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A bstract

The two most advanced applications of contactless magnetic levitation are high-speed mag
netic hearings and magnetically levitated vehicles (Maglev) for ground transporta tion  using 
superconducting magnets and controlled d.c. electromagnets. The repulsion force from su
perconducting magnets provide stable levitation with low dam ping, while the suspension 
force generated by electromagnets is inherently unstable. This instability, due to the in
verse force-distance relationship, requires the addition of feedback controllers to sustain 
stable suspension.

The problem of controlling magnetically levitated system s using d.c. electrom agnets 
under different operating conditions has been studied in this thesis with a design process 
primarily driven by experim ental results from a representative single-m agnet test rig and 
a m ulti-m agnet vehicle. The controller-design stages are presented in detail and close rela
tionships have been constructed between selection of perform ance criteria  for the derivation 
process and desired suspension characteristics. Both linear and nonlinear stabilising com
pensators have been developed. Simulation and experim ental results have been studied in 
parallel to assess operational stability  and the main em phasis has been given to assessing 
performance under different operational conditions. For the experim ental work, a new dig
ital signal processor-based hardware platform  has been designed, built with interface to 
M atlab/Simulink.

The controller design m ethods and algorithm ic work presented in this thesis can be 
divided into: non-adaptive, adaptive, optim al linear and nonlinear. A daptive algorithm s 
based on model reference control have been developed to improve the perform ance of the 
suspension system in the presence of considerable variations in external payload and force 
disturbances. New design m ethods for Maglev suspension have been developed using ro
bust control theory ('Hoc, and f i—synthesis). Single- and m ulti-m agnet control problems have 
been treated using the same framework. A solution to the /H00 controller-optim isation prob
lem has been derived and applied to  Maglev control. The sensitivity to  robustness has been 
discussed and tools for assessing the robustness of the closed-loop system  in term s of sus
taining stability and performance in the presence of uncertainties in the suspension model 
have been presented. M ultivariable controllers based on 'H00 and / i—synthesis have been 
developed for a laboratory scale experim ental vehicle weighing 88 kg with four suspension 
magnets, and experimental results have been derived to show superiority of the proposed 
design m ethods in term s of ability to deal with external disturbances. The concept of Hoo 
control has been extended to the nonlinear setting using the concepts of energy and dissipa- 
tivity, and nonlinear state-feedback and output-feed back controllers for Maglev have been 
developed and reported. Simulation and experim ental results have been presented to show 
the improved performance of these controllers to a ttenuate  guideway-induced disturbances 
while m aintaining acceptable suspension qualities and larger operational bandw idth.
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Chapter 1 

Introduction

1.1 Background

Defying gravity by suspending a body freely in space and controlling it in all six degrees 

of freedom to perform some useful functions has been a focus of a tten tion  and research for 

many years [1,2]. W ithout a doubt, this technology has a considerable industrial potential 

since it offers absence of friction, wear and other dynam ic effects in moving bodies. The 

two most advanced applications of contactless magnetic levitation are high-speed magnetic 

bearings and magnetically levitated vehicles (Maglev) for ground transpo rta tion  using su

perconducting m agnets and controlled d.c. electrom agnets [1, 2, 3]. The repulsion force 

from superconducting m agnets provide stable levitation with low dam ping, while the sus

pension force generated by electrom agnets is inherently unstable. This instability, due to 

the inverse force-distance relationship, requires the addition of feedback control systems to 

sustain stable suspension.

Suspension based on electrom agnetic m ethods for passenger carrying vehicles has been 

known and researched since the early 1900. These technologies, known as m agnetically 

levitated vehicles or Maglev, are proposed as an alternative to air, autom otive and rail 

transportation. Various experim ental and research work has been done, with main par

ticipants Germany, Japan and UK [1, 2, 3, 4, 5, 6]. High-speed Maglev systems have 

been design and tested with speeds of up to 581 k m /h  (Yamanashi Prefecture, Japan, 

2004), which is almost twice the maximum speed of commercial rails currently in oper

ation [5, 7]. The first commercial transportation  system based on magnetic* suspension 

was implemented for the Birmingham International A irport and has operated with high 

reliability from 1985 to 1995 [6]. Test tracks with a to tal length of 100 miles are under 

active research in Germany and Japan. Recently China in collaboration with Germany has 

built the first high-speed commercial Maglev system to connect Shanghai with Pudong In
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ternational A irport [8 , 9, 4, 10 , 7] and to roach operational speeds beyond 450 km /h . This 

high-speed link, now in full operation, has shown th a t Maglev can be a practical transpo rta 

tion system which can be* superior to the commercial transporta tion  system s in term s of 

operational cost and reliability, safety, aesthetics and environm ental acceptability [11, 12].

1.2 Control work m otivation

Earnshaw ’s theorem (1842) states th a t a pole placed in a s ta tic  field of force does not have 

a position of stable equilibrium [2]. The repulsion forces between m agnets of fixed strength 

are therefore unstable and im practical for suspending a body in space. This inevitably 

requires some form of an active control to m anipulate one or both  fields of force* to achieve* 

a stable suspension.

A full review on the known principles of electrom agnetic m ethods for supporting masses 

known at present tim e can be found in [1, 2]. C urrent research on advanced ground trans

portation is mostly based on the following two forms: (1) electrodynam ic (superconducting) 

repulsion systems and (2 ) electrom agnetic suspension system s with controlled DC electro

magnets. Each has proved to have potential for industrial applications [4, 5, 10, 7].

Electrodynam ic suspension uses superconductors to produce* m agnets with very high 

flux densities. Motion between such m agnets and conducing sheets produces repulsive forces 

leading to  suspension effects. This m ethod is inherently stable above some critical speed 

(«80  km /h) and thus does not require active control systems for levitation and guidance. 

The first full-scale system with superconducting magnets was built in Japan  to support 

work for applications for ground transportation . Test vehicles based on superconducting 

magnets are under constant research and development with test lines near Tokyo [5]. The 

first commercial Maglev link in Japan  is planned to connect Osaka and Tokyo and to reduce 

the 500 km route to a one-hour-journey (currently the Shinkansen tra in  takes 2h and 30 

minutes).

Suspension with controlled DC electrom agnets is by far the most advanced in term s of 

research and development for alternative ground transportation  and contactless magnetic 

bearings [1, 2, 13, 4, 3]. The advantage of this principle, in contrast to electrodynam ic 

suspension, is its ability to provide suspension a t zero-speed. The system, however, is 

inherently unstable and requires a feedback control system to m anipulate the forces of a t

traction and hence the suspension airgap (gap between the m agnet and the track, typically 

less than 10 millimetres). The nonlinear nature of the dynamics due to the square rela-
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tionship between the excitation current and the magnetic force, the open-loop instability 

and the necessary operational bandwidths, require a considerable analytical effort in the 

derivation of the control algorithms and the design of the digital hardware and supporting 

circuits. A quick glance of the control problem is given below.

linear motor

tracks

position sensormagnet
accelerometer

Figure 1.1: Block diagram of a magnetically levitated vehicle (suspension only). Four 
magnets, one in each corner, provide four suspension forces f \  to / 4, which give three 
degree in freedom in the chassis: pitch 0, roll <t> and heave z. A linear motor provides the 
fourth degree of freedom, propulsion along x.

A typical Maglev suspension vehicle system is assumed to behave as a rigid body in free 

space, Fig. 1.1, which is capable of linear and rotational motions along three orthogonal 

axes: (A", Y, Z). The main requirement from the suspension control system is to decouple 

the body from the guideway by suspending it freely in space and following the track- 

profile. Additionally, external disturbance forces, track and load irregularities have to 

be accommodated. To achieve this, the suspension forces have to be actively controlled. 

The linear motion along the X  axis is typically controlled by the propulsion system and 

therefore five modes are controlled by the vehicle’s control system. Although the minimal 

requirements to control these five modes require five independent magnets, for practical 

reasons four electromagnets are used to provide suspension forces along Z  and rotational 

modes along A, K, while other four electromagnets (not shown in the figure) provide 

guidance support.

Taking only one corner, a simplified schematically representation of each magnet is 

given in Fig. 1.2. Excitation current ik(t) flowing through the magnet’s winding produces 

magnetic flux and thus electromagnetic suspension force f k ( ^ z , t )  which suspends the the 

magnet and the body toward the guideway. Under certain assumptions, the suspension
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track

airgap

position 
Jr sensor

I  <*(*)!

control current
accelerometer

Zk(t)

Zk{t)

Figure 1.2: Electromagnet suspension system: /*(z, z , t) is the suspension force for the A;-th 
magnet, /«* is the disturbance force acting on the vehicle, Zk(t) is the suspension airgap and 
Zk(t) is the acceleration of the magnet.

force /*, k = 1..4 can be described by [1]

**(<)
k =  1 ..7i

A*o 4

where Dk(t) is the magnetic flux density in the airgap, A is the magnetic pole-face area, /i0 is 

the vacuum permeability, N  is the number of coil turns, and Zk(t) is the k-th airgap length. 

By controlling the excitation current, a balance can be reached where the suspension force 

will be equal to the gravitational and disturbance forces /<*(£) and then the body will be 

suspended in air in equilibrium. The suspension force, however, is proportional to the 

square of the the control current and inversely proportional to the square of the airgap 

and thus the system is highly nonlinear. In addition, the multi-magnet configuration and 

the cross-coupling effects in the rigid body (Maglev vehicle in Fig. 1.1) would require a 

special control design to account for the multivariable nature of the system and to reduce 

undesirable dynamic effects from disturbances in the suspended rigid body.

1.3 C ontrol work background

The first registered attempt to control DC-electromagnets dates back in the early 1900’s, 

when Graeminger patented a feedback system for stable suspension [1]. The first known 

prototype, which wras able to levitate a mass of 156 kg at 15 mm airgap, was demonstrated 

in the late 1930s. With advances in solid-state devices in the mid-1960s and the use of the 

linear motors, actively developed and promoted by Professor Eric Laithwaite, the potential 

of magnetic suspension for transportation became a reality. In the past few decades, a 

considerable research effort has been undertaken worldwide to prove that magnetic levita
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tion based on controlled electrom agnets has a valuable potential for industrial applications. 

W ith the constant research in the area of dynamic control and with the emergence of faster 

processors, this area continues to be very attractive and to offer a basis for both applica

tions of control-systems design and real-tim e im plem entation. Test-rigs have been built in 

different universities for both single- and m ulti-m agnet applications in order to reduce the 

tim e delay between theoretical advances in the control theory and practical engineering 

applications.

Some of the earlier work on Maglev vehicle design using d.c. electrom agnets was pi

oneered in the UK by the University of Sussex and several im portan t results had been 

reported [14, 13, 15, 16]. A 1-ton research vehicle was built to  study  the dynam ics of 

coupled m agnets and control of the m ultivariable system [15]. A detailed analysis of the 

analytical and engineering aspects of of the design of controllers for m ulti-m agnet vehi

cle suspension systems has been presented in [1, 13]. It has been established th a t the 

due to the multiple-degree of freedom in the vehicle, interaction of the various control 

loops through the dynamics of the vehicle is an im portan t factor in the form ulation of the 

overall control strategies [13]. Two fundam ental control designs were developed: (a) inte

grated control which uses coordinate transform ations and independent controllers for the 

heave, pitch and roll components and (b) local control th a t stabilises each m agnet inde

pendently. Results showed th a t integrated control poses less overshoot in the response and 

faster transient responses. The analysis of the ride and track-clearance characteristics of 

an electrom agnetic suspension system travelling along a guideway w ith random  roughness 

has been analysed in [1, 16] to  show th a t low-speed m agnetically suspended vehicles (70 

km /h) can travel w ithout the aid of a secondary suspension. The track roughness and dis

turbances, however, have a considerable influence on the ride and stab ility  characteristics 

of a ttraction-type of suspension systems due to  the track-clearance requirem ents. Special 

attention has to  be thus paid on the control-design aspects to a tten u ate  these undesired 

effects on the suspended body.

The problem of designing m agnetic suspension systems for higher speeds (500 km /h) 

and the modelling of their dynamics is discussed in [17]. Together w ith external d istur

bances such as wind force and track tolerances, early work a t MBB paid some attention 

to  uncertainties in the model (referred as system disturbances) such as instrum entation 

errors, accelerometer biases and gap and current m easurem ents errors. An estim ator for 

the track-disturbance is included in the control system design bu t the uncertainties in the
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model are not accounted for. The Linear Optim al Control synthesis technique has been 

used to design a multivariable compensator for the vehicle. Some prelim inary results from 

digital im plem entation of the controllers have been presented. This work was extended in 

[18] and a new model using finite-element methods has been designed to account for elas

ticity in the chassis, which is difficult to deal with using rigid-body modelling techniques. 

These results showed tha t several resonance frequencies are presented due to the elasticity 

in the body. The controllers have observer-based structures and use inputs from either 

current and position or acceleration and position to generate a feedback. It has been noted 

th a t the observers are, however, sensitive to uncertainty in the model and thus a careful 

account for the selection of their param eters has to be taken to avoid instability in the 

system. An im portant conclusion has been drawn th a t eddy current losses are produced 

due to the high velocity in the vehicle and this degrades the perform ance [1]. The digital 

control work in [18] has been carried out on a Honeywell digital com puter with a maxi

mum control-sampling frequency of 100Hz. The sampling frequency has been increased to 

18 KHz in [19] to implement a digital state-feedback control system for a single-magnet 

electromagnetic suspension system. Comparison is made with an analogue controller to 

show the benefits from a flexibility and quality prospective to em ulate the real-tim e per

formance of the classical op-amp based controller. Digital controllers provide a basis for 

implementing different controllers in software without a hardware rework.

A one-dimensional Maglev model which considers only the heave response has been 

presented in [20]. A secondary suspension is included and modelled as a spring-dam per 

system. A set of inequalities are solved to get a compensator w ith two inputs (position 

and acceleration) and one ou tpu t (control voltage) to m aintain the position error, the 

acceleration and the drive ou tpu t within pre-defined limits. Simulation results are presented 

to show airgap response due to guideway irregularities.

A small test vehicle (88 kg) running along a 5 m track using a linear m otor was designed 

in [21]. The vehicle chassis is equipped with four m agnets for suspension, while the guidance 

is provided from the inherent lateral stiffness. Transputer-based hardw are was designed 

with appropriate inputs for m agnet transducers. Four switched-mode current controllers 

were implemented to drive the m agnets providing up-to 10 A of current. Each magnet 

was equipped with a position and an acceleration sensors. Using this configuration, a new 

force control configuration was proposed and designed in [21] which employed a detailed 

electromagnetic model to provide a linear force actuation. In [21] the control strategy was
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firstly implemented on a single-magnet test-rig and then grouped to three independent 

controllers for the three modes (heave, pitch and roll) to control the suspension forces of 

the vehicle. The linear force actuation of this method is considered as an advantage, but 

low accuracy in the air-gap measurement a t small airgaps was observed [21]. The control 

work was implemented in the digital domain using the on-board floating-point transputers 

and sampling frequencies of 500Hz. The mechanical chassis, sensors and power amplifiers 

from [21] are used in this thesis.

/ /—Synthesis of a single-magnet electromagnetic suspension system  has been reported 

in [22]. A pool of uncertainty where the system is assumed to reside has been modelled 

by a complex uncertainty model. The controller synthesised using a mechanism which 

iterates between Hoo design and //-synthesis (D K -iteration) provides robust stability  and 

performance for the selected range of model perturbations. This work has been extended in 

[23] by adding robust analysis in term s of linearision errors, param etric  uncertainties and 

neglected dynamics. A mixed sensitivity problem is solved combining real and complex 

uncertainties. The system performance is analysed using experim ental results from a single

magnet system and step responses in the force disturbance.

A frequency-shaping linear quadratic (LQ) controller for a single-m agnet suspension 

system has been reported in [24]. Stochastic and determ inistic disturbance inputs are 

targeted with the aim of frequency-domain weightings used in the performance criterion 

integral for the LQ optim isation. Results from a single-magnet suspension system are 

presented to  show th a t the frequency-shaping LQ m ethod is be tte r than  the classical LQ 

m ethod for determ inistic inputs. The design constraints are chosen to  accom m odate good 

ride qualities by lim iting acceleration and position variation levels.

Linearising control for a single-magnet electrom agnetic suspension system using observer- 

based structure  was reported in [25]. Using a suitable coordinate transform ation, the non

linear dynam ics is linearised to get a system with three sta te  variables: position, velocity 

and acceleration. Two weakly coupled Riccati equations are solved to derive the feed

back and the observation gains. The stability  is analysed using Lyapunov techniques. The 

sim ulation results presented in [25] show th a t the linearising controller has a superior perfor

mance in term s of coping with param eter variations compared to the linear observer-based 

controller. Similar work on the design of a nonlinear feedback linearising controller for a 

single-magnet suspension system is presented in [26]. Experim ental results are presented 

from a test rig to show th a t the proposed nonlinear controller is robust against perturba-
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tion in the suspended mass and external force disturbance compared to the classical linear 

state-feedback controller. The control work in [26] was implemented on a TMS320C31 DSP 

with 3 kHz sampling rate. Feedback signals are the m agnet’s current, the position and the* 

acceleration levels. Experimental results from a single-magnet system using a linearising 

controller are also reported in [27]. Special attention is given to the fact th a t although 

excellent results are obtained from the design process, a very accurate model is required to 

implement the coordinate transformation and hence the controller. Robust properties in 

the design of linearising nonlinear controllers for a single-magnet system was also presented 

in [28]. Param etric uncertainties are incorporated into the design to guarantee robustness. 

Experimental results are included to show th a t the nonlinear robust controller manages to 

track better large variations in the desired airgap compared to a nom inal linear controller. 

This work has been extended in [29] by adding adaptive features to the linearising controller 

to cope with param etric uncertainty in the design. A single-magnet system is used for the 

experimental analysis.

An Hoc loop-shaping design for a single magnet system with a secondary suspension is 

presented in [30]. A mixed sensitivity problem is solved numerically using an evolution

ary algorithm . Simulation responses were presented to show the air-gap response and the 

acceleration levels for a chosen reference input. A detailed account was given of the nu

merical solution and a comparison is made with other genetic algorithm s. The advantage 

in the developed approach was considered to be the ability to use a m ixture of discrete and 

continuous param eters in the problem formulation. The design of an H 00 controller for a 

m agnetically suspended vehicle with four m agnets is also reported in [31]. The authors had 

chosen to  neglect the cross-coupling in the rigid body and to design four Hoo compensators 

stabilising each corner independently. Experim ental results from a 100kg vehicle were in

cluded to show th a t the Hoo controllers give better dynamic responses to disturbances 

applied to one of the corners of the vehicle. Simulation results from a switched-mode H 0o 

controller-design with gain scheduling is presented in [32]. A single-magnet system is con

sidered where the authors assume a scenario with a very large variation in the operating 

airgap. To cope with this, a gain-scheduling mechanism was used in com bination with an 

H qo design. Two compensators are alternated with a threshold m onitor point on the operat

ing airgap. The simulation results were compared with the linearising controller developed 

in [26] to show th a t the gain-scheduling controller achieved better tracking performance in 

the presence of param eter perturbation.
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Sine recently more exotic applications of magnetic levitation have been reported such 

as the M agnetic Launch Assist, which is a magnetically levitated vehicle with propulsion 

to provide an initial velocity by using electrical power from ground source for launching 

space shuttles into space [33, 34]. Maglev is proposed as a suitable concept in reducing 

costs for future space explorations [33].

1.4 Scope of this thesis

Although several results for the control of single-magnet suspension system s have been 

reported, little account has been given to the development of a detailed design framework 

for the control of Maglev vehicles since the results presented in [17, 18, 15, 1, 21]. In this 

respect, the research work presented in this thesis has aimed to reduce the gap between 

recent advances in control theory and their engineering applications to Maglev. The prob

lem of controlling magnetically levitated systems using DC electrom agnets under different 

operating conditions has been studied with a design process prim arily driven by experimen

tal results. In previous research work, independent suspension controllers for each mode 

of the vehicle (heave, pitch and roll) have been designed using force control algorithm s 

employing a detailed model of the electrom agnet in conjunction with current and airgap 

feedbacks [21]. It was noted in [21] th a t the quality of the proposed control strategy de

pends on the accuracy of the model and the airgap measurem ents a t small air-gaps. The 

research work undertaken in this thesis has aimed to continue the developments in [21] by 

employing optim al control theory to the design of Maglev controllers. New tools for the 

vehicle control have been developed to provide a basis for deriving feedback compensators 

by m inimising cost functions using optim isation. W ith this approach, single- and m ulti

m agnet control problems have been treated  using the same framework. The design process 

has aimed to provide convenient tools for assessing the robustness of the closed-loop sys

tem in term s of sustaining stability  and perform ance in the presence of uncertainty in the 

suspension model. The research work has been prim arily driven from experim ental results 

from a single m agnet test rig and a small m ulti-m agnet vehicle (88 kg) equipped with 

position and acceleration sensors and power amplifiers [21]. The controller-design stages 

are presented in detail and close relationships have been constructed between selection of 

performance criteria for the derivation process and desired suspension characteristics. Both 

linear and nonlinear com pensators have been developed. Simulation and experim ental re

sults have been studied in parallel to assess operational stability  and the main emphasis
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has been given to  assessing performance under different operational conditions. To support 

the experim ental work, a new digital signal processor-based hardware platform  has been 

developed to meet constraints from the com putational and operational bandw idths. Some 

of the m ain areas of work undertaken during this research project arc* listed below.

•  Adaptive algorithms based on model reference control have* been developed to improve* 

the performance of the suspension system in the presence of considerable variations 

in external payload and force disturbance's [35].

•  Design of custom-built DSP hardware and corresponding software libraries have been 

developed to control a three-degrees-of-freedom Maglev vehicle (88  kg with four mag

nets) and logging in real-time and delivering experim ental d a ta  to a host com puter 

for analysis (M atlab/Sim ulink). A software control framework for DSP has been de

veloped which is fully customisable to provide the supporting experim ental results 

presented in this thesis.

•  Recent advances in robust control theory (H<x, and //—synthesis) have been applied 

to both single- and m ulti-m agnet suspension systems. An alternative solution to the 

Hoo controller-optim isation problem has been derived and applied to Maglev control. 

Sensitivity to  robustness has been discussed. M ultivariable controllers based on Hoo 

and / i—synthesis have been developed for an 88 kg vehicle and experim ental results 

are derived to  show superiority in term s of ride qualities, acceleration levels and 

ability to deal with guidance- and track-induced disturbances.

•  The concept of Hoo has been extended to the nonlinear setting using the concepts of 

energy and dissipativity and nonlinear state-feedback and output-feedback controllers 

for Maglev have been developed for a first tim e [36]. Simulation and experimental 

results have been presented to show the superior performance of these controllers to 

a ttenuate  guideway-induced disturbances while m aintaining acceptable ride qualities 

and larger operational bandw idth.

1.5 Overview of the thesis

This thesis contains ten chapters and is organised as follows.

10



C hapter 2: E lectrom agnetic Suspension System : m odelling, sim ulation and 
transputer-based control system

In this chapter, the electromagnetic suspension dynamic model of a single-magnet system is 

developed. The nonlinear relationship between the force of attraction, the control current 

and the distance, is linearised around a nominal operating point to derive a state-space 

model of the suspension system. Its param eters are matched with those of a single-magnet 

experimental test-rig. To modify the force-current relationship, a state-feedback controller 

is derived. The suspension characteristics are analysed experimentally using a network of 

three transputers (two 32-bit floating point units and one 16-bit integer unit) which was 

previously built in [21]. Experimental results in changing the desired reference airgap are 

compared with simulation results. Some implementation issues of the real-time control 

implementation are discussed.

Chapter 3: A daptive pole-placem ent and m odel reference control o f M aglev  
system s

For Maglev systems which are under the influence of external force and mass disturbances, 

a methodology of checking the stability properties of the closed-loop Maglev system is 

developed using real-time identification based on recurrent least-squares algorithms. An 

identification loop running in parallel with the main suspension controller is developed to 

monitor the location of the closed-loop poles of the experimental system and hence the 

force-airgap relationship. Analysis has shown th a t external force and mass disturbances 

can be modelled as a variation in the dynamic characteristics of the suspension system. To 

provide a framework for coping with external disturbances and uncertainties, two adaptive 

algorithm s for Maglev control are developed: (a) adaptive-pole placement control and (b) 

adaptive model reference control. The adaptive pole-placement controller is derived using 

a recurrent least-square error-minimisation algorithm. The Diophantine equation, which 

defines an error measure between the desired and current location of the closed-loop poles, 

is minimised to adapt in real-time the gains of the state-feedback controller. The adaptive 

model-reference controller is derived by minimising analytically a cost function constructed 

from the error between the theoretically derived (using the model from Chapter 2) and the 

experimentally obtained state-variables (position, velocity and acceleration) and their error 

rate. The result is a mechanism for modifying the controller’s gains in real-time to maintain 

the cost-function defined above minimal. Experimental responses in coping with external 

mass and force disturbances are presented to show the benefits of this controller compared
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to the ordinary state-feedback. Some constraints from the real-time implementation of the 

adaptive pole-placement controller on the transputer hardware are discussed.

C hapter 4: D SP  environm ent for M aglev control

The event-driven nature of the transputer architecture does not allow running real-time 

applications with a fixed sampling time and some jitte r  in the clock was observed during 

the controller implementation. Additionally, advanced control algorithms for Maglev put 

additional constraint on the signal-processing bandwidth. Because in the middle 1995’s 

transputers were discontinued from manufacture, a new processor for the control work was 

needed. A suitable choice for real-time Maglev control was found to be the Analog Devices 

SHARC family of DSPs offering 40 MIPS and 80 MFLOPS sustained processing power 

and an interrupt driven architecture capable of delivering fixed sampling time. To explore 

compatibility of these DSPs for real-time Maglev control, this chapter develops a single

magnet DSP control hardware using a commercial EZ-KIT Light DSP hardware and a 

custom-build ADC/DAC interface for magnets. The state-feedback controller developed in 

C hapter 2 was firstly ported to the new hardware, followed by the adaptive pole-placement 

controller and the adaptive model-reference controller from Chapter 3. The sampling of 

the com putationally intensive adaptive pole-placement controller was considerably reduced 

from 950 /xs on the transputers to 200 /xs on the DSP hardware and successful experimental 

results are obtained in attenuating 120N force disturbance. The adaptive model-reference 

controller was also ported to the DSP hardware and new experimental responses with 

200 /xs sampling tim e were analysed in attenuating external force and mass disturbances. 

An account is also given of selecting tuning param eters for the adaptation rate versus 

transient response in the disturbance attenuation. Applications of Fuzzy-Logic control for 

electromagnetic suspension systems are also discussed and three different Fuzzy controllers 

are derived using position, acceleration and velocity feedback from the suspended magnet. 

Experimental results in dealing with reference demand change are analysed and some of 

the key aspects of implementing Fuzzy-Logic controllers using DSP are discussed.

Chapter 5: D esign o f D SP  hardware for M aglev control

The preliminary control work carried out in C hapter 4 using the SHARC family of DSPs 

has shown tha t this processor provides enough processing bandwidth to implement compu

tationally intensive control tasks. The multiprocessing capabilities, Super Harvard Archi

tecture with embedded program and da ta  memory on-the-chip and 80 M FLOPS sustained
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processing bandw idth made the SHARC DSP a suitable candidate for the multi-magnet 

control work. Also (mid 1999) no commercial hardware was capable of fulfilling the re

quirem ents for the multi-magnet control work. A new DSP board hence was built to offer: 

a direct interface to four magnets (inputs from eight transducer and four outputs to current 

controllers), a fast and reliable Ethernet interface, a customisable digital interface, up-to 32 

M bit SRAM memory on-board and facilities for multiprocessing. Hardware design aspects 

and design of software libraries, such as kernel, T C P /IP  interface, interfaces to M atlab and 

Simulink, are addressed in this chapter. This hardware is used for all experimental work 

described in the remaining chapters of this thesis.

Chapter 6: Hoo controllers for M aglev system s

In this chapter a detailed account of the derivation and im plem entation of Hoo state- 

feedback and output-feedback controllers for Maglev systems is given. The mixed-sensitivity 

optim isation setting is introduced and details of the selection of performance weights for 

single-magnet electromagnetic suspension systems to satisfy pre-defined ride and perfor

mance qualities are given. Although algorithms for deriving Hoo controllers are readily 

available, in this chapter an alternative analytical solution is developed using Lagrange 

m ultiplier methods and differential game theories. The motivation for this work is based 

on its analogy with the classical LQG solution which is well understood. Despite the 

fundam ental difference in the derivation steps, the analytical solution for the Hoo control 

problem produces identical results as reported in [37]. A full account of the derivation of 

Hoo controllers for Maglev is given and the correspondence between performance weights 

and desired suspension characteristics. Simulation and experimental results are presented 

to highlight the fact th a t the suspension stiffness and the damping are well controlled with 

the new Hoo controllers.

Chapter 7: R obust analysis and control for M aglev system s

Uncertainties in the linearised Maglev model used for the controller design arise from 

changes in operating conditions due to the nonlinear force-current relationship and external 

force and payload disturbances. Up to some degree, the electrical param eters of the magnet 

are also considered as uncertain. For a given bounded variation in the Maglev’s parameters, 

it has been established th a t the Hoo controller developed in C hapter 6 for the nominal 

model fails to provide robust stability and performance for variations in the parameters 

above 10% from the nominal values. A measure based on singular values has been derived
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to tost Maglev controllers against uncertainty in the model. The test for robustness has 

been extended by employing the definition of the structured singular value //. It has 

been established analytically that the robustness (both stability and performance) is more 

sensitive to variations in the operation condition and external payload and less sensitive to 

variations in the electrical parameters. To provide a framework for robust Maglev design, 

the concepts of //—synthesis based on DK-iteration are used to derive robust controllers 

using the performance requirements derived in Chapter 6 . A selection of simulation and 

experimental results are presented to show the robust properties of the new controller in 

terms of sustaining performance in the presence of large variations in the model.

Chapter 8: M ultivariable M aglev control

This chapter develops a design framework for the multi-magnet vehicle controller using the 

developments of W00 and //—synthesis from Chapters 6 and 7. A three degree of freedom (3- 

DOF) state-space model of a representative suspension vehicle (four magnets) is developed, 

which is compatible for W00 design. Experimental results from a 88 kg test rig are used 

to validate the model. A robust multivariable controller with seven inputs (four airgap 

measurements from each magnet and reference pitch, roll and heave) and four outputs 

(control signals to magnet amplifiers) is derived using the //—synthesis algorithms from 

C hapter 7. An account of the selection of performance weights for achieving predefined 

ride qualities is given and a large selection of simulation and experimental results are 

given. These results show th a t the new multivariable controller is capable of sustaining 

good suspension qualities and, contrary to ordinary state-feedback controllers stabilising 

each corner independently, is also capable of m aintaining robust stability in attenuating 

guidance induced disturbances. The design framework is extended to a 6-DOF model of a 

vehicle with facilities for active guidance control. Simulation results are used in the 6-DOF 

analysis of the suspension and guidance qualities.

Chapter 9: Nonlinear W ^  control for M aglev

The concept of local dissipativity and supply power are used in this chapter to develop a 

design framework for the derivation of nonlinear Woo controllers. Using the values supplied 

and stored energy as criteria, the controller is designed to keep the energy of a penalty 

vector bounded and smaller than the energy of the disturbance input. The controller 

derivation requires finding a solution to Hamiltonian-Jacobi-Isaacs inequalities. While the 

analytical solution to these inequalities is not readily available, an approximate solution is
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found by deriving sequential terms in its Taylor series expansion. Thus instead of deriving 

one single nonlinear controller, the algorithm developed in this chapter derives a whole 

class of Maglev controllers by collecting the appropriate terms in the series expansion. 

This methodology is used in both the derivation of a nonlinear state-feedback controller 

and a nonlinear estimator in conjunction with the nonlinear state-feedback controller. The 

derivations of the controller are performed analytically. The performance of the suspension 

system with the nonlinear Hoo controller is analysed by studying the attenuation properties 

of the closed-loop system in attenuating track disturbances. The nonlinear output-feedback 

controller has been observed to provide a significant improvement in terms of dealing with 

track irregularities over the linear state-feedback controller.

Chapter 10: Concluding com m ents

Concluding comments with future research recommendations are included in this chapter.
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C hapter 2

E lectrom agnetic  Suspension  System : 
m odelling, sim ulation  and  
transputer-based  control

2.1 E lectrom agn etic  su sp en sion  m odel

Electromagnets with d.c excitation have the ability to attract ferromagnetic materials with 

the force of attraction being controllable. As a device, an electromagnet consists of two 

poles and a magnetisation winding. Excitation current i(t) flowing through the magnet’s 

winding produces magnetic flux (</>m(£)) and thus electromagnetic suspension force F(t)  

which suspends the the magnet and the body toward the guideway as shown in Fig. 2.1. 

There also a leakage flux (f>i, (t) which flows from one magnet pole to other and entirely 

depends on the magnet’s shape, material and design. Usually it is desirable to minimise 

this by suitable magnet design [1].

F(i , z , t )  f z(t)

position 
Jr sensor

i\

z(t)
control current

accelerometer
fd(t)

Figure 2.1: Electromagnet configuration [1]

W ith the assumption that for the iron track /jlt =  oo, then the following equation
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describes the force of attraction [1]

B 2A fi0N 2A i(t)
z(t) (2 . 1)

Ho 4

where: B  is the airgap flux density, A  is the pole face area, Mo is the permeability of free 

space (4e l0“ 7 h /m ), N  is the number of the coil turns, i(t) is the coil current, and z(t) 

is the airgap. This force of attraction is a non-linear function of the current i(t) and the 

airgap z(t). If R  is the total resistance of the circuit, for an instantaneous voltage v(t) 

across the magnet winding

v(t) =  Ri( t)  + — [L(i,z)\ 

where L(i, z) is the inductance of the magnet winding, given by [1]

L ( i , z ) = Mo N 2A »(*)
z(t)_

(2 .2 )

(2.3)

For vertical force balance of the system in Fig. 2.1

d?z(t)
m-

dt2
=  —F(i,  z) + f d(t) +  mg (2.4)

where fd is a disturbance force input. For the equilibrium point («o, Zq)

mg = F0(i0, z 0) =
Mo N 2A i_o_

LZ0
(2.5)

Substituting Eqn.2.3 into 2.2 gives the following equations for the electrical and mechanical 

characteristics for suspension dynamics

di(t)
dt

i(t)

m

z(t)

d2z(t) 
dt2

dz(t)
dt

_ r 
"  2

i(t)
+ f i ( t )  +  mg

(2 .6 )

(2.7)

where T =  v°N̂ A is a characteristic feature of the suspension magnet. Solving numerically 

Eqns. 2.6 and 2.7, the exact dynamics of the system may be obtained.

By linearising the non-linear equations (2.6 and 2.7) around a nominal operating point 

(Mb zq) the linear model for the suspension dynamics is given by

dAi(t)
dt

i_o
I Z 0 1

m
d?Az(t) _  dF(i ,  z) 

dt dz
d?Az( t)

dAz( t)
dt

(*o,zo) ^ z { t )

R
L q\

Ai{t)  +  

dF(i,  z)

1 1
Af(^)

di

LT0J

(io,zo) T  A fd(t)

m
dt

kzAz( t )  -  kiAi(t)  +  A f d{t) 
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where

if
k z = T — ; ki = T Lq =  —; kf  =  kzL 0 and mg  =  — ^

L 2 0 J
at («o, Zq)

Zq z q 1 2

By constructing a vector using Az(£), A i(£), and A i(t) and using Eqns. 2.9 and 2.10, the 

state-space model of the suspension system can be derived

A z(t)
A 2 (£) =
A i(t)

0
hz.m
0

1 0
0
A* _ iki Lq

A z(t) 
A z(t) 
A?(£)

+
0
0 
i

L Lq

0
J_
m
0

Av(t)
fd{t)

(2 .11 )

Choosing the voltage signal Au(£) as the input and the air-gap between the magnet and 

the track z(t) as the output, the block diagram of the system in time-domain is as shown 

in Fig. 2.2. The corresponding transfer function becomes

ki_
(2 .12)G(a) =

A z(s) mLp
c.3 | R r.2 kz R
* ^  L0 * m Lq

Eqn. 2.12 is the linearised single-input-single-output model of the non-linear magnetic 

suspension system in Fig. 2 .1. Since ki and kz depend on the linearisation of the system 

around the nominal operating point, the dynamics of the system are dependent on the 

choice of this point. If a considerable variation in the choice of (z0, z0) is expected, the 

controller has to compensate for this. This is analysed in subsequent chapters. Eqn. 2.12 

is used for all designs in the following chapters. In Chapter 8 , this model is extended to 

describe force and torque relationships in multi-magnet vehicles.

Due to the lack of damping in the mechanical dynamics (Eqn. 2.10), the closed-loop 

system has one positive pole and hence the system is inherently unstable in open loop. A 

feedback com pensator is therefore required to stabilise the magnet underneath the track at 

a specified airgap. In this respect, the main emphasis in this thesis is the development of 

control algorithm s for electromagnetic suspension systems working under different operat

ing conditions. The experimental work is carried out on single magnet representative rig 

and a m ulti-m agnet vehicle. The single-magnet rig is described in the following section. 

Details of the m ulti-magnet vehicle are given in In Chapter 8 , page 165.

2.2 Experimental system

The experimental system consists of an electromagnet, an accelerometer, and an airgap 

sensor (Fig. 2.3). The cantilever magnet and the track are supported by a base. The 

mechanical components are designed to enable the magnet to move freely in the vertical
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z(t)

z(t) z(t)

m

Figure 2.2: Block diagram based on the linearised sta te  equations.

direction (closer to the track and away from the track). The mechanical dimensions have 

been worked out such th a t a t the nominal operating point, the m agnet is parallel to the 

track.

TRACK

MAGNET

POSITION
SENSOR

ACCELEROMETER

Figure 2.3: Experimental single-magnet system. Photographic image of the test rig is 
shown in Fig. 2.4.

The m agnet used in this experimental system is an E-shaped magnet with laminated 

core with dimensions shown in Fig. 2.5 [1]. It is designed to work around the equilibrium 

point (iq=2  A, 2:0= 2.5 mm), and can be used with current up to 10 Amps. The constants 

of the m agnet a t the nominal operating point are:

R  = 1.1ft 

L q =  3.0 mH 

ki = 12.61 N /A  

kz =  6305.3 N /m  

m  = 1.8 kg

The experimental system is designed to work with airgap distances between 0.5 and 9 

mm. The transducer used to measure the airgap (A z(t))  is an inductive non-contacting 

transducer m anufactured by Pepperl & Fuchs model IA8-M1K-I3. The output is a current 

signal linearly proportional to the distance (0-20mA, 3% error). The measurement accuracy
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Figure 2.4: Photographic image of the magnet-track configuration.

of this sensor is given to be less than 30mm in the full + 10° to 4-40° C temperature range.

To construct the full state-space model, the acceleration of the magnet is required. For 

this purpose an accelerometer is used with voltage output proportional to accelerations in 

the range of ±5 g (±50ra/s2) (ICSensors, type 3110-005). The full-scale voltage output is 

±2 volts, with a 2.5 volt offset. The accelerometer generates internally a 2.5 volts reference 

for the conversion circuits. The accuracy is ± 1% over the full —10° to 4-40° C temperature 

range.

Figure 2.5: The E-core magnet dimensions [mm], left: side view; right: front view [1]

2.3 S tate-feedb ack  control for M aglev

Substituting the parameters for the experimental magnet shown in Fig. 2.3, the numerical 

form of Eqn. 2.12 becomes

A z(s) _  2335.3
^  ~  Av(s) ~  s3 4- 366.67s2 -  1.284 x 106
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As discussed earlier, the system has three real poles (pi =  -356.56, p2 =  - 65.28 and p3 =  

55.17) with one located in the right-hand-side of the s-planc. To keep the magnet, stable 

and close to a pro-specified nominal point beneath the track, a linear state-feedbaek is 

derived below.

To stabilise the Maglev system, all right-hand s-plane poles have to be relocated on 

tin* left-half of the s-plane, the precise' locations being related to the given set of elosed- 

loop requirements. Tin* linear state feedback control law is aimed at deriving the feedback 

gains of the three state variables such tha t the closed-loop poles are moved to a set of 

pre-specified locations. The open-loop state-space model of the system is given by

x(i) =  Ax(i) +  Bu(i) 
y(t) = Cx(<)

whore for the Maglev system, x  G R Sxl, A € R 3x3, B G R 3xl, C G R lx3, « is the

input to the system and y is the output . The state variable x  here has three elements

corresponding to the airgap, velocity and acceleration (current being related to force or 

acceleration). The dynamics of the system in state space form is fully determined by the 

eigenvalues of the m atrix A, or the roots of the characteristic equation [38]

dot (si -  A) =  0 (2.14)

Introducing a control signal in the form:

u(t) =  v(t) — Kx(t) (2-15)

where v = A zp(t)  is the desired output (position) from the system, and K  is a vector 

containing the feedback gains, the closed-loop state space representation becomes

x(f) =  Ax(t) +  B(v(t) -  Kx(f))
= (A -  BK)x(f) +  Bv(f)  ̂ j

By choosing different values for K , the eigenvalues of this closed-loop system may be

explicitly determined to make the system stable and satisfy given closed-loop performance 

requirements. Combining the state-space model in Eqn. 2.12 of the experimental system 

with the state feedback controller (for the linear model in Fig. 2.2):

A z R(t) -  A z{t)
A v(t) = [kp k v k A\ A z(t)

A i(t)
=  kpAzp( t )  — k p A z ( t ) + k y  Az ( t ) +k  AAi( t )  

the closed-loop suspension system is transformed to

(2.17)

A z( t )  ' 0 1 0 ‘  A z(t) ' ' 0 '
A z(t) = kz

m 0 _ bi.
rn A z(t) + 0

A i(t) _ (  kP | kAkz \  
L V I'O ^  m L 0  )

( ky  1 kz_\ 
\ L 0  ^  k j

(  R  , ktkA \  
\ L 0  m L 0 )  . _ A i{t) _ kp

L L0 J

A zp(t) 

(2.18)
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The input to the system is the desired position value (distance between the magnet and 

the track v =  zT,.j =  Ac/e(/,)) with the state variable's being the position, the velocity and 

the acceleration signals. The block diagram of the closed-loop system (Eqn. 2.17 added to 

Fig. 2.2) is shown in Fig. 2.6. The characteristic polynomial of the closed-loop is [1]

k.

