturing processes productivity and quality

rates, condition monitoring and fault diagnostics methods have been intensively

investigated. Developments in PC hardware and software have provided means to

enhance such investigations, enabling the development of monitoring systems capable

of analysing and integrating the acquired data from processes and machines.

However, the dynamics associated with most of the processes still represent an

obstacle to be overcome, requiring the consideration of a large number of parameters

and variables. The development of distributed systems introduces an alternative by

spreading the knowledge and expertise to different levels within the system. Low-cost

processing devices, such as microcontrollers, emerge as an alternative, providing

remote processing capabilities and thus supporting distributed and intelligent

applications. To integrate a wide range of intelligent devices, communication

protocols and modelling models/methods that consider modem technologies such

Internet, database and artificial intelligence are required.

The next chapter of this thesis will concentrate on the technological aspects that relate

to data acquisition and monitoring systems. The development of powerful electronic

devices and communications protocols represent a step forward in the implementation

of distributed and intelligent structures required to achieve the goals aimed by most of

the research in the field.

54

Chapter 3 - Literature Review

REFERENCES

3.1 Piete, M.A., Kinney, S.K. and Haves, P. Analysis of an Information

Monitoring and Diagnostic System to Improve Building Operations. Energy and

Buildings, 2001, 33, 783-791.

3.2 Kosmatopoulos, C. and Tsagourias, N. Development of a Stand Alone

Monitoring System (S.A.M.O.S.). In Proceedings: International Workshop on

Intelligent Data Acquisition and Advanced Computing Systems: Technology and

Application, Foros - Ukraine, IEEE, 1- 4 July, 2001, 36-39.

3.3 Pollard, J.K., Rohman, S. and Fry, M.E. A Web-Based Mobile Medical

Monitoring System. In proceedings: International Workshop on Intelligent

Data Acquisition and Advanced Computing Systems: Technology and

Application, Foros - Ukraine, IEEE, 1-4 July, 2001, 32-35.

3.4 Stephanopoulos, G. and Han, C. Intelligent System in Process Engineering: a

Review. Computers Chemistry Engineering, 1996, 20(6/7), 743-791.

3.5 Giarratano, J. and Riley, G. Expert Systems - Principle and Programming.

Boston, USA: PWS Publishing Company, 1998.

3.6 Meziane, F., Vadera, S., Kobbacy, K. and Proudlove, N. Intelligent Systems

in Manufacturing: Current Developments and Future Prospects. Integrated

Manufacturing Systems, 2000, 11(4), 218-238.

3.7 Kuzawinski, K.M. and Smurthwaite, R. Automated Fault Tree Analysis Via

AI/ES. In Proceedings: Annual Reliability and Maintainability Symposium,

IEEE, 1988, 331-335.

3.8 Raaphorst, A.G.T, Netten, B.D. and Vingerhoeds, R.A. Automated Fault-

Tree Generation for Operational Fault Diagnosis. In proceeding: Electric

Railways in a United Europe, IEE, 27-30 March, 1995, 173-177.

3.9 Kavcic, M. and Juricic, D. CAD for FaultTree-Based Diagnosis of Industrial

Processes. Engineering Applications o f Artificial Intelligence, 2000, 14, 203-

216.

3.10 Andrews, J.D. and Dunnett, S.J. Event-Tree Analysis Using Binary Decision

Diagrams. IEEE Transactions on Reliability, 2000, 49(2), 230-238.

55

Chapter 3 - Literature Review

3.11 Hu, W., Starr, A.G. and Leung, A.Y.T. Integrated Hierarchical Diagnostic

Reasoning for FMS’s. In Proceedings: First International Conference on the

Integration o f Dynamics, Monitoring and Control (DYMAC ’99), 1-3

September, Manchester - UK, 1999, 125-130.

3.12 Hu, W., Starr, A.G., Zhou, Z. and Leung, A.Y.T. A Systematic Approach to

Integrated Diagnosis of Flexible Manufacturing Systems. International Journal

o f Machine Tools and Manufacture, 2000, 40, 1587-1602.

3.13 Hu, W., Starr, A.G. and Leung, A.Y.T. Operational Fault Diagnosis of

Manufacturing Systems. Journal o f Material Processing Technology, 2003,

133, 108-117.

3.14 Yang, S.K. and Liu, T.S. A Petri-net Approach to Early Failure Detection and

Isolation for Preventive Maintenance. Quality and Reliability Engineering

International, 1998, 14, 319-330.

3.15 Prickett, P. A Petri-net Based Machine Tool Maintenance Management

System. Industrial Management and Data Systems, 1997, 97(4), 143-149.

3.16 Davey, A., Grosvenor, R., Morgan, P. and Prickett, P. Petri-net Based

Machine Tool Failure and Diagnosis. In Proceedings: COMADEM ’96, 16-18

July, Sheffield - UK, 1996, 723-731.

3.17 Ajtonyi, I. and Terstanszky, G. Fault Diagnosis in Industrial Processes via

Parallel Processing. In Proceedings: CONTROL ’94, IEE, 21-24 March, 1994,

1117-1121.

3.18 Jantunen, E. and Jokinen, H. Reduction of Data Needed in an Expert System

for Condition Monitoring of FMS Using Regression Analysis Techniques. In

Proceedings: COMADEM ’96, 16-18 July, Sheffield - UK, 1996, 675-684.

3.19 Wang, X.Z., Chen, B.H. and McGreavy, C. Data Mining for Failure

Diagnosis of process Units by learning Probabilistic Networks. Transaction o f

the Institution o f Chemical Engineers - IChemE, 1997, 75(B), 210-216.

3.20 Lennox, B., Montague, G.A., Frith, A.M., Gent, C. and Bevan, V. Industrial

Application of Neural Networks - an Investigation. Journal o f Process Control,

2001, 11,497-507.

3.21 Mageed, M.F.A., Sakr, A.F and Bahgat. Fault Detection and Identification

Using Hierarchical Neural Network - Based System. In Proceedings:

IECON’93, IEEE, 15-19 November, 1993, 338-343.

56

Chapter 3 - Literature Review

3.22 Jamsa-Jounela, S.L., Vermasvuori, M., Enden, P. And Haavisto, S. A

process Monitoring System Based on the Kohonen Self-Organizing Maps.

Control Engineering Practices, 2003, 11, 83-92.

3.23 Balle, P. and Isermann, R. Fault Detection and Isolation for Nonlinear

Processes Based on Local Linear Fuzzy Models and Parameter Estimation. In

Proceedings: American Control Conference, AACC, 1998, 1605-1609.

3.24 Chafi, M.S., Akbarzadeh, M. and Moavenian, M. Fault Detection and

Isolation in Nonlinear dynamic Systems: a Fuzzy-Neural Approach. In

Proceedings: IEEE International Fuzzy Systems Conference, IEEE, 2001, 1072-

1075.

3.25 Geropp, B. Artificial Neural Networks and Fuzzy-Logic Used for Reliable

Machine Diagnosis. In Proceedings: COMADEM ’97, 9 and 10 June, Espoo -

Finland, 1997, 565-573.

3.26 Sharif, M.A. and Grosvenor, R.I. Process Plant Condition Monitoring and

Fault Diagnosis. Proceedings o f the I MECH E Part E Journal o f Process

Mechanical Engineering, 1998,212(1), 13-30.

3.27 Prickett, P.W. and Johns, C. An Overview of Approaches to End Milling

Monitoring. International Journal o f Machine Tools & Manufacture, 1999, 39,

105-122.

3.28 Dimla Snr., D.E. Sensor Signals for Tool-wear Monitoring in Metal Cutting

Operations - a Review of Methods. International Journal o f Machine Tools &

Manufacture, 2000,40, 1073-1098.

3.29 Jantunen E. A Summary of Methods Applied to Condition Monitoring in

Drilling. International Journal o f Machine Tools & Manufacture, 2002, 42,

997-1010.

3.30 Sick B. On-line and Indirect Tool Wear Monitoring in Turning with Artificial

Neural Networks: a Review of More than a Decade of Research. Mechanical

Systems and Signal Processing, 2002, 16(4), 487-546.

3.31 Prickett, P.W. and Grosvenor, R.I. Non-sensor Based Machine Tool and

Cutting Process Condition Monitoring. International Journal o f COMADEM,

1999, 2(1), 31-37.

3.32 Peterson, J.L. Petri Net Theory and the Modelling of Systems, Englewood

Cliff, Prentice-Hall, 1981.

57

Chapter 3 - Literature Review

3.33 Dunn, S. Condition Monitoring in the 21st Century. Plant Maintenance

Resource Centre, Plant Maintenance Resource Centre Web Site, Available

from: http://www.plant-maintenace.com/articles/ConMon21 stCentury.shtml,

[Accessed 20 August 2002].

3.34 de Vicq, A. 21st Century Machinery. IEE Manufacturing Engineer, 2001,

80(3), 104-108.

3.35 TonshofT, H.K., Janocha, H., Seidel, D. and Roethel, J. A New Approach to

Machine Monitoring and Diagnosis. The Journal o f Condition Monitoring,

1990, 3(3), 161-168.

3.36 Ramakrishna, K. Development of a Computerized On-Line Vibration

Monitoring, Analysis and Assessment System for Power Plant Machinery.

International Journal o f COMADEM, 2001, 4(2), 5-12.

3.37 Jeng, J.J. and Wei, C.Y. An On-line Condition Monitoring and Diagnosis

System for Feed Rolls in the Plate Mill. Journal o f Manufacturing and Science

Engineering, February 2002, Vol. 154, 52-57.

3.38 Alexandra, A. A Real Time Knowledge-based Approach for Fault Diagnosis

and its Applications. International Journal o f COMADEM, 2000, 3(2), 32-38.

3.39 Angeli, A. An Online Expert System for Fault Diagnosis in Hydraulic Systems.

Expert Systems, 1999, 16(2), 115-120.

3.40 Bonastre, A.R Ors and Peris, M. Distributed Expert Systems as a New Tool in

Analytical Chemistry. Trends in Analytical Chemistry, 2001, 20(5), 263-271.

3.41 Manders, J., Barford, L.A. and Biswas, G. An Approach for Fault Detection

and Isolation in Dynamic Systems from Distributed Measurements. IEEE

Transaction on Instrumentation and Measurement, 2002, 51(2), 235-240.

3.42 Ranky, P.G. Smart Sensors. Sensor Review, 2002, 22(4), 312-318.

3.43 Lee, K. IEEE 1451: A Standard in Support of Smart Transducer Networking. In

Proceedings: IEEE Instrumentation and Measurement Technology Conference,

1 to 4 May, Baltimore - USA, 2000, 525-528.

3.44 Network and Telecommunication Research Group, Undergrad Coursework and

Projects, Network and Telecommunication Research Group Web Site, Available

from: http://ganges.cs.tcd.ie/undergrad/4ba2/multicast/index.html, [Accessed 13

September 2002].

58

http://www.plant-maintenace.com/articles/ConMon21
http://ganges.cs.tcd.ie/undergrad/4ba2/multicast/index.html

Chapter 3 - Literature Review

3.45 Mosterman, P.J. and Biswas, G. Model Based Diagnosis of Dynamic

Systems. Vanderbilt University, Centre for Intelligent Systems, Centre for

Intelligent Systems Web Site, Available from: http://www.isis.vanderbilt.edu/

activities/mic97/papers/mbd/p.html, [Accessed 13 September 2002].

3.46 Thomas, G. Ethernet, Arcnet and CAN - Proposed Network Hierarchy for

Open Control. Contemporary Controls, Customer Support, Contemporary

Controls Web Site, Available from: http://www.ccontrols.com/whitepaper.htm,

[Accessed 13 September 2002].

3.47 Tseng, P.C. and Chou, A. The Intelligent On-line Monitoring of End Milling.

International Journal o f Machine Tools & Manufacture, 2002, 42, 89-97.

3.48 Ong, S.K., An, N. and Nee, A.Y.C. Web-Based Fault Diagnosis and Learning

System. The International Journal o f Advanced Manufacturing Technology,

2001, 18, 502-511.

3.49 Baccigalupi, A., Bernieri, A. and Pietrosanto, A. A Digital-Signal processor-

Based Measurement System for On-Line Fault Detection. IEEE Transaction on

Instrumentation and Measurement, 1997, 46(3), 731-736.

3.50 Roberts, C., Dassanayake, N., Lehrasab, N. and Googman, C.J. Distributed

Quantitative and Qualitative Fault Diagnosis: Railway Junction Case Study.

Control Engineering Practice, 2002, 10, 419-429.

3.51 Baek, D.K., Ko, T.J. and Kim, H.S. Real Time Monitoring of Tool Breakage

in a Milling Operation Using Digital Signal Processor. Journal o f Materials

Processing Technology, 2000, 100, 266-272.

3.52 Bolic, M., Drndarevic, V. and Samardzic, B. Distributed Measurement and

Control System Based on Microcontrollers with Automatic Program

Generation. Sensors and Actuators A, 2001, 90, 215-221.

3.53 De Frutos, J.A. and Giron-Sierra, J.M. Design of a Distributed System

Architecture Including an Automatic Code Generator. Microprocessors and

Microsystems, 2002, 26, 207-213.

3.54 National Instruments. Building Intelligent Ethernet-Based Distributed I/O

Systems with National Instruments LabVIEW. User Development Zone Web

Site, Available from: http:// zone.ni.com/devzone/conceptd.nsf/webmain,

[Accessed 01 August 2002].

59

http://www.isis.vanderbilt.edu/
http://www.ccontrols.com/whitepaper.htm

Chapter 3 - Literature Review

3.55 Dassanayake, Roberts, C. and Goodman, C.J. An Architecture for

System-wide Fault Detection and Isolation. Proceedings o f the Institute o f

Mechanical Engineers, 2001, 215(1), 37-46.

3.56 Ehrlich, J., Zerrouki, A. and Demssieux, N. Distributed Architecture for Data

Acquisition: a Generic Model. In Proceedings: IEEE Instrumentation and

Measurement Technology Conference. Ottawa - Canada, 1 9 - 2 1 May 1997,

1180-1185.

3.57 Synergetic Micro Systems, Factory Communications Comparison, Synergetic

Micro Systems Web Site. Available from: http://www.synergetic.com/

compare.htm, [Accessed 19 November 2002].

3.58 Nieva, T. and Wegmann, A. A Conceptual Model for Remote Data

Acquisition Systems. Computers in Industry, 2002, 47, 215-237.

3.59 OPC Foundation, OLE for Process and Control Standard, OPC Foundation Web

Site. Available from: http://www.opcfoundation.org, [Accessed 25 November

2002].
3.60 VI Foundation, Interchangeable Instrumentation Standard, VI Foundation Web

Site. Available from: http://www.ivifoundation.org, [Accessed 25 November

2002].

3.61 ODAA, Open Data Acquisition Standard, Open Data Acquisition Association

Web Site. Available from: http://www.opendaq.org, [Accessed 25 November

2002].

3.62 OMG, DAIS - Data Acquisition from Industrial Systems RFP (dtc/99-01-02),

Object Management Group Web Site. Available from: http://www.omg.org,

[Accessed 25 November 2002].

3.63 UPnP Forum, Universal Plug and Play Technology, UPnP Web Site. Available

from: http://www.upnp.org, [Accessed 25 November 2002].

60

http://www.synergetic.com/
http://www.opcfoundation.org
http://www.ivifoundation.org
http://www.opendaq.org
http://www.omg.org
http://www.upnp.org

Chapter 4 - Technology Fundamentals

CHAPTER 4

TECHNOLOGY FUNDAMENTALS

4 .1 - Introduction

The distributed monitoring system produced as a result of this research is based upon

a range of currently available technologies. The development of these new

technologies has enabled the design of systems that explore the best features o f each

individual component, sharing resources in order to achieve a better final result. In

particular, new network technologies, either in terms of hardware or software

protocols, open the opportunity for the development of distributed systems.

Tanenbaum and van Steen [4.1] considered distributed systems as a large number of

computers connected by a high-speed network. They also added that such system

should be easy to expand, considering each member as independent. But they

presented as the main goal for such a distributed system “is to make it easy for users

to access remote resources”.

This present research explored the general concept of distributed systems in order to

provide the resulting monitoring system with flexibility and improved capability.

Thus, the technology required to support such an implementation becomes a very

important aspect and will be reviewed in the following sections, with special emphasis

to those components that are the most relevant in the investigation.

4.2 - Processing Technology

Processing technology represents a key element in distributed monitoring research,

since it establishes a reference in terms of a system’s capabilities and limitations. The

evolution of integrated circuit technology in the 1970s provided the means required

for the development o f a generation of devices with sufficient processing capabilities.

The early generation of 4 bits microprocessors, initially designed for particular

61

Chapter 4 - Technology Fundamentals

purposes, has developed to a range of general-purpose devices based on 8, 16, 32 and

more recently 64 bits [4.2]. Although initially conceived and concerned with

applications such as the development of microcomputers, microprocessors were soon

seen as a flexible solution for industrial applications, due to their programming

capabilities [4.3]. In general terms, a microprocessor represents the Central Processing

Unit (CPU) of a computer system and can be mainly divided into a Control Unit

(CU), an Arithmetic and Logic Unit (ALU) and a set of registers that includes the

Program Counter (PC) [4.4], as represented in Figure 4.1. Table 4.1 describes the

main functions of each element. In order to operate, a CPU requires a main memory

system (to hold execution code and data) and an input/output (I/O) system (to enable

communication with the external world).

Central Processing Unit

Operation
Registers

Arithmetic and
Logic Unit

Program
Counter

Control Unit

Figure 4.1: Central processing unit general diagram [4.4].

Table 4.1: CPU main parts description [4.4].

CPU Element Function Description

Control unit • Controls the computing operation.

Arithmetic and logic unit • Performs arithmetic, logic and shift operations.

Register set • Holds values during computing operation.

Program counter • Holds the instruction memory address.

62

Chapter 4 - Technology Fundamentals

Microprocessors can be classified in terms of the way they interact with the main

memory system. Models with von Neumann architecture use the same addressing and

data structure for data and instructions. Alternatively, Harvard architecture devices

provide independent pathways for data and instructions [4.4]. The concepts are

depicted in Figure 4.2. Other types of computer architecture exist but are outside the

purpose of this technology review.

Main memory system

Address
pathway HData and

Instruction
pathway

Central Processing unit

Operation
registers

Program
counter

Arithmetic and
Logic unit

Control unit

Input/output system

Main memory system

Instruction
address
pathwaymiInstruction Data

pathway address
pathway nData

pathway

Central Processing unit

Operation
registers

Arithmetic and
Logic unit

Program
counter

Control unit

II
Input/output system

(a) (b)

Figure 4.2: Computer architecture main components (a) conventional von

Neumann and (b) Harvard [4.4].

Within microprocessors, basic arithmetic, logic and shifting operations are performed

by the Arithmetic and Logic Unit (ALU). The ALU operations in many cases affect

the CPU status registers (flags indicating the operation results, such as zero, negative,

borrow, overflow, etc.).

63

Chapter 4 - Technology Fundamentals

The control unit executes a sequence of “instruction fetch” and “instruction

execution”. There are basically two different types: microprogrammed and

conventional (hardwired). The first type executes each instruction of the CPU

instruction set as a microprogram, which normally represents a sequence of several

microinstructions (depending on the instruction, it may require only one

microinstruction). This is usually the basis for the implementation of Complex

Instruction Set Computer (CISC) architecture. Although providing a greater level of

flexibility in terms of the instruction set, this may have a performance cost.

Conventional or hardwired control units have better performance, since instead of

using microprograms, the instruction directly interacts with the control unit logical

circuits. These units are now often the basis for the implementation of so called

Reduced Instruction Set Computer (RISC). The main features of RISC devices are

[4.4, 4.5]:

• A smaller instruction set;

• Instructions have a uniform length;

• Normally, a single instruction format;

• Register-to-register instructions;

• Pipelined organisation;

• Usually, one cycle per instruction;

• Usually, based on Harvard architecture.

Arguments in favour of RISC include the fact that by simplifying the Instruction Set

Architecture (ISA), CPUs based on the principle would result in a simpler hardware,

therefore providing means to ease design, improve processing performance and

enabling cost reduction. Baron and Higbie [4.4] considered that the improvement in

performance is also the result of changes in the electronic industry, mainly those

related with the improvements of memory devices.

The emerging RISC architectures enabled designers to concentrate on optimising

power consumption and to integrate more capabilities in a single silicon piece, making

it the industry standard for microcontroller design [4.5]. In simple terms, a

microcontroller became defined as a “computer on a chip” [4.5]. Such devices,

64

Chapter 4 - Technology Fundamentals

besides having CPU core, provide program memory, data memory, I/O controllers

and other specific features such as timers and communication, all integrated into a

single device. The continuous evolution of the electronic industry is providing new

versions of microcontrollers with increasing processing capabilities, making them a

flexible choice for a larger range of applications. These include monitoring tasks that

might require communication and local processing abilities.

4.2.1 - The PIC18C452 Microcontroller

Of the range of microcontrollers available, those provided by Microchip Technology

Inc. were selected as being appropriate for the current research. The particular PIC™

single chip microcontroller and its capabilities are thus reviewed in this section. This

family of microcontrollers represents an example of the recent developments of the

electronic industry. Flexibility is provided by the existence of a range of 8 bit

processing devices to select from, according to the application requirements. Different

packages, memory sizes and technologies, device special features and

power/operating options are available, allowing system designers to balance cost and

performance requirements. Table 4.2 lists the main groupings within the PIC family

of microcontrollers and their characteristics. Detailed information on all devices, their

features and configurations, is available from the company’s web site [4.6].

As stated, for the context of this research, the use of this family of microcontrollers

was seen as a good alternative for the implementation of a monitoring structure, since

they are capable of providing low-cost, simple designs and deployment flexibility.

The PIC18C452 in particular became available during this research and has features

that allow its use in a wider and general range of applications. The device is provided

with 32 Kbytes program memory (16 K instructions) and 1.5 Kbytes of data memory.

The technology employed enables the device to operate at frequencies up to 40 MHz.

Each instruction requires 4 periods of clock to execute, represented by the CPU

instruction cycle described in Table 4.3. This allows the microcontroller to achieve a

performance of 10 million instructions per second (MIPS), at the maximum rated

frequency [4.7].

65

Table 4.2: PIC family of microcontrollers main groups and characteristics.

Groups Package Max. Freq. Program Memory Data Memory I/O Analogue Timers Serial I/O

PIC12Cxxx 8 pins 4 - 10 MHz 768 -3584 bytes
512 - 2048 instr.

25 - 128 bytes 6 pins 8 bits 8 bits None

PIC 16Cxxx 18-68 pins 8 - 24 MHz 768 - 14336 bytes
512 - 8192 instr.

24 - 368 bytes 6 - 52 pins 8, 10 & 12
bits

8 & 16
bits

USART/I2C
/SPI

PIC17Cxxx 40 - 84 pins 33 MHz 4096 - 32768 bytes
2048 - 16384 instr.

232 - 902 bytes 12-52 pins 10 bits 8 & 16
bits

u s a r t / i2c
/SPI

PIC18Cxxx 28 - 84 pins 40 MHz 16384-32768 bytes
8192- 16384 instr.

512-1536
bytes

23 - 68 pins 10 bits 8 & 16
bits

u s a r t / i2c
/SPI /CAN

Chapter 4
-

Technology
Fundam

entals

Chapter 4 - Technology Fundamentals

Table 4.3: PIC18C452 instruction cycle clock period operation.

Clock Period CPU Action Description

L T L T L T L T

L T L T L T L T

3 |

l t l t l t l t

Instruction decode cycle or no operation

Instruction data read cycle or no operation

Data processing

Instruction data write or no operation

No operation cycles may be required accordingly the actual instruction action.

i Cycle k i Cycle k +1 , Cycle k + 2 , Cycle k + 3 t
1 1..........................

, PC , PC + 1

....1 " 1

, PC + n ,

1

PC + (n+1) ,

Fetch PC Execute PC

Fetch PC + 1 Flush PC + 1

Fetch PC + n Execute PC + n

Fetch PC + (n + 1)

Execution
affecting PC Void Cycle

PC - Program Counter

Figure 4.3: PIC18C452 instruction flow.

The device architecture design employs concepts such as two-stage pipeline,

overlapping the instruction fetch with the execution of the previous instruction. By

67

Chapter 4 - Technology Fundamentals

utilising the Harvard architecture, instructions can be fetched using a separate bus

from the one used to access the data memory. These approaches provide the required

means to enable instruction fetch and execution to be performed in one single cycle.

Operations affecting/changing the processing unit program counter register (typically

branch type instructions) result in an “exception to the rule”. For such operations, two

cycles are required. Figure 4.3 provides a diagram of an instruction flow [4.7].

The PIC18C452 instruction set is based on a 16 bit instruction width (instruction

word). This means that the instruction pathway is also 16 bits, in contrast with the 8

bits of the data pathway. The device instruction set is composed of 77 basic

instructions. Of these, 4 require a double word instruction (32 bits) for their

codification, therefore demanding two cycles to fetch the entire instruction.

I5.4--- bits-- ►O

Instruction code field (Opcode) Control field Register address field

The fields may assume different length accordingly specific instructions

Figure 4.4: General instruction format, considering registers addressing mode.

The instructions are formatted in such way that all the microcontroller 8 bits registers

(which include the 1532 data registers and the 128 special function registers) are

addressed within the instruction. Figure 4.4 shows details of such a formatting

structure. A complete description of the PIC18C452 instruction set and the respective

format can be found within the device documentation [4.8].

The PIC18C452 data memory is organised into 16 banks of 256 bytes each (file

registers). Although representing an addressing range of 4 Kbytes, only 1.5 Kbytes are

effectively implemented as application enabled registers. These are located in banks 0

to 5. Another 128 bytes are physically implemented for device control purposes and

are called Special Function Registers (SFR), occupying the second half of the last

bank (bank 15). The map representation of the registers distribution within the

microcontroller data memory area is shown in Figure 4.5. Access to a specific register

68

Chapter 4 - Technology Fundamentals

within each bank can be via two addressing modes. Direct addressing mode requires

the previous selection of the bank wherein the register is located. Indirect addressing

mode is provided by means of three 12 bits pointers, which provide continuous access

to the entire 4 Kbytes addressable registers.

OOOh
Bank 0

Bank 1

Bank 2 Access Bank
(virtual bank)

Bank 3
Bank 0 (128 bytes)

SFR
Bank 4

Bank 5
5FFh

Unused

■ SFR stands for Special Function
Registers

■ Each bank contains 256 bytes
■ Registers are addressed from

OOh to FFh within the bank

FOOhUnused
Bank 15

SFR FFFh

Figure 4.5: PIC18C452 registers map organisation and access bank mode [4.8].

To ease software implementation (and support compilers), a special addressing feature

is provided with the PIC18Cxxx series. It is called an “access bank” and can be

selected by setting (or unselected by clearing) a bank access control bit, which exists

within the control field of most instructions. Setting the bit provides access to a virtual

bank consisting of the first half of bank 0 and the second half of bank 15 (device

SFR). Compilers and applications can thus have access to the SFR and also to 128

bytes (variables), without caring about the actual selected bank. The register

69

Chapter 4 - Technology Fundamentals

segmentation is a requirement for RISC processors, since a register-to-register

architecture would require a very large instruction word to accommodate the absolute

register address [4.2].

The available 32 Kbytes program memory in the PIC18C452 enables a maximum of

16,384 instructions, since each instruction has in general a length of 2 bytes. These

instructions are addressed by a program counter that is 21 bits wide, organised in 3

registers. The microcontroller is also provided with interrupt capabilities, enabling

embedded peripherals and specific external hardware lines to generate such request.

Two locations in the program memory are vectored by the interrupts accordingly their

priority, low (0008h) or high (0018h). For improved performance, a 31 level program

counter wide (21 bits) embedded stack is implemented in the PIC18C452, to support

interrupts and subroutine calls by automatically storing the returning address An

equally interesting feature is the capability of asynchronously accessing byte locations

in the program memory, organised in the form of data tables. A 21 bits wide

addressing mode to access such tables is obtained by joining 3 “table address”

registers, which can be manipulated by the application. Automatic address increment

and decrement are provided by some instructions, although 2 instruction cycles may

be required for execution. Read and write modes are supported. The device specific

documentation is the source for further details [4.8].

The microcontroller’s CPU is provided with an 8 bit ALU, responsible for the

arithmetic, logic and shifting operations. An operation with two operands requires one

of them being placed in the Working Register (WREG). The ALU of the 18Cxxx

series is also capable of unsigned 8 x 8 bits multiplications, with results up to 16 bits

wide. All such instructions are single cycle execution based. Nevertheless, further

cycles may be required, in some cases, to initialise registers or to retrieve results. An 8

bits Status Register (STATUS) holds the device flags, which indicate the resulting

effects of the operation performed by the ALU. Some examples are zero-results,

negative-results, carry states and overflow indications.

One of the benefits provided by microcontrollers is their embedded peripherals and

I/O control, allowing development of an application with minimal external hardware.

The PIC18C452 in particular is provided with 34 I/O pins, each typically with several

70

Chapter 4 - Technology Fundamentals

multiplexed functions. The simplest use of these pins is as digital I/Os, organised in

three 8 bit, one 7 bit and one 3 bit ports. Each port can have their individual I/O lines

configured either as inputs or as outputs. These configurations can be dynamically

changed during program execution, increasing application flexibility. The PIC18C452

also provides support for analogue input signals. The multiplexing feature enables 8

of the I/O pins to be selected as analogue inputs. A single 10 bit analogue-to-digital

(A/D) converter is provided, thus requiring analogue acquisition and conversion to be

multiplexed. These characteristics were explored to implement the monitoring system

that resulted from this research.

Four timers, with 8 or 16 bit timing registers, are available with the PIC18C452. Most

of them (3), allow either an internal (system clock) or an external (input pin) clocking.

Prescaling of the clocking source is selectable, at individual rates for each timing

device. Three of the timing devices are also capable of acting as counters, triggered by

an external source. All the 4 timing peripherals have interrupt capabilities and their

registers can be read / written at any time. The capture function acquires specific timer

registers when triggered by an external signal. The compare function watches specific

timer registers and when the comparison matches, it drives high/low (configurable) a

specific I/O pin. The combined capture/compare functions can also generate

interrupts, if required. A third related function may provide a 10 bit resolution Pulse

Width Modulation (PWM) output.

Communication peripherals are also embedded within the PIC18C452. The first such

device to be considered is the Universal Synchronous/Asynchronous

Receiver/Transmitter (USART). The asynchronous mode is useful in implementing

communication capabilities in order to exchange data with other devices/equipment,

by means of a standard RS232C serial interface. In such a mode, the data transmit and

receive clock are derived from the microcontroller’s operating clock and data transfer

is full duplex. Separate 1 byte receive/transmit buffers are provided. Interrupts are

also separate for the transmitter and receiver modules and may be generated if

enabled. The transmitter interrupt is associated with the respective buffer becoming

empty event. On the other hand, the receiver interrupt is associated with the receiver

buffer full event. Start bit, stop bit and ninth bit (parity checking or multi-processor

addressing mode) are selectable. Error indications such as received frame error (stop

71

Chapter 4 - Technology Fundamentals

bit) and buffer overrun are automatically generated. Supported baud rates range from

300 bps to 115.2 Kbps. The US ART also operates in synchronous mode, acting either

in master or slave mode.

The second available serial communication method is provided by means of an

embedded Synchronous Serial Port (SSP). Two operating modes are supported: Serial

Peripheral Interface (SPI®) and Inter-Integrated Circuit (I2C®). The SPI (developed

by Motorola) can operate as master (providing clock) or as slave (clock provided by a

master). Although using separate hardware lines for data transmission and reception,

one single buffer is provided for both events (bits are continuously shifted). A single

interrupt is provided and is synchronised with the buffer full condition (8 bits shifted

in and uploaded). The data transfer clock is unique and controlled by the master

device. To receive data from a slave device, besides enabling the clock, the master

must transmit a stream of “dummy data” equivalent to the amount to be received.

Supported data transfer rates are up to 10 Mbps.

The PIC18C452 is fully compliant with the I2C specification (developed by Phillips)

[4.7]. In this operating mode the device uses one hardware line for data transfers and a

second one for the clocking signal. Master and slave modes are both supported.

Interrupts can be generated by the reception of a start bit (synchronising the beginning

of a data transfer) and by the identification of a stop bit (end of data transfer). The I2C

uses an addressing mode (7 or 10 bits long), which is automatically searched and

detected by the microcontroller’s data communication interface. Supported data

transfer rates may be as much as 1 Mbps. Further details concerning the

microcontroller’s communication peripherals may be found in [4.7].

Within this research context, the US ART and SPI communication methods were

employed. As it will be seen in Chapter 7, USART became the natural choice to

communicate between third party development kits, employed in the implementation

of a “connectivity module”. In the development of a “monitoring module” (also

described in Chapter 7), SPI was selected due to design simplicity and compatibility

with other peripheral devices, such as the CAN bus controller, considered later in this

chapter (Section 4.4.2).

72

Chapter 4 - Technology Fundamentals

The main elements concerning the PIC18C452, especially those that were

subsequently used in this research have been described in this section. The device was

the heart of the developed distributed monitoring system and provided data

acquisition, inter-chip communication and information exchange implementation. The

hardware and software developments are detailed later, in Chapter 7.

4.3 - Data Acquisition

Having identified the PIC microcontroller as the device to provide, among other

things, the data acquisition function for the distributed monitoring system, other more

general data acquisition topics were considered and are briefly reviewed.

The development of faster computers and hardware standards for computer bus

architectures has made Personal Computers (PCs) one of the preferred platforms for

data acquisition implementations. PCs become an attractive choice due to their

processing power and data storage capabilities, together with the support provided by

multi-task operating systems [4.9]. However, hardware specific implementations still

represent an important element in data acquisition design. In many cases there are

real-time requirements and the hardware specific implementations often provide local

processing and reduce the demands on the main PC processor [4.9]. Bolic et al [4.10]

suggested that there are also several applications that do not require the power of a PC

or furthermore, may require low-power consumption, low-cost or small physical

dimensions.

Figure 4.6 represents the general aspects of a data acquisition implementation. Apart

from the chosen processing platform, many considerations in terms of the data

acquisition hardware are common. Transducers are required to convert the physical

phenomena of a process into an electrical signal. Signal conditioning may be required

in many cases, in order to adapt the transducer signal to those required by the data

acquisition hardware. Table 4.4 summarises the main signal conditioning techniques.

Different sorts of transducers are available, suitable to the different physical

phenomena to be measured. The methods employed by such devices, in order to

convert measurement into a useful signal may vary according to operating range,

73

Chapter 4 - Technology Fundamentals

accuracy and also cost. Some transducers of common use in industrial applications,

together with their sensing method, which are appropriate for automatic

measurements, are summarised in Table 4.5.

| Process |

Signal Acquisition
and Interfacing

Processing Unit

Figure 4.6: General representation of a data acquisition structure.

Table 4.4: Signal conditioning aspects.

Signal conditioning Purpose description

Amplification • Increase low-level electrical signals to reduce noise
ratio (full voltage range amplification for better
accuracy).

Isolation • Electrically isolate the transducer from the
processing unit, protecting equipment and avoiding
measurement noise due to ground loop.

Multiplexing • Enable several signals to be measured by a single
measurement equipment by means of multiplexing
technique (signal changing rate must be
considered).

Filtering • For DC-class signals, aims to reduce level of noise
by using low-pass filtering techniques;

• For AC-class signals, filtering methods may require
very steep cut-off rates.

Excitation • Transducers power supply requirements, such as
currents or specific voltages.

Linearisation • Compensate measurements due to non-linear
response of the sensors / transducers (some times
provided in software).

74

Table 4.5: Transducers and sensing techniques (compiled from [4.3]).

Physical phenomena Measurement method Sensing technique

Pressure • Strain gauges
• Variable capacitance
• Linear var. diff. transformer
• Piezo-electric effect

• Pressure applied to the strain gauge, resulting in a resistance change;
• Capacitance changes due to movement o f a dielectric caused by pressure;
• Transformer core moves due to pressure;
• Output voltage resulting from applied pressure.

Temperature • Thermocouple
• Thermistor
• Pyrometer

• Electromotive force due to dissimilar metallic junctions;
• Resistance variation due to temperature changes;
• Heat wavelength radiation.

Flow • Orifice plate
• Venturi tube
• Pilot tube
• Turbine
• Magnetic
• Ultrasonic

• Differential pressure due to restriction in the flow area;
• Diff. pressure due to smooth and gradual reduction in tube diameter;
• Differential pressure between static pressure and fluid flow;
• Turbine rotor generates a electrical signal proportional to the flow rate;
• Changes in the inductive voltage in a coil due to flow rate variations;
• Measurement of acoustic wavelength changes due to flow rate variations.

Level • ON/OFF switches
• Continuous level

• Beam breaking, capacitance, conductivity and float type level switches;
• Capacitance (dielectric variation), differential pressure (level column), ultrasonic

(wavelength reflection) and radioactive (absorbed radiation).

Displacement • Angular and linear • Potentiometers, capacitance (parallel metal plates), inductive coil (permeable core), pulse
counting, encoders and ON/OFF switches.

Velocity • Linear
• Angular

• Time measurement based on pulse sensing;
• Pulse sensing, electro-mechanical and digital tacho-generators.

Vibration • Magnetic • Permanent magnet within a coil field, generating electrical signal.

Acceleration • Strain gauges
• Piezo-electric crystal

• Changes in resistance due to applied forces;
• Voltage variations due to strain in the crystal.

Force • Weight
• Force/torque

• Load cells based on strain gauges principle;
• Strain gauge and magnetic permeability changes due to tension variation.

Chapter 4
-

Technology
Fundam

entals

Chapter 4 - Technology Fundamentals

Analogue signals represent an important source of monitored process parameters. The

processing of such signals requires them to be converted into a digital format, which

is normally carried out by an Analogue to Digital Converter (ADC). Currently ADC

functionality is usually provided by specific electronic integrated devices or as an

embedded function in many microcontrollers (e.g. PICs). The successive

approximation implementation represents the fastest ADC method and is used in the

PIC18C452 device.

Other parameters must be considered when using ADCs, of which resolution,

sampling rate, input signal range, linearity, repeatability and code width are probably

those of major importance. In simple terms, resolution expresses the number of bits

used to represent an analogue signal sample. The higher the resolution, the lower the

gap between successive levels of representation in the digital format. As an example,

an 8 bits ADC provides 256 levels of representation of an analogue signal and

therefore has a full-scale resolution of 0.39%. By using a 16 bit ADC the number of

levels increases to 65,536, with a consequent full-scale resolution of 0.0015% [4.3].

Nwagboso et al [4.11] considered that a higher resolution would result in an increase

in the data acquisition accuracy. However, other factors should be considered [4.9].

The sampling rate of an ADC indicates how often a conversion can take place and

therefore directly affects the system accuracy. A fast sampling rate can provide a

larger number of acquisitions of the analogue signal and must be considered as an

important factor for fast changing signals [4.9]. There are also devices that, although

providing several analogue channels, may share a single ADC unit among them by

employing multiplexing techniques. In such cases, the sampling rate must consider the

acquisition and conversion time and the number of analogue channels sharing the

same resource. The PIC18C452 represents an example of a device with this type of

implementation, providing one ADC for 8 analogue input channels [4.8].

Input signal range is characterised by the range of input voltages that are supported by

the device or analogue channel. Linearity expresses the relationship between the

analogue signal and the respective digital representation over the full input range and

requires a good analogue circuitry design to achieve best results [4.9]. Similarly,

repeatability becomes important in many applications where precise measurements

76

Chapter 4 - Technology Fundamentals

are required [4.3]. The code width represents the smallest detectable change of the

voltage in the natural signal and is thus related to resolution, input range and gain. It

can be calculated by means of Equation 4.1.

CodeWidth = VoltageRange (Volts) (eq. 4.1)

Gain x 2BitReso,ution

In recent years, a new generation of transducers have been investigated and

developed. These devices were named as “smart transducers”. Ranky [4.12] described

the term smartness as “on-board data storage/processing capability,

interfaced/integrated with the analogue and/or digital sensor”. Such devices should

also be connected to a single bus, representing a shared medium where appropriate

communication protocols would be used to deliver data in a digital format. The IEEE

1451 family of standards [4.13] provides guidance for the development and use of

smart transducers, including a network interface specification and device

characteristics, such as calibration data, sensitivity, measurement range and

manufacturer’s identification [4.12]. Ultimately, it is expected this sort of device be

capable of providing self-calibration, self-compensation, self-validation and of

communicating by means of digital networks, to deliver the measurement data [4.14].

The selected PIC microcontroller was recognised as being a solution capable of

providing most of the general data acquisition requirements. Although presenting

restrictions, mainly due to the general context of the application, the benefits

represented by the versatility of the configurable range of embedded functions and

network based communication support, suggested an attractive low-cost alternative

that is capable to overcome the restrictions identified.

4.4 - Industrial Networks

As stated before, one of the major benefits of using the PIC device was its

networkability. The technology review provided by this chapter therefore continues

with a brief and general review of industrial networks, followed by a more detailed

description of the protocol used in the monitoring system implementation.

77

Chapter 4 - Technology Fundamentals

The development of electronic devices with networking capabilities has been

manifested, for example, in distributed control systems [4.15]. In simple terms, in

such an environment, transducers with processing capabilities are deployed

distributed across the system. As a result, the way in which the transducers

communicate with the main control elements, such as Programmable Logic

Controllers (PLCs), has been enhanced by the use of industrial networks. Jacob et al

[4.16] classified these networks in two ways: sensor buses and Fieldbus. They

considered that both are suitable for sending control and measurement signals,

however Fieldbus was evaluated as being more structured and capable of making

distinction between different classes of messages. Although many different

specifications have been proposed and implemented, all of them aim to provide a

digital network that enables communication between control and measurement

devices sharing a single bus [4.17]. Figure 4.7 illustrates such an environment. The

concept was utilised in the current research in order to provide flexibility in the

monitoring structure.

Comm. Bus

Sensor 1 Sensor nController

Actuator 1 Actuator nManagement

Figure 4.7: A distributed control system based on industrial networks.

A benefit, reported by many authors, resulting from the use of industrial networks was

the reduction of cabling costs in the automation field [4.12, 4.17, 4.18, 4.19]. Other

benefits accrued when upgrading, updating and replacing devices, since less effort

would be required with the devices being easily connected and configured [4.12, 4.17,

4.19]. However, concerns have been manifested by the same authors, regarding the

considerable range of specifications proposed and implemented, making it difficult to

establish a common standard governing the subject. A summary of the main existing

implementations can be found in [4.20].

78

Chapter 4 - Technology Fundamentals

The Open Systems Interconnection (OSI) model of the International Standards

Organisation (ISO) provides a reference for the implementation of modem

communication systems, based on a 7 layer protocol model, as shown in Figure 4.8(a).

Tanenbaum [4.21] considered that this model provided a useful framework for the

discussion of computer networks. Nevertheless he added that the 7 layer model is very

complex, difficult to implement and has many functions repeated at different layers.

Therefore, depending on the implementation, low efficiency might be expected. In

considering all these factors and also assuming that generally there is no need to

implement complex network functions in the control field, Fieldbus specifications are

generally based on a lower number of layers [4.19, 4.22], as seen in Figure 4.8(b). The

reduced layer model is normally referred to as an Enhanced Performance Architecture

(EPA) and considers the real-time requirements of control applications. Table 4.6

summarises the functions associated to each layer. Unfortunately no agreement has

yet been reached with respect to a single Fieldbus standard and existing

implementations have included more or less layers and functionalities [4.18, 4.22].

Within this research the subject was limited to the use of an existing standard (CAN

bus) based on the reduced model, eased by the availability of electronic devices that

provide the means to implement the protocol required functions. This will be

presented later, in Chapter 7. CAN bus technology is introduced in the next section.

Application

Presentation

Session

Transport

Network

Data Link

Physical

(a)

Application

Data Link

Physical

(b)

Figure 4.8: Communication networks (a) OSI and (b) reduced model.

Comparing the main existing specifications [4.20], many differences can be observed

at different levels of implementations. In terms of the physical layer, although

79

Chapter 4 - Technology Fundamentals

twisted-pair is a supported medium by almost all specifications, different network

topologies, signalling methods (digital coding), data transfer rates and electrical levels

can be observed. Also, the maximum number of connected nodes and network length

may vary. At the data link layer there are different media access arbitration methods,

which are in many cases related with the network topology. The Cyclic Redundancy

Check (CRC) is usually employed to verify the data stream integrity, although its

length may vary from one specification to another. Also, the maximum size of the

supported data transfer field varies accordingly the specification.

Table 4.6: Reduced model layer description (compiled from [4.19, 4.21, 4.22]).

Layer Main functionality description

Physical • Define electrical and mechanical characteristics of the
physic interface and transmission medium.

Data link • Provide medium access control;
• Implement an error-free delivery mechanism;
• Data stream synchronisation.

Application • Provide communication mechanisms to exchange
messages between network pairs (response to requests,
interrupt driven, time cyclic, etc).

The communication method between network pair nodes also changes between

specifications (client/server, peer-to-peer, master/slave, producer/consumer, multicast,

etc), with some implementations making use of more than one method, in order to

cope with priority and hierarchy requirements. In some cases the communication

method does not obey the boundaries represented by the layer model, with some of

the functionality associated to the data link layer and others to the application layer

[4.18], depending on the provided services (cyclic messages, event based messages,

request response, etc). Fieldbus characteristics were further summarised in [4.20]. A

description of the characteristics of some specifications can be found in [4.18].

4.4.1 - Controller Area Network (CAN)

The CAN protocol was a result of application area requirements for a robust and fast

serial communication technique. It was initially developed by Robert Bosch GmbH

80

Chapter 4 - Technology Fundamentals

and released in 1986, to be used in automotive automation systems [4.23, 4.24]. The

CAN protocol first received the standard reference ISO 11898 in the early 1990s. It

specifies the implementation of the two lowest layers of the OSI model (physical and

data link), for a serial bus application. It became the basis for some fieldbus

implementations, such as CANopen, DeviceNet and CANkingdom, which

complemented the application layer [4.23]. Despite its initial purpose, many factors

including simplicity, openness and also the number of CAN controller suppliers,

encouraged its use in a wider range of applications, including many in the industrial

area [4.23, 4.24, 4.25]. The family of PIC microcontrollers fully support this protocol,

therefore making it the adequate choice for the implementation of the monitoring

system resulting from this research.

Despite having only two defined layers, the protocol specification defines several

functions related to each one, especially within the data link layer. Table 4.7

summarises this functionality. The physical layer for practical reasons is divided into

3 sub levels, each one concerned with specific characteristics and requirements of the

entire layer. The Medium Dependent Interface (MDI) and Physical Medium

Attachment (PMA) have separate specifications from the Physical Signalling (PLS).

There is also more than one specification for the MDI/PMA, depending on the

application requirements and the body responsible for issuing the specification. Table

4.8 summarises the position with respect the existing specifications. One of the most

widely accepted is the ISO 11898-2 (high-speed). It recommends a bus topology

based on a pair of wires (CAN H and CAN L), with a signalling method based on the

pair differential voltage (0 V for recessive polarity and 2 V for dominant), as

illustrated in Figure 4.9. It also specifies the use of bus terminator elements, in order

to reduce reflection effects. Bus transceivers are equally specified, to provide

compliance guidance. Each transmission node reads the output back from the bus.

Due to the overall philosophy, timing became an important issue in protocol

implementation. Therefore, the specification includes a relationship between data

rates and the bus length. The maximum baud rate is 1 Mbps, for a length of no more

than 40 meters. A length increment can be achieved by reducing the data transmission

rate, with maximum limit fixed at 1 Km. At the bus level, the maximum number of

nodes is dependent on the employed transceiver characteristics. However,

specifications for repeaters are included in the ISO 11898-2, in order to permit

81

Chapter 4 - Technology Fundamentals

deployment flexibility and to provide galvanic isolation. Other mediums and

application restrictions were provided by specific standards [4.26].

Table 4.7: CAN protocol layers and functionality [4.26,4.27].

Layer Sub-division Functionality

Data Link Layer • Logic Link Control • Acceptance filtering;
(DLL) (LLC) • Overload notification;

• Recovery management.

• Medium Access
Control (MAC)

• Data en-/de-capsulation;
• Frame coding (stuffing/de-

stuffing);
• Medium access

management;
• Error detection and

signalling;
• Acknowledgement;
• Serialisation/de-serialisation.

Physical Layer • Physical Signalling • Bit encoding/decoding;
(PL) (PLS) • Bit timing;

• Synchronisation.

• Physical Medium
Attachment (PMA)

• Transceiver characteristics;

• Medium Dependent
Interface (MDI)

• Cable/connector.

Table 4.8: Medium attachment specifications [4.26].

Application Specific Standard / Specification

CAN high speed ISO 11898-2
CAN low speed ISO 11519-1
Fault tolerant transceiver ISO 11898-3
Truck/trailer transceiver ISO 11992
Single wire SAE 2411
Fibre optical transmission Proprietary solutions
Wire-less transmission Proprietary solutions
Power-supply transmission Not commercially available

82

Chapter 4 - Technology Fundamentals

Volts (V)

s
4-
3 -
2- Bit polarity

1-
o Dominant Recessive Dominant ^

5-
* t

4- 3.5 V 3.5 V
3̂ 1 2.5 V CAN H2-
1-
o
s . * t

4-
3- 2.5 V CAN L2_ 1.5 V 1.5 V
1-
(L --------------

Figure 4.9: CAN bus electrical levels.

The PLS subdivision is specified in ISO 11898-2. In particular, it defines Non-Retum-

to-Zero (NRZ) as the signal coding method (Figure 4.9). Benefits represented by the

method are a larger signal bandwidth and a better immunity to noise [4.18, 4.26].

However, it may result in a lack of synchronisation at the receiving end, when a large

sequence of bits with same polarity is transmitted. Therefore, the bit stuffing

technique is employed, resulting in the insertion of a bit with inverse polarity after a

sequence of five consecutive bits of equal polarity (bit stuffing is implemented within

the MAC subdivision). The protocol proposes that each bit should be considered as 4

non overlapping segments, each one being defined as a number o f discrete units of

time called time quantum (tq), representing the smallest timing resolution used by a

CAN node. Such a scheme is supposed to enable the CAN controller to provide

synchronisation and compensate signal delays and phase errors. The protocol is

considered to be time critical and therefore it requires methods of synchronisation and

compensation, which keep the relation with transmission rates and bus length. Each

node has to provide resynchronisation [4.26]. Besides the summarised existing

standards, detailed information concerning the implementation of the concepts

referred to, can be found within the CAN controller’s data sheets [4.28], provided for

the Microchip devices.

83

Chapter 4 - Technology Fundamentals

The standard reference ISO 11898 provides the specification for the CAN protocol

Data Link Layer (DLL). As was shown in Table 4.7, this layer has its services

organised into two subdivisions: the Logic Link Control (LLC) and the Medium

Access Control (MAC). The protocol is message-based, which means that messages

flowing on the bus do not have an address field identifying the destination node.

Rather, messages are provided with an identifier field, which each node has to check

in order to decide whether or not to accept the received message. Messages are

broadcast and all nodes can listen to them.

Dominant

Logic Level
▲

H ig h .

Low

High

Low

High

Low

Recessive

Dominant

Dominant

Recessive

Dominant Recessive

Dominant Recessive

Lower
priority

Higher
priority

Arbitration
result

Figure 4.10: Bit-wise arbitration method illustration.

