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Summary

The aim of this thesis is to compare the implementation of parameterisable LNS 
(logarithmic number system) and floating-point high dynamic range number systems 
on FPGA. The Virtex/Virtex-II range of FPGAs from Xilinx, which are the most 
popular FPGA technology, are used to implement the designs. The study focuses on 
using the low level primitives of the technology in an efficient way and so initially the 
design issues in implementing fixed-point operators are considered. The four basic 
operations of addition, multiplication, division and square root are considered. Carry- 
free adders, ripple-carry adders, parallel multipliers and digit recurrence division and 
square root are discussed. The floating-point operators use the word format and 
exceptions as described by the IEEE std-754. A dual-path adder implementation is 
described in detail, as are floating-point multiplier, divider and square root 
components. Results and comparisons with other works are given. The efficient 
implementation of function evaluation methods is considered next. An overview of 
current FPGA methods is given and a new piecewise polynomial implementation 
using the Taylor series is presented and compared with other designs in the literature. 
In the next section the LNS word format, accuracy and exceptions are described and 
two new LNS addition/subtraction function approximations are described. The 
algorithms for performing multiplication, division and powering in the LNS domain 
are also described and are compared with other designs in the open literature. 
Parameterisable conversion algorithms to convert to/from the fixed-point domain 
from/to the LNS and floating-point domain are described and implementation results 
given. In the next chapter MATLAB bit-true software models are given that have the 
exact functionality as the hardware models. The interfaces of the models are given 
and a serial communication system to perform low speed system tests is described. A 
comparison of the LNS and floating-point number systems in terms of area and delay 
is given. Different functions implemented in LNS and floating-point arithmetic are 
also compared and conclusions are drawn. The results show that when the LNS is 
implemented with a 6-bit or less characteristic it is superior to floating-point. 
However, for larger characteristic lengths the floating-point system is more efficient 
due to the delay and exponential area increase of the LNS addition operator. The 
LNS is beneficial for larger characteristics than 6-bits only for specialist applications 
that require a high portion of division, multiplication, square root, powering 
operations and few additions.
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Chapter 1 Introduction

Chapter II
Introduction

1.1 Programmable logic

The FPGA (Field-Programmable Gate Array) technology sector has grown immensely 

over the past decade as is evident from the number of conferences, companies and 

research centres dedicated to or involved with programmable logic. FPGAs are 

silicon programmable logic devices that can be reprogrammed numerous times (some 

companies claim an infinite number) to perform many different logic functions. Re- 

programmability and flexibility are the key factors to the success of the FPGA as they 

allow simple design enhancements, such as bug fixes, or a total algorithm overhaul 

with no hardware cost and minimal time penalty. Furthermore, changes can be done 

remotely, very rapidly and with FPGA devices still in system. Prototyping and rapid 

implementation of algorithms and custom designs with hardware speeds is possible, 

and with high level programming languages the ease and speed of design 

implementation is increasing. However, the high level languages do come at a price 

and control over certain design aspects, such as placement and low level primitive 

use, are lost to the synthesis and place and route (P&R) tools. Although slower than 

major commercial processors the custom data-path configuration and reduced 

overhead means that FPGA hardware implementations can speed up many software 

algorithms implemented on general-purpose processors or DSPs (Digital Signal 

Processors). FPGAs cannot match the speed and low power consumption of full 

custom ASIC (Application Specific Integrated Circuit) design, but such procedures 

are very expensive to undertake and are generally only used for mass produced or 

specialist devices. However, low cost high volume FPGA devices such as the 

Spartan-3 from Xilinx [32] using the latest 90 nanometre technology are trying to 

break into this high volume market for certain applications.
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1.2 A brief FPGA technology history and overview

The traditional FPGA architecture consisted of a rectangular array of identical logic 

elements constructed from small LUTs (Look Up Tables) or from a selection of 

combinatorial logic gates. Logic elements typically contained a flip-flop or could be 

configured as a flip-flop. Similarly to current FPGAs the traditional FPGAs were 

SRAM based, which allowed them to be reconfigured. SRAM cells, which reside 

throughout the FPGA, store the configuration bits that determine the function a LUT 

stores, the routing of a signal, the constant select signal value of a multiplexer, and so 

on. Logic elements, registers and the I/Os were routed together in the traditional 

FPGA architecture by using a programmable interconnect matrix in much the same 

way as current FPGAs, however current FPGA routing matrices are much more 

complex. The first FPGAs contained up to 600 logic elements with around 70 I/Os 

and operated at a maximum clock speed of 75 MHz. They were typically 

implemented with 1.0 pm VLSI technology and operated at 5 V.

As the technology size has decreased in various steps from 1.0 pm (0.6, 0.5, 0.45 ... 

0.15, 0.13, 0.12 pm) to the current 90 nm technology of today the density of devices 

has increased. Current devices Xilinx [36] and Altera [48] have up to 180K logic 

elements and up to 1100 I/Os compared to the 600 logic elements and 70 I/Os of the 

first FPGAs. The successive technology size decrease has also brought about a 

successive speed increase and a voltage decrease as current FPGAs can operate with 

internal clock speeds of over 450 MHz and a core voltage of just 1.2 V.

The applications of FPGAs have demanded additional dedicated features be 

incorporated into the FPGA structure. The additional features reduce the burden and 

inefficiencies of their implementation with basic logic elements. The first additional 

feature on FPGAs was dedicated blocks of memory. The memory blocks started off 

small at 128 to 256-bits and with a limited dual-port functionality of 1 read and 1 

write port. A single FPGA could implement a total of 3K to 18Kbits of memory. 

The size of the memory blocks quickly grew from IK to 2K to 4K to 9K to 18Kbits 

and most recently Altera have included a 590K RAM block in their Stratix-II device 

[48]. Currently the largest FPGA can implement around 8.1 Mbits of dedicated block 

memory. Configuration and functionality of the memory blocks has also grown and 

most memory blocks can implement true dual-port memory, where both ports can be 

configured to read and/or write. The second additional feature to appear on FPGAs
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was dedicated carry logic. This logic enables very fast ripple-carry adders, 

comparators and wide logic gates to be created. The third feature to appear on FPGAs 

was dedicated multipliers [35] and DSP blocks [25] and [48]. FPGAs are increasingly 

being used in DSP applications where multiplication and multiply-accumulate (MAC) 

operations are required and so dedicated logic for these operations has been included. 

The dedicated multiplier blocks follow a de facto standard of being 18x18-bit signed 

two’s complement. All the embedded DSP blocks contain a number of 9x9-bit 

multipliers and these can be configured to produce the de facto 18x18-bit and 36x36- 

bit multipliers in a single block. The DSP blocks also provide support for multiply 

accumulate and complex multiplication functions at higher clock rates and with fewer 

pipeline stages than using logic elements to implement the same functions. The 

fourth feature to appear on FPGAs was the high performance transceiver block [36], 

which allows very fast serial communication of up to lOGb/s with a single I/O line. 

Data is serialised and de-serialised on chip in dedicated hardware. Finally the newest 

feature to appear on FPGAs is the dedicated RISC CPU. The Virtex-II PRO [36] 

contains up to 2 IBM PowerPC 405 RISC CPU cores.

1.3 FPGA design flow

Initially when creating a design a high level model of the system is created in a high 

level programming language such as C or Java or in a mathematical environment such 

as MATLAB. This allows the concept and validity of an algorithm to be tested in 

software before any hardware design is undertaken. The high-level software design is 

usually written to match the hardware design exactly and so is referred to as a ‘bit- 

true’ design. This provides the ultimate layer of testing, as the processed data that the 

hardware returns should match the data returned by the software model exactly. The 

hardware design is written in a hardware description language such as VHDL or 

Verilog. Certain vendors and research institutes also offer other high level languages 

and design environments such as handel-C (C based), the float environment (written 

in Perl), the PAM Blox-II environment, C++ integration via the ACS stream complier 

and Jbits design environment (Java), which are more familiar to software designers. 

The idea is to allow the designer to focus on the algorithm implementation and not to 

worry about the underlying hardware structure. The hardware description is run 

through a synthesis tool, which translates the design into gates and optimizes it for the
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target FPGA architecture and outputs an industry standard EDIF (Electronic Design 

Interchange Format) netlist. After synthesis the design is placed and routed (P&R), 

which decides the layout of the logic components and the routing structure to connect 

them. Specifically the Xilinx P&R flow, which will be used in this work, contains 

three phases of ‘translation’, ‘mapping’ and ‘place and route’. The translation phase 

combines multiple netlists and specific design constraint information. The mapping 

phase maps the logic to the components (logic cells, I/O cells, and other components) 

in the target FPGA. The place and route phase is as described above. After P&R a 

configuration bitstream is generated that can be downloaded onto a device to program 

it with the functionality of the created design. At different stages of the design 

different levels of testing can be carried out. After the design has been written in 

VHDL or Verilog a functional test can be undertaken. Post P&R a full back- 

annotated test can be performed using the FPGA vendors’ hardware libraries. This 

test provides the most accurate picture of how the final implemented design should 

perform. Finally there is a system test, where the final design running on hardware 

can be compared against the bit-true software model or any other successful test layer.

1.4 Aim of thesis: FPGA and high dynamic range number systems

Many algorithms use high dynamic range number systems to increase accuracy, 

increase the signal-to-noise ratio or to reduce the number of underflow and overflow 

exceptions. Application areas for high dynamic range number systems include digital 

signal processing applications such as FFT (Fast Fourier Transform) calculation, FHT 

(Fast Hartley Transform) calculation, digital sine-cosine generation, FIR (Finite 

Impulse Response) filtering and RLS (Recursive Least Squares) filtering; Image 

processing applications include video conferencing, compression and decompression 

in HDTV (High Definition Television), K-Means distance calculation, MPEG 

(Motion Pictures Expert Group) decoding, DCT (Discrete Cosine Transform) and 

IDCT (Inverse Discrete Cosine Transform) calculation; scientific applications include 

matrix operations, gravitational N-body interaction calculation, heat transfer in a 2D 

surface and seismic data processing; Telecommunication applications include network 

packet switching and cellular base station algorithms. Clearly there are many 

applications of high dynamic range computing, most of which are candidates for 

hardware acceleration using FPGA systems.
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The I/O transfer rates, I/O pin counts and the density of current FPGAs have advanced 

sufficiently to accommodate these high dynamic range applications with ease. 

Furthermore the implications of Moore’s law suggest that the density of FPGA 

technology will further increase in the next few years (until a technology wall is hit). 

This leads to the aim of this thesis, which is to investigate the trade offs in 

implementing two popular high dynamic range number systems on FPGAs, namely 

floating-point and logarithmic number system (LNS) arithmetic. LNS and floating

point are very different in their implementation but both have the capabilities of 

providing high dynamic range arithmetic. The question is, ‘which one is most 

suitable for FPGA implementation?’ Current FPGAs contain a restricted variety of 

logic elements compared to ASIC design and this poses quite a design challenge as 

the many efficient algorithms that have been developed for ASIC implementation do 

not necessarily map well to this design environment. An example of this is the 

compound adder that can calculate two different results of a+b and a+b+1 with a 

small delay and area overhead. Implementing such an adder on FPGA requires three 

times as much logic as a conventional adder (i.e. two adders and a multiplexer to 

select the output). A compound adder calculates two different results simultaneously 

while the decision whether to select a+b or a+b+ 1 is being performed, hence it is 

different to (faster than) calculating a+b then injecting ‘1’ or ‘0’ into the carry-in 

input as desired. The focus and challenge of this work is therefore to look at new ways 

to efficiently implement basic operations and components and then to use these 

components to implement floating-point and LNS operations. Furthermore a low- 

level design strategy will be adopted that will utilise the low-level primitives of the 

technology in an efficient way and will increase the design challenge. It is 

appreciated that this design strategy affects the portability of the design and goes 

against the high-speed rapid prototyping methodology of reconfigurable design, but it 

is felt that the knowledge gained of the underlying FPGA hardware and the smaller 

and faster designs that the proposed strategy leads to is worth the extra effort. The 

task of implementing efficient fixed-point, floating-point and LNS units is non-trivial 

due to the huge variety of techniques that need to be considered. In this work some of 

the more common ASIC techniques are considered and new techniques are developed 

in an attempt to provide the first steps in a fair comparison of LNS and floating-point 

arithmetic on FPGA. We say first steps, as the array of techniques is so vast that 

many substantial studies have been included in the future work section due to time

5



Chapter 1 Introduction

restrictions. Due to the influence of the sponsors, and of the technology available the 

study will focus primarily on using the Virtex-II range of FPGAs from Xilinx [35]. 

The Virtex-II FPGA is very representative of current technology because it contains 

features such as memory blocks, multipliers, fast carry-logic and an array of small 

lookup tables that are commonly found in all current FPGA architectures.

1.5 Structure o f the Xilinx Virtex and Virtex-II FPGAs

Virtex-II FPGA

Arrays o f  
CLB 

elements.

CLBs

CLB

CLBs

Columns o f  
18x18-bit 

multipliers and 
18K-bit RAMs.

oc

00

Figure 1.1. Logic structure of a Xilinx Virtex-II FPGA

Figure 1.1 shows the underlying structure of a Xilinx Virtex-II [35] FPGA. It can be 

seen that the chip consists of arrays of CLB (Configurable Logic Blocks) cells 

separated by columns of multiplier and RAM blocks. The structure of a Virtex [34] 

FPGA is very similar except that there are only two columns of RAM blocks on either 

side of the chip and there are no embedded multiplier blocks.
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Slice Slice
LC

LC

CLB Slice

Figure 1.2. CLB and Slice structure of Xilinx Virtex and Virtex-II FPGAs

From figure 1.2 it can be seen that a CLB is constructed from two Slices and that a 

Slice is constructed from two LCs (Logic Cells). Therefore a CLB contains four logic 

cells. A gate-level schematic of the structure of an LC [35] is shown in figure 1.3. 

The structure of a Virtex and Virtex-II LC is very similar and both contain the 

primitives labelled in figure 1.3.

LUT
Carry-chain

output
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MULTAND
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tjuv

Carry-chain
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Figure 1.3. The structure of a Virtex-II logic cell (LC).
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A brief description of each of the primitives labelled is given below:

• LUT. The LUT (Look-up Table) primitive is very versatile. It can be configured 

as a 4-bit input 1-bit output function generator, as a 16-bit memory (4-bit address, 

1-bit data) or as a 16-bit shift register.

• Carry-chain. The carry-chain allows high-speed ripple-carry adders and wide 

logic gates to be produced. Each LC contains one ‘MUXCY’ carry-chain 

multiplexer. The bottom ‘MUXCY’ primitive shown in figure 1.3 is situated in 

the LC below.

• Output flip-flop. The output flip-flop allows the output of the LC to be registered 

without using any extra LCs. The register can be bypassed and can also be 

configured in numerous ways.

• MULT AND. The MULT AND primitive is a logical AND gate that facilitates the 

creation of efficient multipliers (the AND function is the same as a single bit 

multiplication).

RAM

RAM block

A .. 
18 

B „ 
18 

CLK

18X 18-bit 
multiplier 36

18x18-bit 
Embedded 
Multiplier

Figure 1.4. The interfaces of the Virtex-II RAM block and embedded multiplier

The Virtex-II RAM blocks are dual-port RAMs as shown in figure 1.4. Being dual

port means that there are two ports that access the same memory space. The 

embedded multipliers are 18X18-bit signed two’s complement multipliers that 

produce a 36-bit signed two’s complement output. The multipliers can be used 

synchronously or asynchronously. The interface of the 18X18-bit multiplier is shown 

in figure 1.4.

1.6 Thesis organisation and chapter contribution summary

In this section the outline of the thesis is given, as is the contribution made within 

each chapter. The publications where the contributions of the chapter were initially 

made are listed.
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Chapter 2

Chapter 2 looks at the implementation of fixed-point operators. Fixed-point is the 

basis of all arithmetic so in this chapter the focus is on efficient implementation of the 

four common fixed-point operators of addition, multiplication, division and square 

root. A new 4:2 adder mapping is shown in the addition section and the advantages 

and disadvantages of carry-free addition are discussed. A few ripple-carry adder 

configurations are then presented some of which are not discussed in the open 

literature. The multiplication section looks at the implementation of Booth encoding, 

which is not considered elsewhere in the open literature for implementation on the 

Virtex-II FPGA. Two new partial product generators are presented in the multiplier 

section. A new way of expanding the embedded multipliers is discussed in this 

section and is compared with other methods [50]. The new multiplier expanding 

technique is also applied to the special multiplication case of squaring [50], The 

division section looks at the implementation of digit-recurrence style dividers, not 

previously considered in the way presented. New implementations of the non- 

restoring, radix-4 SRT [51] and radix-8 SRT [50] dividers are given that are not 

previously given in the open literature. The prescaling technique, which has not 

before been considered for implementation on FPGA, is applied to the minimally 

redundant radix-8 design. A parameterisable non-restoring square root design is 

given in the final fixed-point section.

Chapter 3

Floating-point operations of addition, multiplication, division and square root are 

considered in this chapter. The chapter begins with a brief overview of floating-point 

and the IEEE std-754 format. The first published FPGA implementation of the dual

path (far, near) floating-point addition algorithm is presented [51]. A new carry-chain 

unit for performing IEEE 4-mode rounding, a new shifter mapping, a new method for 

performing lead zero detection and new methods for performing rounding in FPGA 

floating-point units are described. The floating-point multiplier makes use of the new 

embedded multiplier expanding. The first floating-point divider using the radix-4 SRT 

division algorithm is presented [50],
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Chapter 4

Chapter 4 looks at ways of performing function approximation on FPGA. A new 

piecewise Taylor series approximation unit suitable for short to mid-length operands 

is described [52].

Chapter 5

The implementation of the four LNS operators of addition, multiplication, division 

and square root are considered in this chapter. The word format, accuracy and 

operator structures are given. Two new methods for performing LNS addition are 

described and compared in this chapter [53], [54].

Chapter 6

Chapter 6 deals with conversion from fixed-point to floating-point and vice-versa and 

from fixed-point to LNS and vice-versa. The structure of the conversion from fixed- 

point to LNS and vice-versa [55] is not discussed elsewhere in the open literature.

Chapter 7

The MATLAB software libraries and function interfaces are briefly discussed in this 

chapter, as is the implementation of the UART serial interface to allow a low speed 

system test of the modules to be carried out.

Chapter 8

In this chapter the logarithmic number system, floating-point operators and 

conversion components are compared in terms of area and delay. Some composite 

functions involving multiple operators are also compared to give a range of results.

Chapter 9

Chapter 9 concludes the findings of the results and comparisons. The suitability of 

the logarithmic and floating-point systems for the processing of different algorithms is 

discussed and further studies are proposed.
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Chapter
Fixed-point

In this chapter the focus will be on how to efficiently implement fixed-point operators 

on FPGA and more specifically on Xilinx Virtex FPGAs. Fixed-point arithmetic is 

the underlying type of arithmetic used in high dynamic range arithmetic schemes so 

we will begin by considering ways of implementing on FPGA the four basic 

operations of addition, multiplication, division and square root using fixed-point.

2.1 Formats

Fixed-point formats generally consist of an integer and a fractional field although 

sometimes the format is restricted to just an integer or fraction type. There are two 

main ways of implementing signed values: sign-magnitude and two’s complement. 

Sign-magnitude is a symmetrical format, which contains a single sign bit, an /-bit 

integer part and an f -bit fraction part. The value of a p -bit (1+/+/) sign-magnitude 

value X  is mathematically described in (2.1). For radix-2 (base-2) each bit x, of X , in 

equations (2.1) and (2.2) takes the value 0 or 1.

The MSB (most significant bit) of a two’s complement number is a magnitude bit that 

is negatively weighted. Two’s complement is a non-symmetrical fixed-point format 

with an /-bit integer part and an ^b it fraction. The value of a p -bit (/+/) two’s 

complement number X  is given by (2.2).

( p-f-i \
*  = (_ 1)V/-' £  x,.2'  (2.1)

.(2 .2)
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2.2 Distribution of fixed-point values

Consider a 6-bit fixed-point format with 3 integer bits and 3 fraction bits. Figure 2.1 

illustrates the number line for the 6-bit two’s complement format. From figure 2.1 it 

can be seen that the distribution of fixed-point values is even throughout the range of 

values.

F+4i l l  H i t i
-4 -3 -2 -1 0 0-5 1 1 5 2 3 4

Figure 2.1. Number line for a 3-bit integer and 3-bit fraction two’s complement
number

The dots in figure 2.1 illustrate the location of the maximum and minimum values.

2.3 Fixed-point addition

Fixed-point addition is the most basic arithmetic operation. The basic building block 

of the fixed-point adder is the full adder shown in figure 2.2. Full adder cells can be 

considered as 3-bit counters, where the inputs all have an equal weighting of ‘1’, the 

sum has a weighting of ‘ 1 ’ and the carry has a weighting of ‘2’. Full adder cells can 

be chained together to create RCAs (ripple-carry adders), which are a special type of 

CPA (carry propagate adder) where two non-redundant inputs are added (reduced) to 

a single non-redundant value.

a b

cOut < ...  ^  cln
sum = a ® b © cln 

cOut = a.b + a.cln + b.cln

Figure 2.2. A full adder cell

2.4 FPGA addition

The dedicated carry-chain embedded in the FPGA fabric allows very fast and efficient 

ripple-carry adders to be implemented. The carry-chain logic is so fast that alternative
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adder designs Omondi [56], Parharmi [59] and Ercegovac [61], as used in ASIC 

devices, do not offer any implementation benefits. A survey of different FPGA CPA 

adder implementations is given in Xing [80] and Perri [81] and they show that the 

RCA is the most efficient adder design for FPGA. In this section we look at the basic 

RCA implementation and some very useful alternative configurations that are not 

available in the open literature. All the alternative structures use the same amount of 

logic as the basic adder design but the major difference is in the number of inputs a 

component requires and the logic function of the basic LUT elements.

2.4.1 Add (addition)

The full adder is the basic building block of the ripple-carry adder. The resources of a 

single LE (logic element) can be configured in such a way as to produce a full adder. 

Figure 2.3 illustrates a single slice, which contains two LEs configured as a two bit 

unsigned adder. The slice boundary is shown in figure 2.3 by the dashed box.

cOut

bi

LUT

♦ x

LUT

cln

Sl
^  cln

•  •  A
•  •  B
•  •  S

cOut

f  = ai ®bl

Figure 2.3. 2-bit adder implemented on a Virtex FPGA

A single full adder cell cannot be implemented on its own because there is no access 

to the carry-chain that joins the two LEs shown as point ‘x’ in figure 2.3. This has the 

repercussion that efficient [3:2] carry-save adders, a common carry free adder design, 

cannot be implemented efficiently on Virtex FPGAs.

2.4.2 Sub (subtraction)

True subtraction cannot be implemented efficiently on Virtex and Virtex-II FPGAs 

and so a two’s complement system is used. The two’s complement system involves
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bit-inverting the operand to subtract, injecting a ‘ 1’ into the carry-in (cln) signal and 

then adding the two operands using a conventional ripple-carry adder. The LUT 

element needs to be configured with a logic function as shown in table 2 .1.

2.4.3 Add/sub (addition/subtraction)

The addition and subtraction components can be combined into one macro that can do 

both operations as determined by a single selection signal. A ‘sel’ (selection) signal 

forces subtraction when it is at the logical value ‘1’, addition when it is ‘0 ’ and feeds 

the carry-in input of the adder. The LUT element logic function is shown in table 2.1.

2.4.4 Add/sub/zero (addition/subtraction/addition of zero)

In the add/sub component there is a single input into the LUT element that is not used. 

This line can be used to force a ‘no operation’ or an ‘addition of zero’. Therefore a 

useful component that allows the operations A+B, A-B or A+0 can be implemented. 

The LUT element logic function is shown in table 2.1.

2.4.5 AddMux

Often when designing arithmetic components on FPGA the case where a choice of 

two values is to be added to another operand occurs. This can be pictured as an adder 

with a multiplexer on one of the inputs. A multiplexer consists of three inputs and an 

adder consists of two inputs. One of the adder inputs is fed by the multiplexer, thus 

four inputs are required for each bit, which fits into a LUT. The addMux component 

therefore calculates A+X or A+Y depending on the value of the ‘sel’ (selection) 

signal. Table 2.1 shows the LUT element logic function.

2.4.6 SubMux

The subMux component is a variation on the addMux component. Instead of A+X or 

A+Y the component performs A-X or A-Y depending on the ‘sel’ signal. See table

2.1 for the LUT element logic function.

2.4.7 AddSubMuxConst

It is not possible to fit an AddSubMux component, which adds or subtracts a choice of 

two operands from a given operand, into one LUT column. This is because such a 

component requires a five input LUT function. However it is possible to create such a
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component if one of the operands to be subtracted or added is a constant and can be 

set at design time. The LUT function is then set at compile time and only a four input 

function is required to add/subtract a choice of a variable operand B or a constant 

operand K to/from a variable operand A. The component that performs this function 

is called an AddSubMuxConst component and the LUT element logic function for 

such a component is shown table 2 .1.

2.4.8 Other configurations

There is scope to implement other types of adder that can blend logic functions that 

involve a particular input operand into the LUT used to implement the adder. This is 

a very useful way of reducing the delay and area of designs. Synthesis tools usually 

do not take advantage of this logic reduction technique and so it is advantageous to 

hand code macros to perform custom logic reduction functions.

Component name
Number
ofLU T
inputs

Input
names

Carry-
chain
input

Component
fiinction(s) LUT function

Add 2 A, B, 
cln

cln A+B at ®bt

Sub 2 A, B ‘1’ A-B a,® bt

Add/sub 3 A, B, 
sel

sel A+B, A-B or, ® b, © sel

Add/sub/zero 4
A, B, 
sel, 

zero
sel

A+B, A-B, 
A+0, A-0

at bt sel + at bt sel.zero + at bt sel + 

at jsel.zero + at bt sel.zero + at sel.zero

AddMux 4
A, X, 
Y, sel, 

cln
cln A+X, A+Y at xt sel + at xt sel + or .yt sel + at ,yt sel

SubMux 4 A, X, 
Y, sel

‘1’ A-X, A-Y a, jc, sel + at xt sel + at ,yt sel + at .yt .sel

AddSubMuxConst 4
A, B, 
sel, 

const
sel

A+B, A-B, 
A+K, A-K

(sel © a. © bt).const + 

(sel © a. © kt ).const

Table 2.1. The configuration details of various FPGA adder implementations

2.4.9 Compact serial adders

By performing an addition in a number of steps and reusing the same hardware in 

each step a compact adder can be produced. If we assume two operands A and B of 

length N that need to be added are supplied LSB first one bit at a time then a single 

full adder cell can be used to sum both operands, Smith [82] and Andraka [83] show 

FPGA implementations. N cycles are needed to sum both operands and such an
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algorithm belongs to the class of LSDF (least significant digit first) bit-serial 

algorithms Ercegovac [61]. The main problem with the bit-serial approach is the high 

latency. To reduce the latency a higher radix mode of operation called digit-serial can 

be used, Vails [93] and Lee [94] give FPGA implementations. In general a radix-r 

architecture calculates log2(r) bits of the result per cycle. The usage of bit and digit- 

serial adders in a design depends on the availability of the operands to process. For 

this work we assume operands are supplied in parallel and so do not further 

investigate the use of this compact adder structure.

2.5 FPGA carry free addition

Carry free addition allows a number of operands to be reduced to a fewer number of 

operands without a carry propagating the full length of the addition. There are two 

popular types of carry free addition namely [3:2] carry-save addition and signed-digit 

addition. In this section the feasibility of the implementation of each is considered. 

[3:2] carry-save addition reduces three standard operands to two standard operands. It 

can also be considered as reducing a standard operand and a carry-save operand to a 

single carry-save operand. [4:2] carry-save addition is an extension of the [3:2] carry- 

save adder and can be seen as reducing four standard operands or reducing two carry- 

save operands to a single carry-save operand. Similar adders can be generated to add 

signed-digit operands without a propagation of a carry.

2.5.1 [3:2] CSA (carry-save adder)

To implement an w-bit ripple-carry adder n LUTs are required. However, to 

implement an w-bit [3:2] radix-2 carry-save adder 2n LUTs are required figure 2.4. 

The carry-save adder implementation only requires a single LUT delay, which is 

significantly less than the delay for a ripple-carry adder and it is independent of the 

precision. So the [3:2] carry-save adder has a place in high-speed applications where 

area is not a significant design issue.

2.5.2 Carry-save adder/subtracter

A carry-save structure that adds/subtracts a conventional operand to/from a carry-save 

operand depending on a select signal can be implemented using the same amount of
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logic as the carry-save adder shown in figure 2.4. A 3-bit carry-save adder/subtracter 

with its corresponding dot diagram is shown in figure 2.5.

C2

Si

Cl

SO

•  •  Z
•  •  Y
•  •  X

•  •
S
c

s i  so  

C2 Cl

f  = x ,® y i ®z, 

g  = xry l +xrzl +y,.zl

Figure 2.4. A 2-bit carry-save adder design
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Si
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•  •  A
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•  •  s
•  c

d  -  a, © bst

e = at bst + bst sel + ax .sel

f  = sel® bct © bst © at 

g  = bsx .be, + (sel © at ).bct + (sel © at ).bsj

Figure 2.5. 3-bit addition/subtraction carry-save adder 

2.5.3 High radix carry-save adders

Higher radix carry-save adder algorithms are possible and in particular the radix-4 

algorithm leads to an efficient implementation in Virtex FPGAs. However, the higher
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radix algorithms have the disadvantage over the [3:2] CSA in that they have to have 

one operand in high radix carry-save from. Figure 2.6 shows the implementation of a 

4-bit radix-4 carry-save adder on Virtex FPGAs and it’s corresponding dot diagram.

•  •  •  •  A

• :  • :;}b 
. * :  * *:}*

Figure 2.6. 4-bit radix-4 carry-save adder implementation

The adder in figure 2.6 is essentially a ripple-carry adder with a cut at every other 

carry-chain ‘link’ to produce an extra output and input. The output ‘saves’ the carry 

for the next stage of addition and the input takes the saved carry ffom the previous 

stage. High radix CSAs are useful in accumulation algorithms where the output of the 

adder is fed back into the inputs and summed with an operand in standard form. This 

is a popular operation in area efficient iterative algorithms such as digit-serial 

multiplication and division. Comparing figure 2.6 and figure 2.4 it can be seen that 

the radix-4 carry-save adder can sum a carry-save value and a standard operand using 

half as much logic as a radix-2 carry-save adder. A radix-4 carry-save 

adder/subtracter can also be implemented and requires the same amount of logic as 

figure 2.6. The downside to the efficient implementation of the high radix CSA is the 

extra delay caused by the XOR gate and carry-chain routing delay (see table 2.12).
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2.5.4 [4:2] CSA (carry-save adder)

The [4:2] carry-save adder cell with carry-in and carry-out signals can be thought of 

as a [5:3] counter. Figure 2.7 shows the structure of a [4:2] adder. The adder is 

composed of two full adder (FA) cells, which are the basic [3:2] carry-save adder 

building blocks. From the structure of the [4:2] adder cell it can be seen that the 

carry-in signal has no effect on the carry-out signal giving a carry free adder.

cOut

D C  BA
i l i l -

FA

FA

TT
F E

cln

•  cln
•  A
•  B
•  C
•  D

cOut •  •  E
•  F

Figure 2.7. [4:2] carry-save adder and corresponding dot diagram

A basic mapping of an FPGA structure Luo [139] with the same functionality as 

figure 2.7 is shown in figure 2.8.

D C  B

cOut

LUTLUT

LUTLUT

cln

F E

Figure 2.8. A basic mapping of a [4:2] adder to FPGA

2.5.5 New [4:2] CSA mapping

The structure of figure 2.8 can be improved upon and a novel FPGA mapping is 

shown in figure 2.9. The implementation allows a [4:2] adder that can compress four 

operands to two to be implemented in the same area as two conventional ripple-carry 

adders. From the adder structure of figure 2.9 it looks as if the [4:2] adder suffers 

from the same carry-chain access problem as the [3:2] carry-save adder. However, by
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chaining the [4:2] adders together it can be seen that for any length adder only one 

logic element is wasted in accessing the carry-chain as shown in figure 2 .10.

A —  
B - 
C -

A _
B -  
C -H  
D -

cln

g

f

cOut

'O’ ‘1’

-L

•  cln
•  A
•  B
•  C
•  D

cOut •  •  E
•  F

f = A ® B ® C ® D  

g  = AJi + A.C + B.C

Figure 2.9. A novel [4:2] adder structure for Virtex FPGAs
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•  cln
•  A
•  B
•  C
•  D

•  E
F

/  = at ©£, © c. © dt 

g = a,.bl +arcl +brcl

Figure 2.10. 2-bit [4:2] adder implemented on a Virtex FPGA

The main problem with the implementation of carry-save addition comes when trying 

to pipeline a design. Generally speaking carry-save arithmetic involves cutting the 

carry-chain to avoid a ripple of the carry. When pipelining a design the carry-chain
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bit needs to be latched. The problem is that the Virtex FPGA does not have dedicated 

latches to register the carry bit (i.e. the ‘Xc’ operand in figure 2.6 and the 4F’ operand 

in figure 2.10) and thus create efficient pipelined designs. Due to routing limitations a 

single logic element will be wasted when pipelining a carry bit.

2.5.6 Signed-digit addition

A signed-digit set Avizienis [63] allows a digit to take on positive and negative 

values. For example we will consider the radix-2 signed-digit set {-1,0,1}. Using a 

digit set with more consecutive digits (3 in this case) than the radix (2 in this case) 

causes the digit set to have redundancy, which allows carry free addition. A radix-2 

signed-digit x  consists of two bits: an x' bit, which is the negative bit and an jc+ bit, 

which is the positive bit. This is known as ‘borrow-save’ encoding Ercegovac [61]. 

The coding of the signed-digit is shown in table 2.2.

+X x' JC
0 0 0
0 1 -1
1 0 1
1 1 0

x  = jc+ -  JC

Table 2.2. Coding of radix-2 signed digits

An n digit signed-digit integer is represented as (2.3).

*  = Z > /   (2.3)
1=0

There are two different types of adder to consider for implementation. The first 

involves adding a signed-digit operand to a conventional non-redundant radix-2 

operand. The second case requires the addition of two signed-digit operands.

2.5.7 Signed-digit to conventional digit addition

The addition/subtraction of a conventional digit y  to/from a signed-digit x is best 

illustrated by a table showing all the possible results, which is shown in table 2.3. 

Implementing the penultimate two columns of table 2.3 as functions of the first three 

columns produces a carry free signed-digit and conventional digit adder with result in 

signed-digit form. An implementation of a 2-digit signed-digit and conventional digit
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adder on a Virtex FPGA is shown in figure 2.11. A single cell of such an adder is 

known as a ‘ppm’ cell as two input operands are plus and one operand is minus. 

Similar mappings are given by Girau [101], Mcllhenny [103] and Vails [107],

Operands addition subtraction
+ 

* / * i Xi Xfr Vi xr  y* S /+] S'i Si+\
+■s /

0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 -1 1 1 1 1
0 1 0 -1 -1 -1 0 1 1 1
0 1 1 -1 0 -2 0 0 1 0
1 0 0 1 1 1 1 1 0 1
1 0 1 1 2 0 1 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 1 -1 1 1 1 1

Table 2.3. Signed-digit and conventional digit addition/subtraction results

g  = y;.x ;+ y;.x j +x:.x;

Figure 2.11. 2-digit signed-digit and conventional digit carry free adder

Implementing the final two columns of table 2.3 as functions of the first three 

columns produces a carry free signed-digit and conventional digit subtracter with 

result in signed-digit form. An implementation of a 2-digit subtracter on a Virtex 

FPGA is shown in figure 2.12. A single cell of such an adder is known as an ‘rump’ 

cell as two input values are minus one is plus.
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2.5.8 Signed-digit and conventional digit adder/subtracter

As for carry-save addition an adder that adds/subtracts a conventional operand to/from 

a signed-digit operand depending on a select signal can be implemented. Figure 2.13 

shows a diagram of a 2-digit signed-digit and conventional digit adder/subtracter.

S2
+

5 2

S \
+

■S 1

•So
4*•s o

s  J + 1

+
s  i

f  = y ;@ x ;® x ;

Figure 2.12. 2-digit conventional digit and signed-digit carry free subtracter

+
s  2 

S~2

+S 1 
Si

•S 0 
s'o

f  = x, © x, © y t ® sel 

g  = (y, © sel).x~ +(yt © sel).x; +x;.xj

Figure 2.13. 2-digit signed-digit and conventional digit cany free adder/subtracter
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2.5.9 Signed-digit to signed-digit addition/subtraction

The final case of carry free addition that will be considered is a component that allows 

the addition/subtraction of two signed-digit operands depending on a select signal 

Vails [107]. This is the most complicated carry free component that is considered in 

this section. The single cell that adds and subtracts two signed digits is constructed 

from the ppm and mmp cells. A diagram of the cell structure is shown in figure 2.14.

cOut
+y >

sel
X'i 

+ * i
y>
sel

ppm s |+l
mmp

cln

Figure 2.14. Signed-digit to signed-digit adder/subtracter cell (ssas)

A Virtex FPGA implementation of the cell in figure 2.14 requires 4 LUTs. 2 LUTs 

are used for the ppm cell as shown in figure 2.11 and 2 LUTs are used for the mmp 

cell as shown in figure 2.12. The sel line is blended into the LUTs for the ppm and 

mmp cells as only four inputs are required. Figure 2.15 illustrates the structure of a 2- 

digit signed-digit adder/subtracter that uses the cell structure shown in figure 2.14.

sel —

r  i — ssas

sel —

ssas

Figure 2.15. 2-digit signed-digit adder/subtracter
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Signed-digit operations are most commonly used in online arithmetic Ercegovac [61], 

which is the name given to most significant digit first (MSDF) digit-serial arithmetic, 

where operands are fed into online operators one digit at time in a serial manner. 

Online arithmetic allows the calculation of operators (addition, multiplication, 

division, square root) to start while only knowing a limited number of the most 

significant digits of the input operands, which is particularly beneficial to the 

implementation of serial division and square root operations. The exact operation 

result cannot be known by only using a few of the most significant digits and 

therefore the redundancy in the digit set allows the running result to be corrected as 

more digits of the operands are fed into the system. Studies have been done on 

implementing online arithmetic on FPGA Dumas [100], Girau [101], Tisserand [102], 

Mcllhenny [103], Tenca [104, 110], Lau [105, 106], Schneider [108] and P-Pascual 

[109] and we will not consider it further as it is outside the scope of this work.

2.5.10 Signed-digit and carry-save conversion to conventional representation

To convert from carry-save representation to conventional form a standard CPA such 

as a RCA can be used. The ‘carry’ operand is fed into one input of the CPA and the 

‘save’ operand is fed into the other the result of the addition is the conventional 

representation. To convert from signed-digit representation a subtraction component 

is used. The subtrahend is the negative terms x  and the minuend is the positive terms 

x+. The result of the subtraction is a two’s complement number of correct sign.

2.5.11 Conclusion

Table 2.4 summarises the area and simple delay calculations of a range of adder 

implementations. The carry-chain registering issue for pipelining adds irregularity to 

the efficient CSA designs and increases the area of the components, therefore the 

implementation will not be considered in creating other fixed-point components. The 

basic CSA designs are twice the size of the RCA designs and so the speed increase 

they offer is not felt to be worth the area sacrifice (especially for the word length of 

operands that will be required). The sign-digit adders, similarly to the basic CSAs, 

are faster than the basic RCA design but are twice the size so are disregarded. Carry- 

free addition components have a delay that is independent of operand width and that 

is less than equivalent RCA structures, however their size means they are only suited
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to very high performance/long word-length FPGA designs where area is not a 

significant design issue. Carry-free addition techniques will not be considered further.

Adder type Operand
length

Area
(slices)

Registered 
output area

Delay
(components) Latency

Ripple carry 
adder N-bits Ceil1̂ ) Ceil(N/2) 1 LUT, N cc , 

1 XOR 1

LSDF bit- 
serial adder N-bits 1 n/a 1 LUT N

LSDF digit- 
serial adder 

(digit size D)
N-bits Ceil(D/2) n/a 1 LUT Ceil(N/D)

[3:2] CSA 
basic N-bits N N 1 LUT 1

Radix-4 CSA 
efficient N-bits Ceil(N/2) Ceil(N/2) + 

Ceil(N/4)
1 LUT, 1 cc, 

1 XOR 1

[4:2] CSA 
basic N-bits 2N 2N 2 LUTs 1

[4:2] CSA 
efficient N-bits N 3N/2 1 LUT, 1 

XOR 1

Signed-digit to 
conventional N-digits N N 1 LUT 1

Signed-digit to 
signed-digit N-digits 2N 2N 2 LUTs 1

1 Ceil( ) is the mathematical ceiling function. 2 cc is an acronym for carry-chain.

Table 2.4. The delay and area of some carry propagate and carry free adders

2.6 Fixed-point multiplication

2.6.1 Unsigned multiplication

Consider two n and m-bit unsigned integer vectors shown in equations (2.4) and (2.5) 

respectively. X  is the multiplier and Y is the multiplicand.

X = ^ x ,2 ‘ ___(2.4)
i= 0

r * t y , 2 ‘ ___(2.5)
;=0

The product of the values is shown in (2 .6 ).

p = x * r  = £2T *,.|> ,.2 ;)  (2-6)
1=0 ; =  0
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From (2.6) an /2-bit by m-bit multiplication can be seen as the sum of n correctly 

scaled bitwise AND functions. All the bits that need to be summed in a multiplication 

can be arranged in an array called a partial product array. A partial product array and 

its corresponding dot diagram for a 4 by 4-bit multiplication of two unsigned operands 

X  and Y are shown in figure 2.16.

yoX3yoX2yoXiyoxo 
y\X3y\XiyiX\yiXo

y 2x3 y 2X2y 2Xiy2X0 

Pi Pe> Ps Pa Pi Pi P\ Po

Figure 2.16. A 4 by 4-bit partial product array and dot diagram

An n by m-bit unsigned multiplication generates an (n+m)-bit product P, where P 

takes the value of (2.7).

h-h h -1

 (2-7)
*=0

2.6.2 Signed multiplication 

2.6.2.1 Sign-magnitude multiplication

Sign-magnitude values consist of a sign bit, which has the convention of being ‘1’ for 

negative and ‘O’ for positive and a magnitude part. To multiply two sign-magnitude 

values the sign-bit is XORed and the magnitudes are multiplied using an unsigned 

multiplier.

2.6.2.2 Two’s complement multiplication

The most significant bit of a two’s complement number is assumed to have a negative 

weighting. Equation (2.8) resembles an w-bit two’s complement integer operand.

X = -x..,.2-'+"fixr2' ___(2.8)
1=0

When the leading bit is ‘1’ the number is a negative and when it is ‘0’ the number is 

positive. The multiplication of two two’s complement numbers has two major

•  •  •  •  
• • t •

•  •  •  •
•  •  •  •
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differences to unsigned multiplication. Firstly when summing the next partial product 

to the current partial result the partial result must be sign extended as opposed to 

being extended by adding zeros as in unsigned multiplication. Secondly the final 

partial product is subtracted from the partial result in two’s complement 

multiplication, which is due to the sign of the final bit of the multiplier. The partial 

product array for two’s complement multiplication is slightly different than for 

unsigned multiplication Ercegovac [61], and a 4 by 4-bit example is shown in figure

Pi Pe Ps Pa Pi Pi P\ Po

Figure 2.17. Transformed 4 by 4-bit two’s complement partial product array 

2.63  High radix partial product generation

To generate fewer partial products to sum, two or more multiplier bits can be 

multiplied with the multiplicand to create a single partial product. In general using N- 

bits of the multiplier results in a radix-2N mode of operation. The problem with high 

radix operation is the multiples of the multiplicand that need to be generated. The 

radix-4 algorithm requires the multiples of 07, 17, 27 and 3 7 to be generated. The 17 

and 27 multiples can easily be generated using shifting, but the 37 multiple requires a 

carry propagate adder in its production. The radix-8 algorithm requires the multiples

07,17, 27, 37,47, 57, 6 7 and 7 7 to be able to be generated efficiently. Increasing the 

radix clearly increases the number of different possible multiples and the difficulty in 

generating them.

2.6.4 Multiplier structure

There are various options for the structure of a multiplier. These include: Serial-serial 

multiplication, Nibouche [98] gives an example of the FPGA implementation of 

serial-serial multiplication; Bit-serial parallel multiplication, several different FPGA 

implementations of bit-serial multiplication are given in Andraka [83], He [85], Li 

[87], Vails [93] and Adaos [95]; Digit-serial parallel multiplication, different FPGA

2.17.

73 (yoxiY yoxi yoxi yox0 
(yixiY y\*2 y\x\ y\x0 

iyix^Y y 2x2 y 2x\ y2x0 
1 (yyx’t f  yyx’2 y^x\ (yyx0Y

•  •  •  •  •
•  •  •  •

•  •  •  •
•  •  •  •  •
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implementations of digit-serial multiplication are given in Smith [82], Satyanarayana 

[84], Rao [88], Lee [89, 91], Vails [92, 93], Kahalil [90] and Sansaloni [96]; Several 

array structure algorithms have been proposed for FPGA implementation including: 

The Majithia [70] and Bandhopadhyay [72] arrays by Saha [112]; The Pezaris [71] 

array by Saha [113], Stohmann [120] and Thornton [124]; The Baugh-Wooley [73] 

array by Saha [113] and Canik [117]; The Guild [69] array by Ruiz [119]. In parallel 

multiplication the multiplier and multiplicand arrive simultaneously and all partial 

products are generated in parallel MacSorley [65] and then summed in a tree structure 

using carry-save adders Wallace [67], Dadda [6 8 ] or ripple carry adders. This 

structure has the lowest latency and can be fully pipelined to allow a single cycle issue 

(i.e. a new pair of operands can be supplied to the multiplier on each clock cycle). 

Many authors have investigated the classic modified-Booth-encoding-Wallace-tree 

multiplier implementation on FPGA including Saha [112], Kumar [116], Singh [118], 

Ruiz [119], Tagzout [122], Laurent [123], Thornton [124] and Shah [125]. In the next 

section the feasibility of the implementation of Booth encoding will be briefly 

analysed and then the remainder of the multiplication section will focus on other 

methods of implementing parallel multipliers.

2.7 FPGA multiplication

2.7.1 Parallel multiplication

In parallel multiplication all partial products are generated in parallel and then 

summed in a tree structure using carry-save adders or ripple carry adders. Clearly the 

tree will be bigger and have more levels the more partial products there are to sum. A 

method of reducing the number of partial products is to use more bits of the multiplier 

in generating each partial product, which results in a high radix method of operation. 

Using one bit of the multiplier to generate the partial product results in the radix-2 

algorithm, two bits results in a radix-4, three in a radix-8 and so on.

2.7.2 Dedicated Virtex FPGA multiplier logic

FPGAs are very popular arithmetic intensive algorithmic platforms. With this in mind 

the Virtex FPGA designers realised the importance of multiplication in designing 

efficient algorithms and therefore provided special logic elements to facilitate fast 

multiplication. The Virtex FPGA is built out of LUT columns with fast carry logic to
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allow the efficient implementation of adders. The LUT columns can be configured as 

radix-2 partial product generators and can generate a partial product and sum it to 

another operand. However the designers also supplied a dedicated AND gate 

primitive to enable radix-4 partial product generators to be implemented in a single 

LUT slice. The radix-4 partial product generators can be configured in many different 

ways and in figures 2.18 and 2.19 the configurations that multiply a multiplicand by 

the digit sets {0 ,1,2 ,3} and {-2 ,-1,0 ,1} respectively are shown.
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ViXl
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Xl
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Xl
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g
yo I S
Xo — 
yo — /
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C=>I>
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£
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cln
Po

#  cln
Xl X] Xl Xo

•  •  •  •
P3 P2 P i PO

g = x,yj-x®x,-xy}

Figure 2.18. Signed two’s complement Radix-4 partial product generator for the 
multiples (0 ,1,2 ,3) (yiyo)=(0 0 ,0 1 ,10,l 1)
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Figure 2.19. Signed two’s complement radix-4 partial product generator for the 
multiples (-2 ,-1,0 ,1) (yiy0)=( 10,11,00 ,01 )
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2.7.3 New radix-4 partial product generator mapping

A new partial product generator mapping that can multiply a multiplicand by a value 

from the digit set {1,2 ,3,4} is shown in figure 2 .2 0 .

x3
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x2
yi

x2
yo
Xl
yi

IE
g

g

Xo - H  S 
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!=£>

Xo
yo /

COut
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/  = x,yj

g  = *, -y, + y j  - y ^  + *,+1 .y , .y ;+1 + .xM .yJ+l + xt .xM ,y;+1

Figure 2.20. Radix-4 partial product generator for the multiples (1,2,3,4)
( y i y o H O i , oo,11,10)

Multiplication where the multiplier is split up into two bit radix-4 digits fits very well 

on Virtex FPGAs as the underlying hardware, shown in figures 2.18 and 2.19, is 

designed to support it. However there is a logic technique called Booth encoding 

Booth [64], MacSorley [65] that is commonly used in ASIC designs to reduce the 

number of different multiples to develop in high radix multiplication.

2.7.4 Booth encoding

Booth encoding is a technique to recode the multiplier operand into a different digit 

set, which simplifies the multiples of the multiplicand that need to be created. The 

parallel recoding algorithm recodes an operand into a redundant digit set, which 

allows the recoding to be done in parallel. It must be stressed that Booth encoding 

does not reduce the number of partial products that need to be created, as many 

authors suggest, it merely simplifies their creation.
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2.7.4.1 Radix-4 algorithm (Booth-2)

The radix-4 algorithm, assuming the multiplier is split into radix-4 digits, recodes the 

multiplier from the digit set {0,1,2,3} to the digit set {-2,-1,0,1,2}. Each recoded digit 

is produced by scanning three bits of the multiplier at a time overlapping the end scan 

bit of one group with the first scan bit of the next. Figure 2.21 illustrates the 3-bit 

scanning technique and table 2.5 illustrates the recoded digits depending on the 

scanned bits.

x 5 x 4 x 3 X2 Xl
o

oX
i i  i
x ' 2 x ' l  x'o

Figure 2.21. Booth-2 recoding of a 6 -bit multiplier

Xi+1 Xi Xi-1 x  i
0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 2

1 0 0 -2

1 0 1 -1

1 1 0 -1

1 1 1 0

Table 2.5. Recoded digits of an operand according to the Booth-2 algorithm

2.7.4.2 New Booth-2 partial product generator mapping

The multiples of {-2T,-T,0,T,2T} can be produced carry-free by configuring a LUT 

column as a signMux component to calculate the multiples {-2y, -Y, Y, 2 Y} and 

utilising the dedicated register in each logic element to force a zero multiple. The 

hardware configuration to implement the novel signMuxZero component is shown in 

figure 2.22. Because the negative multiples are generated by inverting the positive 

multiples an extra correction bit is required in the LSB position, whose value is 

determined by the ‘sign’ input (this is the basic two’s complement inversion 

technique). To continue the carry-free property of the multiplier the partial products
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can be summed using carry-save adders in a tree structure (Wallace, Dadda). The 

most efficient cany-save adder is the [4:2] adder (see section 2.5.5) in which four 

partial products can be reduced to two in each level. Due to the structure of the [4:2] 

adder the most efficient numbers of partial products to sum are multiples of 2 e.g. 

4,6,8... etc. Other quantities of partial products require [3:2] carry-save adders at 

some stage of the summation, which are less efficient than [4:2] adders.

sign

zero

sign

zero

sign

zero

sign

zero

X7

P3

P2

Pi

Po

sign = xi+1

sel = xt ® xM

zero = xi+l.x..xi_l +xi+vxrxi_1

corrBit = X'_vxnl+xl+l.X'

f  = y , signsel + y x signsel + y t+x signsel + y J+i signsel 

Figure 2.22. The Virtex FPGA implementation of a new signMuxZero component

Figure 2.22 gives the equations for the selection bit, ‘se l\ which selects the multiples 

of 1 or 2 ; the sign bit, 4sign\ which determines the sign of the 1 or 2 multiples; the 

zero bit, 4zero\ which determines whether the multiple is zero or not; and finally the 

correction b it,4corrBif, which is used in the two’s complement operation to generate 

the negative multiples (note, when performing Booth encoding bit Xj+i is normally 

added in at the LSB position to perform the two’s complement operation. We cannot 

use this principle here because we use registers to generate the zero multiple, thus an 

extra b it4corrBif is used instead). The sel, sign, corrBit and zero bits are all based on 

the three bits of the multiplier currently being scanned and are the recoded bits. To 

implement the signMuxZero component without the registers a 5-bit function is 

required, which would double the logic required to implement the component.
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2.7.4.3 Radix-8 algorithm (Booth-3)

The radix-8 algorithm requires a 4-bit scran of the multiplier to convert the digit set 

form {0,1,2,3,4,5,6 ,7} to {-4,-3,-2,-1,0,1,2,3,4}, thus eliminating the need to generate 

the 57, 67 and 77 multiples. Figure 2.23 illustrates the 4-bit scanning technique of a 

12-bit operand. Table 2.6 illustrates the Booth-3 recoded digits depending on the 4 

scanned bits.

