
PRI F Y S G O L
CAERPV[tj>

BINDING SERVICES
Tel +44 (0)29 2087 4949
Fax +44 (0)29 20371921

e-mail bindery@cardiff.ac.uk

mailto:bindery@cardiff.ac.uk

HYPERMEDIA-BASED

PERFORMANCE SUPPORT SYSTEMS

FOR THE WEB

A thesis submitted to

the University of Wales

for the degree of

Doctor of Philosophy

by

Ammar M. Huneiti

BSc., MSc.

Intelligent Information Systems Group

Cardiff School of Engineering

University of Wales - Cardiff

2004

UMI Number: U584665

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584665
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

SYNOPSIS

The work reported in this thesis is an attempt to apply integrated knowledge-based

and adaptive hypermedia technologies in the area of electronic performance support.

Moreover, this work is a contribution in the direction of “structured” hypermedia

authoring of technical documentation. It tackles the main challenges associated with

the systematic development of Web-based technical documentation which include the

design, authoring, and implementation, and the creation of supporting CASE tools.

The main contribution o f this research is a systematic methodology for the

development of hypermedia-based Performance Support Systems (PSSs) for the Web

which adheres to the main characteristics of advanced PSSs. These characteristics are

outlined in a conceptual model that complies with state-of-the-art technologies and

current practices in the field of user performance support.

First, the thesis suggests a conceptual model for advanced PSSs. These are

characterised as mainly consisting of two loosely coupled components that are

designed and accessed in a task-based and user-centred manner. The first component

is a freely browsed technical documentation of the application domain. The second

component is the expert advisor that provides assistance for more specific, complex,

and difficult to learn tasks. The integrated technologies utilised in advanced PSSs

include Web-based hypermedia and knowledge-based systems.

Second, the thesis concentrates on the first component of advanced PSSs i.e. technical

documentation. It suggests a usage-based data model for the design of technical

documentation. The proposed model abstracts the intended purpose of the

documentation, the tasks supported by the documentation, and the functional

characteristics of documents. These abstractions are integrated in a usage-based

semantic network where rules and valid relationships are identified. This design

framework can then be used by authors in order to organise, generate, and maintain

the technical documentation i.e. authoring. In addition, this model is also used to

support a strategy for the adaptive retrieval o f hypermedia documents.

Third, the thesis suggests a model-driven hypermedia authoring approach for Web-

based technical documentation. This approach utilises the usage-based data model for

the design o f technical documentation (described above). In addition, it complies with

the principled guidelines of structured authoring.

Finally, the thesis focuses on “intelligent” PSSs. It promotes the provision of

intelligent performance support through the utilisation and integration o f technologies

used in developing knowledge-based diagnostic Expert Systems (ES) and adaptive

hypermedia systems. This integration is implemented through the use o f hypermedia

which allows supporting content to be synchronized with the diagnostic ES inference

process. The integrated adaptive diagnostic ES supports the user by providing what-

to-do and how-to-do type of information tailored (adapted) to the user’s knowledge of

the subject domain. The special organisation of displays in an HTML-based user

interface allows users, while employing the ES for fault diagnosis, to request detailed

information about a certain diagnosis procedure, and then return to the ES to continue

from where they left off.

The solutions proposed in this thesis are demonstrated through the development of a

prototype PSS for an all-terrain fork-lift truck. The performance support is provided

through (i) a technical manual, (ii) a diagnostic ES for locating and correcting braking

system faults, and (iii) an adaptive information retrieval utility.

ACKNOWLEDGEMENTS

IN THE NAME OF ALLAH, MOST GRACIOUS, MOST MERCIFUL.

“and say: my lord, increase me in knowledge” [Holy Quran 20:114].

First and last all praise is due to Allah for all his uncountable blessings and favours.

I will always be grateful to my parents whom without their help and encouragement, I

could not have achieved this. Not to forget my wife who has put up with my absence

throughout my research. Thanks to my wife and my son “Hareth”.

Equally, my thanks and gratitude goes to my supervisor Professor D. T. Pham for his

unique, kind, caring, and sincere supervision, and for all his personal support,

encouragement, and guidance.

Last but not least, the cooperation of the members of the Intelligent Systems

Laboratory as a whole is highly appreciated. In particular, I would like to thank the

I2S Group members for their good companionship.

TABLE OF CONTENTS

SYNOPSIS i

ACKNOWLEDGEMENTS III

DECLARA TION AND STA TEMENTS iv

LIST OF FIGURES xi

LIST OF TABLES xiv

ABBREVIATIONS xvi

NOMENCLATURE xix

1 INTRODUCTION 1

1.1 MOTIVATION 1

1.2 OBJECTIVES 4

1.3 OUTLINE OF THE THESIS 6

2 SYSTEM A TIC DEVELOPMENT OF ADVANCED PERFORMANCE 9

SUPPORT SYSTEMS

2.1 PERFORMANCE SUPPORT SYSTEMS 10

2.1.1 Definition and Objectives 10I
2.1.2 Static Methods of Performance Support 11

2.1.3 Electronic Performance Support Systems 12

2.2 ADVANCED PERFORMANCE SUPPORT SYSTEMS 15

2.2.1 Conceptual Model for Advanced PSSs 15

2.2.2 Discussion 19

2.3 INTEGRATED TECHNOLOGIES FOR ADVANCED PERFORMANCE SUPPORT 20

2.3.1 Web-based Hypermedia 21

2.3.2 Knowledge-Based Systems 24

2.3.3 Adaptive Hypermedia 26

2.3.4 Discussion 30

2.4 A SOFTWARE ENGINEERING PERSPECTIVE ON THE DESIGN 31

AND AUTHORING OF DATA-INTENSIVE WEB-BASED HYPERMEDIA

APPLICATIONS

2.4.1 Authoring: Techniques and Methods 31

2.4.1.1 Traditional Authoring 31

2.4.1.2 Structured Authoring 33

2.4.1.2.1 Structured Authoring Methods 33

2.4.1.2.2 Structured Authoring Techniques 35

2.4.2 Systematic Development of Data-lntensive Web-Based Hypermedia 36

Applications

2.4.2.1 Static Hypermedia Authoring 36

2.4.2.2 Problems Associated with Development of Data-lntensive 37

Web-Based Applications

2.4.2.3 Why a Systematic Development Approach? 38

2.4.2.4 Software Engineering in Support of a Systematic Development 40

Approach

2.4.2.4.1 The Software Engineering Process 40

2.4.2.4.2 Software Process for Web-Based Information Systems 41

2.4.3 Structured Hypermedia Design 45

2.4.3.1 Reference Models for Hypermedia Systems 47

2.4.3.2 A Review of Structured Design Methods for Hypermedia 48

Applications

2.5 SUMMARY 51

vi

3 USAGE-BASED DATA MODEL FOR THE DESIGN OF TECHNICAL 53

DOCUMENTATION

3.1 MODELLING KNOWLEDGE WITHIN TECHNICAL DOCUMENTATION 53

3.1.1 Usage-Based Analysis of Technical Information 54

3.1.1.1 Purpose of Technical Documentation 55

3.1.1.2 Tasks Supported by Technical Documentation 56

3.1.1.3 Functional Characteristics of Technical Documents 60

3.1.2 Semantic Data Model for Representing Knowledge in Technical Documentation 61

3.1.2.1 Knowledge Representation Using Semantic Networks 61

3.1.2.2 Usage-Based Semantic Network for Technical Documentation 64

3.1.3 Mapping from the Semantic Data Model to a Database Schema 69

3.2 CASE STUDY: USAGE-BASED ANALYSIS AND DATA MODEL FOR TECHNICAL 72

MANUALS

3.2.1 Product-Based Technical Manuals 72

3.2.2 Information Analysis of Technical Manuals 73

3.2.3 Abstract Tasks and Activities in Technical Manuals 78

3.2.4 Semantic Database Schema for a Technical Manual 79

3.3 SUMMARY 84

4 MODEL-DRIVEN HYPERMEDIA AUTHORING APPROACH FOR 85

WEB-BASED TECHNICAL DOCUMENTATION

4.1 HYPERMEDIA AUTHORING FOR THE WEB 86

4.1.1 Traditional Process to Web-Based Hypermedia Authoring 86

4.1.2 Model-driven Approach to Web-Based Hypermedia Authoring 89

4.1.3 Application Example 92

4.2 EDITING AND MANAGEMENT OF MULTIMEDIA DATA ELEMENTS 93

4.3 AN APPROACH FOR BUILDING THE HYPERMEDIA-BASED TECHNICAL 96

DOCUMENTATION STRUCTURE

4.3.1 Relationships in Hypermedia 96

4.3.2 Attributes for Indexing the lOs of the Technical Documentation 97

4.3.3 Hypermedia Structure for the Technical Manual 101

4.3.3.1 Dynamic Identification Codes for Maintaining the Structural and 105

Semantic Properties of lOs

4.3.3.2 Structure Builder - An Authoring Tool 109

4.3.3.3 Automatic Generation of the Hypermedia Pages 111

4.4 NAVIGATION BASED ON INFORMATION SEMANTICS 114

4.4.1 Access Methods 116

4.4.2 Automatic Identification of Semantically-Based Navigational Relationships 120

4.4.2.1 Context-Driven Navigational Relationships 120

4.4.2.2 Purpose-Driven Navigational Relationships 123

4.5 FRAME-BASED PRESENTATION TEMPLATES 127

4.6 SYSTEM ARCHITECTURE 132

4.7 SUMMARY 135

5 INTELLIGENT PERFORMANCE SUPPORT THROUGH 136

INTEGRATED KNOWLEDGE-BASED ADAPTIVE HYPERMEDIA

5.1 INTELLIGENT PERFORMANCE SUPPORT THROUGH KNOWLEDGE-BASED 137

DIAGNOSTIC SYSTEM

5.1.1 Encapsulating Diagnosis Knowledge of Experts in an Expert System 137

5.1.2 Integrated Knowledge Engineering Process for Diagnostic ESs 139

5.1.3 Integrated Shallow and Deep Knowledge Model 142

5.1.4 Rule-Based KB for Fault Diagnosis 147

5.1.4.1 Application Domain Example 147

5.1.4.2 Building the Shallow KB 147

5.1.4.3 Abstract Rule Format for the Diagnostic Strategy 151

5.1.4.4 Automatic Generation of the Rule-Based KB in e2gLite ES Shell 152

Format

5.1.4.5 Automatic Update of Deep Knowledge Data 159

5.1.5 General Architecture for the Diagnostic Expert System 161

5.2 INTELLIGENT PERFORMANCE SUPPORT THROUGH ADAPTIVE HYPERMEDIA 163

5.2.1 Adaptive Retrieval of Hypermedia-Based Diagnostic Information 163

5.2.1.1 Stereotype Model for User Knowledge 164

5.2.1.2 User Knowledge-Based Strategy for Adaptive Support Using 167

Conditional Semantic Rules

5.2.1.3 Adaptive Hypermedia Support for Diagnosis Information 174

5.2.2 General Architecture for the Adaptive Hypermedia System 178

5.3 INTEGRATED ADAPTIVE DIAGNOSTIC EXPERT SYSTEM 180

5.4 SUMMARY 183

6 CONTRIBUTIONS, CONCLUSIONS AND FUTURE WORK 185

6.1 CONTRIBUTIONS 185

6.2 CONCLUSIONS 190

6.3 FUTURE RESEARCH 192

APPENDIX A. INFORMATION OBJECTS METADATA 195

APPENDIXB. CODING INFORMATION OBJECTS USING 204

STRUCTURE BUILDER

APPENDIX C. AUTOMATICALLY EXTRACTED PURPOSE-DRIVEN 207

NAVIGATIONAL RELATIONSHIPS

APPENDIX D. FRAME-BASED PRESENTATION TEMPLATES 220

D.1 Index Template 220

D.2 Collection Template 221

D.3 Guided Tour Template 221

APPENDIXE. AUTOMATIC GENERATION OF KNOWLEDGE BASES 223

IN e2gLite ES SHELL FORMAT

E. 1 KB Generator - Source Code 224

E.2 the Complete Rule-Based KB Generated in e2gLite ES Shell Format 231

REFERENCES 238

x

LIST OF FIGURES

Chapter 2

2.1 Conceptual Model for Advanced PSSs 18

2.2 Software Process and Web-Based Development 42

Chapter 3

3.1 Classifications of Technical Documents According to their Purpose 57

3.2 Primitive Tasks and Abstract Task Types 59

3.3 Usage-Based Semantic Network for Technical Documentation 65

3.4 Semantic Rules and Valid Relationships 68

3.5 Abstract E-R Diagram Representing the Semantic Database Schema 71

3.6 Activity-Based Database Schema for Technical Manuals 81

3.7 Schema Editor 83

Chapter 4

4.1 Conceptual Model-The Traditional Web-Based Hypermedia Authoring 87

Process

4.2 Model-Driven Approach to Web-Based Hypermedia Authoring 90

4.3 Information Objects 95

4.4 Relationships in Hypermedia 98

4.5 Attributes of Information Objects 99

4.6 Braking System-Logical Structure with Semantic Domains 103

4.7 Identification Codes for Information Objects 108

4.8 Structure Builder - An Authoring Tool 110

4.9 Structural Outline o f Automatically Generated HTML Pages 113

4.10 XML-Based Technical Manual Rendered Using CSS and XSL Style Sheets 115

4.11 Access Methods 117

4.12 Semantic Domains - Alternative Views for the Technical Manual’s 119

Home Page

4.13 Generation of Context-Driven Navigational Hyperlinks 121

4.14 Purpose-Driven Navigational Relationships 124

4.15 Keyword-Based Referential Hyperlinks 128

4.16 Physical Organisation of Presentation Templates of Access Methods 130

4.17 System Architecture 133

Chapter 5

5.1 General Architecture of a Typical Knowledge Engineering Process 140

5.2 Integrated Knowledge Engineering Process for Developing Diagnostic 143

Expert Systems

5.3 Integrated Shallow and Deep Knowledge Model for Diagnostic Experts 144

Systems

5.4 E-R Diagram Representing the Database Schema of the Integrated 146

Knowledge Model

5.5 Structured Shallow Knowledge Data for Diagnosing Braking System 149

Faults in the Forklift Truck

5.6 Automatically Generated e2gLite Rules and Prompts for Fault No. 1 155

(Damaged Brake Fluid Pipes)

5.7 Decision Flow Chart for Determining Fault No. 1 (Damaged Brake 157

Fluid Pipes)

5.8 User Interface and Example Scenario of the Diagnostic ES 158

5.9 Identification of Faults Diagnosis and Correction Procedures 160

5.10 General Architecture of Diagnostic Expert System 162

5.11 Adaptive Hypermedia Systems - Abstract Overview 166

5.12 Main Principle o f the Adaptive Strategy 168

5.13 User Knowledge-Based Conditions for Identifying “Relevant” 173

Information Objects

5.14 Alternative Views of “Check the Servo Brake” Diagnosis Procedure for 176

Different User Knowledge Stereotypes

5.15 General Architecture for the Adaptive Hypermedia System 179

5.16 User Interface for the Integrated Adaptive Diagnostic Expert System 181

5.17 General Architecture of the Integrated On-Line Adaptive Expert

Diagnostic System

182

Appendix B

B.l Textual Procedure “Wheel Dismount” 205

B.2 Clarification Image “Unscrew the nuts” 205

B.3 Clarification Animation “Unscrew the nuts” 206

B.4 Clarification Image “Take off the spring washers” 206

LIST OF TABLES

Chapter 2

2.1 Supporting Complex Systems (Paper-Based vs. Electronic) 14

2.2 Comparison - Structured Hypermedia Design Methodologies 49

Chapter 3

3.1 Functional Characteristics o f Documents and their Abstract Types 62

3.2 Classification of Information Categories of Technical Manuals According to 75

their Purpose

3.3 Abstract Purpose of Product Information 76

3.4 Functional Characteristics o f Product Information 77

3.5 Information Categories and Primitive Tasks in Support of the Abstract 80

Activities o f Technical Manuals

Chapter 4

4.1 Information Objects Metadata-Attributes and Values 106

4.2 Automatically Generated “SupportedBy” Relationships 126

4.3 Visual Presentation Icons for Functions of Information Objects 131

Chapter 5

5.1 Relationship between Adaptive Support and User Knowledge 170

Appendix A

A. 1 Information Objects and Metadata 196

xiv

Appendix C

C.l Automatically-Generated Purpose-Driven “ActionApplied”

Navigational Relationships

C.2 Automatically-Generated Purpose-Driven “Plan_Info”

Navigational Relationships

C.3 Automatically-Generated Purpose-Driven “Supported By”

Navigational Relationships

208

209

215

xv

ABBREVIATIONS

ADAPTS Adaptive Diagnostics and Personalised Technical Support

AH Adaptive Hypermedia

AHA Adaptive Hypermedia Architecture

AHAM Adaptive Hypermedia Architecture Model

AI Artificial Intelligence

ANN Artificial Neural Network

CAD Computer Aided Design

CASE Computer Aided Software Engineering

CBT Computer Based Training

CGI Common Gateway Interface

ChemicalML Chemical Markup Language

CSS Cascading Style Sheet

DBMS Database Management System

DBPL Database Programming Language

DTD Document Type Definition

El-Tech Electronic Technician

EORM Enhanced Object-Relationship Model

E-R Entity Relationship

ES Expert System

FLC Fuzzy Logic Controller

GUI Graphical User Interface

HB1 HyberBase 1

HBMS HyperBase Management System

HCI

HDM

HTML

HTTP

IE

IETM

IHDM

IO

IPM

IR

JDBC-ODBC

JDK

JSP

JSWDK

KB

KE

KM

MathML

MMA

MUCH

MusicML

0-0

OOHDM

PC

PDA

Human Computer Interaction

Hypermedia Design Model

Hypertext Markup Language

Hypertext Transfer Protocol

Inference Engine

Interactive Electronic Technical Manual

Index-Driven Hypermedia Design Methodology

Information Object

Intelligent Product Manual

Information Retrieval

Java Database Connectivity- Open Database Connectivity

Java Development Kit

Java Server Pages

Java Server Web Development Kit

Knowledge Base

Knowledge Engineering

Knowledge Management

Mathematics Markup Language

Mars Medical Assistant

Many Using and Creating Hypermedia

Music Markup Language

Object-Oriented

Object-Oriented Hypermedia Design Method

Personal Computer

Personal Data Assistant

PDM Product Data Management

PSS Performance Support System

RICH Reusable Intelligent Collaborative Hypermedia

RMM Relationship Management Methodology

SE Software Engineering

SGML Structured Generalised Markup Language

SOHDM Scenario-Based Object Oriented Design Methodology

SQL Structured Query Language

UI User Interface

UML Unified Modelling Language

URL Universal Resource Locator

WAP Wireless Application Protocol

WebML Web Markup Language

WHDM Workflow-Based Hypermedia Development Methodology

WML Wireless Markup Language

WWW World Wide Web

XML extensible Markup Language

XSL extendable Style Language

xviii

NOMENCLATURE

Adv Advice

AHG Adaptive Hypermedia Generator

ARU Adaptive Rendering Utility

ASE Adaptive Support Engine

CF Certainty Factor

Cla Clarification

ConForm Container Form

DI Disposal Instructions

Fund Fundamental

HIST Handling, Installation, Storage, and Transit

ICat Information Category

ID Identification Code

MI Modification Instructions

OI Operating Instructions

Org Organisation

PL Parts List

PP Purpose and Performance

Proc Procedure

Spec Specification

SU Search Utility

T_ID Topic Identifier

TD Technical Description

TM Technical Maintenance

TMS Technical Maintenance Schedule

xx

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Supporting the performance of workers in modern hi-tech job environments has

become an increasingly complex, time consuming and costly task which requires

advanced performance support methods. Simple tasks of low information volume can

be efficiently supported using traditional performance support methods such as paper

documentation, lectures, job aids, and instructor-led courses. However, many

problems are associated with these traditional methods especially when used to

support complex products or systems. Bezanson [1995] states that “traditional user

support methods are no longer effective”, because “traditional training methods are

not responsive to individual needs as they emphasize training rather than learning”.

He also points out that traditional performance support methods involve cumbersome

manuals and labour-intensive updates of workers’ document sets.

Reliable Performance Support Systems (PSS) can enhance productivity, and reduce

training costs, time to achieve proficiency, and errors. Meanwhile, they increase

quality, accuracy, task completion rate, and worker autonomy [Desmarais et al., 1997;

McGraw, 1997]. However, according to Fischer and Horn [1997], without tools that

are primarily PSS tools and with no clear methodology for building them or

1

measuring their performance, PSSs will be limited to being just “an approach”.

Technical documentation is a major component of any PS S. Recent technological

advances in the field o f information processing, storage, presentation, and retrieval,

had a huge impact on authoring of technical documentation. However, powerful

authoring tools and advanced technologies cannot help improve the quality of the

content of documentation unless similar powerful and advanced authoring methods

are utilised [Thibeau, 1996; and Csinger et al., 1995]. Moreover, as the documentation

becomes more complex, it exhibits emergent behaviours, and it demands new

attitudes, concepts, and work from the technical communicators [Price, 1997]. In

addition to technical documentation, expert diagnostic systems are another major

performance support component. As current products, equipment, and systems

increase in size and complexity, the difficulty of diagnosing their faults increases, and

hence the need for utilising expert diagnosis knowledge in supporting user

performance is increasingly essential [Patel et al., 1996].

Furthermore, Performance Support is a concept that capitalises on recent advances in

many technological areas such as Artificial Intelligence (Al), Human Computer

Interaction (HCI), Computer-Based Training (CBT), Knowledge Management (KM),

and the Internet technology. Recently developed advanced PSSs are greatly

influenced by the integration of more than one technology. The technologies that are

employed in developing advanced PSSs should reflect their main characteristics. The

Integrated Technology solution to PSSs is best outlined by Raybould [2000] in his

21st century vision of building performance-centred Web-based information and

knowledge management systems. He states that “the Human Computer Interaction,

Expert Systems, and Technical Documentation fields have all been moving closer to

those approaches advocated by the performance support community. Technical books

have become interactive electronic manuals, stand-alone ESs have been embedded in

information systems, and instructor-led training courses have become Web-based

training modules integrated with hyper linked background reference information”.

Two major technologies have emerged that significantly influenced the development

of PSSs, namely hypermedia as an authoring tool and the Web as a novel

communication medium. On-line hypermedia have dramatically changed the way

people use and present information, so much so, that there is a need to have new

theories and models for understanding how technology and content are related in this

new communication environment. Nevertheless, most researchers argue that there is a

weakness in the current methodologies that support the development of Web-based

hypermedia applications, especially data-intensive applications [Brusilovsky et al,

2002; Gomez et al, 2001; Rossi et al., 2001; Segor et al., 2000; Fraternali, 1999; and

Coda et al, 1998]. In addition, there is no consensus on a general design process

model for these applications. Currently, most Web developers manually generate low-

level implementations o f mark-up language-dependent files or use commercially

available tools to produce them. The development of data-intensive Web-based

hypermedia applications is usually a collaborative process involving team members

with different expertise, knowledge, skill(s), aims, and backgrounds. Due to this team

effort, it is vital to acquire a common communication language between team

members, which maps their understanding into a uniform model [Ding et al., 2002;

Klusch, 2001; and Levy and Weld, 2000].

3

Furthermore, users of PSSs have different levels of knowledge, expertise, and

qualifications, and they also have different goals and objectives. According to Pham

and Setchi [2003] “information that is presented to users has to vary in its focus, level

of detail, and presentation format. It has to be adapted to the information needs of the

users”. Therefore, according to Brusilovsky [1999], electronic PSSs is a new and

challenging area for the application of adaptive hypermedia techniques. He also states

that “we do not know any other {than his) PSS equipped with adaptive hypermedia,

but we hope that more systems will appear in the near future”.

1.2 OBJECTIVES

The scope of the research reported in this thesis is the intelligent and reliable support

of users’ performance through adaptive Web-based environment that provides for all

user needs. The overall objective is to provide advanced users’ performance support

by integrating technical information with expert-based advice capabilities, adapted to

the user’s knowledge o f the performed tasks. The work of this research is an attempt

to overcome limitations associated with traditional approaches used in the

development of conventional PSSs. Particular attention is applied to the provision of

advanced design and authoring techniques for hypermedia-based technical

documentation and the provision of intelligent performance support methods. This

research project should be relevant to all people involved in the development of Web-

based PSSs. These include domain experts, system analysts, authors, content

managers, designers, knowledge engineers, hypermedia editors, style architects, Web

administrators, and others.

4

The individual research objectives of this project are:

1. To produce a conceptual model for advanced PSSs.

2. To develop a data model for the design of technical documentation.

3. To develop a structured approach for hypermedia authoring o f Web-based

technical documentation, and an architecture for implementing this approach.

4. To create a structured method and architecture for providing intelligent diagnosis

support through a knowledge-based Expert System (ES).

5. To create a method and architecture for the adaptive delivery of hypermedia-based

technical documentation.

6. To develop an architecture for integrating the diagnostic ES and the adaptive

hypermedia documentation system.

5

1.3 OUTLINE OF THE THESIS

The main body o f this thesis comprises Chapters 2 to 5. Chapter 2 is mainly a review

chapter that provides the required background knowledge for the work reported in the

rest of this thesis. Chapter 2 also introduces a conceptual model for advanced PSSs

derived from work reported in the literature. Chapters 3, 4, and 5 address objectives 2-

6 listed above. The final chapter, Chapter 6, summarises the contributions and

conclusions o f the work reported in this thesis and makes suggestions for future

research.

Chapter 2 addresses the first research objective. This chapter comprises two main

parts. The first part gives a review of PSSs and their enabling technologies. A

conceptual model for advanced PSSs sums up the results of a survey o f the state of

practice in recently developed PSSs. The chapter also discusses the existing state-of-

the-art technologies that can be utilised to deliver this advanced performance support

concept. The second part o f this chapter addresses issues related to the design and

authoring of data-intensive Web-based hypermedia applications from a Software

Engineering (SE) perspective. Structured authoring approaches are presented as an

improved substitute for traditional authoring. The SE principles that are used to

support a systematic development of data-intensive Web-based hypermedia

applications are outlined. Finally, a survey of structured hypermedia design methods

is presented.

6

Chapter 3 addresses the second research objective. It presents a usage-based data

model for the design o f technical documentation. A semantic data model for designing

technical documentation is proposed based on an abstract usage analysis of technical

information. A case study is conducted using a product-related technical manual in

order to demonstrate the validity of this design approach.

Chapter 4 focuses on the third research objective. It presents a model-driven

methodology for Web-based hypermedia authoring which utilises the usage-based

semantic data model. This methodology is demonstrated through the construction of a

hypermedia-based technical manual for a fork-lift truck. The chapter also introduces a

navigational model based on information semantics. Furthermore, a presentation

technique using frame-based templates, icons, and colours is introduced. Finally, the

system architecture that is used to demonstrate the authoring methodology is

presented.

Chapter 5 focuses on the fourth, fifth, and sixth research objectives. It is organised in

three main sections. The first section introduces a methodology for providing

intelligent diagnosis support through knowledge-based expert systems. At the core of

this methodology is an integrated knowledge engineering process for diagnostic ESs,

which includes an integrated knowledge model. An expert system for locating and

correcting braking system faults in a forklifi truck is used to demonstrate this

methodology. In the second section, an approach for retrieving diagnosis information

using adaptive hypermedia is described. A strategy for providing adaptive support

based on a stereotype model of the knowledge of the users is discussed. The third

7

section presents a general architecture for the integration of both systems in one

adaptive hypermedia diagnostic ES.

Finally, Chapter 6 summarises the contributions made and the conclusions reached,

and suggests directions for further investigation in this area.

8

CHAPTER 2

SYSTEMATIC DEVELOPMENT OF ADVANCED

PERFORMANCE SUPPORT SYSTEMS

This review chapter comprises two main parts. The first part gives a review of

Performance Support Systems (PSS) and their enabling technologies. First, the

concept of “performance support” is presented through a fundamental discussion of

traditional paper-based and electronic PSSs. Next, a conceptual model for advanced

PSSs sums up the results o f a survey of the state of practice in recently developed

PSSs. Then, the chapter discusses the existing state-of-the-art technologies that can be

utilised to deliver this advanced performance support concept. The second part of this

chapter addresses issues related to the design and authoring of data-intensive Web-

based hypermedia applications from a Software Engineering (SE) perspective. First,

structured authoring approaches are presented as an improved substitute for traditional

authoring. Methods and techniques associated with structured authoring are discussed.

Next, the SE principles that are used to support a systematic development of data-

intensive Web-based hypermedia applications are outlined. Development issues

related to existing limitations in static hypermedia authoring and the development of

data-intensive Web-based applications are also discussed. Finally, a survey is carried

out of structured hypermedia design including reference models for hypermedia

systems and structured design methods for hypermedia applications.

9

2.1 PERFORMANCE SUPPORT SYSTEMS

2.1.1 Definition and Objectives

Although there are many definitions for Performance Support Systems (PSS), there is

a consensus among researchers that their main objective is to enhance the

performance of users by supporting their daily work activities and tasks. According to

Bezanson [1995], the process of performance support is “a product or process

attribute that aims to enhance user performance, through a user interface and support

environment that anticipates user needs and supports them conveniently and

effectively”. He also defines PSSs as “systems that provide just-in-time training,

information, and help functions on a system or product”. Cantando [1996] similarly

defines PSSs as “integrated, readily available set of tools that help individuals do their

job and increase their productivity with minimal support”. Desmarais et al. [1997]

identify the fundamental objective of PSSs as to provide assistance in learning and in

performing some sets of tasks. Sleight [1993] likewise state that “PSSs are used to

help with how to do a task”, and she adds that “PSSs are also used for finding

information, and presenting it in alternate forms of presentation”. Through the

perspective of “just-in-time support”, Bezanson [1995] indicates that PSSs should

allow workers to control their own learning and to give them the ability to retrieve

information at the workplace at the moment they need it. Furthermore, Raybould

[1995] outlines the broadest objective of PSSs by identifying a PSS as an

infrastructure that captures, stores, and distributes individual and corporate knowledge

assets throughout an organisation.

10

It is clear that the crucial cost justification factor will always influence the decision to

develop such systems, which can be costly and time consuming. In [Desmarais et al.,

1997] it is reported that a number of companies have claimed large gains by

deploying PSSs to support their operators. The inclusion o f a PSS with a complex

product or system can enhance productivity, reducing training costs, time to achieve

proficiency, and errors while increasing quality, accuracy, task completion rate, and

worker autonomy [Desmarais et al., 1997; McGraw, 1997].

2.1.2 Static Methods of Performance Support

The determination o f the form o f the PSS to develop is influenced by many important

factors, which may include the complexity of the supported tasks, volume of

information, work environment and the information needs of different user groups.

Simple tasks with low information volume can be efficiently supported using

traditional (static) performance support methods such as paper documentation,

lectures, job aids, instructor-led courses, human experts. Traditional job aids may

include pocket reference cards, colour codes for switches, buttons and keys, lists of

abbreviations, etc. In addition, video and audio tapes are traditionally used to provide

performance support.

However, many problems are associated with this conventional static type of

performance support especially when used to support tasks related to complex

products or systems. Bezanson [1995] states that “traditional user support methods are

no longer effective”, because “traditional training methods are not responsive to

individual needs as they emphasize training rather than learning”. He also points out

that traditional performance support methods involve cumbersome manuals and

labour-intensive updates o f workers’ document sets. Furthermore, Pham et al., [1999]

and Ventura [2000] identify some of the problems associated with “conventional”

performance support methods in the technical documentation field. These problems

are associated with the portability, complexity, accuracy, reliability, and

maintainability of information [Ventura, 2000]. There are also other problems

associated with collecting, integrating, and retrieving the information, with the static

structure of the presented material, with the restricted support provided to users

(reference systems vs. active support systems) and with the limitation in presentation

methods [Phamet al., 1999].

2.1.3 Electronic Performance Support Systems

Electronic PSSs1 are computer-based information systems that have benefited from

the digital revolution, and inherited many advantages associated with it. These

systems overcome most o f the problems associated with static methods of

performance support. According to Cantando [1996], the purpose o f an electronic PSS

is to replace or supplement human experts, paper-based documentation, and costly

training programs. Sleight [1993] outlines five “key” characteristics for electronic

PSSs namely that are computer-based, provide access to discrete and specific task-

related information during the task performance, are used on the job, are controlled by

the user, and reduce the need for prior training in order to accomplish a task.

According to Sleight the last four characteristics are the ones which distinguish PSSs

from other computerised tools.

1 Some researchers use the term Electronic Performance Support System (EPSS). Throughout this
thesis, the term “PSS” will be used, to also refer to EPSS unless it is stated otherwise.

12

Electronic PSSs can range in complexity from a single help file for a specific task to a

complete Expert System (ES) for complex problem solving. They may include an

information database, expert and advisory system, help system, application and

productivity software, modular learning experiences, assessment feedback, and

monitoring systems [Cantando, 1996], or any combination of these. In general, all

forms of electronically-based run-time assistance, which can be used to support the

performance of users can be classified as electronic PSSs. These include (computer-

based) interactive task advising, tests for understanding, wizards, tutors, help files,

coaching, training, intervention, and feedback. A specialised and product-oriented

type o f performance support exists in the form of a product support. According to

Pham et al. [2000], product support consists of everything necessary to allow the

continued use o f a product, including user training, technical manuals, help lines,

servicing, spare part ordering, and maintenance management. A comparison between

traditional paper-based and electronic performance support methods for supporting

complex systems or products is presented in Table 2.1. These methods are compared

with regard to volume and weight, accuracy, complexity, portability, access to

information and reliability.

According to their deployment method, electronic PSSs can be classified as

“standalone” or “embedded”. A stand-alone system is designed with no reference to

an existing system and has built-in performance support, e.g. the El-Tech performance

support and training system for electronic technicians [Coffey et al., 2003].

13

Table 2.1 Supporting Complex Systems (Paper-based vs. Electronic)

Paper-based Performance Support Electronic Performance Support

Volume and Weight Increasingly exponential to product complexity. Very low (e.g.: one CD-ROM)

Information Accuracy,

Completeness and Credibility

Difficult and very expensive to update regularly. Thus it becomes

inaccurate, incomplete, and out-dated after a certain time.

Comparatively easy and relatively cheap to update. This

improves accuracy, completeness and credibility.

Information Retrieval

Complexity

Increasingly exponential to the complexity of the supported system.

Information becomes disorienting and difficult to retrieve.

Usually provided with good user interfaces and equipped

with advanced search facilities.

Portability High volume and weight make them hard to transport, hard to store, and

more difficult for users to carry around.

No need to transport or store. Can be mounted on/with the

supported product/system.

Access to Information and

Availability

Poor transportability, storage, and limited number of copies prevent the

required support from being available at certain locations.

Fast and easy access to information. One copy can be

accessed by many at the same time.

Reliability Inaccurate or incomplete support is unreliable support. Information can

become so complex and disorienting which make it unusable.

Cheap and easy to update, providing up-to-date and

therefore reliable information.

14

An “embedded” system, conversely, supplements an existing system, e.g. the wizards

within Microsoft™ products such as Word™ and Excel™. Sleight [1993] adopts a

finer deployment-based classification of PSSs, which differentiates between a front

end to an existing system, a supplement to an existing system, a stand-alone tool for

specific tasks, and a new system with integrated performance support. Raybould

[2000] classifies performance support as “intrinsic”, i.e. support embedded in the tool

or software interface, “extrinsic”, i.e. support that is linked to the tool such as wizards,

cue cards, advisors, help, etc., or “external”, i.e. support that is separate from the tool,

such as tutorials, computer-based training, telephone hotlines, etc. In addition, the

presentation format used in these systems can range from simple text to full

multimedia support which includes images, video, animation, audio, virtual reality,

etc.

2.2 ADVANCED PERFORMANCE SUPPORT SYSTEMS

2.2.1 Conceptual Model for Advanced PSSs

Supporting the performance of workers in modern hi-tech job environments has

become an increasingly complex, time consuming and costly task, which requires

advanced performance support methods. Many advanced characteristics o f PSSs were

highlighted either implicitly or explicitly in previous research in the field of

performance support. Analysis o f these early research endeavours has highlighted a

common direction for advanced performance support, namely to provide task-specific

and user-centred support in conjunction with information and problem solving

capabilities. For instance, McGraw [1997] identifies the primary components of a

15

“true” PSS. These include task-based and user-aware interfaces, help systems,

coaches or advisors, wizards, and tutors. She states that “a system of performance

support provides multiple, interlinked types of computer guidance and information,

integrated with the normal working environment”. Cantando [1996] similarly

classified the main features of a typical PSS as task-specific skills training, task-

specific information access, task-specific templates and forms, and expert advice

needed to solve job-performance problems. According to Bezanson [1995],

performance support means creating environments that integrate business information

with task structuring support and tools. Performance support also means enabling

rapid and consistent expert performance by all employees. Sleight [1993] on the other

hand, identifies the integration o f information, advice, and learning experience as one

of the main characteristics of PSSs.

The above early performance support directions are clearly evident in many recent

advanced PSSs. These later PSSs consist mainly of two integrated abstract

components that are designed and accessed in a task-based and user-centred manner.

The first component is a freely browsed technical documentation o f the application

domain i.e. “how-to-do” type o f information. The second component is the expert

advisor that provides assistance for more specific, complex, and difficult to learn tasks

i.e. “what-to-do” type o f information.

These features are, to different extents, evident in all the more recent advanced

solutions that reviewed. These solutions include, a performance support and training

system for electronic technicians El-Tech [Coffey et al., 2003], the Adaptive

Diagnostic and Personalised Technical Support system ADAPTS [Brusilovsky et al.,

16

2002; Brusilovsky, et al., 1999; and Cooper et al., 1999], the adaptive Intelligent

Product Manual IPM [Pham and Setchi, 2003; Pham et al., 2000; Setchi, 2000; and

Pham et al., 1999], and the Mars Medical Assistant MM A [Francisco-Revilla et al.,

2000]. These advanced practical solutions are designed and implemented in order to

support users within their job environments through the two main components

mentioned earlier. For instance, the technical documentation support in ADAPTS is

provided through the Interactive Electronic Technical Manual IETM, and in IPM

through ProManual. Moreover, the expert advice is provided in ADAPTS through the

diagnostic system, and in MMA through the adaptive diagnostic aid. These

performance support components are loosely coupled, thus the inclusion of a new

component or the exclusion o f an existing component should not affect the operation

and performance o f other components. The availability o f these components is

intended to provide the most appropriate type of performance support on the basis of

the performer’s needs, the task complexity, the consequence of poor performance,

error rates, and other factors [McGraw, 1997].

Figure 2.1 summarises the ideas mentioned above through a conceptual model for

advanced PSSs which resembles the current state of the practice. With respect to a

certain job-related task, the user either directly requests information, or the system

“smartly” detects his needs, or a combination of both. User-related features and

system-supported tasks are modelled, to different extents, in the system. These models

are consulted by the system’s main components either after every information request

or automatically during task performance. User and task modelling are reviewed later

in this chapter. Job-related tasks of the abstract type “how-to-do” are processed

through the system’s technical documentation component. Depending how advanced

Novice
Intermediate
Expert
 etc

Information '
Help
Reference material
Demonstrations ,
Explanations /
Simulations /

Technical
documentation

User Model

Task Model

Expert tips
Wizard
Advisor
Guidance

Learn
Perform
Diagnose

Knowledge-based
expert assistant

Correct
 etc

Training
Expert System
 etc

Text
2D Images
3D Images
Audio
Video
Animations
CAD drawings
Virtual Reality
 etc

Job Environment

Figure 2.1 Conceptual Model for Advanced PSSs

18

the PSS is, this type o f support can be provided in the form of structured information

(declarative and/or procedural), help files, reference material, etc., or any combination

of these. In addition, this support is provided through multimedia-rich information

elements including text, images, audio, video, etc. In contrast, job-related tasks of the

abstract type “what-to-do” are processed by the system’s knowledge-based expert

assistant component. Again, depending on how advanced the PSS is, this support can

vary in complexity from simple expert tips, wizards, and advice, to fully functioning

expert systems, and combinations of these. These two main components are

interlinked, so they can consult with each other in order to provide more

comprehensive and useful support. For example, the system’s knowledge-based

expert assistant component can pass on the performed task to the technical

documentation component in order to retrieve the task-related technical information

and vice versa. This provides the user with synchronised “what-to-do” and “how-to-

do-it” type o f information. Finally, all the above services are provided just-in-time to

the users within their own job environments. Furthermore, these job environments can

now be geographically remote from the PSS itself. As will be shown later, advances

in the Internet technology and in particular the World Wide Web (WWW) enable the

PSS components to reside at one or more central (servers) locations, where they can

be maintained and regularly updated, while providing up-to-date services instantly to

many users (clients) at their own working places and within their job environments.

2.2.2 Discussion

This section has highlighted the need for advanced performance support methods to

deal with the increasing complexity o f modern products and systems. The review of

19

early and more recent research endeavours in the field of performance support, has

demonstrated that the level o f user performance support can be substantially enhanced

by integrating factual information and explanatory capabilities within knowledge-

based expert assistant, adapted to the user’s knowledge o f the performed task. These

fundamental characteristics o f advanced PSSs have been blended together in a

conceptual model for “advanced” PSSs. This conceptual model has been verified

against a number of state-of-the-art PSSs, which have been shown to fall, more or

less, within its boundaries.

2.3 INTEGRATED TECHNOLOGIES FOR ADVANCED PERFORMANCE

SUPPORT

Performance support is a concept that capitalises on recent advances in many

technological areas such as Artificial Intelligence (Al), Human Computer Interaction

(HCI), Computer-Based Training (CBT), Knowledge Management (KM), and Internet

technology. The technologies that are employed for developing advanced PSSs should

reflect their advanced characteristics. These include two main technologies namely

hypermedia and knowledge-based systems. The former exploits techniques associated

with multimedia presentation, online documentation and Web technology. The latter

exploits techniques associated with expert systems and knowledge modelling.

Integrating hypermedia and knowledge-based technologies provide an important

hybrid technology, namely adaptive hypermedia (AH). AH is utilised in order to

enhance the knowledge delivery process. Moreover, the conceptual model shown in

Figure 2.1 demonstrates that advanced PSSs result from the integration of more than

one technology, with no one technology on its own able comprehensively to provide

20

the required advanced characteristics. This integrated technological solution is

adopted, to a certain extent, in the above mentioned research endeavours, such as

those by Coffey et al. [2003], Pham and Setchi [2003], Brusilovsky et al. [2002] and

[1999], Francisco-Revilla et al. [2000], Pham et al. [2000] and [1999], and Cooper et

al. [1999].

2.3.1 Web-Based Hypermedia

Hypermedia is an interconnected collection of multimedia-based documents. Within

the context of performance support, hypermedia helps in the process of conveying

information to users through hyperlinks which associate information items together,

enabling users to browse the related information on demand (user-controlled

operation). In addition, the activation of a hyperlink is triggered by the user’s desire to

accomplish a task (task-specific and user-controlled operation). Moreover,

information quality and quantity can be controlled by managing the provision o f the

multimedia elements and/or associated hyperlinks. This can be achieved through

personalisation, for example to provide general information to novice users and, in

contrast, more detailed information to experienced users (user-centred operation).

Furthermore, when the multimedia items are blended together in the “right way” they

can dramatically improve the learning process. Thus, hypermedia is a technology that

has a revolutionary effect, greatly influencing the development of technical

documentation [Thomson et al., 2001; Pham et al., 1999; Lee et al., 1997; Reiter et al.,

1995 and Coleman, 1991], CBT systems [Bodendorf et al., 1997 and Langer et al.,

1994], and multimedia presentation systems [Saarela, 1997; and Chung et al., 1996].

Hypermedia is also the natural format for publishing on the Web [Rossi et al., 2001;

21

Raybould, 2000; Ceri et al., 2000, Fraternali, 2000 and 1999; and Thibeau, 1996],

providing an efficient medium for knowledge and information dissemination and

exchange. According to Setchi [2000], the adoption of hypermedia in training and

performance support results in increased retention o f information, reduced learning

time, increased understanding and consistency, and enhanced user performance.

Traditional performance support tools are useful for small organisations or product

vendors that are geographically close to their customers. Organisations with

distributed global operations require global PSSs, providing reliable support to all,

regardless of their location, platform, or limited resources. The ultimate goal of any

organisation is to deliver up-to-date information to the right people, in the right way,

at the right place, and at the right time. Since the creation o f the WWW, this aim has

become more realistically achievable. Geographical distances have become shorter,

knowledge and expertise can be shared more efficiently, and the reliable information

necessary for people to perform their jobs has become easily available [Staab et al.,

2000; Schwabe et al., 1998; Takahashi et al., 1997]. According to Raybould [2000]

“Web-based systems (both Internet and Intranets) are becoming a major focus of

software engineers and human performance technologists”. In addition, this

pioneering technology has reduced the remoteness within the business chain in terms

of vendors, suppliers, distributors, technical supporters, clients, etc. It has also

provided a platform-independent environment, together with increased reliability,

credibility, and content control. Furthermore, Thibeau [1996] outlines the benefits that

the WWW can bring about in organisational performance. These include

improvement of the distribution and updating processes, centralised control over

information, and the reuse of information fragments. In contrast with first generation

hypermedia applications, usually delivered in CD-ROMS, kiosks, etc., Rossi et al.

[2001] argue that “Web-based hypermedia applications are the second generation of

hypermedia applications” and that “good Web applications should be, first of all,

good hypermedia applications”. According to Rossi et al. [2001], the former

applications were not supposed to be updated and, in general, were not critical for any

organisation. However, the latter applications are constantly updated, and

permanently enriched with new services and navigation and interface features,

according to the organisation’s marketing policy.

Web-based hypermedia applications are also distinguished by their mobility, i.e. they

can be interrogated not only using Personal Computers (PCs) or laptops but also using

any Web-enabled device, such as Personal Data Assistants (PDAs), digital televisions

and WAP-enabled mobile phones [Gomez et al., 2001]. This dynamic communication

feature is useful in supporting the user performance because it preserves the mobility

of the operators within their work place. In addition, Web technology is based on the

client-server architecture [Fraternali, 1999], where all data are held in one or more

central repositories (servers) and distributed over a “network” to all users (clients).

This architecture provides centralised control that enables up-to-date information to

be published as soon as it exists. It also enables security and privilege control of who

can see what documents and when. Other features include platform independence and

minimal client-side installation with only a standard Web browser required.