The MAC implements a bus access method based on Carrier Sense Multiple Access,

with Collision Detection (CSMA/CD). It requires the node wishing to transmit to

continuously listen to the bus to detect whether or not it is free. Different to other

protocol implementations using the CSMA/CD technique, such as Ethernet (IEEE

802.3), a collision will not result in the destruction of the messages on the bus and

thus the loss of the transmission time slot. With CAN, the message with the highest

priority will remain intact, due to a bit-wise arbitration technique employed within the

MAC. In order to implement the technique, bits are classified as recessive (1) or

dominant (0), as illustrated in Figure 4.9. The higher the priority of a message, the

lower its identifier field value will be. A collision will occur if two or more nodes start

to transmit at the same time. Each node involved will transmit, while listening to the

bus at the same time. If a dominant and a recessive bit transmitted by different nodes

reach the bus at the same time, the result will be that the dominant bit prevails. The

84

Chapter 4 - Technology Fundamentals

node transmitting the recessive bit will detect the collision and immediately abort its

transmission, preserving the integrity of the other, higher priority message [4.24,

4.27]. Figure 4.10 summarises the bit-wise operation implemented by the protocol.

Two communication services are defined by the CAN protocol: write object

(transmission) and request object (transmission request). These services are

structured, respectively, as “data frame” and “remote frame”. The first one is

employed by a node, the producer, to broadcast data on the bus, which may be used

by the listening nodes (the consumers). The second is employed by a consumer to

request a specific message, resulting in producers owning the required data to transmit

it utilising a data frame. The serialisation and de-serialisation of the frames, including

bit stuffing, is performed within the MAC. Figure 4.11 provides a general view of the

overall frame structure. The Start Of Frame (SOF) is a dominant bit that serves to

synchronise all nodes listening to the bus. The following field, the “arbitration field”,

basically contains the message identifier (priority scheme), a frame format identifier

(standard or extended), and a frame type indicator (RTR - remote transmit request).

The field is defined with two different lengths, which are dependent on the protocol

version. Version 2.0A handles frames with 11 bits message identifiers (standard).

Version 2.0B handles both, the 11 bits identifier and 29 bits long identifiers

(extended). Extended frames enable a much larger number of different messages

identifiers, when compared with the standard frame. Version 2.0B is sub-divided into

active and passive. Active is fully capable of receiving and transmitting standard and

extended frames. Passive receives both, but transmits only standard frames [4.27,

4.29]. In considering the requirements of the protocol implementation in the current

research, the standard frame format (Version 2.0A) was employed.

s
o
F

Arbitration Control Data CRC Ack E
O
F

Field Field Field Field Field

4~ l-M — 12 o r32 M 6 ---- ► < - 0 t o 8 16 ~ M " 2 - M - 7 - >
b 't bits bits bytes bits bits bits

Figure 4.11: CAN frame structure.

85

Chapter 4 - Technology Fundamentals

Next in the “data frame”, the “control field” provides the Data Length Code (DLC)

via a 4 bits coding that identifies the number of bytes in the data field. Slight

differences are observed between the “standard” and “extended” identifier frame

formats within this field. The control field of a standard format frame includes a

reserved bit and an Identifier Extension (IDE) bit. In the extended format, the IDE

becomes part of the arbitration field (which changes in size from 12 to 32 bits) and the

bit slot left is defined as a second reserved bit [4.24, 4.27].

The “data field” then contains the data message transmitted by the producer. The

number of bytes in the field may vary from 0 to 8 and is defined by the DLC (in

control field). It is suggested that a frame with no data bytes (DLC = 0) might be

desirable in some cases where the message identifier is enough [4.27].

The Cyclic Redundancy Check (CRC) field is employed to validate the transmitted

message at the recipient end. The field reserves the first 15 bits for the CRC and the

last one as a CRC delimiter (recessive). The CAN protocol employs a polynom of

order 15, which is considered well suited for sequences with less than 127 bits [4.27].

Other data transfer protocols, such as Ethernet, employ a similar method, however

with polynom generators of different order. The method is considered suitable for

implementation in hardware [4.30], and is therefore normally embedded within

controllers [4.28]. CRC calculation includes SOF, arbitration, control and data fields.

All nodes on the bus calculate the CRC of the received sequence and compare it

against the one sent by the transmitter. Whenever detecting a CRC failure, the node

sends a “frame error” to make it public and thus request a retransmission. Both data

and remote frames are provided with the field.

The “acknowledgement field” (Ack) follows the CRC in the frame structure. It is two

bits long, with the first transmitted as recessive (logic high). This provides a bit slot

used by the consumer nodes to acknowledge the message reception, by transmitting a

dominant bit. Therefore, messages confirmation does not require further delay. A

message confirmed ensures that at least one node received it correctly. The second bit

represents an Ack delimiter also transmitted as recessive [4.27].

86

Chapter 4 - Technology Fundamentals

An End Of Frame (EOF) field closes the CAN frame. It is represented by a sequence

of 7 recessive bits. This field is to provide a slot for error notification within the

message length. After a frame, a 3 bits long intermission field is required to separate

contiguous frames. These 3 bits are specified as recessive.

Error detection and reaction mechanisms are also specified within the MAC. Any

node detecting an error condition (CRC, bit stuffing, framing error) will react by

sending an error frame immediately, overwriting the message. This frame consists of

an “error flag field” (6 dominant bits) and an “error delimiter” (8 recessive bits). The

bit stuffing rule does not apply in this case and therefore all nodes listening to the bus,

including the message producer, will detect it. As a result, the producer will restart the

transmission (after an intermission) and all other nodes will discard the sequence that

was received [4.27].

The Logic Link Control (LLC), the second sub-division of the DLL, provides services

concerning message filtering, overload notification and recovery management.

Message filtering corresponds to the ability of each node to decide whether or not to

accept a received message, based on the identifier in the arbitration field. Overload

notification, which is based on “overload frames”, is specified as a mechanism that

enables a node to notify its pairs to delay the next transmission, in order to enable the

node to sort out the internal conditions that caused such a state. Overload frames are

similar to error frames in terms of structure. However, their transmission does not

overwrite a message on the bus and therefore they do not result in retransmissions

[4.27].

The LLC also considers error control features, thus enabling a management

mechanism. Receive Error Counter (REC) and Transmit Error Counter (TEC) should

be incremented by the detection of the respective errors and decreased in case of

successful events. Based on the counters values, different states were defined. The

initial and normal operation state is the “error active”, which allows a node to

participate in the bus communication, including the right to transmit error flags. Such

a state requires REC and TEC bellow 128. A counting error greater than 127 (either

REC or TEC) forces the node into an “error passive” state [4.24]. In this state, instead

of a normal error flag (also active error flag), the node is allowed to transmit passive

87

Chapter 4 - Technology Fundamentals

error flags (sequence of 6 recessive bits). Since based on recessive bits, error passive

receivers cannot stop other transmitters, although it can still interrupt its own

transmission [4.27]. A “bus-off’ state is the most critical in the system and results in

the suspension of the communication (reception and transmission) by the faulty node.

Such a state is reached whenever the TEC is greater than 255. The protocol

specification defines that bus-off recovery to an error active state should be performed

by a software-reset procedure, ensuring 128 x 11 recessive bits on the bus before

resuming transmission. Any hardware reset should be avoided, since it would not

provide such a mechanism [4.27].

The CAN protocol specification, with a detailed description, also including

recommendations and guidance for controller and driver implementations, are found

in [4.26, 4.27, 4.29].

4.4.2 - MCP2510 CAN Controller

The CAN protocol provides the basic network infrastructure required to support the

implementation of a distributed system. An important factor considered when

selecting this industrial network protocol was its acceptance for industrial application

[4.25, 4.31], thus indicating robustness; and the continuity of the technology, ensured

by the existence of a diversity of suppliers [4.20]. Among these suppliers, Microchip

provides the MCP2510, a CAN bus controller fully compatible with the PIC18C452,

easing hardware interfacing and software implementation aspects. This section will

introduce the main characteristics of this CAN bus controller, thus providing the basis

for the implementation aspects considered later in Chapter 7.

The Microchip MCP2510 CAN controller is fully compatible with the protocol

versions 2.0A and 2.0B and is capable of transmitting at 1Mbps. The device provides

all the functionality described in the protocol LLC, MAC and PLS. A Serial

Peripheral Interface (SPI) is embedded to enable the system processor to interact with

the controller (data transfers and commands).

The device is provided with 2 receive and 3 transmit buffers, each one with the

individual set of registers required to build/recover the protocol frame’s fields. The

88

Chapter 4 - Technology Fundamentals

transmission of messages already mounted in the respective buffers can be triggered

either by hardware or software actions. Registers provide dynamic program

acceptance filters and masks, used by the controller to selectively load messages from

the bus. In the particular case of the masks, these indicate (by configuration) which

bits of a received message identification field should effectively be considered when

matching it against the programmed filters.

Different interrupt capabilities were also implemented in the controller. Each

reception buffer was provided with an individual hardware line to generate a “buffer

full” interrupt request. Such functionality is programmable. A general interrupt signal

was also provided. This sort of interrupt request further requires a status register to be

read, in order to identify the interrupt source. The controller interrupt sources are

listed in Table 4.9. Interrupt conditions have to be removed by servicing the source

(unloading a reception buffer) or by acknowledging it (others). Interrupt sources can

be individually enabled. A full description of the MCP2510 CAN controller, including

hardware and software programming features, can be found in the device

documentation [4.28, 4.32].

Table 4.9: MCP2510 CAN controller interrupt sources description [4.28].

Interrupt Source Description

Message error interrupt

Wakeup interrupt

Multiple sources error

Transmit interrupt

Receive interrupt

Indicates an error during the
transmission or reception of a message.

Indicates that the controller detected bus
activity during a sleep state.

Indicates one of several sources, such as
overflow, error passive, bus-off and
warnings (error counters values).

Indicates that a transmission buffer
became empty, after a well succeeded
transmission. Each buffer is provided
with its individual flag.

Indicates that a message was
successfully received. Each buffer is
provided with its individual flag_______

89

Chapter 4 - Technology Fundamentals

4.5 - The Internet Protocols

Another technology area that was considered in the context of this research was

Internet connectivity. The following sections provide a review of the general protocol.

This is complemented with an overview of the use of embedded Internet features

presented in Section 4.6, including the use of PIC microcontrollers for this purpose.

The necessity of sharing computer resources in a co-operative way, led to the

development of a software-based protocol suite during the 1970s. Although popularly

known as TCP/IP, the set of Internet protocols actually consists of more than just

these two components. They do however represent the most often employed protocols

[4.33, 4.34].

Table 4.10: Internet main protocols (compiled from [4.33, 4.34]).

Layer Protocol Description

Network • Internet protocol (IP) • Provides the required mechanisms to
send an IP frame (datagram) from the
originator to a recipient.

Transport • Transmission control • Connection-oriented transport protocol;
protocol (TCP) • Flow control services;

• Error-correction mechanisms.
• User datagram protocol • Connection-less transport protocol;

(UDP) • Does not provides error-correction and
flow control mechanism;

• High performance, with low overhead.
Application • File transfer protocol • Provides means to exchange files with

(FTP) another computer.
• Network terminal • Enables to establish a session in a

protocol (TELNET) remote computer (remote login).
• Simple message transfer • Electronic mail system, to move mail

protocol (SMTP) around the Internet.
• Hyper-text transfer • Access data stored in web servers, as

protocol (HTTP) web pages.

Basically, the set of protocols that form the Internet standard are classified in 3

groups, organised in a layered stack. The lowest layer in this stack is the

internetworking layer. In the middle, there is the transport layer and the top layer

90

Chapter 4 - Technology Fundamentals

corresponds to the one defining application protocols, also known as TCP/IP services.

Table 4.10 summarises the main existing members of the set of protocols. Special

protocols, for support and management, are listed in Table 4.11. Internet protocol

standards are normally referred to as RPC (request for comment) numbers. A

collection of RFCs is found in [4.34] and updated lists are available on the Internet

[4.35].

Table 4.11: Internet management protocols (compiled from [4.33]).

Protocol Description

Address Resolution Protocol • Provides means to interrogate the physical
(ARP) layer in order to locate the hardware address of

an IP node on the network.

Internet Group Management • Provides support for multicast events.
Protocol (IGMP) Although transmitted within an IP datagram, it

is not considered as a transport layer protocol.

Internet Control Message • Provides a mechanism to notify the incapacity
Protocol (ICMP) of the network to deliver a datagram to the

destination.

Taking as reference the OSI model for network communication systems (Figure 4.8),

the IP protocol can be considered to be equivalent to the OSI’s network layer. TCP

and UDP implement functions specified in the OSI’s transport and session layers. In

the same way, functionality specified in the OSI’s application and presentation layers

were implement within the Internet application protocols. The lower layers of the OSI

model were not specified as Internet protocols. Rather, they rely on the

communication hardware within systems to provide such services. An example is

Ethernet (IEE802.3), which provides the physical and data link layer implementations

of the OSI reference model.

4.5.1 - The IP Protocol (Network Layer)

The term “datagram” is used to designate the data and the header encapsulating it, at a

specific layer. Communication is implemented by exchanging datagrams between

pairs at the same level, throughout the network. IP provides such functionality at the

91

Chapter 4 - Technology Fundamentals

network layer. The protocols located at the layer immediately above use the IP

services to exchange their datagrams. IP adds and removes (depending whether

transmitting or receiving) the protocol header. Figure 4.12 shows the header structure.

Header
Length ______

Identification

Service Total LengthVersion

Flags Fragmentation Offset

Header ChecksumProtocolTime to Live

Source Address

Destination Address

Header Options
(optional)

IP Data

Figure 4.12: IP protocol datagram structure [4.30, 4.34].

The first field in the header provides the IP version, required by other network

members to ensure compatibility. The header length provides the datagram header

size, including the header options. Such options may be used in some cases to add

special routing conditions or security requests. The service field provides priority

information for routers and hosts. The total length field informs the datagram size

(header and data). It may vary from 21 to 65,535 bytes. The identification field

provides further information that enables the original datagram to be reassembled, in

case it was fragmented due to network constraints. The flag field contains details

regarding any fragmentation or to request that such a sort of action should be avoided.

The fragmentation offset indicates the range of bytes in the specific fragment. The

time to live parameter indicates to the network how many hops the datagram should

take before considered undeliverable. The field is updated each time the datagram is

handled. The protocol field is the identification of the higher layer protocol requesting

(or provided with) the IP service. The checksum field incorporates the header

validation information used by the other nodes along the network dealing with the

message to detect data corruption. Source and destination addresses represent

respectively, the originator and the final destination of the datagram. The IP actual

version provides address fields 32 bits long. Due to increasing use and new addressing

92

Chapter 4 - Technology Fundamentals

requirements, IPv6 is under development, in order to provide a much wider address

field (128 bits) [4.21]. Finally, the data field contains the higher layer protocol

datagram. Nevertheless, when fragmentation has occurred, it may contain just a part

of the original message. The IP header is required to have its length multiple of 32

bits. Whenever it is not, due to the use of options, bit padding is required to complete

the missing bits [4.30, 4.33].

Each Internet connection is provided with an IP address. IP provides the higher layer

(transport) with a virtual network, hiding all the complexity associated with

internetworking. Whenever a message transmission is required, the “transport

protocol” hands to the IP protocol a “transport layer datagram” (presented in

following sections) and the destination address. A header is added to the data, thus

resulting in the IP datagram, which is forwarded to the following layer in the network

hierarchy, usually provided by the local network system (e.g. Ethernet). A table

relating IP addresses and the network hardware addresses is required, in order to

enable the local network system to deliver the message properly. Such a table is

dynamically implemented, based on previously received messages or employing ARP

requests. If the destination address is not within the local network, the IP datagram

has to be “routed” across the network, permitting it to reach its final destination.

Therefore, the IP address becomes important and must to be unique within the

environment. IP addressing fundamentals are discussed in detail in [4.33]. At the

destination end, the IP header is removed and the data field delivered to the transport

protocol. The protocol field in the IP header provides this information [4.30, 4.33,

4.34].

Although using IP all over the network, the Internet is a set of sub-nets that may have

different characteristics. Such characteristics may be related with the medium or local

network protocols (data link and physical layers). Therefore, the original IP datagram

may have to be fragmented into smaller packets, in order to get across the entire

network. To enable the final destination to reassemble the original datagram, the IP

header provides the fragmentation flags and offset fields. The implementation of the

protocol requires a much deeper analysis of the aspects here considered. Detailed

information regarding the IP protocol can be found in [4.33].

93

Chapter 4 - Technology Fundamentals

4.5.2 - The TCP Protocol (Transport Layer)

One of the most complex components in the Internet suite of protocols is TCP. With

IP providing delivery service, this protocol, located at the transport layer, provides the

application with a service that represents reliability and control. As observed with IP,

TCP applies a header to the data received from the higher layer requesting the service,

thus producing a TCP datagram. This is shown in Figure 4.13.

Destination PortSource Port

Sequence Number

Acknowledge Number

Header
Length WindowReserved Control Flags

Urgent PointerChecksum

Header Options
(optional)

TCP Data

Figure 4.13: TCP protocol datagram structure [4.30, 4.34].

Since TCP can provide the same service to several applications, each application must

be defined by a port number. Therefore, the source and destination port fields

represent, respectively, the application requesting the service and the one receiving

the message. The sequence number field identifies the first byte in the data segment

contained by the datagram, therefore providing a means to reassemble the entire

message at the final destination, in the right order. The complement of the mechanism

is the acknowledgement number, used to confirm the accurate reception of a sequence

of data. Different to the sequence number, instead of indicating the first byte in the

data segment, the acknowledgement number confirms the reception of the data by

indicating the next expected number (sequence number of the next datagram). The

header length field specifies the size of the TCP header, including the optional field.

Such options provide extended information to end nodes. An updated list of options

can be found in [4.36]. The reserved field has no use at present and should always

remain assigned to “0”. The control flag field provides data and virtual circuit

94

Chapter 4 - Technology Fundamentals

message control parameters. Some of these flags are “urgent”, for high priority data;

“reset”, to abort and “finish”, which ends the virtual link. The window field

dynamically informs the destination end-point about the amount of non-acknowledged

data the sender is able to receive (available reception buffer). Checksum supplies the

destination with the means to assess and validate the received data. In a different way

to IP, the TCP checksum includes header and data field. The urgent pointer field acts

as an offset within the data segment, indicating the end of urgent data. It is used in

conjunction with the urgent flag in the control flag field to indicate an urgent

datagram. The urgent pointer is represented as a relative value and must be added to

the sequence number to obtain the absolute pointer. Finally, the data field holds the

application data. It is possible TCP datagrams being used to exchange only control

information, therefore without any data. Padding may be required, in order to make

the header size multiple of 32 bits.

TCP is a connection-based protocol. It means that when an application requests a data

exchange service, TCP starts a negotiation procedure between end-points in order to

establish a virtual circuit. Such virtual links must be unique. In this initial phase, the

TCP protocol at both ends exchange empty datagrams (no data in the data field), with

appropriate settings in the control flag field, to synchronise the virtual circuit and

therefore initiate the “session” between end applications. In the next phase, where

applications are able to exchange data, TCP performs several tasks that aim to provide

an efficient and reliable service. The protocol must be able to manage errors,

duplication, lost and out of order data [4.33].

The application data handed to TCP is, if required, broken down in smaller bits, in

order to benefit from network overall throughput (buffer size, physical medium

capability, data block size). Special techniques may be provided by the protocol

implementation to detect such a figure. These smaller segments are sequenced and

handed to IP. The TCP header provides the means required to control the connection

and the data transaction in a manner that facilitates the rebuilding of the original data

stream, even if individual segments follow different routes in the entire network. The

sender implements time control mechanisms, as a mean to retransmit data that

apparently was not delivered. Received data is validated by the checksum

mechanism. In order to enhance efficiency, the protocol enables the confirmation of

Chapter 4 - Technology Fundamentals

received data within a datagram transmitting data, using the acknowledgement field

for this purpose. Also, more than one data segment can be confirmed at once (the

acknowledge number confirms all previously received data). Flow control is provided

by informing the remote end about the local reception capability, based on the

window parameter [4.33].

In considering the dynamics of an environment such as the Internet, it is easy to

perceive the complexity involved in the management of a reliable transport protocol,

which requires tight control of the mechanisms. In order to achieve efficiency,

hardware and software resources become very important. A detailed description of the

TCP protocol and its management requirements can be found in [4.33].

Implementation issues are considered in [4.30].

4.5.3 - The UDP Protocol (Transport Layer)

Besides TCP, the Internet suite of protocols specifies a second transport protocol,

UDP. Apart from the fact that both are located on the same layer in the model

hierarchy, the way they provide their service is based on different concepts. One of

the major differences is that UDP is connectionless and does not ensure delivery.

Such characteristics can easily be identified when looking the protocol header, shown

in Figure 4.14. The UDP header, as TCP, requires the source and destination

applications identification, represented in terms of port numbers. The length field

specifies the number of bytes that compose the message, including header and data. It

cannot exceed 65,535 bytes. The checksum field is equivalent to the one provided in

the TCP header and enables the remote end to validate the received data, although it is

not compulsory and can be disabled by sending the field as “0”. The data field will

contain the source application data.

Source Port Destination Port

Data Length Checksum

UDP Data

Figure 4.14: UDP protocol datagram structure [4.30,4.33].

96

Chapter 4 - Technology Fundamentals

In technical terms, UDP provides a simple interface between the application and the

IP protocol. The application requests a data transfer service, supplying the port

numbers. The destination IP address is also required. UDP adds the header, calculates

the checksum (if required) and requests IP’s networking service. No previous

transactions between end-points are carried out. The transmitted messaged is

discharged from the transmitter buffer, since there is no commitment with delivery

guarantee. The remote end simply forwards the data to the application declared in the

destination port field. Messages that are not validated by the checksum matching are

not considered.

Benefits in using the UDP protocol are realised due to its simplicity. A very low

overhead is introduced by the protocol, when compared with TCP. Messages are

transmitted on demand, without establishing a virtual circuit. Asynchronous event

systems may specially benefit from such simplicity. This was taken into consideration

in the implementation of the system that resulted from this research, since the

monitoring events assume an asynchronous characteristic and the resulting records are

short and of a fixed size. However, UDP does not guarantee that the data is received.

This must be externally addressed and will be considered later in Chapter 7. Further

details related with the protocol and its implementation can be found in [4.30, 4.33].

4.5.4 - Management Protocols

To support the main task of the Internet protocols, the data exchange in a controlled

environment, a few other protocols are required. One such protocol is Address

Resolution Protocol (ARP, Table 4.11), which is mainly employed as a tool to relate

the Internet addressing model with those addresses used on the local network. The

protocol packet structure is shown in Figure 4.15. Within the ARP packet, each

medium type has a unique identification, declared in the hardware type field. The

protocol field identifies IP, when Internet protocols are used. The hardware address

field provides the number of bytes used to represent the local network hardware-

address. It is required due to the fact that IP (network layer) can be used with different

data link and physical layers, in different systems. The protocol address length is 32

bits, when using IP. The source hardware address is a variable field that is supposed to

represent the local network hardware-address of the source node. The source protocol

97

Chapter 4 - Technology Fundamentals

address is equally variable, although when using IP it will be 32 bits long. Similarly

defined are the destination addresses (hardware and protocol).

Hardware Type Protocol Type

Hard. Add. Length Prot. Add. Length Message Type

Source Hardware Address

Source IP Address

Destination Hardware Address

Destination IP Address

Figure 4.15: ARP packet structure [4.30].

When an application requests a data exchange service that involves a remote location

whose hardware address is unknown, the ARP protocol is required to build a table

relating the IP and hardware addresses. ARP requests that a message is broadcast on

the local network. All the fields in this message are set accordingly with their

meaning, except the unknown hardware address (destination), which is sent as “0”.

Such a packet is called as ARP request and is identified by the request code in the

message type field. The node on the local network that possesses the broadcast IP

address will reply with an ARP response packet providing the hardware address of

interest. Further considerations are required when considering the dynamic allocation

of IP address or the identification of hardware addresses of IP pairs located on remote

networks [4.33].

There are three ways in which IP communicates on the network with other pairs:

unicast, which involves two end nodes; broadcast, which involves all nodes; and

multicast, aimed to send messages to a selected group of nodes (hosts). Multicast,

differently from broadcast, can have several groups, with distinct interests. This

requires the management of such groups. The Internet Group Management Protocol

(IGMP) was provided for this task. By using IGMP, network hosts inform other

network pairs (servers or routers) of their interest in participating in specific groups.

The opposite is also based on IGMP, when routers search for specific group

98

Chapter 4 - Technology Fundamentals

memberships. Membership reports are specified within the protocol. A detailed

description of the protocol is provided in [4.33].

In considering that IP does not provide any support in order to detect delivery (or

network) errors, there was a requirement for a protocol capable of such notification.

The Internet Control Message Protocol (ICMP) was thus provided and, in conjunction

with IP, provides the network nodes with the ability to diagnose and reply error

messages to the IP datagram originator. The ICMP header format is shown in Figure

4.16. The header type field indicates a specific ICMP error. The code field further

describes the error within a subclass. The checksum provides a mechanism for remote

message validation. Data is a field used within the header for specific message needs.

As an example, it could return the IP address of a preferable router. It is said to be not

in very common use [4.33]. The “original header” field will reply with the header of

the original IP datagram that could not be delivered. The “original data” field will

contain the source and destination port addresses, part of the transport protocol header

of the originator message.

Type Code Checksum Data

Original Header

Original Data

Figure 4.16: ICMP packet structure [4.30,4.33].

ICMP messages are send within IP datagrams, with the IP protocol field set to 1.

Although in many cases delivery problems may be related with the IP addresses and

routing, there may be cases in which this is related with the remote application that for

some reason becomes unreachable. Therefore, the ICMP header provides a complete

set of information, to help the originator to identify the reason of the verified error,

avoiding further attempts or deciding for other means.

An implementation that uses ICMP is echo request, usually known as “ping”. Such an

implementation aims to test the network by sending an echo-request to a specific IP

address, using an ICMP message. The destination, if reachable, responses with an

99

Chapter 4 - Technology Fundamentals

ICMP echo-reply. Among other explicit uses of ICMP, it is employed to fix the best

system setting, such as largest datagram supported all over the connection. Hall [4.33]

provides a detailed description of the protocol and its application. Implementation

details were described in [4.30].

4.6 - Internet Embedded Technology

Recent developments in Internet technology have stimulated the investigation of new

application areas, enhancing its use, mainly concentrated on personal computers.

Agranat [4.37] suggested that web browsers became the de facto standard user

interface for a variety of applications, replacing “traditional proprietary command-line

and graphical user interfaces”. Nath [4.38] considered the development of

applications, such as home appliances, remote monitoring and industrial control

systems, that could in some way benefit from the deployment of Internet technologies.

Requirements for embedded applications would be low-cost, low-power consumption

and size constrained implementations [4.38].

Agranat [4.37] when analysing the implementation of Internet capabilities within

embedded applications raised the point that usually resources are not available in

large scale, as they are in modem desktop computers, thus imposing difficulties that

should carefully be considered. A similar view was expressed in [4.39]. Singer [4.40]

discussed the requirements for the implementation of the full set of Internet protocols

within embedded devices, considering the integration of existing implementations

(hardware devices or software libraries). Usual implementations include the Internet

transport and network layers, normally referred to as TCP/IP stack [4.38]. The data

link layer of the reference model in many cases was based on the Point-to-Point

Protocol (PPP), suitable for use with serial links such as modems. This sort of support

makes such implementation a good option for isolated applications. Some

implementation examples based on devices with limited resources provide a good idea

of the level of complexity involved [4.39, 4.41,4.42].

Microchip [4.6] developed an Internet Development Kit based on the PIC family of

microcontrollers, which provides Ethernet capabilities on board. More recently,

100

Chapter 4 - Technology Fundamentals

Dallas [4.43] announced a microcontroller embedding TCP/IP stack, Ethernet and

CAN bus interfaces, indicating that low-cost and Internet capable industrial

applications are becoming a reality. A detailed analysis of some up to date existing

solutions was provided by Eisenreich and DeMuth [4.44].

4.7 - Database Systems

The remaining distributed monitoring system features to be briefly reviewed in this

chapter relate to the exchange and integration of information based on database

systems. Whittington [4.45] considered that information systems “provide a resource

that enables organizations to operate more effectively”. This larger use of information

systems requires database systems capable of providing fast responses and multi-user

access. This will be the case for online monitoring systems.

Blaha [4.46] described a database as “a permanent, self-descriptive store of data that

is contained in one or more files”. Therefore, the database contains the data structure

(description of data) and the data, where the latest one represents a dynamic element.

Modem applications are usually based on relational databases [4.46]. In such

databases, the data is organised in tables reflecting the relation defined among the data

[4.45]. Relations may also be established between different tables within the database.

To enable the manipulation of data within relational databases, the Structured Query

Language (SQL) was developed and represents a common language supported by

most of the commercially available Database Management Systems (DBMS). SQL

commands operate on database tables, using them as input sources and output targets.

However, SQL commands specify properties and characteristics of the desired data,

rather than determine how to access the data, which is an attribution of the DBMSs.

SQL commands can be used interactively or embedded within the application

programming language [4.45].

DBMSs provide access control to databases. As illustrated in Figure 4.17, a DBMS

represents an interface through which all data definition and manipulation is carried

out, releasing application software from such task. DBMSs are available as

commercial applications and were considered “mature and reliable” [4.46]. Among

101

Chapter 4 - Technology Fundamentals

the main functionality provided by a DBMS are data validation, sharing,

manipulation, analysis and security. The last one could be further classified in

physical data protection (backups, log of activities and transaction completion) and

logical (data access control) [4.45, 4.46].

Database

Application

DBMS

Figure 4.17: Database approach relations.

Although data manipulation is largely eased by the use of SQL, the way in which the

data is accessed varies among different DBMSs. Differences may be found in the

provided data types, error codes, security approaches and occasionally different SQL

syntaxes [4.47]. In considering the requirements of modem applications, such aspects

would represent a limitation, requiring many different DBMSs interfaces

implemented within an application. Open Database Connectivity (ODBC) was

proposed to solve such problem, by defining a standard that enables an application to

use a unique interface and SQL syntax. Data types and error codes should also be

unique [4.47]. Therefore, it is up to the DBMS manufacturer to supply a software

driver that complies with the ODBC standard.

Due to their special abilities in manipulating high quantities of data with efficiency,

giving simultaneous access to a large number of users and providing data security,

database systems have had their use increased with the growth of the Internet.

Therefore SQL based database systems were considered the natural choice in this

research for the storage of the monitoring system records, easing data analysis and

presentation approaches and enabling the integration of monitoring information in

102

Chapter 4 - Technology Fundamentals

other applications. This is considered in Chapter 7, where the system’s “management

application” is introduced.

4.8 - Summary

A number of factors have been responsible for enabling the development of new and

flexible applications. The electronic industry is constantly yielding new devices with

higher levels of integration and increasing processing power. The development of

distributed systems technology greatly benefits from the existence of such empowered

devices. Efficient communication protocols became a requirement to enable the

integration of intelligent devices in such a distributed environment. At the same time,

information is a vital resource in modem management practices and the possibility of

integrating the information provided by different systems is further supported by the

capability of such systems to connect to the Internet and access databases, thus

establishing a common interface.

In order to benefit from such technological enhancements in the context of this

research, a modelling technique is required. This will be presented in the following

chapters, beginning with the introduction of the Petri-net general concept.

103

Chapter 4 - Technology Fundamentals

REFERENCES

4.1 Tanenbaum, A.S. and van Steen, M. Distributed Systems - Principals and

Paradigms. New Jersey, USA: Prentice-Hall Inc., 2002.

4.2 Brief History of Microprocessors, University of Teesside Web Site, Available

from: http://wheelie.tees.ac.Uk/users/a.clements/History/History.htm [Accessed

7 April 2003].

4.3 Kochhar, A.K. and Burns, N.D. Microprocessors and their Manufacturing

Applications. London, UK: Edward Arnold Ltd., 1983.

4.4 Baron, R.J and Higbie, L. Computer Architecture. New York, USA: Addison-

Wesley Publishing Company, 1992.

4.5 Microprocessors and Microcontrollers, ePanorama.net Web Site, Available

from: http://www.epanorama.net/links/microprocessor.html [Accessed 7 April

2003].

4.6 Microchip Technology Inc. Microchip Products Web Site, Available from:

http://www.microchip.com/1010/search/prodsel/index.htm [Accessed 14 April

2003].

4.7 Microchip Technology Inc. PICMicro® 18C MCU Family Reference Manual.

USA: Microchip Tech. Inc., 2000.

4.8 Microchip Technology Inc. PIC18CXX2 Data Sheet. USA: Microchip Tech.

Inc., 1999.

4.9 National Instruments. Application Note 007 - Data Acquisition Fundamentals.

National Instruments Corporation Web Site, Available from: http://www.ni.com

[Accessed 23 April 2002].

4.10 Bolic, M., Drndarevic, V. and Samardzic, B. Distributed Measurement and

Control System Based on Microcontrollers with Automatic Program

Generation. Sensors and Actuators A, 2001, 90,215-221.

4.11 Nwagboso, C.O., Whomes, T.L. and Davies, P.B. Considerations on the

Development of Computer Aided Data Acquisition, Control and Analysis

Systems (CAD AC AS) for Condition Monitoring Tasks. Journal of Condition

Monitoring, 1989, 2(4), 243-268.

4.12 Ranky, P.G. Smart Sensors. Sensor Review, 2002, 22(4), 312-318.

104

http://wheelie.tees.ac.Uk/users/a.clements/History/History.htm
http://www.epanorama.net/links/microprocessor.html
http://www.microchip.com/1010/search/prodsel/index.htm
http://www.ni.com

Chapter 4 - Technology Fundamentals

4.13 Lee, K. IEEE 1451: A Standard in Support of Smart Transducer Networking. In

Proceeding: IEEE Instrumentation and Measurement Technology Conference,

1-4 May, Baltimore - USA, 2000, 525-528.

4.14 Tian, G.Y., Zhao, Z.X. and Baines, R.W. A Fieldbus-based Intelligent Sensor.

Mechatronics, 2000, 10, 835-849.

4.15 Madan P. LonWorks® Technology for Intelligent Distributed Interoperable

Control Networks. Echlon Corporation Web Site, Available from:

http://www.echelon.com/solutions/opensystems/intelnet.pdf [Accessed 21 April

2002].

4.16 Jacob, P., Ingram, S. and Ball, A. Fieldbus: The Basis for an Open

Architecture Condition Monitoring Revolution. Maintenance, 1996, 11(5), 3-9.

4.17 Hanzalek, Z. and Pacha, T. Use of the Fieldbus Systems in Academic Setting.

In Proceeding: 3rd IEEE Real-Time Systems Education Workshop, 21

November, Poznan - Poland, 1998, 93-97.

4.18 Jordan, J.R. Serial Networked Field Instrumentation. Chichester, UK: John

Wiley & Sons Ltd, 1995.

4.19 Atkinson, J.K. Communication Protocols in Instrumentation. Journal o f

Physics E: Scientific Instrumentation, 1987, 20, 484-491.

4.20 Synergetic Microsystems Inc. Fieldbus Comparison Chart. Lantronix Web Site,

Available from http://www.synergetic.com/compare.htm [Accessed 24 April

2003].

4.21 Tanenbaum, A.S. Computer Networks, New Jersey, USA: Prentice Hall PTR,

2003.

4.22 Schumny, H. Fieldbus in Measurement and Control. Computer Standards and

Interfaces, 1998, 19, 295-304.

4.23 CAN in Automation (CiA). CAN History. CiA Web Site, Available from

http://www.can-cia.de/can/protocol/history/history.html [Accessed 28 April

2003].

4.24 Pazul, K. Controller Area (CAN) Basics — AN713. Microchip Technology inc.

Web Site, Available from http://www.microchip.com/download/appnote/analog/

can/00713a.pdf [Accessed 9 August 2000].

105

http://www.echelon.com/solutions/opensystems/intelnet.pdf
http://www.synergetic.com/compare.htm
http://www.can-cia.de/can/protocol/history/history.html
http://www.microchip.com/download/appnote/analog/

Chapter 4 - Technology Fundamentals

4.25 Thomas, G. Proposed Network Hierarchy for Open Control. Contemporary

Control Web Site, Available from http://www.ccontrols.com/whitepaper.htm

[Accessed 13 September 2002].

4.26 CAN in Automation (CiA). CAN Physical Layer. CiA Web Site, Available

from http://www.can-cia.ru/CANphy.pdf [Accessed 28 April 2003].

4.27 CAN in Automation (CiA). CAN Data Link Layer. CiA Web Site, Available

from http://www.can-cia.ru/CANdll.pdffAccessed 28 April 2003].

4.28 Microchip Technology Inc. MCP2510 Data Sheet. USA: Microchip Tech. Inc.,

1999.

4.29 CAN in Automation (CiA). CAN Implementation. CiA Web Site, Available

from http://www.can-cia.ru/CANimpl.pdf [Accessed 28 April 2003].

4.30 Bentham, J. TCP/IP Lean - Web Servers for Embedded Systems. Lawrence,

USA: CMP Books, 2000.

4.31 Scott A.V. and Buchanan W.J. Truly Distributed Control Systems using

Fieldbus Technology. In Proceedings: 7th IEEE International Conference and

Workshop on the Engineering o f Computer Based Systems, Edinburgh -

Scotland, IEEE, 2000, 165-173.

4.32 Microchip Technology Inc. MCP2510 - Stand-Alone CAN Controller with

SPI™ Interface. Microchip Web Site, Available from:

http://www.microchip.eom/download/lit/pline/analog/interfce/can/21291 e.pdf

[Accessed 28 April 2003].

4.33 Hall, E.A. Internet Core Protocols - The Definitive Guide. Sebastopol, USA:

O’Reilly and Associates, 2000.

4.34 Hedrick, C.L. Introduction to the Internet Protocols, Rudgers University,

Available from http://oac3.hsc.uth.tmc.edu/staff/snewton/tcp-tutorial/index.html

[Accessed 8 May 2003].

4.35 The Internet Engineering Task Force, Internet Society, IETF Web Site,

Available from http://www.ietf.org/rfc [Accessed 9 May 2003].

4.36 Internet Assigned Numbers Authority, TCP Option Numbers, IANA Web Site,

Available from http://www.iana.org/assignments/tcp-parameters [Accessed 12

May 2003].

106

http://www.ccontrols.com/whitepaper.htm
http://www.can-cia.ru/CANphy.pdf
http://www.can-cia.ru/CANdll.pdffAccessed
http://www.can-cia.ru/CANimpl.pdf
http://www.microchip.eom/download/lit/pline/analog/interfce/can/21291
http://oac3.hsc.uth.tmc.edu/staff/snewton/tcp-tutorial/index.html
http://www.ietf.org/rfc
http://www.iana.org/assignments/tcp-parameters

Chapter 4 - Technology Fundamentals

4.37 Agranat, I. D. Engineering Web Technologies for Embedded Applications.

IEEE Internet Computing Online Web Site, Available from

http://www.computer.org/intemet/v2n3/w3agranat.htm [Accessed 14 May

2002].
4.38 Nath, M. Low-cost Techniques Bring Internet to Embedded Devices. EDN

Magazine, 1999, November 11, 159-166.

4.39 National Semiconductor, An Embedded Web Server for National

semiconductor’s CR16MCS9 CannonBall, National Semiconductor Corp. Web

Site, Available from http://www.nationa.com/appinfo/crl6/files/

embedded_web_server_CR16MCS9.pdf [Accessed 15 May 2003].

4.40 Singer, A. Internet Connectivity. Circuit Cellar, 2000, 123, 1-4.

4.41 Eady, F. An S-7600A/PIC 16F877 Journey. Circuit Cellar Online, 2001,

January, 1-4.

4.42 Loewen, M. Using PICmicro MCUs to Connect to Internet via PPP -AN724.

Microchip Technology inc. Web Site, Available from

http://www.microchip.com/download/appnote/intemet/00724c.pdf [Accessed 20

January 2001].

4.43 Tubb, L. Dallas Semiconductors Offers 75MHz 8051 Microcontroller with

10/100 Ethernet. Microcontroller.com Web Site, Available from

http://microcontroller.com/news/printer_dallas_805 lethem et.asp [Accessed 16

February 2003].

4.44 Eisenreich, D., DeMuth, B. Designing Internet Embedded Devices. New York,

USA: Newnes Elsivier Science, 2003.

4.45 Whittington, R.P. Database Systems Engineering. Oxford, UK: Claredon

Press, 1988.

4.46 Blaha, M.R. A Manager’s Guide to Database Technology. New Jersey, USA:

Prentice Hall Inc. 2001.

4.47 IBM Corporation, IBM Book Manager, IBM Book Server Web Site, Available

from http://publib.boulder.ibm.com/cgi-bin/bookmgr/FRAMESET/QBKACO03

/APPENDIX 1 [Accessed 8 March 2001].

107

http://www.computer.org/intemet/v2n3/w3agranat.htm
http://www.nationa.com/appinfo/crl6/files/
http://www.microchip.com/download/appnote/intemet/00724c.pdf
http://microcontroller.com/news/printer_dallas_805
http://publib.boulder.ibm.com/cgi-bin/bookmgr/FRAMESET/QBKACO03

Chapter 5 - Petri-net Concept

CHAPTER 5

PETRI-NET CONCEPT

5.1 - Introduction

Petri-nets were proposed in the early 1960s by Carl Adam Petri, as a result of his

investigation into a method to model and analyse the relationship between

components of a system [5.1]. Since then, several investigations have been conducted

aimed at making further use of the concept. Some of these have suggested changes

and improvements to the original idea, in order to better represent real-life situations

[5.1, 5.2].

Although representing a mathematical formalism, the main feature of Petri-nets is

their capability of describing a system’s behaviour in a graphical manner [5.2],

making the approach suitable for many engineering applications. Figure 5.1 provides

and example of such graph.

Characteristics such as concurrency, sequencing and synchronisation make Petri-nets

a powerful tool for the representation and modelling of a variety of different and real

discrete event systems. Analysis methods were also developed in order to validate

such systems’ models [5.1, 5.2, 5.3]. Most recently, reports have been made of the use

of the technique for the development and implementation of Programmable Logic

Controller (PLC) programming languages [5.4] and as a graphical programming

method [5.5]. Earlier uses of the method were reported in relation to process and

condition monitoring [5.6] and for the development of fault detection and isolation

methods [5.7].

108

Chapter 5 — Petri-net Concept

5.2 - Petri-net Representation

Referring to the graphical representation in Figure 5.1, Petri-nets elements are

classified in places (circles p i, p2, p3, p4, p5, p6, p7 and p8), transitions (bars tl , t2,

t3 and t4) and arcs (arrows al 1, al3, al4, a22, a32, a43, a53, a26, a37, a64, a74 and

a48). Places are elements representing the system states, transitions represent the

system events and arcs define the relationship between places and transitions. Girault

and Valk [5.3] considered places as passive elements, such as real-life conditions and

resources. Following similar consideration, transitions were assumed as active

elements of a system (events, actions and executions). The existence of conditions or

resources within the system is represented by tokens (dots in p3, p5 and p8). Often the

diagrammatic elements will be further identified and labelled with appropriate text, in

addition to the coded numbering.

The execution of a modelled system is controlled by the number of tokens and their

distribution in the Petri-net. Petri-nets execute by firing transitions. Transitions fire by

removing tokens from input places and adding tokens to output places [5.1]. In the

graph representation of Figure 5.1, the event defined by t3 would be enabled if

conditions p4 and p5 became true. Therefore, such event would require tl to fire first,

Figure 5.1: Petri-net graph representation.

109

Chapter 5 - Petri-net Concept

in order to provide p4 with the required token. The occurrence of an event determines

a new state within the system (state mapping). A Petri-net execution carries on as long

as at least one transition is enabled to fire. Otherwise, it will be halted.

The above features provide Petri-nets with the capability to represent systems as a

sequence of discrete events. Synchronisation is an intrinsic characteristic of Petri-nets,

since an event requires the existence of conditions that enable it. Parallelism or

concurrency is also a natural feature of the method, enabling the representation of

such an important characteristic, normally found in real-life applications [5.2].

Another important concept is Petri-net hierarchy, via the use of sub-nets. In

considering important features of the technique, such as synchronisation and

concurrency, a system can be modelled employing sub-nets that represent specific

parts of the system, easing modelling and analysis practices [5.1]. By employing such

notation, a set of elements of the Petri-net might be abstracted to a single element to

simplify the main net representation. A complex system based on several hierarchical

levels can be represented by nested sub-nets representing each level. Figure 5.2

illustrates the sub-net concept, showing p4, p5, t3 and p7 in Figure 5.1 being replaced

by a sub-net block.

a ll

a48

Figure 5.2: Sub-net concept illustration.

110

Chapter 5 - Petri-net Concept

5.3 - Petri-net Definitions

Petri-net theory formally defines places and transitions as two disjoined sets of

elements of a system. Assuming P as the set of places and T the respective set of

transitions, the following relation is established:

P D T = 0 (eq. 5.1)

where,

P(pi, p2, ..., pn) is a finite set of places, n > 0

and

T(ti, t2, • • tk) is a finite set of transitions, k > 0

The relationship between places and transitions is represented by arcs, defined in

terms of input (I) and output (O) functions. Peterson [5.1] described I(tj) as a mapping

of the input places of a transition tj, while O(tj) maps the output places of a transition

tj. The relationship between places and transitions, in terms of input and output

functions, can be described as follows:

Pi is an input place of tj, if pi E I(tj);

pi is an output place of tj, if pj E O(tj).

As an extension of such relations, the following is assumed:

tj is an input transition of pi, if tj E I(pi);

tj is an output transition of pi, if tj E O(pi).

The original Petri-net formulation suggested some modelling restrictions. It was

assumed that a place could not be related more than once to a specific transition

related function. Such restriction in “multiplicity” characterises ordinary transitions.

This property is defined as follows:

where,

#GU(tj))<i
#(p„ Oft,)) < 1

(eq. 5.2)

(eq. 5.3)

Chapter 5 - Petri-net Concept

Pi E P and tj E T

Another restriction imposed in the original proposition assumes that input and output

places of a transition had to be disjoined sets. Such property was named self-loop-free

and meant that a place could not be an input and output of the same transition.

I(tj) fl 0(tj) = 0 (eq. 5.4)

By considering Equations 5.2, 5.3 and 5.4, it results that:

#(pi,I(tj))*#(pi,O (tj)) = 0 (eq. 5.5)

In the early definition of Petri-net theory, such restrictions were seen as a

simplification, without use in the modelling practice. Later, the application of Petri-

nets for modelling real-life and complex systems required extended classes of Petri-

nets, which included the Petri-net restrictions as sub-classes [5.1].

Some modem applications require multiplicity and therefore do not comply with

ordinary transitions. Places with multiple occurrences would violate the set theory (a

single occurrence of each element within the set). Peterson [5.1] introduced the

concept of bags, in analogy to sets, to overcome such limitation. Bags would allow the

multi-occurrence of an element. Following this definition, a set would always be

considered a bag, but a bag would not necessarily become a set.

The use of multiplicity resulted in places allowed having multiple occurrences as

inputs or outputs of a specific transition. Restrictions imposed by Equations 5.2 and

5.3 were not considered within such extension and new relations must be proposed:

(P i , I(tj)) is the number of occurrences of p i in the input bag of tj.

#(pi, 0(tj)) is the number of occurrences of pi in the output bag of tj.

In addition, considering the dual relationship between places and transitions, the

following is true:

#(tj. I(pO) = % i, 0(tj)) (eq. 5.6)

112

Chapter 5 - Petri-net Concept

#(tj,0(pi)) = #(pi,I(tj)) (eq. 5.7)

Having established such relations, a Petri-net structure can be defined [5.1, 5.2, 5.3]:

C(P, T, I, O)

The dynamic of the net structure is defined by the distribution of the tokens in the

places, when considering the Petri-net execution. Since the Petri-net represents a

system in terms of a sequence of events and states, the firing of transitions modifies

such states by adding (generating) and removing (destroying) tokens. The collection

of tokens that characterises the status of the system states is called as the Petri-net

mapping and is defined by the marking vector p. The marking vector and the set of

places are closely related. The p of a Petri-net C(P, T, I, O) is defined as a function of

P and is normally expressed as a vector:

p = (pi, P2, . . . , P n) (eq.5.8)

where

n = |P| (eq.5.9)

is the number of places of the Petri-net and each vector’s component is defined as

Pi = N(pO (i= 1,2, ...,n) (eq.5.10)

where N represents the number of tokens of a place p*. The marking M of a Petri-net

C can therefore be described as M(C, p), or:

M(P, T, I, O, p)

The initial marking vector is described as p° and represents the very first marking map

within the system. Petri-net languages defined some criteria to establish p° [5.1]:

1) an initial start place marked with 1 token and 0 tokens elsewhere;

2) an arbitrary marking p specified as the initial mapping;

3) a set of initial markings.

113

Chapter 5 - Petri-net Concept

Despite such reference, there is not a rule that makes it obligatory such an initial map

and transitions are fired as long as there is a marking vector enabling them. If 8 is

defined as the next state (or marking) function, the following equation describes a

new marking in terms of a transition tj and the marking that enables it fire:

pk = 8(pk_1,tj) (eq. 5.11)

As a result of such a relationship, if there is an initial marking vector p° that enables a

transition tj, a new marking p1 will be produced. Therefore, the execution of a Petri-

net can be defined in terms of a sequence of firing transitions (tjo, tji, tj2, ...) and a

sequence of marking vectors (p°, p1, p2, ...). Given an initial p° and the sequence of

transitions that represent the Petri-net execution, it is possible to determine the

sequence of marking vectors. Similarly, in having the marking sequence, it is possible

to establish the sequence of transitions of the Petri-net execution. The capability of

reaching a marking pk from a previous marking pf (f < k), by means of a sequence of

firing transitions, is defined as “reachability” and represents an useful property for the

analysis of Petri-nets models [5.1, 5.2, 5.3].

The marking vector can be further described in terms of input and output functions.

Assuming I(tj) as the input function of tj and O(tj) the respective output function of tj,

the following relation can be drawn:

Hk = Hk-' + 0 (tj)-I(tj) (eq. 5.12)

Considering that O(tj) and I(tj) represent the relationship between places and

transitions, these functions can be described as vectors of such a relationship. The

elements of such vectors are the weights (multiplicity) of the arcs linking places and

transitions. Therefore, the entire space vector of these functions can be represented in

terms of matrices, as follows:

D [j, i] = #(pi, I(tj)) (eq. 5.13)

D+[j, i] = #(pi, O(tj)) (eq. 5.14)

114

Chapter 5 - Petri-net Concept

In assuming e[ti, t2 , . . tj, . . tk] as the vector representing the Petri-net transitions, so

that e[j] is a unit vector where the j th element is 1 and 0 everywhere else, then:

I(tj) = e[j] • D~ (eq. 5.15)

0(tj) = e[j] • D+ (eq. 5.16)

Equation 5.12 can thus assume the following form:

Hk = Hk- ‘ + e[j]*D +-e B]* D - (eq. 5.17)

Peterson [5.1] defined the relation D+ - D“ as the changing matrix D of the Petri-net.

Therefore,

Hk = Hk-‘ + e[j]*D (eq. 5.18)

Assuming that there is a p that enables a transition tj, the resulting sequence of

transitions firing can be defined as:

G = (tjb tj2, tj3, ..., tjk) (eq. 5.19)

The marking vector p° resulting of such sequence can be expressed as:

p° = p + (e[ji] + e[j2] + ... + e[jk]) • D (eq. 5.20)

Defining / (a) as the firing vector of the transitions firing sequence, so that:

/ (t f) = e0i] + e[j2] + ... + e[jk] (eq. 5.21)

then

p ° = p + / (c) - D (eq. 5.22)

And finally, in considering the general expression introduced by Equation 5.11, a

general relation is obtained:

5(n,tj) = n + / (a) . D (eq. 5.23)

115

Chapter 5 - Petri-net Concept

This relationship can be used to determine the firing sequence vector, since the

marking vector is known. Although the main strength of Petri-nets is its graphical

representation, this sort of mathematical formalism becomes important to support

analysis methods to validate a model. Nevertheless, Peterson [5.1] considered that

such methods may not be enough to ensure the solution proposed by a model. As

examples of these limitations, the matrix D is not capable of differentiating a self-loop

(a place acts as input and output of the same transition) from a void link (place is not

linked to the transition neither as input, nor as output). This is due to the fact that the

same positions in D+ and D~ will be cancelled in D (D = D+ - D-). Also, when

Equation 5.22 is used to determine the firing sequence vector required to change a

Petri-net from an initial marking to another reachable one, it may identify how many

times a transition has been fired, without necessarily indicating the sequence in which

it happened (i.e. a specific transition may be fired more than once in the same

sequence). A level of difficulty is introduced when the number of elements and

sequences, which might result from real applications modelling, are considered. In

this context however, benefits may result from the modularity of a Petri-net, which

enables system designers to split the problem into smaller units, thus applying the

analysis methods individually to each one [5.1, 5.2].