X n  X io  x 9

x' 3 x' 2 x'  1

Figure 2.23. The Booth-3 scanning of a 12-bit operand

Xi+2 Xi+1 Xx Xi-1 x ’i
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 2
0 1 0 0 2
0 1 0 1 3
0 1 1 0 3
0 1 1 1 4

1 0 0 0 -4
1 0 0 1 -3
1 0 1 0 -3
1 0 1 1 -2
1 1 0 0 -2

1 1 0 1 -1

1 1 1 0 -1
1 1 1 1 0

Table 2.6. Recoding of an operand according to the Booth-3 algorithm

A radix-4 partial product generator can be used to generate the multiples of {1,2,3,4}. 

As for the signMuxZero component each register can be configured to generate the 0 

multiple, which allows all the positive multiples to be created. The main disadvantage
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of the radix-8 Booth-3 algorithm is that a double inversion cannot be implemented in 

a single logic element. As an example consider the situation where two multiples 

-47.8' and -47.8'+1 are to be generated and summed. If two radix-4 partial product 

generators supply the multiples 4.7.8' and 4.7.8,+1 to an adder then the adder must 

negate the two operands and sum them. However due to a limitation in the structure 

of a Virtex logic element the double negation and corresponding addition of two 

operands is not possible. This is known as the double subtract problem described by 

Courtney [126] and cannot be solved without using extra hardware in the adder tree or 

leaving the result incorrect and correcting it later in another operation. Due to this 

fact the radix-8 algorithm is disregarded.

2.7.4.4 Higher radix algorithms

Higher radix algorithms do not have any benefit due to the difficulty of generating the 

multiples and the extra logic required to recode the multiplier.

2.7.5 Basic Virtex FPGA multiplication structure

The Virtex radix-4 partial product generators can implement multiplication by the 

digit set {0,1,2,3}, which is needed when multiplying a multiplicand by any of the 

radix-4 digits of a two’s complement multiplier except the most significant digit. The 

most significant digit can belong to the digit set {-2 ,-1,0 ,1} and therefore needs a 

slightly modified partial product generator. Using the two partial product generators 

and a carry propagate adder tree gives the standard multiplier implementation. 

Consider an 8 by 8-bit signed multiplier where the multiplier A is split into four radix- 

4 digits. Figure 2.24 shows the multiplier structure, which consists of four partial 

product generators and a 3-ripple-carry adder tree.

2.7.6 Summary

Despite the benefits of Booth encoding it is not beneficial to Virtex FPGA designs for 

three reasons. Firstly a radix-4 partial product generator can already be implemented 

in a single LUT column. A sign/mux/zero component that allows the multiples 

{-2 ,-1,0 ,1,2 } to be generated must always be registered and occupies the same area as 

the radix-4 partial product generator. The second reason is that a double inversion 

cannot be implemented in a single logic element, which prevents the Booth-3 

algorithm from being implemented efficiently. Thirdly the extra logic to implement

35



Chapter 2 Fixed-point

the Booth recoding adds to the design area. However, in implementing a pure carry- 

free multiplier the Booth-2 encoded multiplier with subsequent Wallace tree is the 

best implementation structure, but it does have pipelining issues that cause an area 

penalty over the basic multiplier structure.

Figure 2.24. Basic Virtex FPGA implementation of an 8 by 8-bit signed multiplier

2.7.7 Virtex-II FPGA embedded multipliers

The Virtex-II and other FPGA families include dedicated multiplier blocks as a 

hardware feature that is embedded in the FPGA fabric. The multiplier blocks of the 

Virtex-II FPGA allow up to 18 by 18-bit signed two’s complement multiplication or 

up to 17 by 17-bit unsigned multiplication. For many DSP applications the 18 and

17-bit operand width of the embedded blocks is sufficient, however it is desirable to 

have larger operand widths. For example, in the IEEE 754 standard [141] the single 

precision floating-point format requires a 24 by 24-bit multiplier to multiply two 24- 

bit significand values. Several options for the expansion of the embedded multiplier 

blocks are possible and in the next section the expansion techniques are studied.

2.7.7.1 Splitting large multiplications across multiple multiplier blocks

Clearly a 24 by 24-bit unsigned multiplication cannot be implemented with a single 

18 by 18-bit multiplier. However, such a multiplication can be split amongst a
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number of multiplier blocks using a divide and conquer technique. Consider an /7-bit 

unsigned integer and an /7-bit two’s complement integer defined by (2.9) and (2.10) 

respectively.

.(2.9) * =
<=o

n -2

X = -X n_v2 - '+ Y .Xr 2‘ .(2.10)
i=0

X  can be split into m appropriately weighted integers of widths {wm-u , h>0, w_i }, 

where = 0 , so that X can be written as in (2 .11).

x  = x„_1+ ...+ x 0 X =  x. X, X,
H V I H-I Wo

A single term of the split operand is defined by (2 .12) where u and v take the values 

defined by (2.13) and (2.14) respectively.

X j= 2“**£xk. 2 ‘-“  (2 .12)
k=u

7-1 

/=-1
.(2.13)

= Z - ; .(2.14)
/ = - !

Consider two unsigned /7-bit integers X  and Y as defined in (2.9). X  (Y) is split into 

two vectors Xq and X\ (y0 and Y\) of length w0 and w\ respectively such that,

X  = 2w°.Xl + X0 .(2.15) X= Xi Xo
H-1 Wo

y = 2 r y ,+ y 0  (2.16)

The product ofX and Y can be written as (2.17) and expanded into (2.18).

X  * Y = (2w\ X x + X 0)(T \Y x + Y0) .(2.17)

x  * y  = x 0y0+2'* x 0y; + 2’° x,y0+ 22”" 2r,y,___(2.18)

Providing wo and wi are less than the maximum unsigned embedded multiplier width 

(17-bit in the Virtex-II FPGA case) the four products of (2.18) can be produced with
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four multiplier blocks. The largest unsigned multiplication that can be performed 

with a two part split is a 34 by 34-bit multiplication. Larger operands require more 

splits and thus more products are developed, which implies that more embedded 

multiplier blocks are required.

2.7.7.2 Signed multiplication

Splitting signed two’s complement multiplication across multiple multiplier blocks is 

very similar to unsigned multiplication except that partial products with a negatively 

weighted MSB must be sign extended when added. The multiplier blocks are 18 by

18-bit signed and this must be considered when tiling the blocks because there are 

different increase points where the number of multiplier blocks required to cover an 

area increases. Table 2.7 illustrates the increase points for signed and unsigned 

multiplication.

Size Signed Unsigned
17X17 1 1
18X18 1 4
19X19 4 4

34X34 4 4
35X35 4 9
36X36 9 9

51X51 9 9
52X52 9 16
53X53 16 16

Table 2.7. Divide and conquer signed and unsigned multiplier quantity increase
points

Using multiple multiplier blocks to perform a multiplication is very efficient in terms 

of the logic elements. However using only the embedded multiplier blocks to perform 

the partial product generation can be very inefficient in terms of the utilisation of the 

embedded multipliers. Consider an unsigned 20 by 20-bit multiplication. If 4 

multiplier blocks were used to perform the multiplication then, assuming we are not 

evenly tiling the multipliers on the partial product array, one multiplier would be used 

to perform a 3 by 3-bit multiplication and two of the multipliers would be performing
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3 by 17-bit multiplications. Only one multiplier is being fully utilised while the 

others are being used with 4 or 18% efficiency.

2 .1 .1 3  Improving the utilisation of embedded multipliers for large 
multiplications

There are a number of ways to improve the utilisation of the embedded multipliers in 

Virtex-II FPGA designs. In this section the following four methods are described:

i) The two-way method originally proposed by Karatsuba [66]. It is 

commonly used in complex multiplication implementation.

ii) A method proposed by Chapman [127] of Xilinx, which uses a single 

embedded multiplier block and some LUT based logic.

iii) A method proposed by Beuchat [128], which also uses a single embedded 

multiplier block and some LUT based logic.

iv) Finally a new improved method, which uses a single embedded multiplier 

block and some extra LUT based logic.

2.7.7.3.1 The two-way method

The two-way method, also known as Karatsuba multiplication, is based on an identity 

that allows the number of multiplications used in the two split divide and conquer 

method to be reduced from four to three. Consider the multiplication of two n-bit 

operands X  and Y each split into two sections of length w0 and w\. The multiplication 

of two such operands can be written as shown in (2.19), which is a repeat of equation 

(2.18).

X * Y  = X 0Y0 + 2W°X 0Yx + 2"°X xY0 + 22"0X xYx ___(2.19)

Using the ‘trick’ of adding on a value and also adding on the negative of the same

value and thus keeping the same value of the equation we can transform equation

(2.19) via equation (2.20) into (2.21) or (2.22).

X * Y  = X xYx22w° + X xY02w° + X 0Yx 2w° + X qY0 + X 0Y02w° -  X 0Y02w° + X xY{2h» - X xYx2"' 
 (2 .2 0 )

X * Y  = X xYx(22w° - 2 w°) + (Xx+ X 0XYx+Y0)2w° + X 0Y0(1 - 1 ) ___(2.21)

X * Y  = X xYx(22w° + 2W°) - (X x - XX, - Y0)2W° + X 0Y0( 1 + 2"°)_______(2.22)
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There is a draw back in implementing equation (2.21) in that the sum of X\ and X0 or 

Y\ and Y0 could overflow and require an extra bit in its representation. To solve this 

problem Knuth [62], equation (2.22) can be implemented and X\ and X0 or Y\ and Y0 

can be swapped as desired to avoid the overflow problem. The swapping of the 

operands saves a single multiplier bit. The extra logic required to swap the operands 

outweighs the multiplier savings, so for simplicity sake we will not consider the 

operand swapping. Figure 2.25 illustrates the weighting of the products in equation 

(2.21) and shows the duplication of the XqYq and X\ Y\ products. Two of the products 

can be concatenated and this allows the products to be accumulated with three adders.

x

x

(X.-XoXYrYo) 

Xi Y,

X0Yo

X0Yo

X\Y\

Figure 2.25. The two-way method partial products and their weightings

Figure 2.26 shows the hardware needed to implement the two-way multiplication. 

Compared to the divide and conquer method one multiplication has been traded for 

three much less costly adder components.

X\ XqY\ Yo

&&

Figure 2.26. Hardware implementation of the two-way method
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The Karatsuba technique can be applied to bigger multiplications. Consider a 

multiplication in which each operand would require four splits and thus 16 

multiplications (e.g. a 60 by 60-bit unsigned multiplication) if implemented using the 

divide and conquer technique. Using one pass of the Karatsuba technique requires 3 

multiplications. However the multiplications are too big to be implemented using 

single embedded multipliers. Each of these multiplications can be done using the 

Karatsuba technique thus the whole system requires 9 embedded multipliers and 16 

adders. The Karatsuba technique is superior to the divide and conquer technique for 

multiplications that utilise the embedded multipliers with 100% efficiency. For 

example consider a 34 by 34-bit unsigned multiplication implemented with the divide 

and conquer algorithm, which uses 4 embedded multipliers each with 100% 

efficiency. The Karatsuba technique requires just 3 embedded multipliers each 

utilised with 100% efficiency, demonstrating the improvement of the technique.

2.7.73.2 Chapman method

The Chapman method is very similar to the divide and conquer method except that 

products that do not utilize the embedded multipliers with high efficiency are 

constructed from LUT based multiplications. Consider a 22 by 22-bit signed two’s 

complement multiplication shown in figure 2.27.

Y

h— 18 —

><

><

X X

.................. 44 -------------

Figure 2.27. 22 by 22-bit signed two’s complement multiplication
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The 22 by 22-bit signed multiplication is split across four multipliers. The 18 by 18- 

bit multiplication is assigned to an embedded multiplier, the two 18 by 4-bit 

multiplications are assigned to two LUT based multipliers and finally the 4 by 4-bit 

multiplication is assigned to a LUT based multiplier. As for the divide and conquer 

method two adders are needed to sum the partial products to the final result. The 

scheme can easily be applied to signed and unsigned multiplication of different 

operand lengths and allows more multiplications to be placed on an FPGA device.

2.7.7.3.3 Beuchat method

The dots in a partial product array column have the same weighting regardless of the 

row they are in. This property can be used to transform the partial product array into 

a different shape. The partial product array for an unsigned 20 by 20-bit 

multiplication is shown in figure 2.28. The partial product array can be rearranged as 

shown in figure 2.29.

Figure 2.28. 20 by 20-bit partial product array with green, blue and red grouped bits

/ * - 3 —y>— 1 7 — y

Figure 2.29. The folded partial product array with grouped bits
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The 17 by 17-bit partial product array at the bottom of figure 2.29 can be produced 

and reduced to a single product by using a single embedded multiplier. The 

trapezoidal array of products can be generated and reduced to a single value using 

LUT based logic. It is unclear the precise way the authors reduce the trapezoidal 

array of products, but from their report of the method it appears they write high level 

VHDL to infer a tree reduction scheme consisting of carry propagate adders. They 

then let the synthesis tool map this high level structure to the FPGA primitives. It is 

unclear whether the synthesis tool takes advantage of the dedicated logic in the 

Virtex-II FPGA to facilitate partial product generation. The result form the 

trapezoidal partial product reduction and from the embedded multiplier can be added 

with a single adder and thus produce the final product.

2.7.73.4 New method

Unsigned multiplication

This new method builds on the work of Beuchat by improving the partial product 

arrangement and the partial product generation. Figure 2.30 reiterates the 20 by 20-bit 

unsigned partial product array of figure 2.28. Figure 2.31 shows the new partial 

product arrangement.

The 17 by 17-bit partial product array at the bottom of figure 2.31 can be generated 

and reduced with a single embedded multiplier. The parallelogram group of partial 

products can be generated and reduced using LUT based logic. The arrangement 

improves on the method of Beuchat because all the partial products are the same 

length, which improves the layout and reduces the area of the component. The

/4 — 3 —y i 1 7  y

Figure 2.30. 20 by 20-bit unsigned partial product array
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dedicated logic of the FPGA can be taken advantage of to produce the partial products 

in a radix-4 fashion and thus increase the speed of the design while using the 

minimum amount of logic. The method can be expanded for multiplications larger 

than 34 by 34-bits where the embedded multiplier is assumed to be 34 by 34-bits and 

is constructed using either the two-way or divide and conquer method. The method is 

most suitable for multiplications where the multiplier and multiplicand are the same 

length. The method can be used for signed multiplication by modifying the partial 

product array.

•  •  •

•  •

17
•  •

•  •
— 1 7 — y

Figure 2.31. New folded 20 by 20-bit unsigned partial product array

Signed multiplication

The 4 by 4-bit multiplication shown in section 2.6.2.2 can be modified to perform 

unsigned multiplication so advantage can be taken of a dedicated signed multiplier to 

generate some of the partial product bits and sum them into a single product. Figure 

2.32 shows the signed two’s complement array after modification.

1
(yoxi)' y&2 yox\ yoxo 

(y\xiY y \*2 y\x\ y\x0 
{yixiY yix2 y2X\ y2xo 

1 (yyx’3)’ y&  2 yyx\ yyx’o
ys

•  •

Pi Pe P s P a P i P2 p  1 Po

•  •  •  
•  •

Figure 2.32. Modified signed 4 by 4-bit partial product array
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Unfortunately the bit at the top of the array in figure 2.32 cannot be removed using an 

identity and therefore an extra adder is needed for the signed multiplication design 

that is not needed in the unsigned multiplier. The single bit at the bottom of the 

partial product array in figure 2.32 is the extra bit associated with the two’s 

complement operation performed on the final row. This extra bit is automatically 

generated and handled internally by the dedicated signed multiplier. In the third 

column from the left an operation to generate two bits and then sum them is required. 

The logic structure of the Virtex family of FPGAs does not allow the elements in the 

third column to be generated and summed in a single logic element, thus an extra 

LUT is required to perform the function (yn_xxm)' or y„x'm_ T h e  extra LUT is

clearly a very small and justifiable logic increase, but it does add some irregularity to 

the multiplier structure.

The partial product array of a 20 by 20-bit signed multiplication is shown in figure

2.33. The extra bit at the bottom the array is automatically handled by the multiplier 

performing the 17 by 17-bit multiplication and can be ignored.

Figure 2.33. 20 by 20-bit signed multiplication partial product array

The partial product array can be folded as for the unsigned multiplication case shown 

in figure 2.31. The folded array is shown in figure 2.34. To ensure a correct final 

result the m+n-1 LSBs of the m by «-bit embedded multiplier result are added to the 

partial result generated by the parallelogram products reduced with the LUT based 

logic.
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/ ■

— 1 7  X

Figure 2.34. Folded 20 by 20-bit partial product array

2.7.7.4 Implementation results

Area and delay results for the Karatsuba and divide and conquer methods are given by 

Beuchat [128] and these results are used in the comparison of the different methods. 

Only unsigned multiplication will be considered. Signed multiplication for the 

proposed method has a very similar area and delay except that an extra adder is 

needed to add in the extra bit at the top of the partial product array shown in figure

2.34. Figures 2.35 and 2.36 show the area and delay of the three methods given by 

Beuchat [128] and the proposed method.

600

500

400

300

<  200

100

0
28 3220 22 24 26 3018

Operand width (bits)

Figure 2.35. Area comparisons of various multipliers implemented on a Virtex-II 
FPGA: [■] Beuchat method; [x] Divide and conquer method; [A] Two-way method;

[♦] new method
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Figure 2.36. Delay comparisons of various multipliers implemented on a Virtex-II 
FPGA: [■] Beuchat method; [x] Divide and conquer method; [A] Two-way method;

[♦] new method

2.7.7.5 Comparison

The Karatsuba multiplication method uses three embedded multipliers, which is one 

less multiplier than the divide and conquer method but it is slightly slower and uses 

more slices (approximately 40). 40 slices is 0.78% of the total slices on a 1-Million 

gate Xilinx XC2V1000 FPGA and 1 multiplier is 2.5% of the total multipliers so the 

slice increase can be justified. The proposed method, which uses only one embedded 

multiplier, is faster and smaller than the method proposed by Beuchat. The method is 

also faster than the Karatsuba and divide and conquer methods, but uses more slices. 

The Karatsuba method uses approximately 80 less slices for a 24 by 24-bit 

multiplication than the proposed method but uses 2 embedded multipliers more. The 

slice trade off is justified because 80 slices is just 1.56% of the slices of an 

XC2V1000 FPGA, while 2 embedded multipliers is 5% of the total embedded 

multiplier quantity.

2.7.8 Squaring: a special case of multiplication

Squaring is a special case of multiplication Ercegovac [61] where both operands are 

the same length and take the same value. Two simple identities of the partial product 

array can be used to halve the logic required in implementing a squaring multiplier.
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Identity 1

XjXi+\ + x,+]x, = 2* xi+i Xj

Identity 1 implies that the sum of two equal values of the same weight is the same as 

one of the values shifted one place to the left.

Identity 2

* /* /  =  X j

Identity 2 implies that the logical AND o f two equal values is the same as the input 

value. Figure 2.37 shows the partial product array of an 8-bit unsigned squaring 

operation and figure 2.38 shows the effect of applying identities 1 and 2 to the partial 

product array of figure 2 .37.

X o X -1 X o X 6  * 0 * 5  * 0 * 4  * 0 * 3  * 0 * 2  *0*1  * 0 * 0

* 1*7  * i * 6  * 1 * 5  * 1 * 4  * 1 * 3  * 1 * 2  *1*1  * 1 * 0

* 2* 7  * 2 * 6  * 2 * 5  * 2 * 4  * 2 * 3  * 2 * 2  *2 * 1  * 2 * 0

* 3 *7  * 3 * 6  * 3 * 5  * 3 * 4  * 3*3  * 3* 2  * 3*1  * 3*0

* 4 * 7  * 4 * 6  * 4 *5  * 4 * 4  * 4* 3  * 4 * 2  * 4 * 1  * 4 * 0

* 5* 7  * 5 * 6  * 5*5  * 5*4  * 5 * 3  * 5 * 2  * 5 * 1  * 5 * 0

* 6 * 7  * 6 * 6  * 6 * 5  * 6 * 4  *6* 3  * 6 * 2  *0 * 1  * 6 * 0

* 7 * 7  * 7 * 6  * 7*5  * 7*4  * 7*3  * 7 * 2  *7 * 1  * 7 * 0

Figure 2.37. 8 by 8-bit squaring partial product array

* 0 * 7  * 0 * 6  * 0 * 5  * 0 * 4  * 0 * 3  * 0 * 2  *0*1  * 0

* 1 * 7  * 1 * 6  * 1 * 5  * 1 * 4  * 1 * 3  * 1 * 2  *1

* 2 * 7  * 2 * 6  * 2 * 5  * 2 * 4  * 2 * 3  * 2

* 3 * 7  * 3 * 6  * 3 * 5  * 3 * 4  * 3

* 4 * 7  * 4 * 6  * 4 * 5  * 4

* 5 * 6  * 5

*6

Figure 2.38. The reduced partial product array for squaring

Applying identities 1 and 2 has halved the number of partial product bits in the partial 

product array and will clearly require less logic to generate the square of a number in 

comparison to using a regular multiplier.

* 5 * 7

* 6 * 7

* 7
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2.7.8.1 New FPGA squaring method using a single embedded multiplier

Figure 2.39. The reduced partial product dot diagram for squaring

As illustrated in the dot diagram of figure 2.39 the squarer partial product array can be 

decomposed into three separate sections. If the input operand to the squarer is split 

into two equal or almost equal sections (because of an odd number of bits) then the 

input operand squared is given by (2.23).

X 2 = 22w° X 2 + 2(X02"° X ,) + X 2 ___(2.23)

Equation (2.23) mathematically describes the partitioning of the partial product array 

shown in figure 2.39. The top left parallelogram shape of partial product bits can be 

generated and summed with a single 4 by 4-bit unsigned fixed-point multiplier. The 

embedded multiplier of the Virtex FPGA can be used to perform this reduction for 

unsigned squarers of between 18 and 34-bits. Adjacent to the parallelogram array are 

two triangular arrays, which require 4 by 4-bit ‘squaring’ multipliers to generate the 

partial product bits and reduce them to a single product. The array folding technique 

described previously can be used to simplify the structure of the ‘squaring’ multipliers 

and in figure 2.40 an example of how the technique can be applied to an 8 by 8-bit 

‘squaring’ multiplier is given. The single bit at the bottom of the partial product array 

of figure 2.40 can be moved into the next column by using identity 3, which combines 

it with the bit directly above it.

Identity 3

XiXj+i +  Xj+ 1 =  2xjXi+\ +  * ’ / * / + 1
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Figure 2.40. Applying the array folding technique to squaring

Using identity 3 transforms the partial product array of figure 2.40 into the array 

shown in figure 2.41. The partial product bits of the array in figure 2.41 have a 

regular layout and can be succinctly generated by the FPGA LUT based logic. Two 

‘squaring’ multipliers and a single fixed-point multiplier are required in the 

implementation of the original squaring multiplier and these three products can be 

accumulated with a single adder because the two squaring multiplier products can be 

concatenated as shown in figure 2.42.

- + - + - O — 0 - + - + - + -------- 0 . .  pp0
.0------- -0-  -0- ^ 0 - 0 - 0- 0-0 ---------0 -  PPl

 « —• -  -------- • -  PP2
 • — ©— • -   ©-- pp3

Figure 2.41. Transforming the partial product array of figure 2.40 by applying
identity 3

2.7.8.2 Implementation results

The squaring component is compared against the proposed multiplier of section

2.7.7.3.4 to show the area savings that the component offers. Figure 2.43 compares
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the area of the proposed squarer and the multiplier presented in section 2.7.7.3.4, 

while figure 2.44 compares the delay.

X

Wo+l

X

1 X  1

Z.W'O ^

XoXo

M

XyX\

Figure 2.42. The weighting of the squaring products

2.7.8.3 Conclusion

Figure 2.43 shows the area savings of using the new dedicated squaring component. 

Interestingly there is a trade off point at the length 22-bits where below 22-bits it is 

more economical to use the regular multiplier, while above 22-bits the dedicated 

squarer offers the minimal area solution. Figure 2.44 shows that the area 

improvements are traded for a delay increase and above 22-bits a possible 33% delay 

increase is observed. The delay increase is primarily caused by the irregularity of the 

of the squaring component’s adder tree. Other squaring components have been 

proposed for FPGA including Klotchkov [137] and Al-Kahalili [129], but these 

designs differ from the proposed design, as the FPGA technology does not contain 

embedded multipliers.
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Figure 2.43. The area of the proposed single embedded-multiplier squarer [A] and
multiplier [♦]
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Figure 2.44. The delay of the proposed single embedded-multiplier squarer [A] and
multiplier [♦]

2.8 F ixed-point division

x/d is the division operation where x is the dividend and d  is the divisor. The process 

of division calculates a quotient q and a remainder rem such that equation (2.24) is 

satisfied.

x  = q*d + rem, where rem<d ___(2.24)

2.8.1 Digit recurrence (sequential) division

This work considers the design of floating-point units so we are interested in 

fractional division. We will assume x e  [0,1), d  e  [0.5,1) and follow the constraint 

that jc<d, thus q e [0,1).

2.8.1.1 Restoring

Basic division uses the process of repeated shift and subtraction and a restoring of the 

partial remainder if the result of a subtraction is negative. If the result is positive then 

the next quotient bit is ‘1’ and if the result is negative then the next quotient bit is ‘O’. 

If w[/‘] is used to represent the partial remainder at step j ,  q\j] is the calculated quotient 

at step j  and qj is the calculated quotient digit at step j  then the restoring algorithm 

division recurrence can be written as in (2.25).

w[/+l] = 2 *w[j]-d*qj+\  (2.25)

52



Chapter 2 Fixed-point

2.8.1.2 Non-restoring

The restoring algorithm requires the partial remainder to be restored if the outcome of 

the comparison subtraction is negative. The restoring step can be avoided by using 

the following rule. “If the result of a comparison is negative then add instead of 

subtract for the next comparison. If the result of a comparison is positive then 

subtract for the next comparison.” Figure 2.45 explains why this works.

(1) Perform the comparison: w[f] -  d

(2) If the result is negative then we add on the next step. Remember 
the result is not restored: (w[/] -  d) + 0.5**/

(3) The addition can be seen as a speculative subtraction of half the 
original divisor: w[/] -0 .5  *d

Figure 2.45. An explanation of the non-restoring technique

Using the rule described in figure 2.45 leads to a non-restoring division algorithm. 

With the non-restoring algorithm the next quotient digit is selected as ‘O’ if the 

comparison result is negative and ‘1’ if the comparison result is positive (note. It is 

commonly assumed that the digit ‘-1’ is used if the result is negative. We avoid using 

‘-1’ explicitly here by noting that 2'1 + 2 '*1 = 1 l 2*2 'M for positive results and 2~‘ - 2 ' 1 

= 0 l 2*2 'M for negative results. Therefore the LSB is always ‘1’ so can be made 

implicit and the bit juxtaposed to the LSB is created by using the rule described). The 

final remainder of a non-restoring algorithm could be negative where a correction of 

the remainder by adding on the value of the divisor is required (note. This is before 

shifting the final remainder to correct the subtraction). The recurrence for the non- 

restoring divider is the same as in (2.25).

2.8.1.3 SRT digit recurrence division

Restoring and non-restoring algorithms require a full-length comparison of the divisor 

with the partial remainder to determine the next quotient digit. A class of algorithms 

known as SRT, after Sweeny [306], Robertson [307] and Tocher [308] who 

independently proposed the algorithm, allow only a few of the MSBs of the partial 

remainder and divisor to be checked to determine the next quotient digit. A speedup
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is thus obtained because the quotient digit selection no longer waits for the carry of 

the comparison to ripple to the MSB. The SRT class of algorithms requires the 

quotient to be selected from a redundant digit set. The redundancy allows a degree of 

freedom in selecting the next quotient digit as a wrong selection can be corrected in 

later iterations. Furthermore the SRT algorithm allows the partial remainder to be 

stored in redundant form (such as carry-save or signed-digit). This means the partial 

remainder can be updated at each algorithm step with a carry-free adder. For this 

work the partial remainder will be updated using a CPA and we will not consider the 

implications of keeping the partial remainder in redundant form. We now describe 

the fundamentals of the SRT algorithm for a general radix r omitting derivations. As 

stated the division process xld produces a quotient and remainder that satisfy (2.24). 

Preferred division algorithms require equations (2.26) and (2.27) to hold. Thus the 

quotient has a range [0 ,1).

°a 5 i a < 1  (2.26)
0 <  jc  <  1

x < d  ___(2.27)

The value of the quotient after j  steps is given by (2.28), where <?[0] is determined by 

initialisation and r is the chosen radix of the implementation.

q[j] = q [0 ]+ ilqlr "  (228)
/=1

The quotient is selected form a symmetrical signed digit set, which is shown in (2.29). 

qj e { -a -a  +1,...,-1,0,1,...,<2 - 1,a}  (2.29)

Different digit sets for different radices have different redundancies. Based on the 

radix r, and the maximum digit set value a, the redundancy of a particular digit set for 

a particular radix can be defined by (2.30).

p  = — where, 1/2 < p  < 1 (2.30)
r - 1

Consider a radix-4 digit set. If a takes the value of 2 then the redundancy of the digit 

set {-2,-1,0,1,2} is given in (2.31).
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2
.(2.31)

However if a takes the value 3 then the redundancy of the digit set, which is 

{-3,-2,-1,0,1,2,3} is given in (2.32).

p  cannot be less than or equal to 1/2 which implies that the digit set must contain 

more than r values. The general recurrence for SRT algorithms is given in (2.33).

The digit selected for qJ+\ depends on the truncated value of the shifted partial 

remainder and the divisor (2.34).

The question now is “how do we know which value of the quotient digit set to select 

for qj+1?” The selection intervals for a particular quotient digit value k i.e. qj+\=k are 

given by (2.35) and (2.36).

In equations (2.35) and (2.36) (/* and Lk are values of the shifted partial remainder 

r.Wj. So (2.35) and (2.36) can be read as: “Depending on the value of the divisor, the 

quotient digit q, and the redundancy of the digit set p the upper limit that the partial 

remainder can take to select qj+\ as k is given by (k+p)*d. Similarly the lower limit is

The upper and lower limits can be plotted on a graph of shifted partial remainder 

versus divisor called a pd-plot. The pd-plot helps determine the selection function 

and provides a value of how many bits of the shifted partial remainder and divisor 

need to be checked in determining the next quotient digit. An example of the use of a 

pd-plot is given in Appendix A where radix-2 and maximally redundant radix-4 SRT 

algorithms are constructed.

(2.32)

\*{j +1] = rM[j] -   (2.33)

qjJrl = sel (tr uncat e(r.w[j]), tr uncat e(d))  (2.34)

Ut =(k + p).d .(2.35)

h = ( k - p ) . d .(2.36)

{k-p)*d.
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2.9 FPGA digit recurrence division

Xilinx Virtex FPGAs are constructed from columns of LUTs with a dedicated carry 

chain to allow fast carry propagation. The columns of LUTs can be used to 

implement ripple-carry adders in numerous configurations, multiplexers and unsigned 

radix-4 partial product generators. All these components can be used in digit 

recurrence division to generate the multiple of the divisor and add it to the shifted 

partial remainder (2.37). Different radices r, calculate log2(r) bits of the quotient per 

cycle. If initially we ignore the quotient digit selection we can use a metric of LUT 

columns per quotient bit (LCPQ) to measure the efficiency of the multiple generation 

and shifted partial product update for a particular radix and redundancy.

y*ij + \] = rM{j]-q}+xd ___(2.37)

2.9.1 LCPQ (LUT columns per quotient bit)

2.9.1.1 Radix-2

There are three main radix-2 division algorithms: Restoring, Non-restoring and radix- 

2 SRT. The restoring algorithm involves subtracting the divisor from the shifted 

partial remainder. If the result is positive then it is fed into the next stage, however if 

the result is negative then the input shifted partial remainder is fed into the next stage. 

This algorithm can be implemented using an adder and a multiplexer as shown in 

figure 2.46.

Figure 2.46. Hardware implementation of a restoring algorithm stage

The contents of the dashed box in figure 2.46 shows that two LUT column 

components are required per quotient digit produced. This gives restoring division an 

LCPQ value of 2. Non-restoring division does not require the multiplexer restoring

rw d

— pipeline 
register

rem

56



Chapter 2 Fixed-point

stage and instead the addition or subtraction of the divisor in each step is determined 

by the sign of the previous result. The hardware diagram of non-restoring division is 

shown in figure 2.47.

rw d

%

,

+ /-
T f .

rem

Figure 2.47. Hardware implementation of a non-restoring algorithm stage

The contents of the dashed box in figure 2.47 shows that one LUT column component 

is required per quotient digit produced. This gives non-restoring division an LCPQ 

value of 1. Radix-2 SRT division requires the divisor multiples of {-d$,d} to be 

created and added to the shifted partial remainder. A special adder configured as an 

addSubZero component, where zero means add zero, can be used to generate the 

divisor multiples and add them to the shifted partial remainder. Figure 2.48 shows the 

hardware implementation of a radix-2 SRT divider stage. The contents of the dashed 

box in figure 2.48 shows that one LUT column component is required per quotient 

digit produced. This gives radix-2 SRT division an LCPQ value of 1.

rw d

SEL, ~^Z—/z e r o

rem
Figure 2.48. Hardware implementation of a radix-2 SRT algorithm stage

2.9.1.2 Radix-4

We consider two radix-4 algorithms. The first algorithm is the minimally redundant 

radix-4 SRT algorithm with non-redundant residual. The minimal redundancy means 

a quotient digit can be selected from the set {-2 ,-1,0 ,1,2 } and thus the following 

multiples of the divisor need to be generated {-2i/,-*/,0,<i,2*/}. A 2-to-l multiplexer
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can be used to select between the multiples of d  and 2d. An add/sub/zero component 

can be used to add or subtract the selected multiple or add zero. The radix-4 

algorithm produces one radix-4 digit per iteration and so in effect produces two bits of 

the result per iteration. The hardware diagram of the minimally redundant radix-4 

algorithm is shown in figure 2.49.

rw d

SELC 7
%

4- +
/z e r o

¥
rem

Figure 2.49. Hardware implementation of a min radix-4 SRT algorithm stage

The contents of the dashed box in figure 2.49 shows that two LUT column 

components are required per quotient digit produced. This gives radix-4 minimally 

redundant SRT division an LCPQ value of 1. The second radix-4 algorithm 

considered is the maximally redundant radix-4 SRT algorithm with non-redundant 

residual. The maximal redundancy means the quotient digits are selected from the set 

{-3,-2,-1,0,1,2,3} and thus the multiples of {-3d,-2d,-d,0,d,2d,3d} need to be able to 

be created. The multiples {O.d^d^d} can be generated by configuring a LUT column 

as a radix-4 partial product generator. An add/sub component can then be used to add 

or subtract the multiples from the shifted partial remainder. A diagram of the 

hardware required for the maximally redundant radix-4 divider implementation is 

shown in figure 2.50.

rw d

SEL,

+ /-

rem

Figure 2.50. Hardware implementation of a max radix-4 SRT algorithm stage
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The contents of the dashed box in figure 2.50 shows that two LUT column 

components are required per quotient digit produced. This gives radix-4 maximally 

redundant SRT division an LCPQ value of 1.

2.9.1.3 Radix-8

There are four different digit sets, not including over redundant and non-redundant 

digit sets that can be chosen for a radix-8 implementation. We will only consider the 

extremes of maximal and minimal redundancy as the two other choices in between do 

not offer any benefit for FPGA implementation. The minimally redundant radix-8 

algorithm with non-redundant residual requires the quotient digit to be selected form 

the digit set {-4,-3,-2,-1,0,1,2,3,4} and thus the multiples of {-4</,...,-J,0,d,...,4d} 

need to be able to be created. The radix-4 partial product generator can be configured 

to generate the multiples of {d,2d,3d,4d}. Using this in conjunction with an 

add/sub/zero component allows all the multiples to be generated. Figure 2.51 

illustrates the hardware required for the minimally redundant radix-8 algorithm.

rw d

SEE

rem

Figure 2.51. Hardware implementation of a min radix-8 SRT algorithm stage

The contents of the dashed box in figure 2.51 shows that two LUT column 

components are required per quotient digit produced. This gives radix-8 minimally 

redundant SRT division an LCPQ value of 2/3. Maximally redundant radix-8 

algorithm with non-redundant residual requires the quotient digit to be selected from 

the digit set {-7,...,-1,0,1,...,7} and thus the multiples of {-ldy...,-dS),d,...Jd} need 

to be able to be created. A conventional LUT based multiplier can be used to generate 

the multiples and an add/sub component can be used to add or subtract the multiples 

of the divisor from the shifted partial remainder. Figure 2.52 shows the hardware 

implementation of the maximally redundant radix-8 algorithm. The contents of the 

dashed box in figure 2.52 shows that three LUT column components are required per
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quotient digit produced. This gives radix-8 maximally redundant SRT division an 

LCPQ value of 1.

rw

SEE

rem

Figure 2.52. Hardware implementation of a max radix-8 SRT algorithm stage 

2.9.1.4 Radix-16

As for radix-8 we will only consider the maximally and minimally redundant quotient 

digit set implementations. The minimally redundant radix-16 algorithm with non- 

redundant residual requires the quotient digit to be selected from the digit set 

{-8 ,. . . , - 1,0 , 1, . ..,8 } and thus the multiples of {-8z/,... ,-d,0,d,... ,8*/} need to be able to 

be created. By using the modified partial product generator the multiples 

{d,2d,3d,4d} can be generated. Using an add/zero component the multiple 4d  or 0 

can be added on giving the multiples {d,...,8d}. Finally an add/sub/zero component 

is used to update the shifted partial remainder. Figure 2.53 shows the hardware 

implementation of the minimally redundant radix-16 algorithm.

rw

"h /ze ro

zero

rem

Figure 2.53. Hardware implementation of a min radix-16 SRT algorithm stage
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The contents of the dashed box in figure 2.53 shows that three LUT column 

components are required per quotient digit produced. This gives radix-16 minimally 

redundant SRT division an LCPQ value of 3/4. The maximally redundant radix-16 

algorithm with non-redundant residual requires the quotient digit to be selected from 

the digit set {-15,...,-1,0,1,...,15} and thus the multiples of {-I5d,...,-d,0,dy...,\5d}  

need to be able to be created. The multiples can be created using a LUT-based 

multiplier and a final add/sub component. Figure 2.54 shows the hardware 

implementation of the maximally redundant radix-16 algorithm. The dashed box in 

figure 2.54 shows that four LUT column components are required per quotient digit 

produced. This gives radix-16 maximally redundant SRT division an LCPQ value of

rw d

SEL

rem
Figure 2.54. Hardware implementation of a max radix-16 SRT algorithm stage

2.9.1.5 Higher radices

Radices higher than 16 are not considered due to the complex nature of the quotient 

digit selection function, which would require very large memory components.

2.9.1.6 Summary

The LCPQ (LUT column per quotient bit) study is concluded by summarising the 

results as shown in table 2.8. From table 2.8 it can be seen that the minimally 

redundant radix-8 implementation offers the most efficient LCPQ value.

Radix-2
restoring

Radix-2
non

restoring

Radix-2
SRT

Radix-4 
min SRT

Radix-4 
max SRT

Radix-8 
min SRT

Radix-8 
max SRT

Radix-16 
min SRT

Radix-16 
max SRT

LCPQ 2 1 1 1 1 2/3 1 3/4 1

Table 2.8. LCPQ values for various divider implementations on Virtex FPGAs

61



Chapter 2 Fixed-point

2.9.2 Pipelining issues

To increase the throughput of the design stages, pipelining can be used. It is 

convenient to introduce pipelining stages at the output of each LUT column macro as 

registers can be incorporated into the LUT macros without increasing the logic area. 

The divisor needs to be pipelined, which can be done using a register for radix-2 

stages and a shift register for higher radix stages. The register or shift register 

component adds a LUT column component to the area of each stage. In certain cases 

the shifted partial remainder also needs to be pipelined. The LCPQ metric can be 

modified to include the pipeline logic, which is denoted LCPQP (LUT columns per 

quotient bit pipelined). A metric of LPQ (latency per quotient bit) can be used to 

compare the latency of different stages. Table 2.9 summaries the LCPQP and LPQ 

metrics. Table 2.9 shows that the minimally redundant radix-8 implementation offers 

the most efficient pipelined implementation.

Radix-2
restoring

Radix-2
non

restoring
Radix-2

SRT
Radix-4 
min SRT

Radix-4 
max SRT

Radix-8 
min SRT

Radix-8 
max SRT

Radix-16 
min SRT

Radix-16 
max SRT

LCPQP 4 2 2 2 2 4/3 4 6/4 6/4

LPQ 2 1 1 1 1 2/3 1 3/4 3/4

Table 2.9. LCPQP and LPQ values for various divider implementations on Virtex
FPGAs

2.9.3 Quotient digit selection

The quotient digit selection function takes as input the most-significant bits of the 

divisor and shifted partial remainder. From the inputs the function works out the next 

quotient digit. A pd-plot can be drawn and the selection region boundaries that 

determine the next quotient digit can be calculated by hand. The boundaries are 

chosen to lie in between upper and lower boundary lines, which cut across the pd-plot. 

Calculating the selection region boundaries can be complicated for high radix 

algorithms. A simple search program that takes the upper bounds and lower bounds 

of a selection interval and calculates the staircase selection function has been 

developed. The program is used to produce the selection boundaries in an automated 

fashion. Table 2.10 illustrates the number of shifted partial remainder bits nv and the 

number of divisor bits d  that need to be used to determine the next quotient digit. The 

program uses a non-redundant residual.
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Radix-2
SRT

Radix-4 
min SRT

Radix-4 
max SRT

Radix-8 
min SRT

Radix-8 
max SRT

Radix-16 
min SRT

Radix-16 
max SRT

Radix-32 
min SRT

Radix-32 
max SRT

rw d rw d rw d rw d rw d rw d rw d rw d rw d

3 0 6 3 4 1 9 6 6 3 11 9 8 4 13 11 10 5

Table 2.10. Precision requirements for SRT comparisons with non-redundant residual

The restoring and non-restoring algorithms do not require a selection function as the 

sign of the subtraction/addition result determines the next operation and quotient bit. 

Assuming a pure ROM is used for the quotient selection function (i.e. no logic 

minimisation) then the radix-2 SRT selection function requires a single LUT per 

selection bit and the maximally redundant radix-4 selection function requires one slice 

(2 LUTs) per selection bit, which are very small logic requirements. However the 

minimally redundant radix-4 and maximally redundant radix-8 algorithms require 16 

slices per selection bit, which in comparison is the same amount of logic used to 

create a 32-bit adder. Furthermore 2(3)-bits are needed for the radix-4(8) quotient 

digit, which means a substantially extra amount of logic is needed for the quotient 

digit selection function. The logic requirement is expected to reduce with logic 

minimisation techniques but will compromise the delay of the circuit.

2.9.4 Basic stage delay analysis

Estimating the pre-implementation delay of FPGA designs is difficult due to the 

unpredictability of the place and route delays. In the basic delay analysis we only 

consider the ‘logic delay’ and ignore routing and fan out delay. Table 2.11 

summarises the LUT, XOR, CC (carry-chain) and ROM delays of each stage. Table 

2.12  provides delay information for the different primitives.

Radix-2
restoring

Radix-2
non

restoring

Radix-2
SRT

Radix-4 
min SRT

Radix-4 
max SRT

Radix-8 
min SRT

Radix-8 
max SRT

Radix-16 
min SRT

Radix-16 
max SRT

LUT 2 1 1 2 2 2 3 3 3

CC 1 1 1 1 1 1 1 1 1

XOR 1 1 1 1 2 2 3 3 3

ROM
address

NA NA 3 9 5 15 9 20 12

Table 2.11. LUT, CC and XOR delays for various divider stages
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LUT CC XOR
Delay 0.44ns 0.05ns/bit 1.27ns

Table 2.12. Estimated LUT, CC and XOR delays for Virtex II-4 FPGAs based on 
results from the Xilinx ISE Timing Analyzer software tool

Address 
width (bits)

4 5 6 7 8 9 10 11 12 13 14 15

Delay (ns) 0.44 0.7 0.89 1.38 1.70 2.14 2.57 2.76 3.34 3.6 3.95 4.3

Table 2.13. Estimated ROM delays based on address width

Table 2.13 shows how the delay of a ROM varies with address width. Combining the 

data in tables 2.11, 2.12 and 2.13 a delay prediction for the dividers can be created. 

Table 2.14 illustrates the logic delay prediction for 12, 24 and 36 bit operand dividers.

Radix-2
restoring

Radix-2
non

restoring

Radix-2
SRT

Radix-4 
min SRT

Radix-4 
max SRT

Radix-8 
min SRT

Radix-8 
max SRT

Radix-16 
min SRT

Radix-16 
max SRT

12 bits 33 28 33 30 28 33 31 >30 27

24 bits 80 70 80 66 64 71 68 >64 58

36 bits 142 126 142 110 107 114 109 >101 92

Table 2.14. Logic delay (ns) prediction for 12, 24 and 36 bit operand dividers

2.9.5 Summary

In summary the direct implementation of the minimally redundant radix-4 algorithm 

and the algorithms of radices above 4 are not feasible due to the very large selection 

function memory requirements. The most efficient radix-2 algorithm is the non- 

restoring algorithm, which has the lowest delay and smallest area. So the algorithm 

choice is narrowed to the non-restoring radix-2 and the maximally redundant radix-4. 

The area and delay results of the non-restoring radix-2 and maximally redundant 

radix-4 implementations are shown in figures 2.55 and 2.56 respectively. The graphs 

of figures 2.55 and 2.56 confirm the theory and show that the radix-4 algorithm has 

the lower delay but requires slightly more logic to handle the quotient digit selection 

function.
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Figure 2.55. The area of some non-restoring radix-2 [x] and maximally redundant
radix-4 [■] divider implementations
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Figure 2.56. The delay of some non-restoring radix-2 [x] and maximally redundant
radix-4 [■] divider implementations

2.9.6 Pre-scaling

The number of bits that need to be checked to determine the next quotient digit can be 

reduced by using a technique known as pre-scaling. By looking at the pd-plot (e.g. 

figure 2.57) it can be seen that if the divisor is constrained to be close to 1 then the 

quotient digit selection function can be made independent of the divisor and thus 

reducing the number of bits to supply to the function. The number of shifted partial 

remainder bits that need to be checked can also be reduced. To constrain the divisor 

to be close to 1 it needs to be multiplied by a constant c, that is determined by
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inspecting the most significant bits of the divisor. If the dividend is also multiplied by 

the constant c the division will represent the same ratio (2.38).

x xxc .(2.38)
d d x c

The pd-plot in figure 2.57 illustrates the selection constants as red lines for the 

maximally redundant radix-8 division algorithm.

rw

1
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Figure 2.57. Maximally redundant radix-8 pd-plot with non-redundant residual

From figure 2.57 it can be seen that if the divisor is scaled to the region [0.875,1) then 

the selection function would be independent of the divisor and furthermore would 

only require four bits of the shifted partial remainder to be checked. Table 2.15 shows 

that three bits of the divisor need to be checked to calculate the scaling constant, 

which could very efficiently be implemented in a ROM with only a single LUT delay. 

The scaling value requires a 4-bit content ROM (the MSB is always ‘1* so does not 

need to be stored) and the scaling multiplier needs to be 5-bits in length.
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Divisor MSBs Scale value

0 . 1 0 0 0 1 . 1 1 0 0
0 . 1 0 0 1 1 . 1 0 0 1
0 . 1 0 1 0 1 . 0 1 1 1
0 . 1 0 1 1 1 . 0 1 0 1
0 . 1 1 0 0 1 . 0 0 1 1
0 . 1 1 0 1 1 . 0 0 1 0
0 . 1 1 1 0 1 . 0 0 0 0
0 . 1 1 1 1 1 . 0 0 0 0

Table 2.15. The divisor and scale values to scale the divisor to the range [0.875,1)

The pre-scaling technique thus has advantages and disadvantages, which need to be 

weighed up in producing an efficient design.

Advantages

The main advantage of the pre-scale stage is that it reduces the number of input bits to 

the selection function and thus facilitates the implementation of high radix algorithms. 

The LUT based memory implementation increases exponentially with address width, 

so by reducing the address width the logic requirement for the selection function 

reduces exponentially. The delay of the ROM also decreases as the address width 

decreases.

Disadvantages

The pre-scaling benefits are not for free. Firstly a ROM is needed to determine the 

scaling value. Secondly two multipliers are needed to scale the divisor and dividend. 

The scaling multiplication increases the length of the divisor and dividend, which in 

turn increases the area of the adders and partial product generators in each stage. 

Thirdly the remainder produced by the algorithm is incorrect and to obtain the correct 

remainder it must be multiplied by the reciprocal of the scaling factor Burgess [305].

2.9.6.1 A minimally redundant radix-8  divider with non-redundant residual and 
pre-scaling

From the LCPQ, LCPQP and LPQ metrics the minimally redundant radix-8 

implementation is the most efficient implementation. The advantage of the minimally 

redundant radix-8 algorithm is compromised by the 15-bit selection function
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requirement. The following section details the application of the pre-scaling 

technique to the minimally redundant radix-8 algorithm.

2.9.6.2 Divisor scaling region

The selection region that determines the largest (magnitude) selection quotient digit 

also determines the region that the divisor needs to be scaled to to make the selection 

independent of the divisor. (£/*.i, Lk). We can develop the bounds for the divisor 

scaling interval. The upper bounds and lower bounds for the selection interval are 

described by (2.39) and (2.40) respectively.

'••*[/] ♦
Uk̂ = ( k - \  + p)d  _

Lk = ( k -  p)d  ___(2.40)

.(2.39)
C/m (2.39) 
U  (2.40)

1 d

The shifted partial remainder value when d \ s i ,  which is the upper range for the 

scaled divisor, is given in (2.41) by using (2.40). n

Lk = { k - p ) .(2.41)
(2.41)

C/m

Lt

Setting Uk-\ equal to Lk and solving (2.39) to calculate d, which is the lower range for 

the scaled divisor leads to (2.42).
r.w\j) i i

d  = ( k - p )  
( k - \  + p)

.(2.42)

C/m

Lk

(2.42) 1 d

The difference between the upper and lower bounds of the range for the scaled divisor 

is given in (2.43). r.w[f] n

range = 1 ( k - p )
(k - \  + p)

.(2.43)

LC/m

—J (2.43)*—

If the range is truncated after the most significant non-zero bit (so it is still greater 

than zero) then the quantity of fractional bits b that remain can be used to generate the 

range that the divisor must be scaled. This is shown in algorithm 1.

Algorithm 1

b :=  0 ;
w h i l e  ( t r u n c a t e ( r a n g e , b )  

b :=  b + 1;
e n d

= o:

6 8
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Using the value of b generated by algorithm 1 the lower bound on the divisor can be 

created as shown in (2.44).

J g [ i - 2 - \ i )   (2.44)

Expression (2.44) shows the largest range that d  can be scaled. However, this can 

require full width comparisons of the shifted partial remainder that defeats the 

purpose of the scaling. To over come this problem we need to generate an alternative, 

more convenient value for (2.41). This is done by calculating Uk-\ using (2.39) and 

then successively truncating the value from 0 fractional bits to n fractional bits until 

the truncated term is greater than or equal to Lk. This procedure is shown in algorithm 

2 .

Algorithm 2

u p p e r  = UkAJ 
l o w e r  = L k%,

b  : =  0 ;
w h i l e  ( t r u n c a t e ( u p p e r , b )  < l o w e r )  

b = b + l ;
e n d

Equation (2.45) shows the value of Uk-\ that is truncated to b fractional bits of 

precision, where b is defined by algorithm 2 .

U = truncate{U*_,,£>) ___(2.45)

Substituting (2.45) into (2.39) and rearranging creates a lower bound on the divisor 

scaling interval (2.46).

d = (2.46)
( * - i  + p )  -----

The difference between the upper and lower bounds of the range for the scaled divisor 

is given in (2.47).

range = 1 -  U*~' ■  (2.47)0k - l  + p)
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Following the previous procedure (algorithm 1 and equation (2.44)) the range that the 

divisor can be scaled to can be developed.