23

2.3.2 Knowledge-Based Systems

On-the-job performance is supported through knowledge-based systems that

encapsulate expert knowledge in a specific domain and make it available to users in

the form of assistance, guidance, training, advice, coaching, etc. A knowledge-based

job performance support tool helps a less experienced worker to perform at the level

of more skilled users by encapsulating this expertise.

Knowledge-based systems intelligently support the performance o f users by providing

task-specific, user-tailored, and expert knowledge-based information. Different types

of knowledge are processed and manipulated by knowledge-based PSSs, including

domain knowledge, user-related knowledge, task-related knowledge, and expert-

related knowledge. In order for this knowledge to be utilised for performance support

it needs to be captured (knowledge acquisition) and then represented {knowledge

representation) within a knowledge engineering process (KE); this is the process of

building intelligent systems [Negnevitsky, 2002].

There is a consensus among researchers that knowledge acquisition is the most

difficult stage in the KE process [Negnevitsky, 2002; Raybould, 2000; Rolston, 1988].

Some o f the knowledge acquisition techniques are reported by Coffey [2003],

including structured interviews, unstructured interviews, and “contrived” techniques

such as decision analysis, and rating/sorting of tasks. The knowledge acquisition

technique adopted in the Performance Support Mapping® methodology [Raybould,

2000], involves talking directly to job performers and subject matter experts about the

work and identifying goals and barriers to performance. Raybould states that “the

24

design process is therefore data-driven according to the work and the performers

rather than suppositions by the design team”. He specifies the rule of three “actuals”,

which includes observing the actual work (not simulated work), observing the actual

job performers (not ex-job performers), and observing the actual work places (not an

interview room). Moreover, Rolston [1988] reports other “conventional” knowledge

acquisition techniques which include conducting surveys, focus groups, and reviewing

case studies.

General-purpose knowledge representation techniques lie on a continuum from

informal (easily understood by humans) to formal (capable o f being evaluated by

machines) [Coffey, 2003; Rolston, 1988]. Knowledge representation techniques may

include formal logic, production rules, Object-Oriented (O-O) models, Unified

Modelling Language (UML) notations, Entity-Relationship (E-R) principles,

ontology, semantic networks, and graphs/maps.

The type o f the knowledge to be represented determines the type o f the knowledge

representation technique to use. For example, in rule-based expert systems, production

rules (IF-THEN) are used for representing the expert-related knowledge in a

knowledge base (KB) [Negnevitsky, 2002, Patel et al, 1996]. Logical domain

knowledge in hypermedia systems may be represented using O-O/UML modelling

[Gomez et al., 2001; Rossi et al., 2001; Segor et al., 2000; Schwabe et al., 1998; and

Saarela et a l, 1997], E-R diagrams [Ceri et. al., 2000; Takahashi et al., 1997; and

Isakowitz et. al., 1995], ontology [Ding et al., 2002; Staab et al., 2000; Studer R. and

Sure Y. 2000], graph theory formal logic [Wang et al., 1998], and semantic networks

[Bonfigli et al., 2000; Langer et al., 1994; and Schnase et al., 1993].

25

Task- and user-related knowledge is used to suggest what and how performance

support information should be presented. Task-based knowledge is represented using

semantically-rich task hierarchies (special types of semantic networks) [Brusilovsky

et al., 2002; Francisco-Revilla et al., 2000; Garlatti et al. 1999; and Vassileva, 1996].

According to Garlatti et al. [1999], task modelling in Web-based adaptive hypermedia

systems can help in determining a view of hyperspace, communicating with the users

to get certain parameters, determining the current goal, and defining the adaptation

method and its parameters. User-related knowledge (user model) is represented using

either overlay models, which are based on the structural model of the subject domain

[De Bra et al., 1998], stereotypes models [Pham and Setchi, 2003], or a combination

of both [Bonfigli et al., 2000]. Normally, in order to put task- and user-related

knowledge into a system these knowledge types need to coexist and be interlinked

with the domain model. For example, in ADAPTS [Brusilovsky, et al., 2002], the

domain, task, and user models are fully integrated. This combination is also evident in

MMA [Francisco-Revilla et al., 2000], which in addition applies a stereotype model

of the current “situation” e.g. emergency, educational, etc.

2.3.3 Adaptive Hypermedia

Adaptive hypermedia systems are defined by Brusilovsky [1996] as “all hypermedia

systems which reflect some features of the user in the user model and apply this

model to adapt various visible aspects of the system to the user”. Adaptive

hypermedia attempts to solve several problems associated with the freedom of

exploration provided by hypermedia, including that of disorientation and cognitive

26

overload. According to Cooper et al. [1999], these problems exist when authors define

a path through hyperspace that may not correspond to what a user needs or wants to

follow. In addition, users are frequently overwhelmed by the quantity of information

they must deal with and, as a result, become lost either in a navigational sense or in

terms of losing sight of their original objectives. Adaptive hypermedia tackles these

problems by enhancing the quality of the delivered information, i.e. delivering

information that is concise, specific, relevant, and easy to understand. This feature is

an essential requirement for providing advanced performance support. Combining

adaptive behaviour with advanced hypermedia functionalities can significantly

enhance the type of support provided to performers.

This review of adaptive hypermedia systems is inspired by the survey conducted by

Brusilovsky [1996], which is one o f the most comprehensive reviews in the field.

According to Brusilovsky, these systems can be useful in any application area where

the system is expected to be used by people with different goals and knowledge and

where the domain space is reasonably large. This includes educational hypermedia,

on-line information systems, help systems, information retrieval hypermedia systems,

institutional information systems, and systems for managing personalised views. In

adaptive hypermedia systems, the content, navigation, and presentation o f information

can be tailored (personalised) to the user’s needs by means of a user model

[Francisco-Revilla et al., 2000; Cooper et al., 1999; De Bra, 1999; and Brusilovsky,

1996]. Brusilovsky [1996] outlines in detail the methods and techniques used in the

content and navigation (link) levels o f adaptation. Content adaptation methods are

identified as additional explanation, prerequisite and comparative explanation,

explanation variant, and sorting content. Content adaptation techniques include

conditional text, stretch text, fragment/page variant, and a frame-based technique.

Navigation adaptation methods are identified as global guidance, local guidance, local

orientation support, global orientation support, and managing personalised views.

Navigation adaptation techniques used include matrix of relevance, personal

relevance network, rule-based technique, tasks hierarchy, conceptual network, case-

based and a neural network technology.

The representation o f the user’s state of mind is called a user model [De Bra, 1999].

The techniques for acquiring user models fall along a continuum from “explicit” to

“implicit” in “adaptable” and “adaptive” systems, respectively [Csinger et al., 1995].

In [De Bra, 1999], hypermedia systems are classified as adaptable or adaptive,

according to their personalisation techniques. In the former systems, the user provides

(explicitly) some profile (through a dialogue) and the system provides a version of the

hypermedia application that corresponds to the selected profile. In contrast, the latter

systems monitor (implicitly) the user’s behaviour (browsing action) and adapt the

presentation accordingly. In his answer to the question “adapting to what?”,

Brusilovsky identified five features related to the current context of the user’s work

and to the user as an individual which can be taken into consideration by an adaptive

system. These are the users’ goals, knowledge, background, hyperspace experience,

and preferences. The first two are the most important features that are used in most of

the adaptive hypermedia systems referenced in this review. These features can be

represented using overlay or stereotype user models or a combination of both. In

addition to these two representation methods, Bonfigli et al. [2000] reports a third

type o f user model namely, the “buggy” model which represents the user’s knowledge

based on the deviations from an expert knowledge, i.e. user misconception.

Furthermore, Francisco-Revilla et al. [2000] argue that there is a drawback in relying,

solely, on a single source o f information, namely a user model. They state that “the

system may require taking into account considerations that are not properly related to

the person using the system, since the same user may present different requirements in

different cases”. They therefore integrated user, task, and situation (e.g. emergency,

educational, etc.) models and used them to create adaptive hypermedia structures by

piecing together different information fragments.

Some adaptive applications have become available that use Web technology. De Bra

[1999] highlights an additional issue specific to adaptive Web-site design, which is

the communication between different adaptive Web-site engines. He states that “when

adaptive Web-sites can exchange information about the same user they can adapt to a

user more quickly and in a better way. Therefore adaptive Web-sites should be able to

exchange (parts of) user models”. He demonstrated this capability in the AHA system

[De Bra et al., 1998]. Furthermore, adaptive Web-sites that improve their organisation

and presentation by learning from visitor access patterns (logs) are reported in [He et

al. 2002; Perkowitz et al., 2000 and 1999; Boley et al., 1999; and Broder et al., 1997].

A common characteristic o f these systems is that they apply data mining techniques to

user access logs, which record the user behaviour at the site, in order to tune the site to

the users’ needs (by clustering documents). Moreover, Bodendorf et al. [1997]

integrate Al methods, such as fuzzy logic and Artificial Neural Networks (ANN),

with multimedia databases and hypermedia to adapt information to a user’s

preferences, motivation, and experiences.

29

2.3.4 Discussion

The main objective of an advanced PSS is to “efficiently” deliver the required

knowledge to task performers. Efficient delivery of knowledge has two main

requirements. First, the delivery process must be quick and easy. The user must have

access to the required knowledge, on the job, when it is needed, with minimal time

and training, and upon request. This requirement is most important when the PSS is

employed in situations where the time factor is critical, for instance, when using a

help system to solve emergencies. Secondly, the delivered knowledge must be task-

specific, relevant, and easily understood by the user. The advanced PSS must

minimise information disorientation and cognitive overload by including only task­

relevant information and discarding irrelevant information. This eliminates confusion

and speeds up the learning process. This section has outlined that efficient knowledge

delivery is achievable through an integrated technological solution which includes

Web-based hypermedia, knowledge-based systems, and adaptive hypermedia.

The integrated technology solution to PSSs is best outlined by Raybould [2000] in his

21st century vision o f building performance-centred Web-based information and

knowledge management systems. He states that “the Human Computer Interaction,

Expert Systems, and Technical Documentation fields have all been moving closer to

those approaches advocated by the performance support community. Technical books

have become interactive electronic manuals, stand-alone expert systems have been

embedded in information systems, and instructor-led training courses have become

Web-based training modules integrated with hyperlinked background reference

information”.

30

2.4 A SOFTWARE ENGINEERING PERSPECTIVE ON THE DESIGN AND

AUTHORING OF DATA-INTENSIVE WEB-BASED HYPERMEDIA

APPLICATIONS

The main component o f any advanced PSS is the technical documentation of the

supported system/product. Technical documentations are, normally, large and

complex applications that involve large amount of data. These types of applications

are referred to as “data-intensive”. The complexity o f these applications is

proportional to the complexity o f the supported system/product. As suggested in

section (2.3.1), Web-based hypermedia is the main technology used for the

development of these applications. Therefore, issues related to the design and

authoring of data-intensive Web-based hypermedia applications are of paramount

importance and directly affect the development of advanced PSSs. This section

discusses these issues from a Software Engineering (SE) perspective.

2.4.1 Authoring: Techniques and Methods

2.4.1.1 Traditional Authoring

According to Csinger et al. [1995], authoring is about the tradition o f collecting,

structuring, and presenting information in the form o f static documents rendered in

some medium or media. The task o f a “traditional” author is to collect a coherent

body of information, structure it in a meaningful and interesting way, and present it in

an appropriate fashion to a set of readers or viewers of the eventual work. Aikat et al.

[1996] points out some o f the generic tasks involved in the authoring process, which

include cross-referencing, building glossaries, chunking information into categories,

indexing, utilising style guides and templates, selecting reader sequences, and using

illustrations and graphical aids. The principal limitation of the traditional authoring

approach is the production of “one-size-fits-aH” static documents. This is symbolised

by the familiar book format, which once printed, cannot be changed. The origin of this

limitation lies in the “static” authoring approach, which commits the author to the

form as well as to the content o f the work, well in advance o f the actual time at which

it is presented.

Recent technological advances in the field of information processing, storage,

presentation, and retrieval have had a great influence on the authoring process.

However, there is a consensus among researchers that powerful and advanced

authoring tools and technologies cannot help to improve the quality o f the content of

documentation unless similar powerful and advanced authoring methods are utilised

[Price, 1997; Thibeau, 1996; and Csinger et al., 1995]. For instance, Csinger et al.

[1995] argue that “we now have fast graphics, powerful reasoning engines and other

technology, but what are we going to do with them?”. Thibeau [1996] discusses

online authoring and states that “the tools available today are very powerful, and over

time they will become even more powerful. However, no technology that is currently

on the market, or that is even on the horizon, will help improve the quality of the

content of these online applications. Unless the information meets reader needs, in the

way reader needs to see it, these tools will never reach their potential”. He even went

as far as arguing that technology can help readers get more information faster, but if it

is not the appropriate information, or if that information is incorrect, the technology

could actually increase an organisation’s error per hour. Moreover, Price [1997]

points out that as the publishing system becomes much more complex, it exhibits

emergent behaviours, and it demands new attitudes, concepts, and work from the

technical communicators.

2.4.1.2 Structured Authoring

The above mentioned problems associated with the traditional static authoring

approach affect the production o f all types of documentation, including not only

printed, but also electronic, hypermedia-based, and online formats. These problems

are tackled through the introduction of new authoring attitudes and guidelines, and

enhanced methods and techniques.

2.4.1.2.1 Structured Authoring Methods

Structured2 authoring methods are controlled by explicitly-defined and abstract data

models, notations, rules, guidelines, etc. Structured authoring supports common

principal guidelines for enhancing the authoring process. These include the need to:

(i) consider the end user (reader) at a very early stage of the authoring process, (ii)

separate authoring activities such as structure, content and presentation, and (iii) break

down the available information into fine-grained pieces o f information (information

elements), which can be easily managed and reused. For instance, Csinger et al.

[1995] present the intent-based authoring method. This method is based on the

2 Unless stated otherwise, the word “structured” is used throughout this thesis to refer to approaches
that are controlled by explicitly defined models, notations, rules, guidelines, etc.

33

explicit identification o f the intent(s) of the author when documents are specified, and

the separation of information and presentation spaces. These spaces are bridged by

various knowledge sources e.g. presentation, media, domain etc., in addition to a user

model that permits user-tailored determination of content at run-time. Thibeau [1996]

presents the structured writing method for online information. This method is based

on an analysis o f people (authors and readers), information, and technology. It also

separates information organisation (structure) from presentation. Price [1997] presents

an Object-Oriented (O-O) method for structuring information for electronic

publication. He utilises ideas from 0 - 0 programming to clarify and revive the

structure of the material in existing documents before publishing them online. Other

research that describes structured methods for the authoring and management of

complex hypermedia applications are found in [Wilkinson et al., 1999; Saarela et al.,

1997; Lee et al., 1997; and Kim et al., 1996].

As far as the performance support domain is concerned, and in particular the technical

documentation branch, the performance-centred authoring method arises as a result of

the need to consider the tasks in hand with an emphasis on getting started quickly.

The main focus o f this authoring method is on tasks and users. This approach

introduces a shift from the conveying o f generalised information to the provision of

specific (performance and task oriented) knowledge. It is reported in [Setchi, 2000]

that the primary goal o f the performance-centred approach is to reduce the “time of

competency” by delivering “just-in-time” knowledge to users at the time they perform

their tasks, i.e. at the right time, in the right place, in the correct amount, and in the

most useful format. According to Raybould [2000], “just making knowledge available

electronically is not sufficient. Only by having a performance centred interface built

on the knowledge base is the knowledge rendered useful to achieving business goals”.

This approach is supported by McGraw [1997] through a task-based and user-aware

interface which forms the foundation o f all other performance support. Graham

[1997] describes a method for designing documentation that relates information to

acceptable user performance in acquiring specific skills and knowledge. The method

involves selecting, organising, and presenting all information using a performance-

based development model which maps the structure of information to user tasks.

2.4.1.2.2 Structured Authoring Techniques

Structured authoring techniques are formal to semi-formal standards that act as a

framework for describing the documentation. For instance, the Standard Generalised

Markup Language (SGML) [ISO, 1986] was developed for describing the structure of

complex documents. According to Pham et al. [2000], structured documentation is

most clearly seen in systems based on SGML, where a DTD (Document Type

Definition) precedes authoring. DTDs specify what document elements are

permissible and in what order they may appear. Based on SGML, simpler and more

Web-oriented standards were also introduced including the popular Hypertext Markup

Language (HTML), and the extensible Markup Language (XML) [W3C, 2000]. The

latter is a set of rules for defining semantic tags that break a document into parts and

identify the different parts of the document. Harold [1999] identifies three main

features of XML: (i) it is a meta-markup language that defines a syntax used to define

other domain-specific, semantic structured markup languages (e.g. MusicML,

MathML, ChemicalML, etc.) (ii) its tags can be documented in a DTD (iii) it

describes structure and semantics, but not formatting, which can be added to a

document using a stylesheet (e.g. CSS, XSL, etc). XML is useful for designing a

domain-specific markup language, for self-describing data, for interchange of data

among applications, and for large, complex, structured, and integrated data.

Virtual documentation is another structured authoring technique. Virtual documents

are hypermedia documents for which the content of pages (nodes), including links, are

created on-the-fly, as needed, and upon demand. This technique is mostly used for

online (Web-based) authoring. According to Milosavljevic, [1999], there already exist

several kinds o f virtual documents on the Web for which the content is determined

dynamically. First, a template can be used for which node contents are substituted at

runtime. Second, applications can be used to generate values for one time use. Third,

CGI scripts and search engines can be used to compose virtual documents from

fragments o f other documents for the user on demand. Fourth, metadata can be

generated for summarization, where the extraction and summarization is done on the

fly for the user. Finally, natural language generation techniques can be employed to

dynamically construct virtual documents from underlying data contained in data or

knowledge bases.

2.4.2 Systematic Development of Data-Intensive Web-Based Hypermedia

Applications

2.4.2.1 Static Hypermedia Authoring

Hypermedia authoring is concerned with the authoring tasks o f collecting, structuring,

and presenting information, with an emphasis on creating nodes and relationships, or

36

in hypermedia terms pages and hyperlinks. Furthermore, different types of multimedia

data elements have to be collected, edited, classified and structured to form the

hypermedia network. The traditional static hypermedia authoring approach involves

inserting hyperlinks within the documents, which refer to other documents by means

of Universal Resource Locators (URLs). This simple hypermedia architecture makes

it extremely easy to develop simple and small-size applications. However, as the

application grows in size, with large numbers of documents and hyperlinks, i.e. it

becomes data-intensive, it can become disturbingly unmanageable and authoring

becomes a very complicated process, especially in a multi-author environment. In

addition to the limitations associated with the static authoring approach (see 2.4.1.1),

traditional hypermedia authoring has its own specific shortcomings. Kappe [1999]

outlines these shortcomings, which he identifies as due to its “static structure”. These

include user disorientation (lost in hyperspace syndrome), broken links which occurs

when deleting a document without deleting its links from other documents, and

orphan documents which occur when the last link pointing to a document is removed,

and hence it becomes unreachable.

2.4.2.2 Problems Associated with Development of Data-intensive Web-Based

Applications

There is a consensus among researchers that there is a weakness in the current

methodologies that support the development of Web-based applications, especially

those for large and complex data-intensive applications [Brusilovsky et al, 2002;

Gomez et al, 2001; Rossi et al., 2001; Segor et al., 2000; Fraternali, 1999; Coda et al,

1998; and Thibeau, 1996]. In contrast, there is no consensus on a general design

37

process model for Web-based applications. Currently, most Web developers manually

generate low-level implementations o f language-dependent files or use commercially

available tools to produce them [Fraternali 1999]. This approach focuses on the

physical Web pages (documents) in terms of their content, relationship to other pages,

and graphical presentation. It is also an implementation-oriented technique with little

or no attention to a formal requirements specification or to a design process [Segor et

al., 2000]. Moreover, the use o f such mechanisms is not guided by a systematic

methodology3 that provides the developer with a higher-level view of the document

structure and a well-defined development process supported by suitable tools [Coda et

al., 1998]. Therefore, management tasks such as enforcing integrity constraints,

updating, and restructuring o f Web-based documents are tedious to perform. In

addition, it is difficult to reuse previously developed artefacts [Wang et al., 1998].

These burdens are magnified, more critical, and more difficult to implement within

data-intensive applications, containing large amounts of data.

2.4.2.3 Why a Systematic Development Approach?

According to Fraternali [2000], Fernandiz et al. [2000] and [1999], and Coda et al.

[1998], it is important to adopt a systematic development approach with explicitly

declared concepts and design models when developing and, then, maintaining data-

intensive Web applications. A systematic development approach would:

• Enable the testing and verification of the application at a very early stage in the

development process, as early as the design stage.

3 Systematic methodology: a methodology that has a well defined process and uses structured design
methods with explicitly declared concepts, and models.

38

• Enable the enforcement of integrity constraints, which insure that the resulting

application satisfies a set of desired properties and business rules. Fernandiz et al.

[2000] state that “it is essential to be able to verify constraints against the

application’s definition, and not against a particular instance of the application”.

• Facilitate the creation o f multiple versions or views o f the system from the same

data set. This feature contributes strongly to the adaptive knowledge delivery

feature associated with advanced PSSs.

• Decrease the complexity, effort, and time to re-structure the application.

• Enable the automatic generation o f the application’s code because formal and

well-formed models are easily translated into code.

• Facilitate the reuse o f previously developed artefacts and simplify the

management of the application.

To help understand the current state o f practice in Web-based development, Fraternali

[1999] grouped tools for Web-based development into six categories: (1) visual

editors and site managers, (2) Web-enabled hypermedia authoring tools, (3)Web-

DBPL (database programming language) integrators, (4) Web form editors, report

writers, and database publishing wizards, (5) multi-paradigm tools, and (6) model-

driven application generators. According to him, the order of presentation of these

different categories reflects the increasing level of support that tools in each category

offer to the systematic development approach for Web applications. It is within the

last category of tools (model-driven application generators) that software engineering

principles are truly applied to Web-based development.

39

2.4.2.4 Software Engineering in Support of a Systematic Development Approach

Online technologies such as the WWW have dramatically changed the way

information is presented and used, so much so, that we also need to have new theories

and models for understanding how technology and content are related in this new

communication environment. In pursuit of a software engineering approach to Web

development, Coda et al. [1998] state that “An approach similar to software

engineering approach has to be followed in order to bring WWW development out of

its immaturity. The problem o f WWW site development must be tackled by providing

methodological and technological support for each phase o f the development

process”.

2.4.2.4.1 The Software Engineering Process

Software Engineering (SE) is an engineering discipline that is concerned with all

aspects of software production. It is defined in [IEEE, 1990] as the application of a

systematic, disciplined, quantifiable approach to the development, operation and

maintenance o f software; that is, the application of engineering to software. This

systematic approach is supported by a rigorous software process, SE methods, and

(often) a set of Computer-Aided Software Engineering (CASE) tools. According to

Sommerville [2001], the software process is a set of activities whose goal is the

development o f software. SE methods are structured approaches to software

development, which include systems models, notations, rules, design advice, and

guidance. These methods are normally supported by a set of CASE tools that provide

automated support for software process activities.

There are many abstract models for the software process, which include the waterfall

model, the evolutionary development model, the formal transformation development

model, and the reuse-based development model [Sommerville, 2001]. Furthermore,

hybrid models such as the incremental and the spiral models have evolved, through

the need to use different approaches for different parts of the system and to support

process iteration where parts o f the process are repeated as system requirements

evolve. This list is not an exhaustive list and some organisations have even developed

their own tailored and ad hoc models. Even within the same organisation, different

software processes can be employed. However, there are fundamental activities,

which are common in most process models, including software specification, design,

implementation, and validation. From these models, the “waterfall” model was chosen

to clarify the SE process because it partitions the software development process into a

set of distinctive stages, and identifies the process activities in an explicit manner.

Figure 2.2(a) outlines a generic “waterfall” model for the software development

process [Sommerville, 2001].

2.4.2.4.2 Software Process for Web-Based Information Systems

Web-based information systems are the new generation of information systems that

have emerged in response to the advances in Internet technology. They can be

described as a hybrid between a hypermedia system and an information system. Their

development relies on the adaptation of techniques originated in the SE [Sommerville,

41

Operation and
Maintenance

Integration and System
Testing

Implementation and Unit
Testing

Requirements Definition

System and Software
Design

(a) The Waterfall Model for the Software Development Process [Sommerville, 2001]

Prototyping and
Verification

Maintenance and
Evolution

Implementation

ConceptualisationRequirement Analysis

Design:
Structure
Navigation
Presentation

(b) The Lifecycle o f a Web Application [Fraternali, 1999]

Figure 2.2 Software Process and Web-Based Development

42

2001], structured hypermedia [Ceri et al., 2000; Kemp et al., 1999; Schwabe et al.,

1998; Isakowitz et al., 1995; Halasz et al., 1994; and Garzotto et al., 1993], and

database [Oxborrow, 1989] disciplines. These techniques are blended into a

development methodology and supporting environment. The development of Web-

based applications benefits from the advantages provided by these disciplines. For

instance, SE provides a firm and systematic development approach, structured

hypermedia design provides powerful modelling methods, and database technology

provides architectural solidity for structured data. However, it is o f utmost importance

to take into consideration the unique requirements and characteristics of Web-based

applications.

The utilisation o f well-tested SE methods when developing Web-based applications

enables the inheritance of all the advantages, experience, and knowledge associated

with this well-established engineering discipline. In [Fraternali et al., 2000] it is stated

that “the development of Web applications needs to be organised into a well-defined

process, amenable to the benefits o f software engineering”. These methods must

consider the specificity o f hypermedia as an authoring tool and the Web as a novel

communication medium [Rossi et al., 2001 and 1995; Segor et al., 2000; Fraternali,

2000 and 1999; and Coda et al., 1998].

In contrast with the applications o f traditional information systems, Web-based

applications have a more diverse, less structured, and more heterogeneous information

space. They also have more emphasis on navigation paths and on information access

in an exploratory manner rather than through “canned” interfaces. These applications

43

are used by a large variety o f end-users in terms of their experience and background

knowledge and they typically use high quality graphics to support their presentation.

Fraternali [1999] presents a generic process model for the development of Web-based

applications that is based on SE principles. The Web application life cycle, which is

shown in Figure 2.2(b) is organised into six main stages. These are requirement

analysis, conceptualisation, prototyping and verification, design, implementation, and

maintenance and evolution. By comparing the two approaches depicted in Figures 2.3

(a) and (b), it can be deduced that the latter is a specialisation of the former with

added emphasis on conceptual modelling, and Web-based and hypermedia-specific

design parameters such as navigation. In addition, this model clearly adopts the

separation of design activities (structure, navigation, and presentation), which is one

of the main principles of structured authoring (see 2.4.1.2.1).

The domain conceptualisation in Web-based applications focuses on capturing

abstract objects and relationships as they will appear to users, rather than as they will

be represented within the software system. These abstract objects and relationships

are abstracted using different modelling schemas such as E-R diagrams [Ceri et al.,

2000; Fraternali et al., 2000; and Isakowitz et al., 1995], 0 - 0 models [Schwabe et al.,

1998 and Rossi et al., 1995], UML class diagrams [Gomez et al., 2001; Rossi et al.,

2001; and Segor et al., 2000]. Structure, navigation, and presentation designs are

sequentially executed within the design stage. The structure design is concerned with

constructing the system’s backbone by identifying the information objects that

constitute each page and the hierarchical organisation o f these pages [Price, 1997; and

Langer et al., 1994]. The navigation design is concerned with the access methods for

pages and the linkage criteria, i.e. the contextual and non-contextual relationships

between pages and the way they interact with each other [Rossi et al., 2001 and

Fraternali et al., 2000]. The presentation design is the visual specification of the

application’s interface, which determines its appearance to the users [Rossi et al.,

1995].

A very similar SE approach to development of Web-based applications was suggested

by Coda et al. [1998]. They proposed to break down the development process into a

number of phases, namely requirements analysis and specification, design, and

implementation. After the application has been implemented and delivered its

structure and content are maintained and evolved.

2.4.3 Structured Hypermedia Design

The development of data-intensive Web-based hypermedia applications is usually a

collaborative process involving team members with different expertise, knowledge,

skill(s), aims, and backgrounds. The development team may consist of domain

experts, content managers, system analysts, programmers, authors, hypermedia

editors, style architects, graphics designers, Web administrators, and others. This list

is not necessarily exhaustive nor does it imply that all these roles will require separate

individuals. Due to this team effort, it is vital to acquire a common communication

language between team members, which maps their understanding into a uniform

model [Ding et al., 2002; Klusch, 2001; and Levy and Weld, 2000]. Therefore in

addition to the reasons mentioned in 2.4.2.2, it is essential to adopt a structured design

45

approach, i.e. explicit and declarative models, and to use high-level and

implementation language-independent primitives for the description of these models.

In their attempt to classify and categorise hypermedia design methodologies, Kemp et

al. [1999], state that “there appear to have been no efforts as yet to develop any kind

of comparative framework specifically for the study of hypermedia design

methodologies”. They also state that “the task of comparison between hypermedia

design methodologies is fraught with difficulties”. In addition, they argue that whether

one considers hypermedia system design in terms of methodologies or in terms of

authoring strategies says much about one’s preconceptions about the design process

i.e. do we write hypermedia or do we design it? A more recent survey o f hypermedia

design methodologies can be found in [Suh et al., 2001].

In order to establish an up-to-date insight into structured hypermedia design, a review

of the related research has been conducted. This includes endeavours related to:

- General hypertext reference models: [De Bra, 1999; Garzotto et al., 1995; Halasz

et al., 1994; and Schnase et al., 1993],

- Structured documentation: [Pham and Setchi, 2001; Pham et al., 2000; Tucker et

al., 1997; and Price, 1997],

- Hypermedia design methodologies: [Suh et al., 2001; Ceri et al., 2000; Schwabe

et al., 1998; Coda et al., 1998; and Isakowitz et al, 1995],

- General-purpose structured hypermedia systems: [Rossi et al., 2001 and 1995;

Segor et al., 2000; Fraternali et al. 2000; Staab et al., 2000; Takahashi et al., 1997,

and Langer et al., 1994],

46

- Hypermedia authoring tools: [Fernandez et al., 2000 and 1999; and Kappe,

1999],

- Modelling languages and notations: [Ceri et al., 2000 and Wang et al., 1998].

It is important to note that the boundaries between these research areas are not clear

cut, but rather overlap. For example, the work introduced in [Isakowitz et al, 1995]

can be considered as a reference model and as a design methodology, while the work

introduced in [Ceri et al., 2000] can be considered as a design methodology and as a

modelling language.

At this stage, it is important to differentiate a hypermedia system from a hypermedia

application, and accordingly to differentiate their design methodologies. According to

Isakowitz et al. [1995], the former is an environment that facilitates the creation of the

latter. They state that “a data model for a hypermedia system details its internal

architecture but is o f little value in modelling hypermedia applications. This is

because describing the layout of a general purpose engine is quite different from

modelling an application domain”.

2.4.3.1 Reference Models for Hypermedia Systems

The Dexter hypertext reference model [Halasz et al., 1994] is an early attempt to

provide a principled basis for comparing hypermedia systems as well as for

developing interchange and interoperability standards. The model is divided into three

layers namely the storage layer, which describes the network of nodes and links, the

run-time layer, which describes mechanisms supporting the user’s interaction with

the hypertext, and the with-in component layer, which covers the content and

47

structures within the hypermedia nodes. The AH AM reference model [De Bra, 1999]

is an extended version o f this generic reference model which accommodates the

fundamental principles in adaptive hypermedia. The MUCH (Many Using and

Creating Hypermedia) and the RICH (Reusable Intelligent Collaborative Hypermedia)

systems by Wang et al. [1998 and 1995] are also based on the dexter hypertext model

and treat the storage layer as a semantic network. Although it can be used in the

design of hypermedia applications, the Hypertext Design Model (HDM) by Garzotto

et al., [1995], is another hypertext reference model characterised by the adaptation of

techniques used in SE and database design. A less used reference model is the HB1

[Schnase et al., 1993], which is referred to as a Hyperbase Management System

(HBMS).

2.4.3.2 A Review of Structured Design Methods for Hypermedia Applications

This review o f structured design methods for hypermedia applications included the

following exclusive list o f methods:

■ Object-Oriented Hypermedia Design Method (OOHDM) [Schwabe et al., 1998].

■ Relationship Management Methodology (RMM) [Isakowitz et al., 1995].

■ HDM extended methodology HDM-Lite [Fraternali et al., 2000].

■ Web Modelling Language WebML [Ceri et al., 2000].

A comparison between these methodologies is outlined in Table 2.2, which gives the

primary modelling approaches, the design phases, and a brief description of these

methodologies. Furthermore, in a recent survey, Suh et al. [2001] identify more

hypermedia design methodologies, which in addition to the ones mentioned above

48

Table 2.2 Comparison - Structured Hypermedia Design Methodologies

OOHDM RMM HDM-Lite WebML

Primary Modelling
Approach

0 -0 E-R E-R E-R

Design Phases ■ Conceptual design
■ Navigational design
■ Abstract Interface

design

■ E-R design
■ Slice (Entity) design
■ Navigation design
■ Conversion Protocol

design
■ User Interface design
■ Run-time design
■ Construction design

■ Structure design
■ Navigation design
■ Presentation design

■ Data design
■ Hypertext design

- in-the-large
- in-the-small

■ Presentation design
■ User and Group design
■ Customisation design

Brief Description Based on HDM.
Describes a four-step
process towards building
hypermedia applications,
beginning with domain
analysis and proceeding
through navigational
design and abstract
interface design to final
implementation.

Based on data modelling
techniques, specifically
E-R modelling. This
methodology is most
suited to applications that
have a regular structure,
especially where there is
a frequent need to update
the information to keep
the system current.

Includes a notation for
specifying presentation at
a conceptual level, which
coupled to primitives for
describing structure and
navigation. It covers all
aspects of a Web
application and enables
automatic
implementation.

Includes a notation for
specifying complex Web
sites at the conceptual
level. It enables the high
level description of Web-
based hypermedia under
distinct orthogonal
dimensions namely data
content, the pages that
compose it, the topology
of links between pages,
the layout and graphic
requirements for page
rendering, and the
adaptive features of
content delivery.

49

include Scenario-Based Object Oriented Design Methodology SOHDM, Enhanced

Object-Relationship Model EORM, Workflow-Based Hypermedia Development

Methodology WHDM, and Index-Driven Hypermedia Design Methodology IHDM.

They categorise hypermedia applications, with regard to their purpose, into two types:

(i) process-oriented applications for supporting organisational processes, and (ii)

content-oriented applications focusing on information services. Accordingly,

hypermedia design methodologies can be classified into a task-driven approach

(SOHDM, EORM, and WHDM) and a content-driven approach (OOHDM, RMM,

HDM-Lite, WebML, and IHDM). The primary objective of the former approach is to

support organisational tasks, i.e. tasks are defined first and then the content required

for them is tackled. In contrast, the main objective of the latter approach is organising

hypermedia information in a manner to satisfy the users’ cognitive demands.

It can be noticed that these design methods attempt to achieve a set of common

objectives. These objectives are within the founding principles of SE as outlined by

Coda et al. [1998], which include:

- Rigor and formality to provide a clear definition of the entities involved in the

design process, their relationships, and associated semantics;

- Clear separation o f concern within the hypermedia document components,

namely into content, structure, navigation, and presentation. In adaptive

hypermedia, this principle is extended to include the separation o f adaptation

issues from other document components;

- Modularity to divide a complex system, using construct and abstractions, into

smaller and simpler components, which can then be easily used and reused;

50

- Abstraction away from low level, unimportant details, identifying important

concepts and relationships;

- Anticipation o f change which provides for the application’s maintenance and

evolution, and

- Generality through mechanisms that support the development of implementation

constructs and allow the developer to create ad hoc constructs and to customise

the existing ones.

These principles were, to a certain extent, taken into consideration, either explicitly or

implicitly, and implemented in all the reviewed research endeavours. These design

methods were described as structured mainly because they satisfy and adhere to the

principles of software engineering.

Finally, this review of methodologies aimed to identify some o f the “well-known”

approaches to structured hypermedia design. The review is not intended exhaustive,

however, many other methodologies are available for generic or special-purpose use.

2.5 SUMMARY

In pursuit of the “optimal” PSS, the objectives, forms, and characteristics of

traditional paper-based and electronic PSSs have been investigated. In addition, a

review o f the state o f practice in recently developed PSSs has been conducted. As a

result, a conceptual model for advanced PSSs has been synthesised. Furthermore, the

state-of-the-art technologies that can be utilised to achieve this advanced performance

support concept have been discussed. Particular attention has been devoted to the

51

integration of these technologies in order to provide the advanced characteristics

required for these “optimal” PSSs.

Web-based hypermedia has been suggested as the main technology for the

development of technical documentation applications which are the core of any

advanced PS S. These applications are normally characterised as data-intensive,

therefore, issues related to the design and authoring of data-intensive Web-based

hypermedia applications from a SE perspective have been discussed. The chapter has

reviewed traditional and structured approaches to authoring, highlighting the

limitations o f the former approach and the benefits of the latter approach. In

particular, research that supports a systematic development approach to Web-based

development has been presented. This systematic approach has a well defined

development process which uses explicitly declared concepts and models. It utilises

techniques that originated in the SE, structured hypermedia, and databases disciplines.

Structured hypermedia design, which is considered to be pivotal for systematic

development approaches, has also been reviewed in terms of its reference models and

design methods.

52

CHAPTER 3

USAGE-BASED DATA MODEL FOR THE DESIGN OF

TECHNICAL DOCUMENTATION

This chapter presents a usage-based data model for the design of technical

documentation. First, a semantic data model for designing technical documentation is

proposed based on an abstract usage analysis of technical information. This analysis is

aimed at abstracting the intended purpose of the documentation, the tasks supported

by the documentation, and the functional characteristics o f documents. Next, these

abstractions are integrated into a usage-based semantic network and a set of rules and

constraints, which are then mapped into a database schema. Finally, a case study is

conducted using a product-related technical manual in order to demonstrate the

validity o f this design approach.

3.1 MODELLING KNOWLEDGE WITHIN TECHNICAL

DOCUMENTATION

The main objective o f domain data modelling is to transform aspects o f the real world

into a formal data model and to provide a commonly agreed framework for the

domain, which can be reused and shared between authors, developers, tools, and

applications. If the information requirements of an organisation are to be satisfied, it is

essential that the data model adequately reflect reality. Reality is described in

53

[Oxborrow, 1989] as effectively boundless and with no horizon, so that only

perceived reality can be modelled and hence bounded.

In the technical documentation domain, authors need to organise and classify the

domain data in a way that closely links them with their future use. It is essential to

identify the knowledge or skill that the user intends to acquire by accessing a specific

document at a very early stage in the technical documentation development process.

This rapid identification enables the delivery of the exact required information to

users to enhance their knowledge about a certain domain related topic. Data modelling

involves shaping the facts collected during the data analysis process into data model

concepts. The basic facts, plus some constraints and rules, are o f primary importance

at this stage.

3.1.1 Usage-Based Analysis of Technical Information

Information has embedded structures, and these structures vary based on the intended

use of information. It is important for the author to categorise the information

fragments used in the documentation into abstract types and sub-types that reflect

their subsequent usage [Pham et al., 2003]. Technically-oriented documentation can

be analysed with regard to its usage from three different perspectives: (i) the intended

purpose of the documentation, (ii) the tasks supported by the documentation, and (iii)

the functional characteristics of documents.

54

3.1.1.1 Purpose of Technical Documentation

Technical documents can be categorised with regard to the context in which people

will use their information and the intended content of these documents i.e. their

purpose of existence. A set of high level and abstract categories are realised by

conducting a purpose-driven analysis o f information within technical documentation.

For instance, Thibeau [1996] introduces two alternative methods for categorising

technical information with regard to their usage:

• Action versus Knowledge: Action information describes the set of skill-related

information, which tells the user what to do. On the other hand, Knowledge

information describes the set of information that assists the user in performing

actions,

• Main versus Support: Main information describes the set of primary, required, and

“must know” information. On the other hand, Support information describes the

set o f the supplementary and “no harm in knowing” information.

The former categorisation is more suitable for instructional-centred documentation.

Identifying and distinguishing between action- and knowledge-based documents

requires considerable knowledge o f the content of these documents. On the other

hand, the latter categorisation requires an early understanding o f the needs of the users

in order to identify and distinguish between “main” and “support” documents.

Moreover, Pham et al. [2000] identify the types of information contained in technical

documentation and in technical manuals in particular, as action, support, and

planning.

55

Accordingly, Figure 3.1 presents an abstract classification paradigm for technical

documents according to their purpose. The figure outlines two main categories, which

include:

- Action: this is skill-related information that assists a person in doing something

with or to the system/product. Documents of this type are concerned with

answering questions about the supported system/product such as how to use it,

how to prepare it for use, how to keep it working, how to change it, how to

dispose of it, etc.

- Knowledge: this category can be further classified into two abstract sub­

categories: (i) support which is supplementary information that principally exists

to assist in answering questions related to enhancing knowledge about the

system/product, such as how it works, what it consists of, etc. (ii) planning which

is fundamental information that principally exists to assist in answering questions

related to the management o f the system/product, such as what is it for, and what

is done when, etc.

3.1.1.2 Tasks Supported by Technical Documentation

From a performance support perspective, the main objective o f technical

documentation is to support users to accomplish their work tasks. These tasks can be

abstracted and categorised at the design stage. The categorisation of the tasks

supported by the technical documentation enables the association o f every document

with a specific task. In this way the type of the task being later performed by the user

is able directly to influence the delivery of documents that will support his/her

56

Purpose of Technical
Documents

6—

Action
—^

— — 1
Knowledge

Planning Support

Figure 3.1 Classifications o f Technical Documents According to their Purpose

57

performance, i.e. enabling performance-based information retrieval. It is important to

design the technical documentation in a way that relates information to acceptable

user performance in acquiring specific skill and knowledge.

The tasks that users need to accomplish reflect their objective(s) of accessing the

technical documentation i.e. their cognitive demands. In general, these objectives

belong to one of two abstract types: learn or perform. Learning tasks are described by

static information about the system/product. In contrast, performing tasks are

described by information that illustrates some dynamic system/product-related action.

These two abstract task types can be further broken down into more specific and

“primitive” tasks. Despite their variety and diversity, the identification of these

primitive tasks depends on the objective that they will convey and the application

domain. The domain expert can identify a list of primitive tasks by considering the

principal distinctive features o f the system/product and its supported data. A sizeable

list of primitive tasks is available for domain experts to choose from, for instance,

introduce, plan, assess, launch, handle, check, assemble, etc. For example, the first

three primitive tasks are o f type “learn” while the remainder are of type “perform”.

Figure 3.2 outlines an example set of primitive tasks and their abstract types. An

exhaustive list of primitive tasks can be finally obtained depending on the application

domain. For example, Graham [1997] identified a large list o f primitive tasks for

operation and maintenance that included, operate, configure, describe, monitor, test,

order, plan, replace, bill, and install.

58

Supported
Tasks

Learn Perform

AssembleIntroduce Plan Assess Launch Handle Check
. . . .etc.etc.

Figure 3.2 Primitive Tasks and Abstract Task Types

59

The strength of task modelling can be observed when integrated with the information

purpose model, described earlier. As it will be described later, these two abstractions

provide a firm framework to model the application domain information.

3.1.1.3 Functional Characteristics of Technical Documents

In general, the word “function” is defined in [Oxford Dictionary, 1998] as a “proper

or necessary role, official or professional duty”. Every individual document, which

contributes to a domain topic, has a functional characteristic that reflects its proper

role in describing this concept, and the exact type of knowledge conveyed when

invoked by the user. Functional characteristics of documents are used to optimise the

delivery o f knowledge by enabling advanced retrieval o f information through the

adaptation o f information content and presentation to pre-determined users’

knowledge and preferences, and hence, enhancing the user’s job performance.

Characterising documents according to their function was employed in [Pham and

Setchi, 2003] and [Thibeau, 1996]. They identified a list of functions, which includes

procedure, process, structure, concept, principle, fact, definition, description, example,

explanation, comment, requirement, recommendation, reason, and classification.

Other functional characteristics of information elements may also be identified such

as specification, clarification, advice, etc. It is suggested that these functions can be

abstracted into six main categories based on the similarity o f the knowledge that they

convey and their usage, namely, Fundamental (Fund), Clarification (Cla), Procedure

(Proc), Advice (Adv), Specification (Spec), and Organisation (Org).

60

Definitions, facts, principles, and concepts usually state essential, fundamental or

generic knowledge. Procedures and processes are utilised when a continuous or

discrete series of events takes place. Examples, comments, and illustrations are used

for clarification. Recommendations, requirements, warnings, and cautions provide

advice, commands and explain motives. Descriptions and explanations are used for

conveying deep knowledge and additional detailed specification. Finally, structures

and classifications are employed to describe a particular type o f organisation. Table

3.1 outlines the functional characteristics of documents and their abstract types. This

list of functions is not definitive or exhaustive and many others may be added to the

list while others may be omitted from the list by the domain expert. In addition, some

functions can be placed into a separate category in order to highlight their importance

in illustrating the system/product information, while others can be incorporated within

other existing categories.

3.1.2 Semantic Data Model for Representing Knowledge in Technical

Documentation

3.1.2.1 Knowledge Representation Using Semantic Networks

A semantic network is defined in [Rolston, 1988] as a graphical representation of

relations between elements in a domain. The basic components o f a semantic network

are nodes and links. Nodes are used to represent domain elements and are labelled

with the element’s name. Links (or arcs) represent relations between elements and are

labelled with the name o f the represented relation. Wang et al. [1998] percieve

61

Table 3.1 Functional Characteristics of Documents and Their Abstract Types

Abstract Type Functional Characteristic

F undamental(F und) Definition Fact Principle Concept

Procedure(Proc) Series o f Events Process

Clarification(Cla) Example Comment Illustration

Advice(Adv) Recommendation Requirement Warning Caution

Specification(Spec) Description Explanation

Organisation(Org) Structure Classification

62

semantic networks as directed graphs in which concepts are represented as nodes and

relations between concepts are represented as links. The graph becomes semantic

when each node and link is assigned a meaning. They also identified the benefits of

using semantic networks in information management as to provide consistent

categories of all concepts represented in the domain, and to provide a set of useful

relations between these categories of concepts.