5.4 - Petri-net Properties

There is a set of Petri-net properties that are important when modelling and analysing

systems. Among these, an important feature of Petri-nets is their capability to easily

implement or model concurrency. This is a natural characteristic of many real

applications. Peterson [5.1] named the graph elements supportive of concurrency as

“fork” and “join”, which are represented in Figure 5.3. In using a fork (Figure 5.3(a)),

parallelism is achieved by providing each output place with a token.

The join represented in Figure 5.3(b) provides the means required to the

synchronisation of parallel executions, thus representing another feature of Petri-nets.

The operation of join is similar to a logic AND, requiring both conditions (pi and pj)

to be “true”, in order to enable the transition to be fired.

116

Chapter 5 - Petri-net Concept

JoinFork

Figure 5.3: Graph elements to support parallelism, fork (a) and join (b) [5.1].

From another perspective, Petri-nets are asynchronous event based, since events are

controlled by conditions that are time independent [5.1, 5.2]. Rather, Petri-net

execution dependence is represented by the sequence of the modelled events.

Theoretically, the firing of a transition is an instantaneous event. It is also assumed

that there are no simultaneous events. This resulted in the definition of “conflict”, as

the existence of two or more transitions enabled at the same time, having a shared

resource (token). Peterson [5.1] considered that conflict resolution in system

simulation is “a matter of philosophy”. He suggested a non-deterministic (random)

event or an external agent that provides some sort of weighting to support the decision

making method.

Mutual exclusion is a feature that enables the execution of Petri-net components or

modules in a controlled manner. DiCesare et al [5.2] referred to it as a “simple,

appealing and powerful synchronisation mechanism”, suggesting its use as a

semaphore to control the sequence in which Petri-net modules/components would

execute. There might be cases where Petri-nets modules, although independent of

each other in terms of graphical representation (parallelism), should not execute

simultaneously. Peterson [5.1] provided an example, illustrated in Figure 5.4, where

two processes are required to access a process critical section, but not simultaneously.

In the example, “m” represents a permission that avoids both processes “a” and “b”

entering the section at the same time. In firing “t l ”, “t2” will be disabled until the

critical section is finished, then returning a token to place “m”. Equally, if “t2” is the

first to be fired, then “t l ” will be disabled.

117

Chapter 5 - Petri-net Concept

m

critical
section

critical
section

process a process b

Figure 5.4: Mutual exclusion example [5.1].

Reachability is a property that plays an important role in Petri-net analysis. It

represents the capability of a Petri-net to produce a specific marking p from an initial

marking p° and an existing firing sequence. If such marking p is possible, then it is

said to be reachable [5.1, 5.2]. In many Petri-net applications, reachability is a

requirement, since a model usually aims to achieve a specific state under certain

conditions.

Reversibility is described as a “good” property of a Petri-net model and represents the

capability of the system to return to its initial marking from any reachable state [5.2,

5.3]. Other “good” properties are liveness and boundness. The former indicates the

absence of deadlock conditions in the Petri-net model, which means that for any

marking, there is at least one transition that can be fired. The latter was said to mean

the fitness of the state space [5.2, 5.3]. In other words, a place is bound if the number

of tokens it can receive is finite. These qualitative properties thus represent good

model behaviour characteristics [5.2].

118

Chapter 5 - Petri-net Concept

In specific applications, safeness may be an important characteristic. Peterson [5.1]

considered that a place is safe if the number of tokens never exceeds one. He cited

hardware systems, since the only permitted states of a safe place are 0 or 1. In the

original definition of Petri-nets, all places were safe [5.1].

Similarly, conservation may also be a requirement for some applications. If a Petri-net

models system resources, such as computer systems I/O devices, the tokens may

represent these resources. Therefore, tokens cannot be created or destroyed, in the

same way as real resources (that can only be allocated or released) [5.1]. It requires no

transition to change the number of tokens in the Petri-net (|I(tj)| = |0(tj)|).

Many systems representations may result in very complicated models, leading to

analysis difficulties. Since the model properties are preserved, reduction techniques

can be employed in order to simplify the model. DiCesare [5.2] suggested a “basic

reduction kit”, composed of some graphic structures examples that might simplify

some blocks within the Petri-net model.

5.5 - Petri-net Extensions

Since the original proposition of Petri-nets, several extensions were made in order to

satisfy specific requirements to the modelling of real applications [5.1]. Initial Petri-

nets were considered a sequence of non-deterministic events, instantaneous and non-

simultaneous. Events with such characteristics were identified as “primitive events”.

Also, original Petri-nets allowed only one token in each place [5.1].

Peterson [5.1] considered that most real-life events take time, thus defining non­

primitive events. The representation of non-primitive events does not follow a specific

rule. He suggested as a representation example a place between two primitive events

(start and end transitions), as seen in Figure 5.5(a). He also presented Petri’s original

suggestion, that a non-primitive event should be represented as a box (Figure 5.5(b)).

However, he considered that the box symbolism should be employed to represent sub­

nets.

119

Chapter 5 - Petri-net Concept

Inputs

Outputs

Start

Non-primitive
event

End

(a) (b)

Figure 5.5: Examples of the representation of non-primitive events as two

primitive events (a) and a box (b) [5.1].

It was also recognised that Petri-nets were limited in testing “zero” conditions. One of

the most accepted extensions is the use of inhibitor arcs, rather than arrowed ones, to

represent a zero test (Figure 5.6). Such representation was the most straightforward

for modelling purposes [5.1]. It made modelling easier by enabling the representation

of a wider range of logic operations (e.g. NOT, eXclusiveOR) and system switches

states.

inhibitor arrowed
arc arc

Figure 5.6: Example of an inhibitor arc for zero testing.

120

Chapter 5 - Petri-net Concept

The use of a priority scheme was suggested in order to help in the decision of which

transition should be fired first, in a conflict situation, providing transitions with

priority indices [5.1]. The concept of time Petri-net was also proposed for the same

purpose, with each transition tj having 2 time constants, Ti and T2 . Therefore, tj would

only be fired after enabled for at least Ti and before T2, providing a scheme similar to

priority [5.1].

DiCesare et al [5.2] described timed firing, considering another timing approach. In

such case, a firing time is associated with a transition. They described the firing of a

timed transition as a 3 phase event, as follows:

1) after a transition is enabled, firing is initiated by removing tokens from input

places;

2) the firing process remains for the firing time;

3) after the firing time has elapsed, output places are updated.

Place timed Petri-nets were also approached by DiCesare et al [5.2]. In such a case, a

token received by a place could only be assumed valid after an elapsed time

associated with the place, thus representing another option for conflict resolution.

The use of Petri-nets for the modelling of manufacturing systems provided another

extension, named coloured Petri-nets [5.8]. In such systems, besides representing the

existence of resource conditions, tokens may also be required to represent a product or

a work piece that must be identified. Thus, coloured Petri-nets utilise two different

places: elementary and object. The first deals with normal tokens (basic Petri-nets),

used to control resources and provide enabling conditions, while the second one holds

coloured tokens, which are identified and represent objects within the Petri-net.

Certainly, there are more extensions to the original proposition of Petri-nets, such as

the one considered in [5.6] for process and condition monitoring, developed in order

to implement specific modelling requirements. Such continuous updating of the

method is an indication of the interest that many areas have in the use of Petri-nets as

a modelling tool.

121

Chapter 5 - Petri-net Concept

5.6 - Summary

Petri-nets represent a modelling method that has mathematical formalism, however its

main strength in providing graphical representations. One of the characteristics of the

method is the capability of modelling systems as sequences of discrete events and

states. To enable the method to better represent real-life systems, extensions to the

original concept were proposed.

The following chapter will outline the use of the Petri-net concept and some of its

extensions, for the implementation of a monitoring modelling tool, showing how it

was applied in this research work.

122

Chapter 5 - Petri-net Concept

REFERENCES

5.1 Peterson, J.L. Petri Net Theory and the Modeling of Systems. Englewood Clift,

USA: Prentice-Hall Inc., 1981.

5.2 DiCesare, F., Harhalakis, G., Proth, J.M., Silva, M. and Vernadat, F.B.

Practice of Petri Nets in Manufacturing. London, UK: Chapman & Hall, 1993.

5.3 Girault, C. and Valk, R. Petri Nets for Systems Engineering. Berlin, Germany:

Springer-Verlag, 2003.

5.4 Peng, S. and Zhou, M. Sensor-based Stage Petri Net Modelling of PLC Logic

Programs for Discrete-event Control Design. International Journal of

Production Research, 2003, 41(3), 629-644.

5.5 Frey, G. and Minas, M. Internet-based Development of Logic Controllers

Using signal Interpreted Petri Nets and IEC 61131. Friedrich-Alexander-

Universitat Institut fur Informatik Web Site. Available from:

http://www2.informatik.uni-erlangen.de/download/Papers/Sci2001 .pdf

[Accessed 02 December 2002].

5.6 Prickett, P. A Petri-net Based Machine Tool Maintenance Management

System. Industrial Management and Data Systems, 1997, 97(4), 143-149.

5.7 Yang, S.K. and Liu, T.S. A Petri-net Approach to Early Failure Detection and

Isolation for Preventive Maintenance. Quality and Reliability Engineering

International, 1998, 14, 319-330.

5.8 Zimmermann, A. and Hommel, G. Modelling and Evaluation of

Manufacturing Systems Using Dedicated Petri Nets. The International Journal

of Advanced Manufacturing Technology, 1999, 15, 132-138.

123

http://www2.informatik.uni-erlangen.de/download/Papers/Sci2001

Chapter 6 - Petri-net Monitoring Model

CHAPTER 6

PETRI-NET MONITORING MODEL

6.1 - Introduction

As introduced in Chapter 5, Petri-nets have found their main application as a system

modelling and simulation tool. Much of the Petri-nets’ power is related with the

graphical representation the method enables [6.1], stimulating its use for many

engineering application [6.2, 6.3, 6.4]. The use of the Petri-net concept for process

and condition monitoring was investigated by a research group at Cardiff University

[6.5]. Due to its potential as a monitoring method, further investigations were carried

out [6.6, 6.7], resulting in a monitoring system using a graphical software tool,

running in a PC/Windows® environment [6.8].

Peng and Zhou [6.9] described a modem manufacturing process as a sequence of

discrete events, where events trigger each other and thus cause system operation to

take place. Petri-nets are suitable for the representation of discrete systems [6.1, 6.10],

where process events can be characterised as transitions and the conditions (process

states) that enable such events are represented by the Petri-net places [6.5]. Such an

approach represents an alternative way to describe the operation of a process

characterised by sequential events. It has resulted in the formulation of a method for

non-sensor based monitoring systems [6.11], where “non-sensor” was intended to

indicate the use of the already existing process signals, i.e. without deploying

additional specific sensors or transducers.

Although a monitoring system based on a microcontroller implementation may

represent a lower-cost alternative than previous, PC-based, methods in terms of

hardware investment, such benefits would be considerably reduced if new software

and hardware designs were required for each application. Thus, in this research, the

Petri-net approach was considered as a tool to be used to model and describe the

monitoring task. As a result, both hardware and software could be independent from

124

Chapter 6 - Petri-net Monitoring Model

the monitoring task, enabling system reusability and consequently obtaining the low-

cost benefit. In general terms, the approach employed follows the one described by

Prickett and Grosvenor [6.5], however considering the use of microcontrollers rather

than PCs.

6.2 - The Modelling Approach

The Petri-net theory, outlined in Chapter 5 defines places as conditions that enable

transitions [6.1, 6.10]. The use of this method for monitoring purposes requires that

places should be understood as being representative of the process states. In order to

identify a new process event (corresponding to a Petri-net transition), the process

signals have to be considered in conjunction with the actual process states [6.5]. Such

an approach is illustrated in Figure 6.1.

TPA4

Input D6
ACTIVE

PPA5Input D5
ACTIVE

Input S6
NON-ACTIVE

TPA5

PFA6

The event characterised by
TPA5 requires as firing
conditions the process state
modelled as PPA5 and the
process signals identified
as S6, D5 and D6.

Figure 6.1: Petri-net approach for monitoring purposes (after [6.11]).

In considering this approach, it can be assumed that a Petri-net for monitoring

purposes requires two sets of conditions that have to be validated to enable a

125

Chapter 6 - Petri-net Monitoring Model

transition that characterises a process event. A similar approach was presented by

Peng and Zhou [6.9], when describing the use of Petri-nets as a Programmable Logic

Controller (PLC) programming method. They defined an event trigger as a

combination of places and input signal status. In following such an approach in this

research, it is necessary to define two separate sets of input conditions required to

enable a transition. If it is assumed that z is a finite number of input signals of a

system, then there is a set of input signals conditions required to enable a transition tj

represented by X (xji, Xj2, Xj3, . . . , Xjh), 0 < h < z. If the set of places of a Petri-net is

defined by P(pi, p2 , p3, ..., pm), then the firing event of a transition tj is controlled by

two functions:

S(tj) = f(x ji, xj2, . . . , Xjh), 0 < h < z (eq. 6.1)

Q(tj) = /{I(tj),p} (eq. 6.2)

where

I(tj) = /(p i, P2, • • pn), 0 < n < m (eq. 6.3)

was defined in Chapter 5 as the input function of the transition tj and p represents the

Petri-net actual marking vector.

The function S(tj) represents the logical relation of all the input signal conditions

associated to a specific transition and thus can only assume 0 (false) or l(true).

S(tj) = Xji • xj2 • xj3 • ... • Xjh (eq. 6.4)

Each Xji represents a condition of a specific input signal (i) in the domain of a specific

transition (j). Therefore, Xjj can also be logically represented as 0 (false) and 1 (true).

Considering a transition tj, which requires an input signal condition Xjj to be satisfied,

then Xji can be described as:

xji = /(yb Cji) (eq. 6.5)

126

Chapter 6 - Petri-net Monitoring Model

where y\ is a specific input signal of the entire set Y(yi, y2, yi, yz) of the

process input signals and Cjj is the desired status of this signal in the domain of

transition tj. Thus,

xji = 0 if yi ^ Cjj

Xji = 1 if yj = Cjj

and

S(tj) = 1 if all Xji = 1 (eq. 6.8)

S(tj) = 0 if any Xjj = 0 (eq. 6.9)

The second condition required to enable a transition tj is represented by Q(tj). There

are only two options: enabled or not enabled. Hence, the function can also be assumed

as representing two logical states: 0 for false and 1 for true. The following relations

can be obtained, considering an existing marking p:

Q(tj) =1 if p satisfies I(tj) so that tj might be enabled (eq. 6.10)

Q(tj) = 0 if p does not satisfy I(tj) in order to enable tj (eq. 6.11)

Either S(tj) and Q(tj) can prevent tj from being fired, however both are required to be

true to enable tj.

S(tj) • Q(tj) = 0, then tj is not enabled (eq. 6.12)

S(tj) • Q(tj) = 1, then tj is enabled (eq. 6.13)

From another perspective, considering Equation 5.12 in Chapter 5, it might be

assumed that the marking pk is possible if tj is enabled, so that

nk = nk-' + 0(tj) - I(tj), if S(tj) = 1 (eq. 6.14)

Hk = Hk' \ ifS(tj) = 0 (eq. 6.15)

It becomes clear that the marking of the Petri-net will depend only of its

representation in terms of places and transitions, the relationship between them and

the initial marking p°. It is also a requirement, since the model must represent the

process uniquely, without dependency on any signal or specific state entered by the

(eq. 6.6)

(eq. 6.7)

127

Chapter 6 - Petri-net Monitoring Model

process. However, transitions besides being enabled by the process actual states

(Petri-net marking), require the process signals to fulfil conditions within the

transition domain, in order to be enabled to fire. It is not enough for only the condition

provided by the process signals to be true. Neither is it enough for the process to be in

the required states. A new marking within the Petri-net is only possible if all these

conditions are present together. Therefore, process monitoring in terms of states and

events is made possible by keeping records of the process marking and taking into

account the process signals and their required status within the domain of each

specific transition of the Petri-net that models the process.

6.3 - The Model Structures

In terms of behaviour, the structures required to model a process using the approach

proposed by this research could be classified as dynamic and static. Dynamic are

those that may change their status during the execution of the Petri-net. Such category

includes places and sub-nets. Petri-nets transitions were considered as static

structures. This is because within this approach, the transitions define the process

sequence of events and therefore do not change under any circumstance. Such

classification becomes important for the implementation of the Petri-net approach

based on a microcontroller. Static elements can use the program memory, avoiding

the use of the data memory, a valuable and limited resource in a microcontroller.

6.3.1 - Places

The Petri-net places require an identification to distinguish them from each other.

Here a continuous numbering method was employed (1, 2, 3, ..., n). Each place must

provide a container (counter) that holds the number of tokens belonging to the place.

The number of tokens will then vary (increase or decrease) during the Petri-net

execution. The maximum number is bounded by the container data type size. In

considering the use of an 8 bits microcontroller, the “byte” was selected as the place

container data type, since instructions are optimised for the processor’s natural data

format. Thus, the number of tokens of a place was bounded to 255.

128

Chapter 6 - Petri-net Monitoring Model

6.3.2 - Sub-nets

In the Petri-net theory presented in Chapter 5, sub-nets were introduced as a concept

to simplify the analysis of a complex network by replacing a set of elements

(transitions, places, arcs), which could be isolated and then analysed. In this research,

the term sub-net assumed a slightly different meaning, although it was kept in the

same context. It is considered that a sub-net is any Petri-net affecting or being affected

by the one executing. This opens-up the possibility of communicating (synchronise)

individual Petri-nets, running on different microcontroller’s environments. By using

this feature a larger process might be monitored by deploying several structured Petri-

net systems that are synchronised with each other. Sub-nets must be assumed as

dynamic elements within the system, since their status may change during the Petri-

net execution. For simplicity, sub-nets might be considered as a place that is bounded

to 1. Their identification follows a principle similar to places, being sequentially

numbered (1, 2, 3 ,.. ., n).

6.3.3 - Transitions

The characterisation of the process events as transitions enables the establishment of a

Petri-net skeleton. A collection of static structures can thus be used to describe the

process Petri-net in terms of such events. These structures can be made to be auto-

descriptive to allow a totally independent execution. In considering the representation

of these structures by the Petri-net transitions, there is a need to provide in their

description the identification, pre-conditions (inputs) and post-conditions (outputs).

Within this approach, in order to capacitate the modelling method, some different

transition structures were defined and will be described in the following sections.

Particular implementation details are discussed later, in Section 6.4.

6.3.3.1 - Ordinary Transition

The first such structure was named an “ordinary transition” due to the fact that it

represents the basic structure required in the modelling process. Figure 6.2 presents

this structure diagram. The first field in the structure is the transition identification,

which is numerically represented (1, 2, 3, ..., n). The second field provides specific

129

Chapter 6 - Petri-net Monitoring Model

information about the transition. Flags within this field tell the system what sort of

transition it is. There is also a flag to indicate whether the firing of the transition

should become a public event (i.e. is associated with the transmission of a message),

or if it is only of interest within this Petri-net domain, to update the process marking.

Figure 6.3 shows the details of the status field flags. These two initial fields

(Transition ID and Status) are common to all transition structures, as it will be seen in

the following sections.

Transition ID
 Status

Signal mask 1
Signal polarity 1

Signal mask 2
Signal polarity 2

Signal mask 3
Signal polarity 3
Input sub-net ID
Input place ID 1

Number of tokens

Common fields

Digital input
information

Sub-net input info

Input place ID n
Number of tokens

End of input places
Output place ID 1
Number of tokens

Input places
information

For implementation
purposes, each field is
considered 8 bit wide

Output place ID n
Number of tokens

End of output places
Output sub-net ID
End of structure

Output places
information

Sub-net output info
Common field

Figure 6.2: Ordinary transition data structure.

Ordinary transitions can only handle digital input signals. The following 6 (3 x 2)

alternate fields in the structure provide information regarding these signals and their

required status to enable the specific transition. The signal mask reserves 1 bit

position for each signal (0 to 7). A bit level 1 at a specific position indicates that this

signal must be taken into consideration at the given transition. The signal polarity

130

Chapter 6 - Petri-net Monitoring Model

field indicates the required signal status (0 or 1), i.e. is the input to the transition

required to be logically true or false, and is aligned with the respective bit position in

the signal mask field. For simplified implementation, the polarity assigned in the field

must be inverted, meaning that it is expressed as 0 when the signal is required to be

logically true. Figure 6.4 presents the relationship between the pair of digital input

fields. Figure 6.5 confirms the logic required to identify a true condition. The

existence of 3 groups of such field pairs indicates the ability of a transition to handle

up to 24 digital inputs. For implementation purposes, those signals that are of no

relevance to the particular transition the corresponding bit position polarity was

assigned as 1. Thus provided a simpler way to test an entire set of 8 inputs

simultaneously, rather than individually.

- Specific fields must be set to select a
feature

- Ordinary transitions are the default
option

- Bits with lowest order have highest
priority

- Bit 7 is considered with ordinary and
analogue transitions

7 6 5 4 3 2 1 0 ---- ► Bitfield

I I I I I I I I — Transition status field

Analogue transition

Delay transition

Output transition

^ Not implemented

Enable event transmission

Figure 6.3: Transition status field details.

7 6 5 4 3 2 1 0

1 r i n 1 1 1

LEL L I I N I

Bit field - identifies the signal

Signal mask field

Signal polarity field

Figure 6.4: Ordinary transition signal mask and polarity fields9 relationship.

131

Chapter 6 - Petri-net Monitoring Model

> Structure
polarity field

Input signal

Signal
status

Required
polarity

Structure
polarity field

Input
signal

Signal
status

Meaning

1 0 0 0 FALSE
1 0 1 1 TRUE
0 1 0 1 TRUE
0 1 1 0 FALSE

Figure 6.5: Digital input signal validation method.

Continuing with the structure definition of Figure 6.2, the next field is the input sub­

net (Input sub-net ID). By definition, if this field is assigned as 0 (zero), no sub-net

input is linked to the transition; otherwise the appropriate sub-net ID code is

identified.

The collection of input places is the next information in the ordinary transition

structure. The input place ID identifies the Petri-net place that is assigned as an input

condition of the transition. The number of tokens indicates the “multiplicity” of the

arc linking the input place to the transition (a condition becomes true if the assigned

number of tokens is found in the place). An ordinary transition may have several input

places, each one with its individual multiplicity mark (limited to 255). An “end of

input places” field indicates that there are no more input places to be considered in the

domain of the specific transition.

Similarly, the next collection of fields within the structure is associated with output

places. The output place ID identifies the Petri-net place that should be updated due to

the transition firing. The number of tokens represents the multiplicity of the arc

linking the transition to the output place, thus indicating the number of tokens the

place should receive. The “end of output places” is the mark indicating that there are

no more output places linked.

132

Chapter 6 - Petri-net Monitoring Model

The output sub-net field identifies, if appropriate, the sub-net element requiring

notification of the specific transition firing. A value 0 in the output sub-net ID field

indicates that there is no such a requirement. The way in which the sub-net ID is made

public is a matter of system implementation. However, considering the nature of such

feature and its purpose, a message broadcast method was adopted, allowing

consumers (other Petri-nets) to decide whether or not to make use of the information.

Such a method is becoming common in the implementation of some distributed

systems, provided with local processing capabilities [6.12].

The final field of an ordinary transition structure is the end mark “end of structure”,

meaning that there are no more fields in this transition. As it will be seen, the same

field is mandatory in all the transition structures used in this Petri-net approach.

6.3.3.2 - Analogue Transition

A second modelling structure defined for the Petri-net monitoring approach was the

“analogue transition”. This handles non-logical signals, instead of discrete ones (as

ordinary transition do). Since a transition represents an event, the analogue transition

is required to provide means that enable the identification of such an event, based on

analytical information. A method that considers two parameters was proposed, in

order to characterise such an event. The first of such parameters would represent a

threshold and the second an analysis condition (<, >, =).

Figure 6.6 illustrates the data structure of an analogue transition. The transition ID and

status fields follow exactly the same description provided for the similarly named

fields in the ordinary transition structure (Section 6.3.3.1). The condition field is the

identification of the comparison method requested (<, =, >). Further implementation

details are summarised later, in Table 6.1 (Section 6.4).

The source ID (low half of the third field) identifies which specific process analogue

source should be measured, in order to determine the firing condition. The analogue

transition allows only one analogue source as input condition. The next two fields

(Threshold MSB and LSB) of the data structure need to be combined to produce the

threshold value required in the comparison test.

133

Chapter 6 - Petri-net Monitoring Model

Transition ID
________Status________
Condition I Source ID

Threshold MSB
Threshold LSB

Input place ID 1
Num. of tokens

Common fields

Analog source & decision type

Threshold information

Input places
information

Input place ID n
Num. of tokens

End of input places
Output place ID 1

Num. of tokens

Output places
information

Output place ID n
Num. of tokens

End of output places
Output sub-net ID
End of structure

Sub-net output info
Common field

Figure 6.6: Analogue transition data structure.

All the following remaining fields, from “input place ID” to “end of structure”, have

exactly the same meaning and representation described for the ordinary transition

structure (Section 6.3.3.1, Figure 6.2). Although linkage to an output sub-net field was

permitted by the structure, the equivalent input field (Input sub-net ID) was not

considered to be necessary.

6.3.3.3 - Delay Transition

Although the original Petri-net theory considered that transitions were instantaneous

events [6.10], the use of the method to model real applications showed the necessity

to represent events that take time to execute [6.1]. To monitor a process through its

signals, there might be occasions where some sort of flexibility would be required.

For example, the switching action of an electrical signal can introduce noise that may

induce the misinterpretations of the signal’s levels. Therefore, this modelling

approach has provided a structure that enables the insertion of a time delay, named a

134

Chapter 6 - Petri-net Monitoring Model

“delay transition”. The method is based on the Petri-net extension described by

DiCesare et al [6.1], previously introduced in section 5.5.

Figure 6.7 therefore defines the delay transition data structure used. The proposed

element considers only one input and one output place. The firing is enabled by the

existence of a single token in the input place, i.e. it has arcs that do not support

multiplicity. The two first fields in the structure are as previously defined (for

ordinary and analogue transitions). The same applies to the last field (End of

structure). The input place represents the unique condition required to enable the

transition to fire. The output place field indicates which o f the Petri-net places should

receive a single token when the transition is fired. The delay value is specified via a

two fields parameter (Parameter MSB and LSB). These together define the time delay

in milliseconds (ms). Immediately after being enabled, the token of the input place is

removed. After the delay expressed in the parameter field is elapsed the transition is

fired and the output place updated.

Common fields

Delay information

Linked input place
Linked putput place

Common field

Figure 6.7: Delay transition data structure.

6.3.3.4 - Output Transition

The final structure defined was required to enable the monitoring hardware to issue

local (hardware) alarms, following a modelled event. Such an element was named as

an “output transition” and its data structure is shown in Figure 6.8. In this simple

structure definition the common fields apply as before. In summary, an output

transition is enabled by only one input place (Input place ID), which requires a single

token. Although resulting in a token being removed from the input place, there is no

output place to be updated. In line with formal Petri-net theory, it could be assumed

Transition ID
Status

Parameter MSB
Parameter LSB
Input place ID

Output place ID
End of structure

135

Chapter 6 - Petri-net Monitoring Model

that an output transition, when fired, sends a token to a sub-net represented by the

monitoring hardware/software implementation. The resulting action of such an event

is then a matter of system implementation (hardware and software).

Common fields

Linked input place
Common field

Figure 6.8: Output transition data structure.

6.4 - Implementations Aspects and Representation

In considering the way the modelling elements and the method proposed were

presented, the Petri-net monitoring approach is not restricted to a specific

implementation. It can be employed in many different developments, and could

potentially be based on different processors since following the Petri-net concept. The

way in which each Petri-net is actually executed becomes only a question of software

development. However, since one of the main objectives of this investigation is the

proposition of a low-cost monitoring system, work was focused on the use of

microcontrollers.

In order to enable the implementation of such an approach, the elements defined in

section 6.3 require a tighter description. Considering the byte as the natural data type

for many microcontrollers (including the PIC18C452), the structures earlier presented

were assumed 8 bit wide, resulting in the parameterisation shown in Table 6.1.

Place “0” has a special meaning for the system implementation. It represents the

initial state in the Petri-net, i.e. the place that should receive the first token after

initialisation. It follows Peterson’s [6.10] suggestion of a “start place” with a token

and no tokens elsewhere. A second meaning of place “0” is for a Petri-net reset

request. A reset condition is identified by an output place “0”, which should result in

the system restarting the Petri-net execution (initial start state).

Transition ID
Status

Input place ID
End of structure

136

Table 6.1: Transition structures implementation definitions.

Field Size Representation Structure Description

Transition ID 8 bits 1 to 254 All • Petri-net transition identification.

Place ID 8 bits 0 to 254 All • Petri-net place identification (input & output).

Sub-net ID 8 bits 0 to 255 Ordinary & analogue • Petri-net sub-net identification (input & output).

Number o f tokens 8 bits 0 to 255 Ordinary & analogue • Arc multiplicity - number o f tokens required from an input place or
added to an output place.

Status 8 bits - All • Defines transition structure and actions. Detailed in Figure 6.3.

Signal mask 8 bits - Ordinary • Selection o f the digital signals considered in the transition domain.

Signal polarity 8 bits - Ordinary • Digital signals level, with reversed polarity - default binary 1.

Condition 4 bits = : 0000 binary
> : 1000 binary
< : 0001 binary

Analogue • Comparing condition o f a non-digital parameter in an analogue data
structure.

Source ID 4 bits 1 to 15 Analogue • Non-digital input parameter identification, representing the signal
input in an analogue transition

Threshold MSB + LSB 16 bits 0 to 65535 Analogue • Value to be considered in the comparison process of an analogue
transition.

Parameter MSB + LSB 16 bits 0 to 65535 Delay • Delay, in milliseconds, to be performed by a delay transition.

End of input places 8 bits 255 Ordinary & analogue • Input places delimiter.

End o f output places 8 bits 255 Ordinary & analogue • Output places delimiter.

End o f structure 8 bits 255 All • Defines the end o f the structure.

Chapter 6 - Petri-net Monitoring Model

The description of a monitoring task within the system is represented by the transition

structure’s characterisation of the process events. In terms of an implementation, such

a set of data structures could be defined as a data table. An element named “end of

table” and represented by the numerical “0” identifies the condition that indicates the

end of such table. Figure 6.9 provides a block diagram where the use of this element

is made clear.

Transition 1

Transition 2

Transition n
(n < 255)

End of table

Collection o f
transition structures

(i.e. ordinary,
analogue, delay &
output), specific to
each application.

Figure 6.9: Example of use of the “end of table” mark.

The modelling of the monitoring task is made easier by representing the process’

Petri-net as a graph. Although keeping the main graphical characteristics of the

original Petri-net concept, a few new elements were required in the developed

monitoring approach, in order to represent all of the structures described. Table 6.2

summarises the entire set of graphical elements, their identification and description.

6.5 - Monitoring Records

Another aspect of system implementation is the capability o f the monitoring system to

report events. The possibility of issuing local alarms, using an output transition has

been considered (Section 6.3.3.4). Nevertheless, as considered in Chapter 2, modem

monitoring systems are expected to integrate the data they provide, helping in the

generation of information to support increases in process management efficiency.

138

Chapter 6 - Petri-net Monitoring Model

Therefore, such systems should be capable of issuing data records, using data

communication standards.

Table 6.2: Petri-net monitoring approach graphic modelling elements.

Representation Element Description

Transition Representation of ordinary and analogue
transitions.

I l Tnnn Transition Representation of a delay transition.

Tnnn Transition Representation of an output transition.

Pnnn Place Representation of a conventional place.

| Restart | Place Output place indicating a restart request.

T- Arc Arc with multiplicity n (number of
tokens). No indication means a single
token.

Y1 SNnnn
Sub-net Input sub-net (from another Petri-net).

^^^SNnnn Sub-net Output sub-net (to another Petri-net).

0 _ D S n n Digital signal Digital input with required high (1)
level.

0 _DSn« Digital signal Digital input with required low (0) level.

Analogue input Analogue input, with comparison
method “lower than”.

(^ A N n n Analogue input Analogue input, with comparison
method “higher than”.

^ A N n " Analogue input Analogue input, with comparison
method “equal to”.

139

Chapter 6 - Petri-net Monitoring Model

In considering the Petri-net concept, the firing of a transition would be a natural

monitoring record, since it represents a “process event”. Taking into account such a

requirement, the “enable event transmission” flag (bit 7 of Figure 6.3) was

incorporated in the transition’s structure status field. Nevertheless, there are other

events that can be of interest that should be considered and reported [6.13].

Prickett and Grosvenor [6.11] referred to the use of a timeout feature, characterised by

a transition failing to fire within a defined period of time. Considering the

implementation aspects in a microcontroller environment, it was decided to associate

such a feature with places, rather than transitions. Thus, in the approach proposed by

this research, “timeout” records will be produced in response to a process state

(selected Petri-net place) lasting longer than previously recorded (or defined).

Additionally, two complementary records were defined to monitor the “beginning”

and “ending” of process specific states. Such records could provide for example,

means to enable a remote visualisation of the process operation (active or inactive) or

else, help to measure the process operating time. These are in many cases managerial

requirements [6.14].

It was also considered that Petri-net places representing process states could be used

to control the acquisition of process specific parameters, such as analogue signals.

This assumes that specific process information is of interest under certain conditions.

For example, the behaviour of a motor’s current while switched on. Therefore, the

acquisition of the specific analogue signal would be triggered by the associated

process state becoming active (Petri-net place receives first token). At the end of this

state (Petri-net place last token removed), a monitoring “special” record would be

issued providing the required signal information. Table 6.3 lists the defined

monitoring records proposed in this monitoring approach and that were presented in

this section.

Figure 6.10 shows the general format of the monitoring messages. The “event class”

field represents the identification of the messages described in Table 6.3. The

“source” field would indicate the Petri-net that generated the message. The “event ID”

field would identify the transition or place that motivated the message. The timestamp

140

Chapter 6 - Petri-net Monitoring Model

provides a time record linked to the event reported by the message. Figure 6.10(b)

shows an alternative extended record field, for use by messages as “timeout” and

“special record”, described in Table 6.3.

Table 6.3: Monitoring messages definition.

Monitoring Record Purpose Description

Process event

Beginning of a
process state

Ending of a process
state

Process state
timeout

Special record

Message issued in response to a process event (fired
transition). The event enable transmission flag of the
status field in the transition data structure (Figure 6.3, bit
7) must be set to enable such record. Only ordinary and
analogue transitions can issue this sort of message.

Enabled places issue such message when receiving the
first token, indicating the “beginning” of the associated
process state (state became active).

Enabled places issue such message when becoming empty
(last token removed), indicating the “ending” of the
associated process state (became inactive).

Messages issued by selected places to indicate that a
process state has lasted longer than expected.

Message issued at the end of a selected process state
containing a record with a feature extracted from a
process analogue signal. The signal is acquired as long as
the process state remains active (e.g. a DC motor current
mean value, to indicate the motor’s operating condition).

Event Class Source Event ID Timestamp

(a)

Event Class Source Event ID Timestamp Record

(b)

Figure 6.10: Monitoring messages general format.

141

Chapter 6 - Petri-net Monitoring Model

Within this proposed monitoring approach, Petri-net places assume greater relevance

in the implementation of special functions for the assessment of processes. Special

places require to be defined in the system implementation as a set, associated to the

function they will perform (i.e. monitor the status of process specific state by means

of “beginning” and “ending” records or triggering the acquisition of analogue

signals). This is different to transitions, which are defined individually and thus can

provide additional information within the data structure. In considering the application

based on a microcontroller, such places could be listed in a data table, using the

device program memory. Also considering implementation aspects, places should be

grouped into those that allow timeout and those that do not. This could be easily

implemented by means of a separating “mark”, dynamically defined accordingly to

the application requirements. In the same way that many transitions in the Petri-net

might represent a minor event that do not require a message, a timeout feature

associated to some places in the process monitoring model might generate a

considerable number of records with little significance. More details must be

considered at the implementation level.

6.6 - Fault Diagnostics Approach

The use of a method that follows the process events and keeps track o f process states

can represent a tool in the identification of operational faults. Such an approach was

considered by Prickett and Grosvenor [6.11], suggesting that a timeout condition in

the system might represent the existence or development of a faulty state.

Hu et al [6.15] proposed operational fault diagnostics based on tree analysis, assuming

that by knowing the process states and the actual controller’s (PLC) signals, a fault

could be isolated.

The Petri-net monitoring approach provides the required characteristics to enable such

an implementation. The existence of process states timeout, since understood as a

symptom, could identify the element that requires investigation and thus isolate a

fault. Thus the Petri-net mapping (process states) together with the process model

structures (set of transitions) may provide the necessary means for an operational fault

142

Chapter 6 - Petri-net Monitoring Model

search. The assumption would be that faults are associated with the process signals,

though considering the actual process state.

For analysis purposes, Giarratano and Riley [6.16] described a tree as “a hierarchical

data structure consisting of nodes, which store information or knowledge, and

branches, which connect the nodes”. Peterson [6.10] showed that trees can be used as

an analysis method for Petri-nets. In considering the Petri-net monitoring approach,

the transitions’ data structures provide the required information to enable the

diagnostic process based on tree analysis, with the symptom characterised by a

timeout event indicating the tree root.

Faults could be characterised by the absence of an expected signal, within a specific

process state. Assuming that the timeout condition was originated by an input place of

a transition tj, if in the relationship represented by Equation 6.12 Q(tj) is proved true,

then tj could only be prevented from firing by S(tj). A fault would then be

characterised by solving Equation 6.4. In such case, if S(tj) is false, then there should

be at least one false condition

Xjj = 0 (eq. 6.16)

where i represents the missing signal that prevented tj from firing.

However, if Q(tj) is false, then the fault would be related with another event

(transition). In this case, the analysis of previous missing events is required,

characterising a backward search method, considered the most appropriate for

diagnostic approaches [6.16]. In considering that to enable tj it is required a marking p

that satisfies the input function I(tj), then if

W < #(Pk, (I(tj)) (eq. 6.17)

Pk is preventing tj from firing and therefore will represent a new branch in the analysis

tree, leading to a transition tm, where pk £ 0 (tm).

143

Chapter 6 - Petri-net Monitoring Model

Based on Petri-net graph properties, which enable reversibility (Chapter 5), and also

on the limitations in terms of microcontroller’s available resources, the “breadth-first”

search method [6.16], illustrated in Figure 6.11, was considered the most appropriate.

A search should follow on until all dubious states are identified or the Petri-net initial

state reached. Since Petri-nets allow loops, the software implementation should

provide a method to flag those places that have already been set as branches in the

tree, in order to control deadlock situations.

Search
path

Figure 6.11: Breadth-first search-method representation (after [6.16]).

6.7 - Summary

A sequential process can be modelled in terms of a Petri-net, based on its states and

the events that characterise the transitions between them. An extension to the

conventional Petri-net properties was required and specified in order to interface and

handle process signals. In defining a Petri-net model that describes each event as a

self-contained data structure, it was proposed a method that has no hardware

dependency. Furthermore, the Petri-net approach functionality was extended by

enabling it to trigger the acquisition of processes’ specific parameters (a matter of

implementation) and to monitor the “beginning” and “ending” of processes active

states. This extended functionality must be supported by a set of messages that enable

database records to be produced. Also, in considering the capability of the Petri-net

approach to memorise the actual state, whilst having the knowledge about the

relationship between the modelled processes states, this can be used to help in the

investigation of the source of an eventual operational fault.

144

Chapter 6 - Petri-net Monitoring Model

The definition of the proposed method was an important stage in the current research.

It sets the framework for the subsequent development of the required tools for the

implementation of a monitoring system. The system implementation considerations

will be presented in the following chapter, with the adoption of an 8 bit

microcontroller for the purpose. Additionally a layered architecture that, supported by

the Petri-net approach, enables the development of a distributed structure that permits

the use of the system in a wider range of applications will be presented.

145

Chapter 6 - Petri-net Monitoring Model

REFERENCES

6.1 DiCesare, F., Harhalakis, G., Proth, J.M., Silva, M. and Vernadat, F.B.

Practice of Petri Nets in Manufacturing. London, UK: Chapman & Hall, 1993.

6.2 Girault, C. and Valk, R. Petri Nets for Systems Engineering. Berlin, Germany:

Springer-Verlag, 2003.

6.3 Yang, S.K. and Liu, T.S. A Petri-net Approach to Early Failure Detection and

Isolation for Preventive Maintenance. Quality and Reliability Engineering

International, 1998, 14, 319-330.

6.4 Zimmermann, A. and Hommel, G. Modelling and Evaluation of

Manufacturing Systems Using Dedicated Petri Nets. The International Journal

of Advanced Manufacturing Technology, 1999, 15, 132-138.

6.5 Prickett, P. and Grosvenor, R. A Petri-net-based Machine Tool Failure

Diagnosis System. Journal of Quality in Maintenance Engineering, 1995, 1(3),

47-57.

6.6 Davey, A., Grosvenor, R., Morgan, P. and Prickett, P. Petri-net Based

Machine Tool Failure and Diagnosis. In Proceedings: COMADEM ’96, 16-18

July, Sheffield-UK, 1996, 723-731.

6.7 Prickett, P. A Petri-net Based Machine Tool Maintenance Management

System. Industrial Management and Data Systems, 1997, 97(4), 143-149.

6.8 Jennings, A.D, Nowatschek, D., Prickett, P.W., Kennedy, V.R., Turner,

J.R. and Grosvenor, R.I. Petri Net Based Process Monitoring. In Proceedings:

COMADEM2000, 3-8 December, Houston - USA, 2000, 643-650.

6.9 Peng, S. and Zhou, M. Sensor-based Stage Petri Net Modelling of PLC Logic

Programs for Discrete-event Control Design. International Journal of

Production Research, 2003,41(3), 629-644.

6.10 Peterson, J.L. Petri Net Theory and the Modeling of Systems. Englewood Clift,

USA: Prentice-Hall Inc., 1981.

6.11 Prickett, P.W. and Grosvenor, R.I. Non-sensor Based Machine Tool and

Cutting Process Condition Monitoring. International Journal o f COMADEM,

1999, 2(1), 31-37.

146

Chapter 6 - Petri-net Monitoring Model

6.12 Manders, J., Barford, L.A. and Biswas, G. An Approach for Fault Detection

and Isolation in Dynamic Systems from Distributed Measurements. IEEE

Transaction on Instrumentation and Measurement, 2002, 51(2), 235-240.

6.13 Nieva, T. and Wegmann, A. A Conceptual Model for Remote Data

Acquisition Systems. Computers in Industry, 2002, 47,215-237.

6.14 Jennings, A.D., Prickett, P.W., Grosvenor, R.I, and Frankowiak, M.R.

Process and Condition Monitoring using the Internet (E-Monitoring). In

Proceedings o f COMADEM 2002, Birmingham, UK:Comadem International,

2002, 45-52.

6.15 Hu, W., Starr, A.G. and Leung, A.Y.T. Operational Fault Diagnosis of

Manufacturing Systems. Journal of Material Processing Technology, 2003,

133, 108-117.

6.16 Giarratano, J. and Riley, G. Expert Systems - Principle and Programming.

Boston, USA: PWS Publishing Company, 1998.

147

Chapter 7 - System Description

CHAPTER 7

SYSTEM DESCRIPTION

7.1 - Introduction

Chapter 6 presented a modelling method for the implementation of monitoring

systems based on the use of microcontrollers. Despite the benefits of using such

devices (cost, power consumption, embedding capabilities), it must be considered that

microcontrollers, when compared with computers, are limited in resources, processing

power and development tools. Such issues must be addressed by a microcontroller-

based implementation that aims to provide solutions for a large range of applications.

M anagem ent
Application

In te rn e t/
In tranet

Server

D atabase

M onitoring
Module 1

Monitoring
Module 2

M onitoring
Module n

Connectivity
Module

M onitored Process

Figure 7.1: Monitoring system architecture.

In considering these factors, this research proposes the implementation of a

monitoring system based on an architecture (Figure 7.1) that enables flexibility, data

integration and provides resource sharing capability. In this architecture, the

Monitoring Module (MM) is a data acquisition and processing module based on the

PIC18C452 microcontroller. The Connectivity Module (CM) is a hardware specific

148

Chapter 7 - System Description

development based on PIC microcontrollers and provides Internet connectivity,

therefore enabling the monitored events to be recorded in a remote database. The

Management Application (MA), a software implementation based on PCs, provides a

common interface to databases. A common communication bus (CAN) connects

together the MMs and CM, thus providing a way to address some of the critical

aspects of microcontroller-based implementations.

In providing the Monitoring System with such an architecture, cost can be kept in

proportion with the application requirement by varying the number of MMs, to those

needed to provide the application with it’s demanded resources. MMs can be

deployed close to the data acquisition points, reducing special installation needs. The

systems reusability, another important issue in terms of practical applications, is

provided by the implementation of the method previously described in Chapter 6. The

implementation of the system, with the details of each of the stated components, is

described in the following sections.

7.2 - Monitoring Module (MM)

The Monitoring Module is provided with data acquisition, communication and

processing capabilities. Individual descriptions will follow, considering hardware,

software and modelling implementation issues.

7.2.1 - Hardware Description

A block diagram illustrating the main MM components is shown in Figure 7.2. A

further detailed diagram can be found in Appendix A (A.l and A.2). The core of the

MM is a PIC18C452 microcontroller (described in Chapter 4). At the time this

research was conducted it represented the best commercially available choice, in

terms of the relation between facilities and cost.

In order to provide the necessary flexibility and data integration capabilities,

communication assumed a great importance at different levels within the system.

Each MM implements a CAN bus node. The Microchip MCP2510 was the selected

149

Chapter 7 - System Description

CAN controller, because of its full compatibility with those PIC microcontrollers

provided with a SPI interface. Such a serial link reduces considerably the hardware

design (and consequently cost), although increasing software engineering complexity.

Both, the microcontroller and CAN controller, share a single 20 MHz oscillator,

whose limit was imposed by the MCP2510. A CAN transceiver, UC5350 [7.1],

compatible with ISO 11898 physical layer specification (Chapter 4), was employed to

physically interface the CAN bus.

SPI
oo

HHS
Z<u

< C

8 x
digital

8 x
digital

8i
digital

1 x digital
output

4 x analogue
0 - 1 0 V

i V 2 x pulse/ 1

J / count

Figure 7.2: Monitoring Module hardware block diagram.

Monitoring Modules were provided with 3 different sources of signal input: digital,

analogue and pulse. In order to combine simple hardware design and improved system

capabilities, each MM allows up to 3 digital cards (with 8 inputs each) to be attached,

all sharing one of the PIC18C452 microcontroller’s input port (D). Therefore, each

MM is able to interface with up to 24 digital inputs. A 3 bit port (E) was used to

implement the card selection logic. Such logic was implemented in software.

Each digital input was provided with an optocoupler, in order to interface to the

process signals electrical levels and ensure equipment protection. The main

consideration in the selection of the optocoupler was the device response time. The

HCPL-2200 [7.2] is a device that, besides fast response time, is also compatible with

TTL electrical levels. An interesting feature for the proposed application is the

capability of leaving the optocoupler output in a three-state mode, as long as its enable

150

Chapter 7 - System Description

pin is not selected. This characteristic reduced the digital card hardware design

complexity, since further circuit requirements were avoided. Full electrical and timing

diagrams can be found in Appendix A (A.l and A.3).

Four analogue inputs were implemented to support special monitoring purposes.

Attention was given to the fact that the microcontroller required input voltages to be

no higher than 5 Volts. Manufacturer’s recommendation to avoid significant offset

voltages, due to analogue input pins leakage current, were taken into account [7.3].

The resulting hardware design considered the use of transducers with an output range

of 0 to 10 V. No further conditioning or signal filtering method was employed. Circuit

design details can be found in Appendix A (A.2).

Two pulse inputs were implemented. They were intended for special monitoring

purposes, as described in Chapter 6. From the hardware perspective, these pulse

inputs were connected to two of the microcontroller’s port B pins, configured as

external interrupts, therefore providing means to ease the software design. Each pulse

input was interfaced by using an optocoupler (HCPL-2200), thus enabling a wider

range of input voltages, while protecting the circuit electronics. In terms of hardware

design, maximum input frequencies are determined by the optocoupler dynamic

characteristics, superior to 10 MHz [7.2].

In order to support the “transition output” implementation (Chapter 6), one of the

microcontroller’s pins (port A, bit 6) was configured as an output. Further interfacing

may be required to adapt the electrical levels or latching mechanisms to an external

alarm-signalling device, depending on the application specifics.

In considering the requirement of a low-cost system, the number of externally added

components was kept to the minimum required. Applications that require more

resources should deploy more than one MM, exploring the flexibility offered by the

system architecture. Table 7.1 gives a general idea in terms of cost of the main

components used in a MM. The microcontroller employed was an EPROM based

device (UV window), usually required for development purposes, therefore

representing a higher cost option. A ROM or flash programming memory based

device, normally employed for production purposes, would represent a reduction of

151

Chapter 7 - System Description

65% in this item cost. Also, the PIC18F458 has recently become commercially

available. It provides similar features those found in the PIC18C452 but also has an

embedded CAN controller, with cost standing at 50% of the one stated in Table 7.1

for the microcontroller.

Table 7.1: MM main components cost (prices based on [7.4]).

M Item Cost (£)
M Code Number Description Unit /Item /Module

Cristal 20 MHz 1 System oscilator 3.00 3.00
PIC18C452 1 Microcontroller 20.00 20.00
MCP2510 1 CAN bus controller 3.50 3.50

Processor UC5350 1 CAN bus transceiver 2.00 2.00 38.20
Module HCLP-2200 2 Optocoupler (pulse input) 1.60 3.20

74HCT04 1 Oscilator booster 0.50 0.50
Others Connectors, resistors, etc 6.00 6.00

Digital HCLP-2200 8 Optocoupler (digital input) 1.60 12.80 20.80
Card Others Connectors, resistors, etc 8.00 8.00

Prices listed rep resen t a rough reference.

7.2.2 - Software Description

The MM software development to support the implementation of the Petri-net

monitoring approach described in Chapter 6 was based on the Microchip MPLAB®

development environment. PIC 18xxx family assembler was employed as the

programming language and the ICE2000 emulator was used to debug the software

implementations. The Microchip CAN development kit was used for the CAN node

implementation and testing. A detailed description of any of these development tools

can be found on the Microchip website [7.5].

Although mainly concerned in executing the process Petri-net, a number of other

tasks, such as data acquisition, communication and timing were required. The flow

diagram shown in Figure 7.3 illustrates the main software tasks. The microcontroller’s

interrupt capability was explored in order to reduce software complexity and increase

efficiency. The interrupt flow diagram is shown in Figure 7.4. The software

description will consider these illustrations.

152

Chapter 7 - System Description

(Be?n }

Ha rdwa re
In itia lisa tio n

Software
Initialisation

Petn-net
Initialisation

Execute
Petri-net

Build
Message

Fired
Transition?