Xx)A J %  kt
+   -  A+

Figure 2.6: Linearised model with linear state feedback controller.

dct(sl -  (A  -  B K )) =  s3 +  ( ^ -  +  k’kr
\  L q  TTlLo

*  , kikv , 1s   s  _|_ (kikp -  kz R)  (2.19)
m L o  rnLo

Using the m agnet’s param eters from Section 2.2, and feedback controller’s gains speci

fied by experimentally derived values: k p = 20833.0, k y —250.0, and k a = 4.0, the closed-loop 

system is successfully stabilised. A simulation of the magnet system with a state feedback 

controller was implemented in MATLAB. Two step inputs in changing the desired airgap 

A zref(t)  were applied at times shown as arrows in Fig. 2.7. The responses of the simulated 

magnet indicate a rise time in the order of 40ms.

A key feature in the design is the choice of the nominal operating point such that 

the parameters (kt, kz and L 0) remain unchanged for the whole of the operating ranges 

for the current and the airgap. An analysis of robustness and the effects of variations 

in the operating conditions is analysed in C hapter 7. If ( 7̂ - +  > >  1, the closed-\ '■'() TTIIjQ /
loop system can be modelled as a second-order system with kp controlling the steady-state 

error, the natural frequency and the stiffness (Fig. 2.6, page 22), kv controlling the damping 

ration and ka controlling the overall stability. Although the well established PID method is 

able to provide the basic suspension performance, acceleration-velocity feedback adds more
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Figure 2.7: Closed-loop response with desired air-gap change.

flexibility in the choice of suspension damping. Use of state-feedback, however, requires 

additional transducer to measure the vertical acceleration. Although the cost of this is 

negligible compared to the overall cost of the vehicle/control system, additional algorithms 

are required for full-scale fault-tolerant applications. The lack of dc-integration in the loop 

frequency response leads to steady-state errors. These can be compensated with pre-filter 

on the reference input or adaptive algorithms. Experimental results with the state-feedback 

controller are described below.

2.4 Transputer-based platform for control

Because of instability of the system without any feedback and the relatively small time 

constants inherent in the system, the stabilising controller requires a high bandwidth and 

hence a fast processor. Some of the early Maglev work used transputers [21]. These 32-bit 

devices were specifically designed for multiprocessing with the ability to link up several 

processors through asynchronous links to increase the total processing bandwidth [39]. A 

specific feature of the transputer is tha t it can execute several separately defined tasks 

(processes), sharing data  as necessary, within a single device (processor). Those tasks may 

be run as higher or lower priority tasks. The ability of the transputer/softw are to map these
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processes on to several processors (separate devices) communicating through their links, 

made transputers well suited for multi-loop control systems. W ithin a transputer many 

t asks may be run in parallel with common data. Along with this internal multiprocessing, 

the transputers may be connected in a point-to-point network through links to pass data 

w ith a bandwidth of up to 20M bit/s [39].

The early part of the experimental work was undertaken with existing and updated 

t ransputer hardware [21] with the specific aim of gaining practical experience in the design 

of Maglev systems in general and in the implementation of real-time control algorithms for 

the experimental system specifically. A brief review of transputer elements and the associ

ated control hardware used in the experimental work described here is given in Fig. 2.8.

PC

Visualisation and 
Data storing

IMST800-20

Secondary
transputer

I/O transputer
T ransputer-based 

acquisition module

IMST225-25

MAIN transputer

Host computer 
interface

IMST800-20

Figure 2.8: Hardware configuration of the processor modules.

The custom -built system consists of three interconnected processors. The first proces

sor, IMST225-25 (I/O  transputer), is a 16-bit transputer running at 25 MHz. The task 

of this processor is to control the analogue I/O  modules, to pre-process the analogue data 

and to pass magnet signals over to the next unit in the network. IMST800-20 (referred 

as the MAIN transputer) is a 32-bit floating-point, unit used to implement the controller 

algorithmic tasks. It runs at 20MHz and is connected through link to the next processor in 

the network, and to a supervisory (host) computer (PC). The third processor, IMST800-20 

(secondary transputer) acts as a secondary processor and is used to increase the processing 

bandw idth for computationally demanding control algorithms. The complete networked
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hardware is housed on an Inrnos full length B-008 AT plug-in board [40], which is mem

ory mapped to the P C ’s address space. The host computer contains a sof tware  server  

which is responsible1 for da ta  passing between the applications executed on the PC and the 

transputer-network. Details related to the software environment of the networked proces

sors are given in the* following section.

For the measurement of the feedback signals, an 8-channel 12-bit, analogue' to digital 

converter has been used. Each input of the ADC accepts a voltage signal (±2.5 V) with a 

maximum sampling frequency of 500 kHz (MAX-180ACQH). As the transducers have dif

ferent output ranges, the analogue signals are pre-processed before the ADC. This includes 

noise filtering, antialiasing, amplification and dc-biasing. For this purpose, an external 

Input/Output, board was designed with a functional block diagram as shown in Fig. 2.9. 

The current signal output from the airgap sensor is firstly converted into a voltage signal,

Z 1 C to V Gain-------- j-----►
MUX, S/H 

and
IMTS 225-25

* \ fc 1 Y k d.c off-setGain ♦ transputer
/ :

P Y k
ADC

Gain

Gain

DC/DC  
converter and 
external logic

Reference
voltage

DAC ♦ Memory

source

Figure 2.9: Block diagram of the inpu t/ou tpu t module, the analogue and the digital part.

using a current-to-voltage converter. Because of its sensitivity to vibrations, the output of 

the accelerometer is a high frequency signal with a significant noise content and a 2.5 V 

offset. In order to remove a high frequency noise beyond the bandwidth of the control sig

nal, the voltage signal is filtered using a 2nd order Chebyshev low-pass analogue filter with 

cut-off frequency specified at 500 Hz The output of the filter is further amplified and the 

dc-offset-removed to satisfy the ADC’s input requirements of ±2.5V full scale. The current 

through the magnet winding is also measured. This signal is filtered (2nd order Chebyshev 

analogue low-pass filter with cut-off frequency specified at 500 Hz) and amplified before 

connecting to the ADC’s input. At this stage of developing control algorithms the current 

signal is used only for monitoring.

For the control output, a digital to analogue converter is used (MAX527DCWG) to
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generate the feedback signal for the magnet power amplifier. A four-channel, 12-bit, DAC 

is used, memory m apped on the processor’s bus. The device gives an output range of ±2.5 

volts with an analogue output update' interval of 12/xs. This is considered as sufficient to 

meet the bandwidth requirements of the closed-loop suspension system.

A current amplifier is used to generate a power output from the DAC’s signal to drive* 

the magnet. This high-power current controller was (‘specially developed by earlier re

searchers [21] for use in experimental vehicles. It consists of a standard pulse-width mod

ulator that drives an optically isolated H-bridge with a switching frequency of 40 kHz and 

a continuous rating of up to 20 Amps at 24 Volts. The efficiency of the amplifier was 

estimated to be around 80% [21].

2.5 Software environment for transputers-based con
trol

For the control work, a custom-designed software environment was built. The core of this 

environment is a network of three transputers and the necessary da ta  communications fa

cilities to the host computer (486/DX4 PC). A brief description of the da ta  communication 

environment developed for this application is given below.

(a) A nalogue/d ig ita l data: The analogue to digital and digital to analogue convert

ers are connected to the data bus of the 16-bit IMST225-25 transputer (the I/O  transputer, 

Figs. 2.8 and 2.9) with both devices being accessed as memory devices. This I/O  transputer 

performs the following tasks.

•  Reads the three signals, position, acceleration and the current, from the ADC.

•  Transforms the three numerical values read above to integer data  in the ±  211 bits 

(±  2048 units) range.

•  Passes those values to the main transputer via lin k # l. The main transputer inte

grates the acceleration to get velocity, and implements the control law ( for example 

Eqn. 2.17). The feedback signal is communicated to the I/O  transputer (Fig. 2.8 and 

2 . 10 ) .

•  The I/O  transputer reads the above control signal from the main transputer via 

lin k # l and prepares the numerical form into a format compatible for input to the 

DAC.
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•  The signal is loaded to the registers of the DAC. After the conversion time (in the 

order of l()/x.s), tin* analogue output, is generated for the power amplifier.

The PC hosts an interface software1 within the Windows environment to provide* facili

ties for changing operational conditions for the magnet, (desired airgap, param eters e>f the 

feedback controller, etc.). The* software hosts also data  collection mechanism anel facilit.ie*s 

for graphical visualisatiem e)f elifferent signals with a basic form of mimic diagram (Figs. A.l 

anel A.2, page 260). A server has be*en developed! to handle all elata passing, booting anel 

configuration demand. A description e)f this software is given in Section 2.6. On the MAIN 

transputer (Fig. 2.10), a group e)f tasks are executed to handle the communication with 

the host server. Those tasks are* as folle)ws:

I/O MAIN SCND

AnalogueA—̂  
digital I „ 
data /  *

Link 1 Link 2 Link 3 Link 3Control
loop Available 

for 
secondary 

task(s) .Data to 
PC

Data 
from PC

Link 0

EISA

PC
Windows

based
server

Figure 2.10: Configuration of the different software tasks within the transputer hardware. 
The arrows show the da ta  path.

Comm unication with the host: This k)w-priority task is executed at a pre-defined 

time (default interval: 10ms). It connects to the server on the host computer to receive 

a buffer of data  which contains param eters as required by the control law. For the state 

feedback controller these are the desired airgap value, the feedback gains, and the satura

tion limits in the output current. At a predefined time (default interval 50 ms), another 

task passes d a ta  buffers to the server; for the Maglev these are the suspension airgap, the 

current acceleration signal, the velocity of the magnet and the operational current. Data
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related to the controller are also communicated.

Control loop: In this task, the control output is calculated according to the m athe

m atical control law (Eqn. 2.17 for example). The feedback signals an* received from the 

I /O  transputer. The sequence of execution of the tasks and processes described above is 

shown in Fig. 2.11. Sampling time here is dictated by the execution time of the individual 

tasks, and thus depends on data  availability, the asynchronous nature of individual subtasks 

as well as the actual operation performed within the controller algorithm. To establish a 

practical limit with the given hardware, the sampling time in the experimental set up was 

varied. This was observed to require a minimum of 400/zs. The execution time calculated 

and indicated in the last subtask above is used for ensuring a constant sampling interval 

in the experimental system. This is achieved by executing a delay loop, specified at 400/is 

minus the execution time. Because of the event nature of the transputers, however, it is 

not possible to achieve a strict sampling interval and some jitte r (in the order of ±30//s) 

was observed around the specified 400//S [39].

one sampling interval

I/O ADC prepares the data in ADC format prepares the data in D A C  format DAC

M A IN controller Prepares the DAC data DAC conversions and integration logging server

SC N D N ot used in state feedback control; used for advanced algorithms described in Ch-2/3

Figure 2.11: Process timing of the transputer hardware.

For more com putationally demanding algorithms (such as adaptive control) the sec

ondary transputer is used to increase the total processing power within the network. Im

plem entation issues for this are described in Chapters 3 and 4.

2.6 Host interface

The host com puter executes a collection of tasks; these include, booting the root transput

ers (MAIN transputer in Fig. 2.8) communicating with other transputers in the network; 

visualising the three sensor outputs, changing operational conditions (state feedback gains 

and set-point) and logging data  for further processing. This server application also gen

erates the user-interface mimic shown in Fig. A .l, A.2 (Appendix). This application is
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written in C using National Instruments LabW indows/CVI package [41] for WindowsTM 

environment. A brief discussion of these tasks is given below.

The overall application interface is shown in Fig. A.I. Current magnet data  can be* 

monitored 011 the left panel (Magnet-1). These are updated every 200ms (this interval was 

observed to be adequate for near enough real-time display). The desired position may be 

changed from the interface. A history window is implemented to visualise the operating 

conditions of the magnet. The feedback controller can be updated using numerical inputs 

(Fig. A .l (right top)).

2.7 Transputer implementation of the state feedback 
controller

Using the above hardware setup, experimental results are obtained to validate the theo

retical basis of the state-feedback design. A step response in the reference airgap position 

was generated and the corresponded experimental response is given in Fig. 2.12(top) from 

4 mm to 3 mm at t = 0 sec. and from 3mm to 4mm at £=300 ms. Fig. 2.12(bottom) 

shows the expanded response over the 0-50 ms time interval to provide a better indication 

of the initial part of the transient. The airgap responses are stable and well damped with a 

low overshoot (<  1 mm) and a settling time of approximately 200 ms. A close comparison 

is observed between the experimental and the simulated responses giving some confidence 

in the theoretical design. The lim itation in the design is th a t the linear control law is 

related to the three gains being strictly suited for a particular operating point (specified 

by the nominal values of the position and the magnet current, Section 2.3, constant ma

trix A). Choice of the three feedback gains (row m atrix K in Eqn. 2.17) is based on the 

desired locations of the closed-loop poles to meet stability and transient response speci

fications [38]. Selection of feedback gains is directly related to the closed-loop poles and 

hence the ride qualities. As the system dynamics change, the closed-loop m atrix (A — BK) 

changes and the closed-loop poles change. Depending on parameter variations, the closed- 

loop poles may move significantly from the original designated values leading to instability. 

To overcome this lim itation of the feedback compensator, further improvements of the state 

feedback controller have been considered. The mathem atical details and implementation 

issues related these control techniques are developed in the next chapter.
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Figure 2.12: Step change of the desired air-gap (top) using state feedback controller, and 
expanded version of the first step over the first 50ms (bottom). Feedback gains: k P =20833; 
ky  =250; /m =4;
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Chapter 3 

Adaptive pole placement and model 
reference control of Maglev systems

Adaptive state-feedback controllers for Maglev are developed below for applications where 

significant changes in the operating conditions are expected. The exposition begins with 

identification of closed-loop systems to analyse suspension characteristics with state-feedback 

controllers.

3.1 On-line identification of Maglev model

The identification process described here aims to derive a m athem atical model of the sus

pension system around the nominal operating point. This is accomplishment by comparing 

the ou tpu t from the system with the output from the model and minimising the error be

tween them  by adjusting param eters of the model; the input to both systems is same (see 

Fig. 3.1). The m athem atical model is used in adaptive model-reference design for suspen

sion systems with a considerable variation in the operating conditions. This is typically 

contributed from internal and external disturbances.

3.1.1 Problem formulation and background information

As the Maglev system is unstable in open-loop, the identification has to be performed with 

the closed-loop system operating at a chosen airgap. The aim here is to find a model, which 

correlates the position of the magnet with respect to the track and the reference position 

dem and zrej. For this, the state feedback controller is used. The identification process uses 

the structure of the model derived in Chapter 2 . For the digital work, this is represented 

in the Z —domain to get the general form

- B(z)  =  zm(k) =  b\z~l +  b2z~2 +  bzz~3
d Z A(z)  zre/ (k)  1 -I- a\Z~l +  a2z~2 +  a$z~*
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or
Zm{k) zrej (k  1) -f- b2zref (k  2) -f- b3zrej{k  3) , .

- a xzrn(k -  1) -  (i2 Zm(k -  2) -  a3zm(k -  3) '

This system is assumed to be a third order system [1]. If the unknown coefficients and

bi are organised as a vector

0 = [bx,b2,b3, a u a2,a3]r  (3 .3)

and the system ’s inputs and outputs organised as a vector

(f(k)T = [zref(k -  1), zref (k  -  2), zref ( k  -  3 ) ,- z m(k -  1), - zm(k -  2), - z m{k -  3)] (3.4)

the difference equation model may be re-written in vector form as

zm(k) = v ( k ) T0 (3.5)

Representation of the param eter estimation mechanism is shown in Fig. 3.1. Using a

z(t )

Identification 
algorithm 

(Eqn. 3.11 and 3.12;

unknown Maglev 
system 

to be identified

mathematical model 
with known 

structure (Eqn. 3.1)

Figure 3.1: The identification algorithm

reference input zref (k)  to both real system and m athem atical model, the error e(k) signal 

may be produced by subtracting the output of the system z(k)  from the output of the 

model zm(k)

e(k) =  z(k) — zm(k) =  z(k)  — (p(k)T0 (3.6)

The aim of the identification is to minimise this error by the definition of a cost function 

as [42, 43]

J(9) = \ e t E  (3.7)

where the vector E  consists of N  samples of the error e(k)

E  — [e(k), e(k — 1), • • •, e(k — N)]T =

z(k) -  zm(k) 
z(k  -  1) -  zm(k -  1)

. z(k - N ) -  zm{k -  N ) .

(3.8)
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It is shown in [43] tha t the least-squares algorithm minimises the loss function by adjusting 

the unknown model’s parameters 9 according to

e =  (F t F ) - 1F t z (3.9)

In this equation 2 =  [z(k), z(k  — 1) • • •, z(k  — ,V)]7 is a vector th a t consists of N  outputs 

z(k)  from the system; 9 is the vector of the unknown model’s coefficients, and F  is a matrix 

with dimension (n +  m)xAr, where n  is the order of the num erator and m  is the order of the 

denom inator in the assumed system model. Each row of this m atrix F  is the vector ip(k) 

a t the given sample k, where the number of columns is equal to the number of collected 

samples N  and is given in the form

F =

tp(k)T 
ip(k -  1)'

(3.10)

. < p ( k - N ) T

F  usually has more than two rows and columns. The off-line approach for identification 

uses pre-stored data (<p) for the identification. Often the size of this da ta  or the dimension 

of the m atrix F  is not appropriate for intensive m atrix calculations (transpose, inversion 

and multiplication). In application, where the control algorithm entirely depends from an 

updated  model of the system, a recursive on-line version of LS may be used (recursive least 

squares or RLS). At every sample the algorithm receives the input (zref ( k )), the output 

(z(k)),  and produces the new estimation (9(k)). If the system’s param eters do not change, 

after certain  tim e the estim ated param eters approach to stable values. The coefficients of 

the closed-loop model using RLS algorithm are updated at every sample using the rule 

below [43]

9(k) =  9{k -  1) -  K(k)[z(k)  -  (p(k)T9(k -  1)] (3.11)

In this equation:

9 = [b\, b2, bs ,ai ,a2,

and

(p(k)r  =  [zref ( k  -  1), zref ( k  -  2), zref{k -  3), - z ( k  -  1), - z ( k  -  2), - z ( k  -  3)]

The covariance m atrix P  is updated by the following rule

K( k)  = P (k -  l )(p(k)[\I  +  (p(k)TP ( k  -  l M k ) ] ~ l „
p(fc) = \ I - K ( k ) i p ( k ) T } P ( k - l )
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Eqns 3.3 and 3.4 form the basis of the recursive-least squares technique [43]. The forgetting 

factor A 6  [0 : 1] determines the importance of the data  (p. Values of A dose to one give 

higher im portance on the recent samples (p(k -  1) over <p(k -  10)). This mechanism is 

used to control the adaptation rate. The system’s dynamics have to be also used in the 

selection of A to avoid unstable estimations.

3.1.2 Implementation and results

To identify the closed-loop Maglev with the state feedback controller derived in Chapter 2 , 

recursive identification was implemented on the transputer-based real time control software. 

The identification task was distributed among three transputers, interconnected as shown 

in Fig. 2.8 (Section 2.4, Chapter 2). The velocity signal is generated from the acceleration 

signal using the digital filter below

z(k) = Cfz(k — 1) +  df'z(k), (3.13)

where for 400//S sampling time the coefficients are: c/ =  0.992063, df  =  396.8253 x 10~6 

(equal to  a pole at ( -2 0  ±  j0)). As shown in Fig. 3.2, the identification of the closed loop 

Maglev system is executed in parallel with state feedback control. Inputs are the reference 

dem and zrej{k))  and ^(A:)). The solution to the problem is the set of coefficients of the 

dynam ical model in Eqn. 3.1. The current values for a* and bi are correct for a given nominal 

operating point. The identification process is run on the secondary transputer to run in 

parallel with the state-feedback controller run on the main transputer (Fig. 2.10). For 

identification, the transputer routine receives current feedback signals via the link ports to 

update p(k)  (Eqn. 3.4). Using this vector and the current estimation 9{k), the output from 

the model zm(k) is generated (Eqn. 3.5) to produce the estimation error e(k) = z(k)  — zm(k) 

(Eqn. 3.6). The initial values for P(&) are fixed a t 1 x 10+4 x I. Eqn. 3.11 is used in the 

construction of the model in the A:-th sample.

For the purpose of the analysis, the algorithm  on the secondary transputers calculates 

the roots of the denominator in Eqn. 3.1 to find the location of the poles. The result is 

a vector of real and complex numbers which is transferred to the MAIN transputer via 

link#3. The purpose of this was to build a mechanism for autom atically tuning the state- 

feedback controller using this information. Design of an adaptive pole-placement controller 

using RLS is discussed in the following section. A root locus plot is also designed for 

real-time visualisation (Fig. 3.5). The sampling time of the identification is fixed at 10 ms 

due to the intensive calculations involved. To be independent from the sampling time, the
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z —domain values for the closed-loop poles are transferred to the s-domain for the analysis. 

For a realistic comparison with the experimental response being controlled with a sampling 

time of 400/^s the identified model is converted to a 2-domain representation with 400 fis. 

The above sequence of operations is shown in Fig. 3.3. Fixing A =  0.99913 and applying

secondary transputer

z(t)
experimental rig

z(t)

mam transputer

open-loop 
magnet system

identification of the 
closed-loop system

Figure 3.2: Identification of the closed-loop magnet system.

an identification signal, after 1.3 sec. the following model was generated to represent the 

closed-loop Maglev system

~ zm(k) _ 0.32612"1 +0.06852"2 -  0.14802"3
d(Z’ ~  zref(k) ~  1 -  1.16072-* +  0.11222~2 +  0 .2 8 6 U -3

This transfer function was simulated in M atlab and the comparison with the experimental

me{t)"m

z(*),
<p(t)

Eqn. 3.5Eqn. 3.4 
Eqn. 3.6

Eqn. 3.11 
Eqn. 3.12

Figure 3.3: The sequence of operations on the real-time software for identification of the 
closed-loop system.

responses shown in Fig. 3.4. These results react adequately in both steady state and 

transient, and this model may be used as a basis for other model-based design methods.

The application window used to visualise the location of the poles numerically and 

graphically on the host computer is shown in Fig. 3.5. This analysis was used as a basis 

for the development of the adaptation algorithms described below.
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Figure 3.4: Comparison between responses from the experimental system and the model 
obtained from on-line identification. The input to both is a step change in air-gap from 
4mm to  2 mm

3.2 Adaptive pole-placement control

In traditional adaptive techniques, the adaptation algorithm collects information on-line 

about a working system without a controller and then derives an optimised controller. This 

approach is not suitable here because Maglev is unstable in open loop. As shown earlier, 

poles of the closed-loop system are controlled by the feedback gain vector K.  If A" is 

constant, suspension dynamics may change with param eter variations or due to disturbance 

inputs. As a consequence, the closed-loop stability and performance degrades leading to 

undesired suspension qualities. The algorithm explored in this section is based on the 

requirement th a t a set of pre-specified closed loop poles are always maintained by the 

controller to make the system invariant to disturbances.

The open-loop transfer function of a Maglev system may be symbolically expressed as

G(a) =  4 4  =  — a * —  =  m  (3.14)
r q s )  S  - |- G ffijS  -|- CLj j i^ S  -j- &TT13 ■*

where bmo, ami, «m2 and am3 are related to the internal param eters of the magnetic circuit
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Figure 3.5: Root-locus plot as seen on the host screen. The closed-loop poles are generated 
on the transputer at every sample k using the identified model and then transferred to the 
host computer for plotting and analysis.

(Chapter 2, Eqn. 2.12).

The s-domain representation of the state feedback control law (Fig. 2.6) may be ex

pressed as

v(s) =  { k p  -f k v s  -1- k A s 2 ) z { s )  -  k p Z r e f ( s )  = Gc (s)z(s) -  k P z r e f ( s )  (3.15)

where Gc{s)  is the transfer function of the feedback compensator.

Substituting Eqn. 3.15 in Eqn. 3.14, the closed-loop transfer function becomes

r  ( )- ^  ̂kpGjs)-fcpB(s)
cM 1 zTe,(s)  1 -  G(s)GcA(s) -

By specifying a characteristic polynomial T(s)  for the closed-loop system, with pre-specified 

roots, the above equation becomes

r M - k p B ( s )
c l (  ] zref(s)A{a) ( '

The aim is to produce a feedback compensator ( (^ ( s ) )  which guarantees that the denomi

nator polynomial of the closed-loop system converges to T( s ), If the system >l(s) and B(s)  

(open-loop model) are known then Gc{s)  represents the conventional feedback compensator 

which satisfies

A( s ) - B ( 8 ) G c ( 8 ) = T( 8 )  (3.18)

If, however, the open-loop model of the system varies due to changes in operational con

ditions, (=  parameters changes in A{s) and B{s)),  an adaptive algorithm to adjust Gc(s)
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at every sampling interval to meet the equality condition of Eqn. 3.18 is necessary. This 

algorithm  is derived below.

Using a backward transformation with mapping s — 1, the state feedback controller

(Eqn. 3.15) in 2-domain becomes:

where

v(k) = (kp +  kvs +  kas2)z(t) -  kpzref(t)

= ( kp + kv +  ka ( iz^ - )  )  z(k) -  kpzref(k)  (3.19)

v(k) = («i +  (i2z ~ 1 +  a3z~2)z(k)  — kp z ref(k)

, ky  kj\ ky  4 , ks  .
a i =A: p  +  —  +  — , a2 = - — - ‘l — , a n d a 3 =  ^  (3.20)

If B ( z ~ l ) and A ( z ~l ) are the open-loop Maglev numerator and denom inator respectively, 

the closed-loop transfer function using Eqn. 3.19 becomes

z(k)  —k p B ( z ~ 1)
C z ref(k)  A ( z ~ l ) — B ( z ~ l )(ai +  a2z ~ l +  a3z~2)

The Diophantine equation in 2-domain can be then constructed as

A ( z ~ l ) — B ( z ~ l )(a i +  a2z ~ l +  a3z~2) =  T ( z ~ l ) (3.22)

Locating the roots of T ( z ~ l ) within the unit circle guarantees stable response of the system 

w ith typical values beeing determined by the identification procedure developed in the 

previous section.

r  f . - u  «(*) ____________- k p B ( z - 1)____________ - kPB ( z - 1) ■
c  z ref ( k ) A( z~ l ) — B ( z ~ l )(a\ + a2z~l + a3z~2) T ( z ~ l )

M ultiplying both sides the denominator of Eqn. 3.22 by the system’s output z(k)  gives

,4 (2 - 1 )z(A:) — B ( z ~ l )(ax +  a2z ~l +  a3z~2)z(k) =  T ( z ~ 1)z(k)  (3.24)

Using the equivalent transformation A ( z ~ 1)z(k) = B ( z ~ l )v(k),  the above equation may be 

rewritten as

B ( z ~ l )v(k)  — B ( z ~ l )(a\ +  a2z ~ l +  a3z~2)z(k) = T ( z ~ l )z(k)  (3.25)

The unknowns in this equation are the controller coefficients a*, and the open-loop system’s 

num erator B ( z ~ l ). If the open-loop system G c ( s ) (Eqn. 2.12, Chapter 2) is transformed 

into 2-domain using back-wards mapping, the num erator B ( z ~ 1) consists of a single value 

bo. The following error signal can be then constructed

e(k ) =  T ( z ~ l )z(k) -  B ( z ~ l )v(k)  +  B ( z ~ l )(ax +  a2z ~ l +  a3z~2)z(k)
= T ( z - l ) z ( k ) - f > T0. [6'Zb)
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which is expanded in difference form as below

e(k)  =  T ( z ~ l )z(k) — bov(k) 4- b0aiz(k)  4- b0a2z(k  — 1) 4- b0a^z(k — 2) 
=  T ( z ~ l)z(k) — b0v(k)  4- d\z(k)  4- d2z(k — 1) 4- d3z(k  — 2), (3.27)

The recursive least squares technique (Eqns. 3.11 and 3.12) may now be used to minimise 

this error, where the appropriate vectors 0 and <p (Eqns. 3.3 and 3.4) are

Cp — [u(fc), — z(k),  —z (k — 1), —z (k — 2)]t
0 = [bo, d i , a 2, <23] (3.28)

The identification is now performed by using the output from the system z(k)  and the 

input to the system v(k)  (Fig. 3.2). When the coefficients converges to constant values, the 

gains of the state feedback controller may be calculated to give closed-loop poles specified 

by T ( z ~ 1). The equations for the recursive least squares algorithm which generates these 

coefficients are

0(k) = 0(k -  1) -  K( k) [T( z~1)z(k) -  (p(k)T0{k -  1)]
K( k )  = P (k -  l ) ip(k)[\I  4- (p(k)TP ( k  -  l )p (k ) ] - 1
P(^ = [ i - K ( k ) m T]p(k-i)

The new coefficients an a related to the model’s coefficients as

(3.29)

Q/i ----

bo1
(3.30)

with i = 1..3. Using Eqn. 3.20, the feedback gains kp, k y , and are derived below

i  1t 2 i
_ 1  07̂2 t  yj 

^ 0 0

’ kA ' '  CL\ '

ky — Q>2
kp

.  .

(3.31)

3.2.1 Outline of implementation issues

The adaptive pole-placement technique was implemented on the transputer-based real

time control software, described in Chapter 2 using the three transputers in the network 

(Fig. 2.10, Chapter 2). As discussed earlier, the MAIN transputer receives the two state 

variables (position z(k),  and acceleration z ( k )) from the I/O  transputer. Further it gener

ates the third state variable , the velocity z(k).  The state feedback controller uses these 

signals to generate the control output (Eqn. 3.15). At every sample (950 /is), a software 

sub-task located on the MAIN transputer sends the current position z(k)  and the cur

rent control signal v( k ) to the secondary transputer (Fig. 2.10, Chapter 2) vial link port 

3. These values, and two past values for the position (z(k — 1), z(k — 2)) are used for 

updating the vector (p (Eqn. 3.28). This vector is used as an input for the least squares 

algorithm  (Eqn. 3.29). In order to solve Eqn. 3.29, firstly the vector K ( k ) is updated,
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using an initial value of the m atrix P ( 0) equal to 1 x 10+4 x I. The new coefficients at the 

current sample 6{k) are generated by Eqn. 3.29. The following values are used to specify 

the desired closed-loop suspension damping and settling time

T ( z ~ l ) = { z -  0.19077)(2 -  [0.8951 +  0.0850j])(^ -  [0.8951 -  0.0850j]) (3.32)

The corresponding s-domain poles are located at (-1840.8, - 1 18-Tj 105, - 1 18-j 105 ) . These val

ues are generated by analysis of identification results for various operating conditions. The 

final stage in the adaptation rule requires calculating the feedback gains using Eqns. 3.30  

and 3 .31. It was observed that when the feedback gains converge to stable values (closed- 

loop poles converge to the poles specified by T ( z ~ 1)) the trace of the covariance m atrix P  

increases. This incremental variation in P  was used in a decision-making mechanism to 

derive an operational threshold for switching from fixed to adaptive state-feedback gains 

(Eqn. 3.31).

The param eter A E [0 : 1] in Eqn. 3.29, determines the adaptation rate and the sensitiv

ity of the adaptive pole-placement algorithm to disturbances. For this purpose an algorithm 

for varying A was constructed. To calculate A(A:), the difference between the position gain 

a t sample kp(k)  and at sample kp(k — 1) is calculated. This error is a rough estimation 

of the amplitude of the external disturbance, and based on this error (=disturbance), a 

linear function /  is used A =  f (kp(k )  — kp(k  — 1)) for determining the new value for A. /  

is typically a constant or an exponential function.

z(t)experimental rig

z(t)

main transputer

t i

secondary transputer

open-loop Maglev model

Identification and 
adaptation algorithm

Figure 3.6: Configuration of the adaptive pole-placement controller.

A schematic representation of the adaptive pole-placement algorithm is shown in Fig. 3.6. 

It was observed th a t the execution of the algorithm takes around 900/is on the transput

ers, leading to a choice of sampling time equal to 950//S. After a series of experimental
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tests, two problems were identified during the development of this adaptive pole placement 

algorithm  on the transputer hardware.

1. The characteristic polynomial T ( z ~l ) determines the overall quality of the adaptation 

algorithm  and the closed-loop stability and suspension damping. The poles used in 

the construction of T ( z ~ l ), however, differ from the closed-loop system poles after 

the adaptation. This is due to the assumptions made in the derivations, i.e. linear 

representation of a non-linear system, conversion from the s-domain to the 2-domain, 

numerical errors generated during the computation.

2 . At the time of writing this chapter, the algorithm described above is not fully func

tional. This is due partly to the fact tha t the sampling time necessary for one cycle 

of computation on the transputer network is around 900/is. Although some stable 

responses have been obtained, the suspended system does not appear to be capable 

of accepting disturbance inputs. However, this algorithm has been successfully im

plemented with DSPs with a sampling time of 400/is. This is described in Chapter 4, 

Section 4.4.2.

3.3 Model reference adaptive control of a Maglev sys
tem

The general configuration of the model-reference control environment derived in this section 

is shown in Fig. 3.7, where the reference model is derived from the identification of the 

closed-loop system described in Section 3.1 operating at its nominal airgap and current 

levels. This is considered to be a realistic basis for adaptive control as (a) magnets are 

designed to offer optimum performance (lift to weight ratio) over a preferred range of 

airgaps and currents, and (b) the operating airgap (set-point) of the system is normally 

set a t a prescribed value to meet various (somewhat conflicting) requirements, including 

magnet efficiency, passenger ride comfort, and probability of contact between the moving 

m agnet and the guideway [1].

In the model-reference control the closed-loop system is compared with th a t of a given 

reference model and the algorithm attem pts to minimise the difference between the two 

systems by adjusting the feedback gains. Compared to the pole-placement algorithm, the 

adaptation rate is specified by a reference model instead of locations of the closed-loop 

poles.
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Figure 3.7: Configuration of the model-reference controller set-up.

Combining the dynamical representation of the Maglev system (Eqn. 2.13, Chapter 2) 

and the feedback controller, the closed-loop system is represented by (A corresponds to 

the closed-loop system)

x =  A x +  Br,

and the dynamics of the reference model specified by

xr =  A rx r -1- B rr

The general requirement is to keep A close to A r by minimising the error 

e =  xr — x = A rx r +  B ru — Ax — Bu +  A rx — A rx

This error has its own dynamics given by

e =  A re +  Gx,

where G =  A r — A. Selecting a performance function in the form

J(e) =  eTPe +  eTQe

where P  and Q are n-squared weighting matrices it can be proved th a t

da dJ(e)
~77 — +7~77L-̂ 7 > ° dt oa

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

where a  is a controller param eter to be adjusted for model following (a feedback gain), and 

J(e)  is the performance function, given by Eqn. 3.37. This equation minimises analytically 

the error between the system and the model by adjusting the feedback gain a.  In general
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for any n-error vector, the first derivative of the performance criterion in Eqn. 3.37 with 

respect to the controller parameters a  is

d.J(e) <9(eTP e  +  eTQe) •Ttvt<9® , x
~ ^ - L =   ------- ^------  =  e +  e N —— 3.39da  da  da  da

where P, Q, M, N are n-square matrices related by: M  =  P  +  P T and N  =  Q + QT
Com bination of equations 3.36 and 3.38 gives:

d J ( e )Ba =  eTM § | +  eTN  (A rg  +  f i )
=  +  eTN A rg  +  eTN f g x

(3.40)

For m athem atical convenience M  and N  are replaced with

M  =  W eIrA r and N  =  -  W elr, (3.41)

and then the gradient optim isation equation becomes:

da d J ( e ) , T„ r dG
-  =  = - 7 e W e ^ x  (3.42)

where Ir =  [1 1 1] and W  is a diagonal normalisation m atrix. W  is derived from the 

maximum amplitudes of the errors in the adaptation channels. For the single degree-of- 

freedom suspension system, a  assumes three adaptive gains adkp , a d ky , and adk^,  and W  

(w ith an additional scaling parameter w) being given by

W  =
0 0

0 w !522i£i) 0
max{e 2 )

0 0 max{ez)

(3.43)

Substitution of the values of G from Eqn. 3.36 and its partial derivatives with respect to 

the three feedback gains k p , ky  and kA in Eqn. 3.42 generates the following three first order 

differential equations for adaptive feedback param eters

i ( a d k P) = - 7 eTW e ^ 1_ L0 3\L

(adkA) =  - 7 eTW e -  ^ x 3)
i ( a d k v ) = - 7eTW e |^ x 2 (3.44)

where g p , g y  and are the gains to the corresponding sensors (voltage/physical unit). 

Integration of Eqn. 3.44 produces the adaptive gains required to minimise the performance 

criterion in Eqn. 3.37.

3.3.1 Implementation of the adaptive algorithm

The above adaptive control algorithm was implemented on the software control environ

ment for transputers according to the interconnection diagram in Fig. 3.7. The open-loop



model represents the magnet which produces the two state variables (position z(k)  and 

acceleration ’z(k)).  These signals are converted to digital values via the ADC/DAC mod

ule (Chapter 2, Fig. 2.9), where the I /O  transputer pre-process and passes them via link 

p o r t# l  to the MAIN transputer. The software on the MAIN transputer receives current 

state-variables, generates the velocity by integrating the acceleration, and produces the 

s ta te  vectors x(k)  and x(k).  Using the three state variables it generates a control signal 

based on the state feedback controller law with feedback gains as given in Chapter 2 , Sec

tion 2.7. Simultaneously, the secondary transputer (Fig. 2.10) using the current reference 

position zref(k)  generates the three state variables corresponding to the reference system 

x r (k). This reference model is the discrete transformation of the state  space model derived 

in Eqn. 2.18, Chapter 2

(3.45)
x(/c +  1) II e + F Zr e j { J $ )

y (k) =  Cx(/c),

where the matrices $ T, and C  are

1.000 3.99 x 10- 4 -8 .4192 x 10"

$  = -1.1177 x 10“ 2 9.9192 x K T 1 -3 .7032 x io-
2.6275 x 102 2.3687 4.3548

' 8.3015 x 10“ 5 ' 1 0 0 -i

r  = 5.8466 x 10- 1 , and C = 0 1 0
-1.8908 x 102 2000 0 --13 .6

(3.46)

The reference sta te  variables are transferred back to the MAIN transputer to calculate 

the error signals e ( k ), and e(k)  (Eqn. 3.35). Eqn. 3.44 is then used to derive the adapted 

feedback gains adkp , adky , and adkA using

0 O '
(3.47)

5 0  -I

w  =
4 x l 0 - 6

0
0

1 x 1 0 - 2  W  
0 ±

These adapted gains are further integrated and used as feedback gains (kP, kv , and kA) to 

the system as shown in Fig. 3.7.

3.3.2 Results

From operational viewpoints, a Maglev system should ideally possess infinite suspension 

stiffness, th a t is the airgap error should be zero for any changes in operating conditions or 

any external disturbance. For example, a change in suspended mass will induce a change 

in the model, consequently with a non-adaptive controller the steady-state error in airgap 

will change from its nominal design value. Although the Maglev system is designed with
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a rated suspended mass at the nominal operating point, changes in passenger loading (in 

full-scale vehicles) are to be expected. The suspension magnet may be moved from its 

ideal linear design range to the non-linear parts of its magnetising curve. To compensate 

for this, the adaptive technique was designed to keep the system ’s state variables close to 

those reference model, regardless of disturbance inputs. The algorithm was tested for two 

classes of disturbance: additional force disturbance applied to the magnet and additional 

mass applied and removed from the magnet. The results are shown in Figs. 3.8, and 3.9. 

Fig. 3.8 shows the response of the magnet in terms of air-gap due to a step change of 5kg 

mass applied. On the top is the non-adaptive response, where only state  feedback controller 

is presented, and at the bottom  is the system’s response when a model reference adaptive 

technique is activated. As a consequence of the error appearing between the system’s state 

variables and those coming from the reference model, the algorithm changes the feedback 

gains in order to minimise the error. This error reduces to zero two seconds after the 

disturbance input has been applied.

The same experiment was performed for force disturbances. The variation of airgap 

due to a step change of 50N force applied to the magnet is shown in Fig. 3.9. The 

top  response corresponds to variation in the suspension airgap using the ordinary state- 

feedback controller. The bottom  response corresponds to airgap change corresponding to 

the adaptive controller. Due to the minimisation in the error criteria, the feedback gains 

are adapted to control the suspension airgap to the reference level.

In the adaptation rule, the param eter 7  (Eqn. 3.44) determines the rate of adaptation 

of the feedback gains. For large values of 7  the system adapts faster and reacts quicker 

to external disturbances. For very large values of 7 , however, the overall behaviour might 

become sensitive to disturbances and the value has to be derived in accordance to the 

operating conditions. Due to the considerable number of floating point calculations involved 

in the calculation of the above adaptation rule, the minimal sampling time achieved on the 

transputer-based hardware is 400 microseconds. For multi-magnet applications, either more 

transputers have to be added to the multiprocessing environment or new computational 

units delivering better processing power have to be chosen. The la tter is followed up in 

Chapter 4.
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Figure 3.8: Transient responses of airgap due to a step change of 5kg mass (300% mass 
change) with 400/^s sampling time (nominal operating point set a t 5.1 mm and 1.8A), 
and transputer-based system: top non-adaptive system (linear state feedback control law); 
bottom : adaptive system.
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Figure 3.9: Transient responses of airgap due to a step change of force with (nominal oper
ating point set a t 5.1 mm and 1.8A) 50N force and transputer-based controller with 400/is 
sampling time. Top: linear state feedback controller (non-adaptive); bottom: adaptive 
controller.
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Chapter 4 

D SP environment for Maglev control

4.1 Digital signal processors

Since the introduction of the transputer, several semiconductor m anufacturers have devel

oped more advanced processors under the generic name of digital signal processors (DSP). 

Although some of these are comparable in performance with the new T-9000 from In- 

mos/SGS Thomson, the decision of SGS not to volume manufacture (and more recently 

to discontinue) the T-9000 processor left the whole field of multiprocessor DSPs to man

ufacturers such as Texas Instruments, Analog Devices, Motorola and other US/Japanese 

companies. As discussed in earlier chapters, because of instability of the Maglev system 

without any feedback and the relatively small time constants inherent in the system, the 

control technique requires a high signal processing bandwidth and hence a fast processor. 

After assessing the performance of different processors to substitute the transputers as the 

computational unit in the control framework, the ADSP-2106x family of SHARC DSPs 

from Analog Devices was chosen in early 1998 for the new generation of control hardware 

for Maglev.

