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Abstract

Transcendental stiffness matrices for vibration (or buckling) analysis have long been available for a 
range of structural members. Such stiffness matrices are exact in the sense that they are obtained from 
an analytical solution of the governing differential equations of the member. Hence, assembly of the 
member stiffnesses to obtain the overall stiffness matrix of the structure results in a transcendental 
eigenproblem that yields exact solutions and which can be solved with certainty using the Wittrick- 
Williams algorithm. Convergence is commonly achieved by bisection, despite the fact that the method 
is known to be relatively slow. Quicker methods are available, but their implementation is hampered 
by the highly volatile nature of the determinant of the structure’s transcendental stiffness matrix, 
particularly in the vicinity of the poles, which may or may not correspond to eigenvalues.

However, when the exact solution exists, the member has a recently discovered property that can also 
be expressed analytically and is called its member stiffness determinant. The member stiffness 
determinant is a property of the member when fully clamped boundary conditions are imposed upon it. 
It is then defined as the determinant of the member stiffness matrix when the member is sub-divided 
into an infinite number of identical sub-members. Each sub-member is therefore of infinitely small 
length so that its clamped-ended natural frequencies are infinitely large. Hence the contribution from 
the member stiffness matrix to the Jq count of the W-W algorithm will be zero. In general, the 
member stiffness determinant is normalised by dividing by its value when the eigenparameter (i.e. the 
frequency or buckling load factor) is zero, as otherwise it would become infinite.

Part A of this thesis develops the first two applications of member stiffness determinants to the 
calculation of natural frequencies or elastic buckling loads of prismatic assemblies of isotropic and 
orthotropic plates subject to in-plane axial and transverse loads. A major advantage of the member 
stiffness determinant is that, when its values for all members of a structure are multiplied together and 
are also multiplied by the determinant of the transcendental overall stiffness matrix of the structure, the 
result is a determinant which has no poles and is substantially less volatile when plotted against the 
eigenparameter. Such plots provide a significantly better platform for the development of efficient, 
computer-based routines for convergence on eigenvalues by curve prediction techniques.

On the other hand, Part B presents the development of exact dynamic stiffness matrices for three 
models of sandwich beams. The simplest one is only able to model the flexural vibration of 
asymmetric sandwich beams. Extending the first model to include axial and rotary inertia makes it 
possible to predict the axial and shear thickness modes of vibration in addition to those corresponding 
to flexure. This process culminates in a unique model for a three layer Timoshenko beam. The crucial 
difference of including axial inertia in the second model, enables the resulting member dynamic 
stiffness matrix (exact finite element) to be included in a general model of two dimensional structures 
for the first time. Although the developed element is straight, it can also be used to model curved 
structures by using an appropriate number of straight elements to model the geometry of the curve.

Finally, it has been shown that considering a homogeneous deep beam as an equivalent three-layer 
beam allows the beam to have additional shear modes, besides the flexural, axial and fundamental 
shear thickness modes. Also for every combination of layer thickness, the frequencies of the three- 
layer beam are less than the corresponding frequencies calculated for the equivalent beam model with 
only one layer, since it is equivalent to providing additional flexibility to the system. However, a 
suitable combination of layer thicknesses for any mode may be found that yields the minimum 
frequency. It is anticipated that these frequencies would probably be generated by a single layer 
model of the homogeneous beam if at least a third order shear deformation theory was incorporated.

Numerous examples have been given to validate the theories and to indicate their range of application. 
The results presented in these examples are identical to those that are available from alternative exact 
theories and otherwise show good correlation with a selection of comparable approximate results that 
are available in the literature. In the latter case, the differences in the results are attributable to many 
factors that vary widely from different solution techniques to differences in basic assumptions.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

Advances in technology over the last fifty years have made it possible to analyse and 

design complex structural system that were undreamed of by former generations. 

Nowhere has this been more evident than in the rapid development of digital computers 

and the parallel development of matrix methods of structural analysis that exploit the 

computer’s ability to perform repetitive tasks extremely efficiently. In particular, the 

mathematical models used to solve practical problems in structural dynamics have been 

developed from simple systems having only a few degrees of freedom to highly 

sophisticated models containing thousands of nodes.

Moreover, it is now relatively simple to predict the dynamical behaviour of physical 

systems and a knowledge of their natural frequencies is often a pre-requisite to detailed 

design.

PhD Thesis, A. Zare, 2004
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Chapter 1: Introduction

A popular approach is the dynamic stiffness method in which the overall structure matrix 

is assembled from the dynamic stiffness matrices of its individual members, which may 

be developed in an approximate way or a way which can be considered to be exact. This 

leads to a set of linear equations in the former case and transcendental equations in the 

latter case, with the natural frequencies being determined by solving the related 

eigenvalue problem.

The most popular approximate technique is the finite element method, in which either a 

consistent mass matrix is evaluated or the element mass is simply assumed to be 

concentrated at the nodes, with the dynamic stiffness matrix derived by assuming a static 

displaced shape for the member. The resulting dynamic stiffness matrix is then a linear 

combination of two individual matrices, the static stiffness matrix that defines the elastic 

properties of the member and the mass matrix that defines the inertial properties. In this 

case, the overall structure matrix is a linear function of co2, the square of the circular 

frequency, and the problem of determining the natural frequencies is known as a linear 

eigenvalue problem. However, the accuracy of the finite element technique can be 

unsatisfactory due to the fact that the method only approximates the partial differential 

equations describing the structure, where the quality of the approximation depends on the 

idealisation.

In the so called ‘exact’ method for deriving the member dynamic stiffness matrix, the 

partial differential equation of motion is solved analytically in such a way that the closed 

form solution satisfies inter-element compatibility as well as the boundary conditions. In 

contrast with the finite element approximation, the dynamic member stiffness matrix is a 

single matrix in which the exact and continuous mass distribution is automatically 

accounted for and the model therefore has an infinite number of degrees of freedom. The 

matrix contains transcendental functions and therefore the resulting dynamic stiffness 

matrix has a transcendental dependence on co.

PhD Thesis, A. Zare, 2004
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Chapter 1: Introduction

1.2 THE EXACT DYNAMIC STIFFNESS MATRIX METHOD

Kolousek was the first to use the concept of exact dynamic stiffnesses for the vibration 

analysis of Bemoulli-Euler beams (Kolousek 1941; Kolousek 1943). [This work is 

elegantly described in his textbook (Kolousek 1973).] Later, in the field of plate analysis, 

Veletsos and Newmark used this concept for the vibration analysis of continuous plates 

with hinged supports along two opposite edges (Veletsos and Newmark 1956). However, 

one of the earliest works on the formulation of a dynamic stiffness matrix was reported by 

Laursen et al. (Laursen et al. 1962) for an Euler-Bemolli beam. Soon after, Simpson and 

Tabarrok (Simpson and Tabarrok 1968), Armstrong (Armstrong 1969) and Williams and 

Wittrick (Williams and Wittrick 1970) used it for the vibration analysis of rigidly jointed 

plane frames. Later, Wittrick (Wittrick 1968a) developed the general sinusoidal stiffness 

matrices for thin flat-walled structures which have been used for determining the natural 

vibration of uniformly longitudinally stressed isotropic plate assemblies (Wittrick and 

Williams 1971b). Also Henshell and Warburton (Henshell and Warburton 1969) 

developed a general dynamic stiffness matrix which included the effects of longitudinal 

and torsional motion of an Euler-Bemoulli beam. This was followed by Cheng (Cheng 

1970) and Wang and Kinsman (Wang and Kinsman 1971) who presented the dynamic 

stiffness matrix for a Timoshenko beam which could be used in the vibration analysis of 

frameworks. Howson and Williams (Howson and Williams 1973) later incorporated the 

effect of a compressive or tensile axial force in a member when deriving the dynamic 

stiffness matrix of an axially loaded Timoshenko beam, which has been used in 

eigensolution of plane frames (Howson 1979) and space frames (Anderson and Williams 

1986). This theory was also incorporated into a framework program by Akesson and his 

colleagues that provides an exact vibration analysis of linearly elastic frames (Akesson 

1976).

Since then, research on the dynamic stiffness matrix formulation of structural elements 

has grown enormously and has taken numerous turns, including bending-torsion coupled 

beams (Banerjee 1989; Banerjee and Williams 1992; Banerjee and Williams 1994a; 

Banerjee and Williams 1994b; Friberg 1983; Hallauer and Liu 1982; Hashemi and 

Richard 2000a; Hashemi and Richard 2000b; Li et al. 2003), varying cross section 

elements (Busool and Eisenberger 2002; Eisenberger 1990; Eisenberger 1991;

PhD Thesis, A. Zare, 2004
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Chapter 1: Introduction

Eisenberger 1995; Eisenberger 1997; Huang et al. 1998; Jabareen and Eisenberger 2001; 

Leung and Zhou 1995a; Leung and Zhou 1995b; Mou et al. 1997; Yanghu et al. 1997), 

layered beams (Abramovich et al. 1995; Banerjee 1998; Banerjee et al. 1996; Banerjee 

and Williams 1995; Banerjee and Williams 1996; Eisenberger et al. 1995; Heinisuo 1988; 

Leung and Zhou 1996), sandwich beams (Banerjee 2003; Howson and Zare 2004), beams 

on elastic foundations (Capron and Williams 1988; Eisenberger 1994), tapered beams 

(Banerjee and Williams 1985), curved elements (Eisenberger and Efraim 2001; Howson 

and Jemah 1999a; Howson and Jemah 1999b; Huang et al. 2000; Huang et al. 1998), pre­

twisted beams (Banerjee 2001; Banerjee 2004), helical springs (Busool and Eisenberger 

2002; Lee and Thompson 2001; Pearson and Wittrick 1986), rotating shafts (Hashemi and 

Richard 2001; Raffa and Vatta 1996; RafFa and Vatta 2002) and beams with thin-walled 

cross section (Kim et al. 2003; Leung 1992; Li et al. 2003; Matsui and Hayashikawa 

2001; Moon-Young et al. 2003a; Moon-Young et al. 2003b). Furthermore, Eisenberger 

(Eisenberger 2003) presented the derivation of the exact dynamic stiffness matrix for a 

high-order beam element. The dynamic stiffness matrix method has also been used for 

analysis and vibration of orthotropic plates by Bercin (Bercin 1995; Bercin 1997; Bercin 

and Langley 1996), Leung and Zhou (Leung and Zhou 1996) for composite plates, and 

Wittrick and Williams (Wittrick and Williams 1974) for anisotropic flat plates without 

coupling of in-plane and out-of-plane behaviour and with any combination of uniform in­

plane stresses. Although, in most of the reported work the dynamic stiffness matrices are

real, there are also a some examples of exact complex dynamic stiffness matrices for
\

damped second-order Rayleigh-Timoshenko beam vibration (Hjelmgren et al. 1993; 

Lunden and Akesson 1983; Schill 1988).

Although the procedure for the derivation of exact dynamic stiffness matrices has been 

long established and used by many authors, its general procedure has been described 

systematically by Banerjee in reference (Banerjee 1997). Since the dynamic stiffness 

matrix in this case contains terms that are transcendental functions of frequency, a 

suitable eigenvalue problem solver is needed and this is dealt with in the following 

section.
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1.3 THE SOLUTION OF THE TRANSCENDENTAL EIGENVALUE 

PROBLEM

The general form of transcendental eigenvalue problems may be written as

K(A)D = 0 (1.1)

where K is the system characteristic matrix in which the elements are transcendental 

functions of the eigenparameter X and D is the corresponding eigenvector.

Transcendental eigenvalue problems arise in many different fields such as physics 

(Romeiras and Rowlands 1986; Shastry 1983), chemistry (Kumpinsky 1992), applied 

mathematics (Bateson et al. 1999) and structural engineering (Paz 1973; Qi et al. 2004; 

Simpson 1974; Simpson 1984; Simpson and Tabarrok 1968; Williams and Wittrick 1970; 

Williams et al. 2002b). Sometimes, their solution has been formulated for special cases 

(Kumpinsky 1992; Romeiras and Rowlands 1986; Shastry 1983), while some authors 

formulate the problem to various levels of precision (Fontgalland et al. 1998; Singh and 

Ram 2002; Sotiropoulos 1982) including general exact solutions (Williams and Wittrick 

1970; Wittrick and Williams 1971a).

In the field of structural engineering the exact analysis of buckling and vibration 

problems leads to the transcendental eigenvalue problem of Eq. (1.1), where K is now the 

appropriate overall stiffness matrix of the structure and D is the corresponding nodal 

displacement vector. The eigenparameter X is equivalent to co2 in vibration problems 

while in buckling problems it relate to the value of destabilising load on the structure. 

However, since the duality of the vibration and buckling phenomena is clear, from now 

on we will solely concern in vibration. As stated in Section 1.1, the exact dynamic 

stiffness matrix of any structural member has a transcendental dependence on co, thus the 

elements of K are often highly complicated transcendental functions of the frequency co. 

In general, the eigenvalues correspond to natural frequencies in undamped free vibration 

problems and the eigenvectors are the corresponding vibration modes.
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However, the common procedure for finding the natural frequencies is to track the value 

of the determinant of K  (Abramovich et al. 1995; Bercin and Langley 1996; Busool and 

Eisenberger 2002; Eisenberger 1991; Eisenberger 1994; Huang et al. 1998; Leung and 

Zhou 1995a; Leung and Zhou 1995b; Matsui and Hayashikawa 2001). In this case, the 

determinant |K(<w)| is usually plotted at fine intervals of the eigenparameter, to give the

natural frequencies at those values of co at which |K(co)| = 0. Despite the acceptance of

the major computational expense of using small intervals of co, still possibility of missing 

some close or coincident natural frequencies still exists. In addition, due to the highly 

irregular behaviour of the determinant, it is possible that |K| becomes infinite at certain

values of the eigenparameter, which may or may not correspond to eigenvalues. It has 

been proved that the natural frequencies of any isolated member in the system are critical 

values for the determinantal function (Paz 1973; Simpson 1974; Wittrick and Williams 

1971a). Moreover, some exceptional natural frequencies that correspond to the case of 

oo with D = 0 and the case of |K(a>)| & 0 with D * 0 (Williams et al. 2002b) 

are bound to be missed.

These problems can be completely overcome by use of the Wittrick-Williams (W-W) 

algorithm (Williams and Wittrick 1970; Wittrick and Williams 1971a). The W-W 

algorithm was developed over thirty years ago and, when allied to some form of 

convergence technique, remains the only way of solving the transcendental 

eigenproblems of structural analysis with the certainty that any required eigenvalue will 

be found to any desired accuracy.

Early papers derived the W-W algorithm in four different ways. Two started from 

Rayleigh’s theorem (Williams and Wittrick 1970; Wittrick and Williams 1971a), one 

started from energy arguments (Wittrick and Williams 1973a) and the final one (Simpson 

1984; Wittrick and Williams 1973b) started from the Sturm sequence property of an 

exactly equivalent finite element model of (hypothetically) infinite order. In general, the 

Wittrick-Williams algorithm can be expressed in its simplest form as J  = y o + s{K},

where J  is the number of eigenvalues of the complete structure exceeded by a trial 

frequency or load factor; s{K) is the sign count of K, the overall transcendental dynamic 

or buckling stiffness matrix of the structure evaluated at the trial value of the
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eigenparameter; and J 0 denotes the value of J  if clamps were to be applied at all of the

degrees of freedom corresponding to K so as to make their displacements zero. The sign 

count is calculated as the number of negative leading diagonal elements of the upper 

triangular matrix obtained from K by using the usual form of Gauss elimination without 

pivoting.

The W-W algorithm has also been applied outside the area of structural engineering such 

as fluid vibration in pipes (Frid 1989; Frid 1990), heat and mass diffusion (Mikhailov and 

Ozisik 1984; Mikhailov et al. 1983) and Sturm-Liouville problems (Mikhailov and 

Vulchanov 1983; Williams et al. 2004a).

The J 0 term in the Wittrick-Williams algorithm corresponds to the poles on a plot of the

determinant of K versus the eigenparameter. Such a plot is usually extremely volatile 

(Paz 1973; Simpson 1974; Simpson and Tabarrok 1968; Wittrick and Williams 1971a), 

particularly in the vicinity of the poles which, as mentioned earlier, may or may not 

correspond to eigenvalues. This makes it extremely difficult to implement computer 

based methods which use the value of the determinant in order to improve the rate of 

convergence upon the required eigenvalue (Kennedy and Williams 1991; Williams and 

Kennedy 1988).

The Wittrick-Williams algorithm, which is very often used to converge on the required 

roots by bisection, is known to be relatively slow. Dramatically more efficient 

convergence routines are available (Ammar et al. 1996; Kennedy et al. 1995; Kennedy 

and Williams 1991; Kennedy and Williams 1997; Qi et al. 2004; Simpson 1984; Williams 

and Kennedy 1988; Williams and Kennedy 1996), but their application is hampered by 

the highly volatile nature of the determinant of the structure’s transcendental stiffness 

matrix, particularly in the vicinity of the poles, which may or may not correspond to 

eigenvalues.

When the closed form solution for the exact dynamic stiffness matrix of an element 

exists, a recently discovered member property, the member stiffness determinant 

(Williams and Kennedy 2003; Williams et al. 2002a; Williams et al. 2004b; Williams et 

al. 2002b; Zare et al. 2003a), enables the poles on a plot of the determinant of K versus

PhD Thesis, A. Zare, 2004



Chapter 1: Introduction

the eigenparameter to be eradicated and the general volatility of the plot to be 

substantially reduced with no loss of computational efficiency. It therefore provides a 

platform from which significantly more efficient eigenvalue extraction routines can be 

developed. However, obtaining the necessary analytical expression for the member 

stiffness determinant is far from straightforward. So far, such expressions have been 

reported for axially vibrating bars and Bemoulli-Euler beams (Williams et al. 2002a), for 

axially loaded Timoshenko beams (Williams et al. 2004b) and for isotropic and 

orthotropic prismatic plates (Zare et al. 2003a; Zare et al. 2003b; Zare et al. 2003c).

1.4 THESIS OUTLINE

Chapter 1 has so far given a brief overview of the origin and history of development of 

exact dynamic stiffness matrices, along with the corresponding methods of solving the 

transcendental eigenvalue problem. The reminder of this thesis consists of two parts, 

both of which have the common characteristic of using the concept of dynamic stiffness 

matrices. In the first part, the member stiffness determinant is derived for the first time 

for both isotropic and orthotropic prismatic plates. The second part considers the 

development of exact dynamic stiffness matrices for sandwich beams. This culminates in

a unique model for a three layer Timoshenko beam.
\

1.4.2 Outline of Part A

In Part A, analytical expressions for the member stiffness determinant of isotropic and 

orthotropic prismatic plates are derived on the assumption that the plates carry in-plane 

compressive loads. This enables more efficient convergence routines to be used to 

calculate the natural frequencies or critical buckling loads, together with their 

corresponding mode shapes, of any prismatic plate assembly formed from such members.

In Chapter 2, the existing dynamic stiffness matrices for isotropic and orthotropic 

prismatic plates are introduced. Then, by using useful identities, alternative forms of the
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elements of the stiffness matrices are developed that are more amenable to the derivation 

of the member stiffness determinant.

Chapter 3 deals with the derivation of the member stiffness determinant for both the 

isotropic and orthotropic plates and several examples illustrate the advantage of the 

theories. A method is also presented for obtaining the same advantages for plates 

carrying in-plane shear load or anisotropic plates by obtaining numerically an 

approximation to their member stiffness determinants.

1.4.3 Outline of Part B

Despite the availability of extensive literature on sandwich beams, there is very little 

work that utilises a dynamic stiffness formulation. More specifically, a precise and 

general stiffness formulation that accounts in an exact way for the uniform distribution of 

mass in a member can not be found. Therefore, the main aim of the work in Part B is to 

present an exact and concise dynamic stiffness method for the free vibration analysis of 

sandwich elements and the structures that can be fabricated from them. The analysis will 

be ‘exact’ in the sense that the solution, as opposed to the finite element method’s 

solution, satisfies the governing differential equation exactly in the same way that the 

‘exact’ solution can be obtained in conventional analytical theories.
\

Chapter 4 presents a general survey on the theory and application of sandwich beams.

Chapter 5 studies the flexural vibration of sandwich beams that have unequal faceplates. 

The resulting governing differential equation is of sixth order and the element has three 

degrees of freedom at each end. Therefore, the theory is only able to model the flexural 

vibration of sandwich beams.

In Chapter 6, the theory of Chapter 5 is extended to include the effects of longitudinal and 

rotary inertia. The inclusion of longitudinal inertia raises the order of the governing 

differential equation to eight. The resulting model provides four degrees of freedom at
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each end and is able to predict the axial and shear thickness modes of vibration in 

addition to those corresponding to flexure.

Chapter 7 develops the most sophisticated sandwich beam theory developed herein, 

which includes all necessary theoretical and practical effects, including shear deformation 

in the faceplates and axial and bending stiffness of the core. The governing differential 

equation rises to tenth order and the model has five degrees of freedom at each end. 

Besides the flexural and axial modes of vibration, three classes of shear thickness modes 

can also be predicted by the theory.

Finally, Chapter 8 provides a summary of the thesis, draws conclusions and suggests 

those areas of thesis that could be usefully extended.

PhD Thesis, A. Zare, 2004
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CHAPTER 2 

PRISMATIC PLATES

2.1 INTRODUCTION

Many structures consist^ essentially of a series of thin, flat plates rigidly connected 

together along their longitudinal edges, as typified by the structures of Figure 2.1. Such 

plate assemblies, which often take the form of flat panels with longitudinal thin-walled 

stiffeners attached, occur frequently in the aircraft and ship building industries. 

Corrugated panels are also used frequently for floor, roof and cladding systems. The 

basic state of stress may in general arise from loads applied at the ends, from variations of 

temperature over the cross-section and from the residual effects of the fabrication process.

In plate structures, the term prismatic plate is concerned with an individual plate which 

has a longitudinally invariant cross-section and is in a state of plane stress that is 

longitudinally invariant (Wittrick 1968a). Also to make it possible to treat each plate as a 

single element, it is postulated that whatever type o f mode occurs, it is sinusoidal in the 

longitudinal direction. Hence, along any longitudinal line in any individual plate, the
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Figure 2.1: Examples of prismatic plate assemblies.

displacements vary sinusoidally. This requires either that the length of the structure is 

considerably greater than the half-wavelength of the mode, so that end effects are 

unimportant, or that the end supports permit such a mode to occur. The assumption of a 

sinusoidal mode implies that the perturbation edge forces at the edges of an individual 

plate also vary sinusoidally in the longitudinal direction. The fact that any mode is 

sinusoidal enables both time and the longitudinal co-ordinate to be eliminated. This 

enables an individual plate to be reduced from a two dimensional to a one-dimensional 

element, with the result that the structure can be treated as a two-dimensional skeletal 

structure whose topology is defined by the original cross section (Wittrick and Williams 

1971b)

It has already been mentioned that for prismatic plates, the only requirement for the state 

of stress is that it should be uniform longitudinally. In general, the structure is assumed to 

be subjected to a ‘dead load’ system which does not cause buckling. (In buckling 

problems, a ‘live load’ system that has its magnitude defined by a single load factor may 

also be applied and the value of the load factor at buckling can be determined.) Figure

2.2 shows the general in-plane state of stress, consisting of a uniform longitudinal 

compressive force N L per unit length, a uniform transverse compressive force N r per

PhD Thesis, A. Zare, 2004
13



Chapter 2: Prismatic plates

unit length and a uniform shear flow N s per unit length. In a buckling problem these are

the forces which give rise to the instability, whilst in a vibration problem they are 

regarded as defining the datum state of the structure about which small vibrations occur.

Figure 2.2: An individual plate of breadth b and 
length / subjected to a general in-plane force system.

During perturbations any individual prismatic plate is subjected to three components of 

distributed force and a distributed moment along each of its two longitudinal edges, 

Figure 2.3. In this figure, the positive directions of the edge forces and displacements are 

also shown, where Px,Py ,Pz and M , respectively, represent the amplitude of the in-plane

shear force, in-plane transverse force, out-of-plane shear force and bending moment per

unit length of the plate edge. The amplitudes of these forces vary sinusoidally with time
\

and the longitudinal co-ordinate, as do the corresponding components of edge 

displacement and rotation. Hence, it is possible to define stiffness matrices for an 

individual plate that relate the amplitudes of the force and displacement vectors at its 

longitudinal edges. If the material properties are isotropic and only longitudinal forces 

are present, the plate is identified as an isotropic prismatic plate. Similarly, when using 

orthotropic material or including transverse forces the plate is referred to as an 

orthotropic prismatic plate. In both cases the nodal lines are straight and perpendicular to 

the longitudinal edges. On the other hand, whenever in-plane shear stress is included or 

material property is anisotropic, the nodal lines in the plates will not be straight and 

perpendicular to the edges, Figure 2.3. Consequently, spatial phase differences occur 

between the perturbation edge forces and the displacements. This is accounted for by 

defining their magnitudes in terms of complex quantities.
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Edgel

Edge 2

Figure 2.3: The amplitudes of the perturbation edge forces 
and displacements on an individual prismatic plate. Dotted 
lines show the nodal lines.

The complete set of sinusoidal forces and displacements at the edges of an individual 

plate comprise two uncoupled systems, one corresponding to out-of-plane behaviour and 

the other corresponding to in-plane behaviour. Therefore, the overall stiffness matrix can 

be split into two completely separate stiffness matrices corresponding to each plane. The 

in-plane stiffness matrix is always real and symmetric. However, the out-of-plane 

stiffness matrix is real and symmetric for orthotropic and isotropic prismatic plates, but 

complex and Hermitian for the anisotropic case. Throughout this study attention is 

mainly confined to either isotropic or orthotropic prismatic plates where the stiffness 

matrix is real and symmetric.

Irrespective of the classification, the elements of the stiffness matrix for all the plates 

considered are functions of the basic stresses and the wavelength (not the length of the 

plate) and also of the frequency in the case of vibration problem.

2.2 EIGENVALUE PROBLEM

In the late 1960s and early 1970s, Wittrick and Williams (Wittrick 1968a; Wittrick 

1968b; Wittrick and Williams 1974) developed an exact dynamic stiffness matrix for 

prismatic plates that can be used very efficiently when solving both buckling and
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vibration problems of structures comprising an assembly of isotropic, orthotropic or 

anisotropic prismatic plates. In each case, the exact solution to the member differential 

equations is employed to yield explicit analytical expressions of an 8 x 8 stiffness matrix 

which converts the eight amplitudes of the displacements at the edges to the 

corresponding amplitudes of the edge forces (including two moments), where the 

amplitudes are defined more precisely in Figure 2.3.

Assembling the exact element stiffness matrices, by the usual procedures of the finite 

element method, leads to a transcendental eigenvalue problem. Whether the problem 

under consideration is buckling or free vibrations, the eigenvalues are obtained from an 

equation of type

K D  = 0 (2.1)

where K is the appropriate overall stiffness matrix of the structure and D is the 

corresponding nodal displacement vector.

Throughout the present theory the longitudinal direct force per unit length N L and the 

frequency of vibration n always appear in association with each other through the 

relationship

N* = N L +4phX2n 2 ^ o r  e = (NL + 4phX2n 2) / E h  (2.2)

in which,/? and h are the plate density and thickness, respectively, E  is Young’s modulus 

for isotropic plates and X is the longitudinal half-wavelength. In the vibration problem, 

we suppose that the structure is subjected to a specified system of dead loads which do 

not cause it to buckle. Hence, the eigenvalues of Eq. (2.1) correspond to the natural 

frequencies of vibration of the structure when acted upon by the given dead loads. On the 

other hand, the parameter n2 in the vibration problem can in general be thought of as a 

load factor on a set of live loads in the buckling problem, which gives rise to a uniform 

longitudinal compressive force per unit length N L, proportional to the value of 4phX2 in 

each plate. Therefore n can be regarded as an eigenparameter for both problems.
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Thus, it is evident that buckling and vibration problems can be regarded as the same from 

a computational point of view and the equivalent critical buckling load can be determined 

from a knowledge of the corresponding natural frequency. Hence, hereafter, the theory 

that enables the eigenvalues of such structures to be determined is described in detail in 

the more demanding context of vibration.

However, in the vast majority of buckling problems interest is centred on the lowest 

eigenvalue, while in vibration problems it may be desired to calculate all natural 

frequencies in a specified band or to calculate the first m natural frequencies. It is 

necessary to note that if all the natural frequencies of the structure lying in a specified 

band are required, it is necessary to consider all possible wavelengths of the structure. 

This means that for any half-wave length X , a family of modes and their frequencies 

exist. Hence, by choosing various wave numbers k the longitudinal half-wave length 

can be specified as X - l ! k ,  where (k = 1, 2, 3, ...). This series could be terminated 

when a half-wave length become sufficiently short for the lowest natural frequency to lie 

above the upper limit of the specified frequency band. For example, Table 2 of (Wittrick 

and Williams 1971b) gives all the natural frequencies in the range 0 < n < 0.1 for a free- 

free panel, where n is a dimensionless frequency parameter. Those natural frequencies 

refer to wave numbers 1 to 6 .

2.3 STIFFNESS MATRIX

The governing equations for the individual plate of Figure 2.2, in which x is the 

longitudinal axis, are given in (Wittrick and Williams 1974) as

Pi ~^ii +k i2 d2 

P2 = k 21 ^1 + k 22d 2
(2.3)

where
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V j = { M J,P^,Pyl,\PXJ} and d , = 0 = 1,2) (2.4)

are four element vectors containing the amplitudes of, respectively, the sinusoidally 

varying force and displacement components at longitudinal edge j. The reason for 

associating / (= V- 1 ) with and Uj is the 90° spatial phase difference between the

longitudinal component of displacement and the two perpendicular components. Using 

Eq. (2.4) and the constitutive relations for prismatic plates (see Appendix A) yield the 

necessary stiffness matrix in Eq. (2.3). The k y (/ = 1,2 ; j  = 1,2) are 4x4 stiffness

matrices and may be partitioned into its uncoupled out-of-plane and in-plane components, 

denoted by superscripts O and I , to give

1o0 -
1

\ ° 2 0 "

1---O0
2

1

II£

> 22 ~ k -  k T -, tv12 — tv21 —

1 o rr •— 
•'I

1 0  k 22 _ 1

o
1

The out-of-plane stiffnesses correspond to the first two elements of p7 and dy in Eq. 

(2.4) and the last two elements correspond to the in-plane ones. The out-of-plane and the 

in-plane matrices , k 22, k^2, k[t , k 22 and kf2 are

SMM SMQ II S MM SMQ
k°» 12 IIOII f MNi I m q

~  SMQ SQQ _SMQ SQQ _ ~  fhiQ ~ f(QQ

SNN ~ S NT
k z - » 22

S NN SNT
k 7’ 12= (k 2,)T =

~  /aw ~ f  NT

_S  NT STT _ fNT frr

where expressions for their elements are given in the next sections for isotropic and 

orthotropic prismatic plates. The following dimensionless parameter is used for both 

cases

(p= b /X  (2.7)
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where b  is the breadth of an individual plate and X - X I n  where X is the half­

wavelength of the mode.

2.4 ELEMENTS OF THE STIFFNESS MATRIX FOR ISOTROPIC 

PRISMATIC PLATES

Expressions for the elements of the matrices of Eq. (2.6) for the case of isotropic 

prismatic plates are given in reference (Wittrick and Williams 1971b; Wittrick and 

Wright 1978). The following dimensionless parameter are used

s = (N l +4phA2n 2) / E h ; tj = 2 ^ 3 (1 -v2)^ Xlizh  (2.8)

where h is the thickness of an individual plate, X is the half-wavelength of the mode, v , 

E  and p are Poisson’s ratio, Young’s modulus and density of the plate material, 

respectively, n is the frequency of vibration and N L is the longitudinal force per unit 

breadth which is longitudinally invariant and constant across the breadth b of the plate. 

Hence buckling problems can be solved by setting n = 0 and vibration problems have 

N l = 0 (constant) for unloaded (loaded) problems, enabling the natural frequencies to be 

found for unloaded or for axially compressed plate assemblies. Other definitions used are

a 2 =1 + ^ ;  y 2 = - y 2 = \ -  rj
(2.9)

r2 = - f 2 = l - ( l - v 2)e;  C  = -<f2 = 1-2(1 + v)e

Note that a is always real but that y , x and 4 can be complex. Furthermore, 

functions p  and qx of a parameter x  can he defined in general way such that

P , = ( l/2Ty)s i n h ^  = (l/i-) s i n ^  ; <7,  = c o s h ^  = c o s ^  (2.10)
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where Z  = l Z  whenever^ is imaginary, z  may take any of the values a , y, r ,  , 

any combination of them or simply a constant.

2.4.2 Out-of-plane stiffness coefficients

In reference (Wittrick and Wright 1978) the out-of-plane stiffness coefficients of Eq. (2.6) 

have been given as

S UM =  P a P y G ^ + q a q r G ^ .

f m m  = P a P r G ^ - q a q r G ^

smq =[1n { \ - v ) D I A - (a 2paqr + y 2qap r)G  ̂~{qap r + Paqr) G I I X  

fMQ ={{a2Paqr + r 2qaP,)G # ~{qap r + p aqr )Gaf}nl2A 

Sqq = (a 2r l P .P rG4  + qaqrG ^  )tc2 / A.'

- f o o  = ( a 2r 2 PaPrG.« -  qaq ,G m ) * 2 / A

(2.11)

where D = Eh1 /12(1 — v2) is the plate flexural rigidity, and

G ^ = n D q l ( q ap r -  p aq ,)X  

G#  = % D q/(a2 p aqr — y2qap r )A
(2.12)

The out-of-plane stiffness coefficients of Eq. (2.11) have been available in the literature 

for a number of years. However, during the development of the work reported herein, it 

soon become clear that considerable advantage could be gained by reformulating them so 

as to have a common component in the denominator of each of the stiffness coefficients. 

Therefore, using various trigonometric manipulations (some useful identities used are 

given in Appendix B) the following equations which are better suited to the subsequent 

development of the member stiffness determinant are obtained as
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S MM ~  (  Q l a P l y  P l a Q l y )  G  ^   ̂^  

f m t  = \P2*~ P i , ) ^ *  $

SMQ = D  0  -  V) !>•2 -  2 P 2«P2,  f  v !  $

fMQ = v?2 r ~ <fa a  ) ?  ̂  2 <5

SQQ = ( a 2P2„?2, - Y 2<l2aP2y ) ? ' * ■ $

f Q Q  =  W P 2 a - J 2 P 2 y ) ? l ^ S

(2.13a)

where

g = Drj! A2; A = / l /7T and <S = Vi (4/?2a/?2 - q 2aq2y+l) (2.13b)

All quantities in Eq. (2.13) are real, and can be determined using real arithmetic. 

However, Eq. (2.13) cannot be used when the eigenparameter is zero (very close to zero) 

as in this case the expressions become undefined (unstable). Therefore, by using complex 

arithmetic an alternative set of expressions for this case are presented as

SMM — (  P 2 ( a + y )  P l { a - y )  ) D ! A, 8

  A
flU M  =  ( P t a - r f l l a t r )  ~  P i u + r f l i a - r )  ) D I  % 8

sm q = ( d  /X 2) { l - v - [ ( l  + ay )pfa+r)-  ( l - « r  ) p l - r)] / d  }

f u Q  = -2  ( p ( a ^ ) P { a - r ) ) D a y U 28  

S QQ =(P2^r) + P2(a-y)) D d y l V S  

f q q  = (  P ( „ - , ) < 3W )  +  P i a + r ^ a - r )  )  D a y  l V 8

(2.14a)

where

3 = 1 - 8  = - 2 - 2
ay P { a + y )  P ( a - y ) (2.14b)
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Although Eq. (2.14) may contain some complex quantities, the final results of its right- 

hand sides are real. Also it is more convenient to set the stiffness coefficients for zero 

eigenparameters by taking their limit at e -» 0 as

SMM l(ff-O)

fM M  |(£=0 )

S MQ L )

fM Q L = o

S QQ (£=0)

fQ Q l(£=0 )

= -4 (pp2DIX 25q

c-o)= 2 ( 2P2ch + (P) D 

f o o L .*, = 2 ( 2P 2 +(P^2 ) D / I 3S0

(2.15)

where <50 = 4 e lim0<5 = ^ p \  -  (p2. From definitions in Eq. (2.10), it is also clear that

p 2 = (^) sinh = V2 sinh (p and q2 = cosh ̂  = cosh (p (2.16)

2.4.3 In-plane stiffness coefficients\

Similar to previous section, reference (Wittrick and Wright 1978) has been used for 

definition of the in-plane stiffness coefficients of Eq. (2.6). By introducing the 

coefficients

H f  = k E s h / 2 ( p tq( ~ C 2q , p ( )X 

H j  = 7cE eh /2 (q ,pc - i 2p xq; )X

(2.17)

the in-plane stiffness coefficients of Eq. (2.6) have been given as
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SNN ~ QrQtHsf + C P i PqH f

Aw = Q t Q z H s f  ~ C  P x P t ; H f

SNT =<lrP<;HJ +Pr^cHf -*E hl( \  + v)A

f m  =^rPcH r f - P ^ c H f

S1T =<McH / +T2P,PcHtf

f r r  = f  + 1  P , P ( H j

(2.18)

In a similar fashion to the out-of-plane expressions, Eqs. (2.17) and (2.18) cannot be used 

to calculate the stiffness matrices for the static case or when the eigenparameter is zero. 

Also they are not in the most suitable form for further development of the member 

stiffness determinants. Thus, as for the out-of-plane case, more suitable in-plane stiffness 

coefficients can be developed from Eq. (2.18) as (See Appendix B)

SNN ~ (Pi-tQiz ~-<T2/V 72 ,)k / P

Aw = ( p » - c 'p 2()k />

S NT ~ (4P2tP2C -  q2r^2C + I)*-/ -  2 K / 8 (1 + v)

f  NT ~ (42t ~ 4 2c) k / 2 P
\

STT ~ (Pi t f i ,  -- P iN v; )* 1 P

f r r  ~ ( ^ P i ,  - P2( ) k / P

where

K = E h s  / 2 1 and // = (l + t  2C2)p 2,P2;

(2.19a)

(2.19b)

Although the expressions in Eq. (2.19) are real, they still cannot be used for calculating 

stiffness coefficients when the eigenparameter is zero. Hence, allowing for real and 

complex quantities, an alternative set of expression are developed as
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SNN ~ iPl Pl(t+C ) + Pi P2(r-n]CK /p.

frn ~ (A  P{ t+o ^(t-o + A2 P( t-o (̂t+c )}£** P̂

s m  = - K  {1 - [ ( v  +  C )/?, P(2t+f, - (T - f)A P(2,.f ,]//!>

//W = 2(1 + V)P(r+( ) / ?(T-f ) r CK /p

STT ~ tA Pl(x+0 ~Pl Plix-C )]T K /P

frr ~ ~iP\ P(i+c ) #(t-c ) ~ P i /V o ^ W  )JT K

(2.20a)

where ^  = 2r + C (l-v ), /?2 = 2r - ^ ( l - v )  and

/e = E h /( I  + v)2 and p  = 4rC
P — [ A (̂r+c) P2 P{T-C) ]

2 „ 2
2 „2(1 + v) e

(2 .20b)

Although Eq. (2.20) may contain some complex quantities, the final results of the right- 

hand sides are real. Finally, the stiffness coefficients when the eigenparameter is zero can 

be derived from the expressions of Eq. (2.20) by taking their limit at e -> 0 as

[e=0) = 2 [2(3 -  v ) p 2q 2 + (1 + v)<p]K /jj0

fNN 1=0) = 2 [ (1 + v)<pq2 + 2 Q - v ) p 2\ K / p ()

S NT u II 1 *1 1 00 'Z
j 1 O p l / f i o  ]

fN T L )
= 4(1 +  v)<p p 2K //io

Sjj 1=0) = 2 [2(3 -  v ) p 2q 2 -  (1 +  v)<p]K / p 0

f r r L=0) = 2 [(1 + v)<pq2 -2(3  - v ) p 2] K / p 0

(2 .21)

w here^  = 4 clim0/} = 4 ( 3 - v )2 pi  - (1  + v ) >k2 2
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2.4.4 Determination of

In the general form of the Wittrick-Williams algorithm, J 0 denotes the value of J  if

clamps were to be applied at all of the degrees of freedom corresponding to K so as to 

make their displacements zero. In this case, all the elements of the structure act as 

clamped-clamped elements and J 0 for the complete structure is the summation of J 0 for

each element of the structure calculated separately. Now, in the case of prismatic plate 

assemblies

Jo = T.{j2 +JI ) (2.22)

where J °  and J !0 are, respectively, the number of out-of-plane and in-plane natural

frequencies of a component plate exceeded by the trial frequency when all the nodal 

degrees of freedom of the plate are clamped and the summation is taken over all the plates 

comprising the assembly. Using the rules of (Wittrick and Wright 1978) and the current 

notation, J °  and may be calculated as follows

T°
0 =<

if<f2 > 0
(2.23)

where I is the highest integer less than (b /  X) (77-  l)‘/j and m is the highest integer less

than (0.5 + 0.56 <f A) for r 2 > 0 . When r 2 < 0 , m is the sum of the highest integer less

than (0.5 + 0.56C/A) and the highest integer less than (0.5+ 0.5b i /X ) .  sg( ) is 

1 or - 1, depending on the sign of the parameter within the bracket.
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2.5 ELEMENTS OF THE STIFFNESS MATRIX FOR ORTHOTROPIC 

PRISMATIC PLATES

Detailed expressions for the elements of the matrices of Eq. (2.6) for the case of 

orthotropic prismatic plates are given in reference (Wittrick and Williams 1974). As 

stated in Section (2.4), when developing the member stiffness determinant it will be very 

helpful if an alternative set of stiffness coefficients can be obtained from those in 

reference (Wittrick and Williams 1974) in such a way that a common term is present in 

the denominator of each of the stiffness coefficients. Therefore, by various trigonometric 

manipulations (some useful identities used are given in Appendix B) the coefficients 

given in reference (Wittrick and Williams 1974) are reworked in this section to be more 

suitable for the subsequent development of the member stiffness determinant.

The out-of-plane elements of the stiffness matrix of orthotropic prismatic plates are 

complicated transcendental functions of N L, N T, n and X , while the in-plane elements 

depend on N L, n and X . Furthermore, in order to represent the elements of the stiffness 

matrix, real functions p  , qx, p x and q x are defined such that

Px = (l/* )sinh^  = (l/f) sin(px\ qx = coshyx = cosyx 

Px =(l//)sin <px; q x = cospx
(2.24)

where x  is a general subscript representing a , y , r and £ ,  as defined in the following 

sections, or any combination of them, and /  = i /  whenever /  is not real, (p is given by 

Eq. (2.7). Note that Eq. (2.24) is different from Eq. (2.10) and clearly, any equation 

related to orthotropic prismatic plates is based on Eq. (2.24).

2.5.2 Out-of-plane stiffness coefficients

The dimensionless parameters used in references (Lekhnitskii 1968; Wittrick 1968a; 

Wittrick and Williams 1974) for out-of-plane behaviour of orthotropic plates are given 

with some simplification as

    26
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T — oc12 + 2 <X33
x 2 n t

l i t 2D22
(2.25)

where

= G (l-v !vi ) Dn  = ----- 2-------
12(1 -v,v2)

(2.26)

and v,, v2, Ex, E2 are Poisson’s ratio and Young’s modulus in the longitudinal and

transverse in-plane directions of the plate, respectively, G is the shear modulus and N * is 

defined in Eq. (2.2). Depending on the value of L, (Eq. (2.25)), the elements of the out- 

of-plane stiffness matrix should be defined for three different cases. Nevertheless, it is 

necessary to note that the three different cases may happen for various ranges of 

eigenparameter for the same plate element or even simultaneously for different elements 

of the problem. Furthermore, in contrast with the isotropic case, all relationships are well 

defined even for the zero eigenparameter, hence, there is no need to redefine them in 

alternative form or seeking limiting values.

2.5.2.1 Case 1: L > 0 n

In this case the out-of-plane stiffness coefficients of Eq. (2.6) can be written as 

suu = E>ril l ' \q ap r - q rp a ) /X Z

soe = D22i ’' ( a 2 p aqr - r 2p rqa ) i x l z

(2.27)
fuM = D12L '{Pa ~ P r )l l Z  

f qq = D2 i l x \a 2p a - y 2p r ) l V Z

f UQ= - D ^ ' ( q a - q r ) r ^ z
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where

Z = Tpap r -  qaqr +\  ; a 2 = - a 2 = T + Z/4 ; y2 = - y 2 -  T -  L'/j

2.5.2.2 Case 2: L < 0

Defining the real and positive values of a and y in the following way

a = ^ ( ^ T Z I  + T) ’ r  =  ^ ( V ^ I - r )

the stiffness coefficients become

SMM ~ ^2liPla ~ Ply)/  ̂ Z  

s qq = A D 22( p 2a + p 2r ) / X 3Z

suq = D22( A - a i2- A p l l z ) / I 2
►

fm i  = D 22(qaPr - q rp a )IXZ
\

f qq = AD22(qap r ^ q rp a ) l V Z  

ft^Q = ~AD22p ap r /X Z

where

/f = a 2 + / 2 ; Z  = V i ( p 2a- p 2)

2.5.2.3 Case 3: L = 0

In this case the out-of-plane stiffness coefficients of Eq. (2.6) can be written as

(2.28)

(2.29)

(2.30)

(2.31)
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S MM ~  ^ 2 2 ^ P l a  v ) !  *P

SQQ = D22T(P2* +<p)/<p2Aiz  

sMq = — D22(^ + ̂ 12 + ^ ! Z } lX

f m i  = D22 (<la -  Pa 19)1 <PZZ 

fQQ = D22T(<la + Pa / f ) 19 ? Z  

fMQ =  ~^22^Pa I Z  Z

where

a * = - a 2 =T; Z  =(pza -<pz )/2<pz

(2.32)

(2.33)

2.5.3 In-plane stiffness coefficients

Appropriate plate properties and necessary parameters for the in-plane behaviour of 

orthotropic prismatic plates can be obtained from those in (Wittrick and Williams 1974) 

and after some simplification yield

Au = E lh / ( \ - v lv2);  Al2= v2A „ ;  A 2 2 = v 2A u / v 1 ; A33=Gh  (2.34)

A0 = A ,2 + A33 ; L\ = Au -  N ’ ; l 3 = A33 -  N '  (2.35)

b = A22L , + A 33L3 4? _ c  = J ^ h _  (2.36)

2A22A3i ^ 22̂ 33

Depending on the value of £  and C the elements of the in-plane stiffness matrix (Wittrick 

and Williams 1974) are defined for the two cases of B 2 >C  and B 2 <C  by the 

following equations, which are better suited to the subsequent development of the 

member stiffness determinant. Nevertheless, it is necessary to note that the two different

______________________________________________________________________________________________________ 29
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cases may happen for various ranges of eigenparameter in the same problem and in 

contrast with isotropic case, all relationships are well defined, even for the zero 

eigenparameter.