_■■— Message ^ s ^ Y e s ^ Release
Buffer■w....................

V
Ack?

Check Status,
Acquisition &

Build Msg

Place
Updated?

Update Tout
Control

Timeout
Update?

Timeout
Event?

Build
Message

MCP2510
Request?

Set SPI
Buffer

Set SPI
Buffer

Data
Transission?

Set SPI
Buffer

Data
Reception?

Start
Transmission

SPI Buffer
Loaded?

Validate
and Set

Received
Data?

Read Inputs
& Select Next

Card

Update
Dig. Inputs?

Convert A/D
& Select Next

Input

Update
An. Inputs?

a Fault ^ " \ >Yes Exec. Diag
& Build Msg.

V '■ ^D iagnostics?

Reset
Petri-net?

No

Figure 7.3: Monitoring Module application flow diagram.

The initialisation process sets variables, buffers and configures hardware devices. The

microcontroller’s memory was divided into system’s variables and stack pointer,

communication buffers and the Petri-net implementation area. Table 7.2 details this

153

Chapter 7 - System Description

distribution. Interrupts were deployed to synchronise the SPI interface data

transmission/reception. A similar technique was employed in order to enable the

MCP2510 to notify CAN related events, such as transmission / reception and error

indications.

(In te rru p t j

Yes
T im er?

No

YesSPI
In terlace?

No

YesCAN
C ontroller?

No

YesPulse
Input?

No

U pdate
V ariables

Set S ta tus
R equest

U pdate
V ariab les

Service
In terlace

Figure 7.4: Monitoring Module interrupt service flow diagram.

Each Monitoring Module supports 254 transitions, 254 places and 255 sub-net IDs.

The implementation considered the application’s Petri-net description to be based on

three attached text formatted files. The first of such files represents the Petri-net main

structure (event descriptions), MM identification and the identification of the places

required to provide timeout events. The second file identifies the Petri-net’s places

representing the process states required to have their active status watched (and

reported). This was defined as a 32-byte structure, in which 1 bit is used to represent

each possible place. The last attached file correlates places with analogue or pulse

inputs. It contains a table with 254 inputs, sequentially representing the Petri-net’s

154

Chapter 7 - System Description

places and indicating an input source, analogue or pulse (“0” meaning no source

associated), used to trigger the data acquisition of process specific parameters.

Examples of such files can be found in Appendix B (B.l to B.14).

Table 7.2: Monitoring Module data memory distribution.

Buffer Description Buffer Size (bytes)

System variable 256
Software stack 32
SPI transmit buffer 96
SPI receive buffer 32
Transmit message buffer (built) 16
Receive message buffer (rebuilt) 16
Event record buffer 64
Petri-net places buffer 256
Petri-net places timeout control buffer 512
Petri-net sub-net buffer 32
Timeout devices buffer 150
Active places mapping buffer 32

Places were defined in the microcontroller’s data memory as a continuous set of 256

bytes (only 254 effectively used). The place identification indexes the place location

within this data structure. Each place location will hold its respective number of

tokens, being updated by the Petri-net execution. Places have also individual timeout

control, implemented as a 16 bits variable. The maximum timeout record was defined

as 65,535s. The variables will be initialised with this maximum value and updated

each time the respective place is processed. The smallest time unit is Is. A bit map

structure was also provided, with 1 bit to represent each place, in order to control the

status of individual places and to ease status change identification.

The Monitoring Module makes public a sub-net event by broadcasting its

identification (sub-net ID). Internally, sub-nets will be assigned in a bit mapped data

structure (32 bits), with one bit representing each sub-net ID. The Petri-net execution,

when required, searches for sub-net events and updates this bit-mapped structure.

One of the microcontroller’s timers (TMRO) was configured to generate a 1 ms time

base that is used to update the Monitoring Module date/time record. Such record

155

Chapter 7 - System Description

follows the “datetime” format defined and used by Microsoft’s SQL2000® DBMS

[7.6]. The microcontroller’s interrupt functionality was employed in order to generate

a precise and reliable timing method. The same time base will be used in other tasks

that require time measurement.

Digital input updating was synchronised with the 1 ms time base generated by TMRO.

Since there are a possible 3 digital cards, all using the same microcontroller’s port

(D), switching time had to be considered. The employed procedure reads the 8 digital

inputs of the selected card and then identifies and moves on to the following one,

which will be read in the next acquisition cycle, thus ensuring enough time to make

the bus stable when the next update is carried out. By using such an approach, digital

inputs are updated every 3 ms (333.33 updates / second).

The pulse inputs were configured to automatically generate interrupts whenever such

an event is matched. Counters (one for each input) will be incremented during the

interrupt service. The counters will be read and reset by the system’s application

every 1 s, providing a monitoring parameter in term of pulses / second (Pm)- Such a

parameter might be further used by an “analogue transition” and as basis for a

“special record” (Chapter 6).

Analogue inputs were configured for 10 bits resolution. They are updated

periodically, by polling the A/D converter in the system’s application execution main

loop (Figure 7.3). Based on the microcontroller’s analogue channels specifications

and software implementations, the sampling rate is approximately 2.5 K sample / s.

Small variations may occur due to different tasks being performed in different

execution loops. The sampled analogue input data will be integrated over a period

equivalent to 256 samples, resulting in an average value, as represented by Equation

7.1. The result may be further used as an input parameter into “analogue transition”

and to calculate the mean value of the analogue channel observation (special record).

256

An, = (X San,) / 256 (eq. 7.1)
i = 1

156

Chapter 7 - System Description

Following the approach described in Chapter 6, Petri-net’s places could be used to

trigger the acquisition of process specific parameters, resulting in a “special record”.

In this implementation such a parameter was defined as the mean value of the

observed analogue or pulse inputs, based on observation time. To obtain such a

parameter, the system will perform a calculation based on Equation 7.2. Previous

calculations (Pm for pulse inputs and Am for analogue inputs) will be used as inputs in

the equation (S j) . Such values will be continuously added, as long as the process state

remains active. The resulting sum will be divided by the number of added samples

(n).

n

M = (I S i) / n (eq. 7.2)
i= 1

The coefficient n is limited in practical terms by the size of the variable that contains

it to 65,535 (16 bits). For an analogue channel, considering a sample rate of 2.5 K

samples / s and also that a new value will be added once after 256 samples (Am), the

maximum observation time will be limited to 1 hour, 52 minutes and 36 seconds.

Since the microcontroller does not provide an instruction to perform division, a 16 bit

division routine based on an algorithm for 8 bits processors presented by Leventhal

[7.7] was employed in the calculation to maximise efficiency.

The monitoring Petri-net will be run by executing the transitions defined in the Petri-

net table (text format file). The data retrieved from this table will be verified in the

transition structure context (Chapter 6), thus checking whether or not the transition is

enabled. Transition firing actions will include updating input and output places,

requests of sub-net broadcast and event messages. Transitions will execute

sequentially in the order in which they were defined in the Petri-net table, though

handling one transition each time, per cycle. For those fired transitions that require a

message, a record will be stored in the “event record buffer”.

Whenever places were updated (following a Petri-net execution), further verification

will be carried out. Such verification will aim into identify the “beginning” or “end”

of an active state of selected places or to trigger the “mean value calculation” of

157

Chapter 7 - System Description

analogue or pulse input. When required, a message transmission will be requested by

inserting a record in the application “event record buffer”.

Places enabled to have a timeout control and whose active state lasted longer than has

been previously recorded will produce a timeout record, stored in the “event record

buffer”. The default approach compares the actual cycle with previous one. However,

such comparison parameters can be fixed by supplying a command, received through

the data communication interface (CAN).

Fault isolation was implemented following the approach described in Chapter 6. This

procedure will be started when a “diagnostics request” identifying the place that

provided the symptom (timeout) is received through the data communication

interface. The Petri-net will be searched in order to find a transition having the

provided place as an input. Verifications will be made to detect whether the fault

relates to the transition input signals or to other places that failed to enable this

transition. Transitions and places will be alternatively investigated using the “breadth-

first” search approach [7.8]. Successive interactions will be carried out until a result is

obtained or the entire set of transitions is investigated. Loops will be avoided by

marking places that have already been verified. Records will be placed in the “event

record buffer”, identifying the transition and the signal(s) that failed to enable the

transition. Sub-net, digital and analogue / pulse inputs are considered as possible

sources of faults.

7.2.2.1 - Data Communication Aspects

In order to improve system’s efficiency and ease software development, data buffers

were set at different levels. Referring to Table 4.2, the “event record buffer” was

implemented to hold a number of monitoring events recorded by the system. Each of

these records will be converted into a system’s message, then assembled accordingly

one of the formats shown in Figure 7.5 and stored in the “transmit message buffer”.

This buffer is capable of handling only one message each time.

158

Chapter 7 - System Description

Event Class Source Event ID Timestamp

I I T : fired transition
' ^ < B : beginning process state

^ E : ending process state

Event Class Source Event ID Timestamp Record

I ^ J X : exception (timeout)
I S : special (signal mean value)

Event Class Source Event ID Signal ID

d : diagnostic

=> Source: monitoring module
=> Event ID: transition or place
=> Record: signal mean value or timeout record
=> Signal ID: fault diagnostics (missing signal)

Figure 7.5: Monitoring Module transmitted messages formats.

Source (Module ID)

Total of Segments Segment Number

Data Field (1 to 6 bytes)

Total of segments: number of segments
the message requires (1 to IS)

=>Segment Number: number of the specific
segment (1 to 15)

Figure 7.6: System’s application layer protocol with message segmentation.

At the next stage, the system’s messages are handled by a “CAN application layer”,

before being stored in the “SPI transmit buffer”. At this application layer, messages

will be sized accordingly to the CAN protocol, and split when required. A sequencing

method was developed, to enabled messages to be reassembled at the destination end.

Details relating to the “application layer protocol” are shown in Figure 7.6. A

transmission timeout feature was implemented to control message delivery.

Transmitted messages that were not acknowledged by the recipient in a predefined

time will be retransmitted. The CAN controller’s commands are required to be

appended to the application layer message, in order to properly set up the required

159

Chapter 7 - System Description

task. The “SPI transmit buffer”, will also be used to request the controller’s status and

carry out configurations.

Messages received from the CAN bus, such as sub-net broadcast and system

commands, will be transferred to the “SPI receive buffer” and then reassembled in the

“receive message buffer”. Figure 7.7 shows the format of received messages

supported by an MM. Figure 7.8 shows special purpose messages formats. Once

validated, commands will be executed or will result in flags requesting further actions

(i.e. fault diagnostics).

Command ID Record

Description Command ID Record

Reset Petri-net /R Void (0 bytes)

Set time /T Actual time in ms (4 bytes)

Set date /D Actual date (4 bytes)

Sub-net__________ (E______________Sub-net event (1 byte)

Figure 7.7: System commands - broadcast messages format.

Module ID Command ID Place ID Record

Description Command ID Place ID Record

Set timeout /t Target place Timeout parameter (2 bytes)

Fault diagnostic /d Starting place Void (0 bytes)

Figure 7.8: System command - specific messages format.

The CAN controller filtering feature, based on the protocol message priority, was

exploited to ease the software implementation. Sub-net messages are “visible” to

Monitoring Modules, but not to the Connectivity Module. Conversely, monitored

160

Chapter 7 - System Description

event messages (fired transition, begin/end of places, places timeout and parameters

mean value records) will only be received by the Connectivity Module.

The Monitoring Module application required 8,426 bytes of program memory.

Considering that the data tables representing the process states to be watched

(beginning / end) and those that trigger analogue/pulse acquisition require a fixed

amount of 288 bytes (32 + 256), the representation of a process Petri-net can dispose

of 24,054 bytes. Assuming as a general example an ordinary transition with 2 input

and 2 output places, a Petri-net with a maximum of 254 of such transitions would

require 5,588 bytes of program memory, which is much less than the total available.

Appendix A (A.4) presents the software development main body, coded in Assembler.

7.3 - Connectivity Module (CM)

The CM was implemented to provide a common Internet interface to all MMs sharing

the system’s CAN bus, releasing them from heavy communication tasks such as those

related with the Internet protocols. At the same time, by concentrating the entire

monitoring task in a single Internet socket, management complexity was reduced.

This was not developed purely as a connectivity solution, but was meant to support

the distributed monitoring approach implementation. Nevertheless, in considering the

use of microcontrollers for such an application, investigations were required in order

to optimise the protocol’s implementation.

7.3.1 - Hardware Description

The CM implementation was based on the Microchip PICDEM.NET™ Internet

development kit [7.9]. The selected microcontroller was the PIC18C452, mainly due

to its data memory availability and organisation. The PICDEM.NET is capable of

interfacing an Ethernet network by means of an onboard Realtek RTL8019AS™

Ethernet controller [7.10]. This is provided with a 16 Kbytes embedded RAM, shared

as reception and transmission buffers. The network physical connection is based on a

twisted-pair (lOBaseT), with data transmission rates of 10 Mbps. The operating

clocks are 20 MHz for the Ethernet controller and 19.66 MHz for the microcontroller.

161

Chapter 7 - System Description

A Microchip MCP2510 CAN Development Board [7.11] was employed to implement

the CM’s CAN node. The PIC18C452 was selected as the CAN node processor. This

board uses a single 16 MHz oscillator for both CAN controller and microcontroller.

An asynchronous serial communication link, based on the RS-232C standard [7.12],

was employed to connect both modules. Figure 7.9 shows the hardware diagram.

8
Ethernet A \ kController

RTL8019AS N \r
PIC18C452

Microcontroller

PICDEM.NET

PIC18C452
Microcontroller < = >

MCP2510
CAN

Controller

MCP2510 Dev. Kit

Figure 7.9: Connectivity module hardware block diagram.

7.3.2 - Software Description

In order to enable messages representing monitoring events to flow on the Internet

and commands flowing in the opposite direction to reach the MMs, the CM has to

implement the required gateway functionality. Figure 7.10 illustrates the different

levels of protocols and implementations necessary to interface each network, which

will be considered in the following section.

Internet Node

ts g
£ I
JS’H*■! mw s

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

CAN Node

Application Layer
£

Data Link Layer

Physical Layer
I 2i 28

Figure 7.10: Connectivity module application tasks diagram.

162

Chapter 7 - System Description

(Beginning J

YesCAN Controller
Request?

No

YesSPI
Request?

No

C Interrupt j
YesCAN Received

Data?

No
RS-232C

Reception?

RS-232C
Reception?

Yes

No
RS-232C

Tranmis sion?

NoRS-232C
Transmission?

Yes

No
SPI

Event?

CAN
Transmission?

Yes

No
YesTimer

Update?

NoCAN Ack
Required?

.Yes

End

Start RS-232C
Transmission

1 ms
Update

Start SPI
Interaction

M icrocontroller
C onfiguration

Set SPI
Tra nsmission

Buffer

Application
Param eters

In itia lisa tion

Set SPI
Transmission

Buffer

Validate and
Rebuild Message

Validate and
Rebuild Message

Transmit /
Receive

Next Byte

Load in
Buffer / Set

Errors

Build Controller
Status Request

Load Next
Byte / Stop

Transmission

Figure 7.11: CAN node implementation flow diagrams.

7.3.2.1 - CAN Node Implementation

The software implementation of the CM’s CAN node was based on MPLAB-IDE

development environment and used PIC’s Assembler as the programming language.

163

Chapter 7 - System Description

The flow diagram shown in Figure 7.11 illustrates the main tasks executed. In general

terms, the application “watches” the CAN bus for MMs’ messages, reassembling,

validating and replying them with acknowledgement messages. This message will

then be forwarded to the Internet component. Similarly, messages arriving from the

Internet, will be split, sequenced and transmitted on the CAN bus. Basically, the CAN

protocol’s physical and data link layers (Figure 7.10) will be provided by the CAN

hardware. The application layer functions, such as splitting, sequencing and

reassembling messages, were implemented in the software application.

The microcontroller’s embedded communication devices were employed to support

the application. Individual interrupts were selected to synchronise the serial

asynchronous interface events. A single interrupt was used for the SPI interface. The

CAN controller MCP2510 status will be polled once each time the application main

loop is executed, in order to retrieve the device status. One of the microcontroller’s

embedded timers (TMR1) was configured to provide a 1 ms time base, used by the

CAN application layer to implement the messaging timeout feature.

Table 7.3: Data memory requirement to implement the CAN node.

Buffer Description Buffer Size (bytes)

System variable 56
Software stack 32
SPI transmit buffer 96
SPI receive buffer 32
CAN to RS-232C intermediate buffer 64
RS-232C to CAN intermediate buffer 64
RS-232C transmit buffer 64
RS-232C receive buffer 64

The software implementation required 7,398 byte of program memory, meaning that

another 25,370 bytes were left unused. In terms of data memory, it required 472 bytes,

with 1,064 remaining unused. Table 7.3 summarises the memory usage. In

considering that the PIC18C452 supports operating frequencies up to 40 MHz, it can

be seen that the microcontroller was far from its total capability. Appendix A (A.7)

presents the software development main body, coded in Assembler.

164

Chapter 7 - System Description

(Beginning

YesRS-232C
Reception?

No

YesMessage
to Internet?

No

YesMessage to
Ethernet?

No

(Interrupt
Message From

Ethernet?
Yes

No
RS-232C

Reception'

Data From
Internet?

Yes

No
RS-232C

Tran mission?

NoRS-232C
Transmission?

Yes

No
YesTimer

Update?

NoTimeout
Event?

.Yes

Hardware
Configuration

Set Ethernet
Controller

1 ms
Update

Start New
Transmission

Variables
Initialisation

Forward to
Internet

Protocols

Forward to
Internet

Protocols

Validate and
Store in
Buffer

Set
Internet

Retransmission

Store in
Application

Buffer

Load Next
Byte / Stop

Transmission

Execute
ARP

Request

Load in
Buffer / Set

Errors

Figure 7.12: Internet implementation flow diagram.

165

Chapter 7 - System Description

7.3.2.2 - Internet Connectivity Implementation

The Internet connectivity application was developed using a C programming language

environment for PIC microcontrollers, WIZ-C version 8.05 [7.13]. The choice of such

an environment was made considering the intensive data manipulation and the use of

more complex data types required by this sort of application [7.14], with increased

software engineering complexity. Figure 7.12 shows the flow diagram, illustrating the

application’s main elements. Appendix A (A.9) presents the software development

main body, coded in “C”. Figure 7.13 shows the microcontroller’s required resources,

displayed in the compiler’s output window.

PIC RAM

Compiler Overhead: 13
Loc O pt: 4
Globals: 492
Free RAM: 1040
Start of C Program at 758 (0x02f6)
Total C & Library Program words 7868
Breakpoint Hit at main, 0394

Figure 7.13: Internet implementation required resources - compiler output.

7.3.2.2.1 - Protocols Implementation

Basically, the physical and data link layer protocols were provided by the Ethernet

hardware (Figure 7.10). However, Ethernet frames are required to be assembled in the

microcontroller’s memory, before being handed to the Ethernet controller. Such a

frame is shown in Figure 7.14. The checksum will be calculated and automatically

appended after the data field, by the controller. Although supporting interrupts, such

feature was not explored in the hardware design, therefore requiring the

microcontroller to poll the Ethernet controller in order to retrieve the interface status.

The Ethernet “level” will provide the data link layer services to the ARP and IP

protocols.

166

Chapter 7 - System Description

The system needs to know the IP address of the remote location to which to send the

monitoring records (Management Application). ARP request commands will be

issued to search for the hardware address (Ethernet) of the remote IP. In considering

the application purpose, only one single destination socket will be supported. During

normal execution (after initialisation), the system will respond to incoming ARP

requests by replying with the ARP response messages (Chapter 4).

Destination Source Protocol ID Data Field

U Message (IP datagram)

{Network Protocol
-IP = 800 hexadecimal
-ARP = 806 hexadecimal

Source node hardware address

Destination node hardware address

Figure 7.14: Ethernet frame fields mounted in the microcontroller’s memory.

At the network layer, the IP protocol was implemented, following the description

provided in Chapter 4. Simplifications were made, considering the application’s

requirements. The messages exchanged by the system will never exceed the minimum

length defined in the protocol specification, therefore the implementation does not

requiring datagram fragmentation or a reassembling mechanism (data padding must

be provided). The IP implementation will provide the service to the Internet transport

layer and the Control Message Protocols (ICMP).

The system implementation of the ICMP was restricted to receiving and answering

such control messages. The ICMP will be used by the network to inform the CM

about an “unreachable” remote application (MA).

The transport layer implementation was based on the User Datagram Protocol (UDP),

rather than the Transmission Control Protocol (TCP), which is much more complex to

implement and usually employed for secure data exchange. A similar approach was

used by Al-Habaibeh et al [7.15], in an embedded monitoring application. The factors

considered for such a choice here were the system’s requirements and implementation

167

Chapter 7 - System Description

simplification. The messages issued by the MMs will not require the segmentation

feature provided by TCP. Furthermore, a CM represents a single application port, thus

does not require heavy application management. Therefore UDP’s connectionless

approach was considered appropriate for the transmission of data records, since it

avoids the overhead represented by TCP in such cases [7.16], especially when the

asynchronous nature of monitoring events is considered. Nevertheless, it must be

considered that UDP, apart from the datagram checksum, will not provide any control

mechanism to ensure data delivery. Therefore, the application layer serviced by UDP

must provide such control.

The Internet application layer implementation was concerned with the message

exchange mechanism at the Internet level. At this layer, messages will have appended

a header, providing the message purpose, the sequence number and length, to enable

message delivery control. The application layer header is shown in Figure 7.15.

Messages transmitted must be acknowledged by the destination. Such confirmation

will be provided by the recipient replying with an acknowledgement message

containing the received message sequence number. Messages that are not confirmed

in an established time will be automatically retransmitted. One of the

microcontroller’s embedded timers (TMRO), configured to generate a 1 ms time base,

was deployed to provide the timeout approach required to support this control.

Message ID Sequence Length Data Field

^ Monitoring event record

Data field length

Message sequence number
(0 to 255)

J U : message
■ U : acknowledgement

Figure 7.15: Application layer message format.

168

Chapter 7 - System Description

7.3.2.2.2 - Operation Description

After initialisation, an ARP request will be issued, in order to obtain the Ethernet

address associated to the IP address of the destination node (MA). The application

layer will handle the records received from the MMs, in order to perform the

messaging control. These messages will be forwarded to the UDP and then to the IP

protocol implementations, where checksums will be calculated and respective headers

added. The Ethernet frames will be assembled and transferred to the controller, which

assumes the transmission task at the network level, providing information about the

status of the transmission. The message will be kept assembled at the application layer

level until delivery confirmation was received.

Reception of messages from the Internet, for the MM, can be described similarly.

Ethernet frames will be received by the controller, verified and forwarded to the

Internet or ARP protocols. At the IP level, checksum, source and destination

addresses will be verified. The data field will be handed to the upper layer (UDP or

ICMP) for further verification or actions complying with the protocol specifications.

At the application level, a validated message will be stored in the serial transmission

buffer, while an acknowledgement message will be returned to the sender.

Although the implementation of the connectivity module was based on two separate

microcontrollers for simplification reasons, the analysis of the resources required

showed that a single of such device would have been enough. In terms of

programming memory, the CAN node implementation required 7,398 bytes, while the

Internet protocols implementation used 15,736 bytes, which together (23,134 bytes)

still less than the 32,768 bytes available in each microcontroller. In a similar analysis

considering the data memory, it can be seen that both applications together required

968 bytes, again less than the 1,536 data memory bytes available in a single

microcontroller. Nevertheless, supposing that both applications were developed using

C programming language, the compiler overhead should be taken into account. On the

other hand, in the resulting implementation many resources were used to implement

the serial link between the two hardware modules, including some duplicated buffers.

In terms of processing power, the microcontroller supports a clock twice the one used

by the applications, thus exhibiting a factor for further improvements.

169

Chapter 7 - System Description

From a cost perspective, the Connectivity Module based on the PICDEM.NET

hardware, provided with a CAN node implementation, would represent, roughly

estimating, nearly £ 210.00. This takes into consideration the module basic hardware

(Microchip reference DM163004), the CAN controller (MCP2510) and transceiver

(UC5350) [7.4]. Assuming that a single CM can provide Internet connectivity to

several MMs (at a location), the system still represents a low-cost implementation.

Additional cost benefits may arise from customised implementations, as a result from

large-scale applications.

7.4 - Management Application (MA)

The Management Application was implemented with the aim of providing a common

interface to databases where the monitoring events will be stored. This application

was developed in a Microsoft Visual C++™ 6.0 environment, making use of

Microsoft Foundation Classes (MFC®) library. It executes on any computer running

Microsoft Windows® operating system, connected to the Internet. A single

management session can be used to provide support to several remote monitoring

“structures”, connected to the Internet at different locations. For practical reasons,

such number was limited to 10, all required to use the same database.

The requirement for such an application was based on practical reasons. The task of

directly supporting many different (commercially available) Database Management

Systems (DBMS) is a hard task for computer-based implementations [7.17]. Such a

task would become even more challenging for a microcontroller-based application,

when considering the processing power and available resources. In considering such

factors, it was concluded that a MA, benefiting from the Open Database Connectivity

(ODBC), would provide a great level of flexibility to the system implementation.

The MA is able to select a system’s database, define the local socket (IP address and

MA port number), configure the remote (CM) IP address and assign a name to the

monitoring task, which will be used by the system to create a set of tables where

monitoring records will be stored. These tables will be automatically created, being

identified by the monitoring task name, followed by “_EV” (process events), “ ST”

170

Chapter 7 - System Description

(process states) and “ DG” (diagnostics table). These tables will be discussed later.

The remote application port identification (CM) is not required, since such

information is assumed static (the same for all CMs) and thus is hidden from the user.

After settings are made communication will be enabled to take place. The monitored

events, recorded by the MM, will be sent to the MA over the Internet, making use of

the CM. Records received by the MA will be displayed on the application window,

while forwarded to the database. They will therefore be available for further analysis

or presentation.

The MA can be used to issue commands toward the Monitoring Modules. Such

commands include “set time”, “set date” and “reset Petri-net”. Also, the MMs fault

diagnostics request and timeout setting will be managed by the MA. A fault

diagnostic request requires the provision of the MM identification and also the place

(symptom) to start the search. MMs’ timeout setting requires a template table

containing the timeout parameters to be supplied. Such a table must be externally

created, but must be part of the same database.

7.4.1 - System Data Tables

As introduced previously the Monitoring System employs 3 tables to store records

associated with the tasks performed by the monitoring system. The first of these tables

(prefix JEN), will store monitoring events, specifically fired transitions, timeout and

analogue/pulse monitored parameters (special record). Table main fields (columns)

include the Monitoring Module, the event (transition or place that originated it), the

class that identifies the event, the event timestamp and a record field, eventually used

to store the timeout information or an analogue/pulse mean value calculation.

A second table will store the status of the process states {prefix_ST). This table is

aimed to provide time information of specific process states, indicating the

“beginning” and “ending” of such states (Petri-net places). The MA will calculate the

duration of such state after the “end record” was received. Another field was provided

to indicate those process states that remain active and those that have already finished.

Only records with class field “B” and “E” (Figure 7.5) will be inserted in this table.

171

Chapter 7 - System Description

The result of a diagnostics request will be stored in a table identified as “prefix_DG”.

Each record will consist of the Monitoring Module, the transition (identification), the

signal source (“d” - digital or “a” - analogue/pulse) and the identification of the

signal to which the fault was related. Every time diagnostics is requested, the table

will be cleared. Therefore, only the records related with the last diagnostic will be

listed. Description fields were provided in order to allow further descriptive

information to be added. Such information field will not be updated by the MA,

requiring other database method to be employed (procedures, triggers, etc) [7.6].

The use of database systems to store monitoring records provides an easy way to

integrate such records within different applications, with a minimum of software

effort. Modem DBMS enable databases to be deployed in a distributed configuration

[7.18]. This provides an ideal scenario for the use of the Internet in monitoring

applications, therefore contributing to stimulate a wider use of the technology.

7.5 - System Tests and Measurements

Although it was not an aim of this research to investigate the design of data

acquisition hardware, tests were carried out in order to assess the system’s

functionality regarding the analogue and pulse inputs. The test procedure was based

on the implementation of a test-Petri-net to trigger the acquisition of the 4 analogue

channels and 2 pulse inputs, with the results stored in a database for further analysis.

Details of this implementation, such as the Petri-net diagram, descriptive text files and

graphic results can be found in Appendix A (A. 14 to A.20).

7.5.1 - Linearity

Analogue input linearity was tested by applying an adjustable DC power supply and

varying the voltage progressively from 0 to 10 V. A similar approach was employed

in a regressive manner. A set of graphs showing the results of the test can be found in

Appendix A (A. 17). It can be seen that best results were verified between 2 V and just

before 10 V. Low input levels were more affected by the analogue inputs offset

voltage, because of the analogue pins drain current. At the upper range (10 V), the

172

Chapter 7 - System Description

saturation of the analogue input channels can be considered as the cause of such

deviation trend. The graphs also showed that the inputs behaved similarly when the

voltage was varied progressively and regressively.

Pulse input linearity was tested by using a signal generator (square wave) as an input,

varying frequencies from 0 to 65 KHz and then oppositely from 65 KHz to 0. Graphs

representing the results were included in Appendix A (A. 18). The system operation

was limited in software to approximately 65 KHz. In terms of error percentage, best

results were obtained at higher frequencies. It can be justified by the fact that the

system calculation is based on integers. At low frequencies a 1 Hz deviation could

represent a considerable error percentage. In such cases performance might be

improved by increasing the acquisition time (larger number of samples). The test was

based on 15 s acquisition periods. The system behaved in a similar manner, either

varying input frequency progressively or regressively.

7.5.2 - Repeatability

The repeatability test was performed by repeating the linearity test 3 times. The sets of

data of each measurement were linearised and equations used to generate a standard

set of data, comparing the results of the first against the second and third. Graphs

showing the test results can be found in Appendix A (A. 19). It can be seen that in

terms of error rates, both analogue and pulse inputs have a better performance with

higher input voltages and pulse rates, respectively. The justification for such

behaviour is the same given for the linearity deviation, with analogue inputs

compromised by the offset voltage and pulse measurement resulting in higher error

percentages and therefore affecting repeatability at very low frequencies.

7.5.3 - Analogue Input Mean Value Accuracy

In order to test the system mean value calculation approach, a test consisting of

applying a square wave form to the analogue inputs and varying the signal’s

frequency was carried out. The graph representing the result of such test can be found

in Appendix A (A.20). In considering the system’s limitation in terms of linearity, the

mean value of the input signal was set at 2.5 V. It can be seen that the system provides

173

Chapter 7 - System Description

a good response at lower frequencies, with an increase in the error trend after nearly

800 Hz. The system analogue input sampling rate, around 2.5 K samples/second,

represents a constraint for a better accuracy for input signals at higher frequencies.

Similar results were obtained when increasing the input signal mean value, with errors

bellow 1 % between 0 and 800 Hz. Input signals with mean value bellow to 1.5 V

resulted in a general increase in the error level, specially at very low frequencies

(tending to DC), as it would be expected due to considerations made when analysing

the system’s linearity response.

The test results showed that the system would require further improvements in terms

of hardware design and analogue inputs sampling rates, in order to provide a better

accuracy. As it was stated before, this was not a major concern of the research.

However, such improvements could be achieved by increasing the microcontroller

operating frequency (from 20 MHz to for 40 MHz), making use of interrupt

techniques associated to the analogue acquisition and adding additional hardware

components to enhance analogue signal conditioning.

7.5.4 - System Communication Testing

The system development required the implementation of communication capabilities.

To develop and test such capabilities, tools to monitor the communication networks

were required. Microchip MCP2510 Development Kit [7.11] was employed as the

CAN bus monitoring tool. It allowed system’s messages flowing on the CAN bus to

be captured and analysed and when required, to transmit messages produced using the

Kit’s software. At the Internet side, free demonstration software, developed by

LANSleuth [7.19], was used as the monitoring tool. This software monitoring

capabilities are those related to Ethernet and Internet protocols. Ethernet frames

flowing on the network were captured and displayed, showing the respective

protocols’ fields at the different layers. Appendix A (A.21 to A.24) shows examples

of these tools.

174

Chapter 7 - System Description

7.6 - Summary

The use of microcontrollers for the implementation of the monitoring approach based

on Petri-nets was presented in this chapter. In order to provide low-cost without

compromising efficiency and capability, an architecture that explores the potentialities

of individual and specialised levels was proposed. Monitoring modules that

incorporate the task knowledge will deliver event records based on local decisions to a

communication element that concentrates a set of complex protocols. Databases are

interfaced by a PC based management application, benefiting from a set of well

developed and reliable standards and protocols, therefore easing the implementation

and dealing with critical aspects such as security, distributed data access, analysis and

presentation. In using established standards in such a development, it is ensured that

the proposed system can benefit from further technological enhancements and support

a wider range of applications.

The following 3 chapters will present examples of the use of the system in monitoring

applications. The first case considers the monitoring of the production cycle of a scale

model that mimics a hydraulic press. The second example illustrates the monitoring of

a laboratory rig representing a manufacturing system. The last example was based on

the monitoring of a tool changer of a CNC machine centre. Each example was

proposed in order to illustrate specific capabilities of the system, considered of

significance in the development of the research.

175

Chapter 7 - System Description

REFERENCES

7.1 Texas Instruments Inc. UC5350 CAN Transceiver, Texas Instruments Products

Web Site, Available from http://www-s.ti.com/sc/ds/UC5350.pdf [Accessed 4

July 2003].

7.2 Agilent Technologies, Product Information and Literature, Agilent Web Site,

Available from http://literature.agilent.com/litweb/pdf/5965-3596E.pdf

[Accessed 6 June 2003].

7.3 Microchip Technology Inc. PIC18CXX2 Data Sheet. USA: Microchip Tech.

Inc., 1999.

7.4 Famell Electronic, Famell Web Site, Available from http://www.famell.co.uk

[Accessed 9 June 2003].

7.5 Microchip Technology Inc. Microchip Products Web Site, Available from:

http://www.microchip.com/products [Accessed 14 April 2003].

7.6 Vieira, R. SQL Server 2000 Programming. Birmingham, UK: Wrox Press Ltd,

2000.

7.7 Leventhal, L. A. Z80 Assembly Language Programming. Berkeley, USA:

Osborne/McGraw-Hill, 1979.

7.8 Giarratano, J. and Riley, G. Expert Systems - Principle and Programming.

Boston, USA: PWS Publishing Company, 1998.

7.9 Microchip Technology Inc. PICDEM.net Internet/Ethernet Demonstration

Board, Microchip Web Site, Available from

http://www.microchip.eom/l 010/pline/tools/picmicro/demo/pdemnet/index.htm

[Accessed 4 July 2003].

7.10 Realtek Semiconductor Corp, Realtek 8019AS Product Description, Realtek

Web Site, Available from http://www.realtek.com.tw/products/productsl-

2aspx?modelid=l [Accessed 01 July 2003].

7.11 Microchip Technology Inc. MCP2510 Development Kit User’s Guide,

Microchip Web Site, Available from http://www.microchip.com/1010/pline/

analog/anicateg/interface/can/devices/mcp2510/9640/index.htm [Accessed 04

July 2003].

176

http://www-s.ti.com/sc/ds/UC5350.pdf
http://literature.agilent.com/litweb/pdf/5965-3596E.pdf
http://www.famell.co.uk
http://www.microchip.com/products
http://www.microchip.eom/l
http://www.realtek.com.tw/products/productsl-
http://www.microchip.com/1010/pline/

Chapter 7 - System Description

7.12 Kochhar, A.K. and Burns, N.D. Microprocessors and their Manufacturing

Applications. London, UK: Edward Arnold Ltd., 1983.

7.13 Forest Electronic Developments, PIC C Compilers, Forest Web Site, Available

from http://www.fored.co.uk [Accessed 20 November 2002].

7.14 Bentham, J. TCP/IP Lean - Web Servers for Embedded Systems. Lawrence,

USA: CMP Books, 2000.

7.15 Al-Haibaibeh, A., Whitby, D. R., Parkin, R. M., Jackson, M. R., Mansi, M.

and Coy, J. The Development of an Internet-based Mechatronic System for

Remote Diagnostic of Machinery Using Embedded Sensors. In Proceeding:

ICOM 2003 - International Conference on Mechatronics, 18-20 June,

Loughborough - UK, 2003, 297-302.

7.16 Hall, E.A. Internet Core Protocols - The Definitive Guide. Sebastopol, USA:

O’Reilly and Associates, 2000.

7.17 IBM Corporation, IBM BookManager® BookServer Library, IBM BookServer

Web Site, Available from: http://publib.boulder.ibm.com/cgi-

bin/bookmgr/FRAMESET/QBKACO03 /APPENDIX1 [Accessed 08 March

2001].

7.18 Blaha, M.R. A Manager’s Guide to Database Technology. New Jersey, USA:

Prentice Hall Inc. 2001.

7.19 SSI Embedded Systems Programming, LANSleuth DEMO Ethernet Monitor,

SSI Web Site, Available from http://www.lansleuth.com [Accessed 24 July

2003].

177

http://www.fored.co.uk
http://publib.boulder.ibm.com/cgi-
http://www.lansleuth.com

Chapter 8 - Press Rig Monitoring Task

CHAPTER 8

PRESS RIG MONITORING TASK

8.1 - Introduction

This chapter presents a monitoring application to demonstrate the effectiveness of the

Petri-net approach described previously. A laboratory rig that mimics the basic

operations of an industrial press was monitored in order to provide online process

information and to demonstrate how the Petri-net monitoring system can be used to

help identify the source of simulated faults. The demonstration further illustrates how

results are captured and processed, and how the management information that they

enable can be displayed using a web page based approach developed in conjunction

with the existing methodologies that operate within the IPMM Centre.

8.2 - Process Overview

The Press Rig, shown in Figure 8.1, is a scale module based on an ASEA industrial

hydro forming press. The Rig has two pallets, left and right, where, on the industrial

machine, work pieces can be loaded. Load/unload operations take place at a

designated “home position” at the outside end of the travel for each pallet. Each side

is provided with a safety guard, in order to ensure that the work piece cannot be

handled once the process was started.

A work piece loaded on either pallet is transported toward the central part of the

machine, where the pressing operation will be performed. Once any of the

horizontally moving pallets reaches the pressing position, the central vertical axis can

be moved down. At this point, in the real process, a high-pressure operation would be

performed, in order to mould the work piece. This operation was not mimicked

directly in the rig, but was simulated by a short delay (20 s). At the end of the pressing

operation the work piece will be transported back to the home position to be unloaded.

178

Chapter 8 - Press Rig Monitoring Task

Whilst the first pallet is still moving, once it has left the central area of the rig, the

opposite pallet, if loaded, can start to move toward the centre for the next operation

sequence.

1 - Left hand pallet 6 - Right hand pallet DC motor
2 - Right hand pallet 7 - Left hand pallet DC motor
3 - Central pressing structure 8 - Central Structure DC motor
4 - Left hand guard 9 - Siemens S5-95U PLC
5 - Right hand guard 10 - Operation panel

Figure 8.1: Press rig and main component parts.

8.2.1 - Press Rig Component Description

The Press Rig operation is controlled by a Siemens S5-95U PLC. Proximity sensors

have been located to detect the pallets “home” and “central” positions. Limit switches

are employed to detect the vertical axis “up” and “down” positions. Limit switches

were also deployed at strategic positions for safety purposes, stopping out-of-range

movements (potentially arising from any main sensor fault). Each of the safety guards

controlling the access to the pallets was provided with a limit switch, to provide a

means of sensing all open/closed conditions.

179

Chapter 8 - Press Rig Monitoring Task

Three independent DC motors provide the mechanical movement of the pallets and

the vertical axis, by means of lead screws. Movement reversal is achieved by

inverting the motors polarity. Mechanically operated switches were inserted in the

motors’ supply lines, thus enabling the simulation of fault conditions.

Finally, an emergency stop button was located at the front part of the rig to

immediately stop the process operation when required. A reset button was provided to

recover the system from an emergency stop condition. In such a case, all moving parts

will be returned to their respective home positions. The controller executes the same

procedure when it is first switched on.

8.2.2 - Monitoring Task Analysis

In order to implement a Petri-net to monitor the process, an investigation of the

existing signals was undertaken. This considered the PLC outputs and deployed

sensors and switches. Table 8.1 summarises these signals and their characteristics.

Table 8.1: Press rig signals description.

Description Signal Source State

1 Emergency Stop Mechanical switch On - 24 V
2 Reset Push button On - 24 V
3 Right hand cycle start Push button On - 24 V
4 Left hand cycle start Push button On - 24 V
5 Central positioning - right hand pallet Proximity sensor On - 24 V
6 Central positioning - left hand pallet Proximity sensor On - 24 V
7 Home position - right hand pallet Proximity sensor On - 24 V
8 Safety - right home position Limit switch On - 24 V
9 Home position - left hand pallet Proximity sensor On - 24 V
10 Safety - left home position Limit switch On - 24 V
11 Up position - central structure Limit switch On - 24 V
12 Safety - central up position Limit switch On - 24 V
13 Down position - central structure Limit switch On - 24 V
14 Safety - central down position Limit switch On - 24 V
15 Right hand pallet guard Limit switch On - 24 V
16 Left hand pallet guard Limit switch On - 24V
17 M otor command - central up PLC output On - 24 V
18 M otor command - central down PLC output On - 24 V
19 M otor command - right pallet to centre PLC output On - 24 V
20 Motor command - right pallet to home PLC output On - 24 V
21 M otor command - left pallet to centre PLC output On - 24 V
22 Motor command - left pallet to home PLC output On - 24 V

180

Chapter 8 - Press Rig Monitoring Task

The task facing the monitoring system was to follow the sequential operation of the

process in order to both provide enough data to yield production information and

allow the identification of any process faults. The signals summarised in Table 8.1

provided the information source that was used to monitor process events and states.

Accessing and processing this data then enables the system to calculate parameters

such as “in process” and “stoppage” times, thus illustrating the benefits of the Petri-

net implementation.

The DC motors were considered to be critical parts of the Rig that needed to be

monitored during process operation. It was assumed that the condition of each motor

could be determined from the motor current demands. Table 8.2 shows the motor

specification. A simple circuit was produced to provide the motors parameters

measurement to the Monitoring Module (Figure 8.2).

Table 8.2: DC motors specification [8.1].

Item Description Specification

DC Motor RS 330-799 • 12 Vdc
• 493 mA (maximum)
• 40 rpm

J

0 - 1 0 V

Amplifier

I
I

Figure 8.2: Block diagram of signal conditioning circuit.

181

Chapter 8 - Press Rig Monitoring Task

8.3 - Press Rig Petri-net

In order to design the Petri-net to monitor the process, signals had to be selected and

assigned to the Monitoring Module. At the same time, places representing special

features (analogue acquisition and process states status) had also to be identified.

Table 8.3 shows such details. It also shows that the timeout feature was limited to

places up to number 200, reserving those above this number for modelling purposes

that do not require this feature. This number, as described in Chapter 7, can be

dynamically assigned by the Petri-net designer and may assume different values for

different applications.

Table 8.3: Press Rig Petri-net definitions.

Representation Description

DS 01 Emergency stop switch
DS 02 Vertical axis down motor command
DS 03 Right pallet to centre motor command
DS 04 Left pallet to centre motor command
DS 05 Vertical axis up motor command
DS 06 Right pallet to home motor command
DS 07 Left pallet to home motor command
DS 08 Reset command button
DS 09 Right guard switch
DS 10 Left guard switch
AN 1 Analogue 1 - vertical axis motor current
AN 2 Analogue 2 - right pallet motor current
AN 3 Analogue 3 - left pallet motor current
T004 Emergency stop event
T025 Vertical axis motor over current
T026 Vertical axis motor under current
T036 Right pallet motor over current
T038 Right pallet motor under current
T044 Left pallet motor over current
T046 Left pallet under current
P001 Left process cycle watch
P002 Right cycle process watch
P003 Left guard operation watch
P004 Right guard operation watch
P023 Analogue 2 acquisition trigger - right pallet to centre
P024 Analogue 3 acquisition trigger - left pallet to centre
P025 Analogue 1 acquisition trigger - down command
P026 Analogue 1 acquisition trigger - up command
P027 Analogue 2 acquisition trigger - right pallet to home
P028 Analogue 3 acquisition trigger - left pallet to home
P200 Last timeout enabled place

182

Chapter 8 - Press Rig Monitoring Task

START) P000

^ ,D S 01

TOO!

P20I

T003T002

P006P005.

P208P207

DS 09DS 10 DS 03

T007 T0091006 T008

P 2 IIP209

DS 09.DS 10 P010

T01IT012T010

P013

T014P001 P002
Right Cycle

POM

T 0I5
(F ig u r e 8 .6)(F ig u r e 8 .6)

P015
DS 06

T0I7T016

P217P216 P0I9P018
DS 09DS 10

DS 06

-TO 18 LEFT TO T019
. P021
' DS 09,

P020 T021T020

■DS 10

T022
T023

P2IP205

T028 T029

(F ig u r e 8 .6)

Figure 8.3: Press rig operation Petri-net.

The process Petri-net design was divided into blocks, each considering specific

monitoring requirements. The main block, shown in Figure 8.3, follows the general

operation of the process. Describing this part of the Petri-net, transition T001

initialises several components, since “emergency stop” has not been activated. Places

P201 and P202 represent the “ready state” of each process pallet. These places

provide input conditions that enable, respectively, the “left” and “right” parts of the

183

Chapter 8 - Press Rig Monitoring Task

process. These events are defined by transitions T002 (left) and T003 (right) and will

be triggered by the motors’ commands (DS 04 - left and DS 03 - right). The firing of

these transitions will result in a “moving to centre” state, identified by tokens in

places P005 and P006. The PLC was programmed to restart process operation if the

guard is opened while the respective pallet is moving. Therefore, the branch formed

by P207 (P208), T006 (T009), P209 (P211) and TO 10 (T011) was required to enable

initial conditions to be restored in such case. The end of the pallet movement will fire

transition T007 (left) or T008 (right) and put a token in P010, indicating that the pallet

was positioned.

At this point, a single branch represents the operation of the vertical axis and press

forming operation, between transitions TO 12 and TO 15. This is finished when a token

reaches P015. The respective pallet will return to its home position, which will be

followed by T020 (left) and T021 (right). Again, the guards will be monitored by

T018 / T022 (left) and TO 19 / T023 (right).

Places P001 and P002 were included in order to enable each pallet processing cycle

time to be monitored. To do so, these places were defined in the “process states”

table, thus providing records identifying the beginning and end of these states.

RESET
ON

STOP
ON

WAIT

T004

EMERGENCY
STOP

Restart

Figure 8.4: Emergency stop monitoring branch,

184

Chapter 8 - Press Rig Monitoring Task

The action of pressing the “emergency stop” was implemented in a Petri-net branch

shown in Figure 8.4. Transition T004 firing will result in a “fired transition record”.

The “reset” command will fire T005 and “restart” the Petri-net execution.

Since considering that loading/unloading operation time might be used as an

efficiency measurement in a real process, the operation of the pallets’ guards will be

monitored by a specific Petri-net branch, shown in Figure 8.5. Places P003 and P004

will provide records notifying the beginning and ending of these operations.

Left Guard

OPEN

P230

/ - s D S l O |

T057

P 0 0 3 ^ \ Left
open

CLOSED
/ - n DS 10 J

T058

Right Guard

DS 09

T059

P004

DS 09/^n

n 0
T060

OPEN

CLOSED

Figure 8.5: Guard operation monitoring branch.

Considering that a measure of process efficiency might be required, one of the Petri-

net’s implemented branches was set up to monitor “processing time”, “available time”

and “stopped time”. It is shown in Figure 8.6. A “process-stopped” condition was

associated with the Rig stop switch, resulting in a token in place P008. The

“processing” status will be provided by P001 (left cycle) and P002 (right cycle) and

will result in a token in P009. The absence of any of the previous conditions will

result in a token in P007, indicating “process availability”. Such parameters might be

employed as a basis for the calculation of process assessment indices, such as Overall

Equipment Efficiency (OEE) [8.2].

185

Chapter 8 - Press Rig Monitoring Task

Available

P007
DS 01, STOP ON

T051 T052T050

I T053 -----

Stopped I

STOP OFF
STOP ON

DSOK*
(Fig. 8.3)

(Fig. 8.3)

Processing

T055 T056

Figure 8.6: Equipment usage monitoring.

Individual Petri-net branches monitored the 3 DC motors. Figure 8.7 shows one of

these branches, associated with the vertical axis motor. Two “analogue transitions”

were introduced to monitor extreme operating conditions. By doing this T025 and

T026 were able to transmit a “transition record” associated with these conditions. To

avoid false alarms, due to initial transients during the motor switching-on, a delay was

introduced by means of T024. The average motor current during each operation will

be “watched” by P025 (down) and P026 (up), which will trigger the acquisition of

analogue input 1. Similar structures were implemented for the right and left pallet

motors. In these cases, based on Figure 8.7, T044 (left) / T036 (right) will play

equivalence to T025 and T046 (left) / T038 (right) to T026. Places P024 / P028 will

trigger analogue input 3 acquisition (left motor current) and P023 / P027 analogue

input 2 (right motor current). Monitoring such parameters during process operation

might help to identify critical or degradation conditions of these specific components.

186

Chapter 8 - Press Rig Monitoring Task

C e n tr a l M o to r

P2I0.

DS 02
T030

P222

JT024
W atch cen tra l ̂ ̂P025

P223

T025

, , r ®
■ ■ ■ ■ ■ ■ 0 .25V

T026T027

P224

,DS 02

T031

P226
DS 05

T032

P026.
DS 05 '

T033

Figure 8.7: DC motor monitoring net.

The Petri-net implementation required 56 places and 61 transitions. Ten process

signals were interfaced, requiring 2 digital input cards. Also, 3 analogue inputs were

used to monitor the motors current. The text files that describe this Petri-net

implementation tables can be found listed in Appendix B (B.l, B.l 1 and B.12). Some

results of the implementation will be presented in the following section.

8.4 - Monitoring Results

A structure composed of one Monitoring Module (with 2 digital input cards), a

Connectivity Module and a Management Application was deployed to monitor the

Press Rig operation. The Management Application was executed on a desktop

computer. The monitoring records were stored in a database based on a Microsoft

187

Chapter 8 - Press Rig Monitoring Task

SQL 2000 Server ® DBMS, hosted by the IPMM Centre server. The same hardware

also hosts the Centre Internet’s server, which is based on Microsoft’s Internet

Information Server®.

8.4.1 - Data presentation Approach

To present the data and information retrieved from the monitoring records, the IPMM

Centre web based presentation approach [8.3] was employed. In simple terms, the

Centre web page provides a collection of hyperlinks, each one connecting to a specific

presentation task. The task is defined in terms of the display format (graphs or data

table) and an SQL statement to select and assemble the data in a way that can provide

meaningful information. The web page is periodically refreshed. Examples of such

web pages are referenced in Appendix B (B .l8 [11]).

The embedded tools of the database system (triggers and procedures) [8.4] were

employed to further process the monitoring data, whenever required. Such processing

represents a simple and direct way to extract information or join the data in new

tables, therefore enhancing the web based presentation method.

PressRigStates

DESCRIPTION

Processing right cycle
Left guard open

Figure 8.8: Process online status information example.

8.4.2 - Monitoring Presentation Examples

It was stated in Section 8.3 above that places P001, P002, P003 and P004 were

defined in order to provide process status information, based on beginning / ending

records. Figure 8.8 shows an example of such status information displayed on the web

page. In the example shown it is the right cycle that is being processed, while at the

188

Chapter 8 - Press Rig Monitoring Task

same time the left guard is kept open. An improved use of such a feature could be a

graphic display of a process, with online updates of the machine / process operation.