Model Memory Links Performance Frequency Supply Package
ADSP-21060
ADSP-210611
ADSP-21062
ADSP-210652
ADSP-211603

4 MBit
1 MBit
2 MBit 
0.5 MBit 
4 MBit

6/4bit
0
6/4bit
0
6

40MIPS, 120MFLOPS 
40MIPS, 120MFLOPS 
40MIPS, 120MFLOPS 
60MIPS, 180MFLOPS 
600 MFLOPS

33, 40MHz 
33 -50MHz 
33, 40MHz 
50, 60MHz 
100MHz

3.3, 5V
3.3, 5V
3.3, 5V 
3.3V 
2.5, 3.3V

240-LEAD PQFP 
240-LEAD PQFP 
240-LEAD PQFP 
208-LEAD PQFP 
400-BALL PBGA

Table 4.1: Summary of main features of SHARC-DSP devices.
NOTES:
1: This is the processor used in the DSP-based control hardware.
2 : This DSP is not code-compatible with the SHARC family and has some functional
differences as glue-less connection to an external SDRAM memory.
3: This DSP is the latest version of the family. It is still a t the sampling stage(when this
chapter was written) and is not fully code-compatible with the other members.
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The SHARC family of DSPs consists of four members (mid 1999): ADSP-2106-0, 1, 

2, 5 [44, 45](Table 4.1). The first three are code-and function-compatible differing only 

in internal memory size, where the latest version ADSP-21065 is a low cost version of 

the family having few functional differences. The SHARC DSPs are 32-bit floating-point 

devices, where SHARC stands for Super Harvard ARChitecture [44]. Together with their 

high performance, 40 MIPS and 120 MFLOPS, these DSPs have the ability to be connected 

in a multiprocessor configuration (120MFLOPS peak performance and 80MFLOPS is sus

tained performance). Two schemes for multiprocessing are integrated within the SHARC 

architecture: clustering multiprocessing and point-to-point multiprocessing via links. The 

first scheme allows up to six signal processors and a host processor to share a common 

address space, where the distributed bus arbitration logic is included on-chip. At any in

s tan t of time one of the processors acts as a bus-master and owns the bus. The maximum 

throughput for da ta  transfer is 240 Mbytes/sec. In the second scheme, the SHARC DSP 

features six four-bit wide serial link ports for point-to-point (device to device or processor 

to processor) communication. These links pass code and da ta  (in a manner similar to 

the transputer links) and can operate independently and simultaneously from the DSP’s 

processor unit with a maximum data  throughput of 240 Mbytes/sec (40 Mbytes/sec per 

link). Factors such as high processing power and multiprocessing ability influenced the 

choice of this family of DSPs as an alternative to transputers for the new Maglev control 

environment.

4.2 DSP based hardware

Due to the transfer to the new processing platform for Maglev, new hardware had to be 

developed, the three main modules of this hardware are identified in Fig. 4.1: DSP-based 

processing module, an interface module, and an I/O  module. The DSP-based processing 

module carries a digital signal processor, and a communication link with a host computer. 

The interface module integrates analogue I/O s as well as digital I/O s, and interface different 

transducers. A brief description is given below.

At this early stage of developing a DSP-based control framework for Maglev, a commer

cial processing module EZ-KIT Light is being used [46]. The board carries one ADSP-21061 

32-bit floating-point signal processor, which is the link-less member of the family and per

forms cluster-type of multiprocessing (Table 4.1). The DSP contains 1 Mbits dual-ported 

internal SRAM memory, featuring single cycle access (25ns at 40MHz clock-rate). The
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Figure 4.1: DSP-based control hardware for Maglev. The main blocks are: DSP processing 
module, interface module, and I/O  module. The memory map is also shown with address 
location of the converters.
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0x0000 0000

IOP Registers
0x0000 0100

Reserved
Address
Space These represent the same 

physical memory (4 MBits)0x0001 FFFF

0x0002 0000

0x0004 0000Block 0

0x0003 0000

Block 0
Block 1

0x0003 FFFF

Normal Word 
Addressing 

128K x 32-bit Words 
80K x 48-bit Words

0x0006 0000

When addressed as 80K x 48-bit, there are 
"non-existant" addresses (addressibie, but 
without contents) at the end of Block 0 and 
Block 1

Block 1

Normal Word Addressing: 32-bit Data 
48-bit Instructions 
16-bit Data

0x0007 FFFF

Short Word 
Addressing

Short Word Addressing

256K x16

Figure 4.2: D SP’s internal memory space (figure taken from [44]).
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real-time control software is located within this memory which is organised as two blocks 

configured for program and/or data  (Fig. 4.2). The board communicates with a host com

puter (PC) through a serial (RS-232) channel with speed up to 115200b/sec. A software 

kernel, located 011 an EPROM populated on the board, is responsible for the data  commu

nication with the host as well as booting the DSP (to download program from the host to 

the D SP’s internal memory) and to pass data  to and from the host [46]. Fig. 4.2 shows the 

organisation of the DSP’s internal memory.

An interface board was especially designed and developed to facilitate interfacing to 

different transducers required for the Maglev control model (see Section 2.2, Chapter 2).

This module connects to the EZ-KIT module, and carries an analogue-to-digital converter 

(ADC), a digital-to-analogue converter (DAC), digital input/outputs, glue logic, and a DC- 

DC converter (Fig. 4.1). These devices are memory mapped to the D SP’s address space and 

pass da ta  via the processor’s data  bus. A programmable logic chip (Lattice ispLSI1016-80 

complex programmable logic device CPLD [47]) was especially programmed to synchro

nise the converters with the signal processor. The converters are memory mapped into 

the processor’s external memory space and the CPLD control logic manages the memory 

access. The external memory space is shown in Fig. 4.1, where the ADC is located on ad

dress MS3+0x02, and the DAC on MS3+0x03 and MS3+0x04. The base memory address 

MS3 is chosen from the initialisation software ([44, 45] describes in details the memory 

configuration).

The analogue-to-digital converter is an 8-channel 12-bit data  acquisition system (AD7891AP- 

1 , [48]) from Analog Devices. This high-performance converter accepts ±5  V and ±10 Volts 

on its channels and converts this data  to its digital equivalence with a maximum sampling 

rate up to 454 kSPS (kilo samples per second). This allows running the control algorithm 

at a maximum sampling frequency of 50 kHz. The conversion takes 2.2//S and the device 

is interrupt driven. At every interrupt, the DSP triggers a software routine which reads 

the transducers’ da ta  and initialises the ADC for the next sample. In the work described 

here, three channels are used for measuring the position, the acceleration and the magnet 

current.

Two 12-bit parallel-loading digital-to-analogue converters (AD667JN [49]) were inte

grated on the module to produce unipolar or bipolar control signals (+5, +10, ±2.5, ±5,

±10 volts) with an output settling time of 3//s (conversion time). The conversion is sched

uled by the DSP by writing to the registers of the DAC at every control sample.
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4.3 DSP software for Maglev control

In contrast to the event-driven architecture of the transputers, the DSP control work is 

interrupt driven with a pre-specified interval arrangement. The software serves two in

terrupts: from the internal DSP tim er and from the ADC. The internal timer is used 

to generate the sampling time for the controller. The resolution is 25ns and is adjusted 

according to the controller’s bandwidth. Once the ADC is configured, it will generate 

interrupts at a pre-defined interval which will be served by the DSP. Typical values are 

from 200/is to 1m s for the magnet used in this chapter. The minimal configuration for 

state-feedback control requires inputs for the position and acceleration signals. The DSP 

integrates digitally the acceleration to produce the velocity of the magnet. A first order 

filter is used

z(k) = a0 z (k  — 1) + b0z(k). (4.1)

For 200 fis sampling time, the coefficients are: a0 = 0.992063, b0 =  198.4123 x 10-6  to give 

a pole a t (—20 ±  jO).

The communication between the host computer and the DSP is accomplished by the 

kernel on the DSP board [46]. The host provides a buffer of da ta  and a pointer to the 

DSP memory used for reading or writing. This mechanism is also used for booting during 

program loading. For the analysis of experimental Maglev data, the DSP would update 

two da ta  buffers: experimental data  such as position, velocity, current, acceleration, force 

estimation, control output, etc. and controller coefficient vectors updated from the host 

such as desired position value, sampling time and feedback gains. These two buffers are 

updated a t every sampling interval (200 fis). On the host side, the software environment 

for Maglev developed in Section 2.6, Chapter 2 was further extended to work with the 

DSP-based control framework.

4.4 Control algorithms ported to DSP-based control 
framework

When porting control algorithms from the transputer environment to the DSP, the primary 

concern was th a t the software distributed on the three transputers had to be organised as a 

single-processor environment. Although there are several tasks which need to be executed 

concurrently within one single DSP to make the control software multitasking, the task 

switching was implemented using interrupts.
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4.4.1 State-feedback control

The initial control work on the DSP uses the state-feedback controller from Chapter 2 , 

Section 2.3. Using the same feedback gains, the response in changing the desired reference 

airgap is shown in Fig. 4.3. The sampling time of the controller was set to 100 /is. The 

response offers good suspension damping and is seen to be comparable with tha t of the 

transputer-based control, giving some assurance about the satisfactory operation of the 

new DSP hardware for Maglev control. The main benefits of the DSP-implementation 

vs. transputer-im plem entation are: (a) the whole framework is implemented on a single 

processor which reduces the development effort, and (b) the sampling time is fixed by 

the tim er interrupt and hence very low jitte r (< 25ns) is expected. Various experimental 

studies indicated th a t the absolute minimum time required for the implementation of the 

state  feedback control law is around 10/is. The dynamic characteristics of the single-magnet 

system described here allow sampling time of 1ms to include an additional time-slot for the 

more computationally-demanded control algorithms described in the following chapters.

x 10m
5.5

4.5

2.5

0.5 0.6 sec0.3 0.40.20.10
time

Figure 4.3: S tate feedback controller implemented on the DSP-based hardware. At time 
t — 0 sec a step in the desired position zref  = 3.0mm is applied and at time t=0.3  sec a 
second step of zref  = 4.0mm is applied. Similar response from the transputer-based control 
is shown in Fig. 2.12. The feed-back gains are kp =  20833; ky  = 250; kA = 4, as in 
Fig. 2.12, Chapter 2 .
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4.4.2 A daptive pole-placem ent control

As mentioned in the transputer section (Chapter 3, Section 3.2), because of the rela

tively intensive computations needed in the adaptation algorithm, satisfactory results with 

transputer-based hardware were not obtained. By increasing the processing power with the 

DSP, the sampling time was reduced to 200 /is (vs. 950/is required for the transputer al

gorithm, Section 3.2). The general configuration of the adaptive pole-placement controller 

is shown in Fig. 3.6, page 40. On the DSP, all tasks are executed on a single processor. 

The algorithm initially uses the state feedback gains derived in Section 4.4.1. In parallel 

with the controller, the adaptive pole-placement algorithm is executed. At every sample, 

the control signal v(k)  and the airgap position z(k)  are used in the procedure developed in 

Chapter 3, Section 3.2. The characteristic function T (z~ l ) used in the specification of the 

Diophantine equation are: Z\ = 0.08850, Z2 =  0.9715 + j 0 . 0850, and Z3 = 0.9715 — j0.0850. 

The corresponding s-domain poles are located at -12326, -126+j436, and -126-j436. The 

response of the suspension airgap using the adaptive pole-placement technique is shown 

in Fig. 4.4. As the main emphasis in the algorithm is to attenuate undesired disturbance 

effects in the suspension system, two step inputs in force disturbances were applied (marked 

with the two arrows on the time axis). The first input added a disturbance with amplitude 

of 120N to the suspended system, and the second one removed this force disturbance from 

the suspended system. Based on the adaptation rule, the algorithm modifies the feedback 

gains in the controller to minimise the error in the airgap position. W ith a desired position 

value of zre/  = 3mm, a 120N force input changes the airgap to nearly 2:(A;)=5.0 mm. As 

a consequence of the adaptation loop, this error is decreased to zero within one second, 

equal to 5000 identification cycles. W ithin these cycles, the least square algorithm identi

fies the system (Eqn. 3.29, Chapter 3) and updates the feedback gains. For comparison, 

similar responses are explored in the next section, where the DSP-based system with a 

model reference control technique is given for force disturbance equal to 100 N. Although 

the compensator is able to reduce the error to zero after the disturbance is applied to 

the suspension system, for some applications this might lead to instability due to outputs 

saturating the airgap transducers. This can be overcome by using controllers with better 

stiffness. The corresponding minimum sampling time for overall stability has to be care

fully chosen in relationship with A and the location of the closed-loop poles. Limitation is 

also considered so th a t there is no a direct mapping between the desired and the actual 

poles of the system due to linearisation errors and approximations in the design.
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Figure 4.4: DSP-based system with an adaptive pole-placement controller. The sampling 
time is equal to 200/is. The first arrow shows when a step disturbance of 120N force is 
applied. The next arrow shows when this disturbance is removed.

4.4.3 Model reference control

Model reference control was also implemented on the new DSP control hardware. The 

various tasks distributed on three transputers had to be reorganised and run on a single 

DSP. These tasks are shown graphically in Fig. 3.7 (Chapter 2) and are generalised as 

follows. Generate the model states x r (k); using the error signal (Eqn. 3.35) calculate the 

adaptive gains adkx  (Eqn. 3.44), and update an existing state feedback controller using 

these gains. At every sample (generated from a timer interrupt) the DSP calculated the 

m athem atical reference model to generate the state variables: x r (k). In addition, the state 

variables from the system x(k)  are prepared. The vector of error signals is produced using 

Eqn. 3.35, and Eqn. 3.44 is used to calculate the adapted state-feedback gains.

To check the reaction of the system to disturbance inputs applied to the suspended 

magnet, two sets of experiments are used: additional mass disturbance input and additional 

force disturbance. The response of the magnet in terms of air-gap due to a step change 

of 5-kg mass (300%) is shown in Fig. 4.5. The non-adaptive response using ordinary state 

feedback is shown on the top. On the bottom  is shown the system ’s response when a 

model reference adaptive technique is activated. As a consequent of the difference between 

the system ’s states and the reference model, the algorithm adapts the feedback gains to
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minimise this error. The system approaches the reference model within two seconds after 

the mass disturbance is applied. The transient responses in airgap due to a step change
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Figure 4.5: Transient responses in airgap due to a step change of 5kg mass (300% mass 
change) with 400/xs sampling time (nominal operating point set at 5.2mm and 1.8A). DSP- 
based system, where the top is a non-adaptive system and bottom  is an adaptive system.

of 50 N  force disturbance with nominal operating points z0=5.2 mm and ? o = 1 .8  is shown 

in Fig. 4.6. The top response uses an adaptive controller with 400 //s sampling time. To 

compare the effect of the sampling time, the bottom  figure shows the response of the same 

controller with 200 fis sampling time for 100 N  force disturbance. The first experiment was 

performed to compare the response of the system with those from the transputers (Fig. 3.9). 

The second experiments show how the increased processing power when the DSP is used, 

reducing the sampling time (200/zs), gives an improvement in the overall behaviour that is 

capable of taking two times larger disturbances due to the increased stiffness of the overall
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system.
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Figure 4.6: Transient responses in airgap due to a step change of force with (nominal 
operating point as in Fig. 4.5). DSP-based adaptive controller, where the top is an adaptive 
controller with 400/is sampling time for 50N step force disturbance, and bottom  is an 
adaptive controller with 200/is sampling time for 100N step force disturbance.

The param eter 7  (Eqn. 3.42) determines the adaptation rate. To dem onstrate the ef

fect of this param eter, a set of experiments was performed as demonstrated in Fig. 4.7. In 

Fig. 4.7(a) the transient response of airgap is shown with a step change of 10 kg extra-added 

mass to the suspended system. The top figure shows a non-adaptive system, where the 

top-down responses are shown with different values for 7 : 19.25, 38.5, 77.0 and 144.0. In 

Fig. 4.7(b) the same experiment is performed where the disturbance applied to the system 

is a step change of 100 N force. Again the top figure shows a non-adaptive system, and 

top-down adaptive system with different values for 7  (as Fig. 4.7(a)). Large values of 7  con

mm
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siderably reduce the adaptation time. Large values of 7 , however, effect the sensitivity in 

the adaptation to disturbances and the value has to be chosen for a given boundary of dis

turbances. Compared to the transputers, the DSP-based control system was observed to be 

capable of managing disturbances of two times higher amplitude (Fig. 4.6 vs. Fig. 3.9) com

pared with the transputer-based system. This attribu te  comes from the reduced sampling 

tim e(200/xs for the DSP vs. 400/xs for the transputer) which effects the rate of adaptation. 

As in the case of the state-feedback controller, various experiments indicated that the 200 

/xs sampling time is not the absolute minimum. Experiments with sampling times down to 

150 /xs were performed and the value of 200 /xs was chosen based on the factors as indicated 

in the state feedback section. Analysis of the various experimental responses indicates that 

the responses from the adaptive pole placement controller dem onstrate less stiffness than 

those from the model-reference control. In the first case the force disturbance with 100 N 

am plitude introduces 1.75 mm of static error (see Fig. 4.6, the first response) while with 

the latter controller the error was only <0.5 mm.

Since the suspension balance is driven by a force balance, the vertical acceleration 

signal is most sensitive to external disturbances with acceleration gain being the most 

responsive during adaptation (from 25% to 250% change from its initial value). kv has 

varied within ±25%, while kp has varied only 5% from its initial value. Several factors 

may influence the choice of the reference model including the amount of energy available 

for the adaptation by the m agnet’s lift-force rating and the available current supply from 

the power amplifier. The operating conditions for the reference model have been chosen 

in the linear part of the force-current characteristics. The adaptation rule thus can return 

the airgap of the suspended system to that of the reference model for large variations in 

the operating conditions. For large variation within the nonlinear part of the force-airgap 

characteristics, a family of pre-stored models or a nonlinear model can be used.

4.5 Fuzzy logic control

This section develops a fuzzy controller design framework for Maglev. A range of experi

mental results are presented to compare the transient performance of three types of fuzzy 

controller: (i) position error and velocity inputs fuzzified with a single control rule table 

plus constant gain acceleration feedback, (ii) all three state feedback signals fuzzified but 

position error and velocity having one control rule table and position error and acceleration 

having a separate control rule table, and (iii) a single control rule table for all three fuzzified
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Figure 4.7: Transient responses of airgap with DSP-based controller for four different values 
of 7 . Top: state feedback controller without any adaptation, then top-down adaptive loop 
where the values of 7  are: 19.25, 38.5, 77.0 and 144.0. Nominal operating parameters are 
z0=5.2; i0= 1.8A; step changes in mass and force are as indicated in (a) and (b). Sampling 
time was set at 200//S for all experiments.
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input signals.

The three stages of fuzzy controller design are fuzzification, inference and defuzzification 

(Fig. 4.8) [50, 51, 52, 53, 54, 55]. Fuzzification is a process of converting each signed 

real-valued input signals into one or more degrees of linguistically defined membership 

functions defined over each f u z z y  set. This is done by dividing the full scale range of each 

input (feedback) signal into several (typically five or seven) quantised levels identifiable by 

linguistic descriptions of like small, very small, etc, and then superimposing one or more 

(typically, two) membership functions on each quantised level as in Fig. 4.9. The choice of 

these membership functions is arbitrary. L-functions (triangular shapes) are widely used 

in the literature [50, 54, 51].

input output
defuzzificationfuzzification

inference

IF-THEN
TABLE

Figure 4.8: Internal structure of a fuzzy controller. The sequence of operations are: fuzzifi
cation of the numerical inputs [input) for producing fuzzy outputs; inferring a fuzzy Output 
from a list of IF-THEN rules; producing a numerical output (output) from this fuzzy Output.

small
positive

big small
negative negative

big
positive

i i

in

Figure 4.9: Membership functions of the input. Numerical input (in) is converted to two 
fuzzy sets (zero with degree of membership 0.35 and small positive with 0.65 degree of 
membership).

Fuzzy inference consists of one or more fuzzy control rule tables (also known as control 

tables) and a collection of fuzzy inference rules. A control table describes the cause-effect 

(IF-THEN) relationship of the system’s inputs and outputs. These are linguistic descrip

tion of desired control input into the system for all possible combinations of the fuzzified
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Operation Notation
NOT V a ( u )

1r-HII2

AND MAinA2(u ) ^AxnA2(u) = mi7i{iiAl(u) ,nA2(u)}
OR I^A\UA2 (m ) VAxuaA u) =  m a x { ^ Al(u),/j,A2{u)}

Table 4.2: Operations over fuzzy sets

feedback. For a Maglev controller, a typical set of IF-THEN rules is given below (from 

Section 4.6.1).

IF the airgap error is zero AND the the airgap velocity is negative 
small THEN the output is small 

OR IF the airgap error is negative small AND the airgap velocity is 
zero THEN the the output is big 

OR . . .

Logical operations (AND,OR and NOT) are also performed with fuzzy sets. These combine 

inputs in the antecedent part of the IF-THEN rules, and outputs in the consequent part. 

Since fuzzy sets are defined by their membership functions, the logical operations are 

performed over the membership functions. There are a few different ways to represent 

fuzzy operations [54], where the most commonly used are listed in Table 4.2 (A, Ai,  and 

A2 are fuzzy sets). The notation fiA(u) describes the membership function and takes values 

in the interval [0 ,1].

N  S N  Z  S P  P

SP '

-0.35

volts+ 10.0- 10.0

Figure 4.10: Membership functions of the output.

As with the input signals, the full scale range of the control output is also quantised 

with superimposed membership functions as in Fig. 4.10. The fuzzy inference operations 

(IF-THEN rules) identify one or more degrees of membership of the output fuzzy sets. 

Defuzzification is a process of converting these into a signed real-valued signals (control
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signal) for use as the control input into the system. Commonly used method is the centre- 

of-area defuzzification equation
N

£  VB(Vi)Vi
vo = ^ ----------- , (4.2)

£  Hb (v%)t=l

4.6 Fuzzy logic control for M aglev

In the context of the above, the input space of an ideal fuzzy controller should contain all 

three sta te  variables, with output space containing the voltage into the magnet’s power 

amplifier. The availability of all three feedback signals leads to three types of fuzzy con

trollers according to the number of control rule tables employed: (a) position error and 

velocity inputs fuzzified with one control rule table plus constant acceleration (Fig. 4.11), 

(b) all three feedback signals fuzzified but position error and velocity having one control 

rule table and acceleration having a separate control rule table (Fig. 4.12), and (c) a single 

control rule table for all three fuzzified input signals (Fig. 4.13).

at)
position

mAn
m/saccelerom eter

eft)

z ( t ) d t

fuzzy controller

Figure 4.11: Fuzzy controller for Maglev systems with constant acceleration.

4.6.1 Fuzzy control w ith constant acceleration

The three state variables of the Maglev system are the position, the velocity and the ac

celeration. The error signal e(t) is generated as the difference between the current position 

of the Maglev z(t) and the desired position zref.  The error signal e(t) is classified linguis

tically as: negative big(NB), negative small(NS), zero(Z), positive small(PS), and positive
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Figure 4.12: Fuzzy controller for Maglev systems with fuzzy acceleration.
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Figure 4.13: Fuzzy controller for Maglev systems using three state variables.
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big(PB). These fuzzy sets are described with triangular membership functions, as shown 

in Fig. 4.14 top (the appropriate ranges as shown in the figure). The second input to the 

fuzzy controller is the velocity of the magnet. Five fuzzy sets are used: negative big(NB), 

negative small(NS), zero(Z), positive small(PS), and positive big(PB). These fuzzy sets and 

their membership functions are shown in Fig. 4.14 bottom. The membership functions are 

nonlinearly distributed along the range of the signals to improve on the suspension quality. 

The ou tpu t of the controller is a numerical voltage signal (0 — 10 V). This is classified

-1.5e'3 -0.5e'30 |  + 1.

NB NS Z PS PB

4)2  -0.05 0 J  +0.2 m/s
Zo

Figure 4.14: Fuzzy sets and appropriate membership functions. Top: Membership functions 
of the first input to the controller, the error between the desired position and the current 
position in meters. Bottom: Membership functions of the second input to the controller, 
the velocity of the Maglev in meters per second.

with seven linguistic terms: zero(Z), very small(VS), small(S), medium small(MS), big(B), 

medium big(MB), and very big(VB) which have triangular membership functions equally 

distributed along the output range (Fig. 4.15).

Using the convention that suspension clearance is defined with respect to the guideway, 

airgap is zero when the magnet is attached to the guideway; at stable equilibrium point 

(ideally, the set reference airgap, zrej  ) the airgap error and the vertical acceleration are 

zero with the magnet current being what is necessary to generate a vertical attraction force 

equal to the weight of the suspended object. The current goes down as the airgap error 

becomes positive and vice versa. Likewise as the magnet moves away from the guideway,
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Figure 4.15: Output fuzzy sets and their membership functions. vq is produced by esti
m ating the centre of the area.

the vertical acceleration and vertical velocity become positive and the magnet current needs 

to go up to sustain stability. These form the basis for the control rules (only a part of these 

are described below, the full set is given in a matrix form in Fig. 4.16)

IF the airgap error is zero AND the airgap velocity is negative small THEN 
the output is small

OR IF the airgap error is negative small AND the airgap velocity is zero THEN 
the the output is big 

OR . . .

The antecedent part consists of two fuzzy inputs (error and velocity), combined with and 

AND operator. The consequent consist of one output (the control signal). The full combi

nation of inputs and outputs and IF-THEN rules is 25 (Although it is not necessary to have 

the full list of IF-THEN rules to implement a controller, in this experiment the full list of 

25 rules is used). For easy mathematical operations, rules are combined in a rule-matrix as 

in Fig. 4.16. The columns of this matrix contains the fuzzy sets defined over the position 

error, where the rows are those sets defined over the velocity. The fuzzy matrix may be 

interpreted as follows: IF the velocity is negative small(NS, row 2) and the error is positive 

small(PS, column 4) THEN the control signal is very small(VS).

To generate a fuzzy output, the signals are firstly fuzzified. This is performed at every 

control sample. For illustration purposes, the two numerical inputs are denoted as e0 and 

zq (Fig. 4.14). These are classified as: positive small fips and positive big [iPB for the error, 

and zero ^iz and positive small ^ ps for the velocity. These four fuzzy sets are combined in 

four IF-THEN rules:

IF the error is PS AND the velocity is Z THEN the output is S



\  err
vePx NB NS Z PS BP

NB M S S VS z Z

NS B M S S v s Z

Z M B B M S s VS

PS VB M B B M S s

PB VB VB M B B M S

Figure 4.16: IF-THEN rules combined as a rule-matrix. Columns: fuzzy sets defined over 
the error signal; rows: fuzzy sets defined over the velocity signal.

OR IF the error is PS AND the velocity is PS THEN the output is MS
OR IF the error is PB AND the velocity is Z THEN the output is VS
OR IF the error is PS AND the velocity is PS THEN the output is S

which are highlighted in the rule-matrix (Fig. 4.16). Using the min-operator to calculate 

the logical AND between fuzzy sets (membership functions), the following membership 

values for the output are estimated

m m jjip j , = / 4 -18

or min{n°p7£ , n°p| 2}

or rnin{ij°p'§ , / i | 18} =  fi°vs

or m in{ii°pf , /4 28

The right parts of this equation gives the membership functions for the output (voltage 

in Fig. 4.15). The IF-THEN rules are combined by an OR operator and using the max- 

operator, the final shape of this function is shown in Fig. 4.15. This membership function is 

the inferred fuzzy result from the list of IF-THEN rules with inputs: eo and zq. The results 

stand for: the control output is very small with a degree of membership 0.18, small with 

a degree of 0.28 and medium small with a degree of membership 0.72. For the numerical 

control work, these membership functions are defuzzified by taking the centre-of-the-area 

to produce a numerical output (vq). This is shown graphically in Fig. 4.15.

The above fuzzy controller was implemented on the DSP control hardware for Maglev. 

At every sample (100/xs) the algorithm reads the airgap position and the acceleration,
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which is integrated to get the velocity. The state variables are converted to physical units 

(ra, m / s , and m / s 2). The position error and the velocity are fuzzified. The membership 

functions are shown in Fig. 4.14. The values that determine the location of each membership 

function are: (a)position:[— 1.5e-3 — 0.5e-3 0.0 0.5e-3  4- 1.5e~3] m; (b)velocity: [—0.2 — 

0.05 0.0 0.05 +0.2] m/s. The membership functions for the output are shown in Fig. 4.15. 

The fuzzification is constructed as a subroutine to receive the airgap position error and the 

airgap velocity and a vector to specify the fuzzy sets. The shape of the membership 

functions is fixed as triangular. Only two membership functions are overlapped. The result 

from the fuzzification is two vectors with the enabled fuzzy sets and the appropriate degree 

of membership. Using this output, a subroutine is executed tha t infers a fuzzy result. 

This task uses the the rule-matrix in Fig. 4.16 to produce a fuzzy output, as shown in 

Fig. 4.15(highlighted area). This subroutine also includes the defuzzification procedure to 

generate the numerical value for the control signal. This is finally added to the acceleration 

signal multiplied by a gain kA = 0.041 m / s 2 / V . The result is loaded to the DAC. 
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Figure 4.17: Response in airgap from the fuzzy logic control system as shown in Fig. 4.11.

The suspension quality is analysed by two step changes in desired airgap. The first 

step is from 3.7mm to 2.7mm and the second one is from 2.7mm to 3.7mm. The responses 

are shown in Fig. 4.17. The fuzzy controller is capable of producing stable responses. The 

tuning procedure is simplified, compared to the state-feedback controller and it does not 

require the model of the system. The location of the fuzzy sets for the position error were
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specified at -1.5mrn and +  1.5mm. These are based on the maximum permissible error. The 

boundary limits for the velocity are set to ± 0 .2m /s, which is taken after analysis of pre

logged data  from previous experiments. Initially, the membership functions were linearly 

distributed: ±1.5mm, and ±0.75mm for the position error, and =h0.2m/s, and ±0.1m /s 

for the velocity. After a sequence of several test runs, these ranges were updated to the 

values in Fig. 4.14 to improve on the suspension stiffness. The fuzzy logic produces sus

pension characteristics comparable with the state feedback controller. Since the operation 

of the controller is described linguistically without a detailed model, this reduces the de

velopment effort. The structure of the controller is relatively simple and is well suited for 

small laboratory-based systems where suspension stability and damping are primary design 

requirements.

4.6.2 Fuzzy controller for Maglev with fuzzy acceleration

Here the same approach as the one described in the previous section is used but this 

time the acceleration and the position error are used in a separate fuzzy controller as 

shown in Fig. 4.12. Five fuzzy sets with triangular membership functions are chosen to 

describe linguistically the acceleration: negative big, negative small, zero, positive small, 

and positive big. The location of the membership functions are chosen after analysis of 

logged data. These were fixed at: [-50.0, -20.0 , 0.0, 20.0, 50.0] m / s 2. The membership 

functions of the position error, velocity and output control voltage are kept unchanged as 

the in the previous experiment. The software implementation is similar to before. This 

time, however, the subroutines tha t perform the fuzzification are executed twice. The same 

list of IF-THEN rules was used, as the rules given in Section 4.6.1. This time instead of the 

velocity, the acceleration was combined with the position error and the output (Fig. 4.16) 

to form the rule matrix. Two step changes in the desired airgap were applied to the 

closed-system, and the results are shown in Fig. 4.18. The first one was from 3.7mm to 

2.7mm and the second back from 2.7mm to 3.7mm. Although the results are similar to 

the previous fuzzy controller, the additional rule-table provides an adaptive gain for the 

acceleration and hence the controller is likely to be appropriate where the suspended object 

needs to operate with high stiffness such as in small laboratory-scale magnetic bearings. 

As acceleration gain influences suspension damping, this controller provides a reasonable 

combination of design simplicity and operational convenience in th a t the acceleration gain 

can be controlled independently to provide the required damped natural frequency. The
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non-symmetry in the response is contributed from the nonlinearity in the suspension system 

and the compensator.
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Figure 4.18: Response in airgap from the fuzzy logic control system as shown in Fig. 4.12.

4.6.3 Fuzzy controller using three state variables

Combining all the three state  variables gives the controller in Fig. 4.13. The ranges of the 

three sta te  variables are classified linguistically using five fuzzy sets with triangular shape. 

These are shown in Fig. 4.19. The output signal was classified using seven fuzzy sets. This 

time, the IF-THEN rules consists of three elements in their antecedent part, and given as

IF the error is e0 AND the velocity is i 0 AND the acceleration is z0 
THEN the output is vq 

OR •••

The total number of rules is equal to 125 rules. The IF-THEN rules were organised as a 

rule-matrix with 3-dimensions (Fig. 4.20), where each direction corresponds for an input: 

position error, velocity, and the acceleration. Fig. 4.19 shows the consequence of operations 

performed by the software on DSP in order to produce a control signal. The three signals 

are firstly fuzzified using the same subroutine as described in the previous sections. Because 

only two fuzzy sets are overlapped, the result from the fuzzification is two fuzzy sets with 

two degrees of membership per input signal. These are shown in Fig. 4.19. The results 

from the fuzzification are given as NS*0 55j, where this notation stands for: the error signal
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e is a negative small with degree of membership 0.55. In a similar manner all six results 

are produced. At the next step, the software determines the IF-THEN rules that combine 

these fuzzy sets. The IF-THEN rule-matrix is shown in Fig. 4.20. Five 5x5 matrices are 

necessary to capture the whole set of rules, where each m atrix corresponds to a given fuzzy 

set defined for the acceleration. In each matrix, the fuzzy sets for the error is located as 

rows and the fuzzy sets for the velocity are located as columns. The fuzzification produces 

2 fuzzy outputs per input signal(Fig. 4.19), hence a small 2x2x2 cube of rules is produced. 

These IF-THEN rules are highlighted in Fig. 4.20. Using a m m -operator for a logical AND, 

and a raax-operator for a logical OR, as shown in Fig. 4.19, the algorithm produces the 

membership functions of the output signal. This function is shown in Fig. 4.19 bottom. 

Using the centre of the area defuzzification (Eqn. 4.2), the software on the DSP produces 

the control output. This is shown as v in Fig. 4.19. This value is then loaded to the DAC 

to drive the magnet.

Similarly to the other two fuzzy controllers, two step changes in the desired airgap were 

applied to the closed-loop system. The results are shown in Fig. 4.21. By combining all 

three inputs in a rule m atrix gives the flexibility to determine fully the operation of the 

controller by the construction of these rules. The suspension stiffness and the position 

error can be controlled by adjusting the ranges of the membership functions. It has been 

observed th a t superimposing two or more close to the origin improves on the stiffness as the 

response is more sensitive to small changes in the airgap. This controller is better suited 

to applications with more demanding design specifications such as vehicle suspension and 

large industrial magnetic bearings.

Considering the Fuzzy control environment above, a benefit is considered to be the fact 

th a t the linguistic description of the operation reduces the developing effort. In addition, 

there is no need to have a model of the system for the control work. For the Maglev control 

work, one m ajor drawback of the fuzzy logic controller is considered to be the lack of a 

systematic theory for studying the stability and the robustness of the closed-loop system. 

Therefore for the multi-magnet vehicle control work, a different approach is considered 

based on robust optimal control. This is described in the following chapters.
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Figure 4.19: From top: membership functions; part of the list of IF-THEN rules; inferring 
an output membership function for defuzzification. A combination of the three input 
feedback signals is shown to illustrate the construction of the output (control voltage into 
the magnet) for the state-fuzzy controller.
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Figure 4.21: Response in airgap from the fuzzy logic control system as shown in Fig. 4.13.
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Chapter 5 

Design of DSP hardware for Maglev 
control

As discussed in Chapter 2, a single-magnet system consists of two feedback signals (position 

and acceleration) and one input signal with a sampling frequency of 1 kHz for digital control. 

For a vehicle with four magnets, the input-output requirements increase by a factor of four 

to give: eight analogue inputs for position and acceleration and four control outputs. Each 

control loop is sampled at 1 kHz which is calculated from the operating bandwidth (356.6 

ra d /s  x20 «  1135 Hz) to reduce sampling and phase effects in the control loop. After 

an extensive search of hardware manufacturers’ data  suitable for multi-magnet Maglev 

control (mid 1999), it was concluded tha t the required number of input-output channels 

and a suitable processor on board was beyond the spec of the available hardware. This led 

to the design of the DSP control hardware described here.

5.1 Design preliminaries

In Chapter 2 and 3, transputer-based hardware was used for the control work. Its facili

ties for multiprocessing and a floating point unit were used to implement control tasks for 

single and multi-magnet applications [21 , 35]. As outlined in Chapter 4, a new generation 

of processors (DSP) emerged in the middle eighties to offer a considerably better compu

tational performance than the transputers (12.5M IPS/ 1.5MFLOPS @ 25 MHz for T80x 

vs. 40M IPS/ 120MFLOPS @ 40 MHz for SHARC DSP). To investigate the applicabil

ity of DSP for Maglev, a preliminary control study was carried out in Chapter 4 using a 

commercial hardware board (EZKIT LIGHT) with a SHARC DSP which was customised 

with additional analogue circuits to provide a direct interface to magnets (Fig. 4.1) [35]. 

While the DSP offered enough processing power to implement demanding Maglev control 

tasks, the new hardware lacked a high-bandwidth communication link to a host computer

74



and facilities for interfacing four magnets simultaneously. This required constructing a list 

of requirements for a new Maglev control hardware with capabilities of interfacing four 

magnets (Fig. 5.1). The specifications of this are given in Table 5.1 (some of the fields in 

this table were finalised after the completion of the design). Although the requirement to 

interface four magnets puts additional constraints on the hardware design, this solution is 

believed to relax the complexity of implementing multi-Maglev control systems. A survey 

of the available commercial DSP hardware as an alternative to the proposed design is given 

below.

5.2 Commercial DSP hardware

Some of the m ajor companies involved in the design of SHARC-based DSP hardware are 

(mid 1999): Spectrum Signal Processing Inc., Bittware Inc., Blue Wave Systems Inc., 

and D.SignT Gmbh. (all non-UK manufactures). Although there is a large number of 

general purpose DSP-based hardware, only two systems were found with specifications close 

to the required list. The first hardware th a t partly meets these constraints is designed 

by D.SignT Gmbh, and consists of two separate boards: (a) a main board (processing 

module) with a SHARC DSP (D.Module.21065), and (b) an analogue I/O  interface module 

(ADS12-300). The specification of this system is given in Table 5.2. The second compatible 

hardware is offered by Bittware Inc. and two separate boards are needed to meet the 

specifications; these are: Blacktip-EX (processing module) and bitsi-DAQ (I/O  module). 

The characteristics of this hardware are given in Table 5.3. The following conclusions can 

be drawn from this survey.

•  Most of the available hardware systems are plug-in boards and use PCI, VME, or 

Compact-PCI bus interfaces. To operate the boards for control purposes, an ad

ditional host computer is required. This reduces the mobility of the system and 

increases the overall cost.

•  From the list of available stand-alone hardware, all provide a limited number of 

analogue inputs and outputs (see Table 5.2 and 5.3). Increasing the number of 

analogue I/O  channels requires combining two or more hardware boards together. 

This increases the overall cost and the complexity of the design and reduces the 

reliability.

•  All commercial stand-alone hardware units offer only RS232 interface to a host com-
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Processor One ADSP-21062 Analog Devices SHARC processor 
40MHz, 25ns instruction rate, 120MFLOPS, 40MIPS 
32/40-bit floating point, 32-bit integer
2Mbits dual-ported on-chip SRAM memory, organised x32 or x48 
six 40MB/s link ports, and two 40M bit/s serial ports

Interface One SHARCPAC interface
External Memory 4Mbit FLASH memory

Up to 32Mbit SRAM zero wait state memory
Connectivity One 10M bit/s Ethernet port

lOBase-T unshielded twisted pair with RJ45 interface
Link Ports
for multiprocessing

Four external link connectors
Two are connected directly to the SHARC on the board 
Two are routed from the SHARCPAC module

Serial Ports Four serial interfaces routed to the SHARCPAC connector
Analogue inputs Eight 12-bit analogue inputs 

Maximum conversion rate 454 kHz 
four ±5.0V input channels 
four 0-20mA input channels
Eight independent anti-aliasing analogue filters (25KHz cut-off freq.) 
Four programmable gain amplifiers with 255 positions 
Four fixed gain amplifiers (1:1)

Analogue outputs Four 12-bit analogue outputs 
6/is settling time 
four ±5.0V output channels 
Four fixed gain amplifiers (1:1)

Digital I/O Eight programmable digital I/O s with TTL inpu t/ou tpu t levels
Encoder inputs Two 12-bit inputs for rotary encoders with TTL input levels 

Direct interface to standard encoders
Program m able I /O Gate-programmable digital I/O s (Lattice ispLSI1016-180 CPLD)
Debug Port 14-pin IDC header for IEEE JTAG 1149.1 boundary 

scan with extensions for in-circuit emulation 
Supports Analog Devices EZ-ICE emulator

Software support Embedded kernel on board tha t supports T C P /IP  and host booting
Host interface tool for booting
Support of the Analog Devices developing tools
Matlab client/server module for direct interface to M atlab/Simulink

Power 650mA@5V typical (not including optional SHARCPAC module) 
optional 650mA@12V (not including optional SHARCPAC module)

Size 4.7” x6 .4”

Table 5.1: Specifications of new DSP-based control hardware.
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puter with a maximum bandwidth of 115200 b it/s. Based on previous experience for 

the amount of experimental data  that is usually transfered, this speed is considered 

as insufficient.

•  Due to the lack of a single embedded solution tha t integrates the DSP and the ana

logue I/O  circuits on a single board, meeting the constraints in Table 5.1 requires 

combining two hardware systems: one with analogue I/O  interface circuits and an

other with the DSP and its supporting circuits. This reduces the functionality of the 

system and increases the overall costs.

Processor One Analog Devices SharcTM 21061 Floating
Point DSP @ 40 MHz
120 MFLOPS peak performance
32 bit IEEE floating point, 32 bit integer arithmetic
128 kByte internal dual ported RAM
Six High Speed Link Ports for array
multiprocessing, each 40 MByte/sec
JTAG Emulator Port

External memory 196 kByte (32k x 48) zero wait state SRAM
128 kByte non-volatile sector-architecture Flash Memory

Connectivity UART RS232 line interface, up to 38400 baud
Interface External Bus Interface (occupied by the I/O  module)
Software support Software controlled module configuration 

Service Utility for program uploads via RS232 port
Analogue inputs 4 Channel 12 Bit Successive Approximation A /D  Converter 

Synchronous or alternating sampling, up to 300 kHz 
Programmable sampling frequency and filter cutoff 
4 Inputs, differential, ±  2.5V to ±  10V, 4th order 
Butterworth filter

Analogue outputs 2 Channel 12 Bit D /A  Converter 
2 Outputs, single-ended, ±  2.5V, 2nd order 
Butterworth filter

Table 5.2: Specifications of D.Module.21065 (processing module) and ADS12-300 (I/O  
module) designed by D.SignT Gmbh..