2.5.3.1 Case 1: B 2 >C

In this case the in-plane stiffness coefficients of Eq. (2.6) can be written as

2A22H a - 2 A 33 / 2/1

2A22H a / 2k

(2.37)

where

— (^3/^22 C ^ t/P c /  (^3/^22 T )Pt/9V/ 
' 2  / 2 / 2

s = (l { / A33 -  C ~ (̂ 1 /^33 ~ r
(2.38)

and

T2 = - i 2 = B  + (B2 - C f  ; C2 =~C2 = B - ( B 2 - C f (2.39)
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2.S.3.2 Case 2: B 1 < C

Defining the real values of r and f  in the following way

r 2 = Vi(4c + B ) ; C = V < 4 c ~ B ) (2.40)

and using the intermediate parameters of

H a = (p, ~P()+(P,  + /V K /-4 3,VC 

H s =(p, + P<)+(p, ~ P ; Y i / An ^ C
(2.41)

the in-plane elements of the stiffness matrix are as follows

S NN ~  ^ 2 2  [(^t + ) / H s + ( q T )/^f a ]/^

stt = a[(#t _ +(^t + ^ ) / / / a y ^ v c

SW =  k k  +P() /H’ + Ao(p< ~ P ( ) / H a - 2 ^ 33] / 2 l

A w  = +qc)/H, -(<?, - ? f ) / / r . V X

/ i t  = A [(<?, - 4( )/Hs - (q ,  +q( ) / H . ] /X jC  

f m  = k  k  + Pf ) /H ,  -  4 , (p, -  P( ) /H a ]/ 22

(2.42)

2.5.4 Determination of J q

For the case of prismatic orthotropic plate assemblies, by using the rules of (Wittrick and 

Williams 1974) and the current notation, J °  and of Eq. (2.22) may be calculated as 

follows
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■/<> ”  Jr\ X/2W Sg(SMM )1 X/2W SS(SMM ~ fm i  / SMM )] 

Jo ~ J r2 ~  ~  SS ( S NN )] — XJ2W ~  SS ( S NN ~  / nN / S NN )]

(2.43)

where sg( ) is 1 or -1  depending on the sign of the parameter within the bracket and

z2 for L > T ‘

i2 -  for L < T 2 but L > 0 and T < 0 

0 for L < T 2 but L > 0 and T > 0

Jr2 =

0 for L < 0

1 + z3 + z4 For N* > A,

For N * < Al and BL > 0

z4 + lA[ 1 -  sg(L3)] For AL <N* < Av 

0

z4 -  z3 For Am < N* < Al and BL < 0

0 For N * < Am and BL < 0

(2.44)

in which z'j, i2, z3 and z4 are the largest integers less than ba/X,by/X, bx/X and b^/x ,  

respectively, although it must be noted that J °  and Jq only have values when at least 

one of the a, y, r or C are not real. AL and Au are the smaller and the larger value of the 

two quantities Ax L and A33, respectively, and

^ - [ ^ 2 2 + ^ 3 3  A  Al (A22 + ^33 )]/2^22-4. 

~ (fA + )/(^22 ~ ^33 )

(2.45)

where

PhD Thesis, A. Zare, 2004
32



Chapter 2: Prismatic plates

^1 (^22 3̂3 X^l 1 ̂ 22 ^33 ) ^  (-̂ 22 “̂33 )
(2.46)

d2 — 4^22 ̂ 33 Aq k  _ 0̂ 11 ~ ^33X^22 — ^33)]

Finally, it should be noted that if J rl or J r2 is zero then the remaining parts of their 

respective equations in Eq. (2.43) are also zero.
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MEMBER STIFFNESS DETERMINANT

3.1 INTRODUCTION

Closed form solutions of the differential equations governing the vibration or elastic 

critical buckling of prismatic plates have been available in the literature for many years 

and were briefly presented in Chapter 2. This type of solution, expressed in the form of 

exact member stiffness matrices, can be assembled in the usual way to model a variety of 

prismatic plate assemblies. Such a formulation necessitates the solution of a 

transcendental eigenproblem.

In both the buckling and vibration problem, the eigenvalues are obtained from an 

equation of type

KD = 0 (3.1)
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where K is the appropriate overall stiffness matrix of the structure and D is the 

corresponding nodal displacement vector. The elements of K are highly complicated 

transcendental functions of the frequency or load factor, which become infinite at certain 

values of the eigenparameter and which may or may not correspond to eigenvalues. In 

general, the eigenvalues correspond to natural frequencies in undamped free vibration 

problems or elastic critical loads in buckling problems. The eigenvectors are the 

corresponding vibration or buckling modes.

The common early approach of determining eigenvalues was to plot the determinant |K| 

at fine intervals of the eigenparameter and seek the eigenvalues corresponding to |K|

equals zero. This is often sufficient for the linear eigenvalue problem. However, the 

highly volatile nature of the determinant of the structure’s transcendental stiffness matrix, 

particularly in the vicinity of the poles, which may or may not correspond to eigenvalues, 

can lead to some eigenvalues being missed, especially where several eigenvalues lie very 

close to each other or are coincident.

As mentioned earlier in Section 1.3, the Wittrick-Williams (W-W) algorithm (Wittrick 

and Williams 1971a) can be used to completely overcome the difficulties associated with 

the curve plotting method when solving transcendental eigenvalue problems. The W-W 

algorithm, when allied to some form of bisection technique, remains the only way of 

solving the transcendental eigenproblems of structural analysis with the certainty that any 

required eigenvalue will be found to any desired accuracy. The rate of convergence that 

is commonly achieved by bisection techniques is known to be relatively slow. However, 

implementation of those quicker methods that are available is hampered by the highly 

volatile nature of the determinant of the structure’s transcendental stiffness matrix, 

particularly in the vicinity of the poles, which may or may not correspond to eigenvalues. 

Therefore, if this volatile nature of the determinant could be reduced, it would produce a 

safe platform for using quicker methods.

Derivation of the W-W algorithm using the Sturm sequence property of an exactly 

equivalent finite element model of (hypothetically) infinite order (Leung 1993; Simpson 

1984; Wittrick and Williams 1973b), together with two more recent alternative sources
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(Howson et al. 2001; Williams et al. 2002a) is central to the work that follows and is 

introduced below.

In general, the Wittrick-Williams algorithm can be expressed in its simplest form as 

J  = J 0 + s{K} , where J  is the number of eigenvalues of the complete structure exceeded

by a trial frequency or load factor; s{K) is the sign count of K which evaluated at the trial 

value of the eigenparameter that calculated as the number of negative leading diagonal 

elements of the upper triangular matrix obtained from K by using the usual form of Gauss 

elimination without pivoting, and J 0 denotes the value of J  if clamps were to be applied 

at all of the degrees of freedom corresponding to K so as to make their displacements 

zero. Clearly, J 0 = ^ J m where J m is the number of clamped ended eigenvalues of a

component member passed by the trial frequency or load factor and the summation is 

over all the members. It is proved (Paz 1973; Simpson 1974; Wittrick and Williams 

1971a) that the J Q term corresponds to the poles on a plot of the determinant of K versus

the eigenparameter. Such a plot is usually extremely volatile (Simpson and Tabarrok 

1968; Wittrick and Williams 1971a), particularly in the vicinity of the poles which, as 

mentioned earlier, may or may not correspond to eigenvalues. This makes it extremely 

difficult to implement computer based methods for predicting the value of the 

determinant in order to improve the rate of convergence upon the required eigenvalue 

(Kennedy and Williams 1991; Williams and Kennedy 1988).

The work reported in this study shows how the poles of such a determinant can be 

completely eradicated and its volatility substantially reduced. This is achieved without 

introducing any approximation and yields all the original eigenvalues, which now 

correspond entirely to the zeros of a transformed determinant. The necessary 

transformation utilises a recently discovered member property, the member stiffness 

determinant (Williams and Kennedy 2003; Williams et al. 2002a; Williams et al. 2004b), 

which is unique to any given member type, being equal to the limit as the number of 

elements approaches infinity of the determinant obtained by a traditional (i.e. 

approximate) FEM representation of the member. The member stiffness determinant 

enables the poles to be eradicated from the plot of the determinant of K versus the 

eigenparameter and the general volatility to be substantially reduced and consequently 

more efficient convergence algorithms to be implemented. Its use does not incur any loss
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of computational efficiency and yet provides a robust platform for the implementation o f 

substantially more sophisticated convergence algorithms.

Indeed, the member stiffness determinant transforms the determinant of the structural 

stiffness matrix in its usual form to the determinant of the infinite order stiffness matrix of 

the structure. As a result of considering an infinite number of freedoms, the length of 

each element will be infinitely small and therefore the resulting J 0. will be zero and 

consequently no pole will be appear in the plot of the determinant of the stiffness matrix.

In other words, the member stiffness determinant scales the determinant of the stiffness 

matrix of the structure to a matrix whose determinant has no poles and where eigenvalues 

correspond only to the zeros of the determinant. However, obtaining the necessary 

analytical expression for the member stiffness determinant is far from straightforward. 

Such expressions have recently been given for axially vibrating bars and Bemoulli-Euler 

beams (Williams et al. 2002a) and for axially loaded Timoshenko beams (Williams et al. 

2004b).

This study obtains, for the first time for any type of plate structure, analytical expressions 

for the member stiffness determinant needed to calculate the natural frequencies of 

vibration or the elastic buckling loads of prismatic plate assemblies. It starts by finding 

analytical expressions for the member stiffness determinant for a uniformly longitudinally 

compressed isotropic plate. Then, it extends the development to analytical expressions 

for the member stiffness determinant of an orthotropic plate that is assumed to carry both 

longitudinal and transverse compressive loads. Finally, a method is also presented for 

obtaining the same advantages for assemblies containing in-plane shear loaded 

anisotropic plates by obtaining numerically an approximation to their member stiffness 

determinants.

Numerical results show the good behaviour of the overall determinant plots which are 

scaled by using the member stiffness determinants of the plates. The zeros of these plots 

correspond precisely to the eigenvalues, whether these eigenvalues refers to the zeros or 

poles of the not so scaled plot of determinant. The examples given in this chapter cover
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cases in which poles of not so scaled overall determinant coincide with eigenvalues as 

well as cases where they do not.

3.2 OVERVIEW

Consider a structure composed of members for which exact finite elements are available, 

i.e. the governing differential equations can be solved to give member stiffness matrices 

as transcendental functions of the eigenparameter, i.e. the frequency in vibration problems 

or the load factor in buckling problems, and which also involve the distributed mass of 

the member in vibration problems or its loading in buckling problems. The prismatic 

plate assembly shown in Figure 3.1(a) is an example. The structure could therefore be 

modelled in the usual way using one exact finite element per member and ‘exact’ 

solutions could be obtained. Assume however that each member is now divided into 

2r sub-members, where r = 2 in Figure 3.1(b). This is an undesirable action when using 

‘exact’ elements in computation, since the size of the model would increase substantially 

and the solution accuracy would remain unaltered. Flowever, it is shown later to be a 

helpful concept when finding the desired exact expressions for the member stiffness 

determinant.

[M]

(a)

Figure 3.1: Simple prismatic plate assembly: (a) Cross section of the assembly. Open 
circles represent the connection nodes which run the length of the plate and are 
numbered 1 to N. Bracketed member numbers run from 1 to M; and (b) A typical 
plate connecting nodes e' and / '  is divided into 2r strips, i.e. plates of breadth b / 2 r 
( r = 2 in this example). The black circles represent the corresponding internal strip 
nodes. (Note that the sub-division into strips is not required to obtain solutions for 
assemblies of isotropic or orthotropic plates but is necessary whenever a plate is 
anisotropic).

____________________________ 38
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Let us number the resulting structure so that the ‘internal’ freedoms associated with nodes 

emanating from the division of member m into 2r sub-members, see Figure 3.1(b), are 

numbered first (here, the process of numbering starts from the internal freedoms of the 

first member and continue to the last member), followed by the equivalent freedoms from 

each of the Aboriginal members taken in turn. The former constitute the freedoms d, of

the modal vector, while the remaining freedoms dc, correspond to the original nodes of 

the parent structure. This is equivalent to solving the problem as an assemblage of sub­

structures. Assume now that r  —» oo, so that the number of elements in d ( becomes 

infinitely greater than those in d c.

The resulting structure stiffness relationship can then be partitioned as

X X ' V p,
X x . A . .p «_

where p, and pc are the perturbation forces corresponding to the freedoms d, and d c, 

respectively, K„ and K cc are the contribution of the internal freedoms and the connecting 

nodes to the structure stiffness matrix, respectively, and K /c and are the cross-

stiffnesses between the internal and connecting nodes of the structure. Since the internal 

nodes of each member are connected by the sub-members of the member and there is no 

connection between internal nodes of different members, it is clear that K (/ is a diagonal 

matrix of the form

where k " is the contribution of the internal freedoms in member m to the structure

stiffness matrix, k "1 is a bounded matrix and its superscripts denote the member numbers 

in the original structure.

0
0

(3.3)

0 0
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For eigenvalue problems p, = p c = 0 . Gauss elimination in its usual form can then be 

performed on Eq. (3.2) to eliminate d, by arresting the process after the rows 

corresponding to d, have been pivotal, giving

K “ K ’ 

0 K'

" O '

0
(3.4)

where K “ is the upper triangular form of K „ , K is of no further interest and K cc = K , 

the global stiffness matrix governing the original structure of Figure 3.1(a), since the 

original problem could have been posed as K d c = 0.

Now the number of elements represented by Eq. (3.4) approaches infinity when r —» oo, 

so that the length of each element is infinitesimal and thus its clamped ended eigenvalues 

approach infinity. As a result, J 0 will always be zero and there will be no poles in the 

plot of the determinant obtained from the stiffness matrix of Eq. (3.4), which will now be 

called the infinite-order stiffness matrix, K M. Thus

K J  = K “ K K “ |K| (3.5)

Since K" is the upper triangular form of K w, it is clear that their determinants are the 

same, hence

K J =  K , Kkoo If (3.6)

From Eq. (3.3), IK J may be written as

M M
K « i = n  k » = n A» =A (3.7)m=l m=1

where
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(3.8)

is the determinant of the sub-structure stiffness matrix at level infinity or ‘the member 

stiffness determinant’ of member m and A is the product of the Aw taken over the

members of the original structure. It is worth noting that if the structure exhibits any 

uncoupled behaviour, such as in-plane and out-of-plane motions in the current problem, 

each uncoupled component can be isolated, by separating out the corresponding rows and 

columns in matrix k'” , and its member stiffness determinant calculated separately. All

individual contributions are then multiplied together to give the member stiffness 

determinant.

It is also important to note that A m is exactly the value approached by | k 0 -  co2m | for the 

traditional FEM as the order of k 0 and m , the member static stiffness and mass matrices,

approaches infinity. This is why the member stiffness determinant is a unique quantity 

for any given type of member, e.g. it cannot be multiplied by a constant or function and 

still be called the member stiffness determinant.

Now substituting Eq. (3.7) into Eq. (3.6) we may write

which will equal zero when evaluated at an eigenvalue.

However, since A m is the determinant of an (approaching) infinitely large matrix because 

r —► oo, its value is generally not finite and so it is necessary to work with normalised 

quantities, which yield the following relationships

K j  = A K (3.9)

A*  nt
m ~~ A (3.10)
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where the subscript zero denotes the value of the quantity when the eigenparameter is 

zero. If the determinant of K , the global stiffness matrix governing the original 

structure, is normalised to give

i—i K
lK l= i t i  (311>

then the final required result is

| k J =  A |k | (3.12)

3.3 MULTI-LEVEL SUB-STRUCTURING

In the previous section, the member stiffness determinant of element m has been defined 

in Eq. (3.7) where k '” represents the contribution of the infinite number of internal

freedoms in member m to the structure stiffness matrix. However, the derivation of the 

required member stiffness determinant is more desirable through multi-level sub­

structuring, rather than working with k " , in which the numbering was in sequence. The

process is best described in the context of Figure 3.1(a), which shows the original plate 

assembly where each of the members can be considered to be a sub-structure with, 

initially, its points of attachment to the original structure treated as clamped. A typical 

member, of breadth b, is then divided into 2 r identical sub-members of breadth b / 2 r 

that are connected along their longitudinal edges, where r = 2 in Figure 3.1(b).

However, Figure 3.2 shows probably the simplest possible form of such multi-level sub­

structuring with the nodes numbered in an appropriate order. In this method of 

numbering, the only internal node of the substructure in each level of substructuring is 

numbered first and the two end nodes numbered last. Such a process is very useful when 

developing the concept of the member stiffness determinant. Figure 3.2(a) shows a
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doubling procedure with r = 2 levels i.e. there are two sub-structures at levels 

i = 1 and i = 2.

The equivalent assembly without using the concept of sub-structuring is shown in Figure 

3.2(b). In this way, the node at the right-hand end of the full member is the highest 

numbered node i.e. (2 r + 1) and the node at the left-hand end is numbered immediately

below i.e. 2r . The node at the middle of the member is then numbered immediately 

below them etc. and this successive halving is continued with the middle of the generated 

sub-members numbered from the right-hand side in descending order.

b / 2 r b ! 2 r
^---------- --------- ----------------------T
2 1 3

2 1 3

hV
V

e'
(a)

----------- V

r

4 1 3 2 5

(b)

Figure 3.2: Alternative ways of assembling a typical prismatic plate of breadth b 
connecting nodes e' and / '  from 2r identical strips of breadth b! 2r , for r -  2. 
a) assembly by multi-level sub-structuring using progressive doubling, b) 
equivalent assembly without sub-structuring. A black circle denotes a node.

A doubling procedure is now invoked. This starts by combining two strips together and 

proceeds by eliminating the central node to form a sub-structure of breadth b ! 2 r _1 by 

arrested Gauss elimination in exactly the form used to obtain Eq. (3.4). The process is
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then repeated, each time combining two sub-structures of the previous level, until all the 

internal nodes of the original plate have been eliminated.

As part of the doubling procedure, the W-W algorithm is applied at each sub-structure 

level to track the number of roots exceeded. The way this is achieved in such cases is 

described in one of the original proofs of the algorithm (Wittrick and Williams 1971a) 

and in the current context, but related to skeletal frames, in reference (Williams et al. 

2002a). Briefly, the W-W algorithm is applied to the innermost sub-structure first, with 

its points of attachment to the next level of sub-structure treated as clamped. Hence Eq. 

(3.13) gives its J  as

(3.13)

where the summation extends over the strips contained by the sub-structure, i.e. those 

used when assembling the sub-structure stiffness matrix K ^ . Then Eq. (3.13) is

executed for the next level of sub-structure, for which is supplemented by J s for

the innermost sub-structure and the summation is over all members contributing to

and so excludes members which were included in ^  J m when Eq. (3.13) was applied to

the innermost sub-structure. Recursive application of Eq. (3.13) in this manner permits 

multi-level sub-structuring to be applied at any required level, i.e. if level r is the 

innermost level there is no restriction on r.

It will be shown that computation using multi-level sub-structuring is quicker because it 

is only necessary to perform calculations for one of each set of identical substructures. 

To verify this, we will examine the process for level 1 and 2 using the equivalent 

alternative way of assembling to show the characteristics of the substructuring and then 

we infer the necessary relationship for r —» oo .
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3.3.2 Sub-structuring with only one level

Consider a typical plate that is divided into 21 = 2 identical sub-members that are 

connected along their edges, Figure 3.3. The resulting structure stiffness relationship can 

then be written as

1
7? + sr k aT 12

i...... .. 
—

1
P

 
...
 

_ 
1

k a12 k a*mi 0 d 2

is

i 0 k*22 _

2 1 3
•    • ---------------------- •

a b

Figure 3.3: A typical plate is divided into 21 = 2 identical 
sub-members (strips). A black circle denotes a node, 
numbered as shown and the strips between the nodes are 
named alphabetically.

Now, performing arrested gauss elimination to eliminate the internal freedoms of node 1 

gives

k*r12

1

0 i ab 
K11 l i ab12 d 2

0 k abT12 l i ab22 _

......1O
1

=  0 (3.15)

where ksl = K 5l is the only substructure stiffness matrix for internal freedoms D, and 

may be written as

22 /
(3.16)
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where z = 1 is the only level of sub-structuring for r - 1  and

y = KD = 0 (3.17)

represents the full member stiffness relation. k 5l is a diagonal matrix for all straight

prismatic members. (To the writer’s knowledge, it is not quite diagonal for curved 

members, tapered members or sandwich beams.) From Eq.(2.6) it can easily be seen that 

for prismatic plate members, isotropic or orthotropic, k 5l is diagonal.

Therefore, the determinant of the stiffness matrix, including the effects of sub-structuring 

with one level of sub-structuring, K t , can be written as

3.3.3 Substructuring with two leve/s

Now consider a typical member that is divided into 2 2 = 4  identical sub-members that 

are connected along their edges, Figure 3.4. The resulting structure stiffness relationship 

can then be written as

lK i H K J Kl (3.18)

4 3 2 5

a b c d

Figure 3.4: A typical plate is divided into 22 = 4 identical 
sub-members (strips). A black circle denotes a node, 
numbered as shown and the strips between the nodes are 
named alphabetically.
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k a22 fKn 0 h b12 k aT12 0 ' >

0 k c +  k d  22 ̂  K11 k cTn-12 0 k d12 I>2

k*r12 k c12 k* + k c22 KU 0 0 d 3

k a12 0 0 k aKn 0 I>4

0 v d r12 0 0 k d22 _D 5 .

=  0 (3 .1 9 )

Now, performing arrested gauss elimination to eliminate the internal freedoms of nodes 1, 

2 and 3 (with the knowledge that the sub-members and their stiffness matrices are 

identical) gives

^i2 0 k*12
. aT 

12 0 > '

0 k 2 K 0 K I>2

0 0 k „ C, c 2 d 3

0 0 0 1̂ abed 
K11

i abed 
K12 »4

0 0 0 « abcdT 
12

i abed 
22 _D5 _

=  0 (3.20)

where Cj and C 2 are matrices of no further interest, and the top-left 3x3 partition given 

by

k ,2 0 k*12

K ,2 = 0 ^s2 kf2 (3.21)

0 0 kji

is the substructure stiffness matrix for internal freedoms corresponding to 

D,, D2 and D3. From the arguments of the previous section, it is clear that k 52, which 

has the effects of the highest level of sub-structuring, is diagonal for exactly the same 

reasons that k sl of the previous section was. Now, it is necessary to verify the
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characteristics of k sl of this section. The process of gauss elimination is equivalent to 

substituting the following symbolic expression

k„ =(k°22+ k 1ci ) - k f 2T(k2a2 + k f1r ikf2 - k [ 2(kc22+kr1r ikj2i (3.22)

or

k r t = ( k - + k i ) - k ? ( k - + k i ) - ,kr2 - k r 2(kr1+ k i r ik -T (3.23)

Now, as an example, the elements of the out-of-plane stiffness matrix of Eq. (2.6) are 

substituted into Eq. (3.23) to show the characteristics of k sl. Thus

k ,i =
^ S MM 0 f M M

i s'
1

1 / 2 s m m 0 I m m

rs

0 2  S q q  ^ s
i l,_

 
. 

.

0 1 /  2 S q q  ^ 1-J i

/ mm fMQ 0 fMM

r .S11

1
1 s
'

1

1 0 1/2S q q  ^ SAi S
'

i

(3.24)

or

2sMM

0 2s

f 2J MM

QQ

+
f 2J mq

/ mm f 2Jmq 1mq/ mm

SMM SQQ SMM
fMQ fMM foofMQ f 2Jmq

SMM SQQ smm

+ / qq/ mq

'QQ

+ fQQ
'QQ

f  MO / mm f  QQ fMQ
SMM S( 

fMq/MM JQQJMQ
'QQ 

fo o f K.

'MM
f ?

'QQ

MQ foQ
'MM 'QQ 'MM 'QQ

(3.25)

then
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S M M

f 2J  MM
'MM

f 2J  M Q

'QQ

0 'QQ

f 2Jmq

'mm

f& 2

'QQ

(3.26)

Eq. (3.26) shows that k sl is a diagonal matrix. The elements of stiffness matrices which

are used in Eq. (3.26) are the same as those that has been used in derivation of Eq. (3.22), 

i.e. the elements of a substructure at the highest level of sub-structuring which in the 

current section is 2. Therefore, the breadth of the plate for calculating , sQQ, ... in Eq.

(3.26) is b ! 2 2. Now as the second characteristic of k si we need to show k sl can also be 

evaluated using the stiffness elements at level one, i.e. we need to show that

SMM
f 2 f 2 \J MM _ J MQ

S QQ J ^ . 2

= sMM I Level-i

(3.27a, b)

S QQ

f 2 f 2 ^J  MQ JQQ 

SMM SQQ J
= SQQ Level=1

Level=2

Note that the breadth of the plate for calculating sKfM, sQQ, . .. of the left-hand side of Eq.

(3.27) is b / 2 2 while it is b / 21 for the right-hand side. Again, as an example, the out-of­

plane stiffness coefficients of Eq.(2.25) are used and therefore, the right-hand side of Eq. 

(3.27a) gives

f 2 f 2  ̂J  mm J mq

SMM SQQ J
= {D22C'/Xz ) (qap r - q rp a)~ (qa - % y(Pa - P y f

(q uPy ~  % P a ) ( ^ P a %  ~  Y 2P rq a )
(3.28)

and by various trigonometric manipulations (some useful identities that are used are given 

in Appendix B) we have

S MM
f 2 f 2  ̂J m m  J m q

'MM Level= 2

=  S MM  | Level-\
(3.29)

Level -1
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In similar fashion, the correctness of Eq. (3.27b) is verified. Hence, we can again write

(3.30)

which is valid for any level of sub-structuring.

Therefore, the determinant of the stiffness matrix, including the effects of sub-structuring 

at level 2, i.e. K 2 can be written as

3.3.4 Substructuring for level r  —> oo

It can be seen from the arguments above that for the substructure of level 3, 23 -1  = 7 

internal nodes have to be eliminated. The first four steps eliminate nodes 1 to 4 by 

repeating four times the calculations needed to eliminate the central node for / = 3, while 

the next two steps repeat two times the calculations needed for / = 2 and finally the last 

step is the calculations for / = 1.

Now we can infer the expression for , which corresponds to the displacement vector

for the 2r -1  internal nodes of substructure at level r, and its determinant can be written 

as

where is the sub-structure formed at level / (= 1, 2, 3, ... ,r). This sub-structure has 

a single internal node which is replicated 2,_1 times during the doubling procedure. In

|K2|= |K ,2||K |= |k j2| |k 52| | k j K | (3.31)

iK a H K j K H k J k . j f l k J k ^ l  |k J k j2| |k J K | (3.32)

r
(3.33)
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the limit as r -» oo, we obtain the recently discovered member stiffness determinant, A w, 

which is given by

The equivalent relationship for level i -1  is readily obtained and comparing Ami with 

A ^.,) yields the necessary recurrence relationship for determining the member stiffness 

determinant as

The highest level of sub-structure, i.e. / = 0 , corresponds to the original member so that

It is worth noting that applying Eq. (3.37) to every member of a structure in the limit as 

r —» oo produces exact values of their member stiffness determinants Am. As stated 

previously in Eq. (3.10), because Eq. (3.37) does not generally yield a finite value for 

A m, it is appropriate to normalise it by dividing it by the value that it gives when the

eigenparameter has the value zero, i.e. for buckling problems when the load components 

are zero and for vibration problems when the frequency n is zero and the load 

components are unaltered. This yields the normalised form as

(3.34)

However the stiffness determinant for the member at level / is

(3.35)

(3.36)

A „(« ) = A„(0)(n ) (3.37)

(3.38)
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Also, since the in-plane and out-of-plane behaviours are uncoupled in the work that 

follows, the member stiffness determinant is the product of separate in-plane and out-of­

plane determinants, each of which must be normalised separately by the procedure just 

described. These may then be combined to give the total normalised stiffness determinant 

for the structure as

a = n * .  (3-39)
m

3.4 DERIVATION OF THE MEMBER STIFFNESS DETERMINANT FOR 

PRISMATIC PLATES

As mentioned earlier, the out-of-plane and in-plane behaviours of prismatic plates are 

uncoupled and can therefore be considered separately. Hence Am can be written as

A =A? Ai (3.40)

where A^ and A !m are the out-of-plane and in-plane member stiffness determinant,

respectively. They can both be found by exactly the same procedure. For convenience in 

the development that follows, the O and /  superscripts are not used when describing those 

parts that are identical and otherwise only when necessary to indicate the plane under 

consideration.

Consider the doubling sequence described previously. If the subscript / denotes one of 

the two members of breadth b / 2 ' , which are connected together at level i , then the 

stiffness equation for the two member sub-structure formed at level / is

k 221 + k j w kTI2i ^  12/

i
P

i roTi

^ 1 2 / ^ 1 1 / 0 d 2 = p2
kT12/ 0

... 
t

<N r 
" 

© 1 p3_
(3.41)
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where D. are the displacement amplitudes at node j  ( j  =1,2,3 ), number 1 being the 

central node to be eliminated, and Py are the corresponding force amplitudes. Note that 

Pj = 0 because the vibrations are free, whereas P2 and P3 are the reaction forces exerted 

on the sub-structure by its parent. Using the arrested Gauss elimination procedure to 

eliminate D, from Eq. (3.41), gives

(k 22i + k iw) k r*12i > O '
0 k ll(M) k 12(i-l) I>2 = P2
0 k T12(/-1) k 22(/-l)_ _D3_ i

ftTi

(3.42)

where the superscript A denotes a transformation to upper triangular form and the 

superscripts * denote the consequent transformations to other matrices.

Clearly D2, D3, P2 and P3are the d 1(M), d 2(M), p1(M)and p2(M)of the member of 

breadth b / 2 ‘~l at level (/ - l )  and its stiffness matrix is the untriangulated portion

k ii(i-D
k k12(/-1) 2 2 ( / - l )

of the matrix of Eq. (3.42). Also from Eq. (3.41) the sub-structure 

stiffness matrix at level / is given by

k = k + kIV s i — n. 22|. -r IV J, (3.43)

and can be constructed by substitution of the relevant part of Eq. (2.6) for out-of-plane or 

in-plane behaviour, with the member breadth b replaced by bt = b l 2 ', so that (p of Eq.

(2.7) is replaced by (pt -  (pi 2 ‘. Hereafter, this rule should be applied to all quantities with 

subscript / or any combination of it.
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3.4.2 The normalised member stiffness determinant for isotropic plates

3.4.2.1 Detailed theory for out-of-plane normalised member stiffness determinants

For out-of-plane behaviour, the sub-structure stiffness matrix at level i is

k 2 (e) =
2 s 0iMM u

0 2stlm
(3.44)

where, by using the arguments about Eq. (3.43), and siQQ are the appropriate

elements of Eq. (2.13a) with the member breadth of b / 2 ‘ . The determinant of Eq. (3.44) 

can then be written as

*21 = 4 s MU SiQQ = % K ? / , ! « A a  -  X a2Pi,2«9l.2, - y 2<h.2aPl.2y )]O;
(3.45)

where, by using Eqs. (2.13b) and (2.10) and the arguments of Section 3.4

S, = '/i (4p,,2ap l:2r -  q,,u qu2l +1), 1 u <p,{2a) , 1  ̂ • Vt (2«)= (— ) sin -

/O \ A \
q i2a -  cosh——— = cos——— ,... and (pi = < p l2*. Hence, Eq. (3.45) can be rearranged

as

k 2 | = +y2)PiM P,A, - ( a 2p l 2aq l2y+ f p l 2yq l2a )] (3.46)

From Eq. (2.9) it is clear that a2 + y2 -  2 . Now utilising Eq. (B. 12) in Eq. (3.46) gives

4<r l
^ 2 P i , 4 a P i , 4 y g i ,4atfi ,4y (3.47)
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Now Substituting the identities of Eq.(B. 15) and (B. 16) into Eq. (3.47) gives

K \  = ^ 4 2 (V m .2 «  X V m *  ) “ ( W f c - u ,  -D] (3.48)ot o

or

k2| = aPl-l.2, -  "1)1 (3'49)

where the bracket on the right hand side of Eq. (3.49) is exactly S,_x and therefore

= (3-30)
o ,

Eq. (3.50) cannot be used for the evaluation of its determinant when the eigenparameter is 

zero. Therefore, it is necessary to represent Eq. (3.50) in an alternative suitable form in 

which the zero eigenparameter yields a finite value. Then substituting Eq. (2.14a) in Eq.

(3.44) yields the determinant of Eq. (3.44) as

|k°(g)l = a ? - f2 (3.51)
1 * V ;| X S 2

A i f } 2
where d, = p t > \ -  p t t \ = — dt . Although Eq. (3.51) contains some complexA 7) -V a y

quantities, it value is real. Also Eq. (3.51) could be achieved just by substituting Eq. 

(2.14b) into Eq. (3.50). Eq. (3.51) can now be used to calculate the determinant of Eq.

(3.44) for the case of the zero eigenparameter, i.e. for s -  0 , as

* ° M J D J 4pr  $  (3-52)

Substituting Eqs. (3.50) and (3.52) in the recurrence relationship of Eq. (3.36) , gives
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t o  /  V (4P<.2 h o  ( \V (3.53)

i.e.

V ( 4 p l - r f ) I 0  ( g )
4 <5. "«0

(3.54)

which has the solution

* -(« )  =
4(5,

>/2 (4/>22 -  <pf)
(3.55)

Now using Eq. (3.37), the full breadth out-of-plane normalised member stiffness 

determinant is

A2 («) =
4 S

n2(* p I - v 1)
(3.56)

where rj, S and p 2 are defined in Eqs. (2.8), (2.13b) and (2.16), respectively.

3.4.2.2 Detailed theory for in-plane normalised member stiffness determinants

In similar fashion to the previous section, the sub-structure stiffness matrix for in-plane 

behaviour at level / is

k i( e )  =
^SiNN 0

0 2s iTT

(3.57)
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where, by using the arguments about Eq. (3.43), sLm and siJT are the appropriate

elements of Eq. (2.19a) with the breadth of b / 2 ‘ . The determinant of Eq. (3.44) can then 

be written as

k 7*-si
4 k 2

~ ^ SiNN SiTT ~ 2 [(Pi,2r4i,2<; ^  P i , 2 ^ i , 2 r  ) ( P i , 2 ^ ^  i,2x T P i ,2 x ^ i ,2 C  )1 (3.58)
P i

^  - — u<Pt(2r)   <Pl&)where ft, = (1 + r f  )p,,2, p ia( -  - 1), q,M = cosh-1—— = cos
Z Z

p t 2t = (— ) s in h ^ —̂  = (-^ ) sin- - - -  ,... . Now, Eq. (3.58) can be rearranged as
2r 2 2 f 2

k i
4 k 2
— [(1 + r 2 C ) P i M P i M  - ( S p W u u r + C 2 P l v t i a r  )] (3-59)
Mi

Thus using Eqs. (B. 12) ,(B. 15) and (B. 16) in Eq. (3.59) gives

l 4 K 2I 1 _ n /■ _2^-2k *| = —  [W  + tT (3. 60)
Pi 8

where the bracket on the right hand side of Eq. (3.60) is exactly Vi(//M) and therefore

k ',(e) | = * J ^ f  (3.60)
P i

In a similar way to Section 3.4.1.1, an alternative form of Eq. (3.60) should be used when 

the eigenparameter is zero, i.e.

k*(g)l = t f ; f %  <3-6 l)1 r ( i + v )2 pf
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where f t  = {[2r-I<(1 -  v)]2p 2(„ n -[2r -  <T0 -  v)]2 ft2, , }  = Hence the

determinant for the static case, i.e. for s  = 0 , can easily be obtained as

k i ( 0)| = -
4 E 2 h2 [4 (3 -v )V ,iu - ( l  + v )> 2,] 

X2 (1 + v)2 [ 4 (3 -v)2p 22 ~ (l + v)2p2 ]'

2 _ 2 v2 J2
(3.62)

Using Eqs. (3.60) and (3.62) in the recurrence relationship of Eq. (3.36), gives

(£ ) —
A2 (1 + v)2 K2 [4(3 -  v)2 p i  -  (1 + v)2 ]2 /I,., r—;

4 E 2h 2[ 4(3 -  Vy p i h2 -  (1 + v )> ,2,] / /;2 „2 i 2 (3.63)

or

(1 + v)2 e 2 [4(3 -  v ) ' p t U2 -  (1 + vy<ptx ] x /2 „ 2

16
(e )~

(1 + v) 2 e 2 [ 4(3 -  v)2 p 22 -  (1 + v)2 <p2 ]
16 p, A»(o(e)

(3.64)

which has the solution

* ' j * y
16//,

(l + v)2e2[ 4 (3 -v^p,^ - ( l  + vy<pf ]2 „ 2 \2 „ 2
(3.65)

and therefore using Eq. (3.37), the full breadth in-plane normalised member stiffness 

determinant is

A" ^  (l + v )V [4 (3 -v )2p 2 - ( l  + v ) V ]  (3'66)

where p and p 2 have been defined in Eqs. (2.19b) and (2.16), respectively.
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3.4.3 The member stiffness determinants for orthotropic plates

In contrast to isotropic plates, where the stiffness matrix has one form for out-of-plane 

and one form for in-plane behaviour, it is clear from Section 2.5 that there are three 

different categories for out-of-plane and two different categories for in-plane behaviour o f 

orthotropic plates. Therefore, there is no explicit analytical definition for the normalised 

member stiffness determinant and the process of normalisation for orthotropic plates is 

slightly different.

Also, it should be noted that throughout this section Eq.(2.24) has been used to derive the 

member stiffness determinant for orthotropic prismatic plates.

3.4.3.1 Detailed theory for out-of-plane member stiffness determinants

For out-of-plane behaviour, the sub-structure stiffness matrix at level / is

k 2 =
0 2 siQQ

(3.67)

where, by using the arguments about Eq. (3.43), s ^  and s iQQ are the appropriate

elements of Eqs. (2.27), (2.30) or (2.32) with the breadth of b / 2 '. However, calculation 

of this determinant may be achieved using the value of L in Eq.(2.25) and the three 

different cases for the element stiffness matrix defined in Section 2.5, therefore this 

determinant should be established as follows.

3.4.3.1.1 L>  0

By using Eq. (B.19) and the definition in Eq. (2.27), the determinant of the sub-structure 

matrix, Eq. (3.67), is
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k£(w)| = 4 1 ^ 5 ^  = ^  DJ -\ [(q, ap, r -  P ^ q ^ Y a 2p, aq, y -  y2q,ap,,, )] (3.68)
A* j

where Z, - T p iap iy - q iaqLr + 1 , a, y and T are defined in Eqs.(2.28) and (2.25), 

respectively. Now, Eq. (3.68) can be rearranged as

k 41 ° 22 [(a2 + y2 )Pj.2aP,,2y ~ (a2P?*q?.r + y2plrf,a )] (3 69)A ry 2r z

From Eq. (2.28) it is clear that a 2 +y2 -  2T . Thus using Eq. (B. 12) in Eq. (3.69) gives

k?
4/ D 2 1

~ ̂ A a l i A r  "I)] (3.70)

Substituting the identities of Eq.(B.15) and (B.16) into Eq. (3.70) gives

i 4 I D 2 1
k 2| = ^ f - [2r ('/2p M, j ( '/2p M,r ) - - ! )] (3.7i)

or

k2 (n)| = 21 D22(-rp‘-'-aP!-' y 2 9i-u9,-i.r 0  (3 72)
X Z ■

where the bracket in right hand side of Eq. (3.72) is exactly Z._, and therefore

21 n 2 7
k > ) |  = - j p f r 1 (3-73>

Substituting Eqs. (3.73) in the recurrence relationship of Eq. (3.36), gives
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(3.74)

i.e.

2LD \2A 0 (n)
m(i)

I 4 Z,

I 2

(3.75)

which has the solution

) 4 7
A °mi(n) = -------f

2L D
(3.76)

22

Finally using Eq. (3.37), the full breadth out-of-plane member stiffness determinant is

A Z(n) =
X4 Z

2LD 22

(3.77)

Using Eq. (B.21), Eq. (3.77) may now be rewritten in the alternative form

A°(«) =
^ (Pvja+y) P'/ja-y))

4a y D\2
(3.78)

which can easily be used to give the static member stiffness determinant

A*(0) =
a12 +2<x33 + V«i7 |“12+2a33-/̂ i7

2 v 2 y (3.79)

where a !2 yj^ll and a !2 + ^tt33 a/^U are subscripts for p  in Eq.(2.24).

Hence the normalised member stiffness determinant Eq. (3.38) is
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~o _  ^yja  11 ______________ Z _____________
T 2 2L p   -  p ______________________

+ 2«33~>/°TT

(3.80)

3.4.3.1.2 L<  0

By using Eqs.(2.30) and (B. 19) the determinant o f the sub-structure matrix, Eq. (3.67), is

4/4 Z>k“(«)| = 4 i iMM s m  = z 222 [(/>,.2a - p j,2,)(A,2« + A . 2 , ) ] (3.81)

where Zt =V2(p fa - p f Y) , a, y and /4 are defined in Eqs.(2.29) and (2.31), 

respectively. Now, rearranging Eq. (3.81) and then using Eq. (B. 15) gives

k o 4A D l2 2 / 2  A 2 \ 4/4 /i/ 2 i/ /'2 \ 2/4 Dyi *7
J ( P , . 2 a  ' Pl,2y ) =  T  f e - K  ’  A P>-1., )  =  J 4  ^  Z M (3.82)

Substituting Eqs. (3.82) in the recurrence relationship of Eq. (3.36), gives

(3.83)

i.e.

2 A D 222 A ° ( n )

a4z /-l

2 A D l & °  in) ZZ •*«) ’
I 4 Z,

(3.84)

which has the solution

A £ ( » )  =
A4 Z,
2 A D 22

(3.85)
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Finally, using Eq. (3.37), the full breadth out-of-plane member stiffness determinant is

Using Eqs. (2.25) and (2.29), the static member stiffness determinant can easily be 

deduced from Eq. (3.86) as

a £ ( o)=

2 _  *2  
I -Jau +<*i2 +2«33 Uan -al2-2a

4 ^ 7  d
(3.87)

Hence the normalised member stiffness determinant Eq. (3.38) is

A° = f  \
2 _  -  2

^  14&U +<*1 2 + 2 g 33 ^  I '[^ il~a l2~^a 33
V v 2 V 2 J

(3.88)

3.4.3.1.3 L = 0

By using the definition in Eqs. (2.32) and (2.33), the determinant of the sub-structure 

matrix, Eq. (3.67), is

a t  n 2

k “ («) = 4 ^  sigQ = _ 4 ”  [(p, 2„ - q>, )(/>, 2a + <p, )] (3.89)
4 <Pi Z,

where Zt -  (pfa - (pf) / 2<pf , a and T are defined in Eqs.(2.33) and (2.25), 

respectively. Now, rearranging Eq. (3.89) and then using Eq. (B. 15) gives

k ° 4 T D l  , , 4 T D 2
1 4  a«4 7 2 v* , , z a  ' 1 '  1 4  /A4 7 iI  <p,Z, I  <pt Z i—  ( P . W )  = 7 ^ ^ ( V , l u  '  V i )  (3.90)
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or

2 TD 22

A V Z ,2 Z!-l<Pn (3.91)

Substituting Eqs. (3.91) in the recurrence relationship of Eq. (3.36), gives

2T Dl '' " 222 (3.92)

i.e.

^ t  d 22 

X4 f  2,z m

-i» 2 T A ut (n)o
m(i)

* 4r i z i
(3.93)

which has the solution

„ X *Z(p2

( 3 -9 4 )

Finally, using Eq. (3.37), the full breadth out-of-plane member stiffness determinant is

A »
X V  z  x 4 (pi -<p2)

2 T D 22 4 TD22

(3.95)

Using Eqs. (2.25) and (2.33), the static member stiffness determinant can easily be 

deduced from Eq. (3.95) as

A4 (p 2,— —  -(p2)
Ao ( 0 ) = — —  ’ (3.96)

4(<Zj2 + 2OC33 ) D22
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Hence the normalised member stiffness determinant Eq. (3.38) is

£0 (a )2 + 2a 33> (p i  -<p2) (3.97)

It should be noted that Eqs. (3.80), (3.88) and (3.97) are valid when the dead load 

components of N L and N r are both zero. Otherwise, Eqs. (3.77), (3.86) and (3.95), 

respectively, should be used to evaluate the member stiffness determinant for the case of 

n -  0 and then the process of normalisation is continued numerically.

3.43.2 Detailed theory for in-plane member stiffness determinant

In similar fashion to the previous section, the sub-structure stiffness matrix for the in­

plane behaviour at level / is

Depending on the value of B and C, the elements of the in-plane stiffness matrix of 

Section 2.5.2 are defined for the two cases of B 2 >C  and B 2 <C.  Hence, the 

determinant of Eq. (3.98) needs to be established for these two different cases. 

Nevertheless, it should be noted that these two different cases may occur in various 

ranges of the eigenparameter for any plate element of the structure in the same problem. 

Therefore, in contrast with the out-of-plane behaviour of Section 3.4.2.1, in which the 

normalising factor and the member stiffness determinant are always calculated in the 

same range, here B 2 -  C will have different values when calculating the normalising 

factor than when calculating the member stiffness determinant. Thus the appropriate 

equation must be selected for normalisation and therefore no explicit expression for the 

normalised member stiffness determinant for in-plane behaviour can be established.