Perhaps the most important feature of semantic models is their ability to construct

complex element types from atomic types. The two most common types o f abstract

relationships in semantic networks are generalisation (is_a) and aggregation

(part of). As described in [Ter Bekke, 1992], generalisation is the recognition of

similar properties o f various types and combining these in a new property; this is

sometimes referred to as an “inheritance link”. Aggregation is a collection of a certain

number of properties in a type, which itself can be regarded as a new property.

Many researchers [Staab et. al., 2000; Wang et. al., 1998; and Schnase et. al., 1993]

have highlighted the benefits o f using semantic networks in modelling hypermedia

systems in particular. They argue that the logical model o f hypermedia is largely that

of a semantic network and that hypermedia systems, with their node/link metaphor,

naturally coincide with semantic networks. Typed links carry some semantic

information, which provide potential for a system to manage data more efficiently on

behalf of the user of the system.

63

3.1.2.2 Usage-Based Semantic Network for Technical Documentation

A deterministic factor in information retrieval is the user’s main request or pursuit.

Activity is defined in [Oxford Dictionary, 1998] as “an occupation or pursuit”. Within

the context of technical documentation, user activities are the user’s general motive

for accessing a particular topic or piece of information. Thus, the system’s supported

activities should match with the pursuit of the users.

Normally, when a user refers to the technical documentation, s/he has in mind an

informational purpose, and an associated task to accomplish. The abstract activities

supported by the documentation can be identified by logically integrating the

supported tasks and the information purpose categories. Recall that abstract task

categories are “learn” and “perform”, and abstract information purpose categories are

“planning”, “support”, and “action”. Planning and support information is associated

with knowledge acquisition i.e. learning, while action information is associated with

skill and performance enhancement. The activities supported by the documentation

can be classified using different abstract views, which depend on the knowledge that

they provide. High-level and abstract user activities are identified as:

> Learn planning information.

> Learn support information.

> Perform action.

The semantic network shown in Figure 3.3 is based on the usage analysis of domain

information described earlier. The network uses high-level primitives in its

description. These primitives include information purpose, task, activity, function,

64

Information
Purpose

is_part_of

Action

has a

Activity

r ^ \is_partof
Domain
Topic

is_part_of

Information

6 ^ = Grouping
Element

T ask

(- -) (S -NV J V(P erform)

is part of

involves a

has a

has a

Figure 3.3 Usage-Based Semantic Network for Technical Documentation

65

domain topic, and information element. The semantic network is supported by the

following hypotheses:

♦ Every activity has an informational purpose and involves a task.

♦ A domain topic is an abstract entity, which has an organisational function. It acts as

a data structure, which organises information elements. Every domain topic is

associated with a user activity, and it inherits the activity’s informational purpose

and the associated task. In addition, a domain topic can be aggregated from one or

more topics and/or information elements.

♦ Information elements (documents) are discrete pieces o f information that describe

or contribute to the description o f a domain topic. The aggregation o f one or more

information elements creates a domain topic. Within a domain topic, every

information element has a function to perform, which describes its role.

Information elements are reusable i.e. the same information element can perform

different functions or roles within different topics.

The grouping constructor represented by the © symbol is used to represent entities of

the same category. It may be noticed that the activity entity performs a central role

within the model. It integrates the information purpose and the system-supported tasks

and associate them with their corresponding domain topics and vice versa. The

entities “domain topics” and “information elements” will be fully described in the

hypermedia authoring process (Chapter 4). At this stage, it is sufficient to know that

they are abstract entities performing distinct functions. The former has a unique

organisational role, i.e. its function can only be o f type “organisation”. The latter can

perform any of the other types o f function depending on its role within the illustrated

66

topic. In the next section, it will be seen how easily this semantic network can be

represented by means o f a relational database schema.

A number of semantically related rules and constraints can be applied to the

relationships of the semantic data model. These rules govern the validity and

applicability o f some types of relationships. For example, a task of type “perform” can

only be associated with “action” type information within a certain activity. This

relationship results in a “perform action” activity which is described using a hierarchy

of documents. These documents are themselves described using information

fragments o f function type “procedure” or can be further illustrated using a

“clarification” or “advice” type fragments. Similarly, a task of type “learn” can be

associated with “planning” or “support” type o f information within a certain activity.

The former relationship results in a “learn planning” activity, and the latter results in a

“learn support” activity. A “learn planning” activity is illustrated using “fundamental”

type o f information fragments, and a “learn support” activity is illustrated using

“specification” type o f information fragments. Both activities are further illustrated

using “clarification” or “advice” types of fragments. Figure 3.4 illustrates these

semantic constraints and rules. The full benefits of these rules and constraints can be

appreciated at the structure building phase of the hypermedia authoring process,

where a special tool is developed to apply these rules and to guide the author towards

constructing a semantically valid and credible hypermedia-based technical

documentation structure.

67

functionjoffunctionjofis jp a r to f

is_part_of

function_of

is_part_of

functionjof functionjofis_part_of

is_partof

functionjofis_part_of

is_part_of

functionjof fu nction ofis_part_of

is_part_of

is_part_of functionjof

is_part_of

Proc

AdvLearn

Cla

Cla

Org

SpecOrg

Adv

Org

Cla

Adv

Support

Action

Planning Fund

Learn

Perform

Information ElementDomain Topic

Domain Topic

Information Element

Perform Action

Information Element

Domain TopicLearn Planning

Learn Support

Figure 3.4 Semantic Rules and Valid Relationships

68

3.1.3 Mapping from the Semantic Data Model to a Database Schema

Support for rich semantics will transform data management into knowledge

management and databases into knowledge bases. The mapping of the semantic

network into a database schema results in a domain-independent knowledge base that

can preserve data semantics and constraints. This knowledge base can then be

processed by the author(s) of the technical documentation. The entities abstracted in

the semantic data model represent “data about data” and are often referred to as

metadata. They provide important semantic knowledge about the data that will be

processed at a later stage. The metadata will be used not only during the design of the

technical documentation, but also all the way through the system’s development

process which include, authoring, documents generation, and maintenance.

An important feature of semantic networks is their natural ability to be converted into

database schemas. Indeed, they were initially introduced in the early 1970s to

facilitate the design o f these database schemas [Schnase et al., 1993]. Nodes and links

in a semantic network can be converted into entities and relationships, respectively, in

an Entity-Relationship (E-R) schema. The derived schema is generic and independent

of any specific Database Management System (DBMS) constructs, rules, and

limitations. According to Oxborrow [1989], a semantic data model, independent of

any DBMS has the following advantages:

♦ Generality, due to its independence, the best methodology could become a

standard for data modelling.

69

♦ Flexibility, an independent semantic data model can be mapped into a number of

commercially available DBMSs data models and hence would be suitable for use

as a global model in a distributed database system.

♦ Integrity, the semantic rules and constraints could be used as the basis for

developing application programs which maintain data integrity, by insuring that

these rules and constraints are not violated.

E-R diagrams are considered to be the most commonly used techniques for

graphically modelling database schemas. Figure 3.5 shows an abstract E-R diagram

representing the semantic network described in the last section. This schema

constitutes the knowledge base or metadatabase. This is an abstract E-R diagram

because some details such as the attribute(s) of each entity have been deliberately

omitted. Moreover, category, task, activity, topic, and information element are

domain-related entities, i.e. their data differ with regard to the domain. As described

earlier, information purpose types are planning, support, and action, task types are

learn and perform , and abstract functions are Org, Fund, Spec, Proc, Cla, and Adv.

At this stage, the knowledge base of the technical documentation is ready for the

introduction o f domain-related information. These include the main categories of

information, the primitive tasks, activities, domain topics, and information elements.

The combination o f information categories and primitive tasks will provide a set of

domain related activities. Domain topics are then associated with the appropriate

activity. Information elements are granted an abstract function or role and are

associated with the appropriate domain topic. This process will be described in more

detail in a case study, which is outlined in the next section.

70

Task Type

Task

Purpose Type

Category

n n

1

n

Function

Information ElementDomain Topic

One to many relationship

Figure 3.5 Abstract E-R Diagram Representing the Semantic Database
Schema

Activity

71

3.2 CASE STUDY: USAGE-BASED ANALYSIS AND DATA MODEL FOR

TECHNICAL MANUALS

The primary objective of this case study is practically to demonstrate the semantic

modelling of technical documentation. This section briefly introduces technical

documentation through technical manuals. Next, it demonstrates the usage analysis of

product-related information. Results from this analysis are used to build a semantic

database schema for the development of technical manuals. Finally, the user interface

which is built on top o f the database tables in order to assist in editing the schema is

introduced.

3.2.1 Product-Based Technical Manuals

Technical manuals are special types o f PSSs. The British Standards Institute [BS

4884, 1992] defines them as:

“A generic term for any document that explains how to use, maintain and handle a

product from its delivery to its disposal, and in addition gives any technical

information that a user is likely to need during the life of the product. ”

This generic definition can be applied to any form of technical manuals, including

paper-based, electronic, Web-based, etc. The main purpose of product documentation

as defined by Graham [1997] is to communicate specific information to users in such

a way to enable them to demonstrate the acquisition of specific skills and knowledge.

72

The users of technical manuals may include product purchasers, installers, trainers,

operators, maintainers, product developers, etc.

Product-based technical manuals were chosen to demonstrate the semantic data

modelling approach o f technical documentation because of the special characteristics

that exist within their information space, which can comprehensively illustrate this

approach. These include:

• The diversity of their purpose, i.e. they contain planning, support, and action type

of information

• They support both learning and performing types of tasks

• They, therefore, support a variety o f distinct activities

• Their information base contains information elements that perform many types of

roles and functions

• Most technical manuals are data-intensive, i.e. they contain large amount of data.

3.2.2 Information Analysis of Technical Manuals

British standards for technical manuals [BS 4884, Parti, 1992; BS 4884, Part2, 1993]

are the main source o f knowledge in the domain for technical manuals. They specify

the full range o f abstract information categories that a user of a product manual might

need, including:

1. Purpose and Planning (PP). What is the product for?

2. Operating Instructions (OI). How to use the product?

3. Technical Description (TD). How does the product work?

73

4. Handling, Installation, Storage, and Transit (HIST), How to prepare the product

for use?

5. Technical Maintenance (TM). How to keep the product working?

6. Technical Maintenance Schedules (TMS). What is done when?

7. Parts Lists (PL), What does the product consist of?

8. Modification Instructions (MI). How to change the product?

9. Disposal Instructions (DI), How to dispose of the product?

The main purposes o f use o f any technical manual are highlighted by these categories.

Depending on the knowledge that they provide these categories can be classified into

three abstract types: planning, support, and action. Table 3.2 outlines the main

information categories supported by technical manuals classified by their purpose.

The product purpose, performance, and technical maintenance schedules are planning

information. Technical description and parts lists are support information. Operation,

maintenance, handling, installation, storage, transit, and disposal instructions are

action information. It is important to determine the association between the

information o f the supported product and the abstract purpose of information. Table

3.3 depicts the abstract purpose of usage categories in support of the product

information. Moreover, it outlines the kind of product information that assists in

product planning, support, and action.

The role o f the information fragments is revealed through analysing their abstract

functional characteristics. The type o f product information supported by each function

type is abstracted in Table 3.4. The table shows that the purpose of the product,

general rules, maintenance plans, performance and capabilities data, etc. are

74

Table 3.2 Classification o f Information Categories of Technical Manuals According to

their Purpose

Information Category Purpose
Planning Support Action

Purpose and Planning (PP) X
Operating Instructions (OI) X
Technical Description (TD) X
Handling, Installation, Storage,
and Transit (HIST) X
Technical Maintenance (TM) X
Technical Maintenance Schedules
(TMS) X

Parts Lists (PL) X
Modifications Instructions (MI) X
Disposal Instructions (DI) X

75

Table 3.3 Abstract Purpose of Product Information

Abstract Purpose Product Information

Planning • Purpose of the product
• Performance data
• Product suitability, capabilities and reliability for particular

application or environment
• Company’s regulations, policies and standards.
• General health and safety information
• Maintenance strategy and schedules
• Information about product or parts from manufacturer,

supplier, vendor, etc

Support • Technical concepts
• Technical specifications
• Product structure and parts lists (systems, assemblies, and

parts)

Action • Health and safety procedures
• Starting, operating, and shutting down procedures
• Maintenance procedures
• Training and testing procedures
• Fault diagnosis and correction procedures
• Handling, installation, storage, and transit procedures
• Modification procedures
• Disposal procedures

76

Table 3.4 Functional Characteristics of Product Information

Function Type Product Information

Fundamental (Fund) • Purpose of the product
• Performance data and product capabilities
• Maintenance strategy and plan
• General rules

Procedure (Proc) • Sequential events regarding installation, operation,
maintenance, diagnostic, testing, measuring, and hazards.

Specification (Spec) • Product technical description
• Information about systems, assemblies, and parts of the

product
Advice (Adv) • Specific requirements and recommendations

• Warnings and cautions
• Required test equipment and parts

Clarification (Cla) • Assemblies and parts illustrations
• Auxiliary and additional explanations

Organisation (Org) • Types of maintenance
• Product structure and parts lists

77

fundamental information. Sequential events with regards to installation, operation,

maintenance, diagnostics, etc., are procedural information. Information about the

product’s systems, assemblies, parts and their technical descriptions are all

specification information. Extra requirements and recommendations, warnings, and

cautions are advice information. Illustrations of assemblies and parts and additional

explanations are clarifying information. Finally, complex classifications and

structures such as maintenance plans and product structure are organisational

information.

3.2.3 Abstract Tasks and Activities in Technical Manuals

A large and diverse set o f primitive tasks for technical manuals can be identified. This

set might include tasks such as introduce, plan, assess, launch, install, handle, check,

assemble, test, replace, etc. However, all o f these tasks belong to two main abstract

categories, namely “learn” and “perform”. For example, introduce, plan, and assess

are tasks that assist the user in acquiring product-related knowledge, i.e. they have a

learning objective. On the other hand, install, check, and assemble are tasks that

enhance the user’s skill in acting on the product, i.e. they have a performing objective.

<

People access technical manuals when they have an informational purpose in mind,

and an associated task to accomplish. This goal is perceived as the activity of the user,

which can be classified and categorised in advance during the technical manual’s

design. For instance, learning general information about the product is an activity

which has a “planning” purpose, a category “PP”, and a primitive task “introduce”.

Learning about a part o f the product is an activity o f purpose “support”, category

“PL”, and primitive task “assess”. Checking a fault in the product is an activity of

purpose “action”, category “TM”, and primitive task “check”. Table 3.5 outlines the

role of information categories and primitive tasks in supporting the abstract activities

of technical manuals. It may be noticed that a single information category can be

associated with more than one primitive task, e.g. 01 is associated with “launch”,

“handle”, and “manoeuvre”. In addition, a single task can be associated with more

than one information category, e.g. “assess” is associated with PP, PL, and TD.

3.2.4 Semantic Database Schema for a Technical Manual

Figure 3.6 outlines an activity-based database schema for technical manuals. This

schema is an instantiation o f the generic schema shown in Figure 3.5. Entities are

converted into physical database tables, and data categories are inserted. This

knowledge base is used as a framework to organise and classify the topics in the

technical manual. The figure also shows an example o f a technical manual topic,

which is a procedure that shows how to dismount the wheel o f the forklift truck. This

topic is described using three separate information elements, namely, steps of wheel

dismount, unscrew nuts, and caution, which have function type procedure,

clarification, and advice, respectively. Entities “topic” and “information element” will

be discussed in detail in the next chapter, as they will be used to organise the data of

the technical manual.

At this stage, it is suggested that the technical manual domain expert or designer

should:

79

Table 3.5 Information Categories and Primitive Tasks in Support of the Abstract

Activities o f Technical Manuals

Information
Category

Primitive
Task

Abstract Activity

PP Introduce Product Introduction

PP Assess Performance Assessment

PL Assess Parts Assessment

TD Assess Technical Data Assessment

01 Launch Launch Product

01 Handle Handle Product

01 Manoeuvre Product Manoeuvre

TM Check Check Product for Maintenance

TMS Plan Planning Maintenance Schedules

80

Purpose Type
1 1

Task Type

♦ Planning
♦ Support
♦ Action

♦ Learn
♦ Perform

n n

Category

♦ PP
♦ OI
♦ TD
♦ HIST
♦ TM
♦ TMS
♦ PL
♦ MI
♦ DI

Task

Introduce
Assess
Launch
Install
Checketc.

1

Activity

Product Introduction
Performance Assessment
Parts Assessment
Launch Product
Check Product
Plan Maintenanceetc

Dom a in Topic

E.g.: Wheel dismount

‘ n

1

Inform ation Elem ent

Steps o f Wheel
dismount
Unscrew nuts
Caution

Function

One to many relationship

Fund
Proc
Cla
Adv
Spec
Org

Figure 3.6 Activity-Based Database Schema for Technical Manuals

81

1. Identify the categories o f information of the technical manual and associate each

category with its usage purpose selected from the already existing abstract set.

For example, “PP” is o f type “Planning”, “PL” is “Support” and “TM” is

“Action”.

2. Identify the primitive tasks supported by the technical manual and associate each

task with a task type selected from the already existing abstract set. For example,

“introduce” is o f type “Learn” and “check” is of type “perform”.

3. Identify the abstract activities supported by the technical manual by associating

information categories with primitive tasks. For example, “Product Introduction”

belongs to the category “PP” and involves the task “introduce”, “Check Product”

belongs to the category “TM” and involves the task “check”.

4. Identify the set o f functions that will be used to describe the role of each

information element within the technical manual. These can be chosen from the

extended set outlined in Table 3.1 or, for simplicity, from the abstract types

presented in Figure 3.6.

Figure 3.7 shows the schema editor organised into a set of data-entry forms. The

schema editor was created on top o f the database tables to facilitate appending and

updating of the semantic categories. These forms facilitate the user interaction with

the database tables. A MS-Access™ relational database management system [MS-

Access, 1996] was used to implement this schema. The schema editor was developed

using the MS-Access™ form generation wizard.

This approach enables the realisation o f the purpose and the primitive task for every

information fragment used in the documentation. Therefore, the purpose,

82

Record: M i l l 1 ► I H l > * l o f 3

Name

Description

Type

| Purpose and Performance

Record: l< I 11 l ► | »l (►*(of 6

m
► Name JPPJnf

ICat R

Task r~
Description |Truck Purpose Introduction

ID |1 1

Record: l< I 11~ f ► | ►! |k * | of 9

m
fj ID r ~

Name |Fund

Description (Principle. Definition. Concept.

Record: H I | f~ r ► I M !►*! of 6

Figure 3.7 Schema Editor

ia jjl'aak

Record: H I • 11 T ► I H !►*! of 8

Name

Record; M I I f

83

category, task, task type, and function of every documented topic or even information

element can be retrieved when needed. As it will be demonstrated in the next

chapters, this feature facilitates and enables the automation of some o f the technical

manual development tasks. These include the automatic generation of hypermedia

documents, and the automatic association of semantically relevant topics. It will also

assist in the implementation o f the adaptive information retrieval system and the

diagnostic expert system.

3.3 SUMMARY

This chapter has presented a usage-based data model for the design of technical

documentation. The proposed model abstracts the intended purpose of the

documentation, the documentation-supported tasks, and the functional characteristics

of documents. These abstractions have been combined in a usage-based semantic

network that acts as a framework for structuring the documentation. In addition,

semantic rules and valid relationships have been identified, and the semantic data

model is mapped into a database schema. This mapping creates a knowledge base that

preserves the data semantics, which can then be used by authors in order to organise,

generate, and maintain the technical documentation. Furthermore, a case study has

been conducted on a product-related technical manual in order to demonstrate the

validity of this design approach.

As will be shown in subsequent chapters, the usage-based data model has been

employed to support a structured authoring methodology for developing hypermedia-

based technical documentation. In addition, this model will also be used to support the

implementation o f the adaptive hypermedia component of an intelligent PSS.

84

CHAPTER 4

MODEL-DRIVEN HYPERMEDIA AUTHORING APPROACH

FOR WEB-BASED TECHNICAL DOCUMENTATION

Authoring is the art o f collecting, structuring, and presenting information. This

chapter presents a model-driven approach for Web-based hypermedia authoring. A

brief conceptual review o f the traditional hypermedia authoring process is presented.

Then a methodology for authoring Web-based technical documentation is introduced,

which utilises the usage-based data model described in Chapter 3. An approach for

classifying information objects (IOs) and building the hypermedia structure to support

the authoring methodology is outlined. In addition, a technique for generating

identification codes for IOs and a tool for building the hypermedia structure are

presented. These techniques are used automatically to generate the hypermedia pages

in two different mark-up languages, HTML and XML. A technical manual for a fork-

lift truck is used throughout this chapter to demonstrate the authoring methodology.

The chapter also introduces a navigational model based on information semantics. It

includes navigational access methods and an approach to generate two alternative

types of navigational relationships. These are context-driven relationships and

purpose-driven relationships. Then, a presentation technique using frame-based

templates, icons, and colours is introduced. Finally, the system architecture that is

used to demonstrate the authoring methodology and to integrate all these approaches,

techniques, and tools, is illustrated.

85

4.1 HYPERMEDIA AUTHORING FOR THE WEB

4.1.1 Traditional Process to Web-Based Hypermedia Authoring

Figure 4.1 shows a conceptual model for the traditional Web-based hypermedia

authoring process, outlining the main weaknesses of this authoring approach. This

model exhibits an implementation language dependent authoring process that has

tightly-coupled and inseparable structure, navigation, and presentation frameworks. It

supports a single author environment and delivers applications o f the “one size fits

all” type i.e. published once and for all, which are then difficult to update. In addition,

user-tailored presentations are difficult to implement, and the authoring process

cannot support real-time user demands. Moreover, the model also shows that the

authoring process, which is represented by a linear time line, is mainly an

implementation-driven activity that is terminated after a certain time. The following is

a brief description o f some o f the problems that hypermedia authors encounter when

authoring for large data intensive Web-based applications using the traditional

process:

> Broken links are hyperlinks with unavailable or not valid target documents. This

problem is most likely to occur when an author deletes a document, and the

hyperlinks in other documents pointing to that document are not updated.

> Orphan documents are documents with no incoming hyperlinks pointing to them,

so they become unreachable. This occurs when the last link pointing to them is

removed.

86

Implementation Language Dependent

r Hypermedia Authoring

Implementation
♦ Structure
♦ Navigation
♦ Presentation

Data Collection
and Editing

time

Figure 4.1 Conceptual Model - The Traditional Web-Based Hypermedia Authoring Process

87

> Support for collaborative authoring is difficult because hyperlinks are embedded

within documents. Such hyperlinks are difficult to identify, especially when

created and processed by more than one author.

> Losing control o f the available information. Authors find it difficult to acquire an

overview o f the available information, to find or re-find the information they are

looking for, and to update or append to existing information.

> Customisation, personalisation, and adaptive user support services are very

difficult to accomplish because the structure, navigation, and presentation of

information are tightly coupled and cannot be easily separated in order to be

tailored to a particular type o f user. In this case, the only way o f providing user-

tailored support is by, manually, creating a static set of pages for every user or

group of users. This is a complex and time-consuming effort, which demands a

huge amount of resources.

> The final rendered application is statically tailored for a unique type of browser

and/or display device. This problem occurs because the structure, navigation, and

presentation o f the application are fully implementation language dependent rather

than being declaratively and explicitly modelled.

This static and rigid approach to hypermedia authoring will eventually result in

inconsistencies and chaos, and will create a significant complication regarding the

maintenance o f the application. In addition, since authoring is mostly conducted

manually and with minimal support, the level o f customisation and the resulting visual

qualities o f the final application are highly dependent on the effort spent by authors,

which can be very high. In brief, this traditional approach to Web-based hypermedia

88

authoring may be efficient for small sized applications, but when the application

grows overtime, problems and complications evolve at an alarming rate.

4.1.2 Model-Driven Approach to Web-Based Hypermedia Authoring

When organisations start moving their information onto the Web, authors need to

consider new attitudes, concepts, and work strategies that coincide with the special

requirements of the new publishing medium. Structured authoring approaches are

used to tackle shortcomings o f the traditional hypermedia authoring process. Figure

4.2 depicts a model-driven approach to Web-based hypermedia authoring, outlining

the main features of this authoring approach. This approach is based on different

interacting data models that are built on top of each other. These are the domain data

model, and the hypermedia structure, navigation, and presentation models. These

models represent the agreed framework for the domain and hypermedia, which are

used and shared between authors and tools. They also provide formal guidelines for

all authors to comply with, supported by applied constraints which insure that the

resulting application, fully, complies with the requirements that these models

represent. The separation o f the hypermedia structure, navigation, and presentation

models is a very important feature of this structured authoring approach. This

separation provides authors with a high level of flexibility where, for instance,

navigation hyperlinks are updated and edited without affecting the structure and vice

versa. Franternali [1999] declares that the independent specification of presentation,

separate from structure and navigation, is particularly relevant in the Web context

where the final rendering on the interface depends on the browser and the display

device. Thus it may be necessary to map the same design to different presentation

Prototypes

Update

Update

C

Implementation Language Independent

Implementation
Language
Dependent

Hypermedia Authoring

Data Collection and
Editing

Structure

Navigation

Presentation

Central Repository
(e.g.,db, PDM)

♦ Data Model
♦ Structure Model
♦ Navigation Model
♦ Presentation Model
♦ Hypermedia Objects

(physical and metadata)

Feedback

time)

Figure 4.2 Model-Driven Approach to Web-Based Hypermedia Authoring

schemes associated with different user interfaces and/or display devices. In addition,

the separation of these models allows the adaptive support of users’ informational

needs to be applied separately to each model, e.g.: adaptive navigation, adaptive

presentation, etc.

This model-driven authoring approach involves a “central repository” that stores a

representation of the domain data model, as well as abstract model-driven structural

and navigational elements and presentation templates. These standard elements,

together with a set o f rules and constraints, are used to assist in the building of valid

hypermedia structure, navigation, and presentation instantiations, and to provide

consistency and efficiency to the delivered application. The central repository services

an implementation language independent and multi-author environment. The clear

separation o f implementation issues from other authoring activities provides authors

with an implementation language independent environment that enables them to

render the same material in more than one Web-based mark-up language, e.g. HTML,

XML, etc. In addition, this separation o f activities enables the automatic generation of

the application code using language-dependent rendering utilities, sparing the authors

the burden of learning complex programming languages and providing for rapid

prototypes and consistent applications.

In contrast with the static traditional authoring process that, directly or indirectly,

terminates as soon as the material is published, this enhanced authoring process is

most likely to continue after the application is deployed for use. For instance, tasks

such as rapid and continuous information updates, information re-structuring, adaptive

support and real-time user modelling, are executed while the system is deployed for

91

use. Moreover, the continuous authoring process provides the means for authors to

dynamically process real user demands and feedback. The circular time line

represents the continuation in the authoring process.

In brief, this structured approach to hypermedia authoring tackles and overcomes all

the problems associated with the traditional approach that were mentioned earlier.

Thus, there can be no “broken” links or “orphan” documents, the available

information is fully controlled, stored, and contained, collaborative authoring is

efficiently supported, and the requirements for the adaptive user support are

considered at the authoring phase.

4.1.3 Application Example

Throughout this chapter, a technical manual for a forklift truck will be used in order to

demonstrate the applicability and validity o f the proposed model-driven approach for

authoring Web-based technical documentation. This approach is demonstrated using

example data, based on a prototype technical manual developed for a manufacturer of

all-terrain forklift trucks as part of a project undertaken by the author’s laboratory

within an EC-funded collaborative research program [Pham and Setchi 2003; Pham

and Setchi, 2001, Setchi, 2000, and Pham et al., 1999]. This Web-based prototype is

implemented in two different mark-up languages, HTML and XML. A set of CASE

tools have been created in order to assist in the authoring and implementation

processes. These tools have been developed under the MS-Windows NT™ operating

system environment using the Java™ programming language, utilising the Java

Development Kit JDK™ 1.3 [JDK, 1.3.0] and the MS-ACCESS 97™ [MS-Access,

92

1996] relational database management system (RDBMS). In addition, the RDBMS

was used as a central repository that is manipulated and accessed by the Java-based

tools using embedded Structured Query Language (SQL) statements and a JDBC-

ODBC Bridge.

4.2 EDITING AND MANAGEMENT OF MULTIMEDIA DATA ELEMENTS

This phase of the authoring process is concerned with identifying sources of

information and collecting, editing, and managing the multimedia data elements. In

order to utilise these primitive and elementary multimedia elements, the author(s)

should edit these elements and create publishable multimedia information objects

(IOs), which are then stored in a repository. IOs are defined in [Tuker et al., 1997] as

“a locution (set of words, phrases, sentences, etc.) of product documentation that

describes one idea, concept, function, etc.”. IOs are the smallest units o f publishable

information that are created and modified by authors using widely available

commercial tools, such as graphics packages, audio and video editors, animation

software, etc. As described in [Langer et al., 1994], IOs are built by combining media

objects along local or time dimensions, where a distinct media type is lost, e.g.:

labelling graphics with text and including speech annotations. These IOs should be as

small as possible, in order to ensure high flexibility, and at the same time they must be

large enough to stand alone as part of a topic and to be reused in another, e.g. a step in

a procedure, warning message, etc. As shown in Figure 4.3 (a), the IOs of the

application domain span two layers, physical and logical. IOs are defined in the

logical layer (metadata) while their actual content resides in the physical layer (data

files). These two layers constitute the multimedia database, which is used to store and

93

organise the logical definitions and physical content of IOs. Within the logical layer,

IOs are of two types, atomic and composite. The former are IOs that are associated

with exactly one physical 10 which holds its logical definition. The only way of

accessing physical IOs is through atomic IOs. The latter are aggregations of atomic

IOs, or other composite IOs, or a combination of both. The aggregation of atomic and

composite IOs supports the creation o f more complex and sophisticated hierarchical

structures of domain documents/topics, where normally more than one 1 0 contributes

to the description of a single topic. The main concern o f authors at this phase is

preparing the physical layer by collecting and creating appropriate IOs with minimal

redundancy, providing for a high-level of reusability.

In technical manuals, primitive multimedia elements are produced during the product

design and production, and include 3D models, assembly trees, drawings, reports,

virtual prototypes, assembly instruction sheets, bill o f materials, etc. On the other

hand, animations, video clips, annotated images, formatted text, and audio streams are

specifically developed for documentation purposes. During the authoring process, the

technical manual author(s) needs to access these IOs in order to prepare them for

publishing. This includes activities aimed at classifying, updating, improving existing

IOs, or creating new ones. The product and documentation data of the forklift truck

include a heterogeneous collection of multimedia IOs, as shown in Figure 4.3(b). The

data used in this work was collected and extracted from the structured data stored in

Pro/INTRALINK™, a Product Data Management (PDM) system and in the Web-

based product manual developed by Setchi [2000].

94

3D Animation

C IO: Composite Information Object
A_IO: Atomic Information Object
P_IO: Physical Information Object

(a) Logical and Physical Information Objects (b) Sample of the Collected Multimedia Information Objects
for the Technical Manual of the Forklift Truck

Photo-realistic
Image

Physical
IOs

j Virtual Reality

Drawing

Figure 4.3 Information Objects

4.3 AN APPROACH FOR BUILDING THE HYPERMEDIA-BASED

TECHNICAL DOCUMENTATION STRUCTURE

4.3.1 Relationships in Hypermedia

The strength of hypermedia is demonstrated through its ability to provide users with

logically connected network o f documents, which is accessed and navigated in an

exploratory manner. This network is the result of connecting data elements together

by associating them with different types of relationships. Relationships in hypermedia

documents can be classified as structural relationships and referential relationships.

Structural relationships are responsible for holding the hierarchical structure of the

hypermedia and the construction of the application’s backbone. They are further

classified into resource relationships that are responsible for the identification of the

IOs that constitute the content o f each page, and organisational relationships that

constitute the hierarchical organisation o f these pages. In contrast, referential

relationships are concerned with the cross-reference linkage criteria between

hypermedia pages, i.e. the way they interact with each other in the final application.

Although organisational and referential relationships are clearly separated and

distinguished at the authoring stage, as far as the application end user is concerned,

they are often mixed together and referred to as navigational relationships. Figure

4.4(a) depicts the classification o f relationships in hypermedia.

The explicit identification of different types of relationships enables the complete

separation of structure from navigation, which is an essential authoring requirement

96

(see 4.1.2), and the automatic generation of these links based on their semantics.

Figure 4.4(b) shows different types of relationships in a hypermedia document.

4.3.2 Attributes for Indexing the IOs of the Technical Documentation

Classification o f IOs requires a great deal of understanding o f their intended use and

their semantic properties. A semantically rich usage-based data model for developing

technical documentation and its associated rules has been suggested in Chapter 3. This

model is used here to guide authors in the semantic description o f IOs. Recall that

information categories, tasks, activities, and functions were categorised and identified

during the analysis and design stage of the technical documentation. In addition to

other types of metadata i.e. attribute names and values, these abstract elements will be

used to build a uniform and semantically valid hypermedia structure. Figure 4.5

presents the attributes used in the classification and indexing of the technical

documentation IOs. These attributes are categorised into five distinct groups of

categories:

• Definition attributes: These attributes provide a generic description of the IOs, and

are used in conjunction with all other types of attributes. They include name,

description, and Identification Code (ID). The “name” and “ID” attributes are

automatically set by the system, whereas “description” is set by the author.

97

Hypermedia
Relationships

Structural

Organisational Resource

Navigational

Referential

(a) Classification of Relationships

Organisational/
Referential

He E<* Fevonte* Took Help Ci

©•* - q - 8 i & e . • * s • i
_ _____ - a »

Organisational /
Referential

Resource
Relationships

teffl.3B.gi t F«4c U f t T m tk

The &V 60PT Rough-terrain fork-lift truck, with o
lifting height of 3300 am. is desi9n«d for handling
single or palletised loads in storage sites or on terror
without hard surface.

The lifhng fork coupled to the self-propelled power
unit can be replaced by a shovel or by other
replaceable attachments which considerably increase
the versatility of the machine.

The operating ambient temperature range is froei 248 -4* Tnjĉ
to 408 (from -25 to *35 *C). These Operating
Instructions are attended for use by the servicing

^■e^nneL They contain brief descriptions of the
design and operation of the truck and of its
assemblies, rules for its operation and technical
m/iintennnre metmi/ttinn no frnnhlechnntirwi Inhmir

VfisasstIs«LBAee

KjUy
~ v

Organisational /
Referential

(b) Different Types of Relationships in a Hypermedia Document

Figure 4.4 Relationships in Hypermedia

98

Definition
Attributes

Information
Object (IO)

Name

Description

ID

Semantic
Attributes

ICat

Task

Function

2 PP
3 OI
4 TD
5 HIST
6 TM
7 TMS
8 PL
9 MI
1(DI

Structural
Attributes

Container

Content

Location

2 Introduce
3 Assess
4 Launch
5 Install
6 Check

... etc

2 Fund
3 Proc
4 Cla
5 Adv
6 Spec
7 Org

Sequence

ConFormNavigational
Attribute

Index
Guided Tour
Collection

FormPresentation
Attribute

Text
Image
Video
Animation
Virtual reality

Figure 4.5 Attributes of Information Objects

99

• Semantic attributes'. These attributes identify the semantic properties o f every 10

within the framework o f the semantic data model and they are controlled by the

associated rules. The attributes of this group include the information category

(ICat), task, and function. The values of these attributes are selected from pre-set

known values that are identified by the domain expert during the analysis and

design phase. The author identifies the semantic properties of the current 10 by

selecting a valid combination for the values of these attributes.

• Structural attributes’. These attributes are concerned with building the hierarchical

structure of the hypermedia application by identifying “organisational” and

“resource” relationships. This group includes the container attribute which

specifies the parent IO o f the current 10, where the value of this attribute is chosen

from a set o f existing composite IOs. Containers are similar to the “folders”

metaphor in the MS-Windows™ directory structure. The group also includes the

content and location attributes, which specify a reference to the physical content

of the current IO, and the sequence attribute which specifies the order of the

current 10 within its current container. The values of the attributes of this group

are set by the author.

• Navigational attribute - Container Form (ConForm): The value of this attribute

identifies the access method for the current IO. The system supports three types of

access methods, namely index, guided tour, and collection. The author specifies

the appropriate access method for the current 1 0 , e.g. maintenance procedures are

best accessed via a guided tour, and parts lists are best accessed via an index.

• Presentation attribute - Form: This attribute identifies the media type of the

current 1 0 , which may include text, image, video, animation, virtual reality, etc.

1 0 0

4.3.3 Hypermedia Structure for the Technical Manual

In general, building a hypermedia structure requires the identification o f the main

topics supported by the documentation, which will be transformed into hypermedia

pages. In addition, it requires the identification of the documents that constitute each

topic and the organisational hierarchy (tree structure) of these topics and documents.

Referential relationships between topics/documents can then be inserted on top of the

structure to form the hypermedia network.

The author starts to build the hypermedia structure, after data is collected and edited,

by associating related IOs together using “organisational” and “resource”

relationships. The hypermedia structure is built by associating every IO with the

appropriate values for each attribute (metadata), which were identified and

categorised earlier. The tabular documents that identify the type o f product

information supporting different semantic elements, which were produced in the

analysis and design stage (see Tables 3.3 and 3.4), provide good assistance for

building the structure and associating every IO with a semantically valid attribute

value.

British Standard 4884 [BS 4884, 1992] provides many guidelines for building the

abstract structure of technical manuals. Two of the most common structuring methods

in this field are the system-based and the function-based methods. The system-based

method arranges the product into systems, sub-systems, assemblies, sub-assemblies,

parts, etc. Similarly, the function-based method arranges the product into functions

101

and sub-functions, etc. Both are useful and valid structuring methods which consider

the product from different perspectives, but for demonstration purposes, a

semantically enhanced version of the system-based method is adopted in order to

structure the technical manual’s documents. This method relies heavily on the

semantic data model, which is at this stage is preserved in a database ready to be used

for the coding and classification of IOs (see Figures 3.3 and 3.6). To demonstrate this

structuring method, a logical structure for a forklift truck technical manual is built. All

data elements will be referred to and treated as IOs, which are either logical (atomic

or composite) or physical as described in 4.2.

The author identifies the main systems that constitute the product, and that will be

used in the technical manual. For instance, the systems o f the forklift truck may

include the braking system, lifting system, engine, electrical system, etc. These

systems are coded as composite IOs with an organisational role o f holding either the

hierarchical structure of the system’s assemblies and parts (parts list), the system’s

performance and specification data (performance data, technical description), or the

sequential steps within a procedure or process applied to this system (technical

maintenance). The hierarchy expands until terminated by one or more atomic 10,

which points to an existing physical 1 0 .

Figure 4.6 depicts the logical structure of the “braking system” within different

semantic domains. These semantic domains represent the activities that support the

1 0 2

Category Task

p p
_♦ PL

TD
TM

Introduce
+ Assess

Launch
Install
Check *

Technical AssessmentPerformance Assessment Parts Assessment Maintenance Checks

Braking System Braking SystemBraking System Check Braking
SystemOrg Org Org Org

Brakes Performance
BS - TechnicalHand Brake BS - Technical

View
BS - Complete Preparation Wheel DismountFund

Org Spec Org

H B - 1416533 P S tep Rear AxleParts W D Step Unscrew Nuts I

_________I Cla

Parts

Spec ClaSpec

Req_Parts Caution

A dv

TaskComposite 10

I I Atomic 10 Category

Semantic DomainFunctionA dv

Figure 4.6 Braking System - Logical Structure with Semantic Domains

103

braking system, and which are supported by the technical manual. They are

represented by a combination of an information category and a task which were

identified during the analysis and design process.

The figure also illustrates the “function” attribute that is associated with every 10 in

order to identify its role within this structure and the type o f knowledge it conveys.

For instance, all composite IOs have an organisational role (Org). Atomic IOs

associated with “performance assessment” provide fundamental data (Fund). IOs

associated with “parts and technical assessment” provide specific and detailed data

(Spec). Moreover, IOs associated with “maintenance checks” provide procedural data

(Proc). In addition, some IOs provide local support and assistance such as advice and

clarification, which are labelled (Adv) and (Cla) respectively.

The function attribute is very useful for the identification o f the role o f IOs in the

authoring and implementation process, hence facilitating their proper processing. For

instance, it enables the association of presentation icons and/or colours with every

function type. It also enhances the search capabilities o f the authors and, as will be

demonstrated in the next chapter, the function attribute is vital in supporting the

adaptive provision of information to different groups of users. For instance, additional

clarifications are presented for novice users, in contrast to complex specifications for

experts.

Table 4.1 illustrates a snapshot from the “IOs” database table, which shows the full

set of attributes and their associated values for a selected data about the braking

system of the forklift truck. In addition to the classification of attributes into

104

definition, semantic, structural, presentation, or navigation, attributes are also

classified as system-set or author-set. The attributes name and ID are system-set i.e.

their values are automatically set by the system. The remainder are author-set

attributes, i.e. their values are manually set by the author. The fully processed set of

IOs and their metadata is shown in Appendix A.

4.3.3.1 Dynamic Identification Codes for Maintaining the Structural and

Semantic Properties of IOs

The Identification Code (ID) is an important definition attribute that holds the

semantic and structural properties of every 10. It is an ordered pattern of digits that

uniquely distinguishes and identifies IOs in a declarative manner. Theoretically, the

number of levels in a dynamic structure hierarchy is not fixed and can grow to an

infinite number of levels. Therefore, the ID of IOs must also be o f a dynamic nature,

reflecting the depth in the hierarchy and the set of predecessors for any 10. Internally,

each attribute value o f type “semantic” is associated with a unique identification

number and these are stored in system database tables. Figure 4.7 presents these

system tables and illustrates the mechanism o f creating IDs for IOs. With respect to

the logical structure, IOs are classified in two types, Root, and non-Root IOs. Root

IOs are those residing on the top of the tree-like structure and do not have a parent,

e.g.: the IOs that represent the “Braking System” in Figure 4.6; the remainder are

105

Table 4.1 Information Objects Metadata - Attributes and Values

Definition

 A —

Semantic Structural

A
Presentation

r
N am e D escription I It* ICat| T ask j F im crion j C o n ta in er | S eg L ocation C on ten t F orm jC onF onn

► f j .3.9.2 Braking System 1 3 9 2 1 3 9 1.3 2 ../ipm/ Empty 0 3
f 1.3.9.2.11 Brakes Performance 1 3 .92 .1 1 1 3 1 1.3.9.2 1 ../ipm/ <PRE>W i 1 0
f_2.3 9.2 Braking System 2 .3 .9 2 2 3 9 2.3 2 ../ipm/ Empty 0 2
f_2.3.9 2.9 1 Braking System - Complete 2.3.9.29.1 2 3 9 2 .3 .9 2 1 . /ipm/ Empty 0 3
f_2 3 9 2 9 1 5 1 Braking System 1547475 2 3 9 2 9 1 . 5 1 2 3 5 2.3 9.2 9,1 1 /ipm/pictures/P Empty 2 0
f_2 3 9 2 9 1 5 2 Braking System Parts 2 3 9 2 9 1 .5 2 2 3 5 2.3.9 2 9.1 2 ./ipm/ <pre>No 1 0
f_2.3.9.2.9 2 Hand Brake 2 .3 .9 2 .9 2 2 3 .9 2 .3 .9 2 2 ../ipm/ Empty 0 3
12.3.9.2.9.2.5.1 Hand Brake 1416533 2.3.9.2.9.2.51 2 3 5 2 .3 .9 2 9.2 1 ../ipm/pictures/H Empty 2 0
f_2 3.9 2.9.2 5.2 Hand Brake Parts 2 3 9 2 9 2 5 2 2 3 5 2 .3 .9 .2 9 2 2 ../ipm/ <pre>No 1 0
f_3 3.9 2 Braking System 3.3'9.2 3 3 9 3 3 2 /ipm/ Empty 0 3
f_3 3.9 2.5.1 Braking System - Technical Perspective 3 3.9.2 5.1 3 3 5 3 3 .9 2 1 ../ipm/ <PRE>Th 1 0
f_3 3 9 .2 .5 2 Braking System - Technical View 3.3 .9 .2 .52 3 3 5 3 .3 ,9 2 2 . /ipm/pictures/T Empty 2 0
f~5.9.9.1 Check Braking System 5.9.9.1 5 9 9 5.9 1 None Empty 0 2
f_5.9.9 1 9.1 Preparation P rocess 5.9.9.1.91 5 9 9 5.9.9.1 1 None Empty 0 3
f_5 9 9 1 9 1 2 1 Preparation P rocess 5 9 9 1 9 1 2 1 5 9 2 5.9.9 1.9.1 1 None DESCRIP' 1 0
f_5 9 9 1 9 1 3 2 Rear Axle 5 9 9 1 9 1 3 2 5 9 3 5 9 9.1.9.1 2 ./ipm/pictures/s Empty 2 0
f_5 9 9 1 9.1 4 3 Preparation Parts Requirements 5.9.9.1.9,1.4 3 5 9 4 5.9.9 1 9.1 3; None <table bor 1 0
f~5.9.9.1.9.10 R eassem ble of the Gear 5.9.9.1.9.10 5 9 9 5.9.9.1 10 None Empty 0 3
f_5.9.9.1.9.10.2.1 Gear R eassem bly 5 9 9 1.9 1 0 2 1 5 9 2 5.9.9.1 9.10 1 ../ipm/ 1. Put the 1 0
f_5.9.9 1 9.10.3.2 Gear R eassem bly 5 9 9 1 9 1 0 3 2 5 9 3 5 9 9 .1 .9 1 0 2 . ./ipm/pictures/s' Empty 2 0
f_5.9.9.1 9.10.3.3 Gear reassem ble on video 5 9 9 1 9 10 3 3 5 9 '3 5 9 .9 .1 .9 10 3 /ipm/videos/ste Empty 3 0
f_5.9.9.1.9.11 Cleanng Adjustment For The Hub Bearings 5,9.9.1.9.11 5 9 9 5.9.9.1 11 None Empty 0 3
f_5.9.9.1.9.11.2.1 Clearing adjustment for the hub bearings 5.9 9.1 9 11 21 5 9 2 5 9 9 1 9 11 1 ../ipm/ DESCRIP 1 0
f 5.9.9 1.9.11.3.2 Hub Bearings 5 ,9 .91 9.11.3.2 5 9 .. 3 5.99.1.9.11 2 ../ipm/pictures/s! Empty 2 0
f_5.9.9.1.9 11.3.3 Clear and Adjust Hub Bearings 5 9 9 1 9 11 3 3 5 ...9 3 5 9 9 1 9 11 3 . /ipm/videos/ste! Empty3....... 0
f_5 9 9 1 9.12 Remounting of the Carrier 5.9.9.1.9.12 5 9 9 5.99.1 12 None Empty 0 3
f 5.9 9 1 9.12.2.1 Carner Remount 5.9 9 .1 .9 1 2 .2 1 5 9 2 5 9 9 1.9 12 1 ../iprrv DESCRIP 1 0
f_5.9.9.1.9.12.3.2: P lace the Carrier 5 9.9.1.9.12.3 2 5 9 3 5.9.9 1 9 12 2 ../ipm/pictures/s! Empty 2 0
f_5.9.9.1.9.12.3.3! Replace screw s, spring w ashers and bolts 5 9.9.1 9 12 3 3 5 9 3

3
59.9 .1 .9 .12 3 /ipm/pictures/s Empty 2 0

f_5.9.9.1.9.12.3.4: P lace the Carrier 5 9 9 1 9 12.3 4 5 9 5.9.9 1.9.12 4 . ./ipm/videos/ste Empty 3 0
f_5.9.9.1 9.12.3.5 Replace screw s, spring w ashers and bolts 5.9 9.1.9.12.3 5 5 9 3 5 9 9.1 9 12 5 ../ipm/videos/ste Empty 3 0
f_5.9 9 1 9.13 Remounting of the Brake Drum 5.99 .1 9.13 5 9 9 5.9 9 1 13 . /ipm/ Empty 0 3
{5.9.9.1.9.13.2.1 Remount the Brake Drum 5 9 9 .1 9 13.2.1 5 9 2 5.9.9.1.9.13 1 ../ipm/ DESCRIP 1 0
f_5.9 9.1.9 13.3.2 Replace the Brake Drum 5 9 9 1 9 13 3 2 5 9 3 5.99 .1 9.13 2 ../ipm/pictures/s; Empty 2 0
f 5.9.9.1.9.13.3.3 Replace the Brake Drum 5 9 3 5 9 9 1 9.13 3 ../iom/videos/ste Emotv 3 0

Navigation

106

“non-Root” IOs. The ID o f a “Root” IO is generated as the dot concatenation of its

information category, task, function, and sequence.