These conclusions show that to support the development of control algorithms for multi

magnet systems, it is more convenient to design a new hardware by following the specifica

tions in Table 5.1. The additional effort required for this design is expected to contribute 

the research work addressed in this thesis and to provide a hardware/software framework 

to support other academic and industrial work. A brief description of the hardware is given 

below and its photographic image is shown in Fig. 5.3.
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Processor One Analog Devices SharcTM 21061 Floating
Point DSP @ 40 MHz
120 MFLOPS peak performance
32 bit IEEE floating point, 32 bit integer arithm etic
128 kByte internal dual ported RAM
Six High Speed Link Ports for array
multiprocessing, each 40 MByte/sec
JTAG Emulator Port

External memory up to 512K x 48 optional SRAM 
2Mbit x8 bank FLASH Memory

Communication two RS232 line interface
Interface BITSI I/O  mezzanine interface (occupied by the I/O  module)
Software support The DSP21k Toolkit for Windows 

Analog Devices ANSI C compiler, assembler, 
linker, simulator, and source code debugger

Analogue inputs 8 Channel 12 Bit analogue inputs 
up to 500 kHz sampling rate 
±  5.0V input range

Analogue outputs 4 Channel 14 Bit D /A  Converter, 100kHz 
±  2.5V output range

Table 5.3: Specifications of Blacktip-EX (processing module) and bitsi-DAQ (I/O  module) 
designed by Bittware Ltd..

5.3 Hardware description

From a functional point of view, the DSP hardware is divided into: an analogue I/O  

interface module and a processing module. A general overview of the data  paths is shown 

in Fig. 5.2. A description of each block is given below.

•  Analogue I / O  module: To provide an interface to four magnets simultaneously, an 

eight channel, 12-bits analogue-to-digital converter (ADC) is used (AD7891AS-1 [48]). 

The minimum control sampling frequency is 1 K-samples per second per channel, 

for compatibility with the dynamic characteristics of the open-loop system. W ith a 

dominant pole of the single-magnet system located at 356.56 rad/s, the sampling time 

is chosen to be 20 times the open-loop bandwidth [43] to give an ADC conversion 

rate of 1 kHz per channel for good signal-to-noise ratio and minimal influence of the 

digitalising process. The chosen ADC offers up to 454 kHz conversion rate to give 

maximum of 50 kHz sampling rate per channel.

To reduce the aliasing effects of the sampling process, the analogue signals are band 

limited to half the sampling frequency(=Nyquist frequency) before quantisation using 

eight independent second-order Chebishev filters. The cut-off frequency of the filter
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is fixed at 25 kHz (-2.62 dB).

To provide a direct interface to magnet position transducers, four of the ADC inputs 

are designed to measure current inputs from 0 to 20mA. The other four channels 

measure voltage signals within ±  5V which is suitable for accelerometer outputs. 

The voltage input channels have programmable gain circuits that allow measuring 

input signals from 20mV using the full ADC resolution of 12-bits.

A digital to analogue converter (DAC) with four separate outputs and a 12-bits reso

lution is used to interface magnet power amplifiers (DAC8412FPC [56]). The settling 

time per channel is 6/xs. The unipolar analogue outputs (0-2.5V) from the DAC 

are converted to bipolar outputs (±  5V) using a set of external analogue amplifiers 

(MC33202D [57]). The outputs of the DACs can drive magnet current amplifiers 

directly without a pre-amplifier (the input gain of the current amplifier is adjusted 

to 2A/V to give maximum driving force).

A programmable logic device with 2000 gates, 96 registers and 32 ports (ispLSI1016E- 

125LT [47]) is used to provide digital inputs and outputs for application specific digital 

interfaces. Examples are digital encoders for motor control, timers, counters, PWM 

and PDM generators. This interface is on-the-board re-programmable.

•  Processor: The main computational unit on the board is a 32-bit, floating-point 

SHARC DSP processor (ADSP-21062KS-160 [45, 44]). It runs at 40 MHz to give 40 

MIPS and 80MFLOPS sustained DSP performance. The DSP provides 2 Mbit of 

internal memory for storing application programs and data. The DSP has a 32-bit 

da ta  bus which is connected to all memory mapped devices (such as the ADC and 

the DAC). More details on this computational unit are discussed in Section 4.1.

•  Memory module: The memory module of the board consists of a static RAM memory 

block (SRAM) and a non-volatile memory block (FLASH). FLASH memory with 

4Mbits capacity (AM29F040-120JC [58]) is used to store the operating kernel on the 

board (more details on the kernel are given below). After reset, the DSP reads from 

the FLASH to transfer its content into the D SP’s internal memory. The execution of 

the kernel then begins with initialising the hardware and preparing a communication 

link for Maglev control software download.

External SRAM memory is provided by a dedicated plug-in 72-pin SIMM interface. 

The hardware is designed to operate with or without the static memory and to use
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off-the-shelf SIMM SRAM modules (CYM1846PM-12C SRAM SIMM is used). Typi

cally, 16Mbit,s (512Kx32bits) of SRAM is used to provide a storage capacity of 524288 

floating point numbers which is approximately the capacity of storing 9 minutes of 

magnet d a ta  at 1 kHz sampling rate.

•  Ethernet : The communication facility on the board is provided by an Ethernet com

munication block (CS8900A-CQ [59, 60]) with a capacity for transferring data at 

lOM bits/s bandwidth over a local area network (LAN). Since the DSP hardware con

nects to the network, more than one host computer can read/w rite and operate with 

the board a t a time. TCP and IP protocol layers are built on the top of the Ethernet 

to enhance the usability of the board. The communication device is memory mapped 

on the DSP board to achieve full communication performance. Isolation transformers 

are used to separate the hardware from the remaining LAN devices.

•  Expansion and board control: Since all modules described above are memory mapped 

on the DSP’s address and data  busses, a programmable logic circuit is used to syn

chronise the operation of each device. This is the in-system-programmable chip, 

ispLSI2032-180LT44 [61], with 1000 user gates, 32 I/O  pins, and 32 registers.

Although the board provides all necessary circuits to build multi-magnet control sys

tems, the industrial SHARCPAC interface [62] is integrated on the board to provide 

facilities for expansion. Typical commercial SHARCPAC modules are: SHARCPAC 

DSP modules with 1,2,4 or 8 SHARC DSPs, high bandwidth ADCs and DACs for 

image processing, optical interfaces, CAN interfaces, analogue inputs/outputs, field 

programmable gate arrays (FPGAs) and others. The dimensions of the SHARCPAC 

interface is 3.1 by 4.5 inches, and it has four 90-pin connectors with a total num

ber of 360 pins. The D SP’s data, address, and control busses are connected to the 

SHARCPAC interface to allow a direct memory mapped interface.

The hardware design actively undertaken during this project was challenging and re

quired an extensive research on system design and testing. The total number of components 

is above 200 and required designing a printed circuit board (PCB). As a good compromise 

between board complexity and manufacturing price, a four layer PCB technology was con

sidered. Two of the layers are signal layers referred as top signal layer and bottom signal 

layer, and the other two are the supply power plane and the ground plane layers. A four 

layer PCB with separate power and ground planes has a low electro-magnetic interference

81



Figure 
5.2: 

Functional 
blocks 

of 
the 

DSP 
hardw

are. 
The 

schem
atics 

are 
given 

in 
A

p
pendix 

B, page 
278.

Processor
Clock

Memory module \ Ethernet

Extension and board control

Power
supply

SRAM
Memory FLASH Ethernet
Module Memory Controller

•c oo
+4
mo

•cc
£ oo

i

(0wo*

Lin
ks 

for
 

mu
ltip

ro
ces

sin
g

®ccoo

Data Bus 
Address Bus 
Control Bus

Analogue I/O interface module
Programmable 
Gain ControlSHARCPAC

expansion
interface

Anti-aliassing 
Filters

Complex 
Programmable 
Logic Device

(CPLD)
Digital I/O

Digital Interface
LEDs and 
Reset

ESB/06-99



an
al

og
ue

 
I/O 

co
nn

ec
to

rs

iitry iiH iB Y lfiriiK iifM iiiiM ifittM iiiiii*

........

I (lilllHliUOIIillllliiljttMllHHIllHitti

SHARCPAC connector

FLASH

jumpers

control

DSP processor

Ethernet SHARCPAC connector
Power supply circuits LEDs connector LEDs

Figure 5.3: Functional blocks of the new DSP hardware.

83

’lin
k 

po
rts



(EMI) [63]. It also provides a basis for employing special routing techniques to help atten

uating the effect of the digital noise on the analogue signals [64]. The final PCB with all 

components is shown in Fig. 5.2.

5.4 Software description

Two are the main requirements from the software: (a) to provide a communication link for 

downloading user-specific programs on the DSP and (b) to provide facilities for transferring 

experimental data to and from the host computer for analysis and plotting. These require

ments are met by designing a specialised kernel (that portion of an operating system that 

is kept in main memory at all times [65]) resident on the DSP hardware (FLASH memory). 

When the board is reset, the kernel is loaded to the DSP and executed. A main part of the 

kernel is the Internet Protocol (IP [66]) and the Transmission Control Protocol (TCP [67]) 

routines tha t run on the top of the Ethernet [68] communication link. The network com

munication in the kernel uses packets for data  transfer and has a layered structure. On the 

bottom  is the Ethernet link and its packets, next is the IP protocol, then the TCP protocol 

and finally user-specific applications. Communication with the board uses client/server 

principles. Clients typically run on the host machine and connect to servers tha t run on 

the DSP. For operational flexibility, two software servers are designed and embedded into 

the kernel: Booting Server and M atlab Interface Server. A brief description is given below.

New control algorithms for Maglev are typically designed on a host computer, using a 

simulation language such as M atlab and Simulink. These are then converted to software 

programs using C and /o r Assembler languages for SHARC DSPs [69, 70, 71] and compiled 

to get an executable code suitable for DSP. A specially designed client application for the 

host computer (called ESBLd) reads this file, connects to the Booting Server on the DSP 

and transfers the new Maglev control program via the network. At the end of the transfer 

cycle, the DSP begins executing the new control program.

M atlab is typically used for analysis of experimental data. To provide a direct interface 

between the DSP and the M atlab environment, two tools are designed: a client application 

tha t runs within M atlab (called ESBtcp) and a M atlab Interface Server th a t runs on the 

DSP. Once the communication link is established between the client and the server, Mat

lab can read and write data to any memory location on the DSP. This mechanism allows 

supervisory control over the DSP software operation. M atlab can update controller coef

ficients while the DSP program is running, and can change operation modes as it uploads
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experimental data  from the DSP. This mechanism is used for obtaining the plots in the 

thesis.

5.5 Software framework for control applications

A software framework for control applications is designed to assist the development of 

new Maglev controllers. It provides essential functions and data  structures for the DSP 

which are expandable with new algorithms. Main building blocks are: software routines to 

interface the analogue input and output circuits, modules th a t handle the communication 

with the host (Matlab), a set of data structures and initialisations routines, and a set of 

pre-tuned controllers for Maglev systems. A general overview of this environment is shown 

in Fig. 5.4. Bold boxes represent software functions and arrows are used to describe flow 

of the data  between the modules. ADCInit  and ADCHandler are software programs that 

initialise the ADC converter and read data  from its registers. The number of analogue input 

channels to measure is user-selectable and reflects the sampling frequency for the ADC (50 

kHz per channel generated from a hardware clock in the DSP). The ADC automatically 

generates an interrupt to the DSP at the end of the conversion cycle. D ata is then read 

(from ADCHandler) and stored into two vectors iADCCh (in ADC units) and fADCCh 

(in voltage units). Both vectors consists of 8 elements with an index corresponding to the 

ADC input channel. The ADC data  is logged into a data  buffer which is available for 

transfer to Matlab.

To guarantee a fixed sampling frequency, the control algorithm is driven from a software 

interrupt generated from an internal timer in the DSP with a software programmable pe

riod. A software routine called ControlLoop (Fig. 5.4) is executed at every timer interrupt. 

As indicated earlier, a typical sampling frequency is 1 kHz (the DSP hardware described 

here has been successfully used for up to 44 kHz sampling period). The ADC units are 

suitably converted to physical units: positions in [m] and acceleration in [m/s2]. The ac

celeration is digitally integrated to get velocity in [m/s\. These three state variables are 

thus available for Maglev control and also logged into the data buffer for Matlab.

New control algorithms are implemented in the function Control Algorithm. The de

signer has an access to all inputs and outputs and hence only the new m athem atical control 

algorithm has to be coded into DSP instructions. The control outputs are converted from 

volts to DAC-units and outputted to the current controllers. This control framework has 

proved to be flexible for implementing all control algorithms described in the following
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chapters.

5.6 Conclusions

A single magnet system consists of two feedback signals and one control output with a 

sampling frequency of 1 kHz. The input and output requirements increase by a factor 

of four for a Maglev vehicle with 4 magnets. A commercial interface hardware with eight 

analogue inputs, four analogue outputs with an embedded processor suitable for this project 

was not found. A new SHARC DSP hardware system was thus designed to provide an 

experimental platform. For operational flexibility, a suitable set of software programs for 

the DSP and for the host computer were designed to download application code to the 

DSP and to communicate between the hardware and Matlab. This platform is used in the 

development of Maglev control algorithms in the following chapters.
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Chapter 6 

1 - L o o  controllers for Maglev systems

6.1 The H o o  control problem

In the previous control work, the effect of the disturbance input on the closed-loop system 

is not specifically used in the synthesis. Consequently, while satisfying the basic criteria 

of stability under nominal operating conditions, the controller param eters have no explicit 

relationship with (unknown) disturbance inputs. The theory of control overcomes this 

lim itation by using the generalised plant with disturbance input and a feedback controller 

shown in Fig. 6.1 [72, 37], where d is the disturbance input, r  is the input reference with 

w = ^ and q = Gu -I- d — r is a penalty output. By adding a feedback controller K(s),

the input-output transfer functions of the Fig. 6.1 are given by

Figure 6.1: Closed-loop system representation used in the definition of the control 
design problem. P(s)  is known as the generalised open-loop system.

q = (1 +  G K ) 1 w (6 .1)
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y = —(l + GK)  1 w (6 .2)
T y w

The effect of disturbance input is suppressed by minimising the infinity norm of the transfer 

function from w(t)  to q(t). The basic definition related the derivations of the 'Hoo controllers 

is stated below. For a single input single output system, the oo-norm of a transfer function 

is defined as the peak magnitude of Tqw(ju),  i.e. H T Jqo =  max \Tqw(ju)\.  Based onw £ R.

this, the Hex control problem is formulated as: Find the real-rational proper controller K  

th a t minimises the oo—norm of the transfer function from w to q, Tqw( P , K ), under the 

constraint tha t K  stabilises G, i.e. [73]

(6.3)

In the 1-Loo literature, this minimisation problem is treated as a constraint optimisation

problem of finding the feedback controller K(s) .  In this chapter, two analytical solution to

this problem are derived. In the time domain, the oo—norm is defined as

IITqw(P, JO Hoc - max -  - • (6.4)

where the 2-norms or the energies of the signals q(t) and w{t) are defined as

|M |2 =  y j  wT{t)w{t)dt, and \\q\\2 = ^ j j ^ q T (t)q(t)dt (6.5)

Therefore the greatest increase in energy tha t can occur between the input w and the output 

q is given by Eqn. 6.4 and is equal to the infinity norm of the system [74]. Computing the 

oo-norm usually requires a search. For a SISO system the computation requires calculating 

the Bode plot of Tqw and then finding the peak. A general purpose algorithm for the 

com putation of oo-norms of SISO and MIMO systems is described in Section 6.3 [37]. This 

algorithm is used in the procedure for deriving Hoo controllers presented in the following 

section.

The primary aim of this chapter is to develop an analytical framework to derive feedback 

controllers for Maglev K(s)  tha t minimises Tqw as per Eqn. 6.3. The derivations are 

presented in a manner tha t both state and output feedback controllers maybe generated 

by using the same principles (Sections 6.4 and 6.5, respectively). Some of the essential 

derivations and the definitions of weighted sensitivity and mixed sensitivity functions for 

specification of suspension damping are given in the following section.
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6.2 Derivations of transfer functions

6.2.1 Transfer function from w to q (Tqw)

For Maglev systems, d represents the external force, pay-load and track disturbances and r 

represents the reference input. To derive Tqw, the following input-output relationships are 

constructed from Fig. 6.1

r r d 1 r i
(6 .6)

r  1 '  d ' r  _

Q
. y .

= P(s) r
u

= P(s) w
u

1 - 1 G[s) Pn(«) P 12OO
- 1  1 - G(s ) P2i(s) P22{s )

where P(s)  is given below 

P(*) =

In this notation, each Pij(s) is a transfer function related as below

q =  Pn (s)w +  Pi2(s)u 
y =  P2i(s)w +  P22(s)u

(6.7)

(6 .8)

W ith u = Ky,  the output y in Eqn. 6.8 can be reduced to (in the following equations, the 

complex frequency s will be dropped for better readability)

y = P 2iW  + P22K y  
y( 1 -  P22K )  = P2lw 
y  =  (1 -  P22K ) ~ l P2Xw

Substituting this equation back in 6 .8 , gives the following equation for q.

q = Pn w +  P\2K y  
q =  P\\w  +  P 12K { 1  — P22K ) l P2iw 
g = (Pn + P n K ( l  -  P22K ) - 1P21) w 

>   /
T q w { P , K )

(6.9)

(6 .10)

Tqw in Eqn. 6.10 is a function of the open-loop system P  and the feedback controller K.  

Since P(s)  is the dynamics of the open-loop system, the only unknown in the equation 

above is the controller K.  Based on Eqn. 6.10, the 1-Loo control problem can be formulated 

as the following minimisation problem: find K  such tha t the cost function J  is minimised

mm
K

J  =  \\Tqw(P, AT)l|oo =  ||Pn + P n K ( l  -  P22A r ‘Piilloo -

6.2.2 Sensitivity minimisation

For the feedback system in Fig. 6.1, substituting Eqn. 6.7 in Eqn. 6.8 reduces Tqw to

(6 .11)

q = Tqw(P, K ) w  = [Pn + P n K (  1 -  P22K ) ~ 1P2l} w 
=  [1, —1] +  G K (1  +  G K )~ l [—\,  1 }w 
= [1 - G K (1  + G K )~ 1, - l + G K ( l  + G K )- ' ]w  
=  [(l +  G P r ) - 1, - ( 1  + GK)-']u>

(6 .12)
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Substituting w with its equivalent w =  [rf, r]T (Fig. 6.1) transforms Tqw to

q = ( \  + G K )~ l ( d - r )  (6.13)
   y.

S = T q w

S  = (1 +  G K ) ~ l which maps w to q, determines the sensitivity of the system to external 

disturbances; S  is known as the sensitivity function of the system. In the frequency domain, 

S  has the characteristics of a high-pass filter (typical plot of S(jcu) is shown in Fig. 6 .2 (top)). 

W ithin the bandwidth of the system (u < 10“ 1 rad /s in Fig. 6 .2 ), S  has a very low gain. 

This low gain minimises the influence of w on q. Above the bandwidth (cj > 10“ 1 rad /s in 

Fig. 6.2), |S(ju;)| «  0 dB and hence all disturbance signals w are passed to the output q 

without attenuation.

Based on the above, the designer would require to make the sensitivity function S ( ju )  

small for good disturbance attenuation of the closed-loop system. For the sensitivity prob

lem, Tqw = S  and the design problem of minimising S  becomes an Tioo control problem 

(Eqn. 6.3) which can be reformulated as: find this stabilising controller K  such that the 

oo-norm of the sensitivity function is bounded from above, i.e.

i i s i l  =  m j n  i 5 ^ ) !  =  I k 1+ c a r ' l l  < 7  ( 6 - 1 4 )oo

7  defines the maximum gain of S  and thus becomes a design param eter for the controller.

The Hoc design task becomes a task of minimising the worst gain of S  by selecting K.  The

solution to the problem defined in Eqn. 6.14 is the controller K(s)  tha t makes H-SUoo < 7- 

Typically, 7  =  1.

6.2.3 Weighted sensitivity minimisation

Restricting ||5||oo < 7  (7  is a small value) for the whole frequency range is restrictive 

as at high-frequency \S(jui)\ =  1. A more practical approach is to introduce a design 

weighting function W(jcu) to achieve the desired shape of S(juj) by defining a frequency 

dependent bound on the sensitivity function from above. For the single-magnet design the 

idea is graphically illustrated in Fig. 6.2(top). Multiplying S(jcu) by the performance bound 

W ( j u )  gives a new function W S .  The frequency response of the new function is shown in 

Fig. 6.2(bottom). This function has the following properties:

•  \W S ( ju ) \  is > OdB when |S'(>;a;)| is > \W ~ 1(ju)\  for some frequencies, and

•  \W S ( ju ) \  < 0 dB when the sensitivity function is bellow the bound \W ~ l (jcj)\.
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Therefore instead of minimising S ( ju )  in Eqn. 6.14, the Woo design problem can be refor

mulated as: find this controller K(s)  which minimises the norm of W S ,  i.e. (7  «  1)

l |W 5 ||00 =  | | ^ ( l  +  G X ) - , ||00< 7  (6.15)

In this weighted sensitivity minimisation problem, W ( ju )  in this equation gives the desired 

shape for S(juu) and thus becomes a design parameter for the 'H(yo control optimisation 

(Fig. 6.3). The shape of S ( ju )  has a direct impact on the quality of the closed-loop 

system, i.e. phase margins, gain margins, maximum overshoot, settling time. More details 

on selecting W (ju )  to give user-defined closed-loop suspension requirements are given in 

Section 6.4.2.

10
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Figure 6 .2 : Top: sensitivity function S(juo) and its performance weight Bot
tom: magnitude response of |W S ( ju ) \ .  W ( j u )  gives the desired shape for S ( j u ); When 
11W S ||oo <  1 (OdB), |S(.;a;)| is located below \W ~ 1(ju)\.

6.2.4 Mixed sensitivity minimisation

To control the robust properties of the closed-loop system, it is also useful to limit the 

magnitude of the control action by specifying an upper bound on the control signal u. This 

is Tioo problem defined as minimise the worst gain (i.e. the infinity norm) of this function. 

From Eqn. 6.8 and Fig. 6.3

y = P2i(s)w + P22 (s)u = [-1 , l } w - G K y  
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w { W(s)

G(s )

Figure 6.3: Mixed sensitivity 'H00 control problem. W (s) and Wc are design parameters 
for the Hoo optimisation procedure.

Substitute u — Ky,  then after some transformations

u = K ( l  + GK)~l [- l ,  1 ]w 
= K ( l  + G K ) - l [r -  d] 
=  KS( r  -  d)

K S  =  K(  1 +  GK)~ l is the input sensitivity function and represents the closed-loop 

transfer function from w to u. When the gain of K S  is large, small amplitudes of w produce 

large amplitudes in control action u. While the sensitivity and frequency responses may be 

satisfactory, the resulting robustness may not be satisfactory. This lim itation is overcome 

by an additional weight Wc(juj). For robustness, the magnitude of u can be controlled 

by defining a limiting transfer function Wc(juj) (see Eqn. 6.15). This becomes an %oo 

optim isation problem of finding K  such that

\\WcK S l WcK{ l  + GK)~l <  7 (6.16)

Wc(juj) defines the desired shape of K S  and becomes a second design param eter in the 

/H00 design problem. More details on selecting Wc to give certain closed-loop performance 

characteristics is are given in Section 6.4.1.

The two transfer functions W S  and WCK S  are combined to form a column transfer 

function. The mixed sensitivity function is then defined as a column vector transfer function 

(Fig. 6.3)

Q = Qi W ( \  + GK)~l
. I 2 . WCK(1  +  GK)~l w (6.17)

Combining Eqn. 6.15 and 6.16 gives the definition of the the mixed sensitivity 'H00 design
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problem: find K  such that Eqn. 6.18 is satisfied.

.  nur'i - 1
< 7  (6.18)

W S W(1 + GK)~ '
WCK S 00 WCK { \  + GK)~ '

oo

The optim al solution K  is achieved when the upper bound for the above oo-norm is 7  =  1. 

A sub-optimal solution can also be sufficient as long as 7  is the minimum. Optimal 'H00 

controllers designed for the mixed sensitivity problem guarantee that: (a) the response of 

|5 (jo ;)| has an upper bounded specified by \W ( ju )  \ and (b) the control action (u) is limited 

by the upper bound Wc(ju).

In many practical applications, the designer aim is to limit the norm of K S  equally for 

the whole frequency range of interest and hence W c becomes a constant which gives the 

maximum peak in ||/f5||oo. This approach is adopted here.

To summarise: the Tioo design problem defined in Eqn. 6.3 is reformulated as a problem 

of determining K(s)  tha t satisfies the mixed sensitivity problem in Eqn. 6.18. The latter 

approach provides a design mechanism (via the design parameters W (s), W c) for achieving 

closed-loop stability and performance margins. The solution to this problem, i.e. finding 

K(s),  is the topic of Section 6.4 and 6.5.

6.3 Algorithms for computing the oo norm of a system

To compute the infinity norm of Tqw it is necessary to find the minimum value for 7  that 

satisfies

II^ Jo o  < 7 (6.19)

The oo-norm of Tqw is equal to the upper boundary of the magnitude response of Tqw(juj) [74]

H alloo =  sup &(Tqw(ju))  (6.20)U)

W ith s =  j u ,  the singular values of Tqw(ju),  a[Tqw(juj)], are given by the square roots of 

the eigenvalues of the m atrix Tqw(—juj)TTqw(juj), and the maximum of these eigenvalues 

^max is equal to the maximum singular value a. The oo-norm then becomes

H alloo =  °  (Tqw{ju)) = max J A*[Tqw(-ju))TTqw(ju)] (6.21)
1 1

where A* is the i — th eigenvalue. Using this definition, Eqn. 6.19 is equivalent to

K[Tqw{ - j u ) TTqw(juj)} < 7 2 (6.22)
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Since the eigenvalues of Tqw(—joj)TTqw(ju)  are strictly real, the singular values of Tqw{ ju ) 

are the positive square roots of these eigenvalues (6.21). Further, the eigenvalues of

Tqw( - j u ) TTqw(juj) are less than 7 2 if

A, [72/  -  Tqw( - j w ) TTqm(ju)\ > 0 (6.23)
<b(ju)

The function $(juj) is positively definite (i.e. A* > 0) if $(ju)) has no zeros on the imag

inary axis [37]. Equivalently, <b(juj) is positively definite if ^ ~ 1 (ju)  has no poles on the 

imaginary axis. The problem of finding the infinity norm of Tqw( j u ) then becomes:

(a) chose a relatively large value for 7  and compute the poles of $ _1(ju;) = [7 21 —

(b) reduce 7  and continue from (a) until for some value of 7  there exist one or more poles 

which are pure imaginary. Stop the computation and take the last value of 7  as the infinity 

norm of Tqw(s).

6.3.1 State-space model of P(s)

To compute the infinity norm it is more convenient to use the state-space model of the 

suspension system in Fig. 6.3. This is derived below

Step 1 : G(s), VF(s) and W c are transformed from transfer functions to state space repre

sentations. This transformation results in the definition of the following state-space 

matrices:

(a) for the open-loop (Maglev) system G(s) =

(6.24)

a g B G 1
cG D g J

x \ =  A g x 1 +  B g u 
y =  —C Gx 1 +  I r  — Id  — D GU\

where x\  is the state-vector of G , u , y are defined in Fig. 6.3. In the notations above,

the subscript denotes the transfer function (e.g. A G is the A  matrix of G).

(b) for the design weight W  (s ) =

(6.25)

A w B w
Cw D w

x2 = A w x 2 + B w [r -  y -  d] 
#2 — Cw% 2 + D w [r — y — d]

where x 2 is the state-vector of the performance weight W,  and r, d, y and q2 are 

given in Fig. 6.3.

(b) since Wc is a constant, the equation for q\ reduces to

where q\ and u are given in Fig. 6.3.

<7i =  Wcu
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Step 2 : y in Eqn. 6.24 is substituted in Eqn. 6.25. Rearranging the terms and combining 

all equations to one single state-space equation yields

x x
x 2

Ag 0 
B w C c A w

X i
+

x2 _

0 0 
B w Bw

d r Bn  1
r +

1
1 fca b* 1

u

Bx

Du

B2 

D12

’  Qi ‘ 0 0
Q2 — —Dw Cg Cw

. y . [ - C G 0

X i

x 2
+

i0 
1_

1---o

—Dw Dw
- I I

d
r

r v u  i
+ —D w D g

~ D gV

U

c2 D2\ d 22

This equation can be transformed to its compact form

x  =  Ax + B\W B 2u 
q =  C\x + D \\w  -I- D \2u 
y — C2x +  D 2\W +  D 22u

(6.27)

(6.28)

where: x  =  [xu x2]T, q = [<?i,<?2]t , w = [d,r]T, and A, B u B 2, Cu C2, A i ,  A 2, A i  

and D 22 are defined in Eqn. 6.27.

Using the above equation, Tqw becomes

Tqw =  C i(s / — A) lB\  +  Dn  —
' A Bi  ‘
[ C i D n \

(6.29)

The right-hand side notation is a compact representation of transfer functions using state- 

space matrices. The order of the open-loop system in Eqn. 6.28 (= the dimension of A) is 

equal to the order of G(s) plus the order of the performance weight W  (Wc is a constant 

and does not add additional state variables).

6.3.2 A lgorithm  for com puting th e 0 0  norm

To compute the poles of <$- 1(s) in Eqn. 6.23, the transfer m atrix <£- 1(s) =  [j2 I —Tqw(—s)TTqw(s)] 

has to be constructed. Example is given with Tqw in Eqn. 6.29

Tqw(s) = Cl ( s I - A ) - 1B i + D n

The complex-conjugate transpose Tqw(—s)T is given by [74]

Tqw( - s ) T =  - B f ( sl  + A t )~'Cr  +  DTU

For simplicity and without changing the generality of the derivations, D u  is assumed 

to be D u  =  0 (this requires choosing a strictly proper weight W(s)  with D w =  0).



Interconnecting in series Tqw(—s)T with Tqw(s) after suitable rearrangements yields to

' A 0 B y  '

Tqw( - s ) r Tqw(s) = - c j c x - A T 0
0 B ? 0

Furthermore,
‘ A 0 B y  "

7 2/  -  Tqw(—s)TTqw(s) = ~C[Cy - A T 0
0 - b t 72 J

(6.30)

Some transformations can show tha t the inverse of the left-hand side of Eqn. 6.30 is given 

by [74]

[7 2 I - T gw( s ) TTqw( s T '  =

which can be simplified to

A  0  

- C f C i  - A T - 7 " 2
' By ' 

0
[ o  ~ s r ] 7 2

' By ' 

0

1--
---

-

1
-a

1 to CQ10 1 1

CM1

' A r 2B xB \ t 2b x ’
<t>-'(s) = [7 2/  -  T ^ - s f T ^ s ) ] - 1 = -CffCy - A T 0

0 7 -2 .
(6.31)

The poles of *(s) in Eqn. 6.31 are uniquely determined from the following Hamiltonian 

matrix

- c f Cl <6-32>

The spectrum of this m atrix is symmetrical with respect to the imaginary axis, i.e. it has 

n  num ber of eigenvalues with Real(s) > 0 and n number of eigenvalues with Real(s) <

0. Using the above derivations, the algorithm for computing the oo-norm of Tqw can be

summarised as follows

1 . For the open-loop Maglev model G(s) and a performance weights IF(s), Wc, con

struct the state-space representation in Eqn. 6.27 to get A, B\  and C\.

2. Choose a relatively large value for 7 , and construct the Hamiltonian m atrix in

Eqn. 6.32.

3. Compute the eigenvalue of this matrix.

4. Reduce 7  and continue from 2 until for some value of 7  there exist one or more pure 

imaginary eigenvalues.

5. Stop the computation and take the last value of 7  as the oo-norm of the system, 

IP’.noMlloo =  7-
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7. G(s) : = [Ag,Bg,Cg,Dg]
Ag = [ -366.67 1 0

1.72e-ll 0 1
1.28e6 0 0];

Bg = [ 0 0 -1.68e6]*;
Cg = [ 1 0 0] ;
Dg = [0] ;
7, W(s) : = [Aw,Bw,Cw,Dw]
Aw = -0.04;
Bw = 8;
Cw = 5;
Dw = 0;
7.Wc
Wc = 0.5;
7. Tqw(s):=[A,Bl,Cl,Dlltablta]
A = [Ag, [0,0,0]’; -Bw*Cg, Aw];
B1 = [0,0; 0,0; 0,0; -Bw,Bw];
Cl = [0,0,0,0;-Dw*Cg, Cw];
Dll= [0,0;-Dw,Dw]; 
for gama = 2000:-1:0.0,

HAM = [ A gama~-2*Bl*Bl ’;
-C1’*C1 -A’];

if(min(abs(real(eig(HAM)))))<le-8,
fprintf (’The infinity norm = 7.f ’,gama) ; 
break; 

end
end;

Table 6.1: MATLAB program for computing the oo-norm of T(q w

To dem onstrate the above results, Table 6.3.2 lists a M atlab script-program that com

putes the oo-norm of Tqw for the state-space model of P(s)  in Eqn. 6.28. To construct 

P(s),  the following inputs are required:

1. the open-loop Maglev model G(s)

G(s) = lOxlO- 3 x -3363.8278
(s +  356.6)(s +  65.28)(s -  55.18)

2. the performance weight W(s)

W(s)  =

3. the performance weight Wc

' -366.67 1 0 0
1.72 x 10~n 0 1 0
1.28 x 106 0 0 - 1.68 x 106

.  i o 0 0 0

40 -0 .04 8
s +  0.04 5 0

Wr = 0.5
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(the above numerical values for G(s), VF(.s) and Wc are derived in Section 6.4(B)). For 

7  «  1414.0, two of the eigenvalues of the Hamiltonian m atrix in Eqn. 6.32 are approximately 

zero and thus the infinity norm is HT^sJHoo =  7  =  1414. The same norm is computed 

with M atlab (norm(ss(A,Bl ,Cl,0), in f)) to get 1414.2.

6.4 Deriving state-feedback % 0 0  controllers for Maglev

Previously in Chapter 2, the state-feedback controller was derived by specifying a set of lo

cations for the closed-loop poles which in turn has a close relationship with the closed-loop 

characteristics such as closed-loop stability margins, suspension damping and suspension 

stiffness [1, 35]. In the classical pole-placement design, disturbance inputs are not specifi

cally analysed and the state-feedback gains do not have any relationships with these inputs 

(reference r  and noise d in Fig. 6.4). The 'Hoo state-feedback design deals with the distur

bances in a systematic way by minimising the oo-norm from the disturbance input w to 

the penalty output q (Eqn. 6.18). The aim is to find the state-feedback gain K  by solving 

the following Tioo optimisation problem

mm
K

W ( I  + G K )~ l 
WCK ( I  + G K )~ l " } jn  llT ««<lloo ( 6 -3 3 )

where K  uses x  =  [a;,, x-z]T (Fig. 6.4), i.e.

u =  K x  (6.34)

Deriving K  by solving the above minimisation problem is a constraint optimisation task. 

There now exist a number of elegant solutions using a wide variety of mathematical tech

niques: from early operator-theoretic approaches [74] to the more recent state-space proce

dures [37] and linear m atrix inequalities (LMI) techniques [75]. The state-space algorithm 

proposed in [37] is widely accepted as an efficient and numerically stable way for deriv

ing /H00 controllers. This algorithm is included in several software packages (for example 

M atlab [76], Octave [77], SciLab [78]).

Although the algorithm for deriving /H00 controllers is readily available, in this thesis 

an alternative analytical solution is developed using Lagrange multipliers methods and 

differential games theory. Motivation for this work is its close analogies with the classical 

LQG solution which is well understood by control engineers and extensively analysed and 

studied in the literature (for example [79]). In addition, the analytical solution to the 

problem has provided a deeper understanding for the theory and a valuable basis for future
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Figure 6.4: State-feedback 7-Loo control. The feedback controller uses state variables x\ 
from G(s)  and x 2 from VF(s) to construct the feedback law u =  K [x i, x 2\ = K x  (Wc is a 
constant).

research work on Tioo Maglev control. Despite the fundamental difference in the derivations 

steps, the algorithm in this chapter produces identical results as in [37]. The mathematical 

derivations are fully described in Appendix C .l [80, 81, 82, 83, 84, 85, 86 , 87]. All simulation 

and experimental results in this chapter are derived from this algorithm.

The sequence of operation in the derivation of the state-feedback Tioo controller as 

developed in Appendix C .l is shown in Fig. 6.5. This is an optimisation loop for minimising 

7  which gives the upper bound on the oo-norm in Eqn. 6.33. As 7  approaches its minimum, 

the controller approaches the optimum controller (7  is embedded in P ).

Although the open-loop transfer function is known, the design procedure in Fig. 6.5 

requires also Wc and PF(s) as inputs. Values and structure of these two weight transfer 

functions are related to the suspension characteristics. There is thus a need to first analyse
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G (s), W^(s), Wc Section 6.4.3

C o n s t r u c t  s t a t e - s p a c e  
m o d e l  ( E q n .  6 . 2 8 )

I fs ta r t
(Eqn. 6.38)

P > 0?

Yes

No

Yes

has ||T ^ ,(s)||; 
s .  saturated ?

reduce 7

increase 7

C o m p u t e  | | T „

C o n s t r u c t  ( .v )
Tqw(s) =  C \ c l {s I  — A c l Y ' B \

C o n s t r u c t  t h e  c l o s e d - l o o p  m o d e l
x — Ax + B\w + B iK x  — A c lx + B\w  
q ~ C\X + D \iK x  = C\ct,x 
y — Cix + Di\w

S t a t e - f e e d b a c k  c o n t r o l l e r  ( E q n .  C . 2 1 )  
u = Kx = - ( D ^ D n ) - 1 (Bl  P  +  DTnC,)

R i c c a t i  e q u a t i o n  ( E q n .  C . 2 0 ,  Vi=D]2D i2)

P  (.4 -  B7VX 1 Dj.jCt) + [A -  B7V, ' DT7C ,)T P  
P  (B,V, 'B f  -  y  P  + (CfC , -  C fD l7Vt ' D ^C ,)

K

Figure 6.5: Sequence of operations used in the derivation of the state-feedback 'H00 con
troller. The full derivation steps are given in Appendix C .l.

the design requirements in the context of the closed-loop performance, and then select 

the appropriate forms of Wc and VF(s). An outline of the design requirements for the 

experimental Maglev system is given below. For the simulation work, a M atlab software 

has been developed to execute the complete flow-chart algorithm. Illustrative simulations 

are given in the following section.

6.4.1 Closed-loop requirements

1. The required closed-loop suspension bandwidth is 80-100 rad /s  («15 Hz) to provide 

«  150 msec settling time («  2 ^ )  for the reference demand and the disturbance input.
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This value is consistent with previous designs for the Maglev model (step response 

in Fig. 2.12, page 30) and provides a good separation between the closed-loop poles 

disturbance due to the track-guidance interaction [16, 17, 18].

2. The closed-loop system is required to have a good damping of step responses. There 

exist strong relationships between ||S'| |00 and the closed-loop stability margins [88]. 

For a single input single output system, the phase margin can be approximated to 

be phase margin > ]|'̂ (/u)') j rad- When the ||5||oo increases, the phase margin de

creases and the overshoot, the oscillations and the settling time of the step response 

in the airgap also increase. The maximum gains of the sensitivity and complimentary 

functions are hence limited to +5dB (damping ration of 0.3 corresponds approxi

mately to a phase margin > 32 degrees). The gain margin is required to be > 6dB  

for robustness.

3. The control action in terms of upper bound on K S  is chosen to be + 6dB which is 

equal to two times amplification of control error to avoid saturation in the output 

circuits (the digital-to-analogue converter has ±5V output range).

4. Small (ideally zero) steady state error in responses to step demands are required.

6.4.2 Selection of W (s) and Wc

1. For good attenuation of low-frequency track disturbances, external pay-load and mea

surement noise disturbances the sensitivity function is required to have a low gain 

(i.e. -60dB) at the low-frequency range (1-20 rad/s). This will drive the gain of the 

complimentary function to unity at this range and hence provide zero steady-state 

error in the responses.

2. To provide the desired settling time of 150 msec, the sensitivity function is required 

to cross OdB at around 40 rad/s. Since the closed-loop bandwidth is typically 3 to 

5 times larger than the cross-over frequency of S( ju ) ,  this will provide the desired 

closed-loop bandwidth of 100 rad/s.

3. For good damping, the peak of the sensitivity function, ||*S'||00, is limited to +5dB. 

Because of the close relationship between this parameter and the phase margins, a 

direct control is provided over the settling time, the overshoot and the oscillations 

in the response. Based on the above, the asymptotes for the sensitivity function are
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drawn in Fig. 6.6 as the upper bound of W (s). A suitable transfer function that 

meets this upper bound requirement can be implemented by a first-order model of 

the form

W{s)  =
40

s +  0.04
The gain plot of VF(s) -1 is given in Fig. 6 .6 , which provides the -60 dB bound at 

low frequencies and a 40 rad /s cross-over frequency. For illustration, |VF(jo;)| is not 

bounded at higher frequencies and hence the design does not put any constraint on 

the high-frequency shape of S( ju ) .  As u  —» oo, however, S  =  y  ̂ ^y

the inherent characteristics of the open-loop system (G ( ju  —» oo) — 0 ).

50

-50

-100
-2 -1

10°
.1 1<?10" 10 1 0 '

Frequency (Hz)

Figure 6 .6 : Asymptotes for the sensitivity function used to derive W(s).

4. The second design param eter Wc limits the maximum control effort. Since this re

quirement is typically the same for the whole operating range, Wc is chosen to be a 

constant th a t provides an upper bound of + 6dB

to guarantee tha t the maximum control effort would be a maximum of two-times the 

closed-loop error. This uses a normalised relationship between suspension airgap and 

position error.

and Wc above provide a starting point for the synthesis. Typically, these are 

modified throughout the controller design until a satisfactory behaviour of the closed-loop 

system is achieved.
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6.4.3 State-feedback design for M aglev

1. Input param eters are: open-loop transfer G(s)

G(8 ) =

[ -366.67 i 0 0 ]
X -3363.8278 1.72 x 1(T11 0 1 0 Ac,; B e

(s +  356.6) (s +  65.28)(s -  55.18) 1.28 x 106 0 0 - 1.68 x 106 CG Dc
L i.o 0 0 0

(6.35)

G(s)  is inherently open-loop unstable with one positive pole at +55 rad /s, and two negative 

poles a t [-356.56, -65.29] rad/s (Chapter 2). Since the airgap clearance is in the millimetre 

range, for the numerical work the steady-state gain of -51.6dB(= 2 .63x l0~3) is normalised 

with a gain of 5/10 x 10-3. The normalised transfer function has a gain of +2.34dB or 

+1.309.