(3.98)
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3.4 3 .2.1 B 2 > C

By using Eqs. (2.37), the determinant of the sub-structure matrix of Eq. (3.98) is

~ _ (*2 - c 2) \ ,
“  iNN ^  iTT  — T 2  X

■̂3 ^22
P i , x / l P i , Q 2  + ~ j j ~ 4 i , T / 2 iI i ,V 2 4 H  ’&2 + H  Q \,T /2Cl i ,V 2

(3.99)

or

| k > ) | = ^ c ! i 2 

\fJ3^siPi.x/2Pi,^2 + ^22^ai(li,^2tii,Q2 Pi,lJ2Pi,Q2 + s i ^ < X ’2 3
(3.100)

which may be written as

K ( n)
( r2 - C 2)2

\6A ( HloH lsY
H a i ^ S i  ( [ J\ t J' j P , , i 2 P i . < ; 2  +  Ĵ 22‘̂ 33^(.r2</(,v2 )

+ (L>A22H l + L 3A33H *)p i ,x /2 P i ,Q 2 Cl i ,x /2 (l i ,Q 2

(3.101)

After extensive manipulations, Eq. (3.101) can be written as

16

(L1A22 + ^3^33 + 2y422^33r £”)/*<,(t+O (A ^22 + ^3^33 ^^22^33T ^)pi,(t-O
(3.102)

+  ^ 3 ^ 3 3  +  2 ^ 2 2 ^ 3 3  T C ) / 7,''H^+O (^ 1  ^ 2 2  +  ^ 3  ^ 3 3  ^ ^ 2 2 ^ 3 3 T  C ) P i ,  h ( r - C )  1

Now by using Eq. (B. 15), Eq. (3.102) can be rewritten in an appropriate form to use in the 

recurrence relationship of Eq.(3.36) as
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K ( n)
4 r< T -4 4

( L \  A -22 4- L 3 A 3 3  +  2 A j 2 A 33X £ { L\  A 2 2  +  ^ ^ 2 2 ^ 3 3 X C )P j- \ , 'A (T -C )  ^ ^

{ (A^22 ■*" L 3 A 3 3  +  ^^22^337 C}Pi,Z 2(r+C) ~  (A^22 +  ^3^33 “  2 A 2 2 A 33T }̂P i ,Z , ( t -C )  }

Hence, after solving the recurrence relationship of Eq. (3.36) and using Eq. (3.37), the full 

breadth out-of-plane member stiffness determinant is

4 ( « )  =
4r C 4 4 (3.104)

[(A/^22 + L3A33 + 2A22A33t £ )/?yf(T+̂ ) (LjA22 + L3A33 2A22A33t )p>/̂ T_̂ y ]

Eq. (3.104) may contain some complex quantities, but it can be presented in an alternative 

form in which all quantities are real i.e.

A »  = 4 ( B Z - C ) A 2 A 222 33

B L \ A 22 + L 3A 3 3
2 A„Ai

- C P.Pz
22 33 2 A 22A 33 ( q ^ c  - J ) (3.105)

3.4.3.2.2 B 2 < C

By using Eq. (2.42) and following extensive manipulation, the determinant of the sub­

structure matrix of Eq. (3.98), is

4 4 A  .. { (l + Pm,, - ( l - M 3J c f p l u  I

((i + a / a * 4 c ) p I  - (i-  / A n J c j p i f
(3.106)

In a similar way to the previous section, after solving the recurrence relationship of Eq.

(3.36) and using Eq. (3.37), the full breadth out-of-plane member stiffness determinant is

A" (”} = 4n ^ L  P1 + L' I A» ^ P' ~ ^ p { \4 n  A 22L {
(3.107)
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where all quantities in Eq. (3.107) are real. It should be noted that Eqs. (3.105) and 

(3.107) should be used directly to evaluate the normalisation factor and then the process 

of normalisation is continued numerically.

3.5 NUMERICAL RESULTS

In this section four examples are presented to illustrate the theory. In the first two 

examples attention is confined to isotropic plates and the material properties used are 

Young’s modulus E  = 70GPa, Poisson’s ratio v = 0.3 and mass density p = 2700 kg/m . 

In these examples the first three natural frequencies of vibration are calculated by plotting

the normalised determinant of the infinite order stiffness matrix, K and the

determinant of the dynamic stiffness matrix, | K | ,  (see Eq. (3.12)) against vibration 

frequency.

Example 3.1: Consider a square plate of breadth b = 0.5m and thickness h = 1.0mm, 

which is simply supported on all four edges. The classical solution for this plate can be 

found in reference (Gorman 1982) and with some simplification may be written as

nj =
* (! + / )  

2b- 1

E h 2 
U p  ( 1 -v2)

(3.108)

where n, is the / h natural frequency for a longitudinal half-wavelength X = b. The

results are shown in Table 3.1.

Table 3.1: First three natural frequencies of a simply supported plate.

Mode,
/

rij, frequency of vibration (Hz) Eq. (3.108) and 
Current theory

1 19.362690

2 48.406724

3 96.813448
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Figure 3.5(a) shows the variation of the determinant of the dynamic stiffness matrix 

against frequency of vibration. There are two poles at approximately 28 and 68 Hz which 

correspond to the first two natural frequencies of the plate if the longitudinal edges had 

been clamped, but do not correspond to natural frequencies of the present system. Figure 

3.5(b) is the equivalent plot using the theory presented herein. The zeros of both graphs 

correspond identically to the natural frequency value of Table 3.1. However, the graph of 

Figure 3.5(b) has no poles and is clearly much less volatile than that of Figure 3.5(a).

|K|/10 21

k .

4

2

0

- 2 .

-4 n (Hz)

100200 40

6

3

0

-3

6
n (Hz)

20 40 60 80 100

Figure 3.5: Comparison of determinant plots (Example 3.1), 
a) Determinant of the dynamic stiffness matrix versus 
frequency, b) Determinant of the normalised infinite order 
dynamic stiffness matrix versus frequency.

Example 3.2: For the second example, consider a continuous isotropic plate of length 

0.5m, breadth 1.0m and thickness 1.0mm, Figure 3.6. The longitudinal edges are 

clamped, the ends are simply supported and there is a simple support at mid-span, running 

parallel to the longitudinal edges, so that the plate has two equal transverse spans of 0.5m.
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*
/ S / 7 /

A

I = 0.5m

V

b = 1.0 m ->

Figure 3.6: The continuous isotropic plate of Example 
3.2. Plate thickness is 1.0mm.

As in Example 3.1, the longitudinal half-wavelength k is chosen to be equal to the length 

of the plate in order to be compatible with prismatic plate theory i.e. k -  0.5 m . Figure 

3.7(a) shows the plot of the determinant of the dynamic stiffness matrix IK | versus 

frequency of vibration, whilst Figure 3.7(b) is the plot of jK^j versus frequency. The plot

of | KI has two poles corresponding to the first two clamped natural frequencies of 

vibration of each component plate. Since there are two identical spans, J 0 in the W-W

algorithm is ganged by two when the eigenparameter passed the poles. Also the W-W 

algorithm shows that these frequencies are also single fold natural frequencies of the

structure, and they can clearly be identified as zeros of | in Figure 3.7(b). Thus the 

plot of IK. | has the significant advantage that it has no poles and its zeros give all the 

natural frequencies of the structure. In addition, the smoothness of the plot of 

makes it more suitable for curve following and interpolation than the plot of | K I .

Examples 3.3 and 3.4 consider orthotropic plates and in each case the first three natural 

frequencies of vibration are calculated in a similar way to Examples 3.1 and 3.2. The

PhD Thesis, A. Zare, 2004
70



Chapter 3: Member stiffness determinant

|k |/ io 37
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0.5

n (Hz)-0.5
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Figure 3.7: Comparison of determinant plots of Example 3.2, 
a) Determinant of the dynamic stiffness matrix versus 
frequency, b) Determinant of the normalised infinite order 
dynamic stiffness matrix versus frequency.

normalised determinant of the infinite order stiffness matrix, , is plotted against

vibration frequency and is compared to the plot of the normalised determinant of the 

dynamic stiffness matrix, | K |, (see Eqs. (3.11) and (3.12)). The material properties for

orthotropic plates are as follows: Young’s modulii El - 2 E 2-  70GPa, Poisson’s ratios 

Vj = 2v2 = 0.3, shear modulus G = 20GPa and mass density p = 2700 kg/m3, where the 

subscripts denote values for the longitudinal and transverse direction, respectively.
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Example 3.3: Consider a square orthotropic plate of breadth £ = 0.5m and thickness 

h -  1.0 mm, which is simply supported on all four edges. The classical solution for 

orthotropic rectangular plates can be found in references (Lekhnitskii 1968; Szilard 1974) 

and with some simplification may be written as

nk} =
i t

2b‘
(3.109)

N cr =kj L
D" Ikb
D22

+ 2 D,j
J d uD,

+
22

(3.110)

where nk} and are the j th natural frequency and longitudinal critical buckling load

for a longitudinal half-wavelength Xk - b / k \  Du = Ex h 3 /12(1- v,v2 ) and 

D22 = E 2 h3 / 1 2 ( 1 - V j V 2 ) are the longitudinal and transverse plate flexural rigidities, 

respectively; Dt -  vxDn +Gh3 16 is the effective torsional rigidity and I is the length of 

the plate. The results are shown in Table 3.1 for the case when k -  1.

Table 3.2: First three natural frequencies and critical buckling loads of 
the simply supported orthotropic plate of Example 3.3.

Mode,
j

rtj, frequency of vibration (Hz) 
Eq. (3.109) and current theory

. , Longitudinal critical
buckling load (N/m)

Eq. (3.110) and current theory

1 16.06972 697.2454

2 36.06788 3512.408

3 69.46139 13027.19

Figure 3.8(a) shows the variation of the normalised determinant of the dynamic stiffness 

matrix against frequency of vibration. There are two poles at approximately 21.71 and 

49.09 Hz which correspond to the first two natural frequencies of the plate if the 

longitudinal edges had been clamped, but do not correspond to natural frequencies of the
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present system. Figure 3.8(b) is the equivalent plot using the current theory. The zeros of 

both graphs correspond identically to the first three natural frequency values of Table 3.2. 

However, the graph of Figure 3.8(b) has no poles and is clearly much less volatile than 

that of Figure 3.8(a).

4

2

0

2

n (Hz)
4

40 60 800 20

4

2

0

2

4

6
6 0 8 04 0200

Figure 3.8: Comparison of determinant plots for Example 3.3. The zero’s of both 
plots correspond precisely, a) Normalised determinant of the dynamic stiffness 
matrix versus frequency, the dashed lines are poles; and b) Determinant of the 
normalised infinite order dynamic stiffness matrix versus frequency.

Example 3.4: For the second orthotropic example, consider a stiffened square plate of 

side length 0.5m and thickness 1.0mm, with three equally spaced, longitudinal stiffeners
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of depth 50mm and thickness 0.8mm, see Figure 3.9. The plate is simply supported along 

its two longitudinal edges and is free along the remaining edges. The longitudinal half­

wavelength A is chosen to be equal to the length of the plate, /, i.e. A = 0.5 m , while 

N l -  140 N/m « 0.2/Vf and N T = 7 0 N /m «  0. \N cLr , where N cLr is the first critical 

buckling load of the simple plate of Example 3.3, (see Table 3.2). It should be noted that 

while the main plate is subjected to both N L and N T, the stiffeners only carry N L .

500mm

50mm

4@ 125mm=500mm

Figure 3.9: The stiffened square orthotropic plate on simple 
supports of Example 3.4 (the plate thickness is 1.0mm and the 
thickness of stiffeners is 0 .8mm).

Figure 3.10(a) shows the plot of the determinant of the normalised dynamic stiffness 

matrix |k | versus frequency of vibration, whilst Figure 3.10(b) is the corresponding plot

of IK. | . The plot of |k | has a pole of multiplicity four, corresponding to the first fully

clamped natural frequency of vibration of each of the four identical components of the 

span. It is physically evident that this frequency cannot be a natural frequency of the

structure and this is confirmed by the plot of Jk . 1 in Figure 3.10(b). Thus the plot of 

|K .| has the significant advantage that it has no poles and all the natural frequencies of 

the structure now correspond to its zero values. In addition, the smoothness of the plot of 

|K .| makes it much more suitable for curve following and interpolation than the plot of

I K |.
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Figure 3.10: Comparison of determinant plots for Example 3.4, a) Determinant of 
the normalised dynamic stiffness matrix versus frequency. The dashed line is a pole 
of order 4 and the numbers against the various segments of the plot denote the 
scaling factor necessary to highlight the important features of the plot; and (b) 
Determinant of the normalised infinite order dynamic stiffness matrix versus 
frequency. The zero’s of both plots correspond precisely.

PhD Thesis, A. Zare, 2004
75



Chapter 3: Member stiffness determinant

3.6 SUGGESTED METHOD FOR ANISOTROPIC PLATES WITH IN-PLANE 

SHEAR LOADING

The paper (Wittrick and Williams 1974) used as a source for the orthotropic plate 

stiffnesses used in the present study also gave member stiffness matrices for anisotropic 

plates with in-plane shear stresses as well as in-plane longitudinal and transverse stresses. 

However whereas it gave exact expressions for J °  and J !0 (see Eq.(2.43)) for orthotropic 

plates with in-plane longitudinal and transverse stresses, it was found to be impossible to 

provide such expressions for J °  when either anisotropy or in-plane shear stress were

present. It is therefore not surprising that in the present study it has proved impossible to 

obtain an analytical expression for the out-of-plane member stiffness determinant when 

the plate is anisotropic and/or carries in-plane shear stress.

Because analytical expressions could not be found for J °  when the plate was anisotropic

and/or carried in-plane shear, an alternative procedure was developed, as described in 

pages 229-231 of reference (Wittrick and Williams 1974). This involved halving the 

breadth of the plate progressively in the manner described earlier until an (exact) strip 

was obtained for which a logical argument showed that its J °  must be zero. The

stiffness matrix and J °  of the plate were then obtained by obtaining the numerical value

of the stiffnesses of the strip from the exact analytical expressions and then doubling 

progressively until the original plate was regenerated. However, such doubling has 

already been described in Section 3.3.3, around Eqs (3.33)-(3.38), and clearly Eq. (3.38) 

gives an approximation to the normalised member stiffness determinant, with almost no 

additional work above that required to find J ° . It will be noticed that the approximation

leads to Eq. (3.33) neglecting the member stiffness determinant of the strip. Therefore 

the consequences of this type of approximation were evaluated for the most advanced 

plate for which an exact analytical expression for the member stiffness determinant is 

available to act as a comparator, i.e. the axially and transversely in-plane loaded plate 

dealt with in Section 3.4.2.

As an example, the orthotropic plate chosen has identical properties to the plate of 

Example 3.3. Results were then obtained for X = l and for A = / /  5 and are given in

___________________________________________________ 76
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Tables 3.3 and 3.4, respectively, which show the frequency ranges used. It can be seen 

that the frequency range in each case spans the first few natural frequencies when the 

longitudinal edges of the plate are clamped, because the determinant changes sign several 

times.

Columns two to five of Tables 3.3 and 3.4 contain the results of the normalised 

determinant of stiffness matrix of the clamped-clamped plate which is modelled with two, 

four, eight and sixteen identical strips while the last column presents the exact normalised 

member stiffness determinant of the plate. Since Eq. (3.33) with low value of r gives 

only approximate value of the exact member stiffness determinant of Eq. (3.34), columns

Table 3.3: Approximate and exact member stiffness determinants 
for the orthotropic plate of Example 3.3 with X = I .

Frequency
(Hz)

Suggested approximate normalised member stiffness determinant
formed from

A ,
2 elements 4 elements 8 elements 16 elements

0 1.00000 1.00000 1.00000 1.00000 1.00000
4 0.96467 0.94118 0.95629 0.95604 0.95614
8 0.85918 0.82353 0.82957 0.82917 0.82903
12 0.68506 0.64706 0.63268 0.63187 0.63176
16 0.44529 0.38621 0.38594 0.38511 0.38495
20 0.14502 0.11681 0.11559 0.11513 0.11512
24 -0.20702 -0.15178 -0.14838 -0.14760 -0.14752
28 -0.59591 -0.38873 -0.37463 -0.37213 -0.37168
32 -0.99519 -0.56257 -0.53326 -0.52847 -0.52777
36 -1.35596 -0.64706 -0.59858 -0.59166 -0.59080
40 -1.58213 -0.58824 -0.55191 -0.54421 -0.54307
44 -1.46926 -0.43168 -0.38398 -0.37737 -0.37655
48 -0.53240 -0.11189 -0.09699 -0.09515 -0.09476
52 2.57295 0.34904 0.29407 0.28721 0.28615
56 12.84992 0.94118 0.76074 0.74001 0.73702
60 55.51164 1.58824 1.26142 1.22203 1.21636
64 614.22606 2.29412 1.74264 1.68082 1.67197
68 1046.49729 2.94118 2.14139 2.05569 2.04359
72 115.13526 3.41176 2.38850 2.28172 2.26651
76 41.11974 3.58824 2.41297 2.29296 2.27602
80 18.50388 3.35294 2.14725 2.02922 2.01261
84 8.22395 2.52941 1.53320 1.44056 1.42752
88 1.91928 0.94118 0.52853 0.49351 0.48867

92 -2.37039 -1.64706 -0.88650 -0.82268 -0.81367
96 -5.65396 -5.23529 -2.70254 -2.49101 -2.46163
100 -8.22395 -10.05882 -4.87510 -4.46204 -4.40524
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two to five gives the approximation to the exact normalised member stiffness determinant 

of the last column.

Table 3.4: Approximate and exact member stiffness determinants 
for the orthotropic plate of Example 3.3 with X ~ l  15.

Frequency
(Hz)

Suggested approximate normalised member stiffness determinant
formed from

m
2 elements 4 elements 8 elements 16 elements

0 1.00000 1.00000 1.00000 1.00000 1.00000
10 0.99865 0.99611 0.99375 0.99308 0.99296
20 0.99459 0.98450 0.97520 0.97258 0.97211
30 0.98782 0.96534 0.94491 0.93920 0.93817
40 0.97834 0.93890 0.90379 0.89411 0.89237
50 0.96616 0.90557 0.85309 0.83884 0.8363
60 0.95117 0.86583 0.79429 0.77526 0.77188
70 0.93347 0.82028 0.72911 0.70542 0.70124
80 0.91286 0.76958 0.65938 0.63152 0.62663
90 0.88943 0.71452 0.58701 0.55577 0.55034
100 0.86309 0.65592 0.51389 0.48032 0.47453
110 0.83373 0.59471 0.44183 0.40713 0.40119
120 0.80125 0.53184 0.37251 0.33793 0.33207
130 0.76554 0.46833 0.30739 0.27414 0.26857
140 0.72660 0.40522 0.24765 0.21683 0.21173
150 0.68412 0.34356 0.19421 0.16670 0.16221
160 0.63790 0.28439 0.14766 0.12408 0.12028
170 0.58771 0.22873 0.10828 0.08894 0.08588
180 0.53316 0.17754 0.07603 0.06096 0.05861
190 0.47371 0.13171 0.05059 0.03954 0.03785

200 0.40854 0.09198 0.03141 0.02389 0.02276
210 0.33649 0.05897 0.01773 0.01311 0.01242
220 0.25560 0.03306 0.00866 0.00621 0.00586

230 0.16273 0.01440 0.00325 0.00226 0.00212
240 0.05154 0.00277 0.00053 0.00036 0.00033

250 -0.09058 -0.00242 -0.00039 -0.00025 -0.00023
260 -0.27340 -0.00230 -0.00031 -0.00019 -0.00018

270 4.95065 0.00140 0.00015 0.00009 0.00008

280 1.68100 0.00621 0.00053 0.00031 0.00028

290 0.44654 0.00884 0.00059 0.00033 0.0003

300 0.10515 0.00519 0.00026 0.00014 0.00013

310 -0.10193 -0.00938 -0.00035 -0.00018 -0.00016

320 -0.26705 -0.03887 -0.00104 -0.00051 -0.00045

330 -0.40895 -0.08338 -0.00152 -0.00071 -0.00062

340 -0.51057 -0.12951 -0.00153 -0.00068 -0.00059
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From these results it can be seen that as few as 4 strips (i.e. two halvings and doublings) 

usually give reasonable accuracy. It should also be noted that as the number of natural 

frequencies of the plate with clamped longitudinal edges that have been exceeded 

increases, i.e. as the number of sign changes in the final column of Tables 3.3 and 3.4 

increases, the computation of J °  will require an increasing number of strips to be present

and so will result in closer approximations to the member stiffness determinant being 

obtained.

3.7 GENERAL REMARKS

Transcendental stiffness matrices for vibration (or buckling) have long been available for 

a range of structural members. Such stiffness matrices are exact in the sense that they are 

obtained from an analytical solution of the governing differential equations of the 

member. Hence, assembly of the member stiffnesses to obtain the overall stiffness matrix 

of the structure results in a transcendental eigenproblem that yields exact solutions and 

which can be solved with certainty using the Wittrick-Williams algorithm.

When such an exact solution exists, the members have a recently discovered property that 

can also be expressed analytically and is called its member stiffness determinant. The 

member stiffness determinant is a property of the member when fully clamped boundary 

conditions are imposed upon it. It is then defined as the determinant of the member 

stiffness matrix when the member is sub-divided into an infinite number of identical sub­

members. Each sub-member is therefore of infinitely small length so that its clamped- 

ended natural frequencies are infinitely large. Hence the contribution from the member 

stiffness matrix to the Jo count of the W-W algorithm will be zero. In general, the 

member stiffness determinant is normalised by dividing by its value when the 

eigenparameter (i.e. the frequency or buckling load factor) is zero, as otherwise it would 

become infinite. A major advantage of the member stiffness determinant is that, when its 

values for all members of a structure are multiplied together and are also multiplied by the 

determinant of the transcendental overall stiffness matrix of the structure, the result is a
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determinant which has no poles and is substantially less volatile when plotted against the 

eigenparameter.

It should be noted that curve plotting methods of finding eigenvalues may miss roots 

when using the plot of either, the determinant of the dynamic stiffness matrix or the 

determinant of the normalised infinite order dynamic stiffness matrix versus frequency. 

On the other hand, the W-W algorithm in conjunction with the bisection method can find 

the required roots with the certain knowledge that non have been missed, despite the fact 

that the method is known to be relatively slow. Furthermore, the W-W algorithm in 

conjunction with curve plotting techniques which, for example, uses parabolic 

interpolation (Williams and Kennedy 1988) is relatively faster, however, the existence of 

the poles in the plot of determinant of the dynamic stiffness matrix hampers the method. 

In contrast, the W-W algorithm when used in conjunction with the determinant of the 

normalised infinite order dynamic stiffness matrix, provides a significantly better 

platform for the development of efficient, computer based routines for convergence on 

eigenvalues by curve prediction techniques.

Finally, a favourable preliminary investigation of a method for adequately approximating 

member stiffness determinants has been undertaken. The motivation for this was that it 

proved to be impossible to obtain an exact solution for the anisotropic case, but 

approximate solutions to good accuracy could be achieved straightforwardly. It also 

become evident that such approximate solutions could equally well be achieved for the 

isotropic and orthotropic cases if required.
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__________________________ CHAPTER 4

AN INTRODUCTION TO SANDWICH BEAMS

4.1 BACKGROUND

Optimisation of the strength to weight ratio in structural members has been a necessary 

goal in the aeronautics and space environment for many years and to a lesser extent in 

many other areas of structural design. Such a philosophy is epitomised by sandwich 

construction which, in its most usual form, is characterised by a thick lightweight core 

that is bonded between two external high strength layers called faceplates.

The core of a sandwich element can be almost any material or architecture, but in general, 

cores fall into four types, (a) foam or solid core, (b) honeycomb core, (c) web core, and 

(d) a corrugated or truss core (Vinson 2001). However, from a structural standpoint the 

function of the core of a sandwich element is twofold. First, the core must keep the 

faceplates apart and stabilise them against local buckling and therefore must possess a 

certain rigidity against deformations perpendicular to the plane of the faceplates. 

Secondly, the core must enable the faceplates to act more or less as the outer layers of a
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beam or plate, hence it must possess a certain shearing rigidity in planes perpendicular to 

the faceplates. Otherwise, the faceplates behave as two independent beams or panels and 

the sandwich effect is lost. The outstanding strength and stiffness characteristics of 

sandwich construction come off from this second property (Plantema 1966).

On the other hand, almost any structural material which is available in the form of thin 

sheet may be used to form the faceplates of a sandwich panel (Allen 1969). However, the 

commonly used faceplate materials can be divided into two main groups, metallic and 

non-metallic materials. The former group contain steel, stainless steel and aluminium 

alloys and the latter include materials such as plywood, cement, veneer, reinforced plastic 

and fibre composites (Zenkert 1997). The importance of fibre composites lies mainly in 

their ability to contribute high strength properties despite their low stiffness; easier 

fabrication during sandwich construction and finally, their anisotropic behaviour. The 

latter characteristic makes it possible to ensure not only that the components are stressed 

to their ultimate limit, but that the component itself may be utilised in a more optimised 

way (Zenkert 1997).

Most often the two faceplates of a sandwich element are identical in material and 

thickness, but in special cases the faceplates may differ in thickness, material or fibre 

orientation, or any combination of these three. This may be due to the fact that one 

faceplate is the primary load carrying, low temperature portion of the structure, while the 

other faceplate may have to withstand an elevated temperature, corrosive environment etc 

(Vinson 2001).

Sandwich construction is frequently used wherever high strength or high structural 

efficiency, low-weight, low thermal conductivity through the thickness, high resistance to 

fatigue failure under acoustic excitation along with low noise, long life and increased 

reliability are important design objectives. In addition, sandwich construction, with its 

elegant form, can be used for dissipating the energy in structures and mechanical systems 

when the reduction of the transmission of vibratory energy is desired. Employing 

viscoelastic materials is particularly useful over a wide range of frequencies for 

increasing the structural damping or removing some of the vibration energy during 

structural vibration. Besides controlling the amplitude of resonant vibration, damping 

also modifies wave attenuation and sound transmission properties through structures. It
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also reduces the structural fatigue and consequently increases the structural life. 

Nevertheless, the two main reasons for using sandwich construction are the high ratio of 

strength to weight and the vibration-damping characteristics.

$
Sandwich construction is mostly used in the aerospace, aircraft, marine, automobile and 

building industries. For example, over 46 percent of wetted surface of the Boeing 757 

and 767 comprise sandwich construction and the floors, side panels, overhead bins and 

ceiling of the Boeing 747 are also of sandwich construction (Bitzer 1992). In addition, 

the Royal Swedish Navy has been using fibreglass- and graphite-composite sandwich 

construction for their naval vessels for more than 25 years (Vinson 1999). Due to 

necessity of carrying relatively small loads over fairly long spans in the building industry, 

its uses have been mainly semi-structural in character (Allen 1969). Recently, sandwich 

construction is being used increasingly in civil engineering infrastructure rehabilitation 

projects, such as bridge decks and also in low cost or emergency housing.

Honeycomb sandwich construction is excellent for absorbing mechanical and sound 

energy. It can also be used to transmit heat or to be an insulative barrier. In the former, a 

metallic honeycomb is used with natural convection; for the latter, a non-metallic core is 

used, with the cells filled with foam. For sound barriers, the core can be filled with a 

fibreglass batting and a thin porous Tedlar skin used for the interior surface (Vinson 

2001).

The remaining applications are mostly related to vibrations and a knowledge of their 

dynamic properties, such as the natural frequencies and damping factors, are essential in 

the design process. However, due to the use of a relatively soft core, shear deformations 

in sandwich elements have such importance that the necessity for more precise theory, 

rather than the ordinary Euler-Bemoulli theory seems to be clear. For this reason, during 

the past decades, sandwich structures have been the subject of many valuable 

investigations. Hence, the lack of attention to an exact dynamic stiffness method in 

vibrational analysis of sandwich structures is surprising and demands redress.
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4.2 REVIEW OF EXISTING LITERATURE

The literature on the analysis of sandwich beams is enormous and especially over the last 

few years, the science and technology of sandwich structures and materials has gained an 

impressive momentum. Early theoretical works were all restricted to a consideration of 

static uniform lateral loads, stability and buckling loads, and most assumed simply 

supported boundary conditions. However, by the 1960s, interest in sandwich structures 

had increased significantly. In 1966 Plantema published the first book on sandwich 

structures (Plantema 1966), which contained a thorough bibliography of over 350 

publications on sandwich structures and related topics that had appeared before 1965. 

This was followed in 1969 by another book on sandwich construction by Allen (Allen 

1969). Two more textbooks by Zenkert (Zenkert 1997) and Vinson (Vinson 1999) 

followed, which collected together the more recent works on theory and application of 

sandwich construction. (Davies 2001) are the most recent handbooks that record the latest 

technologies and standards in manufacturing and construction of sandwich elements.

In addition, there have been six international conferences devoted specifically to the 

theme of sandwich construction. These were held in 1989, 1992, 1995, 1998, 2000 and 

2003 in Stockholm, Gainesville, Southampton, Stockholm, Zurich and Boca Raton, 

respectively, and have provided forums for the presentation and discussion of the latest 

research and technology on all aspects of sandwich structures and materials. The seventh 

international conference will be held in August 2005 in Aalborg, Denmark, with the aim 

of promoting and endorsing sandwich structures technology to the international 

community.

The first research paper concerning sandwich construction was written by Marguerre in 

1944 (Marguerre 1944) and dealt with sandwich panels subject to in-plane compressive 

loads. However, the first formulation of the vibration problem was set out by Kerwin in 

1959 (Kerwin 1959). In this paper he analysed three-layer sandwich beams consisting of 

a damping layer between two faceplates. Since then, the theory of the flexural vibration 

of sandwich beams has been considered by various authors. These have had two principal 

applications: (a) to sandwich elements that have thin, soft central layers and are used for
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their high damping capacity, and (b) to sandwich elements with thick, stiff cores that are 

used for their lightness and high flexural stiffness.

Kerwin (Kerwin 1959) considered simply supported beams or beams with an infinitely 

long span so that the end effects could be neglected. Later, DiTaranto (DiTaranto 1965) 

derived a sixth-order, complex, homogeneous differential equation for a freely vibrating, 

finite-length unsymmetrical sandwich beam in terms of longitudinal displacements. In 

1966 Mead and Sivakumuran (Mead and Sivakumuran 1966) adopted the Stodola method 

for the calculation of the natural frequencies and modes of sandwich beams in free 

flexural vibration. The differential equation of motion in terms of transverse

displacement for a forced vibration problem was derived by Mead and Markus (Mead and 

Markus 1969). They showed that the solution of the differential equation developed by 

DiTaranto is a special class of complex, forced modes of vibration, which are completely 

uncoupled. Subsequently, Mead and Markus (Mead and Markus 1970a; Mead and 

Markus 1970b) considered both a cantilever sandwich beam and a clamped ended 

sandwich beam when evaluating loss factors and resonant frequencies. In 1982, Mead 

(Mead 1982) compared the theories of flexural vibration of damped, three-layer sandwich 

beams as presented by DiTaranto (DiTaranto 1965) and Mead and Markus (Mead and 

Markus 1969) with that of Yan and Dowell (Yan and Dowell 1974) and concluded that 

the former yields reliable values if the flexural wavelength is greater then about four 

faceplate thicknesses, whilst the latter is reliable only at much greater wavelengths or 

when the core is very thick.

Later, Mead (Mead and Markus 1985) examined the influence of the inertia coupling 

between different wave types caused by a non-structural mass that vibrates with the beam, 

called a ceramic layer, and concluded that if the damping layers are applied 

asymmetrically to the beam section, the flexural and longitudinal wave types become 

coupled. Using an energy approach, Rao (Rao 1978) derived the same equation as 

(DiTaranto 1965) and (Mead and Markus 1969) and introduced eight basic end conditions 

for the problem.

By using Green’s function, i.e. a discrete solution to the governing differential equation 

for the flexural behaviour of a three-layered sandwich beam under the action of a 

concentrated load, Fotiu (Fotiu 1987) and Sakiyama et al. (Sakiyama et al. 1996a;
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Sakiyama et al. 1997) reported methods of analysing the free vibration of sandwich 

beams.

By using Hamilton’s principle, Nilsson and Nilsson (Nilsson and Nilsson 2002) derived 

the differential equation governing the apparent bending of sandwich beams including the 

effects of rotary inertia of the layers and the rigidity of the core. It is interesting that in 

this case the order of the differential equation is still six. Some dynamic properties of 

sandwich structures with honeycomb and foam cores were predicted and compared with 

measured results.

The vibration characteristics of undamped sandwich beams whose ends are loaded and 

elastically constrained was considered by Farghaly (Farghaly and Shebl 1992). Elastic 

bonding between the core and the two symmetrical faceplates has been the main 

difference between the work of Chonan (Chonan 1982) and the others.

The reduction of vibration response and the transmission of vibratory energy in structures 

have received wide attention for many years. Two books in this area (Nashif et al. 1985) 

(Sun and Lu 1995), provide practical and detailed information on the research and 

development of vibration damping. The damping effect of viscoelestic materials is easily 

introduced by utilising a complex shear modulus that has the form G* = G( 1 + i rj) , where 

G and rj are the real shear modulus and the loss factor of the viscoelastic material, 

respectively. However, in most of the reported work, the solution for undamped 

vibrations can be achieved by setting the loss factor equal zero (Mead and Markus 1969; 

Nilsson and Nilsson 2002; Rao 1978; Sakiyama et al. 1996a).

On the other hand, the effects of longitudinal and rotary inertia, in addition to the 

transverse inertia, have also been considered by various authors (Chonan 1982; Mead 

1982; Rao and Nakra 1970; Rao and Nakra 1973) who showed that there will be three 

families of modes of vibration comprising bending, extension and thickness shear.

Rao, in a further study (Rao 1977), used Hamilton’s principle to formulate the equations 

of motion and the associated boundary conditions for flexural vibration of short, 

unsymmetric sandwich beams. His equations included the second order effects of rotary 

inertia, extension and shear of all layers. Each layer is therefore treated as a Timoshenko
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beam. Maheri (Maheri and Adams 1998) verified the viability of adapting the 

Timoshenko beam equations to a sandwich configuration. In addition, Dugundji 

(Dugundji 2002) presented a sixth-order, extended set of Timoshenko beam equations 

that allow the necessary boundary conditions of a cantilever sandwich beam to be 

satisfied and the closed-form solutions are given. Cabanska-Placzkiewicz (Cabanska- 

Placzkiewicz 2000) also proposed a model in which the faceplates of a three-layer 

sandwich beam are modelled as Timoshenko beams, while the internal layer possesses the 

characteristics of Winkler's viscoelastic one-directional base.

Experimental observations and analytical predictions suggest that classical sandwich 

theory, which assumes a laterally incompressible core, is not capable of accurately 

predicting the free vibration response of soft-core sandwich beams. Therefore, sandwich 

beams with transversely flexible cores need to be modelled using a higher order sandwich 

theory. Frostig and several of his colleagues (Frostig 1992; Frostig 1993; Frostig and 

Baruch 1994; Frostig and Thomsen 2004; Sokolinsky et al. 2001) have studied the 

influence of compressible cores and have developed a consistent, rigorous, closed-form, 

higher order theory for sandwich plates and panels. On the other hand, an analytical 

model for the vibration of multi-span sandwich beams, which considers a damped flexible 

core with linear change in shear and normal deformation has been reported by He (He and 

Rao 1993). In this model the faceplates do not deform in shear and the longitudinal and 

transverse inertia have been included, but the rotary effects are neglected. Recently, the 

free vibration of a cantilever sandwich beam with a soft core was analysed using three 

different models (Sokolinsky et al. 2004): a higher-order theory for sandwich panels, a 

two-dimensional finite element analysis and classical sandwich theory. The inadequacy 

of classical sandwich theory for the free vibration response of soft-core sandwich beams 

was clearly demonstrated.

Free vibrations of curved sandwich beams have been studied by only a few authors 

(Ahmed 1971; Ahmed 1972; Sakiyama et al. 1997). Recently Bozhevolnaya and Sun 

(Bozhevolnaya and Sun 2004) have developed a curved sandwich beam model which 

takes into consideration both radial and circumferential displacements of the core with the 

assumption of linear variation of displacements across its thickness. The model predicts 

that there exists four types of natural modes, namely flexural bending, extension, shear
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thickness modes and anti-phase lateral waves. The existence of anti-phase modes is due 

to considering the linear variation of radial displacements through the core thickness.

While the exact or closed form analytical solutions can only be obtained for problems 

with simple geometry and boundary conditions, numerical solution techniques like the 

finite element method are suitable for practical problems with complex geometries and 

boundaries. Ahmed (Ahmed 1971; Ahmed 1972) seems to be a pioneer in using finite 

element methods in the analysis of sandwich beams. Mace (Mace 1994) developed a 

finite element model for sandwich beams containing very thin viscoelastic layers. 

Silverman (Silverman 1995; Silverman 1997) used a Galerkin type solution to obtain 

approximate eigenvalues, while Baber (Baber et al. 1998) presented a model with a thin 

or moderately thick viscoelastic core with a nonlinear variation of displacements through 

its thickness. In the latter model by using a simple approximation, all core variables have 

been expressed in terms of the faceplate displacements.

Using the finite element method, Vuo-Quoc and his colleagues (Deng and Vu-Quoc 1998; 

Vuo-Quoc and Ebcioglu 1995; Vu-Quoc and Deng 1995; VuQuoc et al. 1996) have 

focused on the dynamics of geometrically exact sandwich structures. Sainsbury and 

Zhang (Sainsbury and Zhang 1999; Zhang and Sainsbury 2000) have combined the 

polynomial shape functions of conventional finite element analysis with Galerkin 

orthogonal functions to develop a finite element that can deal with damped sandwich 

beam structures. A Rayleigh-Ritz analysis of sandwich beams with a capability to 

include damping in any layer is presented by Fasana (Fasana and Marchesiello 2001).

Higher order theories for shear deformation have been used by Kant and several of his 

colleagues (Kant and Gupta 1988; Kant et al. 1998; Marur and Kant 1998). Mixed higher 

order theory has also been used by Rao et al. (Rao et al. 2001) to develop an analytical 

method for evaluating the natural frequencies of laminated composite and sandwich 

beams, while Ramtekkar et al. (Ramtekkar et al. 2002) used a similar approach to adapt 

mixed finite element modelling. In similar vein, a 18-node, three-dimensional mixed FE 

model has been developed by using Hamilton's principle by Desai et al. (Desai et al. 

2003) where continuity of the transverse stress and displacement fields has been enforced 

through the thickness of the laminated composite plate. A semi-analytical method has 

also been reported by Rao and Desai (Rao and Desai 2004) in which they evaluates the
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natural frequencies, as well as the displacement and stress eigenvectors, for simply 

supported, cross-ply laminated and sandwich plates by using a higher order mixed theory, 

where models based on equivalent single layer, as well as layer-wise theories, have been 

formulated.

Most of the literature on the torsion of sandwich beams has been reported since 1990 

(Dewa 1990; Ganapathi et al. 1999a; Ganapathi et al. 1999b; Patel and Ganapathi 2001; 

Tanghe-Carrier and Gay 2000). A three-noded beam finite element which includes 

transverse shear and warping due to torsion has been derived by Ganapathi (Ganapathi et 

al. 1999b).

Despite the extensive literature on sandwich beams, there is very little work that utilises a 

stiffness formulation and also accounts in an exact way for the uniform distribution of 

mass. Baneijee (Baneijee 2003) developed a dynamic stiffness matrix for a three layered 

symmetric sandwich beam, but ignored the density of the core. Howson and Zare 

(Howson and Zare 2004) extended Baneijee’s work by accounting for the total lateral 

inertia and developed a dynamic member stiffness matrix for the flexural motion of a 

sandwich beam with unsymmetrical cross-section.

4.3 THE CURRENT APPROACH

A precise and general stiffness formulation that accounts in an exact way for the uniform 

distribution of mass in a member can not be found in the literature. This is surprising 

since such a course offers two considerable advantages. The first of these is the 

opportunity to exploit the powerful modelling features of the stiffness method of analysis. 

For example, continuous beams with varying member properties are easily analysed and it 

is straightforward to incorporate translational and rotational inertia of nodal masses, 

spring stiffness and non-classical boundary conditions. The second advantage is that the 

formulation results in an idealisation containing the minimum number of elements, while 

leaving invariant the accuracy to which any particular natural frequency can be found. 

This can be important for higher natural frequencies and should be contrasted with
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traditional finite elements in which the accuracy is sensitive to the idealisation. However, 

such a formulation is intractable and necessitates the solution of a transcendental 

eigenvalue problem which usually is resolved by adopting the Wittrick-Williams 

algorithm (Wittrick and Williams 1971a) that enables any required natural frequency to 

be converged upon to any required accuracy with the certain knowledge that none have 
been missed.

Therefore, the main aim of the work in Part B is to present an exact and concise dynamic 

stiffness method for the frequency analysis of sandwich beams that can be used to model 

framed structures. The analysis will be ‘exact’ in the sense that the solution satisfies the 

governing differential equation exactly in the same way that the ‘exact’ solution can be 

obtained in conventional analytic theories.

The flexural vibration of sandwich beams with two unequal faceplates is the subject of 

studies in Chapter 5. The faceplates are treated as Euler-Bemoulli beams and the core 

deforms only in shear. The longitudinal and rotary inertias are neglected. The resulting 

governing differential equation is of sixth order and the element has three degree of 

freedom at each end; the transverse deflection, the general slope of the member and the 

average rotation of the cross-section.

In Chapter 6, the theory of Chapter 5 is extended to include the effects of longitudinal and 

rotary inertia. This crucial difference enables the resulting member dynamic stiffness 

matrix (exact finite element) to be included in general two-dimensional structures for the 

first time. Inclusion of longitudinal inertia raises the order of the governing differential 

equation to eight. Although the inclusion of rotary inertia does not change the order of 

the problem, it increases the accuracy of the model. The resulting model provides four 

degrees of freedom at each end, which are the transverse deflection, the general slope of 

the member and the longitudinal translation of the two faceplates. In an alternative form, 

the two longitudinal translations of the faceplates can be replaced by the so-called average 

translation of the element and average rotation of the cross-section.

In Chapter 7 improvements have been made to the theory so as to include the additional 

effects of shear deformation in the faceplates, as well as the effects of axial and bending 

stiffness of the core. Inclusion of these effects causes the governing differential equation
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to be of tenth order and five degrees of freedom at each end of the member are 

introduced. Hence, the theory can now be used for slender beams and also deep beams 

for which Timoshenko theory would normally be used.

In each chapter, for better understanding of the problem, the governing differential 

equations of motion are derived separately using both an Energy approach and an 

Equilibrium approach and the results are shown to be identical. Several examples are 

given in each chapter to validate related theories and to indicate their range of application.
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CHAPTER 5

FREE FLEXURAL VIBRATIONS OF THREE-LAYER 
SANDWICH BEAMS

5.1 INTRODUCTION

The sandwich beam considered in this chapter comprises two unequal faceplates that are 

separated by a weaker core layer. All layers are isotropic and homogeneous. The 

following assumptions are then made, (i) The core is laterally incompressible and 

transverse direct strains in the faceplates and core are negligible so that small transverse 

displacements are the same for all points in a normal section; (ii) there is perfect bonding 

at the core/faceplate interfaces, so there is no slippage between the faceplates and the core 

layer; (iii) the faceplates are elastic and do not deform in shear, therefore the faceplates 

are treated as Euler-Bemoulli beams and the bending and axial forces in any section of 

the sandwich beam are carried by the faceplates ; (iv) the linearly elastic core deforms 

mainly through shear strain and carries only shear forces. In-plane normal stresses are 

assumed to be negligible; (v) the transverse flexural inertia is assumed to be 

predominant, so that the longitudinal and rotary inertia of the beam may be ignored.
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5.2 EQUATIONS OF MOTION

5.2.2 Equilibrium equations

Figure 5.1 shows the positive sense of the forces experienced by a typical elemental 

length of a member at some instant during the motion. The beam has unit width. The 

generic quantities m, q and y  relate to bending moment, shear force and mass/unit length, 

respectively. When they are un-subscripted, they are resultant or total values and when 

subscripted with t, b, or c they relate to the top faceplate, bottom faceplate and the core, 

respectively. The prime and dot notations refer to partial differentiation with respect to x  

and time in the usual way.

Since the whole sandwich beam is assumed to be in pure bending, the overall longitudinal 

force on the beam section is zero. This implies that the equation of horizontal equilibrium 

can be written as

h
dx

■H

dmm d xm  +

d

d x

Figure 5.1: Positive resultant forces and moments and reverse 
inertia acting on a typical elemental length of a sandwich beam 
of unit width with the layer dimensions shown.
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nt + nb = 0 or - n t = nb = n (5.1a,b)

where nt and nb are the axial forces in top and bottom faceplates, respectively. Eq. (5.1b)

shows that longitudinal forces in the faceplates are equal in magnitude but opposite in 

direction.

Taking moments about the centre line at the right hand side of the bottom faceplate in 

Figure 5.1 yields the moment equilibrium as

q d x - n t d  + m + (nt + ^ - d x ) d - ( m  + ̂ - d x )  + (/tw  d;c) —  = 0 (5.2)
dx dx 2

where m and q are the resultant moment and shear force on the section, respectively, 

w and fj, are the transverse deflection and the uniform mass per unit length of the beam,

respectively, and d  = tc + Vi (/, + tb) is the distance between centre lines of the faceplates.

Figure 5.2 shows the inter-element forces and component member stresses that act on an 

elemental length of the member. By comparing Figures 5.1 and 5.2 it is clear that

? = ? /+?*+?*  i m = mt +m b ; fi = tit + n b + nc (5.3a,b,c)

where subscripted quantities with /, b, or c relate to the top faceplate, bottom faceplate 

and the core, respectively. Ignoring terms of second order in Eq. (5.2), the equation of 

moment equilibrium is

q = (m -m )  (5.4)

where m denotes the couple due to the axial forces that are developed in the top and 

bottom faceplates during bending. From Eq. (5.1), m may be written as

m = n,d  = -n d  (5.5)
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d x

<■

dm

d x

d x

d r
d x

dm
d x

d x
d x

Figure 5.2: Inter-element forces and moments and 
component member stresses on a typical elemental length 
of a sandwich beam.

As it is assumed that the transverse flexural inertia is predominant and in the free 

vibrational analysis it is the only external vertical force, the equation of vertical 

equilibrium is

q =//w (5.6)

5.2.3 Force-displacement relations

Figure 5.3 shows the positive sense of the displacements experienced by a typical 

elemental length of a member at some instant during the motion. wf = y/ is the slope of
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the beam’s neutral axis and ut and ub are the mid-layer longitudinal displacements of the 

top and bottom faceplates, respectively. y c is the shearing strain of the core and (p is the 

average rotation of the beam’s cross-section.

y,w

Figure 5.3: Positive displacements on a typical 
elemental length of a sandwich beam of unit width.