ID o f Root IO = IC at. Task. Function . Seq

E.g.: ID of IOi = 2.3.9.1

The ID of a “non-Root” IO is generated as the dot concatenation o f parent ID,

function, and sequence, which enables the inheritance of the semantic properties of

information category and task within the same hierarchy.

ID o f non-Root IO = ID o f Parent IO . Function . Seq

E.g.: ID of 1 0 2 = 2.3.9.1.9.1

Embedding semantic and structural properties within the IDs o f IOs simplifies the

retrieval o f these valuable properties for generating hypermedia pages during

implementation and run-time. These IDs are also used in the generation of the

navigational hyperlinks and the presentation templates.

The example shown in Figure 4.7 illustrates a hierarchical structure of five IOs. IOi

has an ID value o f (2.3.9.1) which when verified with the accompanied system tables

provides the following knowledge about this 1 0 :

- Information Category = 2 (Parts List)

- Task = 3 (Assessment)

- Function = 9 (Organisation)

- Sequence = 1 (First within the activity)

107

1= Planning
2= Support
3= Action

1= Learn
2= Perform

Information Category Task Function
ID Name Description Type ID Name type ID Name Description

1 PP Purpose and Performance
2 PL Parts List
3 TD Technical Description
4 Ol Operating Information
5 TM Technical Maintenance
6 TMS Technical Maintenance Schedules
7 HIST Handling, Installation, Storage, Transit
8 Dl Disposal Instructions
9 Ml Modification Instructions

Introduce
Plan
Assess
Lubricate
Launch
Handle
Manoeuvre
Test
Check

Fund
Proc
Cla
Adv
Spec
Org

Fundamental
Procedure
Clarification
Advice
Specification
Organisation

ID of Root IO = IC at. T ask. Function . Seq

ID of non-Root IO = ID of Parent IO . Function . Seq

Root IO

Non-Root IOs

Non-Root IOs

IO

IOIO

etc
IO;IO

2 .3 .9.1

2.3.9.1.9.22.3.9.1.9.1

2.3.9.1.9.1.3.22.3.9.1.9.1.5.1

Figure 4.7 Identification Codes for Information Objects

108

Thus, it can be inferred that this IO concerns a product-related system, because it

provides a first-level organisational role (and it is a composite IO). It is also related to

the assessment o f the parts o f the product. Furthermore, this IO provides “support”

type information and it is used with product-related “learning” tasks. IO2 , 1 0 3 , IO4 , and

IO5 inherit the same information category and task from their parent 10 1. IO2 and IO3

are composite IOs that descend from a product system; hence they are either product

assemblies or parts. IO4 , and IO5 are atomic IOs performing a specification role

(function 5) and clarification role (function 3), respectively. This implies that IO4 is a

specification o f the product assembly/part represented by IO2 , and IO5 is an additional

clarification o f this assembly/part.

4.3.3.2 Structure Builder - An Authoring Tool

Structure Builder is an authoring tool which has been created in order to assist authors

in building a semantically valid and implementation language-independent structure.

Figure 4.8 shows the main interface o f the Structure Builder, depicting the possible

values for coding an example IO. The example shown in the figure is concerned with

coding a composite IO that is used in assessing the performance of the braking system

of the forklift truck. The author inserts the description o f the 10 (Braking System) and

then selects the appropriate information category from the list (PP). The tool then

retrieves the set o f tasks associated with this category from the “activity” table

(Introduction and Assessment). The author selects “Assessment”, and then selects the

function type i.e. role o f the current IO, which is an organisational role (Org). In

addition, the system also retrieves all existing composite IOs (Containers) within the

selected activity (Performance Assessment), for the author to select the

IO description
set by the author Automatically set by the

system

D«« Braking System

f 1 .3 .9 .2

1 Introduction
3 Assessment \ \ ' J , r - r 2 Guided Tour

3 CollectionF unction [9

C For*Container

1 Fund
2 SoE
3 Cla
4 Adv
5 Spec

a

1 3.9 8 Electrical system
1.3.9,7 Hydraulic system
1.3.9.6 Steering system
1.3.9.5 Engine
1.3.9.4 Drive Aade
1.3.9.3 Lifting System
1 .3 .92 Braking System
1.3.9.1 Fork-Lift Trock

Location ../ipm/j

0 - I
- J : Bv' v. -BV' #&) iiSfe

■ ■?■ -■ iSS '

ĴsWS-

. ...

... '...;

M h II IT t I H M cf 196

Reference to multimedia
resource

1 Text
2 Image
3 Animation
4 Video
5 Audio

Figure 4.8 Structure Builder - An Authoring Tool

110

appropriate parent for the current IO. If the current IO has no parent, i.e. it is a root

type IO, the author selects “Root”. The sequence of the current IO within the specified

container is, then, entered. Depending on the function attribute, the author will be

prompted to select the IO’s access method (Container Form). Otherwise, i.e. for an

atomic IO, the author will be prompted to select the multimedia “form” of the current

IO, and depending on this selection the appropriate “location” or “content” has to be

specified. Extended examples of coding different types o f IOs using the Structure

Builder tool are shown in Appendix B.

The main strength o f this tool is demonstrated through its ability to preserve and

validate the semantic rules and relationships depicted in Figure 4.4. In addition, it

provides an easy to use and author-friendly graphical interface, which hides the

complexities associated with identifying IDs for IOs and with code generation. This

tool supports the author through a set of lists, invoked upon demand, of logically and

semantically valid attribute values.

4.3.3.3 Automatic Generation of the Hypermedia Pages

This approach of classifying and structuring IOs enables the automatic code

generation o f the Web-based hypermedia pages. It is highly recommended, at this

stage, that the author should verify the application’s structure before proceeding to

other stages. This is done by automatically generating one or more prototypes of the

hypermedia structure, rendered in a chosen Web-based scripting language. To

demonstrate that the built structure is implementation language independent, two

rendering tools were developed using the Java™ programming language with

111

embedded SQL statements, which generate hypermedia pages in HTML and XML

mark-up languages.

Figure 4.9 shows the automatically generated HTML pages of the “Check the braking

system” procedure using the HTML rendering tool. These HTML pages have been

generated by scanning the database tables using a breadth-first tree traversing

technique, and translating the “resource” and “organisational” relationships into valid

HTML pages and hyperlinks, respectively. It is important to realise that this structure

is only a prototype that is generated to be tested and verified against the technical

manual’s requirements, and is not used for publication. In addition, this structure

constitutes the backbone o f the final application, where navigation elements such as

access methods and referential hyperlinks, and presentation elements such as

templates, colours, and icons, are inserted, as will be shown later.

XML is a new emerging mark-up language whose strength is exhibited through its

ability to generate self-describing data that explicitly emphasis the structure and

semantics o f the data separate from its presentation. Thus, XML can be used to easily

interchange data among applications and/or organisations, to preserve data in

machine-readable fashion, or to publish on the Web using separate style sheets for

presentation [Harold, 1999]. An XML version of the technical manual is

automatically generated using the XML rendering tool. Similar to the HTML version,

the XML version has been generated by scanning the database tables. However, the

technique used in this case is a depth-first tree traversing o f the structured data. Figure

4.10 shows a sample from the automatically generated XML file and two different

renderings resulting from applying Cascading Style Sheet (CSS) and extendable Style

1 1 2

m (M «•. FMSOS look -«*> «fe
~'T-- is>> "

DV tiORT ROUGH-TERRAIN FORK LIFT TRUCK

1
• P ivpoir uimI F erfonnjik i* List o f supported activities

m u n i m
o Pafctuuucc Ayye-yuicnl

. Trctankxl M ain riMiKr Schetlulfs

o Ilaauts Miintaunct SdicchtWs

• Pails Lid

o Parts Assessment

• le t imiml Df MijjMiwi

o T ttln cd

• Operathit Information

o Launch Truck

ofLttdcTiuck

O Tmcl;

o *»t *« Huckr

• Technkal MaktfenaiK *

oCtMcfc'nuck

« ji H» Cjrput.

3 Check Truck (or Maintenance - Microsoft Inter...

Fie Ed* View Favorites Tools Help

G 8̂ ' O 0 Lsl '& pSearch
A di e s , 0] C:\Jsw*-1.0.1\webpages\pm\TM_Check.btml v g j Go

Check fee braking system*
Check the hydrostatic steering system
Check the steering mechanism
Check the motion control system
Check fee mechanism for engagement o f the rear drive axle

■all Ha ■lUC'i
Maintenance checks

•& My Computer

3 Check the braking system - Mic..

Ffe Edit Wow Favorites Tools Hob Co.

St :C:\|SW*-I.0-Hwetpagestlpratf. v (3 Go 4
Preoaralion Process (
W h ee l D ism ounting
Dismount Brake Drum
Dismount Carrier
Dismount R mo O f «r

Dismount Hub
Check Servo Brake
Clean Servo Brake
Reassemble Hub
Reassemble of the Gear
Cle anng Adiustment F or The Hub Bearings
Remounting of die Carrier
Remounting of die Brake Drum

Assembly Final Check

• i My Computer

Fie Edt View Favorites * <ti.

G 8** * Q H f l
Address | g C:\jswdk-1.0.1\w« v j g Go

Preparation Process
R ear Aide
Preparation Parts Requirement!

j My Computer

Ffe Edt View Favorites Tools F «a-

(^Back - x | 2

lfejc:Uswdt-1.0.Hwebpaoesiip v | j j j Go

Wheel Djsm.0

Unscrew the nuts *
U nscrew the nuts
Take off the spring washers

4 My Computer

Figure 4.9 Structural Outline of Automatically Generated HTML Pages

Language (XSL) styling methods to the same XML file. The list o f the elements,

attributes, notations, and entities contained in an XML document, as well as their

relationships to one another are outlined in a Document Type Definition (DTD). The

following is the DTD associated with the XML document shown in Figure 4.10:

<?xml version = "1.0” encoding = "ISO-8859-r’ standalone = "yes” ?>
CDOCTYPE Manual
1

<!ELEMENT Manual (ICat+) >
<! ELEMENT ICat (Task+)>
<!ATTL1ST ICat Type CDATA #REQUIRED >
<!ELEMENT Task (C_IO+) >
CATTLIST Task Type CDATA #REQUIRED >
<!ELEMENT C_IO (Desc , (C_IO+ | A_IO+» >
<!ATTLIST C_IO Function CDATA #FIXED“Org” >
<!ELEMENT Desc (#PCDATA) >
<!ELEMENT A_IO (Desc , Content) >
<!ATTLIST A_IO Function CDATA #REQUIRED >
<!ELEMENT Desc (#PCDATA) >
CELEMENT Contnet (#PCDATA| IMAGE | VIDEO)*>
<!ATTLIST IMAGE SRC CDATA #REQUIRED >
CATTLIST VIDEO SRC CDATA #REQUIRED >

1>

4.4 NAVIGATION BASED ON INFORMATION SEMANTICS

Navigation is concerned with facilitating access to information, moving across the

contents of a document and associating related IOs with one another. In other terms, it

is concerned with the access methods of pages and their linkage criteria, i.e. the way

they interact with one another in the final application. A well-formed navigational

model enables the automatic conversion of organisational and referential relationships

(see 4.3.1) into physical hyperlinks. These hyperlinks should reflect the semantic and

structural design o f the hypermedia to the application users.

114

XSL Style
Sheet

Truck Microsoft Internet faplorer provided by Freeservc

HTML File

Introduction

fcCAjswiik 1.0.1\wcbp-igct\ipmUWi\MV M*NU*I .«ml Microsolt Internet Ciplofcf proyided by Fn

3 C:\jswdk-1.0.1V*ebpages\ipm\XML\MY_MANUAL.xml Microsoft Internet Explorer provided by freoserve

Purpose and Performance

Edt Wen Ferortes tods n *

F - iM i ig C:\pndH

Fie Edt View Favorites Tods Help

Aedw; ^Citfcw(fc-1.0.lVwebpoaK\|p»Amyorj<MIU»t..itnl ' v I H go

<?xml version="1.0* encoding=,iso-8859-l" standalon8=*yes" ?>
- <Manual>

DV 60RT ROUGH-TERRAIN FORK LIFT TRUCK
- <ICat Type= 'Planning'>

P urpose and P erfo rm ance
- <Task Typ9='Leam ,>

In troduction
- <C_I0 Function="Org'>

<Oesc>Fork-Lift Truck</Desc>
- <A_I0 Function='Fund‘>

<Oesc>Introduction</Oesc>
<Content>The DV 60RT R ough-terrain fork-lift tru ck , w ith a lifting heigh t of 3300 m m , is d es ig n ed for handling

single or p a lle tised loads in s to ra g e s ite s o r on te rra in w ithout hard su rface . The lifting fork coup led to th e
self-p ropelled pow er unit can be rep laced by a sh o v el o r by o th e r rep la c ea b le a t ta c h m e n ts which
c onsiderab ly in cre a se th e v e rsa tility of th e m ach in e . The o p e ra tin g am b ien t te m p e ra tu re ran g e is from 248 to
408 °K (from -25 to +35 °C). T hese O perating In stru c tio n s a re in ten d ed fo r u se by th e serv ic ing p erso n n el.
They con tain brief descrip tio n s of th e d esig n an d o p e ra tio n of th e tru ck an d of its a s se m b lie s , ru les for its
o p e ra tio n and techn ical m ain ten a n c e , in stru ctio n on tro u b lesh o o tin g , lab o u r sa fe ty req u irem e n ts and
tech n ical sp ecifica tions. The supplied fork-lift tru ck is a m ach ine of a m o d em techno log ica l level and Is e a sy to
m ain tain . For th e p u rp o se of ensuring c o rrec t m ain ten a n c e , a se rv ice rep re s e n ta tiv e of th e m an u fac tu re r
m u st carry out tw o w arran ty tech n ical in sp ec tio n s , a fte r th e first 6 0 - 65 and 240-260 m ach in e -h o u rs
resp ec tiv e ly . The o p e ra tio n to be included In th e s e in sp ec tio n s a re specified in th e se rv ice p a s sp o r t. The fork-
lift tru ck m u st be o p e ra te d by a licensed driver, well a c q u a in ted with th e p re se n t In s tru c tio n s an d w ith th e
lab o u r sa fe ty req u irem en ts specified th e re in . The m an u fa c tu re r re s e rv e s th e right to m ake c h a n g es in th e
d esign of th e fork-lift tru ck s w ithout prior notice.< /Content>

</A_I0>
- <A_lO Function=*Cla">

<Desc>General Truck Picture</D esc>
- <Content>

<IMAGE S R C = \./lp m /p ic tu res/tru ck .g lf* />
</Content>

</A_10>
- <A_IO Function=’Cla">

<Dese>Truck Vldeo</De5C>
- <Content>

<VIDEO S R C = '../ip m /v id eo s /a rtic _ x 0 0 0 3 .av i ' />
</Content>

</A_IO>
*

8 9 My Computer

Ed* vtow Favorites Toots Help

g) C:\frwtfc-1.0. l\we(ipaqBs\)pmV)»l\MY_MANUflL.xed

<L
Links w

DV 60RT ROUGH-TERRAIN FORK LIFT TRUCK

e Fork-lift Truck

o Fork-Lift Truck - DescnpbonThe cabin has a maximum o f window surface, a sbdmg door window, a hftmg rear wmdow and a comfortable adjustable

seat There u a windscreen m front A fire extmgwsher (TETRA type) is placed m the rear lower part o f the cabm

o Braking System - Technical VieWThe braking system includes a handbrake lever, actuating the servo brake on the final dnve of the front tk rrt axle, a

console with a mam brakmg cylinder, brake pedals (two, for the driver's convenience), pipes and piper connections Pressing the brake pedal actuates

HTML FileDona

Figure 4.10 XML-Based Technical Manual Rendered Using CSS and XSL Style Sheets

115

4.4.1 Access Methods

Access methods are author-recommended navigational properties, which are

associated with containers (composite IOs) in order to identify the way its member

IOs are accessed. The predefined access methods that are supported by the

implementation system are index, collection, and guided tour, which provide the

possible values for the container form (ConForm) attribute. These access methods are

illustrated in Figure 4.11. Containers o f type “index” are very much like a directory or

folder in a hierarchical file system. When accessing an index it is visualised as a table

of contents, i.e. the user is given a choice of IOs; these in turn can be another index,

collection, or guided tour. Index containers are useful in building hierarchical

structures of related IOs, e.g.: product assemblies and parts. Containers of type

“collection” are useful when combining and integrating relatively small pieces of

atomic IOs to describe a larger composite IO. For instance, integrating different types

of media elements, e.g. text, images, animations, etc., to create a step in a procedure

or a part specification. Containers of type “guided tour” are sequentially-indexed

containers where every member IO can reference its parent and the sequentially next

or previous IO. The implementation system automatically generates “next” and

“previous” hyperlinks for every member IO to enable users to access these IOs in an

author recommended sequence. Guided tours are very useful for presenting tutorials

and procedures where steps are sequenced and then inserted into a “guided tour” type

container. The IOs that are members of a guided tour can be any combination of

atomic IOs and/or “collection” type containers, e.g. a guided tour of collections of

IOs.

116

Index

v
A IO, A IO; A IO; C IO,

Index

Collection

A IO,

Collection

1 0 , io2

io3 etc

G. Tour

V
A IO, A IO;A IO; C IO,

Guided Tour

« Prev | N ext»

io2

io,
102
103
104

a

□
Composite IO

Atomic IO

Figure 4.11 Access Methods

117

Access methods reduce the depth of the implemented hierarchical structure and shrink

the number o f structural levels by integrating them into collections and guided tours.

Every IO can be a member of more than one index, collection, or guided tour. If not

entered by the author, the default value for the access method (“ConForm” attribute)

is “index”. A presentation template has been created for every access method, to

support its individual requirements and enable its automatic code generation.

Among those structured IOs, the main entry point, which is the home page of the

application, is a unique IO that is generated automatically by the implementation

system and accessed via an index. This index constitutes a list of all the main high-

level activities supported by the technical manual, which were acquired from the

database representation o f the semantic data model. The flexibility o f the structuring

mechanism described earlier allows different views (semantic domains) to be created

on top of the same structure by switching between many groupings of abstract

activities. As illustrated in Figure 4.12, the main activities supported by the technical

manual can be categorised by their information category, purpose, supported tasks, or

cognitive demand (abstract task types). Furthermore, the author can choose which

activities to include and which to discard depending on the targeted end users and the

type of the generated material, e.g.: operator manual, installation manual, planning

and support material, etc. The final usage of the material, i.e. whether it is for

publishing on the Web or for data exchange (XML format), is another important

factor which determines the type o f material to include.

118

By information'
category By purpose

Technical M anual
By cognitive

demand
By task

a tty 40H1 BOUCH IIRMH FOKKI IF I IKUCK M icW I !i

Ed* View Favorites Toots Me*

^CAt**̂ -1.0.l\v»abpa«a*V(>m»yCat.hte

DV 60RT ROUGH-TERRAIN FORK
LIFT TRITCK

■ I’m] '< > an ti P r i le n n tu K F

o Ie>n»ilil< l in n io T r a c k P h i m s f

o P e if o n n a n c e . t e F a m m l

• P a r t s U s t

o P a i t s A n n n B t l

■ T e c h n ic a l D esc r ip tio n

o T e c h n ic a l A ssessm en t

i O p e ra t in g In fo rm a tio n

o L m n i k T n t t k

o H am h e T r a c k

o T n t l t M a n o ru s r e

> O p e ra t io n C h e c k s

■ I rt lu u t ;tl M tu itr u .tllt e

* "ec-va-

I Flo Ed* View Favorites Took He*

I ' " C:\JswA-l .0. l\v»obpagK\it*n\HOeCPAGEl I 'V: j^jGo ;*-*i “ I

| DV 60RT ROUGH-TERRAIN
FORK LIFT TRITCK

I • P la n n in g

o I n tr o d u c tio n to T r u c k P u r p o s e

o P e r f o r m a n c e A sse s sm e n t

o I 'l a n u iu x M a in tc n a u c e S c h e d u le s

• S u p p o r t

o P i n t s .A ssessm en t

o T e t k u i t a l .A ssessm en t

• A ction

o C h e c k f o r F a u lts Subset
o R e p a i r F a u lts \
o L a tu i t l i T r u c k

. >
0 H itiw ue 1 n ic k

o T r a c k M a n o e u v r e Fte Cdt Hm Favorite Took Meto C. 1

o O p e la H o n C h e c k s
I 0;C:\jpmk-l.O HL— " ‘ ..- I

o C h e c k T r a c k D V 6 0 R T R O U G H - T E R R A I N

F O R K L I F T T R U C K
« b

[• Fhiimuig

o IutioihndoK to T ruck Ptapo.ve

o I’eifunnam e Assessment

I . Support

o Pa rts Assessment

o Technical A-V.se.vsinent

l±S ___________
Confute

2n»»B.TIW tiai'rFI||» |N Foal IIFT TRUCK ChcrasoO EE
Vtmu Favortes

DV 60RT ROUGH-TERRAIN
FORK LIFT TRUCK

» In ti oclnctiou

o IufiocftK tkni to T r a c k P u rpose

. IT .uuting

o P lan n in g M a in te n an c e Sc h e da les

• A sves.smeut

o T F f h n k a l A ssessm ent

o P a r t s A ssessm en t

o P e rfo rm a n c e A w n r n t M

• C heck

o C h e c k T r a c k

o O p era t io n C h e ck s

o C h e c k f o r F a u lts

Edt Wen. Favorite Took Haip

\6 j C:\frwtfc-1.0.lWpagtVpm̂ F-TatfcTnw-hbri

DV 60RT ROUGH-TERRAIN
FORK LIFT TRUCK

• L e a n t

o In tre ih u lio n to T r a c t P m p o se

o P lam d n g M ain te n an c e Schediries

o T ec h n ic a l A ssevsnient

o P a r t s A n e s n n u l

o P e rfo rn ta n re A ssessm en t

• P e r fo u n

o R e p a i r F au lts

o L aim ch T ra c k

o H and le T n tc k

o T ra c k M an o eu v re

o C h e ck T ra c k

o O p e ra t io n C h e ck s

o C h e c k fo r F a n k s

Subset

D V 6 0 R T R O U G H - T E R R A I N

F O R K L I F T T R U C ’K

• P erf ohm

o R epair F a n to

o L a t c h T rack

o HanOie T rack

o T rac k M a w w r f

o C heck T rac k

o O peration Checks

o C heck fo r F au lts

jgt Poitetmteq frurn «« Hr.lfZ:\p~_______

Figure 4.12 Semantic Domains - Alternative Views for the Technical Manual’s Home Page

119

4.4.2 Automatic Identification of Semantically-Based Navigational

Relationships

In the following sections, two different approaches for the automatic identification of

navigational relationships between IOs based on their semantics are presented. These

relationships are automatically converted into physical hyperlinks by the run-time

hyperlink generator. Although both approaches are valid and can be used in

conjunction with each other to generate one big set of navigational hyperlinks, the

resulting number o f hyperlinks would be too large and confusing for the user.

4.4.2.1 Context-Driven Navigational Relationships

The main objective for generating a unique ID for every IO is to preserve its structural

and semantic properties. These properties can be accessed at run-time in order to

identify the context o f the current IO, which is the set of semantically and structurally

related IOs. The identification of the context of an IO enables the generation of

context-driven navigational relationships, which are then included as hyperlinks

within the current IO’s hypermedia page. Figure 4.13 illustrates the technique used at

run-time to generate context-driven navigational hyperlinks using an example IO that

represents fundamental data about the truck’s general performance and dimensions.

By analysing the ID o f the current IO, the required properties are extracted, and five

main lists of hyperlinks are generated:

1 2 0

Known Properties about C urrent IO
IO_Description: General Performance and Dimensions
IO ID: 1.3.9.1.1.1

IO ID Processing

Extracted Properties
IO_Category: 1 (PP)
IO_Task: 3 (Assessment)
IO_Parent: 1.3.9.1 (Fork-Lift Truck)
IO_Function: 1 (Fund)
IO_Seq: 1

P red e c esso rs

(1)
Standard

Information
Categories

provided by F reeservea n d D im ensions * M icroso ft In te rn e t Expt

orfces Toots Hdp

i*9 iD p*-* it**** ^4* <5 0 ' 3
® http ://locall|o st!8080 ftim /F J_ l. 3 .9 .1 . l . l .J s p

 id -ft

Related TopictGeneral Performance nd dimensions
.̂-■kltLJngh

* Broking Syitwn
* lifting Syitwt
► Drift Ad«
* gnoint
► St wring tystew
* Hydroulic tytttia
► H tctried «v»t«w

P a r ts L is t
T echnical O esc r ic L en g th (t o t h e Cork end) LI an

W idth B u 1960 ± 10B
C o n s t r u c t io n h e i g h t v / o u t lo a d

O p era t in g I n to
2450 ± 25Technical Mainter ince

H e ig h t a t a a x ia u a l e f t w /o u t I t ad h4 a n 4200 a a x .
► Technical Mainfer mce D is ta n c e b e tw e e n th e f r o n t a x l

W heelbase Y am 2300 ± 15
F r o n t t r e a d ma 1550 ± 15
R ear t r e a d a a 1550 ± 15
G round c le a r a n c e v / lo a d :

- u n d e r th e lo w e s t p o i n t

a x is and th e fo rk end X a a 625 ± 15

Where AM. I M-
a a 270 ± 15

365 ± 15i d d le o f th e wl te lb a s e
A c tiv it ie s w ith d ifferen t Task

and the sa m e C ategory
A ct ID: 1. *

A c tiv it ie s w ith th e sa m e
T ask and d ifferen t C a teg o ry

A ct ID: *. 3
t t e r

e n a io n s :

IO s m em b er o f th e sam e
parent container:

1.3.9.1. *.2
1 .3 .9 .1 .* .3 .. etc

S « « 411»

(Son* Category drff«r*nt Totkc)

> Tn«hfWMMreftitiM

O th e r Link I

L i f t i n g
Power d ie
D is ta n c e f r o a
Load l i f t i n g h e ig h t h3

(Sam* T«k diff«r«nt Cot«gory)

ork end c

> p?rf2apyĵ.Aa<a»*g!i ended Links;H ig h ly R e t

► Back Vi
S id e View

► T ruck Bock View

► T ruck S id e View

Local intranet

Figure 4.13 Generation of Context-Driven Navigational Hyperlinks

121

http://locall%7cost!8080ftim/FJ_l

1. List of all standard “Information Categories”. This list is standard for all types of

IOs.

2. List of the Predecessors o f the current IO. This includes links to the performance

data of other product systems such as the braking system, lifting system, drive axle,

etc.

3. Members o f the same parent container (brothers). This includes links to illustrative

images and animations outlining the general performance of the truck.

4. List of all activities that belong to the same information category o f the current IO

but support different tasks. This includes a hyperlink to general forklift truck

introduction.

5. List of activities that share the same supported task with the current IO, but belong

to a different information category. This includes links to the truck’s parts

specifications and their technical description.

Clearly, all the generated hyperlinks are related topics, which were extracted from the

semantically built hierarchical structure. This navigational scheme is useful for the use

by more experienced users who know the technical terms and topics and only need

shortcut referential links to these topics. It is also useful when a small portion of the

technical documentation material is published rather than the whole thing, e.g.:

material which shows only the action related documents or only the planning

documents, etc. The on-line generator of these hyperlinks has been developed using a

Java™ Servlet™ with embedded SQL statements.

1 2 2

4.4.2.2 Purpose-Driven Navigational Relationships

This novel technique for automatically identifying navigational relationships and

generating physical hyperlinks depends heavily on the semantic data model and in

particular, the classification o f information categories by their “purpose”. Every

composite IO is associated with an information category that has a distinctive

informational purpose, i.e. planning, support, or action. In most cases there exists a

close complementary relationship between topics in these three separate but yet

tightly coupled domains. This technique aims at identifying and extracting these

relationships and converting them into physical hyperlinks. Figure 4.14(a) illustrates

the relationships between planning, support and action information and the type of

these relationships, namely, “Planninglnfo”, “Supported_By”, and

“Action Applied”. For instance, action-related information about a certain product’s

system “S I” is closely associated with the planning and support information about

“SI” and vice versa. Figure 4.14(b) shows the automatically generated purpose-driven

navigational hyperlinks for the “check the braking system” procedure, which

semantically belongs to the “action” information domain. Ideally, a comprehensive

presentation of this procedure should include hyperlinks pointing to fundamental

information about the performance of the braking system (Planning_Info

relationship), and to the specification of the braking system’s parts and its technical

description (SupportedBy relationship).

The technique used to generate these relationships depends on matching the textual

description and content of IOs with one another, taking into consideration their

purpose (planning, support, action) and their structural type (composite, atomic). The

123

Supported_By

Supported_By

Relationships between Planning,

Action_Applied

Planning Info

(a) Support, and Action Domains

<------------------
Planning_Info

Support
Information

s
Planning

Information

Action_Applied

 ►
Action

Information

Check Braking System (Action)

© « • J -A - © *

| S Di smount Brake Drum

Purpose and Perfonngnce

Schedules
’ Ports Ust
’ Iithnj£9l0eimm«>Q
■ Operating Information #.<

Check the broking
eyetem

3. teaai&JlHfaLftMi

e le u e the handbral

Brake brua
14. ft.irwnt.na of Tin
Wh.tl
15. jja a b l f Fmslffltcl!

SupportedByPlanning_Info

Supported

... • !."j.« ✓

BS Technical Description (Support)BS Parts (Support) —BS Performance (Planning) —

(b) Automatically Generated Purpose-Driven Hyperlinks

Figure 4.14 Purpose-Driven Navigational Relationships

124

navigational links generator generates a two-tuple <source, target> representation for

every extracted relationship. These tuples are stored separately in three different

physical database tables each corresponds to a relationship type. This process is

executed three times, once for every informational purpose category. The following is

a description o f the algorithm used to generate the “Supported_By” relationships

table:

1. Process the Supported By table.

1.1 Delete the existing SupportedBy table (if it exists).

1.2 Create a new Supported By table.

2. Extract the description o f all composite IOs of type “Support”.

3. For every IO extracted in step 2, do the following:

3.1 Match its description with the description and content (textual data) of

composite and atomic IOs o f type “Planning” or “Action”.

3.2 If a match is found then insert a new relation into the Supported By table

where the value o f the target field is the ID of the current IO of type “Support”

and the value o f the source field is the ID of the matched IO.

A similar algorithm is used to generate the “Plan lnfo” and “Action_Applied”

relationship tables. Although the automatically generated relationships are

semantically valid and adequate, the author has the privilege o f accessing the

relationship tables to update them if needed, e.g.: adding a relationship to an external

resource. Table 4.2 presents an example snapshot into the automatically generated

“Supported By” database table. It shows that the target IOs are all composite IOs

(topics), and the source IOs can be either composite or atomic. A relationship, which

associates a composite IO with another composite IO, will generate a referential

hyperlink between the two corresponding hypermedia pages, e.g.: the highlighted

relationship <Braking System, TD-Braking System> relates the

125

Table 4.2 Automatically Generated “Supported By” Relationships

Source ID Source Description Target ID T arget Description
1.1.9.1 Fork-Lift Truck 3.3.9.1 TD-Fork-Lift T ruck
1.1.9.1 Fork-Lift Truck 2.3.9.1 PL-Fork-Lift Truck
1.1.9.1.1.1 Introduction 2.3.9.1 PL-Fork-Lift Truck
1.1.9.1.1.1 Introduction 3.3.9.1 TD-Fork-Lift Truck
1.3.9.1 Fork-Lift Truck 3.3.9.1 TD-Fork-Lift T ruck
1.3.9.1 Fork-Lift T ruck 2.3.9.1 PL-Fork-Lift Truck
1.3.9.1.1.1 General Performance and Dimensions 2.3.9.4.9.3 PL-Wheel
1.3.9.1.1.1 General Performance and Dimensions 3.3.9.5 TD-Engine
1.3.9.1.1.1 General Performance and Dimensions 2.3.9.3.9.3 PL-Fork Arm
1.3.9.1.1.1 General Performance and Dimensions 2.3.9.5 PL-Engine

1.3.9.2 Braking System 2.3.9.2 PL-Braking System
1.3.9.2.1.1 Brakes - General 2.3.9.4.9.3 PL-Wheel
1.3.9.3 Lifting System 2.3.9.3 PL-Lifting System

1.3.9.3 Lifting System 3.3.9.3 TD-Lifting System

1.3.9.4 Drive Axle 2.3.9.4 PL-Drive Axle
1.3.9.4 Drive Axle 3.3.9.4 TD-Drive Axle
1.3.9.5 Engine 2.3.9.5 PL-Engine
1.3.9.5 Engine 3.3.9.5 TD-Engine

1.3.9.5.1.1 Engine - General 2.3.9.5 PL-Engine

1.3.9.5.1.1 Engine - General 3.3.9.5 TD-Engine

1.3.9.6 Steering system 3.3.9.6 TD-Steering system

1.3.9.6 Steering system 2.3.9.6 PL-Steering system

1.3.9.7 Hydraulic system 2.3.9.7 PL-Hydraulic system

1.3.9.7 Hydraulic system 3.3.9.7 TD-Hydraulic system

1.3.9.8 Electrical system 2.3.9.8 PL-Electrical system

1.3.9.8 Electrical system 3.3.9.8 TD-Electrical system

1.3.9.8.1.1 Electrical system - General 2.3.9.8 PL-Electrical system

1.3.9.8.1.1 Electrical system - General 3.3.9.8 TD-Electrical system

4.5.2.2 Running the New Truck 3.3.9.1 TD-Fork-Lift Truck

4.5.2.2 Running the New Truck 2.3.9.5 PL-Engine

4.5.2.2 Running the New Truck 3.3.9.4 TD-Drive Axle

4.5.2.2 Running the New Truck 2.3.9.7 PL-Hydraulic system

4.5.2.2 Running the New Truck 2.3.9.1 PL-Fork-Lift Truck

I I I I etc |

126

performance data of the braking system with its technical description. However, a

relationship which associates an atomic 1 0 with a composite 1 0 corresponds to the

automatic identification o f the “hot” keywords that exist in the source 1 0 ’s textual

content and will generate the appropriate referential hyperlink to a more detailed

elaboration o f these keywords. For example, the text describing the 10 titled “Picking

Loads” contains references to the IOs titled “Fork Arm” and “Hand Brake”. These

textual references are identified and the corresponding relationships are generated,

which are converted into referential hyperlinks as depicted in Figure 4.15.

The on-line generator o f these hyperlinks was developed using a Java™ Servlet™

with embedded SQL statements. The full set of the automatically-generated purpose-

driven navigational relationships, “ActionApplied”, “P lan ln fo”, and

“Supported By” are depicted in Tables C .l, C.2, and C.3 of Appendix C,

respectively.

4.5 FRAME-BASED PRESENTATION TEMPLATES

The presentation templates used in the user interface are based on HTML frames,

which divide the interface window into a number of navigation-able areas. Every

composite IO is associated with a presentation template which is based on its access

method. Thus, there are three types of templates namely index, collection, and guided

tour. Figure 4.16 illustrates the physical organisation of different types o f presentation

templates based on the access method. The “Categories”, “Content”, “See Also”, and

“Where Am I?” frames are standard in all templates. Other frames are exclusive to a

specific access method, e.g.: list of IOs that are members o f a guided tour. The

127

9 Picking Loads - Microsoft Internet Explorer provided by Freeserve

Fte Edit View Favorites Tools Help

' O iE) i! $ > !seareh ■&■*«*» 0 - *» Ea - €5
Address h ttp ://locatiost:8080/lpm/F_f_4 .7 .2 .5 .Jsp

Picking Loads

- a &

Depending on their type, the loads must be placed on palettes, special rests or blocks, in order to provide the necessary clearance for inserting and
withdrawing the fork arms when picking up and putting down. The fork arms must be symmetrical to the longitudinal axis o f the truck, and the load must be
placed symmetrically to the fork arms and in accordance with the fork arms loading diagram. Picking up loads should be performed with high caution and
following the operation sequence given below:

1. Turn the truck against the load and stop it in a position suitable for picking-up.

2. S e t the lifting gear mast in a vertical position.

r i i f T t h ^ o r k armprro the height needed to pick up the load.

4. Slowly move the truck fo r w ard until the fork arms are inserted under the load and the load hits the face o f the lifting gear. Pull the handbrake. 5. Lift
the load to a height allowing it to be pulled out o f the stack (or rack).

6. Tilt the lifting gear mast backward to the end.

7. Release the handbrake, slowly moves the truck away and stop it a t a distance allowing the load to be lowered. Pull

8. Lower the load to the transport height (300mm above the ground), release the hand brake and move off.

f ^tĥ iand brakêV

Support Information :
► PL-Hond Brake — —
^ L - F o r k Arm

Local Intranet

a lao l

^ HeeLtetiLbcti

Mal«MU« Metier

immu i
rtunn i MCftM l«mM :

. * ; „ — ' r; , • . , ;V* • fc '*

* --- -
I""""'*
I fT*"*

«Pr«vl

* U rn >«■ t n I43MSI

3 1430865 Spring 1

'.f * fv — — 4

V -

Figure 4.15 Keyword-Based Referential Hyperlinks

128

http://locatiost:8080/lpm/F_f_4.7.2.5.Jsp

presentation o f the IOs inside the “content” frame depends, again, on the access

method. The content o f an index template is presented as an ordered list (see Figure

4.16(a)). In a collection template, the content is presented as a two-column borderless

table which contains the textual data in the left-hand column and other media types,

e.g. images, videos, animation etc., in the right-hand column (see Figure 4.16(b)). The

“content” frame o f a “guided tour” contains the extra navigational buttons, “Next” and

“Previous”, which assist in navigating in a forward or backward sequence,

respectively, and the “Back to . . .” button which provides an exit out of the guided

tour (see Figure 4.16(c)). Navigational assistance is provided in every display through

a standard navigational hyperlink, “Where Am I”, which shows the path navigated so

far, i.e. an ordered list o f the predecessors of the current 1 0 .

Although the content o f all the frames in any template are generated automatically, at

run time, upon user request, and depending on the properties of the current 1 0 , the

“content” frames are generated offline. These templates are created using Java classes

that generate Java Server Pages (JSP™) code. JSP™ is an HTML-based document

with embedded Java-based control statements. The source code for the classes that

generate these JSP™ templates is shown in Appendix D.

Furthermore, the abstract function o f every 10 is associated with a distinct icon to

represent its role in a visual manner. Table 4.3 outlines the abstract functions of IOs

and their associated visual icons. The use of some of these icons is shown in the user

interface windows in Figure 4.16. Different background colours can be easily

associated with different classifications of categories, purposes, tasks, or task types

(cognitive demand). Every classification can be associated with a distinctive

129

3 Check the hraklnp, sy*teni Microsoft internet f rplorcr provided by f rccserve p mm

Categories

Where Am I?

Categories

Where Am I?

Categories

Where Am I?

See Also

Content

Ffe Ed* VMw Favor*** Tootf

o*~- a i i i p - *
<fj http://V)caiiert:eoeo;*wrF_f_5.9.9

'•«*» *$<*** 0 ./'■ «• ES • U Icl
S’** AlsoC h ic k t h e b ro k in g r y x te m

Istei<LdLteintfft*v»
5<hedults

Ports List

Qgcggjpfl-fef.?aagy. lag
Tccbmral Mo.hIcmoci

Prspfflcsi ■sn .Pffgĉ sg
Wheel Dismounting

Dismount Broke Drum

ft.iMMMt.ftttrW

Dismount Hub

gasiLSffiglMia

Cl>qr.*«r»9?r<*«
Reaswmble Hub

BUiMafeilttfJa.S.gIg
Clearing Adjustment For The Hub Bearings

BtoMIEB

Remounting of the Broke Drum

Vssmn!«<wJJte.wi*t.!
m m b k E M C h

(a) Index M Local nbanot

3 4 .Drive Axle Microsoft internet txpio

«] $ j s..* **•««*. e * ■*> S3
W*»w IB «to://k>c*oU:e080taVFJ_3 3.9.<.)Bi

IMIZ.gl SVe .Also4 O rtv n A x b

,f||-‘rP9*c end p«rfc.™*r>ca
Toclrilcol Maintenance

Schedules
Parts List

Tecbnuwl b* ter if
Operating Info ruction
Te-:lrwccJ * W «nqx« The fron t and rear drive codes are o f a similar design.

The d ifference between the two axles lies in the left­
side. respectively right-side version o f the differential
and the servo drum brake on the final drive of the
fron t axle

mu m I ?rBoth axles have wheel reducing gear drives with spur
gears and servo drum wheelbrakes

he mechanism for engaging the rear drive axle consists
of a lever system, a rocker arm. pull ropes and
handle with a locking button.

The rocker arm engages with the axle o f the
distribution gearbox by means o f its splined sleeve

Planning Information
PP-Driv* Axle

(b) Collection

3 Check th e braking system Microsoft Internal fxploret provided by Troeserve

f̂wd. 0 r :v m ■€3 :i%) i s t i - p >
iJhRp://locrfo«i80eW»m/FJ_5.9

Chech th« braking system

3. Dismount Brake Drumknuww fl i Perfow
Dismount Carr Hr

*• frjwwurit Hub

Schedules
Ports List
Technical C^scriptjgn
Operating Informal

Taclmtcal M*m **»••«• 8. glean Servo Bra*
9. Reassemble Hub

1. Unscrew
sp ring washers

ot t ch* 4 acre*
4. Take out the carrier
8. Cl*

Inspect Cor daaage
7. Replace a l l fa u lty p a rts

The Hub Bearings
1 2 . tamount.no gi thy
Comjr
13. Remounting a t the Brake
Drum

Remount Inq of the Wheel

M * .Also

BA,;< TO Maintenance
ChecksContent

See Also Td>« off bglt., »q|h.r3 g«i
screws

(c) Guided Tour

See Also

Content

List o f IOs
in Guided

Tour

Back to
Main Topic

Figure 4.16 Physical Organisation of Presentation Templates of Access Methods

130

http://V)caiiert:eoeo;*wrF_f_5.9.9

Table 4.3 Visual Presentation Icons for Functions of Information Objects

Function Visual Presentation Icon

Fundamental (Fund) 0
Procedure (Proc) # >
Clarification (Cla)

Advice (Adv) A
Specification (Spec) &
Organisation (Org)

* 9

131

background colour to enable users to determine the type of the delivered information

in a visual manner. For example, “blue” background can be associated with planning

information, “yellow” with action information, and so forth.

4.6 SYSTEM ARCHITECTURE

The system architecture shown in Figure 4.17 has been created to assist in the

development i.e. author and implement, of the technical manual using the model-

driven authoring process. It distinguishes two types of environments namely, Off-Line

Environment and On-Line Environment (run-time).

The off-line environment comprises specially developed tools for authoring and

implementing the technical documentation. These tools sit on top of a database

containing the technical documentation metadata. All access to the database is

facilitated through a JDBC/ODBC bridge. This database is updated by the author(s)

using the Structure Builder and processed by the Navigational Relationships

Generator. The domain’s physical data files are stored in a file system that is edited

using different types o f commercially available multimedia editors.

The main implementation tool is the Web Pages Generator, which processes the

design and metadata database of the technical documentation, and automatically

generates HTML and XML documents using the HTML Render and XML Render

tools respectively. The HTML render tool uses the Presentation Templates Generator

in order to generate JSP templates which embed Java-based control statements that

are invoked at run-time (on-line). In addition, the HTML render tool renders the

132

>eWV
B
J
£o

6X1
1
*coJS•t-ts
<

Navigational
Relationships

Generator

JDBC/ODBC Bridge
S tr u c tu r e B u ild e r

Design &
Metadata
Database

Navigational
Relationships

M u ltim e d ia E d ito rs

5 r

S ystem

Presentation
Templates
Generator

BV
E<u
"a,
E

Style Sheets
CSS/XSL

Web Pages Generator

HTML Render XML Render

i o n | ,, A „ r. XML FileJSP Templates Ml ML flies

W ebSt;rver

4>
E
BO
-

BW
B

Navigational Hyperlinks
Generator

(Java Servlet)

Purpose -
Driven

Context ■
Driven

*S ft <

A L-Web Browser

U SER

Figure 4.17 System Architecture

133

content of every 10 in an HTML file, which is requested, at run-time, by JSP

templates. Similarly, the XML render tool generates the XML file, which contains

the structured application data. This file can either be used for data exchange e.g. sent

to vendors, distributors, customers, etc., or can be published on the Web by

associating it with a suitable style sheet (XSL, CSS). The HTML and XML render

tools are used separately and upon request.