2.9.6.3 Radix-8 divider scale region and scale values

Using the above process the interval bounds for the scaled divisor of the minimally 

redundant radix-8 algorithm have been developed and are shown in (2.48).

d e « . r
64

.(2.48)

Calculating the scale values as shown in table 2.15 for the maximally redundant radix- 

8 case is a very time consuming task if done by hand. Instead a search program that 

determines the divisor splits and calculates the scale values has been written to 

automate the process. The program returns the split and scale values in a similar 

format to table 2.15 so they can be used in an FPGA memory component. Running 

the program to scale the divisor as shown in (2.48) shows that 6-bits of the divisor 

need to be checked to determine the scale value, which is 9-bits in length. Table 2.16 

shows a snippet of the divisor selection intervals and the corresponding scaling value.

Divisor MSBs Scale Value

0 . 1 0 0 0 0 0 0 1 . 1 1 1 1 1 0 0 0

0 . 1 0 0 0 0 0 1 1 . 1 1 1 1 0 0 0 1

0 . 1 0 0 0 0 1 0 1 . 1 1 1 0 1 0 0 1

0 . 1 1 1 1 1 0 1 1 . 0 0 0 0 0 1 0 0

0 . 1 1 1 1 1 1 0 1 . 0 0 0 0 0 0 0 0

0 . 1 1 1 1 1 1 1 1 . 0 0 0 0 0 0 0 0

Table 2.16. A selection of divisor and corresponding scale values for minimally
redundant radix-8 division

A 64X8 bit ROM is required for the scaling function and can be implemented using 

4*8=32 LUTs. Assuming the divisor and dividend are w-bits in length, two 9Xn bit 

multipliers are required to scale the divisor and dividend. These scaling multipliers 

can be constructed from the 18X18bit multipliers embedded in the FPGA fabric. 

From (2.45), b is 5, so 5-bits of the shifted partial remainder need to be checked for 

the quotient digit selection function. The quotient digit selection function input width
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for each stage has been reduced from 15-bits to a much more feasible 5-bits. The 9Xn 

bit multiplication increases the width of each multiple generator by 8-bits, which in 

turn increases the area of each stage by 16 LUTs.

2.9.6.4 Implementation results

The radix-8 divider has been implemented and is compared here with the maximally 

redundant radix-4 divider. Figure 2.58 compares the area of the two dividers and 

figure 2.59 compares the delay. It must be pointed out that the radix-8 divider also 

uses 2*((operand_width+16)/17) embedded multipliers.

2000 
1800 
1600 

_  1400 
g 1200
3 . 1000
g> 800 
<  600 

400 
200

8 12 16 20 24 28 32 36 40 44 48 52 56
O perand width (bits)

Figure 2.58. The area of some radix-4 divider [A] and radix-8 divider [+]
implementations

350

300
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1  200

1 150 
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8 12 16 20 24 28 32 36 40 44 48 52 56
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Figure 2.59. The delay of some radix-4 divider [A] and radix-8 divider [+]
implementations
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It is clear that the radix-8 divider has superior speed, which increases with operand 

word length. The fact that the slice area of the two designs is equivalent and that the 

pipelining is more efficient are further plus point for the radix-8 divider. However, 

the radix-8 implementation requires a number of embedded multipliers, which might 

not be a worthwhile sacrifice for the speed gain.

2.9.7 Other division algorithms

Other forms of division exist Oberman [78], which have not been previously 

considered for FPGA implementation in the open literature. A few of these 

algorithms include: Convergent division proposed by Goldschmidt [74]; Division by 

calculating the reciprocal via the Newton-Raphson formula Jeffery [58]; High-radix 

division Wong [76]; An array divider structure Koren [60], which is constructed from 

CAS (Controlled Add Subtract) cells.

2.10 Fixed-point square root

2.10.1 Digit recurrence (sequential) square root

We wish to compute S = J x , where x  is the radicand, such that x = S2 + rem and S 

has the form of (2.49) at stage n.

S[«] = 0.sls2...sn = S[0] + £  2~‘.sl ___(2.49)
M

For fractional square root algorithms x is usually constrained to the domain of (2.50), 

which gives a single power of 2 range (2.51).

jcg [0.25,1) ___(2.50)

S  e [0.5,1) ___(2.51)

2.10.1.1 Restoring

The general restoring recurrence is given by (2.52). A method of deriving the 

recurrence of (2.52) is shown in Appendix B.

« i / +1] = 2.«{./] -  s/tl ,(2.S[y] + 2< /+1)) ___(2.52)
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In (2.52) vv[/] is the partial remainder after j  iterations, S\j] is the partial result after j  

iterations, sy+i is the y'+l* digit of the result generated in cycle j+ 1. A speculative 

subtraction of 2.S[j] + 2~u+l) from 2.w[j\ is done to determine the next quotient bit 

sj+\. If the result is positive then 5y+i is set to 1 and the result of the subtraction is kept 

as the next partial remainder. If the result is negative then sj+1 is set to 0 and the 

partial remainder result is not updated.

2.10.1.2 Non-restoring

As for division a non-restoring algorithm can be created. Here if the result of the 

speculative subtraction in cycle j  is positive then sJ+1 is set to ‘1* and in the next 

iteration a speculative subtraction of (2.53) is performed. However if the result is 

negative then sJ+ \ is set to ‘O’ a speculative addition of (2.54) is performed.

2.S[j] + 2 'u+l)___(2.53)

2.S[j]+3*2~u+l)  (2.54)

If the final remainder of a non-restoring square root operation is negative then it needs 

correcting by adding on (2.55)

2*S[n] + 2~” ___(2.55)

2.10.1.3 SRT square root

SRT square root is very similar to SRT division with the two main differences being 

the formation of the value to update the shifted partial remainder and the selection 

function for the next quotient digit. For the discussion that follows we assume a 

normalized fractional radicand with the range given in (2.50). The range of the

argument given in (2.50) gives the result of the function yfx a range shown in (2.51). 

Each iteration step of the recurrence produces one digit of the result most-significant 

digit first. The value of the result after j  iterations is given in (2.56).

S[/] = i > " ___(2-56)
1=0

The general recurrence for the square root operation is given in (2.57).

*0  + 1] = r^j}-2S[j]s]+x - s ;V  0+1)  (2.57)
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There are two important parts of the recurrence:

1. The first is the selection function that determines the next square root digit Sj+\. 

The next square root digit is chosen from a redundant digit set to allow reduced 

precision comparisons as was done for the division algorithm. The selection function 

depends on the most significant bits of the shifted partial remainder and the current 

square root result as shown in (2.58).

Sj+1 = SELsqrt{truncate{r. w [/] )Jruncate{s [/']))___(2.58)

As for division the problem is in deciding the next quotient digit to select. The square 

root digit selection has boundaries just as in the division quotient digit selection. 

However, there is a small difference, which is the digit selection for the next square 

root digit varies for each iteration of the algorithm. Equations (2.59) and (2.60) show 

the upper and lower selection bounds for a particular square root digit value k and at a 

particular iteration j.

Uklj} = 2S[j}{k + />)+(* + p ) V (' +1)  (2.59)

k ln  = 2 S[j](k -  p)+(k- p f r -('+,)  (2.60)

We can plot (2.59) and (2.60) on a pd-plot to highlight the overlap regions and 

develop a selection function for a particular radix and redundancy implementation. 

From (2.59) and (2.60) it appears that j  curves need to be drawn for each interval 

bound. However by drawing the pd-plot with t/*[co] and Z,*[l] a general selection 

function can be developed that holds for all iterations. If an array square root unit 

were to be implemented then the selection function could be programmed differently 

for each iteration stage and the problem of making a general selection function could 

be avoided.

2. The second important part of the recurrence is the formation of F\f] that feeds the 

shifted partial remainder update adder (2.61).

F[j] = ~(2 S[j].sJ+1 + s*+vr~u*l))  (2.61)

The formation of F[f] can pose a problem and especially so for high radix unrolled 

implementations. Consider the radix-2 case where the next square root digit sj+] is 

chosen from the digit set {-1,0,1}.
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There are three possible scenarios:

Sj+1 =  -1

n n - =+(2.S[7] - 2 - u+1>)

Sy+i = 0
FIA  = 0

iy+l = 1
F[j] = -(2.S[j] + 2-u+l))

The addition or subtraction of the bracketed term is not a problem as the update adder 

can be configured in an add/sub style. The problem comes in creating the value inside 

the brackets, as depending on the value of the next quotient digit, 2^+1) is added or 

subtracted from the current square root result. The addition of 2^+1) is simply a 

concatenation step, but the subtraction of 2'(y+1) requires a full-length subtracter. 

There is a method of overcoming this problem that is used for sequential structure 

square root units and is based on on-the-fly conversion where two running square root 

results of and s[j] are calculated in each iteration. The appropriate running 

square root is used in the F\j] formation so it is always generated by concatenation 

alone and avoids the extra subtraction component. However, for a fully parallel 

implementation the extra hardware required to store and generate two current square 

root values is too great to make the implementation practical, as a basic non-restoring 

parallel structure would require only half the logic. Further problems arise for 

maximally redundant radix-4 and higher radix algorithms in terms of the F\j] 

formation. Here the two terms in equation (2.63) overlap and cannot be generated by 

concatenation alone and therefore an adder component is required. A multiplier is 

required in the formation of the F[j] term for high radix algorithms. In a digit 

recurrence implementation if the final remainder is negative then the quotient must be 

corrected by subtracting 1 -ulp (unit in the last place). The un-scaled remainder must 

also be corrected by adding on the corrected quotient shifted one place to the left 

concatenated with 1-ulp. As for division the size of the quotient digit selection 

function increases with radix and reduced redundancy further prohibiting the 

implementation of high radix square root.
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2.10.1.4 Summary

Due to the complexity and extra hardware associated with the F\j] formation, the S[f] 

formation, the quotient correction, the remainder correction and the quotient digit 

selection function it is felt that no benefit can be gained over the non-restoring 

algorithm by using the digit recurrence algorithm.

2.11 FPGA non-restoring square root

A very important feature of the non-restoring algorithm is that at each subsequent 

iteration the width of the value to add to or subtract from the shifted partial remainder 

increases by a single bit. For the first iteration the width of the add/sub is only 2-bits 

and this increases to n+2 for the nth stage. The carryout of the add/sub component, 

which is the sign bit of the partial remainder inverted, is used to determine whether to 

add or subtract. The sign of the shifted partial remainder is used to determine the 

value to concatenate onto the end of the shifted current square root value. The current 

square root value is updated following the addition/subtraction. A hardware 

implementation of a single stage is shown in figure 2.60.

s[n-l] cOut[n-l] 2*w[n-l] 2*s[n-l]

sign

cOut

s[n] cOut[n] w[n]

Figure 2.60. Implementation of a single radix-2 non-restoring square root stage

A hardware diagram of the complete radix-2 non-restoring divider is shown in figure 

2.61. The multiplexer on the input is to shift the input value by one bit to the left. 

This is needed in a floating-point square root extractor if the exponent is odd.
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x
m+l

m+2

m

0101

m-2

m-4
L il

m-6

cOut

cOut + /-

cOut + /-

^ rem

Figure 2.61. Hardware implementation of a non-restoring square root extractor

2.11.1 Other square root algorithms

Other forms of square root exist which have not been previously considered for FPGA 

implementation in the open literature. A convergent square root algorithm can be 

developed Ercegovac [61] as done for division. The Newton-Raphson formula 

Jeffery [58] can be used to generate the reciprocal square root and this can be 

multiplied by the radicand to produce the square root.
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Chapter
Floating-point

3.1 Format

The floating-point format is a high dynamic range format that can reduce the number 

of overflow and underflow exceptions generated by a fixed-point system of equal 

word length. When compared to a fixed-point system the floating-point system trades 

accuracy and redundancy for dynamic range. The floating-point format consists of 

two main fields: an exponent and a significand. On its own the significand takes a 

fixed range of values and acts like a fixed-point value. The exponent part determines 

the position of the binary point in the significand value. Figure 3.1 illustrates the 

two’s fields of a floating-point value.

--- -------e ---------- ► --------------------------  m --------------------------

E M

exponent significand

Figure 3.1. The two fields of a floating-point number

A radix-2 floating-point number X  represented by the pair (E, M) takes the value of 

(3.1).

X  = M.2e ___(3.1)

To represent signed and unsigned values the significand part must be a signed 

number. Two’s complement or sign-magnitude representations can be used. We will 

consider the use of sign-magnitude as it has been adopted in the IEEE binary floating

point standard [141]. The exponent must also be a signed value so that the binary 

point can be left and right shifted. We will use a two’s complement exponent 

representation.
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3.2 Distribution of floating-point values

To illustrate the spread of numbers lets consider a 6-bit format where 2-bits are used 

to represent the exponent, 3-bits are used to represent the significand and a single bit 

is used for the sign. Using 2-bits for the two’s complement exponent means it can 

take the values {-2, -1, 0, 1}. We will assume the 3-bit significand, without the 

influence of the exponent (i.e. when the exponent is 0), can take the values {0, 0.5, 1, 

1.5, 2, 2.5, 3, 3.5}. The 6-bit format has the spread of values as shown in figure 3.2.

-7 -6 -5 -4 -3 -2 -1 0 0.5 1 2 3 4 5 6 7

Figure 3.2. Number line for a 1-bit sign, 2-bit exponent and 3-bit significand floating
point number system

From figure 3.2 it can be seen that the distribution of floating-point numbers 

throughout the range is not uniform. Starting from the largest magnitude values and 

traversing towards zero shows that the concentration of values doubles at each power 

of 2 (the descriptive term often used in the literature for two consecutive powers of 2 

is ‘binade’, although if derived from the term ‘decade’, which is a single power of 10, 

this is incorrect). The floating-point number system is a redundant system as table 3.1 

shows. In table 3.1 all the different exponent-significand pairings are shown for the 

6-bit number system. All the duplicate values are highlighted in grey.

■ 2 - - 2*‘ 2° 2 1
00 .0 0 .000 0 .0 0 00 .0 000.
00.1 0.001 0.01 00.1 001.
01 .0 0 .010 0 .1 0 0 1 .0 010.
01.1 0.011 O i l 01.1 Oi l .
10.0 0 .100 1.00 10.0 100.
10.1 0.101 1.01 10.1 101.
11.0 0 .110 1.10 11.0 110.
11.1 0.111 1.11 11.1 111.

Table 3.1. All exponent-significand pair values for a 6-bit floating-point format

If we compare the 6-bit floating-point format to the 6-bit fixed-point format we see 

that the fixed-point format can represent values in the range 0.125i0 to 3.875i0 and can 

also represent zero. The floating-point format can represent values in the range
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0.12510 to 7io and can also represent zero and so has a larger dynamic range. The 

difference in dynamic range of the two number systems is made clearer when a larger 

word length format is considered. If we split a 32-bit word into a sign, an 8-bit 

integer and a 23-bit fraction the maximum fixed-point value is approximately 512io 

and the minimum value just greater than zero is 2'23io If a 32-bit word is split into a 

sign bit, an 8-bit exponent and a 23-bit significand with range [0, 1) then the 

maximum floating-point value is approximately 2127io and the minimum value is
0 -1 5 1  
^  10-

3.3 Absolute error

The 6-bit floating-point and fixed-point number systems have a finite word length and 

clearly cannot represent every possible real number exactly. This means that 

converting a finite real number to one of the 6-bit formats will cause an error. 

Consider the conversion of the value 2.7 to the 6-bit fixed-point system. Here the 

nearest value is 2.75, which results in an absolute error of 0.05. For the 6-bit floating

point format the closest value is 2.5, which results in an absolute error of 0.2. Clearly 

the absolute error for this scenario is less for the range that can be represented by the 

fixed-point system demonstrating an advantage of the fixed-point system.

3.4 The IEEE floating-point standard

To unify the many floating-point standards the IEEE-754 standard for binary floating

point [141] was developed. The standard was developed from the rigorous analysis of 

many of the existing floating-point formats and the incorporation of their ‘plus points’ 

into an optimised floating-point format. Due to the popularity and quality of the 

standard it was decided that it was to be used as the basis for the floating-point format 

in this work. The aim of this work is to develop parameterisable exponent and 

significand word length floating-point units and so we will use general exponent and 

significand lengths for the IEEE floating-point standard discussion.

3.4.1 IEEE std-754 word format

The IEEE floating-point standard uses a three field format consisting of a sign bit, a 

biased exponent and a normalised significand with range [1,2). The sign bit denotes 

the sign of the number with the convention that a value of ‘ 1’ represents a negative
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value and a sign of ‘0’ represents a positive value. The exponent is a two’s 

complement number that is biased by the addition of the value of 2e l-l to the true 

exponent value, where e is the number of bits in the exponent. A biased exponent is 

sometimes described as being represented in the excess 2e l-l method. Table 3.2 

illustrates the true exponent and the biased exponent for a 4-bit excess-1 exponent 

representation format.

Etiue Ebias
1001 -7 0000
1010 -6 0001
1011 -5 0010
1100 -4 0011
1101 -3 0100
1110 -2 0101
1111 -1 0110
0000 0 0111
0001 1 1000
0010 2 1001
0011 3 1010
0100 4 1011
0101 5 1100
0110 6 1101
0111 7 1110
1000 8 1111

Table 3.2. 4-bit excess-1 exponent representation

The exponent biasing simplifies the comparison of two floating-point values as 

negative exponents after biasing have smaller (unsigned) values than positive 

exponents. Furthermore an all zero exponent and significand is used to represent zero 

and the biasing ensures that in comparisons zero is the smallest value. Infinity is 

encoded as an all ones exponent and so the biasing ensures that in comparisons 

infinity is the largest value. In the IEEE std-754 the significand is constrained to the 

range [1,2). After an operation if the significand is not in the range [1, 2) it must be 

normalised to lie in this range. This is known as a normalised significand value and 

prevents multiple representations of the same value. The leading bit of the normalised 

significand is always ‘ 1 ’ and is not explicitly required in the representation of a value 

(e.g. when storing values in memory), but it does need to be reintroduced when 

operating on the floating-point values. The leading bit is sometimes called the 

‘hidden bit’. Due to the leading bit of the significand always being ‘ 1 ’ zero cannot be 

represented. Thus an all zero exponent represents zero when the significand is zero
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and also represents a class of values called denormalized values when the significand 

is not zero. When an all zero exponent is detected the leading bit of the significand 

should be set to ‘0’ and not ‘1’. A further point is that throughout this work the 

significand will have the meaning of being the value of the significand with the 

hidden bit revealed. On the other hand the mantissa will be used to describe the 

fractional part of the significand i.e. the part without the hidden bit.

The normal value of a floating-point triple (S, E , M), where E is the biased exponent 

value and M is the mantissa value is given in (3.2).

X  = ( - l ) s *(1 + A/) ___(3.2)

3.4.2 IEEE std-754 value types

There are five different types of value that can be encoded in the IEEE format: 

Normalised values, Denormalized values, Zero, NaN (Not-a-Number) and Infinity.

Normalised values represent the standard set of values that can be represented by a 

biased exponent in the range [1 ,2e-2] and any significand value in the range 

[1,2-2*'”], where e is the exponent length and m is the mantissa length.

Denormalized values are the values represented by a biased exponent of 0 and a 

significand in the range [2 m, l-2*w]. The denormalized values allow gradual 

underflow to zero i.e. instead of the smallest non-zero number being 2l'btas, the 

denormalized numbers allow the non-biased exponent of 0 to be used so the smallest 

value that can be represented is z m'btas. The idea is to reduce the number of underflow 

exceptions and to produce more accurate results.

Zero is encoded using an all zero biased exponent and an all zero significand.

NaN signifies that the result of an operation is not defined as a number. For example 

the subtraction of infinity from infinity has no definite answer and therefore the result 

is determined to be NaN. NaN is encoded as the all ones biased exponent and a 

mantissa that is not equal to zero.

Infinity is used to represent infinity and can be signed. The overflow of a calculation 

can be set to infinity. Infinity is encoded as the all ones biased exponent and a 

mantissa that is equal to zero.
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Exception Biased
exponent

Hidden
bit

Mantissa

Normalized ‘Norm’ [ l ,2 e-21 ‘1’ [0, 1-2""]
Zero ‘O’ 0 ‘O’ 0

Denormalized ‘DenomT 0 ‘O’ \Tm, 1-2"”]
Infinity 4oo’ 2M ‘1’ 0
NaN ‘NaN’ 2M ‘1’ \Tm, 1-2"”]

Table 3.3. Special value encodings for IEEE floating-point numbers with exponent
width e and mantissa width m

The position of the special values on a number line is shown in figure 3.3.

-inf -max -min -max -min zero +min +max +min +max +inf 
norm norm denorm denorm denorm denorm norm norm

I I 1-----1------ 1....... 1....... 1------1------1 f 1

Figure 3.3. The position of the special values

3.4.3 IEEE std-754 rounding modes

There are four rounding modes defined for the IEEE floating-point standard: Round- 

to-nearest-even (the default rounding mode), Round-towards-zero, Round-to-plus- 

infinity and Round-to-minus-infinity.

RTNE (Round-to-nearest-even). This is basic rounding with a slight twist to prevent 

the bias that occurs. In basic rounding if we want to round a fixed-point value with 

integer and fractional sections to the nearest integer then any value with a fraction that 

is less than a half requires the fraction to be simply discarded (truncated). Any value 

with a fraction that is greater or equal to a half must have a value of 1 added to the 

integer portion and the fraction can then be discarded. The only problem with this 

rounding scheme is that the case where the fraction is exactly a half is always rounded 

up and causes a bias in the average rounding error. To prevent this bias from 

accumulating a ‘round-to-the-nearest-even’ scheme was developed. If the fraction is 

exactly a half and the integer that is to be rounded is even then no rounding is 

performed and the fraction is truncated. If the fraction is exactly a half and the integer 

is odd then 1 is added to the integer to round it up to be an even value. Providing the
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probability of odd and even numbers is equal then the rounding scheme will be 

unbiased.

TRUNC (Round-towards-zero). This is another name for truncation, where any bits 

past the LSB are simply discarded. Truncation always reduces the magnitude of a 

number thus rounding it closer to zero. Truncation is the simplest form of rounding.

RTPI (Round-towards-plus-infinity). For negative values the bits past the LSB are 

truncated thus decreasing their magnitude and rounding them towards plus infinity. 

Positive values are rounded up if the bits below the LSB are greater than zero. If the 

bits below the LSB are zero then no rounding is required.

RTMI (Round-towards-minus-infinity). For positive values the bits past the LSB are 

truncated thus decreasing their magnitude and rounding them towards minus infinity. 

Negative values are rounded up if the bits below the LSB are greater than zero. If the 

bits below the LSB are zero then no rounding is required. RTPI and RTMI are 

commonly used in interval arithmetic schemes where the range of values that the 

computation can take is required. Rounding all the operations of the computation 

with RTPI gives the upper bound that the result can take and rounding all operations 

with RTMI gives the lower bound that the result can take. Thus the output range is 

produced.

3.4.4 IEEE std-754 exceptions

There are five types of exception: overflow, underflow, division-by-zero, invalid 

operation and inexact result. It is recommended by the IEEE binary floating-point 

standard that a flag is provided for each exception.

Overflow. The overflow exception flag is signalled whenever the exponent of an 

operation result exceeds the largest allowed normal exponent value. The output of an 

operation that overflows is determined by the sign of the intermediate result and the 

rounding mode as follows:

With round-to-nearest-even the output is set to infinity with the sign of the 

intermediate (overflowed) result.

For round-towards-zero the largest representable number is returned with the sign of 

the intermediate result.
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For round-towards-plus-infinity if the intermediate result is negative then the largest 

representable number with a negative sign is returned. If the intermediate result is 

positive then the result is set to plus infinity.

For round-towards-minus-infinity if the intermediate result is positive then the largest 

representable number with a positive sign is returned. If the intermediate result is 

negative then the result is set to minus infinity.

Underflow. The two events of tininess and loss of accuracy must be detected before 

underflow is signalled. Tininess is detected if the result of a calculation is a nonzero 

result that lies between ±2l'h,as. Loss of accuracy is detected if the representation of a 

tiny value by a denormalized value is not exact.

Division-bv-zero. The division-by-zero exception is signalled when the divisor is 

zero and the dividend is a finite nonzero number. The result is set to infinity and the 

sign is set to the XOR of the divisor and dividend signs.

Invalid operation. The invalid operation exception is signalled if any of the following 

invalid operations are attempted.

1. Any operation on a NaN.

2. Magnitude subtraction of infinities i.e. oo - oo

3. Multiplication of zero by infinity.

4. Division of zero by zero or infinity by infinity.

5. Square root of an operand less than zero.

The result of an invalid operation is a NaN.

Inexact result. The inexact result exception is signalled if the rounded result is not 

exact i.e. some accuracy was lost in the rounding process.

3.4.5 Arithmetic operators

For this work we are interested in implementing the four basic operations of 

addition/subtraction, multiplication, division and square root. The IEEE std-754 

includes other arithmetic operations such as ‘find the remainder’, ‘round to integer in 

floating-point format’, ‘converting binary <—> decimal’ and ‘compare’ but we will 

not consider these.
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3.4.6 IEEE std-754 single and double formats

There are two very popular formats called single precision and double precision that 

are described in the IEEE binary floating-point standard. Single precision is a 32-bit 

(4-bytes) long format where a single bit is used for the sign, 8-bits are used for the 

exponent and 23-bits are used for the mantissa. The double precision format is 64-bits 

(8-bytes) long where a single bit is used for the sign, 11-bits are used for the exponent 

and 52-bits are used for the mantissa. We will consider the implementation of formats 

up to double precision.

3.5 Floating-point addition/subtraction

Floating-point addition is the most complicated of the four basic arithmetic operations 

and there are more different implementation options for floating-point addition than 

the other operations. The crux of floating-point addition is that to add or subtract two 

floating-point values they have to have equal value exponents, which is achieved by 

shifting the smaller operand to the right and increasing the exponent to be the same as 

that of the larger value.

3.5.1 Vanilla algorithm

The following sequential steps are required when adding two floating-point numbers. 

The following algorithm is often called the ‘vanilla algorithm’ (think ice cream 

flavours), as it is the most basic floating-point addition method.

Assume we want to add two floating-point values Xi and X2 with fields (Si, Ei, Mi) 

and (S2, E2, M2) respectively and produce a result X3 with fields (S3, E3, M3).

Step 1.

Calculate the absolute difference of the two exponents d, where d = |Ei — E2I.

Select the smaller operand significand.

Step 2.

Shift the smaller operand significand d  places to the right.

Step 3.

Add or subtract the aligned significands based on the two sign bits Si and S2 and the 

originally required operation (addition or subtraction).

Set the result exponent to be the larger of the two input exponents.
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Step 4.

Detect the number of leading zeros in the result of the significand 

addition/subtraction.

Step 5.

Normalize the significand by left shifting and adjust the result exponent.

Step 6.

Round the normalized significand then correct the exponent if required.

A basic block diagram of the above ‘vanilla algorithm’ is given in figure 3.4.

E, Es op Si S2 Mi  M2

mm
sign max

max

Round

Add/
Sub

Sign
logic

Left
Shift

Right
Shift

Exponent
adjust

Exponent
adjust

Smallest
significand
select

S3 e 3 m 3

Figure 3.4. Block diagram of the ‘Vanilla’ floating-point addition algorithm

The block diagram of figure 3.4 does not have sufficient features to allow full EEEE 

floating-point addition. Extra features such as ‘hidden bit’ insertion, special value 

detection, rounding mode implementation, overflow detection and exception flags are
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still required. Before these features are considered and before details of individual 

components are given we will discuss an improved floating-point addition method 

Farmwald [140] that introduces parallelism into the algorithm by analysing when full- 

length shifts are actually required.

3.5.2 Dual-path (near and far path) algorithm

The near and far path algorithm is commonly used in VLSI floating-point adder 

design to minimise the critical path of the adder. In the near and far path algorithm 

we have chosen, which we call the dual-path algorithm, one path (near) is developed 

for the scenario where a subtraction operation is performed and the absolute exponent 

difference is 1 or 0. The other path (far) is developed for all addition operations and 

also for subtraction if the absolute exponent difference is greater than 1.

3.5.2.1 Near path

The subtraction of one operand from another when their exponent difference is only 0 

or 1 could cause catastrophic cancellation of the leading bits, thus many zeros would 

be in the leading bit positions of the resulting significand and multiple left shifts 

would be required to normalize the result. The detection of a 0 or 1 bit exponent 

difference only requires the LSB of both exponents to be inspected. An XOR of the 

two exponent’s LSBs can be used with a result of ‘1’ meaning align the smaller 

operand significand by right shifting it one place and a result of ‘O’ meaning no 

shifting is necessary. A single 2 to 1 multiplexer component is used to right shift the 

smaller operand significand before the subtraction. The normalizing left shifting 

quantity depends on the incoming operands, but we can determine the worst-case 

situations so the shifter is designed to be the minimum length. If we assume that Xi 

>= X2 so that M2 is subtracted from Mi then the following cases of significant 

subtraction result are possible.

Extreme cases for near path subtraction 

The mantissa width is 4-bits.

Maximum subtraction result value (not including zero operands)

1 .1 1 1 1
- 0 . 1 0 0 0 0

1 . 0 1 1 1
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Minimum subtraction result value (not including zero operands)

1 .0000
- 0 . 1 1 1 1 1

0 . 0 0 0 0 1

A result of zero is possible

1 . 0 1 0 1
- 1 . 0 1 0 1

0 .0 0 00

Maximum width result

1 . 1 0 0 1
- 0 . 1 0 0 0 1

1 . 0 0 0 0 1

From the above worst-case examples it is clear that the resultant significand range is 

[2"(w+1), 2) and therefore a normalization shifter is required that takes inputs that are 

/72+2 bits wide and that must be able to shift left by up to /w+1 places. It follows that 

an exponent adjustment of -(/w+1) to 0 maybe required. The near path has a reduced 

complexity exponent difference calculation, a reduced complexity alignment shifter 

and a fixed-point adder that only has to perform subtraction.

3.5.2.2 Far path

The far path requires that the smaller operand significand is right shifted by the 

absolute exponent difference. The following worst cases are apparent for floating

point addition for the far path algorithm.

Extreme cases for far path addition

The mantissa width is 4-bits

Maximum addition result value

1 .1 1 1 1  
+ 1 .1 1 1 1

1 1 . 1 1 1 0

Minimum addition result value (not including zero operands)

1 .00 0 0  
+ 0 . 00000 . . .010000

1 . 00000.. .010000
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Minimum addition result value (one operand zero)

1 .0 00 0
+0 .0000

1 .0 0 0 0

Minimum addition result value (both operands zero)

0 .0 00 0
+0 .0000

0 . 0 0 0 0

The minimum value (not including zero operands) and maximum value width depend 

on the right shift amount. The range of the possible results, not including the special 

case of two operands being zero, is [1, 4). Therefore a one bit right shift could be 

required to normalise the result.

For the far path subtraction we are only interested in the case where the absolute 

exponent difference is greater than 1. The following extreme cases for far path 

subtraction are apparent.

Extreme cases for far path subtraction

The mantissa width is 4-bits

Minimum subtraction result

1 . 0 0 0 0
- 0 . 0 1 1 1 1 1

0 . 1 0 0 0 0 1

Maximum subtraction result (not including zero operands)

1 . 1 1 1 1
- 0 . 00000. . .010000

1 . 11101.. .110000

Maximum subtraction result (with a single zero operand)

1 . 1 1 1 1
- 0 . 0 0 0 0

1 . 1 1 1 1

We do not care about the case where both operands are zero as the exponent 

difference is less than 2.
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The maximum value (not including zero operands) and maximum value width depend 

on the right shift amount. The range of the possible results is (0.5, 2) therefore a one 

bit left shift could be required to normalise the result.

3.5.2.3 Far path right shifting

The right shift is a very important operation in the far path. At first glance it appears 

that the right shift would need to produce a shifted value that for the worst case could 

be as long as the absolute exponent difference. Thus a very long significand 

adder/subtracter would be required. However, by careful analysis it can be seen that 

the output of the shifter need only be three bits longer than the normalized significand 

length thus a significand adder/subtracter with a maximum length of m+4 bits is 

required. Furthermore the maximum shift length is constrained to be m+2. The three 

bits required are called the guard bit G, the round bit R and the sticky bit S. The 

guard and round bits are simply bits of the right shifted value that are kept unaltered. 

The sticky bit is the logical OR of itself and all the bits below it down to the LSB. 

The dot diagram for the right shifting operation is shown in figure 3.5.

A

O OR
m+ 1 bits

V  V  V

m+4 bits

Figure 3.5. Dot diagram for right shifting

In figure 3.5 A is the input operand to shift, which is m+1 bits in length. The output 

value from a right shifter consists of the B operand, which is m+1 bits and the guard, 

round and sticky bits.

3.5.2.4 Guard, Round and Sticky bits

To correctly round a fixed point value with fraction and integer parts to the nearest 

integer a single bit is required called a round bit that determines whether the fraction 

is greater or equal to a half. The IEEE rounding mode RTNE (round-to-nearest-even)
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also needs to know whether any of the bits below the round bit are set. Therefore an 

extra bit called the sticky bit, which is the logical OR of all the bits below the round 

bit, is used. These two bits are sufficient to perform the RTNE rounding mode. The 

round and sticky bits along with the sign bit are required to perform the other two 

rounding modes of round-to-plus-infinity and round-to-minus-infmity. The obvious 

question is “what is the point of the guard bit?” The purpose of the extra guard bit is 

to guard against a loss of precision if the result of the significant subtraction is in the 

range (0.5,1). If the guard bit was not present and only the round and sticky bits were 

present then after the normalizing left shift operation only the sticky bit would be 

present and would not be sufficient to correctly round the result. The guard bit gives 

an extra bit of precision to enable correct rounding in this case. The use of the guard 

bit is illustrated in figure 3.6 using 4-bit mantissa values.

0 . 1 X X X

0.  1 X X X

RS

G R S

i>
Normalise

(a)

;>

1 . X X X R

1 . X X X G R S

The rounding 
bit has been lost

Normalise

(b)

Figure 3.6. (a) Significand in the range (0.5, 1) without a guard bit. (b) Significand in
the range (0.5, 1) with a guard bit.

Even if the guard bit is not needed it is still calculated and becomes the rounding bit 

and the original rounding bit is logically ORed with the sticky bit. This is illustrated 

in figure 3.7. A similar method can be used if the significand range is [2,4).

1 X X X X G R S 1 . X X X X GW

W = R v S

Figure 3.7. How to transform the G, R and S bits when the significand range is [1,2)

A major asset of the guard, round and sticky bit calculation is that it can be used to 

shorten the significand subtraction length as well as the addition length.
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A block diagram of the dual-path algorithm is shown in figure 3.8. The far and near 

paths are highlighted using dashed outlines.

op Si S2 E M  E2M2 Mi M;

max
mm

sign

max

FAR

NEAR

Round

Add/
Sub Smallest

select

Far/
Near

Normalise

Right
Shift

Left
Shift

Sign
logic

Lead zero 
detection

Exponent
difference

Exponent
adjust

s3 e 3 m 3

Figure 3 .8. Block diagram of the dual-path floating-point addition algorithm 

3.S.2.5 Dual-path summary

The near path requires an XOR operation to decide whether to shift the smaller 

operand significand. A multiplexer is used to perform the 1-bit shift. A subtracter is 

used to subtract the smaller significand from the larger one. The result needs to be 

normalised and could require up to m+1 left shifts. The normalised result has a range 

of [1, 2) and is at most m+2 bits in length so only has a single rounding bit. Often a 

compound adder that can calculate the sum and sum+ 1 ulp is used for the subtracter in 

the near path. This makes the rounding step a simple selection of the required output 

from the adder.
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The far path uses a full absolute exponent difference to determine the right shift 

amount of the smaller operand’s significand. The result of the right shift is m+4 bits 

in length due to the inclusion of the guard, round and sticky bits. The maximum right 

shift value is m+2. Any larger exponent difference than m+2 means only the sticky 

bit is calculated and due to the nature of the sticky bit calculation a shift greater than 

m+2 is not required. The significand addition/subtraction is m+4 bits in length. The 

result of the significand addition/subtraction is in the range (0.5, 4) and is up to m+5 

bits in length and so there are three normalizing options: a single bit right shift, no 

shift and a single bit left shift.

3.5.3 Detailed component and algorithm discussion

Now the basic algorithm structure has been developed each component needs to be 

described in detail. We also elaborate on the implementation of some of the specific 

IEEE binary floating-point standard features, which impact on the elegance of the 

adder structure.

3.5.3.1 Special value detection

The five special IEEE std-754 values of zero, denormalized numbers, infinity, NaN 

and normal all need to be individually detected so there interactions can be handled 

separately and for the best part in parallel with the main addition algorithm. The 

special values, for arbitrary exponent and mantissa lengths, are encoded by the bit 

patterns shown in table 3.4.

Special value Exponent Mantissa
Zero o © © ©

©©©©

Denormalized 00... 00 Not “00... 00”
Infinity 11...11

©©o’©

NaN 11...11 Not “00... 00”
Normal Not “00...00” or “ 11... 11” X X . X X

Table 3.4. Bit patterns for the five special IEEE std-754 values

Basic wide logic gates that can be constructed from the carry-chain can be used to 

detect for the five special values. A possible special value detection implementation 

is shown in figure 3.9.
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m

Exponent Mantissa
m

NaNDenormal InfinityZero

Figure 3.9. An IEEE std-754 special value detector implementation

Table 3.5 shows the output value that is generated due to the addition/subtraction of 

any combination of the 5 special values. From table 3.5 it can be seen that only when 

both inputs are normal or denormalized values does an addition need to take place to 

determine the output. The sign of NaN is not interpreted by the standard hence it only 

requires a single column. Table 3.5 is not an exhaustive list of the possible outcomes 

for floating-point addition. There are more options such as the exceptions generated 

when the result of a computation underflows or overflows, the varying outputs 

required for the different rounding modes and the output required when the difference 

of two values is zero.

A.
B +0 -0 +denorm -denorm +norm -norm +inf -inf NaN
+0 +0 +0 +A -A +A -A +inf -inf NaN
-0 +0 -0 +A -A +A -A +inf -inf NaN
+denorm +B +B A+B (-A)+B A+B (-A)+B +inf -inf NaN
-denorm -B -B A+C-B) (-A)+(-B) A+(-B) (-A)+(-B) +inf -inf NaN
+norm +B +B A+B (-A)+B A+B (-A)+B +inf -inf NaN
-norm -B -B A-K-B) (-A)+(-B) A+(-B) (-A)+(-B) +inf -inf NaN
+inf +inf +inf +inf +inf +inf +inf +inf NaN NaN
-inf -inf -inf -inf -inf -inf -inf NaN -inf NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Table 3.5. Output values from combinations of special value inputs for floating-point
addition

The implementation of denormalized arithmetic will not be considered for two 

reasons: firstly, previous research Digital Core Design [168], Jaenicke [167] and 

Fagin [156] has shown that the implementation causes the area of components to
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increase dramatically and so the accuracy-area trade off is not deemed worthwhile. 

Secondly the floating-point system is to be compared with a logarithmic based 

number system. The concept of denormalized numbers will not be implemented for 

the logarithmic number system due to the complexity of such a system. However, 

denormalized inputs will be detected for and flushed to zero to allow computation to 

continue.

3.S.3.2 IEEE std-754 floating-point addition anomalies

When the sum of two values with opposite signs or the difference of two values with 

identical signs is exactly zero i.e. (-A)+B = 0, A+(-B)=0, (-A)-(-B)=0 or A-B=0 then 

the resulting zero shall be of positive sign in all rounding modes except round- 

towards-minus-infinity, in which the sign of zero shall be negative. This rule applies 

to zero operands as well. However, the sum of two like signed zero operands, or the 

difference of differing signed zero operands resolved to be the sum of like signed 

operands, has the sign of the input zero. This is shown in table 3.6.

A+/-B Result
(+0) + (+0) +0
(-0) + (-0) -0ô 1 ^+o

'iIIO1o
'1 -0

(+0) -  (-0) = (+0) + (+0) +0

Table 3.6. The result of the sum of like signed and the difference of differing signed
zero operands

The output can overflow or underflow and this can be detected by checking the value 

of the final exponent after the rounding stage. If overflow is detected then the result is 

selected depending on the rounding mode and the intermediate sign as described in 

the IEEE floating-point section. An exception flag is set if overflow is caused by a 

resulting exponent value that is too large. If underflow is detected due to the resulting 

exponent being smaller than the possible allowed size then the following rules are 

implemented. These rules differ from the IEEE std-754 because the denormalized 

arithmetic concept is not implemented. If the sign of the intermediate result is 

positive then the output is set to zero in all rounding modes except round-to-plus- 

infinity where the result is set to the smallest possible result. If the sign of the 

intermediate result is negative then the output is set to zero in all rounding modes
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except round-to-minus-infinity where the result is set to the smallest possible result. 

If underflow is detected then an underflow exception flag is set.

3.5.3.3 Hidden bit insertion

This can be done by checking the exception detection logic for an all zero exponent, 

which will cause a ‘O’ to be inserted otherwise a ‘ 1’ is inserted.

3.5.3.4 Absolute exponent difference

This is a basic subtraction component. The output is two’s complemented if it is 

negative by passing it through a separate subtracter.

3.5.3.5 Addition/subtraction operation decision

This can be calculated by using basic truth table logic. The function, which is based 

on the operator op and the two sign bits S\ and S2 is given in (3.3).

addsub = op 0  Sx ® S2 ___(3.3)

3.5.3.6 Selection of the largest/smallest operand significand

A full-length subtraction of the two concatenated exponent and mantissa fields is 

performed to determine which mantissa is the smallest and the largest. The sign bit of 

the subtraction is used as the multiplexer selection inputs. The full-length subtraction 

ensures that the smaller mantissa is subtracted from the larger one when the exponent 

values of both operands are equal. Therefore the result of the significand subtraction 

is positive and would not need to be subsequently complemented. The result of the 

full-length subtraction can also be used to detect a result of zero when the subtraction 

of two identical values is performed.

3.5.3.7 Right shifter

The right shifter is constructed from levels of 4:1 and 2:1 multiplexers, which are 

described in Xilinx [35]. Now, depending on a select signal a multiplexer will output 

a particular input. If the inputs are shifted versions of some value then the select line 

can be seen as controlling the shift quantity. The multiplexers can be directly fed in 

parallel with the absolute exponent difference to control the “shiftamount”. The 2:1 

multiplexers are only required for an odd number of “shift amount” bits. OR gates
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are used at each level to generate the sticky bit, which constrains the size of the output 

from each shifter level and minimizes the hardware requirement for the next level. 

The structure of a 31-bit right shifter with sticky bit generation, which requires a 5-bit 

shift control input, is shown in figure 3.10.

Shift amount A
m+1

Shift {0, 1 ,2 , 3}

m+4

Shift {0, 4, 8, 12}

m+3

m+4

Shift (0, 16}

m+3

m+4

OR

OR

B
Figure 3.10. The structure of a 3 1-bit right shifter

3.5.3.8 Left shifter

The left shifter is a simpler, smaller and faster component compared to the right 

shifter. This is because the length of the operand at each level is naturally constrained 

to be m+2 bits in length and no sticky bit generation is required. The left shift 

operation causes zeros to be shifted out and these are discarded, therefore the length 

of each stage does not increase. The left shifter is built with layers of 4:1 and 2:1 

multiplexers and requires a binary coded shift quantity input that directly controls the 

multiplexers.

3.5.3.9 Lead zero detector

A lead zero detector is a component that will detect the number of leading zeros in a 

binary string before the first ‘ 1’ is encountered. The quantity of leading zero bits is
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large converters as required for double precision are fast. In figure 3.12 an example 

of the conversion of a 15-bit one-hot value ‘H’ to a 4-bit binary value ‘B’ is given.

H

MSB & LSB
LSB

{>

D -  ^  

£>
B

MSB

Figure 3.12. 15-bit one-hot to 4-bit binary conversion

Method 2

A commonly used circuit in VLSI floating-point adder design is the LZA (leading 

zero anticipator) Suzuki [144]. This circuit operates in parallel with the significand 

adder in order to reduce the delay of the sequential leading zero detection operation.

’o —

Zq

‘O’

g  = a,®b,

f  = arbl +arbl +al_l.bl_l

Figure 3.13. LZA circuit structure
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The lead zero detector circuit operates MSB to LSB and so has to wait for the result of 

the full-length significand subtraction A-B. The LZA circuit operates in an MSB to 

LSB fashion and produces the one-hot value in parallel with the significand 

subtraction using the values A and B. However, there is a slight problem with the 

result of the LZA circuit in that it could be in error by one place and in such 

circumstances a correction is required. This correction can be done in parallel for 

each bit by analysing the significant subtraction and LZA results, which are available 

at the same time. The LZA circuit has the structure shown in figure 3.13. Assuming 

the LZA circuit result is ‘Z’ and the significand subtracter result is ‘D’ the parallel 

compare and correct function H is given in figure 3.14.

£/+1 - 
4  - I
4-i-

/  —  A,,

*2 — 
d o -

f   ho
f  - d i_vdi.zii+1

Figure 3.14. Parallel compare and correct function

A critical path comparison of methods 1 and 2 is given in figure 3.15. From figure

3.15 it can be seen that method 2 requires just as much logic as method 1 and has a 

shorter critical path if the large significand A and smaller pre-shifted significand B are 

provided simultaneously.

MSBLSBMSB LSB LSB MSB

LZD

XOR

LZA

Parallel compare

H H

Figure 3.15. A critical path comparison of two leading zero detector methods

Despite the benefits of the LZA circuit other logic techniques can be taken advantage 

of that make method 1 more suitable. The near path requires a single normalising
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right shift and for method 1 this can be blended into the significand subtraction A-B 

by using a subMux component described in the FPGA addition section. For method 2 

the right shift cannot be blended into the LZA component and so a separate 

multiplexer (shifter) is required, which increases the logic by an extra LUT column 

component and also increases the critical path.

Method 3

This method is different from methods 1 and 2 in that it is sequential in nature and 

does not use a leading zero detector as such and also does not require a one-hot to 

binary converter.

D
m+2

MSB*

16-bit left shift

MSB
MSB*

8-bit left shift

MSB*

4-bit left shift

MSB*

2-bit left shift

MSB
1-bit left shift

LSB

NOR

NOR

NOR

NOR

normalised exponent adjust

Figure 3.16. 31 -bit left shifter incorporating the leading zero detection

A left shifter is used that is constructed solely of 2:1 multiplexers and is blended with 

the lead zero detection and operates in a very simple way: At the first 2:1 multiplexer
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shift level the input operand is left shifted by N or 0 bits. An N-bit NOR gate is used 

to detect for N leading zero bits and the output of the NOR gate controls the shifting 

multiplexer. At the next level the input, which is the output of the previous level, is 

shifted by N/2 or 0 bits and an N/2 bit NOR gate is required to decide whether to shift 

or not. This is repeated for all levels. Typically the shifter is binary encoded so the 

initial N value is a power of 2 and ceil(log2(N)) levels are required. The input select 

values that are passed to each multiplexer are concatenated and are used as the 

exponent adjustment value. A 3 1-bit left shifter based on method 3 is shown in figure 

3.16.

3.5.3.9.1 Comparison

To determine the most suitable lead zero detector method methods 1 and 3 were 

implemented and their area and delay statistics for varying mantissa widths were 

calculated. Both methods take a significand difference as input and output the 

normalized value and the binary coded left shift quantity. Figure 3.17 compares the 

area of the two implementations and it is clear that method 3 is superior. Figure 3.18 

compares the delay of the two methods. It can be seen that the methods have similar 

delays above 32-bit mantissa values but method 3 has a superior delay below this 

point. In conclusion method 3 is superior and will be used in the floating-point adder 

implementation.
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Figure 3.17. An area comparison of the lead zero detection methods 1 (■) and 3 (A)
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Figure 3.18. A delay comparison of the lead zero detection methods 1 (■) and 3 ( A)  

3.5.3.10 Rounding and exponent correction

Five things need to be known before a value can be correctly rounded according to 

either of the four IEEE rounding modes: The intermediate sign, the least significant 

bit of the value to round, a round bit, a sticky bit and the mode of rounding required. 

Once these five values are known the bit to add to the value to correctly round it can 

be determined by using the logic in table 3.7.

sign LSB, L Round, R Sticky, S TRUNC RTNE RTPI RTMI
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 1 1 0 1 1 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 1 0
0 1 1 0 0 1 1 0
0 1 1 1 0 1 1 0
1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 0 1
1 0 1 1 0 1 0 1
1 1 0 0 0 0 0 0
1 1 0 1 0 0 0 1
1 1 1 0 0 1 0 1
1 1 1 1 0 1 0 1

Table 3.7. Rounding bit value depending on the rounding mode required

An adder is needed to round the significand value and the round bit can be injected in 

as a carry-in bit to the adder. To minimize the delay of the rounding operation a 4- 

IEEE rounding mode component that utilises the carry-chain so the output can be 

directly fed into the rounding adder carry-in input without requiring any routing logic
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or delay has been developed. Furthermore the sticky bit generation is a wide OR gate 

that uses the carry-chain and can be connected onto the carry-chain as an input to the 

4 IEEE rounding mode component. The structure of the 4-IEEE rounding mode 

component is shown in figure 3.19.

mdMode(0) — 
mdMode(l) 

sign

mdMode( 1) — 
L — 
R

g

f

mdOut

-L
‘O’

-L

\

\

mdMode(1..0)

“00” = TRUNC 
“01” = RTNE 
“10” = RTPI 
“11” = RTMI

g  = mdMode(O). mdM ode(l) + 

s ig n . mdMode(0) +

sign.m dM ode(l). mdMode(0)

/ =  m d M od e(l). R . L + m dM ode(l). R 

Figure 3.19. 4-IEEE rounding mode component

If the rounding operation overflows then the exponent must be increased and the 

significand must be right-shifted to be normalized. The carry-out signal of the 

rounding adder indicates whether the rounding operation has overflowed. This signal, 

which comes from the carry-chain, can be injected into the carry-in of an adder 

component that increases the exponent value. The result need not be right-shifted to 

correct the leading-bit as it is to be discarded. Figure 3.20 shows the general structure 

of the floating-point addition rounding, which utilises one carry-chain and so is fast.

exp 0 mant 0 sign mdMode LR

OR4-IEEE mode

Sticky-bit
calculation

Figure 3.20. Floating-point addition rounding

3.5.3.11 Sign logic

Not considering special cases the basic sign logic is based on the signs of both 

operands, the operator (addition/subtraction) and the sign of the difference of the input
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concatenated exponents and mantissas (i.e. the sign of the difference used to 

determine the largest and smallest operand significands). Assuming So is the sign of 

the difference (A-B), op is the operator, Sa is the sign of the A operand and Sg is the 

sign of the B operand then the equation for the basic output sign is given as (3.4).

sign = SA.SD+op.SD.S„ + op.SB.SD ___(3.4)

3.5.3.12 Far/Near path detection

If the absolute exponent difference is less than 2 and the effective operation is subtract 

then the near path is selected otherwise the far path is selected. An OR gate can be 

used to check whether the absolute exponent difference is greater or equal to 2 and the 

effective operation is determined by (3.3).

3.5.3.13 Overflow/underflow detection

Overflow/underflow detection is done by checking the value of the exponent after 

rounding. To enable overflow and underflow detection an extra exponent bit is 

required to detect the sign of the exponent value. With certain custom exponent and 

mantissa formats is it possible to require more than a single sign bit to determine the 

underflow situation as the left shift normalising could be so great as to cause a single 

extra sign bit to be ‘O’. However, such design considerations are only applicable 

when the mantissa width is greater than the maximum negative value that can be 

created with an e+1 bit two’s complement value. The maximum value as the result of 

the addition of two floating-point numbers has an all ones exponent and extra sign 

bit(s) of zero. This is the only pattern of exponent that causes overflow and can easily 

be detected with a wide AND gate with inverted MSB input. Underflow is detected 

by an all zeros exponent, which can be detected by a NOR gate, or a most significant 

extra sign bit o f ‘1’.

3.5.3.14 Complete floating-point adder diagram

Using all the described points a diagram of the complete floating-point adder design 

for FPGA is shown in figure 3.21. The diagram has three unexplained functions 

nam ed/ g and h. The / function checks if the output of the far path is in the range 

[0.5, 1), in which case the exponent needs to be decremented by 1. The g function 

checks the range of the far path result and whether a near or far path result is to be
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selected and in turn controls the 4:1 normalising and path selecting multiplexer. The 

h function checks whether the far path is selected and whether the exponent needs to 

be incremented due to the significant addition being in the range [2,4).
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3.6 Floating-point multiplication

Basic floating-point multiplication involves taking the XOR of the sign bits, adding 

the exponents and multiplying the significand values. For IEEE std-754 

multiplication the above operations are complicated due to exception detection, 

exponent biasing, result normalisation, rounding and overflow/underflow detection. 