The necessary force displacement relationships for axial extension and bending of the 

faceplates are

V~<P
x,u

(5.7a, b)
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respectively, where K t = Eiti and E iI i are the axial and flexural rigidities per unit width 

of faceplate i , respectively, and u\ is the average normal strain of the faceplate /. Eqs.

(5.7a) and (5.1b) can be combined to give the relationship between normal strain in the 

two faceplates as

Also from Figure 5.3 it is clear that the shearing strain in the core may be written as

where u is the longitudinal displacement of any point in the core of thickness tc and 

u2 and u3 are the longitudinal displacements of the interface between the core and the 

top and bottom faceplates of thickness tt and tb, respectively, and can be given as

u2 = u, - ^ - ( - z )  ^  ui = ubox 2 ox 2

Hence, substituting Eq. (5.10) in Eq. (5.9) gives

(5.8)

■) + (“» -«»)] (5.11a)

or

(5.11b)

Now, the core shear stress/strain relationship is given by
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= G j c = G cd ( w '  +  <p)/tc (5.12)

where

(5.13)

is the average rotation of the beam’s cross-section and rc and Gc are the shear stress and

shear modulus related to the core material, respectively. As the shear coefficient of the 

core, which is usually defined as the ratio of average shear stress on a section to shear 

stress at the neutral axis, in most of the cases is nearly 1 (Rao and Nakra 1970), its effect 

can be ignored. Alternatively it can be included in Gc which then becomes an effective

core shear modulus. Now, substituting Eq. (5.8) into the first differential of Eq. (5.13) 

gives

Finally, horizontal equilibrium of each faceplate along with stress compatibility at the 

core face/plate interface (Figure 5.2) gives

Substituting Eq. (5.14) into Eq. (5.16a) gives the core shear stress in terms of the average 

rotation of the beam’s cross-section as

g d  g d
(5.14)

where

? =K,K„/ (K,+ K b) (5.15)

n\ = -rih = -« ' = -  r (5.16a)

rc = g  (p"d (5.16b)
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5.3 DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATIONS OF 
MOTION

5 .3 .2  Equilibrium method

The first differential equation of motion can be obtained by combining Eqs. (5.4) and 

(5.6) and using Eqs. (5.5) and (5.14) as

fiw  +  ? < p d =  0 (5.17)
K

where

K = \l{ E ,l ,+ E bI b) (5.18)

Substituting Eqs (5.12) into (5.16b) gives the second equation as

^ - w '  + ^ - < p  - g  <p’ d  = 0 (5.19)

Attention is now confined to harmonic motion in which the time dependent terms are 

related to co, the circular frequency, by

f ( x , t )  = F (x )e ic*t (5.20)

and the upper case characters refer to the amplitude of the equivalent time dependent 

quantity.

Hence, using Eq. (5.20), the partial differential equations of Eqs. (5.17) and (5.19) can be 

presented as a system of linear differential equations in the following way
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'  D 4 2
-

W—£--p c o
K

- g d 2Dl

Gcd n
< >

-------- S d D \ 0
. <c 'c

=  0 (5.21)

where Dx is the operator d/ d x . The determinant of the matrix operator yields the linear, 

sixth order, governing differential equation as

[ D t  - { \  + K g  d 2) D * - f i c o 2 K  (D 2 ----- C-)] V  = 0
g t c

(5.22a)

and V can be either of the variables W  or 0 .  Finally, writing Eq. (5.22a) in terms of the 

non-dimensional parameter c, gives

[D6 - a ( \  + f t)  D 4 -  X (D 2 - a ) ] V  = 0 (5.22b)

where

a  = GcL2/ g t c ; /? = k  g d 2 ; X ~ n  co2k  L4 ; = jc/L

and D is the operator d/ d £ and L is the member length.

(5.23)

5.3.3 Energy approach

In the preceding section, the free vibration of a sandwich beam has been represented by a 

differential equation (5.22) derived from the equilibrium of internal and inertial forces via 

Newton’s second law of motion. This method is usually referred to as the Newtonian 

approach. An alternative approach, which avoids the vectorial equations of equilibrium, 

is to make use of scalar quantities in the variational form of Hamilton’s principle. In this 

approach, the internal and inertial forces are not explicitly involved. Instead, variations of 

their potential and kinetic energy terms are utilised. The potential energy of the internal 

forces is the strain energy and is equal to the negative work of the internal forces. Kinetic
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energy is due to the inertial forces. For a conservative system, Hamilton’s principle states 

that the first time-variation of the difference in kinetic and potential energies over any 

time interval tl to t2 equals zero.

5.3.3.1 Potential energy

Potential energy of a three-layer sandwich beam of length L consists of three parts.

5.3.3.1.1 Strain energy of the two faces in axial deformation

The strain energy of the top and bottom faces in axial deformation is given by

where ei -  u[ and nt is defined in Eq. (5.7a). Using Eqs. (5.8) and (5.14), Eq. (5.24) can 

be rewritten as

The bending strain energy of the top and bottom faces may be determined from Eqs 

(5.3b), (5.7b) and (5.18) as

(5.24)

o
(5.25)

5.3.3.1.2 Strain energy of the two faces in bending deformation

(5.26)

where
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Wm -  (5.27)
K

Eq. (5.26) can therefore be written as

U2 =  f —— dj r  (5 .2 8 )
J / I fo 2 k

5.3.3.1.3 Strain energy of the core in shear deformation

The strain energy of the core due to shear is

u ) = ^  d x  (5-29)

where

qc = Tctc = G j j c = S cyc (5.30)

where Sc = Gctc is the shear rigidity of the core. Using Eq. (5.12), we have

qcrc=scrl=sc[yW^<p)}2
= S c (w r2 +  <p2 +  2 w'<p)

G d 2where S = —— . Now Eq. (5.29) can be rewritten as 
r

£ A

Uz = | [ — («''2 +<p2 + 2w'tp)]&x (5.32)
0 ^

Thus the total potential energy will be the sum of Eqs. (5.25), (5.28) and (5.32) which 

may be written as
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. g d 2 f2 w) + * - _ p '2 +
*2

2 K
]d* (5.33)

5.3.3.2 Kinetic energy

The full transverse inertia of a beam of length L is

S.3.3.3 Application o f Hamilton’s principle

Hamilton’s principle states that “ o f  all the paths o f  admissible configurations that the 

body can take as it goes from configuration 1 at time tx to configuration 2 at time t2, the 

path that satisfies Newton's second law at each instant during the interval is the path that 

extremizes the time integral o f  the Lagrangian during the i n t e r v a l Hence, for a 

conservative system, the first time-variation of the Lagrangian (i.e. the difference in 

kinetic and potential energies) over any time interval tx to t2, with respect to all

independent variables of the system, gives the governing differential equations of motion, 

i.e.

h h h L
S m <!> = S a) J L d t  = S 01 j ( T - U ) d l  = S 0)\ \ F d x d t  = Q (5.35)

h <\ h 0

L

in which the Lagrangian, L  = T - U , has bean replaced by the functional J  Fdx , where
o

the function F  can be identified from Eqs. (5.33) and (5.34) as
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1 • ,2 r, . . t2 , _2 , $ d 2 f2 W
n 2

F  = - fiwi +<p2 + 2 w » - ^ — -<p-
1 1  2  2  k

(5 .3 6 )

Eq.(5.35) leads to the following Euler-Lagrange equations as

dF d dF d dF  ̂ d 2 dF
dw dx dw' dt dw dx2 dwn

dF d dF
d(p dx dq>'

=  0

(5.37)

and the possible boundary conditions at the ends of the member as

dF
dw'

=  0

d dF dF
dx dw" dw'

or

= 0

w ' =  0

or w = 0

(5.38a,b) 

(5.39a, b)

dF 
d(p'

=  0 or (p -  0 (5.40a,b)

Eqs. (5.38a), (5.39a) and (5.40a) are the natural boundary conditions while Eqs. (5.38b), 

(5.39b) and (5.40b) give the kinematic boundary conditions at any end of the element.

Now, imposing Eqs. (5.37) on Eq. (5.36) gives us the required partial differential 

equations of motion as

w
0 ~ (~SCw' - S c(p )--r -(jtw) + -7- y (----- ) = 0

dx dt dx k

{ - s y - s c< p ) - - ^ ( - g d 2v ') = 0
dx

(5.41)

The natural boundary conditions are also exactly the expressions for bending moment, 

shear force and couple due to the axial forces in faceplates. Thus
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w n =  m -  0
K

(5.42)

) + S c(w' + <p) = q = 0
OX K

(5.43)

g d 2(p' = m -  0 (5.44)

If attention is now confined to harmonic motion as defined by Eq. (5.20), Eqs. (5.41) can 

be written as the following ordinary differential equations

Wf
K

+ ScW , + juq)2W + Sc0 '  = 0

ScW ' - S c& + g d 2®” = 0
(5.45)

Eqs. (5.45) can be presented in matrix form as

S c D \ - H ( o 2 ~ S CD X W '

K < >

- S c + d 2g D 2x _ 0

=  0 (5.46)

where Dx = d /d x  is the differential operator.

The determinant of the matrix operator yields the linear, sixth order, governing 

differential equation in terms of the non-dimensional parameter £ (Eq. (5.23)) as

[D6 -  a (1 + P)D4 -  A (D 2 -  a)] V = 0 (5.47)

where D is the operator d /d£  and L is the member length. The other coefficients are 

defined in Eq. (5.23) and V can be either of the independent variables W ot  0 .  It should 

be noted that Eq. (5.46) differs from Eq. (5.21) but that Eq. (5.47) is the same as Eq. 

(5.22b). The reason for this is that the matrix operator of Eq. (5.21) can be determined 

from the matrix operator of Eq. (5.41) using matrix operations that don’t change its 

determinant, as follows:
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i) Multiply the second row of Eq. (5.46) by (- d) to give the second row of Eq. (5.21)

ii) Differentiate the second row of Eq. (5.46) once, and then subtract it from the first 

row of Eq. (5.46) to give the first row of Eq. (5.21).

5.4 DYNAMIC STIFFNESS FORMULATION

The dynamic stiffness formulation that accounts in an exact way for the uniform 

distribution of mass in a member offers two considerable advantages. The first of these is 

the opportunity to exploit the powerful modelling features of the stiffness method of 

analysis. For example, continuous beams with step changes in member properties are 

easily analysed and it is straightforward to incorporate translational and rotational inertia 

of nodal masses, spring support stiffness and non-classical boundary conditions. The 

second advantage is that the formulation is exact and results in an idealisation containing 

the minimum number of elements, while leaving invariant the accuracy to which any 

particular natural frequency can be calculated. This can be important for higher natural 

frequencies and should be contrasted with traditional finite elements in which the 

accuracy is sensitive to the idealisation. However, such a formulation is intractable and 

necessitates the solution of a transcendental eigenvalue problem, which is resolved herein 

by adopting the Wittrick-Williams algorithm (Wittrick and Williams 1971a) that enables 

any required natural frequency to be converged upon to any required accuracy with the 

certain knowledge that none have been missed.

The dynamic stiffness matrix is exact, since it is a closed form solution of the governing 

differential equations and therefore satisfies inter-element compatibility and all the 

boundary conditions. This is in contrast to the traditional finite element technique that 

requires the assumption of an element shape function that is invariably approximate. The 

dynamic stiffness method relates the harmonically varying forces to the harmonically 

varying displacements. Hence, after deriving the governing differential equations of 

motion Eq. (5.47), the next step is to solve for the harmonically varying displacement 

field.
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5.4.2 Solution of the governing differential equation of motion

Eq. (5.47) is a linear differential equation with constant coefficients and its solution can 

be sought in the following form

V = YuCifij where 0  = (5. 48a, b)
7=1

rjj are the roots of the characteristic equation stemming from Eq. (5.47) and the Ci} are 

arbitrary constants where, for convenience in developing the work that follows, i is an 

assigned integer that defines a set of j  arbitrary constants, e.g. ClJ = AJ, C2j = Bj etc.,

where A j , Bj are independent sets of arbitrary constants.

The rjj can now be determined as the roots of

r f  - a { \  + P)rj* - X ( r j 2 - a )  = 0 (5.49)

Eq. (5.49) is a cubic equation in

z = rj2 (5.50)

as

z3 - a ( l  + / ? ) z 2 -  X z - X  a = 0 (5.51)

Eq. (5.51) can be solved by any appropriate method such as that described in Appendix C, 

where its three roots could be real, imaginary or complex. The six roots of Eq. (5.49) 

then follow automatically. These six roots rjj, which can also be real, imaginary or

complex, define V ( W or <P) and the other necessary quantities for the stiffness 

formulation of the problem i.e. the displacements W, ¥  and <P and the corresponding

forces Q, M  and M  which provide the unique one-to-one relationship between

displacements and forces.

PhD Thesis, A. Zare, 2004
108



Chapter 5: Flexural vibrations of three-laver sandwich beams

To express all required quantities in terms of W  only, it is necessary to identify the

relationship between the independent variables W and 0 . Thus Eq.(5.40), by considering

Eq (5.20) and the non-dimensional parameter £ , gives

0  = [ D 5- a f i  D 3 - ( a 2p  + X)D] W ! a 2p L  (5.52)

Furthermore, substituting Eqs. (5.20) and (5.52) into Eqs. (5.42)-(5.44) and considering 

once more the non-dimensional parameter f , gives the other necessary quantities to 

formulate the required stiffness relationship as

M  = - D 2W I k I} (5.53)

Q = [D5 - a (  1 + P)D3 - XD ] W /a  k J) (5.54)

M  -  -  [D4 - a p  D2 - X  \ W ! o. k J} (5.55)

It is also clear that

*¥ -  D W IL  (5.56)

Now, the rjj define W, which may be substituted into Eqs. (5.48) to (5.52) to yield the 

following results

j= 1 M

M  = f j H 5JCJt J \ (5.57)
j =1 j =1

* = i  HvCjC,
7=1 7=1

where H tJCj = Cy, such that Cj is common to all the equations and H is the relational 

constant.

Noting that one of the H tj is arbitrary, it is convenient to set H Xj = 1, which yields the 

following relationships between the H tj of Eqs. (5.57)
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H v =r,j/L H s j  ~  ~ H \ j ! K > (5.58)

H y = - H 2 J { \  +  H 6JK L 2 l a p )  H 6 j  =  -  ( r j *  -  a  rj* -  X  )  I a i c  L 2

5.4.3 Transformation between iocai and member co-ordinate systems

All the equations developed so far have been based on the forces and displacements in the 

local co-ordinate system shown in Figure 5.4(a). The stiffness formulation requires all 

nodal forces and displacements to be represented in the member co-ordinate system. 

Hence, the nodal forces and displacements in the local co-ordinate system are now 

transformed to the member co-ordinate system of Figure 5.4(b).

The relationship between the forces and displacements in these two co-ordinate systems 

can be obtained by comparing on Figures 5.4(a) and (b). This is equivalent to imposing 

the conditions of Eq. (5.59) onto Eqs. (5.52) to (5.56).

-<z>,
S '  1C ;>

y ,W

(a)

C
M 2 , ¥ 2 , M 2 , & 2

2

(b)

Figure 5.4: Nodal forces and displacements a) in local 
coordinates, b) in member coordinates.
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At £ = 0 : W  =  Wl9 9  =  0  = - 0 l9 £? = -& , M  =  M l9 M  = - M x
At f  = l : W = W2, ¥  = ¥ 2, 0  = - 0 2, G = 0 2, M  =  - M 29 M = M 2

(5.59)

5 .4 .4  Dynamic stiffness matrix formulation

The dynamic stiffness matrix relates the forces to the displacements at the two end nodes 

of a member as

p =kd

where

(5.60)

a  ‘
M,

0 , a7,
w2 P =

f t
m 2
m 2

(5.61)

and k is the six by six dynamic stiffness matrix. As a result of Eq. (5.57), all of the 

elements of d and p are related to the coefficient vector C through the matrices S and S* 

by

d = SC and p = S*C (5.62a,b)

where

C =

C,
f t

f t

f t

f t
c

(5.63)

and sy and .v”, the elements of S and S’ , respectively, are as follows

m
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s \ j ~ H \ j  > S 2 j  2j  j

coiiiCOCo

stTitC<0 s 5 j = H 2 j X j  ;

j ~ H  A j  ; s \j =H sj ; S y = ~ H 6j
S 4 j ~ ^ 4 j X j  > s s j  = ~ h 5 j X j ; s l j = n 6JXj 0 =1,2,... 6 ) (5.64)

X j = ^ J

where their subscripts correspond to row and column co-ordinates in the usual way.

To set up the required dynamic stiffness matrix, k, it is necessary to eliminate the 

coefficient vector C through the following steps

C=S-1 d (5.65)

therefore

p =S* S_1d (5.66)

and finally

k=S* S_1 (5.67)

The dynamic stiffness matrix for the overall structure can now be assembled from the 

element matrices in the usual way. The use of ‘exact’ finite elements leads to an 

idealisation containing the minimum number of elements, while leaving invariant the 

accuracy to which any particular natural frequency can be converged upon. This can be 

important for higher natural frequencies and should be contrasted with traditional finite 

elements in which the accuracy is sensitive to the idealisation. Once the required natural 

frequencies have been determined, the corresponding mode shapes can be retrieved by 

any reliable method, such as described in reference (Howson 1979). In the next section, 

the method for converging with certainty on the required natural frequencies is described.
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5.5 CONVERGING ON THE NATURAL FREQUENCIES

The dynamic structure stiffness matrix, K, when assembled from the element matrices, 

yields the required natural frequencies as solutions of the equation

where D is the vector of amplitudes of the harmonically varying nodal displacements and 

K is a function of co, the circular frequency. In most cases the required natural 

frequencies correspond to |K|, the determinant of K, being equal to zero. Traditionally 

the required values have been ascertained by merely tracking the value of |K| and noting 

the value of co corresponding to |K| = 0. However, when K is developed from exact 

member theory the determinant is a highly irregular, transcendental function of co. 

Additionally, several natural frequencies may be close together or coincident, while 

others may exceptionally correspond to D = 0. Thus any trial and error method which 

involves computing |K| and noting when it changes sign through zero, can miss roots. 

This danger can be completely overcome by use of the Wittrick-Williams algorithm 

(Wittrick and Williams 1971a) which indeed determines how many natural frequencies lie 

below a specified trial frequency. The algorithm states that

where J  is the number of natural frequencies of the structure exceeded by some trial 

frequency, co*, J 0 is the number of natural frequencies which would still be exceeded if 

all the elements were clamped at their ends so as to make D = 0, and s{K} is the sign 

count of the matrix K. s{K} is defined in reference (Wittrick and Williams 1971a) and is 

equal to the number of negative elements on the leading diagonal of the upper triangular 

matrix obtained from K, when co = co*, by the standard form of Gauss elimination 

without row interchanges.

The knowledge of J  corresponding to any trial frequency makes it possible to develop a 

method for converging upon any required natural frequency to any desired accuracy. 

However, while s{K} is easily computed, the value of J 0 is more difficult to determine 

and is dealt with in next section.

K D  = 0 (5.68)

J  = J 0 +s{K} (5.69)
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5.5.2 Determination of J 0

From the definition of J 0 it can be seen that

(5.70)

where J m is the number of natural frequencies of a component element, with its ends

clamped, which have been exceeded by co*, and the summation extends over all such 

elements. In some cases it is possible to determine the value of J m for the element type

symbolically, using a direct approach (Howson 1979). However, this is impractical in the 

present case due to the algebraic complexity of the expressions. Instead, the same result is 

achieved by an argument based on Eq. (5.69) which was originally put forward by 

Howson and Williams (Howson and Williams 1973).

Consider an element, which has been isolated from the remainder of the structure by 

clamping its ends. Unfortunately, this structure cannot be solved easily. We therefore 

seek to establish a different set of boundary conditions that admit a simple symbolic 

solution and which enable solutions to the clamped ended case to be deduced. This is 

often most easily achieved by imposing simple supports which, in this case, permit 

rotation and relative motion of the faceplates, i.e. W and 0  respectively, but prevent 

lateral displacement W.

Let the stiffness matrix for this structure be k “ , then the number of roots exceeded by 

co* is given by equation (5.69) and the arguments above as

where J ss is the number of natural frequencies that lie below the trial frequency for the 

element with simple supports. It then follows directly that

(5.71)

(5.72)
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Once more k " , and hence s{k“ } , is readily obtained, this time from Eq. (5.67). J ss is

slightly more difficult, but relates to the element with boundary conditions that yield a 

simple exact solution, as shown below.

For the simply supported case, the boundary conditions are defined by

and B is a constant. Substituting Eq. (5.74) and its derivatives into Eq. (5.47) yields the 

equation of motion as

Hence J a is given by the number of positive values of ey„that lie below the trial 

frequency, co*.

Thus, substituting Eq. (5.72) in to Eq. (5.70) gives

M  = M  = W = 0 (5.73)

These conditions are satisfied by assuming solutions of the form

W = 5sin niz£ ( « =  1,2,3,...) (5.74)

[ / iV  + a( 1 + ft) n47i4 -  A (n2n 2 + a)]B= 0 (5.75)

which, for non-trivial solutions yields

{[n2n 2 +a(l + /?)]/ j u k L 4 (n2n 2 + a )}2 (5.76)

(5.77)

The required value of J  then follows from Eq. (5.69).
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5.6 NUMERICAL RESULTS AND COMPARISON WITH PREVIOUS WORK

Four examples are now given to validate the theory and indicate its range of application. 

The first three examples compare results obtained by a number of authors for a simply 

supported, cantilevered and fixed ended beam, respectively, which have been widely used 

as test examples. The final example gives only the results of this study for a simple three 

span continuous beam with various combinations of parameters and support conditions. 

It can also be used to demonstrate how the conventional method of determinant tracking 

to find natural frequencies can miss roots.

Example 5,1: A simply supported sandwich beam with identical faceplates is analysed. 

The material and geometric properties of the beam are

Et -  Eb = 68.9 GPa, G = 82.68 M Pa, jui = piti where i = t ,b  and c and p denotes 

material density, p, = p b =2680 kg/m3, p c =32.8 kg/m3, /, = th =0.4572 mm, 

tc -  12.7mm, L = 0.9144m.

The results obtained by a number of authors together with the current theory are given in 

Table 5.1. Also the first five mode shapes of the beam are illustrated in Figure 5.5. The 

difference between the graph of beam slope W and that of average rotation of the beam’s 

cross-section Prelates to the shearing strain y , which according to Figure 5.5 is 

negligible for the first mode, but becomes substantial for higher modes. This figure also 

shows that the two graphs are in-phase and therefore the shearing strain can be regarded 

as a constant fraction of the beam’s slope.

This beam is widely used by numerous authors to compare their results with those 

originally presented by Mead and Sivakumuran (Mead and Sivakumuran 1966). 

Unfortunately, Mead (Mead and Sivakumuran 1966) provided insufficient data to 

calculate the mass density of the beam. However, Table I of reference (Mead and 

Sivakumuran 1966) notes that the natural frequencies are calculated from equation (32) of 

reference (Mead and Sivakumuran 1966) which can be expressed as follows

(5.78)
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Table 5.1: Comparative results for the first ten natural frequencies (Hz) 
of the simply supported sandwich beam of Example 5.1.

Freq.
No.

Current Allen, 1969; 
Rao, 1978*

Mead, 1966” Ahmed,
1972

Ahmed,
1971

Sakiyama,
1996b

Rao,
2001

Marur,
1996theory Eq. (32) Table I

1 57.1358 57.1358 57.1352 56.028 55.5 57.5 56.159 57.068 57.041
2 219.585 219.585 219.575 - - - 215.82 218.569 218.361
3 465.172 465.172 465.129 457.12 451 467 457.22 460.925 460.754
4 768.177 768.177 768.058 - - - 755.05 757.642 758.692
5 1106.68 1106.68 1106.43 1090.26 1073 1111 1087.9 1086.955 1097.055
6 1465.10 1465.10 1464.65 - - - 1440.3 1433.920 1457.064

7 1833.55 1833.55 1832.82 1809.8 1779 1842 1802.7 1789.345 1849.380

8 2206.19 2206.19 2205.09 - - - 2169.8 2147.969 2275.916
9 2579.79 2579.79 2578.22 2549.5 2510 2594 2538.2 - 2562

10 2952.65 2952.65 2950.52 - - - 2906.2 - -

‘Results in column three are generated using Eq. (5.82) or Eq. (5.76) that are equivalents to 
formulas in cited references
“Column five contains the results that were presented by Mead in Table I of reference (Mead 
and Sivakumuran 1966) and which were calculated using Eq. (32) of the same paper. 
Unfortunately, Mead provided insufficient data to confirm these results. Thus Eq. (32) 
(equivalent to Eq. (5.78) in the current notation) was used to calculate the results presented in 
column four from the data used to determine the results in columns two and three.

where f n (Hz) is the natural frequency of the simply supported sandwich beam with 

identical faceplates of thickness t and span length L. E, G and fj. are the faceplates’ elastic 

modulus, the core’s shear modulus and the beam’s mass/unit length, respectively. (EI)t 

denotes the total bending stiffness and for a symmetric sandwich beam of unit width l t is 

given by

j i = ,1 + ‘M±!)L (5.79)
6 2

Eq. (5.78) was then used to determine the results given in column 4 of Table 1 using the 

p values given above.

The theory behind the Eq. (5.78) has not been given in reference (Mead and Sivakumuran

1966), but an almost identical frequency equation can be constructed from Eq. (4.18) of

reference (Allen 1969), which is based on an energy approach. Allen (Allen 1969) 

considers a simply supported sandwich beam with an axial end-load and a sinusoidally
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distributed transverse load for which the amplitude of the transverse displacements, w, is 

defined. Now if we use the same approach, but assuming no axial load and that the 

transverse load is replaced by a transverse inertia of intensity

q(x,t) = - juw(x,t) = i*ico2w{xyt ) (5.80)

C/5GO

O
’PGa
c<D
E0)o<3
Q.
C/5

<D
’•G
J213
&

f x = 5 7 .1358Hz

/ ,  = 465.172Hz

/ =  768.177 Hz

Figure 5.5: The first five natural frequencies and mode shapes of the simply 
supported beam of Example 5.1. The graphs show (— ) the modal 
transverse deflection Wy ( - e - ) beam slope W and ( ) average rotation of
the beam’s cross-section 0  .
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where

w(x,t) = aMsin n n x  .
(5.81)sin cot

L

Eq. (4.18) of reference (Allen 1969) then becomes an almost identical frequency equation 

to Eq. (5.78), i.e.

In the derivation of Eq. (5.82), it is assumed that the ratio of the core’s shear strain to the 

slope of the beam’s neutral axis throughout the length of the sandwich is uniform. The 

ratio depends only on the beam’s material and geometric characteristics and the effects of 

shear deformation are ignored. Although this assumption is not generally correct, but it 

holds for the simply supported symmetric sandwich beam considered and therefore 

Eq.(5.82) is an exact frequency equation. Finally, it can easily be shown that Eq. (5.78) is 

an approximation to Eq. (5.82).

On the other hand, Rao (Rao 1978) derived the sixth order governing differential equation 

and solved it exactly for the case of simple supports. The resulting formula for the natural 

frequencies of a pin-pin sandwich beam is exactly the same as Eq. (5.76) when the loss 

factor is zero.

The difference between the results of the present study and those in references (Ahmed 

1971; Ahmed 1972; Marur and Kant 1996; Mead 1982; Rao et al. 2001) are largely due to 

the approximations made during the formulation of the model. For example, Ahmed 

(Ahmed 1971; Ahmed 1972) used traditional finite elements, in which the accuracy of the 

results depend on the number of elements, the number of freedoms at each node and the 

shape functions which are used. Reference (Ahmed 1971) used six degrees of freedom 

per node while (Ahmed 1972) used four. Therefore, the latter theory gives more stiffness 

to the beam and the required natural frequencies are higher than those of the former. 

Reference (Sakiyama et al. 1996b) uses the discrete Green function which firstly has the

(5.82)
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error of discreteisation and secondly the error of numerical integration. References 

(Marur and Kant 1996; Rao et al. 2001) use mixed higher order beam theory in which the 

axial and transverse displacements of any point lying in the beam’s plane are expressed 

using the first few terms of a Taylor’s series expansion. Hence, the higher order mixed 

theories introduce some approximation to the exact field displacements. They also 

generate an approximation by using only the displacements at top and bottom of the beam 

as degrees of freedom, which are not dependent on the number of layers.

Example 5.2: The beam of Example 5.1 is now constrained to act as a cantilever and its 

length is reduced to 0.7112m. Results for the first eight natural frequencies are presented 

in Table 5.2 and compared with those from other references. Also Figure 5.6 illustrates 

the first five mode shapes of the beam. In contrast with the case of the simply supported 

beam, the graph of W and <P are not completely in-phase.

Table 5.2: Comparative results for the first eight natural frequencies 
(Hz) of the cantilevered sandwich beam of Example 5.2.

Freq.
No.

Present
theory

Ahmed,
1972

Ahmed,
1971

Sakiyama,
1996b

Marur,
1996

Banerjee,
2003

1 33.7513 32.79 33.97 33.146 33.7 31.46
2 198.992 193.5 200.5 195.96 197.5 193.7
3 512.307 499 517 503.43 505.5 529.2
4 907.299 886 918 893.28 890.5 1006
5 1349.65 1320 1368 1328.5 1321 -

6 1815.82 1779 1844 1790.7 1786 -

7 2292.45 2249 2331 2260.2 2271 -

8 2772.23 2723 2824 2738.9 2792 -

Discussion about the accuracy of the theories used by most of the authors has been given 

in Example 5.1. Therefore, only the results in the last column of Table 5.2 are discussed 

here. Banerjee (Banerjee 2003) uses an exact dynamic stiffness technique for a 

symmetric sandwich beam and includes the effects of the axial inertia of the faceplates, 

but neglects the inertia effects of the core material. Furthermore, he assumes that the 

motion of the two faceplates is symmetric. This results in a sixth order differential 

equation being derived which, overall, could yield a more accurate model for the flexural
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vibration of sandwich beams. However, as will be shown in Chapter 6, the inclusion of 

axial inertia, but without constraining the faceplates to move symmetrically, yields a more 

general equation of motion. The resulting eighth order governing differential equation 

can then be solved exactly to yield the flexural, axial and shear thickness frequencies of 

the beam.

1 0
/, = 33.7513Hz

0.0

f 3 = 512.307 Hz

/ 4 = 907.299 Hz

Figure 5.6: The first five natural frequencies and mode shapes of the 
cantilever beam of Example 5.2. The graphs show ( — ) the modal 
transverse deflection W, ( - e -  ) beam slope ¥  and (-*- ) average rotation 
of the beam’s cross-section <P.
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Example 5.3: A fixed ended sandwich beam with the following material and geometrical 

properties is now considered.

£ , = £ * =  68.9 GPa, G = 68.9M Pa, pt = pb -  2687.3 kg/m3, pc - 119.69 kg/m3,

t, = tb =0.40624mm, tc = 6.3475mm, L = 1.21872m

Table 5.3 gives a comparison of the results from the present study and other authors 

(Raville et al. 1961; Sakiyama et al. 1996b). It should be noted that the results presented 

by Raville (Raville et al. 1961) are experimental. The results presented in Table 5.3 show 

good correlation between those of the current theory and others available in the literature. 

The results of the present study compare well with the experimental results of reference 

(Raville etal. 1961).

Table 5.3: Comparative results for the first ten 
natural frequencies (Hz) of the fixed ended 
sandwich beam of Example 5.3.

Freq. No. Current
theory

Sakiyama,
1996b

Raville,
1961

1 34.5965 33.563 -
2 93.1000 90.364 -

3 177.155 172.07 185.5
4 282.784 274.91 280.3
5 406.325 395.42 399.4

6 544.331 530.34 535.2
7 693.787 676.85 680.7

8 852.153 832.43 867.2

9 1017.35 995.36 1020

10 1187.70 1163.9 1201

Example 5.4: Attention is now given to the three span continuous sandwich beam of 

Figure 5.7, for which two sets of results are shown in Table 5.4. Type A results, in which 

the basic material and geometric properties of each span are identical to the beam of 

Example 5.3 and Type B results, which use the same data, except that the top faceplate in
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the middle span has the following properties: Et = 207GPa , p, = 7850 kg/m3, 

tt =0.4572mm. In addition, various combinations of nodal mass and spring support 

stiffness are imposed as indicated. The rotational inertia /  . of mass M* is assumed toAfj l

be significant and dependent upon W alone whenever it is included. In similar fashion, 

is applied to 0  alone when determining the results in the last three columns of Table

5.4, but applied to both and 0  when modelling the fixed end condition for the results 

in the second column. Table 5.4 provides a range of ‘exact’ solutions, which may be 

helpful for future comparisons. It can also be used in conjunction with Table 5.3 to 

illustrate a possible pitfall that exists if the natural frequencies of a transcendental 

eigenvalue problem are acquired using a determinant search technique, as follows.

I M-

s

B

L

K  2 ^  K 3
77777

D

L

Figure 5.7: Three-span continuous sandwich beam of Example 5.4.

Consider the structure of Figure 5.7 with M* = M*2 = IM. = 0, Kx = K2 = K3 =<n and

beams with identical material and geometric properties in each span that correspond to the 

beam of Example 5.3. The resulting structure is a uniform beam that is continuous across 

the simple supports at B and C, clamped at A and D and symmetric about its mid point. 

The structure could therefore be modelled using one element per member and two nodes, 

namely B and C.

Since the structure is symmetric, the modes of vibration must be either symmetric or 

antisymmetric about the midpoint. Considering only the symmetric modes, it is clear that 

they fall into one of two categories. Either there is rotation at B and C or there is not. For 

the former category and all the antisymmetric modes, the requirement for a natural 

frequency, described previously by Eq. (5.68) as K D = 0, is satisfied in the usual way by
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|K| = 0. However, frequencies in the latter category satisfy K D = 0 by virtue of the fact 

that D = 0 rather than the more usual |K| = 0. In fact, |K| becomes infinite at such 

natural frequencies, with the consequence that they could be missed by traditional 

methods of determinant tracking which seek only |K| = 0. Moreover, even if an analyst

were to intervene in what is likely to be an automated process, the occurrence of |K| 

becoming infinite would not necessarily alert him to the danger that natural frequencies 

were being missed, since it is quite common for |K| to change sign through infinity at

frequencies which do not correspond to natural frequencies of the structure. The fact that 

such a condition can arise in simple, practical structures can be seen by comparing the 

second columns of Tables 5.3 and 5.4. This shows that the third, sixth and ninth natural 

frequencies of the continuous beam of Example 5.4 correspond to the first three natural 

frequencies of the fixed ended beam of Example 5.3, i.e. the clamped ended frequencies 

of each span member.

Table 5.4: The first ten natural frequencies (Hz) of the sandwich beam 
described in Example 5.4 for various combinations of nodal mass and stiffness.

(kg) 0 0 100 100 0 0 0 100 100

V k g m 2) 0 0 0 0.125 0 0 0 0.125 0.125

M\  (kg) 0 0 0 0 100 0 0 100 100

Kx (N/m) 1015(oo) 0 0 0 0 107 0 107 107

K2 (N/m) 1015(oo) 0 0 0 0 0 0 0 0

K3 (Nm/rad) 1015(oo) 0 0 0 0 0 103 103 103

Freq. No. Type A Type B
1 19.8054 3.00131 1.85738 1.85371 0.32539 3.74241 4.16833 0.56236 0.59843

2 28.7227 7.96371 3.50043 3.50043 7.26939 19.9638 8.30131 3.41381 3.50667

3 34.5965 20.6721 11.9666 11.6151 17.6836 28.6269 21.1525 14.6566 14.6478

4 69.3442 29.6883 27.2172 14.9767 24.0821 34.4362 32.7291 18.8644 17.7480

5 84.0878 44.4183 37.1729 27.4011 43.3984 69.4403 44.9051 28.0860 26.2132

6 93.1000 70.7205 67.8202 37.6919 65.3014 84.3735 71.3082 64.1907 59.8352

7 146.067 86.6974 86.5853 68.7177 76.5946 93.0524 90.0769 76.9603 75.9475

8 165.676 109.605 106.291 86.9280 108.088 146.292 110.080 91.9690 90.7136

9 177.155 148.162 127.721 108.227 140.616 165.929 148.736 122.119 121.222

10 246.735 170.175 165.225 127.741 155.802 176.709 173.713 141.782 133.962
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5.7 GENERAL REMARKS

The results presented in Tables 5.1 to 5.3 show good correlation between those of the 

current theory and a selection of comparable results available in the literature. The 

differences in the results are attributable to many factors that vary widely from 

approximate solution techniques to differences in basic assumptions. Table 5.4 provides 

a range of ‘exact’ solutions, which may be helpful for future comparisons.

5 .7 .2  Effects of nodal mass or spring constraint

In conjunction with Example 5.4 and Table 5.4, it is worth noting that imposing springs 

or masses at nodes may change the sequence of modes by stimulating the occurrence of 

additional modes and changing the frequencies of others. (Figures 5-8 to 5-10 illustrate 

the first six mode shapes of the continuous beam of Example 5.4 that correspond to the 

data in columns 3 to 5 of Table 5.4.) Comparison of the mode shapes in Figures 5.9 and 

5.10 shows that imposing the mass moment of inertia on W causes small changes to the 

mode shapes of corresponding graphs, but induces a completely new mode shape at a 

frequency of 14.9767Hz in Figure 5.10. This can also be seen by comparing columns 4 

and 5 of Table 5.4. In addition, the frequencies of modes with frequencies higher than the 

induced mode (frequency numbers four to nine in column four of Table 5.4) increased 

and, in contrast, the frequencies of modes with lower frequency (frequency numbers one 

to three in column four of Table 5.4) decreased. Table 5.5 highlights the effects of 

gradual changes of the value of the mass moment of inertia on stimulating the new mode. 

It also shows how the frequency of the modes lower than the stimulated mode decreased 

and vice versa.
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Figure 5.8: The first six natural frequencies and mode shapes of the
continuous beam of Example 5.4 where the data and results are referred to 
column 3 of Table 5.4. The graphs show ( — ) the modal transverse deflection 
W, ( - e -  ) beam slope W and (-*- ) average rotation of the beam’s cross- 
section 0  .
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f 2 =3.50043 Hz

fs = 37.1729 Hz

/ # = 67.8202Hz

Figure 5.9: The first six natural frequencies and mode shapes of the
continuous beam of Example 5.4 where the data and results are referred to 
column 4 of Table 5.4. The graphs show ( — ) the modal transverse deflection 
W, (-©- ) beam slope W and (-*- ) average rotation of the beam’s cross- 
section <P.
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f 2 = 3.50043 Hz

/ 3 =11.6151Hz

f6 = 37.6919Hz

Figure 5.10: The first six natural frequencies and mode shapes of the
continuous beam of Example 5.4 where the data and results are referred to 
column 5 of Table 5.4. The graphs show (— ) the modal transverse deflection 
W, (-©- ) beam slope 'F and ( ) average rotation of the beam’s cross-
section 0  .
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T a b le  5 .5 : Effects of the rotational inertia of mass M \  on1
stimulating new modes, (Example 5.4). Bold type indicates the 
additional modes.

1 m’ (kg™')
Freq. No 0 0.00125 0.00625 0.0125 0.125

1 1.85738 1.85734 1.85720 1.85702 1.85371

2 3.50043 3.50043 3.50043 3.50043 3.50043

3 11.9666 11.9652 11.9596 11.9522 11.6151

4 27.2172 27.2123 27.1886 27.1447 14.9767

5 37.1729 37.1432 36.9725 36.4877 27.4011

6 67.8202 67.5940 62.0837 47.1559 37.6919

7 86.5853 86.4164 72.5350 69.3819 68.7177

8 106.291 104.705 87.3721 87.0548 86.9280

9 127.721 127.688 109.445 108.669 108.227

10 165.225 154.461 127.749 127.744 127.741

5 .7 .3  Advantages of a stiffness formulation

The use of the stiffness method offers great flexibility to impose ‘constraints’ on any 

selected node. These will typically take the form of mass inertia, spring support 

stiffnesses or relationships that constrain one or more displacements to move in a 

predefined way relative to another set of displacements. Imposing such constraints 

follows the normal rules that would apply to a traditional beam element, except more care 

is required in order to associate the constraint with the appropriate degree(s) of freedom. 

Table 5.6 amplifies this by listing the possible rotational displacement constraints and 

how they are achieved, primarily as an aid to establishing boundary conditions.

In Table 5.6, a riveted node is a node in which the faceplate displacements w, and ub at

that node are restrained by a rigid rivet through the whole sandwich beam and therefore 

the shear strain in the core is prevented. Hence, by setting y  -  0 in Eq. (5.12), this type
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Table 5.6: Rotational displacement constraints. A(B) implies 
an infinitely stiff rotational spring imposed on 0  ( f  ).

Degree of freedom Constraint Description

W * 0 0 * 0 •©.ii Riveted

w * 0 0 * 0 None Free / Free

W * 0 0  = 0 A Free / Fixed

W = 0 0 * 0 B Fixed / Free

0ii II$

A + B Fixed / Fixed

of constraint is easily achieved. Therefore, the special case of a riveted end in references 

(Mead and Markus 1969; Mead and Markus 1970a; Mead 1971) can be treated in a more 

general sense i.e. for any node using the stiffness formulation. The procedure is as 

follows. After imposing boundary conditions on the dynamic stiffness matrix we may 

have

! ; j • ;

p,< - - < D, >
pM - ^ i+\,i+l dm

_ : : : _ : .

(5.83)

where P„ PM, Di an dD i+l are M j9 M j9 Wj and <Pj at any riveted node j ,  respectively, 

and i is a dummy. If the node j  is a riveted node, the constraint condition at this node is

W =0.
j  j

or D. = Di+1 (5.84)

and therefore all the elements of the stiffness matrix in column / +1 can be added to their 

counterparts in column i , with the former changed to zero as follows

»+i

K,, + AT,,., 0 A
D,i+1

(5.85)
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In this situation, it is clear that the loads Pt and/J+1 are applied at the identical freedom 

Dt or Di+l, say Di . Therefore, it is necessary to impose Pt andPM together at the same 

freedom and consequently, the elements in the row i + 1 of the dynamic stiffness matrix 

should be added to their counterparts in row / and then the former vanish as follows

0

f*i+P.+i > = • • • K u + K ii+l + K i+li + K i+li+l 0
0 0 0

 ̂ >
| j 0

D,
D,i+1 (5.86)

The matrix equation (5.86) is now singular. To eliminate the singularity, row i + 1 and 

column i + 1 can be deleted from the dynamic stiffness matrix, which subsequently 

reduces the size of matrix by one, or the same effect can be achieved by changing the 

appropriate leading diagonal element to unity. The latter is easier to do as there is no 

need to change the previously stored addresses of freedoms and so on.

5 .7 .4  Numerical overflow

Finally, it is worth noting that while generating the results above, it became apparent that 

it is relatively easy to generate an example in which the value of a , defined in Eq. (5.23), 

is sufficiently large that the value of £ in Eq. (5.48b) overflows, even when using double 

precision arithmetic. However, it is easy to show that the dominant term in the expression 

for a is the length of the member (element). Thus if difficulty is experienced a simple 

method is to subdivide the member into a greater number of elements until the problem is 

resolved.
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CHAPTER 6

GENERAL VIBRATION OF A THREE-LAYER SANDWICH 
BEAM INCLUDING AXIAL AND ROTARY INERTIA

6.1 INTRODUCTION

In this chapter, the previous theory of Chapter 5 is extended to include the effects of axial 

and rotary inertia of the core and faceplates. The faceplates are therefore modelled as 

Rayleigh beams. This crucial difference enables the resulting dynamic member stiffness 

matrix (exact finite element) to be used to analyse general two-dimensional structures for 

the first time. The model can then be solved for any required natural frequency to any 

desired accuracy for both slender and deep beams using the Wittrick-Williams algorithm. 

In the case of single beams, it will also be confirmed that the modes of vibration are 

largely coupled, especially for unsymmetrical boundary conditions, and that the 

predominant component of the mode can be classified into one of three families of 

modes; flexural, extensional and thickness shear and that coupling between them may 

occur at frequencies of practical interest.
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The dynamic stiffness matrix of a three-layer sandwich beam is now developed from first 

principles. It accounts exactly for the uniform distribution of mass and stiffness in the 

member, subject to the following assumptions:

(i) transverse direct strains in the faceplates and core are negligible so that small

transverse displacements are the same for all points in a normal section;

(ii) there is perfect bonding at the core/faceplate interfaces;

(iii) the faceplates are elastic, isotropic and do not deform in shear;

(iv) the linearly elastic core carries only shear and the in-plane normal stresses are

assumed to be negligible.

When dealing with general two-dimensional structures constructed from sandwich beams, 

it is necessary to include the effects of flexural and longitudinal inertia. In addition, the 

effects of rotary inertia become important when dealing with deep beams. The theory of 

this chapter is therefore developed in a two-stage process. Initially, longitudinal inertia is 

accounted for and this is subsequently enhanced by the addition of rotary inertia, which in 

this case, it can be say that in contrast with Chapter 5, the faceplates of the sandwich 

beam element are Rayleigh beams which their longitudinal inertia are also included.

6.2 FORCE-DISPLACEMENT RELATIONS

Figure 6.1 shows the positive sense of the displacements experienced at a typical section 

of the beam at some instant during the motion. The beam has unit width and t t, tc and tb 

are the thickness of the top faceplate, core and bottom faceplate, respectively, 

ut, uc and ub are the mid-layer longitudinal displacement of the top faceplate, core and

bottom faceplate, respectively, y c and (pc are the shear strain and the average rotation of

the core, respectively, w is the transverse displacement which due to neglecting 

transverse direct strains in the faceplates and core remains constant throughout the section 

at all layers, and

if/ = w' (6.1)
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is the bending slope, where the prime notation refers to partial differentiation with 

respect to * in the usual way. The necessary force displacement relationships for axial 

extension and bending of the faceplates are

respectively, where = Eiti and EiI i are the axial and flexural rigidities per unit width 

of faceplate / and u\ is the average normal strain of faceplate i .