In another example, shown in Figure 8.9, the latest process operation records were

displayed. Each record is provided with a description, timestamp and when

appropriate, an additional parameter (e.g. timeout record). This information is

retrieved from the system’s Event Table {prefix_EW\ with the description provided in

an externally defined database table. The events were sorted and associated with their

description by a database procedure that is called each time the web page is refreshed.

The example shows a transition (T004) that was fired when the rig’s “emergency

stop” was pressed; a fired transition (T025) due to an over current condition of the

vertical axis motor (Figure 8.7); and 4 timeout events (P001, P006, P018 and P005).

Timeout events provide further information in the “EventRecord” field, indicating the

parameter (in seconds) associated to the event.

PressEvents

Description TimeRecord EventRecord

T 004 - Emergency stop 2003-08-21T 10:26:42
P001 Timeout - left cycle 2003-08-21T10:26:09 122
T 025 - Central m otor over curren 2003-08-21T 10:24:56
POOS Timeout - Right pallet to ce 2003-08-14 T 2 1:49:35 43
P018 Timeout - Left pallet to hoi 2003-08-14T 21:27:59 45
P005 Timeout - Left pallet to cer 2003-04- 17T15:46:01 45

Figure 8.9: Process list of latest events.

Places P001 and P002 records were again used to present process productivity

information, shown in Figure 8.10. In this example a bar graph was employed to show

the number of cycles processed using the left (P001) and right (P002) pallets. The

system’s States Database Table {prefix_ST) was queried to retrieve this information,

directly manipulated by the web page defined SQL statement.

189

Chapter 8 - Press Rig Monitoring Task

PIC-PressRig-Cycles

Transition 1 (left pallet) - 230 cycles
Transition 2 (right pallet) - 117 cycles

Figure 8.10: Number of cycle processed by the left (1) and right (2) hand pallets.

PIC-PressRig-Usage

9013 sec. (available)

m m \ s 1423 sec. (stopped)

u m \9 5069 sec. (processing) |

Figure 8.11: Press rig online operating time (s) information - available (7),

stopped (8) and processing (9).

Using a similar approach, further productivity information was presented (Figure

8.11) based on monitored data provided by places P007 (process available), P008

(process stopped) and P009 (processing) active states recorded by the system’s Petri-

net branch previously described (Figure 8.6). In Figure 8.11, besides the graphical

190

Chapter 8 - Press Rig Monitoring Task

representation, absolute values in terms of the time (seconds) associated with each

state are shown by the place number (7, 8 and 9). In a real manufacturing application

such information could be integrated within other systems (i.e. production

management systems) and thus further process assessment information might be

provided (e.g. OEE).

A fault was introduced during the operation of the Press Rig, by interrupting the

current supply of the central axis motor, while in the “pressing process” state (Figure

8.3, P013). Since executing a left hand cycle, such fault condition resulted in a

timeout event associated to place P001 (Figure 8.9). In order to illustrate the fault

diagnostics implementation, an analysis request having P001 as a symptom was sent

to the Monitoring Module. The result of the diagnostics performed is shown in Figure

8.12. It indicates that three transitions might be related to the fault source: T054, T003

and TO 14.

PressRigFault

Even:Description SourceDescription |

54-Stopped Emergency stop
3-Right process Right to centre cmd
14-Moving up Up command

Figure 8.12: Result of a fault analysis, based on a P001 timeout event.

Analysing this result, P001 is the input place of T028 (Figure 8.3) and T050 (Figure

8.6). Clearly, the timeout event occurred due to T028 failing to fire. However, T050

was taken into consideration, with the Petri-net analysis tracking P007, T053, P008

and finally reaching T054, which was enabled by P009, but missing DS01. With

respect to T028, the analysis performed by the Monitoring System followed the way

back from P205, finding two transitions, T003 and TO 14, enabled by their respective

input places (P013 and P202), but missing the process signals linked to them (DS03

and DS05). Since the left cycle was executing, T003 / DS03 could not be the source

of the fault. This result was due to P015, common to both cycles. Such information

provided by the system could then be employed by operators and experts.

191

Chapter 8 - Press Rig Monitoring Task

The result obtained shows the system capability in isolating an operational fault based

on an initial symptom. It must be considered that at the same time the diagnostics

analysis was performed, there were other places with tokens (P203, P230 and P231).

Nevertheless, the transitions enabled by them were not listed in the fault diagnostics

result.

MotorsCurrent(mA)

Place 23 - right motor
Place 24 - left motor
Place 25 - vertical axis motor

Figure 8.13: DC motors current measurement, using Petri-net places acquisition

trigger approach - right (23), left (24) and vertical axis (25) motors.

In a last example, Figure 8.13 shows the behaviour of the 3 DC motors in terms of

average current (mA). Such parameters were provided by using the Petri-net places

triggering feature to undertake the motors’ current acquisition under operating

conditions (Section 8.3, Figure 8.7). Place P023 was associated with the right pallet,

P024 with the left and P025 with the vertical axis movement. The results presented in

Figure 8.13 show that the vertical axis motor operates at a higher current condition

(415.44 mA), that is close to the specification limit (493 mA). This result is in tune

with the event recorded by the analogue transition T025 (Figure 8.9), which

previously recorded a peak over current condition. In this case the fact is that this

motor is “working harder” than the other two, since it is lifting the bed. The bar graph

was built considering the average of several measurements recorded in the database.

For simplification reasons, only one movement direction was considered for each

case.

192

Chapter 8 - Press Rig Monitoring Task

It is possible to see how the system can be used to monitor changes in behaviour from

“normal” to “abnormal”. There might be two approaches to consider here. In the first

(and simplest) one, the event produced by the “analogue transition” (T025) could be

used to produce an alarm, either locally by means of an “output transition” or by

detecting such critical event when recorded in the database. From the database it

could then be used by another application to request further actions (maintenance). As

a simple instance, specific users might be notified by means of e-mails about such

critical events. The second approach could be to follow the motors current, based on

the records provided each time these devices are operated, thus making it possible to

establish preventive actions based on the degradation of the motors condition.

8.5 - Summary

In this chapter it was explored an example that enabled to illustrate the use of the

System to monitor the Press Rig. A dynamic illustration of this example is referenced

in Appendix B (B .l8 [12]). Besides the use of basic modelling structures, it was

shown the employment of analogue and delay transitions. Specific places were

selected to provide the usage of the Rig and to monitor the motors current. The

example also allowed to demonstrate the fault diagnostics approach, used to isolate a

fault whose symptom was provided by a timeout event.

It was shown the wide range of different information that can be obtained from the

records provided by the Monitoring System. By making these records available on an

open and easy to interface platform such as a database system, different applications

might use such data in order to improve management capabilities. The easy way in

which the information can be made available on the Internet opens opportunities for

process and machine remote monitoring. In the next chapter another example is

presented, further focusing on productivity data and exploring some other aspects of

the system that were not used in this first case.

193

Chapter 8 - Press Rig Monitoring Task

REFERENCES

8.1 RS Components Ltd, RS Electrical Products, RS Web Site, Available from:

http://rswww.com [Accessed 14 August 2003].

8.2 Willmott, P. Total Productive Maintenance: The Western Way, Oxford,

Butterworth-Heinemann, 1994.

8.3 Kerrien, B. To Develop User Configurable, Dynamic Web Pages for Presenting

Real-time Process and machine Condition Information for manufacturing

Processes. Academic Report, Cardiff University, August 2002.

8.4 Vieira, R. SQL Server 2000 Programming. Birmingham, UK: Wrox Press Ltd,

2000 .

194

http://rswww.com

Chapter 9 - Conveyor Rig Monitoring Task

CHAPTER 9

CONVEYOR RIG MONITORING TASK

9.1 - Introduction

One of the purposes of a monitoring system is to support modem maintenance

practices, by helping to establish machine performance parameters. Continuous flow

manufacturing systems have to consider the overall efficiency of the process, where

best results are achieved when all components operate at optimal conditions. This

chapter presents the use of the Petri-net based implementation to monitor and manage

such manufacturing systems using as an example process a laboratory rig, called the

“Conveyor Rig”. The work is especially focused on providing information to analyse

the performance of the process. Although not representing a real manufacturing

application, this work demonstrates the capabilities of the developments previously

outlined in this thesis.

9.2 - Process Description

The Conveyor Rig is an “Industrial Control Trainer” developed by Bytronic

International Ltd. It emulates a continuous flow manufacturing system. The basic

operation assembles components that are individually fed into the system and assesses

the quality of the end product in order to detect and reject parts that do not comply

with the established standard. In summary, the process operation, taking the notations

used in Figure 9.1, can be described as: metal pegs (2) and plastic rings (4) are placed

on the system’s input chain (1) and sequentially detected by a sensor (3). When

arriving at the “sort area” (5), the components are classified: plastic rings will be

forced into a “ring queue” (8), whereas metallic pegs continue on the chain, reaching

the “slide” (7) that leads them towards the output conveyor. It is possible for the ring

queue to become full (the maximum number of rings is 6). In this case, additional

plastic rings arriving at the sort area will not be diverted into the queue by the

195

Chapter 9 - Conveyor Rig Monitoring Task

solenoid-sorting device but will remain on the chain and be rejected into the plastic

rings “reprocess” area (6).

1 - Input / loading
2 - Metallic peg
3 - Input sensor
4 - Plastic ring
5 - Sorting area (metal/plastic sensing)
6 - Plastic rings reprocess

7 - Sorted pegs path
8 - Plastic rings queuing
9 - Assembly area

10 - Metal sensing (output conveyor)
11 - Plastic assembled sensing
12 - Reject area

Figure 9.1: Conveyor Rig photo with main details.

Rings and pegs are assembled to form a single part in the “assembly area” (9), on the

lower conveyor. An actuator, in the form of a “rotate gate”, allows one ring each time

to roll into the assembly position. A peg on the output conveyor moving through the

assembly area will enter into the ring and drag it out of its pre-assembly location,

forming a single mounted unit.

The operation so far described should result in a good assembly, with a ring mounted

on top of a peg. It is possible however (for several reasons) that the assembly will be a

bad one, with rings and/or pegs moving unassembled on the lower conveyor. A faulty

196

Chapter 9 - Conveyor Rig Monitoring Task

assembly operation may be due to a missing ring in the assembly position (empty

queue) or to the ring dropping off from the peg or keeling over in the assembly area.

In order to check the assembly operation, sensors are deployed along the output

conveyor. At the “metal checking area” (10), passing parts are sensed to detect the

peg component. At the next “assembly quality” checking point (11), a capacitive

sensor is employed to detect whether or not the ring was correctly assembled on the

peg. Finally, at a “reject station”, near the output (12) a sensor and actuator are

deployed in order to provide the means to reject faulty parts. Due to the process

dynamics, components on the output conveyor may move very close to each other

(without enough gap) or be positioned out of the sensing range, “confusing” the

system’s PLC programmed logic (as supplied) and resulting, in some cases, in

wrongly rejected parts.

9.2.1 - Conveyor Rig Component Description

The Conveyor Rig operation is controlled by a Siemens S5-95U PLC. Reflective

sensors are deployed in areas where a general part detecting method is required

(Figure 9.1 - 3, 5, 6, 9, 11 and 12). Metal detection is based on proximity (inductive)

sensors (Figure 9 .1 - 5 and 10). Other sensors employed are a pass-through beam (10)

for moving parts and a capacitive sensor (11) to sense mounted rings. Solenoid based

actuators are used in areas where components are required to be moved or removed

(5, 9 and 12). Two separate DC motors provide the input chain and output conveyor

movement.

The equipment manufacturer uses specific electronics to interface sensors and

actuators to the PLC’s inputs/outputs. The DC motor drivers were also provided by

separate electronics. Mechanical switches are employed to start/stop these motors.

9.2.2 - Monitoring Task Analysis

The main purpose in monitoring the Conveyor Rig was to obtain information that

would enable productivity and efficiency analysis. It was therefore required to design

a Petri-net capable of providing the number of parts produced and those rejected or

197

Chapter 9 - Conveyor Rig Monitoring Task

reprocessed. At the same time, the actual use of the assembly system was considered a

requirement in order to establish efficiency parameters.

The Petri-net implementation considered the existing process signals, which are

summarised in Table 9.1. However, two signals considered of importance to measure

the process usage had to be added. A “process stopped” (unexpected stop) condition

was obtained from the DC motors supply line. To implement this a low-pass filter

interface was necessary. The second condition, a “programmed stop”, was

implemented as a sub-net input using the Microchip CAN MCP2510 Development

Kit module to issue this command. In reality another digital input could have been

used for this purpose. However, it was deemed to be a good opportunity to illustrate

the use of a sub-net input in the Petri-net design. The MCP2510 development kit

enables the assembly of the sub-net message and its transmission on the CAN bus,

thus emulating a Monitoring Module function. In this case, it is used to enable the

recording of an actual unexpected stop as a “programmed stop”.

Table 9.1: Conveyor Rig signals description.

Description Signal Source State

1 Motor command Mechanical switch On - 12 V
2 Part on chain (input) Reflective sensor On - 24 V
3 Part in sort area Reflective sensor On - 24 V
4 Metal in sort area Inductive sensor On - 24 V
5 Ring queuing actuator - sort area Solenoid actuator On - 24 V
6 Ring reprocess detect Reflective sensor On - 24 V
7 Ring in assembly area Reflective sensor On - 24 V
8 Ring loading actuator - assembly area Solenoid actuator On - 24 V
9 Metal sensing on belt Inductive sensor On - 24 V
10 Moving part at metal sensing area Pass through beam On - 24 V
11 Assembled part sensing Capacitive sensor On - 24 V
12 Part at capacitive sensing area Reflective sensor On - 24 V
13 Part at reject area Reflective sensor On - 24 V
14 Part reject actuator (output) Solenoid actuator On - 24 V

9.3 - Conveyor Rig Petri-net

Table 9.2 shows the Rig signals assigned to the Monitoring Module and their

associated Petri-net definitions. This information was required to achieve the desired

198

Chapter 9 - Conveyor Rig Monitoring Task

level of detail to meet the monitoring aims. Production outputs are classified by the

manufacturing system (Conveyor Rig). This classification is associated to actions

(accept or reject parts and reprocess rings). Such actions can be characterised as

events (good detected, bad rejected) and therefore naturally represented as transitions

in the Petri-net design. Transitions were also used to represent events resulting from

the manufacturing system making wrong decisions (wrongly rejected or accepted).

Table 9.2: Conveyor Rig Petri-net definitions.

Representation Description

DS 01 Object on chain sensor
DS 02 Part sensor - sort area
DS 03 Metal sensor - sort area
DS 04 Rotate gate actuator - ring to assembly position
DS 05 Plastic ring reprocess sensor
DS 06 Ring in assembly position sensor
DS 07 Inductive sensor - metal on belt
DS 08 Beam sensor - part moving on belt
DS 09 Part sensor - capacitive sensing area
DS 10 Capacitive sensor
DS 1 1 Part sensor - reject area
DS 12 Reject actuator
DS 13 Chain DC motor command
T009 Plastic ring reprocess detect
T028 Rejected part
T029 Failed to reject a out o f standard part
TOO Good part wrongly rejected
T031 Good part assembled and accepted
T035 Excessive number of continuous good parts rejected
P028 Process stopped - motors command o ff
P029 System processing - assembly in operation
P030 Process available - operating but not assembling
P031 Programmed stop - external command
P200 Last timed out place

The process usage measurement was based on the time consumed by each of the

operating states (available, processing/assembling, stopped and programmed stop). To

provide such parameters, Petri-net specific places were selected and associated to

these states and configured to provide status information (beginning / ending records).

The timeout feature was disabled for those places with an identification number

higher than 200. Similarly as stated in Chapter 8, this value was selected simply to

provide a barrier to isolate places enabled to timeout from those that are not.

199

Chapter 9 - Conveyor Rig Monitoring Task

Start P000

T001

P201
Figure 9.3
Figure 9.3

DSOl Obj.
on chain

T002
Figure 9.3
Figure 9.3
Figure 9.3
Figure 9.5
Figure 9.5
Figure 9.4
Figure 9.4
Figure 9.4
Figure 9.6

P001
DSOl Obj.

on chain
T003

P229.

P002

DS03,DS02DS03,»S02
Figure 9.6

Sort T004 Metal
detect

Sort T005Figure 9.6
Figure 9.6 P004

003
.DS02DS03/.DS02

i r T006

T007
'202

■j U |(Figure 9.6)(Figure 9.6)

r O P005P006I Delay Isv

T064P203

P204..P205 JDS04DS07,DS05

T008T010 Rotative
gate

TOO 9Plastic
reject

Inductive
(P007P009P008 DS07 .DS04

,DS05

T011T013
T012

P010
DS06

T014Assembly
area P011 Plastic

loadedDS06

T015(Figure 9.3) [X(Figure 9.3)

Figure 9.2: Rig operation Petri-net - load and sorting.

The monitoring task was divided into blocks accordingly the part/function of the

process by them monitored. This sort of flexibility provided by the model eases

considerably the development of monitoring applications. The Petri-net representing

200

Chapter 9 - Conveyor Rig Monitoring Task

the Rig operation was split into two in order to simplify its description, as shown in

Figure 9.2 and Figure 9.3. The first of these figures shows the Petri-net designed for

the monitoring of the feeding and sorting of pegs and rings. Figure 9.3 thus

concentrates on monitoring the assembly and output checking actions.

In Figure 9.2, transition T001 is initially fired, enabling the initiation of several

structures in the net. A token in place P201 enables the Petri-net to begin to monitor

the components loaded on the input chain. The on/off states of DSOl result in tokens

in P002, indicating a part moving toward the sorting area, while also re-enabling T002

for the next loaded component. When a component reaches the sorting area, T004 will

detect it as a peg, whereas plastic rings will be detected by T005. The firing of either

T004 or T005 will remove the token from P229, therefore avoiding multiple firing of

these transitions, due to components “queued” in P002. Transitions T004 and T005

will only be enabled again after the component in the sorting area has left. A further

delay of 1 s was introduced by means of a “delay transition” (T064), in order to avoid

assembly components mismatch, thus insuring that the former part has already left the

sorting area before checking the next one.

The information relating to component queues will be held by P005 (rings) and P006

(pegs). The existence of tokens in theses places will be further used to identify the

process operating states (T and U), which will be considered later. Reprocessed rings

will be monitored by the net represented by elements P203, T009, P008 and TO 12. In

terms of the Petri-net execution, a token will be removed from the ring queue (P005)

each time T009 is enabled by DS05 (reprocess). Rings placed in the assembly position

will fire T008, thus removing a token from the rings queue (P005). A ring in the

assembly position will be indicated by a token in P011 (TO 14 fired). The use of this

ring will be indicated by T015 being fired and P012 (Figure 9.3) receiving a token.

Tokens in P006 (pegs) will be removed, one each time, when the inductive sensor

(DS07) senses a peg moving on the output conveyor, thus firing TO 10. This results in

another token in P012 (Figure 9.3).

Figure 9.3 shows the Petri-net elements that monitor the assessment of the parts

flowing on the output conveyor. In order to ease the monitoring task, due to faulty

events at the assembly area (Section 9.2), pegs and rings will result in tokens in a

201

Chapter 9 - Conveyor Rig Monitoring Task

common place (P012). A part arriving at the capacitive sensing area will fire TO 16,

removing a token from P012. A second token may be removed by T017, if enabled by

the capacitive sensor (DS10). A correctly assembled part will produce a token in P016

and another in P017.

P0I2

P206,

DS09
r CA

HO 14

U o -

. Capac
detect area 11*207

T016

P013.
T017 Capac.

T018
P015I

T019

P016 (P017

T021T020

P019P018I P208

T022 T023

(P020 P021P209

T025T024

P022 P023I

DS11
P21

Reject Reject
T026 T027

RejectReject
actuator P025.P024

D S U /-N J D S lV ~ v D S l l /^
^ T 030u | ^

Wrongly
reject

T028 T029Reject Failed
reject

Good

(Figure 9.4) | V | | Z | (Figure 9.4)

P026 P027

T033

Figure 9.3: Rig operation Petri-net - assembly and checking.

202

Chapter 9 - Conveyor Rig Monitoring Task

Considering that a token in POM will be removed by TO 17 firing, a “good” part

results in T021 being fired, while a “faulty” part will fire T020. Transitions

T022/T023 and T024/T025 were required to implement an “output queue”. The firing

of T026 indicates a faulty part arriving at the reject area, thus providing two

hypotheses: refusing the part (T028) or failing to refuse (T029). A well-assembled

part will imply in T027 being fired and again leading to two hypotheses: correctly

accepting a good part (T031) or wrongly rejecting it (T030).

This relatively simple assembly process is revealed by the above analysis to in fact be

rather complicated. Conventional control systems, such as the PLC used to manage

this activity, struggle to cope with the variations possible. One of the significant

benefits of the monitoring approach developed by this research is the ability of the

deployed system to be able to accurately follow the process.

The four transitions (T028, T029, T030 and T031) were enabled to transmit a record

when fired, thus allowing the monitoring of the number of good, faulty, rejected and

wrongly rejected parts. This illustrates the potential that exists within the system to

provide simple, accurate and user-friendly information. These “pseudo-transitions”

can be created to mimic the operation of the system as required.

Good
part

Wrong
■ reject

P211

P212 T

r * 0
P215P214

T034tr T035 y
T036

P216

t T037

Figure 9.4: Output transition to alarm excessive wrong rejects.

203

Chapter 9 - Conveyor Rig Monitoring Task

The firing of transition T030 and T031 generates further tokens employed in a Petri-

net branch implemented to control the excessive number of “wrongly rejected” parts.

This is shown in Figure 9.4. The implementation considers that if a sequence of 3 (4

in the worse case) wrongly rejected parts are detected, transition T035 will fire,

consequently resulting in the “output transition” T037 being fired and an output

indicating that this fault sequence has arisen may be provided. This is important since

a sequence of wrongly rejected parts may indicate that the Rig’s control system has

lost synchronisation. A real-time local alarm, such as is provided here, would prevent

excessive waste.

P217,

DS13M otor
off

T038
P218

P219.

- 2

T061T039
P 0 2 8 - v Stopped

P220
DS13

M otor
on T043

Delay 60sC
1040

P221. SN001

,DS13
T062

Program m ed
stop (

/^ \D S 1 3

M otor
on T041 T042

P031

T063

Figure 9.5: Stop and programmed stop implementation.

Four operating states were monitored by the Petri-net: unscheduled stop (P028),

programmed stop (P031), available (P030) and processing (P029). Figure 9.5 shows

the net branch implemented to monitor the states associated to P028 and P031. A

204

Chapter 9 - Conveyor Rig Monitoring Task

“stopped” condition is detected when the conveyor motor is switched off (DS13), thus

firing T038 and placing a token in P028. Place P219 also receives a token, enabling

T039 to fire. A “delay transition” T040 was included with the purpose of restarting

P028 every 60 seconds and thus transmitting a record to the database. The process

may be restarted and stopped while the delay is running. Transition T061 was

therefore required to avoid multiple tokens in P219 and consequently unwanted cycles

being processed. A stop state may be ended by the motor switching on (T043) or by a

“programmed stop”, initiated by firing T062. A “programmed stop” is used to

simulate activities such as planned maintenance or repair, where some pre-determined

action is being undertaken. This is done by means of a sub-net signal (SN001),

emulated from another CAN node (Development Kit). Transition T063 ends the

programmed stop by removing a token from P031 when the motor switches on.

The other two possible operating conditions, “processing” (P029) and “available”

(P030) were implemented in the Petri-net branch shown in Figure 9.6. A common

characteristic of these states is that the motor (DS13) must be on. Thus, T050 and

T058 are required to clear these places when the motor is switched off. For

simplification reasons, it was assumed that the Rig is in the “processing” state when

there are at least one peg and one ring in each queue (after sorting). This condition

will be provided by T006 and T007 (Figure 9.2) and will result in T045 being fired.

Transitions T046/T052 ensure that rings that were reprocessed will not be considered.

Similarly, T044/T051 will remove from the queue pegs that do not have a matching

ring. The components that were already assigned to their pairs will be held in P029. A

process stop will move these tokens back to P226, representing a memory feature.

Through T057, the condition can change from “available” to “processing”. The

implementation hierarchy will ensure that as long as there are tokens in P029

(processing), T055 will not be enabled to fire. Such state change only happens after

the last available pair (peg and ring) crosses the beam sensor (DS08).

The different states resulting from the operation of the Conveyor Rig represent an

added level of complexity for the modelling task. However, the flexibility represented

by the Petri-net approach enables such an implementation, although requiring some

engineering effort. It required 77 places, 62 transitions and (by choice) one sub-net.

Two digital input cards were deployed to interface the 13 process signals. The text

205

Chapter 9 - Conveyor Rig Monitoring Task

files required for this Petri-net implementation can be found listed in Appendix B

(B.l 7 [4, 5, 6]). The next section will consider the use of these monitoring events to

produce and manage process and performance information.

M etal
detect

Plastic
detect

P225P222 P224 P223

DS07 DS05,

T046TO 44 T045 Plastic
reprocInd uctive

•226
)P227 P228DS07 DS05DS13

Motor
on T052T051 T047

P029 Operating
M otor

off

T050 P231

T060
P233

P236,

DS07 DS13/

M otor
onT053 T055Inductive

JP030
P232

Available,DS07 DS13

V T054 v v T057Motor
off T058

P234 '235
.DS13DS08O utput ^

Motor
T059T056

Figure 9.6: Available and processing operating states Petri-net.

9.4 - Monitoring Results

In order to present the results of the monitoring task, the web page approach

introduced in Chapter 8 was again employed. This allowed the provision of online

information from the process. A first example is shown in Figure 9.7, where a list of

206

Chapter 9 - Conveyor Rig Monitoring Task

the latest events recorded by the monitoring system are displayed. The first record

(T030 - Wrongly rejected) shows that transition T030 in Figure 9.3 was fired,

indicating that the manufacturing system made a wrong decision, rejecting a good

part. The Monitoring System was capable of detecting such a mistake. The record

could be further used to provide process statistics or to request intervention (based on

other management applications). A timeout at P011 revealed that a ring was

positioned in the assembly area longer than usual, suggesting that components might

have been loaded in an irregular sequence (more rings than pegs).

C on veyorE vents

Description TimeRecord EventRecord

T 030 - W rongly rejected 2003-08-21T 13:46:57
P 0 1 1 - Excessive wait time in assc 2003-08-21T 13:44:21 16
TQ35 - Excessive good parts rejec 2003-08-2IT 13:42:51
T 029 - Failed to reject 2003-08-21T 13:41:26
T 009 - Plastic ring reprocess 2003-08-21T 13:05:33

Figure 9.7: Conveyor rig monitored events displayed on a web page.

As previously described, a control mechanism was modelled to detect an excessive

number of wrongly rejected parts (Figure 9.4). The record “T035 - Excessive good

parts rejected” in Figure 9.7 is an example of such event, meaning that at least 3 well

assembled parts were continuously rejected by the Conveyor Rig control system and

that such mistake was caught by the Monitoring System. A consequence of T035

firing would be the “output transition” T037 (Figure 9.4) producing a local alarm.

This reinforces the modelling flexibility allowed by Petri-nets. In a similar way, T029

(Figure 9.3) was deployed to monitor unassembled parts (poor quality) missed by the

Conveyor Rig control system. Such an event is show in Figure 9.7 by means of the

record “T029 - Failed to Reject”. Finally, the last record shown in Figure 9.7

indicates that a plastic ring could not be queued (reprocessed). This was provided by

transition T009 (Figure 9.2), which monitors the number of plastic rings that were not

inserted in the queue due to lack of an empty slot. It can represent an important

management information, since rings were loaded in a higher number (compared with

pegs). This can affect process efficiency, since it may result in an irregular output.

207

Chapter 9 - Conveyor Rig Monitoring Task

PIC-ConveyorOutput

9. 25 rings reprocessed

28:101 bad produced parts

29:3 bad accepted parts

30: 92 wrongly rejected parts

31: 902 well assembled parts

Figure 9.8: Conveyor Rig production statistics provided by the M onitoring

System and shown on the web page, indicating the num ber of “reprocessed

rings” (9), “bad parts output” (28), “bad accepted parts” (29), “wrongly

rejected” (30) and “well assembled parts” (31).

The records provided by the Petri-net transitions that monitored the Rig “production”

output (Figure 9.3) were employed to build a graph that can be displayed on the

IPMM web page, as shown in Figure 9.8. It can be seen that during the observation

time there were 25 reprocessed rings (T009), 101 parts rejected (T028), 3 bad parts

accepted (T029), 92 assembled parts wrongly rejected (T030) and 902 well-assembled

parts correctly accepted. This information was continuously updated on the web page,

in response to new records from the monitoring system. One interesting point here is

that a total of 95 parts (bad parts accepted and good parts rejected) were mis-managed

by the existing Rig controller (PLC) and that this, although easy to be observed by a

machine operator standing by, would remain undetected in the case of a fully

automated operation. This is a clear illustration of the advantages offered by the

deployment of the new system.

208

Chapter 9 - Conveyor Rig Monitoring Task

PlC-ConveyorUsage

28: 5054 sec, stopped

29: 4051 sec. available

|30: 5309 sec, assembling

31: 489 sec, program, stop

Figure 9.9: Conveyor Rig utilisation provided by the M onitoring System and

shown on the web page, indicating how long (in seconds) the process remained

“stopped” (28), “available” (29), “processing/assembling” (30) and in a

“programmed stop” (31) state.

Information related to the Rig’s utilisation was provided by places P028, P029, P030

and P031 (Figure 9.5 and Figures 9.6). The graph shown in Figure 9.9 represents an

example of the presentation of such information. It can be seen that for a total of 5054

seconds the process remained stopped (P028), 4051 seconds were expended running

the process without assembling components (P029), 5309 seconds were effectively

dedicated to assembling loaded components (P030) and 489 seconds were used by

programmed stoppages (P031). The information displayed was obtained by means of

a simple SQL statement that totalised each individual group and was called using the

IPMM’s web page based approach. Such simplicity is a result of the way in which the

Monitoring System provides the monitoring records.

The results shown might be further employed to assess the process in terms of OEE.

The bases of such assessment are availability, performance efficiency and quality

rates (OEE = Availability x Performance x Quality Rate) [9.1]. Just as an example

209

Chapter 9 - Conveyor Rig Monitoring Task

that assumed some simplifications due to the nature of the experiment, a database

procedure was used to calculate these parameters, considering a period represented by

the time elapsed during the actual date. The procedure that implemented these

calculations can be found in Appendix B (B. 15).

Availability is defined as the relation between the total available time and the process

down time (breakdown and set up), as it follows:

Availability = (TotalTime - DownTime) / TotalTime (eq. 9.1)

In the example here proposed, this parameter was obtained from the records provided

by places P028 (stopped), P029 (available) and P030 (assembling). Programmed

stoppages, recorded by P031 were excluded, since it was assumed that they represent

previously known conditions and thus should not be considered in the calculation of

the process availability. Therefore, in this example availability was obtained as:

Availability = (Tpo29 + Tpo3o) / (Tpo28 + Tpo29 + Tpo3o) (eq. 9.2)

Performance efficiency considers in its definition the ideal cycle time to produce a

part, the operating time (without down time) and the total output (good and defective

parts). In simple terms, it is represented as follows:

Performance = (IdealCycleTime x NumberOfOutputs) / OperatingTime (eq 9.3)

Considering the purpose of this example, to show the variety of information produced

by the Monitoring System and its use, some simplifications were made. It was

assumed that the ideal cycle is the one associated with the beginning/ending records

produced by place P030 (assembling), effectively the time consumed to produce the

total output (IdealCycle = Tpo3o / TotalOutput). Thus, performance was here obtained

as it follows:

Performance = TP03o / (TP029 + TP03o) (eq. 9.4)

210

Chapter 9 - Conveyor Rig Monitoring Task

Quality rate is defined as the relation between the total produced and the defective

parts that resulted of the process operation and is represented as it follows:

Quality Rate = (TotalOutput - NumberOfDefects) / TotalOutput (eq 9.5)

The records produced by the Monitoring System enable to easily obtain such

parameters. In this particular example, the number of good parts produced is

automatically obtained from the records provided by transition T031. Similarly, the

defective parts can be obtained from the records produced by T028 (bad parts), T029

(bad accepted) and T030 (wrongly rejected). As a result, the quality rate of the

Conveyor Rig was calculated as it follows:

Quality Rate = Txo3i / (Tto28 + Tto29 + Tto30 + Tto3i) (eq. 9.6)

Process OEE (%)

ProcessID ActualOEE BestOEE

Cojive YorRig 32.37 60.68

Figure 9.10: Conveyor Rig OEE parameter shown on a web page.

An example of the OEE information displayed on the web page is shown in Figure

9.10. Figure 9.11 shows a comparison between OEE measurements obtained at

different periods, considering all individual components of the calculation. Since

aimed to illustrate the use of the system, the calculation was based on a period of 24

hours, starting at midnight. It must be considered that in a real manufacturing

application further information will be probably required. However, it can be seen that

the records provided by the Monitoring System can ease considerably such task and

help to provide important management parameters.

211

Chapter 9 - Conveyor Rig Monitoring Task

OEE Comparison (%)

TheDate AroilabJity Performance QualRate OEE |

200301/24 *9.12 37.53 38.04 16.23
200302/04 41.32 42.74 92.20 16.28
200302/16 33.60 29.60 92.02 22.77
200302/17 B3.03 12.29 76.61 7.82
200302/19 48.84 51.69 90.90 22.95
200302/20 69.82 60.72 92.81 39.35
200302/21 91.48 63.51 51.64 30.01

Figure 9.11: Conveyor Rig OEE comparison, considering individual components

of the calculation.

9.5 - Summary

In this chapter it was illustrated the use of the System to monitor an automated

manufacturing process, based on a laboratory equipment. A dynamic illustration of

this example is referenced in Appendix B (B.18 [12]). The example required a high

level of flexibility from the modelling approach in order to correctly model all the

complexity represented by the application and thus making it possible to detect

misjudgements (actions) performed by the equipment’s controller. Also, the use of a

sub-net approach was introduced. In using the System’s available resources, time

measurements of process specific operating states were obtained and thus showed the

capability of the System in helping to provide management information that would be

praised in many manufacturing environments.

Although the examples so far presented were based on the use of laboratory

equipment, they served to illustrate the modelling approach and the System’s

monitoring resources. The next chapter will present the use of the Monitoring System

to monitor a tool changer of a CNC machine centre, thus illustrating a real

manufacturing application.

212

Chapter 9 - Conveyor Rig Monitoring Task

REFERENCES

9.1 Willmott, P, Total Productive Maintenance: The Western Way, Oxford,

Butterworth-Heinemann, 1994.

213

Chapter 10 - Tool Changer Monitoring Task

CHAPTER 10

TOOL CHANGER MONITORING TASK

10.1 - Introduction

Two monitoring tasks, using laboratory rigs, were presented in the previous chapters.

These examples were presented to demonstrate the flexibility of the Petri-net based

monitoring method in modelling an application and its capability in providing online

information. This chapter will present the use of the Monitoring System in a real

manufacturing application.

In a previous investigation [10.1], it was shown that CNC machine centres were

affected by a number of disturbances that were originated by peripheral actions, with

the highest indices related to the tool changer. It is apparent that by monitoring the

sequence of events related with the operation of such devices, faults may be detected

and thus the downtime due to this sort of disturbance reduced. It should also be

possible to provide statistics based on the number of operations, helping to enhance

process efficiency. It was also intended that an indication of individual tool utilisation

and usage might be provided as an important input into a planned tool-life assessment

system.

The example provided in this chapter will illustrate the use of the Petri-net modelling

approach to monitor the operation of a tool changer of a milling machine, thus

enabling a demonstration of how the Petri-net based monitoring system is able to help

in achieving such benefits.

10.2 - Operation Description

The complex and engineered operations performed by a CNC machine require a set of

tools with different shapes and sizes. To allow the automatic selection of these tools,

214

Chapter 10 - Tool Changer Monitoring Task

from within the CNC cutting program commands, an automated tool changer is

required. Figure 10.1 shows the main elements of a tool changer that can be involved

in such an operation.

1 - Tool changer 4 - Clamped tool
2 - Carrousel 5 - Tool magazine
3 - Spindle 6 - Z axis direction

Figure 10.1: Details related with tool changing operation.

Referring to the details indicated in Figure 10.1, to perform a tool changing operation,

the spindle unit (3), which is located on the “Z axis” (6), is required to be at “zero

speed” (stopped) and in the “up position” (home). The spindle must be “orientated”

(i.e. at zero degrees), in order to align the clamped tool (4) with the holder in the tool

magazine (5). Once these conditions are satisfied, the tool changer unit (1) will be

215

Chapter 10 - Tool Changer Monitoring Task

moved forward, from the home (far left) to the front (changing) position. Once

engaged in the magazine holder, the tool will be ejected from the spindle. An air

blow-out jet based function is then activated to remove dust and residuals that may

tend to settle inside the clamping cavity. The whole tool changer unit will then be

moved down and the carrousel (2) rotated to position the tool requested in the CNC

program. Following the initial locating of the tool in the spindle, the tool changer will

be moved upwards, effectively engaging the selected tool in the spindle. The tool will

be clamped, the air blow-out stopped and tool changer unit moved back to its home

position. After this sequence, the machine will be ready to start the cutting operation.

When requested for the first time, a search operation is performed to reference (or

index) the carrousel to the tool number 1 (carrousel home position). The sequence of

operations here described can also be performed by manual command from the

machine’s controller panel.

10.2.1 - Component Description

This work was based on a Kondia machine tool, model B500P. This description will

only concentrate on the parts of the machine tool changer and their operation that are

of specific interest and the subject of the proposed monitoring task. This machine is

fitted with a GE-Fanuc Series O-M CNC controller, which allows automatic

(program) or manual control of the machine operation. This specific machine tool

changer magazine holds up to 18 tools.

In order to manage the sequence of events previously described, several sensors and

specific signal commands are required. A pneumatic system provides the tool

changer’s horizontal movement. This is controlled by a “feed forward” command.

Two of the deployed sensors will detect the “back” (home) and “front” (changing)

position. A similar system manages the vertical movement, with sensors to detect the

“up” and “down” position.

The carrousel operation is controlled by a pair of signals: the rotate command and

rotating direction. A sensor was provided to detect the initial (indexed) position. To

position a new selected tool the entire set of tools is moved around until it reaches the

tool-changing operation position. A single sensor is used to implement a counting

216

Chapter 10 - Tool Changer Monitoring Task

approach, generating a pulse each time a tool crosses the changing position. The

controller identifies the tool by counting the number of pulses relative the index (tool

1), taking into account the position where it is located before starting to rotate. The

shortest way to reach the new tool will be selected, an operation requiring incremental

and decrementing counting. A third sensor exists to detect whether or not a tool is

placed in the holder, when it is aligned with the carrousel changing position.

The tool changing operation will take place once the spindle is correctly positioned

and orientated. A sensor indicates that the “Z axis” is in the required changing

position. Further sensors detect when the tool is unclamped and clamped. Controller

commands provide signals for the “spindle orientation” (zero degree), “zero speed”

and “blow-out”.

The spindle rotation is provided by an AC motor, controlled by a servo device. The

maximum cutting speed delivered is of 6000 rpm. Two analogue outputs (0 ~ 10 V)

provide speed information and motor’s load current.

10.2.2 - Monitoring Task Analysis

The monitoring application considered the use of the existing process signals. Table

10.1 summarises the signals that were accessed for this implementation.

The Petri-net model was to be designed to follow the events related to the tool

changing operation, therefore providing real-time information to allow a fast recovery

in case of operational faults. In addition, in order to provide statistics related to the

tool usage, the implementation was also enhanced to provide a mean of indicating

how long each tool was effectively used. Similar functionality is provided by some

machine tool centres within the machine’s controller. However, by exploring the

Monitoring System’s capabilities, the potential for the development of the system into

one capable of better managing tool utilisation was further improved. This

improvement was based upon using the spindle driver analogue signals, the motor

load current and cutting speed parameters, which were used to provide more accurate

information about the cutting process being performed by the current cutting tool.

Considering such information can be made available via a database, further

217

Chapter 10 - Tool Changer Monitoring Task

manipulation and integration within production management systems might help to

improve quality and perhaps productivity.

Table 10.1: Tool changing operation signals description.

Description Signal Source State
1 Carrousel ON / OFF - command Relay O n - O V
2 Carrousel rotate clockwise - command Relay On - 0 V
3 Carrousel rotate counter clockwise - command Relay On - 24 V
4 Carrousel feed forward - command Relay O n - O V
5 Carrousel down - command Relay O n - O V
6 Unlock tool - command Relay O n - O V
7 Spindle orientation - command (pulse) Controller output On - 24 V
8 Spindle zero speed - command Controller output On - 24 V
9 Spindle blow-out - command Relay O n - O V
10 Carrousel indexed Proximity sensor On - 24 V
11 Tool counter Proximity sensor On - 24 V
12 Carrousel is forward (changing position) Proximity sensor On - 24 V
13 Carrousel is back (home position) Proximity sensor On - 24 V
14 Carrousel is up Proximity sensor On - 24 V
15 Carrousel is down Proximity sensor On - 24V
16 Tool in carrousel - changing position Proximity sensor On - 24V
17 l’ool is clamped Switch On - 24 V
18 Tool is unclamped Switch On - 24 V
19 Z axis at changing position Proximity sensor On - 24 V
20 Spindle motor load current Analogue 0 ~ 10 V
21 Spindle rotating speed Analogue 0 ~ 10 V

10.3 - Tool Changing Petri-net

The Petri-net was designed to monitor the tool changing operations and provide the

tool usage parameters. Table 10.2 shows the definitions employed in the

implementation. In considering the way the tool changing operation is carried out, the

Petri-net was divided in four branches, related to each other:

1) Tool selection and cutting process monitoring (Figure 10.2);

2) Z axis positioning and spindle orientation (Figure 10.3);

3) Tool changer horizontal movement (Figure 10.4);

4) Tool changing operation (Figure 10.5).

218

Chapter 10 - Tool Changer Monitoring Task

Table 10.2: Tool changing Petri-net’s definitions.

Representation Description

DS 01 Carrousel ON /OFF
DS 02 Carrousel indexed
DS 03 Tool counter
DS 04 Carrousel rotating direction
DS 05 Carrousel is back
DS 06 Spindle zero speed
DS 07 Spindle orientation command
DS 08 Z axis changing position
DS 09 Carrousel feed forward
DS 10 Carrousel is forward
DS 11 Tool in carrousel sensing
DS 12 Carrousel is up
DS 13 Carrousel is down
DS14 Tool unclamped
DS15 Tool clamped
DS16 Spindle blow-out
AN01 Spindle motor current
AN02 Spindle rotating speed
P201 -P 2 1 8 Cutting state - tools 1 to 18
P100 Last timed out place

10.3.1 - Tool Selection and Cutting Process Monitoring

This initial section considers the selection of the tool that is to be inserted into the

machine and its subsequent usage. The beginning of the Petri-net execution is shown

in Figure 10.2. Transition T001 will be fired if the tool changer is at the home position

(DS05) and the carrousel stopped (DS01). Following this, the Petri-net needs to

synchronise with the carrousel index position, in order to identify the tools correctly.

This is achieved by means of transition T002. The signal generated by the carrousel

home (index) sensor (DS02), together with an active indication provided by the tool

count sensor (DS03), will mean that tool number 1 is synchronised, thus resulting in a

token in place P I01. The firing of T002 will also enable the other Petri-net branches

(changer movement, Z axis positioning and changing operation), thus synchronising

the entire monitoring task.

In order to position a selected tool for changing, the carrousel is turned either

clockwise or counter-clockwise. This operation requires two signals: the carrousel

command (DS01) and the rotating direction setting (DS04). The tool counting sensor

219

Chapter 10 - Tool Changer Monitoring Task

Start^POOO

^-sDSOl J DS05/—

T00I ,,

O ’"17
© P

 [a] (Figure 103) (Figure 10.5)
I r IDS03^v

Tool 1

0.30 V
T086 T089

DS03

D SO ^
TOOL 1

CUTTING
AN01

P129

DS10 DS14
TOO 3T064 0_50 V

TO 88 T090P045

DS03
Tool 2

T063 AN01p = 0
030 V

P 1 0 2 J T094

DS03

i p ©ai_
TOOL 2

CUTTING
AN01S10 DS14

030 V
T093 T095

Tool n

"n" - tools from 3 to 17

0.30 VDS03^ t TOOLn
Q CUTTING

ANOl^

0.30 V

DS01 DS04
DS10

D S 0 3 / '~n

Tool 18
T180T183 AN01

T187T184

DS03 DS03

DS04 f* 4© DS14DS10
T182

P047O T186

DS03

030 V
1 TOOL 18

Q CUTTING

~ °j#v
DS01 - carrousel ON/OFF (command)
DS02 - carrousel home (indexed)
DS03 - tool counter (proximity sensor)
DS04 - carrousel orientation (command)
DS05 - tool changer home position (back)
DS06 - spindle zero speed (command)
DS10 - carrousel front position (proximity sensor)
DS14 - tool unclamped (switch)
AN01- spindle current (analogue 0 ~ 10 V)

Figure 10.2: Tool selection and usage Petri-net diagram.

220

Chapter 10 - Tool Changer Monitoring Task

(DS03) becoming inactive (off) indicates that the carrousel is moving between two

adjacent tools. In Figure 10.2, assuming that “tool 1” is the actual position

(represented by a token in P I01), this movement is followed in the Petri-net by the

firing of either T003 (clockwise) or T064 (counter-clockwise). A token in P001

indicates that the carrousel is moving towards tool number 2, while a token in P045

indicates that the movement is in the direction of tool number 18. The next tool

position (2 or 18) will be detected when the DS03 (tool count) sensor becomes active

(on), which results in T004 or T191 being fired. The carrousel may stop or carry on

moving, depending upon which tool is being positioned. The representation of this

operation, in terms of the Petri-net, is similar for all tools. Thus, for simplification

reasons, Figure 10.2 provides specific representation for tool’s 1, 2 and 18 and shows

a generic model “n” for all the remaining ones (3 to 17). Table 10.3 provides a

reference for the Petri-net places and transitions represented by the generic element

tool “n”.

Table 10.3: Reference to generic element “n” in Figure 10.2.

Generic Element Associated Petri-net elements (Tool-3, Tool-17)

Tnl T061, T059 T057, T055, T053, T051, T049, T047, T045, T043, T041, T039,
T037, T035 T173.

Tn2 T006, T008 TO 10, TO 12, TOM, TO 16, TO 18, T020, T022, T024, T026, T028,
T030, T032 T170.

Tn3 T096, T101 T106, T 1 11, T 116, T121, T126, T131, T136, T141, T146, T151,
T156, T161 T174.

Tn4 T099, T104 T109, T 1 14, T 1 19, T124, T129, T134, T139, T144, T149, T154,
T159, T164 T177.

Tn5 T060, T058 T056, T054, T052, T050, T048, T046, T044, T042, T040, T038,
T036, T034 T172.

Tn6 T007, T009 T 011, T013, T015, T017, T019, T021, T023, T025, T027, T029,
T031, T033 T171.

Tn7 T098, T103 T108, T 113, T 1 18, T123, T128, T133, T138, T143, T148, T153,
T158, T163 T176.

Tn8 T100, T105 T 1 10, T 1 15, T120, T125, T130, T135, T140, T145, T150, T155,
T160, T165 T178.

Pnl P103, P104 P105, P I06, P107, P108, P I09, PI 10, P 011, P I 12, PI 13, PI 14,
PI 15, PI 16 P170.

Pn2 P133, P135 P137, P139, P141, P143, P145, P147, P149, P151, P153, P155,
P157, P159 P161.

Pn3 P203, P204 P205, P206, P207, P208, P209, P210, P211, P212, P213, P214,
P215, P216 P217.

Pn4 P029, P028 P027, P026, P025, P024, P023, P022, P021, P020, P019, P018,
P017, P016 P046.

Pn5 P003, P004 P005, P006, P007, P008, P009, P010, P011, P012, P013, POM,
P015, P042 P048.

221

Chapter 10 - Tool Changer Monitoring Task

The sequence of places 201 to 218 is used to represent the tools, respectively from

number 1 to 18, when they are in their respective cutting state (begin / end records).

Once a tool is positioned and the tool changing operation has been executed, place

P I27 receives a token indicating that the tool is engaged in the spindle. Assuming that

a generic tool “n” was positioned (token in Pnl) and the changing operation carried

out (token in P I27), transition Tn3 would be fired, resulting in a token in Pn2, thus

indicating that the tool is ready for use.

The analogue input 1 is representative of the spindle motor current. It was determined

by observation that, although variation obviously occurred accordingly the cutting

speed, the analogue level representing this current was normally bellow 0.3 V during

what can be called the idle state (i.e. when the cutter is rotating without cutting). This

was therefore taken as the threshold to detect the onset of cutting and then to represent

the fact that the cutter was actually cutting. Two “analogue transitions” for each tool

were employed to detect the beginning (Tn4) and the end (Tn8) of the cutting state.

Place Pn2 will retain the token if the tool is not cutting. This is an important

development that will be discussed in detail later. At this point it is worth noting

however that it would be possible, in theory, to set a series of thresholds that could be

used to represent just how much cutting the cutter is actually doing. This information

could then be used as the basis for a more accurate representation of tool usage than is

currently available.

A new tool changing operation will result in the tool changer reaching the front

position (DS10) and in the tool being unclamped (DS14), thus firing Tn7 and

returning the token to Pnl. In doing so, the tool position is memorised and the

following tool selection will be monitored considering the previously engaged tool.

The places representing the cutting state (P201 to P218) were also used to trigger the

acquisition of the analogue input channel 2, related to the cutting speed.

10.3.2 - Z Axis Positioning and Spindle Orientation

The first action in the tool changing operation is positioning the “Z axis” and

performing the spindle orientation. The Petri-net branch in Figure 10.3 shows the

monitoring sequence o f this operation. Place 119 retains an initialisation token

222

Chapter 10 - Tool Changer Monitoring Task

provided by T002 (Figure 10.2). To allow a tool changing operation to take place, a

sequence of events related to the machine’s spindle axis will be required. Initially, the

spindle must be stopped, a condition indicated by the “zero speed” command (DS06),

resulting in T065 being fired and P121 receiving a token. The next event would be the

“Z axis” moving to the changing position, recorded by T066 being fired and P I22

receiving the token. In the next step, the spindle will be orientated (to zero degrees), a

condition detected by DS07. After this sequence of events, the spindle will be in the

“changing state” (P031). The spindle rotating again will indicate the end of this state.

Transitions T067 and T069 were provided, considering that for any unpredictable

reason (e.g. a manual operation), the spindle starts to rotate before a entire tool

changing sequence related to the “Z axis” was completed. In case of such an event,

the token will be returned to PI 19 by means of these transitions, maintaining the

Petri-net synchronisation.

PI 19

DS06

Spindle stopped
T065

P121 X
DS08 V DS06

Axis positioned

^ ndso6 r
0 ^ 1

T069

T067T066
P122
' DS07

OrientationTO 68

P031.DS06
DS06 - spindle zero speed
DS07 - spindle orientation position
DS08 - Z axis change position

Rotating
T070

Figure 10.3: Z-axis and spindle positioning Petri-net.

10.3.3 - Tool Changer Horizontal Movement

Once the “Z axis” has been positioned the tool changer will be moved towards the

changing position. Figure 10.4 shows the Petri-net branch that monitors this sequence

of events. At initialisation (Figure 10.2, T002), P I20 will receive a token. The

223

Chapter 10 - Tool Changer Monitoring Task

detection of the tool changer at its “home position” (DS05) will fire T071 and result in

a token in P I24. The “feed forward” command (DS09) will lead to a new state, “move

forward” (P032), which should be immediately followed by T073 being fired to

indicate that the tool changer has moved away from the home position (DS05). A

timeout event related to P032 would indicate a fault condition (changer is not

moving). The state represented by P033 indicates that the tool changer is on its way.