In this section we will discuss the implementation of a floating-point multiplication 

algorithm.

3.6.1 Special values

The five IEEE-754 special values can be detected using a similar component as was 

used for floating-point addition. Table 3.8 shows the output values deduced from 

different combinations of special input values.

A.
B +0 -0 +denorm -denorm +norm -norm +inf -inf NaN
+0 0 0 0 0 0 0 NaN NaN NaN
-0 0 0 0 0 0 0 NaN NaN NaN
+denorm 0 0 A*B A*B A*B A*B inf inf NaN
-denorm 0 0 A*B A*B A*B A*B inf inf NaN
+norm 0 0 A*B A*B A*B A*B inf inf NaN
-norm 0 0 A*B A*B A*B A*B inf inf NaN
+inf NaN NaN inf inf inf inf inf inf NaN
-inf NaN NaN inf inf inf inf inf inf NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Table 3.8. Output values from combinations of special value inputs for floating-point
multiplication

From table 3.8 it can be seen that only the multiplication of denormalized and normal 

numbers need be performed as the results of the other special values can be 

determined from the table. We will not consider the implementation of denormalized 

numbers but will detect them and flush them to zero.

3.6.2 Exponent bias

The exponent is a biased value and adding two biased exponents will double the 

biasing value so one needs to be subtracted. The bias subtraction is done after the 

exponents are added and is blended into the rounding/normalising adder.
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3.6.3 Significand multiplication

The significand multiplication is performed using a fixed-point multiplier. The 

optimised multiplier developed in section 2.7.7.3.4 is used in the floating-point 

design. The result of the developed fixed-point multiplier is double length and this 

needs to be rounded down to a single length result i.e. the significand length is m+1 

and the result of the multiplication is of length 2*m+2. The round and sticky bit 

concept can be adopted and implemented to correctly round the significand 

multiplication. There is one slight complication in that the range of the significand 

multiplication is [1,4) so a normalising right shift could be required.

3.6.4 Normalising and rounding

The value of the significand could need normalising by shifting it one bit to the right, 

which can be done with a multiplexer component. If the rounding adder is configured 

as an addMux component then the normalising shift can be blended into the rounding 

component thus saving a whole LUT column component. However, now two round 

bits (one for the shifted value and one for the non-shifted value) need to be created 

and fed to the rounding adder and so the carry-chain input as was used for the 

floating-point adder cannot be used. The rounding adder can also be used to subtract 

the bias from the exponent sum and to adjust the exponent if a post-rounding 

normalising right shift is required. For a value that needs to be normalised, the 

exponent is reduced by a value that is one less than the bias. Assuming that the result 

of the significand multiplication is a 2*m+2 bit value Pt where P is given as (3.5), 

then the rounding adder structure with corresponding connections is shown in figure 

3.22.

P = P2*nlP2m- PlPo ___(3-5)

The LSB of the addMux result is discarded as it is used only to aid the rounding 

process, hence the result is e+m+1 bits wide whereas the inputs are e+m+2.

3.6.5 Overflow and underflow detection

The value of the exponent after rounding needs to be checked to determine whether 

overflow or underflow has occurred. If an extra bit of the exponent is kept so it is e+1 

bits in length then underflow can be detected by an all zero exponent or if the two
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most significant bits are ‘11*. Overflow is detected by an all ones exponent and a 

most significant bit of ‘O’, or if the two most significant bits are ‘ 10’.
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Figure 3.22. Rounding, normalisation and exponent correction for floating-point
multiplication

3.6.6 Sign logic

The output sign is always the logical XOR of the two input signs even for infinity and 

zero.

3.6.7 Complete floating-point multiplier diagram

By combining all of the above points a complete floating-point multiplier design can 

be created and a diagram of the FPGA implementation is shown in figure 3.23.

3.7 Floating-point division

The basic floating-point division algorithm has three main steps: the exponent value is 

created by subtracting the divisor exponent from the dividend exponent; the 

significand is calculated by dividing the dividend significand by the divisor 

significand using a fixed-point divider; the sign is created by calculating the logical 

XOR of the two input operand sign bits. Extra consideration is needed for the five
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IEEE special values and for the exceptions. In this section we will discuss the 

implementation of a floating-point division algorithm.
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Figure 3.23. The complete floating-point multiplier design

3.7.1 Special values

The five IEEE std-754 special values can be detected using a similar component as 

was used for floating-point addition. Table 3.9 shows the output values deduced from 

different combinations of special values. A is the dividend and B is the divisor.
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A
B +0 -0 +denorm -denorm +norm -norm +inf -inf NaN
+0 NaN NaN inf inf inf inf inf inf NaN
-0 NaN NaN inf inf inf inf inf inf NaN
+denorm 0 0 A/B A/B A/B A/B inf inf NaN
-denorm 0 0 A/B A/B A/B A/B inf inf NaN
+norm 0 0 A/B A/B A/B A/B inf inf NaN
-norm 0 0 A/B A/B A/B A/B inf inf NaN
+inf 0 0 0 0 0 0 NaN NaN NaN
-inf 0 0 0 0 0 0 NaN NaN NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Table 3.9. Output values deduced from combinations of special value inputs for
floating-point division

From table 3.9 it can be seen that only the division of denormalized and normal 

numbers need be performed, as the results of other special values can be determined 

from the table. We will not consider the implementation of denormalized values but 

will detect them and flush them to zero so computation can continue.

3.7.2 Exponent bias

The exponent values are biased so finding the difference of two exponent values will 

cause the bias to be cancelled. Therefore the exponent bias must be added onto the 

result of the exponent difference. The bias correction is done in conjunction with the 

exponent adjusting, which is required if the divisor significand is larger than the 

dividend significand.

3.7.3 Significand division

The significand divider requires a flxed-point component. The fractional dividers 

developed in the flxed-point division section can be used for the significand division. 

The floating-point significands have a range [1,2) and so are not strictly fractional but 

they can be scaled by shifting them to the right so they then have a range of [0.5, 1). 

The scaling is a reinterpretation of the binary point and does not require any logic to 

implement. The range of the resultant quotient if both the divisor and dividend have a 

possible range of [0.5, 1) is [0.5, 2) and therefore the result could need scaling to 

ensure it is in the desired range of [1, 2). To overcome the scaling requirement the 

dividend is left shifted by one bit if the divisor is greater than the dividend, which
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ensures the output range is [1, 2). If a scaling operation takes place then the exponent 

must be compensated by decreasing it by one. As mentioned this is blended into the 

exponent bias correction stage where depending on the scaling operation a value of 

bias or bias-1 is added to the exponent difference. The output of the significand 

divider, assuming a radix-4 SRT is used, is a quotient and a remainder that are not 

corrected i.e. the remainder could be negative and thus the remainder and quotient 

would need correcting (see Appendix A. 1). The correction is not performed as it can 

be blended into the rounding stage using only a small amount of extra logic.

3.7.4 Rounding and quotient correction

The quotient is calculated with an extra bit of precision, which acts as a rounding 

decision bit. The sticky bit is calculated by taking the OR of the remainder value so 

the sticky bit is set if the remainder is not zero. The sticky bit, round bit and L bit, 

which is the bit juxtaposed to the round bit (figure 3.24), are passed to the 4 IEEE 

rounding mode component as used in the floating-point adder to determine the 

rounding bit to add to the quotient. However there is a problem in that the quotient 

has not been corrected and so the LSBs of the quotient may have the wrong value and 

rounding will generate the wrong answer. To overcome this problem the remainder 

sign and the two least significant bits of the quotient can be used to calculate the true 

value of the two least significant bits of the quotient as shown in table 3.10. These 

two bits can then be passed to the 4 IEEE rounding mode component and thus the 

correct rounding bit to add to the corrected quotient can be calculated.

Quotient

?*— -------------  m+2 --------- —►;

1<> R L L bit

V Round bit

Figure 3.24. The round and L bit of the quotient value

The value of the round bit to add to the quotient is now known as well as whether to 

correct the quotient by subtracting one LSB. There is a conflict here because to 

generate the correctly rounded quotient there are 4 options: either add nothing to the 

quotient and truncate it to m+1 bits, or add a bit at the round bit position and truncate 

the quotient to m+ 1 bits, or subtract a bit at the L bit position and truncate the quotient
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to m+1 bits, or simultaneously add a bit at the round bit position and subtract a bit at 

the L bit position (LSB) and then truncate the quotient to m+1 bits. The 4 options are 

summarised in table 3.11 together with the resolved correcting bits and whether they 

should be added or subtracted.

Remainder sign
(RS)

L bit

(L)
Round bit 

(* )
New L bit 

(NL)
New round bit 

(NR)

No change to 
quotient bits.

0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1

Subtract 1 from 
the LSB (R) 

position.

1 0 0 1 1
1 0 1 0 0
1 1 0 0 1
1 1 1 1 0

NL = R.L.RS + R.L + L.RS NR = R.RS + R.RS

Table 3.10. The corrected values of the quotient’s two LSBs

Rounding bit (RB) Remainder sign (RS) Correcting bits (CB) Add/sub (AS)
0 0 00 -

+1 0 10 +
0 -1 01 -

+1 -1 01 +

CB(0) = RS CB(\) = RB.RS AS = RB 

Table 3.11. The resolved correction bits to add or subtract from the quotient

The correcting bits can be concatenated with an all zero value that is as long as the 

quotient and then can be added or subtracted from the quotient value to create the 

correctly rounded quotient. An add/sub component is needed to round the quotient to 

create the result significand. The result of the rounding operation cannot overflow 

and hence a subsequent correction of the exponent is not required.

3.7.5 Overflow and underflow detection

The value of the exponent after the bias correction needs to be checked to determine 

whether overflow or underflow has occurred. If an extra bit of the exponent is kept so 

it is e+ 1 bits in length then underflow can be detected by an all zero exponent or if the 

two most significant bits are 411 ’. Overflow is detected by an all ones exponent and a 

most significant bit of ‘O’, or if the two most significant bits are ‘10’.
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3.7.6 Sign logic

The output sign is always the logical XOR of the two input signs.

3.7.7 Complete floating-point divider diagram

By combining all of the above points a complete floating-point divider design can be 

created and a diagram of the FPGA implementation is shown in figure 3.25.
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Figure 3.25. The com plete floating-point divider diagram
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3.8 Floating-point square root

Floating-point square root is the only floating-point monadic function we will 

consider in detail. The basic square root algorithm does not require anything being 

done to the sign bit, the exponent value is halved and the fixed-point square root of 

the significand needs to be found. Normalising, exponent biasing and rounding 

complicate the basic algorithm and the effects and implementation issues of these 

anomalies will be discussed in this section.

3.8.1 Special values

Square root is a monadic function so the table (table 3.12) that describes the output 

when a special value input is detected is simplified.

Input, A +0 -0 +denorm -denorm +norm -norm +inf -inf NaN
Output +0 -0 +sqrt(A) NaN +sqrt(A) NaN +inf NaN NaN

Table 3.12. The output value depending on the input value

From table 3.12 it can be seen that any negative input value apart from zero causes a 

NaN value to be returned. Only the square root of the positive denormalized and 

normal values need be calculated, as the outputs of the other special values can be 

determined from table 3.12. The implementation of denormalized numbers will not 

be considered but the values will be detected and flushed to zero to enable 

computation to continue.

3.8.2 Sign logic

From table 3.12 it can be seen that nothing needs to be done to the sign bit. The sign 

bit of NaN is never interpreted so if a negative value is passed to the square root unit 

the sign bit need not change.

3.8.3 Exponent handling

The floating-point square root algorithm requires the exponent to be divided by 2. 

However, the exponent must be even so that after the divide by 2 operation the 

resultant exponent is an integer. The exponent must be even; therefore, it is adjusted 

if it is odd by subtracting one from it and left shifting the significand by one bit. The
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biasing complicates things slightly because it causes even exponents to have odd 

values and vice versa.

If the biased exponent is odd then the true exponent value is even and the incoming 

exponent is right shifted to divide it by 2. The right shifting operation causes the bias 

value to be halved and so half the bias value needs to be added back onto the exponent 

value.

If the biased exponent is even then the true exponent value is odd and it needs to be 

adjusted to make it even by subtracting 1 from the biased exponent value and 

subsequently adjusting the significand by left shifting. The adjusted exponent then 

needs to be right shifted and half the bias needs to be added.

The two scenarios of odd and even biased exponents are shown in figure 3.26.

Odd biased exponent 

eOut = Exp/2 + Bias/2

Exp

Single bit 
right-shift

Even biased exponent 

eOut = (Exp-l)/2 + Bias/2 

eOut = Exp/2 + (Bias/2 -  1/2)

Exp

Single bit 
right-shift 001...1001...1

‘O’
e-1e-l

» »

eOut eOut

Figure 3.26. The hardware for handling odd and even exponents

The hardware required for the odd and even exponent scenarios is exactly the same 

with the only difference being the carry-in bit for the adder. The carry-in bit can be 

connected to the LSB of the incoming exponent.
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3.8.4 Significand fixed-point square root

The implementation of fixed-point square root extractors was considered in the fixed- 

point arithmetic section and the efficient non-restoring design that was developed in 

section 2.11 can be used here. The range of the significand, including the scaled 

range due to an odd exponent, is [1, 4). The developed non-restoring square root 

component accepts fractional inputs. The significand range is clearly not fractional 

but can be scaled to be so, which is just a reinterpretation of the binary point. The 

reinterpretation of the binary point does not need any hardware to implement. The 

output of the non-restoring divider needs to be scaled so it is in the correct range of 

[1,2) but again this is just a reinterpretation of the binary point. The square root 

result needs to be computed with an extra bit of precision, which acts as a rounding 

decision bit. The output of the significand square root extractor is the correct square 

root value and a remainder that is either negative or positive, but never zero.

3.8.5 Rounding, zero remainder detection and exponent adjusting

The non-restoring square root extractor outputs the correct square root value and an 

extra round bit. To implement the 4 IEEE rounding modes a sticky bit needs to be 

generated, which is done by checking the remainder. If the remainder is zero then the 

sticky bit is ‘O’; if the reminder is not zero then the sticky bit is ‘1’. The remainder 

produced by the square root extractor is incorrect if it is negative and in this case it 

needs to be corrected by adding on a left shifted quotient value with a single bit 

concatenated at the LSB end. After correction the remainder value could be positive 

or zero and a further check is needed to see if the reminder is zero, which can be 

accomplished using a wide OR gate. The remainder correction and subsequent zero 

detection can be implemented in a single component due to the following observation. 

The result of adding two operands will be zero if both operands LSBs are ‘ 1 ’ and the 

logical XOR of every subsequent pair of digits is ‘1’. A component that will 

implement this algorithm and signal if the remainder is equal to zero or not is shown 

in figure 3.27. The component takes as input the remainder, the square root result and 

a single ‘1’ bit. The sticky bit output in figure 3.27 is ‘0’ if the remainder is zero and 

‘ 1* if the remainder is not zero. The 4 IEEE rounding mode component can be used 

to round the square root and the output round bit can be fed into the rounding adder’s 

carry-in line. The result of the rounding operation could require normalization and a
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subsequent increment of the exponent. To handle this situation a similar method as 

was used for floating-point addition is adopted so the carry-out of the quotient 

rounding adder feeds the carry-in input of the exponent adjusting adder. Figure 3.28 

illustrates the structure of the rounding stage that uses one carry-chain.

sticky bit

•m —

‘O’

Figure 3.27. The zero remainder detection component

exp 0 mant 0 sign mdMode l  R quotient remainder

IEEE 4 mode Zero remainder detection

Figure 3.28. The floating-point square-root rounding logic

3.8.6 Overflow and underflow

The square root operation cannot overflow or underflow as the magnitude of the 

(unbiased) exponent is always halved (roughly).

3.8.7 Complete floating-point square root diagram

Combining the above points leads to the complete floating-point square root design, 

which is shown in figure 3.29.
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Figure 3.29. Complete floating-point square root diagram

3.9 Floating-point implementation results

All the floating-point operators have been designed to be parameterisable in terms of 

the exponent and mantissa width and these values are determined at design time. All 

other features are fixed and cannot be changed without changing the source code. The 

two metrics of area and delay are generated for various exponent and mantissa widths 

and these results are then compared with other FPGA designs available commercially 

and in the open literature. The designs have been pipelined so that with an exponent 

and mantissa width of 8 and 23-bits respectively the designs will operate at 

approximately 100 MHz. This is an arbitrary chosen speed but is realistic for modem
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FPGA designs. Larger and smaller designs with a similar pipeline stage placement 

are expected to be slower and faster respectively.

To calculate the delay of a design the inputs and outputs must be registered as the 

place and route tools use the maximum register to register delay in order to calculate 

the maximum clock speed a design can be clocked at. To calculate the area of a 

design the input registers are removed and the design is run back through the place 

and route tools. The delay is measured in nanoseconds and the area is measured in 

slices and is also given in terms of LUT and flip-flop usage.

3.9.1 Fair comparison

Pipelining plays a very important role in ensuring the comparison of designs is fair. 

Heavily pipelined designs are larger due to the extra logic needed to store the registers 

and shift registers. Heavily pipelined designs also have a larger input to output delay 

if it is calculated using equation (3.6). The extra delay is due to unbalanced register 

placement.

total delay = pipeline stages * clock period ___(3.6)

Automated register insertion schemes have been proposed but it is very time 

consuming to implement efficiently with a perfectly balanced delay between stages. 

Due to this problem the option of having a user configurable latency has not been 

investigated.

Lots of factors affect the speed and area of a design and make a fair comparison 

difficult. Such factors include: Technology production date, different vendors have 

different FPGA architectures, individual vendors have several different FPGA 

families with different architectures, the speed grade of a particular device affects the 

speed across a device family, the technology speed definition files, the place-and- 

route and synthesis tools, the number of pipelining stages of a design, the different 

floating-point options included in a design. Often some of the listed points are 

omitted when a design is presented and this can jeopardise the validity of 

comparisons. Where possible like for like comparisons will be made, however 

sometimes only an estimate of the equivalent metric can be made. In such 

circumstances a justification of the comparison will be made. The floating-point 

results available in the literature are split into groups with exponent lengths of 4, 6, 8
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and 11 bits. The results of delay and area will be plotted for these exponent lengths 

showing how the results vary with mantissa length. The area will be given in slices 

where a single slice will be assumed to be equivalent to two LUTs. A design area 

quoted in LUTs will be converted into slices remembering that the number of slices of 

a design is not exactly equal to the LUT quantity divided by two (it is usually greater) 

so this is an optimistic estimate designed to ensure the proposed designs do not have 

an unfair advantage. The delay is calculated by multiplying the number of clock 

cycles that a design requires by the delay of one clock cycle. The delay of the 

proposed designs will also be calculated this way despite the fact that the non

pipelined delay has been calculated. Again this is done to try and ensure the proposed 

designs do not have an unfair advantage. As mentioned efficiently implementing a 

‘pipeline stage quantity’ option is nontrivial and so the fairest and simplest way of 

calculating the delay for all designs is to multiply the number of pipeline stages by the 

minimum clock period. If a one off pipelined design is created the designer will try 

and place the registers in the most optimum position i.e. with equal delay between the 

registers. Thus for non-automated register placed designs the balance of delay 

between registers will be good and the proposed delay calculating metric seems a 

valid choice.

3.9.2 Floating-point addition results

Table 3.13 summarises the floating-point addition Xilinx Virtex-II-4 FPGA 

implementation results using version 5.1.03i of the Xilinx place and route tools and 

technology speed files created by Xilinx on 01/11/2002. The Xilinx tools are used for 

the complete design flow from design entry to FPGA programming bit stream.

There are many floating-point adder designs available to compare with the results of 

table 3.13. In tables 3.14, 3.15,3.16 and 3.17 the main results from the literature are 

presented. Table 3.14 groups the results in terms of a 4-bit exponent width, table 3.15 

in terms of a 6-bit exponent width and table 3.16 in terms of an 8-bit exponent width. 

The tables contain 16 different columns, which are described as follows:

Author: This is the corresponding reference, 

e : is the exponent width, 

m : is the mantissa width.

Architecture : This describes the algorithm style where either the vanilla algorithm, 

dual-path (2-path) method or a combined structure have been used. The word format
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is also described. The IEEE word format is most popular but there are some custom 

implementations.

Add/Sub : does the adder perform addition, subtraction or both?

Rounding : here the rounding modes that are supported are listed. RTNE is round-to- 

nearest-even, TRUNC is truncate and RTN is round-to-nearest. Certain 

implementations also support all four of the IEEE rounding modes.

Special values : what special values can the component handle? There is a choice of 

Denormalised numbers, Infinity and NaN.

Exception flags : what flag outputs are provided? There is a choice of ov (overflow), 

un (underflow), invalid, inexact and dbz (divide by zero) (for division only).

Param : Is the design generated from a parameterisable library?

Cycles : This states how many pipeline stages are used in the implementation.

Cycle Delay : is the minimum clock period in nanoseconds.

Total delay : is the total delay given by the author in nanoseconds. It is usually the 

non-pipelined delay of the design.

Cycles*delay : this gives the delay of the design in terms of the number of pipeline 

stages multiplied by the clock period of each stage.

Area : is the area of the design expressed in slices or the equivalent area of the given 

FPGA technology in terms of Virtex slices.

Chip maker : this is the device model, speed grade and the device vendor name.

Year : is the year of publication of the reference.

(e,m) Area
(slices)

Area
ffs/LUTs

Delay
(ns)

Pipeline
stages

Area
(slices)

Area
ffs/LUTs

Delay
(ns)

Stages*
delay

4,5 99 13/178 22.5 4 119 91/196 8.1 32.4
4,7 127 15/232 26.1 4 146 106/242 8.2 32.8
4,9 144 17/263 26.2 4 164 120/274 8.3 33.2

4,11 160 19/295 26.8 4 182 134/306 8.7 34.8

6,9 153 19/285 27.5 4 178 130/301 8.8 35.2
M l 170 21/316 27.5 4 195 144/332 8.9 35.6
6,13 187 23/350 28 4 213 158/366 8.9 35.6
6,15 217 25/406 30.4 4 252 173/437 9.7 38.8
6,17 235 27/442 31 4 272 187/475 9.9 39.6
6,19 252 29/475 31.5 4 292 201/511 9.9 39.6

Table 3.13. Floating-point adder implementation results for Xilinx Virtex-II-4

123



Chapter 3 Floating-point

(e,m) Area
(slices)

Area
ffs/LUTs

Delay
(ns)

Pipeline
stages

Area
(slices)

Area
ffs/LUTs

Delay
(ns)

Stages*
delay

8,11 177 23/330 27 4 203 154/346 9 36
8,13 194 25/363 28.2 4 221 168/379 9 36
8,15 225 27/420 31.5 4 260 183/451 10 40
8,17 242 29/455 32.1 4 280 197/488 10 40
8t19 259 31/489 32.7 4 300 211/525 10.2 40.8
8,21 279 33/525 32.9 4 321 225/562 10.2 40.8
8,23 296 35/560 33.5 4 340 239/597 10.2 40.8
8,25 316 37/597 33.8 4 361 253/635 10.5 42

10,29 367 43/691 35.6 4 418 291/730 11.2 44.8

11,52 642 67/1223 42.9 4 694 458/1240 13.1 52.4

Table 3.13. Floating-point adder implementation results for Xilinx Virtex-II-4

Author e m Architecture Add/sub Rounding Special
values

Except
flags Param Cycles Cycle

delay
Total
delay

Cycles*
delay

Area
slices Chip maker Year

Belanovic
[170] 4 3 Vanilla, 

IEEE word both RTN,
TRUNC none none yes 6 -20 ns 120 32 Xilinx

Virtex 02

Belanovic
[170] 4 7 Vanilla, 

IEEE word both RTN,
TRUNC none none yes 6 ~20 ns 120 80 Xilinx

Virtex 02

Detrey
[180] 4 7 2 path, 

IEEE word both RTNE Inf,
NAN invalid yes 4 10 ns 24 ns 40 163 Xilinx

VirtexH-4 03

Narasimhan
[154] 4 9 Vanilla, 

IEEE word add none none none no 8 10ns 80 161 Xilinx
XC4005 93

Roesler
[134] 4 11 Vanilla, 

IEEE word both RTNE
only

Inf,
NaN none yes 20 4.5 ns 81 392 Xilinx

VirtexII-6 02

Belanovic
[170] 4 11 Vanilla, 

IEEE word both RTN,
TRUNC none none yes 6 -20 ns 120 121 Xilinx

Virtex 02

Table 3.14. Floating-point adder implementation results for an exponent of 4-bits

Author e m Architecture Add/sub Rounding Special
values

Except
flags Param Cycles Cycle

delay
Total
delay

Cycles*
delay

Area
slices

Chip
maker Year

Quixilica
[176] 6 7 Vanilla, 

IEEE word both RTNE Inf,
NaN

(3) not 
exact yes 10 6.5 ns 65 121 Xilinx

Virtex-6 02

Belanovic
[170] 6 9 Vanilla, 

IEEE word both RTN,
TRUNC none none yes 6 120 113 Xilinx

Virtex 02

Shirazi
[157] 6 9 Vanilla, 

IEEE word both none none none no 3 108 ns 324 104 Xilinx
XC4010 95

Quixilica
[176] 6 11 Vanilla, 

IEEE word both RTNE Inf,
NaN

(3) not 
exact yes 10 7 ns 70 158 Xilinx

Virtex-6 02

Lee
[51]

6 13 2 path, IEEE 
word both 4 IEEE 

modes
Inf,

NaN
(3) not 
inexact yes 4 8.5 ns 28 ns 34 228 Xilinx

VirtexII-4 02

Detrey
[180] 6 13 2 path, IEEE 

word both RTNE Inf,
NAN invalid yes 4 10 ns 24 ns 40 257 Xilinx

VirtexII-4 03

Quixilica
[176] 6 15 Vanilla, 

IEEE word both RTNE Inf,
NaN

(3) not 
exact yes 11 6.5 ns 71.5 208 Xilinx

Virtex-6 02

Roesler
[134] 6 16 Vanilla, 

IEEE word both RTNE
only

Inf,
NaN none yes 23 5 ns 115 584 Xilinx

VirtexII-6 02

Table 3.15. Floating-point adder implementation results for an exponent o f  6-bits
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Author e m Architecture Add/sub Rounding Special
values

Except
flags Param Cycles Cycle

delay
Total
delay

Cycles*
delay

Area
slices

Chip
maker Year

Ho
[169] 8 7 IEEE word both none none none yes 7 17 ns 119 120 Xilinx

Virtex-6 02

Shirazi
[157] 8 10 Vanilla, 

IEEE word both none none none no 3 116 ns 348 112 Xilinx
XC4010 95

Liang
[178] 8 13 2 path, IEEE 

word both RTNE,
TRUNC none none yes 1 35 ns 35 220 Xilinx

Virtex-6 03

Quixilica
[176] 8 13 Vanilla, 

IEEE word both RTNE Inf, NaN (3) not 
exact yes 11 7.3 ns 80.3 306 Xilinx

Virtex-6 02

Detrey
[180] 8 15 2 path, IEEE 

word both RTNE Inf, NAN invalid yes 4 10 ns 28 ns 40 298 Xilinx
VirtexII-4 03

Belanovic
[170] 8 15 Vanilla, 

IEEE word both RTN,
TRUNC none none yes 6 120 216 Xilinx

Virtex 02

Ho
[169] 8 15 IEEE word both none none none yes 7 22 ns 154 225 Xilinx

Virtex-6 02

Liang
[178] 8 23 2 path, IEEE 

word both RTNE,
TRUNC none none yes 1 40 ns 40 400 Xilinx

Virtex-6 03

Detrey
[180] 8 23 2 path, IEEE 

word both RTNE Inf, NAN invalid yes 4 10 ns 31 ns 40 416 Xilinx
VirtexIH 03

Lee
[51]

8 23 2 path, IEEE 
word both 4 IEEE 

modes Inf, NaN (3) not 
inexact yes 4 10.2 ns 32 ns 40.8 366 Xilinx

VirtexII-4 02

Digital core 
design [168] 8 23 IEEE word both RTNE Denorm, 

inf, NaN
(3) not 
inexact no 4 13.7 ns 54.8 580 Xilinx

Virtexn-5 01

Flores
[179] 8 23 Vanilla, 

IEEE word both none none none yes 8 9.5 ns 76 400 Xilinx
VirtexII-6 03

Flores
[179] 8 23 Vanilla, 

IEEE word both none none none yes 2 40 ns 80 290 Xilinx
VirtexII-6 03

Nallatech
[175] 8 23 Custom

word both Inf, NaN (2) ov, 
invalid no 14 6.6 ns 92.4 290 Xilinx

VirtexII-4 02

Nichols
[174] 8 23 IEEE word both no 2 50.5 ns 101 ns 101 696 Xilinx

VirtexII-6 02

Roesler
[134] 8 23 Vanilla, 

IEEE word both RTNE
only Inf, NaN none yes 23 4.7 ns 108.1 773 Xilinx

VirtexII-6 02

Belanovic
[170] 8 23 Vanilla, 

IEEE word both RTN,
TRUNC none none yes 6 120 291 Xilinx

Virtex 02

Ho
[169] 8 23 IEEE word both none none none yes 7 24 ns 168 336 Xilinx

Virtex-6 02

Jaenicke
[167] 8 23 Vanilla, 

IEEE word both 4 IEEE 
modes

Denorm, 
inf, NaN

(4) All 
IEEE yes 8 35 ns 280 Xilinx

Virtex 01

Ligon III 
[161] 8 23 Vanilla, 

IEEE word both RTNE
only none none no 15 25 ns 375 336 Xilinx

XC4020 98

Louca
[158] 8 23 Vanilla, 

IEEE word both none none none no 3 143 ns 385 ns 429 240
Altera

flex
81188

96

Fagin
[156] 8 23 Combined

add/mult both 4 IEEE 
modes

Denorm, 
inf, NaN

(4) All 
IEEE no 3 245 ns 735 2050 Actel 

A 1280 94

Ho
[169] 8 31 IEEE word both none none none yes 7 25 ns 175 455 Xilinx

Virtex-6 02

Liang
[178] 8 32 2 path, IEEE 

word both RTNE,
TRUNC none none yes 1 46 ns 46 525 Xilinx

Virtex-6 03

Roesler
[134] 8 32 Vanilla, 

IEEE word both RTNE
only Inf, NaN none yes 24 5.8 ns 139.2 1010 Xilinx

VirtexII-6 02

Table 3.16. Floating-point adder implementation results for an exponent of 8-bits

125



Chapter 3_______________________________________________________ Floating-point

Author e m Architecture Add/sub Rounding Special
values

Except
flags Param Cycles Cycle

delay
Total
delay

Cycles*
delay

Area
slices

Chip
maker year

Lee
[51]

11 52 2 path, IEEE 
word both 4 IEEE 

modes Inf, NaN (3) not 
inexact yes 4 14.3 ns 43 ns 57.2 797 Xilinx

VirtexII-4 02

Paschalakis
[181] 11 52 Vanilla, 

IEEE word both RTNE Inf, NaN none no 1 120 ns 120 675 Xilinx
Virtex-6 03

Table 3.17. Floating-point adder implementation results for an exponent of 11-bits 

3.9.2.1 Comparison of floating-point addition results

To compare each set of results for a particular exponent width two graphs of area and 

delay are used. The graphs compare the results in the literature (tables 3.14-3.16) 

with the results in table 3.13. The graphs compare the complete range of exponent 

and mantissa widths so that the advantages of different implementations can be seen. 

Figures 3.30, 3.32 and 3.34 show how the area of different 4, 6 and 8-bit exponent 

implementations vary with mantissa width. Figures 3.31, 3.33 and 3.35 show how the 

delay of 4, 6 and 8-bit exponent implementations vary with mantissa width.
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Figure 3.30. The area of the 4-bit exponent implementations of tables 3.13 [■] and
3.14 [♦]
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Figure 3.31. The delay of the 4-bit exponent implementations of tables 3.13 [■] and
3.14 [♦]
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Figure 3.32. The area of the 6-bit exponent implementations of tables 3.13 [■] and
3.15 [♦]
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Figure 3.33. The delay of the 6-bit exponent implementations of tables 3.13 [■] and
3.15 [♦]
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Figure 3.34. The area of the 8-bit exponent implementations of tables 3.13 [■] and
3.16 [♦]
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Figure 3.35. The delay of the 8-bit exponent implementations of tables 3.13 [■] and
3.16 [♦]

3.9.2.2 Result discussion

4-bit exponent

The designs of Belanovic [170], which are smaller than the proposed method, all have 

less functionality and are implemented using the vanilla algorithm. The designs of 

[170] do not offer the default IEEE rounding mode, any support of special values or 

any exception flags despite the author’s claims that the modules are a superset of all 

previous FPGA implementations. Speed results for the designs of [170] are not given 

but from Belanivic [171] and personal communication at FPL’02 they can be deduced 

as being approximately 50 MHz and means they are slower than the proposed designs. 

The design of Narasimhan [154] despite being of similar area does not include 

rounding, overflow/underflow detection, special value handling and can only add 

unsigned numbers. A delay comparison is unfair because of the age of the 

technology. All the proposed designs in the literature are slower than the proposed 

design and this demonstrates the speed advantage gained by the 2-path method, which 

was first demonstrated by Lee [51]. Detrey [180] uses a similar 2-path method but the 

design has a slightly reduced functionality set and is slower.

6-bit exponent

All the designs that are smaller than the proposed method offer a reduced 

functionality and are based on the vanilla algorithm. The design of Quixilica [176] 

supports only the RTNE rounding mode and is slower than the proposed method. The
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method of Shirazi [157] does not offer any rounding, special value or 

underflow/overflow support and is slower but this is due to the age of the technology. 

The 2-path design of Detrey [180] is slower, larger and offers slightly less 

functionality than the proposed method The design of Roesler [134] is geared 

towards high clock rate, which means it has a very high latency and is over twice the 

size of the proposed design.

8-bit exponent

Most of the 8-bit exponent results are for a mantissa width of 23-bits, which is the 

length specified by the IEEE single precision format. The designs of Belanovic [170], 

Ho [169], Flores [179], Nallatech [175], Louca [158] for an 8-bit exponent that are 

smaller than the proposed design all have reduced functionality and all use the vanilla 

algorithm. Out of the methods that are larger only Digital Core Design [168] and 

Jaenicke [167] have better functionality as they both support denormalized arithmetic. 

Fagin [156] also supports denormalized arithmetic but combines floating-point 

addition and multiplication in a single component, which makes a fair comparison 

almost impossible. The proposed method is faster than all other methods apart from 

the 2-path method of Detrey [180] which is larger and has a slightly reduced 

functionality. All other designs are larger and have a reduced amount of functionality 

and so need not be considered.

11-bit exponent

There is only one other double precision floating-point addition design Paschalakis 

[181]. This design uses the vanilla algorithm, has reduced functionality and is also 

slightly smaller. However, the design is 9 times slower.

3.9.2.3 Conclusion

The original 2-path method implemented in Lee [51] is the fastest floating-point 

addition algorithm as confirmed recently by Liang [178] and Detrey [180] where 

similar 2-path algorithms are used. The method presented in this work is an extension 

of the original published implementation Lee [51] offering an area and delay 

reduction that improves with word length. The 2-path algorithm is larger than the 

basic vanilla algorithm because of the extra addition and normalisation logic required, 

which is evident because all the designs in the comparison graphs that are smaller
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than the proposed design use the vanilla algorithm (they also have a reduced 

functionality set of some description). The design given is smaller than any other 

published 2-path algorithm and offers a greater level of functionality. When the 

design is scaled to very large word lengths it still offers very good speed performance 

as shown by the 9x speed up over a recently published 11-bit exponent 52-bit 

mantissa double precision implementation Paschalakis [181]. The support for 

denormalized arithmetic increases the size of the adder by about 50% as shown by 

Digital Core Design [168].

3.9.3 Floating-point multiplication results

Table 3.18 summarises the floating-point multiplication Xilinx Virtex-II-4 FPGA 

implementation results using version 5.1.03i of the Xilinx place and route tools and 

speed definition files created on 01/11/2002. The Xilinx tools are used for the 

complete design flow from entry to FPGA configuration bit stream generation.

(e,m) Area
(slices)

Area
ffs/LUTs

Delay
(ns)

18X18
mults

Pipeline
stages

Area
(slices)

Area
ffs/LUTs

Delay
(ns)

Stages*
delay

(4,5) 33 13/59 16.5 1 3 57 50/64 8 24
(4,7) 34 15/62 16.8 1 3 59 54/67 8.2 24.6
(4,9) 38 17/66 17.8 1 3 64 58/71 8.3 24.9

(4,11) 39 19/70 18.7 1 3 67 62/75 8.4 25.2

(6,7) 38 17/71 16.9 1 3 65 60/76 8.3 24.9
(6,9) 41 19/75 18.4 1 3 70 64/80 8.3 24.9

(6,11) 43 21/79 18.8 1 3 73 68/84 8.4 25.2
(6,13) 44 23/84 19.4 1 3 75 72/89 8.6 25.8
(6,15) 46 25/87 19.9 1 3 77 76/92 9 27
(6,17) 67 27/127 23.1 1 4 148 172/147 9.1 36.4
(6,19) 109 29/206 25.1 1 4 173 223/226 9.2 36.8
(6,21) 155 31/297 25.7 1 4 201 201/316 9.9 39.6

(8,9) 43 21/78 18.7 1 3 74 70/83 8.4 25.2
(8,11) 45 23/82 18.8 1 3 77 74/87 8.6 25.8
(8,13) 46 25/87 19.1 1 3 79 78/92 8.8 26.4
(8,15) 48 27/90 20.7 1 3 81 82/95 9.1 27.3
(8,17) 69 29/130 23.3 1 4 152 176/152 9.1 36.4
(8,19) 111 31/209 25.2 1 4 177 327/231 9.4 37.6
(8,21) 157 33/300 26 1 4 205 205/321 9.8 39.2
(8,23) 207 35/396 26.6 1 4 254 258/420 10 40
(8,25) 262 37/502 29.3 1 4 333 312/527 10.1 40.1

(10,29) 390 43/746 31 1 4 465 395/772 11.7 46.8
(10,39) 353 53/673 33.3 4 4 456 418/696 14.1 56.4

(H ?52) 321 67/605 35.6 9 5 513 737/640 13.1 65.3

Table 3.18. Floating-point multiplication implementation results for a Virtex-II-4
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As for floating-point addition there are many floating-point multiplication designs 

available to compare with the results of table 3.18. In tables 3.19, 3.20, 3.21 and 3.22 

the main results from the literature are presented and are grouped by exponent widths 

of 4, 6, 8 and 11-bits respectively. Tables 3.19-3.22 contain 16 columns many of 

which are the same as those of the equivalent floating-point addition tables. The 

‘Architecture’ column differs as it describes the different multiplier architecture a 

design uses, which could be bit-serial, digit-serial and is assumed to be a parallel 

multiplier if unspecified. The word format is also listed here. The ‘18X18 mults’ 

column specifies the number of 18X18-bit embedded multipliers used in the design. 

This is specific to Virtex-II FPGA designs.

Author e m Architecture Rounding Special
values

Except
flags Param Cycles Cycle

delay
Total
delay

Cycles 
* delay

Area
slices

18X18
mults

Chip
maker Year

Belanovic
[170] 4 3 IEEE word RTN,

TRUNC none none yes 5 ~20ns 100 36 Xilinx
xcviooo 02

Detrey
[180] 4 7 IEEE word RTNE Inf, NaN invalid yes 4 10 ns 17 ns 40 75 Xilinx

VirtexII-4 03

Belanovic
[170] 4 7 IEEE word RTN,

TRUNC none none yes 5 -20  ns 100 140 Xilinx
XCVIOOO 02

Roesler
[134] 4 11 IEEE word RTNE

only Inf, NaN none yes 6 4ns 24 81 1 Xilinx
VirtexII-6 02

Belanovic
[170] 4 11 IEEE word RTN,

TRUNC none none yes 5 —20ns 100 208 Xilinx
XCVIOOO 02

Jaenicke
[167] 4 11 IEEE word 4 IEEE 

modes
Denorm, 
Inf, NaN

(4) All 
IEEE yes 5 300 Xilinx

XCVIOOO 01

Table 3.19. Floating-point multiplication implementation results for a 4-bit exponent

Author e m Architecture Rounding Special
values

Except
flags Param Cycles Cycle

delay
Total
delay

Cycles 
* delay

Area
slices

18X18
mults

Chip
maker Year

Quixilica
[176] 6 7 IEEE word RTNE Inf,

NaN
(3) not 
inexact yes 5 7.7 ns 38.5 67 Xilinx

Virtex-6 02

Belanovic
[170] 6 9 IEEE word RTN,

TRUNC none none yes 5 ~20ns 100 150 Xilinx
XCVIOOO 02

Shirazi
[157] 6 9 IEEE word none none none no 3 167 ns 501 150 Xilinx

XC4010 95

Quixilica
[176] 6 11 IEEE word RTNE Inf,

NaN
(3) not 
inexact yes 6 7.7 ns 46.2 119 Xilinx

Virtex-6 02

Lee
[51] 6 13 IEEE word 4 IEEE 

modes
Inf,

NaN
(3) not 
inexact yes 3 9.2 ns 20 ns 27.6 98 1 Xilinx

VirtexII-4 02

Detrey
[180] 6 13 IEEE word RTNE Inf,

NaN invalid yes 4 10 ns 25 ns 40 155 Xilinx
VirtexII-4 03

Quixilica
[176] 6 15 IEEE word RTNE Inf,

NaN
(3) not 
inexact yes 6 8 ns 48 171 Xilinx

Virtex-6 02

Table 3.20. Floating-point multiplication implementation results for a 6-bit exponent
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Author e m Architecture Rounding Special
values

Except
flags Param Cycles Cycle

delay
Total
delay

Cycles 
* delay

Area
slices

18X18
mults

Chip
maker Year

Roesler
[134] 6 16 IEEE word RTNE

oily
Inf,

NaN none yes 6 5.7 ns 34.2 117 1 Xilinx
VirtexII-6 02

Quixilica
[176] 6 19 IEEE word RTNE Inf,

NaN
(3) not 
inexact yes 6 8.2 ns 49.2 229 Xilinx

Virtex-6 02

Table 3.20. Floating-point multiplication implementation results for a 6-bit exponent

Author e m Architecture Rounding Special
values

Except
flags Param Cycles Cycle

delay
Total
delay

Cycles 
* delay

Area
slices

18X18
mults Chip maker Year

Ho
[169] 8 7 IEEE word none none yes 8 9.7 ns 77.6 178 Xilinx 

XCV1000-6 02

Shirazi
[157] 8 10 IEEE word none none none no 3 204 ns 612 180 Xilinx

XC4010 95

Detrey
[180] 8 15 IEEE word RTNE Inf, NaN invalid yes 5 10 ns 24 ns 50 195 Xilinx

VirtexII-4 03

Ho
[169] 8 15 IEEE word none none yes 8 9.8 ns 78.4 375 Xilinx 

XCV 1000-6 02

Belanovic
[170] 8 15 IEEE word RTN,

TRUNC none none yes 5 ~20ns 100 431 Xilinx
XCVIOOO 02

Lee
[51]

8 23 IEEE word 4 IEEE 
modes Inf; NaN (3) not 

inexact yes 4 10.5
ns 26 ns 42 230 1 Xilinx

VirtexII-4 02

Roesler
[134] 8 23 IEEE word RTNE

only Inf, NaN none yes 8 5.9 ns 47.2 248 4 Xilinx
VirtexII-6 02

Quixilica
[176] 8 23 IEEE word RTNE Inf, NaN (3) not 

inexact yes 6 8.2 ns 49.2 326 Xilinx
Virtex-6 02

Detrey
[180] 8 23 IEEE word RTNE Inf, NaN invalid yes 5 10 ns 26 ns 50 388 Xilinx

VirtexII-4 03

Nallatech
[175] 8 23 Custom

word Inf, NaN (2) ov, 
Invalid no 6 8.8 ns 52.8 126 4 Xilinx

VirtexII 02

Digital core 
design [168] 8 23 IEEE word RTNE Denorm, 

Inf, NaN
(3) not 
inexact no 4 13.5

ns 54 677 4 Xilinx
VirtexII-5 01

Flores
[179] 8 23 IEEE word none none none yes 13 5.7 ns 74.1 973 Xilinx

VirtexII-6 03

Ho
[169] 8 23 IEEE word none none yes 8 10 ns 80 598 Xilinx 

XCV 1000-6 02

Belanovic
[170] 8 23 IEEE word RTN,

TRUNC none none yes 5 ~20ns 100 674 Xilinx
XCVIOOO 02

Nichols
[174] 8 23 IEEE word no 2 55 ns 110ns 110 734 Xilinx

XC2V8000 02

Jaenicke
[167] 8 23 IEEE word 4 IEEE 

modes
Denorm, 
Inf, NaN

(4) All 
IEEE yes 5 35 ns 175 880 Xilinx

XCVIOOO 01

Sahin
[165] 8 23 IEEE word none no 8 29 ns 232 834 Xilinx

XC4044XL 00

Ligon III 
[161] 8 23 Digit-serial, 

IEEE word
RTNE
only none none no 15 30 ns 450 380 Xilinx

XC4020E 98

Samet
[159] 8 23 Bit-serial, 

IEEE word none none none no 26 27 ns 702 78 Xilinx
XC4005 97

Fagin
[156] 8 23 Combined

add/mult
4 IEEE 
modes

Denorm, 
NaN, inf

(4) All 
IEEE no 6 245 ns 1470 2050 Actel 1280 94

Louca
[158] 8 23 Digit-serial, 

IEEE word none none none no 6 434 ns 2604 245 Altera flex 
81188 96

Novak
[155] 8 23 Bit serial, 

IEEE word RTN none none no 5ms 5000 620 Actel 1280 94

Ho
[169] 8 31 IEEE word none none yes 8 10 ns 80 694 Xilinx

XCV1000-6 02

Roesler
[134] 8 32 IEEE word RTNE

only Inf, NaN none yes 8 5.8 ns 46.4 308 4 Xilinx
VirtexII-6 02

Table 3.21. Floating-point multiplication implementation results for 8-bit exponent
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Author e m Architecture Rounding Special
values

Except
flags Param Cycles Cycle

delay
Total
delay

Cycles 
* delay

Area
slices

18X18
mults

Chip
maker Year

Jaenicke
[167] 10 29 IEEE word 4 IEEE 

modes
Denorm, 
Inf, NaN

(4) All 
IEEE yes 5 1330 Xilinx

XCVIOOO 01

Lee
[51] 11 52 IEEE word 4 IEEE 

modes Inf, NaN (3) not 
inexact yes 5 15.1

ns 37 ns 75.5 321 9 Xilinx
VirtexII-4 02

Paschalakis
[181] 11 52 Digit-serial 

IEEE word RTNE Inf, NaN none no 1 270
ns 270 495 Xilinx

Virtex-6 03

Table 3.22. Floating-point multiplication implementation results for 10 and 11-bit
exponents

3.9.3.1 Comparison of floating-point multiplication results

To compare each set of results for a particular exponent width two graphs of area and 

delay are used. The graphs compare the results in the literature (tables 3.19-3.21) 

with the results in table 3.18. Figures 3.36, 3.38 and 3.40 show how the area of 

different 4, 6 and 8-bit exponent implementations vary with mantissa width. Figures 

3.37, 3.39 and 3.41 show how the delay of different 4, 6 and 8-bit exponent 

implementations vary with mantissa width.
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Figure 3.36. The area of the 4-bit exponent implementation of tables 3.18 [■] and
3.19 [♦]
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Figure 3.37. The delay of the 4-bit exponent implementation of tables 3 .18 [■] and
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Figure 3.38. The area of the 6-bit exponent implementation of tables 3.18 [■] and
3.20 [♦]
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Figure 3.39. The delay of the 6-bit exponent implementation of tables 3.18 [■] and
3.20 [♦]
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Figure 3.41. The delay of the 8-bit exponent implementation of tables 3.18 [■] and
3.21 [♦]

3.9.3.2 Result discussion

Fair comparison with other results is difficult because the proposed design uses the 

embedded multipliers to reduce the amount of LUT based logic that is used in the 

fixed-point multiplier. Using the embedded multipliers means that the proposed 

design will always be smaller than other designs that use a pure LUT based multiplier. 

From tables 3.19, 3.20 and 3.21 it can be seen that only 3 other authors Roesler [134], 

Nallatech [175] and Digital Core Design [168] use the embedded multipliers in their 

design, which is because FPGA vendors only introduced dedicated embedded 

multipliers in the past 4 years and many designs have not migrated to this technology. 

The designs that are smaller than the proposed design in terms of slice area use either 

digit-serial multiplication techniques Ligon III [161], Samet [159] and Louca [158] or 

use 4-embedded multipliers in their design Roesler [134] and Nallatech [175] when 

the proposed design only uses 1. The design delay can still be compared and from 

figures 3.37, 3.39 and 3.41 it can be seen that the proposed design has the smallest 

delay (latency * cycleDelay metric) of any other design apart from the 4-bit exponent, 

11-bit mantissa design of Roesler [134], The design of Roesler [134] is mapped to a 

-6  speed grade Virtex-II while the proposed design is mapped to a -4  speed grade. 

When mapped to a -6  speed grade the proposed design is faster than that of Roesler.

3.9.3.3 Conclusion

The smallest designs use bit-serial arithmetic for the implementation of the fixed- 

point multiplier but these designs are slow and cannot be pipelined to increase the
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clock rate. Using the embedded multipliers in the fixed-point multiplication design 

reduces the slice logic required to implement the pure LUT based parallel 

multiplication without a delay penalty. Furthermore it has been shown that by using 

the multiplier design of section 2.7.7.3.4 a large saving in the number of embedded 

multipliers can be made with only a very small increase in slice logic and without a 

speed penalty. Implementing the concept of denormalized arithmetic Jaenicke [167] 

and Digital Core Design [168] increases the slice area of a pure LUT based floating

point multiplier by more than 100%.

3.9.4 Floating-point division results

Table 3.23 summarises the floating-point division Xilinx Virtex-II-4 FPGA 

implementation results using version 5.1.03i of the Xilinx place and route tools and 

speed definition files created on 01/11/2002. The Xilinx tools are used for the 

complete design flow from entry to FPGA configuration bit stream generation.

(e,m) Area
(slices)

Area
ffs/LUTs

Delay
(ns)

Pipeline
stages

Area
(slices)

Area
ffs/LUTs

Delay
(ns)

Stages*
delay

(4,5) 75 14/137 31.2 6 115 102/163 7.8 46.8
(4,7) 98 16/183 38.3 7 151 143/208 7.8 54.6
(4,9) 127 18/238 46.8 8 193 192/266 7.9 63.2

(4,11) 158 20/300 58.7 9 240 249/331 9 81

(6,5) 79 16/146 31.2 6 123 106/172 8.2 49.2
(6,7) 103 18/194 38.5 7 157 147/221 8.6 60.2
(6,9) 132 20/249 47.3 8 199 196/279 8.8 70.4

(6,11) 162 22/309 59 9 246 253/344 9 81
(6,13) 198 24/380 66.5 10 298 318/418 9.1 91
(6,15) 237 26/458 74.6 11 356 391/499 9.6 105.6
(6,17) 282 28/545 83.7 12 422 472/589 9.7 116.4
(6,19) 330 30/641 92.2 13 493 561/686 9.8 127.4
(6,21) 382 32/744 103.5 14 569 658/792 9.8 137.2

(8,11) 164 24/313 60 9 250 257/350 9.2 82.8
(8,13) 200 26/384 67.6 10 302 322/424 9.2 92
(8,15) 239 28/462 74.9 11 360 395/505 9.6 105.6

_ (8,17) 284 30/549 84.6 12 426 476/595 9.7 116.4
(8,19) 332 32/645 93.4 13 497 565/692 9.7 126.1
(8,21) 384 34/748 103.9 14 573 662/798 9.8 137.2
(8,23) 438 36/856 114.4 15 655 767/911 9.8 147
(8,25) 499 38/975 125.4 16 745 880/1033 10 160

(10,29) 638 44/1245 147 18 950 1134/1312 10.6 190.8
(10,39) 1036 54/2037 206.9 23 1543 1899/2148 11 253

(11,52) 1708 68/3369 300 29 2512 3140/3516 12.3 356.7

Table 3.23. Floating-point d ivision implementation results for Virtex-II-4
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There are many floating-point division designs available to compare with the results 

of the proposed design in table 3.23. In tables 3.24, 3.25, 3.26 and 3.27 the main 

results from the literature are presented and are grouped in terms of 4-bit, 6-bit, 8-bit 

and 11-bit exponent respectively. The ‘Architecture5 column of tables 3.24-3.27 

describes the word format used, which is typically IEEE format although a couple of 

designs use a custom word format. Several different fixed-point divider architectures 

have been used, which include: bit-serial, reciprocal method with off chip ROM, a 

shorter word length reciprocal method using on chip ROM, a Newton-Raphson 

method and the R4 SRT method both maximally redundant and minimally redundant 

forms.