It is assumed that plane sections of both the faceplates and core remain plane as the beam 

bends. However, in the former they will remain perpendicular to the beam axis, but not in 

the latter. Hence, in a similar way to Eq. (5.11b) the shear strain in the core layer is given

(6.2a, b)

by

x,u

u

---------------------- I TTop faceplate

u c

Core t c

1L
Bottom

faceplate tb

y,w
Unit width ^

Figure 6.1: The displaced section, cross-section and co­
ordinate system of a typical sandwich beam of unit width.
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r c = y { v - -  , U" ) (6.3)
t. a

where d = tc + -  — is the distance between the centre lines of the faceplates. The

force-displacement relationship for shearing deformation in the core is

qc =tcrc =Gctcy c (6.4)

where rc is the uniform shear stress through the core thickness and Gc is the effective 

shear modulus of the core material. Also from Figure 6.1 it is clear that uc andcpc, the 

average longitudinal displacement and rotation of the core, are given by

u,+uh , ut - u h - w  e7 .
uc -  —   + y/ ex and (pc -  —----    , (6.5a,b)

th — t . ,
respectively, where ex -  —— - and e2 -

2

6.3 GENERAL VIBRATIONS OF A THREE-LAYER SANDWICH BEAM 

INCLUDING AXIAL INERTIA

6.3.2 Derivation of the governing differential equation of motion

The governing differential equations of motion can be derived in two ways: an 

Equilibrium approach and an Energy approach.
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6.3.2.1 Equilibrium (Newtonian) approach

Consider Figure 6.2, which shows a typical elemental length of a member at some instant 

during the motion. The equation of horizontal equilibrium can then be written as

¥

//w d*

dm , 
v  m + —  dxm

McK d x
 <4-----

d*

Figure 6.2: Positive resultant forces and moments and
reversed linear inertias acting on a typical elemental length 
of a sandwich beam of unit width in local co-ordinates. The 
layer dimensions are also shown.

dnt dnb •• •• •• /a—  + — - = p tut + p cuc + p bub (6.6)
ox ox

where nt and nb are the axial forces in the top and bottom faceplates, respectively, 

//,, pb and /uc are the mass/unit length of the top and bottom faces and core, respectively, 

and the dot notation refers to partial differentiation with respect to time in the usual way.

Substituting Eqs. (6.5a) and (6.1a) into Eq. (6.6) gives the first differential equation of 

motion as
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(6 .7 )

Since, in free vibration analysis, the only vertical force is the transverse flexural inertia, 

the equation of vertical equilibrium is

From Figure 6.3 and Eq. (6.4), it is clear that q -  qt + qb +qc is the resultant shear force 

at any normal section of the element, where q subscripted with t, b, or c relates to the 

shear force in the top faceplate, bottom faceplate and the core, respectively, and 

// = //,+ nb + nc is the mass per unit length of the beam.

Taking moments about the centre line at the right hand side of the bottom faceplate in 

Figure 6.2 and ignoring terms of second order yields the moment equilibrium equation as

where mt and mb (see Figure 6.3) are the bending moments in the top and bottom 

faceplates, respectively.

Substituting Eqs. (6.1a), (6.5a), (6.2) and (6.10) into Eq. (6.9) yields the resultant shear

(6 .8)

q d x ------ d x  + — Ld x ( d )~  jutiit dx (d )  -  n ciic dx(a)  = 0
dx dx

(6.9)

a = — is the distance between the centre lines of the bottom faceplate and the core 
2

and m is the resultant bending moment at any section given by

(6.10)

force as
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dx

m

dm
d x

d *

dm

d x

Figure 6.3: Component member forces and moments and inter 
member stresses on a typical elemental length of a sandwich beam.

q = - ~ —  K,du", +(dfi, + + a ^ - u b + aelficy}
k  2 2

(6 .11)

Now, substituting Eqs. (6.11) into Eq. (6.8) gives the second differential equation of 

motion as

!&> + —  + K,d u " -  (dfi, + a ^ - ) u ' , - a ^ u ' b - a e tficy>' = 0 
k  2 2

(6.12)
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The equation of horizontal equilibrium for the top faceplate in Figure 6.3 may be written 

as

dnt d2ut
— - d x  + rt d x  = ut  -
dx ' dt

dx  + Tt d x  = jut - ^ - j - d x  (6.13)

where r, is the shear stress at the interface between the top faceplate and the core. It then 

follows that

T ' = - K t f +  jutut (6.14)

In addition, the equation of horizontal equilibrium of the bottom faceplate in Figure 6.3 

may be written as

^ - d x - r b d x  = fi. - ~ -djr (6.15)
dx b b dt2

where zb is the shear stress at the interface between the bottom faceplate and the core and 

hence

Tb = Kbu l -  fibub (6.16)

Since it was assumed that the shear stress through the core thickness has an average value 

of r c, the equation of moment equilibrium of the core about the centre line at the right 

hand side of the core in Figure 6.3 can be written as

rt ^ x ~ ~  Tb d * ^ - + Tctc d* = 0 (6.17)

Substituting from Eqs. (6.3), (6.4), (6.14) and (6.16) into Eq. (6.17) gives the final 

differential equation of motion as
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vr n •• v  n . •• 2G d  2G 2Gc _K , u , - H , u , - K bui + n bub + —f — y, — ^  ub = 0 (6.18)

Attention is now confined to harmonic motion in which the time dependent terms are 

related to co, the circular frequency, by

f ( x , t )  = F(x) e l (6.19)

and the upper case characters refer to the amplitude of the equivalent time dependent 

quantity. Hence, using Eq. (6.19) in the partial differential equations of Eqs. (6.12), (6.7) 

and (6.18) yields the following linear differential equations with constant coefficients

.2rr/ . W* _ ^ JrrWl /j.. , „Mc\^̂ 2TTt , r Tr-{XDZW +----- + K td U*+ (dpt + a ~ ) c o  U't + a ^ a ) 2U'b + a e ^ a r W *  = 0
k  2  2

K,u;+KbU'b+(Ml + ^ )« > 2t/, +(/«, +i±)c°2Ub +Mce y w '  = 0 

K W + w ' U . - K J U l - w ' U h  + ^ - W ' ~ ^ U ,  + ^ u b =o

(6.20)

Now using the operator D = d/ d x , Eq. (6.20) can be written in matrix form as

^ — + ae{juco)2D 2-/xco2
K

K ,dD 2 + {dpt + a ^ ) c o 2D a — co2D
2

~W~

pce,o)2D K tD 2 + (pt +^-)a>2 K bD 2 + (pb +^-)(o2 u,

2G‘d D
*c

KtD 2 + jut(o2 -  — -  
tc

KbD2 n bc o 2 + c P i .

= 0 (6 .21)

Eq. (6.21) can be combined into one equation by eliminating either W , U, or Ub to yield 

the linear eighth order differential equation as

[D 8 +c,D6 +c2D4 +c3D 2 + c4] V  = 0 (6 .22)

where V = W ,U t or Ub and
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C1 =  (4  + + V cK e \ W  -  s c ( - ^  +  K  )
f  4g <T?

Cl ,  ( M .  + ^ > + j W  W4
X * .  4K,Kt ?

S c^ K e ,  AT,- *'* e, - 1 «  s „  ,
L— 71—  {- T \  v — ~7 ) ~ ^ k ( -  + 7 - ) - / <(k + .2„  „  ) K  K t + K b d  g 4g d 2K tK b

= n c W e \ , (6 23)

A

-{/"<: ('i + - ^ ) + - ^ ^ - [ Ju,Ju4 + + -u* ) (4  + ̂ r  )]}“ '
c 4q K tK b d  4 d

Scp k 2
+  ■ ■ _  f t T

C4 = _  [ M .  + M £ l ± M ]/;  k  w .  +
X * .  4A',j^ 4 < /x * »

where

? = K tK b/ ( K , + K by9 g = K tK b/ ( K tMt + K bp b)- Sc =
G d:

(6.24)

63.2.2 Energy approach

An alternative method for deriving the governing differential equations of motion is 

through an energy approach. In this way it is possible to avoid the vectorial equations of 

equilibrium by using scalar quantities associated with the variational form of Hamilton’s 

principle. In this approach, variations of the potential and kinetic energy of the internal 

and inertial forces are utilised. The potential energy of the internal forces is strain energy, 

which is equal to the negative work of the internal forces, while the kinetic energy is 

calculated from the inertial forces.
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6.3.2.2.1 Potential energy

The total strain energy for a beam of length L can now be written as

' \
2

L,
cYc

1 1
+ 2 nt£t + 2 ribSb

1 ,—  my/
2

d x

Strain energy of the core due to 
shear deformation

Strain energy of the faceplates 
due to axial deformation

Strain energy of the faceplates 
due to bending deformation.

(6.25)

where e, = u\ is the average normal strain of faceplate i (i = t, b). Now combining Eqs. 
(6.3) and (6.4) gives

o d  u t — u,
qcyc = Gtcy \  = Gt [— (xp----

d

2 ut ub 2 y/ut 2 y/ub 2 utut
c T + ~ d  d r

(6.26)

Gdwhere S c = ------ . Also from Eq. (6. la) we have

n,e, = E,ttu? = K ,u f (6.27)

Substituting Eqs.(6.23), (6.24) and (6.10) into Eq. (6.25) gives the total strain energy as

u] u\ 2yut 2y/ub 2utub K t ,2 K b y
U = ] [  +

f 2
+ ) + - L u'; + - ^ -u ,b +^— ] d x (6.28)

d l  d 2 d  ' d  d 2 ' 2 ' 2  ° 2 k

63.2.2.2 Kinetic energy

In similar fashion, the kinetic energy of the sandwich beam including the axial and 

transverse inertia of the layers is given by
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L.
r = |

' 1  -2
2 ^  +

1 -2 1 -2 » .2 
r  M,«, + - r ! * c K  + r / ' X

Transverse inertia of full section

d x  (6.29)
Axial inertia of each layer

Substituting Eqs. (6.5a) into Eq. (6.29) enables the total kinetic energy to be written as

•  2  *

T = \ [ - ^ 2 +^Mt w,2 + + ̂ ( 7  + 7  + ̂ i 2 + - v  + " '^ i  + W ) ]  (6.30a)

or

r  = {[i /™’2 + ̂ <A + ^ ) v l \ A x

(6.30b)

6.3.2.2.3 Application of Hamilton’s principle

Applying Hamilton’s principle in the form

'2 h h L
S m <!> = S m $ L d t  = S m j ( T - U ) d t  = <?(l) J  j > d *  d f  = 0 (6.31)

t, 0

in which the Lagrangian, L - T  - U , has bean replaced by the functional J  Fcbc, where
o

the function F  can be identified from Eqs. (6.28) and (6.30b) as

+ ±( *4 + ^ H 2 - ^ ( r 2 + J  + | - - ^  + ̂ - ^ )  (6.32)
2 4 2 a a a a

ti

2  ' 2  2  k

generates the governing differential equations of the motion. This could be evaluated by 

solving Eq. (6.31) directly (Dym and Shames 1973), but use is made here of the Euler-
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Lagrange equations for a functional involving higher-order derivatives with more than 

one independent variable that are given by

dF d dF d dF d 2 dF d 2 dF „
+    -  +  r =  0

dw dx dw' dt dw dx2 dw* dxdt dwf 
dF d dF d dF
dut dx du\ dt dut
dF d dF d dF
dub dx du[ dt dub

=  0

=  0

(6.33)

Using Eq.(6.2) and imposing Eqs. (6.33) on Eq. (6.32) yields

, S , d2 w 1
(~Scw + ~ u t — f  ub) - — (pw) + —  (----- ) + - r r - [ M c e i ¥  + ~ M c e i ( {lt + ̂ ) ]  =  0dx d dt dx k  dxdt

S w' Sc Sc d f .. d ,nc . juc fic .(—f---- ~lTut + -lTub )--z -(-K lut) - — (— elw +(jit + —  )ut +— ub = 0
a  d  d  dx dt 2 4 4

(6.34)

( -
S„w‘ 5. d A Meub)~ —  (~Kbu’b jucw'el + -  nciit + (pt + ~^)ub) = 0

d  d 2 1 d 2 dx" ° v' dt"2‘ c ‘ 4 * * « '“  4

The possible boundary conditions can also be deduced from Hamilton’s principle as

dF
dw*

=  0 or wr = 0

d dF d dF dF
+  =  0

dx dw* dt dw' dw'
or w = 0

dF
du't

dF
du[

= 0

=  0

or

or

u =  0

ub =0

(6.35a,b) 

(6.36a,b) 

(6.37a,b)

(6.38a,b)

Eqs. (35a-38a) are the natural boundary conditions at either end of the element, while 

Eqs. (35b-38b) are the kinematic boundary conditions. The natural boundary conditions 

state the requirements for bending moment, shear force and axial forces in the faceplates 

as
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w n
 - m  =  0

K
(6 .3 9 )

d  , d  r 2 . / ✓. . s a  .  , w. w.— (  )  +  — • t w »  +ftcel(,u, + u 4 ) ]  +  S„(w -  —  +  —  ) = q = 0
ox k  d t  a d

(6.40)

K tu\ -  nt = 0 (6.41)

Kbu'b =nb = 0 (6.42)

If attention is now confined to harmonic motion as defined by Eq. (6.19), Eq. (6.34) can 

be written as

W’ + ScW " - f i ce?a>1W ’ + M<»2i V - ^ U ; - ^ e l G>2U; + ̂ LU'b- ^ e l o)2U'b = 0

S W '  . n
+— co2el w , - ^ U t +(/it + ~ )co2Ut +Kt U' + ̂ \ U b + ^ Lco1Ub = 0

d 2 d ‘

Sj p  + ̂ c o 2e, W' + ̂ U ,  +^-a>2U, - § - [ /„  + <j*b +^-)co2U „+KbU"b = 0 
d 2 d 4 d  4

(6.43)

Multiplying the first equation of Eq. (6.43) by (-1) and using the operator D = 6/d x ,  Eq. 

(6.43) can be written in matrix form as

—  - S cD2+ Mce!2 co2D 2 -HQ}2
K = = = = =

^ D  + ̂ c o \ D  d 2 1

-  —  D  + —  (o2e, D

~ — D + ~ e l co2D d 2 1

+  —  a )z

^  + ̂ CQ2
d2 4

- ^  + (Mb+^)c»2 + KbD2

W

Ut

uk

=  0
(6.44)

where the matrix operator is symmetric. The double underlined terms in Eq. (6.44) result 

from the inclusion of the longitudinal inertia. Combining Eq. (6.44) into one equation by 

eliminating either W , U t or Ub yields a linear eighth order differential equation that is 

identical to Eq. (6.22). This can be seen from the fact that the matrix operator of
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Eq.(6.21) can be determined from the matrix operator of Eq. (6.44) using matrix 

operations that don’t change its determinant, as follows:

i) Differentiate the second row of Eq. (6.44) once, multiply by d  and then add it to 

the first row of Eq. (6.44) to give the first row of Eq. (6.21),

ii) Add the last two rows of Eq. (6.44) to give the second row of Eq. (6.21), and 

finally

iii) Subtracting the second row from the third row of Eq. (6.44) yields the third row of 

Eq. (6.21).

For later use it is convenient to represent Eq. (6.44) in a more symbolic form as

AXD 4 + A2D 2 + A3 (A4 + A5)D (~A4 + A5)D

(A4 4- A5 )D A6D 2 + A1

( A4 + A5 )D Ag A9D  + Al0

W

Ut

u k

=  0 (6.45)

where

Ax = 1 / k ; A2 = - S c +Mcei i A3 = —p  co ; A4 = S c/d\

As = ^ l <?i 6>2; A6 = K t ; A7 =(jut + n c /4) co2 -  S c/ d 2; 

A g = S c/ d 2 + o>2//c /4; A9 = K b; Al0 = (jub + Me / 4) - S e/ d :

(6.46)

6.3.3 Dynamic stiffness formulation

In the dynamic stiffness matrix method, the harmonically varying forces are related to the 

harmonically varying displacements. Expressions for the general displacements 

W, W, U, and Ub can be deduced from Eqs. (6.2), (6.19) and (6.22) and the expressions
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for the corresponding forces can be obtained by substituting Eq. (6.19) into Eqs.(6.39)- 

(6.42) to yield

W'Q = - -  (jucefa)2 -  S c )W' -  (/icco2el + ^ - ) U t - { ^ e ,  ~ ^ ) U b
k d a
W ”M  = ———

K

N. = Ktu;

N b = K bU[

(6.47)

Alternatively, Eq. (6.47) can be determined from the theory presented in the equilibrium 

approach by imposing Eq. (6.19) on Eq. (6.11), (6.10) and (6. la). The only difference is 

that the expression for shear force is presented in an alternative, but numerically equal 

form as

Q =   aelMcco2W f -  K td U ”-{fx td  + ^)co*Ut -  =-a>*Ub
k  2 2

a (6.48)

6.3.3.1 Solution o f the governing differential equation of motion

The next step is to solve the governing differential equations of motion, Eq. (6.22), for the 

harmonically varying displacement field. Eq. (6.22) is a linear differential equation with 

constant coefficients and its solution can be sought in the following form

V = Z Cytj  where ^  0 < x  <L  (6.49a,b)
7=1

tjj are the roots of the characteristic equation stemming from Eq. (6.22) and the CtJ are 

arbitrary constants where, for convenience in developing the work that follows, i is an 

assigned integer that defines a set of j  arbitrary constants, e.g. CXJ = AJt C2j = Bj etc.,

where A j , are independent sets of arbitrary constants.
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The rjj can now be determined as the roots of

rj + cxtj + c2rj + c3r}2 + c4 = 0 (6.50)

The rjj define V ( W , U t or Ub \  which may be substituted into Eq. (6.47) to yield the 

following results

w  = I

v  = ix ,c ,C ,  M = ± H 6Jc JcJ
M M

U , = ' Z H 3jC / ; J
M M

j=l M

(6.51)

where H^Cj = Cv, such that Cy is common to all the equations and H y is the relational 

constant. Noting that one of the H  y is arbitrary, it is convenient to set H Xj -  1, which 

yields the following relationships between the H y of Eqs. (6.51)

" u = l

H2J=rlj

A  (A  n) + A n )  + A , ) - ( A 2-  Al )>tj

[{An)  + A X A  - A ) - A ( A + A ) 1 n ,

H *,=~
(A4 +A,)tij +(4,  r\) +A7)H3j

Hv = K irtjH  „

Alternatively, Eq. (6.48) yields H 7J as

(6.52)

H 5j = -  {—  + aetftca)2r)j + [K,dn) +(fi,d + fic^)co2]Hy  +nc ~ m 1H iJ}
K jL Z*

(6.53)
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6.3.3.2 Transformation between local and member co-ordinate systems

All the equations developed so far have been based on the forces and displacements in the 

local co-ordinate system shown in Figure 6.4(a). The stiffness formulation requires all 

nodal forces and displacements to be represented in the member co-ordinate system 

shown in Figure 6.4(b). Hence, the nodal forces and displacements in the local co­

ordinate system are now transformed to the member co-ordinate system.

The relationship between the forces and displacements in these two co-ordinate systems 

can be obtained by comparing Figures 6.4(a) and (b). This is equivalent to imposing the 

conditions of Eq. (6.54) onto Eq. (6.47).

At x = 0 :

(6.54)
At x = L :

y ,W >
- N a . - N u .

▼
U tl ’ U b\ - Q ^ W ,

(a)
M,W

M2,*F2 
2 \

(b)

Figure 6.4: Nodal forces and displacements a) in local 
co-ordinates, b) in member co-ordinates.
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6.3.3.3 Dynamic stiffness matrix

The dynamic stiffness matrix relates the forces to the displacements at the two end nodes 
of a member as

p =kd

where

(6.55)

d =

wt - " a  '
M,

f t ,
N u

W2 ; p =
f t

v 2 m 2

Ua n ,2

.N n .

(6.56)

and k is the eight by eight dynamic stiffness matrix. As a result of Eq. (6.51), all of the 

elements of d and p are related to the coefficient vector C through the matrices S and S* 

by

d = SC and p = S*C (6.57a,b)

where

C,
f t

f t

f t

f t

f t

f t
c.

(6.58)

and sv and s’ , the elements of S and S‘ , respectively, are as follows
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s i j  H i j  » s 2 j  H 2j  > S $ j — H y  > S 4 j — H t j

ssj~H\jXj  > s6j —H 2jX j  > sij j X j \  -S’sj  —H 4j x j

s \j H SJ , s 2J H 6j , s 3j — H nj ; s 4 j — H %J.

S5J ~ H s j  X j  y s 6j  ~ ~  H 6j X j  y S7 J  =H7 j X j ' y  S% j  j  X  j

X , ^ " ‘L (y  = 1,2, . . .8 )

(6 .5 9 )

where their subscripts correspond to row and column co-ordinates in the usual way. 

The required dynamic stiffness matrix, k, follows through the following steps

The dynamic stiffness matrix for the overall structure can now be assembled from the 

element matrices in the usual way. In the next section, the method for converging with 

certainty on the required natural frequencies is described. Once the required natural 

frequencies have been determined, the corresponding mode shapes can be retrieved by 

any reliable method, such as described in reference (Howson 1979).

6.3.4 Converging on the natural frequencies

The dynamic structure stiffness matrix, K, when assembled from the element matrices, 

yields the required natural frequencies as solutions of the equation

where D is the vector of amplitudes of the harmonically varying nodal displacements and 

K is a function of co, the circular frequency. When K is developed from exact member 

theory the determinant is a highly irregular, transcendental function of co and such a 

formulation necessitates the solution of a transcendental eigenvalue problem. This is 

accomplished using the Wittrick-Williams algorithm (Wittrick and Williams 1971a),

C=S"l d therefore p =S *S *d  and finally k = S * S ! (6.60)

K D  = 0 (6.61)
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which determines how many natural frequencies lie below a specified trial frequency. The 
algorithm states that

J  = J 0 +s{K} (6.62)

where J  is the number of natural frequencies of the structure exceeded by some trial 

frequency, co*, J 0 is the number of natural frequencies which would still be exceeded if 

all the elements were clamped at their ends so as to make D = 0, and s{K) is the sign 

count of the matrix K. s{K} is defined in reference (Wittrick and Williams 1971a) and is 

equal to the number of negative elements on the leading diagonal of the upper triangular 

matrix obtained from K, when co-co*, by the standard form of Gauss elimination 

without row interchanges.

The knowledge of J  corresponding to any trial frequency makes it possible to develop a 

method for converging upon any required natural frequency to any desired accuracy. 

However, while s{K} is easily computed, the value of J Q is more difficult to determine 

and is dealt with below.

6.3.4.1 Determination o f  J c

From the definition of J 0 it can be seen that

j 0 = 2 X  (6-63)

where J m is the number of natural frequencies of a component element, with its ends

clamped, which have been exceeded by co* and the summation extends over all such 

elements. In this case, the determination of J m is achieved by an argument based on Eq. 

(6.62) which was originally put forward by Howson and Williams (Howson and Williams 

1973).
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Consider an element that has been isolated from the remainder of the structure by 

clamping its ends. Unfortunately, this structure cannot be solved easily. We therefore seek 

to establish a different set of boundary conditions that admit a simple symbolic solution 

and which enable solutions to the clamped ended case to be deduced. This is most easily 

achieved by imposing roller-roller supports which, in this case, permit rotation and 

longitudinal motion of the faceplates, i.e. lF , Ut andUh respectively, but prevent lateral 

displacement W, (Figure 6.5).

End 1 End 2

U t ---------> ----------------------------------------------------------------------------------------

L
<  = >

Figure 6.5: Roller-roller supported beam and the position 
of possible axial freedoms through the beam thickness.

Let the stiffness matrix for this structure is k ” , then the number of roots exceeded by co*

is given by equation (6.62) and the arguments above as

J r r  + 5{krr} (6.64)

where J „ is the number of natural frequencies that lie below the trial frequency for the

element with roller-roller supports. It then follows directly that

(6-65)
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Once more k " , and hence •sfk”’} , is readily obtained, this time from Eq. (6.60). J ^  is 

slightly more difficult, but relates to the element with boundary conditions that yield a 

simple exact solution, as shown below.

For the roller-roller-supported case, the boundary conditions are defined by 

M x = M 2 =Wl =W2 =0  (6.66)

These conditions are satisfied by assuming solutions of the form 

W = Bx sin 3 x
Ut-  B2 cos d x  (6.67)
Ub= B3 cos d x

n 7twhere B\, Bi and Bt, are constants and <5 =  , ( n = 0,1,2,3,...). Since Eq. (6.22) is a
L

combined equation which allows for the effects of W, Ut and Ub, substituting any part of 

Eq. (6.67) into Eq. (6.22) yields the frequency equation for a roller-roller supported beam 

as

d8 - c td6 +c2d4 - c 3d2 +c4 = 0  (6 .68)

Substituting Eqs.(6.23) into Eq. (6 .68) leads to the following frequency equation

bxco6 + b2coA + b3co2 +b4 = 0 (6.69)

where
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K
*1 = ~ V l H  (M + S 2ficef ) + MMc(M,+ A»)/4]

t b

+ M K (1  + ̂ ) i s 1 + { p t i -  + ^ ^  + ̂ } + M l L y ?
c 4? K ,K k AK,Kb g

Sd  q d  K t + K b d  q 4q d 2K tK b

-  + ~~  + BCK e\ )d6q 4q

bi = S c( - ^ -  + K ) S 6 + S i 
d  q

(6.70)

Eq. (6.69) can be expressed as a cubic equation in co2 and consequently its real, positive 

roots are the square of its natural frequencies for each value of n = 0 ,1, 2, .... Hence

is given by the number of positive values of <yMthat lie below the trial frequency, co*. 

Thus, substituting Eq. (6.65) into Eq. (6.63) gives

• / o=E G/ „ - 4 <k ' ' »  (6-71)

The required value of J  then follows from Eq. (6.62).

It is interesting to note that when n -  0, 8  = 0 . The coefficients b3 and bA are zero and it 

can be shown that bx is always negative and that b2 is always positive. Eq. (6.69) then 

yields a single non-trivial real root. It is equally clear from Eq. (6.67) that

W = 0 ; Ut -  B2 ; Ub= B3 (6.72)

Thus the mode corresponding to n = 0 has no lateral displacement and horizontal rigid 

body displacements of the faceplates. Furthermore, since there is no axial extension, the 

frequency corresponds to the fundamental shear thickness mode.
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6.4 GENERAL VIBRATIONS OF A THREE-LAYER SANDWICH BEAM 

INCLUDING LONGITUDINAL AND ROTARY INERTIA

Although the inclusion of longitudinal inertia has a major influence on the theory of 

Chapter 5, the second order effects due to rotary inertia can be included to yield a more 

accurate version of the theory that is important when considering deep sandwich beams or 

when vibrations occur at high frequency. Hence, the only difference between this section 

and Section 6.3 is to modify the theory for the influence of rotary inertia. Hence only 

those equations that have to be modified are given.

6 .4 .2  Derivation of the governing differential equation of motion

6.4.2J  Equilibrium approach

Consider a typical elemental length of a member at some instant during the motion, as 

shown in Figure 6 .6 . The only differences between this figure and Figure 6.2 are the 

reverse rotary inertia actions. Hence, Eqs. (6.6)-(6.8) still hold. Eq. (6.9) should be 

modified to include the rotary inertia effects as

q d x -  —  d x  + ^ J- d x ( d ) - j u liit d x ( d ) - p ciic dx{a)  
dx dx

+ /jb^ d x ) w '  -  ficj ^ d x f i c = 0
(6.73)

Now, substituting Eqs. (6.1a), (6.5), (6.2) and (6.10) into Eq. (6.73) yields the resultant 

shear force as

q = ~ - K , d u ’ + (tJ,d + fic ^  + fic ^ ) u ,  +(Mc^~ Me

/ 2 t2 t 
+ (aexfic + ft, - h  + n k -  fic )#

(6.74)
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¥

f i w d x' r

dx

dmm d xm +

Vcuc d x  
- - « * --------------

d x

Figure 6.6 : Positive resultant forces and moments and reversed 
linear and rotary inertias acting on a typical elemental length of a 
sandwich beam of unit width in local co-ordinates. The layer 
dimensions are also shown.

On substituting Eq. (6.74) into Eq. (6.8) the equivalent second differential equation of 

motion is given as

fiw + —  + K td  u ” -  (dfit + a ^ -  + fic T z)^ ’b
k  2 12 2 12

t 2 t 2 
- ( a e lfi c +

(6.75)

Eqs. (6.13)-(6.16) still hold, but Eq. (6.17), which is a moment equation, should be 

modified to include the rotary inertia of the core, as follows

t t t 2
- T t d * ”  Tb d * y  +  Tctc d* -  IXc ^ d xipc = 0 (6.76)

Substituting Eqs. (6.3), (6.4), (6.5b), (6.14) and (6.16) into Eq. (6.76) gives the equivalent 

final differential equation of motion as
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K,u’, -  Qi, + ̂ ) t i ,  -  K bu’„ + (Pb + ^ - ) u b + ¥
o  6  t„

2G, ut + 2 Gc n c ..
o

(6 .7 7 )

Substituting Eq. (6.19) into the partial differential equations of Eqs. (6.75), (6.7) and 

(6.77) yields the following linear differential equations with constant coefficients

W
-H<Q*W + - —  + K tdU?+ {dfit + a ^  + v c ^ ) c o 2U't + ( a ^ - j u c ± )co2U ’

K 12 ‘ 2 12 

+ (aeiMc ft‘ u e2) a)2ff"  =  0

Acs.. 2,K,u;+K„U’b + (Jt, + + (j, t + ^ * > ‘1/, + Mcetco2W' = 0

K,u ;+(m, + ^ ) ( o 2U , - K bU l - ( n b + ? f W U b + ^ - W '
o o

1+^ L  u  e2co2W' = 0 
t .  t .  4 6

(6.78)

Now using the operator D = d/ d x , Eq. (6.78) can be written in matrix form as

D> -  nay1 +[-/M '2 + / V ‘
K 12

t.
-Vc(aei + ^ 2)](02D 2 

[tce}oj2D

K td D 3 + [dfit

+  u c(— +  — )]cq2D  
2 12

( a ^ - n c — )a>2D 
2 12

K tD 2 + ( Ml + ^ - ) c o 2 K bD 2 + ( n b + ^ ) u/fc ^ 2  
2

2 G d u i 
(~ ^ ----~ e 2co )D <

\ k , d 2 - 2 G < ] 
K ►

KbD 2 + 2Gc

‘c 6 + ( n t + ^ j r ) c t ) 2 
o ~ ( /* b  + ^7~}a)2 0

W

Ut

u„

=  0
(6.79)

Eq. (6.79) can be combined into one equation by eliminating either W, U, or Ub to yield 

the corresponding linear eighth order differential equation. However this is postponed 

until application of the energy approach confirms Eq. (6.79).
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6.4.2.2 Energy approach

Since inclusion of the rotary inertia terms does not affect the potential energy of the 

element, Eqs. (6.25-6.28) still hold.

6.4.2.2.1 Kinetic energy

The total kinetic energy of a sandwich beam of length L including the axial, rotary and 

transverse inertia of the layers is given by

L

r = J
o

V

~y.w2 +
2

i t 2 , , 2 l t 2b , , 2 l— Ll.— W + — U.— W + — n  'i ~ b n  n He
!L

Transverse inertia of full section

d x  Axial inertia of each layer (6.80)

Rotary inertia of each layer

Substituting Eqs. (6.5) into Eq. (6.80) enables the total kinetic energy to be written as

i 1 j j
T  = ] [ - H * 2 + ~ M , +  ~ H t «

2 2
1 t l , U h . 2  U f U i  • . f • t \  1 /  \  ‘ >2

‘ -  + utw e ^ u . w  ei) + - ( f i t —  + Mb— >+ “ ^ ( 4  + 4  + ^ ?  +

t l  M 2

12 /( - T  + +
w,2e 2 2 utub 2 utw'e2 2 ubw'e+ - )]dx

(6.81)

or

T = \[\) fiw2 +^-rw'2 +ftcw'(u,e} + ubet )

6 I  L

(6.82)

2 2

where e3= ^ - ^  ;e4 = y  + ̂  a n d r  = ----- —------ + //ce, + — e2
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6.4.2.2.2 Application of Hamilton’s principle

Considering the effects of rotary inertia in the kinetic energy Eq. (6.82) requires Eq. 
(6.32) to be modified as

Imposing Eqs. (6.33) on Eq. (6.83) yields

d / e ' Sc Sc , d , d2 . w \  d2 , ., . . , n
~ a i ( r S ’ w

Scw' Sc Sc . 0 , d , ., nc . He . •  ̂ n+ - j U b) -  —  ( - K tut ) - ~ - ( f ^ cw e 3 +-— ut + —  u b +(*tut ) = 0 
d d d dx dt 3 6

d_
dx

d_
dt

Me ...
(— ~ T  + - J i ut - ~ l T u b ) - - z - ( - K bu 'b)--z-(Mc'*,'e4 + T + ~ r u b +Mtu b) = 0 d d d ox dt 6 3

(6.84)

The possible boundary conditions of Eqs. (6.35)-(6.39) and (6.41)-(6.42) have not been 

affected. However, the equivalent of Eq. (6.40), i.e the shear force, modified as follows.

T - ( - — )  +  T-lr + Me ( " , e 3 +  ) ]  +  £ < > '  -  - r  +  %  =  9  =  0dx k  d t  d  d
(6.85)

Once more attention is now confined to harmonic motion, as defined by Eq. (6.19), and 

Eq. (6.84) can be written as

W"" + § W" -  rco2W" + JU m2 W -  % ( /;  -  n ce, w 2U', pice, co2U'b = 0
d  dK

S J V + Hcc o \ W ' - ^ - U l +/x,a>2U, + K , u ;  + -^-U„ + =0

^  + Mc<02et W' + ^ U , +  ^ < o 2U, ~ ^ U b + Jtbm2Ub + KbU’b = 0 
d  d  6  d

(6 .86)
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Multiplying the first equation of Eq. (6.43) by (-1) and using the operator D = d/dx,  

Eq.(6.86) can be written in matrix form as

^ - - S CD2 +ra>2D2 -fia>2
K

— D + n ^ o f D
a ■■

~ ^ D  + fice4a)2D
a -----------=

~w~

s S u (6.87)
- f D  + ficQ) e3D —̂  + (M '+Y ) co + K <D -~  + ̂ -co2 

d 6 Ut = 0

- ~ j D  + nca)2eADa = = = = = - ^ + ( n  + f)o>2+KtD2

The double underlined terms in Eq. (6.87) results from the inclusion of both longitudinal 

and rotary inertia terms. Furthermore, the matrix operators of Eqs. (6.79) and (6.87) are 

equivalent and the latter can be deduced from the former by utilising matrix operations 

which don’t change its determinant, as follows:

i) Add the last two rows of Eq. (6.79), then divide the results by 2, to give the 

second row of Eq. (6.87);

ii) Subtract the third row from the second row of Eq. (6.79) and divide the results by 

2 to yield the third row of Eq. (6.87); and finally

iii) Differentiate the resulting second row of Eq. (6.87) once, multiply by d  and then 

subtract it from the first row of Eq. (6.79) to give the first row of Eq. (6.87).

For future use it is convenient to represent Eq. (6.44) in a more symbolic form as

~AxDa + A^D2 + A2 (A4 +A5)D {-A 4 +A6)D ~W~

(A4 + A5)D a 7d 2 + a 8 A, u t = 0 (6.88)

(~A4 +A6)D a9 Al0D 2 +AU _ P b.

where
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Ax - \ / k\ A2 = - S c +rco2; A3 = -/u co2; A4 = Sc/d\

A6 = fi'Co2e,; A7 =K,;  Ab = (jt, + y )  o)1 - S / d 2-, ■ 

A, = Sc/d 2 + co2Mc / 6; Aw = K b; An = (jib + ^)< o 2 ~ S c/d 2

Eq. (6.87) can be combined into one equation by eliminating either W , U, or Ub 

the corresponding linear eighth order differential equation as

[D 8 + c,D 6 + c2D 4 + c3D 2 + c4] V  = 0

where V = W, Ut or Ub and

c,  = { \  +  ^  +  K r  )co2 - S c{ - A -  +  k  )
? 3? d  g

c2 = [— —̂ (// -  — ) + r k(4  + — ) -  —  + —  )]cu4
2 ' h 3 4 ? 3? a:,

A A . A
rSc rK 2 S ckjuc ,e3 e4 - 1 // Sc 2

ar?  d  K, K b C 3? d  K ,Kb

c3 = + + /2'e* + ^ ( e3 + e4 ~e3e4)]}<y6
K tK b 4 ^  t b **

- ^ [ / A  + ̂ -(/r, -A*)]>]0J4 ~ 2
c/ 12 2 ' ‘ rf2?

ft)

U K  r . MMc  / i c \  _ 6  , _ 4
C .  = ------   (  U . , U l H-------------------------- )  ft>------- -I--- z---------------CO

4 K,Kb 3 4

where ? and ? are defined in Eq. (6.24).

(6 .8 9 )

to yield

(6.90)

(6.91)
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6.4.3 Dynamic stiffness formulation

Expressions for the general displacements W, ¥ ,  U, and Ub can be deduced from Eqs.

(6.2), (6.19) and (6.90) and the expressions for the corresponding forces can be obtained 

by substituting Eq. (6.19) into Eqs. (6.85), (6.39), (6.41) and (6.42) to yield

W m C1 o
Q =  < W  -  Sc)W '-(M c(o2e3 ~{fic<o2ei ~ - j ) U b

k d  d
M  - - W ”

K

N, =  K,u:

N„ = K bU ’„

(6.92)

An alternative form of Eq. (6.92) can be developed from the theory presented in the 

equilibrium approach by imposing Eq. (6.19) on Eq. (6.74), (6.10) and (6.2a). The only 

difference is that the expression for shear force can be presented in an alternative, but 

numerically equal form, as

W m t t t
Q = --------- (aWc + M, -7T + Pb TT -  H e r r '*2 > 2W  -  K,d U1

k  12 12 12
-  ( M , d  + M.  f  ■+ ^  -  O '. §  -  M. ^ > 2U b

(6.93)

6.4.3.1 Solution o f the governing differential equation of motion

The solution of Eq. (6.90), which is a linear differential equation with constant 

coefficients, can be sought in the following form

v  = Y t CvCJ where <T, = e v ; 0 < x < L  (6.94a,b)

rjj are the roots of the characteristic equation stemming from Eq. (6.90) and the CtJ are 

arbitrary constants where, for convenience in developing the work that follows, / is an
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assigned integer that defines a set of j  arbitrary constants, e.g. CXj = AJt C2j = B} etc., 

where , Bj  are independent sets of arbitrary constants.

The rjj can now be determined as the roots of

rf  + cxrf  + c2r}* + c^rj2 +c4 = 0 (6.95)

The rjj define V (W, Ut or Ub), which may be substituted into Eq. (6.92) to yield the 

following results

W = T H u C f i ,  Q = H h u c j£J
7=1 7=1

*  = i HvCjCj M = ± H 6jCj f ,
7=1

8
7=1

8

U, = 1 X 6' / ,  AT, = £ / / 7yC,C,
7=1

8

7=1

iv. = 2 X , c ycy
7=1 7=1

(6.96)

where H yCj = Cy, such that Cy is common to all the equations and H y is the relational 

constant. Noting that one of the H y is arbitrary, it is convenient to set H Xj = 1, which 

yields the following relationships between the H y of Eqs. (6.96)

H * i = ij

A9(A,q* + A r f  +A3) - ( A 6 -  A4 )(4, + As 

l(A9 v) +ASXA6 -  A4) - A 9(At + As)]rj,

H 4j = -
(A, + As )ijt + (A-, rj2 + As )H}J

K
31

S,

H 7j = KlVjH v  H i] = K bV)H tj

(6.97)

Alternatively, H 5i can be written based on Eq. (6.93) as
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(6.97a)

6.4.3.2 Transformation between local and member co-ordinate systems

The stiffness formulation requires all nodal forces and displacements to be represented in 

the member co-ordinate system. Since all the nodal forces and displacements developed 

so far refer to the local co-ordinate system shown in Figure 6.4(a), they should now be 

transformed to the member co-ordinate system of Figure 6.4(b). The necessary 

transformation can easily be achieved by imposing the conditions of Eq. (6.54) onto Eq.

6.4.3.3 Dynamic stiffness matrix

The development of the required dynamic stiffness matrix, k, follows identically the steps 

described in Section 6 .3.3.3.

6.4.4 Converging on the natural frequencies

Solutions of the equation

where D is the vector of amplitudes of the harmonically varying nodal displacements and 

K is the dynamic structure stiffness matrix yield the required natural frequencies. The 

solution procedure corresponds precisely to the one described in Section 6.3.4. Thus we 

seek to find J  of Eq. (6.62) and this is achieved by substituting any part of Eq. (6.67) into

(6.92).

KD = 0 (6.98)
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Eq. (6.90). This yields the frequency equation for a roller-roller supported beam that 

includes the effects of longitudinal and rotary inertia as

<58 -  c,d6 + c2d4 -  c3c52 + c4 = 0 (6.99)

Substituting Eqs.(6.91) into Eq. (6.99) leads to the following frequency equation of 
degree six

bxco6 + b2co4 + b3(o2 + b4 = 0 (6 .100)

where

b . K u  MMc Me v .. , „
K tK t

+ y )^3 + 0 *, + y > 4 - ~ e 3e4]}

S.M2k S  „K
d 2K,Kb K ,K b

r

3 d 1
ft, = ~.f . M + ? (& -  + (7  + ̂ )

4 J
e*> e, , _  . 1 //

, j- M,Mb | MM  + r K( -  + ̂ ) - « 2A :(^- + - ^ ) ] 5 4
K , K „  3 K , K „  4 K , K b 3?" ^  a ,  A"4

* 3 = -
^  K S ! rScrK f}__Z4_),52 -[- +

K t K b
A

+  S CK  (— +-^£-) + /((k +
f  3? </2a :,k 6

)]<54 - ( i  + ̂  + ^> 5
? 3?

b4 = S A - ^  + ’c ) d a +S'  
a g

(6 .101)

Eq. (6.100) can be expressed as a cubic equation m co2 and consequently its real, positive 

roots are the square of its natural frequencies for each value of n -  0,1,2, .... Hence J  ̂

is given by the number of positive values of con that lie below the trial frequency, co*, and

Eq. (6.71) gives the required value of J 0 to be used in the Wittrick-Williams algorithm

Eq. (6.62).
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It is necessary to note that when n -  0, (5 = 0 and similar to the case of Section 6.3 the 

coefficients b3 and b4 are zero and it can be shown that bx is always negative and that

b2 is always positive. Eq. (6.100) then yields a single non-trivial real root which 

corresponds to the fundamental shear thickness mode. As before, this mode does not 

involve either lateral displacement or axial extension.

6.5 TRANSFORMATION BETWEEN THE VARIOUS SETS OF BOUNDARY 

CONSTRAINTS THAT CAN BE IMPOSED ON A SANDWICH BEAM

Based on the configuration of Figure 6 .1, the stiffness matrix formulation of the sandwich 

beam, including the effects of longitudinal and rotary inertia, leads to the set of boundary 

conditions stated in Eqs. (6.51) or (6.96). However, it is possible to use various sets of 

displacement field variables and Consequently the stiffness formulation yields appropriate 

sets of boundary conditions. For example, rather than using the mid-layer displacement of 

the faceplates as being representative of the longitudinal displacement, ut and ub in

Figure 6.7, the displacements at the interface of the core and the faceplates, u2 and w3, or 

the longitudinal displacements at the external fibres of the faceplates, ux and uA, could 

also be used. In contrast with conventional homogeneous beams, these sets of axial 

displacements, which also correspond to possible locations of axial constraint, can play an 

important role when determining the natural frequencies of sandwich beams.

Alternatively, by proper transformation, the dynamic stiffness matrix of Section 6.3.3.3 or 

6.4.3.3, can be made to be compatible with the desired field displacement.

One of the most practical sets of axial constraint is perhaps the one that comprises the 

longitudinal displacements at the external fibres of the faceplates, i.e. ux and u4 of 

Figure 6.7. The necessary transformation between Eqs. (6.51) or (6.96) and the desired set 

of displacements and forces is

PhD Thesis, A. Zare, 2004
167



Chapter 6: General vibration of a three-laver sandwich beam including axial and rotary inertia

X ,U

Figure 6.7: The displaced section showing the possible displacement 
field variables ( ui) of a typical sandwich beam section of unit width. 
Note that the vertical position of the longitudinal displacement u is not 
a geometric property of the section, but a function of ut and uh.

> , '
w ,  -

V , V ,
u a
u u = T. U n

1 w 2

'f 'z
u a U n

P * . P « -

"a ' a
M, My
Arn

= T,
Qz 1 Qz
m2 m2

Nn
b2_ .N*z.

where the transformation matrices are

(6 .102)
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Tt =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 -‘A 1 0 0 0 0 0

0 "A 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 -A 1 0

0 0 0 0 0 A 0 1

and
Tt =

1 0 0 0 0 0 0 0
0 1 ‘A -‘A 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 A -A
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

(6.103)

The transformed dynamic stiffness matrix, k ,, follows through the following steps

Tj Pi = kT,d j ; p ^ T ^ k T .d ,  , p ^ k . d , ;  k ^ T ^ k T ,  (6.104)

From Eq. (6.103) it can be shown that T, '1 = TtT , where superscript T denotes the 

transpose of the matrix, and therefore

ki -  T^kTj (6.105)

In the case where the core/faceplate interfaces are chosen as the axial freedoms, i.e. 

u2 and «3 in Figure 6.7, it is only necessary to change the sign of all of the non-diagonal 

elements of the transformation matrices of Eq. (6.103).

Another useful transformation enables the average axial displacement of the face layers, 

w, to be used, thus requiring only one axial displacement at each end of the beam. 