This state will be ended by the changer reaching the “front position” (T074, DS10).

Place P I25 represents the tool changing operation, which will be ended with the tool

changer leaving the “front position” (T075, DS 10) and returning to the home position

(T071, DS05).

PI 20

carrousel home position
carrousel feed forward
carrousel forward position

DS05

T071
P124 X

DS09

Forward commanded
T072

P032
DS05

Moving forward
T073

P033
DS10

Front position
T074

P125
DS10

Moving back
T075

Figure 10.4: Tool changer horizontal movement monitoring.

10.3.4 - Tool Changing Operation

The last of the Petri-net’s branches relates to the tool changing operation that actually

changes the tool in the spindle, as shown in Figure 10.5. The branch is enabled by a

224

Chapter 10 - Tool Changer Monitoring Task

token in PI 18. Three conditions are required in order to enter the tool changing

sequence: Z axis at the “changing position” (DS08), tool changer at the “front

position” (DS10) and the carrousel must be “up” (DS12). The next event will be the

unclamping of the engaged tool (T079, DS14). The carrousel should start to move

away from the “up position” (T080, DS12), removing the actual tool from the spindle.

The “moving down” state is represented by P037, which will be finished when the

“down position” (DS13) is reached, firing T081 and placing a token in P038. At this

point, the tool selection operation represented in the Petri-net branch shown

previously in Figure 10.2 will take place. Since the new tool was placed in the

changing position, the carrousel will leave the “down position” (DS13), firing T082.

There is a possibility that the new selected position in the carrousel might be empty,

resulting in a wrong tool usage parameter (Figure 10.2). This condition is detected by

the “tool positioned” proximity sensor (DS11). A level of complexity arises due to the

fact that this signal must be verified before the carrousel reaches the “up position”,

since the proximity to the spindle might induce a false “tool in place” indication. It

was also observed that the tool changer starts to move up before the carrousel has

completely stopped rotating, meaning that an empty position might be sensed, even if

a tool is in place. The solution was to use a “delay transition” structure (T192) to

introduce a delay (500 ms) between the carrousel leaving the low position (T082) and

the tool sensing signal being checked (T078 and T077).

The existence of a tool (T077) will result in a token placed in P I27 (Figure 10.2),

enabling the tool usage to be monitored. This token will be generated after the tool

was clamped (T167, DS15). If there is not a tool placed in the new selected position

(T078), P I27 will not receive the token. Place P039 was employed as a “joined” place

to enable the next events to be monitored, whatever the “tool positioned” signal

checking result was. Transition T083 will be fired by the tool changer reaching the

“up position” (DS12). The next event would be the air blow-out (DS16) being stopped

(T166) and the tool being clamped (T084, DS15), even if there is not a tool in place.

Finally, the Petri-net branch in Figure 10.5 will monitor the tool changer returning to

the home position (DS05), replacing the token in PI 18 and thus enabling the next

cycle to be monitored.

225

Chapter 10 - Tool Changer Monitoring Task

PI 18

DS10

DS08 DS12

T076

P035 (, DS14

T079

Beginning

Tool undam ped

P 0 3 6 (^ J D S lV p .

V k
TO 80

Moving down

C arrousel operation

Moving up

T081

DS13

Delay 500 ms

T192

DS11

T078 T077

DS12 DS15

T167

^DSl 1 _
® - T j

T083

1,034 O DS16x-xY J k E>
T166

(Figure 10.2)

P040
DS15,

Tool clam ped

C hanger is back

DS05P041

T085

(DS05 - carrousel home position
© DS08 - Z axis change position

DS10 - carrousel fron t position
DS11 - tool positioned
DS12 - carrousel up position
DS13 - carrousel down position
DS14 - tool unclam ped
DS15 - tool clam ped
DS16 - spindle blowout

Figure 10.5: Tool changing operation Petri-net.

This Petri-net implementation needed, in order to monitor the entire set of 18 tools,

170 transitions and 104 places. Two digital input cards were required in order to

enable the 16 process digital signals to be interfaced. An analogue input (AN01) was

226

Chapter 10 - Tool Changer Monitoring Task

used to detect the cutting condition. A second analogue input (AN02) was used to

monitor the cutting speed. Places P201 to 218 were used to trigger the cutting speed

acquisition. The files describing the Petri-net definition can be found in Appendix B

(B. 17 [7, 8 and 9]). The monitoring results will be presented in the following section.

10.4 - Monitoring Results

The records provided by the Monitoring System were analysed and presented using

the IPMM web page based approach. One of such examples is shown in Figure 10.6.

In this case, a database procedure was implemented to retrieve records of interest

from the system’s database tables, before organising and describing them in a way

that they could help users / operators to follow the operations that were performed by

the machine.

Cutting Events

Description Time Record EventRecord

Blowout delayed 2003-03-12 T 14:09:34 64
Z axis ready fox tool change oper« 2003-03-12 T 14:08:42
Carrousel is at back position 2003-03-12 T 14:08:31
Slow moving up 2003-03-12 T 14:08:23 8
Slow tool changing operation - Z i 2003-03-12 T 13:57:16 128
Carrousel indexed at TOOL 1 2003-03-12T 13:11:23
Slow unclamp operation - check a: 2003-03-06T10:47:19 256
Slow response to feed forward - ch 2003-03-06T10:42:51 64
Spindle stopped 2003-03-06T10:26:14
Carrousel is forward at change pos 2003-03-06T 10:25:10

Figure 10.6: Machine operation events monitored by the system.

One of the main objectives of the Petri-net implementations was to monitor the usage

of the cutting tools. Figure 10.7 shows the results of such an observation. Recalling

Section 10.3.1, the states of the tools in use are represented by places P201 to P218

(one for each o f the 18 tools). Thus, Figure 10.7 graphically indicates that during this

test tool number 2 (202) was in use for a total of 98 seconds, number 4 (204) for 21

seconds and number 7 (207) for 248 seconds.

227

Chapter 10 - Tool Changer Monitoring Task

Cutting Tool Use (s)

Tool 2 (202) 98 sec.
Tool 4 (204) 21 sec.
T00I 7 (207) => 248 sec.

204:21 207:248

Figure 10.7: Usage parameter of tools 2, 4 and 7 (in seconds).

CuttingTool

ToolNum Total min Avk rpm

2 1.63 1341.94
4 0.35 1283.34
7 4.13 2320.56

Figure 10.8: Tool cutting information in terms of total usage and average speed.

The tool usage information was combined with the measurement of the cutting speed,

to produce the online information shown in Figure 10.8. It shows the total use of each

tool (in minutes), together with the average cutting speed (in rpm). The acquisition of

the cutting speed was triggered by the places representing the tools cutting states

(P201 to P208). After each cutting cycle, the measured speed was converted in an

average parameter by the Monitoring Module and stored in the system’s database

tables. Further calculations were performed using SQL statements, in order to obtain

the displayed information.

228

Chapter 10 - Tool Changer Monitoring Task

Condition monitoring of cutting tools has been exhaustively investigated and one of

the main difficulties reported were the dynamics associated to the process (Chapter 3).

Although not concentrating on specific cutting tool condition monitoring techniques,

the features provided by this Monitoring System can help in providing additional

information to improve the accuracy of cutting tool assessment.

A parameter of interest in such process, to maintenance engineers for example, might

be the time required for each tool changing operation. By enabling place P I25 (Figure

10.4) to transmit records to the database indicating the beginning and end of this

operation, such parameter could be obtained, as shown in Figure 10.9. In this

example, each tool operation recorded is shown associated with the respective

timestamp and duration. The example shows the flexibility of the Monitoring System

in producing different information.

T oolChangeOperation

Change Seconds

2003-03-12 T 14 :08:11 20
2003-03-12T 14:06:06 4
2003-03-12T14:05:45 4
2003-03-12T 14:04:05 4
2003-03-12T14:03:46 5
2003-03-12T14:02:36 4
2003-03-12T14:02:19 4
2003-03-12T14:00:48 4
2003-03-12T14:00:16 4
2003-03-12T13:53:47 4
2003-03-12T13:47:11 5
2003-03-12T13:15:59 5
2003-03-12T13:11:18 9
2003-03-06T 10:52:29 6
2003-03-06T 10:50:35 6
2003-03-06T 10:48:46 20

Figure 10.9: Tool changing recorded time.

229

Chapter 10 - Tool Changer Monitoring Task

10.5 - Summary

In this chapter a final example illustrating the use of the monitoring system that

resulted from this research was presented. An important component of the cutting

process, the tool changer, was monitored in order to enable the associated operation

events to be recorded. Additionally the cutting tools usage was also monitored to

provide detailed information that can help in the assessment of the tools condition.

Although basic examples were employed to illustrate the use of the Monitoring

System, they have helped to show the capability and flexibility provided by the Petri-

net approach implemented here. The hardware architecture enabled an easy

deployment and the use of the adequate resources at the right level. Although

microcontrollers are becoming extremely powerful, there still are many parts in the

processing hierarchy that are easier to implement and better performed at higher

levels. Such discussion will be provided in the next chapter, considering the

capabilities and limitations associated with the implementation of the model here

proposed.

230

Chapter 10 - Tool Changer Monitoring Task

REFERENCES

10.1 Prickett, P.W. and Grosvenor, R.I. Non-sensor Based Machine Tool and

Cutting Process Condition Monitoring. International Journal o f COMADEM,

1999, 2(1), 31-37.

231

Chapter 11 - Discussion

CHAPTER 11

DISCUSSION

11.1— Introduction

The current generation of monitoring systems in general and especially of condition

monitoring systems has benefited from recent developments in computer based

technologies. Faster PCs with ever increasing resources, specific data acquisition

hardware and a new generation of software tools for system integration and signal

analysis have helped to reduce the complexity of developing monitoring

infrastructures, allowing researchers to concentrate on the analysis aspects. However,

the question that remains to be answered is how practical such implementations can

be, particularly when they are deployed in large scale applications.

A number of researchers, including those reviewed in Chapter 3, have been

investigating monitoring technology. In the particular area of condition monitoring

these investigations have concentrated mainly on the physical phenomena and signal

analysis, in order to provide the means to assess the state of the process and asset’s

operating conditions. Earlier, in Chapter 2, considerations were made with respect to

the applicability of monitoring systems, with special emphasis on cost, deployment

and data integration.

The use of these technologies in manufacturing plant monitoring applications has

raised questions related to accessibility and data integration. This led to the

proposition of models, some of them considered in Chapter 3, concerned with the

implementation of monitoring systems, taking into consideration the development and

management aspects of such systems.

The Internet has established itself and can now be seen as a mature and well-

developed environment. It is thus becoming a vital part of an ever-increasing number

of system implementations. Such a trend has also been observed in the monitoring

232

Chapter 11 - Discussion

field, enabling the establishment of remote monitoring deployments which can benefit

from the facilities offered by a central database, high-cost analysis tools and human

expertise that this makes accessible.

The development of these network technologies has offered the prospect of the greater

use of condition monitoring. Associated with such developments a new generation of

smart and intelligent transducers have emerged, spreading the concept of distributed

systems in the automation field. As a result standards have been proposed concerned

either with industrial network aspects or guiding the development of this new

generation of transducers. Despite all these advances in terms of technology and

development, cost is still an issue to be tackled in order to stimulate the more

widespread use of monitoring systems. These aspects were considered in the conduct

of this research, as previously presented, and will be further discussed here.

11.2 - Implementation Aspects

The use of microcontrollers in this context, besides representing a low-cost

alternative, provides further benefits by enabling low-power consumption and less

installation requirements. In many cases, depending upon the plant complexity and on

the accessibility of the machine or its relevant parts, these represent important factors

for further consideration. However the use of microcontrollers in some cases may

result in limitations, in terms of resources and in the flexibility of the applications

developed.

11.2.1 - Hardware Considerations

The use of microcontrollers as part of a process monitoring system requires

considerable effort in both hardware and software development. The benefits that

should arise from such developments, especially in terms of cost, depend strongly on

the capability of the resulting implementation being easily adaptable to meet any

application requirements.

233

Chapter 11 - Discussion

PIC microcontrollers are a generation of devices that offer attractive cost, together

with a reasonable number of embedded programmable functions that are normally

required in most monitoring applications. An initial investigation showed that the

implementation of a system for general-purpose applications would need the highest

specification PIC devices in terms of data and programming memory. The PIC 18

family represented an advance in such terms (compared with other PIC families) and

allowed the adoption of these devices as the basis for a general and low-cost

monitoring system. In assessing the suitability of a microcontroller to undertake

monitoring functions however there are a number of hardware related factors that

must be considered. One of such factors was to base the System’s implementation on

the microcontroller’s available resources, in particular the embedded data memory.

CLRF TRISD ;port D as output
MOVLW MemAddrLsb ;least significant part of the memory address
MOVWF PORTD ;LSB of address on the PIC’s data bus
BCF PORTB,LatchLsb ; latch LSB of address
MOVLW MemAddrMsb ;most significant part of the memory address
BSF PORTB,LatchLsb ;unselect LSB latch
MOVWF PORTD ;MSB on PIC’s data bus
BCF PORTB,LatchMsb ;memory device MSB address
NOP ;no operation to allow bus levels to be latched
BSF PORTB,LatchMsb ; unselect MSB latch
SETF TRISD ;port D as input
BCF PORTB,MemRead ;set memory read signal
NOP ;delay to enable stable data on bus
MOVF PORTD,W,A ;read data byte
BSF PORTB,MemRead ;release memory device

Figure 11.1: Example of a sequence of instructions required to retrieve a data

byte from an external memory device.

It may be argued that memory should not be a constraint, since an externally added

device can be employed. In fact, such consideration is valid, but the use of external

devices must be properly assessed, in order to identify the effect that their use may

have on performance. Any operation involving the microcontroller’s file register (data

memory) will generally speaking be performed in one single instruction cycle. Such

234

Chapter 11 - Discussion

an operation could be retrieving, testing or altering the contents of a register. The

same operation, using an external memory device, would require a sequence of

instructions to be executed. The microcontroller’s port must be configured, the

memory address latched, the control line properly set and the data retrieved. If the

result of the operation is supposed to be returned to the memory, a similar sequence

must be carried out. Figure 11.1 shows a generic example, where 15 instruction cycles

would be required to retrieve a data byte from an external memory.

In terms of hardware, additional components would be required in order to create the

external buses. Such additional requirements, including the memory device, would

probably double the cost of the monitoring module.

11.2.2 - Local Communication

This work has developed Monitoring Modules that will reside within a process. As

such it needed the associated consideration of a communication method that was able

to manage the Module-to-Module and the “external world” communication.

Communication is already of extreme importance from the viewpoint of data

integration and assumes a special role in the system architecture proposed here. The

use of multiple Monitoring Modules may be considered to meet different purposes.

Cases may exist where a single Monitoring Module would not be powerful enough to

implement the monitoring task requirements. In other cases the process signal sources

might be dispersed within the process and may therefore be better handled by separate

modules. In these and in many other cases, networking seemed the best alternative,

considering the installation aspects and the technologies already available.

There is no widely accepted agreement as to the best networking technology currently

available in the automation field, although industrial networks may be assumed to

represent the best choice for such cases. There have been investigations that suggested

the use of Local Area Networks (LAN), which are widely employed to interconnect

PCs. These arguments are based on the fact that such networks have been very widely

used and are therefore sufficiently tested and that there is an existing infrastructure in

almost all application areas, therefore providing an alternative for the integration of

235

Chapter 11 - Discussion

monitoring / automation and management systems. Ethernet (and Internet protocols)

has been used to implement a distributed monitoring system [11.1]. However, it was

considered that it could represent a heavy demand in terms of processing requirements

for the distributed nodes. In an attempt to tackle these problems it was suggested in

[11.2] that such requirements might be minimised by employing modem network

switching technology, reducing the traffic handled by each specific node.

A sensible argument was presented by Thomas [11.3], who considered that

communication requirements are different at specific levels. His argument was that at

the sensor level very specific and focused messages (parameters measurements or

process variables), rather than large quantities of data, will be exchanged, thus

requiring “light” protocols (that do not require complex flow control and sequencing

methods). At the upper layer, where information is normally provided in a very

friendly format (including graphs), complex protocols might be required to provide a

reliable service. Such aspects were considered in this research, resulting in the

adoption of an industrial standard to interconnect the Monitoring Modules.

Recently, CAN bus has become popular in industrial applications. The main reasons

for this are the openness of the standard, the number of available suppliers and also

the reasonable simplicity of its implementation. In this particular research other

justifications for the use of this networking method were the full compatibility with

the PIC family of microcontrollers and the application requirements. The event based

nature of the modelling method (and monitoring tasks) have found in the CAN

protocol an adequate networking approach, reducing the system’s management

requirements and simplifying the design. Since cost was a permanent concern during

the investigation, such aspects assumed a great relevance.

The message priority based approach of the CAN protocol contributed to the

simplifying of certain aspects of the implementation. For example the hardware-

enabled message filtering methods of the CAN controller reduce the amount of

communication related processing undertaken by each network node. In this respect

perhaps a concern related to CAN might be the size of the protocol’s data field (8

bytes). Although the monitoring records issued by the system were relatively short,

these normally exceed the maximum length and thus required more than one CAN

236

Chapter 11 - Discussion

frame. A level of complexity was introduced in order to manage such messages, since

it must be considered that more than one Monitoring Module might try to transmit

simultaneously. This was addressed by the implementation of an application layer,

together with a timeout mechanism.

It must be considered that a more appropriate approach might have been to use one of

the existing CAN application protocols [11.4]. Although feasible, this would require a

much greater development effort, which was not considered appropriate at this stage

of the research. Nevertheless, it must be recognised that the possible use of a standard

based application layer could result in some benefits. Existing CAN based

installations could be shared, enabling some improvement of the monitoring method

by employing data provided by “CAN enabled” transducers, already deployed. These

benefits would also potentially be reflected in cost savings.

Some aspects of the network implementation represented a higher level of

complexity, mainly due to the requirement for the SPI serial link to interface to the

CAN controller. The dynamics and asynchronous nature of the data communication

arising in a typical application may result in many events happening almost

simultaneously and unpredictably. The management of a communication peripheral

handling this over a serial link required a tight control of the associated events, to

prevent deadlock situations in which microcontroller and bus controller lose

synchronisation. Perhaps considering such complexity and also due to the growth in

the use of CAN, the industry has recently begun to release microcontrollers with

embedded CAN controllers. This is the case for the Microchip PIC 18 family’s latest

devices, which allow researchers to envisage further enhancements to the proposed

Monitoring System.

The increased functionality is clearly yet another factor supporting the decision to

adopt CAN since it will ensure the relevance and compatibility of the developed

monitoring systems with current and future systems.

237

Chapter 11 - Discussion

11.2.3 - Remote Communication

In deploying these process-based monitoring devices it must be recognised that the

information they generate should be made as widely available as possible. Internet

connectivity is becoming part of all new generation systems and therefore presented a

natural way to integrate the monitoring results with other management applications.

Research has been conducted considering the integration of industrial networks with

the Internet. In [11.5] an approach was presented to enable remote management of

networked transducers using CAN buses. Although interconnection was considered at

different levels (even with the CAN nodes supporting the Internet TCP/IP set of

protocols), a gateway device with more or less software capabilities was always

required. In [11.6] a gateway, also acting as an Internet server to the industrial

network, was the solution proposed. Again this solution considered remote

management applications and utilised the Internet to retrieve control device

information and to perform their configuration.

In considering the characteristics of the proposed system (low-cost) and consequently

the resources available to each Monitoring Module, it was proposed that a single

connectivity node should be used. This would be capable of providing Internet

facilities (a requirement) to all Monitoring Modules deployed to the same monitoring

task. Here a simple option, such as a PC based implementation, could be considered.

However, in considering the low-cost aspect of the research, it seemed a good

opportunity to assess the capabilities of a microcontroller for this purpose. So ready-

to-use hardware (Microchip’s Internet development kit) with full Ethernet capability

was employed.

At this point some important considerations become necessary. The hardware design

of the Internet development kit, although representing a useful tool for the

understanding and testing of Internet based applications, lacked a very important

feature for real-time applications such as network communication: a network

controller interrupt capability. Interrupts become an important feature when trying to

avoid unnecessary processing which may arise due to frequent status requests being

directed towards the network processor. Rather than servicing the communication

controller on demand (i.e. matched events), the microcontroller must poll the

238

Chapter 11 - Discussion

communication device at regular intervals in order to detect any related event. It

should also be remembered that network requests have to be handled as fast as

possible, and that the microcontroller does not provide a huge memory buffer to

queue such requests.

A consideration here is that microcontrollers (such as PICs) might not be the best

alternative for such an implementation. They are not provided with an external

address and appropriate data buses, besides other specific control signals that are

common in microprocessors, to interface a general device such as a network controller

or additional memory. However, a good hardware design can improve this situation

considerably, as has been proven through some Internet implementations based on

microcontrollers that are becoming available of which the Tini® module may be the

most successful example [11.7].

The complexity of the challenge represented by the implementation of the Internet

protocols was considered as an argument for employing a programming environment

capable of naturally dealing with different data types and structures, apart from

enabling a structured program organisation. The availability o f “C” programming

language compilers for PICs microcontrollers made it the natural choice for this

purpose. It is important when adopting such an approach to consider potential hurdles.

An investigation concerning the use of high-level programming tools with embedded

processors [11.8] indicated that a “performance penalty” might be expected. Such an

effect was observed to some extend in the implementation of the Connectivity

Module. The overhead introduced by the compiler in order to deal with a number of

different situations, such as microcontroller’s unsupported data types, affected the

application considerably. As a simple example, suppose an operation needed to add

two 16 bits (integer) variables and place the result in a third one. Although stated in a

single “C” programming line (Var A = Var B + Var C), this would require 14

instructions when compiled with Microchip C l8® compiler. The same number, of

microcontroller instructions was produced by the FED Wiz-C® compiler (employed

in this work). Coding such an operation directly in PIC’s Assembler, it would be

possible to implement it with 6 instructions. This is strong evidence that the final

application requirements must be considered when making the choice of the

programming tools that will be employed.

239

Chapter 11 - Discussion

Consideration of such aspects also demanded an analysis of the real requirements of

the application in order to avoid unnecessary complexity. The presence of short data

records, asynchronous events and the single application characteristic of the

Connectivity Module seemed to be sufficient arguments upon which to support the

decision to base the entire record transmission process on the UDP protocol, rather

than opting for the complexity of TCP. Such an approach has been shown to be an

alternative in similar applications, where UDP was either employed as the only

transport protocol provided (as in this research) [11.9] or else used as a combined

method to reduce the use of TCP [11.2, 11.10].

Finally some consideration related to the implementation of the Connectivity Module

may be appropriate. From a practical perspective the simplicity and support provided

by a PC (computer) would probably represent the best alternative for the

implementation of a connectivity module. However, if a dedicated hardware is a

requirement (for reasons as the presented in this research), an appropriate design and

adequate support for high-level programming languages should be provided to ensure

that efficiency is not affected. On this basis, the PICDEM.net™ represented the right

choice for the investigation of the Connectivity Module in this research, but would not

be adequate for a final (commercial) application.

11.2.4 - Data Analysis and Integration

One of the fundamental issues related to monitoring systems is their capability of

providing relevant information. Database systems, together with Internet technologies,

can become an important part of any strategy to provide this information. The use of a

Management Application within this Monitoring System was proposed to meet this

function. Important aspects, such as DBMS access and data security, are normally

supported by a wide range of PC based development tools and standards. Interfacing

a DBMS directly from a microcontroller implementation was discussed in Chapter 7

(Section 7.4). The conclusion reached was that this would be a difficult and time-

consuming software engineering task, almost certainly requiring further hardware

resources. As a result, the low-cost features of this monitoring approach would be

affected, and the added effort would be made with no guarantee of it supporting a

long lasting solution (update difficulties, new DBMSs, etc).

240

Chapter 11 - Discussion

In the examples provided in the previous chapters, the web based approach was

employed to present the System monitoring results. This was not supposed to

represent a complete solution, but was simply to show how easy it becomes to

integrate the monitoring records, since they are made available at the right place and

in an appropriate format. A web-based server approach, where the monitoring

structure also integrates a front end could be employed. However in this case,

although they might be easy to implement, applications would be required to query

the remote monitoring system, in order to obtain the information of interest. A further

complication would be introduced, since the server should also be capable of keeping

a record of past events, increasing complexity and cost.

The architecture proposed in the research was intended to establish a balance between

the levels of the Monitoring Systems in order to explore the best aspects at each

specific level. Near to the process, intelligent Monitoring Modules are capable of

detecting process events and can react in response to them with meaningful records.

They can also be deployed accordingly to the application requirements, therefore

keeping costs as low as possible. At the middle level, a connectivity element was

provided with the facilities required to allow monitoring records to easily flow on the

widely available network, thus helping to make remote monitoring feasible. Finally, at

the upper layer, PC technology provides the best choice to analyse, process, integrate

and present the monitoring results. In this way, the high-cost elements can be shared,

thus resulting in a system that is accessible from many perspectives.

As a result of this work an innovative distributed monitoring system has been

developed and demonstrated. This can form the basis of future research and support

the evolution of the next generation of condition monitoring systems.

1 1 .3 - Modelling Method Aspects

The cost benefits that might result from a monitoring system such as the one proposed

here would be considerably compromised if an entire new software development were

required for every application task. The use of a modelling technique that could

241

Chapter 11 - Discussion

enable the easy representation of the monitoring task became a requirement to prevent

such a drawback.

As introduced in previous chapters, Petri-nets had been mainly used for modelling and

simulation of computational systems and were investigated as a monitoring method

for sequential processes by the IPMM Centre [11.11], resulting in a PC based

software tool developed for this purpose.

The Petri-net concept seemed to represent a good method that could possibly be

employed in a microcontroller based implementation. Although supported by a

mathematical formalism, Petri-nets are mainly considered to be useful in monitoring

tasks due to being able to logically represent functions whilst allowing a direct

graphical representation of the main elements of the function.

In choosing the Petri-net method as the modelling approach in this work, transitions

became the natural option to define the Petri-net structure, since they can be

associated with the process events and represented them as individual and isolated

elements that relate input conditions to output actions. Such a characteristic easies the

modelling task, since it enables an approach that describes the monitoring Petri-net as

a set of self-contained elements that do not depend on each other. Such elements also

define a static structure (process definition) and therefore can be placed in the

microcontroller program memory, releasing the data memory and thus helping to

tackle one of the microcontroller constraints. Efficiency is not affected, since the

microcontroller’s instruction set fully supports such an approach.

A drawback of this approach might be considered to be the fact that the Petri-net data

structure must be stored within the program memory, along with the operational

software, rather than being loaded dynamically. It was considered at this stage that

technology improvements would soon provide an alternative. Such an assumption was

proven to be true, since latest microcontroller releases (not employed in the research)

are now provided with flash program memory, thus enabling the program memory to

be updated at execution time. Also, new devices are becoming available with larger

amounts of data memory, suggesting further alternatives in this direction. In all cases

242

Chapter 11 - Discussion

the methods used in this research may be easily adapted to take advantage of these

new innovations.

The definition of the system’s overall capabilities, in terms of the largest Petri-net

implementation, can be considered on the basis of the available resources and its

efficiency. An initial hypothesis was to base such a definition on the microcontroller’s

internal data bus width. By proposing that the processing unit is usually optimised to

its natural data type (8 bits for the PIC18C452), it was supposed that a more efficient

execution would result. Therefore, transitions, places, tokens and sub-nets were

constrained to a range from 0 to 255. The demand for control elements within the

transition data structure imposed further limits on transitions (1 to 254), places (0 to

254) and sub-nets (1 - 255). Although these might seem somewhat limiting, the

examples presented in previous chapters showed that relatively complicated Petri-net

designs can be supported with such numbers. It is perhaps possible that a reduction in

these numbers could allow more features to be added to the system, which might be a

point of future consideration.

An important characteristic of this Petri-net approach is the fact that it enables the

implementation of the distributed concept in the monitoring environment by providing

each Monitoring Module with an amount of local knowledge. Rather than monitoring

signal changes and forwarding them to some form of central processing units for

analysis, the Monitoring Modules were provided with the intelligence required to

detect process events and states, which can be made public when required. Bolic et al

[11.12] presented a measurement system, based on microcontrollers, where the

distributed nodes are configured from a central node by selecting the specific

functions to be performed. The implementation of such an approach required the

existence o f specific libraries for each function. The Petri-net method however

supports a generic approach in which the distributed elements (Monitoring Modules)

become autonomous. This is seen as an important attribute of the developed system.

An important aspect in any distributed environment is the capability of the processing

elements to produce information that can be used by consumers (other processing

units) accordingly their requirements. Such a method in a client-server configuration

is referred to as “publish-subscribe” [11.1]. From this perspective, the Petri-net

243

Chapter 11 - Discussion

approach developed in this research implements a “producer-consumer” method,

where one Monitoring Module makes specific events public (by means of sub-net

broadcasts) and the other Modules utilise such information only if they require it in

their particular domain. Using the publish-subscribe method might improve the

system’s reliability, with sub-net events reported to a central node (server) that would

replicate it to all those nodes that subscribed to the specific event.

Despite the fact that “ordinary transitions” and places allowed the representation of a

sequence of events of a process, it soon became clear that these were not enough to

model all real situations. The first function that needed greater support arose when

trying to model events that depended on process signals having slow responses. A

“delay transition” was developed to meet this need. A few examples of “delay

transitions” were presented in the previous chapters (application examples). In one

particular case shown in Chapter 10 (Figure 10.5), the “delay transition” was of

extreme importance in overcoming the difficulty in identifying whether or not a tool

was already placed in the carrousel changing position. An extended use of the “delay

transition” was illustrated in Chapter 9, shown in Figure 9.5. To enable up to date

process information, a “delay transition” was inserted as a means of providing a

record to the database after every 60 seconds. This element considerably increased the

modelling flexibility by supporting time-dependant instructions and functions.

Although process actions are normally associated with digital signals and thus

represent the main source of evidence of process events, analogue signals are often

another important source for monitoring systems. With respect to the modelling

approach developed here, “analogue transitions” were introduced to monitor such

signals. This approach was developed on the basis of thresholds that identify specific

and pre-established conditions. Thresholds are one of the simplest methods employed

in condition monitoring, and are used in many system implementations to detect the

indication of an abnormal condition [11.13, 11.14]. Although the identification of a

fault is in many cases not so simple, it might be used to watch the behaviour of critical

parts, as was shown with the example in Chapter 8. In that case, threshold conditions

were defined to observe the motor’s operating limits. The records that the firing of

such transition provides might be used to trigger maintenance actions. In another

example, reported in Chapter 10, an “analogue transition” provided an efficient

244

Chapter 11 - Discussion

method of detecting the tool cutting condition. This is a typical case where digital

signals do not provide enough information. The design and use of analogue transitions

in this research is an important innovation and allowed important added functionality

to the monitoring approach.

Another structure introduced as part of this research was the “output transition”.

Although this represents a very simple element, it becomes very useful in critical

situations, such as described in the example in Chapter 9, where an unmanned process

may suddenly start to produce a high number of low-quality parts. This was missed by

the control system, but using an output transition the Monitoring Module is able to

produce a local alarm. However, it is assumed in this work that the Monitoring

Modules should not act directly on control system functions. This is because such

actions could potentially produce damaging situations and, in extreme cases, great

danger. In such cases, the records produced by the monitoring system should be used

by supervisory systems or operators to intervene in a safe way. The fact that this may

be managed locally using the distributed Monitoring Module is an important feature.

So too is the fact that any recovery actions taken locally may be directed and

monitored remotely, allowing centrally located “experts” to oversee operator centred

activities.

Although significant developments have been made there are still some areas of

potential further research. For example, it became apparent that an important

modelling element is missing in this proposition. Such an element was not defined in

the original Petri-net theory, although it has been proposed as an extension to the

theory and called an “inhibitor arc” (Chapter 5, Section 5.5). To illustrate the use of

such an element as a modelling resource, Figure 11.2 repeats the Petri-net branch

presented earlier in Figure 9.6, showing how it could be modelled if a method to test

an empty place, in order to identify a true condition, were available. The existence of

such an element would simplify the modelling task in several situations, requiring

fewer elements and therefore allowing a clearer representation. In this research, an

approach to meet this need was introduced, by enabling the process signals’ “false”

condition (digital “0”) to be tested in the transition firing process. This met the

requirements of the systems modelled in this research, however, the same capability

to test places is missing and certainly should be considered in a future development.

245

Chapter 11 - Discussion

iMetal
detect

Plastic
detect

P225 P223P224P222

DS07 DS05

T046T045T044 Plastic
reprocInductive

126)P227 P228
DS05,,DS07 DS13.

Motor
on T052T047T051

Operating
P029.

Motor
off

T050
P231

T060

IS07 DS13/

Motor
onT053 T055Inductive 030

P232
Available.DS13

V T054 T057Motor
off T058

►235
.DS13

Motor
on T059

Figure 11.2: Simplification that would result from an empty place test element

(arc between P029 and T055), when compared to Figure 9.6.

Despite the absence of an inhibitor arc, the Petri-net approach that was developed

allows a great level of flexibility to model a wide range of applications. The examples

used in previous chapters to demonstrate the approach were purposely selected to

present different requirements. They illustrated the level of freedom that is allowed to

the application designer in order to deliver the required solution. Furthermore, the

Petri-net approach represents a method that allows a degree of independence from the

microcontroller system used and thus, besides easing the modelling activity, does not

limit its use to a single generation of such devices.

246

Chapter 11 - Discussion

11.3.1 - Extended Features Supported by the Petri-net Approach

There is no doubt that Petri-nets can be used to model the sequence of events related

to a process. They can thus provide relevant records that can be used to provide

process related information of interest, as shown in the 3 example applications. An

important contribution of Petri-nets is the fact that they provide a simple way to

model the knowledge required to support more intelligent monitoring tasks. This

facility was further explored in this research.

Hu et al [11.15] argued that many PLC controlled manufacturing systems operate in a

predictable way, both in terms of the sequence of actions they manage and the time

intervals between them. They concluded that since having such knowledge,

operational faults could be detected. In the Petri-net approach developed by the IPMM

Centre, a method that makes similar assumptions was considered [11.11], in which the

Petri-net’s selected transitions may have a timeout parameter configured. This

allowed the detection of a transition that had failed to fire due to the absence of a

process signal.

Such aspects were considered in this research. A timeout feature was integrated within

the Monitoring Modules. This considers places rather than transitions, as was

previously the case. This approach was based on two reasons. The first is because

places can be associated to process states and these are the ones that consume time

(between events) and hence a direct measure of process performance may be made.

Secondly, a timeout related to a place requires predictable resources, since a state is a

fixed entity in the system, while transitions may be enabled by tokens following

different routes which can introduce different time constants. In terms of the PIC

based implementation this would represent an additional level of complexity, which,

considering the microcontroller’s resources, may not be feasible.

The timeout represents an important feature that enables the Monitoring Modules to

“understand and judge” process dynamics. The default method considers the active

state of the previously monitored cycles. Here it must be recognised that

improvements may be required, since it currently considers a single value of the time

constant rather than a more realistic range. Such an improvement would require more

247

Chapter 11 - Discussion

resources (which were not available at present) in the resulting implementation.

Redefining the capabilities of the Monitoring Modules in terms of maximum number

of places and transitions might be an alternative to “find” such resources. Considering

the test carried out during the research, this might be reasonable. Another point to

consider is the smallest timeout unit, presently defined as 1 second. This satisfied the

main implementation tested. However, cases may exist where a smaller unit might be

required. In consideration of all of the above the approach taken to this research was

to build-in the potential for developing the methods as the new technology allowed

these functions to be supported becomes available.

The flexibility allowed by the modelling method is directly associated to the fact that

Petri-net elements (places and transitions) can be deployed over a wide range of

process or systems without major restrictions, in order to model a specific task. In

such environments there will be instances when the timeout feature could become

undesirable. The examples reported here in this work illustrated several cases where

places were not related to any process state, but rather were used as a modelling

element to synchronise or control the Petri-net execution. In such cases an avalanche

of meaningless “timeout” records could be generated. To prevent this a “barrier” was

introduced into the parameter identification: places with an identification up to this

parameter are timeout enabled, whereas those above it are not. Both types of places

are important in modelling processes and in providing relevant information.

The research identified one further opportunity to enhance the capabilities of the

Petri-net approach. The review presented in Chapter 3 showed that many condition

monitoring applications needed to monitor analogue signals, in order to extract

specific features that can help in detecting or predicting the development of critical

conditions. Such signals are of particular interest under certain operating conditions,

normally associated to a specific process state. The knowledge incorporated within

the Petri-net model enables to detect such states and therefore provides a method that

can be used to easily trigger (and stop) signal and data acquisition. In this way

condition monitoring techniques may be focussed and managed to act only when

required to do so, representing a considerable saving in the amount of data acquired

and processed.

248

Chapter 11 - Discussion

An example of this was presented in Chapter 8. The press rig motor current should

sensibly only be monitored while the pallet is moving. Instead of sending every single

sample to the database, the Monitoring Module provided a signal parameter based on

the mean value calculation. There is no suggestion that this example is using the most

appropriate condition monitoring technique to diagnose motor faults, which is

understood as a very complex subject. The aim was to illustrate the potential of this

approach to generic monitoring applications. While being potentially the basis of

future intelligent monitoring systems it should be noted that at this time attempting

the Petri-net execution with the calculation of complex signal features on the same

microcontroller may not be feasible in all cases.

The anticipated further development of a new generation of processors with special

signal analysis features (such as DSPs) may allow future researchers to use a mixture

of techniques to monitor a wider range of applications. The architecture proposed in

this research provides a framework to support such an approach and shows that it can

work. Monitoring Modules with different capabilities or features could coexist within

the system, with the Petri-net based models commanding the acquisition, processing

and analysis of process parameters. Recent research conducted in the IPMM Centre

has started to investigate more advanced signal analysis methods based upon the

microcontroller implementations developed in this work. [11.16].

11.3.2 - Fault Diagnostics

Fault diagnostics is an important feature of any monitoring system. It is normally

provided in order to help reduce the time required to recover manufacturing systems

from faulty states. In research that considered such a method [11.17] it was suggested

that operational fault diagnostics could be based on a map of the process signals and

active states (in the event of a fault), using such information as inputs to an expert

system.

The Petri-net model of a process represents the knowledge required for the

investigation of operational faults. Once in operation, it contains the description of the

sequence of events followed by the process and it retains this process related

information by mapping the state of the process as a sequence of active Petri-net

249

Chapter 11 - Discussion

places. Chapter 8 illustrated the fault diagnostic approach implemented as a result of

this investigation. Although incapable of matching the exact cause of a fault in every

single case, it is fully capable of rapidly presenting a set of hypothesis that could be

used to further investigate such faults. Considering that such hypotheses will be

available in a database, along with all previous process fault related conditions and

associated actions, the method proposed in [11.17] could be further improved. By

targeting the fault diagnosis towards the most probable faults the Monitoring System

can help the expert system, which would be required to perform a smaller number of

interactions in order to present the most probable fault source and as a result suggest

repair actions.

The previously considered timeout method provides the diagnostic approach with an

important feature: the generation of a fault symptom. To do this however, it is

necessary to isolate the timeout events that may be related to faults and those resulting

from process operating changes. This information must be communicated to a higher

level (i.e. the database). Benefits from such an approach are the fact that information

from other systems can be integrated (e.g. maintenance and planning systems). This

information may then be used to plan subsequent action, and may also be interrogated

to identify the timeout events that have resulted from process changes that have not

been assimilated by the monitoring system yet. In this way the process based

monitoring system can effectively be used to continuously update the knowledge

concerning the process, and hence can continuously increase its effectiveness.

This is another example of the capability of this system that, although limited in

resources, is capable of providing a wide range of interesting features. Many factors

contribute to such a result, including the processing capability (and embedded

resources) of the microcontroller and the application knowledge represented by the

Petri-net. In deploying a structure that considers all such factors, the best of each

System’s elements could be explored.

250

Chapter 11 - Discussion

11.4 - The Research in the Monitoring Context

In their proposal of a remote data acquisition system (reviewed in Chapter 3), Nieva

and Wegmann [11.18] considered that a modem concept of such systems should

support a wide range of management applications, rather than a single one. They

indicated that the important requirements of such systems include their ability to:

timestamp any record, provide the capability of reporting events, support the

generation of quantitative (measurements) and qualitative (states) records, to detect

any abnormal conditions and to perform measurements associated with specific

events. All of these features are present at some level in the implementation that

resulted from this research.

The examples presented in the previous chapters (8, 9 and 10) showed that the

proposed Monitoring System has the particular characteristic of providing monitoring

support to different applications without requiring the adjusting or adapting of

application specific parts. This is an important aspect, since such generic

characteristics demonstrate the flexibility of the approach to modelling applications

that is fast and easy. In this way this work represents a method that can be widely

employed. It also can be said to achieve the low-cost characteristic that was one of the

initial aims of the research.

The generation of managerial information represents an important aspect of any

system. The examples discussed earlier showed that the Monitoring System would be

capable of providing direct information related to the manufacturing process, which

could support management and production planning actions. At the same time,

maintenance activities were also supported, and provided with the means to

investigate events that might affect process efficiency and with the potential to limit

and prevent excessive down time. Most importantly these different approaches can be

enabled without any special requirements for many purposes.

The systems architecture played an important role in achieving the reported results. It

supported the research that was undertaken to explore the best characteristics of each

level, while making information available to the different managerial requirements. It

251

Chapter 11 - Discussion

also fully supports the low-cost modular approach that allows individual systems to be

built as required to suit specific applications.

Finally, an important consideration is the fact that the Petri-net approach provides

each Monitoring Module with “independence”. This, together with the

microcontroller’s local processing capability, and the embedded knowledge of the

monitoring task, meets the requirement for an intelligent distributed system.

252

Chapter 11 - Discussion

REFERENCES

11.1 Manders, J., Barford, L.A. and Biswas, G. An Approach for Fault Detection

and Isolation in Dynamic Systems from Distributed Measurements. IEEE

Transaction on Instrumentation and Measurement, 2002, 51(2), 235-240.

11.2 Flammini, A., Ferrari, P., Sisinni, E., Marioli, D. and Taroni, A. Sensor

Integration in Industrial Environment: from Fieldbus to Web Sensors. Computer

Standards and Interfaces, 2003, 25(2), 183-194.

11.3 Thomas, G. Ethernet, Arcnet and CAN - Proposed Network Hierarchy for

Open Control. Contemporary Controls, Customer Support, Contemporary

Controls Web Site, Available from: http://www.ccontrols.com/whitepaper.htm,

[Accessed 13 September 2002].

11.4 CAN Protocols, CiA - CAN in Automation, CiA Web Site, Available from

http://www.can-cia.org [Accessed 17 September 2003].

11.5 Cena, G, Valenzano, A. and Vitturi, S. Integrating Fieldbuses and Factory

Intranets. International Journal o f Computer Manufacturing, 2001, 14(1), 41-

54.

11.6 Paya, V.S, Oltra, J.M. and Gines, E.U. Remote Access to an Industrial

Network MAP 3.0 Through Internet. Communication Department of

Polytechnic University of Valencia, Available from:

http://casal.upc.es/~ieee/looking/sempere/Remote.html [Accessed 19 December

2000].

11.7 Eisenreich, D., DeMuth, B. Designing Internet Embedded Devices. New York,

USA: Newnes Elsivier Science, 2003.

11.8 Chatzigeorgiou, A. Performance and Power Evaluation of C++ Object-oriented

Programming in Embedded Processors. Information and Software Technology,

2003,45, 195-201.

11.9 Al-Haibaibeh, A., Whitby, D. R., Parkin, R. M., Jackson, M. R., Mansi, M.

and Coy, J. The Development of an Internet-based Mechatronic System for

Remote Diagnostic of Machinery Using Embedded Sensors. In Proceeding:

ICOM 2003 - International Conference on Mechatronics, 18-20 June,

Loughborough - UK, 2003, 297-302.

253

http://www.ccontrols.com/whitepaper.htm
http://www.can-cia.org
http://casal.upc.es/~ieee/looking/sempere/Remote.html

Chapter 11 - Discussion

11.10 Kurihara, S. Tsurusaki, T., Ohtsuka, S., Hashimoto, Y., Higashi, S. and

Hikita, M. Construction of Remote Monitoring System for Separative

Measurement of Leakage Current of Outdoor Insulators. In Proceedings: 7th

IEEE International Conference on Properties and Applications o f Dielectric

Materials. Nagoya - Japan, 1 - 5 June, 2003, 401-404.

11.11 Prickett, P. A Petri-net Based Machine Tool Maintenance Management

System. Industrial Management and Data Systems, 1997, 97(4), 143-149.

11.12Bolic, M., Drndarevic, V. and Samardzic, B. Distributed Measurement and

Control System Based on Microcontrollers with Automatic Program

Generation. Sensors and Actuators A, 2001, 90, 215-221.

11.13 Roberts, C., Dassanayake, N., Lehrasab, N. and Googman, C.J. Distributed

Quantitative and Qualitative Fault Diagnosis: Railway Junction Case Study.

Control Engineering Practice, 2002, 10, 419-429.

11.14 Baccigalupi, A., Bernieri, A. and Pietrosanto, A. A Digital-Signal_processor-

Based Measurement System for On-Line Fault Detection. IEEE Transaction on

Instrumentation and Measurement, 1997,46(3), 731-736.

11.15 Hu, W., Starr, A.G., Zhou, Z. and Leung, A.Y.T. A Systematic Approach to

Integrated Diagnosis of Flexible Manufacturing Systems. International Journal

of Machine Tools and Manufacture, 2000, 40, 1587-1602.

11.16Amer, W., Ahsan, Q., Grosvenor, R.I., Jennings, A.D. and Prickett, P.W.

PIC Micro-controller Based Machine Tool Monitoring System. In Proceedings:
t hCOMADEM 2003 - 16 Conference on Condition Monitoring and Diagnostic

Engineering Management, 27-29 August, Vaxjo - Sweden, 2003, 219-225.

11.17 Hu, W., Starr, A.G. nad Leung, A.Y.T. Operational Fault Diagnosis of

Manufacturing Systems. Journal o f Material Processing Technology, 2003,

133, 108-117.

11.18Nieva, T. and Wegmann, A. A Conceptual Model for Remote Data

Acquisition Systems. Computers in Industry, 2002, 47, 215-237.

254

Chapter 12 - Conclusion and Future Work

CHAPTER 12

CONCLUSION AND FUTURE WORK

12.1 - Main Contributions of the Research

This research focused on the development of intelligent, distributed and low-cost

monitoring systems. It investigated a range of different technologies, models and

methods and lead to the following important contributions:

• The development of a flexible hardware / software architecture that is capable of

supporting a wide range of generic applications;

• The development of a microcontroller-based Petri-net model that provides

hardware and software independence;

• The novel incorporation of analogue signals within Petri-net models thus

enhancing the use of the Petri-net methodology for monitoring purposes;

• The development of a method that enables the use of Petri-net places to retrieve

process specific active state information from remote processes;

• The development of a method that enables the use of Petri-net places to control the

acquisition of selected process parameters which can then be used for more

detailed, off-line fault diagnosis.

In each case the efficacy of the approach and the flexibility of the systems produced

by this research has been demonstrated with the deployment of the resulting systems

within a range of different processes.

255

Chapter 12 - Conclusion and Future Work

12.2 - Conclusions

The important conclusions that can be drawn as result of this investigation can be

summarised as:

• The PIC18C452 microcontroller represents a reliable and flexible device for the

implementation of intelligent, distributed and low-cost monitoring systems;

• Low-cost embedded Internet technology is available and can be used in monitoring

applications. However, factors such as hardware design, programming languages

and implementation simplifications must be considered in order to achieve better

results;

• The distributed concept allows a designer to access the best features of each

component of the system, increasing processing capabilities while keeping cost in

proportion;

• The Petri-net modelling approach aggregates flexibility to the microcontroller

implementation, easing the monitoring task representation and reducing

development time;

• Petri-nets provide the elements required for the implementation of more

complicated monitoring tasks, representing a simple way to model time

measurements and to trigger the acquisition of analogue signals.

Considering each of these points in more detail, it can be said that the PIC18C452

microcontroller fulfils the requirements for the implementation of low-cost

monitoring systems. The device is equipped with the input functions and embedded

features required to support such an application. It must be clearly recognised that this

is not a reference to a data acquisition system, but to a monitoring implementation that

can be used to process data retrieved from a process and to convert it into information.

The system produced is still low-cost because very few external components were

required to enable the microcontroller to operate.

256

Chapter 12 - Conclusion and Future Work

It can also be stated that, for this particular and similar applications, based on this type

of devices, Assembler is still the best programming language, since it allows

designers to directly and efficiently manipulate limited resources. In the same context,

it was concluded that the best use of the microcontroller (already defined as a

computer-in-a-chip) is based on using its embedded resources. It is on this basis that

PICs perform the best. The use of this microcontroller in the Internet implementation

demonstrated such an aspect, where a conjunction of factors such as external high-

demanding devices (Ethernet), programming languages (C) and a restrictive hardware

design (interrupts) combined to affect the microcontroller’s performance.

The System architecture played an important role in achieving the final results. CAN

bus protocols form a good partnership with PIC microcontrollers and are conceptually

adequate for monitoring applications (enabling distributed nodes to transmit messages

triggered by events). The distributed philosophy of this architecture represents an

appropriate choice to achieve the initial proposition. By exploiting the best functions

of each of its components it provides an excellent methodology to improve results and

reduce cost.

The Petri-net approach has been developed and improved in this research, and has

been shown to work well as a modelling method for monitoring purposes. It was

initially proposed as an alternative to provide a low-cost microcontroller based

implementation with a simple modelling method and resulted, in the end, in a

powerful method that is capable of adding intelligence and flexibility to the System. It

is simple and practical and is shown throughout this thesis to be capable of allowing

engineers to represent different situations. Three examples with different

characteristics, one of them a real manufacturing application, were modelled without

major constraints, producing a wide range of useful management information.

As a consequence of this research Petri-nets may now assume a new profile. They

have been shown to be much more than a way to describe and follow events. The

Petri-net approach resulting from this research can be used to enable a simple

microcontroller to be deployed to easily obtain process status information and to

257

Chapter 12 - Conclusion and Future Work

trigger the acquisition of important parameters. They have also been developed to

support a simple method to help in the detection of operational faults.

An important consideration (as a matter of evolution) is the fact that technology will

still improve. For example, during the course o f this research, new devices became

available. Hence a method bound to a specific technology would struggle to find

widespread acceptance. The Petri-net monitoring approach, as defined in this

research, does not depend on a single processor or supplier. It can be used with almost

any processor, and as device capabilities increase the method itself can be further

investigated and enhanced. The PIC microcontroller became a good choice for this

investigation and undoubtedly still represents a low-cost alternative, but certainly (and

hopefully) it will not be the last.

Based on the results obtained, it is possible to conclude that the System proposed

through this research is capable of providing a low-cost alternative for process and

condition monitoring. It fulfils the main requirements by providing information for

managerial and maintenance activities. This information can be made available on the

Internet or can be integrated in other existing management applications. In

considering the complexity of some condition monitoring requirements, the System

can be used as a qualitative method. In this context it can be used in detecting

suspicious conditions that may be further investigated using traditional condition

monitoring techniques, therefore helping to reduce the high cost that the use of this

technology normally represents. The proposed System is capable of providing the

required intelligence to support this approach.

12.3 - Future Work

In considering the potential of the final version of the Monitoring System, it becomes

evident that a further refinement would be the development of a more user-friendly

computer based application to enhance the Petri-net designing task. In the same

context the use of flash based microcontrollers should be investigated and developed,

to allow the dynamic downloading of the monitoring task into the distributed

Monitoring Modules.