The outcome o f the Web Pages Generator includes JSP templates, HTML and/or

XML files, which are mounted on the Web server together with the physical data

files. The Web server that was employed is the Java Server Web Development Kit

version 1.0.1 [JSWDK, 1.0.1], which contains a Web container that runs JSP files and

Java Servlets. The Web container has a Servlet engine for developing and testing

Servlets, a simple HTTP Web server, and a JSP engine.

The on-line environment mainly comprises the Navigational Hyperlinks Generator

that is based on two alternative Java Servlets™. These Servlets are invoked by the JSP

templates to generate physical navigational hyperlinks based on the navigational

method chosen by the author, i.e. context-driven or purpose-driven. They process the

application data stored in the technical documentation design database in order to

generate valid navigational hyperlinks and render them into HTML files, which are

included as frames by JSP templates. The fully rendered pages can then be browsed

using any standard Web browser.

134

4.7 SUMMARY

Performance support through hypermedia-based technical documentation was the

central focus o f this chapter. The main contribution of this chapter is a model-driven

authoring methodology for Web-based technical documentation. This methodology

utilises the usage-based data model for the design of technical documentation and

adheres to the guidelines o f structured authoring described in Chapter 3. Novel

approaches, methods, and techniques have been introduced to assist in the practical

implementation o f this authoring methodology. These include an approach for

building the hypermedia-based technical documentation structure which is based on a

semantically enhanced version o f the system-based structuring method. This approach

includes a criterion for indexing the IOs o f the technical documentation, a technique

for generating dynamic identification codes for maintaining the structural and

semantic properties o f IOs, and a technique for the automatic code generation of

hypermedia documents in two different mark-up languages, HTML and XML. A

navigational model based on information semantics also has been proposed which

includes an approach to generate context-driven navigational relationships, and an

approach to generate purpose-driven navigational relationships. Finally, a presentation

approach using frame-based templates, icons, and colours has been introduced and the

system architecture used for implementing the authoring methodology has been

presented.

135

CHAPTER 5

INTELLIGENT PERFORMANCE SUPPORT THROUGH

INTEGRATED KNOWLEDGE-BASED ADAPTIVE

HYPERMEDIA

This chapter is organised in three main sections. The first section introduces a

methodology for providing intelligent diagnosis support through knowledge-based

Expert Systems (ES). At the core of this methodology is an integrated (shallow and

deep) knowledge engineering process for diagnostic ESs, which includes an integrated

knowledge model. Implementation techniques concerned with automatically building

a Knowledge Base (KB) for locating and correcting braking system faults in a forklift

truck are presented. In addition, a general architecture for the diagnostic ES is

outlined. In the second section a methodology for the “intelligent” retrieval of

diagnosis information through adaptive hypermedia is described. A strategy for

providing adaptive support based on a stereotype model of the knowledge o f the users

is discussed. This strategy is implemented on top of the technical documentation data

model discussed in chapters 3 and 4. In addition, a general architecture for the

adaptive hypermedia system is outlined. Finally, the third section presents a general

architecture for the integration o f both systems in one adaptive hypermedia diagnostic

ES.

136

5.1 INTELLIGENT PERFORMANCE SUPPORT THROUGH

KNOWLEDGE-BASED DIAGNOSTIC SYSTEM

The main focus o f this section is on providing intelligent performance support through

a knowledge-based diagnostic ES. It introduces an integrated approach for knowledge

engineering. At the core o f this approach is an integrated shallow and deep knowledge

model which is also introduced. Next, in order to demonstrate the applicability and

validity of this original approach, a rule-based KB for diagnosing and correcting

braking faults in a forklift truck is automatically generated in a specific ES shell

format. Finally, a general architecture for the diagnostic ES is presented.

5.1.1 Encapsulating Diagnosis Knowledge of Experts in an Expert System

In general, an “expert” is a person who possesses an extensive theoretical and/or

practical understanding o f a subject or domain, i.e. knowledge. According to Rolston

[1988], although expert knowledge can be secured from a variety o f sources,

including documentation and existing computerised information systems, most of it

must be elicited from human experts. Expert knowledge is crucial for supporting the

performance o f less experienced users, where human experts are often either too busy

to consult or are not available at all. The importance of expert knowledge for the

success of today’s organisations and businesses is indicated by Negnevitsky [2002],

who states that “any successful company has at least a few first-class experts and it

cannot remain in business without them”.

137

The word “diagnosis” is defined in [Oxford Dictionary, 1998] as the identification of

a mechanical fault or a disease from its symptoms. Moreover, in [Patel et. al., 1996]

diagnosis is defined as the process of locating the exact cause(s) of an error or a

failure. Diagnosis assistance is a very important part of the overall assistance provided

by a performance support system. In addition to identifying and locating a certain

fault or error, an extended diagnosis process can be utilised to include the fault

correction1. As current products, equipment, and systems increase in size and

complexity, the difficulty o f diagnosing their faults increases, hence the use of expert

diagnosis knowledge to support user performance is increasingly necessary. Capturing

and encapsulating expert diagnostic knowledge enables permanent preservation of,

and access to, this knowledge through special purpose ESs. These are computer

applications which solve complicated problems that would otherwise require

extensive human expertise, by simulating the human reasoning process [Rolston,

1988].

Long lists of successful knowledge-based ESs developed over the last thirty years are

available in [Coffey et al., 2003; Negnevitsky, 2002; Patel et. al., 1996; and Rolston,

1988]. ESs have distinctive and unique characteristics which distinguish them from

conventional computer programs, namely, they perform at a human expert level in a

narrow and specialised domain, they have explanation capability, they apply

heuristics (rules o f thumb) to guide the reasoning, and they are able to employ

symbolic reasoning when solving a problem. Application categories o f ESs that are

suitable for Web-based implementation may include product selection/configuration

1 Throughout this chapter, diagnosis will be used to refer to all activities concerned with identifying,
locating, and correcting faults.

advisors, job aids/performance support tools, diagnostic assistants, tutorials, etc. The

three main components at the core of an ES are the Knowledge Base (KB) that

contains the domain expert knowledge in a format useful for problem solving, the

Inference Engine (IE) which carries out the reasoning in order to yield a solution, and

the User Interface (UI), which is the means o f communication between the user and

the ES. Additional utilities that accompany an ES might include explanation facilities,

developer interface, rules editor, debugging aids, and run-time knowledge acquisition

tool.

5.1.2 Integrated Knowledge Engineering Process for Diagnostic ESs

Knowledge engineering (KE) is the process of acquiring specific-domain knowledge

and building it into the KB to be used within an ES [Rolston, 1988]. This process is

executed by a “knowledge engineer”, and it is considered the most important and

difficult aspect o f the ES development process. A general outline of a “typical” KE

process is depicted in Figure 5.1. This shows the main stages in the process, namely

knowledge acquisition, knowledge representation, and knowledge transformation. The

figure also shows the main sources o f knowledge, namely human experts, hardcopy

documentation, and existing computerised information systems. The following brief

description o f the knowledge engineer’s role taken from Negnevitsky [2002],

illustrates the typical KE process:

“The knowledge engineer is responsible for selecting an appropriate task for the ES.

S/he interviews the domain expert to find out how a particular problem is solved

0knowledge acquisition). Through interaction with the expert, the knowledge engineer

139

Sources of Knowledge

Technical
Documentation

(Hard Copy)

Existing
Information Systems

(Computerised)Domain Expert

Knowledge Acquisition

Knowledge Representation

Knowledge Transformation

ES-dependent KB

ReasoningT Control

Inference Engine

Figure 5.1 General Outline of a Typical Knowledge Engineering Process

140

establishes what reasoning methods the expert uses to handle facts and rules and

decides how to represent them in the ES {knowledge representation). The knowledge

engineer then chooses some development software or an ES shell, or looks at

programming languages for encoding the knowledge {knowledge transformation).”

Knowledge used in diagnostic ESs can be classified into what in this chapter are

termed, shallow knowledge and deep knowledge. Shallow knowledge is defined as

specific knowledge associated with identifying the symptoms and causes of faults and

the diagnostic strategy that might be employed i.e. “what-to-do” type of information.

This provides explicit fault-dependent knowledge which is used in correcting faults

and can be represented using heuristic rules. These rules are transformed into a set of

formal rules to represent the KB o f the ES. Although this type of knowledge can be

acquired from troubleshooting manuals, fault correction sheets, error codes, charts,

etc., the main source o f this type o f knowledge is the human diagnosis expert. In

contrast, Deep knowledge is detailed information about the diagnosis procedure, the

structure, and the properties o f the supported product’s components and how they

interact. This type o f knowledge is used to enhance the understanding o f the user by

explaining, illustrating, and clarifying the performed diagnosis tasks, i.e. “how-to-do”

type of information. It includes a description of the work to be done, parts involved,

precautions, warnings, required instruments, etc. The main source for this type of

knowledge is the technical documentation of the product itself.

Clearly, shallow and deep knowledge types complement each other, and their

integration provides effective knowledge support for user performance. This hybrid

approach to knowledge representation takes advantage o f both types of knowledge

141

and minimises the limitations associated with the use of one type on its own. In

addition, it provides the means to transform or upgrade existing computerised

technical documentation into fully knowledge-based performance support systems.

The key issue in achieving the above is the integration o f both knowledge types

within the KE process at the knowledge representation stage. Figure 5.2 depicts an

integrated (shallow and deep) KE process for developing diagnostic ESs. The Figure

clearly indicates the integration o f both knowledge types at the knowledge

representation stage in an ES shell-independent manner. This integration is

implemented through the inclusion o f “deep knowledge” references in the KB of the

ES. These references are used to retrieve a detailed description o f the diagnosis

procedures that exists in the hypermedia-based technical manual. In addition, they

provide the means to enhance the content of the technical documentation by

automatically updating its information base with useful diagnosis and correction

procedures. These features will be fully described and demonstrated later. Issues

related to the generation o f Web-based technical documentation were discussed in the

previous chapters.

5.1.3 Integrated Shallow and Deep Knowledge Model

Shallow knowledge is mainly fault-oriented and can be modelled with regard to a

specific set o f faults. Figure 5.3 outlines an abstract integrated shallow and deep

knowledge model for diagnostic ESs. The model is based on the following

hypotheses, where words in italic constitute the main entities o f the model:

142

Integrated
Knowledge Model

Domain Expert

KB Generation
(ES Shell Dependent)Shallow Knowledge

Acquisition
Shallow Knowledge

Representation Rule-Based KB

1 Reasoning f Control
Expert Integrated

Knowledge
(metadata) Inference Engine

ES Shell

Deep Knowledge /
Technical

Documentation
(metadata)

Domain Model

Hypermedia-based
Technical ManualDeep Knowledge

Representation

Figure 5.2 Integrated Knowledge Engineering Process for Developing Diagnostic Expert Systems

143

i s p a r t o f i s p a r t o f

id en tified b y a v e r if ie d b y a

ig n ited b y j

i s p a r t o f i s p a r t o fCause

Symptom

Fault

Correction
Procedure

Diagnosis
Procedure

d eep to sh a llo w

shallow to shallow

sh a llo w to d eep ►

Figure 5.3 Integrated Shallow and Deep Knowledge Model for Diagnostic Expert Systems

144

• Every fault has one or more symptoms and causes,

• A symptom is an identifiable sign of existence of a fault,

• A cause is something that ignites a fault,

• Every fault has a diagnosis and a correction procedure (deep knowledge),

• A diagnosis procedure verifies a fault, and

• A correction procedure repairs a fault.

It is worth noting that the information associated with diagnosis and correction

procedures are o f deep knowledge type. Through the association o f every fault

(shallow knowledge) with the corresponding diagnosis and correction procedure, the

relation between the shallow and deep knowledge can be established.

This integrated knowledge model is implemented within a database schema for use

along with the required expert knowledge data. Figure 5.4 shows an E-R diagram

representing the corresponding database schema of the integrated knowledge model. It

outlines the database tables constituting the physical repository o f the shallow

knowledge namely, symptoms class ES S Class, symptoms ES Symptoms, causes

class ES C Class, causes ESjCauses, fault symptoms ESFSs , fault causes ESFCs,

and faults ESFaults. The interaction between the shallow knowledge and deep

knowledge is indicated through the relation between the faults table ES Faults and

the technical documentation metadata table IOs (information objects).

145

Name
Description

ICat
Task
Function

CJD
Status

CJD
Status

Container
ConForm
Seq
Form
Location
Content

ID

D_Proc
Outcome
C Proc

on e to m any relationship

 ►

Figure 5.4 E-R Diagram Representing the Database Schema of the Integrated Knowledge Model

146

5.1.4 Rule-Based KB for Fault Diagnosis

5.1.4.1 Application Domain Example

An application domain example concerned with locating and correcting braking

system faults in a forklift truck, was selected to demonstrate the applicability of the

integrated KE process for diagnostic ESs. The application’s main objective is to

support the performance o f less experienced technicians to perform at the level of

more experienced and skilled technicians by encapsulating this expertise in a

diagnostic ES. The data used was extracted from the troubleshooting documentation

and the technical manual o f the forklift truck developed for a manufacturer of all

terrain forklift trucks as part o f a project undertaken by the Cardiff University within

an EC-funded collaborative research program [Pham and Setchi 2003; Pham and

Setchi, 2001, Setchi, 2000, and Pham et al., 1999].

The application works in conjunction with the Web-based prototype technical manual

of the all-terrain forklift truck (see Chapter 4), which provides the deep knowledge

type information.

5.1.4.2 Building the Shallow KB

Building the shallow KB is the responsibility of the knowledge engineer which

requires inserting the acquired expert knowledge data into the database tables shown

in Figure 5.4. The following recommended steps are the principle guidelines for

building the shallow KB:

147

1. Identify the set o f faults to be tackled. Faults are given a unique identification

code (ID), and are associated with a diagnosis procedure, an abnormal diagnosis

outcome, and a correction procedure. Within this context, a fault is perceived as

an abnormal (faulty) outcome o f a diagnosis procedure. The description of the

diagnosis and correction procedures may already be included in the technical

documentation, and in this case only a reference to their ID is needed.

2. Identify the set o f symptoms and causes that will be used in the faults’

determination. Symptoms and causes are identified by a unique ID, class

description and status, e.g.: the symptom “pedal is soft” is coded as ([ID: 1],

[description: pedal feel], [status: soft]).

3. Associate every fault with one or more symptoms selected from the full set of

symptoms identified in step 2. Update existing symptoms or add new symptoms if

needed. Similarly, associate faults with fault causes and attach a certainty factor

CF with every “fault-cause” combination. CF represents a measure of the expert

confidence that a cause C is most likely to ignite a fault F. It is used in the ES to

direct the dialogue with the user by presenting the causes with higher CFs first,

which helps in converging more quickly to a solution. This approach introduces

the expert knowledge into the user dialogue sequencing process implemented by

the ES.

Figure 5.5 shows the structured shallow knowledge data used for diagnosing the

braking system faults in the forklift truck. The diagnosis data is structured in tables of

possible causes, symptoms, and faults. In addition, the figure shows the tables which

associate faults with their symptoms (Fault Symptoms) and their possible causes

(Fault Causes). A fault symptom or cause class can have one or more user-defined

148

Fault Causes
Fault Cause CF

1 9 90
1 2 80
3 7 95
3 2 70
4 1 85
5 6 95
5 4 70
6 2 75
7 3 90
7 5 70

10 8 95
11 1 100

" Faults
ID Diagnosis Procedure Diagnosis Outcome Correction Procedure

1 Check the brake fluid pipes Damaged Replace damaged brake fluid pipes
3 Check brake cylinder Damaged brake cylinder Replace the brake cylinder
4 Check brake piston Blocked piston Replace the brake piston
5 Check the Servo Brake Worn-out brake shoe Replace the brake shoe
6 Check brake disk Worn-out disk Replace the brake disk
7 Check the brake pedal Blocked bushings Unblock brake pedal bushings
8 Check the brake clearance Different in the two wheels Adjust the brake clearance
9 Check the hand brake rope Incorrectly adjusted length Adjust the hand brake rope

10 Check the hand brake rope Broken Replace the hand brake rope
11 Check the main cylinder rubber glands Swollen Replace rubber glands in the main cylinder

Causes
ID Description Status

0 Unknown unknown
1 Condition of the brake fluid contaminated/low quality
2 Working environment very rough and bumpy
3 Working environment dirty and dusty
4 Weather condition very cold
5 Weather condition very hot
6 Brake shoes last replaced > 90 days
7 Brake cylinder last replaced > 2 Years

8 Hand brake rope last changed > 2 Years
9 Brake pipes last checked > 6 months

Symptoms
ID Description Status

1 Pedal feel soft

2 Pedal feel hard
3 Braking effect decreased or missing
4 Braking effect truck skids

5 Parking brake does not operate

6 Quantity of brake fluid little less than average
7 Brake fluid visual inspection fluid leaking

8 Quantity of brake fluid considerably less than
average

Fault Symptoms
Fault Sympt.

1 3
1 7
1 8
3 1
3 4
4 2
4 3
5 1
5 3
5 6
6 1
6 4
7 2
7 3
8 4
9 5

10 5
11 2

Figure 5.5 Structured Shallow Knowledge Data for Diagnosing Braking System Faults in the Forklift Truck

149

status values, e.g.: the fault symptom class “pedal feel” has two user-defmed status

values, “5 0 / / ” and “h a rd \ and the fault cause class “working environment has also

two user-defined status values, “very rough and bum py and “dirty and dusty”. In

addition, a default system-defined status value “normal” is automatically associated

with every symptom and cause class. Moreover, every fault is associated with a

diagnosis procedure, an abnormal diagnosis outcome and a correction procedure, e.g.:

the diagnosis procedure for fault “1” is “check the brake fluid pipes”, the abnormal

diagnosis outcome is “damaged “, and the recommended fault correction procedure is

“replace damaged brake flu id pipes”. A fault diagnosis procedure can have one or

more abnormal outcome values, e.g. the outcome of “check the hand brake rope”

diagnosis procedure is either “incorrectly adjusted’ or “broken”. Similarly a default

system-defined outcome value “normal” is automatically associated with every fault

diagnosis procedure.

A user interface has been constructed on top of the database tables in order to

facilitate the updating process o f the structured shallow knowledge data in a graphical

and user-friendly way. This structured set of data has been used to automatically

generate a prototype rule-based ES for diagnosing braking faults, and to demonstrate

the user performance support provided by the adaptive hypermedia system. The

quality o f the data acquired from the diagnosis expert has a huge effect on the final

performance of the ES.

150

5.1.4.3 Abstract Rule Format for Representing the Diagnostic Strategy

In a rule-based ES, knowledge is represented through a set of IF-THEN production

rules. The inference engine compares each rule stored in the KB with available facts

in order to reach a conclusion. The diagnostic strategy is represented through abstract

IF-THEN rules which are realised from the integrated knowledge model discussed in

5.1.3. The following abstract rules are used to generate the rule-based KB:

Rule (1):
IF [Symptom]
AND { [Cause] } ,where {} means optional
AND [Abnormal Diagnosis] , requires deep knowledge
THEN [Fault (x)]

Rule (ID:
IF [Fault (x)]
THEN [Correct (x)] , requires deep knowledge

These rules read as follows:

If a symptom is found and a cause is known and the diagnosis of a certain fault is

abnormal then a fault is identified. If a fault is identified then the associated

correction action is recommended.

Example:

IF [Pedal is soft]
AND [The brake fluid is contaminated/low quality]
AND [Check brake piston for blockage is confirmed true]
THEN [Brake piston is blocked]

IF [Brake piston is blocked]
THEN [Unblock the brake piston]

151

A fault symptom is the initial fact that can be determined because it is easily

identifiable by the user, e.g.: soft pedal, decreased braking effect, etc. When one or

more fault symptoms are identified, the associated fault cause(s) are checked for

existence. Then the associated faults are diagnosed until a single fault is isolated.

When a single fault is identified, the associated correction procedure is recommended.

Fault causes are considered “optional” because, in certain situations, the fault cause(s)

cannot be identified and fault symptoms are sufficient to lead directly to the

identification o f the fault.

5.1.4.4 Automatic Generation of the Rule-Based KB in e2gLite ES Shell

Format

Rule-based KB generation is the process of transforming the knowledge

representation o f the expert data into a specific rule-based ES shell format. An ES

Shell is an ES without the KB, where all the knowledge engineer has to do is to

supply the knowledge in a rule-based format in order to solve a problem. The ES shell

that has been selected for demonstration purposes is the e2gLite ES shell [e2gLite,

2003], which is freely available on the Web. The e2gLite ES shell is a Java applet™

that is embedded in a Web page and downloaded from the Web server by the user’s

browser. The applet loads the KB from the server and then runs entirely on the

browser. It uses a simple e2gLite language for encoding KBs, and it is fully Web

enabled. In addition, the e2gLite ES shell comes in a package that includes an

explanation facility and KB debugging services such as KB analysis.

152

A Java-based special purpose tool, KB Generator, has been created in order to

generate the KB automatically by transforming the structured diagnosis data into rules

and prompts in e2gLite ES shell format. The algorithm used to generate the KB is as

follows:

Rules Generation:

1 . for every fault do:

1.1 for every associated fault cause(s), sorted (descending) by their CF, do:

1 . 1 . 2 find all associated fault symptoms

1.1.3 insert the corresponding abstract type (I) rule in the KB file

1.2 insert an abstract type (I) rule in the KB file, discarding fault causes.

2 . for every fault do:

2.2 Retrieve the details o f the fault correction procedure from the technical

manual (deep knowledge)

2.3 insert an abstract type (II) rule in the KB file

Prompts Generation:

1 . for every fault symptom class do:

1 . 1 find all possible status values

1.2 insert a multiple choice type prompt in the KB file

1.3 add the default status value “normal”

2 . for every fault cause class do:

2 . 1 find all possible status values

2.2 insert a multiple choice type prompt in the KB file

2 . 3 add the default status value “normal”

3. for every fault diagnosis procedure do:

3 . 1 find all possible abnormal outcome values

3 . 2 retrieve the required details o f the fault diagnosis procedure from the

technical manual (deep knowledge)

3.3 insert a multiple choice type prompt in the KB file

3 . 4 add the default outcome value “normal”

153

The KB rules that will be automatically generated using the above algorithm are an

instantiation o f the abstract rules defined earlier. The abstract rule (I) is instantiated as

follows:

If Si If Si If s ,
and s 2 and s 2 and s 2

and Sn and s„ and s„
and Cl , and c 2 Cn ... etc
and Di and Di and Di

Then Ft Then Fi Then Fi

where, Sn is the nth identified symptom, Cn is the nth fault cause, and Di is the

diagnosis procedure o f fault Fi, i.e. Di confirms the existence of Fi . Moreover, the

abstract rule (II) is instantiated as follows:

If Fi If F2 If F„
Then Cri ? Then Cr2 Then Crn ... etc

where, Fn is the nth fault, and Crn is the correction procedure of Fn.

Figure 5.6 shows the automatically generated e2gLite rules and prompts for fault

number “1” which is “damaged brake fluid pipes”. In the figure, Rule [1] prompts the

user to determine the status o f three symptom classes namely, braking effect, brake

fluid visual inspection, and quantity o f brake fluid. If these are confirmed by the user

to be “decreased or missing”, “fluid leaking” and “considerably less than average”,

respectively, then the first fault cause is displayed for determination, i.e. [Brake pipes

last checked] = "> 6 months", otherwise the second cause is displayed, i.e. [Working

environment] = "very rough and bumpy". If neither of these two causes are confirmed

154

REM R u l e s :

RULE [1]
If [Braking Effect] = "decreased or missing" and
[Quantity of brake fluid] = "considerably less than average" and
[Brake fluid visual inspection] = "fluid leaking" and
[Brake pipes last checked] = "> 6 months" and -------------- ^Cause
[Check the brake fluid pipes] = "Damaged" ------------------------^Diagnosis
Then [Fault Code] = "1" and ^ ^

} Symptoms

[Cause] = "Brake pipes last checked is > 6 months"
-^Identified fault
->Cause description

RULE [2]
If [Braking Effect] = "decreased or missing" and
[Quantity of brake fluid] = "considerably less than average" and
[Brake fluid visual inspection] = "fluid leaking" and
[Working environment] = "very rough and bumpy" and
[Check the brake fluid pipes] = "Damaged"
Then [Fault Code] = "1" and
[Cause] = "Working environment is very rough and bumpy" Fault description

RULE [15]
If [Fault Code] = "1"
Then [Fault] = "The outcome of Check the brake fluid pip'es procedure is:
[Recommendation] = "Replace damaged brake fluid pipes (Man:10.10.9.1)"

Damaged" and

REM P r o m p t s : Symptom class

PROMPT [Braking Effect] MultChoice
"Braking Effect?
"decreased or missing'
"truck skids" ^ ■ ► Symptom status
"Normal" --------

Recommended
fault correction

procedure

Reference to the
technical

documentation
(How to do?)

PROMPT [Brake fluid visual inspection] MultChoice
"Brake fluid visual inspection? "
"fluid leaking"
"Normal"

-^Default status

PROMPT [Quantity of brake fluid] MultChoice
"Quantity of brake fluid? "
"little less than average"
"considerably less than average"
"Normal"
PROMPT [Brake pipes last checked] MultChoice CF
"Brake pipes last checked? "
"> 6 months"
"Normal"
PROMPT [Working environment] MultChoice CF
"Working environment? "
"dirty / dusty"
"very rough and bumpy"
"Normal"
PROMPT [Check the brake fluid pipes] MultChoice
"You should Check the brake fluid pipes (Man:10.9.
"Damaged"
"Normal"

REM Goals:

Abnormal
value

GOAL [Cause]
GOAL [Fault]
GOAL [Recommendation]

Fault diagnosis
procedure

->> Goals of the ES

for the following fault(s]
Reference to the

technical
documentation

(How to do?)

Figure 5.6 Automatically Generated e2gLite Rules and Prompts for Fault No. 1 (Damaged Brake
Fluid Pipes)

155

and no other faults are associated with these symptoms, then fault “ 1 ” will be fired

depending on the identified symptoms with unidentified cause. Three generic goals

were set for the ES to determine namely, the fault, the fault cause, and the

recommended correction action. These are shown in the clauses at the bottom of the

figure starting with the word “GOAL”.

The inference engine o f the e2gLite ES shell uses a combination of forward and

backward chaining to determine the facts required in order to reach a valid

conclusion. Figure 5.7 depicts the decision flow chart for determining fault “1”, which

illustrates the diagnostic strategy o f the ES as a whole. The inference engine tries to

conclude its stated goals namely, cause, fault and recommendation. It tries to

determine the existence o f symptoms Si, S2 , and S3 , and if confirmed it tries to

establish the causes Ci or C2 . If the cause is not confirmed and no other faults are

determinable, it concludes the fault associated with the already confirmed symptoms,

and it declares the cause “not found”.

Figure 5.8 illustrates the user interface of the diagnostic ES using the example

scenario described above. It shows the dialogue between the system and the user, and

the final system recommendation based on the user feedback to symptoms, causes,

and fault diagnosis. The number o f rules generated for the cases shown in Figure 5.5

is 32. These comprise 22 type (I) rules and 10 type (II) rules. The number of prompts

generated is 21. These comprise a prompt for every distinct cause class (7), symptom

class (5), and fault class (9). The source code for the KB Generator tool is shown in

Appendix E. 1, and the complete rule-based KB generated in e2gLite ES shell format

is shown in Appendix E.2.

156

Braking
decreased
/ missing?

Fluid is
much <

A v .?

Fluid
leaking?

Pipes last
checked >
6 months?

Rough
and

bumpy?

Fault: Damaged brake fluid
pipes

Figure 5.7 Decision Flow Chart for Determining Fault No. 1 (Damaged Brake Fluid Pipes)

157

Expert System
Braking System Diagnosis

(What to do?)

B ra k in g e f fe c t?

< • d e c r e a s e d o r m i s s i n g

C t r u c k s k id s

N o rm a l

I d o n 't k n o w /w o u ld r a th e r n o t a n s w e r

S u b m i t y o u r r e s p o n s e j W h y a s k ? | R e s t a r t j

Q uantity o f b ra k e f lu id? B ra k e f lu id v i s u a l in s p e c t io n ?

C little l e s s th a n a v e ra g e <• f lu id le a k in g

(• (c o n s id e ra b ly l e s s th a n av erag e! C N o rm a l

f N orm al C I d o n t k n o w /w o u ld r a th e r n o t a n s w e r

C | d o n l know lW ould ra th e r n o t a n s w e r S u b m i ty o u r r e s p o n s e | W h y a s k ? | R e s t a r t |
S u b m it y o u r r e s p o n s e j W hy a s k ? | R e s ta r t |

1
W orking e n v iro n m e n t?

C d ir ty /d u s ty

<• fvery r o ^ h aW dbum pyi

C N orm al

C I d o n t know /w ou ld r a th e r n o t a n s w e r

Very u n c e rta in (5 0 %) C C C C C <• Very c e r ta in (1 0 0 %)

S u b m ity o u r r e s p o n s e W hy ask?J R e s ta r t j

normal
B ra k e p ip e s l a s t c h e c k e d ?

<• (> 6 m o n th s !

C N o rm a l

C | d o n t k n o w /w o u ld r a th e r n o t a n s w e r

V ery u n c e r ta in (5 0 %) C C C C C <• Very c e r ta in (1 0 0 %)

S u b m i ty o u r r e s p o n s e | W h y a s k ? | R e s ta r t J

> 6 months

Y o u s h o u l d C h e c k t h e b r a k e f lu id p ip i

< • [D a m a g e d]

<“ ■ N o r m a l

C I d o n t k n o w /W o u ld r a t h e r n o t a n s v

S u b m i t y o u r r e s p o n s e

3S (M a n :1 0 .9 .9 .1) , f o r t h e f o l l o w i n g ...

r e r

1 1 W h y a s k ? j R e s t a r t j

FINAL RESULTS:
Value 1 of Cause is: Brake pipes last checked is > 6 months (100.0% confidence)
Value 1 of Fault is: The outcome of Check the brake fluid pipes procedure is: Damaged
(100.0% confidence)
Value 1 of Recommendation is: Replace damaged brake fluid pipes (Man:10.10.9.1) (100.0%
confidence)

Figure 5.8 User Interface and Example Scenario of the Diagnostic ES

158

5.1.4.5 Automatic Update of Deep Knowledge Data

The integrated KE process described in 5.1.2 outlines the importance of the

interaction between deep and shallow knowledge models. This interaction is realised

through the references embedded within the rules of the KB, which provide the user

with the required details regarding diagnosis (and correction) tasks that are available

in the technical documentation. Another important benefit o f this integrated approach

to KE is the enhancement o f the deep knowledge information base by updating it with

missing or less emphasised troubleshooting information. While building the KB, the

developer can insert important troubleshooting procedures that otherwise could be left

out or embedded within other generic procedures.

The knowledge engineer interface, KB builder, allows the developer to select

diagnosis procedures that already exist in the technical documentation, or to insert the

description (title) o f new procedures that are unavailable in the technical

documentation. Figure 5.9 illustrates the identification process for fault diagnosis and

correction procedures. The diagnosis procedure for fault “5” is selected from a list of

existing technical documentation procedures of type “diagnosis”. The other

procedures are newly inserted, implying that they do not individually exist in the

technical documentation. The same technique is applied for selecting the fault

correction procedures. During the automatic KB generation process, the KB generator

realises the new procedures (diagnosis and correction) and inserts them in the

technical documentation. New diagnosis and correction procedures are associated

with the documentation category “troubleshooting”, and with the task type

“diagnosis” and “correction”, respectively. In addition, the KB generator replaces the

159

ID Diagnosis Procedure Outcome Correction Procedure
1 Check the brake fluid pipes
3 Check brake cylinder
4 Check brake piston

5 5.9.9.1

6 Check the brake disk

7 Check the brake pedal

etc

Damaged
Damaged brake cylinder
Blocked piston

Worn-out brake shoe

Worn-out disk

^Blocked bushings

Replace damaged brake fluid pipes

Replace the brake cylinder
Replace the brake piston

Replace the brake shoe

Replace the brake disk

Unblock brake pedal bushings

etc

KB Generator

Faults
(Before)

ID

■
5.9.9.1.9.1

5.9.9.1.9.10

5.9.9.1.9.11
5.9.9.1.9.12
5.9.9.1.9.13

5 9.9 1.9.14

5.9.9.1.9.15
5.9.9.1.9.2
5.9.9.1.9.3

Description
Check the Servo Brake

Preparation Process

Reassemble of the Gear

Clearing Adjustment For The Hub Bearings

Remounting of the Carrier
Remounting of the Brake Drum

Remounting of the Wheel

Assembly Final Check

Wheel Dismounting

Dismount Brake Drum Diagnosis
Procedures

ID D Proc Outcome

etc

ID Description
10.10.9.2.9.2 Replace the brake shoe

10.10.9.3.9.2 Replace Brake Disk

10.10.9.2 Replace the brake shoe

10.10.9.3 Replace the brake disk
10.10.9.4 Replace the brake cylinder Correction

I Procedures

Faults
(After)

C Proc
1 10.9.9.1 Damaged 10.10.9.1
3 10.9.9.7 Damaged brake cylinder 10.10.9.4

4 10.9.9.9 Blocked piston 10.10.9.7
5 5.9.9.1 Worn-out brake shoe 10.10.9.2

6 10.9.9.8 Worn-out disk 10.10.9.3

7 10.9.9.3 Blocked bushings 10.10.9.5

etc

Figure 5.9 Identification of Faults Diagnosis and Correction Procedures

160

description o f the new procedures with their newly assigned technical manual

identification codes, as shown in Figure 5.9.

Although the actual description o f the steps of these newly inserted troubleshooting

procedures have to be composed manually, the connection with the rest of the product

components is established automatically (see 4.4.2.2). This includes deeper and more

detailed information such as: parts hierarchy, technical descriptions, specifications,

performance data, planning information, etc.

5.1.5 General Architecture for the Diagnostic Expert System

The system architecture shown in Figure 5.10 illustrates the main components of the

diagnostic expert system. These are the KB Builder, the KB Generator, and the

e2gLite ES Shell.

The KB Builder is the main interaction of the domain expert with the KB. It facilitates

the building and updating o f the KB through a Graphical User Interface (GUI) created

on top of the database tables. The KB Builder supports and sustains the validity and

consistency o f the knowledge by employing constraints through its GUI. It also

supports the interaction interface with the technical documentation metadata (deep

knowledge). In brief, the KB Builder maintains a structured data set of expert

diagnosis knowledge which adheres to the integrated knowledge model.

161

Domain Expert
Interface

KB Builder

Expert Diagnosis
Knowledge
(metadata)

KB G enerator

Technical
Documentation

(metadata)

Rule-Based KB

Reasoning Control

Inference Engine

J<9D
o»

c / 3
C /3w

W eb Browser

User
Interface

Figure 5.10 General Architecture of the Diagnostic Expert System

1 6 2

The KB Generator is a Java-based ES shell-dependent tool that has been created in

order to automatically generate the rule-based KB by transforming the structured

knowledge data into rules and prompts in e2gLite ES shell format. It interacts with the

technical documentation metadata to resolve the deep knowledge references

embedded in the structured shallow knowledge data. In addition, as mentioned earlier,

it realises the new procedures and inserts them in the technical documentation meta­

database. Finally, the e2gLite ES shell provides the required reasoning and control

through its inference engine, and a standard Web browser provides the end-user

interface with the ES.

5.2 INTELLIGENT PERFORMANCE SUPPORT THROUGH ADAPTIVE

HYPERMEDIA

The main focus o f this section is the provision of intelligent performance support

through the adaptive retrieval o f diagnostic information. First, the adaptive

hypermedia concepts, which are used in this section, are introduced. Next, a strategy

for providing adaptive support based on a stereotype model of the knowledge of the

users is introduced. Finally, a general architecture for the adaptive hypermedia system

is outlined.

5.2.1 Adaptive Retrieval of Hypermedia-Based Diagnostic Information

An adaptive hypermedia system has been developed in order to improve the retrieval

of the fault diagnosis and correction information required by the users of the

diagnostic ES. This information is stored as logical metadata in a technical

163

documentation repository, and as physical data in a file system. The system applies

some features of the user in order to ensure that the retrieved information is relevant

and its presentation suitable to the user.

5.2.1.1 Stereotype Model for User Knowledge

Five different features o f the user are identified which can be used as a source of the

adaptation, namely, user knowledge, goal(s), background, experience, and

preferences. The first two are the most important and widely used features of the user

in adaptive hypermedia and they are, along with other features, encapsulated in a user

model, which is a representation o f the user’s state of mind. The knowledge of users

in a certain subject is user-dependent, i.e. it changes from one user to another. In

contrast, the user’s goal or task is a feature related to the context o f the user’s work

with the hypermedia system, i.e. why the user is using the hypermedia system, and

what does s/he want to achieve, rather than to the user as an individual. The

identification o f the user’s knowledge and goal is the first step for providing adaptive

hypermedia support, in which users are provided with the “relevant information”.

Within this context, “relevant information” implies, first, information related to the

user’s goal(s), and second, information that the user can or is prepared to comprehend

(user’s knowledge).

Another important issue in adaptive hypermedia is the features of the system that can

differ for different users, i.e. what can be adapted in adaptive hypermedia. These are

the content o f the hypermedia pages (adaptive content), the access methods and

hyperlinks from these pages (adaptive navigation), and the presentation o f these pages

164

(adaptive presentation). Figure 5.11 sums up the adaptive hypermedia issues

mentioned above in an abstract overview o f adaptive hypermedia systems. The figure

outlines an adaptive strategy at the core o f the system which guides the provision of

relevant hypermedia content and navigation, and suitable presentation. The user

features (user model attributes) are either implicitly detected by the system or

explicitly provided through direct input from the user, e.g. through a questionnaire.

User models are often represented by either an “overlay” model or by a simpler

“stereotype” model. The former is a representation of the user’s features as an overlay

on top of the domain model. The latter distinguishes several typical or stereotype

users. The context o f the user’s work (goal) is a deterministic factor in selecting the

best type o f user model to use and the features of the user to consider. In the fault

diagnosis domain, the user’s high level goal is “diagnosis”, which is stable throughout

the user interaction with the adaptive system. In addition, the user’s low level goal is

the diagnosis or correction o f a particular fault, which may change quite often during

the work session.

The accurate estimation, by the adaptive system, of the user’s knowledge o f a certain

subject and their low level goal is a complicated process, which normally provides

poor estimations. This will, eventually, result in providing the user with irrelevant

and/or unsuitable information. In fault diagnosis, the required information is usually

concise and precise (e.g. a single diagnosis or correction procedure), which enables

the users themselves to estimate their knowledge of the task they are performing. The

suggested stereotype user model used to represent the user’s knowledge of the subject

165

Relevant \
Navigation / Suitable

P r e s e n ta t i o n

L

\^«erMod^

I
User Related Data

(detected by the
System)

Adaptive Strategy

R elevant
C ontent

User Related Data
(direct user input)

User 1 User 2

UK: User Knowledge
UG: User Goal
BG: Background
Exp: Experience
Pref: Preferences

Figure 5.11 Adaptive Hypermedia Systems - Abstract Overview

1 6 6

domain includes three stereotype values, namely poor, sufficient, and outstanding.

The user goal is identified through the provision of the identification code of the

required subject supplied by the diagnostic ES. By adopting this explicit method for

identifying the goals and knowledge o f the users, a more accurate assessment will be

yielded every time the system is invoked.

5.2.1.2 User Knowledge-Based Strategy for Adaptive Support Using

Conditional Semantic Rules

The adaptive strategy proposed can be perceived as a filtering mechanism for the

domain information fragments retrieved and presented by the adaptive system. It

determines which information is relevant and which is irrelevant, and how to present

relevant information fragments by considering the user’s knowledge and goal(s) using

conditional semantic rules. This filtering process accesses the semantically structured

data of the technical documentation and work at the information object (IO) level.

The main principles o f the suggested adaptive strategy are outlined in Figure 5.12.

The figure shows the relationship between the current user knowledge and the

adaptive support features provided to the user. As the user’s knowledge increases

from “poor” through “sufficient” to “outstanding”, the complexity and detail of

information and the number o f visible references increases, and vice versa. This is

because a qualified user is prepared to accept, and even demands, more detailed and

deeper information. On the other hand, the level of additional explanations, guidance,

and clarification annotations decreases as the current user’s knowledge increases. This

167

Poor Sufficient Outstanding

User Knowledge

More detailed and complex information
More references
Less explanation

Less guidance
Less annotation

Figure 5.12 Main Principles of the Adaptive Strategy

168

is because novice users require explanation, guidance, and clarification while more

qualified users need them less.

Table 5.1 depicts, in more detail, the relationship between the adaptive support

provided by the hypermedia system and the user’s knowledge. The adaptive support is

categorised by content, navigation, and presentation. Adaptive content support is

achieved by adapting the main content of the page accessed by a particular user to

current user knowledge. It is assessed using three benchmarks:

• Main content is the content directly related to the requested information, e.g. the

steps o f a diagnosis procedure. The actual content can be displayed “expanded” to

the viewer, or outlined “collapsed” in an index-like format with clickable

headings.

• Main content clarification includes all the examples, comments, illustrations, etc.

associated with the main content, e.g. a graphical illustration of a part.

• Main content advice includes all the recommendations, requirements, warnings,

cautions, etc. associated with the main content, e.g. parts required to repair a fault,

related warnings, and so forth.

Adaptive navigation support is used to help users to find their way in the hypermedia

space by adapting the page access methods and the provision of hyperlinks to current

user knowledge. It is assessed using four benchmarks:

169

Table 5.1 Relationship between Adaptive Support and User Knowledge

Knowledge
Adaptive
Support

Poor Sufficient Outstanding

Content:
Main content expanded expanded collapsed

Main content clarification yes no no

Main content advice yes yes no

Navigation:
Links to fundamental information visible visible visible
Links to deep, complex and detailed
information none visible some visible all visible

Hot keywords visible not visible not visible

Access method (guidance)
strict guided
tour expanded list collapsed list

Presentation:
Clarification icons yes yes no

170

• Links to fundamental information include definitions, facts, principles, concepts,

etc., e.g. links to simple introductory information, performance data, etc.

• Links to deep, complex, and detailed information include specifications, detailed

descriptions, deep explanations, etc., e.g. links to specifications of parts or

assemblies.

• Hot keywords are used to provide extra clarification to a piece o f textual

information, e.g. a reference link to the definition of a concept.

• Access methods (guidance) identify the level o f guidance provided to the current

user and the way hypermedia pages are accessed. They include guided tour,

expanded list, and collapsed list.

Adaptive presentation support is achieved by adapting the presentation of a page

accessed by a particular user to current user knowledge. It can be implemented using

colours, icons, font sizes, etc. Frames and visual icons are used to provide extra

clarification to the presentation o f the hypermedia. A distinct visual icon is associated

with every IO and navigational hyperlink in order to clarify its functional

characteristic, i.e. fundamental, procedure, clarification, advice, or specification (see

section 4.5).

The values associated with every benchmark are an interpretation of the main

principles o f the adaptive strategy outlined in Figure 5.12. The adaptive support

strategy is implemented by transforming the benchmarks and their values into

conditional semantic rules which are applied on relationships between IOs. These IOs

are richly indexed in accordance with the semantic data model of the technical

documentation described in chapters 3 and 4. The “purpose” and the “functional

171

characteristics” o f IOs are used as arguments for the conditional relationships. Figure

5.13 shows an adaptive filtering mechanism for identifying relevant IOs based on

conditional semantic rules applied to user knowledge. The filtering information space

is divided into two domains namely, the content domain and the navigation domain,

which physically correspond to the technical documentation metadata repository and

the navigational relationships repository, respectively. In the figure, the main

requested information is the procedural information represented by the composite

organisational object IOi. IO j is an organisation of a procedure, which contains the

steps IO n , IO12, etc. The procedural step IO n is semantically related to the

information fragments I O m and IO112 which provide extra clarification and advice,

respectively. Beyond the content domain is the navigation domain where IO i has out­

going referential relationships with “fundamental” and “specification” information

fragments IO2, and IO3, respectively, and it is referenced by an in-coming referential

relationship from IO4. In addition, IO n has a keyword relationship with IO2 and IO3.

With regard to the queried topic, these referential relationships provide related extra

explanations and more detailed information that are available in the technical

documentation.

The main objective o f the adaptive filter is to distinguish the “relevant” information

objects from irrelevant ones, depending on the user knowledge stereotypes, i.e. poor,

sufficient, or outstanding. The relevant objects are then passed to be rendered and the

irrelevant ones are discarded. In the example shown in Figure 5.13, the full list of the

pre-filtered IOs includes IOi, I 0 2, IO3 , IO4 , and all their descendents, which include

172

Referential relationship X Referential hyperlink 1 ^

Keyword relationship ' ^ UK = User Knowledge

Semantic relationship -------- :sh.

Organisational relationship

C o n te n t D o m a in

UK: All „

UK: All
UK: Outstanding

Adv Cla lIl
. I
• l *. I\ I ;i

UK: Sufficient
UK: Outstanding

UK: PoorUK: Poor
UK: Sufficient

IO
Proc

UK: Poor UK: Poor J
1I
i
<«

:i
iiiiiiiiii

Fundamental Specifications

IO; IO; IO IO
Fund AdvAdv Spec

Guided Tour IOi

« Prev N ext»

io„
iom IO112

IOi

UK: Sufficient

IO
IO;

IO
IO

etc

UK: Outstanding

IO,
IO,
IO,

IO

IO,
etc

Figure 5.13 User Knowledge-Based Conditions for Identifying “Relevant” Information Objects

173

IO n , IOni, IO 112, IO12, etc. The conditions shown on the relationship arcs, which are

an interpretation o f the adaptive strategy, will determine the selection criteria of these

information objects. For instance, the case where “UK: poor” will invoke a subset of

information objects to be rendered in the content of the main page, including IO i,

IO n , IOm, IO 112, IO12, etc, together with the target IOs: IO2, and IO3 to be rendered

as keyword hyperlinks. In addition, IO2 will be rendered as a referential hyperlink. In

contrast, in the case where “UK: outstanding”, only IO n , IO12, and IO13, etc., will be

selected for content rendering and IO2, IO3, and IO4 will be rendered as referential

hyperlinks.