However, its vertical position through the beam thickness is not fixed and may vary due 

to changes in the values of ut and ub. The average rotation of the beam cross- 

section, (p, is the by-product of this transformation. From Figure 6.7, it is clear that

u = ut +ub
<p =

u, w,
d

(6.106a,b)
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Consequently, the resultant axial force in the beam’s cross-section, n , and the couple due 

to the axial forces developed in the top and bottom faceplates during bending, m , 
become

n = nt +nb ; m = nt ^ ~  nb ^  = (/?,- n h) ^  (6.107a,b)

With regard to Eq. (6.56), the necessary transformations between the displacements and 

forces can be written as

JV, 'G. ‘ a
*r K M x

Ua K r

w2

II Ur
W2

II a> K) II

02
= T A2

a
*2 'f'l m 2 m 2

u a *2 N,2 m 2

U>2_ Pi. P n . *2

where the transformation matrices are

“l 0 0 0 0 0 0 0“ "1 0 0 0 0 0 0 0 '

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0

dA
1 0 0 0 0 0 0 Y d Y i

0 0 0 0
0 0

~ dA
1 0 0 0 0

’ T =
0 0 ~ Y d X 0 0 0 0

0 0 0 0 1 0 0 0 L2 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 £ 1 0 0 0 0 0 0

Y d
1/

7 2
0 0 0 0 0 0

- dA
1 0 0 0 0 0 0 ~ Y d

1/
/2_

(6.109)

In similar fashion to Eq (6.104) the new transformed stiffness matrix is

k 2 = T2Tk T 2 (6.110)
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Finally, to include a beam in a plane frame, it is necessary to transform the stiffness 

matrix from member co-ordinates to global co-ordinates (See Figure 6.8). During 

transformation, the axial and transverse displacements and forces are transformed, but the 

rotations and moments remain unchanged. From Figure 6.8 it is clear that

X  -  W sin 0 + U cos 0  

Y = fFcos<9-t/sin<9

Px = Qsin6 + NcosO
(6.11 la,b)

Py = <2cos# - N sin#

The transformations can then be written in matrix notation as

'Xx
r>

<*>1 I'i
U,

= t 3w2 J

n

* 2 .

P2 =

a  ‘
'

A/,
A/, A/,
JV. M1 = t 3 1
e 2

0

x̂2
m 2
m 2 m 2

- N 2 _ M l .

= T3p < (6.112)

where subscript G denotes quantities in global co-ordinates and the transformation matrix 

is

sin# COS# 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

cos# - s in # 0 0 0 0 0 0

0 0 0 0 sin# cos# 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 cos# -  sin# 0 0

Hence, the element stiffness matrix in global co-ordinates, k G, is

k 0 =T ,Tk 2T 3 (6.114)
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> x

Figure 6.8 : Nodal forces and displacements a) in 
member co-ordinates and b) in global co-ordinates.
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6.6 NUMERICAL RESULTS

A number of examples are now given to validate the theory and indicate its range of 

application. The first two examples compare results obtained by a number of authors for a 

simply supported and cantilevered beam, respectively, which have been widely used as 

test examples. In these two examples, results from both the theories of Sections 6.3 and 

6.4 are given, while for the other examples the more accurate theory of the latter is used. 

Examples 6.3 and 6.4 are used to validate the accuracy of the proposed theory in the 

analysis of frames formed from sandwich beams. Example 6.5 presents the crucial 

differences between ordinary and sandwich beams, while Example 6.6 shows the 

necessity of using the proposed theory for deep sandwich beams. The final example 

considers a simple frame for which the values of some of the natural frequencies can be 

argued through a self consistency check.

Example 6.1: The beam of Example 5.1 is now constrained by rollers at both ends. The 

results obtained by a number of authors are given in Table 6.1. In this table, ‘Freq. No.’ 

indicates the order of occurrence of the modes, while the second column gives the 

predominant component of the mode and its ordering number. For example, ‘Bl* 

indicates the first bending mode, ‘A3’, the third axial mode and ‘S2’, the second shear 

thickness mode etc.

It is necessary to note that except for the results of the current theory (Chapter 6), all 

comparable results correspond to what has been described as simply supported beam. 

However, as will be shown in Example 6 .6, the term ‘simply supported’ needs to be 

clarified, since the position of the longitudinal constraint has a significant effect on the 

vibration of the beam. Furthermore, the theories behind the results in columns 5 and 6 

clearly don’t have the ability to consider any longitudinal constraint. On the other hand, 

the non exact field displacements used in those theories which give the results in the last 

two columns is the reason why they could not predict the importance of longitudinal 

constraint. Nevertheless, the first axial frequency in column 9 clearly refers to a roller- 

roller supported sandwich beam, rather than a beam that has been constrained at one end, 

i.e. a simply supported beam.
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Table 6.1: Comparative results for the non-zero natural frequencies (Hz) of the 
roller-roller supported sandwich beam of Example 6.1.

Freq.
No. mode Theory o f 

Section 6.4
Theory o f Section 

6.3
Theory o f  
Chapter 5

Sakiyama,
1996b

Ahmed,
1971

Rao,
2001

Marur,
1996

1 B1 57.12345 57.1241 57.1358 56.159 57.5 57.068 57.041

2 B2 219.423 219.431 219.585 215.82 - 218.569 218.361

3 B3 464.565 464.595 465.172 457.22 467 460.925 460.754

4 B4 766.850 766.915 768.177 755.05 - 757.642 758.692

5 B5 1104.52 1104.63 1106.68 1087.9 1111 1086.955 1097.055

6 B6 1462.17 1462.31 1465.10 1440.3 - 1433.920 1457.064

7 B7 1829.97 1830.14 1833.55 1802.7 1842 1789.345 1849.380

8 B8 2202.13 2202.32 2206.19 2169.8 - 2147.969 2275.916

9 A1 2563.22 2563.22 - - - - 2562

10 B9 2575.41 2575.62 2579.79 2538.2 2594 - -
11 B10 2948.08 2948.30 2952.65 2906.2 - - -
18 A2 5126.44 5126.44 - - - - -
27 A3 7689.67 7689.67 - - - - -
53 SI 15960.5 16406.4(54)* - - - - -
55 S2 16190.3 16642.4(56)’ - - - - -

* Number in the brackets indicates the frequency number, if different from the first column.

Example 6.2: The proposed method of this chapter is now used to analyse the beam of 

Example 5.2. Results for the first eight natural frequencies are presented in Table 6.2.

Example 6.3: The free-free, rigid L-shaped frame of Figure 6.9 that is constructed from 

two sandwich beams of 0.175m and 0.4m length is now considered. The following 

material and cross-sectional geometric properties are used for both members.

E, = E k =69G Pa, Gc =440M Pa, P, = Pb = 3180kg/m\ f>c =83 kg/m \  

tt - t b ~ 0.56mm, tc = 25.4mm

PhD Thesis, A. Zare, 2004
174



Chapter 6: General vibration of a three-laver sandwich beam including axial and rotary inertia

Table 6.2: Comparative results for the natural frequencies (Hz) of the cantilevered 
sandwich beam of Example 6.2.

Freq.
No. Mode Theory of 

Section 6.4
Theory of 
Section 6.3

Theory of 
Chapter 5

Ahmed,
1971

Sakiyama,
1996b

Baneijee,
2003

Marur, 19%

HOBT4b HOBT5

1 B1 33.7456 33.7459 33.7513 33.97 33.146 31.46 33.7 33.7

2 B2 198.788 198.798 198.992 200.5 195.96 193.7 197.5 197.5

3 B3 511.373 511.420 512.307 517 503.43 529.2 505.5 505.5

4 B4 905.118 905.224 907.299 918 893.28 1006 890.5 890.5

5 B5 1346.06 1346.22 1349.65 1368 1328.5 - 1321 1321

6 Al 1647.79 1647.79 - - - - 1648 1648

7 B6 1810.91 1811.20 1815.82 1844 1790.7 - 1786 1786

8 B7 2286.48 2286.79 2292.45 2331 2260.2 - 2271 2271

9 B8 2765.47 2765.81 2772.23 2824 2738.9 - 2792 2792

14 A2 4943.36 4943.39 - - - - 4943* 4941*
*Refernce Marur, 1996) indicates that values correspond to second axial mode but 13th frequency number.

Reference (Petrone et al. 1999) considered a similar structure to that of Figure 6.9, except 

that the beams were replaced by equivalent sandwich plates of breadth 0.3m. A physical 

model was tested and the results verified using a finite element model. Clearly the plane 

model of Figure 6.9 can only identify in-plane modes and these are compared with the 

equivalent results of reference (Petrone et al. 1999) in Table 6.3. It should be noted that 

the mode corresponding to the higher frequency identified in reference (Petrone et al. 

1999) contained a small, but distinct, torsional component.

A

0.175m

I V

^ _____ ____ 0.40 m  ^

Figure 6.9: The free-free rigid frame of Example 6.3.
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Table 6.3: Comparative results for the first five in-plane natural 
frequencies (Hz) of the free-free L-shape frame of Example 6.3.

Freq.
No.

Theory of 
Section 6.4

Petrone, 1999

Experimental FEM

1 482.78 479.24 478
2 1029.73 - -
3 2278.39 - -

4 3156.94 - -
5 3947.3 - -

Example 6.4: A circularly curved sandwich beam that is fully clamped at both ends is 

now considered, see Figure 6 .10. The material and cross-sectional properties are the same 

as those used in Example 6.1, while the length of the curve is 0.7112m and its radius is 

4.2672m. The curved beam is modelled using 10 straight elements. Comparative results 

for the first five natural frequencies (Hz) of this beam are given in Table 6.4. In addition, 

Table 6.5 shows the results of modelling the beam with different numbers of straight 

elements. From Table 6.5 it is clear that modelling the curved beam with 4 straight 

element gives acceptable accuracy in the results.

Figure 6.10: Clamped-clamped curved sandwich beam of Example 
6.4. The length of the beam is 0.7112m and its radius is 4.2672m.
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Table 6.4: Comparative results for the first five natural frequencies (Hz) of the 
clamped-clamped curved sandwich beam of Example 6.4. The results in column 2 
were obtained by modelling the structure with 10 straight elements using the theory 
of Section 6.4. The results in the columns three and four were obtained using 10 
curved sandwich beam, finite elements based on generalised mass matrices.

Freq. No. Theory of 
Section 6.4

Ahmed,
1971

Ahmed,
1972

Sakiyama,
1997

Bozhevolnaya,
2004

1 244.164 264 240 244.6 237.8

2 484.363 522 474 485.6 504

3 855.966 889 843 859.8 866

4 1267.72 1312 1253 1276 1283

5 1710.28 1767 1697 1725 1728

Table 6.5: Adequacy of the idealisation when modelling the curved sandwich beam 
of Example 6.4 with straight elements for the first five natural frequencies (Hz).

Freq.
No.

Number of straight elements to model the curve clamped-clamped sandwich beam

2 3 4 5 6 8 10 20

1 236.881 241.910 243.144 243.622 243.856 244.071 244.164 244.280

2 485.191 484.501 484.458 484.419 484,397 484.374 484.363 484.349

3 861.768 854.497 855.046 855.485 855.693 855.884 855.966 856.068

4 1268.78 1267.98 1268.34 1267.91 1267.85 1267.77 1267.72 1267.66

5 1714.11 1716.20 1710.10 1710.33 1710.15 1710.25 1710.28 1710.32

Example 6.5: The roller-roller supported beam of Example 6.1 now has its axial freedom 

constrained in various ways so as to make the boundary conditions simply supported.

In case A, the axial freedom at the lower external edge of the beam is constrained by 

using a linear spring K A, see Figure 6.11. In case B, spring K B is imposed at the mid­

thickness of the bottom faceplate, while the third case, case C, a spring Kc is attached at 

the interface of the core and bottom faceplate. Finally, in case D, the average 

displacement of the two faceplates is virtually constrained by spring K D, although its 

vertical position is not a unique position.

____________________________        177
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End 1 End 2

L
<L — ---------------------------------------------------------------------- >

Figure 6.11: Simply supported three-layered sandwich 
beam constrained axially at various positions.

The results of the analysis of these different cases are shown in Tables 6.6 to 6 .8. In Table 

6.6, the differences between the frequencies of the various simply supported cases A-D 

are highlighted. The first six mode shapes of the roller-roller beam together with those of 

cases A-D of the simply supported beam are illustrated in Figures 6.12 to 6.16. Table 6.6 

shows that in cases A-C all of the axial and shear thickness modes are coupled with 

bending. In the same way, Figures 6.13 to 6-15 illustrate the coupling between the axial 

and flexural components of the mode shapes of cases A-C. On the other hand, the mode 

shapes of the roller-roller supported beam (Figure 6.12) and case D of the simply 

supported beam (Figure 6.16) clearly show that the axial and flexural components of the 

mode shape are uncoupled. However, comparison between the second and the last 

columns clearly shows the obvious differences between the uncoupled axial frequencies 

in these two cases i.e. in the roller-roller case (column 2), the axial modes and frequencies 

are even multiples of the half-wave length (1281.61x2,4,6,...), while for the simply 

supported case (last column) the axial modes correspond to odd multiples of it 

(1281.61x1,3,5,...).

Tables 6.7 and 6.8 investigate the effect of increasing spring stiffness in cases C and D. 

The results show that imposing the spring introduces a predominantly axial mode whose
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frequency increases with spring stiffness. See the first highlighted frequency. Also the 

frequency of the existing axial modes has been increased. At the same time, in case C the 

frequencies of the flexural modes with frequencies lower than the axial modes decrease 

noticeably while in case D they remain unchanged.

Table 6.6 : Comparative natural frequencies (Hz) of the roller-roller 
supported beam of Example 6.1 and the four cases of the simply 
supported sandwich beam of Example 6.5.

Freq. No. Roller-roller Simply supported
Case A* Case B Case C Case D

i 0 57.09382(B) 57.09583(B) 57.09777(B) 57.12345(B)
2 57.12345(B)t 219.022(B) 219.052(B) 219.080(B) 219.423(B)
3 219.423(B) 462.878(B) 463.019(B) 463.150(B) 464.565(B)
4 464.565(B) 761.778(B) 762.282(B) 762.721(B) 766.850(B)
5 766.850(B)  ̂ 1081.84(B) 1084.61(B) 1086.43(B) 1104.52(B)
6 1104.52(B) 1227.12(BA) 1230.53(BA) 1228.08(BA) 1281.61(A)
7 1462.17(B) 1474.42(B) 1473.20(B) 1471.69(B) 1462.17(B)
8 1829.97(B) 1834.48(B) 1833.86(B) 1833.23(B) 1829.97(B)

9 2202.13(B) 2203.92(B) 2203.62(B) 2203.34(B) 2202.13(B)

10 2563.22(A) 2575.35(B) 2575.36(B) 2575.37(B) 2575.41(B)

11 2575.41(B) 2946.03(B) 2946.49(B) 2946.88(B) 2948.08(B)

12 2948.08(B) 3312.96(B) 3314.64(B) 3315.88(B) 3319.31(B)

13 3319.31(B) 3618.161BA) 3631.95(BA) 3632.17(BA) 3688.75(B)

14 3688.75(B) 3720.562B) 3717.96(B) 3708.83(B) 3844.83(A)

15 4056.32(B) 4061.86(B) 4060.31(B) 4058.82(B) 4056.32(B)

16 4422.08(B) 4424.56(B) 4423.76(B) 4423.07(B) 4422.08(B)

17 4786.17(B) 4787.22(B) 4786.85(B) 4786.54(B) 4786.17(B)

18 5126.44(A) 5148.67(B) 5148.70(B) 5148.72(B) 5148.74(B)

19 5148.74(B) 5508.38(B) 5509.06(B) 5509.53(B) 5509.96(B)

20 5509.96(B) 5863.40(B) 5866.55(B) 5868.44(B) 5869.99(B)

21 5869.99(B) 6067.26(BA) 6083.85(BA) 6071.05(BA) 6228.97(B)

22 6228.97(B) 6238.44(B) 6234.62(B) 6230.93(B) 6408.05(A)

23 6587.06(B) 6590.21(B) 6588.68(B) 6587.58(B) 6587.06(B)

26 6944.37(B) 7657.19(B) 7657.14(B) 7657.12(B) 7657.11(B)

52 7689.66(A) 15554.8(BA) 15556.0(BA) 15554.1 (BA) 15828.1(B)

53 15828.12(B) 15828.5(B) 15828.2(B) 15828.2(B) 15960.5(S)

54 15960.5(S) 16024.2(BS) 16024.6(BS) 16024.2(BS) 16186.1(B)

55 16186.1(B) 16186.1(B) 16186.1(B) 16186.1(B) 16190.3(S)

56 16190.3(S) 16479.5(BS) 16483.9(BS) 16480.7(BS) 16544.5(B)

57 16544.5(B) 16546.4(B) 16544.7(B) 16544.8(B) 16660.9(A)

58 16859.9(S) 16903.3(B) 16903.4(B) 16903.4(B) 16859.8(S)

59 16903.4(B) 17231.4(B) 17242.5(B) 17236.2(B) 16903.4(B)

“In each case, the relatec spring is completely rigid while the stiffness of the other
springs is zero.
brackets indicate the most dominant component(s) of the mode.
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Table 6.7: Comparative results for natural frequencies (Hz) of the roller-roller supported 
sandwich beam of Example 6.1 ( K c = 0 ) and of the constrained beam of case C of Example 
6.5. The highlighted frequencies correspond to axial modes.

Stiffness of spring K

57.0445 57.0846 57.0976 57.097757.0968 57.0977 57.0977

57.1234 57.1235 57.1342 218.723 219.061 219.079 219.079219.078

219.422 219.422 219.429 219.459 219.505 463.146 463.150462.670 463. 13

464.564 464.564 464.570 464.593 464.622 465.465 762.682762.299 762.721

766.849

10

1104.52

1462.16

1829.96

2202.13

•63.22

766.849

1104.52

1462.16

1829.96

2202.13

2563.22

766.853

1104.52

1462.16

1829.96

2202.13

766.871

1104.54

1462.17

1829.97

2202.13

766.893

1104.55

1462.19

1829.98

2202.14

767.337

1104.86

1462.41

1830.15

2202.26

2575.35

804.337

1108.48

1464.19

1831.18

2202.79

2575.37

1073.59

1469.15

1832.76

2203.25

2575.37

1085.56

1471.35

1833.18

2203.33

2575.37

1086.43

1471.68

1833.23

2203.34

2575.37

11 2575.41 2575.41 2575.41 2575.41 2575.42 2946.68 2946.86 2946.88

12

13

14

2948.08 2948.08 2948.08 2948.08 2948.09 2948.17 2950.97 3312.39 3315.7 33154

3319.31 3319.31 3319.31 3319.31 3319.32 3319.38 3320.12 3615.39 3632.17

3688.75 3688.75 3688.75 3688.75 3688.75 3688.80 3689.25 3693.05

15 4056.32 4056.32 4056.32 4056.32 4056.32 4056.36 4056.66 4057.85 4058.67 4058.82

16 4422.08 4422.08 4422.08 4422.08 4422.08 4422.11 4422.31 4422.83 4423.04 4423.07

17

18

19

20

21

22

4786.17 4786.17 4786.17 4786.17 4786.19

5126.44 5126.44 5126.63■ .

4786.17 4786.31 4786.49 4786.53 4786.54

5148.71 5148.71 5148.71 5148.71

5148.74 5148.74 5148.74 i 148.74 5148.74 5148.84 5509.35 5509.52 5509.53

5509.95 5509.95 5509.95 5509.95 5509.96 5509.97 5510.17 5804.69
__

5868.19 5868.44

5869.98 5869.98 5869.98

6228.97 6228.97 6228.97

5869.98 5869.98 5869.99 5870.10 5873.71

6228.97 6228.97 6228.98 6229.05 6229.57 6230.56 6230.92

23 6587.06 6587.06 6587.06 6587.06 6587.06 6587.06 6587.11 6587.35 6587.53 6587.57

24 6944.37 6944.37 6944.37 6944.37 6944.37 6944.37 6944.41 6944.52 6944.58 6944.59

25 7301.02 7301.02 7301.02 7301.02 7301.02 7301.02 7301.04 7301.09 7301.11 7301.11

26 7657.11 7657.11 7657.11 7657.11 7657.11 7657.11 7657.11 7657.11 7657.11 7657.11

7802.427

28

29

30

7689.66 7689.66 7689.79 7690.29 7690.92 : ■■ 8012.61 8012.65 8012.65

8012.73 8012.73 8012.73 8012.73 8012.73 8012.73 8012.75 8212. 8367.43 8367.58

8367.96 8367.96 8367.96 8367.96 8367.96 8367.96 8367.98 8368.17 >.80

8722.89 8722.89 8722.89 8722.89 8722.89 8722.89 8722.90 8722.95 8723.03 8723.06
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Table 6.8: Comparative results for natural frequencies (Hz) of the roller-roller 
supported sandwich beam of Example 6.1 ( K D -  0) and of the constrained beam of 
case D of Example 6.5. The highlighted frequencies correspond to axial modes.

6944.372 6944.372

57.12345 57.12345

57.12345

4422.085 4422.085 4422.085 4422.085 4422.085 4422.085 4422.08: 4422.085 4422.085 4422.085

4786.171 4786.171 4786.171 4786.171 4786.171 4786.171 4786.171 4786.171 4786.171 4786.171

Stiffness of spring KD

1829.966 1829.966 1829.966 1829.966 1829.966 1829.966 1829.966 1829.966 1829.966 1829.966

4056.322 4056.322 4056.322 4056.322 4056.322 4056.322 4056.322

766.8495

1104.524

1462.165

57.12345

219.4227

2202.13 2202.13 2202.13 2202.13 2202.13 2202.13 2202.13 2202.13 2202.13 2202.13

2575.41 2575.41

2575 41 2575 41

2948.084 2948.084 2948.084 2948.0842948.084 2948.084 2948.084 3319.314 3319.31 3319.314

3319.31 753 3688.753

3688.7533688.753

57.12345 57.12345

219.4227 219.4227 219.4227 219.4227

766.8495 766.8495 766.8495 766.8495

1462.165 1462.165 1462.165 1462.165

2948 084 2948 2948.08408

3319.314

3688.753

3319.314 3319.314 3319.314 3319.314

3688.753 3688.753 3688.753 3688.753

3319.314

3688.753

1104.524 1104.524 1104.524 1104.524

57.12345 57.12345 57.12345 57.12345

2575.41 2575.41 2575.41

219.4227 219.4227 219.4227 219.4227

1104.524

1462.165 1462

1104.524
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/ 5 = 766.850 Hz

f6 = 110452Hz

Figure 6.12: The first six natural frequencies and mode shapes of the roller- 
roller supported beam of Example 6.1 corresponding to column 2 of Table 6.6. 
The first mode is a rigid body mode and the next five modes are pure flexural 
modes. The graphs show ( —  ) the modal transverse deflection W, ( — ) 
longitudinal displacement ut , and (-*- ) longitudinal displacement ub.
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Figure 6.13: The first six natural frequencies and mode shapes of the simply 
supported beam (Case A) of Example 6.5 corresponding to column 3 of Table 
6.6. All modes are coupled flexural and axial modes, but in the first five the 
flexural components of the modes are most dominant. The graphs show (—) the 
modal transverse deflection W, (—a- ) longitudinal displacement ux and (-*- ) 
longitudinal displacement u4 in conjunction with Figure 6 .7.
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Figure 6.14: The first six natural frequencies and mode shapes of the 
simply supported beam (Case B) of Example 6.5 corresponding to column 
4 of Table 6.6 . All modes are coupled flexural and axial modes, but in the 
first five the flexural components of the modes are most dominant. The 
graphs show (— ) the modal transverse deflection W, ( ) longitudinal
displacement ut , and (-* -) longitudinal displacement ub.
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57.09777 Hz

/ 2 = 219.080 Hz

/ 3 = 463.150 Hz

f 6 = 122808Hz

Figure 6.15: The first six natural frequencies and mode shapes of the simply 
supported beam (Case C) of Example 6.5 corresponding to column 5 of Table 
6.6. All modes are coupled flexural and axial modes, but in the first five the 
flexural components of the modes are most dominant. The graphs show (— ) 
the modal transverse deflection W, ( -e -  ) longitudinal displacement u2 and 
( - 4 - ) longitudinal displacement u3 in conjunction with Figure 6 .7.

PhD Thesis, A. Zare, 2004



Chapter 6; General vibration of a three-laver sandwich beam including axial and rotary inertia

1 . 0

f x = 57.12345 Hz

0.0

1.0

1.0

f 2 =219.423 Hz

C/5c o 
• **■■<

s
2
T3
§
c/5

C
s<L>Oc3

"p.(/)
<D>

I
D<5

/ ,  = 464.565Hz

=766.850 Hz

1 o
/ 5 =1104.52 Hz

o.o

1.0

1 0
f6= 128L61Hz

jc(m)0 0
0 .80 60 . 40. 20

Figure 6.16: The first six natural frequencies and mode shapes of the 
simply supported beam (Case D) of Example 6.5 corresponding to column 6 
of Table 6 .6 . The first five modes are pure flexural and the last mode is a 
pure axial mode. The graphs show (— ) the modal transverse deflection W, 
(-© -) longitudinal displacement u and (-*-) average rotation of the beam’s 
cross-section (p in conjunction with Figure 6 .7.
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Example 6.6: The beam of Example 6.1 is now reanalysed, but the thickness of the layers 

is multiplied by 10. Various support conditions from roller-roller to simply supported are 

imposed (refer to Example 6.5 for an explanation of the abbreviations). The natural 

frequencies of the beam are given in Table 6.9. This shows that for deep beams the shear 

thickness mode may well be in the frequency range of interest.

Table 6.9: Comparative results for natural frequencies (Hz) of the deep sandwich beam 
of Example 6.6 . Bracketed terms indicate predominant component of the mode.

Freq. No. Roller-roller
Simply supported

Case A CaseB CaseD
1 294.808(B) 293.3143(B) 293.649(B) 294.808(B)
2 658.706(B) 653.6769(B) 656.326(B) 658.706(B)
3 1014.072(B) 798.6499(BA) 808.144(BA) 1014.072(B)
4 1368.797(B) 1017.041(B) 1014.942(B) 1281.61(A)
5 1596.045(S) 1369.641(B) 1368.925(B) 1368.797(B)
6 1726.274(B) 1725.17(B) 1726.184(B) 1596.045(S)
7 2088.462(B) 1871.087(SB) 1878.154(SB) 1726.274(B)
8 2456.815(B) 2090.327(B) 2088.557(B) 2088.462(B)
9 2563.221(A) 2457.229(B) 2456.828(B) 2456.815(B)
10 2832.561(B) 2818.611(B) 2831.836(B) 2832.561(B)
11 3138.852(S) 2846.612(B) 2837.661(B) 3138.852(S)
12 3216.797(B) 3216.38(B) 3216.791(B) 3216.797(B)
13 3610.531(B) 3607.184(B) 3610.504(B) 3610.531(B)
14 4014.702(B) 3988.061(B) 4014.565(B) 3844.832(A)
15 4430.183(B) 4098.532(SAB) 4118.046(SAB) 4014.702(B)
16 4857.791(B) 4437.404(B) 4430.219(B) 4430.183(B)

17 5126.451(A) 4860.223(B) 4857.799(B) 4857.791(B)

18 5298.285(B) 5293.185(B) 5298.272(B) 5298.285(B)

19 5628.741(S) 5365.328(SAB) 5365.453(SAB) 5628.741(S)

20 5752.372(B) 5750.872(B) 5752.370(B) 5752.372(B)

Example 6.7: Figure 6.17 shows a square, rigidly jointed plane frame constructed from 

four identical sandwich members. It is supported on pin-roller supports, where the axial 

constraint is imposed at the lower edge of the bottom faceplate i.e. case A. The length of 

each member is 0.40m and the remaining material and geometric properties are those 

used in Example 6.3. Since the author was unable to find any results in the literature for a
--------------------------------------------       —------------------------------------------------------------------ 187
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Figure 6.17: The pin-roller supported frame of Example 6.7.

comparable frame, the initial results for this frame were checked for consistency by 

increasing the axial rigidities by 103, a factor that is often used to make a structural 

element effectively in-extensible. On this assumption it is easy to argue that the fourth 

natural frequency of the frame will have a mode shape in which the moment contributed 

by each member at a joint balances to give zero rotation and must therefore correspond to 

the clamped ended natural frequency of an individual member. In this case the 

comparison will not be absolutely precise since the members are not completely in- 

extensible. The results are shown in Table 6.10.

Table 6.10: The first six natural frequencies (Hz) of the pin-roller supported frame of 
Example 6.7 for various axial rigidities of the faceplates. The clamped-ended frequency 
of a component member has been determined independently as 1794.926Hz and 
compares closely with the highlighted fourth frequency of the frame.

Axial rigidity of each faceplate, EAxn

Freq. No n - 1 5 10 50 100 1000
l 120.5509 236.2331 294.1437 393.201 414.1438 436.2441

2 449.098 898.7703 1137.255 1577.188 1676.598 1784.082

3 656.647 1158.188 1351.789 1632.714 1698.069 1784.597

4 750.296 1327.643 1551.083 1744.636 1770.457

5 884.0354 1413.031 1573.057 1879.257 1954.636 2053.461

6 1546.225 2663.587 3035.215 3456.545 3522.757 3587.301
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Chapter 6- General vibration of a three-laver sandwich beam mcludino axial and rotary inertia

6.7 GENERAL REMARKS

Sandwich beams have three fundamentally different types of mode of vibration; flexural, 

axial and shear thickness. A pure shear thickness mode is a mode in which the beam 

remains straight, without any lateral deflection or uniform extension in the usual sense. 

Instead, the faceplates displace horizontally, relative to each other causing the core to 

deform in pure shear. The span length of the roller-roller supported beams does not effect 

the frequency of the fundamental shear thickness mode.

The three families of modes are normally coupled, but in some special cases it is possible 

to have uncoupled modes. For example, in a roller-roller supported sandwich beam with 

symmetric cross-section, the axial and flexural modes are uncoupled. Also the 

fundamental shear thickness mode is always a pure shear mode. Furthermore, the study of 

the mode shapes of the roller-roller beam shows that except for the fundamental shear 

thickness mode, the higher shear thickness modes always couple with flexural modes, 

with the results that two modes exist with the same number of half-waves in the 

transverse direction. The only difference between these two modes is an opposite sign 

associated with the average rotation of the cross-section and the general slope of the 

beam. Figure 6.18 shows a few of the lower modes of a roller-roller supported sandwich 

beam.

Figure 6.19 shows the influence of changing the beam’s characteristics on the frequencies 

of the first flexural and axial modes and the fundamental coupled bending/shear mode for 

a roller-roller sandwich beam. The influence of increasing the axial rigidity of the 

faceplates is shown in Figure 6.19(a). From this figure it is clear that even for this 

completely symmetric beam, if the axial rigidity of the faceplates is increased, besides 

increasing the axial frequencies, the frequencies of the other families of modes are also 

increased. This means that the flexural and shear thickness modes are influenced by axial 

rigidity. Meanwhile, there are maximum and minimum values for the flexural frequency 

and only a minimum for the shear thickness mode, which is always greater than the 

frequency of the span independent, fundamental shear thickness mode. In Figure 6.19(b), 

the influence of changing the shear rigidity is examined and it is clear that this change 

does not affect the first axial frequency. A similar trend to the previous case may be
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deduced for the other families of modes. Finally, Figure 6.19(c) shows that increasing the 

bending rigidity of the faces cause an increase in the frequency of the flexural mode, but 

it never exceeds the frequency of the first shear thickness mode. Although Figure 6.19 

considers these influences for the lowest modes in each family, a similar trend can be 
discerned in the higher modes.

7 7 7 7 7 / / 7 v /

(a)

7777Z

(b)

/ / > J /  / / > ) /

(C )

7 7 7 7 7

( d )

Figure 6.18: Examples of mode types of a roller-roller supported sandwich 
beam, a) fundamental bending mode, b) fundamental coupled bending/shear 
mode, c) fundamental axial mode and d) fundamental shear thickness mode. 
Dotted lines indicate undeformed shape.
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Shear Thickness

Axial

Flexural .

Bending rigidity (1.009792x)

Figure 6.19: Variation of the frequency of single, half-wave modes due to increases in, 
a) axial, b) shear and c) bending rigidity of a roller-roller supported sandwich beam. 
Basic dimensions and material properties are the same as in Example 6.3.

Another crucial point is to distinguish fully between sandwich beams and homogeneous 

beams, since the thickness in the former plays an important role in the behaviour of the 

beam in the shear thickness mode of vibration and consequently on the coupling of the 

modes. Example 6.5 highlighted this issue. In contrast with homogeneous beams, the 

position of the axial constraint through the thickness of the beam is important. This leads 

to variations in coupling between the modes, as well as differences in corresponding 

frequencies.

The use of the stiffness method offers great flexibility to analyse frames, as well as to 

impose ‘constraints’ on any selected freedom of the structure. These will typically take 

the form of mass inertia, spring support stiffness or relationships that constrain one or 

more displacements to move in a predefined way relative to another set of displacements. 

Imposing such constraints follows the normal rules that would apply to a traditional beam 

element, except that more care is required to associate the constraint with the appropriate 

degree(s) of freedom. Also by using the appropriate transformations, as discussed in 

Section 6.5, the developed element can be used to model frames constructed from 

sandwich beams. Example 6.3 shows good correlation between the present author’s
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results for the L-shaped frame and the experimental and FEM results of reference 
(Petrone et al. 1999).

Furthermore, although the proposed element is straight, it can be used to model curved 

structures by using an appropriate number of straight elements to model the geometry of 

the curve. The results of Example 6.4 show that the number of straight elements needed 

is even less than the number of curved finite elements required to analyse a circularly 

curved arch. Reference (Ahmed 1972) compares the results of an FEM analysis with 6, 8 

and 10 curved elements and shows that at least 10 elements are required for sufficient 

accuracy. However, Table 6.5 shows that the necessary convergence is achieved with 

only 4 of the proposed straight elements and the error with respect to the case with 10 

such elements is less than 0.5 percent. Moreover, it is clear that the results from reference 

(Ahmed 1972) are always lower bounds, while those from (Ahmed 1971) are always 

upper bounds, due to the different assumptions in each reference.

The results of Examples 6.1 to 6.4 show good correlation between the current theory and 

a selection of comparable results available in the literature. The differences in the results 

are attributable to many factors that vary widely from their approximate solution 

techniques to differences in basic assumptions. Also, the results of Examples 6.5 to 6.7 

provide a range of ‘exact’ solutions that may be helpful for future comparisons.

Finally, it is worth noting that while assembling the results it became apparent that it is 

relatively easy to generate an example in which the roots of the characteristic equation, 

Eq. (6.50), become sufficiently large that the value of C, in Eq. (6.49b) overflows, even 

when using double precision arithmetic. However, because the combined effects of the 

roots and the length of the member are the source of this difficulty, reducing the length of 

the member (element) can help. Thus if difficulty is experienced a simple method is to 

subdivide the member into a greater number of elements until the problem is resolved.
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CHAPTER 7

VIBRATIONS OF A THREE-LAYER, TIMOSHENKO 
SANDWICH BEAM INCLUDING COUPLED AXIAL INERTIA

7.1 INTRODUCTION

Mathematical models for the vibrational analysis of sandwich beams have been developed 

in various ways depending on the thickness of the faceplates. Thin faceplates can be 

assumed to act as flexible membranes that bend about the central axis of the section, with 

the total shear assumed to be carried solely by the shear-resisting core. Thick faces are 

assumed to behave as ‘Bernoulli- Euler’ beams having significant bending stiffness about 

their own centroidal axes and thus carry a part of the shear force acting across the section 

(Chapter 5). If the effect of rotary inertia is also considered, the faceplates can be treated 

as ‘Rayleigh beams’ (Section 6.4). In both cases it is assumed that the cross-sections of 

the faceplates remain plane and normal to the central axis and that the bending stiffness of 

the core is generally neglected.
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However, the secondary effect of shear deformation can also be important for deeper 

beams. The combined effects of rotary inertia and transverse shear deformation on the 

dynamic behaviour of beams was first studied by Timoshenko (Timoshenko 1921) and 

the term ‘Timoshenko beam’ is used when both effects are considered. Timoshenko 

theory (Timoshenko 1921) retains the assumption of the elementary theory that cross- 

sections remain plane, but no longer assumes that they are normal to the central axis.

The theory developed in this chapter, is the most accurate so far and extends the theory of 

Chapter 6 to include the effects of shear deformation in the faceplates and the bending 

stiffness of the core. Hence, the faceplates and core are now governed by the same theory 

and it is no longer necessary to use the term ‘core’ for the central layer to distinguish it’s 

behaviour from the top and bottom faceplates. The term ‘core’ or ‘central layer’ can thus 

be used interchangeably. The model can then be solved for any required frequency to any 

desired accuracy for both slender and deep beams using the Wittrick-Williams algorithm.

The dynamic stiffness matrix of a three-layer, Timoshenko sandwich beam is now 

developed from first principles. It accounts exactly for the uniform distribution of mass 

and stiffness in the member, subject only to the following assumptions:

(i) transverse direct strains in the faceplates and core are negligible so that small 

transverse displacements are the same for all points in a normal section;

(ii) there is perfect bonding at the core/faceplate interfaces.

7.2 FORCE-DISPLACEMENT RELATIONS

Figure 7.1 shows the positive displacement configuration for a typical section of the 

sandwich beam at some instant during the motion. Throughout this text the subscripts 

c, and b refer to the top faceplate, core and bottom faceplate or simply the top, central and 

bottom layers of the three-layered sandwich beam, respectively. The beam has unit width 

and tn tc andtb are the thickness of the top, central and bottom layers, respectively,

u an<j u ( j  = 1,2,3) are the longitudinal displacement of the top and bottom surfaces

of the top, central and bottom layers, respectively, w is the transverse displacement

_________________________     —---------------------------------------------------------  195
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which, due to neglecting transverse direct strains in the layers, remains constant 

throughout the section at all layers and

y/ = w' (71)

is the general slope of the beam, where the prime notation refers to partial differentiation 
with respect to x  in the usual way.

Top layer

Central layer

Bottom layer

Unit width

y,w

yr -----

(a)

Figure 7.1: A typical sandwich beam section of unit width, a) the 
displaced section and co-ordinate system, b) the cross-section.
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Since it is assumed that plane sections remain plane, the average rotation of the cross- 

section of the top, central and bottom layers (Figure 7.1), relative to their original 

configuration, can be written as

M, — u '> ~  — UA
cpt = JL- J L \ <pe <Pb = ~ -----1 ; (7.2a,b,c)

respectively. However, it is also assumed that due to shear deformation in the layers, the 

plane sections do not remain perpendicular to the beam axis, and therefore from Figure

7.1 it is clear that this deviation from perpendicular or the average shear strain in the 

layers, can be expressed as

yt = V -9 t ' ,  yc = ¥ - ( P c ; yb =¥~<Pb• (7.3a,b,c)

The necessary force displacement relationships for axial extension and bending of the 

layers are

ni -  Zs .̂w' = K t u[ and (/ = r, c and b)  (7.4a,b)

respectively, where nt and mi are the axial force and bending moment in layer /, 

respectively, K t = E iti and EiI i are the axial and flexural rigidities per unit width, 

respectively, and u\ is the average normal strain where

U,+U7 U2 +U3 U3 +U4
U , = - L _ L ;  "< = ~ V  ; U b = 2 ~ '  (7-5a,b,c)

The force-displacement relationships for shearing deformation in the layers are

qt = t,r, = G,t,r, = S,r, ( i = t , c  and b)  (7.6)
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where xt is the uniform average shear stress through the thickness of layer i , Gf is the 

effective shear modulus of the material and S { is the shear rigidity.

7.3 DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATION OF 

MOTION

The governing differential equations of motion can be derived via two different 

approaches; an Energy approach and an Equilibrium approach.

7.3.2 Energy approach

In complicated problems, where precision in establishing vectorial quantities requires 

great diligence, the energy approach can be used more easily. In this section, Hamilton’s 

principle will be used to develop the governing differential equation of motion. The 

potential energy of the internal forces is called strain energy and is equal to the negative 

work of the internal forces. Kinetic energy is due to inertial forces.

7.3.2.1 Potential energy

The total strain energy for the beam of length L can now be written as

f \ 1 1 
2 ^ /  + 2 ^  + 2 ^ n

L.
1 1 1

+ 2 n'£' + 2 ne€c + 2 nb€b

2

d x

Strain energy of the three layers 
due to shear deformation

Strain energy of the three layers 
due to axial deformation

Strain energy of the three layers 
due to bending deformation.

(7.7)
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where ex =u' i is the average normal strain of layer i (i = t, c and b) . Using Eqs. (7.2a) 

and (7.3a) in Eq. (7.6) gives

= s,r? =s,o- <p, )2 =s,(t//2 + <pf - 2  y/<p, )
„ , G, , G, , 2 G,

= Sty/ H Wj H u2  ulu2 —2Gty/ul +2Gty/u2
tt tt t t

(7.8)

and similarly

<Mc = =Se(y-(pc)2 = Sc(y/2 + <p2 - 2y^c)
G G

“  + — ~ U2 "•----- ~ U3 ~
2G„

u2u3 -  2Gcy/u2 + 2Gcy/u3
tc tc '  K 

tftft = S brl ^ S b (V -< P b f  = S t (>//2 +<pl-2y/<pb)
G= S by 2 + ^ - « f  h— - u \  “ u2ut -  2Gbif>ui +2Gbi//ui

2 G,

(7.9)

(7.10)

Also using Eq. (7.5) in Eq. (7.4a) yields

M,S, = K,u',2 = VaK ,u[2 + V*K,u2 + lAK,u[u2 

n.e. = K m '2 = 'AK.u? +V*K„u? + 'AKcu'2u\

.t2 12

cc c c ■ c 2 c 3

b 3 b“4 T 3 “ 4

(7.11)

Now substituting Eqs. (7.2) into Eq. (7.4b) where I, = tf /l2  (i = t, c and b) gives

mt<p\ = - E tI t(p\2 = 

mc<P’c = ~EcIc<P'c2 =

= ~Ebl b<P'b2 =

-K ,(wi' 2 +w ' 2 - 2w;« ') /1 2  

~ K c { u 2 +  u 3 2 - 2 u 3 u 3 ) / \ 2  

- K b{u’2 + u '2 - 2 u 3u'4) / \ 2

(7.12)

Finally, substituting Eqs. (7.8) to (7.12) into Eq. (7.7) gives the total potential energy as
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L

U -  J {ViSif/2 -  [G,ux -  (G, -  Gc )u2 -  (Gc -  Gb )u3 -  Gbu4 )]y
0

(7.13)

where S = S t + S c + S b is the total shear rigidity of the three-layer beam.

7.3.2.2 Kinetic energy

In similar fashion, the kinetic energy of the three-layer beam of length L including the 

axial, rotary and transverse inertia of all layers is given by

where jut , juc and n b are the mass/unit length of the top, central and bottom layers, 

respectively, and the dot notation refers to partial differentiation with respect to time in 

the usual way.

Substituting Eqs. (7.2) and (7.5) into Eq. (7.14) enables the total kinetic energy to be 

written as

Transverse inertia of full section

y

d x  Axial inertia of the three layers (7.14)

Rotary inertia of the three layers
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2 • El ,-, * O', + / O 2 . Me
2 2 3

, (/*c l * b ) 2 . 2s ,w3 + W3W4 + m4 ) d.x 
6 6 6

(7.15)

73,2.3 Application o f Hamilton’s principle

Applying Hamilton’s principle in the form

S w = S m | L d t  = S m \ { T - U ) d t  = S m ] $ F d x d t  = 0 (7.16)

in which the Lagrangian, L  = T - U , has bean replaced by the functional jV d x , where
0

the function F  can be identified from Eqs. (7.13) and (7.15) as

F = “ V  +[G,«, - (G,  - G c)u2 -(G„ -G > 3 - G ^ .M  

//, .2 Ml . . 1 Of 2 K t ,2 K t t+ {•— Wj +-— WjW2 — — —- Wj + — WjW2 7~wi ~ wiw2}
6 6 2 tt tt 6 6

, + / / c ) . 2 , p c . . 1 ^G, . Gc x 2 , Gc (tf, + ^ c) . , 2 (7.17)
+ { M2 + W2W3 * }U2 W2W3  ̂ U2 £ 2 316 6 2 tt tc tc 6 6

fC«c + / 0  . 2 . M b  • • 1 s 2 + * * )  ,2 A  » f,
+  { W3  +  ^ 3 ^ 4  (  +  )  3 W3 W4 ^  3 £. 3 4 /6 6 2 tc tb tb 6 6
. • 2 1 Gfr 2 ATfc ,2
+{T U‘ - 1 T U‘ - ^ U‘ }

generates the governing differential equations of motion. As before, Eq. (7.16) is solved 

by making use of the Euler-Lagrange equations for a functional involving higher-order 

derivatives with more than one independent variable given by
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=  0
dF d dF d dF
dw dx dw' dt dw
dF d dF d dF
dul dx du[ dt diit
dF d dF d dF
du2 dx du2 dt du2
dF d dF d dF
du3 dx du3 dt du3
dF d dF d dF
du4 dx du4 dt duA

=  0

=  0

=  0

=  0

(7.18)

Using Eq.(7.1) and imposing Eqs. (7.18) on Eq. (7.17) yields

_ L  [-Sw' + G,ut -  (G, -  Gc )u2 -  (Gc -  Gb )u, -  G,«4 ] -  (/i*) = 0
ox dt

f G i  O i  d  y f \  d  y IX* . fAf , X AGtw + —~u2 ---- -u {------(------u x-----l w2) ----- ( U\ + —  u2) = 0
dx 3

\ , Gt G rGt Gc (G , - G c)w + - ^ u l + - ^ u 3- ( - L + — )u2

dt 3

t. *<

- [ - — u [  -  {-K ,  +  K ^ u '2 ] - — ( ^ - u , + ^ » 3  +  ( £ l ± 1 c1  u  )  =  0
dx 6 6 3 !J 3r 6 1 6 3 3 2

, . Gc .. . G, G, G,
-(G c-G 4X  + - ^ » 2+ - i « 4- ( - ^  + - i K

*c *6
8  r , /  u' ^ ( f * e  jJ +  + jut)  ;; \ _  0

“ a^ [_T  2 _ T  4 3 "3] a  6 2 6 4 3 "3)

CiW' + ̂ u 3- ^ u 4 - ^ A ' 3^ K ) - G f u 3+^ u 4) = 0 
tb tb dx 6 3 dt 6 3

(7.19)

The possible boundary conditions can also be deduced from Hamilton’s principle as

dF
dW

=  0 or w = 0 (7.20a,b)
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^  A—  = 0 or u, = 0  (7.21a,b)

dF »^ 7  = 0 or u2 = 0 (7.22a,b)

dF
—  = 0 or «3 = 0  (7.23a,b)

dF
—  = 0 or w4 = 0  (7.24a,b)
dw4

Eqs. (7.20a-7.24a) are the natural boundary conditions at either end of the element, while 

Eqs. (7.20b-7.24b) are the kinematic boundary conditions. The natural boundary 

conditions state the requirements for shear force on the beam and axial forces at the top 

and bottom surfaces of the top layer and the top and bottom surfaces of the bottom layer, 

as

Sy, + G,Ul-  (G, -  Gc )u2 -  (Gc -  Gb )u3 -  Gbu4 = q  = 0 (7.25)

4 l« ;+ 4 l "2 = «i = o  (7-26)3 6

K t {Kt + K  ) , K  ,- r u ' , + x ' cJu'2 + - ^ u ' 3 = n 2 = 0 (7.27)
o 3 o

^ u ' 2 + {K c + K b )u'3 + ^ - u ' i = » , = 0  (7.28)
6 3 6

E jlu' + ? ± u' n = 0  (7.29)
6 3

Attention is now confined to harmonic motion in which the time dependent terms are 

related to co, the circular frequency, by
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f ( x , t )  = F(x)  e icol (7.30)

and the upper case characters refer to the amplitude of the equivalent time dependent 

quantity. Hence, using Eq. (7.30) in Eqs. (7.19) yields the following linear differential 

equations with constant coefficients

-  S W  -  juco2W  + GtU[ -  (G, -  Gc)U'2 -  (Gc -  Gb )U'3 - G bU ' = 0

G ,W  + Q - U 2 - Q - U ,  + ^ - f / , '  + — C/: + — tu2f/. + ̂ -co2U2 = 0 
t, t, 1 3 1 6 2 3 1 6

- ( G , - G c)W' + ̂ L Ul + 2 ± U i - & . +  <L.yU
tc

, ^ t T  Tn I ^C  J  Tn I t K c )  J  J-n , ftt  ^ 2  T  I , ft c  ̂JX T  T i (ftt ftc )  ^  2  f j   (\H U,   ̂ U  ■> H-------------------- U H CO U ,  CO U-x H--------------------co U i  = U
6 6 3 6 6 3 2

G G, a  Gh(Gc - G b)W' + - £-U2 + - j ~U4 - ( —£- + -*-)C/:
tc " tb tc tb

+ — 1/2*+ — u't A Ke + K i G ; + ^ co2u 2 + ^ - o>2u 4 - o
6 6 3 6 6 3

- G bW' +— U3 ~ —  UA + ^ - U l - ^ U ’i + ^ c o i Ui + ^ w ‘UA =0a '  - — g :  + — cy2c/, + — r -  
6 3 3 4 6 3

(7.31)

Using the operator D -  d /d x , Eqs. (7.31) can be written in matrix form as

"^D2 + ^ a 3d A4D a 5d a 6d rw '

A3D A-j + A%D2 A9 + Al0D 2 0 0 A

a 4d Ag + Al0D 2 A\\ + An D 2 Au + Al4D 2 0 u 2 >

a 5d 0 Au + a 14d 2 A s  + A e ® 2 A i  A&u Us

a 6d 0 0 A 7 A%u A\9 + A20 d P a.