Author e m Architecture Rounding Special
values

Except
flags Param Cycles Cycle

delay
Cycles * 

delay
Area
slices

Embed
Mults

Chip
maker Year

Dido
[133] 4 6

Recip 
ROM, 

custm word
none none none yes 5 7.1 ns 35.5 80 Xilinx

Virtex-6 02

Detrey
[180] 4 7 SRTR4, 

IEEE word RTNE Inf,
NaN invalid yes 8 10 ns 80 195 Xilinx

VirtexII-4 03

Roesler
[134] 4 11 Newt-raph, 

IEEE word none Inf,
NaN none yes 13 6.5 ns 84.5 185 4 Xilinx

VirtexII-6 02

Wang
[135] 4 11 SRTR4, 

IEEE word RTNE Inf,
NaN

(5) all
IEEE yes 29 5.3 ns 153.7 10% Xilinx

VirtexII 03

Table 3.24. Floating-point division implementation results for a 4-bit exponent

Author e m Architecture Rounding Special
values

Except
flags Param Cycles Cycle

delay
Cycles * 

delay
Area
slices

Embed
Mults

Chip
maker Year

Quixilica
[176] 6 7 IEEE word RTNE Inf,

NaN
(4) not 
exact yes 11 5 ns 55 124 Xilinx

Virtex-6 02

Shirazi
[1557] 6 9 Recip ROM 

IEEE word none none none no 5 169 ns 845 152 Xilinx
XC4010 95

Quixilica
[176] 6 11 IEEE word RTNE Inf,

NaN
(4) not 
exact yes 15 5.5 ns 82.5 220 Xilinx

Virtex-6 02

Lee
[51] 6 13 SRTR4, 

IEEE word
4 IEEE 
modes

Inf,
NaN

(4) not 
exact yes 10 8.7 ns 87 294 Xilinx

VirtexII-4 02

Detrey
[180] 6 13 SRT R4, 

IEEE word RTNE Inf,
NaN invalid yes 11 10ns 110 438 Xilinx

VirtexII-4 03

Quixilica
[176] 6 15 IEEE word RTNE Inf,

NaN
(4) not 
exact yes 19 6 ns 114 348 Xilinx

Virtex-6 02

Roesler
[134] 6 16 Newt-raph, 

IEEE word none Inf,
NaN none yes 17 6.7 ns 113.9 369 10 Xilinx

VirtexII-6 02

Wang
[135] 6 17 SRTR4, 

IEEE word RTNE Inf,
NaN

(5) all 
IEEE yes 38 5.4 ns 205.2 2032 Xilinx

VirtexII 03

Quixilica
[176] 6 19 IEEE word RTNE Inf,

NaN
(4) not 
exact yes 23 6.5 ns 149.5 512 Xilinx

Virtex-6 02

Table 3.25. Floating-point division implementation results for a 6-bit exponent
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Author e m Architecture Rounding Special
values

Except
flags Param Cycles Cycle

delay
Cycles * 

delay
Area
slices

Embed
Mults

Chip
maker Year

Detrey
[180] 8 15 SRTR4, 

IEEE word RTNE Inf, NaN invalid yes 12 10 ns 120 546 Xilinx
VirtexII-4 03

Lee
[51]

8 23 SRTR4, 
IEEE word

4 IEEE 
modes Inf, NaN (4) not 

exact yes 15 9.6 ns 144 670 Xilinx
VirtexII-4 02

Detrey
[180] 8 23 SRTR4, 

IEEE word RTNE Inf, NaN invalid yes 16 10ns 160 1109 Xilinx
VirtexII-4 03

Nallatech
[175] 8 23 Custom

word Inf, NaN Inval,
ovfl no 26 6.5 ns 169 730 Xilinx

VirtexII-4 02

Quixilica
[176] 8 23 IEEE word RTNE Inf, NaN (4) not 

exact yes 27 7 ns 189 711 Xilinx
Virtex-6 02

Roesler
[134] 8 23 Newt-raph, 

IEEE word none Inf, NaN none yes 29 7.1 ns 205.9 958 24 Xilinx
VirtexII-6 02

Wang
[135] 8 23 SRT R4, 

IEEE word RTNE Inf, NaN (5) all 
IEEE yes 47 5.6 ns 263.2 3245 Xilinx

VirtexII 03

Digital
core

design
[168]

8 23 IEEE word RTNE Denorm, 
inf, NaN

ov, un, 
invalid no 15 19 ns 285 1534 Xilinx

VirtexII-5 01

Novak
[1155] 8 23 Bit serial, 

IEEE word RTN none none no 620 Actel 1280 94

Roesler
[134] 8 32 Newt-raph, 

IEEE word none Inf, NaN none yes 29 7.1 ns 205.9 1192 24 Xilinx
VirtexII-6 02

Table 3.26. Floating-point division implementation results for an 8-bit exponent

Author e m Architecture Rounding Special
values

Except
flags Param Cycles Cycle

delay
Cycles * 

delay
Area
slices

Embed
Mults

Chip
maker Year

Lee
[40] 11 52 SRTR4, 

IEEE word
4 IEEE 
modes

Inf,
NaN

(4) not 
exact yes 29 12.2

ns 353.8 2595 Xilinx
VirtexII-4 02

Paschalakis
[48] 11 52 Bit-serial, 

IEEE word RTNE Inf,
NaN none no 1 1000 343 Xilinx

Virtex-6 03

Table 3.27. Floating-point division implementation results for an 11-bit exponent

3.9.4.1 Comparison of floating-point division results

To compare each set of results for a particular exponent width two graphs of area and 

delay are used. The graphs compare the results in the literature (tables 3.24-3.26) 

with the results in table 3.23. Figures 3.42, 3.44 and 3.46 show how the area of 

different 4, 6 and 8-bit exponent implementations vary with mantissa width. Figures 

3.43, 3.45 and 3.47 show how the delay of different 4, 6 and 8-bit exponent 

implementations vary with mantissa width.
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Figure 3.42. The area of the 4-bit exponent implementation of tables 3.23 [■] and
3.24 [♦]
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Figure 3.43. The delay of the 4-bit exponent implementation of tables 3.23 [■] and
3.24 [♦]
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Figure 3.44. The area of the 6-bit exponent implementation of tables 3.23 [■] and
3.25 [♦]
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Figure 3.45. The delay of the 6-bit exponent implementation of tables 3.23 [■] and
3.25 [♦]
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Figure 3.46. The area of the 8-bit exponent implementation of tables 3.23 [■] and
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Figure 3.47. The delay of the 8-bit exponent implementation of tables 3.23 [■] and
3.26 [♦]
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3.9.4.2 Result discussion 

4-bit exponent

There are four different architectures to compare for the 4-bit exponent. The work of 

Dido [133] uses a small ROM component to perform division by reciprocation and 

subsequent multiplication. The design is slightly smaller and faster than the proposed 

design but it has a non-normalized custom word format that does not support any 

special values or generate any exception flags. As pointed out by the authors the 

method does not scale to larger word lengths due to the exponential area increase of 

the ROM. The design of Wang [135] uses a radix-4 minimally redundant SRT 

divider. The design is larger than the one proposed, which is probably due to the 

extra logic needed to perform the quotient digit selection function. This supports the 

theory from the fixed-point division chapter and is the reason the minimally redundant 

algorithm was not implemented. Despite using the minimally redundant radix-4 

algorithm the design is slower than the one proposed. A Newton-Raphson divider 

algorithm is used in Roesler [134]. The design has less functionality than the one 

proposed and is of equivalent speed and area, however the design of Roesler [134] 

makes use of 4 embedded multipliers, where the proposed design does not use any. 

Finally, the maximally redundant radix-4 design of Detrey [180] is larger and slower 

than the one proposed.

6-bit exponent

The slightly reduced functionality design of Quixilica [176] is faster and smaller for 

short word lengths of around 13 bits or less and is slower and larger for long word 

lengths of around 17 bits or more. Quixilica [176] is a commercial design and the 

divider algorithm used is not specified, but the design does make use of RLOCs which 

are placement directives. The RLOCs improve the speed of a design and the slice 

packing as the placement task is calculated by hand instead of relying on the place and 

route tools. The proposed design of this work has a superior functionality and is 

smaller than the minimally redundant design of Wang [135], the Newton-Raphson 

design of Roesler [134] that uses 10 embedded multipliers and the design of Detrey 

[180].
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8-bit exponent

Only the bit-serial design of Novak [155] is smaller than the proposed design for an 8- 

bit exponent. The proposed design is the fastest for any 8-bit exponent width. Only 

the design Digital Core Design [168] has more functionality than the proposed design 

as the concept of denormalized numbers is supported however this causes a 

significant area increase.

11-bit exponent

The reduced functionality design of Paschalakis [181] uses a bit-serial divider, which 

gives a very small design. However, due to the bit-serial divider implementation, the 

design is very slow and cannot be pipelined.

3.9.4.3 Conclusion

The smallest designs are produced using a bit-serial divider for the significand 

division. However these designs are also the slowest and cannot be pipelined. The 

Newton-Raphson division method has an equivalent slice area and speed to an SRT 

implementation but requires many embedded multipliers in its implementation when 

implemented as in Roesler [134]. The minimally redundant radix-4 SRT divider is 

much bigger than the maximally redundant version as the implementation of Wang 

[135] shows and as predicted in section 2.9.3. The proposed design is not the smallest 

or fastest for short word lengths because the commercial design of Quixilica [176] is 

superior, due to the use of placement directives. The proposed design is the fastest 

and the smallest for larger word length significands and has the most functionality of 

any other design apart from Digital Core Design [168], which includes support for 

denormalized numbers. Including support for denormalized numbers significantly 

increases the size of the design by around 100%. The reciprocal ROM method has 

good potential for very short significand word length operands and further study in its 

application to normalized division algorithms would be an interesting future work.

3.9.5 Floating-point square root results

Table 3.28 summarises the floating-point square root Xilinx Virtex-II-4 FPGA 

implementation results using version 5.1.03i of the Xilinx place and route tools and
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speed definition files created on 01/11/2002. The Xilinx tools are used for the 

complete design flow from entry to FPGA configuration bit stream generation.

(e,m) Area
(slices)

Area
ffs/LUTs

Delay
(ns)

Pipeline
stages

Area
(slices)

Area
ffs/LUTs

Delay
(ns)

Stages*
delay

(4,5) 43 12/74 21.1 5 65 64/92 7.1 35.5
(4,7) 56 14/100 26.6 6 82 89/117 7.2 43.2
(4,9) 73 16/132 33.3 7 105 119/148 7.4 51.8

(4,11) 90 18/167 39.2 8 130 154/182 7.6 60.8

(6,7) 59 16/105 26.7 6 88 93/125 7.3 43.8
(6,9) 76 18/137 33.4 7 110 123/155 7.4 51.8

(6,11) 93 20/172 39.7 8 135 158/189 7.6 60.8
(6,13) 116 22/213 47.6 9 165 198/229 7.9 71.1
(6,15) 135 24/254 57.5 10 197 243/271 8.1 81
(6,17) 160 26/302 67.4 11 233 293/318 8.3 91.3
(6,19) 187 28/355 77.5 12 273 348/368 8.6 103.2
(6,21) 216 30/411 87.8 13 316 408/423 8.9 115.7

(8,11) 95 22/175 39.9 8 139 162/194 7.6 60.8
(8,13) 118 24/216 47.7 9 169 202/234 7.9 71.1
(8,15) 137 26/257 58.9 10 201 247/276 8.2 82
(8,17) 162 28/305 67.4 11 237 297/323 8.4 92.4
(8,19) 189 30/358 77.5 12 277 352/373 8.6 103.2
(8,21) 218 32/414 88.3 13 320 412/428 8.9 115.7
(8,23) 248 34/473 95.6 14 366 477/486 9 126
(8,25) 281 36/537 105.8 15 417 547/549 9.3 139.5

(10,29) 355 42/681 126.6 17 533 706/693 9.9 168.3
(10,39) 566 52/1098 178.8 22 870 1181/1121 11.2 246.4

(11,52) 920 66/1792 253.3 28 1434 1959/1808 13 364

Table 3.28. Floating-point square root implementation results for Virtex-II-4

There are many floating-point square root designs available to compare with the 

results of the proposed design in table 3.28. In tables 3.29, 3.30, 3.31 and 3.32 the 

main results from the literature are presented and are grouped in terms of 4-bit, 6-bit, 

8-bit and 11-bit exponent respectively. The architecture column of tables 3.29-3.32 

describes the word format used, which is typically IEEE format although a couple of 

designs use a custom word format. Several different fixed-point square root 

architectures have been used, which include: bit-serial, radix-2 SRT, restoring and 

non-restoring.
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Author e m Architecture Rounding Special
values

Except
flags Param Cycles Cycle

delay
Cycles*
delay

Total
delay

Area
Slices

Chip
maker Year

Detrey
[180] 4 7 SRTR2, 

IEEE word RTNE Inf, NaN invalid yes 7 10 ns 70 38 ns 84 Xilinx
VirtexII-4 03

Wang
[135] 4 11 Restore, 

IEEE word RTNE Inf, NaN invalid,
inexact yes 16 4.9 ns 78.4 380 Xilinx

VirtexII 03

Table 3.29. Floating-point square root implementation results for a 4-bit exponent

Author e m Architecture Rounding Special
values

Except
flags Param Cycles Cycle

delay
Cycles*
delay

Total
delay

Area
Slices

Chip
maker Year

Lee
[51]

6 13 Non-restor, 
IEEE word

4 IEEE 
modes Inf, NaN invalid yes 9 8.4 ns 75.6 47 ns 153 Xilinx

VirtexII-4 02

Detrey
[180] 6 13 SRTR2, 

IEEE word RTNE Inf, NaN invalid yes 10 10 ns 100 62 ns 182 Xilinx
VirtexII-4 03

Quixilica
[176] 6 16 IEEE word RTNE Inf, NaN Un, ov 

invalid yes 19 5.8 ns 110.2 620 Xilinx
Virtex-6 02

Wang
[135] 6 17 Restore, 

IEEE word RTNE Inf, NaN invalid,
inexact yes 22 5.4 ns 118.8 778 Xilinx

VirtexII 03

Table 3.30. Floating-point square root implementation results for a 6-bit exponent

Author e m Architecture Rounding Special
values

Except
flags Param Cycles Cycle

delay
Cycles*
delay

Total
delay

Area
Slices

Chip
maker Year

Detrey
[180] 8 15 SRTR2, 

IEEE word RTNE Inf, NaN invalid yes 11 10 ns 110 70 ns 232 Xilinx
VirtexII-4 03

Digital core 
design [168] 8 23 IEEE word Denorm, 

Inf, NaN
(3) not 
inexact no 9 13.2 ns 118.8 469 Xilinx

VirtexII-5

Lee
[51]

8 23 Non-restor, 
IEEE word

4 IEEE 
modes Inf, NaN invalid yes 14 9.6 ns 134.4 90 ns 357 Xilinx

VirtexII-4 02

Detrey
[180] 8 23 SRTR2, 

IEEE word RTNE Inf, NaN invalid yes 15 10 ns 150 106 ns 423 Xilinx
VirtexII-4 03

Wang
[135] 8 23 Restore, 

IEEE word RTNE Inf, NaN invalid,
inexact yes 28 5.9 ns 165.2 1313 Xilinx

VirtexII 03

Nallatech
[175] 8 23 Custom

word Inf, NaN Ovfl,
invalid no 29 6.6 ns 191.4 330 Xilinx

VirtexII-4 02

Li
[160] 8 23 Non-restor, 

IEEE word none none none no 15 408 Xilinx
XC4000 97

Table 3.31. Floating-point square root implementation results for an 8-bit exponent

Author e m Architecture Rounding Special
values

Except
flags Param Cycles Cycle

delay
Cycles*
delay

Total
delay

Area
Slices

Chip
maker Year

Lee
[51]

11 52 Non-restor, 
IEEE word

4 IEEE 
modes Inf, NaN invalid yes 28 13.8 ns 386.4 239 ns 1433 Xilinx

VirtexII-4 02

Paschalakis
[181] 11 52 Bit-serial, 

IEEE word RTNE Inf, NaN none no 1 735 735 ns 347 Xilinx
Virtex-6 03

Table 3.32. Floating-point square root implementation results for an 11-bit exponent
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3.9.5.1 Comparison of floating-point square root results

To compare each set of results for a particular exponent width two graphs of area and 

delay are used. The graphs compare the results in the literature (tables 3.29-3.31) 

with the results in table 3.28. Figures 3.48, 3.50 and 3.52 show how the area of 

different 4, 6 and 8-bit exponent implementations vary with mantissa width. Figures 

3.49, 3.51 and 3.53 show how the delay of different 4, 6 and 8-bit exponent 

implementations vary with mantissa width.
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M antissa width (bits)

Figure 3.48. The area of the 4-bit exponent implementation of tables 3.28 [■] and
3.29 [♦]
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Figure 3.49. The delay of the 4-bit exponent implementation of tables 3.28 [■] and
3.29 [♦]
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Figure 3.50. The area of the 6-bit exponent implementation of tables 3.28 [■] and
3.30 [♦]
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Figure 3.51. The delay of the 6-bit exponent implementation of tables 3.28 [■] and
3.30 [♦]

1400

1200

1000
i/>O)o 800
t/>

600
2
<  400

200

20 25 3015100 5

M a n tiss a  w id th  (b its)

Figure 3.52. The area of the 8-bit exponent implementation of tables 3.28 [■] and
3.31 [♦]
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Figure 3.53. The delay of the 8-bit exponent implementation of tables 3.28 [■] and
3.31 [♦]

3.9.5.2 Result discussion

4-bit exponent

The work of Wang [135] uses a restoring architecture and due to the extra selection 

multiplexer required for the restoring architecture the design has a large area and is 

slower than the proposed design. The design of Detrey [180] uses a radix-2 SRT 

square root extractor. The design is bigger, slower and has slightly less functionality 

than the proposed design.

6-bit exponent

The proposed design is much smaller than that of Quixilica [176] and is also faster. 

The proposed design is faster and smaller than all other 6-bit exponent designs.

8-bit exponent

The proposed design is smaller than any other design with an 8-bit exponent apart 

from the custom word format design of Nallatech [175], which the authors state 

would need a conversion module to convert it to the IEEE format. The proposed 

design is faster than any other design apart from Digital Core Design [168], which 

uses a faster speed grade chip. The proposed design has more functionality than any 

other design apart from Digital Core Design [168], which implements the concept of 

denormalized numbers.
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11-bit exponent

The design of Paschalakis [181] uses a bit-serial square root extractor and therefore is 

a very compact design. The bit-serial design cannot be pipelined and is slow.

3.9.5.3 Conclusion

The smallest area square root extractor uses a bit-serial design but it is slow. 

Implementing the concept of denormalized numbers increases the area of the design 

by about 50% Digital Core Design [168], The proposed design offers the greatest 

level of functionality for the smallest area and has the fastest speed.
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Chapter
Function evaluation

In the next chapter the logarithmic number system will be discussed and it will be 

seen that a highly non-linear complicated function needs to be approximated. In this 

section we will consider the implementation of FPGA function approximation units 

and compare them with existing methods given in the literature.

4.1 Common function approximation methods

4.1.1 Full table lookup

This is the most basic approximation method where for every value of x the value of 

the function, at that point is stored in a table. This is in effect a memory that is 

addressed with the full function argument x. The size of the memory increases 

exponentially with address width so this scheme is only practical (for FPGA) for 

small word lengths of up to 7 or 8-bits. Two advantages to this method are: firstly it 

is generally fast because there aren’t any arithmetic components and secondly the 

values in the memory can be correctly rounded to within lA ulp.

4.1.2 Bipartite, SBTM, STAM and multipartite

The bipartite Sarma [183], SBTM Schulte [184], STAM Schulte [185] and 

multipartite Dinechin [186] methods are based on a first order Taylor series 

approximation and use only table lookups and additions. The bipartite method uses 

two tables each with an address width of approximately 2/3 * input operand width, 

which are addressed by parts of the input operand x. A single adder is used to add the 

values obtained from the two tables and this value is the approximation to the function 

fix). The size of the tables increase exponentially with argument width but due to the 

2/3 scale factor the combined size of the two tables is smaller than the full table 

lookup. If the output can be used in carry-save form then no addition is required. The
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bipartite method is really only suitable (for FPGA) for arguments of less than 12 bits. 

The STAM and multipartite methods increase the number of tables but reduce the 

maximum number of address bits and content bits a table requires. The maximum 

address width for the multipartite method is generally 1/2 * input operand width so 

the method is only suitable (for FPGA) for arguments of up to 16 bits. The method is 

slower than the bipartite and full table lookup because now a number of adders are 

required to add the lookup table outputs to generate the final function approximation 

fix). The bipartite and multipartite methods cannot return correctly rounded results 

without requiring very large tables and so the results are guaranteed to be faithfully 

rounded to 1 ulp. The major plus point of the bipartite, STAM and multipartite 

methods is that no multiplications are required. Other lookup-add methods have been 

proposed in Hassler [187], Wong [188], Lo [189] and Wan [190], but these methods 

require very large ROMs and so are prohibitive for FPGA implementation.

4.1.3 Polynomial approximation

The polynomial approximation is the broadest class of function approximation with 

many subsets. The major ones will be discussed in turn.

4.1.3.1 Taylor and Maclaurin series

The Taylor series, Jeffery [58] and Spiegel [191] generates an approximation to a 

specific function at a particular point and this will typically hold for a small region 

around that point and so the generated series can be used to approximate a function 

over a small range. If the series is generated at the origin then it is called the 

Maclaurin series. The Taylor series is a fixed coefficient series and does not need any 

ROM components to store function approximation values. However, many 

multiplications and additions are needed to calculate a very accurate approximation.

4.13.2 Approximation via a single polynomial

Typically a function needs to be evaluated for a given interval and as the Taylor series 

only approximates for a single point the error of such a series can be quite high and 

non-uniform. A better method is to fit a polynomial of degree N to the function so it 

coincides with the function at N+l various points. The Lagrange approximation 

technique Jeffery [58], Noetzel [193] returns the equation for a curve that passes 

through a number of given points. The Lagrange technique fits a curve to points
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rather than to a given function so in certain circumstances the error of the method can 

be quite high. The selection of the points can be crucial and Schulte [198] chooses 

Chebyshev nodes and interpolates them using the Lagrange technique. Fitting a 

polynomial so it has the criteria of having the minimal maximum error is called the 

minimax approximation Muller [195] and it is the most optimum polynomial 

approximation technique. The minimax approximation involves searching for 

optimum coefficients, which can be done via the Remez algorithm [193]. The Maple 

software package Maple [196] uses the Remez algorithm to calculate the optimal 

coefficients. Pineiro [194] proposes a faithful polynomial approximation technique 

using the minimax approximation with the coefficients developed by the Maple [196] 

package. The Chebyshev approximation Press [197] is very close to the optimal 

approximation technique and the coefficients can be quickly generated with 

mathematical formulae, whereas the minimax polynomial coefficients need to be 

searched for. A function that is highly non-linear will typically need a high degree of 

polynomial to approximate it accurately with a single polynomial. This implies that a 

large number of additions and multiplications are required.

4.1.3.3 Piecewise approximation

To reduce the required degree of polynomial to approximate a given interval the 

interval can be split up into several smaller intervals and each can be approximated 

with a single polynomial of reduced degree. The approximation of an interval by 

several polynomials is known as piecewise approximation. The piecewise approach 

trades arithmetic components such as multipliers and adders for coefficient ROM and 

striking the right balance is a very important design goal. The interval to approximate 

can be split into uniform sections and non-uniform sections. Optimal partitions are 

obtained using non-uniform splits but this causes difficulty in selecting the correct 

coefficients because they will typically be stored in a ROM with a uniform addressing 

scheme. A uniform split allows direct addressing of the coefficient ROM.

4.1.3.4 Rational approximation

To reduce the required degree of polynomial to approximate a given function a 

rational approximation can be used Muller [195] and Koren [199]. A rational 

approximation is like a polynomial fraction and has numerator and denominator parts. 

The degree of the numerator and denominator parts is usually less than that of a
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standard polynomial that can approximate a given function interval with the same 

error. The major draw back with the rational approximation is that a division must 

take place and this is a very costly operation that we would like to avoid. The 

numerator and denominator part of a rational approximation are usually developed to 

have the same complexity (order and number of terms) so that both computation paths 

(numerator and denominator) arrive at the divider at the same time.

4.1.4 CORDIC

CORDIC, Voider [200] and Walther [201], is a linearly convergent shift-and-add 

algorithm that can be used to calculate many trigonometric functions as well as certain 

other functions. In general the algorithm requires two or three values, which are 

updated each iteration by their own addition/subtraction component. The updating 

addition/subtraction is controlled each iteration by the sign of one of the values. 

Another one of the values is updated each iteration by adding or subtracting a constant 

which is stored in a ROM and changes for each iteration. One or two of the values 

will converge to a desired result for example in the calculation of the sine and cosine 

functions there are three values. One value converges to sine, one to cosine and the 

other value is rotated to zero. For the basic implementation a single bit of the result is 

generated per iteration and the final result is wrong by a constant scale factor that 

needs to be removed by using a final multiplication.

4.1.5 Other linear convergence algorithms

Two classes of algorithm that are very similar to the CORDIC algorithms are the 

multiplicative and additive normalization algorithms Ercegovac [61]. In the 

multiplicative normalisation algorithm there are two sequences. An auxiliary 

sequence is used that determines a digit value. The digit value directly updates the 

auxiliary sequence on the next iteration. This digit value is also used to address a 

ROM that updates the primary sequence so that it converges to the required function. 

The additive normalization algorithm works in a similar, but opposite way. Here the 

auxiliary sequence is used to determine a digit value. The digit value addresses a 

ROM and updates the auxiliary sequence in the subsequent iteration. The digit value 

is also used to directly update the primary sequence so that it converges to the 

required function.
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4.2 An overview of FPGA function approximation methods

CORDIC is by far the most popular function approximation method implemented on 

FPGA Andraka [211, 214], Dick [212, 217], Park [213], Mencer [215], Ligon [216], 

Kantabutra [218], Vails [220], Paplinski [221], Kharrat [223], Zhilu [225], Cardells- 

Tormo [226, 237], Lund [227], Vadlamani [229], Yang [232] and Ravichandran [233] 

are a few examples. Traditional and current FPGA architectures consist of registers 

and logic that can build efficient adders and small memories. These are exactly the 

logic elements that a CORDIC implementation requires. The CORDIC algorithms 

became popular for two reasons: firstly they can perform trigonometric functions, 

which are required in many complex-arithmetic DSP algorithms and secondly because 

they can be built in a very compact way using bit-serial or digit-serial arithmetic. The 

bit-serial algorithms are compact, they have local interconnects so can run at a high 

clock rate, and are very efficient if data are supplied in a serial fashion. Fully parallel 

CORDIC algorithms have also been proposed, due to the size increase of modem 

FPGA, in an attempt to increase the throughput of the CORDIC algorithm. The 

problem with the CORDIC algorithm is the dependency of the next iteration on the 

result of the previous iteration and so it is hard to introduce parallelism into the 

algorithm. Some attempts have been made to speed up the basic CORDIC algorithm 

by using signed-digits Vails [220] and high radix algorithms Kantabutra [218] and 

Vadlamani [229] but they turn out to require more hardware and are slower than the 

basic design. Boullis [219] presents a linear piecewise approximation of the natural 

logarithm function for the interval [1, 2). Boullis shows that the approximation 

requires fewer clock cycles than a CORDIC algorithm and is smaller than a fully 

unrolled CORDIC implementation for small operand lengths of up to 14-bits. For 

very short operand lengths of less than 8-bits the results show that full table lookup is 

the most efficient implementation. Mencer [222] compares four different function 

approximation methods of full table lookup, bipartite, linear piecewise approximation 

and CORDIC. The results are the same as presented in Boullis [219] except that 

bipartite results are included. The bipartite method does not offer an area advantage 

over the linear piecewise approximation but it does require fewer clock cycles. It 

must be noted that only the clock cycle number and not the clock frequency is given 

in Boullis [219] and Mencer [222], so a fair comparison is difficult. Pineiro [224] 

proposes a second order piecewise approximation of a powering function using the
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minimax polynomial approximation. The polynomial is evaluated using a fused MAC 

tree structure, which calculates all the multiplier partial products in parallel and sums 

them with a single carry-save adder tree. The design is capable of being modified to 

calculate many different functions of restricted range and all faithfully rounded to 23- 

bit single precision. The design is much smaller than the 24-bit linear piecewise 

design of Mencer [222] and has a low latency. Sidahao [231] looks at the speed-area 

trade offs in implementing a single minimax polynomial approximation of a given 

function over a restricted range. The authors use a multiply accumulate function, 

which is fed with a ROM of coefficients, and an additional feedback loop to evaluate 

an N^-degree polynomial. The number of multiply accumulate stages can be changed 

to vary the hardware requirement and also to vary the speed of the design. The design 

is compared to the bipartite design, which from Mencer [222] is known not to be the 

smallest FPGA function approximation algorithm but it does have a low delay. Due 

to the fact that a large polynomial is being evaluated in a recursive manner the 

proposed design is much slower than the bipartite method by between 3 to 8 times. 

Now, a function is being approximated by a single polynomial and when a greater 

accuracy is needed the coefficients of the polynomial increase in bit width and the 

degree of polynomial might also be required to increase. These factors that increase 

clearly do not cause the logic requirement to exponentially increase and so the area 

increase of the polynomial approximation with word size is much slower when 

compared to the bipartite method. The size of the bipartite method increases 

exponentially as the width of the function to approximate increases, which is due to 

the ROM size increase. Interestingly, for small word lengths of around 14-bits the 

bipartite method is much faster and of equivalent size to the design presented by 

Sidahao [231]. An FPGA implementation of the multipartite method is proposed by 

Dinechin [228] and subsequently improved by Detrey [230] using a table content 

optimising algorithm. Similar to the bipartite method an exponential memory 

increase is observed, but the table sizes required are smaller than the bipartite method. 

The results also show that the delay of the multipartite algorithm is very small and is 

smaller than any other published design considered in this overview. More recently a 

piecewise polynomial scheme has been proposed by Lee [236] that has a novel 

segmentation scheme. The novel scheme allows a non-uniform split of a function so 

that each segment can be approximated by a different polynomial and all the 

coefficients can be stored in a regular ROM addressed by the novel segmentation
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scheme. The idea of the scheme is to allow highly non-linear functions to be 

approximated efficiently so that each segment produces an approximation to the 

function with roughly the same accuracy. The scheme is compared to a uniform 

segmented design and the multipartite methods. The design is reported to require a 

much smaller amount of memory than the uniform methods and multipartite methods. 

Speed comparisons are not made, as results given for the multipartite and uniform 

segmented methods are only theoretical. The design cannot improve on the classical 

uniform approach when a smooth function with restricted range is to be approximated 

e.g. the natural logarithm function on the interval [1, 2). Ho [235] uses the STAM 

lookup-add approximation method to approximate the function x m  with 16-bits of 

accuracy. The design requires 32 of the blockRAM components in a single Virtex 

FPGA and three adders. The design is constructed in such a way that is uses the same 

amount of logic as the bipartite method, which is due to the coarse granularity of the 

blockRAM components. For the STAM method to improve on the bipartite method 

the lookup tables must be implemented with custom size memories. The blockRAM 

resource is of fixed size and so it cannot take advantage of the STAM method. A 

possible solution is to use the LUT primitives to build the memories, as these 

primitives are much finer in granularity. The STAM method is less superior than the 

multipartite method proposed by Dinechin [228] and the work of Ho [235] illustrates 

this fact.

4.3 New piecewise Taylor series approximation design

As will be seen in the next section a scheme to approximate different functions is 

needed to evaluate various implementations of the logarithmic number system 

addition/subtraction function. The two ‘best’ FPGA function approximation methods 

in the literature are: the multipartite method of Dinechin [228], which offers a good 

trade off between area and speed, but does suffer from an exponential memory 

increase because it is predominantly a first order approximation; the polynomial 

approximation scheme of Sidahao [231] is another ‘best’ design because of its area 

efficiency for large word lengths. However, there is a speed penalty for the reduced 

area. These methods are fast and large or slow and small so are not really suitable for 

the application required. It was decided that an alternative method should be sought. 

In this section the design of a piecewise Taylor series function approximation unit is
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described and is then compared to other designs available in the open literature. The 

Taylor series function is chosen because of its attrctive decomposition properties, 

which is why it is used in the multipartite, STAM and bipartite methods. A uniform 

partitioning scheme is also used to simplify the hardware addressing.

4.3.1 Taylor series

The Taylor series is used to approximate a function around a specific point. Consider 

the value jc where x is split into two parts jc0 and x\ as shown in figure 4.1.

^ --------------  W o  --------------- ► M----------------  W1 -------------- ►

Xq X\

Figure 4.1. The two part split of the argument x

The Taylor series can be used to approximate arbitrary values of a function X-*) by 

generating an approximation that is centred around x0. Equation (4.1) shows the 

Taylor series approximation of a function^*) centred around a point x q .

m  = /(* o )+ [* -* .]/,(*,)+1lx- x̂ f 'M  +...+ [x- x̂ ' J p ^ +en ___ (4.1)

In equation (4.1) the value of x\ can be substituted for [x-x0] (4.2).

*i = [* -* o ]   (4-2)

The error committed in omitting high order terms, £„, is given by (4.3).

^  MAX(r (4) [x-x0f )
n\

From equation (4.3), for a fixed level of accuracy, it can be seen that a trade off 

between the split of the input operand and the order of approximation can be made. 

That is, if the order of approximation increases and the width of xq is held constant 

then the accuracy of the approximation will increase. However if the order of 

approximation is held constant and the width of *o increases then the accuracy of the 

approximation will also increase. So to create a more accurate design what should be 

increased: the order, which increases the arithmetic requirement, or the width of *0, 

which increases the ROM requirement. Looking at the logic requirement to construct
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arithmetic components such as multipliers and adders, and also looking at the logic 

required to construct ROMs should give some design guidance.

4.3.2 Arithmetic and ROM component logic requirements

FPGAs offer distributed memory to create arbitrary size lookup tables and provide 

dedicated logic to perform efficient multiplication and addition. The distributed 

memory on Virtex FPGAs is constructed from the LUT primitives as shown in Xilinx 

[35]. The graph in figure 4.2 shows a 2N (exponential) increase in the LUT 

requirement as the address width for a 1-bit content memory grows (Xilinx Virtex 

FPGA). The graph in figure 4.3 illustrates the LUT increase for Virtex multiplier 

implementations that do not use embedded multiplier primitives and shows an N2 

(squared) increase. Also shown on figure 4.3 is the LUT usage for the basic adder 

component, which has an order N  increase (linear).
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Figure 4.2. LUT requirement of a Virtex 1-bit content memory with and ‘Operand
width’ address width
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Figure 4.3. LUT requirement of an ‘Operand width’ by ‘Operand width’ multiplier
[x] and adder [+]
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The graph in figure 4.2 illustrates that for memories with large address and content 

widths the LUT quantity required to implement the ROM is too great to be practical 

even on current FPGA technology. Remember that the results of figure 4.2 are for a 

1-bit content memory. A 12-bit address, 12-bit content memory would require 1500 

slices, which is 30% of a Xilinx XC2V1000 1-million gate FPGA. In theory, 

calculating the Taylor series approximation by performing some of the required 

arithmetic and using a reduced amount of lookup should reduce the logic requirement 

while keeping the speed a lookup style approximation allows. The theory is naturally 

achieved by increasing the order of approximation.

4.3.3 1st, 2nd and 3rd order details

Three orders of approximation are considered from 1st to 3rd. Orders above the third 

are not considered due to the large delay that is required in evaluating the polynomial 

arithmetic. The three orders of approximation are implemented for varying precision 

inputs and the area results are compared, as are the delay results. The components are 

designed so that the output precision is the same as the input precision. The equations 

for the 1st, 2nd and 3rd order Taylor-series expansion are given in (4.4), (4.5), and (4.6) 

respectively.

/ ( * )  =  / ( * o M * - * o ] / ' ( * o ) + *i ____ (4- 4)

/ ( * )  =  f i x 0 ) ■+1* ■- *0  I f  \ x0) +  0  /  2)[* - x 0f f  ”(x0) +  e2 ___(4.5)
f i x )  =  f i x o) + [ x - x0] f \ x 0) + (1 / 2 ) [ x - x 0f f ”(x0) +  (1 / 6 ) [ x - x 0f f m(x0) + £3 ____ (4 . 6)

The input operand x is split as shown in figure 4.4.

Xq Xi *2

Figure 4.4. Split of input x

x is a d-bit number where

x = x0+2-mx,+2~k-mx2 ___(4.1)

For a first order approximation / is chosen as ‘O’ and m is chosen so that 2m> = d. 

Two ROMs are required
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4(x0) = /(*<>)  (4.8)
B(x0) = f \ x 0) T -  ____(4.9)

The function fix) thus requires two lookups, one addition and one multiplication. It is 

given as

/(x) = (̂jf0)+J8(x0)[x-x0]+fi-1 ___(4.10)

For the second and third order approximations m is chosen so that 3m>=d and 

4m>=d respectively, k is chosen so that 2m+k>=d and 3m+k> d. The 4 ROMs 

required for the second order series are given in (4.11), (4.12), (4.13) and (4.14).

A(x0) = f (x0)  (4.11)
B(x0) = f \ x 0)2-” ___(4.12)
C(^0) = (1 /2 )/"(*0)2~2m ___(4.13)
D(xx) = x2 ___(4.14)

The function X*) requires four lookups, two additions and two multiplications. It is 

given as

f ix )  = A(x0) +[x -  x018(x0 )+/)(*, )C(x0) + e2 ___(4.15)

The following 5 ROMs are required for the third order approximation

A(x0) = f(x0)  (4.16)
B(x0) = fXx0) T ” ____(4.17)
C(xQ) = ( \ / 2 ) / \ x 0)2~2m ___(4.18)
D(x0) = ( \ / 6 ) f m(x0)2-^ ____(4.19)
£(*,) = *?  (4.20)

The functionX*) requires five lookups, three additions and three multiplications. It is 

given as

f{x)  = A(x0) + ([* 'X0]C(x0) + B(x0 ))[* - x 0] + £(x, )D(x0) + e3 ___(4.21)

For all orders of Taylor series the relation between m, k and d  is function dependant, 

however the values given are representative of the values used in practice.

4.3.4 Approximation error and rounding

All approximations are calculated with an error of less than 1 ulp to the true result. 

This is called faithful rounding and is the most practical rounding method for table-
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based methods. To achieve faithful rounding, values are calculated with an internal 

precision that is greater than the target accuracy. Typically g guard-bits are used to 

guard against a loss of precision. The ROM that contains J{xo) is modified so the 

output rounding (i.e. reduction from the internal precision to the target precision) is 

truncation and also so the rounding of several internal multipliers can be performed by 

truncation. This keeps the width of the final adder-tree additions at a minimum.

4.3.5 Hardware structure

The hardware models of the 1st, 2nd and 3rd order approximations are shown in figures

4.5,4.6 and 4.7 respectively.

m
x =

d+g ' ' d+g-m y '

Ax)
Figure 4.5. Hardware structure of the 1st order approximation 

4.3.6 Model creation and testing

The software models of the 1st, 2nd, and 3rd order Taylor series have been developed 

using the MATLAB mathematical software package. The models for different word 

length operands are exhaustively tested for accuracy by enumeration to guarantee the 

faithful rounding criteria and to choose the guard bit quantity and operand split 

lengths. To implement the hardware method for FPGA a VHDL framework has been 

written. MATLAB is used to create the data to fill up the lookup tables in the 

framework and to generate bit-true results to compare against the hardware model. 

The width of the table contents depends on the values of the derivatives of the 

function being approximated and does vary from function to function although only
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slightly for the common functions of logX*), sin(jc), 2X and ex that all have well 

behaved derivatives.

m

x =

d+g

Ax)

Figure 4.6. Hardware structure of the 2nd order approximation

x =

'k

'd+ g  ,'d+g-m ' ' d+Z'2m

Ax)
Figure 4.7. Hardware structure o f  the 3rd order approximation
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4.3.7 Results

4.3.7.1 An implementation using only LUTs

To enable a comparison with other works and to demonstrate the adaptability of the 

design, results are presented for the sine(jc) function for the domain [0,7t/4], The 

derivatives of the sinefx) function are either ±cosine(jr) or ±sine(jc), which gives a 

strict bound on the derivative of the function and is typical of the type of function 

suited to the Taylor series approximation. The graph in figure 4.8 illustrates the LUT 

requirement for the 1st, 2nd and 3rd order Taylor series implementations of different 

operand lengths on a Xilinx XCVI000-6 FPGA implemented using Xilinx ISE 

5.1.03i.
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Figure 4.8. The LUT requirement of some 1st [■], 2nd [A] and 3rd [x] order Taylor- 
series approximations of sine for varying input word length
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Figure 4.9. [x] The LUT requirement of the multipartite approximation method of 
Detrey [230] for sine; [A] The LUT requirement of the proposed method for sine
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4.3.7.2 Embedded multiplier and LUT implementation results

In this subsection the multiplication scheme developed in section 2.7.7.3.4 is used in 

the polynomial evaluation. The first order approximation uses one multiplier to 

reduce the logic content while the second and third order approximations use two. 

The graph in figure 4.11 illustrates the LUT requirements for the 1st, 2nd and 3rd order 

approximations that use the embedded multipliers. Figure 4.11 in effect illustrates the 

‘lookup-logic’ required for each implementation. There is an exponentially increasing 

logic requirement for all orders but the point at which the logic requirement starts to 

dramatically increase occurs at a larger operand width for higher order 

approximations. As a percentage it takes just 6% of the LUT and multiplier resources 

of an XC2V1000 FPGA to implement a 23-bit sine(;c) approximation for the range 

[0,*/4].
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Figure 4.11. The LUT requirement of some 1st [■], 2nd [A] and 3rd [x] order Taylor 
series approximations with varying word length.

4.3.8 Conclusion

In this chapter it has been demonstrated that the proposed piecewise polynomial 

approach is the most efficient method of approximating smooth functions of restricted 

range and domain on FPGA. FPGAs contain logic that can be configured to perform 

arithmetic functions and act as lookup tables. Varying the order of a piecewise 

polynomial approximation strikes a balance between the two logic configurations for 

a given level of accuracy that with straight forward analysis can be tuned to achieve 

an optimal design balance. The designs presented here are the fastest and smallest 

function approximation designs available in the open literature.
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Chapter 5
Logarithmic number system

In the LNS (Logarithmic Number System) arithmetic is performed with logarithmic 

values. To convert values from the real domain into the LNS domain the log of the 

values is taken. The conversion logarithm function can be to any base but because 

computers natively use binary arithmetic we will only consider the base-2 case. To 

convert values from the LNS domain into the real domain they must be set as the 

power of the base and this represents the real value.

5.1 Format

The LNS uses a fixed-point number representation with integer and fraction sections 

and a separate sign bit as shown in figure 5.1.

— ------- i ------ — ► --------- --------------  f  ------------------------ H

Ml I F

sign integer fraction

Figure 5.1. The three fields of a logarithmic number system operand

The integer and fraction section make up a signed two’s complement number, which 

is the magnitude of the logarithmic number. This number needs to be signed to 

represent numbers less than 1. The separate sign bit represents the true sign of the 

value. The three field system is very similar to the floating-point format discussed in 

section 3.4.1. Zero cannot be represented in the LNS as there is no value a base can 

be raised by to obtain a result of zero, therefore zero is treated as a special case.
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5.2 An LNS literature overview

Kingsbury [238] proposes the use of logarithmic arithmetic to perform digital filtering 

because simulation showed that a 16-bit implementation of a filter using logarithmic 

arithmetic could have a much better dynamic range than a 16-bit fixed-point 

implementation. Three methods of calculating the LNS addition/subtraction function 

are proposed: the first method uses a direct table lookup, the second uses interpolation 

to reduce the memory requirement and the third method, which is known as the direct 

method involves sequentially calculating the two functions which make up the 

composite addition and subtraction functions. No error loss is mentioned in 

calculating the subtraction function via the direct method although such an error does 

occur. Swartzlander [239] gives a more detailed overview of the construction of a 

sign/logarithm unit. In contrast to many current LNS implementations a biasing 

technique is used to ensure that the magnitude part of a logarithmic value is always a 

positive value. The magnitude of a fixed-point value is multiplied by a bias before it 

is converted into the number system and this prevents the log of values less than 1 

from being taken. Frey [246] uses three different techniques to reduce the table size 

of the LNS addition and subtraction functions. The first technique as reported by 

Edgar [240] exploits the fact that for addition/subtraction function arguments above a 

certain size (magnitude) the value of the function quantizes to zero. This feature, 

which is termed essential zeros means that a table look up is not required for 

arguments above a certain size as the result is always zero. A second exploited 

property is that: for every integer value increase in the argument of the function the 

width of the value of the function to store decreases by one bit. This is due to the 

reduction in the number of significant bits in the function so the MSBs are zero 

invariant and need not be stored. A final logic reduction technique used is to split the 

addition and subtraction tables into two ROMs that can be optimised individually. 

Henkel [252] uses a linear interpolation technique to approximate the LNS addition 

function. An optimal number of non-uniform segments are calculated to achieve a 

given error bound. Considerable savings over previous table sizes are reported but at 

the expense of a linear interpolation and special segment selection logic (due to the 

non-uniform segmentation). Arnold [253] introduces the concept of the dual 

redundant logarithm number system where a system number consists of two unsigned 

fixed-point LNS values. One value is considered to have a negative weighting and the
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other a positive weighting. This way addition involves updating the positive value 

and subtraction involves updating the negative value, where both operations are done 

via addition, thus avoiding the problematic subtraction function. However, one 

foreseeable problem is if a number close to zero ends up being represented by the 

difference of two very large values. In this circumstance the subsequent overflow of 

one value, which could easily occur, would return an undefined result when the result 

could be (well) in the range of the number system. Multiplication is slightly more 

complex in the proposed number system and division and square root even more so. 

Arnold [253] also proposes that the accuracy in the singularity region of the 

subtraction function can be relaxed. Lewis [254] uses a modified first order Taylor 

series approximation to approximate the addition and subtraction functions in a 31-bit 

(1-bit sign, 8-bit integer, 22-bit fraction) system. Logarithmic arithmetic is used in 

the function evaluation to avoid the multiplication and convert it into an addition. 

Using logarithmic arithmetic for the multiplication means the log must be taken of 

both inputs and the output must be converted by passing it through an exponential 

table function. The derivative table is removed by using a mathematical identity as 

first suggested by Arnold [242] and is in effect swapped for logarithm and exponential 

tables of smaller size. Huang [259] implements the first 32-bit design (1-bit sign, 8- 

bit integer, 23-bit fraction equivalent to IEEE std-754 single precision) by using the 

direct method to evaluate the LNS addition and subtraction functions. No mention is 

made of the loss of accuracy for the subtraction function in the singularity region due 

to using this method. A set of guidelines is proposed by Arnold [257] to standardise 

the LNS word format, as was done for floating-point by the IEEE std-754. The 

encodings for special values are proposed so the LNS has an equivalent dynamic 

range to floating-point. Arnold gives a description of a multilayer structure where 

successive layers have increased functionality and the designer chooses a layer 

depending on their requirements. A proposal for the implementation of the 

denormalized number concept in the LNS is also given. Lewis [258] presents a 

function interpolator that uses a second order approximation data path. An error 

bound is developed for the approximation of the addition and subtraction functions 

that allows a relative error that is better than floating-point. Lewis’s approximation 

technique adheres to this error bound for all regions except close to the singularity 

where a relaxed error bound as proposed by Arnold [254] is used due to the difficulty 

in approximation the subtraction function. A cotransform is introduced by Coleman
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[260, 263], which simplifies the task of calculating the logarithmic subtraction 

function in the singularity region. The cotransform shifts a value in the singularity 

region up to a more non-linear region where it is simple to approximate. In parallel 

the transform calculates a correction term due to the range shifting. Paliouras [264] 

introduces an identity that decomposes the logarithmic subtraction function into two 

much more easily approximated functions of restricted range. The transform enables 

the subtraction function in the singularity region to be calculated with high accuracy 

but with a low ROM requirement. A down side to the identity is that two functions 

need to be calculated in parallel, thus doubling the approximation arithmetic. Sacha 

[266] remarks that Givens rotations used in QR decomposition are a good candidate 

for LNS implementation due to the need for multiplication, division and square root 

operations in their calculations. The QR decomposition is often mapped to a systolic 

array for high performance processing and Papadourakis [250] proposes a processing 

element (PE) for a general systolic array based on logarithmic arithmetic, where each 

element can perform the four basic functions of addition/subtraction, multiplication, 

division and square root. Because a single PE has so much functionality, many 

different algorithms could be mapped to the array. Coleman [268] gives details of the 

design and accuracy of a 32-bit LNS ALU. Coleman’s design uses the cotransform of 

Coleman [260] and a first order Taylor series approximation with concurrent error 

correction. The accuracy of the design is better than floating-point. A method of 

implementing long word length (up to 64-bits) LNS addition/subtraction is presented 

by Chen [269], which makes use of the direct approximation method. Additive and 

online multiplicative normalization methods are used for the exponential and log 

function approximations respectively, which constrains the amount of lookup memory 

required. A special algorithm is used to predict the number of leading zeros in the 

exponential function, which ensures that the value is calculated with sufficient 

accuracy to prevent the accuracy loss in the singularity region of the subtraction 

function that would otherwise occur. The ROM usage is low but the sequential nature 

of the function approximations makes the design slow. Arnold [271] discusses the 

implications of relaxing the better than floating-point accuracy measure as used by 

Lewis [259] and Coleman [268]. The relaxation of the error from better-than- 

floating-point to faithful can dramatically reduce the table size needed to calculate the 

LNS addition/subtraction function. Arnold illustrates the area savings by comparing 

an FPGA implementation of a reduced precision LNS adder with estimated
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implementations of the adder proposed by Lewis [259] and Coleman [268]. Arnold 

[274] shows how the third term in certain quadratic interpolators (Lagrange and 

Taylor) can be performed with logarithmic arithmetic to reduce the multiplication 

requirement to one. An interesting paper, Paliouras [280], studies the optimal LNS 

base so as to minimize the number of words required for the addition/subtraction 

function compared to the commonly used base-2 implementation. Arnold [293] 

implements a compact iterative subtraction function approximation based solely on 

the addition function. The method relies on inverse interpolation of the LNS addition 

function, which can be exploited because the LNS subtraction function is the same as 

the inverse of the LNS addition function for positive arguments. Kurokawa [241], 

Swartzlander [243], Sicuranza [244], Shenoy [245], Chandra [247, 265], Frey [246], 

Coleman [268, 277], Youssef [279], Wang [281], Arnold [283-286, 289], Albu [287], 

Vainio [288] and Ruan [290, 291] show the accuracy or performance benefits of the 

logarithmic number system when compared to floating-point and fixed-point systems. 

The comparison of various algorithms is considered including: The Fast Fourier 

Transform, adaptive filters, recursive filters, low pass filters, FIR filters, QR 

decomposition Recursive least squares using Givens rotations, QR decomposition 

least-squares lattice, N-body problem and the Inverse Discrete Cosine Transform used 

in MPEG decoding.

5.3 An FPGA LNS literature overview

The first publication to describe the development of LNS operators on FPGA was 

Hermanek [294]. Hermanek’s design used a 32-bit word length equivalent to IEEE 

std-754 single precision and was based on the design of Coleman [268]. The ROMs 

needed for the addition/subtraction function were stored off chip and this was a major 

bottleneck for the design and restricted the number of LNS addition/subtraction 

operations that could be placed on a single FPGA. Albu [296] presents details of the 

implementation of lattice algorithms to solve the least-squares problem recursively. 