Figure 5.13, moreover, depicts a conceptual outline of the presentation templates used

to render the hypermedia pages. It shows the level of guidance given to the user and

the navigational hyperlinks provided depending on the user knowledge o f the subject.

Through these conceptual outlines, the included/discarded information fragments and

referential hyperlinks with respect to the user knowledge can be easily compared.

5.2.1.3 Adaptive H yperm edia Support for Diagnosis Inform ation

The adaptive hypermedia system has been developed in order to assist in the retrieval

of the faults diagnosis and correction information required by the users of the

diagnostic ES. Figure 5.14 illustrates the adaptive hypermedia support through

alternative views o f the “check the servo brake” diagnosis procedure, provided to

users with different knowledge stereotypes. It shows that different users with different

knowledge stereotypes, requesting the same information, receive different types of

content, navigation, and presentation. These hypermedia pages are generated on the

174

fly (as virtual documents) when requested by the user. The “topic ID” (5.9.9.1) is

passed by the diagnostic ES and the user identifies his/her knowledge of the procedure

by selecting one o f the three stereotypes. The procedure “check the servo brake” has

15 steps where every step is associated with a procedural IO and may be associated

with one or more clarification and/or advice IOs. The following is a comparative

description of the three cases shown in Figure 5.14:

Case (1) “UK: poor”:

• The content IOs o f every procedure including the clarification and advice IOs are

visible (expanded).

• Hyperlinks are provided for fundamental information only, e.g. “PP: Servo

Brake”, which is a hyperlink to the fundamental planning and performance data of

the servo brake.

• Hot keywords hyperlinks are provided on the textual description of the steps of the

procedure, e.g. “PP: Hand Brake”.

• The information is presented using a guided tour, which provides the novice user

with maximum and strict guidance.

• Every IO and hyperlink is associated with an icon in order to clarify its content or

destination, respectively.

Case (2) “UK: sufficient

• The procedural and the advice IOs are visible. The clarification IOs are invisible.

175

C heck the Servo B iak eTechnical ManualC h e c k th e S e rv o B ia k e

Adaptive User Support Related Topic1 R e p a r a t i o n P r o c e s s
See Also:

jH o w t o d o it? } rr-Senro Brake
PL-Servo Brake
TMS-Annual Maintenance

TMS-Stait of Shift
P r e y a r a n m P ro c ess

PP-Seivo Brake

PL-Servo Brake
1 . E n g a g e t h e h a n d b r a k e
2 . J a c k t h e r e a r a x l e o f f t h e g ro u n d
3 . V e r i f y t h e s t a b i l i t y o f t h e t r u c k
TIM E- 5 MINS S u f f i c i e n t Topic ID 5 9 9 1

Usei Knowledge : ® Poor O Sufficient O Outstanding OutstandingCawnea

1 . Make s u r e t h e h a n d b r a k e i s f i r m l y
e n g a g e d

2 . Do n o t a l l o w a n y b o d y t o s t a y i n t h e
c a b i n w h i l e t h e t r u c k i s j a c k e d

2. W heel Dismounting

WWl Dte—rnrtiMj
1 . U n sc rew t h e 8 n u t s
2 . T ak e o f f t h e 8 s p r i n g w a s h e r s
TIME- 2 MINS

C heck the Serve B rake 1 .P reparation P rocess

li jsparatw.n Prow»
7.*hMl D s s a y a tmg

3 Dgmpanl Brakt Diytn
4,PiMOTBl
? PlSBOTM P jg g M t
6.DgMoimt Hqb
7.Gtneral Check of Servo Brake

P repara tion P rocess

g.Detaiied Check of Setvo Brake

iH&agggfsfeJg of M Qm
1. Engage the hand brake
2. Jack the re a r a x le o f f th e ground
3. V e rify th e s t a b i l i t y of th e tru ck
TIME- 5 MINS12 ,Rse» tte. Cam

13.Ramountmg of the B a te Dmm
14 Rtmoimtuig o f the Wfrecl
ISA ssem blvFinalChw h

m“ • J Planning Information
PP-HanclBraP;

► PF-Servo Brake

Preparation Parti Reyuremewts

Ref# Qty

Check rhe Servo Bi nke

I Preparation Process
2. Wheel Disraounhng

► PL Wheel
3 Dismount Brake Drum
4. Dismount Carrier
5. Dismount Ring Gear
6 Dismount Hub
7. General Check of Servo Brake

* PP-Servo Brake

► PLServo Brake

8. Detailed Check of Servo Brake
► FP-Servo Brake

* PLSetvo Brake

9. Reassemble Hub
10 Reassemble of the Gear
II Gearing Adtustment For The Hub Bearings
12 Remounting of the Carrier
13 Remounting of the Brake Drum
14 Remounhng of the Wheel

► PL Wheel

15 Assembly Fmal Check

Figure 5.14 Alternative Views of “Check the Servo Brake” Diagnosis Procedure for Different User Knowledge Stereotypes

176

• Hyperlinks are provided for both fundamental and specification information, e.g.

“PP: Servo Brake” and “PL: Servo Brake” (the latter is a hyperlink to detailed

specifications o f the servo brake parts).

• Hot keywords are not visible.

• The information is presented using an expanded list of content which provides

medium and flexible guidance.

• Clarification icons are visible.

Case (3) “UK: outstanding”:

• Because an expert user, normally, uses the technical documentation as a reference

manual, the result is presented using a collapsed list of content, where only

referential hyperlinks are visible.

• In addition to the hyperlinks provided in the previous two cases, more hyperlinks

are made available, e.g. “TMS: Annual Maintenance” and “TMS: Start of Shift”,

which are hyperlinks to technical maintenance schedules involving the servo

brake.

The above cases fully coincide with the adaptive strategy of the hypermedia system.

The hyperlinks enable the user to access subject-related technical data, which also

contain hyperlinks to other related fundamental, specification, and procedural

information. This enables a gradual build up in the provision o f detailed information,

as the user’s knowledge o f the subject, within a specific session, is improved.

177

5.2.2 General Architecture for the Adaptive Hypermedia System

Figure 5.15 presents the general architecture of the adaptive hypermedia system used

to implement the adaptive strategy. At the core of the system is the Adaptive

Hypermedia Generator AHG, which consists of three components namely, the

Adaptive Support Engine ASE, the Search Utility SU, and the Adaptive Rendering

Utility ARU. The ASE is in the core of the AHG, which controls and synchronises the

adaptive hypermedia generation process. It receives the user knowledge assessment

(UK) and the topic identifier (T_ID) from the user through the information retrieval

display. It passes the T_ID to the SU and receives the search result, and then it passes

the search result with the UK to the ARU and receives the rendered HTML files and

passes them to the user. The SU searches the technical documentation metadata

repository for all the descendents of the topic identified by the ASE, and sends the

resulting list o f identifiers back to the ASE. The ARU receives a list o f identifiers and

executes a set o f adaptive content, navigation, and presentation conditions in order to

filter the search result. The ARU accesses the technical documentation metadata and

navigational relationships repository for retrieving the required content and navigation

information, and renders the relevant data into HTML files. It then sends these files to

the ASE, which passes them to a special adaptive information display. The referential

hyperlinks refer the user to more detailed hypermedia pages which are already

available in the Web-based technical manual. The user uses a standard Web browser

to identify the subject and an assessment of his/her knowledge of this subject. The

ASE is a Java Servlet, which interacts with the Java-based classes SU and ARU.

178

T ec h n ic a l
D o c u m en ta tio n

(m eta d a ta)
N av ig a tio n a l
R ela tion sh ip s

Adaptive Rendering
Utility (ARU)

Content
Navigation
PresentationSearch Utility (SU)

m

U K / S R esu lt H T M L F ile sT ID S R esu lt

Adaptive Support Engine (ASE)

H T M L F ile sU K / T I D

W eb Browser

Information
Retrieval
Display

Adaptive
Information

Display

A .
| D eta iled

% Inform ation

W eb -b a sed
T ech n ica l M anual

—

Figure 5.15 General Architecture for the Adaptive Hypermedia System

179

5.3 INTEGRATED ADAPTIVE DIAGNOSTIC EXPERT SYSTEM

Integrating the diagnostic ES with the adaptive hypermedia system provides effective

and adaptive expert support to diagnosis problems. This integrated adaptive diagnostic

ES supports the user by providing what-to-do expert knowledge and how-to-do

information tailored (adapted) to the user’s knowledge o f the performed diagnosis

tasks. The diagnostic ES and the adaptive hypermedia system are “loosely” coupled

through an HTML-based user interface, which combines the interfaces of both

systems. This coupling is described as “loose” because both systems can function

independently as well as acting in an integrated manner. Figure 5.16 presents the user

interface o f the integrated adaptive diagnostic ES. The interface consists o f three user

displays which include the diagnostic ES display (leftmost display o f the top user

interface), the adaptive information retrieval display (rightmost display o f the top user

interface), and the adapted information display (bottom user interface). The first two

are combined in one display where the user goal in the form of a subject identifier is

passed from left to right. This organisation of displays allows users, while using the

ES for fault diagnosis, to request information about a certain diagnosis procedure, and

then return to the ES to continue from where they left off.

The general architecture o f the integrated on-line adaptive diagnostic ES is illustrated

in Figure 5.17. The Figure outlines the user interface which is accessible through a

standard Web browser. It also shows the ES shell and the adaptive hypermedia

generator mounted on the Web server together with the KB, technical documentation

180

File Edit View Favorites Tools Help

O ' " J S S I ^ T « v o r » « ^ j* } Q * i
C:\PhO\MY_ProHProgrwns\ExSys\ADS.html - 0 6 0 Unfe » *

■ ■ 1
Expert System

Braking S y s t e m D ia g n o s is

(W ild) t o d o ?)

B raking effect?C d e c r e a s e d o r m is s in g C truck sk id s C N orm al

(8 I d o n t k now fw ould ra th e r n o t a n s w e r

S ub m it your r e s p o n s e | W tiy a s k ? | R e s t a r t j

Technical Manual

A daptive U ser Support

(H o w to d o It?)

Subject ID (UG)

T o p ic ID

U se r K n o w le t l t je : 0 P o o r O S uffic ien t O O u ts ta n d in g

[F ind 11 R e s e t [

£] Knowledge base:8rakmgSYS.kb i My Computer

'■J A d a p t iv e C o n t e n t M ic r o s o f t I n t e r n e t F x p l o r e r p r o v id e d b y F r e e s e r v e

Rte Edit View Favorites Tools Help

O 6*1' ’ %J 0 1̂ • y Seard'' 'i-:'FavortM tlj* Media 4 g)

-;v £) h ttp : //lo cd h o st: SO eOfssrvtet/S.by .ID ’ I D - 10.10.9. m j k - 1 _________________________

a *
V gjGo

R e p l a c e t h e b i a k e

d i s k

1 D ism ount Hub
2 R ep lace B rake D isk

2 .R e p l a c e B r a k e D i s k

« Prev | N ext »

R e p l a c e D i s k

1 . U n s c re w t h e tw o s c r e w s o n to p
o f e a c h b r a k e d i s k .
2 . P u l l t h e o l d b r a k e d i s k o u t .
3 . P l a c e t h e new b r a k e d i s k i n t h e
c o r r e c t p o s i t i o n .
4 . S c re w f i r m l y t h e tw o s c r e w s i n
t h e i r p o s i t i o n .
T IM E- 8 MINS

' ;-v . ;.7v>-

* * Local intranet

UG = User Goal

Figure 5.16 User Interface for the Integrated Adaptive Diagnostic Expert System

181

Domain-related
KB

UG= User Goal

Web Server

ES Shell Adaptive Hypermedia
Generator

U G

H

ES
Display

NT
Adaptive IR

Display

Adapted
Information

Display

Web Browser

Technical
Documentation

(metadata)

Navigational
Relationships

Web-based
Technical Manual

Figure 5.17 General Architecture of the Integrated On-Line Adaptive Expert Diagnostic System

1 8 2

metadata repository, and the navigational relationships repository. The Web server

that has been employed is the Java Server Web Development Kit version 1.0.1

[JSWDK, 1.0.1], which contains a Web container that runs Java Servlets.

5.4 SUMMARY

In general, the chapter has demonstrated that the quality of performance support can

be enhanced by integrating factual information and explanation capabilities with

diagnostic assistant, adapted to the user’s knowledge o f the subject domain. The

provision of intelligent performance support through the utilisation and integration of

technologies used in developing knowledge-based systems and adaptive hypermedia

systems has been discussed. A method for the integration of diagnostic assistance and

hypermedia-based technical documentation to provide adaptive and intelligent

performance support has been introduced. This integration is implemented through the

use of hypermedia to allow supporting content to be synchronized with the diagnostic

ES inference process. A system architecture which supports this integration has also

been introduced.

An integrated (shallow and deep) knowledge engineering (KE) process for diagnostic

Expert Systems (ES) has been presented. It is characterised by the integration of both

shallow and deep knowledge types at the knowledge representation stage in an ES

shell-independent manner. This integration is implemented through the inclusion of

“deep knowledge” references in the KB of the ES. This process is supported by: (i) an

integrated knowledge model which formally represents a fault in terms of its

symptoms, causes, diagnosis procedure, and correction procedure, and (ii)
183

implementation techniques for automatically generating the rule-based KB in specific

ES shell format, and the automatic update of deep knowledge data. Consequently,

procedure or training manuals are referenced by the diagnosis steps presented by the

diagnostic ES. In addition, glossaries or other support materials are linked to the

progress of the diagnostic ES to integrate learning with problem solving. Moreover, a

general architecture for supporting the KE process and implementing the diagnostic

ES has been introduced.

Furthermore, a strategy for providing adaptive hypermedia support has been outlined.

This strategy is implemented on top of the technical documentation semantic data

model using conditional semantic rules. It relies on a stereotype model of the

knowledge o f the users. The strategy draws a relationship between the current user

knowledge and the adaptive support features provided to the user. In addition, a

general architecture for the adaptive hypermedia system has been introduced. This

architecture has been used to implement the adaptive strategy o f the hypermedia

system.

The main contributions o f the work reported in this chapter are, first, an integrated KE

process for diagnostic ESs and an integrated knowledge model. Second, a strategy for

retrieving hypermedia-based diagnosis information adapted to the knowledge of the

user and operating in conjunction with the existing hypermedia-based technical

documentation. Third, a system architecture for an integrated adaptive diagnostic ES

for the Web.

184

CHAPTER 6

CONTRIBUTIONS, CONCLUSIONS AND FUTURE WORK

This chapter summarises the contributions made and conclusions reached and

suggests possible directions for future research.

6.1 CONTRIBUTIONS

The main product o f this research is a systematic methodology for the development of

hypermedia-based Performance Support Systems (PSS) for the Web, which adheres to

the main characteristics o f advanced PSSs. These characteristics are outlined in a

conceptual model that complies with state-of-the-art technologies and current

practices in the field o f user performance support. The work reported in this thesis is

an attempt to apply integrated knowledge-based and adaptive hypermedia

technologies in the area o f electronic PSSs. Moreover, this work is a contribution in

the direction o f structured hypermedia authoring o f technical documentation. It

tackles the main challenges associated with the systematic development of

hypermedia-based technical documentation for the Web which include design,

authoring, and implementation, and the creation o f supporting CASE tools. The

specific contributions o f this work are as follows:

1. Conceptual model fo r advanced PSSs.

Advanced PSSs are characterised by this work as mainly consisting o f two interlinked

and loosely coupled components that are designed and accessed in a task-based and
185

user-centred manner. The first component is a freely browsed technical

documentation o f the application domain which provides the user with “how-to-do”

type of information. The second component is an expert advisor that provides

assistance for more specific, complex, and difficult to learn tasks i.e. “what-to-do”

type of information. The integrated technologies utilised in advanced PSSs include

adaptive Web-based hypermedia and knowledge-based systems.

2. Usage-based data m odelfor the design o f technical documentation.

The proposed model abstracts the intended purpose of the documentation, the tasks

supported by the documentation, and the functional characteristics of documents.

These abstractions are integrated in a usage-based semantic network. Moreover, rules

and valid relationships within the semantic network are identified. This design

framework has been used in order to organise, generate, and maintain the technical

documentation (authoring). In addition, this model has been employed to support a

strategy for the adaptive retrieval o f hypermedia-based technical documents.

3. Model-driven approach fo r authoring hypermedia-based technical

documentation.

This approach utilises the usage-based data model for the design of technical

documentation (outlined above). In addition, it complies with the principled

guidelines o f structured authoring. The original methods, techniques, and

architectures that have been introduced to assist in the practical implementation of this

authoring approach include:

■ Method fo r building an implementation language-independent structure fo r

the hypermedia-based technical documentation. This method is based on a

186

semantically enhanced version of the system-based structuring method. The

implementation o f this method has required the introduction of novel

techniques. These include (i) a technique for indexing the information objects

(IOs) o f the technical documentation, (ii) a technique for generating dynamic

identification codes for IOs that maintains their structural and semantic

properties, and (iii) a technique for the automatic generation o f hypermedia

pages. In order to demonstrate that the built structure is implementation

language-independent, the technical documentation have been generated using

two of the most widely used Web-based mark-up languages, namely, HTML

and XML.

■ Methods fo r the automatic identification o f semantically-based navigational

relationships. Two different methods for the automatic identification of

navigational relationships between IOs based on their semantics have been

presented. These methods include (i) a method for generating context-driven

navigational relationships, and (ii) a method for generating purpose-driven

navigational relationships. These relationships have been automatically

converted into physical hyperlinks by the run-time hyperlink generator.

■ Method fo r the presentation o f hypermedia pages. This method uses a

combination o f frame-based presentation templates, icons, and colours. The

presentation templates used to create the user interface are based on HTML

frames, which divide the interface window into several navigation-able areas.

Presentation icons are used to represent the type of function performed by

every IO in a visual manner. Different background colours are associated with

187

different information categories in order to enable users to determine the type

of the delivered information in a visual manner, and hence, minimise

disorientation.

■ System architecture fo r implementing the structured authoring approach.

New system architecture has been created to support the structured authoring

approach o f Web-based technical documentation. The support is realised

through a set o f specially developed Java-based CASE tools and code

generators. The architecture distinguishes two environments, namely, off-line

and on-line. The former environment comprises specially developed: (i)

authoring tools which include the Structure Builder and the Navigational

Relationships Generator, and (ii) implementation tools which include the Web

Pages Generator and the Presentation Templates Generator. The latter mainly

comprises specially developed run-time tool namely the Navigational

Hyperlinks Generator.

4. Methodology fo r providing intelligent diagnosis support through knowledge-

based expert systems.

The original methods, techniques, and architectures that have been introduced to assist

in the practical implementation o f this methodology include:

■ Integrated (shallow and deep) knowledge engineering (KE) process for

diagnostic Expert Systems (ES). This KE process is the core of the

methodology. It is characterised by the integration o f both shallow and deep

knowledge types at the knowledge representation stage in an ES shell-

independent manner. This integration is implemented through the inclusion of

188

“deep knowledge” references in the KB of the ES. These references point

towards the associated deep knowledge fragments of the technical

documentation metadata which represent an “existing” hypermedia-based

technical manual. This process is supported by: (i) an integrated knowledge

model which formally represents a fault in terms of its symptoms, causes,

diagnosis procedure, and correction procedure, and (ii) implementation

techniques for automatically generating the rule-based Knowledge Base (KB)

in specific ES shell format, and the automatic update of deep knowledge data.

■ General architecture fo r the diagnostic ES. The main components in this

architecture are the KB Builder, the KB Generator, and the ES Shell. It also

comprises two types o f interfaces namely (i) the domain expert interface

which facilitates the building and updating of the KB through a Graphical

User Interface (GUI), and (ii) the end-user interface through a standard Web

browser.

5. Methodology fo r the adaptive retrieval o f diagnosis information using

conditional semantic rules

The original strategy and architecture that have been introduced to assist in the

practical implementation o f this methodology include:

■ Strategy fo r providing adaptive hypermedia support. This strategy is

implemented on top o f the technical documentation semantic data model

discussed earlier, and it is based on a stereotype model of the knowledge of the

users. The strategy draws a relationship between the current user knowledge

and the adaptive support features provided to the user using conditional

semantic rules.

■ General architecture fo r the adaptive hypermedia system. This architecture

has been used to implement the adaptive strategy of the hypermedia system.

The core o f this architecture is the adaptive hypermedia generator, which

consists o f three components namely, the adaptive support engine, the search

utility, and the adaptive rendering utility. Users interact with the adaptive

system using two types o f displays through a standard Web browser. These are

(i) the information retrieval display, and (ii) the adaptive information display.

6 . Architecture fo r integrating the diagnostic ES and the adaptive hypermedia

documentation system.

This architecture integrates the architectures of the diagnostic ES and the adaptive

hypermedia system (both outlined earlier). This integration is facilitated through an

HTML-based user interface, which combines the interfaces o f both systems. The

special organisation o f the user interface displays allows users, while using the ES for

fault diagnosis, to request information about a certain diagnosis procedure, and then

return to the ES to continue from where they left off. The integrated adaptive

diagnostic ES supports the user by providing what-to-do expert knowledge and how-

to-do information tailored (adapted) to the declared user knowledge of the subject

domain.

6.2 CONCLUSIONS

• The main objective o f an advanced PSS is to provide operators with “how-to-do”

and “what-to-do” types o f information. The former is achieved through a freely

browsed technical documentation. The latter is achieved through an expert advisor

190

that provides assistance for more specific, complex, and difficult to learn tasks.

These services provide a better support when they are interlinked and are designed

to be accessed in a task-based and user-centred manner.

• Advanced PSSs are achievable through an integrated technological solution which

includes Web-based hypermedia, knowledge-based systems, and adaptive

hypermedia.

• Traditional hypermedia authoring approaches are complex and knowledge

intensive activities that suffer from many deficiencies. These deficiencies greatly

affect the suitability o f these approaches to handle data-intensive applications.

• The development o f data-intensive hypermedia applications needs to be organised

into a well-defined process and to utilise structured design methods amenable to

the benefits o f software engineering.

• It is important for technical authors to categorise the information used in the

documentation in a way that closely reflect their subsequent usage. A usage-based

design approach should consider the intended purpose o f the documentation, the

tasks supported by the documentation, and the functional characteristics of

documents.

• Structured authoring o f technical documentation must be supported by an abstract

data model. This model can be used to adapt the delivered technical information to

the user’s knowledge o f the material.

• Information objects (IO) are the smallest units o f publishable information that are

created and modified by hypermedia authors. These IOs should be as small as

possible, in order to ensure high flexibility, and at the same time they must be

large enough to stand alone as part o f a topic and/or to be reused in another.

191

• Usually, there exist a close relationship between planning, support, and action

types o f technical information. These relationships should be identified and

extracted during the hypermedia authoring phase, and they should be converted

into physical hyperlinks at the implementation phase.

• The use o f semantically-based frames, visual icons, and colouring schemes can

significantly improve the presentation o f the technical documentation.

• In PSSs, “how-to-do” and “what-to-do” types o f information complement each

other, and their integration provides effective knowledgeable support for users’

performance. These types o f information can be integrated at the representation

stage o f a knowledge engineering process.

• Delivering hypermedia-based technical information in an adaptive manner can

reduce information disorientation and cognitive overload by providing user- and

task-relevant information and discarding irrelevant ones. This eliminates

confusion and speeds up the learning process.

• The quality o f performance support can be substantially enhanced by integrating

factual information and explanation capabilities with a knowledge-based expert

assistance, adapted to the user’s knowledge o f the performed task.

6.3 F U T U R E R E S E A R C H

A possible future research direction is the introduction o f new attributes to enhance

the indexing mechanism o f the hypermedia objects. For example, the “level of detail”

can be used as a measure o f content complexity for textual documents. In addition,

presentation-related attributes such as the level o f conveyed attractiveness,

192

abstraction, spatiality, and temporality can be used to classify non-textual multimedia

documents. These attributes would improve the performance of the filtering process

o f the adaptive user support system.

The indexing o f the technical documents can be further enhanced by utilising AI

techniques. For example, Natural Language Recognition techniques can be used with

textual documents, and Image Processing techniques with graphics. These techniques

can be used to automatically identify the semantic properties of hypermedia IOs. This

would save time and effort and would simplify the authoring process.

Another useful research direction is the integration of semantic domain data models

with AI techniques to support the navigation o f hypermedia-based technical

documentation. For example, Artificial Neural Networks (ANN) and Fuzzy Logic

(FL) systems can be used to recommend the best next hypermedia object(s) to browse.

The former can represent experience, behaviour, and decisions o f experts. The latter

can represents the learning strategy o f the author. In addition, machine learning

techniques (e.g. data mining, clustering, etc.) can be used to automatically improve

the organisation o f the Web-based technical documentation by learning from visitors

access patterns and detecting navigational trends.

Finally, with regard to user modelling, further research can be conducted on

investigating the application o f implicit user models, i.e. those automatically detected

by the system, in providing adaptive diagnosis support. In addition, a hybrid approach

to user modelling which combines a stereotype and an overlay user model to represent

193

the user knowledge o f the technical documentation, might improve the accuracy of the

adaptively delivered information.

194

APPENDIX A

INFORM ATION OBJECTS METADATA

Table A.l illustrates the fully processed set of Information Objects (IO) and their metadata. It

shows the full set o f attributes and their associated values. The attributes are classified as

either o f type definition, semantic, structure, presentation, or navigation. In addition,

attributes are also classified as system-set or author-set. The attributes name and ID are

system-set. The remainder are author-set attributes.

195

Table A.l Information Objects and Metadata

ID Name Description ICat Task Function Container Seq Location Form Con Form
1.1.9.1 f j . 1.9.1 Fork-Lift Truck 1 1 9 1.1 1 ../ipm/ 0 3
1.1.9.1.1.1 f_1.1.9.1.1.1 Introduction 1 1 1 1.1.9.1 1 ../ipm/ 1 0
1.1.9.1.3.2 f j . 1.9.13.2 General Truck Picture 1 1 3 1.1.9.1 2 . ./ipm/pictures/truck.gif 2 0
1.1.9.1.3.3 f j . 1.9.1.3.3 Truck Video 1 1 3 1.1.9.1 3 . ./ipm/videos/artic_x0003.avi 3 0
1.1.9.1.4.4 f j . 1.9.1.4.4 Important Attention!! 1 1 4 1.1.9.1 4 ../ipm/ 1 0
1.1.9.2 f j .1.9.2 Operational Data 1 1 9 1.1 2 ../ipm/ 0 3
1.1.9.2.1.1 fj.1.9.2.1.1 General Performance 1 1 1 1.1.9.2 1 ../ipm/ 1 0
1.1.9.3 f_1.1.9.3 Attachments 1 1 1.1 3 ../ipm/ 0 3
1.1.9.3.1.1 f_1.1.9.3.1.1 Possible Settings 1 1 1 1.1.9.3 1 . ./ipm/pictures/Attachments.jpg 2 0
1.3.9.1 f_1.3.9.1 Fork-Lift Truck 1 3 1.3 1 ../ipm/ 0 3
1.3.9.1.11 f_1.3.9.1.1.1 General Performance and Dimensions 1 3 1 1.3.9.1 1 ../ipm/ 1 0
1.3.9.1.1.2 f_1.3.9.1.1.2 Back View 1 3 1.3.9.1 2 ../ipm/pictures/artic1 .gif 2 0
1.3.9.1.1.3 f_1.3.9.1.1.3 Side View 1 3 1.3.9.1 3 . ./ipm/pictures/artic2.gif 2 0
1.3.9.1.1.4 ■ fj .3.9.11.4 Truck Back View 1 3 1.3.9.1 4 . ./ipm/videos/artic_x0003.avi 3 0

1.3.9.1.1.5 M.3.9.1.1.5 Truck Side View 1 3 A 1.3.9.1 5 . ./ipm/videos/artic_y0003.avi 3 0

1.3̂ 9.2 f_1.3.9.2 Braking System 1 3 1.3 2 ../ipm/ 0 1

1.3.9.2.1.1 f_1.3.9.2.1.1 Servo Brake 1 3 1 1.3.9.2 1 ../ipm/ 1 0

1.39.2.1.2 fj.3.9.2.1.2 Hand Brake 1 3 1 1.3.9.2 2 ../ipm/ 1 0

1.3.9.2.1.3 f_1.3.9.2.1.3 Brake Fluid Pipes 1 3 1.3.9.2 3 ../ipm/ 1 0

1.3.9.2.1.4 f_1-3.9.2.1.4 Brake Pedal 1. 3 1.3.9.2 4 ../ipm/ 1 0

1.3.9.2.1.5 f_1.3.9.2.1.5 Brake Fluid 1 3 1.3.9.2 5 ../ipm/ 0

1.3.9.3 f_1.3.9.3 Lifting System 1 3 9 1.3 3 ../ipm/ 0 3

1.3.9.3.1.1 M .3.9.3.1.1 Lifting Gear 1 3 1 1.3.9.3 1 ../ipm/ 1 0

1.3.9.4 f_1.3.9.4 Drive Axle 1 3 9 1.3 4 ../ipm/ 0 3

196

1.3.9.4.1.1 f_1.3.9.4.1.1 Axle - General 1 3
1.3.9.5 f_1.3.9.5 Engine 1 3
1.3.9.5.1.1 M.3.9.8.1.1 Engine - General 1 3
1.3.9.6 f_1.3.9.6 Steering system 1 3
1.3.9.6.1.1 f_1.3.9.9.1.1 Steering - General 1 3
1.3.9.7 f j .3.9.7 Hydraulic system 1 3
1.3.9.7.1.1 f_1.3.9.10.1.1 Hydraulic - General 1 3
1.3.9.8 f j .3.9.8 Electrical system 1 3
1.3.9.8.1.1 f_1.3.9.11.1.1 Electrical system - General 1 3
2.3.9.1 f_2.3.9.1 Fork-Lift Truck 2 3
2.3.9.1.5.1 f_2.3.9.1.5.1 General View 2 3
2.3.9.2 f_2.3.9.2 Braking System 2 3
2.3.9.2.9.1 f_2.3.9.2.9.1 Braking System - Complete 2 3
2.3 9.2.9.1.5.1 f_2.3.9.2.9.1.5.1 Braking System 1547475 2 3
2.3.9.2.9.1.5.2 f_2.3.9.2.9.1.5.2 Braking System Parts 2 3
2.3.9.2.9.2 f_2.3.9.2.9.2 Hand Brake 2 3
2.3.9.2.9.2.5.1 f_2 3 9.2.9.2 5.1 Hand Brake 1416533 2 3
2.39.2.9.2.5.2 f_2.3.9.2.9.2.5.2 Hand Brake - Complete 2 3
2.3.9.2.9.2.5.3 f_2.3.9.2.9.2.5.3 Hand Brake as part of the Braking System 2 3
2.3.9.29.3 f_2.3.9.2.9.3 Brake Fluid Pipes 2 3
2.3.9.2.9.3.5.1 f_2.3.9.2.9.3.5.1 Pipes 2 3
2.3.9.2.9.3.52 f_2 3.9.2.9.3.5.2 Pipes - Technical View 2 3
2.3.9.2.94 f_2.3.9.2.9.4 Brake Pedal 2 3
2.3.9.2.9.4.3.2 f_2.3.9.2.9.4.3.2 Brake Pedal - Overall 2 3
23.9.2.9.4.5.1 f_2 3.9.2.9.4.5.1 Brake Pedal - Parts 2 3
; 13.9.2.9.4.5.3 f_2 3.9.2.9.4.5 3 Brake Pedal - Parts View 2 3
2.3.92.9.5 f_2.3.9.4.9.5 Servo Brake 2 3
2̂ 3 9 2.9.5.5.1 f_2.3.9.4.9.5.5 1 Servo Brake 1431442 - Technical View 2 3
|2.3.9.2.9.5.5.2 f_2.3.9.4.9.5.5.2 Servo Brake 1431442 - Parts 2 3

197

1 1.3.9.4 1 ./ipm/ 1
9 1.3 5 ./ipm/ 0
1 1.3.9.5 1 ./ipm/ 1
9 1.3 6 ./ipm/ 0
1 1.3.9.6 1 ./ipm/ 1
9 1.3 7 ./ipm/ 0
1 1.3.9.7 1 ./ipm/ 1
9 1.3 8 ./ipm/ 0
1 1.3.9.8 1 ./ipm/ 1
9 2.3 1 ./ipm/ 0
5 2.3.9.1 1 ./ipm/pictures/PL_G_View.gif 2
9 2.3 2 ./ipm/ 0
9 2.3.9.2 1 ./ipm/ 0
5 2.39.2.9.1 1 ./ipm/pictures/PL_B_System .gif 2
5 2.3.9.2.9.1 2 ./ipm/ 1
9 2.3.9.2 2 ./ipm/ 0
5 2.3.9.2.9.2 1 ./ipm/pictures/H_Brake.gif 2
5 23.9.2.9.2 2 ./ipm/ 1
5 2.3.9.2.9.2 3 ./ipm/pictures/b_sys1 .gif 2
9 2.3.9.2 3 ./ipm/ 0
5 2.3.92.9.3 1 ./ipm/ 1
5 2.3.92.9.3 2 ./ipm/pictures/BF_Pipes.gif 2
9 2.39.2 4 ./ipm/ 0
3 2.3.9.2.9.4 2 ./ipm/pictures/pedal_ov.gif 2
5 2.3.9.2.9.4 1 ./ipm/ 1
5 2.3.9.2.9.4 3 ./ipm/pictures/pedal_p.gif 2
9 2.3.9.2 5 ./ipm/ 0
5 2.39.2.9.5 1 ./ipm/pictures/S_Brake.Gif 2
5 2.3.9.2.9.5 2 ./ipm/ 1

o
3
0

3
0

3
0

3
0

3
0

1
3
0

0

3
0

0

0

3
0

0

3
0

0

0

3
0

0

2.3.9.2.9.6 f_2.3.9.2.9.6 Brake Fluid Reservoir 2
2.3.9.2.9.6.5.1 f_2.3.9.2.9.6.5.1 Brake Fluid Reservoir - Parts 2
2.3.9.2.9.6.5.2 f_2.3.9.2.9.6.5.2 Brake Fluid Reservoir - Technical View 2
2.3.9.3 f_2.3.9.3 Lifting System 2
2.3.9.3.9.1 f_2.3.9.3.9.1 Lifting System - Complete 2
2 3.9 3.9.1.5.1 f_2 3 9.3.9.1.5.1 Lifting System 1547121 2
2.3.9.3.9.1.5.2 f_2.3.9.3.9.1.5.2 Lifting System Parts 2
2.3.9.3.9.2 f_2.3.9.3.9.2 Hydraulic Lifting System 2
2.3.9 3.9.2.5.1 f_2.3.9.3.9.2.5.1 Hydraulic Cylinder 1423430 2
! 2.3.9.3.9.2.5.2 f_2.3.9.3.9.2.5.2 Parts for Hydraulic Cylinder 1423430 2
2.3.9.3.9.2.5.3 f_2.3.9.3.9.2.5.3 Hydraulic Cylinder 1430511 2
2.3.9.3.9.2.5.4 f_2.3.9.3.9.2.5.4 Parts for Hydraulic Cylinder 1430511 2
2.3.9.3.9.3 f_2 3.9.3.9.3 Fork Arm 2
2.3.9.3.9.3.5.1 f_2.3.9.3.9.3.5.1 Fork Arm 1430523 2
2.3.9.3.9.3.5.2 f_2.3.9.3.9.3.5.2 Parts for Fork Arm 1430523 2
2.3 9.4 f_2 3 9.4 Drive Axle 2
2.3.9.4.9.1 f_2.3.9.4.9.1 Front Drive Axle 2
2.3.9.4.9.1.5.1 f_2.3 9.4 9.1.5.1 Front Drive Axle 1425505 2
2.3.9.4.9.1.5.2 f_2.3.9.4.9.1.5.2 Parts for Front Drive Axle 2
2.3.9.4.9.2 f_2.3.9.4.9.2 Rear Drive Axle 2
2.3.9.4.9.2.5.1 f_2.3.9.4.9.2.5.1 Driving Axle 1431112 2
2.3.9.4.9.2.5.2 f_2.3.9.4.9.2.5.2 Parts for Driving Axle 1431112 2
2.3.9.4.9.3 f_2.3.9.4.9.3 Wheel 2
2.3.9.4.9.3.5.1 f_2.3.9.4.9.3.5.1 Wheel Parts 1459781 2
2.3.9.4.9.3.5.2 f_2.3.9.4.9.3.5.2 Wheel Parts 2
2.3.9.4.9.4 f_2.3.9.4.9.4 Gear Box 2
2.3.9.4.9.4.5.1 f_2.3.9.4.9.4.5.1 Gear Box 1483448 2
2.3.9.4.9.4.5.2 f_2.3.9.4.9.4.5.2 Parts for Gear Box 1483448 2
2.3.9.5 f_2.3.9.5 Engine 2

198

3 9 2.3.9.2 6 ./ipm/ 0
3 5 2.3.9.2.9.6 1 ./ipm/ 1
3 5 2.3.9.2.9.6 2 ./ipm/pictures/b_sys1 .gif 2
3 9 2.3 3 ./ipm/ 0
3 9 2.3.9.3 1 ./ipm/ 0
3 5 2.3.9.3.9.1 1 ./ipm/pictures/L_Sys.gif 2
3 5 2.3.9.3.9.1 2 ./ipm/ 1
3 9 2.3.9.3 2 ./ipm/ 0
3 5 2.3.9.3.9.2 1 ./ipm/pictures/H_Sys.gif 2
3 5 2.3.9.3.9.2 2 ./ipm/ 1
3 5 2.3.9.3.9.2 3 ./ipm/pictures/H_Sys2.gif 2
3 5 2.3.9.3.9.2 4 ./ipm/ 1
3 9 2.3.9.3 3 ./ipm/ 0
3 5 2.39.3.9.3 1 ./ipm/pictures/F_Arm.gif 2
3 5 2.3.9.3.9.3 2 ./ipm/ 1
3 9 2.3 4 ./ipm/ 0
3 9 2.39.4 1 ./ipm/ 0
3 5 2.3 9 4.9.1 1 ./ipm/ 1
3 5 2.3.9.4.9.1 2 ./ipm/pictures/F_Axle.gif 2
3 9 2.3.9.4 2 ./ipm/ 0
3 5 2.3.9.4.9.2 1 ./ipm/pictures/R_Daxle.gif 2
3 5 2.3.9.4.9.2 2 ./ipm/ 1
3 9 2.3.9.4 3 ./ipm/ 0
3 5 2.3.9.4.9.3 1 ./ipm/ 1
3 5 2.3.9.4.9.3 2 ./ipm/pictures/Wheel_parts.gif 2
3 9 2.3.9.4 4 ./ipm/ 0
3 5 23.9.4.9.4 1 ./ipm/pictures/G_Box.gif 2
3 5 2.3 9.4.9.4 2 ./ipm/ 1
3 9 2.3 5 ./ipm/ 0

3
0

0

2
3
0

0

3
0

0

0

0

3
0

0

2
3
0

0

3
0

0

3
0

0

3
0

0

3

2.3.9.5.5.1 f_2.3.9.5.5.1 Engine - General View 2
2.3.96 f_2.3.9.6 Steering system 2
2.3.9.6.5.1 f_2.3.9.6.5.1 Steering system - Parts 2
23.9.6.5.2 f_2.3.9.6.5.2 Steering System - Complete 2
2.3.97 f_2.3.9.7 Hydraulic system 2
2.3.97.5.1 f_2 3.9.7.5.1 Hydraulic System - Parts 2
2.3.9.7.5.2 f_2.3.9.7.5 2 Hydraulic System - Complete 2
2.3.98 f_2.3.9.8 Electrical system 2
2.3.9.8.5.1 f_2.3.9.8.5.1 Electrical System - Parts 2
2.3.9.8.5.2 f_2.3.9.8.5.2 Electrical System - Complete 2
3.3.9.1 f_3.3.9.1 Fork-Lift Truck 3
3.3.9.1.5.1 f_3.3.9.1.5.1 Fork-Lift Truck - Description 3
3.3.9.1.5.2 f_3.3.9.1.5.2 Cabin 3
3.39.2 T 3 3-9.2 Braking System 3
3.3.9.2.5.1 f_3.3.9.2.5.1 Braking System - Technical View 3
3.3.9.2.5.2 f_3.3 9.2.5.2 Braking System - Technical View 3
3.3.9.2.5.3 f_3.3.9.2.5.3 Brake Fluid 3
3.39.3 f_3.3 9 3 Lifting System 3
3.3.9.3.5.1 f_3.3.9.3.5.1 Lifting Gear - Technical View 3
3.3.9.4 f_3.3.9.4 Drive Axle 3
3.3.9.4.5.1 f_3.3.9.4.5.1 Drive Axle - Technical View 3
3.3.9.4.5.2 f_3.3.9.4.5.2 Drive Axle - Technical View 3
3.3.9.4.5.3 f_3.3.9.4.5.3 Chassis 3
3.3.9.4.5.4 f_3.3.9.4.5.4 Chassis Description 3
3.3.9.5 f_3.3.9.5 Engine 3
3.3.9.5.5.1 f_3.3.9.5.5.1 Engine Technical View 3
3.3.96 f_3.3.9 6 Steering system 3
3.3.9.6.5.1 f_3.3 9 6.5.1 Steering System -Technical View 3
3.3.9.7 f_3.3.9.7 Hydraulic system 3

199

3 5 2.3.9.5 1 ./ipm/pictures/Engine.gif 2
3 9 2.3 6 ./ipm/ 0
3 5 2.3.9.6 1 ./ipm/ 1
3 5 2.3.9.6 2 ./ipm/pictures/Steering_S.gif 2
3 9 2.3 7 ./ipm/ 0
3 5 2.3.9.7 1 ./ipm/ 1
3 5 2.3.9.7 2 ./ipm/pictures/H_Sys.gif 2
3 9 2.3 8 ./ipm/ 0
3 5 2.3.9.8 1 ./ipm/ 1
3 5 2.3.9.8 2 ./ipm/pictures/E_Sys.gif 2
3 9 3.3 1 ./ipm/ 0
3 5 3.3.9.1 1 ./ipm/ 1
3 5 3.3.9.1 2 ./ipm/pictures/Cabin.gif 2
3 9 3.3 2 ./ipm/ 0
3 5 3.3.9.2 1 ./ipm/ 1
3 5 3.3.9.2 2 ./ipm/pictures/TD_B_SYS.gif 2
3 5 3.3.92 3 ./ipm/ 1
3 9 3.3 3 ./ipm/ 0
3 5 3.3.9.3 1 ./ipm/ 1
3 9 3.3 4 ./ipm/ 0
3 5 3.3.9.4 1 ./ipm/ 1
3 5 3.3.9.4 2 ./ipm/pictures/TD_D_Axle.gif 2
3 5 33.9.4 3 ./ipm/ 1
3 5 3.3.9.4 4 ./ipm/pictures/Chassis.gif 2
3 9 3.3 5 ./ipm/ 0
3 5 3.3.95 1 ./ipm/ 1
3 9 3.3 6 ./ipm/ 0
3 5 3.39.6 1 ./ipm/ 1
3 9 3.3 7 ./ipm/ 0

0

3
0

0

3
0

0

3
0

0

3
0

0

3
0

0

0

3
0

3
0

0

0

0

3
0

3
0

3

3.3.9.7.5.1 f_3.3.9.7.5.1 Hydraulic System - Technical View 3 3
3.3.9.8 f_3.3.9.8 Electrical system 3 3
3.3.9.8.5.1 f_3.3.9.8.5.1 Electrical system - Technical View 3 3
4.5.2.1 f_4.5.2.1 Truck Acceptance 4 5
4.5.2.2 f_4.5.2.2 Running the New Truck 4 5
4.6.2.1 f_4.6.2.1 Starting the Engine 4 6
4.6.2.2 f_4.6.2.2 Shutting the Engine 4 6
4.7.2.1 f_4.7.2.1 Moving and Accelerating 4
4.72.2 f_4.7.2.2 Decelerating and Stopping 4
4.7.2.3 f_4.7.2.3 Reverse 4
4.72.4 f_4 7 2 4 Parking 4
4.7.25 f_4.7.2.5 Picking Loads 4
4.7.26 f_4.7.2.6 Unloading the Truck 4
4 .12.1 f_4.7.2.7 Working on Sites with Uneven Surfaces 4
4.7.2.8 f_4.7.2.8 Unloading/Loading of the Truck from/on 4
5.9.9.1 f_5.9.9 1 Check the Servo Brake 5 9
5.9.9.1.9.1 f_5.9.9.1.9.1 Preparation Process 5 9
5.9.9.1.9.1.2.1 f_5.9.9.1.9.1.2.1 Preparation Process 5 9
5.9.9.1.9.1.3.2 f_5.9.9.1.9.1 3.2 Rear Axle 5 9
5.9.9.1.9.1.3.3 f_5.9.9.1.9.1.4.3 Preparation Parts Requirements 5 9
5.9.9.1.9.1.4.4 f_5.9.9.1.9.1.4.4 Caution 5 9
5.9.9.1.9.10 f_5.9.9.1.9.10 Reassemble of the Gear 5 9
5.9.9.1.9.10.2.1 f_5.9.9.1.9.10.2.1 Gear Reassembly 5 9
5.9.9.1.9.10.3.2 f_5.9.9.1.9.10.3.2 Gear Reassembly 5 9
5.9.9.1.9.10.3.3 f_5.9.9.1.9.10.3.3 Gear reassemble on video 5 9
5.9.9.1.9.11 f_5.9.9.1.9.11 Clearing Adjustment For The Hub Bearings 5 9
5.9.9.1.9.11.2.1 f_5.9.9.1.9.11.2.1 Clearing adjustment for the hub bearings 5 9
5.9.9.1.9.11.3.2 f_5.9.9.1.9.11.3.2 Hub Bearings 5 9
5.9.9.1.9.11.3.3 f_5.9.9.1.9.11.3.3 Clear and Adjust Hub Bearings 5 9

200

5 3.3.9.7 1 ./ipm/ 1
9 3.3 8 ./ipm/ 0
5 3.3.9.8 1 ./ipm/ 1
2 4.5 1 ./ipm/ 1
2 4.5 2 ./ipm/ 1
2 4.6 1 ./ipm/ 1
2 4.6 2 ./ipm/ 1
2 4.7 1 ./ipm/ 1
2 4.7 2 ./ipm/ 1
2 4.7 3 ./ipm/ 1
2 4.7 4 ./ipm/ 1
2 4.7 5 ./ipm/ 1
2 4.7 6 ./ipm/ 1
2 4.7 7 ./ipm/ 1
2 4.7 8 ./ipm/ 1
9 5.9 1 ./ipm/ 0
9 5.9.9.1 1 ./ipm/ 0
2 5.9.9.1.9.1 1 ./ipm/ 1
3 5.9.9.1.9.1 2 ./ipm/pictures/step_001 .gif 2
3 5.9.9.1.9.1 3 ./ipm/ 1
4 5.9.9.1.9.1 4 ./ipm/ 1
9 5.9.9.1 10 ./ipm/ 0
2 5.9.9.1.9.10 1 ./ipm/ 1
3 5.9.9.1.9.10 2 ./ipm/pictures/step010.gif 2
3 5.9.9.1.9.10 3 ./ipm/videos/step010.avi 3
9 5.9.9.1 11 ./ipm/ 0
2 5.9.9.1.9.11 1 ./ipm/ 1
3 5.9.9.1.9.11 2 ./ipm/pictures/step011 .gif 2
3 5.9.9.1.9.11 3 ./ipm/videos/step011 .avi 3

0

3
0
0
0
0
0
0

0

0

0

0

0
o ' .