= 0 (7.32)

where
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4 = - S ;  A 2 = - Mw 2 ; A }  = G ,; A ,  = - ( G , - G c ) ;  = -(G e - G J ;

,4 = -G  ' /4 = - Q - A - H i - m 2 ■ A - ^ L L -  A A ■6 6 ’ 7 + ~ ^  > ^*8 ~  ~ > 9 + W r> Ao ~  ̂ »t t 5 3 t f 6 6

= - ( C , + 5 l ) + < > W ) (u2
C 3 “  3

a:.
<o2; 4 6 = (* . + *»)

^ n = — + ^ - ® 2;
6

—  • .4 co2- .4 -^  s  - ^ l Q  —  '  _  w  5 ■ '1 2 0  —tb 3

Combining Eq. (7.32) into one equation by eliminating either W, UX,U2, U3 or U4 

the following linear tenth order differential equation

[Z)10 + cxD* + c2D 6 + c3D 4 + c4D z + c 5] V = 0

where V = W, UX,U2> U3 or U4 and

C l = (^1 8  ^2 8 ^38 ^ 4 8  ^ 5 8  ) ̂ 1 1 0

C 2 = ( g 16 e 26 ^36 e 46 g 56 ) ̂ 1 1 0

C3 = (̂ 14 e24 3̂4 e44 5̂4 ) ̂  ̂ 110

C4 ~  (^12 e 22 e 32 e 42 ^52 )  ^ ^110

C5 ~ 1̂0 /  e U0

where

ell0 = AXA8A X2A X6A 20 -  A XA8A X2A 28 -  AXA 8A X24A 20 A 1A l0A l6A 20 + AxAl0A2 A 2 
18

^18 = ^ 2 “̂ 8 ^ 12 -̂ 1 6 ^ 2 0  — -̂ 2 ^ 8 ^ 1 2 ^ 1 8  _  ^ 2 ^ 8 ^ 1 4 ^ 2 0  _  ^ 2 ^ 10^ 16-^20  -̂ 2 ^ 1 0 ^ 1 8

+ AXA8A X2AX5A20 + A XA8A X2A X5A X9 — 2 A xA 8A l2A l7A X8 + AxAgAxxAX6A20 — AXA8AXXA X8

-  AXA8A 24A X9 -  2 A 1AsA 13A l4A 20 + A xA7A 12A x6A 20 -  A XA7AX2A X8 -  AXA7AX4A20

— 2A xA9AxoA x6A 20 + 2A xA9A xoA x8 — A xA x0A x5A 20 — AxAxoAx6A x9 + 2 AxAxoAx7Ax8

(7.33)

yields

(7.34)

(7.35)

(7.36)

(7.37)
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^i6 — A X2A X5A 20 +  A xA 7 A x2 A 16A x9 -  2 A XA 7 A X2A X7A X8 +  A XA 7 A XXA X6A 20

-  A XA 7 A XxA X8 * A XA 7 A X4A X9 -  2 A XA 7 A X3A X4A 20 +  A XA 8 A XXA X5A 20

4- A XA 8 A XXA X6A X9 -  2 A XA 8 A XXA X7A X8 +  A XA 8 A X2A X5A X9 -  A XA 8 A X2A X5A X7

-  2 A XA 8 A X3A X4A X9 -  A xA 8 A x3 A 20 -  A XA X0A X5A X9 +  A XA X0A X7 - 2 A l A 9 A l 0 A l 5 A 20

-  2 A 1A 9 A 10A x6 A X9 +  4 A XA 9 A X0A X7A X8 - A l A 9 A l 6 A 20 +  A 1A 9 A 18 +  A 2 A 8 A X2A X5A 20 

+  A 2 A 8 A X2A X6A X9 -  2 A 2 A g A l 2 A l 7 A l 8  +  A 2 A 8 A XXA X6A 20 -  A 2 A 8 A l l A l8

-  A 2 A 8 A X4A X9 -  2 A 2 A g A X3A X4A 20 +  A 2 A 7 A l 2 A l 6 A 20 -  A 2 A 7 A X2A X8 -  A 2 A 7 A X4A 20

-  2 A 2 A 9 A 10A l 6 A 20 +  2 A 2 A 9 A X0A X8 -  A 2 A X0A X5A 20 -  A 2 A X0A X6A X9 +  2 A 2 A xoA x7A xg

e \4 =  ^ 1^ 7 ^ 11^ 1 5 ^ 2 0  A XA 7 A X\ A \ e A \ 9  -  2 A l A 7 A u A l 7 A lg  +  A XA 7 A X2A X5A X9

-  A XA 7 A X2A X7 -  2 A XA 7 A X3A X4A X9 -  A XA 7 A X3A 20 4- A XA 8 A XXA X5A X9

-  A l A 8 A l l A l7 -  A XA 8 A X3A X9 -  A ^ A ^  A l 5 A 20 -  A XA 9 A X6A X9 +  2 A XA 9  A 17A l8

- 2 A xA 9 A 1q A x5A x9 4- 2 A xA 9 A l 0 A l 7  4- A 2 A 7 A X2A X5A 20 + A 2 A 7 A X2A X6A X9

-  2 A 2 A 7 A l 2 A 1 7 A l8  4- A 2 A 7 A XXA X6A 29 -  A 2 A 7 A XXA X8 -  A 2 A 7 A X4A X9

-  2 A 2 A 7 A X3A X4A 20 4- A 2 A 8 A XXA X5A 20 4- A 2 A 8 A XXA X5A X9 -  2 A 2 A 8 A xxA x7A x8

4- A 2 A 8 A l 2 A i 5 A l9 -  A 2 A 8 A l 2 A l7 -  2 A 2 A 8 A X3A X4A X9 -  A 2 A 8 A l 3 A 20 -  A 2 A X0A X5A X9 

+  A 2 A l 0 A l7 -  2 A 2 A 9 A l 0 A l 5 A 20 -  2 A 2 A 9 A l 0 A l 6 A l9 +  4 A 2 A 9 A l 0 A l 7 A xg

-  A 2 A 9  A x6 A 20 +  A 2 A g  A xg

e n  =  - AXA 7 -^15-^19 " A xA 7 A u A x7 -  A XA 7 A X3A X9 -  A xA 9 A 15A x9 4- A l A 9 A l7  

4~ A 2 A - j A \i A \ 5 A 2q 4- A 2 A 7 A xx A 16A x9 -  2 A 2 A 7 A XXA X7A X8 +  A 2 A 7 A X2A 15A x9

-  A 2 A 7 A x2 A x7 -  2 A 2 A 7 A X3A X4A X9 -  A 2 A 7 A X3A 20 4- A 2 A 8 A X1A X5A 19

- A 2 A 8 A XXA X7 - A 2 A g A x3 A x9  - A 2 A 9 A x$ A 20 - A 2 A g  A X6A X9 4- 2 A 2 A 9  A X7A X8

-  2 A 2 A 9 A X0A X5A X9 +  2 A 2 A 9 A X9A X7

e io =  ^ 2 ^ 7  A xx A x5 A x9 -  A 2 A 7 A XXA X7 -  A 2 A 7 A X3A X9 -  A 2 A 9  A X5A x9 4- A 2 A 9 A X7

e 28 =  ^ 3  ^ 4  A  0^16 -^20 " ^ 3 ^ 4 ^ 1 0 ^ 1 8  " ^3^ 5-^ 10^ 14^ 20 +  ^3  ̂ 6  ̂ 10 ̂ 14 ̂ 18

- A 3 A X2A X6A 20 4- A 3 A X2A X8 4- A y  A l 4 A 20

e 26 =  A y A 4 A 9 A j 6 A 20 -  A y A 4 A 9 A l8  -  A 3 A 5 A 9 A X4A 20 +  A 3 A 6 A 9 A X4A X8 

4-  A 3 A 4 A x0A x5A 20 +  A 3 A 4 A X0A X6A x9 -  2 A 3 A 4 A X0A X7A X8 -  A 3 A 5 A X0A X3A 20 

4- A y A 6 A X0A 13A X8 -  A 3 A 6 A l 0 A X4A X9 4- A 3 A 6 A X0A X4A X7 -  A 3 A X2A X5A 20 

~ ^ 3  ^ 1 2^ 1 6 ^ 1 9  ■** 2 A 3 A X2A X7A X8 - A 3 A xxA ] 6 A 20 4- A 3 A x l A lg 4- A 3 A X4A X9 

4- 2 A y  A l 3 A X4A 2o

(7.38)

(7.39)

(7.40)

(7.41)

(7.42)

(7.43)
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#24 — ^3 -̂ 4 ̂ 9  ̂ 15 ̂ 20 -̂ 3 “̂ 4 -̂ 9 ̂ 16 ̂ 19 “ ^^3 ̂ 4 -̂ 9 -̂ 17 ̂ 18 *-^3^5-^13-^20
- A 3A 5A9A l4A l9 +  A 3A 6A9 A l4A l7 +  A 3A 4A l0A l5Al9

- A 3A 4A l0A l7 - A 3A 5A l0A l3A 19 +  A 3A 6A l0A l3A 17 - A 3 A n A l5A 20

- A3 AuA16A19 +  2A3 A l lA i7Alg - A 3 A l2A l5A 19 +  A 3 A l2A l7 +  2 A 3 A l3A l4A i9

^3 - 1̂3^20

2̂2 = - 3̂-^4-^9-^15^19 “ ^3^ A ^ 9^ n  ~ ^3^ 5 ^ 9 ^13^19 ^3^ 6 ^ 9 ^13^17 

' ^3 ^11^15^19 +  ^3 ^11-^17 +  ^3 ^13^19

3̂8 = -̂ 3-̂ 4 A 0-̂ 16-̂ 20 “ ^3^4^10^18 - ^4 ^^16^20  + -̂ 4 ^8^18
+ A4A sA gA 14A 20 - A4A 6A 8A l4A 19

e36 = A3A 4A9 A l6A 20 - A 3A 4A9A lg +  A 3A 4A l0A l5A 20 +  A 3A 4A l0A l6A l9

- 2 A 3A 4A l0A l7A l8 - A 4 A 7A l6A 20 +  A 4 A 7A l8 +  A 4A 5A 7A l4A 20

“ ^4^6^7^14-^18 - ^4 ^8^15^20 _ ^4 ^8^16^19 ^^4 ^8^17^18
+ A4A 5A 8A l3A 20 - A 4A 6A gA 13A l9 +  A 4A 5A 8A 14A l9 - A 4A 6A 8A 14A 17 

e34 = A 3A4A9A l5A 20 +  A 3A 4A9A l6A l9 - 2 A 3A 4A9A l7A l8 +  A 3A 4A l0A l5A 19

~ ^3^4^10^17 ” ^4 -^7-^15^20 " ^4 ^7-^16^19 A 7A 17A l8
+ A4A 5A 7A l3A 20 - A4A 6A 7A l3A l8 +  A 4A 5A 7A l4A l9 - A 4A 6A 7A 14A l7

- A4 A8A l5A l9 + /14 AgAl7 +  A4A 5A 8A J3A l9 - A 4A 6A 8A l3A l7

c 32 — A 3A 4A9A^A^9 - A 3A4A9A^7 - A 4 A 7 A^A^9 ■+■ A 4A^A7A^3A^9 

~ ^4 Ae A-j A\3A \7 + A4 A 7A l7

648 = A5A 6AgAl2A l8 - A^A6A^qA^8 - A 3A^A^0A^4A 2q +  A 4A 5A 8A 14A 20

- A 5 AgAl2A 20 + A 5 A w A 20

e4() = A$A6A8A l2A i7 - A 5A^Ai9A l7 +  A^A6A 7A^2A^8 +  A^A^AgA^A^g

- 2A^A^A9A jqA 18 - A3A^Aj9A i4A^9 + A 4A^A8A J4A^9 - A 3A^A9A^4A 29

- A3A^Ai0Al3A 2Q + A4A 5A 7 A l4A 20 +  A 4A^A8A l3A 20 - A$ A 7 Al2A20

- A 5 AgAu A 20 +  2 A 5 A9A w A 20 - A s A 8A l2A l9 + A 5 A l0A l9

e44 = '45A6A 7A l2A l7 + A 5A 6A 8A u A l7 - 2 A 5A 6A9A l0A 17 +  A 5A 6A 7A n A 18

- A5A 6A9 A l8 - A 3A 5A 9A l4A l9 - A 3A 5A l0A l3A l9 + A 4A 5A 7A 14A l9

- A3A 5A 9A 13A 20 + A 4A 5A 7A l3A 20 + A 4A 5A 8A l3A l9 - A 5 A 7A 12A ]9

- A l A 8A u A X9 +  2 A l A 9A w A 19 - A 5 A 7A u A 20 +  A s A 9 A 20
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Chapter 7: Vibrations of a three-laver. Timoshenko sandwich beam including coupled axial inertia

e42 = ^5-^6^7^11^17 " ^ 5 ^ 6 ^  1̂7 '  ^3^5^9^13^19 ^4^5-^7^13^19
- j45 A 7A u A 19 + A 5 Ag A 19

e58 = A3A6A l0A l4A l8 - A 5A6A l0A l8 + A6 A l0Al6 - A4A6A8Al4A l8

"*■ ^5^6^8^12^18 “ ^6^8^12^16 ^6 ^8^14

e52 — A3A6A9A l3Al7 A 5A6A9 Al7 + A 6A9 A l5 A4A6A 7Al3A l7

+ ^5 ̂ 6 ̂ 7 ̂ 11 ̂ 17 ~  ^6 ^ 7^ 11^17 + ^6 ^ 7^13

(7.53)

(7.54)

5̂6 = ^3-̂ 6-̂ 9̂ 14-̂ 18 " ^ 3 ^ 6 0 ^ 1 8  ^6-̂ 9^10-^16 “̂3^6^10^13^18

^3^6^10^14-^17 - ^5-^6^9^10^18 ” ^5^6^10^17 -̂ 6 ^^\0^16

^  ^ 6  ^ 1 0 ^ 1 5  ~ - 4̂ ^ 6 ^ 7 ^ 14^18 -^5^ 6 -^7 ^ 12^18  " ^ 4-^6 “̂ 8  ̂ 1 3  ̂ 1 8  (^-5 5 )

" ^ 4^ 6 - 8̂^ 14-^17 ■*" ^ 5  ̂ 6  1^18  ^ 5^ 6 ^ 8 ^ 12^17 " ^ 6 ^ 7^ 12^16

■*■■̂6 ̂ 7^14 “ -^6^8^11^16 "^6 -̂ 8^12^1 5  ^^6 ^8^13^14

5̂4 = A 3A6A9A l3A l8 + A3A6A9A l4A l7 - A5A6A9 Al8 - A5A6AgAl0Al7 

+ A6 Ag A l6 + .46 AgAl0Al5 + A 3A6A l0A l3A l7 - A 5A6AgAl0A l7 +

■^6 •^ 9 '^ 1 0 '^ 1 5  '  ^ 4 ^ 6 ^ 7 ^ 1 3 ^ 1 8  "  ^ 4 ^ 6 - ^ 7 ^ 1 4 ^ 1 7  ^ 5 - ^ 6 “̂ 7 ^ 1 1  ̂ 1 8  C ^-~*6)

"*" ^ 5 ^ 6 ^ 7 -^ 1 2 -^ 1 7  " ^ 4 -^ 6 -^ 8  A  3 A  7 +  ^ 5 ^ 6 ^ 8  A  1^17 -  ^ 6  ^ 7 ^ 1 1 ^ 1 6

~ ^6 A7A l2Al5 + 2 A6 A7A l3A l4 - A 6A8A llA l5 + A 6A8A l3

(7.57)

7 .3 .3  Equilibrium approach

Consider a typical elemental length of a member at some instant during the motion, 

Figure 7.2. The equation of horizontal equilibrium can then be written as

dn. dn , d n b .. .. ..
- r i  + T ^  + ^ _  = 'u<“' ( 7-58)dr dr dr

Substituting from Eqs. (7.4a) and (7.5) into Eq. (7.58) gives the first differential equation 

of motion as

K,U\ Utii, + (K t 4- Kc)u2 (//, + //c)w2 + ^
(K c + K b)un3 - {nc + n b)u3 + K bu\ - ^ bu4 = 0
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Figure 7.2: Positive resultant forces and moments and 
reverse linear and rotary inertias acting on a typical 
elemental length of a three-layer sandwich beam of unit 
width in local co-ordinates.

Since in free vibration analysis, the only external vertical force is the transverse inertia, 

the equation of vertical equilibrium is

= (7.60)
dx

where, from Figure 7.2, it is clear that q = q, + qb + qc is the resultant shear force at any 

normal section of the element in which q , subscripted with ty c, or b, relates to the shear 

force of the top, central and bottom layers, respectively, and jx -  //, + nb + nc is the mass 

per unit length of the beam.

Taking moments about the bottom right hand comer of the element in Figure 7.2 and 

ignoring terms of second order yields the moment equilibrium as
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, dm . dnt t t .. , ,tt
q d x -  —  d*  + —  djc(— + tc +tb) - f j ,u ,  d x(— +tc + /,)+  

ox ox 2 2

~ - d x ( ^ -  + tb) - f j cuc dj:(^- + <t ) +
2 2 (7.61)

^ - d x ( ^ - ) - / x bub d x f y
ox 2 2

t 2 t 2 t 2
= V, - ^ d x ip ,  +fic -rzdxipc + p b - x d j f t

where m is the resultant bending moment at any section given by

m -  mt + mc + mb (7.62)

Using Eqs. (7.4b) and (7.2) in Eq. (7.62) yields the resultant bending moment as

m = -  Ecl c(p'c -  EbI b<p'b
K,t K J  K„tb (7.63)

=  — _ _ ( W) _ W2) _ _ _ ( W2 _ W3) ----- — (w3 - w 4)

Now, substituting Eqs. (7.63), (7.4a), (7.5) and (7.2) into Eq. (7.61) yields the resultant 

shear force as

K tl, » K ctc „ K ctc „
 -------------U 2 H----------- U

12 12 12
Kbh n . K btb n 

3 ~r^~u3 +~r^~u412 12
ttq = ---- — u" +

12 1

-  + + ' » K - :y (^  + ' c +,b)u"2 + * 2 (-^2+‘c + ^ 2 ^ 2 +lc + ' s)"2

- ■ y ( |  + ' t K - j ( Y  + ' t K  + y ( | + ' i ) ' ii + y ( |  + ' i ) i ') (7.64)

2 2 2 2‘ ( - K 2 2 2 2
> ,  • •  • •  £

+ £, — "i — Et t t w2
/i

12 12 12 12
i*.
12

or in a more compact form as
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(7.65)

Now, substituting Eq. (7.65) into Eq. (7.60) yields a further differential equation of 

motion as

the shear stress or strain through the thickness of each layer has a uniform average value, 

whereas in fact they vary. However, the exact relationship for the shear stress at the 

interfaces of the layers can be determined using the differential equation of equilibrium of 

each layer. For instance, consider Figure 7.3 which shows the shearing stress r, (z) at any

distance 0 < = <t, from the top surface of the top layer. The equation of horizontal

equilibrium for Figure 7.3 can be written as

where a is the normal stress at any point 0 < £  < z through the thickness of the layer, p, 

is the mass density of the top layer and d £  is the elemental thickness. The longitudinal
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r ,(O d f lT,(C) + ̂ P - d x ] d C

' ' I tc I1 *  ^  Tz  -n------1

v

P l d x u ( C ) d C  f

------------------------------------►

T(( z ) d x

dx

[CT(0 + M i d  *]<!£•
ox

dx:

Figure 7.3: Shear stress through the thickness of the top layer.

displacement at any point with 0 < C < z  can be determined by interpolation between the 

longitudinal displacements at the top and bottom of the layer as

Now, by using Eq. (7.68) the normal stress and the mass acceleration through the 

thickness of the top layer can be given as

<7(0 = E,e(O  = E,u '(O  = E ,K (1 - y )  + W2 f ]  (7.69)
f A I A

and

w( 0  = [" 10  “  —) + ^2 —] (7-70)

Substituting Eqs. (7.69) and (7.70) into Eq. (7.67) and performing the necessary 

integration yields the shear stress at any point through the thickness of the top layer as
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t ,  (--) = - E , l ( z  -  + ( f ^ K ]  + p , l ( z  -  + ( £ - ) S 2 ] (7.71)

which is a parabolic distribution of shear stress. Eq. (7.71) gives the shear stress at the 

top and bottom fibre of the top layer as

r,(z = 0) = 0 ; r, (z = /,) = r, = - K t ( f £ ± f l )  + Mt ( ^ A ) (7.71a,b)

and using Eq. (7.71), the shear force q t can be written as

Q, = } h  (z) d z = ~E,tf  A  + ^ - )  + p f i  A  + ̂ - )
3 6 3 6

(7.72)

Hence, substituting Eqs. (7.72) and (7.3a) into Eq. (7.6) gives the next differential 

equation of motion as

_ G. K. „ u, .. G, K.
G , y  «, + —  u, — - u ,  + —  u2 + - — u2 - - ^ - u 2 = 0

t , 3 3 11 6 6
(7.73)

Now consider Figure 7.4 which shows the shearing stress rb(z) at any distance 0 < z <tb

from the top surface of the bottom layer. The equation of horizontal equilibrium for 

Figure 7.4 can then be written as

<------------------  dx  >

/FT
Z -  f  - \  A  ~  I

O X

t — ►
,  W O  + ̂ d x ] d C  

Nl/ T ▼ dx

c M----
rb( z ) d x

t\t ^  A
dC

<7(Odc t Pbdxu(C)dC  f
4

rb(C)dC

Figure 7.4 Shear stress through the thickness of the bottom layer.
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-  r ,(z )d x  + = ) p„ dxu(C)  dC (7.74)
Z  z

where a  is the normal stress at any point z < C <tb through the thickness of the layer, pb

is the mass density of the bottom layer and d£* is the elemental thickness. Similar to the

case of the top layer, the longitudinal displacement at any point with z < £ < tb can be

determined by interpolation between the longitudinal displacements at the top and bottom 

of the bottom layer as

»(C) =  « 3  - C n  = " 3 - c — — — = « j ( l - —) + »4— (7.75)
h  h  h

The normal stress and the mass acceleration through the thickness of the bottom layer can 

be obtained by using Eq. (7.75) as

<7(0 = E„e(O = Ebu ' (Q  = £ ,K (1  - ~ )  + K  f  ] (7.76)
h  h

and

Substituting Eqs. (7.76) and (7.77) into Eq. (7.74) and then performing the necessary 

integration yields a parabolic distribution of shear stress through the thickness of the 

bottom layer as

r* (.-) = Eb {[ - - V ^ K  + [ ^ — K > -  P. + > (?-78>
2 tb Ztb Ltb Zlb

The shear stress at the top and bottom fibre of the bottom layer can be determined from 

Eq. (7.78) as
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W3+W4\ / ^ 3 + “4** (z = 0) = r , = K b H — ±) -  p b ( - V ^ ) ; t* (z = tb) = 0; (7.78a,b)

and using Eq. (7.78), the shear force qb can be written as

= } r 6(z)d z = E y b( ^ + ' ^ ) - p bt l { ' ±  + ̂ - )  (7.79)
q 3 o 3 6

Thus, substituting Eqs. (7.79) and (7.3c) into Eq. (7.6) gives another differential equation 

of motion as

G #  -  ̂  «i, -  u; + u3 + 2 i -  u4 -  ^  u; + t i .  U4 = 0 (7.80)
h  6 6 h  3 3

Finally, taking moments about the point O in Figure 7.5 and ignoring terms of second 

order yields the moment equilibrium of the central layer as

-  rb d xtc + qc d * -  f z °  “ d x  d z + f zpc dxu{z)  d z  = 0 (7.81)
I dx {

dx

p d x u ( z ) d z< z ) d z
[rr(z)+ —  ^  dx]dz  

dx

T ? c + ^ d ,
dx

Tbd x

Figure 7.5: State of shear through the central layer.
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where o is the normal stress at any point 0 < z < tc through the thickness of the central

layer, p c is the mass density of the central layer and dz is the elemental thickness. Now,

the longitudinal displacement at any point with 0 < z <tc can be determined by

interpolation between the longitudinal displacements at top and bottom of the central 

layer as

u(z) = u2 -zcpc = u 2 - z ^ — t̂ - = u2( l - — ) + u3— (7.82)

The normal stress and the mass acceleration through the thickness of the bottom layer can 

be obtain by using Eq. (7.82) as

a (z )  = Ece(z) = £> '(--) = Ec[u' 2 + u’ j -] (7.83)

and

u(z) = [u2( l - - )  + u3- ]  (7.84)

Now substituting Eqs. (7.78a) (7.83) and (7.84) into Eq. (7.81) and performing the 

necessary integration yields the shear force through the thickness of the central layer as

^tc=Ebt A  «; + ^  «:) ■- p b!c 4  u4 + ^  fi3) + ^ K  + 2«J) ■-̂  /„ (if, + 2u}) (7.85)
2 2 2 2 6 o

It can be shown that the exact shear variation through the thickness of the central layer is 

also quadratic and the continuity of transverse shear stress at the interface of the layers 

holds exactly.

Finally, substituting Eqs. (7.85) and (7.3b) into Eq. (7.6) gives the final differential 

equation of motion as
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Gcr + ( - ^ u 2 - ^ u ;  + ^ u 2) + ( ^ u 3 - ^ u ' 3 - ^ - u ; + ^ u 3 + ^ u 3)
tc 6 6 lc 3 2 3 2 (786)

+ ( - ^ k 4' + ^ h 4) = 0

Hence, if attention is now confined to harmonic motion as defined by Eq. (7.30), the 

partial differential Eqs. (7.59), (7.66), (7.73), (7.80) and (7.86) yield the following linear 

differential equations with constant coefficients

. Q .  + tc + tb){/-+  i L . ( 2 L + t c + tt )co2u[
2 3

2 3 2 3 2 3

+ —  (—)U 7 ~ —  (—)a«2y ;  = 0  
2 3 4 2 3

AT,C/r + M,w 2U i +  ( K , + K c ) U ”2 +  (M, + Mc W U 2 +  (AT. + K b )U"

+  ( ^ c  +  3 +  ^ 6 ^ 4  + / / i Cy2^  4 = 0

G . W -  —  U. + ^ - U ’ + ^ - ( o 2U, + —  U2 +^-L U"2 + — (ol U2 =0 
t ' 3 1 3 ' < 2 6 2 6

(7.87)

GhW -  —  U, U : -  —  co2U2 + <̂- U t -  —  U ’t ~ —  (o2Ui = 0
/. 3 6 6 l 4 3 3lb

GcW ' - { ^ U 2 + ^ - U ’2 + ^ - co2U2) 
6 ^

Now using the operator D = d/ d * , Eq. (7.87) can be written in matrix form as
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Although the matrix operator in Eqs. (7.32) and (7.88) seem to be different, the latter can 

be deduced ffom the former by utilising matrix operations which don’t change its 

determinant, as follows

i) Differentiate the third, fourth and fifth rows of Eq. (7.88) once and then multiply 

the results by /,, tb and tc, respectively, and add them together. Now multiply the

second row by [ xA{te + /A)] and add it to the previous summation. Finally, subtract the

results ffom the first row of Eq. (7.88) to give the first row of Eq. (7.32);

ii) The Third row of Eq. (7.88) is the same as the second row of Eq. (7.32);

iii) Adding half of the second row of Eq. (7.88) to its fifth row and then subtracting 

the third row of Eq. (7.88) ffom the result yields the third row of Eq. (7.32);

iv) Subtracting the fifth row from the fourth row of Eq. (7.88) gives the fourth row of 

Eq. (7.32).

v) Multiplying the fourth row of Eq. (7.88) by (-1) yields the fifth row of Eq. (7.32).

Therefore, combining Eq. (7.88) into one equation by eliminating either 

W , Ux,U2i U3 or UA yields an identical tenth order linear differential equation to that of 

Eq. (7.34).

7.3.4 Dynamic stiffness formulation

The dynamic stiffness matrix method relates the harmonically varying forces to the 

harmonically varying displacements. Expressions for the general displacements 

W, C/,, U2, U3 and U4 can be deduced from Eq. (7.34) and the expressions for the 

corresponding forces can be obtained by substituting Eq. (7.30) into Eqs.(7.25)-(7.29) to 

yield
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Q = SW ' + G,U, -  (G, - Gc)U2 - (Gc -  Gt )U} - GbU4

n ' = T u : + ^ u '2

o 3

(7.89)

Eqs. (7.89) are functions of W , Ul9 U2, t/ 3 and £/4. Hence, the next step is to solve the

governing differential equations of motion, Eq. (7.34), for the harmonically varying 

displacement field.

7.3.4A  Solution o f  the governing differential equation o f  motion

Eq. (7.34) is a linear tenth order differential equation with constant coefficients and its 

solution can be sought in the following form

rjj are the roots of the characteristic equation stemming from Eq. (7.34) and the Cy are 

arbitrary constants where, for convenience in developing the work that follows, / is an 

assigned integer that defines a set of j  arbitrary constants, e.g. CU =AJ’ c v = Bi etc >

where A f , Bj are independent sets of arbitrary constants.

The q can now be determined as the roots of

10

V = where Cj = enj*; 0 < x < L (7.90a, b)

(7.91)

Eq. (7.91) is a quintic polynomial equation in z = rj2 , i.e.

z 5 +c ,z4 + c 2z3 +c3z 2 +c4z + c5 = 0 (7.92)
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Eq. (7.92) can be solved by any appropriate method such that described in Appendix C, 

where its five roots could be real, imaginary or complex. The ten roots of Eq. (7.91) then 

follow automatically. These ten roots, r\j ( j  = 1,2, ...,10), which can also be real,

imaginary or complex, define V (W, U{, U2, U3 or U4) and the other necessary

quantities for the stiffness formulation of the problem, i.e. Eq. (7.89), to yield the 

following results

w  = Y u H u c f i j  Q = H H <,jC&i
>=i y=i
10 10

U i = 2 H 2j C A j N l = Y l H 7JC f i J
>i y=i

10 10

U i = I \ h >,c A j  f f 2 = t , H tJCA j
j=1 j=\
10 10

>1 y=i
10 10

N 4 = ' Z H l0JC f i J
y=i M

(7.93)

where H fjCj = Cfj, such that Cy is common to all the equations and H tj is the relational 

constant. Noting that one of the H tj is arbitrary, it is usually convenient to set H Xj -  1, 

but since the order of magnitude of the values of Ul t U2, and U4 are almost the same,

a numerical instability could occur. Therefore, in the current problem, it is safer for the 

value of H 2j to be specified as unity. Now, substituting Eqs (7.93) into the first, third,

fourth and fifth equation of Eq. (7.31) yields a system of linear algebraic equations given 

by

■*" ^2 Aa Vj A5 Vj A6 Vj ' V -  M j

A9 + t 0 0 ~ ( A 7 + A t rij)
< ► ^  ^ >

A , ] , A\\ + A \i 7 j A13 + AIaVj 0 — (A9 -f A l0tjj )

r--
-- -St A\3 + A\a tfj AJ5 + A16 Vj Aj7 + A n t]j ^ 0

(7.94)
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Eq.(7.94) can be solved by Gauss elimination to yield H XJ, H y , H Aj and H 5j 

Furthermore, using Eqs (7.93) in Eqs. (7.89) gives H 6J, H 1J, H %ji H 9j and H l0j as

+ G ,H 2j - { G , - G c)H y  ~{GC- G b)HAJ- G bH 5J}

K K.Hy ~ J VjHij + J *1jH3 j

**v = ^ ^ 2 1 + (fC,+3 K c ) nJH y  + ^ , h 4j

".o

U j = 1,2, ...,10) (7.95)

7.3.4.2 Transformation between local and member co-ordinate systems

All the equations developed so far have been based on the forces and displacements in the 

local co-ordinate system shown in Figure 7.6(a). The stiffness formulation requires all 

nodal forces and displacements to be represented in the member co-ordinate system of 

Figure 7.6(b). Hence, the nodal forces and displacements in the local co-ordinate system 

are now transformed to the member co-ordinate system which, by comparing Figures 

7.6(a) and (b), the necessary relationship can be obtained. This is equivalent to imposing 

the conditions of Eq. (7.96) onto Eq. (7.89).

At x = 0 : 
W - W x \

Q = - G ,;

At x -  L :
W = W2\

G = G,;

N t = —N n , N 2 = >
u , = u » . v < = u n ,

= -N„

u 4 = i / „ ;U , = U i2; U 2 = U22, U , = U 32;
N t = N,2; N 2 = N 22; N } = N 32; N 4 = N 42

(7.96)
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x,U t ,U2,U3,UA

y , w

^11 > ^21 > ^31» ^41 > 1

un,u2l,u3l,u4t r
2  ^12 > ̂ 22»-^32 > -̂ 42 »

 ►

^12 > ̂ 22 » ̂ 32 ’ ̂ 42

0 2>^2
(a)

x ,U l9U29U ^ U A

\ , n 2 , n 3 , n 4

y , Q , w

uu,u2liu^u 41

0 , ^ ,

~ N  N  N  N9  12’ 2 2 ’ 32’ 42>

^12 ’ U 22 s ̂ 32 » ̂ 42

(b)
0 2 ^ 2

Figure 7.6: Nodal forces and displacements a) in local 
co-ordinates, b) in member co-ordinates.

7.3.43 Dynamic stiffness matrix

The dynamic stiffness matrix relates the forces to the displacements at the two end nodes 

of a member as

p =kd where d = S C  and p = S’C (7.97)

____________________________________________________________________  223
PhD Thesis, A. Zare, 2004



Chapter 7: Vibrations of a three-laver. Timoshenko sandwich beam including coupled axial inertia

where k is the ten by ten dynamic stiffness matrix,

d =

>1 " "a ' 'C ,'
C2

un N2t Q
3̂1 c4
4̂. 4̂. c5; p  = ; c  =w2 Qi c6

ua Na C7
u 22 n 22 C8

c9
.N <2_ C,„_

(7.98)

and the matrices S and S* relate the elements of d and p, respectively, to the coefficient 

vector C through Eq. (7.93). stJ and s *., the elements of S and S*, respectively, are as 

follows

S\ j —H Xj , S2j —H 2j , S 3 j ~ ^ 3 j  > S 4 j ~ ^ 4 j  ’ S 5 j ~ H $ j

s 6j  = H i j X j ; s 7 J = H 2 j X j  ; s i j = H 3 j x j ; s 9j = h 4j X j ; s l 0 j = H 5 j X j

; s l j = - H 7J ; s l j = - H y  ; s4J= - H 9j ; s5> - / y ioy

s6j~^6jXj^ si j =^ijXj  » s%j=H%jXj > s9j=H9jXj > s\oj~H\0jXj

Xi=e
ijL

(7.99)

( 7  = 1,2 ,. . . 10 )

where their subscripts correspond to row and column co-ordinates in the usual way.

The required dynamic stiffness matrix, k, follows through the following steps

C =S_1 d therefore p=S *S-1d and finally k=S*S_1 (7.100)

The dynamic stiffness matrix for the overall structure can now be assembled from the 

element matrices in the usual way. In the next section, the method for converging with
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certainty on the required natural frequencies is described. Once the required natural 

frequencies have been determined, the corresponding mode shapes can be retrieved by 

any reliable method, such as described in reference (Howson 1979).

7.3.5 Converging on the natural frequencies

Solutions of the equation

K D = 0 (7.101)

where D is the vector of amplitudes of the harmonically varying nodal displacements and 

K is the dynamic structure stiffness matrix yield the required natural frequencies. The 

solution procedure corresponds precisely to the one described in Section 6.3.4. Thus we 

seek to find J 0 of Eq. (6.62) by considering a roller-roller supported Timoshenko

sandwich beam in which the longitudinal and rotational motions are permitted at the 

supports, but lateral displacement W, is prevented (Figure 7.7). For the roller-roller- 

supported case, the boundary conditions are defined by

End 1 End 2

Figure 7.7: Roller-roller supported three-layer beam and the 
position of longitudinal freedoms through the beam thickness.
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A/j = M 2 -  Wx - W 2 = 0 (7.102)

These conditions are satisfied by assuming solutions of the form

W -  Z, sin S x  
U , = Z2 cos S x  
U2 = Z3 cos 5 x  
U 3= Z4 cos S x 
U 4 = Z5 cos S x

(7.103)

n nwhere Z ,, Z2, Z3, Z4 and Z5 are constants and d = -----, ( n = 0, 1, 2, 3,...). To yield the
Lj

frequency equation, Eq. (7.31) has been written in different matrix form as

ByCÔ  + 5  2

A

A

Z?7 + Bgcô  Bg -+- B^qCo

B<

0

+ B^qCq B ,, +  Bi-,co 5 n  +  B iacd'11 T 12 13 ' 14

Be

0

0

B u + B l4co B x 5 + £ 16g> # 17 + B xgco‘

0 B l7 + B lgco 5 19+,B20g/

^i

^2

U A

= 0 (7.104)

where

Bx = - k  B2 = - S D 2; B3 = GtD\ B4 = -(G, - G C)D; B5 = ~(GC - Gh)D;

5<, = - G bD\ 5 , = - ^ - + 4 l 0 2; S8 = ^ - ;  S, = ^ -  + ^ £ > 2; 5 ,0 = 7 -;
3 t, o o

■ (Ar' +Ar4 p 2. « OVLAO. n Q l + L l d 2;
t. t.

n ^c ■ /? f i ^  'i 1 ^ D 2- R -B 1 4 = — , 15 ( ~  T ) ; ^  ’ 16 -o t „ t h -J j

‘c 6
( / * C  + / < * ) .

*17 = n 2 ■ r  — r  — 4. n 2 • r  ——  + —— IJ , Bn - - — , B Xg - — -  + — - U  , &2 0 -  —
t, 6 6 a 3

(7.105)
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where D -  d/djc. Reducing Eq. (7.104) to one equation by eliminating 

W, Ux, U2, U3 or U4 yields the following differential equation

[go™10 + gi™* + Si™* +g4°>2 + S5]F = ° (7.106)

where V = W 9 £/,, U2t U3 or U4 and g 0>Si>S2>S3>S4 and g 5 contain only the even 

orders of the differential operator D = d /d * . Noting that the form of Eqs. (7.104) and 

(7.32) are similar, makes it easy to determine the coefficients in Eq. (7.106) by recalling 

Eqs. (7.36) to (7.57) and substituting Bt (Eq. (7.105)) in place of A, (Eq. (7.33)). This 

yields

50 ~ e\\o
51 = ei8
5 2 = e\b + e2% + + 4̂8 + e58
5 3  =  *14 +  *26 +  *36 +  *46 +  *56

5 4 =  e \2 +  e 24 +  *34 +  *44 +  *54

5 5  =  e \0 +  e 22 +  *32 *42 +  *52

(7.107)

Furthermore, since Eq. (7.107) is a combined equation which allows for the effects of 

W, Ux, U2, U3 and U4, substituting any part of Eq. (7.103) into Eq. (7.107) yields the

frequency equation for a roller-roller supported beam as

10 + b,co8 + b~,co(> -+• b->(o4 + b.co2 + be — 0 (7.108)

where bx,b2,b3,b4 and b5 can be obtained ffom Eq. (7.107). On the other hand, for any 

part of Eq. (7.103) the following hold

D 2(.) = - S 2(.); D 4(.) = <54(.); D 6(.) = -<56(.); D*(.) = <58(.); D l0(.) = - S l°(.) (7.109)

Hence, for the determination of the coefficients in Eq. (7.108), it is more practical if all 

( D 2) and (D ) in Eq. (7.105) are replaced by ( -  S2) and ( S ), respectively. Then using 

these modified Bt (Eq. (7.105)) instead of the Ai (Eq. (7.33)) in Eqs. (7.36) to (7.57), the 

coefficients of Eq. (7.108) can be written as
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^2 ~  (^16 ~  ^28 — ^38 ~  e 4S ~  ̂ 58 V  ^110

^3 =  ( e \4 ~  e 26 ~  e 36 ~  e 46 ~  ^110

^4 ~  ( e i2 ~  e 24 ~  e 34 ~  e 44 ~  e 54 )  ^ ^110

^5 — (^10 — e 22 ~  e 32 ~  e 42 ~  e 52 )  ^ ^110

(7.110)

Note that the minus signs in Eq. (7.110) are due to the first order differential operator 

D(.) in Eq. (7.105), while all of the related terms in Eq. (7.107) contain only even powers

of the operator and therefore they are treated in the same way as D 2(.) = - S 2 (.).

Now, Eq. (7.108) can be expressed as a quintic equation in co2 and consequently its real, 

positive roots are the square of its natural frequencies for each value of « = 0, 1, 2 , . . .  .

Hence J „ is given by the number of positive values of <y„that lie below the trial 

frequency, co*. Thus, substituting Eq. (6.65) in to Eq. (6.63) gives

The required value of J  then follows from Eq. (6.62).

It is interesting to note that when n = 0, S = 0. The coefficients bA and£>5 are then zero 

and it can be shown that bx is always negative, b2 is always positive and b3 is always 

negative. Eq. (7.108) then yields three non-trivial real roots. It is equally clear from Eq. 

(7.102) that

Thus the mode corresponding to n = 0 has no lateral displacement and rigid body 

displacements horizontally. Also there is no axial extension and therefore the frequencies 

correspond to the fundamental shear thickness mode, designated ‘S’ and two other pure 

shear thickness modes designated ‘SA’ and ‘SB’ as shown in Figure 7.8.

(7.111)

V = 0 ; U , = Z 2 ; U2= Z 2\ U} = Z 4 ; UA=Z, (7.112)

PhD Thesis, A. Zare, 2004
228



Chapter 7: Vibrations of a three-laver. Tin^ ftenko sandwich beam including coupled axial inertia

Z2

Z2

L<   >

Figure 7.8: Three possible pure shear thickness modes 
of a roller-roller supported three-layer Timoshenko 
beam, a) S mode, b) SA mode, and c) SB mode.
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7.4 NUMERICAL RESULTS

A number of examples are now given to validate the theory and indicate its range of 

application. The current theory assumes that all three layers of the beam have axial, 

flexural and shear rigidities. However, in the comparative results where some of these 

rigidities are notionally zero, a very small rigidity is eventually considered to assure 

numerical stability. The first six examples compare results obtained by various authors 

for a variety o f sandwich beams that have been used as test examples in the literature. In 

these examples, where appropriate, the results from previous chapters are also included. 

Example 7.7 considers a one-layer deep beam which highlights the occurrence of three 

different classes of shear thickness modes.

Example 7.1: The roller-roller supported beam of Example 6.1 is now reanalysed for the 

case in which the core has bending and axial rigidity and the faceplates allow for shear 

deformation. The results obtained by a number of authors and using a variety of methods 

are given in Table 7.1. The geometric and material properties of the beam are exactly the 

same as those in Example 6.1 and the additional elastic properties of the layers for use 

with the current theory are as follows

Gt =Gb = 8.268 G Pa; Ec = 0.689 GPa

In Table 7.1, ‘Freq. No.’ indicates the order of occurrence of the modes while the second 

column gives the predominant component of the mode and its ordering number. For 

example, ‘B l’ indicates the first bending mode, ‘A l’, the first axial mode, ‘S2\ the 

second shear thickness mode and so on.

It is necessary to note that except for the results stemming from the theories of Chapters 6 

and 7, all other results have been given as the results for a simply supported beam. 

However, it was shown in Example 6.6 that the use of the term ‘simply supported’ must 

be used more carefully in the case of a sandwich beam, since the position of the 

longitudinal constraint plays a significant role on the vibration of the beam. Furthermore,
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Table 7.1: Comparative results for the non-zero natural frequencies (Hz) of the 
roller-roller supported sandwich beam of Example 7.1.