The FPGA implementation uses logarithmic arithmetic and is based on the 

logarithmic ALU design of Hermanek [294]. Results showed that the FPGA 

implementation was capable of outperforming a commercial DSP solution. Arnold 

[271] implements an LNS adder with faithful rounding to restrict the area of the 

required lookup table. Arnold estimates the area of the designs of Lewis [258] and
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Coleman [268] to demonstrate the savings of relaxing the addition function 

approximation error. Details of the LNS subtraction function are not given by Arnold 

[271]. Matousek [297] and Matousek [299] give a 32-bit and 20-bit word length 

FPGA implementation of the LNS addition/subtraction and other functions. The 

lookup tables for the addition/subtraction functions are stored in the on-chip 

BlockRAM memories. Three different algorithms of an information filter of square 

root RLS form, square root free Givens, and square root Givens, which are all 

candidates for systolic array implementation are implemented and compared. The 

algorithms are shown to have a higher throughput and be of smaller area when 

implemented in logarithmic arithmetic. The use of the BlockRAMs in dual port mode 

to calculate two LNS addition/subtraction operations in parallel is highlighted, as is 

the very high consumption of BlockRAM components in the 32-bit design. Albu 

[298] presents details of the implementation of the a priori error-feed-back least- 

squares lattice algorithm. The LNS operator designs of Matousek [297] are used by 

Albu to implement the algorithm in 20 and 32-bit arithmetic. The speed of the 

implementation is shown to be equivalent to a commercial DSP device, but the 

number of cycles required to execute the design is significantly less. UTIA [301] 

have developed a number of commercial LNS cores for FPGA including the 

conversion cores to convert to and from the log domain. Finally and most recently 

Detrey [303] applies the multipartite table based function approximation method to 

the implementation of the LNS addition/subtraction function. Detery presents a 

library of the four basic arithmetic operations implemented for the Virtex FPGA 

family. The addition/subtraction operator is fast because a lookup-add approximation 

method is used, however the size of the operators increases very quickly with word 

length due to the high ROM requirement of the multipartite method. Detrey uses a 

reduced precision approximation for the subtraction in the singularity region as 

proposed by Arnold [254] to help constrain the high memory requirements. The 

design compares favourably with other low precision implementations.

5.4 LNS word format

The LNS format is modelled on the format given in Arnold [257], which applies 

features of the IEEE 754 standard to LNS in an attempt to provide a unified LNS 

format. The work of Arnold [257] provides guidelines for the support of the special
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values of NaN, infinity, normalised, denormalized and zero as provided by the IEEE 

754 standard. Adopting the features of Arnold [257], which uses special integer 

values to represent the special values, gives equivalent LNS and floating-point 

number systems the same dynamic range and special value support, which allows a 

fair comparison of the two systems. As for the developed floating-point operations 

the aim of this work is to provide parameterisable LNS components where the length 

of the integer and fraction parts can be specified. Support will not be provided for 

different rounding modes or for denormalized values.

5.5 Relative error

A benefit of the LNS is the superior relative error of the system over floating-point. 

Firstly consider the relative error for a floating-point system with a t-bit mantissa m. 

We will assume that m is normalised to the range [1, 2). The relative error for an 

arbitrary base b system is given in (5.1), where m ' is an approximation to m.

The relative error can be seen to have a range given in (5.2).

The maximum relative error for a base-2 floating-point system is given in (5.3).

2~M  (5.3)

The absolute error Ae for a logarithmic number system with a fraction of length /-bits 
is given in (5.4).

Ae = k '-k  = 2_m  (5.4)

The equivalent absolute linear error is given in (5.5).

(m '-m ) b-1' 1 .(5.1)
m m

^ = 2 * '- 2 * _ ( 5 . 5 )

The relative error of (5.5) is given by (5.6).

.(5.6)
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We can write (5.6) in a similar style to (5.3) to allow a direct comparison for different 

fraction lengths by performing the mathematical steps of (5.7-5.9).

2 t "  -1  =  2 ~ , ~x

2 r '~l -1 
i  - = 2~x

.(5.7)

.(5.8)

-log. = x .(5.9)

t is the length of the number of fraction bits. By varying t a value for the relative error 

for each value of t can be found by solving (5.9) for x  and placing x into the RHS of 

(5.7). The RHS of (5.7), which is the LNS relative error, can be directly compared 

with (5.3), which is the floating-point relative error. Figure 5.2 shows a graph of how 

the x term in (5.9) varies with the fraction bit length t.

1.54

1.52

1.48

x

1.46

1.44

1.42

Fraction length, t (bits)

Figure 5.2. The variation of the x term in (5.9) with the t term

Figure 5.2 shows that the relative error is not constant for every fraction length, but 

does converge to a constant value of approximately 1.529 rounded to 3 decimal 

places. Furthermore from figure 5.2 it can be deduced that the LNS (5.11) has a Vi ulp 

relative error improvement over floating-point (5.10) for an equivalent word format 

above 4 fraction/mantissa bits.
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2-M  (5.10)

^ lns = 2_m 529 __ (5.11)

5.6 Dynamic range

Consider an e-bit exponent, m-bit mantissa floating-point number system without any 

exponents reserved for special value encoding. The maximum value the number 

system can represent is given in (5.12).

Mxflp =±2(2"1-1)* (2 -2 -w) * 2 2"   (5.12)

The minimum value the number system can represent is given in (5.13).

M ^ = ± 2 ^ '___(5.13)

The same can be done for an /-bit integer /-bit fraction logarithmic number system 

where the maximum value that can be represented is shown in (5.14).

Mxlns ~ ±2M -  2_/ » 2M ___(5.14)

To convert (5.14) to the real domain it needs to be set as the power that raises the 

base, which is shown in (5.15).

MxIWSreal = 22 ' ___(5.15)

The minimum LNS value and its corresponding real value are shown in (5.16) and 

(5.17) respectively.

^ niNs ~ - 2M  (5.16)

MnLNsreal -  ±2~2̂  ___(5.17)

Comparing (5.15) with (5.12) and (5.17) with (5.13) shows that when the integer 

width of a logarithmic number system is the same as the exponent width of a floating

point system the two systems will have the same dynamic range.
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5.7 Special value encoding

Table 5.1 shows the LNS encodings used for the special values of zero, denormalized, 

normalized, infinity and NaN.

Special value Integer bit 
pattern

Fraction bit 
pattern

Integer value in 
two’s complement

Fraction
value

Zero 1 0 ..0 1 00 ... 00 *(2M) 0
Denormalized 10...01 Not (00 ... 00) -(2M) tO
Infinity 10...00 00 ... 00 -(2'-M ) 0
NaN 10.. .00 Not (00 ... 00) -(2M-1) to
Normalised Not above Any [(2M-1), -(2m-2)1 ro,i-2*;]

Table 5.1. Encodings of the special values used in the LNS 

5.8 Logarithmic number system addition/subtraction

The standard arithmetic operators as used in the real domain do not perform the 

equivalent operation in the logarithmic domain so alternative operators need to be 

devised. Addition/subtraction in the logarithmic domain is the most complex 

operation and it is one of the reasons why the LNS is considered difficult to 

implement. Consider the two LNS values K  and M  given by equations (5.18) and 

(5.19) respectively.

*  = log2W  ___(5.18)

M  = log2(T) ___(5.19)

To add or subtract two logarithmic values they need to be converted to the real 

domain added and converted back to the log domain as shown by equation (5.20).

K ± lnsM  = \og2(2K±2M)  (5.20)

The RHS of (5.20) can be rewritten by using the steps of (5.21).

' 2k {2k ± 2m)
l°g2(2 ±2 ) = log

2k
= K + \og2(\± 2 M~K) ___(5.21)

A logarithmic number Z consists of two parts a sign bit zs and a magnitude part zv. In 

(5.21) the values of M  and K  are just the magnitudes of the logarithmic numbers as the 

signs are used along with the operator to decide whether to perform and 

addition/subtraction. So the RHS of equation (5.21) should read as (5.22).
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*v + log2( l ± 2 ^ )  ___(5.22)

If we let R = mv- k v then the addition function is given by (5.23). For kv > mv the 

subtraction is given by (5.24). However for kv < mv the log of a negative number is 

attempted so for kv < mv the subtraction function is given by (5.25).

*, + ̂ ( 1  + 2*)____ ___(5.23)

kv + log2( l-  2r ) where R < 0  (5.24)

kv + log2 |l -  2r where R > 0 ___(5.25)

kv and mv can be swapped around without loosing generality so that kv > mv and

therefore only equations (5.23) and (5.24) need be approximated. This is the most 

commonly used approach to the calculation of the addition and subtraction functions 

and is the one which shall be used.

5.8.1 The basic algorithm

The basic logarithmic addition/subtraction algorithm is summarised in the following 6 
steps.

Step 1.

Compare the two input operand magnitudes to determine the smallest and largest.

Step 2.

Subtract the largest magnitude from the smallest to determine the difference to feed 

the addition/subtraction function.

Step 3.

Use the input operand sign bits and the operator, which has the convention of being 

‘1’ for subtract and ‘0’ for add, to determine whether the function addressed by R 

should be the addition or the subtraction.

Step 4.

Calculate the addition/subtraction function.

Step 5.

Add the result of the addition/subtraction function onto the largest magnitude 

operand.
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Step 6.

Check the result for overflow/underflow.

5.8.2 The addition/subtraction function

From the basic algorithm the most complicated part is the calculation of the 

addition/subtraction function. In figure 5.3 a graph of the addition and subtraction 

functions of (5.23) and (5.24) is given.

log2(l + 2*)
1
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Figure 5.3. The addition/subtraction function

The addition function is a smooth function with restricted range. The subtraction on 

the other hand is highly non-linear due to the singularity, which causes the range to 

tend to negative infinity as the domain tends to zero. The addition/subtraction 

functions are evaluated at a point R, which has a domain [a, b]. The lower bound 

has a minimum value of min(xv)-max(xv) where xv is the magnitude of an LNS 

number. In the system used in this work the lower bound has a value (5.26).

a = -(2W~ 2 )-(2 M - 2 ' / ) ( 5 2 6 )  

a  =  - 2 ' + 2  +  2 ' /

The upper bound for R is 0. The dom ain o f  R is given in (5.27).

« e [ - 2 '  + 2 + 2 - / ,0 ] ___ (5 .27)
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5.8.3 The addition function

Now the domain of R is known the range of the addition function can be calculated. 

From (5.27) it can be deduced that the smallest value of log2(l + 2*) depends on the 

number of integer bits. If the chosen format does not contain enough fraction bits 

then a portion of the smallest values of the function log2(l + 2*) cannot be

represented in the precision available. This means that these values need not be stored 

or calculated because after rounding they would quantize to zero. This is analogous to 

the situation in the floating-point number system where the exponent of one operand 

is so small that the significand is shifted out of range of the other and so an addition of 

zero has the same effect. A numerical example will illustrate the point: suppose we 

have a format with 8 integer and 23 fractional bits then the smallest logarithmic value 

that can be represented is 2~f  = 2-23. If a value of R is -40, which is easily possible 

with an 8-bit integer, then log2(l + 2*)is approximately 2-39 5, which is much smaller 

than the smallest value that can be represented.

Now there is a converse problem here, which is, what is the largest value (in 

magnitude) of R that is permissible without the add function quantising to zero? This 

is governed by the fractional precision /  and is also affected by rounding. The value 

of the add function must be greater than lA ulp otherwise it will quantise to zero. This 

constraint creates equation (5.28).

log2(l + 2*) > 2"/_1  (5.28)

Rearranging equation (5.28) gives an integer limit on the value of R and these steps 

are shown in (5.29).

log2(l + 2*)>2-/ -'

2R > 2r "  - 1
r ,  i  _ ( 5 . 2 9 )

* > |lo g 2(22 -1)

R>-(f + 2)

Therefore R must be greater than - ( / :t 2) otherwise the function will quantise to 0. The 

addition function need only be evaluated for the domain given in (5.30).

f l e ( - ( / + 2 ) , 0 ]   (5 .30)
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The range of the function is given in (5.31). 

log2(l + 2*)e[0,l]  (5.31)

The range in (5.31) implies that the maximum output length of a rounded logarithmic 

addition function is/M  bits.

5.8.4 The subtraction function

The value of R has similar domain interval restrictions for the subtraction function. 

The arithmetic steps to deduce the maximum (in magnitude) value of R for subtraction 

are shown in (5.32).

log2( l -2 * )> -2 - '- ‘

- 2*  >  T r ’ ~' -1

2s > 1 -  T rM  (5.32)

fl>[log2( l-2 - r / '') ]

* > - ( / + 2)

Equation (5.32) gives the lower integer bound on the domain of R. The singularity at 

zero causes the subtraction function to be highly non-linear. Despite the function 

evaluating to negative infinity at zero this is not a problem since when R is zero and a 

subtraction operation is required the operation is analogous to the difference of two 

values that are equal and so the output is zero. Zero is a special case value in the LNS 

and if R is zero and a subtraction operation is detected the output is forced to the 

special value zero. Equation (5.33) shows the domain of R that the subtraction 

function should be evaluated on.

« € ( - ( / + 2),-2-/ ] ___(5.33)

The range of the function is given in equation (5.34). 

l° g 2 (1 “ 2*) e [0, - ( /  +1)) ___(5.34)

The range in (5.34) implies that the output of the logarithmic subtraction function is 

n ° 82( / + l)] + /  bjts jn iength (not including sign bits).
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As shown in (5.30) and (5.33) the function approximations are heavily dependent on 

the length of the fractional part of the LNS operand. Both approximations have an 

input argument length given by (5.35) and tabulated in table 5.2 for different fraction 

lengths.

fl0g2( /  + 2)l + /   (5.35)

/ /+  2 r i o g 2 ( / + 2 ) i Input width
3 5 3 6
4 6 3 7
5 7 3 8
6 8 3 9
7 9 4 11
8 10 4 12
9 11 4 13
10 12 4 14
11 13 4 15
12 14 4 16
13 15 4 17
14 16 4 18
15 17 5 20
16 18 5 21
17 19 5 22
18 20 5 23
19 21 5 24
20 22 5 25
21 23 5 26
22 24 5 27
23 25 5 28
24 26 5 29
25 27 5 30

Table 5 .2. The input width of the function approximation for a given fraction length/

For small fraction widths/ of up to 5-bits full table lookup can be used to approximate 

the addition and subtraction functions. This is because the function to approximate is 

up to a maximum of 8-bits in width as shown in table 5.2. Using full table lookup 

means the results can be correctly rounded. Figure 5.4 shows the structure of the 

addition/subtraction function created with only table lookups. The addition and 

subtraction functions can be calculated in parallel as shown in figure 5.2. The output 

is selected using a multiplexer depending on whether an addition or subtraction 

operation is to take place. For fraction widths larger than 5-bits full table lookup is 

not feasible due to the large memory requirements. A more appropriate method of 

calculating the addition subtraction function is to use a piecewise polynomial function 

approximation scheme. However by using a polynomial approximation the 

addition/subtraction functions cannot be correctly rounded without creating very
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accurate approximations and then rounding Schulte [198] and Lefevre [304]. The 

reason that results cannot be correctly rounded is due to the table-makers dilemma 

Lefevre [304], which is described next.

R

/+1

Add
ROM

Sub
ROM

Add/Sub
select

log2( l ± 2 * )

Figure 5.4. Addition/subtraction function approximation using full table lookup 

5.8.5 Table-makers dilemma

Consider a function where at a point x the function takes the value (5.36). 

f ( x )  = 0.10111000000101  (5.36)

The function of (5.36) has 14 fraction bits. If (5.36) is rounded to 4 fraction bits using 

a round-to-nearest scheme then the result is given by (5.37).

/(*)„* =0.1100 ___(5-37)

An approximation to (5.36) is given in (5.38).

7(.x) = 0.10110111111011 ___(5.38)

Equation (5.38) is a very good approximation to (5.36) as the difference is less than 

2*10. The difference is shown in (5.39).

f i x )  -  f i x )  = 0.00000000001010 ___(5.39)

Equation (5.40) shows the value of (5.38) rounded to 4 fractional bits.

= 0 -1 0 1 1  __ (5 .4 0 )
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Despite (5.38) being a very good approximation to (5.36) when both values are 

rounded to 4 fractional bits the result is different. So even if a value is calculated with 

many more bits of accuracy than is needed the value might still not be correctly 

rounded. This was the main motivation for the development of the faithful rounding 

criterion which rounds with a maximum error of less than 1 ulp instead of the 

correctly rounded Vz ulp maximum error. By analysing (5.36) and (5.38), which 

might be interchanged because one might be the approximation and the other the true 

value and vice-versa, it can be seen that the table-makers dilemma is caused when the 

exact value of a function has one of two rounding bit patterns (for round to nearest 

rounding) shown in figure 5.5. Producing very accurate approximations that can be 

correctly rounded requires a lot of hardware in terms of both lookup ROM and 

arithmetic components. The extra hardware requirement is too great to make the LNS 

addition/subtraction scheme practical. Having correctly rounded results makes the 

accuracy of the LNS better than the equivalent floating-point system. However, the 

accuracy can be reduced to be equivalent to, but still slightly better than, floating

point and this enables the addition/subtraction function to be calculated sufficiently 

accurately using a polynomial approximation.

MSB LSB

X X . . . X X  0  1  1  . . .  1  1  X X . . . X X

-v  ' v'-

Valueto Rounding
round bit pattern

MSB LSB

xx...xx|l 0 0 ...0 0 XX...XX
- v —

Value to Rounding
round bit pattern

Figure 5.5. The rounding bit patterns that cause the table-makers dilemma

5.8.6 Better than floating-point accuracy (BTFP)

The LNS addition/subtraction function will incur an error as a result of rounding, 

which is 2/1. The addition/subtraction approximation will also have an error ,
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which gives a total error of 2 f  l +edp. The relative error for a realistic LNS 

implementation, i.e. one with approximation errors is given by (5.41).

euiS= t* * 1',") - \   (5.41)

We would like the LNS to have an error that is equivalent or less than that of floating

point. The equation to calculate the permissible data path error that results in an 

equivalent accuracy of floating-point is

2<‘+*r / 'l) - 1< 2-/-, ___(5 .4 2 )

Solving (5.42) f o r g i v e s  (5.43).

Sdp<\o%2(X r- '^ \ ) - 2 - f -'  (5.43)

Equation (5.43) gives the maximum permissible approximation error for a given 

fraction length f  Equation (5.43) can be arranged and expressed in terms of the 

number of fractional bits of accuracy required and is shown in the following steps. 

Letting,

= 2‘/w  (5.44)

* = log 2(*4,) + /   (5.45)

Substituting (5.43) into (5.45) gives,

* = log2 (log2(2-/ -' +1) -  2“/_1) + /  ___(5.46)

A graph of x for various fraction lengths/is shown in figure 5.6. The graph of figure

5.6 implies that the addition/subtraction function must be calculated with an error of 

less than I *22 to enable the result to have better than floating-point accuracy (BTFP) 

for faction lengths of 6-bits or more. This is the maximum permissible error between 

the function and the true result before rounding to the target fraction length of/-bits.

5.9 Addition/subtraction function approximation methods

Now the input domain and the output range with permissible error is known different 

function approximation methods can be implemented. In this section two FPGA
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approximation methods are considered, one that is based on the dual-path floating

point adder algorithm and the other uses a parallel-lookup approximation to constrain 

the delay of the addition/subtraction function to be a single polynomial function.

-21

-22

-2.3

x -24

-25

- 2.6

-27

-28

f

Figure 5.6. A graph of x  versus/ as expressed in equation (5.46)

5.9.1 Dual-path LNS addition/subtraction approximation

108,(1 + 2*) 

108,(1-2*)

'"8  -7 -6 -5 -4 -3 -2 -1 0

R

Figure 5.7. The three section split of the addition/subtraction function

The dual-path floating-point addition scheme has two paths. One path is chosen if a 

subtraction operation is performed and the exponent difference is 1 or 0. The other 

path is chosen if an addition function is chosen or if a subtraction is chosen and the

1
o
■1
-2

■3

-4

-5 Section A 
Section B 
Section C-6

•7

-8
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exponent difference is greater than 1. Using a similar method the LNS addition 

function is calculated for the whole domain of (-(f+ 2), 0].

The subtraction function domain is split into two intervals. One interval is (-(f+2), -1] 

and the other is (-1, 0), which are analogous to the near and far paths of the dual-path 

floating-point addition algorithm. The addition function (section A) and the split of 

the subtraction function (sections B and C) are shown in figure 5.7.

5.9.1.1 Far path

The hardware required to calculate the addition function for the domain (-(f+2), 0) is 

shown in figure 5.8 (a). The hardware required to calculate the subtraction function 

for the domain (-(f+2), -1) is shown in figure 5.8 (b). The range of the values at each 

stage is shown in figure 5.8. The ranges are small and the functions to approximate 

are smooth and suit the piecewise polynomial approximation approach. The 

approximations of figure 5.8 (a) and (b) share the same hardware and can easily be 

combined into one data path as shown in figure 5.9.

— / —►H---------- / -----------►; N— i — --------- / ---------- H

[0,1)[o,D

f *  (0.5,1]/K> (0.5,1]

[0,0.5][0,1]

»»

log, (1 + 2*) log, (1-2")

(a) (b)

Figure 5.8. The hardware needed to approximate sections A  and B o f  figure 5.7
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»

Add/sub
select

108,(1 1 2")
Figure 5.9. The combined hardware unit to approximate the far path sections A and B

The only difference between figures 5.8 and 5.9 is that a multiplexer is needed to shift 

the input value to the log approximation when a subtraction operation is chosen. The 

log function approximation needs to be calculated for the interval [1,2]. Typically, to 

save and simplify the hardware, functions are only approximated on a single power of 

2 interval. Now the interval [1, 2] is just larger than a power of 2 interval, which 

would be [1, 2), i.e. not including 2. Therefore for the log approximation the value 2 

is treated as a special case and is corrected by adding 1 onto the output of the 

approximation of log2(l). No extra hardware is needed to do this as the ‘ 1’ bit can be 

concatenated onto the MSB end o f  the result of the log approximation. For the 

subtraction path the value that feeds the log approximation must be left shifted by 1- 

bit from the interval [0.5, 1] to the interval [1, 2]. This shift is compensated by 

subtracting the value 1 from the output of the function approximation, which because 

of the result range and the properties of two’s complement need only be concatenated 

onto the MSB end. When the shifted value is 2 for subtraction 1 is added and 1 is 

subtracted resulting in an addition of 0. The value of the bit to concatenate is
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calculated by XORing the add/sub select bit and the MSB of the value that feeds the 

log approximation function.

5.9.1.2 Near path

The design of figure 5.9 cannot be used to approximate the subtraction function for 

the range (-1, 0) because of a loss of accuracy. The loss of accuracy is primarily 

caused due to the 2R approximation being close to 1. The subsequent subtraction from 

1 has a very small result with many leading zeros and few significant bits. The very 

small quantity of significant bits means the log function approximation is inaccurate. 

The only way to solve the problem would be to calculate the 2R function with double 

the accuracy but that would require a great deal of extra hardware. To solve the 

problem the identity shown in (5.47) is used.

log2(l-2 * ) = log-
^1-2*^ 

v - R  j
+ log 2(-R ) .(5.47)

The identity of (5.47) was first proposed in Paliouras [264] and consists of two parts. 

The first part (5.48) is the correction part and the second part is the logarithm 

function.

log2
^1-2*^ 

-R
.(5.48)

A graph of the correction function is shown in figure 5.10 for the domain (-2,0).

-0.2

-0.4

- 0.6

i -0.8

<Ni

-1.4

- 1.6

- 1.8

- 0.8 -0.4 -0.2-1.8 -1.6 -1.4 -1.2

R

Figure 5.10. The correction function
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Figure 5.10 shows that (5.48) is a smooth function of restricted range and can easily 

and accurately be approximated with a piecewise polynomial scheme. The log 

function of (5.47) is calculated for an interval of [1, 2). To calculate the log of a 

function with a domain of (0, 1) the argument must first be left shifted into the 

interval [1,2), which does not cause any accuracy loss. The log of the shifted value is 

calculated and is then added onto the negated shift amount giving the final result. 

Adding the log value and the correction value gives an accurate approximation to the 

logarithmic subtraction function. The hardware needed to implement the described 

process is shown in figure 5.11.

«

-R

l ° g 2( l - 2 * )

Figure 5.11. The hardware unit to approximate the near-path section C

Figure 5.9 shows the far-path and figure 5.11 shows the near-path. The complete 

addition/subtraction function approximation requires both the far and near path to be 

combined into one unit. We can take advantage of common components in the two 

paths and share the hardware so reducing the size of the final design. Comparing the 

two paths it can be seen that the log approximation for the domain [1, 2) is common 

and can be shared between the two paths. The 2R and ‘correction’ functions can share 

the same approximation arithmetic i.e. multipliers and adders. Figure 5.12 shows the 

complete function approximation design based on the dual-path (near and far path) 

approach.

187



Chapter 5 Logarithmic number system

op

f  [ 0 ,/ ]
zeroF zerol

/+ 1
zeroF

RO M

zerol zeroF

forceZero

Arithmetic
pathsel

f +  5 [ l,/+ 4 ]  

p S  [ l ,/+ 4 ]

»
«[1.A5] 

/+ 7  [2,/+5]
010...0

/  [0,/] 
000

pathsel
/+  5 [2,/+3]

4:1 mux

/*■ 5 [2,/+3]

000

forceZero subMux

Zero

Figure 5.12. The complete dual-path LNS addition/subtraction function

The ‘op5 input indicates whether an addition or subtraction approximation needs to 

take place. The path selection depends on the desired operation and whether the input 

integer is zero or not. An integer of zero can be detected by a wide NOR gate. The
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‘Zero’ output signals whether the input is zero and a subtraction operation is required. 

In such circumstances the output of the LNS subtraction should be zero because the 

subtraction of two equal values is performed. The 4 to 1 path selecting multiplexer 

only has 3 inputs to pass to the logarithm approximation and because of this the input 

for the near-path is duplicated to simplify the selection logic. The left shifter uses the 

same scheme as was used in the dual-path floating-point adder. The output of the 

approximation is not rounded but has an error that after rounding will produce a 

better-than-floating-point (BTFP) level of accuracy. The three function 

approximations have been constrained to be /  and f+ 3 bits, with restricted domains 

and ranges. These lookup sizes should be compared with the direct approximations of 

table 5.2 where for example a 23-bit fraction length requires two 28-bit (f+5) 

approximations and one of a highly non-linear function. The shifting is the key to the 

approximation width savings as they act as range reducers. The main problem with 

the dual-path approximation is that it requires two sequential function approximations. 

As a single 23-bit approximation can take 45 nanoseconds (see section 4.3.7.1) the 

sequential style of the algorithm adds at least this amount of time compared to a single 

polynomial solution. Furthermore the benefit of the solution decreases for smaller 

fraction lengths as the extra function approximation width varies with the log of the 

fractional section (see table 5.2).

5.9.1.3 Function approximation

For the base-2 logarithm, 2R and correction functions a piecewise polynomial 

approximation scheme is used. The domain of each approximation is partitioned into 

2X intervals and each interval is approximated using the Chebyshev approximation 

technique. The Chebyshev technique was chosen over the Taylor series scheme 

described in section 4.3 because the table structure is simpler and the error of the 

approximation is less. The domain of the approximation is split into a power of 2 

intervals so that the coefficients for the intervals can be grouped into a single ROM 

that can be addressed by the MSBs of the function argument. This makes the 

coefficient selection for a particular argument very simple.

5.9.1.4 Chebyshev function approximation

The Chebyshev polynomial function approximation technique is very close to the 

optimal polynomial function approximation technique the ‘minimax approximation’.
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The Chebyshev approximation is much simpler to calculate, as it does not require the 

task of searching for ideal polynomial coefficients. Implemented in fixed-point 

arithmetic with correct rounding the Chebyshev approximation can simply and easily 

be used to approximate a function with almost equal maximum negative and positive 

errors. The Chebyshev approximation of degree n is denoted Tn(x) and is generated 

recursively by (5.49).

T„JX) = 2 xT„(x) -  Tn_t(x) _(5.49)

Where,

T0(x) = 1, Tl(x) = x  and n > 1.

The heart of the approximation involves calculating the formula fo r/* ) (5.50).

m
N- 1

k=0
 Cn .(5-50)

In (5.50) Tk(x) is known from (5.49), but the coefficients are the crucial part of (5.50) 

as they need to be produced exclusively for each function and for each interval that 

the approximation is applied to. Equation (5.51) shows the formula to calculate the 

coefficients to evaluate a function/[•*) for the domain [-1,1].

2V *=o

9 N-l

Cj = N ^ fM k=0
COS

n{k + 0.5)
N

cos
nf(k + 0.5) 

N
.(5-51)

Typically we want to evaluate a function for a domain other than [-1, 1], for example 

when performing a piecewise approximation. Here a change of variable formula 

(5.52) is used to allow the coefficients to be calculated for the domain [a, b].

x-0.5(b + a)
0.5 (b -a )

Equation (5.52) is applied to the argument of xk of f[xk) in (5.51) and also to the 

argument of 7*(jc) in (5.50). Equipped with equations (5.49-5.52) it is possible to 

generate a Chebyshev approximation of any order and of any function fix) for the
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domain [a, b\. The first and second order Chebyshev approximations of a function 

fix) are given in (5.53) and (5.54) respectively.

f ( x ) » C\*x + C0 ___(5.53)

/ ( j c )  « C2 * jc2 + Cl * jc + CO ___(5.54)

For a piecewise approximation the CX  coefficients depend on the MSBs of the 

function argument. Let the argument x  be split into two sections the MSBs jc/, and the 

LSBs jc/ (5.55).

x = x h+Xj ___(5.55)

Equations (5.53) and (5.54) can be written as (5.56) and (5.57) respectively, where the 

CX coefficients are functions of jc*.

/  (*)» Cl(xh )*x + C0(xh)  (5.56)

f ( x ) * C2(xh)*x2+ C\(xh)* x  + C0(xh)  (5.57)

In equations (5.56) and (5.57) arithmetic is performed with full-length jc terms. The 

full-length arithmetic operations can be avoided by rearranging (5.56) and (5.57) and 

modifying the ROM contents as shown in the following steps for the second order 

case:

f ( x h + x ,)« C 2 (jcJ* jc2 + Cl(xk)* x  + C0(xh) ___(5.58)

f ( x h + x,)*C2(xh)* (xh + xl f  + C\(xh )* (xh + Xf) + C 0(*A)
f i x ,  +x,)» C2(x„y  ( 4  + 2.xh.x, +xf)  + C\(xh)* (xh +x,) + C0(xh)  (5.59)
f ( x h + xl)*[C2{xh)\*x*+{2.xh.C2(xh) + C\(xh)rx,+[C\{xh).xh + C0(xh)}

Letting,

S2(xh) = C2{xh)
Sl(xh) = 2.xl,.C2(xl,) + Cl(.xh)  (5.60)
S0(xh) = xh.C\(xh) + C0(xh)

gives:

f t x h + xl)*S2(xh)*x?+Sl(xh)*xl + S0(xh) ___(5.61)
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Equation (5.61) shows that arithmetic operations only need to be done on the least 

significant bits of the jc argument, while the SX  ROMs only need to be addressed by 

the most significant bits of the x  argument.

Homer’s method is used to evaluate the second order approximation as it leads to 

more accurate approximations. Homer’s method also reduces the number of 

multiplications by 1, but increases the critical path to include an extra table lookup 

and addition. Equation (5.62) shows the rearrangement of (5.61) according to 

Homer’s method.

/(•*» +x,)*(S2(xk)*xt + Sl(xh))*xl +S0(xh) .(5.62)

aw

Slw

aw

Slw S2w
SOw

SOw

(a) m (b)

Figure 5.13. First and second order approximation hardware structures

The approximations are all performed with fixed-point arithmetic and the data path 

through the approximations has an equal number of fractional bits as the input 

argument plus a number of guard bits. The guard bits guard against a loss of precision 

in the data path so that the final result has the desired accuracy. Increasing the 

number of guard bits reduces the error committed by the initial coefficient rounding

192



Chapter 5 Logarithmic number system

and by the rounding of the output of each of the multipliers. However increasing the 

number of guard bits increases the amount of hardware required, so it is desirable to 

minimise the number of guard bits used. The first and second order approximation 

structures are shown in figure 5.13 (a) and (b) respectively.

5.9.1.5 Log2, 2r and correction approximation ROM address, LSB and ROM 
content widths

Table 5.3 illustrates the ROM address, LSB and ROM content widths for the 2R and 

correction function approximations used in the dual-path LNS add/sub approximation 

and table 5.4 for the base-2 logarithm. The table also shows the order of 

approximation that is used for each fraction width. The orders are the same for the 2R 

and correction function approximations because they share the same arithmetic. A 

zero approximation order is a pure table lookup. The number of guard bits g is 5, 3 

and 2 for the 2R, correction and base-2 logarithm functions respectively.

T correction
f aw SOw S lw S2w lw order aw SOw S lw S2w lw order
3 3 f+g+1 X X 0 zero 3 f+g X X 0 zero
4 4 f+g+1 X X 0 zero 4 f+g X X 0 zero
5 5 ft-g+i X X 0 zero 5 f+g X X 0 zero
6 6 f+R+l X X 0 zero 6 f+g X X 0 zero
7 7 f+g+1 X X 0 zero 7 f+g X X 0 zero
8 4 f+g+1 f+8 X 4 fst 3 f+g f+g+1 X 5 fst
9 5 f+g+1 f+g X 4 fst 3 f+g f+g+1 X 6 fst
10 5 f+g+1 f+g X 5 fst 3 f+g f+g+1 X 7 fst
11 6 f+g+1 f+g X 5 fst 4 f+g f+g+1 X 7 fst
12 7 f+g+1 f+g X 5 fst 4 f+g f+g+1 X 8 fst
13 7 f+g+1 f+g X 6 fst 5 f+g f+g+1 X 8 fst
14 5 f+g+l f+8 f+g-2 9 sec 3 f+g f+g f+g-5 11 sec
15 5 f+g+1 f+g f+g-2 10 sec 3 f+8 f+g f+g-5 12 sec
16 5 f+g+1 f+g f+g-2 11 sec 3 f+g f+g f+g-5 13 sec
17 5 f+g+1 f+g f+g-2 12 sec 3 f+g f+g f+g-5 14 sec
18 5 f+g+1 f+g f+g-2 13 sec 3 f+g f+g f+g-5 15 sec
19 6 f+g+1 f+g f+g-2 13 sec 3 f+8 f+g f+g-5 16 sec
20 6 f+g+1 f+g f+g-2 14 sec 3 f+g f+g f+g-5 17 sec
21 6 f+g+1 f+g f+g-2 15 sec 3 f+g f+g f+g-5 18 sec
22 6 f+g+l f+g f+g-2 16 sec 4 f+g f+g f+g-5 18 sec
23 7 f+g+1 f+g f+g-2 16 sec 4 f+g f+g f+g-5 19 sec

Table 5.3. Address (aw), content (SXw) and LSB (lw) width of the correction and 2R
function approximations
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log2
f f+3 aw SOw S lw S2w lw order
3 6 6 f+g+3 X X 0 zero
4 7 7 f+g+3 X X 0 zero
5 8 4 f+g+3 f+g+4 X 4 fst
6 9 4 f+g+3 f+g+4 X 5 fst
7 10 4 f+g+3 f+g+4 X 6 fst
8 11 4 f+g+3 f+g+4 X 7 fst
9 12 5 f+g+3 f+g+4 X 7 fst
10 13 5 f+g+3 f+g+4 X 8 fst
11 14 6 f+g+3 f+g+4 X 8 fst
12 15 6 f+g+3 f+g+4 X 9 fst
13 16 7 f+g+3 f+g+4 X 9 fst
14 17 7 f+g+3 . f+g+4 X 10 fst
15 18 5 f+g+3 f+g+4 f+g+3 13 sec
16 19 5 f+g+3 f+g+4 f+g+3 14 sec
17 20 5 f+g+3 f+g+4 f+g+3 15 sec
18 21 6 f+g+3 f+g+4 f+g+3 15 sec
19 22 6 f+g+3 f+g+4 f+g+3 16 sec
20 23 6 f+g+3 f+g+4 f+g+3 17 sec
21 24 7 f+g+3 f+g+4 f+g+3 17 sec
22 25 7 f+g+3 f+g+4 f+g+3 18 sec
23 26 7 ...fts+3 f+g+4 f+g+3 19 sec

Table 5.4. Address (aw), content (SXw) and LSB (lw) width of the base-2 log
function

5.9.2 Parallel-lookup function approximation

The proposed parallel-lookup function approximation scheme constrains the delay of 

the addition/subtraction function to include only a single polynomial approximation. 

A similar, but slightly modified, function decomposition as was used for the dual-path 

approximation is adopted and the output of the scheme is designed to have better- 

than-floating-point accuracy. The function domains are large for the parallel-lookup 

scheme and so for fraction widths above 7-bits they are partitioned up into subsections 

which complicates the design but reduces the area of the coefficient ROMs.

5.9.2.1 Function decomposition

The addition function is approximated for the whole domain of R e ( - ( /  + 2),0] 

using a single polynomial approximation. For fraction widths greater than 4-bits the 

subtraction function domain is split into two intervals. For fraction widths of 5 to 7- 

bits the two intervals are R e ( - ( f  + 2 ),-l] and (-1, 0). The first interval is 

approximated using a polynomial approximation and the second interval is 

approximated using a single ROM with an / b i t  address. For fraction widths above 7- 

bits the first interval R e ( - ( f  + 2),-2] is approximated using a single polynomial
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approximation. The second interval (-2, 0) is approximated using the identity given in 

(5.47), which requires two function approximations: one for the base-2 log function 

for the domain [1,2) and the other for the ‘correction’ function for the domain (-2, 0).

S.9.2.2 Addition function approximation

/ domain Input width Domain split
3 (-5 ,0] 6

o]
4 (-6 ,0] 7
5 (-7 ,0] 8
6 (-8 ,0] 9
7 (-9 ,0] 11
8 (-10,0] 12

(-(A 2 ),-8 ] (-8 ,-4] (-4 ,-2] (-2 ,0]

9 (-11,0] 13
10 (-12,0] 14
11 (-13,0] 15
12 (-14,0] 16
13 (-15,0] 17
14 (-16,0] 18
15 (-17, 0] 20

(-(ft-2), -16] (-16, -8] (-8, -4] (-4, 0]

16 (-18,0] 21
17 (-19, 0] 22
18 (-20, 01 23
19 (-21,0] 24
20 (-22,0] 25
21 (-23, 0] 26
22 (-24, 0] 27
23 (-25,0] 28

Table 5.5. The domain, input widths and the domain splits of the addition function
for various fraction widths

For a fraction width of 3 to 4 bits the input domain is not split and a full table lookup 

is used to approximate the LNS addition function, as the input is has a maximum of 7 

input bits. For a fraction width of 5 to 7 bits the LNS addition function is 

approximated using a single piecewise polynomial and the domain is not split. For 

every fraction length from 8 to 23 bits the addition function domain is split into four 

intervals. The four interval boundaries for each fraction length from 8 to 23 bits are 

shown in table 5.5. The interval boundaries are all placed at power of 2 values, which 

is done for two reasons: firstly this placement of the boundaries enables the more non

linear parts of the function to be approximated over narrower intervals. The narrower 

intervals make the ROM address widths roughly even for each of the four boundaries, 

which is desirable for the ROM construction. Secondly, the chosen intervals allow 

leading zeros to be omitted from the ROMs thus reducing the ROM’s size. For each
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of the four intervals a separate piecewise polynomial approximation is used. For a 

fraction width / o f  8 to 10 bits a first order piecewise polynomial approximation is 

used for each of the four intervals and for a width of 11 to 23 bits a second order 

approximation is used.

First order approximation (5 to 7 bits)

For a fraction width /  of 5 to 7 bits a single piecewise polynomial approximation is 

used to approximate the LNS addition function. Two coefficient ROMs, a single 

multiplier and a single adder are used to approximate the function. The ROMs are 

addressed directly with the input argument R and the outputs of the ROMs directly 

feed the multipliers and adders in the polynomial evaluation arithmetic. The 

approximation looks very similar to the structure in figure 5.14 except the addressing 

multiplexers and interval selection are not required.

R n R i

Interval
selection

7

SO ROM
dJt-1 djy

x
u ir

7

+
T

log2(l + 2*)

Figure 5.14. The first order approximation of the LNS addition function

First order approximation (8 to 10 bits)

Two ROMs (SO and SI) are needed for a first order approximation, which are both 

addressed by the MSBs of the input argument to the function. Four separate first 

order approximations are needed and they can all share the same arithmetic hardware.
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As the arithmetic is shared the ROMs need to be multiplexed to the arithmetic logic. 

For the first order approximation all the four SO ROMs are grouped into one ROM 

and the input addressing is controlled by a multiplexer, which selects the input 

address depending on the interval the input argument is in. A similar scheme is used 

for the SI ROM. The LSBs of the input argument that are passed to the 

approximation arithmetic also differs for each of the four intervals therefore a 

multiplexer is used to select the correct LSB slice. Hardware sharing is not a problem 

providing careful attention is paid to the weighting of all bits and the width of all data 

paths so that the function output is correct. Where a signal is not long enough for a 

particular data path it must be padded with zeros in the correct place. The first order 

approximation hardware is shown in figure 5.14.
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Figure 5.15. Second order approximation of the LNS addition function

Second order approximation (11 to 23 bits)
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The second order approximation needs three ROMs (SO, SI and S2). For 11 to 17 bits 

the ROM structure and addressing is similar to that used for the first order 

approximation for 8 to 10 bits. However, above 17 bits an alternative addressing and 

ROM structure is used that is more area efficient. As there are four intervals there are 

four different SO, SI and S2 ROMs. If the ROMs that are grouped each require 

different address widths to achieve the required accuracy then grouping the ROMs 

into one is inefficient since the address width of some ROMs must increase beyond 

the minimum required width. An alternative scheme to the ROM grouping is to keep 

each ROM separate and multiplex the output to select the required interval 

coefficients. The input address value is hardwired for each coefficient ROM. Figure 

5.15 shows the hardware structure of the second order approximation.

5.9.2.3 Subtraction function approximation

f domain Input width Domain split
3 _ (-5 ,0] 6

(-(A 2), 0]4 (-6 ,0] 7
5 (-7 ,0] 8

(-(A 2), -1] (-1, 0]6 (-8 ,0] 9
7 (-9,01 11
8 (-10, 0] 12

(-(A 2), -8] (-8, -6] (-6, -4] (-4, -2] (-2, 0]

9 (-11,0] 13
10 (-12,0] 14
11 (-13,0] 15
12 (-14,0] 16
13 _ (-15,0] 17
14 (-16,0] 18
15 (-17,0] 20

(-(A 2), -16] (-16, -8] (-8, -4] (-4, -2] (-2, 0]

16 (-18,0] 21
17 (-19,0] 22
18 (-20, 0] 23
19 (-21,0] 24
20 (-22, 0] 25
21 (-23,0] 26
22 (-24,0] 27
23 (-25,01 28

Table 5.6. The domain, input widths and the domain splits of the subtraction function
for various fraction widths

As stated the subtraction function domain for fraction widths greater than 4-bits is 

split into two parts. Following the method for addition full table lookup is used for 

fraction widths of 3 and 4-bits. A single piecewise polynomial approximation is used 

for fraction widths of 5 to 7-bits on the domain^ e ( - ( /+ 2 ) , - l ] . From 8 to 10-bits
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and 11 to 23-bits first and second order approximations respectively are used, which 

have a four-interval domain split for the domain R e  ( - ( /+ 2 ) ,-2 ] . The four 

intervals the domain# e ( - ( /  + 2),-2] is split into for each fraction width is shown in 

table 5.6. For fraction widths of 5 to 7 bits the domain interval (-1,0] is approximated 

using a single ROM that is addressed by the / fraction bits of the input argument. For 

fraction widths of 8 to 23 bits the domain interval (-2 ,0) is approximated using the 

identity given in equation (5.47), which requires a base-2 log and a correction 

function to be calculated in parallel. The correction function and LNS subtraction 

function never need to be calculated simultaneously so the arithmetic logic to 

calculate the LNS subtraction approximation can be shared between both functions. 

A multiplexer is used to select the ROMs that feed the polynomial evaluation 

hardware. The base-2 log function is calculated for the domain [1, 2) in parallel with 

the correction function using separate arithmetic and ROMs. If the argument is not in 

this interval it is left shifted until it is and the left shift quantity is subtracted from the 

approximation result.

S.9.2.4 A new idea

During the writing of this thesis it became apparent that the correction and base-2 log 

functions can share the same arithmetic due to the following observation. The 

correction function and base-2 logarithm functions are approximated by polynomials 

shown in (5.63) and (5.64) respectively.

corr » a ,  x2 + b „ x  + (5.63)corr corr corr  v /

log2 » atx2 + b{x + Cj ___(5.64)

The sum of the two equations that is required to evaluate the subtraction function for 

the domain (-2, 0) is given in (5.65).

corr + log2 * (ac<„  + a, )x2 + {bcorr +b,)x + ( c ^  + c,) ---- (5.65)

Providing the x terms are the same width and weighting the base-2 log and correction 

functions can be approximated using the same arithmetic just by adding the 

coefficients as shown by (5.65). There are trade offs in reducing the arithmetic logic, 

which include: Extra adders are required to add the coefficients, which will add to the
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area; The ROM flexibility is lost because the address widths of both coefficient 

ROMs must be equal; The scheme adds another layer of complication to the design. 

However, the optimisation constrains the overall arithmetic logic of the logarithmic 

addition/subtraction function approximation to be that of a second/first order 

polynomial. The scheme can easily be pipelined keeping the single-issue cycle 

property. The scheme has not been included in the final design due to time 

restrictions and has been left as a future work.

5.9.2.5 Combining the addition/subtraction functions with hardware sharing

The addition/subtraction functions use the same order of approximation and the same 

number of function splits. The functions never need to be calculated simultaneously 

thus they can be combined and the arithmetic hardware can be shared. The complete 

addition/subtraction approximation including the approximation for the correction 

function is shown in figure 5.16 for the second order case.
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Figure 5.16. The addition/subtraction and correction function approximation

200



Chapter 5 Logarithmic number system

5.9.2.6 Utilising the Virtex-II FPGA on chip memory resource

The Virtex-II FPGA contains on chip memory blocks Xilinx [35], which can be 

configured in a 9-bit address, 36-bit content format. The 23-bit fraction LNS format 

requires the domain of the LNS addition function to be split into 4 sections, where 

each section is approximated with a 2nd degree polynomial. The 2nd order polynomial 

requires each section to have three coefficient ROMs SO, SI and S2, where each has a 

maximum address width of 7-bits. The four SO ROMs (one for each section) can be 

combined into one blockRAM component when it is configured in the 9-bit address 

36-bit content format. The same can be done with the SI and S2 ROMs. The same 

can also be done for the subtraction function, which can also accommodate the 

correction ROMs. This means that the entire add/sub/corr memory can fit into 6 

blockRAMs for a 23-bit fractional implementation. The blockRAMs can be used for 

smaller fraction lengths but it results in inefficient implementations due to the address 

width not being used completely and therefore further use of the blockRAMs is not 

considered in this work.

5.9.2.7 The complete parallel-lookup addition/subtraction function

The complete parallel-lookup addition/subtraction design, which includes the 

approximation of figure 5.16, is shown in figure 5.17. The design shown in figure 

5.17 consists of several components: There is a subtraction component that detects for 

integers larger than/H  because when this occurs the output is to be set to zero. There 

is a NOR gate that detects for an input of zero because when this occurs the 

subtraction of two equal values is being performed and this case is signalled so the 

output can be forced to the special value of zero. The add/sub/corr component is the 

approximation shown in figure 5.16. The output of the add/sub/corr component can 

be negated or set to zero by the addSubZero component. The left shifter, log2 and 

subtracter components are used to calculate the base-2 logarithm function, which is 

required when the input is in the range (-2,0) and a subtraction operation is to be 

performed. Finally the addMux component adds either zero or the base-2 logarithm 

value to the add/sub/corr value.
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Figure 5.17. The complete parallel-lookup addition/subtraction function

5.9.2.8 Lookup table content and address widths for the parallel-lookup method

Base-2 logarithm

The base-2 log function is approximated for the domain [1,2) and has a range of 

[0, 1). Table 5.7 shows the address width, content width, order of approximation, 

LSB width and the guard bit quantity for the base-2 logarithm function.
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f aw SOw S lw S2w lw order g
8 4 f+g f+g+1 X 4 fst 5
9 5 f+g f+8+1 X 4 fst 5
10 5 f+g f+g+1 X 5 fst 5
11 6 f+g f+g+1 X 5 fst 5
12 6 f+g f+g+1 X 6 fst 5
13 7 f+g f+g+1 X 6 fst 5
14 7 f+g f+g+1 X 7 fst 5
15 4 f+g f+g+1 f+g 11 sec 5
16 5 f+g f+g+1 f+g 11 sec 5
17 5 f+g f+g+1 f+g 12 sec 5
18 5 f+g f+g+1 f+g 13 sec 5
19 6 f+g f+g+1 f+g 13 sec 5
20 6 f+g f+g+1 f+g 14 sec 5
21 7 f+8 f+g+1 f+g 14 sec 5
22 7 f+g f+g+1 f+g 15 sec 5
23 7 f+g f+g+1 f+8 16 sec 5

Table 5.7. Base-2 logarithm implementation details

Correction function

The correction function has a domain of (-2, 0) and a range of (-1.5, 0). Table 5.8 

shows the address width, content width, order of approximation, LSB width and the 

guard bit quantity for the correction function.

f aw SOw S lw S2w lw order g
8 4 f+g+1 f+g-1 X 5 fst 3
9 4 f+g+1 f+g-1 X 6 fst 3
10 5 f+g+1 f+g-1 X 6 fst 3
11 4 f+g+1 f+g f+g-5 . 8 sec 3
12 4 f+g+1 f+g f+g-5 9 sec 3
13 4 f+g+1 f+g f+g-5 10 sec 3
14 4 f+g+1 f+g f+g-5 11 sec 3
15 4 f+g+1 f+g f+g-5_ 12 sec 3
16 4 f+g+1 f+g f+g-5 13 sec 3
17 4 f+g+1 f+g f+g-5 14 sec 3
18 4 f+g+1 f+g f+g-5 15 sec 3
19 5 f+g+1 f+g f+g-5 15 sec 3
20 5 f+g+1 f+g f+g-5 16 sec 3
21 5 f+g+1 f+g f+g-5 17 sec 3
22 5 f+g+1 f+g f+g-5 18 sec 3
23 6 f+g+1 f+g f+8-5 18 sec 3

Table 5.8. Correction function implementation details

LNS addition function

The LNS addition function has a domain of (-(/+ 2), 0] and a range of [0,1]. Table 5.9 

shows the address width, content width, order of approximation, LSB width and the
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guard bit quantity for the LNS addition function. For a fraction width of 8 to 17-bits 

the input domain is split, however the ROMS are grouped together and table 5.9 

reflects this fact.

f Domain Input
width

Integer
width

aw SOw S lw S2w lw order g

3 (-5, 0] 6 3 6 f+1 X X 0 zero 0
4 (-6 ,0] 7 3 7 f+1 X X 0 zero 0
5 (-7 ,0] 8 3 4 f+g+1 f+g-1 X 4 fst 3
6 (-8 ,0] 9 3 5 f+g+i f+g-1 X 4 fst 3
7 (-9, 0] 11 4 6 f+g+i f+g-1 X 5 fst 3
8 (-10, 0] 12 4 6 f+g+1 f+g-1 X 6 fst 3
9 (-11,0] 13 4 6 f+g+1 f+g-1 X 7 fst 3
10 (-12, 0] 14 4 7 f+g+1 f+g-1 X 7 fst 3
11 (-13, 0] 15 4 5 f+g+1 f+g f+g-3 10 sec 3
12 (-14, 01 16 4 5 f+g+1 f+g f+g-3 11 sec 3
13 (-15, 0] 17 4 5 f+g+1 f+g f+g-3 12 sec 3
14 (-16, 0] 18 4 6 f+g+1 f+g f+g-3 12 sec 3
15 (-17, 0] 20 5 7 f+g+1 f+g f+g-3 13 sec 3
16 (-18, 0] 21 5 7 f+g+1 f+g f+g-3 14 sec 3
17 (-19, 01 22 5 7 f+g+1 f+g f+g-3 15 sec 3

Table 5.9. LNS addition function implementation details

For fraction widths of 18 to 23-bits the ROMs are not combined and separate address 

and content widths are needed for each interval the domain is split into. Tables 5.10 

and 5.11 show the details of the ROMs used when the fraction width is 18 to 23-bits.

f Domain Input
width

Integer
width

Domain split (-4, 0] Domain split (-8, -4] g
aw SOw S lw S2w aw SOw S lw S2w

18 (-20, 0] 23 5 6 f+g+l f+g f+g-3 5 f+g-3 f+g-4 f+g-5 3
19 (-21,01 24 5 6 f+g+1 f+g f+g-3 6 f+g-3 f+g-4 f+g-5 3
20 (-22,0] 25 5 6 f+g+l f+g f+g-3 6 f+g-3 f+g-4 f+g-5 3
21 (-23, 0] 26 5 7 f+g+1 f+g f+g-3 6 f+g-3 f+g-4 f+g-5 3
22 (-24,0] 27 5 7 f+g+1 f+g f+g-3 7 f+g-3 f+g-4 f+g-5 3
23 . (-25? 0] 28 5 7 f+g+l f+g f+g-3 7 f+g-3 f+g-4 f+g-5 3

Table 5.10. LNS addition function implementation details

f Domain Input
width

Integer
width

Domain split (-16, -8] Domain split (-(f+2), -16] g
aw SOw S lw S2w aw SOw S lw S2w

18 (-20, 0] 23 5 5 f+g-7 f+g-8 f+g-9 4 f+g-15 f+g-15 f+g-16 3
19 (-21, 0] 24 5 5 f+g-7 f+g-8 f+g-9 4 f+g-15 f+g-15 f+g-16 3
20 (-22, 0] 25 5 6 f+g-7 f+g-8 f+g-9 4 f+g-15 f+g-15 f+g-16 3
21 (-23, 01 26 5 6 f+g-7 f+g-8 f+g-9 4 f+g-15 f+g-15 f+g-16 3
22 (-24,0] 27 5 6 f+g-7 f+g-8 f+g-9 4 f+g-15 f+g-15 f+g-16 3
23 (-25,0] 28 5 7 f+g-7 f+g-8 f+g-9 4 f+g-15 f+g-15 f+g-16 3

Table 5.11. LNS addition function implementation details
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LNS subtraction function

The LNS subtraction function has a domain of 0) and a range of (-(/+-1), 0].