0
2

3
0
0
0
0
3
0
0
0
3
0
0
0

5.9.9.1.9.12 f_5.9.9.1.9.12 Remounting of the Carrier 5
5.9.9.1.9.12.2.1 f_5.9.9.1.9.12.2.1 Carrier Remount 5
5.9.9.1.9.12.3.2 f_5.9.9.1.9.12.3.2 Place the Carrier 5
5.9.9.1.9.12.3.3 f_5.9.9.1.9.12.3.3 Replace screws, spring washers and bolts 5
5.9.9.1.9.12.3.4 f_5.9.9.1.9.12.3.4 Place the Carrier 5
5.9.9.1.9.12.3.5 f_5.9.9.1.9.12.3.5 Replace screws, spring washers and bolts 5
5.9.9.1.9.13 f_5.9.9.1.9.13 Remounting of the Brake Drum 5
5.9.9.1.9.13.2.1 f_5.9.9.1.9.13.2.1 Remount the Brake Drum 5
5.9.9.1.9.13.3.2 f_5.9.9.1.9.13.3.2 Replace the Brake Drum 5
5.9.9.1.9.13.3.3 f_5.9.9.1.9.13.3.3 Replace the Brake Drum 5
5.9.9.1.9.14 f_5.9.9.1.9.14 Remounting of the Wheel 5
5.9.9.1.9.14.2.1 f_5.9.9.1.9.14.2.1 Wheel Remount 5
5.9.9.1.9.14.3.2 f_5.9.9.1.9.14.3.2 Replace the Wheel 5
5.9 9 1.9.14 3.3 f_5 9 9.1.9.14.3.3 Step 2 to 5 5
5.9.9.1.9.14.3.4 f_5.9.9.1.9.14.3.4 Replace the Wheel 5
5.9.9.1.9.14.3.5 f_5.9.9.1.9.14.3.5 Step 2 to 5 5
5.9.9.1.9.15 f_5.9.9.1.9.15 Assembly Final Check 5
5.9.9.1.9.15.2.1 f_5.9.9.1.9.15.2.1 Final Check 5
5.9.9.1.9.15.3.2 f_5.9.9.1.9.15.3.2 Wheel Nuts 5
5.9.9.1.9.15.4.3 f_5.9.9.1.9.15.4.3 !! Important Caution !! 5
5.9.9.1.9.2 f_5.9.9.1.9.2 Wheel Dismounting 5
5.9.9.1.9.2.2.1 f_5.9.9.1.9.2.2.1 Wheel Dismounting 5
5.9.9.1.9.2.3.2 f_5.9.9.1.9.2.3.2 Wheel Dismounting Parts Requirements 5
5.9.9.1.9.2.3.3 f_5.9.9.1.9.2.3.3 Unscrew the nuts 5
5.9.9.1.9.2.3.4 f_5.9.9.1.9.2.3.4 Unscrew the nuts 5
5.9.9.1.9.2.3.5 f_5.9.9.1.9.2.3.5 Take off the spring washers 5
5.9.9.1.9.2.3.6 f_5.9.9.1.9.2.3.6 Take off the spring washers 5
5.9.9.1.9.3 f_5.9.9.1.9.3 Dismount Brake Drum 5
5.9.9.1.9.3.2.1 f_5.9.9.1.9.3.2.1 Dismount Brake Drum 5

201

9 9 5.9.9.1 12 ../ipm/ 0
9 2 5.9.9.1.9.12 1 ../ipm/ 1
9 3 5.9.9.1.9.12 2 ../ipm/pictures/step012.gif 2
9 3 5.9.9.1.9.12 3 ../ipm/pictures/step012_1.gif 2
9 3 5.9.9.1.9.12 4 ../ipm/videos/step012.avi 3
9 3 5.9.9.1.9.12 5 . ./ipm/videos/step012_1 .avi 3
9 9 5.9.9.1 13 ../ipm/ 0
9 2 5.9.9.1.9.13 1 ../ipm/ 1
9 3 5.9.9.1.9.13 2 ../ipm/pictures/step013.gif 2
9 3 5.9.9.1.9.13 3 ../ipm/videos/step013.avi 3
9 9 5.9.9.1 14 ../ipm/ 0
9 2 5.9.9.1.9.14 1 ../ipm / 1
9 3 5.9.9.1.9.14 2 ../ipm/pictures/step014.gif 2
9 3 5.9.9.1.9.14 3 ../ipm/pictures/stepO 14_1.gif 2
9 3 5.9.9.1.9.14 4 ../ipm/videos/stepO 14.avi 3
9 3 5.9.9.1.9.14 5 ../ipm/videos/step014_1.avi 3
9 9 5.9.9.1 15 ../ipm/ 0
9 2 5.9.9.1.9.15 1 ../ipm/ 1
9 3 5.9.9.1.9.15 2 . ./ipm/pictures/step015.gif 2
9 4 5.9.9.1.9.15 3 ../ipm/ 1
9 9 5.9.9.1 2 ../ipm/ 0
9 2 5.9.9.1.9.2 1 ../ipm/ 1
9 3 5.9.9.1.9.2 2 ../ipm/ 1
9 3 5.9.9.1.9.2 3 ../ipm/pictures/step_002_1 .gif 2
9 3 5.9.9.1.9.2 4 . ./ipm/videos/step_002_1 .avi 3
9 3 5.9.9.1.9.2 5 ../ipm/pictures/step_002_2.gif 2
9 3 5.9.9.1.9.2 6 ../ipm/videos/Step_002_2.avi 3
9 9 5.9.9.1 3 ../ipm/ 0
9 2 5.9.9.1.9.3 1 ../ipm/ 1

3
0
0
0
0
0
3
0

0

0

3
0

0

0
0
0
3
0
0
0
3
0
0
0
0
0
0
3
0

5.9.9.1.9.3.3.2 f_5.9.9.1.9.3.3.2 Brake Drum 5
5.9.9.1.9.3.3.3 f_5.9.9.1.9.3.4.3 Parts for Drum Dismount 5
5.9.9.1.9.3.3.4 f_5.9.9.1.9.3.3.4 Dissasemble Brake Drum 5
5.9.9.1.9.4 f_5.9.9.1.9.4 Dismount Carrier 5
5.9.9.1.9.4.2.1 f_5.9.9.1.9.4.2.1 Dismount Carrier 5
5.9.9.1.9.4.3.2 f_5.9.9.1.9.4.3.2 Take off bolts, washers and screws 5
5.9.9.1.9.4.3.3 f_5.9.9.1.9.4.3.3 Take off bolts, washers and screws 5
5.9.9.1.9.4.3.4 f_5.9.9.1.9.4.3.4 Take out the Carrier 5
5.9.9.1.9.4.3.5 f_5.9.9.1.9.4.3.5 Take out the Carrier 5
5.9.9.1.9.5 f_5.9.9.1.9.5 Dismount Ring Gear 5
5.9.9.1.9.5.2.1 f_5.9.9.1.9.5.2.1 Dismount Ring Gear 5
5.9.9.1.9 5.3.2 f_5.9.9.1.9.5.3.2 Take off the safty washer 5
5.9.9.1.9.5.3.3 f_5.9.9.1.9.5.3.3 Take out the ring gear 5
5.9.9.1.9.5.3.4 f_5.9.9.1.9.5.3.4 Take off the safty washer 5
5.9.9.1.9.5.3.5 f_5.9.9.1.9.5.3.5 Take out the ring gear 5
5.9.9.1.9.6 f_5.9.9.1.9.6 Dismount Hub 5
5.9.9.1.9.6.2.1 f_5.9.9.1.9.6.2.1 Dismount Hub 5
5.9.9.1.9.6.3.2 f_5.9.9.1.9.6.3.2 Dissasemble Hub 5
5.9.9.1.9.6.3.3 f_5.9.9.1.9.6.3.3 Dissasemble Hub 5
5.9.9.1.9.7 f_5.9.9.1.9.7 General Check of Servo Brake 5
5.9.9.1.9.7.2.1 f_5.9.9.1.9.7.2.1 General Check 5
5.9.9.1.9 7.3.2 f_5.9.9.1.9.7.3.2 Verify Servo Brake 5
5.9.9.1.9.8 f_5.9.9.1.9.8 Detailed Check of Servo Brake 5
5.9.9.1.9.8.2.1 f_5.9.9.1.9.8.2.1 Detailed Check 5
5.9.9.1.9.8.3.2 f_5.9.9.1.9.8.3.2 Servo Brake - Parts 5
5.9.9.1.9.8.3.3 f_5.9.9.1.9.8.3.3 Servo Brake Assembly 5
5.9.9.1.9.9 f_5.9.9.1.9.9 Reassemble Hub 5
5.9.9.1.9.9.2.1 f_5.9.9.1.9.9.2.1 Reassemble Hub 5
5.9.9.1.9.9.3.2 f_5.9.9.1.9.9.3.2 Reassemble Hub 5

202

9 3 5.9.9.1.9.3 2 ../ipm/pictures/step_003.gif 2
9 3 5.9.9.1.9.3 3 ../ipm/ 1
9 3 5.9.9.1.9.3 4 ../ipm/videos/Step003.avi 3
9 9 5.9.9.1 4 ../ipm/ 0
9 2 5.9.9.1.9.4 1 ../ipm/ 1
9 3 5.9.9.1.9.4 2 ../ipm/pictures/Step004.gif 2
9 3 5.9.9.1.9.4 3 ../ipm/videos/step004.avi 3
9 3 5.9.9.1.9.4 4 ../ipm/pictures/step004_1.gif 2
9 3 5.9.9.1.9.4 5 ../ipm/videos/step004_1.avi 3
9 9 5.9.9.1 5 ../ipm/ 0
9 2 5.9.9.1.9.5 1 ../ipm/ 1
9 3 5.9.9.1.9.5 2 ../ipm/pictures/step005.gif 2
9 3 5.9.9.1.9.5 3 ../ipm/pictures/step005_1 .gif 2
9 3 5.9.9.1.9.5 4 ../ipm/videos/step005.avi 3
9 3 5.9.9.1.9.5 5 ../ipm/videos/step005_1.avi 3
9 9 5.9.9.1 6 ../ipm/ 0
9 2 5.9.91.9.6 1 ../ipm/ 1
9 3 5.9.9.1.9.6 2 ../ipm/pictures/Step006.gif 2
9 3 5.9.9.1.9.6 3 ../ipm/videos/Step006.avi 3
9 9 5.9.9.1 7 ../ipm/ 0
9 2 5.9.9.1.9.7 1 ../ipm/ 1
9 3 5.9.9.1.9.7 2 ../ipm/pictures/step007.gif 2
9 9 5.9.9.1 8 ../ipm/ 0
9 2 5.9.9.1.9.8 1 ../ipm/ 1
9 3 5.9.9.1.9.8 2 ../ipm/pictures/servo_b.gif 2
9 3 5.9.9.1.9.8 3 . ./ipm/pictures/servo_b 1 .gif 2
9 9 5.9.9.1 9 ../ipm/ 0
9 2 5.9.9.1.99 1 ../ipm/ 1
9 3 5.9.9.1.9.9 2 . ./ipm/pictures/step009.gif 2

0
0
0
3
0
0
0

0

0

3
0

0

0
0
0
3
0
0
0
3
0
0
3
0
0
0
3
0
0

5.9.9.1.9.9.3.3 f_5.9.9.1.9.9.3.3 Reassemble Hub on Video 5
5.9.9.2 f_5.9.9.2 Check the hydrostatic steering system 5
5.9.9.3 f_5.9.9.3 Check the steering mechanism 5
5.9.9.4 f_5.9.9.4 Check the motion control system 5
5.9.9.5 f_5.9.9.5 Check the mechanism for engagement of the 5
6.2.1.1 f_6.2.1.1 Annual Maintenance 6
6.2.4.5 f_6.2.4.5 General Maintenance Caution!! 6
6.2.9.1.4.1 f_6.2.9.1.4.1 CAUTION!! 6
6.2.9.2 f_6.2.9.2 Shift Maintenance 6
6.2.9.2.1.1 f_6.2.9.2.1.1 Start of Shift 6
6.2.9.2.12 f_6.2.9.2.1.2 End of Shift 6
6.2.9.2.4.3 f_6.2.9.2.4.3 CAUTION!! 6
6.2.9.3 f_6.2.9.3 Every 100 working hours 6
62.9.3.4.1 f_6.2.9.3.4.1 CAUTION!! 6
6.2.9.4 f_6.2.9.4 Every 400 working hours 6
6.2.9.44.1 f_6 2.9.4.4.1 CAUTION !! 6

9
9
9
9
9
2
2
2
2
2
2
2
2
2
2
2

203

3 5.9.9.1.9.9 3 ../ipm/videos/step009.avi 3
9 5.9 2 ../ipm/ 0
9 5.9 3 ../ipm/ 0
9 5.9 4 ../ipm/ 0
9 5.9 5 ../ipm/ 0
1 6.2 1 ../ipm/ 1
4 6.2 5 ../ipm/ 1
4 6.2.9.1 1 ../ipm/ 1
9 6.2 2 ../ipm/ 0
1 6.2.9.2 1 ../ipm/ 1
1 6.2.9.2 2 ../ipm/ 1
4 6.2.9.2 3 ../ipm/ 1
9 6.2 3 ../ipm/ 0
4 6.29.3 1 ../ipm/ 1
9 6.2 4 ../ipm/ 0
4 6.29.4 1 ../ipm/ 1

0

1
1
1

1
0

0

0

1
0

0

0

1
0

1
0

APPENDIX B

CODING INFORM ATION OBJECTS USING STRUCTURE

BUILDER

Structure Builder is an authoring tool which is created in order to assist authors in

building a semantically valid and implementation language-independent structure.

The following figures show different types of atomic IOs coded using Structure

Builder.

■ Figure B .l depicts the coding o f a textual procedure “wheel dismounting” {Form: 1,

Function: 2).

■ Figure B.2 depicts the coding o f a clarification image “Unscrew the nuts”

{Function: 3, Form: 2).

■ Figure B.3 depicts the coding o f a clarification animation “Unscrew the nuts”

{Function: 3, Form: 3).

■ Figure B.4 depicts the coding o f a clarification image “Take off the spring washers”

{Function: 3, Form: 2).

The above IOs are all included in one container o f type collection which is used to

fully represent the “Wheel dismounting” procedure {ID: 5.9.9.1.9.2). This procedure

is used for maintenance {Cat: 5), and for checking the truck {Task: 9).

204

-,v ;■£ t* i i v .1 •• Z»~r i V- •> '• /* .• •■ •? /• ' 1.•cjj; •' ‘ '1
r// '';rA ' i>“ ;o

C«ntain«r 5 9 9 1 9 2

 *£ll --------------------- 1
F«tm{ . -| ... •'•' '

L e c o tie n f i . /tp m f

% , ' ■:;•■ ■■' J-.
C *w t«*t[l Unscrew the 8 nuts

j a W B B f f l ^ g 2. Take off the 8 spnng washers
M f c S * ® t i m e . 2 MINS

?x. 2%:' a^tei

i M B

.---
5.9.9.1.9.22.1

v- -j

f_5 9 9 1 9 2.2.1

B U I®

Figure B .l Textual Procedure “Wheel dismount”

C ta te n t

l l g S g , .
Record: l< | < 11 3 ► 6 (Filtered)

Figure B.2 Clarification Image “Unscrew the nuts”

205

U n sc re w the nuts
I _______________

5 9 9 1 9 2 3 4

f 5 .9 9 1 9 2.3 .4

m m

* * I H |H * I of 6 (filte red)Record: l< [4 | f

Figure B.3 Clarification animation “Unscrew the nuts”

5.9 .9 1 9 2 3.5

f_5 9 9 1 9 2 3 5

■ ■ ■ .

F*n*ti
L oca tion

mmC e n to n t

5 ► I H !► *! of 6(FH tered)Record: N I < I \

Figure B.4 Clarification Image “Take off the spring washers”

206

APPENDIX C

AUTOM ATICALLY EXTRACTED PURPOSE-DRIVEN

NAVIGATIONAL RELATIONSHIPS

The full set o f the automatically-generated purpose-driven navigational relationships,

“A ctionA pplied”, “P la n ln fo ”, and “Supported_By”are depicted in Tables C .l, C.2,

and C.3 respectively.

207

Table C .l Automatically-Generated Purpose-Driven “Action_AppIied” Navigational Relationships

Source Description Target Description Source ID Target ID
Electrical System - Parts 01-Reverse 2.3.9.8.5.1 4.7.2.3
General Maintenance Caution!! 01-Parking 6.2.4.5 4.7.2.4
Hand Brake 01-Parking 1.3.9.2.1.2 4.7.2.4
Annual Maintenance TM-Check the Servo Brake 6.2.1.1 5.9.9.1
Start of Shift TM-Check the Servo Brake 6.2.9.2.1.1 5.9.9.1
Annual Maintenance TM-Check the hydrostatic steering system 6.2.1.1 5.9.9.2
Annual Maintenance TM-Check the steering mechanism 6.2.1.1 5.9.9.3
Annual Maintenance TM-Check the motion control system 6.2.1.1 5.9.9.4
Annual Maintenance TM-Check the mechanism for engagement of the 6.2.1.1 5.9.9.5
Annual Maintenance TS-Check the servo brake 6.2.1.1 10.9.9.2
Start of Shift TS-Check the servo brake 6.2.9.2.1.1 10.9.9.2

208

Table C.2 Automatically-Generated Purpose-Driven “PIan_Info” Navigational Relationships

- ■ SDesc TDesc Source Target
Fork-Lift Truck PP-Fork-Lift Truck 2.3.9.1 1.1.9.1
Fork-Lift Truck PP-Fork-Lift Truck 3.3.9.1 1.1.9.1
Running the New Truck PP-Fork-Lift Truck 4.5.2.2 1.1.9.1
Fork-Lift Truck - Description PP-Fork-Lift Truck 3.3.9.1.5.1 1.1.9.1
Engine Technical View PP-Fork-Lift Truck 3.3.9.5.5.1 1.1.9.1
Parking TMS-Shift Maintenance 4.7.2.4 6.2.9.2
Engine - General View PP-Engine - General 2.3.9.5.5.1 1.3.9.5.1.1
Running the New Truck PP-Lifting Gear 4.5.2.2 1.3.9.3.1.1
Moving and Accelerating PP-Lifting Gear 4.7.2.1 1.3.9 3.1.1
Picking Loads PP-Lifting Gear 4.7.2.5 1.3.9.3.1.1
Unloading the Truck PP-Lifting Gear 4.7.26 1.3.9.3.1.1
Lifting Gear - Technical View PP-Lifting Gear 3.3.9.3.5.1 1.3.9.3.1.1
Hydraulic System - Technical View PP-Lifting Gear 3.3.9.7.5.1 1.3.9.3.1.1
Fork-Lift Truck PP-Fork-Lift Truck 2.3.9.1 1.3.9.1
Fork-Lift Truck PP-Fork-Lift Truck 3.3.9.1 1.3.9.1
Running the New Truck PP-Fork-Lift Truck 4.5.2.2 1.3.9.1
Fork-Lift Truck - Description PP-Fork-Lift Truck 3.3.9.1.5.1 1.3.9.1
Engine Technical View PP-Fork-Lift Truck 3 3.9.5.5.1 1.3.9.1
Braking System PP-Braking System 2.3.9.2 1.3.9.2
Braking System - Complete PP-Braking System 2.3.9.2.9.1 1.3.9.2
Braking System 1547475 PP-Braking System 2.3.9.2.9.1.5.1 1.3.9.2
Braking System Parts PP-Braking System 2.3.9 2 9.1.5.2 1.3.9.2
Hand Brake - Complete PP-Braking System 2.3.9.2.9.2.5.2 1.3.9.2

209

Braking System
Braking System - Technical View
Braking System - Technical View
Hand Brake as part of the Braking System
Lifting System
Hydraulic Lifting System
Lifting System - Complete
Lifti ng System 1547121
Lifting System Parts
Lifting System
Drive Axle
Front Drive Axle
Rear Drive Axle
Front Drive Axle 1425505
Parts for Front Drive Axle
Running the New Truck
Working on Sites with Uneven Surfaces
Check the mechanism for engagement of the rear drive
Braking System - Technical View
Drive Axle
Drive Axle - Technical View
Drive Axle - Technical View
Chassis
Pipes
Adjust linning to drum clearance
Check rope
Running the New Truck
Starting the Engine
Shutting the Engine
Moving and Accelerating

PP-Braking System 3.3.9.2 1.3.9.2
PP-Braking System 3.3.9.2.5.1 1.3.9.2
PP-Braking System 3.3.9.2.5.2 1.3.9.2
PP-Braking System 2.3.9.2.9.2.5.3 1.3.9.2
PP-Lifting System 2.3.9.3 1.3.9.3
PP-Lifting System 23.9.3.9.2 1.3.9.3
PP-Lifting System 2.3.9.3.9.1 1.3.9.3
PP-Lifting System 2.39.3.9.1.5.1 1.3.9.3
PP-Lifting System 2.3.9.3.9.1.5.2 1.3.9.3
PP-Lifting System 33.9.3 1.3.9.3
PP-Drive Axle 2.3.9.4 1.3.9.4
PP-Drive Axle 2.3.94.9.1 1.3.9.4
PP-Drive Axle 2.3.9.4.9.2 1.3.9.4
PP-Drive Axle 2.3.9.4.9.1.5.1 1.3.9.4
PP-Drive Axle 2 3 9.4.9.1.5.2 1.3.9.4
PP-Drive Axle 4.52.2 1.3.9.4
PP-Drive Axle 4.7.2.7 1.3.9.4

axle PP-Drive Axle 59.9.5 1.3.9.4
PP-Drive Axle 3.3.9.2.5.1 1.3.9.4
PP-Drive Axle 3.3.9.4 1.3.9.4
PP-Drive Axle 3.3.9.4.5.1 1.3.9.4
PP-Drive Axle 3.3.9.4.5.2 1.3.9.4
PP-Drive Axle 3.3.9.4.5.3 1.3.9.4
PP-Drive Axle 2.3.9 2 9.3.5.1 1.3.9.4
PP-Drive Axle 10.10.9.8.2.1 1.3.9.4
PP-Drive Axle 10.9.9.6.2.1 1.3.9.4
PP-Engine 4.5.22 1.3.9.5
PP-Engine 4.6.2.1 1.3.9.5
PP-Engine 46.2.2 1.3.9.5
PP-Engine 4.7.2.1 1.3.9.5

210

Decelerating and Stopping
Parking
Engine
Engine Technical View
Engine
Engine - General View
Chassis
Check the hydrostatic steering system
Steering system
Steering System -Technical View
Steering system
Steering system - Parts
Hydraulic System - Technical View
Steering System - Complete
Lifting System Parts
Running the New Truck
Hydraulic system
Hydraulic System - Parts
Hydraulic system
Hydraulic System - Technical View
Hydraulic System - Complete
Electrical system
Electrical System - Parts
Electrical system
Electrical system - Technical View
Electrical System - Complete
Front Drive Axle 1425505
Servo Brake
Parts for Gear Box 1483448
Servo Brake 1431442 - Technical View

PP-Engine 4.7.2.2 1.3.9.5
PP-Engine 4.7.2.4 1.3.9.5
PP-Engine 3.3.9.5 1.3.9.5
PP-Engine 3.3.9.5.5.1 1.3.9.5
PP-Engine 2.3.9.5 1.3.9.5
PP-Engine 2.3.9.5.5.1 1.3.9.5
PP-Engine 33.9.4.5.3 1.3.9.5
PP-Steering system 5.99.2 1.3.9.6
PP-Steering system 3.3.9.6 1.3.9.6
PP-Steering system 3.3.9.6.5.1 1.3.9.6
PP-Steering system 2.39.6 1.3.9.6
PP-Steering system 2.3.9.6.5.1 1.3.9.6
PP-Steering system 3 3.9 7.5.1 1.3.9.6
PP-Steering system 2.3.9.65.2 1.3.9.6
PP-Hydraulic system 2.3.9.3.9.1.5.2 1 3.9.7
PP-Hydraulic system 4.52.2 1.3.9.7
PP-Hydraulic system 2.3.9.7 1.3.9.7
PP-Hydraulic system 2.3.9.7.5.1 1.3.9.7
PP-Hydraulic system 3.3.9.7 1.3.9.7
PP-Hydraulic system 3.3.9.7.5.1 1.3.9.7
PP-Hydraulic system 2.3.9.7.5.2 1.3.9.7
PP-Electrical system 2.39.8 1.3.9.8
PP-Electrical system 2.39.8.5.1 1.3.9.8
PP-Electrical system 3.39.8 1.3.9.8
PP-Electrical system 3.3 9.8.5.1 1.3.9.8
PP-Electrical system 2.3.9.8.5.2 1.3.9.8
PP-Servo Brake 2.3 9.4.9.1.5.1 1.3.9 2.1.1
PP-Servo Brake 2.3.92.9.5 1.3.9.2.1.1
PP-Servo Brake 2.3.9.4.9.4.5.2 1.3.9.2.1.1
PP-Servo Brake 2.3.9.2.9.5.5.1 1.3.9.2.1.1

Servo Brake 1431442 - Parts
Check the Servo Brake
General Check of Servo Brake
Verify Servo Brake
Detailed Check of Servo Brake
Servo Brake - Parts
Braking System - Technical View
Servo Brake
Verify Servo Brake
Servo Brake
Check the servo brake
Adjust linning to drum clearance
Servo brake
Verify Servo Brake
Servo Brake
Verify Servo Brake
Servo Brake
Verify Servo Brake
Servo Brake Assembly
Hand Brake
Hand Brake 1416533
Hand Brake - Complete
Moving and Accelerating
Picking Loads
Preparation Process
Wheel Remount
Final Check
Dismount Brake Drum
Hand Brake as part of the Braking System
Check the hand brake rope

PP-Servo Brake 2.3.9.2.9.5.5.2 1.3.9.2.1 .1
PP-Servo Brake 5.9.9.1 1.3.9.2.1 .1
PP-Servo Brake 5.9.9.1.9.7 1.3.9.2.1 .1
PP-Servo Brake 5.9.9.1.9.7.3.2 1.3.9.2.1 .1
PP-Servo Brake 5.9.9.1.9.8 1.3.9.2.1 .1
PP-Servo Brake 5.9.9.1.9.8.3.2 1.3.9.2.1 .1
PP-Servo Brake 3.3.9.2.5.1 1.3..9.2.1 .1
PP-Servo Brake 10.10.9.2.9.2.3.:I 1.3..9.2.1 .1
PP-Servo Brake 10.10.9.2.9.2.3.:3 1.3..9.2.1 .1
PP-Servo Brake 10.10.9.3.9.2.3.2 1.3..9.2.1 .1
PP-Servo Brake 10.9.9.2 1.3..9..2.1 .1
PP-Servo Brake 10.10.9.8.2.1 1.3..9..2.1 .1
PP-Servo Brake 10.10.9.8.3.2 1.3.9..2.1 .1
PP-Servo Brake 10.10.9.3.9.2.3.3 1.3..9..2.1 .1
PP-Servo Brake 10.10.9.4.9.2.3.2 1.3 .9..2.1 .1
PP-Servo Brake 10.10.9.4.9.2.3.3 1.3.9 .2.1 .1
PP-Servo Brake 10.10.9.7.9.2.3.2 1.3 9.2.1 .1
PP-Servo Brake 10.10.9.7.9.2.3.3 1.3.9..2.1 .1
PP-Servo Brake 5.9 9.1.9.8.3.3 1.3.9..2.1 .1
PP-Hand Brake 2.3.92.9.2 1.3.9..2.1 .2
PP-Hand Brake 2.3.9.2.9.2.5.1 1.3.9..2.1 .2
PP-Hand Brake 2.3.9.2.9.2.5.2 1.3.9..2.1 .2
PP-Hand Brake 4.7.2.1 1.3.9,.2.1 .2
PP-Hand Brake 4.7.2.5 1.3.9..2.1 .2
PP-Hand Brake 5.9.9.1.9.1.2.1 1.3.9,.2.1 .2
PP-Hand Brake 5.9.9.1.9.14.2.1 1.3.9..2.1 .2
PP-Hand Brake 5.9.9.1.9.15.2.1 1.3.9..2.1 .2
PP-Hand Brake 5.9.9.1.9.3.2.1 1.3.9,.2.1 .2
PP-Hand Brake 2.39.2.9.2.5.3 1.3.9.,2.1 .2
PP-Hand Brake 10.9.9.6 1.3 9..2.1 .2

Adjust the hand brake rope
Replace the hand brake rope
Hand brake
hand brake
Hand brake rope
Caution
Brake Fluid Pipes
Pipes
Check the brake fluid pipes
Replace damaged brake fluid pipes
Brake fluid pipes
Moving and Accelerating
Decelerating and Stopping
Reverse
Braking System - Technical View
Pipes
Brake Pedal
Brake Pedal - Parts
Brake Pedal - Overall
Brake Pedal - Parts View
Check the brake pedal
Unblock brake pedal bushings
Brake Pedal
Brake Fluid Pipes
Pipes
Brake Fluid Reservoir
Brake Fluid Reservoir - Parts
Brake Fluid Reservoir - Technical View
Check the brake fluid pipes
Replace damaged brake fluid pipes

PP-Hand Brake 10.10.9.9 1.3.9.2..1.2
PP-Hand Brake 10.10.9.10 1.3.9.2..1.2
PP-Hand Brake 10.9.9.6.3.2 1.3.9.2..1.2
PP-Hand Brake 10.10.9.10.3.2 1.3.9.2.,1.2
PP-Hand Brake 10.10.9.9.3.2 1.3.9.2..1.2
PP-Hand Brake 5.9.9.1.9.1.4.4 1.3..9..2. 1.2
PP-Brake Fluid Pipes 2.3.9.29.3 1.3.9.2.,1.3
PP-Brake Fluid Pipes 2.3.9.2.9.3.5.1 1.3..9.,2. 1.3
PP-Brake Fluid Pipes 10.9.9.1 1.3..9..2. 1.3
PP-Brake Fluid Pipes 10.10.9.1 1.3..9..2.1.3
PP-Brake Fluid Pipes 10.9.9.1.3.2 1.3..9..2.1.3
PP-Brake Pedal 4.7.2.1 1.3.9.2. 1.4
PP-Brake Pedal 4.7.22 1.3.,9..2.1.4
PP-Brake Pedal 4.7.23 1.3.9.2. 1.4
PP-Brake Pedal 3.3.9.2.5.1 1.3..9..2.1.4
PP-Brake Pedal 2.3.9.29.3.5.1 1.3.9.2. 1.4
PP-Brake Pedal 2.3.9.29.4 1.3..9..2.1.4
PP-Brake Pedal 2.3.9.2.9.4.5.1 1.3.9.2. 1.4
PP-Brake Pedal 2.3.9.2.9.4.3.2 1.3..9..2.1.4
PP-Brake Pedal 2.3.9.29.4.5.3 1.3.9.2. 1.4
PP-Brake Pedal 10.9.9.3 1.3.,9..2.1.4
PP-Brake Pedal 10.10.9.5 1.3.9.2. 1.4
PP-Brake Pedal 10.9.9.3.3.2 1.3..9..2.1.4
PP-Brake Fluid 2.3.9.2.9.3 1.3.9.2. 1.5
PP-Brake Fluid 2.3.9.2.9.3.5.1 1.3..9..2.1.5
PP-Brake Fluid 2.3.9.2.9.6 1.3.9.2. 1.5
PP-Brake Fluid 2.3.9.2.96.5.1 1.3..9..2.1.5
PP-Brake Fluid 2.3.9.2.9.6.52 1.3.9 2. 1.5
PP-Brake Fluid 10.9.9.1 1.3..9..2. 1.5
PP-Brake Fluid 10.10.9.1 1.3..9..2.1.5

Brake fluid pipes PP-Brake Fluid 10.9.9.1.3.2 1.3.9.2.1.5
Caution PP-Brake Fluid 10.10.9.1.4.2 1.3.9.2.1.5
Brake Fluid PP-Brake Fluid 3.3.9.2.5.3 1.3.9.2.1.5

214

Table C.3 Automatically-Generated Purpose-Driven “SupportedBy” Navigational Relationships

SDesc TDesc Source Target
Introduction PL-Fork-Lift Truck 1.1.9.1.1.1 2.3.9.1
Fork-Lift Truck PL-Fork-Lift Truck 1.1.9.1 2.3.9.1
Running the New Truck PL-Fork-Lift Truck 4.5.2.2 2.3.9.1
Fork-Lift Truck PL-Fork-Lift Truck 1.3.9.1 2.3.9.1
Start of Shift PL-Braking System 6.2.9.2.1.1 2.3.9.2
Braking System PL-Braking System 1.3.9.2 2.3.9.2
Moving and Accelerating PL-Hand Brake 4.7.2.1 2.3.9.2.9.2
Picking Loads PL-Hand Brake 4.7.25 2.39.2.9.2
Preparation Process PL-Hand Brake 5.9.9.1.9.1.2.1 2.39.2.9.2
Wheel Remount PL-Hand Brake 5.9.9.1.9.14.2.1 2.39.2.9.2
Final Check PL-Hand Brake 5.9.9.1.9.15.2.1 2.3.9.2.9.2
Dismount Brake Drum PL-Hand Brake 5.9.9.1.9.3 2.1 2.3.9.2.9.2
Check the hand brake rope PL-Hand Brake 10.9.9.6 2.3.9.2.9.2
Adjust the hand brake rope PL-Hand Brake 10.10.9.9 2 3.9 2.9.2
Replace the hand brake rope PL-Hand Brake 10.10.9.10 2.3.9.2.9.2
Hand Brake PL-Hand Brake 1.3.9.2.1.2 2.3.9.2.9.2
Lifting System PL-Lifting System 1.3.9.3 2.3.9.3
Picking Loads PL-Fork Arm 4.7.2.5 2.3.9.3.9.3
Unloading the Truck PL-Fork Arm 4.7.2.6 2.3.93.9.3
General Performance and Dimensions PL-Fork Arm 1.3.9.1.1.1 2.3.9.3.9.3
Running the New Truck PL-Drive Axle 4.5.2.2 2.3.94
Working on Sites with Uneven Surfaces PL-Drive Axle 47.2.7 2.3.9.4
Check the mechanism for engagement of the rear drive axle PL-Drive Axle 59.9.5 2.39.4
Annual Maintenance PL-Drive Axle 6.2.1.1 2.3.9.4

215

Start of Shift PL-Drive Axle 6.2.9.2.1.1 2.3.9.4
Drive Axle PL-Drive Axle 1.3.9.4 2.3.9.4
Adjust linning to drum clearance PL-Drive Axle 10.10.9.8.2.1 2.3.9.4
Check rope PL-Drive Axle 10.9.9.6.2.1 2.3.9.4
Adjust linning to drum clearance PL-Front Drive Axle 10.10.9.8.2.1 2.3.9.4.9.1
Working on Sites with Uneven Surfaces PL-Rear Drive Axle 4.7.2.7 2.3.9.4.9.2
Check the mechanism for engagement of the rear drive axle PL-Rear Drive Axle 59.9.5 2.3.9.4.9.2
Annual Maintenance PL-Rear Drive Axle 6.2.1.1 2.3.9.4.9.2
Check rope PL-Rear Drive Axle 10.9.9.6.2.1 2.3.9.4.9.2
Introduction TD-Fork-Lift Truck 1.1.9.1.1.1 3.3.9.1
Fork-Lift Truck TD-Fork-Lift Truck 1.1.9.1 3.3.9.1
Running the New Truck TD-Fork-Lift Truck 4.5.2.2 3.3.9.1
Fork-Lift Truck TD-Fork-Lift Truck 1.3.9.1 3.3.9.1
Remounting of the Wheel PL-Wheel 5.9.9.1.9.14 2.3.9.4.93
Wheel Remount PL-Wheel 5.9.9.1.9.14.2.1 2.3.9.4.93
Final Check PL-Wheel 5.9.9.1.9.15.2.1 2.3.9.4.93
Wheel Dismounting PL-Wheel 5.9.9.1.9.2 2.3.9.4.9.3
Wheel Dismounting PL-Wheel 5.9.9.1.9.2.2.1 2.3.9.4.9.3
Start of Shift PL-Wheel 6.29.2.1.1 2.3.9.4.9.3
General Performance and Dimensions PL-Wheel 1.3.9.1.1.1 2.3.9.4.9.3
Check Clearance PL-Wheel 10.9.9.5.2.1 2.3.9.4.9.3
Adjust linning to drum clearance PL-Wheel 10.10.9.8.2.1 2.3.9.4.93
Check rope PL-Wheel 10.9.9.6.2.1 2.3.9.4.93
Servo Brake PL-Wheel 1.3.9.2.1.1 2.3.94.9.3
Hand Brake PL-Wheel 1.3.9.2.1.2 2.3.9.49.3
Check the Servo Brake PL-Servo Brake 5.9.9.1 2.3.9.2.95
General Check of Servo Brake PL-Servo Brake 5.9.9.1.9.7 2.3.9.2.9.5
Annual Maintenance PL-Servo Brake 6.2.1.1 2.3.9.29.5
Detailed Check of Servo Brake PL-Servo Brake 5.9.9.1.9.8 2.3.9.2.9.5
Start of Shift PL-Servo Brake 6.2.9.2.1.1 2.3.9.2.95

216

Check the servo brake PL-Servo Brake 10.9.9.2 2.3.9.2.9.5
Adjust linning to drum clearance PL-Servo Brake 10.10.9.8.2.1 2.3.9.2.9.5
Servo Brake PL-Servo Brake 1.3.9.2.1.1 2.3.9.2.9.5
Start of Shift TD-Cabin 6.2.9.2.1.1 3.3.9.1.5.2
Brake Pedal TD-Cabin 1.3.9.2.1.4 3.3.9.1.5.2
Running the New Truck PL-Hydraulic system 4.5.2.2 2.3.9.7
Start of Shift PL-Hydraulic system 6.2.9.2.1.1 2.3.9.7
Hydraulic system PL-Hydraulic system 1.3.9.7 2.3.9.7
Electrical system - General PL-Electrical system 1.3.9.8.1.1 2.3.98
Electrical system PL-Electrical system 1.3.9.8 2.3.9.8
Start of Shift TD-Braking System 6.2.9.2.1.1 3.3.9.2
Braking System TD-Braking System 1.3.9.2 3.3.9.2
Lifting System TD-Lifting System 1.3 9.3 3.39.3
Running the New Truck TD-Drive Axle 4.5.2.2 3.3.9.4
Working on Sites with Uneven Surfaces TD-Drive Axle 4.7.2.7 3.3.9.4
Check the mechanism for engagement of the rear drive axle TD-Drive Axle 5.9.9.5 3.3.9.4
Annual Maintenance TD-Drive Axle 6.2.1.1 3.3.9.4
Start of Shift TD-Drive Axle 6.2.9.2.1.1 3.3.9.4
Drive Axle TD-Drive Axle 1.3.9.4 3.3.9.4
Adjust linning to drum clearance TD-Drive Axle 10.10.9.8.2.1 3.3.9.4
Check rope TD-Drive Axle 10.9.9.6.2.1 3.3.9.4
Running the New Truck TD-Engine 4.5.2.2 3.3.9.5
Starting the Engine TD-Engine 4.6.2.1 3.3.95
Shutting the Engine TD-Engine 4.6.2.2 3.3.9.5
Moving and Accelerating TD-Engine 4.7.2.1 3.3.9.5
Decelerating and Stopping TD-Engine 4.7.2.2 3.3.9.5
Parking TD-Engine 4.72.4 3.3.95
Start of Shift TD-Engine 6.2.92.1.1 3.3.9.5
End of Shift TD-Engine 6.2.9.2.1.2 3.3.9.5
Engine - General TD-Engine 1.3.9.5.1.1 3.3.9.5

217

General Performance and Dimensions
Engine
Check the hydrostatic steering system
Annual Maintenance
Steering system
Running the New Truck
Starting the Engine
Shutting the Engine
Moving and Accelerating
Decelerating and Stopping
Parking
Start of Shift
End of Shift
Engine - General
General Performance and Dimensions
Engine
Check the hydrostatic steering system
Annual Maintenance
Steering system
Running the New Truck
Start of Shift
Hydraulic system
Electrical system - General
Electrical system
Unloading/Loading of the Truck from/on Transport Vehicles
Start of Shift
Check the brake fluid pipes
Replace damaged brake fluid pipes
Brake Fluid Pipes
Check the brake fluid pipes

TD-Engine 1.3.9.1.1.1 3.3.9.5
TD-Engine 1.3.9.5 3.3.9.5
TD-Steering system 5.9.9.2 3.3.9.6
TD-Steering system 6.2.1.1 3.3.9.6
TD-Steering system 1.3.9.6 3.3.9.6
PL-Engine 4.5.22 2.3.9.5
PL-Engine 4.6.2.1 2.3.9.5
PL-Engine 4.6.22 2.3.9.5
PL-Engine 4.7.2.1 2.3.95
PL-Engine 4.7.2.2 2.3.9.5
PL-Engine 4.7.24 2.3.9.5
PL-Engine 6.2.9.2.1.1 2.3.9.5
PL-Engine 6.2.92.1.2 2.3.9.5
PL-Engine 1.3.9.5.1.1 2.3.9.5
PL-Engine 1.3.9.1.1.1 2.3.9.5
PL-Engine 1.3.9.5 2.3.9.5
PL-Steering system 5.9.9.2 2.3.9.6
PL-Steering system 6.2.1.1 2.3.9.6
PL-Steering system 1.3.9.6 23.9.6
TD-Hydraulic system 4.52.2 3.3.9.7
TD-Hydraulic system 6.2.9.2.1.1 3.3.97
TD-Hydraulic system 1.3.9.7 3.3.9.7
TD-Electrical system 1.3.9.8.1.1 3.3.9.8
TD-Electrical system 1.3.9.8 3.3.9.8
TD-Chassis 4.7.2.8 3.3.9.4.53
TD-Chassis 6.2.9.2.1.1 3.3.9.4.5.3
PL-Brake Fluid Pipes 10.9.9.1 23.9.2.9.3
PL-Brake Fluid Pipes 10.10.9.1 2.3.9.2.9.3
PL-Brake Fluid Pipes 1.3 9.2.1.3 2.3.9.2.9.3
PL-Pipes 10.9.9.1 2.3.9.2.9.3.5.1

218

Replace damaged brake fluid pipes PL-Pipes 10.10.9.1 2.3.9.2.9.3.5.1
Check pipes PL-Pipes 10.9.9.1.2.1 2.3.9.2.9.3.5.1
Repair pipes PL-Pipes 10.10.9.1.2.1 2.3.9.2.9.3.5.1
Brake Fluid Pipes PL-Pipes 1.3.9.2.1.3 2.3.9.2.9.3.5.1
Moving and Accelerating PL-Brake Pedal 4.7.2.1 2.3.9.2.9.4
Decelerating and Stopping PL-Brake Pedal 4.72.2 2.3.9.2.9.4
Reverse PL-Brake Pedal 4.7.2.3 2.3.9.2.9.4
Check the brake pedal PL-Brake Pedal 10.9.9.3 2.3.9.2.9.4
Unblock brake pedal bushings PL-Brake Pedal 10.10.9.5 2.3.9.2.9.4
Brake Fluid Pipes PL-Brake Pedal 1.3.9.2.1.3 2.3.9.2.9.4
Brake Pedal PL-Brake Pedal 1.3.9.2.1.4 2.3.9.2.9.4
Start of Shift PL-Brake Fluid Reservoir 6.2.9.2.1.1 2.3.92.9.6
Brake Fluid PL-Brake Fluid Reservoir 1.3.9.2.1.5 2.3.92.9.6
Start of Shift TD-Brake Fluid 6.2.9.2.1.1 3.3.9.25.3
Check the brake fluid pipes TD-Brake Fluid 10.9.9.1 3.3.9.2.53
Replace damaged brake fluid pipes TD-Brake Fluid 10.10.9.1 3 3.9.2 5.3
Brake Fluid Pipes TD-Brake Fluid 1.3.9.2.1.3 3.3.9.25.3
Brake Fluid TD-Brake Fluid 1.3.9.2.1.5 3.3.9.2.5.3

219

APPENDIX D

FRAM E-BASED PRESENTATION TEMPLATES

The presentation templates used to create the user interface are based on HTML frames,

which divide the interface window into a number of navigation-able areas. Every

composite IO is associated with a presentation template which is based on its access

method. Thus, there are three types o f templates namely index, collection, and guided

tour. These templates are created using Java classes that generate Java Server Pages

(JSP™) code. JSP™ is an HTML-based document with embedded Java-based control

statements.