Freq.
No.

mode Theory of 
Chapter 7

Theory o f  
Section 6.4

Theory o f  
Section 6.3

Theory of 
Chapter 5

Sakiyama,
1996b

Rao,
2001

Marur, 
1996

1 B l 57.2431 57.12345 57.1241 57.1358 56.159 57.068 57.041

2 B 2 219.843 219.423 219.431 219.585 215.82 218.569 218.361

3 B3 4 65 .346 464.565 464.595 465.172 457.22 460.925 460.754

4 B4 767 .946 766.850 766.915 768.177 755.05 757.642 758.692

5 B5 1105.84 1104.52 1104.63 1106.68 1087.9 1086.955 1097.055

6 B 6 1463.61 1462.17 1462.31 1465.10 1440.3 1433.920 1457.064

7 B 7 1831.45 1829.97 1830.14 1833.55 1802.7 1789.345 1849.380

8 B 8 2203 .60 2202.13 2202 .32 2206.19 2169.8 2147.969 2275.916

9 A1 2580 .96 2563 .22 2563 .22 - - - 2562

1 0 B9 2576 .82 2575.41 2575 .62 2579.79 2538.2 - -

1 1 BIO 2949.41 2948.08 2948 .30 2952.65 2906.2 - -

18 A2 5161 .92 5126.44 5126.44 - - - -

27 A3 7742 .88 7689.67 7689 .67 - - - -

53 SI 15960.33 15960.5 16406.4(54)* - - - -

55 S2 16191.17 16190.3 16642.4(56)* - - - -

*  Number in the brackets indicates the frequency number, if  different from the first column.

due to the capability of considering more realistic material for the individual layers of the 

beam, the current results are the most precise ones yet available.

Comparison of the results for the flexural frequencies with those from Chapter 6 is not so 

simple. This is due to the fact that including the bending and axial rigidities of the core 

increases the stiffness of the beam, while on the other hand, due to considering the shear 

deformation of the faceplates, the stiffness of the beam is decreased. Therefore, the 

influence of this combination is not clear. However, it is clear that the current theory 

should evaluate the frequency of the axial modes as being higher than the comparable 

results from the theories of Chapter 6.

Finally, it should be noted that for use in the current theory the beam has been modelled 

using 18 elements, where the number of elements required to model the beam using the 

theories of Chapters 5 and 6 was only two. This is not for the purposes of accuracy, since 

all theories are exact and the accuracy is independent of the number of elements. It is due
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to the fact that using a smaller number of elements, which implies that the length of the 

each element increases, leads to the situation that the value of / 7 in Eq. (7.99) overflows.

(In both cases double precision variables are used.) Therefore, by using a sufficiently 

large number of elements, the difficulty can be overcome.

Example 7.2: Using the current theory, the beam of Example 6.2 is now reanalysed using 

the material properties of Example 7.1. Results for the frequencies of the first eight 

flexural modes and the first two axial modes are presented in Table 7.2 and compared 

with those from other references. It is worth noting that here the beam has been modelled 

using 14 elements, whereas the beam can be modelled with only two elements when using 

the theories of Chapters 5 and 6.

Table 7.2: Comparative results for the natural frequencies (Hz) of the cantilevered 
sandwich beam o f Example 7.2.

Freq.
No. Mode Theory of  

Chapter 7
Theory of 

Section 6.4
Theory of 

Section 6.3
Theory of 
Chapter 5

Ahmed,
1971

Baneijee,
2003

Marur, 19%

HOBT4b HOBT5

1 B l 33.7796 33.7456 33.7459 33.7513 33.97 31.46 33.7 33.7

2 B2 199.154 198.788 198.798 198.992 200.5 193.7 197.5 197.5

3 B3 512.160 511.373 511.420 512.307 517 529.2 505.5 505.5

4 B4 906.241 905.118 905.224 907.299 918 1006 890.5 890.5

5 B5 1347.39 1346.06 1346.22 1349.65 1368 - 1321 1321

6 A1 1659.19 1647.79 1647.79 - - - 1648 1648

7 B6 1812.33 1810.91 1811.20 1815.82 1844 - 1786 1786

8 B7 2287.91 2286.48 2286.79 2292.45 2331 - 2271 2271

9 B8 2766.84 2765.47 2765.81 2772.23 2824 - 2792 2792

14 A2 4977.57 4943.36 4943.39 - - - 4943* 4941*

* Values correspond to the second axial mode, but the 13th frequency.

Example 7.3: The influence of more realistic core material and the allowance for shear 

deformation in the faceplates are now investigated for the beam of Example 6.6, where 

the only differences in data are those used in Example 7.1. Roller-roller and simply
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supported boundary conditions are imposed, but refer to Example 6.5 for further 

clarification. Results for the natural frequencies of the beam are given in Table 7.3, 

which give good agreement with the results of theory of Chapter 6. It should be noted 

that here the necessary number of elements to model the beam is 2, where as the 

necessary number of elements to use with the theories of Chapter 6 was only one.

Table 7.3: Comparative results for natural frequencies (Hz) of the thick sandwich 
beam of Example 7.3.

Freq.
No.

Roller-roller Simply supported*
Theory of 
Chapter 7

Theory of 
Section 6.4

Theory of 
Chapter 7

Theory of 
Section 6.4

1 0 0 293.4543(B) 293.3143(B)
2 294.9411(B) 294.808(B) 653.7430(B) 653.6769(B)
3 658.7402(B) 658.706(B) 799.2592(BA) 798.6499(BA)
4 1014.058(B) 1014.072(B) 1017.039(B) 1017.041(B)
5 1368.794(B) 1368.797(B) 1369.641(B) 1369.641(B)
6 1596.033(S) 1596.045(S) 1725.246(B) 1725.17(B)
7 1726.345(B) 1726.274(B) 1874.164(SB) 1871.087(SB)
8 2088.676(B) 2088.462(B) 2090.620(B) 2090.327(B)
9 2457.246(B) 2456.815(B) 2457.720(B) 2457.229(B)
10 2580.959(A) 2563.221(A) 2823.933(B) 2818.611(B)
11 2833.287(B) 2832.561(B) 2853.328(B) 2846.612(B)
12 3144.195(S) 3138.852(S) 3217.501(B) 3216.38(B)
13 3217.897(B) 3216.797(B) 3608.775(B) 3607.184(B)
14 3612.081(B) 3610.531(B) 3991.592(B) 3988.061(B)
15 4016.77(B) 4014.702(B) 4106.674(SAB) 4098.532(SAB)
16 4432.83(B) 4430.183(B) 4440.401(B) 4437.404(B)
17 4861.062(B) 4857.791(B) 4863.724(B) 4860.223(B)

18 5161.911(A) 5126.451(A) 5298.846(B) 5293.185(B)
19 5302.211(B) 5298.285(B) 5387.452(SAB) 5365.328(SAB)

20 5640.703(S) 5628.741(S) 5755.551(B) 5750.872(B)
* Longitudinal freedom u4 at Figure 7.7 is constrained.

Example 7.4: Another deep symmetric sandwich beam is now analysed to show the good 

agreement obtained between the results of the current theory and those of other theories in 

reference (Marur and Kant 1996). In reference (Marur and Kant 1996) a simply
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supported beam of length 0.762m, which consists of six orthotropic layers of thickness

0.0254m is considered. The top two and bottom two layers have their strong axis parallel 

to the beam’s longitudinal axis and act as stiff faceplates, while the other two layers, with 

a 90 degrees rotation of their lay-up, form a soft core. The material properties in the 

current notation are as follows

E , = E b = 525GPa ; Ec = 21GPa ; G, = Gc = Gb = 10.5GPa ; Pt - P c ~P b -  775Kg/m3.

The comparative results are given in Table 7.4. The natural frequencies are non- 

dimensionalized by using the expression co = ool}[pt /(Eth 2)]Vi where co is the circular

frequency and h is the beam’s total thickness. The difference in results are due to various 

assumed shear distributions across the cross-section, from constant transverse shear strain 

in first order beam theory (FOBT) to parabolic transverse shear strain distribution in 

higher order beam theories (HOBT) and the current theory, which are not only problem 

dependent but also mode dependent (Marur and Kant 1996).

Table 7.4: Comparative results for non-zero frequencies of the thick beam of 
Example 7.4.

Freq.
No Mode Current

Theory
Marur, 1996

FOBT HOBT4a HOBT4b HOBT5
1 B1 1.702 1.639 1.736 1.656 1.656
2 B2 4.039 3.81 4.125 3.923 3.923
3 B3 6.336 5.912 6.439 6.191 6.191
4 B4 8.611 7.988 8.722 8.47 8.47
5 B5 10.872 10.1 11.042 10.803 10.803
6 SI 11.619 11.181 12.248 11.111 11.111
7 A1 12.596 12.188 12.636 12.953 12.636
8 B6 13.125 12.953 13.333 13.117 13.117
9 B7 15.370 14.392 15.751 15.561 15.561
10 B8 17.611 16.732 18.313 18.151 18.151
11 S2 19.141 19.088 19.747 18.927 18.927
12 B9 19.849 19.205 21.021 20.889 20.889
13 B10 22.083 20.874 22.865 22.763 22.763
14 A2 23.375 25.91 23.597 25.91 25.597
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Example  7.5: As another example, a cantilevered sandwich beam with three identical 

layers and various lengths is used (Deng and Vu-Quoc 1998). The non-dimensional 

geometric and material properties for each layer are as follows

l t = le = h  =0.02; p  = 50.0; E = 3x l06; G = 1.2xl06

The comparative results are given in Table 7.5. Although reference (Deng and Vu-Quoc 

1998) modelled the beam with 20 linear elements the results are an overestimate. Only 

one element was required for the current theory.

Table 7.5: Comparative results for the non-dimensional natural 
frequencies of the cantilever beam of Example 7.5.

Freq.
No

L=3.0 L=0.3
Current
theory

Deng,
1998

Current
theory

Deng,
1998

1 1.656983 1.658292 161.1896 162.615
2 10.36621 10.46547 878.8707 926.5694
3 28.94521 29.70036 1282.55 1276.478
4 56.49338 59.43545 2112.978 2329.802

Example 7.6: A symmetric simply supported sandwich beam with overhangs is now 

considered which has the following non-dimensional geometric and material properties. 

(Deng and Vu-Quoc 1998)

tt = tb = 0.05; P t ~ P b ~  20-0; Et = Eb = 400,000 ; Gt =Gb = 160,000;

tc = 1.0 ; p e =\  .0; Ec = 1000

The total non-dimensional beam length is 40, while the length of each overhang is 

considered to be 10. Comparative results for two different shear modulli of the core layer 

are given in Table 7.6. The results in columns 2 and 3 of this table represent the 

frequencies of a sandwich beam with a relatively soft core, while results in the fourth and 

fifth columns refer to the frequencies of a sandwich beam with relatively stiff core. Here 

also the FEM results shown an overestimate of the frequencies.
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Table 7.6: Comparative results for the non-dimensional natural frequencies 
of the simply supported beam with overhangs of Example 7.6.

Freq.
No

G<= 400 G c= 8000

Current Deng, Current Deng,
theory 1998 theory 1998

1 0.763137 0.767121 0.827483 0.833069
2 0.994415 1.002488 1.344796 1.358937
3 1.608263 1.630904 2.713123 2.781141
4 3.338055 3.490406 6.505164 6.965818

Example 7.7: A roller-roller supported homogeneous beam is now analysed that has a 

sufficiently deep section that it would usually be analysed as a Timoshenko beam. The 

geometric and material properties of the beam are as follows

E  = 1.0GPa; G = 0.333GPa; p = 7500Kg/m3; / = 2.0m. L = 4.0m

In order to model the beam for use in the current theory, it is necessary to model the beam 

as a three-layer beam and therefore various layers thicknesses are considered and the 

results are reported in Table 7.7. To distinguish between different modes B, A, S, SA, SB 

are used to indicate bending, axial and first, second and third classes of shear thickness 

modes, respectively. Also where a number follows them, it indicates the number of half 

wave-lengths in the mode.

The second and third columns of Table 7.7 gives the results of ‘CHNFIN’, a program for 

the analysis of plane frames with axially loaded Timoshenko members (Howson 1979), 

which is based on the theory given in reference (Howson and Williams 1973). In this 

reference, first order shear theory has been used to model the shear deformation of 

members, which assumes a constant transverse shear strain across the cross-section 

together with a shear correction factor. In this example, although the same assumption of 

constant transverse shear strain through the cross-section of each layer of the beam has 

been made, modelling the beam with three Timoshenko beam layers imposes less 

constraint on the system and also makes it possible to consider different classes of shear
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modes. Hence, for comparison, the beam is modelled using three Timoshenko beam 

layers with various combinations of symmetric thickness varying from two very thin 

outer layers and a thick central layer to two rather thick outer layers and a very thin 

central layer. The results are presented in columns 3 to 24 of Table 7.7.

It can be seen from Table 7.7 that considering the beam as a three-layer beam allows the 

beam to have two more classes of shear modes. Also for every combination of layer 

thickness, the corresponding frequency is less than that of the beam with only one layer, 

since it is equivalent to providing additional flexibility to the system.

Finally, the proposed results of columns 25 and 26 contain the minimum calculated 

frequencies for each of the various vibration modes whose vibration frequencies are less
xL

than 319.5Hz, the frequency of the 7 axial mode. In the other words, these columns list 

any possible vibration modes and their frequency that lies below the 7th axial mode, 

despite the different thickness combination used in modelling the beam. Perhaps, these 

frequencies would be generated if at least a third order shear deformation theory were 

used in analysing the deep beam.

It is worth noting that the fundamental mode of each class of shear thickness mode is 

always a pure shear mode, while the higher modes are always coupled with either bending 

or axial behaviour. Study of the resulting modes for this roller-roller supported beam 

shows that the class SA of shear thickness modes is mostly coupled with axial effects, 

where the class SB is largely coupled with bending effects (See Figure 7.9). The mode 

shapes of the class S of shear thickness modes are similar to the shear modes in Chapter 6.

PhD Thesis, A. Zare, 2004
237



PhD 
Thesis, A. Zare, 2004 

238

Table 7.7: Results of the roller-roller supported beam of Example 7.7.
Freq.
No

CHNFIN
(Howson, 1979)

Current theory with various layer thickness combinations through the cross-section i.e. top layer-middle layer- bottom layer
0.01-1.98-0.01 0.1-1.8-0.1 0.2-1.6-0.2 0.3-1.4-0.3 0.4-1.2-0.4 0.5-1.0-0.5 0.6-0.8-0.6 0.7-0.6-0.7 0.8-0.4-0.8 0.9-0.2-0.9 0.99-0.02-0.99 Proposed

1 15.646 B 15.620 B 15 444 B 15.330 B 15.283 B 15.284 B 15.318 B 15.372 B 15.438 B 15.508 B 15.579 B 15.639 B 15.283 B1
2 42.760 B 42.634 B 41.764 B 41.259 B 41.098 B 41.154 B 41.336 B 41.584 B 41.862 B 42.153 B 42.450 B 42.727 B 41.098 B2
3 45.644 A 45.644 A 45.644 A 45.644 A 45.644 A 45.644 A 45.644 A 45.644 A 45.644 A 45.644 A 45.644 A 45.644 A 45.644 A1
4 58.113 S 57.830 S 55.870 S 54.591 S 53.962 S 53.819 S 54.065 S 54.623 S 55.415 S 56.344 S 57.288 S 58.039 S 53.819 SI
5 70.826 B 70.565 B 68.824 B 67.940 B 67.775 B 67.991 B 68.380 B 68.833 B 69.301 B 69.770 B 70.255 B 70.759 B 67.775 B3
6 76.877 S 76.624 s 74.886 S 73.758 s 73.199 S 73.064 S 73.269 S 73.753 S 74.453 S 75.285 S 76.135 S 76.810 S 73.064 S2
7 91.287 A 91.287 A 91.287 A 91.287 A 91.287 A 91.287 A 91.287 A 91.287 A 91.287 A 91.287 A 91.287 A 91.287 A 91.287 A2
8 98.592 B 98.190 B 95.586 B 94.480 B 94.462 B 94.905 B 95.496 B 96.104 B 96.686 B 97.245 B 97.823 B 98.491 B 94.462 B4
9 112.515 S 112.297 S 110.811 S 109.859 s 109.387 S 109.266 S 109.428 S 109.827 S 110.417 S 111.132 S 111.870 S 112.458 S 109.266 S3
10 126.013 B 125.469 B 122.074 B 120 929 B 121.162 B 121.842 B 122.593 B 123.298 B 120.455 SA 114.854 SA 113.262 SA 115.676 SA 113.262 SA1
11 136.931 A 136.931 A 136.931 A 136.931 A 136.931 A 136.931 A 136.931 A 130.598 SA 123.933 B 123.592 SA 122.113 SA 124.356 SA 120.929 B5
12 152.842 S 152.488 B 148 396 B 147.372 B 147.903 B 148.788 B 147.014 SA 136.931 A 128.812 SA 124.517 B 125.116 B 125.879 B 122.113 SA2
13 153.172 B 152.655 S 151.400 S 150.606 S 150.213 S 150.110 S 149.650 B 138.344 SA 136.931 A 136.931 A 136.931 A 136.931 A 136.931 A3
14 180.146 B 179.323 B 174.634 B 173.854 B 174.680 B 173.644 SA 150.239 S 150.404 B 151.052 B 146.714 SA 145.470 SA 147.358 SA 145.470 SA3
15 182.574 A 182.574 A 182.574 A 182.574 A 182.574 A 175.724 B 153.936 SA 150.567 S 151.058 S 151.627 B 152.207 B 152.792 S 147.372 B6
16 195.194 S 195.034 S 193.972 S 193.306 s 192.977 S 179.542 SA 173.050 SA 159.340 SA 151.138 SA 151.661 S 152.290 S 153.009 B 150.110 S4
17 206.987 B 206.029 B 200.840 B 200.386 B 201.478 B 182.574 A 176.652 B 176.715 SB 174.994 SB 178.611 B 177.703 SA 179.251 SA 173.854 B7
18 228.218 A 228.218 A 227.045 B 226.964 B 220.037 SA 192.890 S 182.574 A 177.422 B 178.060 B 178.722 SA 179.153 B 179.957 B 174.994 SB1
19 233.733 B 232.640 B 228.218 A 228.218 A 224.721 SA 196.177 SA 188.870 SB 182.574 A 181.034 SB 182.574 A 182.574 A 182.574 A 177.703 SA4
20 238.624 S 238.490 S 237.577 S 237.011 S 228.218 A 202.634 B 192.996 S 182.749 SB 182.371 SA 187.299 SB 194.723 S 195.152 S 181.034 SB2
21 260.407 S 259.181 B 253.269 B 253.577 B 228.279 B 213.472 SB 194.558 SB 189.224 SA 182.574 A 192.894 SB 205.995 B 206.775 B 182.574 A4
22 273.861 A 273.861 A 273.861 A 273.861 A 236.732j S 218.531 SB 200.906 SA 193.268 S 193.679 S 194.188 S 214.853 SA 216.135 SA 192.890 S5
23 282.692 S 282.572 B 279.521 B 280.215 B 238.222 s 221.138 SA 203.594 B 199.662 SB 197.974 SB 205.495 B 228.218 A 228.218 A 197.974 SB3
24 287.028 B 285.669 S 281.782 S 281.292 s 255.071 B 228.218 A 210.608 S 204.359 B 204.976 B 208.740 SB 232.758 B 233.500 B 200.386 B8
25 313.606 B 312.117 B 305.805 B 306.867 B 259.165 SA 229.508 B 228.218 A 224.475 SA 218.730 SA 215.696 SA 235.278 SB 238.588 S 214.853 SA5
26 319.505 A 319.505 A 319.505 A 315.158 SA 259.244 SB 232.977 SB 230.475 B 224.840 SB 223.208 SB 228.218 A 238.219 S 255.860 SA 223.208 SB
27 318.446 SA 263.418 SB 236.657 S 234.406 SA 228.218 A 228.218 A 232.300 B 239.707 SB 260.157 B 226.964 B9
28 319.505 A 273.861 A 251.963 SA 234.726 S 231.223 B 231.813 B 232.672 SB 252.517 SB 273.861 A 228.218 A5
29 275.516 SB 255.069 SB 236.746 S 236.976 S 237.326 S 237.760 S 254.778 SA 282.660 S 236.657 S6
30 281.051 S 256.341 B 257.300 B 255.734 SB 254.186 SB 255.490 SA 259.460 B 286.763 B 253.269 B10
31 281.845 B 273.861 A 264.584 S 258.023 B 258.056 SA 259.039 B 272.505 SB 297.289 SA 254.186 SB4
32 285.919 SA 280.986 S 271.471 SA 262.943 SA 258.584 B 262.425 SB 273.861 A 313.329 B 254.778 SA6
33 294.468 SB 282.896 SB 273.861 A 273.861 A 273.861 A 273.861 A 282.338 S 319.505 A 273.861 A6
34 308.597 B 283.132 B 281.062 S 281.261 S 281.562 S 281.939 S 286.112 B 279.521 B ll
35 317.017 SA 286.767 SA 284.072 B 284.768 B 285.300 B 285.726 B 296.358 SA 280.986 S7
36 318.956 SB 309.884 B 298.401 S 290.479 SB 289.028 SB 296.222 SB 298.208 SB 289.028 SB5
37 319.505 A 314.866 SB 310.799 B 303.407 SA 299.181 SA 296.971 SA 312.725 B 296.358 SA7
38 319.505 A 310.826 SA 311.466 B 311.970 B 312.370 B 319.505 A 305.805 B12
39 319.505 A 319.505 A 319.505 A 319.505 A 319.505 A7

Chapter 
7: V

ibration 
of a 

three-iaver Tim
oshenko 

sandw
ich 

beam 
including 

coupled 
axial inertia



Chapter 7: Vibrations of a three-laver. Timoshenko sandwich beam including coupled axial inertia

CL

SA1

CL

SA2

CL

SA3

SB1

SB2

01

SB3

Figure 7.9: Schematic shapes of the 1st, 2nd and 3rd modes of the SA and SB 
classes of shear thickness modes of the roller-roller beam of Example 7.7. For 
simplicity the coupled bending component has been ignored.

7.5 GENERAL REMARKS

Due to the importance of the secondary effect of shear deformation for deeper beams, a 

dynamic stiffness matrix method has been developed to include this effect for all layers of 

a three-layer beam. Hence, the proposed model can be used for analysing any deep beam 

for which Timoshenko beam theory is normally needed. However, it is equally 

applicable to modelling slender beams. The Wittrick-Williams algorithm can then be 

used to solve the model for any required frequency to any desired accuracy.
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The theory presented in this chapter corresponds to second order shear theory and clearly 

meets all the requirements of shear and displacement compatibility at the interface of the 

layers. It assumes a linear and quadratic variation for the normal strain and transverse 

shear, respectively, across the thickness of the cross-section of each layer. Therefore, all 

possible secondary effects are included and there is no need for a shear correction 
coefficient.

Since, in the present theory, the governing differential equation is of tenth order, its 

characteristic equation leads to a quintic algebraic equation in co2, which usually takes 

more time to solve in comparison to the quartic or cubic equations in Chapters 6 and 5, 

respectively. Therefore, unless very precise results are required or shearing deformation 

of the layers is important or the bending and axial rigidities of the central layer have 

almost the same order of magnitude as the other layers, it is recommended that the theory 

of Section 6.4 is used.

Considering a beam as a three-layer beam allows the beam to have two more classes of 

shear modes, SA and SB, besides the flexural, axial and usual shear thickness modes. 

Also for every combination of layer thickness, the corresponding frequencies of latter 

modes are less than that of the beam with only one layer, since it is equivalent to 

providing additional flexibility to the system. However, a suitable combination of layer 

thickness for any mode may be found that yields a minimum value for the corresponding 

frequency. Perhaps, these frequencies would be generated for a single layer 

homogeneous beam if at least a third order shear deformation theory were used in 

analysing the deep beam.

It is worth noting that the SA and SB classes of shear thickness modes are in the 

frequency range of interest if the thickness of the layers have almost the same order of 

magnitude. However, it is clear that even the S class of shear mode can only occur in 

beams that are sufficiently deep.
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The results of Examples 7.1 to 7.6 show good correlation between the current theory and 

a selection of comparable results available in the literature. Also, the results of Example 

7.7 provide a range of ‘exact’ solutions that may be helpful for future comparisons.

Finally, it is worth emphasising that it is relatively easy to generate examples in which the 

roots of the characteristic equation, Eq. (7.91), become sufficiently large that the value of 

£ in Eq. (7.90b) overflows, even when using double precision arithmetic. However, 

because the combined effects of the value of the root and the length of the member are the 

source of this difficulty, it is only necessary to reduce the length of the member (element) 

and this incurs no approximation. Thus if difficulty is experienced a simple method is to 

subdivide the member into a greater number of elements until the problem is resolved.
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SUMMARY, CONCLUSION AND FUTURE WORK

8.1 SUMMARY

Transcendental stiffness matrices for vibration (or buckling) have long been available for 

a range of structural members. Such stiffness matrices are exact in the sense that they are 

obtained from the analytical solution of the governing differential equations of the 

member. Hence, assembly of the member stiffnesses to obtain the overall stiffness matrix 

of the structure results in a transcendental eigenproblem that yields exact solutions and 

which can be solved with certainty using the Wittrick-Williams algorithm.

When such an exact solution exists, the member has a recently discovered property that 

can also be expressed analytically and is called its member stiffness determinant. The 

member stiffness determinant is a property of the member when fully clamped boundary 

conditions are imposed upon it. It is then defined as the determinant of the member 

stiffness matrix when the member is sub-divided into an infinite number of identical sub- 

members. Each sub-member is therefore of infinitely small length so that its clamped-
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ended natural frequencies are infinitely large. Hence the contribution from the member 

stiffness matrix to the Jo count of the W-W algorithm will be zero. In general, the member 

stiffness determinant is normalised by dividing by its value when the eigenparameter (i.e. 

the frequency or buckling load factor) is zero, as otherwise it would become infinite.

Part A of this thesis developed the first two applications of member stiffness determinants 

to the calculation of natural frequencies or elastic buckling loads of prismatic plate 

assemblies comprising either isotropic or orthotropic plates subject to in-plane axial and 

transverse loads.

Part B presented the development of exact dynamic stiffness matrices for three models of 

sandwich beams. The simplest one is only able to model the flexural vibration of 

asymmetric sandwich beams. The first model was then extended to include axial and 

rotary inertia, which made it possible to predict the axial and shear thickness modes of 

vibration in addition to those corresponding to flexure. This culminated in the 

development of a unique model for a three layer Timoshenko beam.

Also, by using the appropriate transformations, Section 6.5, the developed element of 

Chapters 6 and 7 can be used to model frames constructed from sandwich elements.

Numerous examples have been given to validate the theories and to indicate their range of 

application. The results presented in these examples are identical to those developed 

from alternative exact techniques, and otherwise show good correlation with a selection 

of comparable results that are available in the literature. In the latter case, the differences 

in the results are attributable to many factors that vary widely from approximate solution 

techniques to differences in basic assumptions.

8.2 CONCLUSIONS

In the exact method for deriving the member dynamic stiffness matrix, the partial 

differential equation of motion is solved analytically in such a way that the closed form
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solution satisfies inter-element compatibility as well as the boundary conditions. In 

contrast with the finite element approximation, the dynamic member stiffness matrix is a 

single matrix in which the exact and continuous mass distribution is automatically 

accounted for and the model therefore has an infinite number of degrees of freedom. The 

dynamic stiffness matrix in this case contains terms that are transcendental functions of 

frequency and therefore a suitable eigenvalue problem solver is needed.

8.2.2 Conclusion for Part A

Transcendental structural eigenproblems based on exact stiffness formulations are now 

routinely solved by use of the Wittrick-Williams algorithm, which guarantees 

convergence on any required eigenvalue to any required accuracy with absolute certainity 

that none have been missed. The eigenvalues are natural frequencies in vibration 

problems or critical load factors for buckling problems. Convergence is commonly 

achieved by bisection, despite the fact that the method is known to be relatively slow. 

Quicker methods are available, but their implementation is hampered by the highly 

volatile nature of the determinant of the structure’s transcendental stiffness matrix, 

particularly in the vicinity of the poles, which may or may not correspond to eigenvalues.

A major advantage of the member stiffness determinant is that, when its values for all 

members of a structure are multiplied together and are also multiplied by the determinant 

of the transcendental overall stiffness matrix of the structure, the result is a determinant 

which has no poles and is substantially less volatile when plotted against the 

eigenparameter. Such plots provide a significantly better platform for the development of 

efficient, computer-based routines for convergence on eigenvalues by curve prediction 

techniques.

8.2.3 Con elusion for Part B

The use of the stiffness method offers great flexibility to analyse frames, as well as to 

impose ‘constraints’ on any selected freedom of the structure. These will typically take
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the form of mass inertia, spring support stiffness or relationships that constrain one or 

more displacements to move in a predefined way relative to another set of displacements. 

Imposing such constraints follows the normal rules that would apply to a traditional beam 

element, except that more care is required to associate the constraint with the appropriate 
degree(s) of freedom.

The crucial difference of the inclusion of axial inertia in the second model enables the 

resulting member dynamic stiffness matrix (exact finite element) to be included in general 

two dimensional structures for the first time. Furthermore, although the developed 

element is straight, it can be used to model curved structures by using an appropriate 

number of straight elements to model the geometry of the curve.

A number of issues arising from the difference between sandwich beams and 

homogeneous beams, such as co-ordinate transformations, modal coupling and the 

application of boundary conditions are considered. In the case of single beams, it is 

confirmed that the modes of vibration are largely coupled at frequencies of practical 

interest, especially for unsymmetrical boundary conditions. However, the predominant 

component of the mode can be classified into one of the three families of modes; flexural, 

extensional and thickness shear.

Another crucial point is to distinguish between sandwich beams and homogeneous beams, 

since the thickness in the former plays an important role in the behaviour of the beam in 

the shear thickness mode of vibration and consequently on the coupling of the modes. In 

contrast with ordinary beams, the position of the axial constraint through the thickness of 

the beam is important. It always leads to coupling between the modes, but the value of 

the corresponding natural frequency depends on the location of the constraint.

Furthermore, despite the fact that the developed models are for straight elements, they can 

be used to model curved structures by using an appropriate number of straight elements to 

model the geometry of the curve. The results of Example 6.4 show that the number of 

straight elements needed to achieve comparable accuracy is even less than the number 

needed when using curved finite elements.
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Finally, it has been understood that considering a beam as a three-layer beam allows the 

beam to have additional shear modes, besides the flexural, axial and usual shear thickness 

modes. Also for every combination of layer thickness, the corresponding frequencies of 

latter modes are less than that of the beam with only one layer, since it is equivalent to 

providing additional flexibility to the system. However, a suitable combination of layer 

thickness for any mode may be found that yields a minimum value for the corresponding 

frequency. Perhaps, these frequencies would be generated for a single layer 

homogeneous beam if at least a third order shear deformation theory were used in 

analysing the deep beam.

8.3 SUGGESTIONS FOR FUTURE WORK

The following suggestions are made as to how the current research study may be 

extended.

1. Derivation of member stiffness determinants for curved Euler-Bemoulli and 

Timoshenko beams with the knowledge that in-plane and out-of-plane behaviour are 

uncoupled.

2. Developing a model for a sandwich beam on an elastic foundation.

3. Developing a sandwich model that considers the compressibility of the core.

4. Developing an exact curved sandwich model for use in a generally curved structure.

5. Developing a model for tapered sandwich beams.

6. Developing a sandwich model that utilizes a higher order shear theory for the layers.

7. A study of the out-of-plane and torsional behaviour of sandwich beams using the 

exact dynamic stiffness method.

8. Developing a model for considering the global and local buckling of sandwich beams.
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APPENDIX A

CONSTITUTIVE RELATIONS FOR PRISMATIC PLATES

The uncoupled out-of-plane and in-plane elastic properties of a prismatic plate are defined 

by the following two sets of equations (Wittrick and Williams 1974)
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(A.2)

where mx, m and m ^  are the perturbation bending and twisting moments per unit 

length, nx, ny and are the perturbation membrane forces per unit length, 

k x , K y  and are the perturbation curvature and twist, and s x , e y  and y ^  are the
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perturbation membrane strain. The sign convention for the bending moments and 

membrane forces is shown in Figure A.l.

x
A

m xy

m.

m
’ 4k

m xy

m xy

%
m .

m.
«  AA

m x y

Figure A .l: Positive resultant forces acting on a typical element of an orthotropic 
plate.

Also

d w d w d w
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1 2 (1 -v ,v 2) ( l - v , v 2)
E x . C:(1- v 1v 2)
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(A.4)

where u, v and w are the perturbation displacements at a point (x, _y) on the middle plane 

of the plate.
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To use Eqs. (A .l) and (A.2) it is required that the principal elastic axis of orthotropic 

properties are parallel to the x  and y  axes of the plate and therefore, Ex, Vj and E2, v2 

are Young’s modulus and Poisson’s ratio in the x  andy  directions, respectively.

Now, based on Eqs. (A.l) to (A.4), the uncoupled out-of-plane and in-plane elastic 

properties for an isotropic plate may be defined by the following two sets of equations

l V

my it l b V 1

m*y. 0 0

0

(1 -v )

fc.

2 K xy

(A. 5)

1 V
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/ V 0 0

0

(1 -v )

<

7 * .

(A. 6)

where

D = E h \ - ,  A = - ^  (A. 7)
12(1-v )  (1 -v")
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SOME USEFUL IDENTITIES

B.l. GENERAL IDENTITIES

Various trigonometric manipulations have been made to revise the coefficients of the 

stiffness matrices for prismatic plates. The principal identities are given below. It should 

be noted that the definitions of Eqs. (2.10) or (2.24), which define p x and qx for the case

of isotropic and orthotropic plates, respectively, are equally valid in the identities below 

and hold for both definitions, irrespective of whether ^  or j  is real.

B. 1.1. Single argument identities

(B.l)

qx + z  P z =q2Z (B.2)
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P z V z  =  P2Z  ( B -3 )

B.1.2. Double arguments identities

The following identities hold even if one of the arguments is real and the other is

imaginary. Alternatively a  and y  can be replaced by r  and £  and the identities still

hold.

4 W >  = +  CCY P a P y  (B -4 )

9(a-r) =  ~ a Y P a P y  (B -5)

( «  +  r ) p la,y, = a p aqr + y q „ p r ( B -6 )

(a -r)P(a- , )=a  PaVy-rQaP,  (B ' 7)

9a9 ,  = '/2( q {a. r) + q ia. r ) ) (B-8)

a-r p ap ,  = ‘/i (qlatr) -<?<„.,,) (B-9)

a  P a 9 , =  1/2 [ ( « + r ) /W r >  + (“ - r ) P ( a - , ) ]  (B 1 ° )

Y qaPy = V*[(a +Y)Pfayy)-(a  -Y)P(a-y,] (B-1 1)

° 2 P i  Qy +  Y 2 Py  9a =  '/2 ( 9 2a l l y  “  ! ) =  Y ^ U ^ y )  +  ^Ha-y) ~  2 ) (B  12)

P i  q 2y -  r 2 P 2 9a =  1/2 (92a “ 9 2 ,)  = ~  Y 2 ) P(a*y1 P(a-y) (R 1 3 )
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<lWy - « V  P 2r P l = y * { q 2 a  +  ? 2 , )  =  « W ) * ( « - , )  (B .1 4 )

B.2. SPECIAL IDENTITIES

Some combinations of p  and q may have different equivalent forms depending on the 

definitions of a  , y,  t  and £ ,  as follows:

B.2.1. Out-of-plane isotropic plate

P(a+r) ~  P(a-r) = ^ j ( 4 P 2« P 2r -< ? 2« ? 2 r +  0  (B .I 5 )
2rj

B.2.2. Out-of-plane orthotropic plate

p}a . r> -P <« - r )  = ^ £ ( 4TP 2 a P ir  - ? 2« ? 2r + 1 ) ( B I 6 )

B.2.3. In-plane orthotropic plate

P<" O -  P l s ,  = 3 ( g T/  c ) ( 4 ^ , P 2 f  -  +  !)  (B -1?)

P l.r )  + Pl-r)  = - , , B 2 ~ 7 ^ \ r 4CPlaP2y + B i l l e d  ~ ’)]
- C )

(B.l 8)
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B.3. IDENTITIES FOR SUB-STRUCTURING

In the derivation of the stiffness coefficients for the sub-structure at level i , the following 

hold

P,.i, = VlP,-\,x (B.l 9)

<7,,2,  = <7,-1,, (B.20)

where

< P , = f  (B.21)

for either

Pi ,  = ( l / ^ s i n h ^  = (1 /i) s i n ^  ; q,x = c o s h ^  = c o s ^  (B.22a,b)
2 2 2 2

or

Pix = ( l ^ s i n h ^ ^  = ( l / i )  s i n ^ i  ; q, = cosh?>,* = cost p j
(B.23a,b,c,d)

A., = i 9/,, = cos^Z

and for constants

Pa = Pitf2 '■> PiA =  Pi.2 ^i,2 '■> A , 4  = 1/2A-i,2 (B.24a,b,c)
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SOLUTION OF ALGEBRAIC EQUATIONS

C.l. INTRODUCTION

Solution of the governing differential equations can be achieved in on of two different 

ways. The most popular approach is to classify the domain of interest into sub-domain, 

such that in each sub-domain the required solution can be presented using real analytic 

expressions. Alternatively, by using the theoiy of complex variables, a single solution 

procedure can be adopted, but requires the use of complex arithmetic. Therefore, in Part 

B of the thesis, the theory of functions of a complex variable plays a central role in 

numerical computations. This role commences with the solution of the characteristic 

equation of the ordinary differential equation resulting from the governing partial 

differential equations of the problem. Although in problems with real material properties, 

the coefficients of the characteristic equation and any final results are real, such as a 

stiffness matrix and vibration frequencies etc., whereas in general the roots of the 

characteristic equation may be complex. Consequently, all computations stemming from 

the roots of the characteristic equation must be carried out using complex arithmetic.

___________________   255
PhD Thesis, A. Zare, 2004



Appendix C: Solution of algebraic equations

However, the imaginary parts of the elements of the resulting dynamic stiffness matrix 

are zero and therefore from this point on the computations can be carried out using real 

arithmetic.

The following sections give a brief overview of complex variables and the solutions of 

cubic, quartic and quintic algebraic equations. It is clear that most parts of the methods of 

solving equations require complex variables and it is normal to seek all possible roots, be 

they real or complex. For further details the reader can refer to reference (Grove and 

Ladas 1974).

C.2. BACKGROUND

A complex number is defined as z = (x + i y )  where i = V-T and x  and y  are real. Such a 

number has a complex conjugate z = (x -  i y ) . x  and y  are called the real and imaginary 

parts of z, respectively. Its geometric representation is z = |z|(cos 9 + i sin 0 ) , where

jzj = + J x 2 + y 2 is called the absolute value of z, and cos# = A  and sin# = ■—. The co-
z |z|

ordinate # is real and called the argument of z . The wth roots of z are

Vz =g/jz[(cos^">~^;r^- + /s in ^ + ^ ;r^ ) where k  = 0,1,2,...,/?-1 (C.l)
v n n

Eq. (C.l) implies that any number, real or complex, has n distinctive roots which may be 

real or complex.

C.3. CUBIC EQUATIONS

Consider the cubic equation with real coefficients
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z 3 + az2 + bz + c = 0 (C.2)

The transformation

z = w - a / 3  (C.3)

reduces Eq. (C.2) to an equation in w of the form

w3 + pz  + q = 0 (C.4)

where

, a 2 ab 2 a 3p  = b  and q = c  h  (C.5)
3 3 27 K J

are both real. Now introduce two unknowns u and v with the property that

u + v = w and uv = - y  (C.6a,b)

3
Then u3 + v3 = (u + v)3 -  3uv(u + v) = w3 + pw = - q , and w3v3 = ^  follows that

. 3 ___ i_.3u andv are roots of the quadratic equation

' 2+ < 7 ' - 4  = 0 (C.7)
27

Let and/2 denote, in general, the two complex roots of Eq. (C.7)

t 0— + JL- and t2 = + (C.8)
1 2 1 4 27 2 2 V 4 27
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If \[ti denotes one of the three cubic roots of tx, then the three possible values of u 

are (Grove and Ladas 1974)

w = u = s \jT x and u = s 2 \JTX (C.9)

, 2n  2n  •%__ _ /—
where s = cos —  + i sm—  and 5 = s . Only \jt2 , which satisfies Eq. (C.6b) through

the relation

<C10>

can be used (except when \ft\ equals zero) in the following relations for the roots of Eq. 

(C.4) as

w\ ~ yfti + > w2 -  s + s ancI w3 = s + s (C. 11)

and then the roots of Eq. (C. 1) can be extracted through the transformation of Eq. (C.3).

C.4. QUARTIC EQUATIONS

Consider the quartic equation with real coefficients

z4 +az* +bz2 +cz + d  = 0 (C. 12)

Rearranging and introducing the variable w, we obtain (Grove and Ladas 1974)

2

( z2 + — z + w)2 = (—— b + 2w)z2 + ( a w - c ) z  + (w2 - d )  (C. 13)

Now to solve Eq. (C. 12) it is necessary to solve its resolvent equation given by
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_ (j ^
{aw- c) - 4(—  - b  + 2w)(w2 - d )  = 0 (C. 14)

4

which is a cubic equation in w in the form of

3 / ~ ^ \  2 , ac .a A b d - a 2d - c 2N . ^   ̂_
w + (“2“)^  + ( - J  -  d)w + (   ) = 0 (C. 15)

It is clear that by using any non-zero root of Eq. (C.15), the right-hand side of Eq. (C.13) 

is a perfect square and extracting square roots of both sides of Eq. (C.13) yields two 

quadratic equations that give the four roots of Eq. (C. 12) through the following equations

f r~2-------------- ^
- ~ ] ~ - b  + 2w

v 2 U
+ a a

2 V 4
- b  + 2w -  4^w + (-1)*  4 w 2 -  d  ) (C. 16)

‘ 3 , 4 =  ,/ 2

\

- - J - — b+2w 
K2 1 4

(C. 17)

where k -  1 when (aw -  c) is real and negative, otherwise k = 2 .

C.5. QUINTIC EQUATIONS

Consider the quintic equation with real coefficients

z 5 +az4 +bz2 +cz2 +dz + e = 0 (C.18)

The fundamental theorem of algebra states that every polynomial equation of degree n has 

n roots in the complex plane. However, the solution of the general quintic cannot be 

written as a finite formula involving only the four arithmetic operations and the extraction
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of roots. Therefore, there is no analytical or closed form solution for quintic equations. 

Inspection of Figure C.l gives some idea of the possible form of the quintic equation and 

the number of its real root(s).

c

Figure C .l: Graphs of quintic polynomials, (a) with four real extremum, (b) with 
two real extremum and (c) without any real extremum.
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Figure C.l(a) shows a series of quintic polynomials having four real extremum points 

(graphs a-e). In graph f  of figure 1(a) two of those extremum are coincident at the point at 

which the slope and curvature are zero. For these sets of quintic polynomials, the number 

of possible real roots can vary from one to five. Figure C.l(b) shows the quintic 

polynomials with two real extremum, which may be coincident as in graph c. In this case 

the number of real roots can vary from one to three. Finally Figure C.l(c) shows quintic 

polynomials with no real extremum at all.

Hence, it is clear that a quintic equation has, at least, one real root and this real root can 

be found by using any numerical method. Consequently, the other four roots of quintic 

equation (C. 18) can be found from the quartic equation obtains by extracting the real root 

from Eq. (C. 18).

To find a real root of Eq. (C.l 8) the procedure is as follows. Using the following quartic 

equation

5z4 + 4az3 + 3 bz2 + 2cz + d  = 0 (C. 19)

which is the first derivative of Eq. (C.l 8), four possible extreme points of Eq. (C.l 8) are 

determined. These points are sorted into ascending order. To increase the accuracy of the 

extraction method, attention is confined to the largest real root of Eq. (C. 18) which, when 

used, generates the most favourable conditions for providing stable results.

The nature of Eq. (C. 18) indicates that the values of the equation in the second and fourth 

extreme point are minima. Hence, if one of these values is negative, the largest real root 

of Eq. (C. 18) is on the right-hand side of that extreme point. Otherwise, the only real root 

is either on the left-hand side of the first extreme point, if the value of Eq. (C .l8) is 

positive, or somewhere else without restriction.

After deciding about the position of the real root of Eq. (C. 18), the Newton-Raphson 

method can be applied to find it (say zx) to any desired accuracy. To choose a suitable 

starting point for the iterations, the appropriate root of Eq. (C.19) is multiplied by a , 

which is chosen to be 1.1 if the expected root is on the right side of the extreme point,
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otherwise 0.9. In the case where there is no restriction for the position of the real root, 

z = 0 is used as the starting point for the iteration.

In the next step, by dividing Eq. (C .l8) by ( z -Z j ) ,  a quartic equation containing the 

other four roots of Eq. (C.l 8) is given by

Now, by using the method described in Section C.4, Eq. (C.20) can be solved for the 

remaining real or complex roots.

C.6. ELL CONDITIONING AND NUMERICAL STABILITY

Increasing the degree of a polynomial that also has large coefficients (like the ones dealt 

with in Chapter 7) can cause numerical instability in the results. The reason is that in 

such polynomials, the slope of the tangent at the roots is so big that it only requires small 

changes in the trial value to cause the value of the polynomial to change from a large 

negative value to a large positive value. In such cases the machine accuracy is often 

insufficient to enable the value of the polynomial to converge sufficiently close to zero. 

To overcome this ill-conditioning, it is necessary to use double precision or even 

quadruple precision when programming. However, as this accuracy is machine 

dependent and is sometimes insufficient, it is better to use a proper transformation that 

makes the coefficients as small as possible. The easiest transformation is

Transformation using Eq. (C.21) can be used for any standard form of polynomial of 

degree n and usually makes the coefficients small enough to give good accuracy in the 

results. For instance, by using Eq. (C.21), Eq. (C. 18) can be reformed to

2 4 + (# + Zj)z3 + (b + azx + zx)z2 + {c + bzx + a z2 + zx)z + (d + czx +bzx +azx +zx) = 0 (C.20)

y - z ! a \ ( a *  0) (C.21)

(C.22)
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which is most effective if the order of magnitude of b, c, d  and e are almost the same as

the order of magnitude of a 2, a 3, a 4 and a 5. This was the case for the characteristic 

equation of Chapter 7.
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