Table 5.12 shows the address width, content width, order of approximation, LSB 

width and the guard bit quantity for the LNS subtraction function. The various 

domains for different fraction widths are shown in the table. For a fraction width of 8 

to 17-bits the input domain is split, however the ROMs are grouped together and table 

5.12 reflects this fact.

f Domain Input
width

Integer
width

aw SOw S lw S2w lw order g

3 (-5,0] 6 3 6 5 X X 0 zero 0
4 K 0 ] 7 3 7 7 X X 0 zero 0
5 (-7,-1] 8 3 5 f+g+1 f+g-1 X 3 fst 3
6 (-8,-1] 9 3 6 f+g+1 f+g-1 X 3 fst 3
7 (-9,-1] 11 4 7 f+g+1 f+g-1 X 4 fst 3
8 (-10,-2] 12 4 6 f+g-1 f+g-1 X 6 fst 3
9 (-11,-2] 13 4 6 f+g-1 f+g-1 X 7 fst 3
10 (-12,-2] 14 4 7 f+g-1 f+g-1 X 7 fst 3
11 (-13, -2] 15 4 5 f+g-1 f+g-1 f+g-2 10 sec 3
12 (-14, -2] 16 4 5 f+g-1 f+g-1 f+g-2 11 sec 3
13 (-15,-2] 17 4 6 f+g-1 f+g-1 f+g-2 11 sec 3
14 (-16, -2] 18 4 6 f+g-1 f+g-1 f+g-2 12 sec 3
15 (-17,-21 20 5 6 f+g-1 f+g-1 f+g-2 14 sec 3
16 (-18, -2] 21 5 7 f+g-1 f+g-1 f+g-2 14 sec 3
17 (-19,-2] 22 5 7 f+g-1 f+g-1 f+g-2 15 sec 3

Table 5.12. LNS subtraction function implementation details

For fraction widths of 18 to 23-bits the ROMs are not combined and separate address 

and content widths are needed for each interval the domain is split into. Tables 5.13 

and 5 .14 show the details of the ROMs used when the fraction width is 18 to 23-bits.

f Domain Input
width

Integer
width

Domain split (-4, -2] Domain split (-8, -4] g
aw SOw S lw S2w aw SOw S lw S2w

18 (-20, 0] 23 5 5 f+g-1 f+g-1 f+g-2 5 f+g-3 f+g-3 f+g-5 3
19 (-21,0] 24 5 6 f+g-l f+g-l f+g-2 6 f+g-3 f+g-3 f+g-5 3
20 (-22, 0] 25 5 6 f+g-1 f+g-1 f+g-2 6 f+g-3 f+g-3 f+g-5 3
21 (-23, 01 26 5 6 f+g-l f+g-l f+g-2 6 f+g-3 f+g-3 f+g-5 3
22 (-24, 0] 27 5 6 f+g-1 f+g-1 f+g-2 7 f+g-3 f+g-3 f+g-5 3
23 (-25, 0] 28 5 7 f+g-l f+g-l f+g-2 7 f+g-3 f+g-3 f+g-5 3

Table 5.13. LNS subtraction function implementation details
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f Domain Input
width

Integer
width

Domain split (-16, -8] Domain split (-(f+2), -16] g
aw SOw S lw S2w aw SOw Slw S2w

18 (-20,01 23 5 5 f+g-7 f+g-7 f+g-9 4 f+g-15 f+g-15 f+g-17 3
19 (-21,0] 24 5 5 f+g-7 f+g-7 f+g-9 4 f+g-l 5 f+g-15 f+g-17 3
20 (-22, 01 25 5 6 f+g-7 f+g-7 f+g-9 4 f+g-15 f+g-15 f+g-17 3
21 (-23, 01 26 5 6 f+g-7 f+g-7 f+g-9 4 f+g-15 f+g-15 f+g-17 3
22 (-24,01 27 5 6 f+g-7 f+g-7 f+g-9 4 f+g-15 f+g-15 f+g-17 3
23 (-25,0] 28 5 7 f+g-7 f+g-7 f+g-9 4 f+g-15 f+g-15 f+g-17 3

Table 5.14. LNS subtraction function implementation details

Now a method to calculate the LNS addition/subtraction function with the required 

accuracy has been determined attention can be focused on the other parts of the LNS 

addition/subtraction component.

5.9.3 An addition or subtraction operation?

The XOR of the operand’s sign bits and the input operator, which has the convention 

of being ‘1’ for subtract and ‘0’ for add, determines whether an addition or subtraction 

operation is required.

5.9.4 Calculating the largest magnitude and the difference

The sign bit of the subtraction of the two input operand magnitudes can be used to 

determine the largest and the smallest magnitudes. By connecting the sign bit to two 

multiplexers the largest and smallest values can be chosen. The difference can be 

found by using a subtraction component.

5.9.5 Sign logic

The output sign is determined by the operator, the signs of the two inputs and by 

which operand has the largest magnitude.

5.9.6 Special value detection

The five special values are encoded using reserved integers and can be detected for by 

using wide logic gates and single LUTs configured as 4 input functions. Figure 5.18 

shows the logic to detect for the five special values of NaN, Inf, Normal, Denormal 

and Zero.
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Figure 5.18. LNS five special value detection component

5.9.7 Special value input and output combinations

The table of the output values depending on the different combinations of special 

input values is the same as that used for floating-point addition and the reader is 

referred to the table 3.5 of section 3.5.6.1.

5.9.8 Overflow/underflow detection

Overflow and underflow is determined by checking the final result.

5.9.8.1 Overflow

The largest magnitude operand (remember the magnitude is a two’s complement 

number) is “01... 1.1... 1” and any value larger than this results in overflow. Adding 

two of the largest magnitude operands results in the largest result of an addition which 

is “(0)10...0.1... 1”. The bracketed bit is an extra bit added to determine the sign of 

the overflow. Overflow is therefore detected by checking for an integer pattern of 

“(0)10... 0”. When overflow is detected the output is forced to infinity.

5.9.8.2 Underflow

The smallest permissible magnitude operand is “10...010.0...0” and any value 

smaller than this results in underflow. The smallest value that can be the result of a
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subtraction depends on the number of fraction bits. Underflow is detected by the 

following integer bit patterns:

(D10...01
( 1 ) 10...00 
( 1 )  0 X . . X X

The output is forced to zero if underflow is detected.
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Figure 5.19. Com plete logarithmic number system adder diagram
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5.9.9 Complete LNS addition design

A block diagram of the complete LNS adder is shown in figure 5.19. The ‘Detect 

zero or zero’ component detects for either input being zero because if this occurs the 

output is set to the input that is not zero (providing an exception case is not detected). 

The ‘mdBit’ component generates the rounding bit that feeds the addMux component 

to round the output using the round-to-nearest scheme. If one input operand is zero 

then the output of the addMux does not need to be rounded hence the ‘mdBit’ 

component depends on the ‘zeroOrZero’ value.

5.10 Logarithmic number system multiplication

Multiplication is a very simple operation in the LNS as it is simply a fixed-point 

addition operation. Consider two LNS values K and M given by equations (5.66) and 

(5.67) respectively.

*  = log2W  ___(5.66)

M  = log2(Y) ___(5.67)

Equations (5.68) and (5.69) show the linear domain multiplication operation and 

corresponding logarithmic domain multiplication operation respectively.

X * Y  = 2k *2¥  (5.68)

log2(X *Y) = log2(2* *2m) = K + M  ___(5.69)

The LNS word format consists of two fields. To perform the full multiplication 

operation the sign bits are XORed and the magnitude bits are added using a fixed- 

point adder.

5.10.1 LNS multiplication error

As two values are added using fixed-point arithmetic there are no bits generated 

below the input LSB position and therefore the result does not need to be rounded. 

Furthermore the LNS multiplication is an exact operation and does not add any error 

to the computation except in the cases of underflow and overflow.
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5.10.2 Special value detection and handling

Special values are detected as for LNS addition. The special value handling is the 

same as for floating-point multiplication and the reader is referred to table 3.8 in 

section 3.61.

5.10.3 Overflow/Underflow detection and handling

Overflow and underflow are determined by checking the result of the fixed-point 

addition. The adder is extended by one extra bit so the extended output integer part 

can be used to check for overflow and underflow. In the following the bracketed term 

is the extended bit.

5.10.3.1 Overflow

An output integer pattern range of (5.70) signals that overflow has occurred. 

[(0)11.11, (0)10.00] ___(5.70)

Therefore overflow is determined by checking the top two bits, where “(0)1” signals 

that overflow has occurred. If overflow is detected the output is set to infinity.

5.10.3.2 Underflow

An integer bit pattern in the range of (5.71) signals that underflow has occurred. 

[(1)10...0001, (1)00...0100] ___(5.71)

Therefore underflow is signalled by the following integer bit patterns:

(1)10...OX 
(1)0X...XX

The underflow bit patterns can be detected by checking the top two bits and taking the 

logical OR of the middle i-2 bits to detect for a group of z-2 zeros. If underflow is 

detected the output is set to zero.

5.10.4 Complete LNS multiplier diagram

The complete logarithmic number system multiplier design is shown in figure 5.20.
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Figure 5.20. Complete logarithmic number system multiplier diagram 

5.11 Logarithmic number system division

Division is a very simple operation in the logarithmic number system as it is simply a 

fixed-point subtraction operation. Consider the two LNS values given by equations 

(5.72) and (5.73) respectively.

*  = log2W  ___(5.72)

A/ = log2(Y) ___(5.73)

Equations (5.74) and (5.75) show the linear domain division operation and 

corresponding logarithmic domain operation.
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f
log2 IT =1°B

r 2K \

2M K - M  ___(5.75)

The LNS word format consists of two fields. To perform the full division operation 

the sign bits are XORed and the magnitude parts are subtracted using a fixed-point 

subtracter.

5.11.1 LNS division error

As two magnitudes are subtracted using a fixed-point subtracter no bits below the 

LSB position are generated and therefore the result does not need to be rounded. The 

LNS division operation is exact except in the cases of overflow and underflow.

5.11.2 Special value detection and handling

Special values are detected as for LNS addition. The special value handling is the 

same as for floating-point division and the reader is referred to the table 3.9 in section 

3.7.1.

5.11.3 Overflow/underflow detection and handling

The subtraction component is extended by one bit so that the sign of the resultant 

value can be determined if overflow or underflow occur. The extended bit is shown 

in brackets in the following.

5.11.3.1 Overflow

An integer bit pattern range of (5.76) signals that overflow has occurred.

[(0)10...000,(0)11...101]____ ___(5.76)

Therefore overflow is determined by checking the top two bits where “(0)1” indicates 

that overflow has occurred. If overflow is detected the output is set to infinity.

5.11.3.2 Underflow

An integer bit pattern range of (5.77) signals that underflow has occurred.

[(1)10.001, (1)00.010] ___(5.77)

Therefore underflow is determined by checking for the following bit patterns:
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(1)10...OX 
(1)0X...XX

The underflow bit patterns can be detected by checking the top two bits and taking the 

logical OR of the middle i-2 bits to detect for a group of i-2 zeros. If underflow is 

detected the output is set to zero.

5.11.4 Complete LNS divider diagram

The complete logarithmic number system divider design is shown in figure 5.21.

Ks Ms Kv Mv

i+1

Overflow/
Underflow

Special
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detection

Special
value
detection

Exception control

Z5 Zv,

Figure 5.21. Complete logarithmic number system divider diagram

5.12 Logarithmic number system powering

Powering is a simple fixed-point multiplication operation in the LNS. Consider the 

LNS value K  given by (5.78).

K = log2(AT) ___(5.78)
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The linear and corresponding logarithmic operation of powering is given by equations 

(5.79) and (5.80).

X p = ( l K )P ___(5.79)

log2 ( X p ) = log2 ((2* ) '  ) = P'* log2 (2 k ) = P * K  ___(5.80)

5.12.1 Powering error

The powering operation is exact for integer powers and can be correctly rounded for 

powers with fractional sections. The exact rounding commits at worst the worst-case 

relative rounding error that was shown in equation (5.11) in section 5.5.

5.13 Logarithmic number system square root

P equal to 0.5 is the special case powering operation of square root. From (5.80) it 

can be seen that in the logarithmic domain the square root operation is a 

multiplication by 0.5, which is a single bit right shift.

5.13.1 LNS square root rounding

The single bit right shift means a single bit below the LSB is created that must be 

rounded. The rounding can be done by truncation because at most a lA ulp error will 

be committed in the truncation as only a single bit is being discarded. Furthermore a 

rounding adder is not required.

5.13.2 Special value detection and handling

Special values are detected in the same way as for LNS addition. The special values 

are handled in the same way as for floating-point square root and the reader is referred 

to the table 3.12 of section 3.8.1.

5.13.3 Overflow/underflow

The result of a square root operation cannot overflow or underflow.

5.13.4 The complete LNS square root diagram

The complete logarithmic number system square root operator design is shown in 

figure 5.21. The right shift operation is hardwired and the LSB is discarded. The
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result of the right shift is sign extended so the output has the correct number of bits. 

The sign bit remains unchanged.

Ks Kv

Special
value
detection

Exception
control

Single bit 
right shift 
with sign 
extension

»

Figure 5.22. Complete logarithmic number system square root diagram 

5.14 LNS implementation results

All the logarithmic number system operators have been designed to be

parameterisable in terms of the integer and fraction widths and these values are set at 

design time. In this section the implementation results for the LNS addition, 

multiplication, division and square root operators are given and are compared with 

other published designs. LNS designs are not as common as floating-point as only 

seven other authors give design statistics for LNS components. Similar area and 

delay calculating techniques as used for floating-point are used here. Two sets of

design results are presented for LNS addition to compare the dual-path and parallel

lookup methods.

5.14.1 LNS addition results

Table 5.15 summarises the dual-path LNS addition Xilinx XC2V1000-4 Virtex-II 

FPGA implementation results using version 5.1.03i of the Xilinx place and route tools
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and technology speed files created by Xilinx on 01/11/2002. Table 5.16 summarises 

the parallel-lookup LNS addition implementation results.

0>f)
Area

(slices)
Area

ffs/LUTs
Delay 

_ (ns)
Area

(slices)
Area

ffs/LUTs
Embed
Mults

Delay
(ns)

V 141 10/271 41.4 122 10/233 1 41.7
4 ,7 249 12/440 46 214 12/367 1 43.6
4 ,9 288 14/556 57.9 202 14/382 2 55.6

4, 11 426 16/827 60.5 310 16/592 2 58.8

6 ,9 296 16/572 59 208 16/398 2 57.6
6, 11 436 18/844 61 320 18/609 2 58.1
6, 13 682 20/1250 65.2 558 20/980 2 67.3
6, 15 914 22/1727 100.5 486 22/911 4 100.2
6, 17 1103 24/2099 101 617 24/1155 4 102.2
6, 19 1404 26/2688 105.9 871 26/1646 4 108.1

8,11 442 20/858 61.7 326 20/623 2 62
8, 13 688 22/1264 66.8 564 22/994 2 67.9
8, 15 921 24/1741 101.3 492 24/925 4 102.5
8, 17 1110 26/2113 102.6 623 26/1169 4 103.2
8, 19 1409 28/2702 106.3 877 28/1660 4 107.9
8,21 1776 30/3373 118.4 1213 30/2280 4 118.8
8, 23 2170 32/4097 123.6 1608 32/3016 4 125.5

Table 5.15. Dual-path LNS addition implementation results

0 ,f )
Area

(slices)
Area

ffs/LUTs
Delay
(ns)

Area
(slices)

Area
ffs/LUTs

Embed
Mults

Delay
(ns)

4 ,5 133 10/249 26.5 87 10/169 1 27.6
4 ,7 195 12/340 29.1 171 12/298 1 28
4 ,9 307 14/586 38.3 259 14/480 2 38.2
4,11 504 16/962 55.5 318 16/613 3 47.6

6 ,9 321 16/605 39 271 16/500 2 39.4
6,11 518 18/987 56.5 337 18/644 3 49
6, 13 741 20/1385 58 495 20/917 3 50.8
6, 15 1053 22/1840 61.5 635 22/1033 4 58
6 ,1 7 1368 24/2317 64.9 909 24/1433 4 62.7
6, 19 1839 26/3526 69.9 1358 26/2585 4 69.4

8, 11 528 20/1005 57.5 348 20/660 3 49.5
8, 13 753 22/1404 59.2 504 22/934 3 51.6
8, 15 1063 24/1857 62 644 24/1049 4 59.4
8, 17 1380 26/2335 66.3 921 26/1450 4 64
8, 19 1848 28/3543 72.3 1367 28/2601 4 70.1
8, 21 2498 30/4712 73.9 1985 30/3710 4 75.3
8, 23 3607 32/6567 74.9 3062 32/5511 4 76

Table 5.16. Parallel-lookup LNS addition implementation results
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Due to time restrictions efficient pipelining of the designs has not been undertaken 

and so results are only given for single cycle designs. The pipelining study has been 

left as a future work. Two sets of design results are shown in tables 5.15 and 5.16. 

One set where the design uses only slices and another where slices and embedded 

multipliers are used. From tables 5.15 and 5.16 it can be seen that the area and delay 

is mostly dependent on the fraction length and due to this the comparison of the two 

methods will only be made for any one fractional width i.e. only (8, 11) (say) not 

(8, 11) and (6, 11). Figure 5.23 compares the area of the two LNS addition methods. 

Figure 5.23 compares only the implementations that do not use the embedded 

multipliers. The area results that use the embedded multipliers are shown in figure 

5.24. The delay results are shown in figures 5.25 and 5.26 for the implementations 

that do not and do use the embedded multipliers respectively.
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3 5 0 0

3 0 0 0
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Figure 5.23. The area results of the slice only dual-path [♦] and parallel-lookup [■]
LNS addition methods
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Figure 5.24. The area results of the slice and embedded multiplier dual-path [♦] and 
parallel-lookup [■] LNS addition methods
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Figure 5.25. The delay results of the slice only dual-path [♦] and parallel-lookup [■]
LNS addition methods
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Figure 5.26. The delay results of the slice and embedded multiplier dual-path [♦] and 
parallel-lookup [■] LNS addition methods

5.14.1.1 Comparison of the dual-path and parallel-lookup methods

For fraction widths less than 15-bits the dual-path and parallel-lookup methods are 

very similar in area as shown in figures 5.23 and 5.24. For larger fraction widths the 

area savings of the dual-path method increase, which is because the size of function to 

approximate only depends on the fraction width /  while the parallel-lookup function 

approximation width depends on log2 \  f  + 2] + / .  The parallel-lookup method is

faster than the dual-path method, which is due to the dual-path method having 

sequential function approximations. When the dual-path architecture contains two 

sequential 2nd order function approximations at a fraction length of 15-bits the
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difference in speed of the two methods is substantial. Clearly the area savings of the 

dual-path method are traded for a speed increase.

5.14.1.2 A blockRAM-utilising 8-bit integer, 23-bit fraction parallel-lookup 
design

As mentioned the Virtex-II FPGA contains a number of on chip memory resources 

called blockRAMs. Table 5.17 shows the implementation of a single parallel-lookup 

method that utilises the on chip blockRAM memories. Note that the design is 

pipelined because the blockRAMs are synchronous.

0> f)
Area

(slices) bRAMs Embed
Mults Cycles Delay

(ns)
Cycles*
Delay

8, 23 1210 6 4 5 25 125

Table 5.17. Implementation results of a parallel-lookup design

5.14.1.3 Comparison with other works

Table 5.18 shows the results of six other designs. The various fields of the table are 

described as follows:

Author : this is the corresponding reference, 

i : is the integer field width in bits, 

f : is the fraction field width in bits.

Add/Sub : indicates whether the design can do addition or subtraction only or both. 

Error : this describes the error allowed for the addition/subtraction function. There 

are two choices either BTFP (better-than-floating-point) or faithful.

Slices : this is the equivalent number of Virtex FPGA slices used. 

bRAMs : is the number of blockRAM resources used.

Embed Mults : is the number of on chip multipliers used in the design.

Delay : this is the delay of a single clock cycle.

Cycles : this is the number of cycles it takes for data to pass through a pipelined 

design.

Delay*Cycles : this is the basic delay metric used.

Chip maker : this is the chip maker and corresponding part number the design is 

targeted for.

Year : is the year of publication of the reference.
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Author i f Add/
Sub Error Slices bRAMs Embed

Mults
Delay
(ns) Cycles Delay*

Cycles Chip maker Year

UTIA1
[301]_ 8 10 both BTFP 1229 6 X 12.5 8 100 Xilinx 

XC2V1000-4 03

Matousek
[299] 8 11 both BTFP 720 4 X 20 8 160 Xilinx

XCV2000E-6 02

Kadlec
[295] 8 23 both BTFP 1728 X X 18.9 12 226.8 Xilinx

XCV2000E-6 01

Arnold
[272] 8 23 add Faithful 768 X X X X X Xilinx

XCV300 01

Lewis3
[258] 8 23 add BTFP 2243 X X X X X Xilinx

XCV300 01

Coleman3
[268] 8 23 add BTFP 4209 X X X X X Xilinx

XCV300 01

Matousek
[299] 8 23 both BTFP 1300 96 X 20 8 160 Xilinx

XCV2000E-6 02

UTIA1
[301] 8 23 both BTFP 1843 28 X 14.3 8 114.4 Xilinx 

XC2V1000-4 03

1 Can calculate two operations simultaneously
2 Function lookup tables are stored in external RAM
3 Estimated in Arnold [272]

Table 5.18. Some results on the FPGA implementation of the LNS addition operator

Most of the designs in table 5.18 are for an integer width of 8-bits and a fraction width 

of 23-bits, which is the LNS format equivalent to IEEE single precision. Each 

implementation will be discussed in turn. The 8-bit integer 10-bit fraction design of 

UTIA [301] can calculate 2 operations simultaneously but uses 1229 slices, which is 

more than double the amount required by the proposed parallel-lookup design. 

Furthermore the proposed design does not use any blockRAM memories. The 720 

slice, 4 blockRAM design of Matousek [299] is larger than the proposed parallel- 

lookup design and uses a number of blockRAMs. Kadlec [295] uses off chip RAM to 

store the lookup tables for the LNS add/sub function, which causes a delay overhead 

and means that the number of addition operations that can be placed on a chip is 

limited to 1. Arnold [272] only gives details of the implementation of the addition 

function so a fair comparison is not possible. Arnold [272] also estimates the area for 

the addition functions of Lewis [258] and Coleman [268], but does not mention the
j

subtraction function so again a fair comparison is not possible. The area for a 2 

degree interpolator is given by Arnold [272] to be around 276 slices and we can use 

this figure to estimate the area of the addition function proposed in this work to 

compare with Arnold [272], Lewis [258] and Coleman [265]. The 2nd order LNS 

addition function uses three 512-word memories (a 9-bit address memory), each of 

which are about 26-bits in length allowing for guard bits. 16-slices are needed to 

construct a 9-bit address 1-bit content memory so a total of 3*26*16 + 276 = 1524 

slices are needed for the BTFP addition function. This is better that Lewis [258] and

2 2 0



Chapter 5 Logarithmic number system

Coleman [268] but worst than Arnold [272], which is due to the relaxed error criteria 

used by Arnold. The 8-bit integer, 23-bit fraction design of Matousek [299] is 

mapped to a Virtex-E and utilises 96 blockRAMs. The proposed design, given in 

table 5.17, which uses 6 blockRAMs is mapped to a Virtex-II FPGA. The blockRAM 

sizes of the two technologies is different and if mapped to a Virtex-E FPGA the 

design of table 5.17 would need approximately 19 blockRAMs, which is considerably 

less than the design of Matousek [299]. Finally the 32-bit design of UTIA [301] is 

mapped to a Virtex-II FPGA so a direct comparison with the design of table 5.17 is 

possible. UTIA [301] uses 28 blockRAMs, which is 70% of any resource of a 1M 

gate XC2V1000 FPGA and can calculate two operations simultaneously. The 

proposed 32-bit design in table 5.17 uses a maximum of 23% of the resources of a 1M 

gate XC2V1000 FPGA and so 4 addition/subtraction operations can be placed on a 

single chip. In general a greater than 2X increase in the number of operations that can 

be placed on a single FPGA is possible when using the proposed design of table 5.17 

compared to that of UTIA [301].

5.14.1.4 Comparison with another parameterisable design

Table 5.19 shows the results of a parameterisable design given in Detrey [303], which 

is based on the multipartite function approximation technique. Detrey uses a BTFP 

accuracy bound for the addition and subtraction functions except for the subtraction 

function in the singularity region between -1 and 0. The relaxation of the error bound 

reduces the amount of hardware needed to do the approximation of the subtraction 

function and also increases the error to be worse than floating-point.

i f Add/Sub Add/Sub pipelined ChipSlices delay slices delay Cycles
3 6 114 22 138 10 3 XC2V1000-4
4 7 192 24 219 10 3 XC2V1000-4
5 10 627 25 721 10 4 XC2V1000-4
8 11 1019 28 1133 10 4 XC2V1000-4
6 13 2697 35 2940 10 4 XC2V1000-4
8 15 X X X X X XC2V1000-4
8 23 X X X X X XC2V1000-4

Table 5.19. The LNS addition implementation results of Detrey [303]

Detrey [303] gives pipelined and non-pipelined results, but only the non-pipelined 

results will be considered for comparison purposes. Figure 5.27 compares the area of
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the non-pipelined results of table 5.19 with the slice only results (i.e. not including the 

embedded multipliers) for the parallel lookup approximation shown in table 5.16. 

Figure 5.28 compares the delay of the two mentioned implementations. The 

comparisons are based solely on the fraction width, as the effect of varying integer 

width is relatively small. The largest integer width for a given fraction width is used 

in all cases to enable a fair comparison.

5.14.1.5 Discussion

For small fraction widths of less than 8-bits the area of Detrey’s method is very 

similar to the proposed method and is slightly smaller for fraction widths less than 7- 

bits. Above 8-bits the area of Detrey’s method rapidly increases, which is due to the 

fact that the multipartite method is a first order approximation constructed solely of 

ROMs and adders. Due to the exponential memory increase results above a fraction 

width of 13-bits are not given. Detrey’s method cannot make use of the embedded 

multipliers while the proposed method can and if the embedded multipliers are used in 

the proposed design (table 5.16) it is always smaller. The major advantage of the 

multipartite method is the speed of the design. As figure 5.28 shows the design of 

Detrey is always faster than the proposed design. For small word lengths of less than

7-bits the delay of Detrey’s design is about 17% less than the proposed design, 

however above 7-bits the delay saving increases and it peaks at about 50% for 11-bits. 

Above 11-bits the delay curves of Detrey’s method and the parallel-lookup method 

start to converge.
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Figure 5.27. The variation of the area of the parallel-lookup method [♦] and the 
method of Detrey [■] with fraction width
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Figure 5.28. The variation of the delay of the parallel-lookup method [♦] and the 
method of Detrey [■] with fraction width

5.14.1.6 Conclusion

The proposed parallel-lookup method is superior in terms of area and comparable in 

terms of speed to all other published LNS addition/subtraction designs of equivalent 

accuracy shown in table 5.18. The fastest design is that of Detrey [303] and below 9 

fraction bits the design of Detrey offers a superior area and delay combination 

although the accuracy of Detery’s design is compensated when the subtraction 

function is evaluated in the singularity region. Above 7-bits the ‘slice only’ proposed 

parallel-lookup design is superior to the design of Detrey and furthermore can offer 

even greater savings by making use make use of the on chip embedded multipliers.

5.14.2 LNS multiplication, division and square root results

Table 5.20 shows the implementation results for the LNS multiplication, division and 

square root operators respectively. All results are mapped to a Xilinx Virtex-II 

XC2V1000-4 FPGA.

Multiplication Division Square root
(Lf) Area Area Delay Area Area Delay Area Area Delay

(slices) ffs/LUTs (ns) (slices) ffs/LUTs <»\>. (slices) ffs/LUTs (ns)
4,5 16 10/28 7.1 18 10/31 6.8 11 10/8 4
4,7 17 12/30 7.3 19 12/33 7 12 12/8 4.1
4,9 20 14/34 7.4 22 14/37 7.2 14 14/9 4.6
4,11 21 16/36 7.5 23 16/39 7.4 15 16/9 4.8

Table 5.20. LNS multiplication, division and square root implementation results
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ftO
Multiplication Division Square root

Area 
(slices) „

Area
ffs/LUTs

Delay
(ns)

Area
(slices)

Area
ffs/LUTs

Delay
(ns)

Area
(slices)

Area
ffs/LUTs

Delay 
(ns) ....

6,9 23 16/39 7.4 24 16/40 7.4 16 16/10 4.7
6, 11 24 18/41 7.5 25 18/42 7.5 17 18/10 4.8
6, 13 25 20/45 7.8 26 20/46 7.8 18 20/11 4.8
6, 15 26 22/47 8 27 22/48 8 19 22/11 5
6, 17 29 24/51 8.2 30 24/52 8.2 21 24/12 5.2
6, 19 30 26/53 8.3 31 26/54 8.2 22 26/12 5.2

8,11 26 20/45 8.2 27 20/47 8.3 18 20/11 4.9
8, 13 27 22/49 8.3 28 22/51 8.3 19 22/12 4.9
8, 15 28 24/51 8.5 29 24/53 8.3 20 24/12 5
8, 17 31 26/55 8.5 32 26/57 8.6 22 26/13 5
8, 19 32 28/57 8.5 33 28/59 8.6 23 28/13 5.1
8,21 33 30/61 8.6 34 30/63 8.6 24 30/14 5.2
8, 23 34 32/63 8.7 35 32/65 8.8 25 32/14 5.2

Table 5.20. LNS multiplication, division and square root implementation results

5.14.2.1 Comparison with other works

Only UTIA [301] and Detrey [303] offer statistics for the multiplication, division and 

square root operators. Table 5.21 shows the implementation results of UTIA [301] for 

a Xilinx Virtex-II XC2VI000-4 FPGA and table 5.22 shows the implementation 

results of Detrey [303] for a similar FPGA.

Multiplication Division Square root
(i,f) Area Area Delay Area Area Delay Area Area Delay

(slices) ffs/LUTs (ns) (slices) ffs/LUTs (ns) (slices) ffs/LUTs (ns)
8, 10 <1% X 10 <1% X 10 <1% X 10
8, 23 <1% X 10 <1% X 10 <1% X 10

Table 5.21. The LNS multiplication, division and square root implementation results
of UTIA [301]

0 ,0
Multiplication Division Square root

Area
(slices)

Area
ffs/LUTs

Delay
(ns)

Area
(slices)

Area
ffs/LUTs

Delay
(ns)

Area
(slices)

Area
ffs/LUTs

Delay
(ns)

3,6 9 X 6 9 X 6 l X 2
4,7 10 X 6 10 X 6 l X 2
5, 10 12 X 7 12 X 8 l X 2
8, 11 14 X 7 14 X 8 l X 2
6, 13 14 X 7 14 X 8 l X 2
8, 15 16 X 8 16 X 8 l X 2
8, 23 20 X 8 20 X 8 l X 2

Table 5.22. The LNS multiplication, division and square root implementation results
of Detrey [303]
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The multiplication, division and square root results shown in tables 5.20 and 5.22 are 

plotted on two graphs shown in figures 5.29 and 5.30. Figure 5.29 plots the variation 

of component area, in slices, with fraction width and figure 5.30 plots the variation of 

component delay, in nanoseconds, with fraction width.

5.14.2.2 Discussion

The proposed multiplication, division and square root designs are very similar in size 

to the other designs of UTIA [301] and Detrey [303], which is due to the simplicity of 

the implementation of these operations. The proposed designs are larger than those of 

Detrey, as figure 5.29 illustrates, which is probably caused by the way special values 

are handled and the fact that the results in this work are for designs with registers on 

their outputs. Detrey uses special bits to signal the special values of NaN, infinity and 

zero and so does not use any logic to detect for them or to force the output to a 

particular value if a particular pair of input values are detected. The area of the square 

root design of Detrey is just one slice, which means that the design results are not 

given for components with registers on their outputs which reduces the area of the 

designs.
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Figure 5.29. The variation of the area, in slices, of the proposed LNS division [■], 
LNS multiplication [A] and LNS square root [•] operators with fraction width. The 
variation of the area of the LNS division [-], LNS multiplication [x] and LNS square 

root [+] operators of Detrey with fraction width.
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Figure 5.30. The variation of the delay, in nanoseconds, of the proposed LNS 
division [■], LNS multiplication [A ] and LNS square root [•] operators with fraction 
width. The variation of the delay of the LNS division [-], LNS multiplication [x] and 

LNS square root [+] operators of Detrey with fraction width.
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Chapter
Conversion algorithms

Data to process are often supplied in fixed-point form and need to be converted to the 

high dynamic range formats of LNS and floating-point and vice-versa at the system 

inputs and outputs. In this section four conversions are developed which include: 

fixed-point to floating-point, floating-point to fixed-point, fixed-point to LNS, and 

LNS to fixed-point.

6.1 Fixed-point to floating-point conversion and vice-versa

The following conversion algorithms assume that the fixed-point data is in two’s 

complement form with /-bit integer and f -bit fraction sections. The floating-point data 

is the same three-field system used in section 3.4.1 that has a single sign bit, an e-bit 

exponent and an m-bit mantissa. All conversion components are designed to be 

parameterisable in terms of the integer, fraction, exponent and mantissa widths.

6.1.1 Fixed-point to floating-point conversion

Fixed-point to floating-point conversion consists of a variable length shift to 

normalize the incoming fixed-point value to the range [1, 2) and a subsequent 

exponent creation based on the shift quantity. Fixed-point to floating-point 

conversion can be described by the following 7 steps:

1. Complement the fixed-point input if it is negative to ensure a positive magnitude. 

Detect for an input of zero using a wide NOR gate as this is a special case in floating

point. The input sign bit determines the output sign.

2. Left shift only the positive input value so it is normalized with a ‘1’ in the MSB 

position.
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3. Subtract the left shift amount from a constant value of ‘M 5, where i is the length of 

the input integer section. This generates an unbiased exponent value. The subtraction 

is needed because the input value is only left shifted.

4. Round the shifted input to the output mantissa length. Correct the unbiased 

exponent value if necessary.

5. Compare the unbiased exponent value with the maximum and minimum exponent 

values that are allowed in the target floating-point system. These values are given as 

2(<M)-1 and -(2(<?_1)-2) respectively, where e is the length of the output exponent. These 

comparisons determine whether underflow or overflow should be signalled.

6. Add a bias to the unbiased exponent value.

7. Check the overflow and underflow signals and also whether the input was zero and 

set the output registers accordingly.

6.1.1.1 Error

The only source of error in the conversion is in the rounding of the normalized input, 

where the maximum relative error is less than 2'(w+1), or if underflow or overflow 

occur. If m, the output mantissa length, is larger than or equal to (i+f-2) then rounding 

error cannot occur and the converted value is exact. In such cases no rounding 

component is needed in the design.

6.1.1.2 Word lengths that determine the overflow possibility

Overflow cannot occur if / < 2(<?1) and f< m  (note, i, e , f  and m are the lengths of the 

integer, exponent, fraction, mantissa respectively). In such circumstances no 

component is needed in the conversion design to check for overflow. If f >  m then 

overflow cannot occur if i < 2(e'1).

6.1.1.3 Word lengths that determine the underflow possibility

Underflow cannot occur if - /  > -(2(e"1)-2) and again in such circumstances no 

underflow detection logic is required.

A diagram of the complete fixed-point to floating-point conversion is shown in figure 
6 . 1.
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Figure 6.1. Complete fixed-point to floating-point conversion component
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6.1.2 Floating-point to fixed-point conversion

Floating-point to fixed-point conversion consists of a variable length shift to adjust 

the mantissa according to the exponent value to produce a fixed-point value. The 

floating-point to fixed-point conversion is described in the following 7 steps:

1. Subtract the bias from the input exponent to produce the true exponent value. 

Detect for the input being a special floating-point value.

2. Compare the true exponent value with the maximum and minimum allowed values 

to determine if underflow or overflow has occurred.

Underflow

If the exponent value is less than -(f+1) then the output will be less than the smallest 

fixed-point value after rounding and underflow should be signalled.

Overflow

Due to the non-symmetrical nature of the twos complement system overflow detection 

is more complicated then underflow detection. It is assumed that the fixed-point bit 

pattern of “10...0.00...00” that causes the non-symmetry is a negative value (the 

maximum negative value). If the exponent value is greater than (i-2) then overflow 

should be signalled, except if the exponent value is (/-l) the mantissa is zero and the 

sign is negative then overflow should not be signalled (this is the maximum negative 

value situation).

3. Subtract the exponent with the bias removed from (/-l) to determine the right shift 

quantity. This is done so that the shifting is only done in one direction. The value to 

shift is initially assumed to be shifted (/-l) places to the left.

4. Perform the right shift. The result of the right shit is i+f+1 bits in length.

5. Round the shifted value to H/bits. If the exponent is equal to (i-2),

(m+l) > (i+f-1) and the input sign is positive then overflow can occur due to rounding 

and a check is needed. However if the exponent is equal to (i-2), (m+l) > (i+f-1) and 

the input sign is negative then overflow cannot occur due to rounding.

6. Negate the result according to the input sign.

7. Perform the handling of special values and the detection and handling of 

underflow/overflow.
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6.1.2.1 Error

The only source of error in the conversion is in the rounding and if underflow or 

overflow occur. If (/w+1) < (i+f-1) then rounding is not required in the component 

design and the output will be exact.

6.1.2.2 Word lengths that determine the overflow possibility

Overflow cannot occur if (i-2) and in such circumstances no component is

needed in the conversion design to check for overflow.

Sat

sat sign
bias signe+m

m
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specialVal NonSym

ovflunfl

specialVal

NonSym

sign

MSBsat MSB

i+f
sign

Non-
symmetry
case

Special
value
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»

cln

Overflow, underflow 
and special value 

control

ovfl unfl Inf NaN Integer fraction

Figure 6.2. Complete floating-point to fixed-point conversion component
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6.1.2.3 Word lengths that determine the underflow possibility

Underflow cannot occur if -(2(<M)-2) > -(/+1) and in such circumstances no underflow 

detection logic is required.

The diagram of the complete floating-point to fixed-point conversion is shown in 

figure 6.2.

6.1.3 Implementation results

The results of area and delay are generated for each conversion component, which are 

all mapped to a Xilinx XC2V1000-4 Virtex-II FPGA.

6.1.3.1 Fixed-point to floating-point conversion

Table 6.1 shows the implementation results for different word length fixed-point to 

floating-point conversion functions. All of the implementations map a fixed-point 

word to a higher dynamic range floating-point value.

Fixed-point
(i,f)

Floating-point
(e,m )

Area
(slices)

Area
(ffs/LUTs)

Delay
(ns)

4 ,4 4,3 28 8/49 14.3
6,6 6,5 45 12/79 16.9
8,8 6 ,9 60 16/112 18.2

10, 10 8,11 84 20/156 20.2
12, 12 8,23 106 32/199 15.6

Table 6.1. Implementation results for various fixed-point to floating-point conversion
components

6.1.3.2 Discussion

The left shifter is the dominant component in the larger word length designs and 

contributes the most to the area of the component. The split of the input fixed-point 

word into different length fraction and integer parts has very little affect on the area of 

the component (other implementation results not shown here have shown this). The 

most important thing is the total length of the fixed-point word. As the fixed-point 

values are mapped to a higher dynamic range format the underflow and overflow 

detection adders are not used in the chosen word length implementations. The delay 

reduction of the final entry in the table is caused because the input does not need to be 

rounded and therefore the rounding component is not implemented.
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6.1.3.3 Floating-point to fixed-point conversion

Table 6.2 shows the implementation results for different word length floating-point to 

fixed-point conversion functions. The word lengths have been chosen to complement 

the ones selected in table 6.1.

6.1.3.4 Discussion

Similarly to the fixed-point to floating-point converters the area of large word length 

components is dominated by the shifter. Interestingly the components occupy almost 

the same area as the ones they complement shown in table 6.1. All the components 

include a rounding adder and overflow and underflow detecting adders.

Floating-point 
(e, m)

Fixed-point
(i,f)

Area
(slices)

Area
(ffs/LUTs)

Delay
(ns)

4,3 4 ,4 41 12/65 12.7
6,5 6,6 51 16/87 12.4
6,9 8,8 67 20/118 12.6
8, 11 10, 10 83 24/149 13.9
8, 23 12, 12 104 28/190 13.9

Table 6.2. Implementation results for various floating-point to fixed-point conversion
components

6.2 Fixed-point to LNS conversion and vice-versa

The following conversion algorithms assume that the fixed-point data is in two’s 

complement form with /y^-bit integer and j£*-bit fractional sections. The LNS data 

uses the same two field format described in section 5.1 that has a single sign bit and 

an /LA/srbit integer and ./Lvs^bit fractional two’s complement magnitude. All 

conversion components are designed to be parameterisable in terms of the integer and 

fraction widths.

6.2.1 Fixed-point to LNS conversion

The fixed-point to LNS conversion consists of a normalizing shifter, which 

normalizes the input fixed-point value to the range [1, 2) so the base-2 logarithm can 

be taken. The shift quantity acts as the output integer and the base-2 logarithm value 

acts as the output fraction. The full fixed-point to LNS conversion is described in the 

following 6 steps:
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1. Complement the fixed-point input if it is negative to ensure a positive magnitude. 

Detect for an input of zero using a wide NOR gate as zero is a special value in the 

LNS. The input sign determines the output sign.

2. Left shift the positive magnitude until the most significant bit is ‘1’. The result of 

the shift will be /y^-bits in length and is assumed to be in the range [1,2).

3. Subtract the shift quantity from ijtc-1 to determine the value to add to the base-2 

logarithm. This subtraction is required because the shift is only done in one direction.

4. Calculate the base-2 logarithm of the normalised value, which is an /)&+$&+ 2 bit 

fractional length approximation. The result is in the range [0, 1) and is fuvs+g bits 

wide, where g is the number of guard bits.

5. Concatenate the shift value and the base-2 logarithm value and round to / l n s  

fraction bits.

6. Check the rounded result for overflow and underflow by comparing the integer 

section with maximum and minimum values allowed. If the integer value is less than 

-(2('lv‘sm)-2) then underflow has occurred and should be signalled. If the integer is 

greater than (2('/'iW‘1)-l) then overflow has occurred and should be signalled.

Set the output depending on overflow and underflow detection and an input of zero.

6.2.1.1 Error

Error is generated by the base-2 logarithm approximation and its subsequent 

rounding. This error is always present in the conversion component regardless of the 

input and output word lengths (as opposed to the fixed-point to floating-point 

conversion which with certain word lengths is exact). However, the BTFP criterion is 

used so the maximum relative error is less than the maximum relative error of the 

equivalent fixed-point to floating-point conversion if word lengths are chosen that 

cause errors to be generated. Error is also generated in overflow and underflow 

situations.

6.2.1.2 Word lengths that determine the overflow possibility

Overflow cannot occur if {ifix-1) < (2(/lms-1)-1) in such circumstances a check for 

overflow is not required.
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6.2.1.3 Word lengths that determine the underflow possibility

Underflow cannot occur if < (2(/zjvs-1)-2) and in such circumstances a check for 

underflow is not required.
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Figure 6.3. Complete fixed-point to LNS conversion diagram
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6.2.2 LNS to fixed-point conversion

Conversion from LNS to fixed-point involves setting the input LNS value to be the 

power of the base of the LNS and solving. To restrict the domain of the 2X 

approximation (for base-2 LNS) a variable length shifter is used to shift the output of 

the approximation for LNS values that are not in the range [0, 1) i.e. the identity of 

(6.1) is used.

2i+f = T * 2 f  ___ (6 .1)

i is an integer value so 2l is a simple shift operation. The full LNS to fixed-point 

conversion is described by the following 8 steps:

1. Split the input LNS magnitude into integer and fractional parts. Calculate the 2f 

approximation of the fraction section. The input domain of the function 

approximation is [0, 1) and the output range is [1, 2). The input width to the function 

approximation is f a s  and the output is i fa ffa g .

2. Check the LNS input for special values.

3. Compare the LNS integer part with the maximum and minimum allowed values. 

Underflow

If the LNS integer value is less than - i f fa  1) then underflow should be signalled. 

Overflow

Due to the non-symmetrical nature of the twos complement system overflow detection 

is more complicated than underflow. This is the same situation that occurred in the 

floating-point to fixed-point conversion component. If the LNS integer value is 

greater than (i/fa )  then overflow should be signalled, except if the exponent value 

(iftx:-l) the LNS fraction value is zero and the LNS sign is negative.

4. Subtract the LNS integer value from {iffa) to create the value that controls the 

shifter. The subtraction is done because the shifter only shifts in one direction.

5. Right shift the 2f function approximation result. The output of the shifter is 

f a f f a  1 bits in length.
6. Round the shifted value to i fa fa  bits. Overflow can occur after rounding and a 

check is needed.

7. Negate the rounded result according to the input LNS sign.

8. Perform the handling of special values and the detection and handling of overflow 

and underflow.
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6.2.2.1 Error

The sources of error in the conversion are in the function approximation and its 

subsequent rounding. The error of the function approximation is chosen so that the 

relative error is less than that of the equivalent floating-point system (BTFP 

accuracy). Underflow and overflow are also sources of error.
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Figure 6.4. Complete LNS to fixed-point conversion diagram
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6.2.2.2 Word lengths that determine the overflow possibility

Overflow cannot occur if 2(//jvs- 1)-1 < ( ^ - 2) and in such circumstances no 

component is needed in the conversion design to check for overflow.

6.2.2.3 Word lengths that determine the underflow possibility

Underflow cannot occur if -{2{iiNs-\)-2) > -Ofc+1) and in such circumstances no 

underflow detection logic is required.

The diagram of the complete LNS to fixed-point conversion component is shown in 

figure 6.4. The component has special outputs to indicate whether the input LNS 

value was infinity or NaN and if overflow or underflow were detected.

6.2.3 Implementation results

The results of area and delay are generated for each conversion component, which are 

all mapped to a Xilinx XC2V1000-4 Virtex-II FPGA. The embedded multipliers are 

not used in the function approximation components as the results are to be compared 

with the results from the fixed-point to floating-point and floating-point to fixed-point 

conversion section.

6.2.3.1 Fixed-point to LNS conversion

Table 6.3 shows the implementation results for different word length fixed-point to 

floating-point conversion functions. All of the implementations map a fixed-point 

word to a higher dynamic range LNS value.

Fixed-point
(i,f)

LNS
(i,f)

Area
(slices)

Area
(ffs/LUTs)

Delay
(ns)

4 ,4 4,3 31 8/56 11.3
6, 6 6,5 77 12/139 25.8
8,8 6,9 199 16/342 29.1

10, 10 8, 11 330 20/617 49.3
12, 12 8, 23 842 32/1573 52

Table 6.3. Implementation results for various fixed-point to LNS conversion
components

2 3 8



Chapter 6 Conversion algorithms

6.2.3.2 Discussion

The function approximation is the dominant area part of the larger word length 

implementations. The area of the conversion components increases exponentially 

with word length due to the function approximation. The function approximation also 

contributes significantly to the delay of the implementations.

6.2.3.3 LNS to fixed-point conversion

Table 6.4 shows the implementation results for different word length LNS to fixed- 

point conversion functions. The word lengths have been chosen to complement the 

ones selected in table 6.3.

6.2.3.4 Discussion

Similarly to the fixed-point to LNS converters the area of larger components is 

dominated by the function approximation. The components occupy almost the same 

area as the ones they complement shown in table 6.3.

LNS
(i,f)

Fixed-point
(i, f)

Area
(slices)

Area
(ffs/LUTs)

Delay
(ns)

4,3 4 ,4 42 12/70 11
6,5 6 ,6 67 16/118 11.4
6,9 8,8 195 20/371 34.8
8, 11 10, 10 334 24/637 37.5
8, 23 12, 12 861 28/1643 47.7

Table 6.4. Implementation results for various LNS to fixed-point conversion
components
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Chapter
MATLAB libraries

All the components designed have equivalent bit-true MATLAB models to enable 

their functionality to be tested and to enable the convenient development of 

algorithms in the friendly MATLAB environment before hardware design is 

undertaken. MATLAB also provides support for serial communication, which allows 

the functionality of components to be tested after they have been placed on the FPGA 

using a simple serial communication protocol. However the speed of designs cannot 

be tested as the speed of the serial link is slow, for such data we have to rely solely on 

the vendor place and route tool estimates.

7.1 Floating-point library

The MATLAB environment does not support arbitrary precision floating-point 

formats so a library of functions was written that act as bit-true models to test the 

VHDL floating-point components against. The MATLAB models have been written 

to provide exact functionality including support for special values (NaN, Infinity, etc). 

The interfaces of the four operations of addition, multiplication, division and square 

root are shown below:

7.1.1 Addition

[sX,eX,mX] = flpAdd (sA, sB, eA, eB,mA,mB, op, rndMode, e,m)

% sX is the returned sign
% eX is the returned exponent
% mX is the returned mantissa

% sA is the input sign of operand A
% sB is the input sign of operand B
% eA is the input exponent of operand A
% eB is the input exponent of operand B
% mA is the input mantissa of operand A
% mB is the input mantissa of operand B
% op is whether an addition or subtraction operation is required
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% rndMode specifies which one of the four IEEE rounding modes to use 
% e is the length of the input exponent in bits 
% m is the length of the input mantissa in bits

7.1.2 Muliplication

[sX,eX,mX] = f lpMult (sA, sB, eA, eB,mA,mB, rndMode, e,m)

% see above (floating-point addition) for argument description

7.1.3 Division

[sX,eX,mX] = flpDiv(sA, sB, eA, eB,mA,mB,rndMode/e,m)

% see above (floating-point addition) for argument description

7.1.4 Square root

[sX,eX,mX] = f IpSqrt (sA, eA,mA, rndMode, e,m)

% see above (floating-point addition) for argument description

The fixed-point division and square root routines used in the floating-point operations 

are based on simple restoring implementations, which produce correct quotients and 

remainders. These are also used to test the fixed-point SRT (all radices) and non

restoring based division and square root algorithms for correctness.

7.2 LNS library

Similarly to the floating-point library a bit-true parameterisable LNS library has also 

been developed. The interfaces to the library components are shown below.

7.2.1 Addition

[sX,sum] = InsAddSub (op, sA, sB, A, B, i, f )

% sX is the output sign.
% sum is the output magnitude. It is a signed value.

% op is whether an addition or subtraction operation is required
% sA is the sign of input A
% sB is the sign of input B
% A  is the magnitude of operand A, which is a signed value
% B is the magnitude of operand B, which is a signed value
% i is the length of the input integer section
% f is the length of the input fraction section
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7.2.2 Multiplication

[sX,prod] = InsMult(sA,sB,A,B,i,f)

% prod is the output product, it is a signed value

7.2.3 Division

[ sX,quot] = InsDiv(sA,sB,A,B,i,f)

% quot is the output quotient, it is a signed value

7.2.4 Square root

[sX,root] = LNSsqrt(sA,A,i,f)

% root is the output square root, it is a signed value

The LNS addition/subtraction function is written as a separate function so can be 

exchanged in the main LNS adder routine as required. Parameterisable bit-true 

models of the dual-path and parallel-lookup addition/subtraction functions have been 

written, which have been exhaustively tested for accuracy.