D .l Index Template (Tmplndex.java)

import java.sql.*;
import java.io.*;

public class Tmplndex {

FileWriter Temp;
// String BColor="#FFD700";
String BColor="#FAEBD7";
TmpIndex(String Dir, String Name, String Desc, String E_ID) throws IOException{

Temp = new FileWriter(Dir+7F_"+Name+".jsp");
Temp.write("<%@ page import=\"Frames.Frame\" %>");
Temp.write("<html><head><title>"+Desc+"</title><base target=\"_top\"></head>");
Temp.write("<frameset cols=\"20%,60%,20%\" FRAMEBORDER=yes

BORDERCOLOR=\"Black\"> ");
Temp.write("<frame src=\"Activities.htm 1\" name=\"Activities\" FRAMEBORDER^no > ");
Temp.write("<frame src=\""+Name+".html\" name=\"Content\" FRAMEBORDER=no> ");
Temp.write("<frame src=\"CLinks.html\" name=\"CLinks\" FRAMEBORDER=no> ");
Temp.write("</frameset> ");
Temp.write("<body> ");
Temp.write("<% Frame Fr = new Frame(\""+E_ID+"\"); ");
Temp.write(" Fr.CrActivities(); ");
Temp.write(" Fr.CrCLinks(); ");
Temp.write(" Fr.CrPathO; %> ");
Temp.write("</body> ");
Temp.write("</html> ");

220

Temp.cIose();
}

}

D.2 Collection Template (TmpCollection.java)

import java.sql.*;
import java.io.*;

public class TmpCollection {

FileWriter Temp;
// String BColor="#FFD700";
String BColor="#FAEBD7";
TmpCollection(String Dir, String Name, String Desc, String E_ID) throws IOException{

Temp = new FileWriter(Dir+"/F_"+Name+".jsp");
Temp.write("<%@ page import=\"Frames.Frame\" %>");
Temp.write("<html><head><title>"+Desc+"</title><base target=\"_top\"></head>");
Temp.write("<frameset cols=\"20%,60%,20%\" FRAMEBORDER=yes

BORDERCOLOR=\"Black\"> ");
Temp.write("<frame src=\"Activities.htm 1\" name=\"Activities\" FRAMEBORDER=no > ");
Temp.write("<frame src=\""+Name+".html\" name=\"Content\" FRAMEBORDER=no> ");
Temp.write("<frame src=\"CLinks.html\" name=\"CLinks\" FRAMEBORDER=no> ");
Temp.write("</frameset> ");
Temp.write("<body> ");
Temp.write("<% Frame Fr = new Frame(\""+E_ID+"\");");
Temp.write(" Fr.CrActivities(); ");
Temp.write(" Fr.CrCLinks(); ");
Temp.write(" Fr.CrPath(); %> ");
Temp.write("</body> ");
Temp.write("</html> ");
Temp.close();
}

}

D.3 Guided Tour Template (TmpGTour.java)

import java.sql.*;
import java.io.*;

public class TmpGTour {

' FileWriter Temp;

public TmpGTour(String Dir, String Name, String Desc, String E_ID, String IOName) throws
IOException{

Temp = new FileWriter(Dir+"/F_"+Name+".jsp");
Temp.write("<%@ page import=\"Frames.Frame\" %>");
Temp.write("<html><head><title>"+Desc+"</title><base target=\"_top\"></head>");
Temp.write("<frameset cols=\"20%,60%,20%\" FRAMEBORDER=yes

BORDERCOLOR=\"Black\"> ");
Temp.write("<frameset rows=\"60%,40%\" FRAMEBORDER=yes

BORDERCOLOR=\"Black\"> ");

221

Temp.write("<frame src=\"Activities.html\" name=\"Activities\" FRAMEBORDER=no > ");
Temp.write("<frame src=\"CLinks.html\" name=\"CLinks\" FRAMEBORDER=no > ");
Temp.write("</frameset> ");
Temp.write("<frame src=\""+IOName+".html\" name=\"Content\" FRAMEBORDER=no> ");
Temp.write("<frame src=\"List.html\" name=\"List\" FRAMEBORDER=yes

BORDERCOLOR=\"Black\"> ”);
"</frameset> ");
'<body> ");
'<% Frame Fr = new Frame(\""+E_ID+"\"); ");
' Fr.CrActivities();");
' Fr.CrCLinks(); ");
' Fr.CrList();");
" Fr.CrPathO; %> ");
"</body> ");
"</html> ");

Temp.write(
Temp.write(
Temp.write(
Temp.write(
Temp.write(
Temp.write(
Temp.write(
Temp.write(
Temp.write(
Temp.close();
}

222

APPENDIX E

AUTOMATIC GENERATION OF KNOWLEDGE BASES IN

e2gLite ES SHELL FORMAT

E.l KB Generator - Source Code

The KB Generator is a Java-based ES shell-dependent tool that has been created in

order to automatically generate the rule-based KB by transforming the structured

shallow knowledge data into rules and prompts in e2gLite ES shell format. It interacts

with the technical documentation metadata to resolve the deep knowledge references

embedded in the structured shallow knowledge data. In addition, it realises the new

procedures and inserts them in the technical documentation.

E.2 the Complete Rule-Based KB Generated in e2gLite ES Shell Format

The ES shell that has been selected for demonstration purposes is the freely available

e2gLite ES shell [e2gLite, 2003]. The e2gLite ES shell is a Java applet that is

embedded in a Web page and downloaded from the Web server by the user’s browser.

The applet loads a knowledge base from the server and then runs entirely on the

browser. It uses a simple, special e2gLite language for encoding KBs, and it is fully

Web enabled. The generated KB file is divided into rules and prompts.

223

E .l KB Generator - Source Code (KB.java)

import j ava.sql.*;
import j ava.io.*;

public class KB {

public static void main(String args[]) throws IOException {

FileWriter out= new FileWriter("C:\\PhD\\MY_Proj\\Programs\\ExSys/BrakingSYS. kb") ;
String Proc_ID="";
int i=l;

// Insert new Diag. and Correct procedure into the Manual
// and Update their ID in the Faults tables
try{

DataBase db2=new DataBase();
db2.Connect("DSIS") ;
ResultSet rs2=db2.Query(" SELECT DISTINCT D_Proc, C_Proc FROM ES_Faults ") ;

while (rs2.next())
{
String D_Proc=rs2.getString(1) ;
String C_Proc=rs2.getString(2) ;

DataBase db3=new DataBase();
db3.Connect("DSIS");
ResultSet rs3=db3.Query(" SELECT Description FROM IOs "+

" WHERE ID = \ '"+D_Proc+"\';");
if (!rs3.next()) {

newIO DProc = new newIO();
Proc_ID=DProc.Insert_n_Update(D_Proc,0);

}
db3.disconnect();
DataBase db4=new DataBase();
db4.Connect("DSIS") ;
ResultSet rs4=db4.Query(" SELECT Description FROM IOs "+

" WHERE ID = \'"+C_Proc+"\';");
if (!rs4.next()) {

224

newIO CProc = new newIO();
Proc_ID=CProc.Insert_n_Update(C_Proc,1);

}
db4.disconnect();

} //while rs2.next
db2.disconnect();

// Generate RULES

DataBase dbl=new DataBase();
dbl.Connect("DSIS");

ResultSet rsl=dbl.Query(" SELECT ES_Faults.ID, IOs.Description, ES_Faults.Outcome "+
" FROM (ES_Faults INNER JOIN IOs ON ES_Faults.D_Proc = IOs.ID) " +
" INNER JOIN IOs AS IOs_l ON ES_Faults.C_Proc - IOs_l.ID " +
" ORDER BY ES_Faults.ID; ");

while (rsl.nextO)
{

int F_ID=rsl.getlnt(1) ;
String DProc_Desc=rs1.getString(2) ;
String Outcome=rsl.getString(3) ;

// Fault Symptoms with Causes
db2=new DataBase();
db2.Connect("DSIS") ;
rs2=db2.Query(" SELECT ES_C_Class.Desc, ES_Causes.Status, ES_FCs.CF "+

" FROM (ES_C_Class INNER JOIN ES_Causes ON ES_C_Class.ID = ES_Causes.C_ID) "+
" INNER JOIN ES_FCs ON ES_Causes.ID = ES_FCs.C_ID "+
" WHERE (((ES_FCs.F_ID)="+F_ID+"))"+
" ORDER BY ES_FCs.CF DESC; ");

while (rs2.next())
{
String C_Desc = rs2.getString(1);
String C_Status = rs2.getString(2) ;
out.write("RULE ["+i+"] \n") ;
out.write("If ") ;
i++;

225

DataBase db3=new DataBase ();
db3.Connect("DSIS");
ResultSet rs3=db3.Query(" SELECT ES_S_Class.Desc, ES_Symptoms.Status, ES_Symptoms.ID "+

" FROM (ES_S_Class INNER JOIN ES_Symptoms ON ES_S_Class.ID = ES_Symptoms.C_ID) "+
" INNER JOIN ES_FSs ON ES_Symptoms.ID = ES_FSs.S_ID "+
" WHERE (((ES_FSs.F_ID)="+F_ID+")) "+
" ORDER BY ES_Symptoms.ID; ");

while (rs3.next())
{
String S_Desc = rs3.getString(1);
String S_Status = rs3.getString(2);

out.write("["+S_Desc+"] = \""+S_Status+"\" and \n");
} //while (rs3.next)
db3.disconnect();

out.write("["+C_Desc+"] = \""+C_Status+"\" and \n");
out.write("["+DProc_Desc+"] = \""+Outcome+"\" \n");
out.write("Then [Fault Code] = \""+F_ID+"\" and\n");
out.write("[Cause] = \""+C_Desc+" is "+C_Status+"\" \n\n");
} //While rs2.next

db2.disconnect();

// Fault Symptoms without Causes

out.write("RULE ["+i+"] \n") ;
out.write("If ");
i++;

DataBase db3=new DataBase ();
db3.Connect("DSIS");
ResultSet rs3=db3.Query(" SELECT ES_S_Class.Desc, ES_Symptoms.Status, ES_Symptoms.ID "+

" FROM (ES_S_Class INNER JOIN ES_Symptoms ON ES_S_Class.ID = ES_Symptoms.C_ID) "+
" INNER JOIN ES_FSs ON ES_Symptoms.ID = ES_FSs.S_ID "+
" WHERE (((ES_FSs.F_ID)="+F_ID+")) "+
" ORDER BY ES_Symptoms.ID; ");

while (rs3.next())
{
String S_Desc = rs3.getString(1);
String S_Status = rs3.getString(2);

226

out.write("["+S_Desc+"] = \""+S_Status+"\" and \n");
} //while (rs3.next)
db3.disconnect();

out.write("["+DProc_Desc+"] = \""+Outcome+"\" \n");
out.write("Then [Fault Code] = \""+F_ID+"\" \n\n");

} //while rsl.next
dbl.disconnect();

/ / ---
// Fault Rules

db2=new DataBase();
db2.Connect("DSIS");
rs2=db2.Query(" SELECT ID, D_Proc, Outcome, C_Proc FROM ES_Faults ;");

while (rs2.next())
{
String F_ID=rs2.getString(1) ;
String D_Proc=rs2.getString(2);
String 0utcome=rs2.getString(3);
String CProc_ID=rs2.getString(4);

DataBase db3=new DataBase();
db3.Connect("DSIS");
ResultSet rs3=db3.Query(" SELECT Description FROM IOs "+

" WHERE ID = \ '"+D_Proc+"\' ; ;
rs3.next();
String DProc_Desc = rs3.getString(1) ;
db3.disconnect() ;

DataBase db4=new DataBase();
db4.Connect("DSIS") ;
ResultSet rs4=db4.Query(" SELECT Description FROM IOs "+

" WHERE ID = \ '"+CProc_ID+"\';");
rs4.next ();
String CProc_Desc = rs4.getString(1);
db4.disconnect ();

227

out.write("RULE ["+i+"] \n");
i++;

out.write("If [Fault Code] = \""+F_ID+"\" \n");
out.write("Then [Fault] = \"The outcome of "+DProc_Desc+" procedure is: "+Outcome+"\" and \n");
out.write("[Recommendation] = \""+CProc_Desc+" (Man:"+CProc_ID+")\"\n\n");

} //while rs2.next
db2.disconnect() ;

// Generate PROMPTS
// Symptoms PROMPTS

dbl=new DataBase();
dbl.Connect("DSIS");

rsl=dbl.Query(" SELECT ID, Desc FROM ES_S_Class; ");
while (rsl.nextO)
{
int C_ID=rsl.getlnt(1);
String C_Desc=rsl.getString (2);

out.write("PROMPT ["+C_Desc+"] MultChoice \n");
out.write("\""+C_Desc+"? \"\n");

db2=new DataBase ();
db2.Connect("DSIS");

rs2=db2.Query(" SELECT Status FROM ES_Symptoms "+
"WHERE C_ID - "+C_ID+";");

while (rs2.next())
{
String Status=rs2.getString(1) ;
out.write("\""+Status+"\" \n") ;
} //While rs2.next
db2.disconnect() ;
out.write("\"Normal\"\n\n");

} //While rsl.next
dbl.disconnect() ;

228

// TROUBLE CAUSES PROMPTS
dbl=new DataBase();
dbl.Connect("DSIS");

rsl=dbl.Query(" SELECT DISTINCT c.ID, c.Desc FROM ES_C_Class c, ES_Causes h, ES_FCs t "+
" WHERE c.ID = h.C_ID and h.ID = t.C_ID; ");

while (rsl.next ())
{
int C_ID=rsl.getlnt(1);
String C_Desc=rsl.getString(2);

if (C_ID != 0){
out.write("PROMPT ["+C_Desc+"] MultChoice CF \n");
out.write("\""+C_Desc+"? \"\n");

db2=new DataBase();
db2.Connect("DSIS");

rs2=db2.Query(" SELECT Status FROM ES_Causes "+
"WHERE C_ID = "+C_ID+";");

while (rs2.next())
{
String Status=rs2.getString(1);
out.write("\""+Status+"\" \n");
} //While rs2.next
db2.disconnect();
out.write("\"Normal\"\n\n");

} // if C_ID !=0
} //While rsl.next
dbl.disconnect();

// Diagnosis PROMPTS
String D_Proc_Desc="";
dbl=new DataBase();
dbl.Connect("DSIS");

rsl=dbl.Query(" SELECT DISTINCT D_Proc FROM ES_Faults f ; ");
while (rsl.nextO)
{
String D_Proc = rsl.getString(1);

229

DataBase db3=new DataBase();
db3.Connect ("DSIS");
ResultSet rs3=db3.Query(" SELECT Description FROM IOs "+

" WHERE ID = \ '"+D_Proc+"\';");
if (rs3.next ()) {

D_Proc_Desc=rs3.getString(1);
} else D_Proc_Desc = D_Proc;
db3.disconnect();

out.write("PROMPT ["+D_Proc_Desc+"] MultChoice \n");
out.write("\"You should "+D_Proc_Desc+" (Man:"+D_Proc+"), for the following fault(s): \"\n");

db2=new DataBase();
db2.Connect ("DSIS");

rs2=db2.Query(" SELECT Outcome FROM ES_Faults "+
" WHERE D_Proc Like \ '"+D_Proc+"\';");

while (rs2.next())
{
String Status=rs2.getString(1);
out.write("\""+Status+"\" \n");
} //While rs2.next
db2.disconnect();
out.write("\"Normal\"\n\n") ;

} //While rsl.next
dbl.disconnect();

out.write("\n\n");
out.write("GOAL [Cause]\n");
out.write("GOAL [Fault]\n");
out.write("GOAL [Recommendation]\n");
out.write("MINCF 60");
out.close();
} catch(SQLException ex) {
System.err.println("SQLException: " + ex.getMessage());

}

}
}

230

E.2 the Complete Rule-Based KB Generated in e2gLite ES Shell Format

RULE [1]
If [Braking effect] = "decreased or missing" and
[Quantity of brake fluid] = "considerably less than average" and
[Brake fluid visual inspection] = "fluid leaking" and
[Brake pipes last checked] = "> 6 months" and
[Check the brake fluid pipes] = "Damaged"
Then [Fault Code] = "1" and
[Cause] = "Brake pipes last checked is > 6 months"

RULE [2]
If [Braking effect] = "decreased or missing" and
[Quantity of brake fluid] = "considerably less than average" and
[Brake fluid visual inspection] = "fluid leaking" and
[Working environment] = "very rough and bumpy" and
[Check the brake fluid pipes] = "Damaged"
Then [Fault Code] = "1" and
[Cause] = "Working environment is very rough and bumpy"

RULE [3]
If [Braking effect] = "decreased or missing" and
[Quantity of brake fluid] = "considerably less than average" and
[Brake fluid visual inspection] = "fluid leaking" and
[Check the brake fluid pipes] = "Damaged"
Then [Fault Code] = "1"

RULE [4]
If [Pedal feel] = "soft" and
[Braking effect] = "truck skids" and
[Brake cylinder last replaced] = "> 2 Years" and
[Check brake cylinder] = "Damaged brake cylinder"
Then [Fault Code] = "3" and
[Cause] = "Brake cylinder last replaced is > 2 Years"

RULE [5]
If [Pedal feel] = "soft" and
[Braking effect] = "truck skids" and
[Working environment] = "very rough and bumpy" and
[Check brake cylinder] = "Damaged brake cylinder"
Then [Fault Code] = "3" and
[Cause] = "Working environment is very rough and bumpy"

RULE [6]
If [Pedal feel] = "soft" and
[Braking effect] = "truck skids" and
[Check brake cylinder] = "Damaged brake cylinder"
Then [Fault Code] = "3"

RULE [7]
If [Pedal feel] = "hard" and
[Braking effect] = "decreased or missing" and
[Condition of the brake fluid] = "contaminated/low quality" and
[Check brake piston] = "Blocked piston"

231

Then [Fault Code] = "4" and
[Cause] = "Condition of the brake fluid is contaminated/low quality"

RULE [8]
If [Pedal feel] = "hard" and
[Braking effect] = "decreased or missing" and
[Check brake piston] = "Blocked piston"
Then [Fault Code] = "4"

RULE [9]
If [Pedal feel] = "soft" and
[Braking effect] = "decreased or missing" and
[Quantity of brake fluid] = "little less than average" and
[Brake shoes last replaced] = "> 90 days" and
[Check the Servo Brake] = "Worn-out brake shoe"
Then [Fault Code] = "5" and
[Cause] = "Brake shoes last replaced is > 90 days"

RULE [10]
If [Pedal feel] = "soft" and
[Braking effect] = "decreased or missing" and
[Quantity of brake fluid] = "little less than average" and
[Weather condition] = "very hot" and
[Check the Servo Brake] = "Worn-out brake shoe"
Then [Fault Code] = "5" and
[Cause] = "Weather condition is very hot"

RULE [11]
If [Pedal feel] = "soft" and
[Braking effect] = "decreased or missing" and
[Quantity of brake fluid] = "little less than average" and
[Check the Servo Brake] = "Worn-out brake shoe"
Then [Fault Code] = "5"

RULE [12]
If [Pedal feel] = "soft" and
[Braking effect] = "truck skids" and
[Working environment] = "very rough and bumpy" and
[Check brake disk] = "Worn-out disk"
Then [Fault Code] = "6" and
[Cause] = "Working environment is very rough and bumpy"

RULE [13]
If [Pedal feel] = "soft" and
[Braking effect] = "truck skids" and
[Check brake disk] = "Worn-out disk"
Then [Fault Code] = "6"

RULE [14]
If [Pedal feel] = "hard" and
[Braking effect] = "decreased or missing" and
[Working environment] = "dirty / dusty" and
[Check the brake pedal] = "Blocked bushings"
Then [Fault Code] = "7" and
[Cause] = "Working environment is dirty / dusty"

RULE [15]

232

If [Pedal feel] = "hard" and
[Braking effect] = "decreased or missing" and
[Weather condition] = "very cold" and
[Check the brake pedal] = "Blocked bushings"
Then [Fault Code] = "7" and
[Cause] = "Weather condition is very cold"

RULE [16]
If [Pedal feel] = "hard" and
[Braking effect] = "decreased or missing" and
[Check the brake pedal] = "Blocked bushings"
Then [Fault Code] = "7"

RULE [17]
If [Braking effect] = "truck skids" and
[Check the brake clearance] = "Different in the two wheels"
Then [Fault Code] = "8"

RULE [18]
If [Parking brake] = "does not operate" and
[Check the hand brake rope] = "Incorrectly adjusted length"
Then [Fault Code] = "9"

RULE [19]
If [Parking brake] = "does not operate" and
[Hand brake rope last changed] = "> 2 Years" and
[Check the hand brake rope] = "Broken"
Then [Fault Code] = "10" and
[Cause] = "Hand brake rope last changed is > 2 Years"

RULE [20]
If [Parking brake] = "does not operate" and
[Check the hand brake rope] = "Broken"
Then [Fault Code] = "10"

RULE [21]
If [Pedal feel] = "hard" and
[Condition of the brake fluid] = "contaminated/low quality" and
[Check the main cylinder rubber glands] = "Swollen"
Then [Fault Code] = "11" and
[Cause] = "Condition of the brake fluid is contaminated/low quality"

RULE [22]
If [Pedal feel] = "hard" and
[Check the main cylinder rubber glands] = "Swollen"
Then [Fault Code] = "11"

RULE [23]
If [Fault Code] = "1"
Then [Fault] = "The outcome of Check the brake fluid pipes procedure
i s : Damaged" and
[Recommendation] = "Replace damaged brake fluid pipes (Man:10.10.9.1)"

RULE [24]
If [Fault Code] = "3"
Then [Fault] = "The outcome of Check brake cylinder procedure is:
Damaged brake cylinder" and

233

[Recommendation] = "Replace the brake cylinder (Man:10.10.9.4) "

RULE [25]
If [Fault Code] = "4"
Then [Fault] = "The outcome of Check brake piston procedure is: Blocked
piston" and
[Recommendation] = "Replace the brake piston (Man:10.10.9.7)"

RULE [26]
If [Fault Code] = "5"
Then [Fault] = "The outcome of Check the Servo Brake procedure is:
Worn-out brake shoe" and
[Recommendation] = "Replace the brake shoe (Man:10.10.9 . 2) "

RULE [27]
If [Fault Code] = "6"
Then [Fault] = "The outcome of Check brake disk procedure is: Worn-out
disk" and
[Recommendation] = "Replace the brake disk (Man:10.10.9 . 3) "

RULE [28]
If [Fault Code] = "7"
Then [Fault] = "The outcome of Check the brake pedal procedure is:
Blocked bushings" and
[Recommendation] = "Unblock brake pedal bushings (Man:10.10.9.5)"

RULE [2 9]
If [Fault Code] = "8"
Then [Fault] = "The outcome of Check the brake clearance procedure is:
Different in the two wheels" and
[Recommendation] = "Adjust the brake clearance (Man:10.10.9.8)"

RULE [30]
If [Fault Code] = "9"
Then [Fault] = "The outcome of Check the hand brake rope procedure is:
Incorrectly adjusted length" and
[Recommendation] = "Adjust the hand brake rope (Man:10.10. 9. 9) "

RULE [31]
If [Fault Code] = "10"
Then [Fault] = "The outcome of Check the hand brake rope procedure is:
Broken" and
[Recommendation] = "Replace the hand brake rope (Man:10.10.9.10)"

RULE [32]
If [Fault Code] = "11"
Then [Fault] = "The outcome of Check the main cylinder rubber glands
procedure is: Swollen" and
[Recommendation] = "Replace rubber glands in the main cylinder
(Man:10.10.9.6) "

PROMPT [Pedal feel] MultChoice
"Pedal feel? "
"soft"
"hard"
"Normal"

234

PROMPT [Braking effect] MultChoice
"Braking effect? "
"decreased or missing"
"truck skids"
"Normal"

PROMPT [Parking brake] MultChoice
"Parking brake? "
"does not operate"
"Normal"

PROMPT [Quantity of brake fluid] MultChoice
"Quantity of brake fluid? "
"little less than average"
"considerably less than average"
"Normal"

PROMPT [Brake fluid visual inspection] MultChoice
"Brake fluid visual inspection? "
"fluid leaking"
"Normal"

PROMPT [Condition of the brake fluid] MultChoice CF
"Condition of the brake fluid? "
"contaminated/low quality"
"Normal"

PROMPT [Working environment] MultChoice CF
"Working environment? "
"dirty / dusty"
"very rough and bumpy"
"Normal"

PROMPT [Weather condition] MultChoice CF
"Weather condition? "
"very hot"
"very cold"
"Normal"

PROMPT [Brake shoes last replaced] MultChoice CF
"Brake shoes last replaced? "
"> 90 days"
"Normal"

PROMPT [Brake cylinder last replaced] MultChoice CF
"Brake cylinder last replaced? "
"> 2 Years"
"Normal"

PROMPT [Hand brake rope last changed] MultChoice CF
"Hand brake rope last changed? "
"> 2 Years"
"Normal"

PROMPT [Brake pipes last checked] MultChoice CF
"Brake pipes last checked? "
"> 6 months"

235

"Normal"

PROMPT [Check the brake fluid pipes] MultChoice
"You should Check the brake fluid pipes (Man:10.9.9.1
following fault (s): "
"Damaged"
"Normal"

for the

PROMPT [Check the brake pedal] MultChoice
"You should Check the brake pedal (Man:10.9.9.3'
fault (s) : "
"Blocked bushings"
"Normal"

for the following

PROMPT [Check the main cylinder rubber glands] MultChoice
"You should Check the main cylinder rubber glands (Man:10.9.9.4
the following fault(s): "
"Swollen"
"Normal"

for

PROMPT [Check the brake clearance] MultChoice
"You should Check the brake clearance (Man:10.9.9 . 5]
fault (s) : "
"Different in the two wheels"
"Normal"

for the following

PROMPT [Check the hand brake rope] MultChoice
"You should Check the hand brake rope (Man:10.9.9.6]
fault (s) : "
"Incorrectly adjusted length"
"Broken"
"Normal"

for the following

PROMPT [Check brake cylinder] MultChoice
"You should Check brake cylinder (Man:10.9.9.7;
fault (s) : "
"Damaged brake cylinder"
"Normal"

for the following

PROMPT [Check brake disk] MultChoice
"You should Check brake disk (Man:10.9.9
fault (s) : "
"Worn-out disk"
"Normal"

, for the following

PROMPT [Check brake piston] MultChoice
"You should Check brake piston (Man:10.9.9.9'
fault (s) : "
"Blocked piston"
"Normal"

for the following

PROMPT [Check the Servo Brake] MultChoice
"You should Check the Servo Brake (Man:5.9.9.1) , for the following
fault (s) : "
"Worn-out brake shoe"
"Normal"

236

GOAL [Cause]
GOAL [Fault]
GOAL [Recommendation]
MINCF 60

237

REFERENCES

Aikat S., and Aikat D. (1996); Shared Techniques Between Print and Online

Documentation; Proceedings o f the 14th Annual International Conference on

Computer Documentation SIGDOC’96, Research Triangle Park, NC, USA, pp. 125-

129.

Bezanson W. R. (1995); Performance Support Online, Integrated Documentation
i.L

and Training; Proceedings o f the 13 Conference on Engineering from Chaos:

Solutions for the Growing Complexity o f our Jobs; Sept 30-Oct 3, 1995, Savannah,

GA, USA.

Bieber M. (1998); Hypertext and Web Engineering; The proceedings o f the 9th

ACM conference on Hypertext & Hypermedia "HyperText 98", Pittsburgh-

Pennsylvania. pp. 277-278.

Boley D., Gini M., Gross R., Han E. S., Hastings K., Karypis G., Kumar V.,

Mobasher B., and Moore J. (1999); Partioning-based Clustering for Web Document

Categorization; Decision Support Systems, Vol. 27, pp. 320-341

Bondendorf F., and Langer K. (1997); Hypermedia Navigation Support by Fuzzy

Logic and Neural Networks; Proceedings o f the IEEE International Conference on

238

Intelligent Processing Systems; Vol. 1, pp. 180-184.

Bonfigli M. E., Casadei G., and Salomoni P. (2000); Adaptive Intelligent

Hypermedia using XML; Proceedings o f SAC 2000 - ACM Symposium on Applied

Computing; Como, Italy; Vol. 2, pp. 922-926.

Broder A. Z., Glassman S. C., Manasse M. S. and Zweig G. (1997); Syntactic

Clustering o f the Web; Computer Networks and ISDN Systems, Vol. 29, pp. 1157-

1166

Brusilovsky P. (1996); Methods and Techniques of Adaptive Hypermedia; User

Modeling and User-Adapted Interaction, Vol. 6 , pp 87-129.

Brusilovsky P., and Cooper D. W. (1999); ADAPTS: Adaptive Hypermedia for a

Web-based Performance Support System; Proceedings o f the 2nd Workshop on

Adaptive Systems and User Modeling on the WWW; Toronto, Canada, May 11-14;

pp 41-47.

Brusilovsky P., and Cooper D. W. (2002); Domain, Task, and User Models for an

Adaptive Hypermedia Performance Support System; Proceedings o f the

International Conference on Intelligent User Interfaces; San Francisco, CA, USA.

BS 4884 (1992); Technical Manuals, Part 1: Specification for Presentation of

Essential Information; British Standards Institution BSI, London.

239

BS 4884 (1993a); Technical Manuals, Part 2: Guide to Content; British Standards

Institution BSI, London.

Cantando M. (1996); Vision 2000: Multimedia Electronic Performance Support

Systems; Proceedings o f the 14th Annual International Conference on Marshalling

New Technological Forces: Building a Corporate, Academic, and User Oriented

Triangle; Research Triangle - United States; Oct 19-22.

Ceri S., Fraternali P., and Bongio A. (2000); Web Modelling Language (WebML): a

Modelling Language for Designing Web Sites; Computer Networks, Vol 33, Issue 1,

2000, Pages 137-157.

Chung C., Shih T.K., and Kuo C. (1996); On the Construction of Intelligent

Multimedia Presentations; Information Sciences, Vol. 89, No. 1-2, pp. 131-155.

Coda F.,Ghezzi C., Vigna G., and Garzotto F (1998); Towards a Software

Engineering Approach to Web Site Development; Proceedings o f the 9th IEEE

International Conference, Workshop on Software Specification and Design

(IWSSD); Japan, 1998.

Coffey J.W., Canas A. J., Hill G., Carff R., Reichherzer T., and Suri N. (2003);

Knowledge Modelling and the Creation of El-Tech: a Performance Support and

Training System for Electronic Technicians; Expert Systems with Applications, Vol.

240

25, pp 483-492.

Coleman V. (1991); Hardcopy to Hypertext: Putting a Technical Manual Online;

Proceedings o f the ACM 9th Annual International Conference on Systems

Documentation; Chicago - Illinois, United States; pp. 67-72.

Cooper D.W., Veitch F. P., Anderson M. M., and Clifford M. J. (1999); Adaptive

Diagnostic And Personalised Technical Support (ADAPTS); Proceedings of the

IEEE Aerospace Conference, Aspen, Colorado; Paper No 4.602.

Csinger A., Booth K. S., and Poole D. (1995); AI Meets Authoring: User Models for

Intelligent Multimedia; Artificial Intelligence Review, Vol. 8 , No. 5-6, pp. 447-468.

De Bra P. (1999); Design Issues in Adaptive Web-Site Development; Proceedings
j xL

of the 2 Workshop on Adaptive Systems and User Modelling on the Web, 8

International World Wide Web Conference, Toronto, Canada.

De Bra P., and Calvi L. (1998); AHA: a generic Adaptive Hypermedia System;

Proceedings o f the 2nd Workshop on Adaptive Hypertext and Hypermedia

“HYPERTEXT 98”, Pittsburgh, USA.

Deitel H. M., Deitel P. J., and Nieto T. R. (2000); Internet & World Wide Web -

How to Program-; Prentice-Hall, Inc., USA.

241

Desmarais M. C., Leclair R., Fiset J., and Talbi H. (1997); Cost-Justifying

Electronic Performance Support Systems; Communications of the. ACM, Vol. 40,

No. 7, Jul. 1997, pp. 3 9 -4 8 .

Ding Y., Fensel D., Klein M., and Omelayenko B. (2002); The Semantic Web: Yet

Another Hip?; Proceedings o f the Data and Knowledge Engineering Journal, Vol.

41, pp 205 227.

e2gLite (2003); ES Shell from eXpertise2Go.com, [WWW] <URL:

http://www.expertise2go.com/> [accessed Sept 2004]

Fernandez M., Florescu D., Levy A., and Suciu D. (2000); Declarative

Specification o f Web Sites with Strudel; Published in VLDB Journal, no. 9(1), pp.

38-55

Fernandez M., Suciu D., and Tatarinov I. (1999); Declarative Specification o f Data-

Intensive Web Sites; In USENIX Conference on Domain-Specific Languages;

Austin, Texas (USA).

Fischer O. and Horn R. (1997); Electronic Performance Support Systems;

Communications o f the ACM, July 1997, Vol. 40, NO. 7.

Fraisse S., Nanard J., and Nanard M. (1996); Generating Hypermedia from

Specifications by Sketching Multimedia Templates; Proceedings o f ACM

242

http://www.expertise2go.com/

Multimedia 96, Boston, MA, USA, pp. 353-363.

Francisco-Revilla L., and Shipman F.M. (2000); Adaptive Medical Information

Delivery Combining User, Task, and Situation Models. Intelligent User Interfaces,

New Orleans LA USA 2000; pp. 94-97.

Fraternali P., and Paolini P. (2000); Model-Driven Development of Web

Applications: The Autoweb System; ACM Transactions on Information Systems,

Vol. 28, No. 4, October 2000, Pages 323-382.

Fraternali, P. (1999); Tools and Approaches for Developing data-intensive Web

Applications: A Survey; ACM Computing Surveys, Vol. 31, No. 3, Sep. 1999, pp

227-263 .

Garlatti S., Iksal S., and Kervella P. (1999); Adaptive On-Line Information System

by means o f a Task Model and Spatial Views; Proceedings o f the 2nd Workshop on

Adaptive Systems and User Modeling on the WWW; Toronto (WWW8) and Banff

(UM 99), pp. 59-66

Garzotto, F., Paolini P., and Schwabe D. (1993); HDM - A Model-Based Approach

to Hypertext Application Design; ACM Transactions on Information System, Vol.

11, No. 1, January 1993.

Gomez J., Cachero C., and Pastor O. (2001); Conceptual Modeling o f Device-

243

Independent Web Applications; IEEE Multimedia, Vol. 8, Issue 2, pp 26-39

Graham M. (1997); Performance-Based Documentation; Proceedings of the IEEE

International Professional Communication Conference, SaltLake City, UT, USA,

pp. 275-282.

Halasz H., and Schwartz M. (1994); The Dexter Hypertext Reference Model;

Communications o f the ACM, February 1994, Vol. 37 Issue 2, pp. 30-39.

Harold E. R. (1999); XML Bible; IDG Books Worldwide, Inc., An International

Data Group Company, USA.

He X., Zha H., Ding C. H. Q., and Simon H. D. (2002); Web Document Clustering

using Hyperlink Structures; Computational Statistics & Data Analysis, Vol. 41,

Issue 1, pp. 19-45

IEEE (1990); IEEE Standard Glossary o f Software Engineering Terminology, Std
610.12-1990

Isakowitz T., Stohr E. A., and Balasubramanian P. (1995); RMM: A Methodology

for Structured Hypermedia Design; Communications o f the ACM 38, Vol. 8, Aug.

1995, pp. 3 4 -4 4 .

ISO 8879 (1986); Information Processing - Text and Office Systems - Standard

Generalized Markup Language (SGML), International Organisation for

244

standardisation, Geneva.

JDK (1.3.0); Java™ 2 Runtime Environment, Standard Edition (build 1.3.0-C); Sun

Microsystems Inc.

JSWDK (1.0.1). Java Server Web Development Kit version 1.0.1; Sun

Microsystems Inc., [WWW] <URL: http://java.sun.com/> [accessed Sept. 2004]

Kappe F. (1999); Hyperwave Information Server; Technical White Paper,

Hyperwave™ Information Management Inc., [WWW] <URL:

http://www.hyperwave.com/> [accessed Sept. 2004], Version 1.4, November 10,

1999.

Kemp B., and Buckner K. (1999); A Taxonomy of Design Guidance for

Hypermedia Design, Interacting with Computers, Volume 12, Issue 2, November

1999, pp. 143-160.

Kim H., Shin H. G., and Chang J. W. (1996); OOHS: An Object-Oriented

Hypermedia System; Proceedings o f the 20th Annual International Conference on

Computer Software and Applications, Seoul, S. Korea, pp. 496-501.

Klusch M. (2001); Information Agent Technology for the Internet: A Survey;

Proceedings o f the Data and Knowledge Engineering Journal, Vol. 36, pp. 337-372.

245

http://java.sun.com/
http://www.hyperwave.com/

Langer K., and Bodendorf F. (1994); A System Architecture for Flexible,

Knowledge-Based, Multimedia CBT-Applications; Proceedings o f the IEEE first

International Conference o f Multimedia Engineering Education, pp. 20-29.

Lee K., Lee Y. K., and Berra P. B. (1997); Management of Multi-Structured

Hypermedia Documents: A Data Model, Query Language, and Indexing Scheme;

Multimedia Tools and Applications, Vol. 4, No. 2, pp. 199-223.

Levy A. Y., and Weld D. S. (2000); Intelligent Internet Systems; Proceedings of the

Artificial Intelligence Journal, Vol. 118, pp. 1-14.

McGraw K. L. (1997); Defining and Designing the Performance-Centered Interface,

Moving Beyond the User-Centered Interface; ACM Interactions, Vol. 4, No. 2, pp.

19-26, March/April 1997.

Mchugh J. A. (1990); Algorithmic Graph Theory; Prentice-Hall, Inc.; Englewood

Cliffs, N. J.

Milosavljevic M., Vitali F., and Watters C. (1999); Introduction; Position Paper for

Workshop on Virtual Documents, Hypertext Functionality and the Web at the 8th

International World Wide Web Conference, Toronto — Canada, [WWW] <URL:

http://www.cs.unibo.it/~fabio/VD99/index.html > [accessed Sept. 2004]

MS-Access (1996); Microsoft Access 97; Micosoft Corporation, USA.

246

http://www.cs.unibo.it/~fabio/VD99/index.html

Negnevitsky M. (2002); Artificial Intelligence: A Guide to Intelligent Systems; 1st

Edition, Pearson Education Limited, England, UK.

Oxborrow E. (1989); Databases and Database Systems Concepts and Issues; 2nd

Edition; A Chartwell-Bratt Student Text, Sweden.

Oxford Dictionary (1998); The Oxford Quick Reference Dictionary, Revised

Edition; OXFORD UNIVERSITY PRESS 1996, 1998.

Patel S. A. and Kamrani A. K. (1996); Intelligent Decision Support System for

Diagnosis and Maintenance o f Automated Systems; Proceedings o f the Computers

Industrial Engineering Journal, Vol. 30, No. 2, pp. 297-319.

Paulo F.B., Augusto M., Turine S., Cristina M., De Oliveira F., and Masiero P.C.

(1998); XHMBS: A Formal Model to Support Hypermedia Specification; The

Proceedings o f the 9th ACM Conference on Hypertext & Hypermedia ’’HyperText

98", Pittsburgh-Pennsylvania. pp. 161-170.

Perkowitx M., and Etzioni O. (1999); Towards Adaptive Web Sites: Conceptual

Framework and Case Study; Computer Networks, Vol. 31, pp. 1245-1258.

Perkowitx M., and Etzioni O. (2000); Towards Adaptive Web Sites: Conceptual

Framework and Case Study; Artificial Intelligence, Vol. 118, Issue 1-2, pp. 245-

275.

247

Pham D. T. and Setchi R. M. (2001); Authoring Environment for Documentation

Development; Proceedings o f the Institution o f Mechanical Engineers, Part B, Vol.

215, pp. 877-882.

Pham D. T. and Setchi R. M. (2003); Case-Based Generation o f Adaptive Product

Manuals; Proceedings o f the Institution o f Mechanical Engineers, Part B, Vol. 217,

pp. 313-322.

Pham D. T., Dimov S. S., and Huneiti A. M. (2003); Semantic Data Model For

Product Support Systems. Proceedings o f the IEEE International Conference on

Industrial Informatics INDIN 2003, August 21-24, 2003, Banff, Alberta, Canada.

Pham D. T., Dimov S. S., and Setchi R. M. (1999); Intelligent Product Manuals;

Proceedings o f the Institution o f Mechanical Engineers, Part B, Vol. 213, Part I, pp.

65-76.

Pham D.T., Dimov S.S. and Peat, B.J. (2000); Intelligent Product Manuals;

Proceedings o f the Institution o f Mechanical Engineers, Part B, Journal of

Engineering Manufacture, Vol. 214, No. B5, pp. 411-419.

Price J. (1997); Introduction: Special Issue on Structuring Complex Information for

Electronic Publication; IEEE Transaction on Professional Communication, Vol. 40,

No. 2, pp. 69-77.

248

Raybould B. (1995); Performance Support Engineering: An Emerging Development

Methodology for Enabling Organisational Learning; Performance Improvement

Quarterly, Vol. 8, No. 1 (1995), pp. 7-22.

Raybould B. (2000); Building Performance-Centred Web-Based Systems,

Information Systems, And Knowledge Management Systems In the 21st Century;

Performance Improvement Quarterly, Vol. 39, No.6, 2000.

Reiter E., Mellish C., and Levine J. (1995); Automatic Generation o f Technical

Documentation; Proceedings o f the Applied Artificial Intelligence Journal, Vol. 9,

pp. 259-287.

Rolston D. W. (1988); Principles o f Artificial Intelligence and Expert Systems

Development. McGraw-Hill, Singapore, 1988.

Rossi G., Schwabe D., and Lyardet F. (2001); Web Application Models are more

than Conceptual Models". Lecture Notes in Computer Science 1727, pp. 239-252.

Rossi G., Schwabe D., Lucena C.J.P., and Cowan D.D. (1995); An Object-Oriented

Model for Designing the Human-Computer Interface o f Hypermedia Applications;

Proceedings o f the International Workshop on Hypermedia Design (IWHD’95),

Springer Verlag Workshops in Computing Series, (available at [WWW] <URL:

ftp://ftp.inf.puc-rio.br/pub/docs/techreports/95_07_rossi.ps.gz> [accessed Sept

2004]).

249

ftp://ftp.inf.puc-rio.br/pub/docs/techreports/95_07_rossi.ps.gz

Saarela J., Turpeinen M., Puskala T., Korkea-Aho M., and Sulonen R. (1997);

Logical Structure o f a Hypermedia Newspaper; Information Processing and

Management, Vol. 33, No. 5, pp. 599-614.

Schnase J. L., Leggett J. J., Hicks D. L., and Szabo R. L. (1993); Semantic Data

Modelling o f Hypermedia Associations; ACM Transactions on Information

Systems, Vol. 11, No. 1, January 1993, pp 27-50.

Schwabe D., and Rossi G. (1998); An Object Oriented Approach to Web-Based

Applications Design; Theory and Practice of Object Systems, Vol 4, Issue 4, 1998,

pp. 207-225

Segor C., and Gaedke M. (2000): Crossing the Gap - From Design to

Implementation in Web-Application Development; Information Resources

Management Association International Conference 2000, Anchorage, USA, May

21-24, 2000.

Setchi R. M. (2000); Enhanced Product Support through Intelligent Product

Manuals; Ph.D. Thesis Submitted to the University of Wales Cardiff, School of

Engineering (March 2000).

Shih T. K. and Kuo C. H. (1996); Database Support for Intelligent Tutoring

Software. Proceedings o f the IEEE International Conference on Multimedia

250

Engineering Education, Melbourne, Australia, pp. 297-302.

Sleight D. A. (1993); Types o f Electronic Performance Support Systems: Their

Characteristics and Range o f Designs; Educational Psychology Michigan State

University, [WWW] <URL: http://www.msu.edu/~sleightd/epss_copy.html>

[accessed Sept. 2004]

Sommerville I. (2001); Software Engineering; International Computer Science

Series; Pearson Education Limited; 6 Edition, USA.

Staab S., Angele J., Decker S., Erdmann M., Hotho A., Maedche A., Schnurr H. P.,

Studer R., and Sure Y. (2000); Semantic Community Web Portals; Computer

Networks, Volume 33, pp. 473-491

Suh W., and Lee H. (2001); A Methodology for Building Content-Oriented

Hypermedia Systems, Journal o f Systems and Software, Vol. 56, Issue 2, pp. 115-

131

Takahashi K., and Liang E. (1997); Analysis and design o f Web-based information

systems; Computer Networks and ISDN Systems, Volume 29, Issues 8-13,

September 1997, pp. 1167-1180

Ter Bekke J. H. (1992); Semantic Data Modelling; Prentice Hall International Ltd;

UK

251

http://www.msu.edu/~sleightd/epss_copy.html

Thibeau J. (1996); Making Information Work on the World Wide Web. Proceedings

o f the 43rd Annual Conference of the Society for Technical Communication,

Washington DC, USA, pp. 374-378.

Thomson J.R., Greer J., and Cooke J (2001); Automatic Generation o f Instructional

Hypermedia with APHID; Interacting with Computers, Volume 13, Issue 6, August

2001, Pages 631-654.

Tucker H., and Harvey B. (1997); SGML Documentation Objects within the Step

Environment; SGML Europe, Barcelona, (available at [WWW] <URL:

http://www.eccnet.com/papers/step.html > [accessed Sept 2004]).

Vassileva J. (1996); A Task-Cantered Approach for User Modelling in a

Hypermedia Office Documentation System; User Modelling and User Adapted

Interaction, Vol. 6.

Ventura C. A. (2000); Why Switch From Paper to Electronic Manuals?; Proceedings

of the ACM Conference on Document Processing Systems, January 2000, pp. 111-

116.

W3C (2000); World Wide Web Consortium, Extensible Markup Language (XML)

1.0 (Second Edition) ; W3C Recommendation, 6 October 2000 [WWW] <URL:

http://www.w3.org/> [accessed Sept. 2004]

252

http://www.eccnet.com/papers/step.html
http://www.w3.org/

Wang W., and Rada R. (1995); Experiences With Semantic Net Based Hypermedia;

International Journal on Human-Computer Studies, Vol. 43:3, pp. 419-439

Wang W., and Rada R. (1998); Structured Hypertext with Domain Semantics; ACM

Transactions on Information. Systems, Vol. 16, No. 4, Oct. 1998, pp. 3 7 2 -4 1 2

White M. (1998); Designing Dynamic Hypertext; Proceedings o f the 2nd Workshop

on Adaptive Hypertext and Hypermedia, HYPERTEXT 98, Pittsburgh, USA, 1998.

Wilkinson R., and Smeaton A. (1999); Automatic Link Generation; ACM

Computing Surveys, Vol. 31, No. 4es, December 1999.

Wilson R. J. (1986); Introduction to Graph Theory - 3rd Edition; Longman

Scientific & Technical; London.

253