2. performance weights W(s)  and Wc:

W (s)  =
40 -0 .04 8 Aw Bw

s +  0.04 5 0 Cw Dw

2

(6.36)

(6.37)

3. The overall system contains the open-loop transfer function and the transfer functions 

FF(s) and Wc. For a single Maglev suspension with the above choice of VF(s) there are 

four state-variables: three for suspension and one for VF(s). The overall state-space model 

is given below (Fig. 6.4)

" A Bi b 2 1
Ci Dn D\2

L c 2 D2i

--,

Ag 0 
—Bw Cg Aw

0 0 ' 
—Bw Bw

Bg
- B w Dg

0 0 
—Dw Cg Cw

0 0 
—Dw Dw

W
- D w Dg

-C g 0 J - 1  n ~d g J J

‘ -3 .6667  x 102 1 0 0 0.00 0.0 0.0 '
+1.7280 x n r 11 0 1 0 0.0 0.0 0.0
+  1.2844 x 106 0 0 0 0.00 0.0 -1 .6814 x 106
-4 .0000  x 101 0 0 -4 .0  x 10“2 -4 0 .0 40.0 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.50
0.00 0.00 0.00 1.00 0.00 0.00 0.00
-1 .0 0 0.00 0.00 0.00 -1 .0 0 1.00 0.00

(6.38)

Although the Maglev system has been instrumented to generate all three state-variables, 

K  requires a state variable from W(s)  which is not available (measurable). Therefore, 

the state-feedback 'HQO controller is not suitable for practical implementation. By design, 

the order of the controller is equal to the order of the open-loop system plus the orders 

of the performance weights. Despite this fact, the mathematical tools developed here 

are essential part of the output-feedback controller which has an observer-based structure
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(Section 6.5). The derivations below also provide an insight for the specification of the 

suspension performance via performance weights.

4. Derivation of K  requires constructing the Riccati equation in Eqn. C.20. Using Eqn. 6.38 

and the initial value for 7  =  100, this equation is solved in M atlab to get

P =

0.0006279 8.64 x lO” 6 7.401 x 10~8 -0.0041535
8.6401 x 10~6 1.3269 x 10" 7 1.2362 x 10~9 -4.9673 x 10" 5

7.401 x 10- 8 1.2362 x 10~9 1.4786 x 10~n -2.9701 x 10" 7
-0.0041535 -4.9672 x 10" 5 -2.9701 x 10“ 7 0.034754

P  above is a positive definite matrix and hence provides a stabilising solution to the control 

problem. The state-feedback controller for 7  = 100 is constructed from Eqn. C.30

u =  Kx  =  -V ,” 1 (B j ’P  +  Dj2c \ )  X =  [0.4978, 0.0083, 0.0001, -1.9976]x

For 7  = 100, the eigenvalues of the Hamiltonian matrix in Eqn. C.17 are

w  _ i n n l - /  ~ 356-23’ 356.23, -136.48, 136.48, -64.387 -  j98.428, \
'7  -  lOUj -  |  -64 .387+  .798.428, 64.387 -  .798.428*, 64.387 +  ^98.428 J

These eigenvalues are symmetrical and have non-zero real parts. The eigenvalues of the 

closed-loop matrix are computed from Eqn. C.31

eig(ACL, 7 =  100) =  {-356.55, -89.68, -43.845 +  j47.81, -43.845 -  j47.81}

Since all eigenvalues have negative real parts, the closed-loop system is stable. In fact by 

taking 7  to be a very large number, the state-feedback 'H00 problem reduces to a LQR 

control problem [80, 79]. As long as the Riccati equation in Eqn. C.20 has a positive 

definite solution P, the closed-loop system is stable.

Since the real parts of the eigenvalues of the Hamiltonian matrix in Eqn. C.17 are away 

from the imaginary axis, 7  can be reduced. For this purpose, an optimisation search loop 

was constructed. At every iteration, 7  is reduced by a factor of 8  from its previous value,

i.e. 7 (A;) = 7 (k — 1 ) / 8  where k is the loop iteration index and 8  = 2 . When 7  approaches 

its optimal value (i.e. it does not change so rapidly), the division factor is increased, i.e. 

8  = 8 x 2 .  Within this loop, the Riccati equation in Eqn. C.20 is solved for P and the 

feedback signal u is constructed. After 22 iterations, 7  saturated to 7  = 1.657 with the 

following optimal controller

u = K x  = [1.0333, 0.0160, 0.0002, -5.8819] x  (6.39)

With this controller the eigenvalues of the closed-loop Maglev system in Eqn. C.31 are

eig{ACL, A =  1.657) =  {-356.37, -130.05, -66.51 +  j64.19, -66.51 -  j64.19}
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Since 7  saturated to its minimal value and P  > 0, the closed-loop system is stable and the 

state-feedback control problem is solved with K  in Eqn. 6.39. This controller guaran

tees th a t the sensitivity function S  and the input-sensitivity function K S  are bounded by 

VF(s) and W c. This completes the design loop in the algorithm.

5 . M atlab simulation results: Since the state-feedback controller is not suitable for practical 

implementation, the validation of the result is performed in simulation. For this purpose, 

the following closed-loop transfer functions are constructed using the controller in Eqn. 6.39 

and the closed-loop matrices in Eqn. C.31:

(a) Tgw between the disturbance input w = [d, r]T and the penalty output q

Qi ' WCK S  '

. .
W S

w =  ( C 1Cl (sI  -  A c r f - ' B ^ w
1 1 7 . 6 3 7 3 ( 5 + 3 5 6 . 6 )  ( 5 + 6 5 . 2 8 )  ( 5 — 5 5 . 1 8 )  

( s + 3 5 6 . 4 ) ( s + 1 3 0 . 1 ) ( s 2  +  1 3 3 s + 8 5 4 4 )  
— 4 0 ( s + 3 7 3 ) ( s 2 + 2 4 6 . 4 5 + 2 . 7 6 6 e 4 )  

( 5 + 3 5 6 . 4 ) ( s + 1 3 0 . 1  ) ( 5 2  + 1 3 3 5 + 8 5 4 4 )

' d '
r

(b) The sensitivity function S  between the input w and the output y

(s + 373) (s +  0.04) (s2 +  246.4s +  2.766e4)
y = S w  — (C2 {sl — A c t )  1 Bi  +  £ + )  w —

(s +  356.4) (s +  130.1)(s2 +  133s +  8544)

(c) The complementary function T  between the disturbance input w and the air-gap clear 

ance 2 =  [Cg, 0]

395.59 x 106

- d
r

z = T w  = (CG(sI  -  A Cl ) ^i) w =
—d

r(s +  356.4) (s +  130.1)(s2 +  133s +  8544)

W ithout changing the generality of the results in the next series of analysis, r  is assumed

to be zero (i.e. w = d).

The mixed sensitivity problem in Eqn. 6.18 has two goals: (1) to shape the sensitivity

function S ( s ) using the performance weight W (s) by selecting the feedback controller u =

K x , and (2) to limit the the magnitude of the control action by defining Wc and then
W Sminimising W CK S  by selecting K.  These goals are achieved when
WrK S

< 7 , 7  «  1.

Fig. 6.7 shows the magnitude plots of W S  and W CK S .  Since these are approximately below 

OdB (i.e. the infinity norms are below 7  «  1), K  in Eqn. 6.39 solves the Tioo optimisation 

problem. To check this further, S(s)  and Eqn. 6.36 are used to construct VF(s)5(s). The 

magnitude plots of S(s)  and VF(s) are shown in Fig. 6.8 (top). The magnitude plot of W S  

is shown in Fig. 6.8 (bottom). |5(jo;)| remains bounded by |W ~ l {ju)\ and hence \WS\  

is «  0 dB for 0 < uj < 10 Hz and |W S| < 0 dB for lj > 10 Hz (Fig. 6.8 (bottom)). 

Furthermore, the magnitude plot of \S(jco)| crosses the -3 dB point at « 5  Hz and hence 

the closed-loop bandwidth is expected to be >  15 Hz. The peak of the sensitivity function 

is ||S ( j u ) ||oo «  3.33 dB and hence the closed-loop Maglev system is expected to have a

106



good damping to step responses and also good overshoot and stability margins. Although 

does not limit the gain of S(juj) at high frequency, this gain approaches unity from 

the inherent properties of the open-loop system at high frequencies, as suggested earlier.

To examine the suspension characteristics in the time-domain, a step response in the 

desired airgap r  is generated using the complimentary function T(s).  The simulation result 

is shown in Fig. 6.9. As suggested from the frequency analysis, the closed-loop transfer 

function has a good damping ratio and a settling time of approximately 100 ms.

I WS\----

-20

- 2 5

- 3 0

Frequency (Hz)

Figure 6.7: Magnitude plot of the performance weights W CK S  and W S .

To examine the effect of Wc on the controller design, four more experiments were carried 

out. For these, TT(s) is kept unchanged and W  is reduced from 0.5 to [0.2, 0.1, 0.05]. These 

values correspond to maximum gains of [13.9, 20 and 26] dB for K S .  Higher gains provide 

more aggressive control actions and hence an increase in the closed-loop bandwidth. This 

observation can be seen from the corresponding simulation results in Fig. 6.10. The effect 

of W (s ) on the control-system design is studied in Section 6.5.

In conclusion, the new Hoo state-feedback controller provides better damping, settling 

time and bandwidth characteristics compared to the classical state-feedback controller (de

signed with pole-placement techniques). The designer has a systematic and well defined 

control over the closed-loop characteristics via the performance weights PF(s) and Wc. This 

controller, however, is impractical since a new state-variable is required from W  (s ) for the
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Figure 6 .8 : Top: Bode plot of the sensitivity function and the corresponding performance 
weight for this function. Bottom: Magnitude plot of W S .  Optimal Hoo controller guaran
tees tha t 15 (jo;)| is bounded from above by \W ~l (juj)\ and hence |W 5 | < 1

1.8 -

p o l e - p l a c e m e n t
s t a t e - f e e d b a c k

a .

0.8-
Hoo s t a t e - f e e d b a c k

0.6

0.4

0.2

0.1 0.150.05
Time (sec)

Figure 6.9: Step response of the closed-loop Maglev system with: (a) the new state-feedback 
Hoc controller in Eqn. 6.39 and (b) the old state-feedback controller (kp = 2800, kv = 
18; ka = 0.4)
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Figure 6.10: Step response of the closed-loop Maglev system with the state-feedback %OQ 
controller in Eqn. 6.39 for four different values for the performance weight W c.

construction of the feedback. Despite this fact, all tools developed here are used in the 

construction of the output-feedback controller which has an observer-based structure. Al

though the derivation procedure for the rH00 controller is more involved compared to the 

classical pole-placement design, it will be shown tha t the design tools developed here are 

directly applicable to multi-magnet control problems (Chapter 8). In addition, the deriva

tion steps can be extended with robustness analysis to provide a tool for designing robust 

controllers for multi-magnet systems. These applications are discussed in the following 

chapters. The exposition continuous with the derivation of the output-feedback controller.

6.5 D eriving output-feedback controllers for Ma
glev

In the construction of the output-feedback compensator, only the position output is used for 

feedback stabilisation (Fig 6.11). This is considered as novel for this thesis since all previous 

approaches use state-feedback principles. This chapter demonstrates both in simulation 

and experiment tha t the output-feedback compensator provides comparable to the state- 

feedback controller suspension characteristics. Furthermore since only one output is used, 

a reduction in cost and a potential for other applications, e.g. magnetic bearings which
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employ only a position version, is provided.

To derive the output-feedback 'HOQ controller, the following mixed sensitivity problem 

(derived in Eqn. 6.18) has to be solved

mm
K

W { I  + G K )~ l 
W CK ( I  +  G K )~ l H alloo (6.40)

where the feedback controller K  uses y (Fig 6.3), i.e.

u = K y (6.41)

Despite the fact that the solution to this problem is readily available (for example Mat

lab), for reasons outlined in Section 6.4 a new algorithm is developed for Maglev control. 

This uses Lagrange multipliers and differential game theories and is fully presented in 

Appendix C.2 [82, 83, 84, 89, 86 , 90, 87]. The algorithm for deriving output-feedback 

Hoo controllers is summarised in Fig. 6.12 (Appendix C.2). For validation purposes, this 

algorithm is compared with Matlab in Section 6.5.3.

C(.v)

W

c w

K{s)

/

state-feedback observer

Figure 6.11: Output-feedback 'H00 control.

From a control point of view, the 'Hqq output feedback controller has an observer- 

based structure and consists of an % 00 state-estim ator and the state-feedback /HQG con

troller [37] (Fig. 6.11). In contrast to the classical optimal control (for example the LQR 

control [79, 91, 88] which uses a Kalman filter and a state-feedback controller) the new 'H00 

design does not satisfy the separation properties. This requires the construction of a single 

design algorithm tha t derives the state-feedback controller (Kc)  and the observer (Ka  and

110



K b ) simultaneously within a single design loop (Fig. 6.12). Details on the mathematical 

developments are given in Section C.2.5. To solve the optimisation problem in Eqn. 6.40, 

the mathematical derivations in Appendix C.2 establish that two Riccati equations have 

to be solved: one for the state-feedback controller and another for the %oo observer. The 

sequence in the derivation steps is illustrated in Fig. 6.12. This is an optimisation loop 

for searching for the optimal 7  which minimises the oo-norm in Eqn. 6.40. As HT^Hoo 

approaches its minimum, the output-feedback controller approaches the optimal controller. 

7  is embedded in its coefficients via P  and Qm- For the numerical work, a Matlab program 

is designed to follow the algorithm for deriving output-feedback controllers in Fig. 6.12. 

Illustrative examples for Maglev using this design tool are given below.

6.5.1 Closed-loop requirements

The closed-loop design requirements are fully derived in Section 6.4.1 (A and B).

6.5.2 Matlab design example

1. Input parameters for the design are: the open-loop Maglev model (Eqn. 6.35) and the 

performance weights IU(s) and Wc (Eqn. 6.36 and 6.37). The overall model P{s)  (Fig. 6.11) 

is derived in Eqn. 6.38 to get A, B\, B 2, Ci, C2, D n , D\2, D 21 and D22.

2 . Using the initial value 7start — 100, the Riccati equation in Eqn. C.20 is solved for P

6.2790 x 10~4 8.6400 x 10~6 7.4010 x 10“ 8 -4 .1535  x 10"3
8.6401 x 10~6 1.3269 x 10~7 1.2362 x 10~9 -4 .9673  x 10~5
7.4010 x 10~8 1.2362 x 10~9 1.4786 x 10“ n  -2 .9701  x 10“ 7
-4 .1535  x 10~3 -4 .9672  x 10"5 -2 .9701 x lO-7  3.4754 x 10“ 2

The eigenvalues of this m atrix are computed and since they are all positive (P  is positively 

definite), this m atrix can be used in the construction of the modified estimator matrices 

(Eqn. C.56)

0

A m = A + j ^ B 1B ( P

-3 .6667  x 102 1.0000 0 0
8.6402 x 10~12 0 l.OOOOe +  000 0
1.2844 x 106 0 0 0
-4 .0001  x 101 -1 .5895  x 10“5 -9 .5044  x 10~8 -2 .8879  x 10“ 2

CiM = (Dj2D u )~l ( b ^ P  +  Df2C i) =  [-4.98 x 10" 1, -8 .31 x 10" 3, -9 .94  x 10~5, 1.997] 

C2M = C2 + i ~ 2D2lB j P  = [-1.0000, -3.9738 x 10~7, -2.3761 x 10“ 9, 2.7803 x 10~4]

3. Using the matrices above, the observer Ricatti equation (Eqn. C.58) is constructed and
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G(s), W(s), Wc (Section 6.4.3)

C o n s t r u c t  s t a t e - s p a c e  
m o d e l  ( E q n .  6 . 2 8 )

'yatari
(Eqn. 6.38)

No
P  > 0 ?

Yes

increase 7

c o n s t r u c t  t h e  e s t i m a t o r  m a t r i c e s
Am = J4 + 7", « |t f / 'P
C\m = ( o ’n Dn )- ' ( B lP  + U'l,C,)
c2M =c2 + 7-Jn3,«?'P

R i c c a t i  e q u a t i o n  ( E q n .  C . 5 8 ,  V 2 = (  1 -*-Z>21̂ 21) '
(A m -  B ,V iU lC iM)QM + QM(A -  Bt V ,D lC 1M)T+
Qm (y  -7C'!MC ,M - C[MC2M + V2V lC 2M) Qm + «, V,tf[ = 0
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Figure 6.12: Sequence of operations used in the derivation of the output-feedback 'H00 

controller. The full derivation steps are given in Appendix C.2.
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solved to get

Q m =

3.3543 x 102 
1.4150 x 105 
7.8077 x 106 
-6.9255 x 101

1.4150 x 105 7.8077 x 106
5.9690 x 107 3.2937 x 109
3.2937 x 109 1.8174 x 1011
-2.9215 x 104 -1.6120 x 106

-6.9255 x 101 
-2.9215 x 104 
-1.6120 x 106 
-1.5323 x 103

The eigenvalues of Q m are positive and hence the m atrix is positively definite.

4. P  and Q m above together with the open-loop model are used in Eqn. C.60 to derive 

the output-feedback controller

K a =

K b =

-4.7851 x 102 9.9996 x HT1 
-4.7182 x 104 -1.8749 x 1(T2 
-2.1560 x 106 -1.3980 x 104 
9.6158 3.8210 x 1(T6

-1.1184 x 102 
-4.7181 x 104 
-2.6034 x 106 
4.9615 x 101

-2.6575 x 10“ 
9.9989 x 10- 1 
-1.6722 x 102 
2.2847 x 1(T8

3.1096 x 10“ 2 
1.3118 x 101 
3.3595 x 106 
-4.2673 x 1(T2

K c  =  [4.9777 x H T 1, 8.3141 x 10“3, 9.9446 x 1(T5, -1.9976]

In a transfer-function form the controller is given below

—805.9465(s +  356.6)(s +  65.28)(s +  4.331)
K(s)  = K c (s l  -  K A)~lK B =

(s +  396.7)(s -  1.859)(s2 +  250.9s +  4.287 x 104)

' d ■
r

5. To assess the performance characteristics of this controller, the closed-loop system in 

Eqn. C.62 is constructed and used to derive the transfer function from w to q

qi 1 =  [ W cK S  1 =  [ T^ ( 1»1) T^ ( ^ 2) 
q2 J [ W S  J [ T gw(2 , l )  Tqw( 2 , 2)

where

r p  - I \  _  _ r p  fey  i \  _  _ _ _ _ _ _ _ _ 4 0 2 . 9 7 3 2 ( s - 5 5 . 1 8 ) ( s + 6 5 . 2 8 ) 2 ( a + 3 5 6 . 6 ) 2 ( 5 + 4 . 3 3 1 ) _ _ _ _ _ _ _
—  J - q w y t i L )  ~  ( s + 3 5 6 . 6 ) ( s + 3 5 6 . 6 ) ( < ; + 8 9 . 8 ) ( s + 6 5 . 2 8 ) ( s + 5 6 . 4 6 ) ( s 2 + 8 7 . 8 1 s + 4 2 1 2 )

r p  _  _ r p  /cy cy\ _  - 4 0 ( s + 3 5 6 . 6 ) ( s + 3 9 6 . 7 ) ( s + 6 5 . 2 8 ) ( a - 5 5 . 1 8 ) ( a - 1 . 8 5 9 ) ( s 2 + 2 5 0 . 9 s + 4 . 2 8 7 e 0 0 4 )
—  J - q w K ^ ^ )  ~  ( s + 0 . 0 4 ) ( s + 5 6 . 4 6 ) ( s + 6 5 . 2 8 ) ( s + 8 9 . 8 ) ( s + 3 5 6 . 6 ) ( s + 3 5 6 . 6 ) ( s 2 + 8 7 . 8 1 s + 4 2 1 2 )

The oo-norm of HT^Hoo =  324.01. Since this value is greater than one, this controller does 

not satisfy the closed-loop requirements. The phase margin of the closed-loop system is 11 

degrees and the gain margin is below -2.1 dB (the design requirement is PM >40 degrees 

and G M >6dB).

6 . To derive the optimal controller, an optimisation loop is constructed to search for the 

optimal 7  tha t minimises HT^Hoo- This algorithm works as follows. HT^Hoo, is compared 

with the norm from the previous iteration for 7  (k — 1) to produce the error in the norm
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Figure 6.13: Convergence of HT^H^ during the Woo output-feedback design procedure.

(norm(k ) — norrn(k — 1)). If this error is below a certain threshold (e.g. 1 x 10~5),

the algorithms stops and the 1-Loo controller from this iteration is considered to be the 

optimal. If, however, the error is higher than this threshold, 7  is reduced by 7 (k) — 

7 (k — 1) — 7 (k — 1 ) / 8  where S is a division factor set initially to S = 2. When during the 

search procedure the error in the norm changes its sign, the S factor is increased by four and 

its sign is alternated, i.e. 5 = —5 x 4. W ith the new value for 7 (k), the algorithm continues 

from Step 2. This is an optimisation loop tha t searches for the optimal 7  tha t minimises 

11 Tqw I loo- The response of HT^Hoo versus 7  is shown in Fig. 6.13 (a) and the convergence 

of HT^Iloo during the controller optimisation procedure is shown in Fig. 6.13 (b). After 23 

iterations for 7 , HT^H^ saturates to +6.62 dB for 7  =  25.2. The corresponding output- 

feedback Hoo controller is given below

—938.7875(s +  65.28)(s +  356.6)(s +  6.801)
“  (s +  403.6)(s +  0.03934)(s2 +  266.7s +  4.795 x 104) '  ' '

The complimentary function from the reference airgap r to the airgap output, T ( s )  = 

G K (  1 +  G K )~ l with K  above is given below

_  1577675559.0522 x (s +  356.6){ s  +  65.28){ s  +  6.796)
^  -  (s +  356.6) (s +  356.5) (s +  94.28) (s +  74.88) (s +  65.28) (s2 +  89.31s +  4244)
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The corresponded sensitivity function from disturbance input to system’s output, S(s) = 

(1 +  G K ) ~ l is also derived

_  (s +  403.5)(s +  356.6)(.9 +  65.28)(s -  55.18)(s +  0.03621)(s2 +  266.6s +  4.793 x 104) 
-  (s +  356.6)(s +  356.5)(s +  94.28)(s +  74.88)(s +  65.28)(s2 +  89.31s +  4244)

The poles of the closed-loop system are negative and the largest is located at -356.5 rad/s.

This suggests tha t the desired closed-loop bandwidth of 15 Hz has been met. The magnitude

response of S(s)  is shown in Fig. 6.14. The maximum gain is about +12 dB. This value

is considered as rather high [88] and it suggests that the closed-loop system has a small

phase margin and poor performance characteristics. A simulation step response in the

airgap is shown in Fig. 6.18 (plot-1). The phase margin with K  in Eqn. 6.42 is 12.774

degrees (computed with Matlab). This is rather low and justifies the poor performance

characteristics of the system. 12 dB infinity norm is equal to a gain of approximately four

and hence step responses in the airgap disturbance or in the position demand would be

multiplied by a factor of four; this effect is shown in Fig. 6.18. From Fig. 6.14, the closed-

loop bandwidth was calculated to be 166.83 rad /s  or 26.55 Hz. This value is consistent with

the design requirements. In addition to |S (s)|, Fig. 6.14 shows four more responses: (a)

the performance bound |VF_1(s)|, (b) the optimisation product |PFSj, (c) the performance

bound |WC_1|, and (d) the optimisation product \WCK S\ .  |FF5| and \WCK S \  construct the

Woo design criteria for the mixed sensitivity problem as per Eqn. 6.2.4; the design goal is to 
W S

< 1 by deriving K.  Since both \WS\  and \WCK S \  are abovekeep ||T(q w  11 oo WrKS
OO

0 dB, K  in Eqn. 6.42 is a sub-optimal solution to the problem. Although the performance 

weights are kept unchanged as in the state-feedback design, the optimisation procedure 

here saturates with higher 7  values (6.62 dB vs. 1.66 dB). Empirical studies with the 

design algorithms suggest that the output-feedback design requires more effort since two 

Riccati equations have to be solved simultaneously. This completes one cycle of design.

The above results suggest that the bound on the control signal Wc is rather low. This 

limits the control reaction of the system and results in poor outputs from the Woo optimi

sation procedure. To prove that Wc constrains the optimisation result, in the next study 

W c is kept unchanged (Wc — 0.5) but the performance weight on the sensitivity function 

is changed to
, x 0.66667(5 +  60) ,

— c + U  (M 3)

to bound the sensitivity function to +3.52 dB from above at u  > 60 rad /s  (see \W~l \ in 

Fig. 6.15). W ith this new weight, the optimisation procedure saturates with HT^H^ =
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Figure 6.14: Closed-loop transfer functions and their performance weights for K{s)  in 
Eqn. 6.42 and Maglev model as per Eqn. 6.35.

6.9965 and the following feedback controller

v _  —1010.4289(s +  356.6)(s +  65.28)(s +  6.319)
~~ (s +  406.9) (s +  0.039) (s2 +  272s +  5.078 x 104)

Since HT^Hoo =  6.9965 has remained almost unchanged, the result suggests tha t the new 

performance weight did not have any impact on the closed-loop system and the controller. 

The gains of the sensitivity and complimentary functions also remained unchanged and the 

phase margin was calculated to be 14.43 degrees. A set of frequency responses for this new 

controller is shown in Fig. 6.15.

The design cycles are repeated with different values for Wc and W\(s)  unchanged as 

per Eqn. 6.43. The following results were obtained.

•  For Wcl = 0.25 (=12.04 dB bound on K S ) ,  HT^Uoo was reduced to 4.9747 dB.

•  For W c2 = 0.1 (20 dB), HT^H^ was reduced to 3.5671 dB.

•  For W c3 =  0.075 (22.5 dB), HT^Uoo was reduced to 3.28 dB.

•  And finally for W c4 = 0.005 (46 dB), UT^Hoo was reduced to 2.1 dB.

The feedback Hoo controller for W cA =  0.005 and HT^H^ =  2.1 dB is given below

K  M  _  —33423.4256(s +  356.6)(s +  65.28)(s +  18.78)
'  “  (s + 811.9) (s +  0.03477) (s2 +  665.8s +  4.825 x 105) ' 6'44'
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Figure 6.15: Closed-loop transfer functions with K\.  IFi(s) is given in Eqn. 6.43 and 
Wc =  0.5 is unchanged.
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Figure 6.16: Closed-loop transfer functions with W(s)  in Eqn. 6.43 and Wc =  0.005 (46dB 
and hence the plot is outside the range in the figure).
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The frequency responses in Fig. 6.16 show that this controller achieves a significant reduc

tion in terms of peak of the sensitivity function. ||5||oo =  3.8 dB suggests good damping to 

step responses. The phase margin of the closed-loop system with K 2 is 41.1 degree and the 

closed-loop bandwidth has increased to 52.2 Hz. The correspondent magnitude responses 

of the complimentary and the sensitivity functions are shown in Fig. 6.17(bottom). The 

magnitude response of K 2 (s) (Eqn. 6.44) is shown in Fig. 6.17(top) and suggests that the

40

30

£

CO
T3

■10

-20

3■■3I- -30

-40
10° 310 ' 10' 10*10'

F r e q u e n c y  ( r a d / s e c )

Figure 6.17: Top: magnitude response of K 2 (s) in Eqn. 6.44. Bottom: complimentary and 
sensitivity functions for this controller.

controller has a lag action in the low-frequency range to reduce steady-state errors, lead 

action in the middle frequency range around the bandwidth to improve gain and phase 

margins, and filtering properties in the high-frequency range to attenuate noise. The zero 

steady-state error property is also shown in Fig. 6.17 (bottom) where: (a) the complimen

tary function has 0 dB gain at the low frequency range and hence provides good tracking, 

and (b) the sensitivity function has a low gain at the low frequency range and hence pro

vides good disturbance rejection. The figure also shows that the bandwidth of the system 

with this controller is Ub = 328 rad /s  (52 Hz). Although large bandwidth provides some 

good qualities, for the single-magnet system this value approaches the practical limit and 

the dynamic characteristics of the amplifiers and sensors in this range might have a con

siderable effect on the system. A simulated step response in the airgap with K 2 is shown 

in Fig. 6.18 (plot-2). As suggested from the above frequency-domain results, this new 

compensator provides considerably better suspension characteristics. The settling time
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is reduced to 100 milliseconds, and the overshoot and the oscillations are within typical 

Maglev design requirements.

103
3 . 5

2 . 5 K(s)

'<

0 . 5

0.1 0 . 1 50 . 0 5
Time (sec)

Figure 6.18: Simulated step responses with output-feedback controllers (AT(s) in Eqn. 6.42 
and K 2 (s) in Eqn. 6.44).

6.5.3 Assessment of the 1-Loo design

As indicated earlier (page 109), for validation purposes, a comparison is made between 

the 1-Loo design developed here and the algorithm provided by Matlab as a part of the 

fi-Analysis and Synthesis Toolbox [76, 37]. The step response in the reference airgap of 

the closed-loop system and the Bode plot of the controllers are used as a benchmark. In 

the next discussion, Algorithm I  refers to the algorithm developed here, and Algorithm II  

refers to the M atlab algorithm.

Using the performance weights in Eqn. 6.43 and Eqn. 6.37, Algorithm I I  has produced 

the following feedback controller

—2766251.9565(s +  356.6)(s +  65.28)(s +  17.37) 
matlab{s)  -  (s + 2.61 X 104)(s +  0.04)(s2 +  1577s +  1.193 x 106)

A simulated step response in the reference airgap from 3 mm to 4 mm with K 2 in Eqn. 6.44 

(Algorithm I) and K m a t l a b  above (Algorithm II) is shown in Fig. 6.19. Both controllers 

provide almost identical closed-loop bandwidth, settling time and overshot in the response.
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The damping is unchanged with slightly higher values for Km a t  l a b - The Bode plots of the 

controller are shown in Fig. 6.20. In the low-frequency range, the controllers are identical 

and provide integration effects for zero steady state error. In the mid-frequency range, 

both controllers have lead-lag characteristics to give the desired phase margin (40 degrees 

by design). Just after the bandwidth, Algorithm I starts decreasing in amplitude to provide 

high-frequency disturbance attenuation and low dissipation on the system. Algorithm II 

has all-pass characteristics from 102 to 103 Hz. Although this provides a slightly higher 

phase margin (50 degrees for Algorithm II), the high gain at high frequencies allows high- 

frequency disturbances to enter the system and hence more dissipation on the magnet. 

In conclusion, the 'H00 optimisation algorithm developed here compares closely with the 

M atlab algorithm and provide a convenient tool for Maglev control.
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Figure 6.19: Simulated step responses with A ^ s )  (Algorithm I) and K Ma t l a b{s) (Algo
rithm  II).

To conclude, the algorithm for deriving Koo controllers is able to solve the controller- 

design task and the closed-loop system closely follows the design requirements. W  and 

Wc give a significant control over the suspension characteristics and by varying these, the 

designer can achieve desired suspension qualities and closed-loop bandwidth and phase 

margins. These design parameters can be derived intuitively by accessing the disturbance- 

attenuation requirements of the closed-loop system. Compared to the state-feedback con-
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Figure 6.20: Bode plot of /G fs) (Algorithm I) and K m a t l a b ( s )  (Algorithm II).

troller derived with pole-placement techniques (Fig. 6.9), the 'H00 controller provides a 

faster step response with less oscillations. A considerable advantage is considered also the 

fact tha t only one output is used for stabilisation and hence a reduction in cost can be 

achieved. The experimental studies with the new compensator are presented below.

6.6 Experim ental studies

The experimental hardware (one magnet +  DSP) discussed in Chapter 5 has been used 

for the Tioo controller implementation. For the digital control work, a 32 bit floating point 

DSP processor and 16 Mbits of external memory for storing experimental results are pro

vided. The sampling frequency is fixed at 1 kHz to be compatible with the bandwidth 

characteristics of the closed-loop system (20 times larger that the closed-loop bandwidth) 

and to reduce sampling effects. Although a much higher sampling frequency was used for 

previous Maglev designs, analysis has shown th a t 1 kHz provides a good compromise for 

the operational stability and available computational slot. Eight anti-aliasing analogue 

filters are integrated on the board with cut-off frequencies of 25 kHz(=half the sampling 

frequency of the ADC per channel). The control algorithms are written in C language for 

the SHARC family of DSPs. The continuous controllers designed in M atlab (Eqn. 6.44)
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are converted to their digital equivalent using the Tustin algorithm. Since the sampling 

frequency (1 kHz) is considerably higher than the controller’s bandwidth, the discretisation 

does not pose any phase delays. The l-i00 design environment in Section 6.5.2 autom ati

cally stores the controller’s coefficients in a file. Before each DSP experiment, this file is 

transfered automatically to the DSP memory to update the controller. The DSP hardware 

integrates facilities for real-time communication with M atlab/Simulink (Section 5.4, 84). 

The experimental data is transferred from the DSP memory to M atlab without disturbing 

the control loop. This is used to derive the experimental plots in this chapter.

For validation purposes, the experimental results are compared with similar simulation 

results derived from the Simulink simulator in Fig. 6 .21 . There are two sources of distur

bance entering this model: (a) disturbance due to changes in the desired reference airgap r, 

and (b) disturbances due to measurement noise d. For the purpose of the analysis, the air- 

gap and the control outputs (y and u) are stored in Matlab at the end of the simulation cycle 

to be compared with similar experimental responses. For the validation, the controller in 

the Simulink model is identical to the controller implemented on the experimental system.

To assess the performance of the output-feedback controller derived in the previous 

section, two sets of experiments in terms of comparison between simulation and experiment 

were performed. The output-feedback controller K(s)  in Eqn. 6.42 derived with W(s)  

and W c (Eqns. 6.36 and 6.37) is compared with the output-feedback controller K 2 (s) in 

Eqn. 6.44 derived with VFi(s) (Eqn. 6.43) and VFc4 =  0.005. A step change in the reference 

position was applied and the corresponding simulation and experimental responses are 

shown in Fig. 6.22 for K(s)  and Fig. 6.23 for K 2 (s), respectively. The reference airgap 

was changed from 4 x 10-3m to 3 x 10_3m at t=0.5 sec. and then from 3 x 10_3m back 

to 4 x 10_3m at t = l  sec. The results in the figure suggest a good comparison between 

theory and experiment. The large gain of the sensitivity function with K(s)  in Eqn. 6.42 

leads to large overshoots in the response. This causes saturation in the position sensor 

(Fig. 6.22) and the latter needs to recover which results in a modified transient response. 

The axes in Fig. 6.22 and Fig. 6.23 are deliberately kept unchanged to show the significant 

improvement in terms of stability and robustness offered by K 2 (s). As suggested earlier, 

this controller offers: (a) small peak in |5 (s)| and hence good suspension damping, (b) 52.2 

Hz closed-loop bandwidth and hence a settling time of 0.1 sec. For a close comparison, 

Fig. 6.24 (airgap output) and Fig. 6.25 (control output) present the response in Fig. 6.23 

in a different scale. These results show the good comparison between the theoretical model
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Figure 6 .22 : Output-feedback % 00 control: simulation and experimental step responses in 
the reference airgap with K ( s ) in Eqn. 6.42.
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Figure 6.23: Output-feedback 'H^ control: simulation and experimental responses in the 
reference airgap with K 2 {s) in Eqn. 6.44.
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and the experimental result.

For a further assessment of the controller, the sensitivity and the complimentary func

tions of the closed-loop system are derived experimentally for K 2 in Eqn. 6.44. For the 

analysis, the DSP software is modified such that a sine-wave disturbances is internally gen

erated in the DSP software and added to the control signal. Varying the frequency of this 

signal and collecting data from: (a) signal before the additional identification source, and

(b) control signal after the injected sine-wave source, allow the experimental derivation of 

the frequency response of the complimentary and the sensitivity functions. For this anal-

eki>erimential response j

-10 sintiulatibn tesjpdnte j i
-20■o
- 3 0

O)
- 4 0

- 5 0

- 6 0

- 7 0

- 8 0

.110
F req .rad /s

Figure 6.26: Simulation and experimental magnitude plot of the complimentary function 
of the closed-loop system with the feedback controller in Eqn. 6.44.

ysis, the chirp sine-wave source was varied from 0 Hz to 200 Hz for a period of 50 seconds. 

The input and the corresponding output signals: (a) before the identification sine-wave 

signal and (b) after the identification signal were collected and stored in the DSP memory. 

At the end of the experiment, the data was transfered to Matlab. For the frequency-domain 

assessment, a M atlab program was built for Dynamic Signal Analysis (DSA). This tool per

forms Fourier transformation over the input and the output data to produce the frequency 

responses in Figs. 6.26 for the complimentary function and in Fig. 6.27 for the sensitivity 

function.

The experimental responses in Figs. 6.26 and Fig. 6.27 show the good comparison 

between experiment and theory, especially in the low-frequency range {u < 100 rad/s).
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Figure 6.27: Simulation and experimental magnitude plot of the sensitivity function of the 
closed-loop system with the feedback controller in Eqn. 6.44.

W ithin the middle frequency range, 100 < u  < 1000 rad/s, the experimental responses 

have slightly larger gains than the theoretical response and hence the theoretical model 

used for the syntheses differs from the experimental. This is believed to be due to the 

dynamic characteristics of the remaining dynamical systems in the loop (the position sensor 

and the power amplifier are excluded from the overall model (j(s)). Overall, there-exists a 

good comparison between theory and experiment and the 'H(X> algorithms developed in this 

chapter provide a convenient tool for Maglev design. The suspension characteristics are well 

within the Maglev system requirements and the responses compare with responses from 

classical design techniques. The designer has a control over the closed-loop requirements 

by varying the performance weights W(s)  and Wc. The design tool is deterministic and 

the results are systematic. Although the design procedure is more involved than a simple 

pole-placement, it will be shown that the %<*, design tool provides a basis for multi-magnet 

control and for robust analysis and design. This is discussed in the following chapters.

For the analysis of the suspension properties of the system in attenuating force distur

bance, only simulation studies are used due to the close-comparison between theoretical 

and experimental results as presented above. The response of the system’s airgap in adding 

100 N force disturbance to the suspension system at t = 1 sec is shown in Fig. 6.28. The 

suspension remains stable, with overshoot in the response approximately 1 mm. Although

127



the size of the overshot in the airgap position to this disturbance is two times larger than 

the response with the adaptive model-reference controller (Fig. 4.6:bottom), the settling 

time has been reduced from 3 sec. to 0.15 sec. resulting in low-levels of the suspension 

acceleration (< 8m / s 2). In addition, the non-adaptive nature of the compensator provides 

a basis for deriving stability and robustness conditions. This is described in the following 

chapter.

X K T 3

4 . 5

3  3 . 5  -

2 . 5

1 . 4 51 . 2 5  
Time [sec]

1 . 3 51 . 0 5 1 . 1 5

Figure 6.28: Output-feedback Hoo control: attenuating force disturbance of 100 N with 
K 2( s ) in Eqn. 6.44.

6.7 Concluding com m ents

This chapter deals with the synthesis of output-feedback controllers for Maglev using Hoo 

methods. This approach is considered as novel for this thesis since all previous approaches 

use state-feedback principles. It has been established through a series of simulation and 

experimental studies that the new controllers have characteristics which are comparable 

with previous designs. The suspension stiffness and the damping qualities are well within 

the Maglev system requirements. Furthermore since only one output is used for control, 

the new designs provides reduction in cost and provisions for dealing with faults in sensors 

for full-scale application.
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To gain a better understanding for the Hoo theory, the solution to the controller- 

optimisation problem has been derived. This is fully described in Appendix C .l. Despite 

the fundamental differences in the derivation steps which are based on Lagrange multi

pliers and differential game theories, the mathematical developments produce two Riccati 

equations which are identical to the well established solution in [37]. All controllers in this 

chapter are derived from this algorithm. For validation purposes a comparison is made 

to show th a t the controllers derived here are identical to the controllers derived from the 

M atlab algorithm.

The performance requirements of the Hoo Maglev controller are specified by two per

formance weights. A relationship has been constructed between typical suspension require

ments and the selection of these performance weights. It has been established through a 

series of designs that the Hoo control environment offers convenient tools for systematic 

design of Maglev controllers with well defined suspension characteristics.

So far the open-loop Maglev model used for the controller design has been considered as 

ideal and there is no provision for dealing with uncertainties in its modelling characteristics. 

Although the experimental results show that there exists a close relationship between theory 

and experiment, the differences between the model and the real system might have a 

considerable effect for full-scale applications. In addition due to the nonlinear character 

of the Maglev system, changes in the operating conditions introduce additional modelling 

errors. It is im portant from a design point of view to be able to measure the robust 

properties of the closed-loop system. This analysis is presented in the following chapter.
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Chapter 7 

Robust analysis and control for 
Maglev systems

7.1 Problem  definition

In the derivation of the Hoo theory (Chapter 6 ), and the state-feedback designs in Chap

ters 2 to 4, the linear Maglev model is taken as a very accurate representation of the 

experimental system. In this respect, while dealing with the disturbance inputs, there 

are no provisions for dealing with uncertainties in the model during the controller-design 

process. Although the simulation and the experimental results show a good agreement be

tween the theory and the experiment, uncertainty in the model might have a considerable 

effect on the closed-loop response for full-scale Maglev applications and hence it has to 

be included in the design. Classical feedback system-design deals with plant uncertainty 

by prescribing stability margins (phase and gain margins). This however is a crude model 

since the phase lag of the system may be underestimated by as much as 40° leading to 

instability [88]. Description of uncertainty via phase and gain margins does not trace the 

origin of the perturbations.

To define the robust properties of the Maglev system, the generalised control configu

ration in Chapter 6 (page 93) is redrawn in Fig. 7.1. G(s) is substituted with each member 

of (5(s); G(s) represents a set of plants with parametric uncertainties and unmodelled dy

namics. The following two terms are used to define the robust properties of this system [88]

• robust stability: a closed-loop system is referred as a robust stable when it remains 

stable for all models in the set G(s)

•  robust performance: a closed-loop system is said to have robust performance prop

erties when the performance characteristics of the system (i.e. overshoot, closed-loop 

bandwidth, phase-margins) are satisfied for all members in the set G(s)
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W(s)

Figure 7.1: Block diagram of the uncertain closed-loop system. G(s)  represents a set of 
models constructed for different combination in the parameters and unmodelled dynamics.