258

Chapter 12 - Conclusion and Future Work

Another possible step forward in the System implementation would be the provision

of the capability to set up remote monitoring modules from a standard web page

which is interacting with the System’s Management Application. To facilitate this the

Monitoring Modules should have the CAN bus application layer improved perhaps

based on one of the existing standards. This would also enable Monitoring Modules to

explore smart sensors deployed on the same CAN bus, rather than only those sensors

and signals directly interfaced by each Module. This would also be an important step

towards integrating specialised modules, which may be provided with analogue signal

processing and analysis capabilities.

Another interesting development would be the use of artificial intelligence, probably

an expert system, which is capable of making improved use of the records produced

by the Monitoring System. This would provide an entire solution to extended and

support condition monitoring and maintenance activities. Also, during the completion

of this research, it was noticed that possible variations in process dynamics represent a

major obstacle to the implementation of fully reliable and easy to use condition

monitoring strategies. Therefore, it would be interesting if a system could be

developed that is capable of automatically retrieving process information and based

on this, generating a set up of specific parameters (that might be affected by process

settings) within the deployed Monitoring Modules. This would make the System

capable of detecting abnormal conditions more effectively and efficiently.

All of these future developments are possible to predict. They will continue to build

upon this research which has for the first time shown that real progress can be made in

this important sector with the bringing together of the separate Petri-net and PIC

based technologies to form a flexible and low-cost solution to the problem of process

monitoring. This represents a major step forward.

259

Appendix A - Monitoring Module Hardware

APPENDIX A

DEVELOPMENT RELATED DETAILS

8K2

L N 4 1 4 8

8K2

L N 4 1 4 8

8K2

L N 4 1 4 8

8K2

L N 4 1 4 8

8K2

L N 4 1 4 8

8K2

L N 4 1 4 8

8K2

1 N 4 1 4 8

8K2

H PC L 2200

"NC

"N'

v c c
IA Vo
K En

C GND

H PC L 2200

"NC

LN 4 1 4 8

VCC
A Vo
K

C GND

H PCL2200

NC v c c
A Vo
K En
NC GND

H PCL2200

NC VCC
A Vo
K En
NC GND

H PC L 2200

NC VCC
A Vo
K En
NC GND

H PC L 2200

NC v c c
A VO
K En
NC GND

H PC L 2200

"NC VCC
Vo

J K En
" NC GND

H PC L 2200

"NC
A

VCC
vo
En

"Inc gnd

BUS_Ia o oo ooOOOOfOOOOOO
BUS OUTOOooooooo o foooooo

lO u F

ADDRESS
SELECT

Figure A.l: Digital input card circuit diagram.

A. 1

Appendix A - Monitoring Module Hardware

i/ o° oo \ i/ o o o o o \

6 6 6 6 6 6 6 0QOOOOOOO

r-.«x>tr>Tj*rofMrSc>Qc/,)r-v£>in^rXXOHro(M OjfflffltDlDlIlHH^QwQQaaaiHQQQD
^ cc cc cc cc cc 2 z "z > > cc cc cc cc wcoosos

C 5-

Figure A.2: Microcontroller module circuit diagram.

A. 2

D
IG

IT
A

L
CA

RD
S

Appendix A - Monitoring Module Hardware

Output
Enable

Device
Output

Device
Input

300ns
<— (max) — ►

Device v
Output A

(b)

Figure A.3: Digital inputs card timing diagram, (a) the output with respect to the

output enable signal and (b) the output with respect the input.

28ns V I®*™
, (typ)(

v Z Z > -
(a)

Appendix A - Monitoring Module Code Main File

Monitoring Module Software Development

* PhD Research *

* Intelligent Distributed M onitoring System *

* System Engineering Division *
* Student: Marcos R. Frankowiak *

* Supervisor: Paul W. Prickett / Roger I. Grosvenor *
I******* *

* TITTLE: PICNET.ASM *

* DESCRIPTION: PIC based petri-net running on a PIC 18C452 microcontroller *

* STARTING DATE: 24/09/2000 *

* LAST UPDATE: 09/03/2003 (fault diagnostics) *

list p=l 8C452 ;select microcontroller

;include files

include "pl8C 452.inc" ;microcontrollers header
include "mcp2510.inc" ;CAN microcontroller header
include "ascii.inc" ;ascii table
include "PicDef.inc" ;pic related definitions
include "IntM acro.inc" specific macros for the application
include "IntVar.inc" ;defmed variables and constants

;cold start

ORG h’00001

Start
NOP
NOP
GOTO Main

;a string o f "no operation instruction"
;to allow controller synchronisation
;go to program execution

interrupt vector addresses
;WREG, STATUS and BSR are automatically stacked up by the microcontroller

ORG h'0008' ;no priority scheme selected

Syslnterrupt

BTFSC PIR1,TMR1IF,A
CALL InterrTimer ;real time update interrupt

BTFSC INTCON,TMROIF,A
CALL InterrCANChSel ;CAN controller chip-select delay

BTFSC INTCON,RBIF,A
CALL InterrCANRx ;CAN controller RX interrupt

BTFSC INTCON3,INTlIF,A
CALL InterrPulsel ;pulse input update

BTFSC INTCON3,INT2IF,A
CALL InterrPulse2 ;second pulse input update

BTFSC PIR1,SSPIF,A
CALL InterrSPI ;SPI interface interrupt

RETFIE FAST ;retum from interrupt restoring PIC registers

A. 4

Appendix A - Monitoring Module Code Main File

;main program

Main
Systemlnit ;general system reset actions

Timer Unit ;real time timer - updates an SQL datetime format
;variable (1 ms)

TimerOInit ;configures timer used to generate a delay before
;removing the CAN controller chip select signal

SPIlnit ;configures the SPI interface - data exchange with
;CAN controller

CANCtrllnit ;MCP2510 - CAN controller operating mode

PetriNetlnit ;petri_net general initialisation

InterrConfig ;configures and enables the interrupt operating mode

application main loop

ApplicLoop
ControllerReady ;verifies whether or not the controller was initialised

WatchController ;checks if CAN controller is requesting service

UpdateAnallnput ;update the analogue inputs

UpdateDiglnput ;updates the digital inputs

OneSecondUpdate ;time based variables update

CheckPetriNet ;checks the Petri-net table for transition firing
conditions

TransitionMsg ;verifies if a transition was fired

BuildMessage ;builds a message indicating that a transition was
;fired

LoadSpiBuffer ;if a message was built, it must be loaded in the SPI
;transmit buffer

CheckCommand ;verifies whether or not a command was received

BuildCanStatusReq ;a message is loaded in the SPI transmit buffer to
;request the CAN controller status

CheckSpiBuffer ;checks if there is any block o f data downloaded from
;the CAN controller

BuildCanBufferReq ;a message is loaded in the SPI transmit buffer to
;request the CAN controller receive buffer content

BuildCanAck ;a message is loaded in the SPI transmit buffer to
acknowledge a CAN controller status indication

SpiStartTx ;begins the transmission o f a new message in the SPI
;transmit buffer

ProcessUpdate Checks whether or not a place changed state

TimeOutUpdate Controls message exchange timeout

F aultDiagRequest ;verifies if any fault diagnostic is requested

ProcFaultDiag executes fault diagnostic

A. 5

RestartPNet

Appendix A - Monitoring Module Code Main File

;restarts the Petri-net if a token arrives the bin

specific routine include files

include "intsub.inc" ;system subroutines
include "interr.inc" in terrupt routines

;Petri-net required tables

transition table

TRANSTABLE:
include "petrinet.inc" ;Petri-net table

PROCESSTAB:
include "process.inc" ;special states (watch status) table

WATCHTABLE:
include

*
"watch.inc" ;special parameters - analogue acquisition table

;program end

END

The entire set of development files related to the Monitoring Module are provided in

electronic format and can be found in the attached CD-ROM. Further details are

available in the Section “Attached Documents and Files”, later in this appendix (A.25-

Appendix A - Connectivity Module Code Main File: CAN Node

Connectivity Module Software Development - CAN Node

* PhD Research *
* Intelligent Distributed M onitoring System *
* System Engineering Division *
* Student: Marcos R. Frankowiak *
* Supervisor: Paul W. Prickett / Roger I. Grosvenor *
**
* TITTLE: CAN MN.ASM
* DESCRIPTION: Connectivity M odule - CAN node implementation (PIC18C452)
* STARTING DATE: 24/03/2001
* LAST UPDATE: 27/10/2002 (timeout control update)
**

include "pl8c452.inc" m icrocontrollers header
include "mcp2510.inc" ;CAN microcontroller header
include "canvar.inc" application variables definition
include "cancfg .inc" m icrocontroller configuration registers set up
include "canm ac.inc" ;defined macros in use by the application
include "ascii.inc" ;ASCII characters definitions

application execution - beginning point

C O L D ST A R T

INTERRUPT VECTOR

;general set up

MAIN

INIT PIC REGISTERS

;microcontroller power-on reset

;microcontroller interrupt access vectors

;sets microcontroller configuration registers

SET STACK POINTER HIGH_STACK,LOW _STACK - 1 ;defmes software stack-pointer

SET UP BUFFERS

IN IT T IM E R 0

INIT SPI INTERFACE

IN IT U S A R T

IN IT_C A N C O N T R O L L E R

INIT TIM ER 1

ENABLE INTERRUPT

SOFTW ARE DELAY

;sets up all registers used by the application

initialises timer to perform CAN chip-select delay

;sets up SPI interface operating mode

;sets up the operating mode o f the RS232 interface

;sets up a sequence o f data in the SPI TX buffer that will
;initialise the CAN controller
;sets a device to deliver 1 ms timing

;enables peripheral interrupts

CTE1 ;performs a 2 seconds delay before reaching the main loop

A. 7

Appendix A - Connectivity Module Code Main File: CAN Node

;main execution loop

MAIN LOOP

C H E C K C A N IN T ;checks if the CAN controller generated an interrupt

C H E C K C A N S T A T U S ;verifies whether or not to request CAN controller status

START SPI TX ;checks if there is any block o f data which demands
;transmission to be started

CHECK RS REC ;checks if there is a data block in RS receive buffer

C H E C K S P IM S G ;checks if there is a message in the intermediate buffer to be
;send through the SPI interface

CHECK_RS MSG ;checks if there is a message in the intermediate buffer to be
;send through the RS interface

C H E C K C A N R T S ;checks if any o f the CAN controllers transmit buffers is
;awaiting a RTS command

C H E C K S P IR E C ;checks if there is a block o f data in SPI RX buffer ready to
;be transferred

CHECK CAN RX ;verifies if there is data available in the controller receive
;buffers

C H E C K C A N A C K ;checks if there is an acknowledgement to be send to the
;CAN controller

C H E C K A C K R E Q ;monitoring module acknowledge is requested

C H ECK TIM EO U TS ;controls receive buffer usage - discharge tim ed out message

BRA MAIN LOOP ;repeat loop

;sub-routines an interrupt service

include "can sub.inc" ;sub-routines file
include "can int.inc" in terrup t routines file

;end o f application

END

The entire set of files related to the Connectivity Module CAN bus development are

provided in electronic format and can be found in the attached CD-ROM. Further

details are available in the Section “Attached Documents and Files”, later in this

appendix (A.25-2).

A. 8

Appendix A - Connectivity Module Code Main File: Internet Protocols

Connectivity Module Software Development - Interact Protocols

* Internet connectivity application *
* Main module (PIC Wizard C com piler) *
* Based on Microchip PICDEM NED demo board *
* date: October 2001 *
* last update: November 2002 *

#include <P18C452.h> //m icrocontroller PIC 18C452 header file
#include "P18Cext.h" //m icrocontroller header file extension
#include "picnet.h" //application definitions and settings
#include "peripheral.h" //PIC 18C452 hardware and peripherals
#include "support.h" //general functions
#include "application.h" //intermediate data layer
#include "lcd.h" //LCD display library
#include "ethemet.h" //ethem et interface library
#include "intemet.h" //TCP/IP protocol related functions

//- -local functions prototype-

void main(void);
void Interrupt(void);

//-------------------------------interrupt variables---------------

//definitions to enable multi-use o f C and Assembler

#asm
tx equ 0 ;int_flags bit 0
rx equ 1 ; bit 1
tO equ 2 ; bit 2

RxIntSize equ d'lOO' in itia lly defined as 30
TimerOLow equ d'236'

#asmend

struct
f
X

byte tx :l; //USART TX interrupt flag
byte rx :l; //U SA RT RX interrupt flag
byte tO: ; //TIM ER0 interrupt flag
byte :1;
byte :1;
byte :1;
byte :1;
byte :1;

}int_flags; //interrupt flags

#asm
tx req equ 0 ;USART status variable bit 0
rx err equ 4 ; bit 4
#asmend

struct
{

byte tx r e q : 1: //US ART TX request

A. 9

Appendix A - Connectivity Module Code Main File: Internet Protocols

byte :1
byte :1
byte :1
byte rx e r r : 1; //USART RX error
byte : 1
byte : 1
byte :1

}dev_status; //activity status

byte tx re g ; //temporary register - USART TX
byte in in d x ;
byte ou tin d x ;
byte rx_reg[RX_INT_SIZE]; // - USART RX

byte *ptr_rx_reg;

//byte system status;

//interrupt backup procedure

byte bckfsrO l;
byte bckfsrO h;

//------------------------------ function declaration-----------------------------------
//interrupt vector description - must be in the same file as main()

void Interrupt()
{
#asm

IN T IN IT :
MOVFF FSR0L,bck_fsr01;
MOVFF FSROH,bck_fsrOh;

BTFSS PIE 1 ,TXIE,0 ;is the USART TX interrupt enabled?
BRA INT USART RX
BTFSS P1R1 ,TXIF,0 ;is it an USART TX interrupt?
BRA INT USART RX

MOVFF dev_status,FSROL
BTFSS FSR0L,tx_req,0
BRA DISABLE TX

MOVFF FSROL,dev_status
M OVFF int_flags,FSROL
BSF FSR0L,tx,0
MOVFF FSROL,int_flags

DISABLE TX:
BCF P1E1,TXIE,0

IN T U S A R T R X :
BTFSS PIE1,RCIE,0 ;interrupt enabled?
BRA INT TIMERO
BTFSS PIR1,RCIF,0 ;checks for RX interrupt
BRA INT TIMERO

BTFSC RCSTA,OERR,0
BRA USART RX ERR

BTFSS RCSTA,FERR

MOVFF tx reg,TXREG
BSF TXSTA,TXEN,0
BCF FSR0L,tx_req,0

;enable data transmission
;system notification

A. 10

Appendix A - Connectivity Module Code Main File: Internet Protocols

BRA STORE RX DATA

USART RX_ERR:
MOVF RCREG,W,0
MOVFF dev_status,FSROL
BSF FSROL,rx_err
MOVFF FSROL,dev_status
BRA INT TIMERO

;remove data

STORE RX_DATA:
MOVFF in indx,FSR0L
MOVF FSR0L,WREG,0
MOVFF ptr rx reg, FSROL
MOVFF ptr rx reg + 1, FSROH
MOVFF RCREG,PLUSW0
ADDLW 1
MOVWF FSROL,0
MOVLW RxIntSize
CPFSLT FSROL,0
CLRF FSR0L,0
MOVFF FSROL,inindx
MOVFF in tflag s , FSROL
BSF FSR0L,rx,0
MOVFF FSROL,intflags

;buffer offset index
;buffer address

; increment index

;buffer overrun position

;store index

INT TIMERO:
BTFSS INTCON,TMR0IE,0
BRA INT END
BTFSS INTCON,TMR0IF,0
BRA INT END

MOVLW TimerOLow
MOVWF TMR0L,0
BCF INTCON,TMR0IF,0
MOVFF intflags,FSROL
BSF FSR0L,t0,0
MOVFF FSROL, in tf lag s

in terrupt enabled?

in terrupt matched?

;load time constant
;clear interrupt

IN T E N D :
MOVFF
MOVFF

#asmend

}

void main()
{

bckfsrOl,FSROL;
bck_fsrOh,FSROH;

byte system status;

//device set up

in in d x = 0;
o u tin d x = 0;
p t r r x r e g = &rx reg[0];

pic set_up();

sy stem off;
user 1 off;
user2 off;

//rx interrupt buffer indices

//configures the microcontroller

//operating LED's switched off

A. 11

Appendix A - Connectivity Module Code Main File: Internet Protocols

lcd in itQ ; //LCD display initialisation

//RS232 buffer initialisation

usart_buf_init(); //TX & RX buffer initialisation
usart_init(); //device operating mode set up

//other buffer initialisations

app_buffer_init(); //initialises intermediate buffers

//ethemet interface initialisation

system status = eth_cold_start(); //performs the interface initialisation
if(system_status == ok)
{

enable_pic_int(); //enable interrupt
usart_rx_int(); //reception interrupt enabling
timerO_init(); //I millisecond interrupt
init_intemet(); //internet initialisation
display_message("System Status:\n");

}

while(system_status == ok)
{

#asm
BTG PORTC,0,0;

#asmend

if(int_flags.tO)
{

timer_update();
intflags.tO = false;

}

if(int_flags.tx) //transmission previously started
{

in tflag s .tx = false;
if(usart_tx(&tx_reg) == ok)
{

d e v s ta tu s .tx re q = true;
piel.txie = true;

}
}
else //start a new transmission
{

if(! de v s ta tu s .tx re q)
{

if(usart_tx(&tx_reg) == ok)
{

//status must be set before enabling the
//interrupt
d e v s ta tu s .tx re q = true;
piel.txie = true;
txsta.txen = true;

}
}

A. 12

Appendix A - Connectivity Module Code Main File: Internet Protocols

e th v ir tu a lin tQ ;

in tem etstatusQ ; //performs internet protocols checking

e th v irtu a lin tQ ;

ethem etstatusQ ; //performs ethemet checking

e th v ir tu a lin tQ ;

appkeepingQ ; //checks the data exchange between buffer

e th v irtu a lin tQ ;

display_message("Eth init error\n");
while(system_status != ok)
{

delaym s(lO);
}

//test if there is received data in buffer

byte get rx_buffer_data(byte *ptr_data)
{

byte status;

if(in indx == o u tin d x)
status = false;

status = true;
*ptr_data = rx_reg[out_indx];
out_indx++;
if(out_indx == RX_INT_SIZE)

o u tin d x = 0;

retum(status);
}

The entire set of files related to the Connectivity Module Internet protocols

development are provided in electronic format and can be found in the attached CD-

ROM. Further details are available in the Section “Attached Documents and Files”,

later in this appendix (A.25-3).

else

}

A. 13

Appendix A - Measurement Test: Description

Analogue and Pulse Inputs Test Measurement

The test procedure was based on the implementation of a test-Petri-net to trigger the

acquisition of the 4 analogue channels and 2 pulse inputs, as shown in Figure A.4.

Describing this Petri-net, each acquisition cycle was controlled by a digital signal

(DS01). Analogue channels and pulse inputs acquisition period was controlled by a

sub-net command (SN002), issued by a CAN node acting as a second monitoring

module, emulated by an MCP2510 CAN Controller Development Kit. The kit

software’s support allows building and sending CAN messages, such as the sub-net

broadcast shown in Figure A.5. The test results were stored in a test-database to

enable further analysis. Table A.l summarises the equipments employed in the test

environment. The Petri-net descriptive files (text) are fond in the attached CD ROM

(A.25-5).

Table A.1: Measurement test equipment set up.

Equipment Description Use Description

Stabilised power supply FARNELL E30/1, • Analogue input linearity measurement test.
0 to 30 V / 0.5 A - 0 to 15 V / 1.0 A

Global Specialities Corporation 2001
function generator - TTL, sine and
triangular output and offset adjust -
frequency range from 1 Hz to 100 KHz

Black Star true RMS multimeter - 200 m
to 2000 Volts

Global Specialities Corporation 5001
universal counter / timer - 0.01 to 10
seconds update rate

Digital storage oscilloscope OS4100 Gold • Periodic wave form pick and period
Advance, 2 mV to 5 V / division - 10 MHz measurement

• Pulse input linearity measurement test;
• Analogue and pulse input mean value

assessment.

• Analogue inputs linearity test - DC
measurement.

• Pulse input monitoring - linearity
measurement test.

A. 14

Appendix A - Measurement Test: Description

START
P000

Sub-net SN001 was generated with
the CAN development kit, in order
to synchronise the acquisition

T001

P002
SN001P001

.TOO 3.TOO 2

P011
ANALOGUEl SN002

too4__

P012
ANALOGUE2

T0 0 5 __

X P013
ANALOGUE3

P003
T006

P014
ANALOGUE4

T007_J!

X P015
PULSE1

T008

P016
PULSE2

T009

Figure A.4: Measurement test Petri-net.

The descriptive files related to the hardware test Petri-net can be found in the attached

CD-ROM. Further details are available in the Section “Attached Documents and

Files”, later in this appendix (A.25-5).

A. 15

Appendix A - Measure

Number of bytes in the
data field

Monitoring module ID
(0 for broadcast)

Message ID -first part
of a single part message

Separator “/”
Sub-net sign “E” (together
with envelope ID 7DF)

}
}
}
}

■ ■ ■ ■ L f c lx l l

CAN Envelope: |$7DF

Length: |$5
0 ênd j|

Data 0 $0 D ata4 $1

D a ta ! |$11 Data 5 $0

Data 2 $2F Data 6 $0

Data 3 |$45 Data 7 |$0

{CAN frame
identification (priority)

Sub-net identification

Figure A.5: Sub-net message format using CAN development kit.

A. 16

M
ea

su
re

m
en

t
(V

)
M

ea
su

re
m

en
t

(V
)

Appendix A - Measurement Test: Linearity

Analogue 1 - Linearity (Ascending)

7.00%12

6 .00%
10

5.00%

8
4.00%

3.00%6

y = 0.9997x + 0.0261
2.00%

4

1.00%

2
- ■ 0 .00%

0 - 1.00%

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
System (V)

(a)

Linearity
 Error (%)
— —Trend equation

Analogue 1 - Linearity (Descending)

12 7.00%

6.00%
10

- • 5.00%

8
- ■ 4.00%

6 3.00%

y = 1.0004x + 0.0221
2 .00%

4

.00%

2
- - 0 .00%

0 - 1.00%

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

System (V)

(b)

1 Linearity
 Error (%)
— — Trend equation

Figure A.6: Analogue-1 input linearity measurement, (a) increasing and (b)

decreasing the voltage.

A. 17

Appendix a - Measurement lest: Linearity

Pulse 1 - Linearity (Ascending)

60.00%70000

50.00%60000

■ 40.00%50000

30.00%40000

-- ■ 20.00%2 30000

y _ 0.9995x + 3.001

10.00%20000

0.00%10000

-10.00%
20000 30000 40000 50000 60000

System (Hz)

(a)

1 Linearity
 Error (%)
— —Trend equation

Pulse 1 - Linearity (Descending)

70000 12.00%

60000 -- 10.00%

50000 • 1.00%
N

S
40000 - - 6.00%

cu
Et3
1 30000 - - 4.00%

y = 0.9996x + 1.7332

20000 - - 2.00%

10000 0.00%

-2.00%
0 10000 20000 30000 40000 50000 60000

System (Hz)

(b)

— Linearity
— ■ Error (%)
— — Trend equation

Figure A.7: Pulse-1 input linearity measurement, (a) increasing and (b)

decreasing the frequency.

A complete set of graphs related to all (analogue and pulse) inputs linearity test can be

found in the attached CD-ROM. Further details are available in the Section “Attached

Documents and Files”, later in this appendix (A.25-6).

A. 18

Appendix A - Measurement Test: Repeatability

Analogue 1 - Repeatability Test

1 50%

1 00%

0 50%

sRI” 0 00%
uu

-0 50%

-1 00%

-1 50%
Input (V)

Figure A.8: Analogue-1 input repeatability test.

Pulse 1 - Repeatability Test

1 00%

0.80%

0.60%

0 40%

0 20%

0.00% ■ —̂o
1 00E+04 2.00E+04 3.00E+04 4.00E+04 5 00E+04 6.00E+04UJ

-0.20%

-0.40%

-0 60%

-0.80%

-1.00%
Input (Hz)

— Test 1
— Test 2

Figure A.9: Pulse-1 input repeatability test.

A complete set o f graphs related to all (analogue and pulse) inputs repeatability test

can be found in the attached CD-ROM. Further details are available in the Section

“Attached Documents and Files”, later in this appendix (A.25-7).

A. 19

Er
ro

r
(%

)
Er

ro
r

(%
)

Appendix A - Measurement Test: Mean Value Calculation

Mean Value Error Characteristic

• OOE K>3 ■ 506+03 2.006-H 3 a soe

In p u t (Hz)

(a)

Mean Value Error Characteristic

— S y ste m re s p o n s e - sq u a r e w av e / m e a n v a lu e 1.1 V

O.OOE+OO 2 .0 0 E + 0 1 4 .0 0 E + 0 1 6 .0 0 E + 0 1 8 .0 0 E + 0 1 1 .0 0 E + 0 2 1 .2 0 E + 0 2 1 .4 0 E + 0 2 1 .6 0 E + 0 2 1 .8 0 E + 0 2 2 .0 0 E + 0 2
Input (Hz)

(b)

Figure A.10: Square wave mean value calculation error, having (a) 2.5 V and (b)

1.1 V as input signal mean value.

■ S y s tem re s p o n s e - s q u a r e w av e / m e a n v a lu e 2 .5 V

A. 20

Appendix A - Communication Test Environment

CAN bus Monitoring Examples

Figure A. 11 shows a set of system’s commands flowing on the CAN bus captured

with the CAN monitoring tool. The “output window” provides information regarding

the message priority, data field length and the application data. The first line displayed

represents a “set-time” command; the second a “set-date” and the last one a “reset

Petri-net”. Such commands will be broadcast to all Monitoring Modules. Thus, the

first field in the data block was assigned “0”.

■ ■ ■ ■ l - l Dl x l
Ident Fig Len DO. . D7 Time Dir

07F7 8 00 11 2F 54 02 FD EA 38 746.487 R
07F7 8 00 11 2F 44 40 E2 77 12 749.320 R
07F7 4 00 11 2F 52 755.172 R

Figure A .ll: CAN bus monitoring window display system’s commands.

Figure A. 12 shows a “fired transition” record transmitted by a monitoring module.

The record was required to be split in 3 CAN frames. Frames with identification field

“7EF” have as destination the Connectivity Module. The first element in the data field

identifies the monitoring module that originated the message. The second element

identifies the specific segment of the whole message (31 - first of 3; 32 - second of 3;

33 - last of 3). In the first segment (31), the third and fourth bytes of the data field

inform the Connectivity Module the entire length (ASCII) of the record to be

transmitted over the Internet. Following are a separator (“/”) and record class fields

(54 - “T” for transition). Other fields are the event identification and the timestamp.

After receiving all segments, the Connectivity Module will reply with a broadcast

message (identification 7F7 in Figure A. 12) acknowledging the reception (41 - “A”)

to the monitoring module that originated it (01). Figure A. 13 shows another “output

window”, where a timeout record was captured. In this case, the entire message

required further 2 bytes, in order to report the timeout value.

A. 21

Appendix A - Communication Test Environmen

n ■ ■ ■ ■ E
Ident Fig Len DO. .D7 Time Dir

07EF 8 01 31 31 31 2F 54 01 02 8S9.707 R]
07EF 8 01 32 80 A4 FF 02 12 77 859.707 R
07EF 3 01 33 83 859.707 R
07F7 S 00 11 2F 41 01 859.717 R

Figure A.12: CAN monitoring window displaying a fired transition record.

1 1 □ 21

Ident. Fig Len DO............. D7 Time Dir
07EF 8 01 31 31 33 2F 58 01 03 1419.835 R
07EF 8 01 32 95 30 08 03 12 77 1419.835 R
07EF 5 01 33 95 08 00 1419.835 R
07F7 5 00 11 2F 41 01 1419.850 R

Figure A.13: CAN monitoring window displaying a timeout record.

Figure A. 14 shows two sub-net messages, identified by the last byte in the data field

(01 and 02). Sub-nets’ priority fields are identified as “7DF”, making them “invisible”

to the connectivity module. The first element in the data field (00) makes it acceptable

for all monitoring modules (broadcast). The second element indicates total and

specific segment number, while the following “/E” (2F 45) identify the message at the

application level (sub-net).

m I H H H H H H H ■ ■ ■ ■ E □

Ident. Fig Len DO...................... D7 Time Dir
07DF 5 00 11 2F 45 01 912.481 T
07DF 5 00 11 2F 45 02 912.494 R

Figure A.14: CAN monitoring window displaying sub-net records.

A. 22

Ethernet / Internet Protocols Monitoring Examples

Figure A. 15 illustrates messages exchanged between connectivity module and

management application. Figure A. 15(a) shows messages captured from the Ethernet

network, where a record was sent from the Connectivity Module (1) and

acknowledged by the Management Application (2). Details of such transmissions are

shown in Figure A. 15(b) and A. 15(c). The first (b) shows a connectivity module

transmission carrying a monitoring module timeout record. In such case, the UDP

data field begins with a “U” character, which identifies it as a message. The next byte

in the data field represents the message sequence number (44), followed by the record

length (OD). The remaining valid bytes in the datagram data field represent the record

originated by the Monitoring Module (class, timestamp and timeout value). Figure

A. 15(c) shows a similar window containing the acknowledgement issued by the

management application, indicating the correctness of the received message. Such

message will provide, in the UDP data field, two valid bytes: the first identifying the

nature of the message (AA (hexa) - complement of the “U” character characterising

an acknowledgement) and the second corresponding to the sequence number that it

will confirm. The absence of such confirmation within a defined period of time will

result in the message retransmission. Other messages exchanged by the system follow

similar patterns.

A. 23

Appendix A - Communication Test Environment

■ 7 0 1 * 1
'q' £ie £d* Capture Statistics Options Tools Window Help J9JX1

e \ a \ m \ V N 0 | « M * H i t l s lL i l c a l^ lw l d !« * • d.... .
1: 8.681 sec la te r 85 bytes MAC(Accton:72AO7B<-6S01B8:8388B8, type IP) IP(1I.1B.5.1<-1».18.5.15, len 71)
2: 0.003 sec la te r 68 bytes MAC(Accton:72AD7B->85B10B:A3B868, type IP) IP(18.10.S.1->18.18.5.15, len 38)

F a Help. press FI >NE2000-2

(a)

Pack*! - IfAcltve) SA M Ptl IR C 8 6 H W)1 sec talei bytes)

. t £ File Edk Opitont Window Help -jsjxj
MAC: 00 08 E8 72 AD 7B 85 81 88 A3 88 88 88 88

sre: 850100:830800 dst: Accton:72AD7B

IP: 85 BB 6B 87 83 5A BB 00 68 11 35 29 BA 8A 85 BF BA BA 65 01
sre: 10.18.5.15 dst: 18.10.5.1 version: IP version 8
id: 858 frag: BxB t t l : 100

UDP: 08 00 08 60 60 33 9F 5C
sre: 1B28 dst: 2688 len: 51

Data:
55 88 6D 58 81 83 95 AD 08 63 1 2 7 7 E2 80 86 06
60 60 60 66 66 06 66 60 66 66 08 68 66 66 66 86
66 66 BB BB 60 66 66 06 60 66 88

prot: UDP 17

chk: 6x9f5c (ok)

UD.X ».00.

type: IP 0x886 - Ethernet II

hsize: 5 type: 6
chk: 6x3529 (ok)

11

(b)

m m
s/ £le £d# Options Window Help

—
1AC: 85 61 60 A3 68 60 06 88

sre: Accton:72AD7B
E8 72 AD 7B 68 86

dst: 856186:038888 type: IP 6x866 - Ethernet II

IP: 85 BB 68 1E 53 8F 68 88
sre: 18.18.5.1 dst: 18.18.5.15
id : 21327 frag: 8x6

28 11 29 5D 8A 9A 85 81 6A BA 85 BF
version: IP version 8
t t l : 32 prot: UDP 17

hsize: 5
chk: 6x295d (ok)

type: 6 len: 30

UDP: 08 BB 88 08 60 6A 2B 72
sre: 2888 dst: 1828

Data:
AA 88

len: 16 chk: 8x2b72 (ok)

.D

Extra bytes at the end:
111..... .. . d ^

(c)

Figure A.15: Ethernet/Internet protocols monitoring, (a) message exchange, (b)

message details and (c) message acknowledgement details.

A. 24

Appendix A - Attached Documents and Files

ATTACHED DOCUMENTS AND FILES

The documents and files related with this appendix can be found in electronic media

format, attached at the end of this thesis. Bellow are provided the details related to

these files and documents location within the storage unit (CD-ROM).

(1) Monitoring Module development files

Folder: \Development\MonitoringModule

File name: Pnet.htm (main application’s code file)

Other files can be accessed by means of the hyperlink provided within Pnet.htm.

(2) Connectivity Module development files (CAN bus node)

Folder: \Development\ConnectivityModule\CANNode

File name: CANbus.htm (main application’s code file)

Other files can be accessed by means of the hyperlink provided within

CANbus.htm.

(3) Connectivity Module development files (Internet protocols)

Folder: \Development\ConnectivityModule\IntemetProtocols

File name: Connectivity.htm (main application’s C code file)

Other files can be accessed by means of the hyperlink provided within

Connectivity .htm.

(4) Management Application

Folder: \Development\ManagementApplication

File name: IntMonitor.exe

(5) Measurement test descriptive files

Folder: \AppendixA\PetriNet

File name: PetriNet.htm (Petri-net), WatchStatus.htm (begin/end states) and

WatchTrigger.htm (acquisition trigger)

(6) Measurement test linearity graphs

Folder: \AppendixA\HardwareTests

File name: Linearity.htm

(7) Measurement test repeatability graphs

Folder: \AppendixA\HardwareTests

File name: Repeatability.htm

A. 25

Appendix B - Press Rig Petri-net Descriptive File

APPENDIX B

MONITORING APPLICATIONS RELATED DETAILS

Press Rig Event Description File

M O D U L E ID
SPECIAL PL

EQU
EQU

1
D'200'

;monitoring module
;timeout control limited to place 200

;transition 1
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

;transition 2
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

;transition 3
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

;transition 4
DB
DB

D T , B’00000000’
B '00000001',B 'l 1111111'
B '00000000',B 'l 1111111'
B'oooooooo’,B'iiiiiiir
D'0',D'0'
D,1,,H 'FP
D '7 ',D T
D’201',D’l '
D '202',D 'l
D '203',D 'l
D '210',D 'l
D '212',D 'l
D '214',D 'l
D '230',D 'l
D’231',D 'l
H'FF',D'0'

H'FF', D'2'
B'00000000',B’00001000’
B'llllOllRB'OOOOOOOO'
B111111111',B'00000000’
B’ 11111111 ’jD'O’
D'201’,D T
H 'FF,D '5'
D T,D '207'
D T ,D T
D T,H 'FF '
D'0',H'FF'

D'3',B'00000000'
B '00000100',B 'l 111 1011'
B '00000000',B 'l 1111111'
B'oooooooo\B'iiiiiiir
D'0,,D'202'
D T ,H 'FF '
D '6 ',D T
D '208 ',D 'r
D’2 ',D T
H'FF',D '0'

H 'FF',D '4'
B 'l 0000000',B'00000001’

;T1
;DS01 - stop
;card 2 - none selected
;card 3 - none selected
;no sub-net input
;1 token
;output place 7
;output place 201
;output place 202
;output place 203
;output place 210
;output place 212
;output place 214
;output place 230
;output place 231
;end o f output places

;end o f structure T1
;ordinary, no transmission
;active state ON
;does not matter
;does not matter
; input place 201
;end o f input places
;1 token
;1 token
;1 token
;no sub-net output

;T3
;DS03 - right motor
;card 2 - none selected
;card 3 - none selected
;no sub-net input
;1 token
;output place 6
;output place 208
;output place 2
;end o f output places

;end o f structure T3
;ordinary, transmission

ordinary, no transmission
active state OFF

does not matter
does not matter
input place 0

/ end o f input places
1 token
1 token
1 token
1 token
1 token
1 token
1 token
1 token
1 token
no sub-net output

T2
DS04 - left motor
card 2 - none selected
card 3
no sub-net input
1 token
output place 5
output place 207
output place 1
end o f output places
end o f structure T2

ordinary, no transmission
active state ON
does not matter
does not matter
input place 202
end o f input places
1 token
1 token
1 token
no sub-net output

T4
D S01 - stop

B. 1

a
XVs

CDa.
on

"O T3 3
(U<) a>+-*0

CO
<U 3" ’co

<D <u H .22
a/CO <uCO 3

•3-
O ’a s

6 X
X

CU
3
O

(U
3
O

X
, 3

(N
<u
0
3

+-*
3
B

3
O
3

3
3
i s

0
<D

3 3 <U 3 h 4N 3
I 1 3 CL 0 CO c CO

<N CO X
3

0/
V

+■*
3

X
0

X
0

3
3 (L>>

T3 T3 CO 0 B - a T3 T2
O 3 3 3 L. O

O 0 3 0 a> O O 3

L. L-CD a>
V t s3 3
e s*-> X
0 O
3 3
CO COCD CDO O

T 3 - a

<d
o
S © a.

^ *3o C l

J3 .S
° -5 S 4b■B O ^ 3
O.T3 O “s c 2.3 <u 3

3
fO
x0>3

•o<L> T3<D
U U_o> jd
13 a 13co 2 co
2 M 2C 3o <C o3 ^ 3
' I f

- O ^ T3 —< T3
X ̂ n & H o Q o

3
X

.£
a33■

X)3
CO
O3

aso<N
CDo3

0) NO <■> 3-frt

D. ^
f |

3 3 CD <d 44 44o o

X © co

3 °B-u
3 co <d

.5 >

C/5CDaL- t— 3
£ o u
i ^ M «S o <u 3O CD X+-> w 3̂ _g
£ O h O h <4-4

3
to
X<D3

C/5 3 5
3 a a,"® © 3 3 3 -3 .3 .3 u

§ X ° 4 3O 1/3

■a
<d

o
Z
£
H

00 C£
H Q

r ,(N n
© -a ’O

3
CL.3
Xa>3

O CL

co
8 £ 3 <̂d

X3
C/5
O3

CL O x <x
3 0B t3
3 <=o <d

II

3
0'co
CO

s Lh
CO CD
s b3 3
i s 6

6 "5
3 3
c CO-5 CD
Lh O0 T 3

X CD00

£ <N X
a> <d o o 3 3
X X X 3

0 10
o £ a O
O o c 3 C ~3 3 .3 .fl <d

3
B
30 ■*-» cd 31X3
C/5
O3

Uua.
1

tt
"SsV
CLa<

— — rn _5 <u jd o
(N 35 1 1 ® *

o O o g ”̂ ° o g o 3̂ -O "O -3 cd ^ 3̂ H Q

3
B
3oCM CM<0 3 3 <L> ssB C C o f t iu3 x x 3 3 Cc« O O 3; : 3 '<0 3 3 O' ca <U -9

^ CO CO

T3 T3(D CDXO Oa
CDX
CO CO
<D CD3 3O O3
1

3
11

<N
1

c n
"OT3
L- Vh3 3O O

3
CLtS
X<L>3

3 coz »
£ J
X o
© X

O X
B f
CL O

B 53 -3 <3 3 ^ g OM o B tdO 'l-> 3 33 — O <5

</->
H
<d

so
CO ?"*

.5T3 *3
c 3 a) O

. X
cd X
£ ° 3
O co 3 D co > <U *a O o■a 3

CO<DO3Jr; m _
S O O cl1 <N <N ^ c <u <u 5
S s s &
g a a C gX-» O A>
2 a . a . * 0o 3 3 c ^ .3 .3

3
fO■i-»<u 3 3 1S -s3co
O 3

O
o
S
<3a>

c/5
H Q

X X 3
CO 3 0 "a.
CD3

X
. £ « 5

O3 a B
- 2 3

1
c n
T 3

s1X3
CO

3CD44O
3CD44O

x 0
x X
5 0
B - ag3 O X X 3 c0 3 <—■1 O CD

H
u S x3 rT Lh L.(D CDts P3 3

e £
X0 03 3

CO COCD a>O OT3 T3

co co4>U
00 ^
O CL X CN +7 a> © 3

O O CL « « C
a a ? g x i
3 3 o 44 3
S -^-gS s

" 3.5 .5 <o —

T3 T3
<D (D
O T3 O
B c3 O
1> 3 13
CO (Sfl CO
CD ! . CD3O§ 3O3| C 3|

1
ONCO

3 <*> m3 ON 3O Q 3

(U O _3
^ "x <N ^

2 B- 5 3X o
, ^ ^ 3 X3 44 L4 3_0^ O O B t3

3
. !■t-M1)3 3 3<u a>

ON
H

Io
Xo
T33<u

<N
OQ

o o o o o o o o o o o o © © > 0 0 0
CO CQ D.
o x X _

CD CQ CD

CD OQ CQ
Q Q Q

■'T O
Q ^-•> Qro -
o x
(N X

Q 3C

X X
X X5c x
X o
Q Q

o ~ ^

2 ffl CD. ffl
§ o o c T o o o o o © O o 2 o o o ^ , 0 0 0 ffl o o o > - 0 0 0 vn — o o
Q CD OQ CD

X . o
x r Q
S P . & :
™ O X

0 0 00 ^ - 00 0 00 0 00 0 00 0 00 0 0 -0 0 0 0
OQ CD OQ Q
o - o so o

q § ---------
fe § s s s

ON
© - -
<n x x
Q X X

&; ^ ^ x O
Q Q X X CD CD OQ CD Q Q X Q Q

o 9(N «/">

O r-! ^ ^
2 X ffl CD
§ 0 0 0 o o o o
O © © ©o

l>
- ou-5 (No o

r~n O O O a v _̂dn o o o Q Q X
- " o o o ot ^ - o o o o — — —
q c q o q c q q q q q

oq
X
X

oo
ooooo

o o o o o o o o o o o o o o o oq q q
C5 X x*'

o — —o -̂C ^
O — — © — *-<O I—1 1—!o — ^
CD CQ CQ

X °- X Qo
CQ Q

X O -
pHk ^
P-O j£
§ L ? -
(N X —

Q X Q

b —
o CD CD©r #n »n

! § s
2 o § - © © X o o
- - o o
o n o o

Q CD CD

b .o 00 - — -
© O . X Q o
o (N v o x q no b Q j L •
g b L L s S :
ffl Q Q Q Q I

x
x

X
l/N vo

X X X X 3 Q Q C Q C Q C Q C Q C Q C Q Q Q s f f l X X X X X X
Q Q Q Q . 9 Q Q Q Q Q Q Q Q . 2 D Q Q Q Q Q Q

t-" 0 0
X X X c X X X X X X X X X 3 X X X X X X X X X Q Q Q . o q q q q q q q q q o q q q Q Q Q Q Q Q

ON
X 3 X X X
Q . 2 Q Q Q

X X X X X X 3 X
Q Q Q Q Q Q . 2 Q

<u
Q
IS
a

<u
a .
Of
5

-O T3
£

o o45 T3 ^
" S i s 1 3
w § «45 Dfi 45
c j r s
0 ' C o
f l U c

1 I I
- © ^
T3 — T)
b 0T5 >=
8 a S

</■>

- o fl3

c/5 o
45 —
<■> f-i 3 ^

*u
2 * 31/3 " 3 H <u 3 o

b f £
a . o c«
■W 4 _ 4 _
3 0 “

O B t 3 © 3 e e o a> a>

<5 5

3 9

C? O 3 e
. S ^
•P g - 45

O o O TS 3 TS

^ t t o

u a a>
B . £ c

" 3 0 • * SO .T 3 O 00
3 S ^ O

• a 45 — e

o+->
o
£ T)~ 4»

— 4)
co ^
u
t :45
>

I
(N(Ni © T3

!_ ; o o bH Q S

a
a .
c

I a

s =T3 c/5
c3 o o a

a . o
■a ^
3 0
B t3
3 co 4)

o . 5K

3 3

a t u

0 °
a a

„ "3
b 3
a
a. a >T3 +2
a 0O CO

L- 4 ,
45 45

t s a3 3
£ £
0 0a a
1/5 C/54) 45O O3) 3J

C/545

(N a

3
B
3
o

4) 3 +■»O Q- 4)
B . £ 3

§ -D tt 0 -* 3
O - B 2 o e 3 ^ o .5 45 — e

ts -a45 4>

J!"3
45

3
4)
>

I
U-5
©C/5
Q

0 0 3c/5 c/5 3
4) O B
e e .£0 0 ^
a a 4>

al l
M m -§
T 3 - 3 «
b b ^ 3 3 0
o o a

C/5
4)O
« H

3- "a. 45

45
4)

■£

f
4)

g
’a . 0 C/5

4-1 Lm3 0 O
B 73 T33 a a0 45 4)

a_o
C/5

£
C/3

Cl.

is
0

b
O

a 45
3

b C/5
3_e 45>
q ■©
4, 45
0 3

4, 4,45 4)P *53 3
£ £
0 0
a a
C/5 C/545 45O OT3 X i

4)
453

■"t " a .

3
B
3
o45 a

u a .
B . 3

« — t t o ^ a£ TS o
a S ~.3 4) —

4)
a

a 1
<5 - a

X c/2
H Q

T3 'O45 45
O O

B B
13 13
C/5 C/5
4) 4)
a a
0 0
a
1

a
11

<N
1

m
T 3 TD
3 c3O 4)

45Ua.
1

CQ

■3
s
45aa

<
w o
3 a
3 C/5

•3 n*1 .2 O TS

=2 - a . a
o

u a
> C/5•r; 4)
O O 3 TS

C/545O
ON J 3
© &
<N ^

w 3o O-
3 a

3
B
3
o

a
§ - a a ° ^ a

O.T3 o
a 3 ~ o

. 3 4> — a

ts
^ T 3 O

« & 13

45 a g

s f > I
a
. 1 1

— ON ^
ts © ts

53 Q ^ 45 Q 45

a
a .

. a
■—4)
a

4)
3

45- a ^
3<« o
o ~
a <—

C/54)45
B H
"a. 45

3
3
B

03
3 is
0 C/54-1 Lm
0 O

T3 TS
a a4) 45

§
4)

" "S

4> <L)

i S
6 S

&
• S >
T 3 —I- O -
O 3 3 3

O O
a a
C/5 C/54) 45
O O

C/5
<D
4)3

O O.
4-»

w 34> a .
3 a

a

f
o
4)
a

^ — m a
3 T 3 o ^a 3 ^ o

. 3 4> — a

<N

2 S
H Q

T3 TS45 45•»-* —>45 45
B B
13 13
C/5 C/5 3
45 4) a ,f—
a a 4h
0 0
a a 45
l 1 a

<N r t X5
•a T3 C/5

3 O
45 O a

a
.o
"35c«

C/5 m •—
45 £O

B H C/5
c

’a -
3
B

4)4.
3
03

3
is
0
a

§
0>4-^3 CQ0 C/5 b
4-»C/3

L— <— 3 <UO O . £T3 T3 TS *4-»a a 4 ,
4) 45 O

4) 45
-2

c n " S .

q> 3
a t g

a o S bo ^ a
0)

T 3 . 3 45

a f l ' o
a c ^ 0

IT5

T 3 © 45 4)

3 - 3_, 45 4)
CS C/5 C/5
0 4)

■-P s a
1 8 8

I I I
c r , <N c n
0 3 3

H Q 45 4)

3
a

,e

0
a
• a - a §

a mca O
O
a —

454)o
id ' a

4)<u a
3 B

- 2 3
a . o
■£2 4-h
3 0
B t j
3 3O 45

r S
h 2
<u 3

i s
I g

s SC/5 r 1
s

0 . £
© -Q
c 345 O

g S

4) S3
3 * 3
• 2 * C/3 O
^ C3
> Cfl•- 4)
O O 3 -O

C 3

CQ

© ©
© —
© ©
© ©
© ©
© ©
© ©
© ©
CQ CQ

© —
© —
© —
© —
© —
©
©
©

©
©
©
©
©
©
© -
© ©
CQ O

© —

— o —

C - ‘n -
c *

? - 0 ? ;

s & : ? .
CN Cl, —

& CQ CQ DQ Q 33 Q

©
©
©
©
©
©
©
©
CQ

CQ CQ CQ

© —
© © © ©
© ©
© ©
© ©
© ©
© ©

O CQ CQ CQ

s i p.
- " _ •> >/5
o — —

Q Q Q

. © (N © — ©
q ©

Uh ©

© ©
© ©
© ©
© ©
© ©
© ©
© © -
© © ©
c q m q

o — — . <N - -
— C 4 C4

Q Q B B

— fcL, — ©

© —
© —

o CQ

i §
CQ © - " ©
m ©
— ©

f f l CQ^

© ©
© ©
© ©
© ©
© ©
© ©
© ©
© ©

cs Ct, C-, ©
£ £ o 0Q X -" r “

Q CQ CQ CQ

© —

Q Q

© © ©
© © ©
© © ©
© © ©
— © ©
© © ©
© © © -
© © © ©
OQ OQ CQ Q

. © —

2 8 =

Q o ©
C4, o —3 h © —

— _ 3" - -
— r - — [Jm Uh

= Q Q B B
— H r - ' X ffi
— m u - - ^ - *
— — | i i — O

©
©
©
©
©
©
©
©

CQ CQ CQ

CQ - - ^ ©
1 0 o
— ©

©
©

© 2

© b
8 b

C b —

^ b x r i_ - ir>

I f f l f f l f f l f f l Q I Q Q Q C Q p Q C Q Q O Q a C

NO

(N

C Q O Q C Q C Q C Q Q Q C Q C Q a m C Q m C Q C Q C Q C Q C Q c C Q C Q C Q P Q O Q O Q C Q C Q Q Q c C Q C Q O Q P Q C Q C Q C Q C Q a C Q O Q Q Q C Q C Q C Q C Q C Q C Q a C Q C Q C Q C Q C Q C Q O Q C Q
Q Q D Q Q Q Q Q . 2 Q Q Q Q Q Q Q Q . 2 Q Q Q Q Q Q Q Q Q . 2 Q Q Q Q Q Q Q Q . 2 Q Q Q Q O Q Q Q Q . 2 Q D Q D Q Q Q Q

© © ©
© © ©
© © ©
© © ©
© © ©
© © ©
— © ©
© © ©

q q q
o — —
o — —
o — —
o — —
o — —

■ o — — © © —
o — —

CQ ffl PQ
©

c CQ OQ CQ CQ
O Q Q Q Q

§
i s

0)
p
"S
e

CD
0-
M

3
&
CD
*? C

"3 JdV3 3
o ~
c —

VO
— 00
(N —
CD CD CD CD
CO 3

c/i X
CD ^
P (—> CO M

"B P

3
3 B a & o «

M M Cm Cm
3 3 0 0
B B'-O T3
3 3 8 8O O CD <D

O § e lC ^„ CO CO J-‘
E £ 8 a-t-> m 3 8
O O "3 ! " 8 C
3 3 P* ^ CD CDCO co 3 © ^p p Q,-o P oo o ^ «cd o o sr e

CO T3 "O .5 CD — —

3

f
0
MCD
31

X)
3co
O
3

TO
(D
CDCD

TJ CD m CD JD& 'a>
S co
00 CD17 c <B o

3(D

O
00 TJ —— 3 c/d h S Q

3x
_c

Id
3

co 00
CD *m
P HcO

CD

8 8CD CD
M Mo o

O d
(N XT
CD 5 B
B f g
O- O CO
M Cm Cm
3 ° °
B to -a
3 8 8O CD CD

c

*C/3CA
1 I-CO ODs 83 3
B 6
b ■M

O
3 8

.8 CO
'O <o
t- Oo TO

£ s
? S
DO O
a) G > co

•8 O
p BeO 8

— ON 8- 3
<N - m g
CD CD 5 *_>CD CD X CD
3 3 8 C
P" 0 - 5 § X
■3 -3 ° M 3
a Oh’S B o3 3 P 2 .3 .8 <D — 8

O4^o
6

P i
(D

<N £
H Q

T J T 3
CD B
CD CD
B B
I d I d
CO CO
CD <D
8 3
O O
3
I

3
Ii

(N
I

m

TO T 3
I— M
3 3
CD O

3
X

,3
mCD
3

co O
P <N P X at “

8CD
O

p B
-S »a. o
-3 Cm

P. ° B 8
5 pO CD

3 (o
.£ .>
x> x*— CD
O 3

MID IDBB3 3
g s
Oo
3 8
CO COCDCDo O

TO TO

r-'-
— Os
(N —
CD CD
P CD 3 3

3 ~
X P

— — .S c
P- p -x § _£
3 3 ° * g
& & e ® OS .8 id — 8

<N
X

oi-0.