7.3 Conversion library

Fixed-point data needs to be converted to and from the floating-point and LNS 

formats. A library of parameterisable components to allow such conversions has been 

written and the interfaces of these functions are described below.

7.3.1 Fixed-point to floating-point

[sFlp,eFlp,mFlp,ovfl,unfl] = fix2float(sFix,Fix,i,f,e,m,sat)

% sFlp is the output sign of the floating-point value 
% eFlp is the output exponent of the floating-point value 
% mFlp is the output mantissa of the floating-point value 
% ovfl is an overflow flag 
% unfl is an underflow flag

% sFix is the input fixed-point sign
% Fix is the input fixed-point magnitude, an unsigned value 
% i is the length of the fixed-point integer 
% f is the length of the fixed-point fraction 
% e is the length of the floating-point exponent 
% m is the length of the floating-point mantissa 
% sat controls whether saturation values are used for overflow
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7.3.2 Floating-point to fixed-point

[sFix, Fix, ovfl, unfl, inf ,NaN] = float2fix (sFlp, eFlp,mFlp, i, f, e,m, sat)

% inf is an infinity flag 
% NaN is a Not-a-Number flag
% (see above for other argument descriptions)

7.3.3 Fixed-point to LNS

[sLNS,LNS,ovfl,unfl] = fix2LNS(iFix,fFix,fix,iLNS,fLNS, sat)

% sLNS is the sign of the output LNS value
% LNS is the magnitude of the output LNS value, it is a signed value
% ovfl is an overflow flag
% unfl is an underflow flag

% iFix is the length of the fixed-point integer
% fFix is the length of the fixed-point fraction
% fix is the input fixed-point value, it is a signed value 
% iLNS is the length of the LNS integer
% fLNS is the length of the LNS fraction
% sat controls whether saturation values are used for overflow

7.3.4 LNS to fixed-point

[sFix, Fix, ovfl, unfl, inf,NaN] = LNS2fix (iLNS, fLNS, sLNS, LNS, iFix, fFix, sat) 

% sFix is the output fixed-point sign
% Fix is the output fixed-point magnitude, an unsigned value 
% inf is an infinity flag 
% NaN is a Not-a-Number flag
% (see fix2LNS for other argument descriptions)

7.4 Serial communication system

The FPGA development board used to test the functionality of the developed modules 

contains an RS232 serial communication port. The transmit and receive connections 

of the serial port are connected via an external UART (Universal Asynchronous 

Receive Transmit) chip directly to two pins of the FPGA, which allows direct 

communication with the FPGA. Only three wires are needed in the communication 

link: a wire to transmit data from the host PC to the FPGA, a wire so the FPGA can 

transmit data back to the host PC and a common ground line.

7.4.1 Communication procedure

The RS232 serial port operates in an asynchronous mode. Each frame of data sent 

consists of 8 data bits, a start bit and a stop bit as shown in figure 7.1.
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Start Data Data Data Data Stop :
bit 0 1 6 7 bit i

Figure 7.1. The serial data frame

When no data is being sent the communication line is held high. The receiver thus 

waits for a single start bit, which is a low bit and it then knows that the next 8-bits are 

the data bits. Once the 8-bits have been sent the transmitter sends a stop bit, which is 

a high bit and then holds the line high or starts transmitting a new frame with a new 

start bit. Once the receiver receives a stop bit it waits for the next start bit to read in 

the next 8-bits of data and so on.

7.4.2 FPGA communication system

MATLAB is used to send and receive data from the FPGA via the RS232 serial port. 

A diagram of the communication system is shown in figure 7.2.

Hardware

FPGAHost PC Host PC

UUT
m

reset

Frame
send

Frame
split

Frame
join

Frame
receive

MATLAB bit true 
software model 

UUT

MATLAB
receive

MATLAB
send

Software

Figure 7.2. MATLAB to FPGA communication system

The diagram in figure 7.2 consists of the following components:

1. MATLAB send. This is the MATLAB software running on the host PC. The data 

to send is split into 8-bit packets and is then sent serially to the FPGA.
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2. FPGA. The FPGA contains five modules, which are all tied to a common reset line 

to ensure the registers and control logic start in a known state and to reset the system. 

The five modules are described as follows:

a. Frame receive. The frame receiver waits for a start bit then clocks in 8-bits of data. 

The single input data line is fed into 8 registers and these registers are enabled in turn 

to latch in the 8-bits of data. The enable line of each register is controlled by a 

counter, which divides down the clock and allows the register to latch in the data at 

the correct time. The frame receiver signals when a new frame of 8-bits is available. 

Figure 7.3 shows the basic structure of the frame receiver.

y —  dataOut

reset

newFramecontrol

Figure 7.3. Frame receiver structure

b. Frame join. The frame join component takes 8-bit frames and joins them into a 

larger frame. It operates in a very similar way to the frame receiver and signals when 

a new x*8-bit frame is ready. Figure 7.4 shows an example of a frame joiner that 

joins four 8-bit frames to produce a 32-bit word.

c. UUT. UUT stands for unit under test and is the component that the input data is 

being fed through to generate the output data to compare against the software model.

d. Frame split. The frame split component splits up large words of data into smaller

8-bit frames, which can be sent over the communication link. The frame split 

component signals each time a new frame is ready. Figure 7.5 shows the structure of 

a frame split component that splits 16-bit data into 8-bit frames.
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dataln —-f- -f-— dataOut

reset

newWordcontrol

Figure 7.4. Frame join structure

en

dataln -f—  dataOut

2:1
en

reset

newFramecontrolnewWord

Figure 7.5. Frame split structure

e. Frame send. The frame send component holds the line high and waits for a frame 

to send. When a new 8-bit frame arrives it sends it along with an initial start bit and a 

final stop bit. After sending a frame the frame transmitter holds the line high. Figure

7.6 shows the structure of a frame send component.

3. MATLAB receive. This is the MATLAB software running on the host PC. Data 

packets are received and are stored in a buffer until they are read. The data packets 

are read and are used to reconstruct the output from the hardware UUT. The output of
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the hardware UUT is compared with the bit-true software model of the UUT to ensure 

the two match exactly.

l —

dataln —-f- - / —  dataOut

10:1

o —

reset

controlnewFrame

Figure 7.6. Frame send structure
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Chapter
Comparison

In this chapter the LNS and floating-point formats are compared in terms of speed and 

area. The four basic operators of addition, multiplication, division and square root are 

compared as are the conversion components. In order to provide a range of results 

different equations are compared as well as the straight operator comparison. Only 

non-pipelined results are considered. As shown in previous implementation results 

sections the fractional part of an LNS number or the mantissa length of a floating

point value have the greatest effect on the size of components. Therefore only 

different fraction/mantissa lengths will be considered in the results and not different 

integer/exponent lengths.

8.1 A comparison of the four basic operators

Table 8.1 compares the area and delay of the two basic operators of addition and 

multiplication and table 8.2 compares the division and square root operators. LNS 

addition results are given for the parallel-lookup (Par) and dual-path (Dual) methods.

0 , f ) /  
(e, m)

Addition Multiplication

Area Delay
Mults
18x18

Mults
18x18 Area Delay Mults

18x18
LNS
Par

LNS
Dual

Flp LNS
Par

LNS
Dual

Flp LNS
Par

LNS
Dual

LNS Flp LNS Flp Flp

4 ,5 87 122 99 27.6 41.7 22.5 1 1 16 33 7.1 16.5 1
4 ,7 171 214 127 28 43.6 26.1 1 1 17 34 7.3 16.8 1
6, 9 271 208 153 39.4 57.6 27.5 2 2 23 41 7.4 18.4 1
8, 11 348 326 177 49.5 62 27 3 2 26 45 8.2 18.8 1
8, 13 504 564 194 51.6 67.9 28.2 3 2 27 46 8.3 19.1 1
8, 15 644 492 225 59.4 102.5 31.5 4 4 28 48 8.5 20.7 1
8, 17 921 623 242 64 103.2 32.1 4 4 31 69 8.5 23.3 1
8, 19 1367 877 259 70.1 107.9 32.7 4 4 32 111 8.5 25.2 1
8 ,21 1985 1213 279 75.3 118.8 32.9 4 4 33 157 8.6 26 1
8, 23 3062 1608 296 76 125.5 33.5 4 4 34 207 8.7 26.6 1

Table 8.1. Area and delay o f  selected  LNS and floating-point operators
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< i,f ) /(e ,m )
Division Square root

Area Delay Area De ay
LNS Flp LNS Flp LNS Flp LNS Flp

4 ,5 18 75 6.8 31.2 11 43 4 21.1
4 ,7 19 98 7 38.3 12 56 4.1 26.6
6 , 9  .  _ 24 132 7.4 47.3 16 76 4.7 33.4
8. 11 27 164 8.3 60 18 95 4.9 39.9
8,13 28 200 8.3 67.6 19 118 4.9 47.7
8,15 29 239 8.3 74.9 20 137 5 58.9
8, 17 32 284 8.6 84.6 22 162 5 67.4
8, 19 33 332 8.6 93.4 23 189 5.1 77.5
8,21 34 384 8.6 103.9 24 218 5.2 88.3
8, 23 35 438 8.8 114.4 25 248 5.2 95.6

Table 8.2. Area and delay of selected LNS and floating-point division and square root
operators

To show the trends in the results more clearly the results are plotted in figures 8.1-8.8. 

Figures 8.1-8.8 show the area and delay o f the addition, multiplication, division and 

square root operators respectively.
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Figure 8.1. Area of some floating-point [■], LNS parallel-lookup [♦] and LNS dual
path [A] adder implementations
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Figure 8.2. Delay of some floating-point [■], LNS parallel-lookup [♦] and LNS dual
path [A] implementations
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Figure 8.3. Area of some floating-point [■] and LNS [♦] multiplier implementations
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Figure 8.4. Delay of some floating-point [■] and LNS [♦] multiplier implementations
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Figure 8.5. Area of some floating-point [■] and LNS [♦] divider implementations
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Figure 8.6. Delay of some floating-point [■] and LNS [♦] divider implementations
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Figure 8.7. Area of some floating-point [■] and LNS [♦] square root implementations
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Figure 8.8. Delay of some floating-point [■] and LNS [♦] square root
implementations

8.1.1 Discussion

The LNS multiplication, division and square root operators are superior to the 

equivalent floating-point operators in terms of speed and area for all word lengths. 

The superiority of the LNS multiplication, division and square root operators would 

be further enhanced if pipelined results were compared because as shown in the 

floating-point implementation results section the area of these three operators 

increases significantly when the components are pipelined. The LNS parallel-lookup 

implementation of the smallest (5-bit) fraction/mantissa adder is faster and smaller 

than the equivalent floating-point operator. However the exponential size increase of 

the LNS addition operator means it quickly becomes larger than the equivalent 

floating-point operator for larger fraction/mantissa lengths and also slower. This 

trend is seen in figures 8.1 and 8.2 for both the parallel-lookup and dual-path methods. 

The parallel-lookup addition method is still comparable (i.e. less than twice the area) 

in area to the equivalent floating-point operation for fraction/mantissa word lengths up 

to about 11-bits. Similar observations can be made for the dual-path method except 

that the delay is much greater. It must not be forgotten that the LNS addition 

implementations use a number of embedded multipliers whereas the floating-point 

addition operations do not use any.
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8.2 A comparison of four selected functions

In this section the multiply-accumulate (a*6  + c) function, the distance |V<?2 + b2 j

function, the Givens rotation
r a
\,y[b2+c2 )

{a* x* +b* x2 + c* x + d} function evaluated by Homer’s method

( ( a * Jc  +  ^ ) ,,,jt +  c ) * J t  + */and by a direct method (a*x)*(x*x) + (x*x)*b + c*x + d 

are compared. The delay and area results are compared for a selection of 

fraction/mantissa word lengths.

8.2.1 Multiply-accumulate

Table 8.3 illustrates the results of the multiply-accumulate function implemented with 

floating-point (Flp) and logarithmic (LNS) arithmetic. Both the parallel-lookup (Par) 

and dual-path (Dual) LNS addition implementations are considered. To illustrate the 

result trends more clearly the area and delay results of table 8.3 are plotted in figures 

8.9 and 8.10 respectively.

function and the 3rd order polynomial

(i, f) /  (e, m)

Multiply-accumulate

Area Delay Mults
18x18

Mults
18x18

Mults
18x18

LNS
Par

LNS
Dual Flp LNS

Par
LNS
Dual

Flp LNS
Par

LNS
Dual

Flp

4 ,5 103 138 132 34.7 48.8 39 1 1 1
4, 7 188 231 161 35.3 50.9 42.9 1 1 1
6 ,9 294 231 194 46.8 65 45.9 2 2 1
8, 11 374 352 222 57.7 70.2 45.8 3 2 1
8, 13 531 591 240 59.9 76.2 47.3 3 2 1
8, 15 672 520 272 67.9 111 52.2 4 4 1
8, 17 952 654 311 72.5 111.7 55.4 4 4 1
8, 19 1399 909 370 78.6 116.4 57.9 4 4 1
8, 21 2018 1246 436 83.9 127.4 58.9 4 4 1
8, 23 3096 1642 503 84.7 134.2 60.1 4 4 1

Table 8.3. LNS and floating-point multiply-accumulate implementation results
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Figure 8.9. Area of some floating-point [■], LNS parallel-lookup [♦] and LNS dual
path [A] multiply-accumulate (MAC) implementations
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Figure 8.10. Delay of some floating-point [■], LNS parallel-lookup [♦] and LNS 
dual-path [A] multiply-accumulate (MAC) implementations

8.2.2 Distance

Table 8.4 illustrates the results of the distance function implemented with floating

point (Flp) and logarithmic (LNS) arithmetic. Both the parallel-lookup (Par) and 

dual-path (Dual) LNS addition implementations are considered. To illustrate the 

result trends more clearly the area and delay results of table 8.4 are plotted in figures 

8.11 and 8.12 respectively.
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(i, 0  / (e, m)

Distance
Area Delay Mults

18x18
Mults
18x18

Mults
18x18

LNS
Par

LNS
Dual Flp LNS

Par
LNS
Dual Flp LNS

Par
LNS
Dual Flp

4, 5 130 165 208 38.7 52.8 60.1 1 1 2
4 - 7 217 260 251 39.4 55 69.5 1 1 2
6,9 333 270 311 51.5 69.7 79.3 2 2 2
8, 11 418 396 362 62.6 75.1 85.7 3 2 2
8,13 577 637 404 64.8 81.1 95 3 2 2
8, 15 720 568 458 72.9 116 111.1 4 4 2
8 , 17 1005 707 542 77.5 116.7 122.8 4 4 2
8, 19 1454 964 670 83.7 121.5 135.4 4 4 2
8,21 2075 1303 811 89.1 132.6 147.2 4 4 2
8, 23 3155 1701 958 89.9 139.4 155.7 4 4 2

Table 8.4. LNS and floating-point distance implementation results
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Figure 8.11. Area of some floating-point [■], LNS parallel-lookup [♦] and LNS dual
path [A] distance implementations

180
160
140

_  120 -  
(A
S  100

f 80
^ 60 l ►

4,5 4,7 6,9 8,11 8,13 8,15 8,17 8,19 8,21 8,23

Integer, fraction width (bits)

Figure 8.12. Delay of some floating-point [■], LNS parallel-lookup [♦] and LNS 
dual-path [A] distance implementations
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8.2.3 Givens

Table 8.5 illustrates the results of the Givens function implemented with floating

point (Flp) and logarithmic (LNS) arithmetic. Both the parallel-lookup (Par) and 

dual-path (Dual) LNS addition implementations are considered. To illustrate the 

result trends more clearly the area and delay results of table 8.5 are plotted in figures 

8.13 and 8.14 respectively.

(i, f) / (e, m)

Givens

Area Delay Mults
18x18

Mults
18x18

Mults
18x18

LNS
Par

LNS
Dual Flp LNS

Par
LNS
Dual Flp LNS

Par
LNS
Dual Flp

4 ,5 148 183 283 45.5 59.6 91.3 1 1 2
4, 7 236 279 349 46.4 62 107.8 1 1 2
6 ,9 357 294 443 58.9 77.1 126.6 2 2 2
8,11 445 423 526 70.9 83.4 145.7 3 2 2
8 . 13 605 665 604 73.1 89.4 162.6 3 2 2
8, 15 749 597 697 81.2 124.3 185.9 4 4 2
8, 17 1037 739 826 86.1 125.3 207.4 4 4 2
8, 19 1487 997 1002 90.3 130.1 228.8 4 4 2
8,21 2109 1337 1195 97.7 141.2 251.1 4 4 2
8, 23 3190 1736 1396 98.7 148.2 270.1 4 4 2

Table 8.5. LNS and floating-point Givens implementation results
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Figure 8.13. Area of some floating-point [■], LNS parallel-lookup [♦] and LNS dual
path [A] Givens implementations
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Figure 8.14. Delay of some floating-point [■], LNS parallel-lookup [♦] and LNS 
dual-path [A] Givens implementations

8.2.4 3rd order polynomial (Horner)

Table 8.6 illustrates the results of a 3rd order polynomial function implemented with 

floating-point (Flp) and logarithmic (LNS) arithmetic. Both the parallel-lookup (Par) 

and dual-path (Dual) LNS addition implementations are considered. To illustrate the 

result trends more clearly the area and delay results of table 8.6 are plotted in figures 

8.15 and 8.16 respectively.

3rd order polynomial (Homer)

(i, f) / (e, m) Area Delay Mults
18x18

Mults
18x18

Mults
18x18

LNS LNS Flp LNS LNS Flp LNS LNS Flp
Par Dual Par Dual Par Dual

4 ,5 309 414 396 104.1 146.4 117 3 3 3
4 ,7 564 693 483 105.9 152.7 128.7 3 3 3
6 ,9 882 693 582 140.4 195 137.7 6 6 3

8, 11 1122 1056 666 173.1 210.6 137.4 9 6 3
8,13 1593 1773 720 179.7 228.6 141.9 9 6 3
8, 15 2016 1560 816 203.7 333 156.6 12 12 3
8, 17 2856 1962 933 217.5 335.1 166.2 12 12 3
8, 19 4197 2727 1110 235.8 349.2 173.7 12 12 3
8,21 6054 3738 1308 251.7 382.2 176.7 12 12 3
8, 23 9288 4926 1509 254.1 402.6 180.3 12 12 3

Table 8.6. LNS and floating-point 3rd order polynomial implementation results
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Figure 8.15. Area of some floating-point [■], LNS parallel-lookup [♦] and LNS dual
path [A] 3rd order polynomial implementations
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Figure 8.16. Delay of some floating-point [■], LNS parallel-lookup [♦] and LNS 
dual-path [A] 3rd order polynomial implementations

8.2.5 3rd order polynomial (direct)

Table 8.7 illustrates the results of a 3rd order polynomial function implemented with 

floating-point (Flp) and logarithmic (LNS) arithmetic. Both the parallel-lookup (Par) 

and dual-path (Dual) LNS addition implementations are considered. To illustrate the 

result trends more clearly the area and delay results of table 8.7 are plotted in figures 

8.17 and 8.18 respectively.
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(i,f)/(e, m)

3rd order polynomial (c irect)
Area Delay Mults

18x18
Mults
18x18

Mults
18x18

LNS
Par

LNS
Dual Flp LNS

Par
LNS
Dual Flp LNS

Par
LNS
Dual Flp

4,5 341 446 462 69.4 97.6 78 3 3 5
4,7 598 727 551 70.6 101.8 85.8 3 3 5
6,9 928 739 664 93.6 130 91 8 6 6 5
8, 11 1174 1108 756 115.4 140.4 91.6 9 6 5
8, 13 1647 1827 812 119.8 152.4 94.6 9 6 5
8,15 2072 1616 912 135.8 222 104.4 12 12 5
8, 17 2918 2024 1071 145 223.4 110.8 12 12 5
8, 19 4261 2791 1332 157.2 232.8 115.8 12 12 5
8,21 6120 3804 1622 167.8 254.8 117.8 12 12 5
8, 23 9356 4994 1923 169.4 268.4 120.2 12 12 5

Table 8.7. LNS and floating-point 3rd order polynomial implementation results
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Figure 8.17. Area of some floating-point [■], LNS parallel-lookup [♦] and LNS dual 
path [A] 3rd order polynomial implementations
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Figure 8.18. Delay of some floating-point [■], LNS parallel-lookup [♦] and LNS 
dual-path [A] 3rd order polynomial implementations
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8.2.6 Discussion

The multiply-accumulate (MAC) function is crucial to many algorithms. The LNS 

implementation for the shortest length fraction/mantissa is the only LNS 

implementation that is superior in terms of both speed and area to the equivalent 

floating-point implementation. The LNS implementation with the 2nd shortest word 

length fraction/mantissa is superior in terms of delay only. Up to 11 fraction/mantissa 

bits the area of the LNS implementation is comparable to the floating-point version 

but above 11-bits the exponential area increase of the LNS addition function means 

the floating-point implementation is far superior.

The distance function is more suited to LNS implementation, which is evident from 

the superior delay of the LNS for all word lengths. The LNS is superior in area for 

fraction/mantissa lengths of up to 9-bits. Above 9-bits and up to about 17-bits the 

LNS implementation is still comparable to that of the equivalent floating-point 

implementation but above 17-bits the exponential area increase of the LNS addition 

function is too great to be comparable with the floating-point implementation. The 

rounding error of the LNS distance calculation is less than that of floating-point 

because the LNS is subjected to only two rounding errors, one of which is superior to 

the equivalent floating-point error, where as the floating-point implementation is 

subjected to three rounding errors.

The Givens function utilizes all four of the basic operators and makes the function a 

very good candidate for LNS implementation as the results show. The delay of the 

LNS implementation is far superior to floating-point for all word lengths. The area of 

the LNS implementation is also superior up to a fraction/mantissa width of 19-bits, 

which would increase for pipelined implementations. The LNS implementation is 

also subjected to only two rounding errors, one of which is superior to the equivalent 

floating-point error, where as the floating-point implementation is subjected to four 

rounding errors.

The 3rd order polynomial function evaluated via Homer’s method is essentially three 

multiply-accumulate functions in series. Thus the delay and area are simply a 3x 

increase over the results for the single MAC operator, which means that LNS 

implementations with fraction widths greater than 11-bits are not comparable.

The direct implementation method utilises two extra multiplications compared to 

Homer’s method and is thus more suited to LNS implementation. Furthermore the
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initial multiplier tree as shown in figure 8.19 can be implemented without any 

rounding errors.

a x x b x c d

Multiplier
tree

Figure 8.19. Direct implementation of a 3rd order polynomial

Despite having a 5:3 multiplication to addition ratio the LNS implementation of the 

direct polynomial function is only superior for fraction/mantissa widths of 5 and 7- 

bits and is comparable up to 11-bits. This is due to the efficiency of implementing 

floating-point multiplication and the exponential area increase of the LNS addition 

operator.

8.3 Conversion component comparison

8.3.1 Fixed-point to LNS/floating-point

A direct comparison of the fixed-point to LNS/floating-point (Flp) conversion 

algorithms is shown in table 8.8.

Fixed-point
(i,f)

Flp/LNS
(e,m)/(i,f)

LNS area 
(slices)

Flp area 
(slices)

LNS delay 
(ns)

Flp delay 
(ns)

4,4 4,3 31 28 11.3 14.3
6,6 6,5 77 45 25.8 16.9
8,8 6,9 199 60 29.1 18.2

10,10 8,11 330 84 49.3 20.2
12,12 8,23 842 106 52 15.6

Table 8.8. Fixed-point to LNS/floating-point conversion component comparison

The area and delay of the LNS conversions are clearly greater than those of the 

equivalent floating-point operations. Looking at the diagrams of the conversion 

components in sections 6.1 and 6.2 the delay and area increase are caused by the
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logarithm function approximation. The area of the approximation increases 

exponentially with word length and this greatly impacts on the size of the conversion 

component for all but the smallest word length conversions where the area of the LNS 

and floating-point conversions are equivalent. The logarithm approximation also 

greatly impacts on the delay of the conversion, however for the shortest word lengths 

the delay of the LNS conversion is less than that of the equivalent floating-point 

conversion. This is caused by a combination of the ‘bias’ adder and the P&R tools.

8.3.2 LNS/floating-point to fixed-point

A direct comparison of the LNS/floating-point to fixed-point conversions algorithms 

is shown in table 8.9.

Flp/LNS Fixed-point LNS area Flp area LNS delay Flp delay
(e,m)/(i,f) (i,f) (slices) (slices) (ns) (ns)

4,3 4,4 42 41 11 12.7
6,5 6,6 67 51 11.4 12.4
6,9 8,8 195 67 34.8 12.6

8,11 10,10 334 83 37.5 13.9
8,23 12,12 861 104 47.7 13.9

Table 8.9. LNS/floating-point to fixed-point conversion component comparision

The delay and area increase of the LNS conversion is caused by the 2X function 

approximation. The area of the 2X function approximation increases exponentially 

with word length and this greatly impacts on the size of the conversion component for 

all but the smallest word length designs. The delay of the two shortest word length 

conversions for floating-point is greater than the LNS conversion due to a 

combination of the bias subtractor and P&R tools.
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Chapter
Conclusion

This work has investigated the efficient implementation of fixed-point operators on 

the Virtex-II FPGA and then applied these operators to a function approximation 

design implementation. A variation of the function approximation design using a 

more accurate approximation technique was then used in LNS addition/subtraction 

components to facilitate a comparison of logarithmic and floating-point arithmetic. A 

low level design strategy has been adopted which makes use of the fine grain 

primitives of the FPGA technology to achieve maximum control over the logic used 

and to try and extract the maximum functionality out of the available resources. In 

this chapter the main conclusions of the different chapters are given, the question of 

the suitability of LNS and floating-point arithmetic for different FPGA algorithms is 

answered and future studies are suggested.

9.1 Fixed-point

The fixed-point section demonstrated that traditional carry-free addition techniques 

have ‘carry-chain’ pipelining issues that prevent them from offering any benefit to the 

basic RCA design for short word length implementation. A new 4:2 CSA mapping 

was proposed which is suitable for long word length carry-free applications such as 

cryptography algorithms, but this mapping still suffers from the pipelining issue. 

Many ripple-carry adder configurations, some not previously published in the open 

literature, were described as methods to reduce the logic requirement and delay of 

certain functions.

The classic Booth encoding technique was investigated for implementation on the 

Virtex-II FPGA as it had not been previously considered in the open literature. The 

technique was dismissed due to the (already present) dedicated radix-4 partial product 

generator logic, which is superior to the Booth-2 partial product generator
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implementation. The Booth-3 algorithm was considered next and was dismissed due 

to the double-subtraction problem, which prevents the simultaneous negation and 

addition of two operands. Higher-radix algorithms were not considered due to the 

difficulty of the multiple generation and the overhead of the recoding logic. A new 

way to expand the embedded multipliers was described and its superiority in area and 

delay to other methods was shown. The technique was also applied to squaring and a 

substantial area saving was observed. Different radices of digit recurrence division up 

to radix-16 were discussed. The radices above 16 were dismissed due to the 

excessively large quotient digit selection ROMs that are required. The algorithms 

were compared in terms of the LUT columns used, the critical path and the size of the 

quotient digit selection ROM. The results showed that the basic maximally redundant 

radix-4 algorithm was the most suitable as the quotient digit selection function only 

required a 5-bit ROM. The digit recurrence analysis highlighted that the minimally 

redundant radix-8 algorithm offered certain efficiency benefits but the size of the 

quotient digit selection function was too large to make the implementation practical. 

Therefore, the technique of pre-scaling was investigated for use with the minimally 

redundant radix-8 algorithm. The results showed that the pre-scaled minimally 

redundant algorithm offered a significant speed up over the maximally redundant 

radix-4 algorithm, but the extra area of the initial pre-scaling multiplications was too 

great to justify the delay reduction. Pipelined results were not given but the 

minimally redundant radix-8 algorithm is expected to be more competitive in terms of 

area to the radix-4 algorithm if both of the algorithms are pipelined.

The implementation of SRT digit recurrence square root was discussed and no benefit 

of the algorithm over the basic non-restoring algorithm was evident. This is due to 

the fact that each iteration of the square root algorithm depends on adding/subtracting 

multiples of the partial result. The digits of the partial result are selected from a 

redundant digit set for the SRT algorithm and so a full-length operation is required to 

update the partial result each iteration to convert it to a non-redundant form. The full- 

length addition or subtraction to update the partial result substantially increases the 

area of the square root component compared to the basic non-restoring algorithm and 

so the SRT algorithm was dismissed.
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9.2 Floating-point

The first published dual-path floating-point adder implementation for FPGA was 

proposed as a result of this study into floating-point, as was the first group of double- 

precision floating-point modules. The results showed the proposed addition algorithm 

to be the fastest in the open literature, which is due to the new and efficient 4-IEEE 

rounding mode component mapping, the new rounding and exponent correction 

structure, a new lead-zero detection algorithm and a new shifter mapping. The results 

showed that all the algorithms smaller than the one proposed were based on the 

‘vanilla’ algorithm, however, the smaller algorithms also had a reduced functionality 

set which further reduced their size. The ‘vanilla’ algorithm is expected to be smaller 

since extra logic such as adders and normalising components that are required to 

facilitate the dual-path structure are not required for the ‘vanilla’ algorithm. Other 

dual-path adders have been proposed since the original published work but they do 

not improve on the results presented. The algorithm scales well to larger operand 

widths as shown by its 9x speed improvement and comparative size to a recently 

published double-precision design.

Few other floating-point multiplication designs use the embedded multipliers so a fair 

comparison was difficult. However when compared to the designs that do use 

embedded multipliers the proposed design was more efficient as it uses the multiplier 

developed in the fixed-point section. This structure gives the proposed design a delay 

and area advantage over other designs. The only designs smaller than the proposed 

design either use more embedded multipliers in their multiplier structure or are based 

on a digit-serial structure, which causes a significant delay penalty. The proposed 

design is faster than all other designs apart from designs mapped to a faster speed 

grade Virtex-II FPGA.

The smallest floating-point division designs use a bit-serial divider for the significand 

division. However, these designs are also the slowest and cannot be pipelined. The 

proposed design is not the smallest or fastest for short word length mantissas as a 

commercial design has slightly better results, which is due to the use of RLOC 

placement directives. The proposed design is the smallest and fastest for larger word 

length mantissas and has the highest level of functionality of all other non-fully IEEE 

std-754 compliant designs.
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The proposed square root design uses a non-restoring square root extractor and is 

smaller than other designs that use restoring designs and radix-2 SRT designs as 

predicted in the fixed-point square root section. The proposed design offers the 

greatest level of functionality for the smallest area and has the fastest speed. The 

smallest square root design in the literature uses a bit-serial design but it is slow and 

cannot be pipelined.

9.3 Function evaluation

The main function evaluation methods were discussed and an overview of the current 

methods implemented on FPGA was given. None of the methods in the open 

literature met the requirements of the study and so a new function approximation 

mapping was investigated. A new piecewise Taylor series approximation technique 

was proposed and the trade off of arithmetic and ROM logic that is achieved by 

changing the order of approximation was discussed. The final design, as the results 

showed, proved to be the most efficient way of approximating smooth functions of 

restricted range and domain on FPGA and furthermore could take advantage of the 

embedded multiplier primitives.

9.4 Logarithmic number system

The aim of the LNS chapter was to provide a set of modules with the same 

functionality level as the equivalent floating-point operators and therefore to allow a 

fair comparison between the two number systems. The accuracy, dynamic range and 

special value usage were shown to be equivalent or better than the floating-point 

system. Two methods were developed for the LNS addition/subtraction function 

approximation. The aim of the two methods was to provide area efficient and delay 

efficient implementations of the function. The parallel-lookup method offered a low 

delay LNS addition/subtraction implementation and the dual-path method, which was 

based on the dual-path floating-point method, offered a low area solution for large 

fraction word lengths. The function approximations used in both methods were based 

on the piecewise method developed in the function evaluation chapter. However, 

instead of using a Taylor approximation a more accurate Chebyshev approximation 

was used. The multiplication, division and square root designs are very simple and 

there are very few different design options so all the mappings of these operators are
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very similar. The addition algorithm was shown to be considerably smaller than all 

other 8-bit integer, 23-bit fraction designs (i.e. the format comparable to IEEE std 754 

single precision) and of similar speed. The proposed design is not the smallest in 

terms of slice only logic for short (5-6 bits) fraction lengths, however it is the smallest 

if the design makes use of the embedded multipliers. Furthermore the design that is 

smaller has a reduced accuracy subtraction function in the singularity region due to 

the difficulty of accurately approximating the function in this region. The design is 

not the fastest for short (5-13 bits) fraction lengths, but the design that is faster is 

larger above 7 fraction bits and has a reduced accuracy (i.e. not as good as floating

point) subtraction function.

9.5 Comparison

9.5.1 Operator comparison

The comparison of the four basic operators gave conclusive results showing the area 

and delay superiority of the LNS for implementing the three basic operations of 

multiplication/division/square root. However the exponential area increase of the 

LNS addition/subtraction function meant the equivalent floating-point operation was 

superior in area for characteristics (fraction/mantissa) greater than 5-bits. 

Furthermore the delay of the function approximation used in the LNS 

addition/subtraction operator meant it was slower than the equivalent floating-point 

operator for all characteristic lengths. The superiority of floating-point addition and 

the efficiency of implementing floating-point multiplication, due to the Virtex-II 

FPGA embedded multipliers, means that the MAC operation and other useful 

functions and algorithms solely involving additions and multiplications are more 

efficiently implemented with floating-point arithmetic. This is true for all 

characteristics above 5-bits as shown by the functions in tables 8.3, 8.6 and 8.7.

The LNS is more competitive for specialist applications that use the operations of 

division and square root and few additions as shown in tables 8.4 and 8.5. Here the 

LNS exhibited a 50-100% speed-up over the equivalent floating-point implementation 

and was comparable and at times superior in area for characteristic lengths of up to 

15-bits. The area savings of the LNS implementations are expected to increase for 

these specialist applications if pipelined results are compared as the area of the 

floating-point multiplication/division/square root operators will increase as shown in
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tables 3.18, 3.23 and 3.28, but the area of the LNS operators will remain the same. A 

pipelined comparison cannot be made as pipelined LNS addition designs have not 

been produced due to time restrictions.

Certain algorithms will be more accurate when implemented with LNS arithmetic 

because the LNS multiplication and division operators are exact and powering 

operators can be correctly rounded with a maximum error that is less than the 

equivalent floating-point error. Furthermore the LNS addition/subtraction operator 

has been designed to have an accuracy that is at least as good as the equivalent 

floating-point operator.

9.5.2 Conversion comparison

The conversions in to and out of the LNS/floating-point domains are a one off 

operation as all ‘internal’ operations needed for an algorithm can be carried out in the 

domain’s native arithmetic. A direct comparison of the LNS and floating-point 

conversions highlights the area and delay advantage of the floating-point conversions 

for large fixed-point and LNS/floating-point word lengths. The accuracy of the LNS 

and floating-point conversions is equivalent but in some cases the floating-point 

conversions can be exact where as the LNS conversions always incorporate a 

conversion error. In certain systems with many operations the delay and area 

overhead of the conversions from fixed-point to LNS/floating-point and vice-versa are 

relatively small and so the size increase of the LNS is not significant. However the 

difference does exist and does enter into the argument against using LNS arithmetic.

9.6 LNS or floating-point: which is the most suitable for FPGA 
implementation?

Now an initial study and comparison of floating-point and logarithmic high dynamic 

range number systems has been completed an answer to the question posed in the 

introduction can be constructed. There are clearly trade offs in the two number 

systems so a single straightforward answer to the question cannot be given, so instead 

a set of guide lines to help the designer select the appropriate system is given:

All algorithms that can tolerate a small characteristic of 5-bits or less should be 

implemented with logarithmic arithmetic.
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Algorithms that are based solely on additions, or multiplications and additions, and 

that require a larger characteristic than 5-bits should be implemented with floating

point arithmetic.

Algorithms that require very few additions and consist of the two operations of 

division and square root are candidates for LNS implementation for characteristics of 

up to 19-bits. However, the actual choice is algorithm dependant and the 

implementation results of tables 8.1 and 8.2 can be used to make a pre

implementation decision.

For ‘internal’ accuracy purposes algorithms with a high proportion of multiplications, 

divisions and square root operations compared to the number of addition operations 

are good candidates for implementation using LNS arithmetic. The MATLAB 

libraries developed can be used to test the accuracy of a system before it is 

implemented in hardware to ensure it meets the desired accuracy.

For ‘conversion’ accuracy purposes the floating-point system is the best choice as the 

target word length can be chosen to prevent rounding errors. However when 

conversion rounding does occur the accuracy of both LNS and floating-point 

conversions are equivalent.

Algorithms that contain many sequential multiplication, division and square root 

operations are fast and accurate for LNS implementation.

The only candidate for algorithms that require very accurate high dynamic range 

computations is floating-point arithmetic as it is feasible to implement double 

precision floating-point operations on FPGA.

Algorithms that involve powering operations and few additions should be 

implemented with LNS arithmetic as powering is a simple fixed-point multiplication 

operation that can easily be rounded.

9.7 Future work

There are many more studies that can be performed to further validate the findings for 

the comparison of the two number systems. A few of the studies are listed below:
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Pipelined results have not been generated for the LNS addition operator so a natural 

next step would be to investigate the pipelining of the LNS addition operator to enable 

a comparison of the pipelined results. Furthermore an automated pipeline option 

could be developed for all components so the number of pipeline stages (latency) 

could be set as a design parameter.

The pipelining study for the LNS addition operator would go hand-in-hand with a 

study into using the dedicated synchronous memory blocks that reside throughout the 

Virtex-II FPGA. So far the blocks have only been studied for use in an 8-bit integer, 

23-bit fraction design and this study, which gave promising results, could be 

expanded to other characteristic lengths.

Reducing the accuracy of the LNS addition/subtraction function has been shown to 

dramatically reduce the memory requirement and thus the area of the 

addition/subtraction function approximation. This would be an interesting study to 

see the impact on the area of the FPGA implementation, however the precision of the 

floating-point addition operators would need to be reduced to keep the fair 

comparison criteria.

The LNS implementation of the powering function can be implemented with a fixed- 

point multiplier and can be correctly rounded. The floating-point implementation on 

the other hand requires a function approximation unit, which increases exponentially 

in area with argument word length. Furthermore the table-makers dilemma means 

that a great deal of extra logic is required to correctly round the result. The LNS 

powering operation has much in common with the constant coefficient multiplication 

(KCM) operator and the development and comparison of general floating-point and 

LNS powering functions would be an interesting study.

An investigation into the other mentioned fixed-point square root and division 

implementations would be a useful study. This work has only considered one class of 

algorithm for both operations but others do exist, which might have area or speed 

advantages.
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A commercial design has shown the area and delay benefits of using placement 

directives (RLOCs) and these could be added to the developed components to 

improve the layout, delay and area consumption.

To make the floating-point modules fully IEEE std-754 compliant the concept of 

denormalised numbers could be implemented. This will involve the use of extra 

shifters to correctly align the inputs or normalise the outputs as required.

The parallel-lookup LNS addition algorithm could be redesigned to include the new 

idea mentioned in section 5.9.2.4. This would significantly reduce the hardware 

needed to implement the function approximation arithmetic.

The current study has focused on using the Chebyshev function approximation 

scheme for the functions involved with the LNS addition/subtraction operator. This is 

not the most accurate polynomial approximation method and so a useful study would 

be to see the area and accuracy gain (if any) achieved by using the optimum minimax 

function approximation method.

The power consumption of devices is a major topic area due to the increase in mobile 

device technology. A beneficial study would be to compare the power consumption 

of FPGA algorithms implemented with LNS and floating-point arithmetic.

This study has focused on Xilinx Virtex/Virtex-II FPGAs and as specific primitives of 

the Virtex/Virtex-II FPGA have been used a straightforward port of the developed 

designs to other technology is not possible. Similar fixed-point studies would be 

needed to determine the most efficient implementations for other FPGA technology. 

However, the high level function evaluation, floating-point, LNS and conversion 

algorithms can be used to guide the design process for other FPGA technologies and 

in certain cases for ASIC implementations. Other FPGAs have different low-level 

structures and different macro blocks (i.e. different adder structures, LUT sizes, 

memory block size and DSP blocks) and an interesting study would be to see the 

impact of these alternative features on the implementation of logarithmic and floating

point arithmetic.
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Appendix
SRT division

A .l Radix-2 SRT division with non-redundant residual

xId is the division operation where x  is the dividend and d  is the divisor. The process 

of division calculates a quotient q and a remainder rem such that equation (A.l) is 

true.

We will assume x e  [0,1), d  g  [0.5,1) and follow the constraint that x<d, thus 

q e  [0,1). The general recurrence for SRT algorithms is given in (A.2).

The redundant quotient digit set {-1,0,1} is chosen for the radix-2 algorithm. For this 

digit set o=l and the radix r=2. The redundancy factor p is given by (A.4).

Generally a digit set with 0.5 < p < 1 is redundant. A digit set with p=T is maximally 

redundant and with p> 1 over redundant. When a=rll the digit set is minimally 

redundant. From (A.4) the digit set is redundant. For a particular quotient digit q we 

can use (A.5) and (A.6) to determine the upper and lower selection bounds as 

illustrated in table A. 1.

x  = q*d + rem, where rem<d .(A. 1)

The digit set for SRT algorithms is typically selected to be as in (A.3).

.(A. 3)
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Uk =(k + p).d ___(A.5)

Lk = (k -p ) .d  ___(A.6)

qm=k uk Lk
i 2d 0
0 d -d
-1 0 -2d

Table A. 1. Selection boundaries for radix-2 SRT division quotient digit set {-1,0,1}

The bounds given in table A. 1 can be plotted on a pd-diagram, which can then be used 

to determine the selection values. Figure A.l shows the qj+\=\ selection region in red 

the qj+1=0 selection region in yellow and the qj+ i=-l selection region in blue. The 

orange and green regions are where the selection regions overlap. In these regions it 

is possible to choose either value for the next quotient digit and the algorithm will still 

converge to the correct result. It is this property that ultimately allows reduced 

precision comparisons for the selection function. On figure A. 1 horizontal lines have 

been drawn at 0.5 and -0.5. These are the selection constants that are used to 

determine the next quotient digit and are independent of the divisor (x-axis).

r.w[j]

0 .5 -

- 0 .5 -

0.5

Figure A. 1. A pd-diagram to illustrate the selection constants for a radix-2 SRT 
division algorithm with quotient digit set {-1,0,1}.
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The selection function can be written as in (A. 7).

t y + i = <
1 if 0.5 <2w[/]
0 if —0.5 < 2w[/] <0.5  (A.7)
-1 if 2w[/] < -0.5

Equation (A.7) is used to determine the next quotient digit value. This quotient digit 

value is used to form multiples of the divisor to up date the shifted partial remainder 

as shown in equation (A.2). The digit is also the next digit of the result quotient. 

From (A.7) it appears that a full length comparison of the shifted partial remainder 

r.w\j] with the values of ±0.5 are needed to determine the next quotient digit. 

However checking whether a number with a range (-2, 2) is greater than or equal to 

±0.5 simply involves checking the three most significant bits. So determining the 

next quotient digit involves looking at the three MSBs instead of a full-length 

comparison. A correction step is needed at the end of SRT division to correct the 

remainder if it is negative. This involves adding on the value of the divisor to the 

negative remainder before it is correctly scaled. A correction of the final quotient is 

also required, which involves a subtraction of a single bit from the least significant 

position.

A.2 Radix-4 SRT division with non-redundant residual and 
maximally redundant quotient digit set

The selection function for radix-2 SRT division is independent of the divisor but it is a 

special case and in general for higher radix algorithms the MSBs of the divisor must 

also be checked when determining the next quotient digit. Here we give an example 

of maximally redundant radix-4 SRT division where the quotient digit selection 

function depends on the divisor and shifted partial remainder. This results in a pd-plot 

with a staircase style selection function shown in figure A.2. To generate the 

selection bounds we proceed as in radix-2 SRT division. For maximally redundant 

radix-4 division the quotient digit set is {-3,-2,-1,0,1,2,3}. By using equations (A.5) 

and (A.6) the selection bounds can be tabulated as in table A.2. There are seven 

different quotient digit choices and therefore six different selection constants. The 

selection constants, derived from the pd-plot of figure A.2 and numbered Mkj&i for 

the different quotient digits they separate, are shown in table A. 3.
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?/+1=* t/* Lk
3 4d 2d
2 3d d
1 2d 0
0 d -d
-1 0 -2d
-2 -d -3d
-3 -2d -4d

Table A.2. Selection boundaries for radix-4 SRT division quotient digit set
{-3,-2,-1,0,1,2,3}

4 -

- 2 -

- 3 -

-4 “

0.5

Figure A.2. A pd-plot for radix-4 SRT division

d Af-3,-2 M 2,.! Mi,o M),i M u A /2,3

:h) -1.5 -1 -0.5 0.5 1 1.5

-2 -1 -0.5 0.5 1 2

Table A.3. Selection constants for radix-4 maximally redundant SRT division
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Bit pattern Range
011.1XX...XX . [3.5,4)
Oil. 0XX...XX [3,3.5)
010.1XX...XX [2.5, 3)
010.0XX...XX [2, 2.5)
001.1XX...XX [1.5,2)
001. 0XX...XX [1, 1-5)
000.1XX...XX [0.5, 1)
000.0XX...XX [0,0.5)
111.1XX...XX [-0 5, 0)
111.0XX...XX irTO15

1

110.1XX...XX r-i.5,-D
110.0XX...XX [-2,-1.5)
101. 1XX...XX . [-2.5, -2)
101. 0XX...XX . [-3,-2.5)
100.1XX...XX . [-3-5,-3)
100.0XX...XX . [-4,-3.5)

Table A.4. Two’s complement bit pattern and corresponding range

Table A. 3 shows that one bit of the divisor needs to be checked to determine if it is in 

the range [Vfc,3A) or [%,1). Table A.4 shows that a maximum of four bits of the shifted 

partial remainder need to be checked to determine the selection region it is in. 

Therefore, it can be deduced that a total of 5-bits need to be checked to determine the 

next quotient digit.

A.3 Quotient digit set redundancy

Reducing the redundancy (i.e. from maximally redundant to minimally redundant) 

narrows the overlap regions where either quotient digit can be selected. This has the 

effect of narrowing the steps of the selection function and thus more bits of the divisor 

and shifted partial remainder need to be checked when determining the next quotient 

digit. Checking more bits means a bigger selection function, which increases the 

implementation area and delay. However reducing the redundancy means that fewer 

multiples of the divisor need to be created to update the shifted partial result.
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Appendix B
Square root derivation

B.l Sequential square root

We wish to compute S = , where x  is the radicand, such that x = S 2 + rent.

S[»] = 0. ... 5 .  = S[0] + X  2-.s,  (B. 1)
M

x  g [0.25,1) S  e [0.5,1) ___(B.2)

Each bit of S  can be calculated by comparing x  with various squares as follows:

l , / ^ ( 0 . 1 ) ’ _ _ ( B 3 )

0 otherwise

,2= 1,/JC- (° S'1)2 _(B .4)
0 otherwise

S i=________________________(B.5)
0 otherwise

\ i f  x>(0.sts2... l)2 (R6)
0 otherwise

If performed in a step-by-step manner then at step k the bits s]s2... sk̂  are known,

thus by using a squarer and a comparator the next bit of S , s* can be deduced. A 

variable width squarer is a costly component and so an alternative computation 

method is required.

Now, the comparison values can be written as:

(0.1)2 =(0.1)2  (B.7)

(0.5, l ) 2 =(0.5 , )2 + 0 .05 ,01   (B .8 )
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(0.5,521)2 = (0.5,52)2 +0.00v 201 ___(B.9)

(0.^52... I)2 = (0.5j52 ... V i f  + 0.00... 0 v 2... v ,  01  (B. 10)

Replacing the comparison values into equations (B.3-B.6) gives:

0 otherwise

s2 = ^ - ( O ^  *0.0*01 ^
0 otherwise
\ i f  x-(0..srv2)2 >0.00^01

*>3 — _____ ^ D - 1 J)
0 otherwise

s =  1 / /  JT -  (0 i,52... )2 > 0.00... 0.s,.s2... 01
0 otherwise

Now if we let w[k-1] and /[£-l] denote the left and right hand sides respectively of the 

inequality at the start of iteration k then the following algorithm behaviour is evident:

Initially set w[0] = x  and /[0] = (0.1)2 = 0.01 

Iteration 1.

Determine s\ by checking the sign of the comparison w[0]-/[0].
Depending on s\ w[l] will either be w[0]-(0.0)2 or w[0]-(0.1)2 
i.e. w[0] or w[0]-/[0] see equation (B.7). t[l] is set to O.OsiOl.

Iteration 2.

Determine s2 by checking the sign of the comparison vv[ 1 ]-/[ 1 ].
Depending on s2 w[2] will either be w[0]-(0.ji0)2 or w[0]h[0.5i1)2 
i.e. w[\] or w[l]-/[l] see equation (B.8). /[2] is set to O.OOsi^Ol.

Iteration j.

Determine sj by checking the sign of the comparison w\j-\]-t\j-\].
Depending on Sj w[j] will either be w[0]-(0.$i52 ••• ty-i 0)2 or w[0]-(0.$iS2 • •• ty-il)2 
i.e. w\j-1] or w[/-l]- /[/-1 ]. t[j] is set to 0 .0 0 ...0siS2-. s/)l.

B.2 The Restoring algorithm

Now we can write the above algorithm as a recurrence. 

w [/]=w [/-l]-5 /<r[/-l]) ___(B.15)
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In equation (B.15) sj must be determined by firstly calculating the tentative remainder 

w\j-1] -  t[/-l] and then checking the sign of the remainder, if negative, sj is 0, if 

positive, Sj is 1.

We can define S[/] to be the value of the square root result after j  iterations (B. 1). f[/] 

can be written in terms of S[j].

/[/-I] = 2‘1,l)S[/-l]+2'2y ___(B.16)

Substituting (B.16) into (B.15) gives a recurrence of (B.17).

w[/] = w[/-l] - s /2 - (/1)S[/-l]+2-2-') ___(B.17)

Where w\j] is the remainder alter j  iterations such that X = S2 + w[f\.

By scaling the partial remainder w[/] for each iteration step the range of w[j] can be 

constrained. Equation (B. 18) shows the scaled recurrence.

wUl = 2.w[/-l] -  Sj{2.S[j-\]+2'j) ___(B. 18)

Restoring algorithm

S [ 0 ] = 0; w [ 0 ] = x ;

For n = 1 to N

w[n] = 2*w[n-1] - (2*S[n-l]

If (w[n] >= 0)
S [n] = S [n-1 ] + 2“n;

Else
S [ n ] = S [ n - 1 ] ; 
w[n] = 2*w[n-1];

End if 
End for

B.3 The non-restoring algorithm

As for division a non-restoring form of the recurrence can be developed. Following a 

similar method such that if the result of a subtraction is negative then an addition is 

performed for the next iteration and vice-versa. We now briefly describe the non

restoring operation. In cycle k a speculative subtraction of (2 (/1)̂ [/-l]+2‘2y) is 

performed (substitute k for j). If the resulting partial remainder is negative then a 

value needs to be added on that forces a speculative subtraction of (2^ I)5'[/-l]+2'2y)

+ 2 ~n ) ;

% positive no need to restore 

% negative so restore
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for cycle £+1 (substitute k+\ for j). This is achieved in cycle k+\ by adding on 

(2'^"1).SX/-1 ] + 3.2'2;). Therefore the non-restoring algorithm can be written as:

Non-restoring algorithm

S[0] = 0; w[0] = x;

For n = 1 to N
If (w[n-l] >= 0)

w[n] = w[n-1 ] - (2'(n_1)*S [n-1] + 2“Zn) ;
Else

w[n] = w[n-1 ] + (2",n"1)*S [n-1] + 3*2'2n) ;
End if
If (w[n] >= 0)

S [n] = S[n-1] + 2“n;
Else

S[n] = S[n-1]/
End if 

End for

Simulation shows this algorithm produces the same square root as the restoring 

algorithm. The algorithm can also be scaled as for the restoring algorithm by 

changing the if-else clause lines in the above algorithm with the following lines:

If (w[n-1] >= 0)
w[n] = 2*w[n-1 ] - (2*S[n-l] + 2“n) ;

Else
w[n] = 2*w[n-1 ] + (2*S[n-l] + 3*2_n) ;

End if

Simulation shows that the above non-restoring square root algorithm produces the 

correct result but the remainder needs to be corrected if it is negative. The remainder 

correction is done before the final remainder scaling by adding on (B.19).

2 * S[n] + 2~n ___(B.19)
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