An intuitive definition of these two terms can be derived using Fig. 7.2. K(jcj)G(juj)  is the 

Nyquist plot of the system and K(ju^)G(jc j*) defines the response at a chosen frequency a;*. 

Uncertainty in the model G(juj) is defined with a circle (plot-1 with radius u^fju;*)) around 

the nominal Nyquist plot. G(ju;*) represents the worst plant in terms of uncertainty. Gener

ally, the size of the uncertainty is a function of the frequency and this is specified by waU^j).  

The distance from K(ju)^)G(juj*) to the critical point — 1+jO is equal to |1 — K(ju)+)G(ju)*)\ 

and for robust stability, it is required tha t |1 — K(ju)+)G(ju*)\ > \K(ju}*)wA(ju*)\. In 

words, the circle marked as (1) in the figure should be away from the critical point and at 

most be tangential to it on the boundary condition for robust stability. For robust perfor

mance, a new circle is added (2) which defines the performance characteristics of the system. 

W(jbj)  is the performance weight used in the /H00 design definition and the condition for 

robust performance becomes |1 — K(juj*)G{juj*)\ > \K(ju*)wA{jw*)\ +  \W(ju*)\.

The application of this method for checking robustness is restricted to single-input- 

output systems. To extend the results to the multivariable case, this chapter performs three 

tasks. The origins of the uncertainty in the Maglev system are identified and modelled 

(Section 7.2). These are then used to develop a tool for robust analysis of closed-loop 

Maglev systems when the controller is already known (Section 7.3) to provide a systematic 

condition for determining how far the circles are from the critical point. A mechanism is 

then derived for the design of robust 'H00 controllers (Section 7.5).
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Figure 7.2: Definition of robustness using the Nyquist plot.

7.2 Maglev model with uncertainty, G(s)
7.2.1 Sources o f uncertainty in the M aglev m odel

The uncertainty in the Maglev model is contributed by: (1) variations in the parameters in 

the model caused by changes in the working conditions; (2) estimated numerical values for 

the parameters in the model, and (3) unmodelled dynamics of sensors and power-amplifiers.

The open-loop Maglev model is a linearised approximation of the nonlinear system 

(Chapter 2) [1]. Two of the parameters ki and kz are nonlinear functions of the operating

current i0 and operating airgap z0 (ki = and kz = H'oIT A^ ) .  Variations in (i0 , z0)4 z0 4 z0

due to changes in the operating air-gap and disturbance forces cause variations in ki and kz. 

The open-loop model thus changes. For typical operating conditions (z0, io) =  (4mm, 3A),  

±25% variation in the operating airgap and current leads to «  ±30% variation in ki and

kz.

The mass of the system m depends on the suspended load. The nominal mass is equal 

to the mass of the magnet, the chassis and the supporting magnet brackets. Since Maglev 

systems are designed to carry loads, the suspended mass (nominal mass plus load mass) 

can vary as much as ± 200% from the nominal mass.

The resistance of the winding R  and the inductance of the winding L  are calculated 

from the physical parameters of the m agnet’s wire. To account for the approximation in 

these calculations, the values for R  and L q are assumed to vary as much as ±30% from the
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nominal values.

Uncertainty due to unmodelled dynamics is contributed by the dynamics of the power- 

amplifier and the sensors. These have been chosen to have a considerably larger bandwidth 

compared to the closed-loop bandwidth (1.5 kHz for the sensors and 44 kHz for the power 

amplifier). Therefore, each sensor has the characteristics of a gain over the frequency of 

interest (up to 150Hz «  5 times the closed-loop bandwidth). To simplify the analysis, 

variations in this gain are represented by the uncertainty in the resistance R  and the 

inductance L.

Based on the above, five parameters in the Maglev are considered as uncertain, ki, kz, R  

and L  are assumed to vary by ±30% from the nominal values while the suspended mass is 

assumed to vary by up to ±200% from the nominal mass. Although for the laboratory-scale 

experiments these variations are beyond the typical operating ranges, the analysis work 

presented here targets other Maglev aplications and aims to develop a reference design for 

robust control.

7.2.2 Perform ance o f the closed-loop M aglev system  in the pres
ence of uncertainties in the param eters

The performance of the closed-loop system degrades when the feedback controller is de

signed for the nominal model G(s) as this model changes due to uncertainty. To study this, 

a simulation experiment is carried out which uses the closed-loop configuration in Fig. 7.1. 

K(s )  is the Hoo compensator in Eqn. 6.44, page 116 (designed for the nominal Maglev 

model). G(s)  is constructed by varying the parameters of the nominal system using ranges 

of variations as identified in the previous section. L, R,  ki and kz are varied by ±30% 

from their nominal value in 3 discrete levels: -30%, 0% and ±30%; the suspended mass 

is varied by ± 200% from the nominal value in three discrete levels: 0% 100% 200% (the 

nominal values are given in Chapter 2). In total, 81 simulations are carried out. For each 

combination, the loop transfer function L(s) = K(s)G(s)  is constructed and the phase and 

gain margins are computed. Parameters for phase margins below 10° are logged into a file 

for analysis.

From the set of 81 combinations (ki and kz move up or down together), 11 transfer 

functions with phase margins below 10° are selected and listed in Table 7.1. The Nyquist 

plot for each of these is shown in Fig. 7.3. Although some transfer functions are excluded 

from the plot in Fig. 7.3 for cleaner plots, these are still taken into account in the subsequent 

design process. For comparison purposes, plot-1 in the figure represents the response of
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experiment
number

ki
[%]

kz
[%]

m
[%]

R
[%]

L
[%]

phase margin 
[ ° ]

1 0 0 0 0 0 39.46
2 -30 -30 100 30 0 9.04
3 -30 -30 100 30 30 7.99
4 -30 -30 200 0 -30 8.61
5 -30 -30 200 0 0 7.06
6 -30 -30 200 0 30 5.52
7 -30 -30 200 30 -30 -0.04
8 -30 -30 200 30 0 -0.86
9 -30 -30 200 30 30 -1.68
10 0 0 200 30 -30 8.80
11 0 0 200 30 0 7.79
12 0 0 200 30 30 6.77

Table 7.1: Variation in the Maglev parameters and corresponding phase margins. The 
nominal parameters are: ki =  N/A, kz =, R  = 1.1 Q, , L0 — 31 mH, m  = 1.8 kg

the nominal system (A'(s)G(s)). The results in Fig. 7.3 show the considerable effect of the 

variation of the parameters on the quality of the closed-loop system. From the set of 81 

combinations, 11 closed-loop systems have phase margins below 10° (the design requirement 

is 40 degrees as per Section 6.4.1) and hence highly degraded closed-loop performance. For 

three combinations (7,8 and 9), the closed-loop system is unstable.

In the linear Maglev model, the steady-state gain of the system is a function of ki , kz 

and R  (Eqn. 2.12, page 18). Reduction in the operating currents and airgaps result in 

reduced values for ki and kz. This reduction, combined with low values for the resistance 

R , reduces considerably the gain of the open-loop model within the cross-over frequency. 

This in turn  reduces the phase margin of the system. In addition, increasing the mass of 

the suspended system reduces the bandwidth of the open-loop model which additionally 

contributes to the reduction of the open-loop gain around the cross-over frequency (=21.47 

Hz for the nominal model) and consequently the phase margin. The results show that the 

inductance L  contributes to poles outside the closed-loop bandwidth and hence does not 

have as considerable an effect as the remaining parameters in the model.

7.2.3 M odelling param etric uncertainties

A straightforward and accurate representation of uncertainty in the model can be con

structed in the frequency domain by varying the uncertain parameters and computing the 

frequency response for each combination. This leads to a set of Nyquist responses (see 

Fig. 7.3). The uncertainty is modelled by a circle with a radius which depends on the
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Figure 7.3: Nyquist plot of the closed-loop system with variation in the uncertain param
eters as per Table 7.1.

difference between the nominal model and the uncertain model (Fig. 7.2). In this respect, 

two commonly used models for representing uncertainty are

additive model : G(s) = G(s) +  A ,4(5)

and

multiplicative model : G(s) = C?(s)[l +  A ^fs)]

where A ^(s) and A m(s)  represents the perturbation in the model [73, 88]. For numer

ical convenience, it is suitable to scale the perturbations to A a ( s )  =  w a ( s ) A ( s ) and 

A a / ( s )  =  w m { s ) A ( s ) ,  where w a ( s )  and % ( s )  are frequency-dependent weights chosen 

by the designer to represent the uncertainty and A (s) is a complex perturbation restricted 

to ||A(s)Hoc < 1. This leads to the representations in Fig. 7.4. G(s) is the nominal plant 

and hence known; The procedure of selecting wa and wm for the Maglev model is described 

below.

1. Additive uncertainty: Using Fig. 7.4 (a), the extended open-loop model G(s) is 

constructed below

G ( s ) = G ( s ) +  w a ( s ) A ( s ), IIA W IIeo^l (7.1)
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Figure 7.4: Representing uncertainty in the model using: (a) additive principle, and (b) 
multiplicative principle.

This provides a basis for selecting wA{s) such that |G(s) —G(s)\ < |um(s)| for all frequencies; 

w a Uco) thus becomes a frequency-dependent weight which captures uncertainty in the 

parameters and represents the worst difference between |G(s)| and |G (s)|. The procedure 

for selecting wA(jw) for the Maglev model is described below. The parametric uncertainties 

ki , kz, m, R, and L q are varied in three discrete levels (Section 7.2.2). Using Matlab, 81 

models are computed for each combination. These are marked as G(s)[fc], k = 1..81. The 

following difference is then computed

G[k\(ju) — G( ju)  , k = 1 to 81 —>■ w a U^) (7.2)

is a function ofand plotted in Fig. 7.5. The upper bound \w a U{w) \ on G[k\(ju)  — G(joo) 

the frequency u.  For numerical convenience, this function is fitted to the following transfer 

function with an amplitude \wA(jw)\ (the phase is not used in the [i synthesis analysis). 

Based on gain versus frequency matching, a suitable transfer function that satisfies Eqn. 7.2 

is given by

wA{s) =
1400(s +  1000)

(s +  200) (s +  100)2

2. Multiplicative uncertainty: Fig. 7.4(b) is used to derive the following model

G(s) = G (s)[l +  wm (s ) A ( s)], ||A(s) lo o  <  1

(7.3)

(7.4)

w m (s ) is selected such that G{*)-G{s)
G(s) < |i«m(s)|. The uncertain parameters ki, kz, m,

R, and L 0 are varied in three discrete levels (Section 7.2.2) and for each combination the
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[rad/s]

Figure 7.5: Frequency response of WA(ju)[k] in Eqn. 7.2 for 81 combinations of the uncer
tain parameters in the Maglev model.

following value is computed

G{k](juj) -  G(ju>)
k = I to 81 (7.5)

G ( M

Graphically these are shown in Fig. 7.6. u >m { s )  is then selected to give an upper bound on 

these differences. As above, for a numerical convenience this function is fitted to a transfer 

function with an amplitude \wm(Jlj)\ • Based on gain versus frequency matching, a suitable 

transfer function th a t satisfies Eqn 7.5 is given by

^ ) = a9&rly ( 7 -6 )

Once the numerical forms of w a ( s )  and wm(s)  are determined, the uncertain Maglev 

model G(s)  can be constructed from Eqns. 7.1 or 7.4. The uncertain model is then fully 

determined and the robust analysis and synthesis procedure can be carried out.

7.3 Robustness of closed-loop Maglev systems

Robustness of single-input-output closed-loop Maglev systems can be analysed with the aid 

of Fig. 7.2. In this section these results are generalised to provide a procedure for single- 

and m ulti-input-output robustness analysis. In the following derivations, K(s)  is the Hoo

137



[rad/s]

Figure 7.6: Frequency response of w m Uw) in Eqn. 7.5 for 81 combinations of the uncertain 
parameters in the Maglev model.

compensator in Eqn. 6.44, page 116 and G(s) is the uncertain plant (described in Eqn. 7.1 

or 7.4). Since a theoretical basis for selecting one of the two scheme for modelling the 

uncertainty in the Maglev model was not found, in the following derivations the additive 

and the multiplicative models are studied independently and the results are compared. 

w m {s) and ^ ( s )  are derived above.

7.3.1 M aglev m odel w ith  additive uncertainty

Using the developments in the previous section, the open-loop Maglev system in Fig. 7.1 

is expanded with the additive uncertainty to get the generalised plant P(s)  in Fig. 7.7. In 

this figure, K(s)  is the 'Hq0 controller in Eqn. 6.44, G(s)  is the nominal open-loop model 

(Eqn. 6.35), Wc(s) and FF(s) are the performance weights for the Hoo design (Eqn. 6.36), 

and Wa is the additive uncertainty in Eqn. 7.3. The inputs to P(s)  are

[e, d , r, u]T,

and the outputs are

[s, 4i, 42, y]T-
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P(s)

W(s)

m

Figure 7.7: Maglev control configuration with performance weights W c(s) and PF(s) and 
an additive uncertainty w a ( s ) .

Using Fig. 7.7, the following relationships have been constructed

s = w a ( s ) u

qi = W c(s)u
92 =  W(s)[r — G(s)u — e — d]
y =  r — G(s)u — e — d

The transfer m atrix P  from the inputs to the outputs

s ' e
9 i = p d
92 r

. y . u _

is derived from Fig. 7.7

P{ 8 ) =

' 0 0 0 wA
Pn P12 ' 0 0 0 VFC
P21 P22 - W G - w w - W G

. - I - I I - G

(7.7)

(7.8)

Substituting u =  K y  in Eqn. 7.7, after some transformations the closed-loop system in 

Fig. 7.7 can be simplified to a system with two inputs and two outputs (Fig. 7.8 with 

9 =  [9i 92]T and w — [d r]T)

s ' N u N n  '

9  . N 21 to to

e
w (7.9)
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where the transfer matrix N(s)  is given below

' - wa K ( I  + G K Y x - w aK ( I  + G K ) - 1 wAK ( I  + G K ) - '  ‘
N(s)  = - W CK ( I  + GK)~ ' - W CK ( I  + G K ) - 1 WCK { I  + G K ) - 1 (7.10)

- W ( I  + GK)~' - W i l  + G K ) - 1 W ( I  + G K ) ~ ]

Using the definitions for: (a) complimentary function T  =  G K ( I  +  GK)  1 and sensitivity 

function 5  =  (I  +  G K )~l , Eqn. 7.10 can be rewritten to its simpler form

' - w aK S —waK S Wa K S
N(s)  = - W eK S - W CK S W CK S

- W S - W S W S

Figure 7.8: A simplified block diagram of the closed-loop system in Fig. 7.7.

Fig. 7.8 is a simplified form of the closed-loop system in Fig. 7.7. The compensator 

K(s)  (part of N(s))  has been designed to stabilise the Maglev system and to attenuate the 

unknown (but bounded) disturbance effect w on the output q when H A ^ )!^  =  0. This con

troller, however, is not explicitly designed to perform these tasks for H A ^ ) ^  ^  0. These 

observations thus give rise to two questions: (1) the ability of the controller to stabilise 

the system for all perturbations A (5), H A ^ )!^  < 1 (robust stability) and (2) the ability

of the closed-loop system to perform as required (settling time, overshoot, oscillations in

the response) for all A (5), ||A(^)Hoo < 1 (robust performance). A mathematical tool that 

provides an answer to those questions is described below.

In order to determine whether the closed-loop configuration in Fig. 7.8 remains stable 

for all perturbation A, the transfer function from w to q has to be constructed. From 

Eqn. 7.9 it follows that
s =  N n e -I- N\ 2w 
q — N 2ie +  N 22W 

W ith e =  As, the transfer function from w to q becomes

q — [N22 +  N 2i A ( I  — N n A )  l N\ 2]w (7.12)
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The closed-loop system A (s) remains stable for all perturbations A only if the transfer 

function in Eqn. 7.12 remains stable for all A. Eqn. 7.12, on another hand, is stable as long 

as (I — N n  A )-1 is non-singular, or equivalently det[(/ — N n  A)] /  0 [92, 93, 88]. Since the 

determinant of a matrix is equal to the product of the eigenvalues, i.e.

det[(I -  N UA)] = l [ \ t (I -  N n A)
i

the condition for stability can be reduced to satisfying the following inequality

H H I - N u A )  / 0  ^ I - Y [ \ i ( N n A)  / 0
i i

which is equivalent to

\ i ( N n A)  < 1

where Ai is any of the eigenvalues of (A n A). Using the fact that [93]

A(An A) < cr(An A) 

the criteria for robust stability becomes

a ( N u A) < 1 (7.13)

or equivalently (HAH^ < 1)

IlMilloo < 1 (7.14)

To summarise: the closed-loop Maglev system in Fig. 7.7 remains stable for all pertur

bations A as long as the oo—norm of A n in Eqn. 7.10 remains < 1 for all frequencies,

i.e.

IlMilloo -  II -  WAK ( I  +  G K ) - l \\oo -  II -  w aKSWoo < 1

This condition can be used for single- and multi-input-output systems and requires only 

the closed-loop transfer matrix N(s).  The graphical developments in Fig. 7.2 state that the 

system is robust stable as long as |1 — K(ju^)G(juJ) \  > \K( ju*)wA(jLu*)\. Multiplying this 

on both side by (1—K(ju}*)G(ju*))~l gives \wAK S \  < 1 which for the single-magnet model 

is same as the condition above. Using the additive uncertainty in Eqn. 7.3, the nominal 

Maglev model in Eqn. 6.35 and the 'Hqq controller in Eqn. 6.44, wAK S  is computed with 

Matlab

46787371.6908(s +  1000)(s +  356.6)(s +  65.28)(s -  55.18)(s +  18.77)
A n  =  waK S  =

(s +  200) {s +  646.3) (s +  100)2(s +  78.37) (s +  60)(s2 +  637.8s +  3.469 x 105) 

and its frequency response is plotted in Fig. 7.9. Since Ww^SWoo = 4.23 dB (> 1), the
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Figure 7.9: Test for robust stability for the system in Fig. 7.7

closed-loop system does not satisfy the condition for robust stability. Therefore, the K(s)  

does not guarantee stability for 30% variation in hi, kz and m  and 200% variation in m. 

This is consistent with the results in Fig. 7.3 where for experiment 7, 8 and 9 the closed-loop 

system is unstable. The test developed above estimates the robust stability of the system, 

but it does not directly calculate the robust stability margin beyond which the system fails 

to provide a stable suspension. To calculate this: (1) the uncertainty in the parameters 

are decreased (from 30% to 20% for example), (2) a new model w a (s) is estimated for the 

new uncertainty, and (3) the test for robust stability in Eqn. 7.14 is calculated for the new 

w a (s ). If the conditions for robust stability are not satisfied, the procedure continues from

(1). This process is carried out for the Maglev model in Section 7.4.

7.3.2 N om inal M aglev m odel w ith  m ultiplicative uncertainty

To analyse the robust stability with the multiplicative model, the nominal open-loop Maglev 

system is expanded G(s) as in Fig. 7.4(b); the resultant generalised system is given in

Fig. 7.10. The inputs to this system are

[e, d, r, u]T,

and the outputs are

[s, Qu Q2 , y]T- 
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K(s)

ms)

Figure 7.10: Maglev system with performance weights Wc(s) and IF(s) and a multiplicative 
uncertainty wm(s).

The following relationships are constructed from Fig. 7.9

s = wM(s)u
qi = w c(s)(u + e)
q2 = W(s)[r — G(s)u — G(s)e — d]
y = r — G(s)u — G(s)e — d

These lead to the following transfer m atrix P(s)

P(s) =

’ 0 0 0 wM
Pn P12 ' Wc 0 0 Wc
P21 P22 - W G - W w - W G

L ~G - I I - G  J

Using u = Ky,  after some simplifications the closed loop transfer matrix N(s)

s ’ N n N l 2 '
q N21 N22

e
w

is obtained

' - wm GK(I  +  GK)~l - w MK ( I  + G K ) - 1 wm K ( I  + G K )~1 1
N(s) = WC(I +  GK)~l 

- W G ( I  +  GK)~l
—WCK ( I  +  GK)~l 
—W ( I  +  GK)~l

WCK ( I  + GK)~l 
W ( I  + GK)~l

Employing the definitions for complementary and sensitivity functions, the latter reduces 

to
' —wmT —w mK S £ to

N(s) = w cs —WCK S WCK S
- W G S - W S W S

(7.15)
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Using the criteria developed in the previous section (Eqn. 7.13), the closed-loop system in 

Fig. 7.10 remains robust stable as long as

IIJViilloo =  II -  WMG K ( I  + G K Y 1 IU =  II -  wmT\\x  < 1 

Using the H 00 controller in Eqn. 6.44 and the multiplicative uncertainty in Eqn. 7.6, N n

CD2.
co
<D
_3
>  - 5

is3O )c
CO

-10

- 1 5

-20

F r e q u e n c y  [ r a d / s ]

Figure 7.11: Testing robust stability for the system in Fig. 7.7

is computed

50572888094.6999(s +  25) {s +  18.77)
11 ~  Wm ~  (s +  50) (s + 60) (s +  78.37) (s +  646.3) (s2 +  637.8s +  3.469 x 105)

and its frequency response is shown in Fig. 7.11. Since || — wMT\\oo — 3.34dB, the Hoo 

controller does not guarantee closed-loop stability for all perturbations A. This is consistent 

with the previous results for the robustness. Since w m (s) in Fig. 7.6 more tightly bounds 

the differences in the model than w a U^)  in Fig. 7.5, the norm || — wAK S ||oo =  4.23 

is slightly higher than || — w mT\\qq = 3.34dB. A more detailed analysis on the stability 

robustness is presented in the following section.

For a mathematical convenience, the perturbation in the model A ( ju)  is typically struc

tured as a block-diagonal matrix (this is considered later, Fig. 7.13). In this respect studying 

the robustness of multivariable problems using Eqn. 7.13 can, in some cases, be so conser

vative as to be useless [88]. Therefore it is more convenient to develop a modified test for
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robust analysis which uses the structural information for A(juj).  This is presented in the 

following section.

7.4 Robustness analysis using the structured singular 
value-//

7.4.1 R obust stability

According to Fig. 7.4, G(s) approaches the nominal model G(s)  as long as A (jcu) approaches 

zero (HA(jcj)ll —> 0)- In this respect the condition for robust stability states that the

generalised closed-loop system in Fig. 7.8 is robust stable as long as Eqn. 7.13 is satisfied

for which

det[7 -  7Vn(jtd)A(ju;)] /  0, || A||oo < 1 (7.16)

If ||A (ja;)|| =0, then the condition above is always satisfied and the system in Eqn. 7.12 is 

robust stable. If

det[7 -  N n {ju)A( ju)]  = 0, | |A ^  < 1 (7.17)

for some A (jco), then the transfer function does not exist and the robustness stability test 

is violated. Since A ( j u )  represents perturbations in the model (Fig. 7.4), its maximum 

singular value [o-(A(ju;))] can be used for the robustness analysis. W ith block-diagonal 

structure of A, the robustness index is quantified by [92]

^  m in{a(A(ja;)) : det(7 — N n A( j u) )  = 0, A ( ju)  is structured} •

and equals the reciprocal of a (A( ju ) )  when det(I  — N n A(juj)) = 0. If det(7 — N u  A(juj)) ^  

0 for all lo, then fJ,(Nn) =  0. In this respect n  is an indicator for robust stability: large values 

for /i stand for closed-loop system with poor stability margins since small perturbations 

A make (7 — N u A ( j u ) )  singular. Employing the definition of /i, the closed-loop system 

(Fig. 7.8) is robust stable as long as [92, 93]

t i (Nn (ju))  < 1, Vo;. (7.19)

As indicated earlier (Section 7.2.3), A (juj) represents perturbations of the internals of 

the system G(s) and is not quantifiable in physical terms. For this reason /J,(Nn ) is used 

to quantify the stability properties of the system in the presence of internal parameter 

variations (robustness stability). Algorithms to compute the exact value of /J,(Nn ) are 

not yet available. For this reason the upper and lower bounds are estimated. Empirical
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studies suggest that the differences between the upper and the lower bounds are within 

5% (at maximum 15%) [88]. For design puposes the upper bound (worst-case scenario) is 

relevant and the its derivation is described in Appendix D. The equation uses the following 

optimisation condition

» ( N n ) = i n f a i D N n D - 1) (7.20)

where the main task is finding the diagonal matrix D  such tha t the maximum singular value 

a ( D N n D ~ l ) is minimal at each frequency. The algorithm usually starts with the identity 

m atrix for D  and then it searches for the optimal D  tha t makes a ( D N n D ~ l) minimal, // 

is then equal to a (D A n D _1). It has been established that this optimisation task is convex 

in D  [94]. A simplified version of this algorithm is developed in Appendix D. Applications 

of // for the Maglev model are discussed below.

Using M atlab and the //—analysis and synthesis toolbox, the //(M i) values are computed 

for N(s)  in Eqns. 7.15 and 7.11 (Figs. 7.7 and 7.10). The corresponding results are shown 

in Fig. 7.12. // is larger than one for 30 < u  < 300 rad/s and hence Eqn. 7.19 states 

that the system is robust unstable for some combinations in the perturbations A. This is 

consistent with the results for robust stability based on Eqn. 7.14 (Fig. 7.9). In fact for 

one-dimensional perturbations A, //(M i) =  o'(M i) and the robust stability based on // is 

identical to the analysis based on a  [92].

The above result does not define the robust stability margin in terms of parameter 

variation. To calculate the sensitivity of the robustness, the following analysis is carried 

out. From the list of parameter perturbations defined in Section 7.2, ki and kz are excluded. 

The remaining uncertain parameters are: 30% for R  and L0 and 200% for m.  New uncertain 

models ( w a ( s )  and w m { s ) )  are derived using the procedure in Section 7.2.3 for the additive 

and the multiplicative representations. The numerical results are given in Figs. E .l and 

E.2, Appendix E, page 306. The new models wa{s) and Wm(s) are listed in Table 7.2 (row- 

2, columns 6 and 7). Row-3 in Table 7.2 is constructed by varying ki: kz, R  and L0 with 

30% (the mass m  is excluded). Similarly, data  plots in Figs. E .l and E.2 are used to derive 

uu (s) and Wm(s) in rows 4 and 5. For comparison purposes, row-1 represents the worst-case 

scenario where all five parameters are varied. The conclusion from the above results is that 

none of the combinations in Table 7.2 (rows 1 to 5) produce // < 1 (plots of the // values 

are included in Fig. E.3, page 308) and hence the system is not robust stable when one of 

the parameters is excluded from the uncertainty. The stability robustness is more sensitive 

to variations in ki , kz and m, and less sensitive to variations in R. L 0 has almost no effect
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Figure 7.12: Testing robust stability for the system in Fig. 7.7 using the structured singular 
value jjL.

experiment /cj, kz
m

m
[%]

R
[%]

L 0

[%]
1 30 200 30 30
2 - 200 30 30
3 30 - 30 30
4 30 200 - 30
5 30 200 30 -

6 15 100 15 15

w A (s)

1400(5+1000) 
(s+ 2 0 0 )(s+ 1 0 0 )2 

1160(s+1000) 
(s+ 2 0 0 )(s+ 1 0 0 )2 

1200(5+1000) 
( s + 2 0 0 ) ( 5 + 1 0 0 ) 2  

1240(5+1000) 
(5+200) (s+100)2 

1360(5+1000) 
(5+200) (s+100)2 

840(s+1000) 
(5+200) (5 + 100)2

WM (s) M M i)
for w a (s)

# 11)
for Wm (s )

0 - 9 0 ( 5 + 2 5 )
( s+ 5 0 )

0 .7 4 (s+ 2 5 )
( s + 4 2 )

0 . 8 6 ( 5 + 2 5 )
( s + 5 0 )

0 .8 4 (s+ 2 5 )
(s+ 4 8 )

0 . 8 8 ( 5 + 2 5 )
(s+ 5 0 )

0 . 3 7 ( 5 + 2 5 )
(s+ 6 5 )

1.63 1.47
1.35 1.26
1.39 1.40
1.44 1.41
1.58 1.44

0.976 0.962

Table 7.2: Sensitivity of the robust stability
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on the robust stability and this is consistent with the results in Table 7.1. Since Maglev 

systems are nonlinear, variations in the operating conditions (z0, zq) contribute to variations 

in k{ and kz and hence to the robustness. Although the operating airgap z0 for Maglev is 

typically kept constant and unchanged, disturbance forces acting on the syspension system 

affect the operating current and hence the internals of the model. A resasonable degree of 

uncertainty in hi ,kz has thus to be included in the controller-design process. Suspension 

systems are obviously designed to carry loads and since variations in m  have an impact 

on the overall stability robustness this parameter has to be also included in the robust 

design. The resistance and the inductance have the least efect on the robustness stability 

and for mathematical convenience these can be excluded provided tha t a care is taken in 

the estimation of their values.

To calculate the stability margin, all five parameters are reduced simultaneously to get 

fi < 1 for the values in row-6 (Table 7.2, Fig E.3). On the margin of the robust stability 

index, however, the system is expected to have a poor performance and this analysis is 

presented in the following section.

7.4.2 R obust performance

In addition to a stable suspension, Maglev systems are required to maintain an acceptable 

level of performance in the face of perturbations. The suspension characteristics (band

width, suspension damping and settling time) are required to remain unchanged for all 

bounded variations in the plant. The problem of checking robust performance .can be 

transformed to a problem of checking robust stability by introducing a fictitious perturba

tion A f  tha t connects q =  [qi, <72] with w = [d, r] as in Fig. 7.8. The resultant closed-loop 

configuration is shown in Fig. 7.13. For this closed-loop system

s
=  N e

. q . w

and
e = A s
w q

Combining these two equations gives

s
=  N A

s s
_ q . . q . . q .

If [I — N A ]  is non-singular (det[/ — N A ]  ^  0) then the only solution to this equation 

is [s, q] = [e, w\ =  0. If, however, [I — N A ]  is singular then there exists infinite number
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of solutions and the inputs and the outputs can be arbitrarily large [93]. Since A =

^  °A , tests for robust analysis can be performed by employing the structured singular 
0  A y

value [93]

f i(N(s)) < 1, Vo; (7.21)

Eqn. 7.21 provides a basis for estimating the robust performance properties of the 'Hoo

N , ,  N

N

[e, w][s, q\ A(s) 0 
° Aj(s)

Figure 7.13: A feedback structure for testing robust performance for the system in Fig. 7.7 
using the structured singular value /i.

compensator. Using the feedback transfer matrices N(s)  in Eqn. 7.11 and 7.15 and the 

/z-analysis toolbox for Matlab, fi(N(s))  is computed and plotted in Fig. 7.12. Since for both 

uncertainty models, /z is larger than one for 20 < u  < 200 rad/s, the robust-performance 

properties of the system are not satisfied. The closed-loop system is thus expected to 

have a very poor phase margin leading to under-damped oscillatory responses. To justify 

these conclusions, the following time-domain experiment was carried-out. According to 

Table. 7.1, the closed-loop performance degrades when the mass of the system increases. 

In the frequency domain, this is given in Fig. 7.3. Five experiments are carried out in the 

time-domain by varying m  in five discrete levels: 0%, 50%, 100%, 150%, 200%. The cor

responding results are shown in Fig. 7.15 (top); plot-1 represents the nominal plant. The 

corresponded phase margins are: 39.46, 32.83, 26.11, 20.51 and 15.89 degrees (computed 

with Matlab). The increase in the mass of the system changes the phase characteristics of 

the open-loop model and this reduces the phase-margin. Oscilatory responses correspond 

to sensitivity functions with larger oo-norms and therefore the closed-loop properties pre

scribed by the performance weight kU(s) (Figs. 7.7 and 7.10) are not longer guaranteed and 

the controller fails to meet the robust performance properties. This justifies the results in 

Fig. 7.14. To confirm the test for robust stability based on /z, kz, R  and L 0 were also
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Figure 7.14: Checking robust performance for the system in Fig. 7.10 using the structured 
singular value fi.

varied together with the mass m  in three discrete levels of 0%, -30% and 30%. The corre

sponding simulated step responses are shown in Fig. 7.15 (bottom). These results support 

the hypothesis tha t the H qo controller designed for the nominal model does not guarantee 

robust stability for variations in the parameters.

experiment m
* 1

R L 0

* 1
1 4 0 0 ( s + 1 0 0 0 )  

( s + 2 0 0 ) ( s + 1 0 0 ) 2  
1 1 6 0 ( 5 + 1 0 0 0 )  

( s + 2 0 0 ) ( s + 1 0 0 ) 2  
1 2 0 0 ( 5 + 1 0 0 0 )  

( 5 + 2 0 0 ) ( s + 1 0 0 ) 2 
1 2 4 0 ( 5 + 1 0 0 0 )  

( s + 2 0 0 ) ( s + 1 0 0 ) 2  
1 3 6 0 ( 5 + 1 0 0 0 )  

( s + 2 0 0 )  (5 + 1 0 0 ) 2  
8 4 0 ( 5 + 1 0 0 0 )  

( 5 + 2 0 0 ) ( s + 1 0 0 ) 2 
7 0 0 ( 5 + 1 0 0 0 )  

( 5+ 200 )  (5+ 1 0 0 ) 2

wM(s)

0 . 9 0 ( 5 + 2 5 ) '
( 5 + 5 0 )

0 . 7 4 ( s + 2 5 )
( 5 + 4 2 )

0 . 8 6 ( 5 + 2 5 )
( s + 5 0 )

0 . 8 4 ( 5 + 2 5 )
( s + 4 8 )

0 . 8 8 ( s + 2 5 )
( s + 5 0 )

0 . 3 7 ( 5 + 2 5 )
( s + 6 5 )

0 . 6 1 ( 5 + 1 5 )
( s + 6 5 )

l t(N)
for wa(s)

ft(N)
for w m (s)

30

30
30
30
15
10

200
200

200
200
100
50

30
30
30

30
15
10

30
30
30
30

15
10

1.80 1.53
1.53 1.33
1.57 1.45
1.62 1.46
1.76 1.49
1.15 1.17
0.99 0.93

Table 7.3: Sensitivity of the robust performance

To calculate the sensitivity of the performance robustness versus variations in the pa

rameters, the analysis in Table 7.2 is repeated. The corresponding results are shown in 

Table 7.3 with w a {s) and % ( s )  as computed in Appendix E. The robust index /jl is de

rived for N(s)  in Eqn. 7.11 and 7.15 for all w a (s) and Wm (s ) in the table. The results
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Figure 7.15: Step responses of the nominal system with K  in Eqn. 6.44 and: (top) variation 
in m  for m  = 0% (plot-1), m  = 50% (plot-2), m  = 100% (plot-3), m  =  150% (plot-4) and 
m  = 200% (plot-5), (bottom) variation in m  as above and ki, kz, R  and L 0
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(// values are plotted in Fig. E.3, page E.4) show that the performance robustness is more 

sensitive to variations in /ĉ , kz and m, and less sensitive to variations in R  and L0. This is 

consistent with the results for robust stability. As suggested earlier, on the margin of the 

stability robustness (15% variation in ki , kz, R  and L 0 and 100% variations in rn, row-6 in 

Table 7.2 and Fig. E.4), the robust performance in the suspension response in not satisfied 

(//—values in row-6 in Table 7.3 and Fig. E.4). It was estimated empirically that the 'Hqo 

compensator provides robust performance, p,(N(s)) < 1, for a maximum 10% variation in 

ki, kz, R  and L0 and 50% variation in m  (row-7 in Table 7.3 and Fig. E.4). Therefore, 

robustness in terms for stability and performance can be achieved only by re-designing the 

feedback compensator K ( s ) and embeddeding the perturbations in its parameters. This is 

presented in the following section.

7.5 Robust controller design for Maglev systems

In this section, new robust controllers (or //-optimal controllers) are derived by embed

ding the uncertainty into the design process. The design task is to achieve p(N(s) )  < 1 

for N(s)  in Eqns. 7.11 or 7.15. The algorithm for //-optimal controller-design, known as 

DK-iteration, combines //—analysis (described in the previous section) and T^oo-synthesis 

(described in the previous chapter) and aims to solve [73, 93]

min max ||D./VJD-1 ||00 (7.22)
K  D

where: N  is given in Eqn. 7.11 or Eqn. 7.15, K  is the unknown feedback controller and D  is a 

diagonal scaling m atrix used in the computation of //. min \ \DND~ 1 ||oo is an 'HOQ controller-K
design optimisation problem whose solution was derived in Chapter 6. max ||T>A’T)_1||00 

defines the optimisation problem for deriving // (Eqn. 7.20). Combining these two in 

Eqn. 7.22 leads to the following procedure for deriving K ( s )

Step 1 Select an initial stable transfer m atrix D(s); usually the identity m atrix is a suitable 

first choice for D(s).

Step 2 K  — step: Derive an controller K (s) following the algorithm in Chapter 6 using 

the following design criteria

m in llL W Z r1! ^
A

Step 3 D — step: Use K  as derived above to construct N(s)  in Eqn. 7.15 (or 7.11). Calculate 

the upper bound p,(N) to determine the robust properties of the controller. This
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process requires calculating an appropriate frequency-dependent weight D(cj) (see 

the algorithm for computing // in Appendix D)

//(A) = m in  a ( D N D ~ l )

Step 4 Fit the magnitude response of D(uj) computed at step-3 to a stable and a minimum 

phase transfer function D{juo).

Step 5 Continue from step 2 by constructing (D N D ~l ) with D  form Step 4.

Step 6 Stop the design iteration when //(A) < 1.

This optimisation procedure is a convex problem in determining D  and K  [94]. The 

above design steps are typically embedded in algorithms for deriving //-optimal controllers 

such as the /i-analysis and synthesis toolbox for Matlab [76]. For the Maglev work, a set 

of customised Matlab programs were constructed that use the open-loop Maglev model 

and the design requirements to derive new optimal controllers for Maglev. Simulation and 

experimental results are discussed below. The overall order of the new //-compensator is 

equal to the sum of the orders of the system G(s),  the performance weight W (s), plus twice 

the order of D(s).  For implementation purposes, the order of the compensator is reduced 

to practical values with order-reduction algorithms which preserve the robust properties.

7.5.1 D esign  o f //-optim al controllers for M aglev system s

Two new controllers for Maglev were derived: (a) for the multiplicative model in

Fig. 7.10 and (b) K ^ s )  for the additive model in Fig. 7.7. Comparisons in terms of the 

robustness are made with the 7/qo controller in Eqn. 6.44, page 116. The numerical design 

work is carried out in Matlab. Customised software programs are written with the following 

inputs: (1) the open-loop Maglev model in Eqn. 6.35, (2) the performance weights W(s)  

and W c in Eqns. 6.36 and 6.37 (104), and (3) the uncertainty models w a ( s ) and w m { s ) in 

Eqns. 7.3 and 7.6 (Section 7.2.3). Using these inputs and the Matlab programs, two new 

robust controllers are derived: K fli(s) in Fig. 7.7 for the additive model of uncertainty, and 

(b) K ^ i s )  in Fig. 7.10 for the multiplicative model of uncertainty (these are not included 

in a numerical form for the following purposes). The robust measures achieved after two 

D-K design iterations in the optimisation algorithm are given below

1. //(A n) =  0.98 and //(A) =  1.4 for the additive scheme, and
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2. /J>(Nn ) = 0.99 and fi(N) = 1.5 for the multiplicative scheme

yu.(A^ii) < 1 for both compensators and hence in contrast to the T-L00 controller (Table 7.2, 

row-1), the new /x controllers provide robust stability for all variations in the uncertain 

parameters. Both measures for robust performance however, are larger than one

and hence the new controllers are only marginally better in terms of robust performance 

than the nominal R 00 controller (Table 7.3, row-1). This requires constructing a new design 

cycle.

Design of robust controllers is an iterative procedure. A typical design cycle goes 

through three stages: (1) to identify and model the uncertainty in plant (u;^(s) or w m {s), 

Section 7.2.3), (2) to specify the performance requirements for the closed-loop system 

(selection of VU(s) and Wc, Section 6.4.2, page 102), and (3) to design the /x—optimal 

controller using VU(s), Wc, w a (s ) or w m (s ) and G(s).  If the /x values at the end of the DK- 

iteration are greater than one, then the design requirements are too tight and these should 

be relaxed. There are two possible approaches here: (1) to assess the uncertainty in the 

model by relaxing the variations and thus the models w a {s ) and wM(s), or (2) to modify 

the performance requirements by changing W(s)  and Wc. Since the primary objective in 

this chapter is to design robust controllers for 30% variation in R, L 0, ki , and kz and 200% 

variations in m, w a (s) and w m (s ) are kept unchanged. The performance weight W’(s) is 

however modified to
TJ7. , 0.13333(s +  60)
W(S) =  (« +  0.008) ’

Compared to the original weight in Eqn. 6.36, this new performance function provides 

larger gain at higher frequencies («  10 dB for u  > 60 rad/s) which in turn allows larger 

peaks on the sensitivity function. Apart from relaxing the optimisation procedure, this 

modifications does not have any impact on the performance since the sensitivity function 

tends to have OdB gain as u  —> 0 from the inherent properties if the open-loop model. 