8
e
IDa.a.<

3
x
8

3
&
3
O

m
B x

I 8

s §•§
* 1 - 2 2 | o 8 “ c O

P CD — — 3

TO 8
CD CDM •*-* ■*“*8 p p

S j) u
g o og CO CO
v p p
X 3 3

2 2 c c

VO (N n
o -o -a — ̂ 8 8

H Q 5 S

r--
— Os (N —
CD CD
CD CD 3 3

3
B

 3
0- 0.0

Cm= 3 = 1 o
2 2 -§■§■■5

Cm
O
8
8CD

CO
CDCD

00 B
’p .(N —

CD CD 3
CD CD X

B 3 3
'H. X CmM* -M O3 3CL a "O
3 3 8ID

3

f
O
MCD
8

"O<D

ON *3
Z1 3H CD

T3
CD■MCDCD

3

£
■MCD
8

3 3 <D CD D* ̂
O O

w S^ B-£ 3
o . o
8 P-
P. ° B"T3
3 pO ID

Oc

H
6C/̂

•fc fe B B
o
3

3 3
6 6
o o
8 8
CO CO CD (D

. . _ O O
O 3 T3 -a

6 *
.s >
-p

ID 4-*
P =5

X
00 B B—1 " x 3IN — •M O

CD ID 3 MCD CD B CD
B 3 3 3
X X Cm 83D

i
£>

B
X
3

3
X
3

o
T3
8
ID

M
O

3CO
O
3

uo
"S
S
4->
i l

T3 "OCD <D-M -MCD CD
B B
I d I d

I I
t-
Ivo <N cn

_ O T3 T3
M 2 3 c3

CD CD
(NH O

3
f
"5
3
' 3 3X id <d
3 ̂ ̂vfl o OQ -Mc ̂^

co
<DCD

vo 3
O ’d .
(N ~

p B"
• s »P . o
8 C|-1 3 ° B to
3 pO CD

iCD
gCO
Cm
O

TO
3CD

Tfr

PQ

o
Q

— fN 00Q Q r H
r " Q ^ hin tu tu

CD Q I Q Q

o 2 q : o ̂—
§ pa o «
o O © o o O o o o o o o
SH O O OCQ o o o - O o o o o r* o o o
Qfflfflffl

5r H x - x Q
Q X f-

— fS
Q Q

C- o
qo
ON CU —i Cu
Q X

o o o0 — 0o o oo o oo o oo o oo o o -o o o o
pq m m q
o — — —
o — — — QO — — — - -o — — — SO

m CQ CQ CQ Q

. o— <N
Q Q
oo b— Um
b 5c

xX
X
o
b

o — — — o — —
§ CQ CQ CQ
o o — b o o o o 2 O o o- o o o PQ o o o" o o o
On O O O— o o o

ON X
— X

o
q bQ S " .

Q CQ CQ oa Q Q Q
X

<N X
b x

ON

CQ PQ CQ CQ PQ CQ cQQCQPQQQPQPQCQ
Q Q Q Q Q Q . 2 Q Q Q Q Q Q Q

OQ CQ pCQCQCQCQPQCQCQCQ
Q Q . S Q Q Q Q Q Q Q Q

CQ CQ cCQCQOQCQCQCQCQCQCQ Q Q O Q Q Q Q Q Q Q Q Q

o o o o o o o o o o o o o o o o o o— O © -o o o o
q q q b
O — X Xo — — — o — — — o — — — o — — — o — — —O — — —Io

>nx _ o(NP-5 Q
X o <—1 — —I — 00 X
X o — — — <N — X
bcQCQCQCQQOffi

X X
X X
X X
x O
b b

o
o
o
o
o
o
o
o
CQ

CQ CQ PQ
o o o
o o o
o o o
o o o
o o o
— o o
o o o
o o o

t" - — ON <N — b?4 q

O — — 04 X
p Q O Q c o b b b b b

fS(N
b
X
X
5c

oCN
cCQPQPQPQCQCQCQCQ
O Q Q Q Q Q Q Q Q

(N
CQ CQ 3 CQ
Q Q . 2 Q

CQ CQ PQ CQ CQ PQ
Q Q Q Q Q D

(N(N
PQ CQ 8 CQ
Q D . 2 Q

§B

43
Q

v
O.

.2?5

73

§
1) * p

13

7303
2(D

03 fa 03
C /5 2 C/5

V M) t)r- c3 ^ 3O <tS O3

3 « c
I I I- © <*>

73 ^ 73
5a fato . to
o Q o

c« (N
« fN

m
O
fN03
ofa

3 1 c
•s P3 ftcn o
oc ^

CX O
•a ^ 2 ° &■ 73
3 cO 0)

cx S

f i
§
is
o
s

£ac

0)
ss
2 c
1 /5

8
O 73

9 £
c> C/3

•- 0) O o
a 73

03 o
. 2

m B
<N ^
w 2 o ex «t .g
CX 3 .

o

3
e*
3
O
2
3

S -Q = ~ ft 3
O.T3 O *
3 C ~ 2■ 3 03 -h C

* I03
3

r o

C/5
03
03

J 3
fN B .fN + -
03 3
03 CX

= 8 J3 .S - v00 CX CX3. g X)
o CQ t s © f t 3
3 00 q ,7 3 O
3 *5 cs 3 O
3 2 .3 03 — 3

3

f
O
2
3

03
3
00
_o
"3 3
3 «

03

' i
S i c3 ft ôi

03 P

-I s ^n j — 03 fN CX fa
id "g -§
s S
a "*

03v© > ffl O fi- ®rM ? [/) +5 g XIM ; t/3ft 2 ft ° §

^ —“ « s
.s •£ 73 ts3 03 O >

X. X-
03 03

t s t sfa
3

fa
33

L->
3
+-o o

3 3
C/5 C/5
03 03o O

73 73

1 /5 03 C3
m J3
fN CX
fN ^03 3
o CX-2 .gftft S X)
•fa O ft 3
a ’S 2 „
.S a> ^ 3

3

fo
-3
a>
3

3 3 3
a> a> 03

03 <d <u
3 3 3o o o
3 3 3
I I I

3
CX

.S
2
3

fN m -© 03
oo -a *0 v> ^
fj 3 3 3 O 'M
ft o o o 3

- —I oo
© fN
fN fN
03 03
03 03

. 2 2
B B
■*-»

C/i oo
P fN

CX K
2 5
a -1
3 H
O C/5

3 3 O
2" 2" 73
3 3 co o 5

0
3

£3
1 O

4)X.
f t .

I
CO

■3s
43
&
a

2 S
i * 2
e 2

C* O M O
3 3 a) 3
g C/5 > C/5
S <u -e; a>2 o o o
O 73 3 73

<D
O
3

o a.
<N
« 2 o ex
3 3

3
&
3
O
"S
3

' ■ 0 ^ 3
q _-3 O
^ 3 +- O

33 c .fa <3 —

o o o
0 ^ - 0 o o o o o o © o o © © © o © © - © © © ©
CQ f f l f f l Q
o t- S- ft- © ~ © —
o — — — o — — —
©
©
o — — —
o — — —

ft. ft, Q Q r4 ^
- - r j x x© ft

(N U,
DQ CQ CQ CQ Q X Q

73 73
<D 4)■4̂ _ +-
O 73 O 0 X 0
13 3 13c/5 {jjj cfl
<u ^ <u C r c
o l o
C #r G

3
ex
.3
■+->
a>
3

<t>
o
3
"B,

— ->
rn 73 © 73
n i fa 00 fa 3 a 3 H o Q u

jS e ^ <X> 3

3ex o <+* o3 •cc

o 20 3 3
3 — O 5

©
©
©
©
©©©©
CQ
fo
(N

OQ CQ CQ
© — © © © © © © © © © © © ©
© ©

Q QQ OQ

CQ OQ OQ OQ
Q Q Q Q

m
(NCQ OQ CQ CQ c OQ CQ OQ O Q Q Q O Q Q Q

° —.
CQ Q Q

OQ CQ CQ Q Q Q

9 S'Or “ © U- (N ft,
Q X

m © (N OH QD 3
2.2

B §
£ £
° ^

7 3 J 2o Ji(U 7 3

X.
m
fN

03•XJ fN
03 03

1
03
.2

fa B
ex 2

OQ ft
on bft o

X
_ ©
(N ©
9 §
ft. o

CN M
a r-
- - m 7T <N ft fN

D3
000

1 3 <
<u
00

7 3<u
J 5 QQ .2Poo
J 3 f t

3"<N fN a>

B 5*5ft l o
2 f -o

3
f

— (N| © ©
§ X
eo ft § 5 fO (N r (N ft
CQ © Q ^
- - © ~sX>n © © _ - fN — © —

?-b
fN ft fN ftft O

incQXQ q c q x q q x

3O£ ’SfN ĉH<u 3 , a £ & ro i2
§ « S &
• 2 « S- f3 « 2

3
fO
-M<D3M 3 w ^ ,s ̂ 7X, 00 & CX̂m § XI° O CQ "fa ° ft g73 3 OO 0.73 o ^c S "2 c c 2<U 3 ̂ .3 <D —I 3

©©©
©©©
OQ

. Tf © < ̂ fN -© ft ̂ fN ft
© X P - Q g :
O © fN ft - -— O fN ft —
CQ X Q X Q

fN r- o
P 55H Q

©©
o CD

? sOQ ©
f^©
fN ©

7ffNOQ OQ 3 OQ 0Q
Q Q . 2 Q Q

mfNOQ OQ c OQ OQ OQ CQ
Q Q . 2 Q Q Q Q

o
fNOQ OQ g OQ OQ CQ OQ OQ OQ Q Q . 2 Q Q Q Q Q Q

r-fNOQ 3 OQ CQ
Q . 2 Q Q

7 3 7 3
03 03
2 2
2 _03
2 2
C/5 C/5
03 03
3 3
O O
3
l

3
li

fN m
7 3 2
2 fa
O Pr.

i-x T—l
r—,

iT—<
q q
© ©
© ©
© ©
© ©
© ©
© ©
© ©
© ©
CQ CQ

OQ OQ
Q Q

3a.3
033

C/5
03O7f J2fN ex

fN t r
° 2^ B'£ 3 ex ofto

? o a*-5

^ ^ p
& 9-qX 3- r
_ - fN f t
— fN f t
Q Q X

t-
<NH1
03

5o
S
C/5fto

7 33
03

3 3 3
03 03 03
t s t s t sfa fa fa
e 6 6

•31 o o O
3 3 3
C/5 C/5 C/5
03 03 03
O O O

73 73 73

C/5
03
03in J3© a^ fN ^

U 03 2
03 03 CX

-2 J3 .5
CX 3 , f t

2 3 °111
3 3
03 03

f t f to o

3
&
30
+->
03
31X>
3
c /5

O
3

00
fN
q _
&T ©

© © ©
© © ©
© © ©
© © ©
© © ©
© © ©
© © © . © © © ©
q q q Q
o ft ft ft ©©©©

f t o 00

r & . S S
P . § f c * P -

fN f tf t © —- , _
K CD CQ CQ CQ Q Q I Q Q Q

©s
ft

©©©©©©©©
q
©
fN

00
fN

O Q O Q O Q s O Q C Q C Q O Q C Q Q Q Q . 2 Q Q Q Q Q m OQ OQ OQ
Q Q Q Q

©
fN

OQ CQ 3 OQ
Q Q .2 Q

in
OQ

<u
©

&
i

’E
■—
<u

Cl

Of
3

Un L< u
ID D

e 2 2TO cd cd
£ E £

+-> ■4̂
0 0 O
3 3 3

t/5 C/5
(1/ <D <D
O O O

T 3 T 3 "O

C/5
CD
cd

vo .2
q a .
CN
4D o
CD &
kj s

3

f
O
■—
<d
3

S - S " s l l - §
i. o-l s 3 S.S .S S - - c

I
* 3

cd

t s
<d>
I

<N O ©50
H Q

Vty ^
c/a 3
<t> 9 -
c . 52 ~ 3 <0
i e

n - S o _ 3 ^ 2 c/5
S O
CD 3

1/5 O
3 C 3 2

ir» "H , £
<N ~ S
w 3 oa J tg

(N 3 . O c/5

* 5 2 ° °
O & S " 73 73
- 3 3 c 3
- i o o 33 5

3 tJ-

t °
3 O

* cd

1 £
2 ’3 fe O O 3

<L> CD

S i
£ E
o o
3 3c/5 C/5
CD CD
O O
2 2

C/5
CD
o

• ' t 3
> o (N 7?
fN t S O-
<D <U t s
cd cd 3
3 3 S -

■a a o J2 33 3 u « j i
3 . &<2 -2 *■>

• s . s g - g

3

t
o

tS
3

3
CD

t s
<d>
I

o
C/3
Q

2 2
a> <d

CD CD
3 3
O O
3 3

3
3

. 3

"S3
3

O 3
3 ^

CD

CN co
2 2 s- kt
3 3
CD O

-O 0/
3 j 2
c/5 -
O
3

a £

« t i

M f g
3 O to
* - > 3 3

* 2 . ° °
O 2 2 2

2 3 3
O CD CD

£ plTO rT

o °
3 <2

- 3

.1 >
■2 d
O 3

Lh >-
V D
2 2a 3
E s

0 0
3 3
C/5 C/5
4D <D
O O

2 2

C/5
CD
CD
d

v o a .CN 77
u 2 CD 3
-2 . S&3 fc q
a ° ^ i 3 2 73 o ™
& e ~ O. 3 (D — 3

3
2
3
O

t s
3

2 2
2 CD

i- t s CD
O .2
O "d "53
c C/5 c/5 3
3 <D <D a

§
3
O
3

3
O
3

_ c

4D’C 1 I 3

CO CN CO £>3
© 2 2 cn
DO
Q

S3
CD

fe
CD

O
3

C/5 "Cf
D CO

CO
CO

CD

- 2
T3i

H
D

CN CN
(l> (|> 3 3
CDcd CD3 f 2
3 3 0 2on
-— t+- c—3 3 0 O
2 - 2 - 2 23 3 3 O
0 O (D <D

D
k.

3
I

CQ
x
■5
3
V
3
&

2 2 2
o> a> o
cd cd cd
CD <D <D

CD 4/ CD
3 3 3
o o o
3 3 3

3
3

. 3

OD
3

— CN co <D
• O T 3 t 3 « q

3 3 3 0
CD CD O 3 i-1

3 3

D
CDCN OV iS O CN 3 CN CN ̂

CD CD 2CD CD 3
^ £ 3
3 3 0

J 2 3 3 o
| & & T 3

3 3 3
— O O CD

OV -3
<N £
E-" c/a

£ §
2 *

I §
£ > : C/5 £ 5
3 3
O

<D
CD

►7 !— !— O 3e o <d 3 ; - q

® S S " «1 s S £ £
2 - - 3 E

O O 7? C fl 1c c S a3
, 5 ^ C/3 C/3 O 'i#

3
• o * o o 2 3 ^ 2 o
C L. CD o o ■ —
<D O 3 T 3 T3 .33 ' cCD

O
i-c 3

a
* 3
U

CD>
I

cn 5?
H Q

2
CD C/5
CD ID

JD CD
t s VO
C/5 3 CN 1EL
CD O . CN
3 _C CD 3
O
3 t s

CD
J 3 t

1
CO
2j_

31
X)
3
C/5

3
<D

3 3
O

3
ID

3 !
O

'H .

"5
B *

0
3
0
2

ed O ■— ■— 3 30 3 —< —< 0 CD

co
H
CD

£4-»
o

i >
T3 +3b 0 o 3

2 CD£ ir - to

£ £

C/5
D
CD

' O ^
CN O -
<N 7 7
u 2 CD 3

3

f
O

4>
3s . £

S 2s
3 0 ^ 2 2 - 0 o “
3 e ^ 2. 3 CD ^ 3

^3

* 3
CD

i
T

»n
c o qco 55
H Q

- H ^ « 2

£ ^
D g

*- CD

1 *? 3 CO ^ 5

1 S os § r

©

C/5
CD
CD

j d
a—* "H*
CN
4D 3
CD f i -

3
" a 0
■— «—
3 0
B ^ 2
3 30 CD

CO
CO
H
CD

§
CD

BC/5
C+̂
O

T3
3
D

CD 4̂
CD 3

h <n ^ a -
^ O n ^

W 5 -♦->
2 & 10£ .3 c

3 . c Z 3 3 1
7 7 * 3 CD <D a

C/5 B a 0 ^ 0 ^ 5
CD <D 2 . T 3 O O 00- - g . g - - «

(D <Di iS E
o "S
3 3

VO

CQ

CQ CQ CD
o o
o o
o o
o o
o o
o o
o o
o o
CQ CQ CQ Q

VO - —< -
o Q i x >» o
N U c U H q
Q 3 3 r s bs ~ ~
- " . - O (N P-<
- - (N (N fc.
Q Q Q Q I

0 0 0 — 0 0
0 0 0
0 0 0
0 0 0
0 0 0 o o o -
0 0 0 0
ffl 5a a q
o C-T 3 " 3 "
O O ^ r ~ 3

1===?.o — — — o
o

CN
(N . - -
(N 1/0 3 3
q (N 3 3

 ^ q a x
0 - h ^ 7 S (n 3 3 3 o
CD CQ DQ CQ Q j Q Q Q

o T-. — r-c
O r-H
§ ffl qq m
§ 0 0 0
0^ - 00
§ 0 0 0
^ 0 0 0
CQ o o o
. - 0 0 0
r - O O O
CO o o o

- ■^t
v/0 CN
CN CN
Q Q

OQ CQ
Q Q

OQ CQ
O Q

CQ QQ CQ CQ CQ
Q Q Q Q Q

o
CO
c C Q C Q C Q C Q Q Q C Q C Q Q Q C Q O Q
. 2 Q Q Q Q Q Q Q Q Q Q

o ~
Q QQ CQ QQ Q Q

C CQ CQ CQ CQ CQ OQ
. 2 Q Q Q Q Q Q

— CN 3
Q Q I

0 0 0
0 0 0
0 0 0
0 0 0 — 0 0
0 0 0
© © © - © © © ©
ffl m a q
© 3" 3 3
O T-H r - .© -̂ -̂ -̂
©
©
©
O ^ ^
© _ . _ _ ^

CQ QQ CQ CQ

3 vo - -
v . CN 3 3
q n 3 3
s o ^ X XCN 3
CN 3 — ©

O
O -H ^
§ q m q
§ cT © © o o © © § © © © g © © © OQ ^ © © . - © © © co o © © co o © ©

P . q
2 3
CN 3

Q S Q Q Q f f l f f l f f l Q Q Q l

© © ©
© © ©— © ©© © ©
© © ©
© © ©
o © © -
© © © ©
q q q Q
o 3 3 3

^ 0 - H «
C O © © — > ~

D o - - -
q § ^ s: ”
3 © — — —
QC OQ CQ CQ CQ

X ^ t o
P . Q g
2 & T Q -
CN 3 3

Q i Q
CN

CQ OQ OQ c C Q C Q C Q O Q C Q C Q C Q C Q O Q
Q Q Q . 2 Q Q Q Q Q Q Q Q Q

CO
CO
C CQ CQ CQ CQ OQ OQ

. 2 Q Q Q Q Q Q

CO
CQ OQ c O Q C Q C Q C Q C Q C Q C Q C Q C Q C Q
Q Q . 2 Q Q Q Q Q Q Q Q Q Q

4»
o

4 /e

Cl

m

5

oo
IT)
w OO

C U — _0 W (N
*-P d> <D
« E £ S S i22 is Oh *

3
cd CD f i -

13 P 3 ■o J o

CM
d)300_o

1 3
3 d>

< t s■ £d> cd00 HTO cd 3d> O. d>

<» £ <D p
o L-
cd E -

& >o- b
+•* ^
3 o

m . 2 ? c/0
h 3 h4 -h

<D _

M & &
O . § M

1 ^ 0

f c «O g <D

§ £
o °
* 3

■S ITO m
b o O cd

«d <d
i I
5 S
o o 8 s
C/5 C/3
d> <L>o o

TO TO

C/3
<D o

00 J3
cx

CM ^
<D 3
o cx

, 3 a

5 ^
s a

Oh'S 2 «
c c 2. 3 <D »—i 3

3
O'
3
O

4)
3

CN
d>
3
00
o

* 3
C< d>

£
d» £
& p o 3

TO O ,

o o > CQCC > 00
H , 2 J

c/3 00
8 P

0 s & « ^ cx 2
<N m 3
d> 3 -g
J f ?
CX o

't * M -H

a °
c - - o

5 ^O o

C/3
C mo
t o

s
d>

£ bx 3 rT
H *J “ I

3 «
. ' 3
b t o

.£ >
TO m

b oO 3

d> d>
i i
£ £
L-> +-<
o o
3 3
C /3 C/3
<D CDo o73 73

O ' . 2 ^^ m ft 3
CM CM ^ §
<D <D 3
£ £ & «3 3 3 3
Oh c x £ g

s 3 -S o Sa Oh'S «
3 3 0. 3 . 3 d>

73 73
d> CD

-3
00 3

CD 03
3 3

3a,
S

0
& <D1 c

vo CM ^ -§ O
O O 7 3 T3 w * 32 S5 S3 S3 o S
H O o o 3 <—1

Vi ©
<o T fo

H

C - ' o .
d)

CM +-> 3

d>
CD

J3
3

f

CD

' o - O C/3
Cm Cm

g O O
& ■ TO T 33 8 8O CD d)

§
i s

o
3

£
3

b 3

m m
CD d)
V t s
cd cd

£ £
mo o8 3
C/3 C/3
d> d>o O

T3 TO

C/3
a >

c 3

t"~ "S,
CM ~
d> 3o a.

J d c

O h C+_| _̂
3 © i2 3
5 73 O ^
o" 3 ^ o.3 d> —i 3

3
&
3
O

■ md>
3

§ h O

CMs
4»
U

a .
i

pfi
_ x
■5
e
d»aa.
<

<5 mis
1 8 fe «O- cx
CD i

s s ? !H ^ .£

8
O

£ ’Er o c/3
H e

is
§ d> 3 3 o O,

c« S «3 JS .£ B ^ S)CXCX^
° O CQ ts © 4̂ 3

TJ cd 00 § ,7 3 o 00£ £ 5 s c ©a> cd ^ .3 o e

3
&
3
O

d>
8

O•L
o
£
i)
*c

T3
d>•LJ
o

13
C/3

d>
8
O
3

m oo
H Q

3
Ou
.£
t 3
3

c ^

CM

r o CM c<3
h - O 13 3 3 4̂Vi

O
3

o p .

O . O
0-1 o«y; 3 w

© §"3
g g

3
O

£ ‘53m vi
H - 8
d>
V h

3
o

C/3 f t)
3

d>CD
o o J3

§ 1 ©3 S'
3 § © 5C ̂CU o Q-ts <u fa c5 c

O- 00 & CXO- § X)
© © D Q t s © 4 4 ©■a Id </3 §. -a o ^
3 8 SI 3 © ©d) cd ^ . 3 4> —h c

~ a
d>

o•+->o
£
1)

©̂ 9 ’Sm c/5 b
h Q 5

d>
C/3 "3
d>
3

CL
. £

O m3
1

CD
3i 3 3

m .O CD d>

1
3
C/3
o

M
O

44
Om

P. 3 T-. 71

© 5
g f i " 3 3
CL o
■a «4l© o

ON

H
d>s
o ! 52 <t>

• t 3

I >
73 +3 Vh CD
O 3

d>
CD

l l in d

i i s f
£ £ o |

f
CD
8_ — , 3

8 3 <5 -O
«« «« 3 ° ^ Sd) d) 5 73 OO O & c ^ ©"O -a .£ o c

s
H

TO
d>
t o
3
1 3

C /3

d>
3
O
3

v o
O TO
& ?s O 8

3£
t>8

" • §
TO
cd O
CD 8

Vid>
CD

CM i S
^ CX
CM ^

© 5 © Q> 3 3
O h O

P ^
3-
3 „ O d>
■3 " ©© 3

s

CmO
TO3d>

C-
DQ

oooo
O 2
CQ -"
IT) _ "
m —
a x

«C3m
8 CQ 03

. 2 Q Q

ooooo
CO

NO O
CO O

q §
bu —

. ON
b S. « Q oo - ^—« bu
cm bu

DC CQ X Q X

bx U- bx b-
s i
3- o
b b

o —
o — — —
§ b m cq
§ b o " b o O o o§ - H o O
- o o o o o o o o o o o o o o o
Q CQ CQ CQ b b b

ffl
r-m

~ b g o(S X U q

Q A ^ b :O >— CM bu

oo
ooo
CD

o o o m o —
b 8 dc- o - ̂u- o o tx — o
DC CQ DC

O n
P h

CM buq,
00 q

bu
bu
X

CM b n

b K b

O - H —
O — v - H ^ H

o f f l f f l f f l o o o o
o o o o H-, O
o o o o o o o o o o

o o o o o o o ©
CQ ffl CQ

O - >—i m
CM CM
b b
© ^
b b

X O
t P -Q
?-CM f— CM bx
b b i

© © ©
© © ©
© © ©© © ©© © ©© ©
o © © -
© © © ©
ffl ffl ffl Q

. o b b b
O © -H — r-H
^ S - - -
Q © H-H h- r - ,

X O HH rH -H
DC CQ f f l CQ CQ

b rM bx
Q b ^
^ S ' *CM b n . -CM tx —
Q DC Q

© —
©
o «

ii
f f l . °b- ©Tf ©
b CQ

ffl ffl.
© © © © © © © © © © © © © © © ©
CO CQ

0 X
? - §
CM T " — bu
cm bu

b b b dc

CMS
q
bu
b u
DC

NOm
DQ b DQ DQ
Q . 2 Q Q

C'm oom ON

CQ DQ DQ OQ QQ cDQCQDQDQDQDQCQCQ sCQDQCQCQCQDQCQ csCQQQCQCQCQCQCQCQCQ Q Q Q Q Q . 2 Q Q Q Q Q Q Q Q . 2 Q Q Q Q Q Q Q . 2 Q Q Q Q Q Q Q Q Q

©

CDQCQDQDQDQDQCQCQ
. 2 Q Q Q Q Q Q Q Q

Hd-
CQ c DQ CQ
Q .2 Q Q

CMTf
CQ QQ DQ DQ QQ DQ 8 CQ
Q Q Q Q Q Q . 2 Q

=
is

Appendix B - Press Rig Petri-net Descriptive File

DB B'00000000',B '00001000’ ;ordinary, no transmission / DS04 - left motor
DB B '1111011 1',B'00000000' ;active state ON / card 2 - none selected
DB B 'l l 111111',B'00000000' ;does not matter / card 3 - none selected
DB B'l 111111 1',D'0' ;does not matter / no sub-net input
DB D '214',D T ;input place 214 /1 token
DB H'FF',D'215' ;end o f input places / output place 215
DB D T ,D '24’ ;1 token / output place 24
DB D'1',H'FF' ;1 token / end o f output places
DB D'0',H'FF' ;no sub-net output / end o f structure T42

transition 43
DB D'43',B'00000010' ;T43 / delay transition (500 ms)
DB H T ,H 'F 4’ ;MSB parameter / LSB parameter
DB D '215,,D,220' ;input place 215 / output place 220

;transition 44
DB H'FF',D'44' ;end o f structure T43 / T44
DB B' 1000000 l',B ' 10000011' ;analogue, transmission / high edge - Analogue 3
DB H'02',H'00' ;MSB parameter / LSB parameter
DB D '220',D 'l' ;input place 220 / 1 token
DB H'FF,,D '221' ;end o f input places / output place 221
DB D 'r,H 'F F ' ;1 token /end o f output places
DB D'0',H'FF' ;no sub-net output / end o f structure T44

;transition 45
DB D'45',B'00000000' ;T45 / ordinary, no transmission
DB B'00001000', B 'l l 111111’ ;DS04 - left motor / active state OFF
DB B'00000000',B 'l 1111111’ ;card 2 - none selected / does not matter
DB B’00000000 ',B 'lll 11111' ;card 3 - none selected / does not matter
DB D'0',D,220' ;no sub-net input / input place 220
DB D'1',H'FF' ;1 token / end o f input places
DB D’221 ',D T ;output place 221 / 1 token
DB H'FF',D'0' ;end o f output places / no sub-net output

transition 46
DB H'FF',D'46' ;end o f structure T45 / T46
DB B' 10000001',B'00010011' ;analogue, transmission / low edge - Analogue 3
DB H'00',H'1A' ;MSB parameter / LSB parameter
DB D’220 ',D 'l' ;input place 220 / 1 token
DB H'FF',D’221' ;end o f input places / output place 221
DB D'1',H’FF' ;1 token / end o f output places
DB D'0',H'FF' ;no sub-net output / end o f structure 46

;transition 47
DB D'47',B'00000000' ;T47 / ordinary, no transmission
DB B'00001000',B*11111111' ;DS04 - left motor / active state OFF
DB B'00000000',B'l 1111111' ;card 2 - none selected / does not matter
DB b 'oooooooo',b ' i i i i i i i i ' ;card 3 - none selected / does not matter
DB D'0',D'221’ ;no sub-net input / input place 221
DB D'1',D'24' ;1 token / input place 24
DB D'1',H'FF' ;1 token / end o f input places
DB D '227',D 'l' ;output place 227 / 1 token
DB H'FF’,D'0' ;end o f output places / no sub-net output

;transition 48
DB H'FF',D'48' ;end o f structure T47 / T48
DB B'00000000',B '01000000' ;ordinary, no transmission / DS07 - right motor
DB B’10111111', B '00000000’ ;active state ON / card 2 - none selected
DB B 'l 1111111',B'00000000' ;does not matter / card 3 - none selected
DB B'11111111',D’0' ;does not m atter / no sub-net input
DB D’227 ',D 'l' ;input place 227 / 1 token
DB H'FF',D'28' ;end o f input places / output place 28
DB D '1',H 'FF’ ;1 token / end o f output places
DB D'0',H 'FF' ;no sub-net output / end o f structure T48

;transition 49
DB D '49’,B'00000000' ;T49 / ordinary, no transmission

B. 8

Appendix B - Press Rig Petri-net Descriptive File

DB
DB
DB
DB
DB
DB
DB

;transition 50
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

;transition 51
DB
DB
DB
DB
DB
DB
DB
DB

;transition 52
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

;transition 53
DB
DB
DB
DB
DB
DB
DB
DB

;transition 54
DB
DB
DB
DB
DB
DB
DB
DB
DB

;transition 55

B’0 1000000',B 'l 1111111'
B’00000000',B 'l 1111111'
B '00000000’, B 'l 1111111*
D'0',D '28'
D'1',H 'FF'
D’214 ',D T
H'FF',D '0'

H'FF',D '50'
B'00000000',B'00000000'
B 'l 1111 111',B'00000000'
B 'l 111 1111',B'00000000'
B 'l 1111111',D'0'
D 'l ',D 'r
D’7',D’l ’
H 'FF ',D 'l'
D’1',D'9'
D'1',H'FF'
D'0',H'FF'

D'51',B'00000000'
B '00000001',B 'l 1111110'
B'00000000',B 'l 1111111'
B'00000000',B 'l 1111111'
D'0',D'7'
D'1',H 'FF’
D'8’,D 'l '
H'FF',D'0'

H'FF',D'52'
B'00000000',B'00000000'
B 'l 1111111',B'00000000'
B’l 1111111',B '00000000’
B 'l 1111111',D'O'
D '2 ',D 'l'
D '7 ',D 'l'
H'FF',D'2'
D'1',D'9'
D'1',H'FF'
D'0',H'FF'

D’53',B'00000000’
B’00000001’,B 'l 1111111'
B’00000000’, B 'l 1111111’
B'00000000',B 'l 1111111'
D '0',D'8'
D'1’,H'FF’
D'7’,D 'l'
H'FF',D'0'

H'FF',D'54'
B '00000000',B '00000001'
B 'l 1111110’,B'00000000'
B 'l 1111 111', B'00000000'
B 'l 1111111', D’O’
D '9 ',D T
H'FF',D'8'
D '1’,H’FF'
D'0',H 'FF'

;DS07 - left motor
;card 2 - none selected
;card 3 - none selected
;no sub-net input
;1 token
;output place 214
;end o f output places

end o f structure T49
ordinary, no transmission
does not matter
does not matter
does not matter
input place 1
input place 7
end o f input places
1 token
1 token
no sub-net output

;T51
;D S01 - stop
;card 2 - none selected
;card 3 - none selected
;no sub-net input
;1 token
;output place 8
;end o f output places

;end o f structure T51
;ordinary, no transmission
;does not matter
;does not matter
;does not matter
;input place 2
;input place 7
;end o f input places
;1 token
;1 token
;no sub-net output

;T53
;D S01 - stop
;card 2 - none selected
;card 3 - none selected
;no sub-net input
;1 token
;output place 7
;end o f output places

;end o f structure T53
;ordinary, no transmission
;active state ON
;does not matter
;does not matter
;input place 9
;end o f input place
;1 token
;no sub-net output

active state OFF
does not matter
does not matter
input place 28
end o f input places
1 token
no sub-net output

T50
card 1 - none selected
card 2 - none selected
card 3 - none selected
no sub-net input
1 token
1 token
output place 1
output place 9
end o f output places
end o f structure T50

ordinary, no transmission
active state ON
does not matter
does not matter
input place 7
end o f input places
1 token
no sub-net output

T52
card 1 - none selected
card 2 - none selected
card 3 - none selected
no sub-net input
1 token
1 token
output place 2
output place 9
end o f output places
end o f structure

ordinary, no transmission
active state OFF
does not matter
does not matter
input place 8
end o f input places
1 token
no sub-net output

T54
DS01 - stop
card 2 - none selected
card 3 - none selected
no sub-net input
1 token
output place 8
end o f output places
end o f structure T54

B. 9

Appendix B - Press Rig Petri-net Descriptive File

DB D'55’,B'00000000’ ;T55 / ordinary, no transmission
DB B'00000000',B 'l 111111 1' ;card 1 - none selected / does not matter
DB B'00000000’,B'l 111111 1' ;card 2 - none selected / does not matter
DB B'00000000',B 'l 111111 1' ;card 3 - none selected / does not matter
DB D'0',D'9' ;no sub-net input / input place 9
DB D'1',D’228' ;1 token / input place 228
DB D'1',H’FF' ;1 token / end o f input places
DB D'7’,D T ;output place 7 / 1 token
DB H'FF',D '0' ;end o f output places / no sub-net output

transition 56
DB H'FF',D'56' ;end o f structure T55 / T56
DB B'00000000',B'00000000' ;ordinary, no transmission / card 1 - none selected
DB B 'l 1111111',B ’00000000’ ;does not matter / card 2 - none selected
DB B' 11111111',B '00000000' ;does not matter / card 3 - none selected
DB B 'l l 111111',D'O' ;does not matter / no sub-net input
DB D’9 ',D T ;input place 9 / 1 token
DB D '229',D 'l' ;input place 229 / 1 token
DB H'FF',D'7' ;end o f input places / output place 7
DB D'1',H'FF' ;1 token / end o f output places
DB D'0',H'FF' ;no sub-net output / end o f structure T56

transition T57
DB D'5 7’,B'00000000' ;T57 / ordinary, no transmission
DB B'00000000',B 'l 111111 1' ;card 1 - none selected / does not matter
DB B'00000010',B’l 111111 1' ;DS 10 - left guard / active state OFF
DB B'00000000',B'l 111111 1' ;card 3 - none selected / does not matter
DB D'0',D'230' ;no sub-net input / input place 230
DB D'1',H'FF' ;1 token / end o f input places
DB D’3’,D 'l' ;output place 3 / 1 token
DB H'FF',D'0' ;end o f output places / no sub-net output

;transition 58
DB H'FF',D'58' ;end o f structure T57 / T58
DB B'00000000',B'00000000' ;ordinary, no transmission / card 1 - none selected
DB B' 11111111 ',B '0000001 O' ;does not matter / DS10 - left guard
DB B' 11111101',B'00000000' ;active state ON / card 3 - none selected
DB B 'l 1111111', D'O' ;does not matter / no sub-net input
DB D’3',D’l ' ; input place 3 / 1 token
DB H'FF',D'230' ;end o f input places / output place 230
DB D'1',H'FF' ;1 token / end o f output places
DB D'0',H'FF' ;no sub-net output / end o f structure T58

transition 59
DB D’59',B'00000000' ;T59 / ordinary, no transmission
DB B'00000000',B'l 111111 1' ;card 1 - none selected / does not matter
DB B'00000001',B 'll 11111 1' ;DS09 - right guard / active state OFF
DB B'00000000',B 'l 111111 1' ;card 3 - none selected / does not matter
DB D'0',D'231' ;no sub-net input / input place 231
DB D'1',H'FF’ ;1 token / end o f input places
DB D '4 ',D 'l' ;output place 4 / 1 token
DB H'FF',D'0' ;end o f output places / no sub-net output

transition 60
DB H'FF',D'60' ;end o f structure T59 / T60
DB B'00000000',B'00000000' ;ordinary, no transmission / card 1 - none selected
DB B' 11111111 ’,B '00000001' ;does not matter / DS09 - right guard
DB B’l m i l l O',B'00000000' ;active state ON / card 3 - none selected
DB B 'l 1111111',D'0' ;does not m atter / no sub-net input
DB D '4 ',D 'l' ;input place 4 /1 token
DB H'FF',D '231' ;end o f input places / output place 231
DB D'1',H'FF' ;1 token / end o f output places
DB D'0',H'FF' ;no sub-net output / end o f structure T60

;end o f Petri-net
DB EndOfTable ;end o f table

B. 10

Appendix B - Press Rig Petri-net Descriptive File

Press Rig Process States File (Status Watching)

DB B 'l 1001111’,B’00000001'
DB B '00000000',B’00000000'
DB B'00000000',B '00000000’
DB B’00000000',B’00000000'
DB B'00000000',B '00000000'
DB B'00000000',B'00000000'
DB B'00000000',B'00000000'
DB B'00000000’,B'00000000'
DB B’00000000’,B'00000000'
DB B'00000000',B '00000000’
DB B'00000000’,B’00000000'
DB B'00000000',B '00000000’
DB B'00000000',B'00000000'
DB B'00000000',B'00000000'
DB B'00000000',B'00000000'
DB B’00000000',B’00000000’

;places 1 to 16
;places 17 to 32
;places 33 to 48
;places 49 to 64
;places 65 to 80
;places 81 to 96
;places 97 to 112
;places 113 to 128
;places 129 to 144
;places 145 to 160
;places 161 to 176
;places 177 to 192
;places 193 to 208
;places 209 to 224
;places 225 to 240
;places 241 to 256 (not processed)

Selected places:
o 1 - left cycle
o 2 - right cycle
o 3 - left guard
o 4 — right guard
o 7 - process available
o 8 - process stopped
o 9 - process operation

B. 11

Appendix B - Press Rig Petri-net Descriptive File

Press Rig Analogue/Pulse Acquisition Trigger

DB D'O',D'O'
DB D'O',D'O'
DB D'O',D'O’
DB D'O',D'O'
DB D'O',D'O’
DB D'O',D'O'
DB D'O',D'O'
DB D’O',D’O’
DB D'O',D'O'
DB D'O’,D’O'
DB D'O',D’O'
DB D'0',ANALOGUE2
DB ANALOGUE3,ANALOGUEl
DB ANALOGUEl,ANALOGUE2
DB ANALOGUE3,D'0'
DB D'O',D'O'
DB D'O',D'O'
DB D’O',D'O'
DB D'O',D'O'
DB D'O',D'O'
DB D'O',D'O'
DB D'O',D'O'
DB D'O',D'O’
DB D'O’,D'O'
DB D'O',D'O’
DB D'O',D'O'
DB D'O',D'O'
DB D'O',D’O'
DB D'O',D'O'
DB D'O',D'O'
DB D'O',D'O'
DB D’O',D'O'
DB D'O',D'O'
DB D’O',D'O'
DB D’O',D'O'
DB D'O',D'O'
DB D'O',D'O'
DB D'O',D'O’
DB D'O',D'O’
DB D'O',D'O'
DB D'O',D'O'
DB D’O',D'O'
DB D'O',D'O’
DB D'O',D'O'
DB D'O',D'O’
DB D'O’,D'O'
DB D'O',D’O'
DB D'O',D'O'
DB D'O’,D’O'
DB D'O’,D’O’
DB D'O',D'O'
DB D'O',D'O'
DB D’O’,D’O’
DB D'O',D’O'
DB D'O’,D'O'
DB D'O’,D'O'
DB D'O',D'O'

places 22 & 23
places 24 & 25
places 26 & 27
places 28 & 29

B. 12

Ap
pe

nd
ix

B

-
Pr

es
s

Ri
g

Pe
tr

i-n
et

 D
es

cr
ip

tiv
e

Fi
le

m

PQ

P P P P P P P O
B o Q Q Q q q q q q q q q q q q q q q q q b q q q q q q q q q q q q q Q Q
P P P P P P O
Q O Q Q Q Q Q P Q Q Q Q Q Q Q Q Q D Q Q Q Q Q Q Q D Q b Q Q Q Q Q

CQOQOQCQCQCQpQmcQCQCDqQmmcQCQCQCQCQpaCQQaCQCQCQCQPQCQPQCacQeqqQmOQCQPQPQCQPQPQPQPQmfflCaCQPQPQPQPQCQCaCQCQmDQCQCQPQ
Q Q D Q Q Q Q Q Q Q Q D Q Q Q P Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q P Q O ' Q Q P Q Q Q Q Q Q O Q Q Q D Q Q Q Q Q Q Q Q Q Q Q Q

Appendix B - Press Rig Petri-net Descriptive File

DB D'O',D'O’
DB D'O',D'O'
DB D'O',D’O'
DB D'O',D'O'
DB D'O',D'O'
DB D'O',D'O'
DB D'O’,D'O’
DB D’O',D'O'
DB D’O',D'O'
DB D'O',D'O'
DB D'O',D'O'

The descriptive files related to the other two applications presented as examples in

this work (Chapters 9 and 10) are part of electronic documents placed in the attached

CD-ROM. Further details are available in the Section “Attached Documents”, later in

this appendix (B.17 and B.18).

B. 14

Appendix B - OEE Calculation Script

Conveyor Rig OEE Calculation — Database Procedure

CREATE TRIGGER [Statuslnsert] ON [PICuser].[ConveyorRig_ST]
FOR UPDATE
AS

DECLARE @Availability real
DECLARE @Performance real
DECLARE @QualityRate real
DECLARE @OEE real
DECLARE @Idle real
DECLARE @Stopped real
DECLARE @Processing real
DECLARE @Good real
DECLARE @RejPeg real
DECLARE @Rej Ring real
DECLARE @WrongRej real
DECLARE @FailRej real
DECLARE @TheDay varchar(12)

SET @TheDay = CONVERT(varchar(12), GETDATE(), 111)
SELECT @Idle = SUM(HOW_LONG) FROM[ConveyorRig_ST] WHERE((

EVENTID = 30) AND (CONVERT(varchar(12), ENDEDAT, 111)
= @TheDay))

SELECT@Stopped = SUM(HOW_LONG) FROM[ConveyorRig_ST]
WHERE((EVENT ID = 28) AND (CONVERT(varchar(12),
ENDEDAT, 111) = @TheDay))

SELECT @Processing = SUM(HOW LONG) FROM[ConveyorRig_ST]
WHERE((EVENT ID = 29) AND (CONVERT(varchar(12),
ENDEDAT, 111) = @TheDay))

SELECT @Good = COUNT (EVENTID) FROM [Convey orRig_EV] WHERE((
EVENT ID = 31) AND (CLASS = T) AND
(CONVERT(varchar(12), TIME STAMP, 111) = @TheDay))

SELECT @RejPeg = COUNT(E VENTI D) FROM[ConveyorRig_EV]
WHERE((EVENT ID = 28) AND (CLASS = T) AND
(CONVERT(varchar(12), TIME STAMP, 111) = @TheDay))

SELECT@RejRing = COUNT(EVENT ID) FROM[ConveyorRig_EV]
WHERE((EVENT ID = 9) AND (CLASS = T) AND
(CONVERT(varchar(12), TIME STAMP, 111) = @TheDay))

SELECT @WrongRej = COUNT(EVENT ID) FROM[ConveyorRig_EV]
WHERE((EVENT ID = 30) AND (CLASS = T) AND
(CONVERT(varchar(12), TIME STAMP, 111) = @TheDay))

SELECT @FailRej = COUNT (EVENTID) FROM[ConveyorRig_EV]
WHERE((EVENT ID = 29) AND (CLASS = T) AND
(CONVERT(varchar(12), TIME STAMP, 111) = @TheDay))

IF(@Processing > 0 AND @Good > 0)
BEGIN

SET @Availability = ((@Idle + @Processing) / (@Idle +
@Processing + @Stopped))

SET @Performance = (@Processing / (@Processing + @Idle))

B. 15

Appendix B - OEE Calculation Script

SET @QualityRate = (©Good / (@Good + @RejPeg +
@WrongRej + @FailRej))

SET @OEE = (@Availability * @Performance * @QualityRate *
100)

END
ELSE
BEGIN

SET @Availability = 0
SET @Performance = 0
SET @QualityRate = 0
SET @OEE = 0

END
UPDATE OEETable SET Actual A vail = @ Availability WHERE ProcessID =

'ConveyorRig'
UPDATE OEETable SET ActualPerform = @Performance WHERE

ProcessID = 'ConveyorRig'
UPDATE OEETable SET ActualQualRate = @QualityRate WHERE

ProcessID = 'ConveyorRig'
UPDATE OEETable SET ActualOEE = @OEE WHERE ProcessID =

'ConveyorRig'
UPDATE OEETable SET Best Avail = @ Availability WHERE((BestAvail <

@Availability) AND (ProcessID = 'ConveyorRig'))
UPDATE OEETable SET BestPerform = ©Performance

WHERE((BestPerform < ©Performance) AND (ProcessID =
'ConveyorRig'))

UPDATE OEETable SET BestQualRate = @QualityRate
WHERE((BestQualRate < @QualityRate) AND (ProcessID =
'ConveyorRig'))

SELECT ©Availability = BestAvail FROM OEETable WHERE ProcessID =
'ConveyorRig'

SELECT ©Performance = BestPerform FROM OEETable WHERE
ProcessID = 'ConveyorRig'

SELECT @QualityRate = BestQualRate FROM OEETable WHERE
ProcessID = 'ConveyorRig'

SET ©OEE = (@Availability * ©Performance * ©QualityRate * 100)
UPDATE OEETable SET BestOEE = @OEE W HERE ProcessID = 'ConveyorRig'

B. 16

Appendix B - Attached Documents and Files

ATTACHED DOCUMENTS AND FILES

The documents and files related with this appendix can be found in electronic media

format, attached at the end of this thesis. Bellow are provided the details related to

these files and documents location within the storage unit (CD-ROM).

(1) Press rig - Petri-net diagram descriptive file

Folder: \AppendixB\PetriNet\PressRig

File name: Petrinet.htm

(2) Press rig - state status (beginning/ending) descriptive file

Folder: \AppendixBYPetriNet\PressRig

File name: WatchStatus.htm

(3) Press rig - analogue / pulse input descriptive file

Folder: \AppendixB\PetriNet\PressRig

File name: WatchTrigger.htm

(4) Conveyor rig - Petri-net diagram descriptive file

Folder: \AppendixB\PetriNet\ConveyorRig

File name: PetriNet.htm

(5) Conveyor rig - state status (beginning/ending) descriptive file

Folder: \AppendixB\PetriNet\ConveyorRig

File name: WatchStatus.htm

(6) Conveyor Rig - analogue / pulse input descriptive file

Folder: \AppendixB\PetriNet\ConveyorRig

File name: WatchTrigger.htm

(7) Tool Changer - Petri-net diagram descriptive file

Folder: \AppendixBYPetriNet\ToolChanger

File name: Petrinet.htm

(8) Tool Changer - state status (beginning/ending) descriptive file

Folder: \AppendixB\PetriNet\ToolChanger

File name: WatchStatus.htm

(9) Tool Changer - analogue / pulse input descriptive file

Folder: \AppendixB\PetriNet\ToolChanger

File name: WatchTrigger.htm

B. 17

Appendix B - Attached Documents and Files

(10) OEE calculation database script

Folder: \AppendixB

File name: ConveyorRigOEE.htm

(11) Web page examples showing the IPMM approach

Folder: \AppendixB

File name: IPMMWebPage.htm

(12) System’s application examples (best viewed with resolution set to 1280 x 1024)

Folder: \AppendixB

File name: ConveyorRig.avi and PressRig.avi

B. 18

Appendix C - List of Publications

APPENDIX C

PUBLICATIONS AND PRESENTATIONS

(1) Frankowiak, M.R., Grosvenor, R.I., Prickett, P.W., Jennings, A.D. and Turner,

J.R. Design of a PIC Based Data Acquisition System for Process and Condition

Monitoring. In Proceedings: Comadem 2001, Manchester, UK: Elsevier Science,

2001,481-488.

Document (paper) in the attached CD-ROM: \AppendixC\Documentl.htm
th •(Oral presentation in the 14 International Congress on Condition Monitoring and

Diagnostic Engineering Management, Manchester, UK)

(2) Frankowiak, M.R., Grosvenor, R.I., Prickett, P.W. and Jennings, A.D. A

Microcontroller Based Distributed System Using a Petri-net Approach. In

Proceedings: Comadem 2002, Birmingham, UK: Comadem International, 2002,

37-44.

Document (paper) in the attached CD-ROM: YAppendixC\Document2.htm
th(Oral presentation in the 15 International Congress on Condition Monitoring and

Diagnostic Engineering Management, Birmingham, UK)

(3) Jennings, A.D, Prickett, P.W., Grosvenor, R.I. and Frankowiak, M.R. Process and

Condition Monitoring Using the Internet (e-monitoring). In Proceedings:

Comadem 2002, Birmingham, UK: Comadem International, 2002, 45-52.

Document (paper) in the attached CD-ROM: \AppendixC\Document3.htm
tli • • •(Oral presentation in the 15 International Congress on Condition Monitoring and

Diagnostic Engineering Management, Birmingham, UK)

(4) Frankowiak, M.R., Grosvenor, R.I., Prickett, P.W. and Jennings, A.D. Distributed

Monitoring System Using PIC Microcontroller Technologies. In Proceedings:

ICOM2003, Loughborough, UK: Professional Engineering Publications, 2003,

415-420.

Document (paper) in the attached CD-ROM: YAppendixC\Document4.htm

(Oral presentation in the International Conference on Mechatronics,

Loughborough, UK)

Appendix C - List of Publications

(5) Frankowiak M.R. Manufacturing Process and Machine Monitoring Employing

Microcontroller Technologies. Speaking of Science, Cardiff, 2003.

(Oral presentation in the BA Speaking of Science Conference, Cardiff, UK)

Document (abstract) in the attached CD-ROM: \AppendixC\Document5.htm

(6) Frankowiak, M.R., Grosvenor, R.I., Prickett, P.W. and Jennings, A.D. A Petri-net

Based Distributed Monitoring System Using PIC Microcontrollers.

Document (paper) in the attached CD-ROM: \AppendixC\Document6.htm

(Submitted to the Microprocessors and Microsystems Journal)

C. 2