Using this new function and keeping Wc = 0.005 unchanged, two new /x controllers are 

designed with the following fi properties

1. /x(A^n) =  0.9 and fi(N) = 0.99 for the additive scheme, and

2. /x(AZ’ii) =  0.98 and ti(N) = 0.98 for the multiplicative scheme

154



Since the //-values are below one, these new controllers, as given below, provide robust 

stability and robust performance
K  M  =  — 2 1 0 6 4 3 . 2 4 0 2 ( s + 3 5 4 . 3 ) ( s + 1 7 3 . 9 ) ( 3 + 6 5 . 0 8 ) ( s - f 5 0 )

Z * 1  v * /  ( s + 1 4 . 0 9 ) ( s + 5 . 0 8 5 ) ( s 2 + 5 2 0 . 4 s + 2 . 4 6 5 x l 0 5 )

( s + 1 . 0 5 6 x l 0 4 ) ( s + 1 9 6 . 7 ) ( s + 6 9 . 0 7 ) ( s + 1 2 . 2 9 ) ( s + 0 . 0 0 8 )
X  ( s 2 + 5 2 0 . 8 s + 2 . 4 7 4 x  1 0 5 ) ( s 2 + 9 8 7 . 2 s + 5 . 6 7 4 x  1 0 5 )

and
i f  /  _  - 1 8 2 5 0 6 0 . 3 3 9 6 ( s + 2 . 9 0 1 x l 0 5 ) ( s + 3 5 6 . 6 ) ( s + 3 3 9 . 2 ) ( s + 2 0 0 )

~  ( s + 2 . 9 0 1 x 1 0 5 ) ( s + 1 . 2 4 2 x 1 0 4 ) ( s + 3 5 6 . 2 ) ( s + 7 9 . 1 2 ) ( s + 2 3 . 6 2 )

v  ( s + 6 5 . 2 8 ) ( s + 2 4 . 9 4 ) ( s + 6 . 8 6 8 ) ( s + 3 . 9 0 4 ) ( s 2 + 2 0 0 s + 1 x 1 0 4 ) 

( s + 3 . 2 6 8 ) ( s - f - 0 . 0 0 8 ) ( s 2 + 3 6 5 . 9 s + 5 . 0 0 2 x l 0 4 ) ( s 2 + 2 6 4 3 5 + 2 . 7 4 4 x l 0 6 )

For the practical implementation, the order of these controllers is reduced using the optimal 

Hankel norm approximation algorithm [95, 76] to improve for the phase delays in the digital 

representation, K ^ s )  is reduced from a controller with 9 state variables to five state 

variables

—0.00734(s +  2.866 x 107)(s +  326.9)(s +  5.328)(s2 +  88.92s +  2304)
"  (s +  1.054 x 104)(s +  47.36) (s +  0.008001)(s2 +  979.5s +  5.616 x 105) '  ' ’

and K ^ s )  is reduced from a controller with 11 state variables to five state variables

0.066474(s- 2.75 x 107)(s +  460.6)(s +  9.628)(s2 +  139.4s +  4933)
S' “  (s +  1.246 x 104)(s +  221.6)(s +  0.007997)(s2 +  2653s +  2.787 x 106) '  ' *

The corresponding //—values of these reduced-order controllers were computed with Mat

lab and shown in Fig. 7.16 (top) for the additive scheme and Fig. 7.16 (bottom) for the 

multiplicative scheme. Since both controllers provide // < 1, the requirements for robust 

stability and robust performance are satisfied for all variations in the Maglev parameters.

7.5.2 Sim ulation results

In the following discussions, K ( s ) refers to the nominal 'H00 controller designed in the 

previous chapter. A comparison plot between the Bode plot of the K ( s ), and the Bode plot 

of the //—optimal controllers K fXi(s) and 2(5) is shown in Fig. 7.17. In the low-frequency 

range (u < 100 rad/s) apart from the small gain difference all three controllers have similar 

responses. The high roll off factor imposes good steady state characteristics and good 

attenuation to low-frequency disturbances. In the middle frequency range (10 < lj < 100 

Hz), however, the //—optimal controllers K fxi(s) and K ^ i s )  have much wider lead-action 

compared to K(s)  which in turn gives better phase margins. To analyse this further, the 

loop transfer functions for the three controllers is calculated and plotted in Fig 7.18 where 

GK,  GKfj, 1, and G K ^2 correspond to loop transfer function with K(s) ,  K Ml(s), K ^ i s ) ,  

respectively. Superimposition of these functions shows that the // — optimal  controllers have
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Figure 7.16: Robust stability and robust performance of the closed loop system. Top: 
system with K ^ ;  Bottom: system with Kp2
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nearly two-times higher phase margins compared to the nominal controller. It has been 

calculated that P M { K ) =  39.46 at u  = 21.45 Hz, i )  =  59° at uj  =  33.76 Hz and

2 )  — 72° at u j  =  54.8 Hz. Since these results are computed for the nominal model 

G(s),  variations in the Maglev’s parameters would pose variations in the phase margins, 

but since the //—optimal controllers have very large phase margins, the robust properties of 

these controllers would be considerably better than those of the nominal controller. For the 

worst combination in the variation of the parameters, the phase margin is > 30°. Taking 

Kp 1 as an example, reduction in the loop-gain of the system by a factor of two results 

in a reduction of the phase margin to 37° which is still within the design requirements of 

35-40 degrees. Since K^i(s)  and K ^ s )  represent the same uncertainty and both have very 

closed properties and //—values, only K^i(s)  is used in the following studies. In addition, 

K tli(s) has lower cross-over frequency (the bandwidth of 2(5) approaches the practical 

bandwidth for the experimental system) and hence is more suitable for the experimental 

work.

Initially, the robust properties of K fli(s) were studied by repeating the experiments 

in Section 7.2.2. m, R  and L q are varied as per Table 7.1 and the Nyquist plots of the 

closed-loop system is calculated for each combination. The responses of the nominal con

troller K(s)  are shown in Fig. 7.3. The corresponding Nyquist plots for the new //—optimal 

controller K fJLi(s) are computed and shown in Fig. 7.19. These results show that for the 

worst set of variations in the Maglev parameters, the closed-loop system remains stable 

with good phase margins and hence suspension damping. Previously, for combinations 7, 8 

and 9 the closed-loop system was unstable (Fig. 7.3) since the drop in phase margin was as 

much as 40°. The comparison between plot 8 in Fig. 7.3 and plot 8 in Fig. 7.19 shows that 

for the worst combination, K fli(s) offers a phase margin of 32°, which is comparable with 

the phase margin of the nominal system (plot-1) in Fig. 7.19. Therefore, the closed-loop 

system remains robust stable and offers performance robustness for the whole set of varia

tions. The simulated step responses of the system for the parameter variations in Table 7.1 

are shown in Fig. 7.20. Robust controller design guarantees that all responses are within 

the envelop in the figure. This conclusion is further analysed by comparing the transient 

response of the closed-loop system with the //—optimal controller. This experiment, shown 

in Fig. 7.21, repeats the experiment in Fig. 7.15 (bottom). The mass is varied with +200% 

from the nominal value, and the inductance, the resistance and ki and kz are varied with 

±30% from their nominal values. The results suggest that for all variations in the pa-
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Figure 7.19: Nyquist plot of the closed-loop system with i and parametric variation as 
per Table 7.1 (plot-numbers correspond to experiment number in the table)

rameters, the system remains stable with good settling time and zero steady-state error. 

The new /x—optimal controller thus provides robust performance and stability. In terms of 

robustness, this feature makes it superior to the 'H00 controller. Experimental results are 

discussed below.

7.5.3 Experimental results

The experimental work was carried out on the DSP hardware for Maglev control, Chapter 5. 

For the DSP implementation, the n — optimal controller (Eqn. 7.23) is discretized using 

the Tustin transformation. For the comparison, the simulation work was performed in 

Simulink using the block-diagram in Fig. 6.21, page 123 (with K(s)  replaced with K fli(s)). 

Each experiment was initiated from Matlab by sending a command to the control software 

on the DSP via the T C P /IP  communication protocol. After receiving the command, the 

DSP software starts logging the control signal and the airgap as seen from the position 

sensor while changing the reference airgap. At the end of the experiment, the logged data 

is transfered to Matlab and superimposed with the simulation data. In the first experiment, 

the reference airgap is altered from 4.5mm to 3.5mm at t = 0.5 sec. and then back from 

3.5mm to 4.5mm at t = 1.0 sec. The simulation and experimental transient responses are 

shown in Fig. 7.22 and show that the theoretical results compare well with the experimental
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Figure 7.20: Step responses of the closed-loop system with K tli(s) and parametric variation 
as in Table 7.1 (plot-numbers correspond to experiment number in the table). Robust 
controller design guarantees that all responses are within the envelop.

results in both airgap and control signal. The conclusions for the robust properties of the 

system which were based on simulation studies thus can be applied to the experimental 

systems. To justify this, one more experiment was performed in adding 200% (2.5kg) 

additional mass to the suspended system. W ith this mass, the reference airgap is changed 

from 3.5mm to 4.5mm. A comparison plot between the nominal 7i0o controller Zf(s) and 

the new robust controller is shown in Fig. 7.23. According to Fig. 7.15 (top),

increasing the mass of the system decreases the gain of the open-loop system around the 

cross-over frequency and this leads to poor phase margins and thus oscillatory responses. 

This can be observed on the experimental plot in Fig. 7.23 which shows that the additional 

mass degrades the performance properties (oscillatory responses with the /H00 controller). 

The //—optimal controller, however, manages to keep the closed-loop properties invariant 

to this perturbation. The response with the additional 200% (2.5kg) mass is comparable to 

the the response of the nominal system in Fig. 7.22. The //—optimal controller design thus 

provides robust stability and robust performance in the face of uncertainty in the model.
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Figure 7.21: Step responses of the closed-loop system with K^i and 81 variations in m, R, 
Lo, ki and kz (as per Section 7.2.3). The mass varies by 200% and the remaining parameters 
vary by ±30%.

7.6 Conclusions

The notion of uncertainty is an important factor in the development of the feedback con

trollers for Maglev. This arises in two forms: (1) difference between the physical plant 

and the mathem atical model used for design, and (2) unmeasured noises and disturbances 

that act on the suspension system. In Chapter 6 , theory was used to incorporate noise 

inputs into the controller design process. In the presence of variation in the Maglev pa

rameters (30% variation in the values of R , Lo, ki, and kz and 200% variation in mass ra), 

however, this controller fails to sustain stability and an acceptable level of performance. 

This necessitated developing a tool that: (a) is able to assess the robust properties of 

closed-loop Maglev systems, and (b) provides a basis for designing robust controllers for 

Maglev systems.

Two methods for modelling uncertainty are used in this chapter to represent the gap 

between the plant and its mathematical representation: the additive uncertainty model and 

the multiplicative uncertainty model. Both configurations are treated independently and 

the comparison results show that these are equally useful for robust analysis and design. 

Based on this development, a methodology is developed for assessing the robustness of
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closed-loop Maglev systems (when the feedback compensator is known) to derive a stability 

margin beyond which the system degrades in terms of performance. The concept of //- 

analysis has proven to be a convenient instrument for assessing the robustness of closed- 

loop systems. A systematic methodology has been developed that requires the open-loop 

model, the feedback compensator and the model of uncertainty to determine the robust 

margin of the system. An advantage is considered to be the ability of this tool to assess 

robustness of multivariable systems.

Design for performance ('Hoc only) is unsuitable for applications with a considerable 

uncertainty about the mathematical representation of the plant. To provide a basis for 

robust controller design, the theory of 'H(yo is combined with //—analysis in an algorithm 

for robust controller design (DK-iteration). It was established tha t the controllers derived 

from this new tool (called //—optimal) are markedly superior, compared to the 1-Loo design, 

in terms of sustaining robust stability and performance for a large range of parameter 

variation. W ith the robust design technique, however, there exists a trade-off between 

the robust margin and the effort from the controller. A comparison between the Bode 

plots of the Uoo controller and the //—optimal controllers shows tha t to achieve high phase 

margins and hence robustness, the controller needs a considerably larger gain at higher 

frequencies which is directly proportional to the power dissipation in the magnet. From an 

implementation point of view, care has to be taken during the modelling stage to account 

for uncertainties which are truly presented in the model. This will considerably reduce the 

effort of the controller and hence improve the overall results.

A large number of industrial systems that employ magnetic levitation principles consist 

of more than one degree of freedom. Examples are Maglev vehicles, magnetic bearings, 

magnetic tables, etc. where four or more magnets are controlled simultaneously to achieve 

the required forces and torques. To simplify the analysis and the synthesis, the designer 

reduces the complexity by neglecting a weak cross coupling in the system to deal with a 

single-input-single-output model. The stability theory and controller design techniques for 

these are well established. In the following chapter, the Uoo and the //-design methodologies 

developed here are generalised to design multivariable controllers to stabilise a Maglev 

vehicle suspended from four magnets simultaneously. The performance of these controllers 

is assessed with simulation and experimental results from a representative Maglev rig.
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Chapter 8 

Multivariable M aglev control

Four magnets permanently fixed on a rigid body provide suspension forces and contactless 

properties for Maglev vehicles. The unstable nature of the force-airgap relationship requires 

feedback stabilisation for each magnet. From a control point of view, four or more currents 

have to be driven simultaneously to achieve the required stable forces and torques. One 

approach is to neglect the cross-coupling and treat all loops as independent; this method 

has been previously reported [1, 21, 15, 31]. In this chapter, another approach based 

on multivariable control has been developed which takes into account angular rotations 

and vertical motions of the suspended body. This is considered to be better for Maglev 

control since it provides: (a) a systematic procedure for dealing with multivariable Maglev 

problems, and (b) tools for robust stability and analysis of multivariable systems. It has 

been also shown tha t these controllers have better stability properties for lateral disturbance 

reduction when no active guidance control is provided.

8.1 Multivariable Maglev control

A block diagram of a magnetically levitated vehicle is shown in Fig. 8.1. The contactless 

suspension of the body is provided by four suspension magnets denoted as Mi, M2, M3 

and M4. These provide four forces of attraction: / i ,  / 2, / 3 and / 4 which in turn give three 

degree of freedom in the chassis: (a) rotation about the x-axis (roll 0 ), (b) rotation about 

the y-axis (pitch 0), and (c) translation along the 2-axis (heave z ). This configuration does 

not include lateral magnets and their force of attraction, and hence rotation about the 

z—axis (yaw tp) is not presented. Lateral guidance is, however, provided by the inherent 

lateral stiffness which exists between the suspension magnet and the reaction railway [1, 21]. 

A linear motor (not shown in the figure) provides the fourth degree of freedom, propulsion 

along the x-axis.
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Figure 8.1: Block diagram of a magnetically levitated vehicle. Four magnets (Mi to M4) 
provide four suspension forces (f \  to / 4) and hence three degree of freedom: pitch 0, roll 
(j) and heave 2 . Photographic image of the vehicle is shown in Fig. 8.3. The magnet-track 
configuration is shown in Fig. 8.3

Figure 8.2: Photographic image of the Maglev vehicle.
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a c c e l e r o m e t e r  

Figure 8.3: Magnet-track configuration (one corner).

The four lift suspension magnets on the vehicle control the three free-body motions, 

namely: heave 2 , pitch 6  and roll <j>. Since the magnets are permanently fixed on the 

rigid body, there exist a strong interaction (cross coupling) between the control loops. The 

control problem is hence a multivariable control problem. In this respect, the primary 

objective of this chapter is summarised as follows.

1. Develop a three degree of freedom state-space model for the suspension system in 

Fig. 8.1 and validate it using simulation and experimental studies.

2 . Extend the developments in Chapters 6 and 7 to multivariable Maglev control.

3. Extend the multivariable model with provisions for guidance support and design new 

controllers for the six degree of freedom suspension model and assess the closed-loop 

system using simulation studies.

The experimental work was carried out on a multi-magnet vehicle built by previous 

researchers [1, 21]. The suspension characteristics are provided by four magnets as in the 

conceptional block-diagram in Fig. 8 .1. A photographic image of the experimental rig is 

shown in Fig. 8 .2 . The mechanical and electrical parameters for the chassis and the magnets 

are listed in Table 8.1. The vehicle is equipped with four position sensors, four acceleration

167



sensors, four magnet amplifiers and a linear motor for propulsion. A photographic image 

of the track-guideway configuration is shown in Fig. 8.3. The digital control work is carried 

out on the DSP-based hardware with characteristics outlined in Chapter 5. This hardware 

was built with facilities for multi-magnet control (maximum four magnets) and provides 

eight analogue inputs and four analogue outputs.

parameter notation size identified
chassis mass M 88 kg
chassis length (between electromagnet centres) I 0.8 m
chassis width (between electromagnet centres) b 0.4 m
chassis height t 0.1 m
operating airgap zo 4.0 x 10-3 m
operating current io 4.0 A
pole face area A 2.0 x 10“3 m2
number of turns N 274
resistance of the wire R 0.8 n 0.32 n
inductance L0 4.769 x 10~3 H 1.764 x 10_3H

Table 8.1: Parameters of the Maglev vehicle.

8.2 Multivariable model of the vehicle
8.2.1 Modelling the motion of the vehicle

Using the vehicle’s configuration in Fig. 8.1, for small perturbation about the x  and y axes, 

the heave z, pitch 6  and roll </> movements can be derived from the four airgaps [1] ■

* =  4(21 +  ^2 +  z3 +  z4)

$  =  2 b ( ~ Z  1 + Z 2 ~ Z 3 +  z a )  ( 8 . 1 )

0  =  Y i ( Z l  +  Z2 -  z 3  -  Z4 )

b and I are the width and the length of the vehicle’s chassis between the centres of the 

sensors and z\ to correspond to the four airgaps produced by the sensors in Fig. 8.1.

For the free body in space, the force about the z axis Fz and the torque components: Tx

about x  and Ty about ?/, can be described using the following equations about the centre

of the mass O [96, 1]
Fz = M z
T x  —  I x x ^ x  T  ( 7 2 2  I y y ) ^ y ^ x  ( ^ * 2 )

T y  - - - -  I y y U J y  “ I-  ( 7 XX I ZZ^COZLOX

In this equation:

1. M  represents the total mass of the vehicle

168



2- 1xx, lyy  and I zz are the moment of inertia tensor about x , y and z axes. Making

the assumption that the vehicle’s body is a solid rectangular parallelepiped, these

moments of inertia can be calculated using the mass M  and the dimensions of the 

vehicle [96] (t is the height of the vehicle)

Ixx = f ( 62 +  t2)
lyy = f ( l 2 + t2) (8.3)

=  f ( b 2 + l2)

3. LjXi wy and u z are the angular velocities about the three axes associated with the 

Euler angles [96]
u x = (p +ip sin(0 )
ujy = 0cos(<p) — ipsin((p) cos(0) (8.4)
u z =  0  sin((p) + ip cos((p) cos(0 )

Using the fact that the vehicle does not have a provision for a controlled lateral force

and hence ip =  0, differentiating Eqn. 8.4 gives the following acceleration components about

x  and y axes [1, 21]
x —  P̂ /  q  \

ujy = 0 cos((p) — 0 <psin((p)

Substituting this equation back in Eqn. 8.2 gives the following equation describing the 

3DOF free body motion of the vehicle configuration in Fig. 8.1

Fz = M z
T x =  I xx<i>+ { h z  ~  lyy)0(psm((p)  ( 8 . 6 )

Ty =  lyy(0 COS((p) — 0$sm((p))

Furthermore, the total force of attraction about the x  axis, Fz , and the torque components 

T x and Ty can be derived from the four independent force of attractions f i  to

Fz =  ( /i +  S2 +  /3 +  /*)
Tx = B ( —f i  +  /2  — fz  +  Ja) (8.7)
Ty — L( f i  +  { 2  — /3 — fa)

where B  and L  are the distances between the centres of the magnets. Since the distance 

between the magnets and the airgap sensors are equivalent (B = b and L  =  /), in the 

following derivations only b and I are used for both. To complete the model, the devel

opments in Eqn. 2.2, page 17 are used to describe the relationship between the attraction 

force f j , j  = 1..4 of any jth  electromagnet and the control current

f j  = kzZj(t) -  kiij(t) +  fdj(t), j  =  1..4 (8 .8)

diAt) kz dzAt) R  . , . 1 , x ,
* * z ^ i ^ ’ i = 1 -A  ( 8 - 9 )
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where: kz and ki are the operating-point dependant coefficients as given in Eqn. 2.2, i j ( t )  

is the jth  operating current; f d j ( t )  is the disturbance force on the jth  electromagnet; R  

and L  are the resistance and the inductance of the magnets’ wire; and U j ( t )  is the jth  

control signal. These equation assume that all magnets (M\ to M4) have identical electro

dynamical characteristics.

Nonlinear model using differential equations: M odel A

Combination of Eqns. 8.6 to 8.9 gives a full description of the motion of the vehicle’s free- 

body at any moment of time. A conceptional block diagram of this multivariable 3DOF 

motion model based on differential equations is shown in Fig. 8.4. This model is built in 

Simulink and used for the analytical studies later in this chapter. The inputs to the model 

are four control signals, namely u\ to u4. These are transformed to excitation currents in 

the four magnets i \  to i 4 via Eqn. 8.9. Furthermore, Eqn. 8.8 transforms these currents 

to four force of attractions f \  to / 4 for each magnet. The independent forces of attraction 

produced by each magnet are transformed via Eqn. 8.7 to give the heave force F2, the 

roll torque Tx and the pitch torque Ty. Applying these force and torque components to 

Eqn. 8.6 gives the three dynamic components of: (a) the heave acceleration z, (b) the 

roll acceleration <j>, and (c) the pitch acceleration 0. Double integration of these three 

signals gives the heave, the pitch and the roll ( z ,0, 4) in the chassis. Since the measurable 

outputs of the Maglev system are four airgap clearances, Eqn. 8.1 is used to transform 

these components to four airgaps z\ to z4. In a matrix form, Eqn. 8.1 is given below [1]

2 - 1
4 0 0  '

4 = 0 1
2b 0

e
_

0 0
1
21 -

1 1 1 1  
- 1 1 - 1  1 

1 1 - 1 - 1

' Zi  '

Z2
Z3

. Z4 .

(8.10)

H

This matrix is inverted using the transformation =  H T(H H T) 1 to get

' 1 b 1
'  Zi  ' 2 2 r

Z2 1 b
2

1
2

Z3 1 b
2

1
2

. z4 . . 1 b I
2 2

(8 . 11)

H+

Linear m odel using differential equations: Model B

The vehicle’s model of motion in Fig. 8.4 described with the Euler angles, is a nonlinear 

model due to the terms in Eqn. 8 .6 . For small perturbation angles around (9,4) = (0,0),
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Figure 8.4: Simulation block diagram of the nonlinear model using Eqns. 8.6 to 8.9.
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however, the Euler velocities about the x  and y axes reduce to

=  0^X
U y =  e ( 8 . 1 2 )

and consequently Eqn. 8.6 transforms to [1]

Fz = M z  
Tx — Ixx4* 
Ty ~  lyy®

(8.13)

These equations are used to develop the linear model of the vehicle’s motion. A Simulink 

block diagram of this linear model is shown in Fig. 8.5. The interconnection block diagram 

in Fig. 8.5 has been constructed such that the three acceleration components (z , 0, <f>) are 

converted to accelerations in the airgap clearances {z\ to iq) with the aim of Eqn. 8.11 

before the integration. Although this model is overdetermined (it has two additional state 

variables), this representation is suitable for implementing classical state-feedback con

trollers that use position Zj, velocity Zj and acceleration Zj, j  =  1..4 outputs to derive the 

feedback control law.

8.2.2 State-space m odel of the 3DOF M aglev: M odel C

The mathematical models derived in Figs. 8.4 and 8.5 are in the form of second-order 

differential equations. The controller design proposed in this chapter requires a state-space 

model of the 3DOF equations of suspension motion. To describe the vehicle’s motion, the 

following state-space representation is used

x = A x  +  Bu  
y = Cx (8.14)

where: u =  [iq, u2, u3, u^)T is a vector of four control inputs and y = [zi, z2, z3, z4]T 

is a vector of four airgap clearances. To construct the minimal realisation of the model, 

the equation of motion is described using (z, 6 , (j)) (Fig. 8.4). This leads to the selection of 

the following state variables

x [z, i ,  0 ,  0 ,  9, 9, * i ,  i 2 , «3 , *4 ]

The relationship between the state-variables and the independent airgaps z^ i 

constructed below

(8.15) 

1..4 are

z
—

. 9 .

M
0
0

0
1

I x x

0

0 
0

1
i y y  -I

1 1 1 1  
- b  b - b  b 
I I - I  - I

r/i 1
h

L/4 J
172



N

1 - ( 05 1-1 05 T-| 05 i - l  05 O

r r n
n " . n " • N

if-
• N

i - l  05 i - l  05 i - l  05 i - l  05

x *Neg -*5S COa> n
S«

rs
: n : n : n : n

i s
n  ■£. I

m
:®

N, iS

S ° lT5 JS
■o

S

X >s
LL 1- H

c
3

cn
00
d
3

co o

a> *o

t— CM CO ^3 3 3 3

Figure 8.5: Simulation block diagram of the nonlinear model using Eqns. 8. 6 to 8.9 with 
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with

1
1 1 ir o o o

1

' i\ '
h 0 1 ?r* o o i‘2
fs

oJ?1oo

h
U  J 1ooo

1 . u  .

' kz 0 0 0 ' ' 1 - 6/ 2 1/2 ' y

+
0 kz 0 0 1 - 6/ 2 1/2 £

0
90 0 kz 0 1 6/ 2 1/2

.  0 0 0 kz . . 1 6/ 2 1/2 .

Combining these two equations and Eqn. 8.9 and after some transformations give the state- 

space matrix A  as derived below

0

A =

0 1

4^1
M
0

0

0

0

2b2 y ~
* x x

0

0

0 0 ^ -  ~~— —~—

0 1

0

—  0 0 0 -
kz
ki
kz
ki
kz
ki
kz
ki

0 -

—  0 - -

6 kz  
2 ki

1 kz
2 ki 
b kz  
2 ki

b kz  
2 ki

2 l2f -
*yy 

I kz

0 0 -

2 ki
1 kz
2 ki

1 kz
2 ki
1 kz
2 ki

0 0

0 0 0 0

ki k{ ki ki
M
0

M
0

M
0

M
0

kib hb hb kib
Ixx Ixx Ixx Ixx
0 0 0 0

k{l kil kil kilII

lyy lyy lyy
R

~ L 0
0 0 0

0
R

~ L 0
0 0

0 0
R

~ T 0
0

0 0 0
R

~Lo

(8.16)

Inputs to the model Ui 

is derived below

i =  1..4 are four control voltages; the B  state m atrix in Eqn. 8.14

B  =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1

L 0
0 0 0

0 1
Lo

0 0
0 0 1

Lo 0
0 0 0 1

Lo

(8.17)
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The outputs from the state-space model are four airgap clearances. These are generated 

from the state variables using the following C  matrix

C =

1 0  - §  0 f 0 0 0 0 0

1 0  I  0 I 0 0 0 0 0

1 0  - | 0 - f  0 0 0 0 0

1 0  I 0 - §  0 0 0 0 0

(8.18)

8.3 Validation of the electro-mechanical parameters 
in Table 8.1

The electro-mechanical parameters of the magnets in Table 8.1 are taken from [21]. Before 

the experimental work, these need to be validated. This is done by comparing experimental 

and simulation results. Closed-loop identification is chosen due to the unstable nature of 

the Maglev system in open-loop mode (similar work has been done in Section 3.1). Four 

independent feedback compensators are used to stabilise the vehicle; one magnet is then 

analysed independently. The stabilisation is done with a simple lead compensator with 

one pole and one zero. This simple structure has some advantages for the identification 

procedure because: (1) it uses only the position output from the system; (2) it has a simple 

structure and hence minimum poles and zeros are added to the closed-loop system; (3) a 

m athematical closed-loop model can be easily derived and compared with the experimental 

results. The identification process is described below.

1. Using the open-loop parameters in Table 8.1 and the open-loop model in Eqn. 2.12, 

page 18, a lead compensator is designed to provide «  25° phase margin at 13.241 Hz 

cross-over frequency. The design is performed in the frequency domain by iterating 

between the location of the pole and the zero of the compensator and the gain, until 

the requirements for the phase margin and bandwidth are met. The final structure 

and coefficients of the compensator are given below

3.2(s +  158.7)
K(s)  =  -8448-

{s +  1752) (8.19)

2 . For the identification purposes, the lead-lag compensator (Eqn. 8.19) was converted 

to its digital form using the Tustin transformation and 1 ms sampling time. The new 

digital structure was then implemented on the DSP control hardware (Chapter 5).
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Initial test runs with this compensator, however, showed that the experimental system 

is unstable.

3. To make the system stable, the loop gain of the compensator was reduced from 

—2448.76 V /m  to —1453.9 V/m . W ith the new gain, a marginally stable closed-loop 

system was obtained and the vehicle was suspended. The closed-loop transfer func

tions were then identified in the frequency domain with the dynamic signal analysis 

technique described in Chapter 6 , page 127. An additional sine-wave identification 

signal with 0.5 V amplitude and frequency varied from 2Hz to 600Hz was injected in 

the control loop. Fourier analysis was performed over the input and the output to 

generate the experimental sensitivity and complimentary transfer functions (Fig. 8 .6).

4. The comparison between the experimentally derived complimentary function and 

the simulated complimentary function is shown in Fig. 8 .6 . The identified and the
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Figure 8 .6 : Comparison between the simulated complimentary function of the system with 
the lead compensator and with the experimentally derived complimentary function.

simulated models differ in both magnitude and phase responses. To compensate for 

the DC-gain, the resistance of the magnetic winding was reduced from 0.8 Q to 0.32 Q 

to match with the value measured with a digital multimeter. Furthermore, the phase 

response in Fig. 8.6 suggests that the inductance of the winding is rather low and this 

contributes to the lag in phase in the low frequency range. To compensate for this,
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the value for the inductance is adjusted by 63% from the original value to get 1.764 

mH and to shift the electrical dynamics of the magnet to higher frequencies. With 

the above modifications to the model, the simulated frequency-domain response was 

recalculated and the comparison between the experimentally derived complimentary 

function and the simulated complimentary function is shown in Fig. 8.7. Both the
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Figure 8.7: Comparison between the simulated complimentary function of the system with 
the lead compensator and with the experimentally derived complimentary function after 
some updates in the parameters of the model.

mathematical and the experimental responses match very well in both phase and 

amplitude within the operating frequency range and hence the new values for R  

and Lo can be used for the controller synthesis work below. This completes the 

identification work.

8.4 Robust multivariable control for Maglev vehicles

For operational stability of Maglev vehicles, four magnets are controlled simultaneously to 

provide suspension forces. There are two possible approaches: (1) to neglect the cross

coupling in the rigid body and design independent controllers for each magnet (integral 

and local control in [1, 13, 21]), or (2) to design a multivariable controller with multi

ple inputs and outputs and internal cross-compensation structure. Approach-1 is popular 

since it reduces the complexity of the controller design to a single loop design (one cor
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ner at a time) [31]. For the Maglev vehicle, design of local control using state-feedback 

compensators (using design stages from Chapter 2) is shown in Appendix F .l. Although 

the suspension responses is stable, this controller has limitations in attenuating guidance 

induced disturbances. This is shown graphically in Fig. 8 .8 . At the moment marked in the 

figure a shock disturbance of 110 Newtons is applied in the lateral position of the vehicle. 

The phase delays in the control loops and the absence of decoupling in the state-feedback 

approach leads to critically damp oscillatory response in the vehicle. Furthermore, after 

15 seconds this disturbance leads to instability in the vehicle due to oscillations which 

are outside the working range of the sensors. In comparison, the response of the multi- 

variable controller designed in this chapter to the same disturbance is shown in Fig. 8.26 

and demonstrates superior abilities in the control characteristics. Although a criteria for 

assessing stability of multi-magnet systems can be derived analytically, this would require 

a detailed model of the suspension system including flux leakage which contributes to the 

lateral stiffness. This research is outside the scope of the work presented here. The design 

of the multivariable controller is described below.

distil rb a n ce

_2 _________i_________i_________ i_________i_________i_
0  5  1 0  1 5  2 0  2 5

T i m e  [ s e c ]

Figure 8 .8 : Shock disturbance of 110 N in the lateral position and four state-feedback 
controllers as per Appendix F .l.
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8.4.1 Multivariable vehicle controller design using //-synthesis

Initially, a Woo multivariable controller for the vehicle was designed using the theory from 

Chapter 6 . This work is described in Appendix F.2. Although the suspension response is 

stable and the design process provides well-defined criteria for specifying desired suspension 

qualities, //—optimal design (Chapter 7) has been used for the main research work, because 

of its abilities to deal with uncertainty and thus to improve the robustness of the system. 

It is believed that for multi-magnet vehicles this is particularly necessary since the oper

ational conditions (payload and operating airgap) vary, which results in non-fixed model 

parameters (ki , kz and mass M).  Previous analysis (Section 7.4, page 145) has shown 

that the robustness of the system is particularly sensitive to variations in these parameters 

leading to unstable conditions.

The conceptional block diagram used for the multivariable design is shown in Fig. 8.9. 

The compensator is a two-degree-of-freedom controller with separate inputs for the reference 

vehicle modes and the suspension airgaps [97]. This controller is partitioned to K =  

[Kr, Ky] and consists of Ky as the feedback part of the compensator and K r as the 

prefilter on the reference input. In overall, K has seven inputs and four outputs as in 

Fig. 8.10. W ith the additional reference input and prefilter K r, the response of the desired 

transient response chassis can be specified explicitly using a performance weight. The 

results presented below will show that this controller, compared to the classical design, 

gives a well defined and overdamped response with low acceleration levels in the chassis 

and hence suitability for Maglev vehicle design. The performance requirements of the 

design are specified by four weighting functions (Fig. 8.9). A detailed account on choosing 

those is given below. The controller design uses the state-space multivariable model derived 

in Section 8.2.2.

8.4.2 Selection of performance weights

Four performance functions specify the performance requirements of the suspension vehicle 

control system in Fig. 8.9: (a) W j is a prefilter on the disturbance signal; (b) W r specifies 

the required closed-loop response of the system, W c gives stability and robustness margins 

by limiting the control outputs and W  defines the shape of the sensitivity function and 

hence the bandwidth of the system. H + is the static mapping from modes in the vehicle 

(heave, pitch and roll) to the corner airgaps (Eqn. 8.11). Although the electromagnetic 

characteristics of the model are identified with experimental data (Section. 8.3), uncertainty
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Figure 8.9: System configuration for the multivariable two-degree of freedom controller 
design.
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Figure 8.10: Multivariable feedback compensator in matrix form. The numerical form of 
the compensator is given in Appendix F.3, page 316.
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is added to allow for variations in the operating track-magnet clearance and the operating 

mass. For this, the multiplicative model derived in Section 7.2.3, page 134 is used

G(s) =  G (s)(7 +  w M(s) A), < 1

For the procedure of the selection of the performance weights, the closed-loop transfer- 

matrix is first derived with the help of Fig. 8.9. The input vector to the system is

[e, d, r]T

where e =  [ei, e2, e3, e4]T is the output from the perturbation m atrix A; d = [d\, d2, d3, d4]T 

is the disturbance vector; and r =  [z, </>, 9]T is the reference input. The output vector from 

the system is

[s, qi, q2]T

where qi = [#i, <?2,93, <?4]r is the output from W, q2 = [#5, #7, q%Y is the output from

W c and s is the output from the uncertainty weight w jj. qi and q2 are the penalty 

outputs which are to be minimised using the Hoo algorithm. From Fig. 8.9 the following 

relationships are derived
s =  W M U

q i =  W cu (8.20)
q 2 = W ( W rr - G ( u  +  e))

The control signal u is generated by the controller which is partitioned to

u = [Kr Ky] x [r -  W dd -  G(u +  e)]T

with Kr as a prefilter on the reference input r and Ky as the feedback part of the controller. 

Substitution of u above in Eqn. 8.20, after some transformations and simplifications gives 

the following closed-loop transfer m atrix N

s r -WMKyGd + KyG) - 1 -WMKy(/ + KyG)-1W d w MK r(7-f-KyG ) - 1 1
qi 
q2 .

— -W cK yG ^ + KyG) - 1 
-W G d  + KyG) - 1

-W cKy(7 + KyG )-1W d 
WKyG(7 + KyG) - 1 Wd

WcKr(7 + KyG) - 1 
W (Wr -  GKr(7 + K yG )'1)

(8 .21)

Definitions of sensitivity function: S =  (I  +  K yG )_1 and complimentary function: T  = 

K y G ^  +  K y G ) ' 1 transforms N  to its more-compact form

N  = [ N n

1---(N£

[ n 21 n 22 J

- w mT
—W CT  
-W G S

w MK yS W d w MK rS
- W cK yS W d W cK rS 
W T W d W  (W r -  G K rS)

(8 .22)

N  represents the closed-loop transfer matrix of the multi-magnet system. The equivalent 

m atrix was derived in Chapter 7 for the single-magnet control work (Eqn. 7.15, page 143)
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and used for the analysis of the robust properties of the %oo compensator. As described 

in Chapter 7, N n  is used to study the robust stability of the system with f i ( N n ( s ) )  <  1 

being the condition for robust stability. The optimal controller design aims to derive K 

such that ||N 22(s)||oo < 1- N 22(s) can be thus used in the specification of the design criteria 

and hence the performance weights. This is described below.

1. Selection of W r: The reference input to the system r  is constructed from the reference 

heave, roll and pitch signals. W r specifies the required closed-loop response of the 

vehicle independently for each of those signals. In this thesis, an assumption is made 

th a t the response of the vehicle is required to be same for all modes in the vehicle 

and thus W r reduces to a 3 x 3 diagonal matrix

W r =
Wr{s) 0 0
0 Wr(s) 0
0 0 W r(s)

To allow some overshoot in the response, a second-order model is chosen for Wr(i)(s), i 

1..3
W  ^  =  “r =____________ (1/40)2___________  ,o , 3)

s2 +  2Qwr + uflr s2 +  2 x 0.9 x (1/40)2 +  (1/40)2 K ’

where ljt defines the settling time of the closed-loop response and £r determines the 

overshoot in the response. For operational quality, the ideal response in the pitch 

and the roll is required to behave as a overdamped second-order system with £ =  0.9 

and ujr =  40 rad/s.

2. Selection of W: The difference between the ideal response in the vehicle modes 

specified by W r and the actual system response (Wr — G K rS) is penalised by W. 

Since the difference has the characteristics of the sensitivity function of the system, 

W  is chosen in a similar fashion to W  in Section 6.4.2, page 102. Typically for 

good disturbance attenuation and tracking, at lower frequencies the gain of the error 

(Wr — G K rS) is made small. W _1 is thus selected to have a low gain at lower 

frequencies and as the frequency increases, the gain of W -1 should increase unit it 

approaches unity at the bandwidth frequency of the system. Above the bandwidth 

frequency, the gain of W -1 determines the peak on the sensitivity function. Since 

W  penalises four outputs (the reference inputs r  are converted to reference airgaps 

using H + in Fig. 8.9) W  consists of four transfer functions W(i),  i = 1..4 located on

182



the main diagonal on a 4 x 4 identity matrix

W  =

W(s) 0 0 0
0 W(s)  0 0
0 0 W(s)  0
0 0 0 W(s) .

Using the developments from Section 6.4.2, page 102, for the vehicle control work W  

is selected as a first-order filter with the following structure

wri \  _  *  T S  +  a w  nW \s)  — ----------— —, a w »  (3W
OL\V  T S  +  p w

Based on the design in Chapter 6 , the numerical form of this function is selected 

below

W(s)  =
1 1/ 100S +  10(3/20)

10(3/20) 1 /1 0 0 S +  1 0 (-10° /2°) 

such tha t in the low frequency range, the gain approaches -100 dB for good distur

bance attenuation in track-airgap disturbances, and above the cross-over frequency 

of 100 rad/s, the gain is limited to +3 dB from above to reduce the overshot in the 

response to disturbances.

3. Selection of W c and W j: W c and W d together penalise the input sensitivity function 

K yS (Eqn. 8.22) and thus determine the robust properties of the closed-loop system. 

In practise, the peak of K yS is located just above the bandwidth frequency (see the 

plot for K S  in Fig. 7.9, page 142). Similarly to the single-magnet 77oo design, W c is 

chosen as a constant which limits the amplitude of the control actions and hence the 

accelerations in the vehicle. Since the penalty on K yS is specified by two functions 

(Eqn. 8.22), the requirement for W d is to provide a gain of unity at high frequencies 

where the peak of K yS is presented. For the multivariable control problem, W c and 

W d are four-by-four diagonal matrices

W ,

W d =

~WC 0 0 0 ■
0 wc 0 0
0 0 Wc 0

.  0 0 0 Wc .

s) 0 0 0 -

wd(s) 0 0
0 wd(s) 0
0 0 wd(s) \

As discussed in Section 6.4.2, page 102, Wc is selected to be a constant over the whole 

operating bandwidth for the suspension system



to specify an upper bound of +26 dB on K yS to guarantee that the maximum control 

effort would be at maximum 20 times the closed-loop error.

4. Selection of Wd: Wd has the following structure

t  t  r / \ T S  +  a w d  o
Wd(s) — -----— ----, Otwd «  PwdTS +  pWd

W d together with W  penalise the response of the complimentary function T. For 

good responses to tracking, the demand vehicle’s modes T  have to be unity at low 

frequencies up to the bandwidth of the system and steadily decreasing gain above it 

with an attenuation rate of > -40dB /  decade. Since W -1 was previously selected 

in Step-2 above to have low-gain at low frequencies, to keep T  unity at this range 

W d " 1 should be selected to have a large gain at low frequencies. It is also required 

that the order of W d is same as the order of W . This results in

_  l/100s+  10(- 100/20)
~  1/I00s +  I0<5/20)

The Bode plots (magnitude only) of the performance weights are given in Fig. 8.11. 

The numerical values for the performance weights have been selected after several itera

tions between the specification of the performance requirements and analysis of closed-loop 

suspension stability and performance series (as in Chapter 6). This work has been excluded 

from the presentation here for the sake of space, but im portant design considerations are 

given below.

A good starting point for W  and W c are the performance weights used for the single

magnet Jioo design (Chapter 6 , page 102). To avoid saturation effects in the output circuits 

and amplifiers, W c has to be kept small. Small values for W c, however, limit the control 

actions and these lead to large 7  values for the /H00 optimisation results (see results and 

discussion in Figs. 6.15 and 6.16, page 117). Typically the designer would start with small 

values for W c and then increase them until a good compromise between 7  values and 

control actions for each magnet are achieved in simulation. W  determines the properties 

of the sensitivity function (see results and discussion in Figs. 6.16, page 117). It also has 

an effect on the bandwidth of the system. Increasing the closed-loop bandwidth increases 

the bandwidth of the compensator and care has to be taken to keep it below a half of the 

Nyquist sampling frequency used for the digital control work ( |  x 1 kHz for the design 

presented here). W  and W d determine the response of the complimentary function T  at 

low frequencies and hence W d x W  has to be approximately OdB in this range. W d is 

typically selected to have magnitude response that is close to the inverse of W .
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Figure 8.11: Magnitude response of the performance weights

8.4.3 Selection of the uncertainty bound

The procedure used for the selection of the uncertainty bound wm uses the design steps 

developed for the single-magnet system in Section 7.2.3, page 134. W ith the assumption 

that the operating conditions are not constant, ki, kz are modelled to be uncertain with 

as much as ±30% from the nominal values and the total vehicle mass M  being uncertain 

by as much as ±200% from the nominal mass. Iterating these parameters provides a basis 

for modeling the uncertainty using Eqn. 7.5, page 137. These are shown in Fig. 8.12. 

Following the design steps in Section 7.2.3, page 134, the uncertainty bound wm  is selected 

as an upper bound to all responses; this function is shown graphically in Fig. 8.12 and 

numerically below
s +  21.08 r

wm =  0.85----- ——— x 74x4
s ±  39.72

w m  is a four by four matrix with elements located along the main diagonal.

The remaining electrical parameters (R  and L0) have been excluded from the uncer

tainty model since these have been identified and also have least effect on the closed-loop

robustness with the Hoo compensator (Tables 7.2 and 7.3, pages 147 and 150).
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Figure 8.12: Selection of the uncertainty weight wm

8.4.4 fi—synthesis

The controller is numerically derived in Matlab using the (i—Analysis and Synthesis Tool

box and the design stages described in Chapter 7, page 152. The design aim is to derive K 

to give /i(N ) <  1 for N  Eqn. 8.22. The derivations steps are executed by a custom-build 

routines for Matlab. The inputs are: (a) the performance weights to specify desired sus

pension characteristics W , W d, W c and W r , (b) the uncertainty in the model to capture 

variations in operating conditions wm, and (c) the open-loop state-space model G of the

3-DOF system in Eqn. 8.16. The multi-magnet compensator K  has seven inputs and four 

outputs (Fig. 8.10).

Applying the numerical form of W , W d, W c and W r as derived in Section 8.4.2, the 

state-space model of the vehicle constructed in Section 8 .2.2 with parameters in Table 8.1 

and the uncertainty model wm, two iterations in the DK procedure were necessary to find 

K  with 64 state variables, seven inputs and four outputs. The overall robust index with 

this compensator is fi(N) =  1.1. For practicality, the order of the controller is reduced 

to 14 state variables without affecting the robust index /i. This value has been deter

mined by experimental analysis of results and a compromise between sampling frequency 

and operational bandwidth. For the digital control work, the compensator is conveniently 

transformed from linear state-space representation to a discrete state-space representation
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with 1 ms sampling time. The numerical forms of the continuous and the discrete controllers 

are given in Appendix F.3, page 316. The total number of the controller’s coefficients are 

378 and these are stored into a coefficient include-file to be used during the DSP compi

lation stage. The numerical form of the controller is included in the Appendix (Eqn. F .l, 

page 316). Although a further reduction in the controller’s order is possible by appropriate 

pole-zero cancellation (as shown in Eqn. F .l), for the digital work the state-space form is 

used and thus the minimal order for this realisation is 14th.

8.5 Simulation and experimental results

To assess the new controller in terms of providing acceptable ride qualities and suspension 

characteristics, the following four performance assessment stages are considered:

(a) Assessment of the responses of the system to the following changes: the reference heave, 

the reference roll and the reference pitch positions.

(b) Analysis and comparison of the simulated and experimentally derived frequency re

sponse functions.

(c) Assessment of the performance and the robustness properties of the closed-loop system 

in attenuating force and track disturbances.

(d) Analysis of the robust properties of the closed-loop system in attenuating track distur

bance with extra mass added to the system.

A Simulink model has been constructed for the simulation work as in Fig. 8.13. This 

model retrieves automatically the coefficients for the digitalised controller from the coefficient- 

file generated during the synthesis procedure. At the end of the simulation cycle, the 

simulation results are automatically stored into a file for comparison with experimental 

results. In 8.13, both the linear and the discrete controllers are simulated. The open-loop 

multi-magnet model is based on the block-diagram in Fig. 8.4.

The experimental work is carried out on the experimental vehicle in Fig. 8.2 with param

eters in Table 8.1. The digital control work uses the DSP hardware described in Chapter 5, 

page 74. K (s) is digitalised with 1 kHz sampling frequency for compatibility with the 

bandwidth requirements of the open-loop system and the controller. Analysis has shown 

that the state-space implementation in the digital domain gives considerably better results 

than implementation using independent controllers. The state-space controller is more 

compact and more convenient to code in comparison with implementing the 28 controllers
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Figure 8.13: Simulation block diagram for the multivariable vehicle controller. Both the 
continuous and the discrete controllers are used in the comparison (the numerical forms 
of these controllers are listed in Appendix F.3, page 316). The Maglev dynamics uses the 
simulation model in Fig. 8.4 with parameters in Table 8.1.
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required for the seven inputs and the four outputs. A 14-th order state-feedback con

troller requires 345 DSP cycles and takes only 125 microseconds to execute. This provides 

considerable spare time within one sample period to execute supervisory functions, fault 

detection algorithms and communication routines with a host computer. It has been also 

established that state-space implementation provides better results in terms of quantisation 

and rounding-up errors. The coefficients of the controller are automatically retrieved from 

the coefficient file generated during the synthesis. The DSP software provides facilities for 

transferring experimental data from the DSP to M atlab simultaneously with the control 

work. In addition, supervisory commands can also be send from the host to change the 

operating conditions. This mechanism is used for all experimental results in this section.

The first experimental cycle investigates the performance of the system in changing 

the reference inputs. To assess the overall response, a step change in the reference heave 

position z is generated from 4 mm to 3 mm at t = 0.1 and then back from 3 mm to 4 mm 

at t = 1.6. The simulated heave response of the closed-loop system and the responses for 

the roll (j) and the pitch 6  components are shown in Fig. 8.14 (top). The corresponding 

independent airgap responses for z\ to z4 are shown in Fig. 8.14 (bottom). This preliminary 

result shows that the closed-loop system is stable. Furthermore, Selection of £ =  0.9 in 

the specification for the ideal reference response embedded in W r specifies an over-damped 

response with a settling time of 110 msec. The simulated responses show tha t these require

ments are met and the closed-loop system manages to settle within 110 mseconds without 

an overshoot. The overdamped response characteristics are well within the requirements 

for Maglev systems for good ride qualities. The responses for the pitch 9 and roll (j) in 

Fig. 8.14 (top) suggest that changes in reference heave position are almost decoupled from 

the pitch and roll channels by the feedback controller. For Maglev systems this is required 

since pitch and roll variations lead to degraded suspension qualities.

The corresponding experimental response of the vehicle when changing the reference 

heave position from 3 mm to 4 mm as in the simulation studies is shown in Figure 8.15 

(top). The corresponding response in the pitch and the roll are shown in the same figure 

while Fig. 8.15 (bottom) shows the independent air-gap responses Z\ to z4. These results 

suggest a very close comparison between the theoretical results and the experimental re

sults. Similarly to the simulated responses, the experimental responses provide a settling 

time of 110 milliseconds and over-damped response. The responses for the pitch and the 

roll show the ability of the multivariable controller to decouple these loops from the heave
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Figure 8.14: Simulated step responses to a 1 mm reference heave change. Top: heave, roll
and pitch responses; Bottom: airgap responses.
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response. As requested by the design specifications, a step change in heave position has 

almost no effect on the pitch and the roll components. The experimental acceleration 

levels in changing the reference heave produced by the vehicle’s four accelerometers are 

given in Fig. F.4 (top), page 315. The steady-state values of < 2.5m /s 2 are within the 

ISO targets [16]. For high-speed application, further reduction in the acceleration in the 

cabin can be accommodated by using a second suspension to decouple the chassis from the 

magnet-guidance interaction. The independent response z\ to z4 in Fig. 8.15 (bottom) are 

almost identical and hence the four loops in the system pose similar characteristics.

A simulated step response in changing the roll and the pitch reference positions in 

the system are shown in Figs. 8.16 and 8.17. The corresponding experimental responses 

are shown in Figs. 8.18 and 8.19. Although changes in these reference demands are not 

required in Maglev applications, these experiments have been performed to assess the ability 

of the multivariable controller to decouple the vehicle modes. As depicted in the figures, 

changing one of the reference inputs has no effect on the behaviour of the remaining loops. 

The step response for all three demands: heave, pitch and roll is almost identical and 

hence, as required by the design, all three loops have identical closed-loop characteristics. 

The experimentally derived acceleration levels in changing the reference pitch and roll are 

shown in Fig. F.4 (middle and bottom). Again these changes have almost no effect on the 

acceleration level in the Maglev cabin and hence offer comfortable ride qualities.

In the second phase of experiments, the frequency characteristics of the closed-loop 

system is assessed. For this analysis, only one corner is studied independently. For the 

comparison, three different responses are obtained: (a) simulated frequency response of the 

closed-loop system using the mathematical model; (b) simulated frequency response of the 

system using the Simulink model in Fig. 8.13; and (c) experimentally derived frequency 

response of the system using the experimental vehicle. The last two experiments use the 

frequency-domain analysis technique developed in Section 6.6, page 121 and involve inject

ing a sine-wave identification signal into the loop and performing Fourier analysis. The 

analysis is performed for frequencies between 0 Hz to 100 Hz in 50 seconds. This allows an 

assessment of the system over a wide frequency range to identify parasitic elements having 

resonance characteristics. The results from the three experiments are shown in Figs. 8.20 

and 8.21. A comparison plot between the analytical Bode plot and the experimentally 

derived Bode plot of the closed-loop system is shown in Fig. 8.20 (top). A comparison 

plot between the experimentally derived Bode plot from the Simulink model, the simulated
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Figure 8.15: Experimentally derived step responses to a 1 mm reference heave change. Top:
heave, roll and pitch responses; Bottom: airgap responses.
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Figure 8.18: Experimentally derived step responses to a 1 mm reference pitch change. Top:
heave, roll and pitch responses; Bottom: airgap responses.
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Bode plot and the experimentally derived Bode plot using the experimental vehicle is shown 

in Fig. 8.21 (top). A close comparison is observed between simulation and the experimental 

results in the frequency-domain. At low frequencies, the complimentary function has a 0 

dB gain which leads to zero steady-state error in the response. As the frequency increases, 

the gain also increases to reach approximately 5 dB at 7.6Hz. Above the bandwidth fre

quency of 25 Hz (at -3 dB) the disturbances are attenuated by the reduced gain. It has 

to be noted that although the complimentary function has a gain >0dB, the step response 

in the reference position is still under-damped because of the pre-filtering characteristics 

of the compensator K r . A comparison plot between the experimentally derived sensitivity 

function from the Simulink model, the simulated sensitivity function and and the experi

mentally derived sensitivity function using the experimental vehicle is shown in Fig. 8.20 

(bottom). This function has a low gain at low frequencies to attenuate the disturbances 

entering the system, reaching -3 dB cross-over frequency at 5 Hz. Its gain has a peak of 4 

dB at 8 Hz and 0 dB above this frequency. From the experimental response in Fig. 8.20 

(top) it was also observed that around 50 Hz there exists a parasitic resonance effect in the 

system. A close comparison between the frequency response plots here and the frequency 

response plot in Fig. 6.26, page 126 suggests that this effect is contributed by the magnet 

current amplifier and its filtering characteristics on the mains supply (both experiments 

use the same power-amplifier). In future Maglev designs, care has to be taken to attenuate 

these parasitic effects by employing more advanced filtering circuits on the supply.

In the third phase of experiments, the ability of the closed-loop system to suppress step 

disturbances in the track position has been analysed. This test is performed by injecting 

a parasitic step change in one pair of the position outputs to emulate the effects of mis

alignments in the guideway [21]. A step change of 1mm is applied to z i (Fig 8.9)at t=0.1 

sec and then removed at t=0.6 sec.. The corresponding simulated responses are shown in 

Fig. 8.22 and the corresponding experimental responses are shown in Fig. 8.23. In both 

simulation and experiment, the closed-loop system needed approximately 100 milliseconds 

to attenuate the effects of the disturbances. The system also manages to drive the outputs 

z\ and Zs back to levels with zero steady-state errors in the heave responses. The heave 

position, which is of the greatest importance for Maglev applications, remains almost un

changed during and after the disturbance. Since the disturbance is applied to only one 

position output, it has a greater effect on the pitch and roll positions, which settle down 

after 200 milliseconds with larger peaks. Similarly to previous experiments, the experi-
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mental and simulated responses have very close dynamic characteristics. The larger peaks 

in the responses at t=0.6 sec when the step disturbance is removed, is contributed by the 

corresponding force disturbance added to the earth’s gravitational force component.

The close comparison between the theoretical model and the experimental system gives 

some confidence in the simulation model and suggests that it can be used to emulate work

ing conditions in the vehicle which are difficult to perform on the test rig. Based on this, 

two experiments have been carried out. The first experiment studies the disturbance atten

uation characteristics of the controller by analysing the step response in adding 200 N force 

disturbance to the suspended system. The simulated heave, pitch and roll positions as well 

as the independent air-gap outputs are shown in Fig. 8.24. The closed-loop system requires 

200 milliseconds to attenuate the effect of the 200 N force disturbance with an overshoot 

of 1 millimetre. Since for the simulation the force disturbance is equally distributed along 

the suspension vehicle, it has no effect on the roll and pitch components and hence these 

remain unchanged.

In the second experiment, the robust properties of the controller are analysed. For 

this, an additional component of 100 kg mass has been added to the suspended mass. A 

simulated step change in the track guideway has been generated with this additional load. 

The simulated response of the vehicle is shown in Fig. 8.25. The results show that the 

closed-loop system remains stable with closed-loop characteristics almost unchanged to the 

response in Fig. 8.22 for the nominal model. The controller manages to attenuate the 

disturbance within 200 milliseconds with low disturbance values for the heave component 

(below 0.4 millimetres peak to peak).

Overall, the experimental and simulation studies show that the new multivariable con

troller provides good ride qualities which are well within the requirements for Maglev appli

cations. Furthermore, the compensator provides notably better robust stability properties 

for laterally induced disturbances compared to the state-feedback controller. At the instant 

marked in Fig. 8.26, a shock disturbance of 110 Newtons is applied in the lateral position 

of the vehicle. The multivariable controller manages to attenuate this within 11 seconds 

without any visible disturbance in the heave and the pitch positions. In contrast, the same 

disturbance leads to unstable response with the state-feedback controller (Fig. 8.8).

Some comments and considerations for the multivariable design are now given. To 

achieve low values for /x(N), i.e. to increase the robust properties of the system without 

changing the performance requirements, the controller and consequently the closed-loop
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system have to work within wider operating bandwidth. This leads to faster control ac

tions and hence better disturbance attenuation properties. It has been observed, however, 

that although in simulation the designer can increase the bandwidth nearly indefinitely, 

in practice some limitation are posed from the dynamic characteristics of the system, i.e. 

power amplifiers, transducers, Maglev vehicle. Large bandwidths allow high-frequency 

noise to enter the closed-loop system and this leads to resonance effects in the chassis caus

ing oscillation with their natural frequencies. This, foe example, was observed with the 

coupling between the chassis and the brackets used to secure the magnets on the vehicle. 

Apart from the undesirable noises produced from suspended vehicles, the high frequency 

current inputs lead to higher peak-to-peak acceleration levels in the suspension modes and 

hence degraded ride qualities. For the experimental vehicle with param eters in Table 8.1, 

it has been observed that the acceptable operating range in terms of bandwidth is ap

proximately 12-15 Hz with a 7 to 9 Hz cross-over frequency. In addition to the parasitic 

disturbances, increases in the system’s bandwidth require reduction in the sampling time 

for the digital controller. This was also observed for the SISO ^-optimal controller in Sec

tion. 7.5.1, page 153, where the sampling time had to be reduced from 1 millisecond to 0.5 

milliseconds to meet the requirements from the controller. In some applications, this might 

pose a practical limitation.

8.6 Multivariable Maglev control with guidance sup
port

The experimental vehicle used in this thesis does not employ facilities for actively controlling 

the lateral movement in the chassis. Although such guidance is provided by inherent lateral 

stiffness from the suspension magnets, an industrial application of magnetically levitated 

vehicles would typically incorporate such abilities for controlling the movement along the 

y axis (Fig. 8.1) [1]. To address these applications this section develops a mathematical 

model and a control framework for multi-magnet control with guidance support using the 

design stages described above.

Multivariable Maglev model w ith guidance support

The multi-magnet system with support for active guidance control is shown schematically 

in Fig. 8.27. Together with the four suspension magnets (M\ to M4), four more magnets 

are used (M5, M6, M7 and M8) to control the guidance properties in the chassis. These
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Figure 8.26: Shock disturbance of 110 N in the lateral position and the multivariable 
controller as in Fig. 8.9.

magnets produce four forces of attraction ( /5, / 6, f 7 and /g) which in turn give the con

trolled lateral movement in the chassis along the y axis and the yaw movement ip about 

the z axis. To construct the model for this configuration, two more components (torque 

Tz and force Fy) have been included to the equation of motion in Eqn. 8.2 to describe the 

mechanical dynamics [96]

Fz =  M z
Fy =  M y
Tx Ixx^x T  (IZZ Iyy)^y^x
Ty lyy^y "F ^Jxx 1 zz)^z^x
Tz Izz^z +  (lyy Ixx)^x^y

where y represents the acceleration of the translation component along the y — axis. The 

angular velocity u z is described by the Euler angles in Eqn. 8.4. Since now all three 

components, pitch 9, roll <p and yaw ip are presented, the angular accelerations u  used to 

describe the motion in the chassis are produced by differentiating Eqn. 8.4. Using the fact 

that for small angles sin (a) «  a and COs(fl) ZS 1, the angular accelerations described with 

Euler angles are derived by differentiating Eqn. 8.4

wx =  <f> + ip9 + ipO
ujy =  9 — 9<j)(f) — ip(p — xpip +  ip9(p9 (8.25)
u>z = ip +  9(f) +  94> — ipipcp — ip99



4 M4

Figure 8.27: Block diagram of a magnetically levitated vehicle with active guidance control. 
Mi to M4 provide four suspension forces f i  to / 4 which give pitch 6 , roll 0 and heave z; 
Another four magnets, M5 to M8 give another set of four forces / 5 to / 8 which provide 
translation along the y —axis and rotation along the z—axis 0.

The Euler angles, 0, 0 and 0, can be uniquely determined from the eight airgaps. The 

heave z, the pitch 6  and the roll 0 are derived in Eqn. 8.1. The remaining components, the 

lateral translation y and the yaw 0, are described by the remaining eight airgaps z5 to z8 

using Fig. 8.27
1! =  - (  7 r  — 7  c 4 -  7  ~, — 7n \

(8.26)
= i^ f ! fp (2 5 -Z 6 -Z 7  +  Z8)

The transformation matrix from airgaps to heave, lateral movements and Euler angles is 

given below

z
" 1

4 0 0 0 0 1 1 1 1 0 0 0 0  '

y 0
1
4 0 0 0 0 0 0 0 1 - 1 1 - 1

<\> — 0 0
1

26 0 0 - 1 1 - 1 1 0 0 0 0

6 0 0 0
1
21 0

1

2 0 / 2 + 6 2 )  _

1 1 - 1 - 1 0 0 0 0

0  _ 0 0 0 0 0 0 0 0 1 - 1 - 1 1

H

Z \-

Z2

Z3
Z4

Z5

Z6

z?
Z*

(8.27)

The force of attraction along the z — axis Fz and the torque components along the 

x  and y axes Tx and Ty have been described by the four forces f \  to / 4 as in Eqn. 8.7. 

The remaining two components, the lateral force of attraction Fy and the torque along the 

z axis Tz are described by the remaining forces of attraction, / 5 to / 8, produced by the 

guidance magnets.
Fz = ( /5 -  06 +  Si ~  fs) (Q
Tz = v / P T F ( / 5 -  / 6 -  f T + /„)

Combination of Eqns. 8.24, 8.25 8.8 and 8.9 gives the six-degree-of-freedom (6DOF)
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multivariable model of the electromagnetically suspended vehicle. The block diagram of 

this nonlinear model is shown in Fig. 8.28. The inputs to this model are eight control 

signals, four for the suspension magnets and four for the guidance magnets. The outputs 

are the heave 2 , the lateral movement y , the pitch 0, the roll (p and the yaw ip. These outputs 

are transformed to airgaps via the inverse mapping H + = HT(HHT)~l in Eqn. 8.27. The 

remaining degree of freedom is produced by the linear motor (not described here) which 

gives the propulsion motion along the x —axis.

8.6.1 State-space model of the 6DOF model

For the controller-design work, the multivariable model developed above has to be converted 

to its state-space representation

; :  o , + B u  (»•»>
where: u =  [iq, u2, u 3 , zq, z q ,  U q , U j , U g ] T  is a vector of eight control inputs and y = 

[z\, z2, Z3 , Z4 , Z5 , z6 , z7, z8]t  is the vector of eight airgap clearances. The multivariable 

model has 18 state-variables as given below

x = [ z ,  i , y, y, <p, <p, 0, 0, ip, ip, ii, z2, z3, i4, z5, z6, z7, z8]T (8.30)

To construct the state-space model, Eqn. 8.24 and Eqn. 8.25 are linearised around (0, (p, ip) = 

(0,0,0) to get
Fz = M z
Fz =  M y
Tx = Ixx<p (8.31)
Ty ~  lyy®
Tz - I zzip

This simplification has been used in Section 8.2 to construct the 3DOF linear model. 

Typically, the linear state-space model is used for design purposes while the nonlinear 

model is used to analyse the behaviour of the closed-loop system in simulation. This 

approach has been previously adopted to assess the characteristics of the 3DOF controller.

Since the independent airgaps are not directly available as state-variables, to construct 

the state-space model these are generated using the the inverse H+ of the mapping in 

Eqn. 8.27 as in Eqn. 8.16. After some transformations, the state-space matrices for the 

electromagnetic system with guidance provision are given below.
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Figure 8.28: Block diagram of a magnetically levitated vehicle with guidance support. 
Eight magnets (Mi to Mg) provide eight suspension forces (/i to / 8) and hence five degree 
of freedom: 9, </>, 'ip, z and y.
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where lb = y/l2 +  b2. Similarly, the B  and C  matrix for the state-space model are

derived below

B =

C  =

1 0 0 0
1 0  0 0
1 0 0 0
1 0  0 0

0 0 - 1 0
0 0 1 0

0 0 
0 0

0 0 0 0 0 0 0 0 n
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1

L o
0 0 0 0 0 0 0

0 1
L o

0 0 0 0 0 0
0 0 To 0

0 0 0 0
0 0 0  T o 0 0 0 0
0 0 0 0 1

L o
0 0 0

0 0 0 0 0 1
L o

0 0
0 0 0 0 0 0 1

L o 0
0 0 0 0 0 0 0 1

L o  -

1
2 0 0 0 0 0 0 0 0 0 0 0
7
2 0 0 0 0 0 0 0 0 0 0 0

_ i
2 0 0 0 0 0 0 0 0 0 0 0
7
2 0 0 0 0 0 0 0 0 0 0 0

0 0 \/ /2 + b2/  2 0 0 0 0 0 0 0 0 0
0 0 - y / l 2 + b2/2 0 0 0 0 0 0 0 0 0
0 0 - \ j l 2 +  b2/2 0 0 0 0 0 0 0 0 0
0 0 V/2 + b2/  2 0 0 0 0 0 0 0 0 0

(8.33)

(8.34)

0 0  - 1  0 0 0 0 0  

8.6.2 Controller design and simulation results

The closed-loop control configuration with guidance support is shown in Fig. 8.29. Similarly 

to the previous design, K  is also a two-degree of freedom controller but this time with 

13 inputs: five reference inputs 2 , y , 9, 0, ip and eight airgap inputs z\ to z8. The 

compensator produces eight control outputs U\ to u8 to drive eight suspension and guidance 

magnets. This design configuration differs from the 3DOF configuration in Fig. 8.9 only in 

the number of control inputs and system outputs. This permits the use of the mathematical 

developments in Section 8.4.2 directly. The closed-loop transfer matrix N  for Fig. 8.29 is 

given in Eqn 8.22. N 12 can be used to specify the performance weights and to describe 

the closed-loop design requirements. Since the four guidance magnets are considered to 

have the same characteristics as the suspension magnets and the specifications from the 

closed-loop have remained unchanged, the performance matrices have been selected in the 

same manner as the performance matrices in Section. 8.4.2. W , W r , W d and W c are
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8 x 8  diagonal matrices. The individual diagonal elements are given in numerical form in 

Section. 8.4.2.

r =

W,

w M

W,

w

Figure 8.29: System configuration for the multivariable two-degree of freedom controller 
design.

For the synthesis work, Matlab and the //—synthesis and Analysis Toolbox are used. 

Software routines are written to construct the open-loop state-space model in Eqn. 8.29. 

The parameters for the vehicle and the suspension magnets are listed in Table 8.1. The 

four guidance magnets M5 to Mg are assumed to have the same electro-mechanical charac

teristics as the suspension magnets. The Matlab routines accept as input the performance 

weights and the open-loop model to construct the generalised open-loop block diagram in 

Fig. 8.29. The //-optimisation algorithm needs two iterations in the optimisation proce

dure to achieve a robust controller that achieves fi(N) = 1.09. The two-degree-of-freedom 

controller has 106 state-variables. Since this order is considered as very high for simulation 

and practical implementation, the order of the controller is reduced to 20th order using the 

Hankel norm reduction algorithm [95].

Since the experimental vehicle does not have facilities for achieving guidance control, 

only simulation results are presented to validate the new multi-magnet controller. The 

close comparison between the theoretical and the experimental results presented in the 

previous section gives confidence in the model and motivates the simulation work in this 

section. The analysis is performed in Simulink with a custom built simulation model. This 

simulator uses the 6DOF nonlinear multivariable model and the two-degree of freedom 

//—optimal controller and has facilities for assessing the behaviour of the system in adding
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additional mass, force, track disturbance as well as changes in the reference demand. For 

reasons of space, only a selected set of responses are presented here. In overall terms, the 

simulation demonstrates that the new multivariable controller produces closed-loop Maglev 

suspension characteristics which are comparable with the 3DOF results. Since the design 

configuration for the controller and performance weights are same for the 3DOF and for the 

6DOF designs, the responses in changing the reference heave, pitch, roll, track disturbance, 

force and mass disturbances are identical with the responses in Figs. 8.14 to Fig. 8.19.

The closed-loop response to changes in the reference heave position and the reference 

guidance position is shown in Fig. 8.30 (top). The independent airgap responses are shown 

in Fig. 8.30 (bottom). At t=0.1 sec. the reference airgap z is modified from 3 mm to 4 mm 

and at t=0.6 sec. the reference guidance position has been altered from 0 mm to 3 mm. The 

outputs from the system need 200 milliseconds to settle to the steady state values. Since 

the specification W r for the ideal response from the system is identical for all reference 

inputs, the responses in the heave and the guidance position have identical characteristics. 

In addition, the multivariable controller decouples completely the heave and the guidance 

responses from the roll, the pitch and the yaw components which remain unchained in 

Fig. 8.30. In the second phase of simulations, the disturbance attenuation characteristics 

of the closed-loop system are studied. A step change of 1 mm in the track position is 

added to Z\ a t t= 0 .1 sec. and then removed at t=0.6 sec. The corresponded simulated 

responses are shown in Fig. 8.31. The results confirm that the closed-loop system manages 

to attenuate these disturbances within 200 milliseconds and the heave position remains 

almost unchanged. In addition, the disturbance added to z\ does not effect the guidance 

and the yaw positions. Fig. 8.32 shows similar responses in adding track disturbance 

to Zg.  As with the previous responses, the closed-loop system manages to attenuate the 

disturbance within 200 milliseconds with almost undisturbed heave, roll, pitch and guidance 

positions.

8.7 Concluding comments

Control of multi-magnet systems is a challenging problem largely resulting from the open- 

loop instable nature of the magnetic suspension and the cross coupling between the mag

nets, fixed as they are to a common rigid body. Linear controllers independent for each 

magnet have been used in the past for multi-magnet stabilisation [1, 21]. For applications 

without actively controlled guidance, these controllers have some limitations in attenuat-
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Figure 8.30: Simulated step responses to: (a) 4 mm change in the heave reference position 
at t=0.2 sec, and (b) 2mm change in the guidance reference position at t=0.4sec. Top: 
heave, guidance, roll, pitch and yaw responses; Bottom: airgap responses.
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0.1 0.2 0.3 0.4 0.5 0.6
Time {sec]

0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time [sec]
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ing guidance-induced disturbances. To improve the overall stability and robustness, this 

chapter has developed a design framework for multivariable Maglev control based on the 

developments on 'H00 and fi—synthesis for Maglev presented in Chapters 6 to 7. For this 

purpose, a state-space model has been derived to model a 3DOF multivariable suspension 

system. This model was used in the derivation of /i—optimal controllers. The suspension 

quality of the new control system has been assessed through an extensive range of simu

lation and experimental studies using a representative Maglev test rig. The results show 

th a t the new closed-loop system has the ability to maintain stable suspension characteris

tics well within the Maglev requirements and to suppress the effects of force, mass and track 

disturbances on the ride. To expand the design to feature Maglev control applications, in 

the second part of studies the 3DOF model is extended with provisions for active guid

ance control and a new multivariable controller with guidance support is derived using the 

same framework. Due to the lack of guidance magnets on the representative test rig, the 

behaviour of the controller is studied only in simulation. The results from the 3DOF con

troller implementation show that the developed here Maglev design environment provides a 

systematic and deterministic way of specifying and obtaining controllers for multi-magnet 

controller design.

During the controller-design process a trade off has to be made between the allowed 

uncertainty in the system, closed-loop bandwidth, sampling time and operational stability. 

Increasing the uncertainty in the system typically requires a relaxation of the upper-bound 

requirements on the control actions and hence an increase in closed-loop bandwidth. The 

controller is then required to operate over a larger bandwidth which puts an additional con

straint on the sampling time. The increased number of state-variables in the multi-magnet 

controller tends to consume most of the available processing bandwidth. It was estimated 

th a t controlling multivariable system with guidance support would require approximately 

350-400 microseconds. Reducing the sampling time for wider operational range and higher 

closed-loop bandwidth results in the com putation approaching the available time-slot. For 

this applications, the multi-processing facilities provided by the DSP hardware have to be 

used. In addition, an increase in operational bandwidth leads to exciting components in 

the vehicle body which are excluded from the modelling work. W ithout additional account 

of this, undesirable resonance effects are generated leading to increased acceleration levels.

Maglev systems are nonlinear because of the nonlinear relationship between operating 

current and force of attraction. So far in this thesis, the nonlinearity is not explicitly
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analysed and to deal with it, different design methodologies have been developed (adaptive 

control, robust control). In the following Chapter, a new design approach is considered 

which uses the nonlinear model of the suspension system to develop a design methodology 

for nonlinear 'H00 control for Maglev.
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C hapter 9 

N onlinear l~Loo control for M aglev

The relationship between the excitation current, the operating airgap and the force of 

attraction  in electromagnetic suspension systems is modelled by a set of nonlinear dynamic 

equations. In previous control work, these are linearised around the nominal operating point 

(z0, zq) to get a linear model. The nonlinearity is not explicitly analysed and to deal with it, 

different design methodologies have been developed (adaptive control, robust //—optimal 

control). In this chapter, a new design approach is considered which uses the nonlinear 

model of the suspension system to design two nonlinear /H00 controllers for Maglev. A 

special emphasis is given on improving the suspension characteristics with reference to the 

track-guidance-induced interactions due to irregularities.

To extend the concept of the oo—gain to nonlinear systems, the notations of local dissi- 

pativity and supply power are used to develop nonlinear %oo controllers. Since there exists a 

strong relationship between the oo-norm and the energy of the system, these concepts have 

been embedded in the design process and a generalised framework for nonlinear controllers 

is developed with particular reference to Maglev applications. A set of M atlab routines 

is developed to derive the nonlinear controllers symbolically. The theoretical exposition is 

followed by a selected set of simulation and DSP experimental results.

9.1 The T-Loo gain of nonlinear systems
9.1.1 N onlinear m odel o f th e  electrom agnetic system

As outlined in Chapter 2 , an electromagnetic suspension system consists of a suspended 

magnet and a reaction surface (guideway). The vertical dynamics of the open-loop system 

is described by Eqn. 2.7. The magnet winding current (excitation) is related to the electrical 

param eters of the circuit and is satisfactorily represented by Eqn. 2.2. W ith a state-vector 

of the form [xi(t) x 2 {t) £3(t)]T=[z(t) z(t) i ( t )]T, the following nonlinear state-space model
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can be constructed to describe the dynamics of the electromagnetic suspension system

(9.1)
* X \ %2 r o o i

■i’2 —
Ho N 2 A (  x-s 

4rn \ x i  /
— r k j  0  rn 1

. X 3 .
2R i x-ax-2L ho N * A X * X ' +  x ,  J s

[  0  0  J

w  i 

w2
+

* ,r  
. fi0N 2A J' 1 .

A( x)  f l d x ) B ‘̂ x )

where w\ =  fd represents the external force disturbance, w2 captures disturbances acting 

on the suspension airgap, m =m ass of the electromagnet, R—magnet winding resistance, 

>l=m agnet’s pole-face area, 7V=number of turns and u( t )= input control voltage to the 

magnet amplifier.

The block diagram  of this nonlinear state equation is shown in Fig. 9.1. The corre

sponding general forms of the nonlinear state and output equations are

x = A{x)  +  B x(x)w +  B 2 (x)u ,9 2 .
y =  xi  +  a 2w2 = C2 (x) +  D 2 1(x)w

where w =  [w\, u;2]T, and a 2 are appropriate scaling param eters added for mathematical 

convenience, x  € R n, w £ R r, u £ R m and y £ Rp, where: n =  3, r  =  2, rn =  1 and p =  1.

force disturbance track disturbance

J  V

/

Mo N 2A 
Am

2R

Figure 9.1: Nonlinear open-loop Maglev model.

The general control configuration used in the developments of the linear Hoc controllers 

(Fig. 6.3) is conveniently redrawn for the nonlinear problem to get the representation in 

Fig. 9.2. W ith respect to this figure, the nonlinear H 0Q design methodology developed 

here aims to find a nonlinear feedback compensator K(x)  that minimises the effect of 

w = [uq, w 2]t  on a penalty vector q £ R (n+m)

A o o
o A  o 
o o a  
o o o

q =

'  0 ‘
X i 0
002 +

0
u

OO3 .
.  W c .

u  = Ci(x)  +  D i 2 ( x ) u (9.3)
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As in the linear 1-Loo design, W ( is an upper bound on the control output, f t ,  f t  to f t  

are scaling weights on the state-variables, similar to the specification of W (s) in the linear 

Tioo design (Chapter 6 ). To extend the concept of the oo-gain to nonlinear systems, the

-►w i

w2

nonlinear
model

Nonlinear state — feedback %{ 
controller

Figure 9.2: State-feedback control configuration.

notations of local dissipativity and supply power are used. This is described below.

9.1.2 D issip ative  dynam ical system s

While the exact nature of the disturbance inputs (w = [wi,w2]) to the suspended system 

are unknown, the assumption made here is th a t even in the worst-case their energy is 

bounded, i.e.
T

\\w\\l =  j  \\w(t) \ \ 2 dt < oo

for a finite T. This is consistent with design objectives of the Tioo theory, i.e. to maintain the 

energy of the output signal within a finite limit. The nonlinear Hoo design process developed 

here aims to identify a feedback controller th a t satisfies the L 2-gain inequality [98]

t  t

/ f t ; ; ; ; 2 ^ < 7 2 / \\w(t) \ \ 2 dt (9 .4 )
0 0

by keeping the energy of the penalty vector q bounded and smaller than the energy of the 

disturbance input (0 < 7  < 1). When w = w =worst-case disturbance input in Eqn. 9.4, 

the L 2—gain in this equation becomes the time-domain equivalent of the infinity-norm of

2 2 1
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the system (Eqn 6.4, page 89). Because of this bounded energy notion, the core of the 

theoretical derivations in this chapter uses the notion of energy, dissipativity and storage 

functions.  A system is called dissipative if the rate of increase in its stored energy is not 

greater than the supplied power. Typical examples of dissipative systems are electrical 

networks, where part of the electrical energy is dissipated in the resistors in the form 

of heat. Often the latter would be called passive systems [99]. The special interest in 

dissipative systems, from a control point of view, comes also from their implication on the 

stability investigated via Lyapunov methods. Under some assumptions about the storage 

functions, dissipative systems are stable systems [100].

Dissipative systems are typically associated with a supply ra te (= inpu t power) and a 

stored function(=stored energy). The supply rate is a function of the inputs and the 

outputs of the system and for the nonlinear Maglev system in Eqns. 9.2 and 9.3, the supply 

rate can be defined as [101, 102, 103, 104, 98]

This is the energy-balancing equation and in practical terms, this inequality may be in

terpreted as follows: a system is dissipative with respect to its supply rate if the rate of 

increase of stored energy is not higher than the supplied power. Substitution of x  and q from 

Eqn. 9.2 and 9.3 transforms Eqn. 9.6 into the Hamilton-Jacobi-Isaacs (HJI) inequality [105]

The premise of the design algorithms developed in the following sections is th a t any feedback 

control law u th a t satisfies the HJI inequality will lead to a closed-loop system th a t is locally 

dissipative with respect to its supply rate. As local dissipativity implies the existence of 

a storage function V{x),  the Boo design in this context may be recast as the problem of 

deriving the control law and the corresponding storage function which satisfy Eqn. 9.7. 

Two specific feedback structures are considered here: state feedback (Fig. 9.2) and output

s (w,z )  =  7 2 |M |2 -  IMI 2 (9.5)

A system is said to be locally dissipative with respect to this supply rate, if there exists a 

nonnegative smooth storage function V{x)  with U(0) =  0, such that

T
V (x ( T )) -  V (^(0)) < f  s(w, q)dt

o
2 (9.6)

Vx(x)

Vx(x)T [A(x) +  Bi (x ) w  -I- B 2 (x)u] +  [C\(x) +  D i 2 ( x ) u ] t  [C\(x) +  D i 2 ( x ) u ]  -  7 2wTw < 0
 ̂ —  — ■■■   ------

H a m i l t o n i a n  f u n c t i o n :  H[x,Vx(x),w,u]
(9.7)
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feedback in conjunction with a state estim ator (Fig. 9.5). The estim ator parameters for 

the latter is also derived through a HJI inequality corresponding to the augmented system 

(=  open-loop system plus the estim ator) [106, 98, 104, 105].

9.2 N on-linear "Hoc state-feedback

The general control configuration of the closed-loop system with the nonlinear state- 

feedback is shown in Fig. 9.2. As the primary design objective is to suppress the effects of 

the unknown disturbance signal w =  [uq, w2]T , from an application view point it is sufficient 

to ensure th a t Eqn. 9.7 is satisfied under worst case disturbance. Since the H[x, Vx(x), u;, u] 

in Eqn. 9.7 is a quadratic function in terms of w and u, it has a unique local saddle point 

in (w,u)  for each (x, Vx) and unique smooth functions w(x,  V j )  and i i ( x , V j )  exist in 

the neighbourhood of (x, Vx(x), w, u) — (x0, 0 ,0 ,0) [105]. These two functions are derived 

below.

9.2.1 D erivation  o f th e controller

(i) Derivation of the worst case disturbance signal: Differentiating the Hamiltonian function 

H ( x , V x (x ) , w, u)  in Eqn. 9.7 with respect to w gives

d H [ x , V ^ ) , w , u ]  =  B r {x)Vx[x) _  2 j 2w = 0

Choosing 7  > 0, the solution for the disturbance signal may be derived as

w { x ,  Vx ( x ) }  =  ^ ~ 2B i (x )t Vx (x ) (9.8)

Since
d^Hlx,  Vx (x),w,u]

= —2 -y2!
dw 2

w ( x , Vx) maximises H[ x , Vx(x), w, u) and represents the worst-case disturbance signal. The 

Hamiltonian function corresponding to this worst case disturbance input can be derived by 

substitution of w(x,  Vx) in H[x, Vx(x ), w , u] to get H[x, Vx{x), w { x , Vx(x)}, u\.

(ii) Derivation of the control input under the worst case disturbance signal:

To derive the optimal control law, H[x,Vx(x)w{x ,Vx(x)},u] is differentiated with respect 

to u.

dH[x ,Vx{x ) ,w{x ,Vx(x)},u] T T( \ , o n ^ /  An ( \ n  ------------   =  B 2 (x)Vx (x) +  2C l (x)Dl2 {x) +  2 D l2 (x)Di 2 \x)u = 0
ou
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The solution to the right-hand side of the above equation gives

u{x,  Vz (x)} = - i  ( D l2 (x)TD V2 (x))~'  ( B 2 (x)t Vx (x) + C [ ( x ) D 12(x))  (9.9)

Since
P H [ x ,  Vx (x), w{*,  V'x(-)},«] =  2 D n ( x ) r Dia{x)

du 2

u(x ,Vx (x)) minimises H[x, Vx(x), w{x,  Vx (x)}, u] and may be taken as the optimal con

trol signal (D\ 2 (x) is positively definite by selecting W c > 0 in Eqn. 9.3). Substituting 

u( x , Vx (x)) in H[x,Vx( x ) , w{x , Vx(x)},u] transforms the Hamiltonian function in Eqn. 9.7 

to H[x, Vx, w{x,  Vx(x)},  u{x,  V^x)}].

As u(x,  Vx(x)) minimises H [x, Vx(x) ,w{x,  Vx(x)},u]  and w(x, Vx) maximises H[x, Vx(x), w, u] 

these two optim al solutions identify a saddle point in H[x, Vx(x), w, u] such tha t

H[x, Vx (x), w, u] < H[x , Vx(x), w { x , Vx(x)}, u{x,  ^ (x )} ]  < H[x, Vx(x), w { x , Vx(x)}, u}

and therefore u is the optimal control law tha t satisfies the HJI inequality. To derive the 

only remaining unknown, the storage function V(x) ,  w and u are substituted in Eqn. 9.7.

For numerical convenience, the state-space matrices for the Maglev model are constructed 

such th a t C\(x)TDi 2 (x) = 0 and the notation D(x) = {^D\2 {x)TD\ 2 (x)^ is used. Applying 

the optim al values for w and u gives the following form for the HJI inequality

V j ( x ) A ( x )  — itTD(x)ii  +  ^ 2 wTw +  C\(x)TC\(x)  < 0  (9.10)
H.[x,Vx (x)]

9.2.2 Solution  to  th e  H am ilton-Jacobi-Isaacs inequality

While an analytical solution of the above equation is not readily available, for the numerical 

work the nonlinear form of Eqn. 9.10 may be transformed into an infinite sum by replac

ing the individual terms by their respective Taylor series. This approach was originally 

proposed by Al’brekht [107], adopted in [108] and subsequently used by various authors, 

eg. [109]. Thus if the storage function V(x)  and its derivative Vx(x) are assumed to have 

the form
V(x)  =  V 2 (x ) +  V \ x )  +  • • • =  EkLi V k+1(x),

(9.11)
Vx(x) = V?{x) + V*(x)  +  ••• =  £ £ ,  Vxk+'(x)  

then the corresponding feedback control signal u(x)  and the worst-case disturbance input 

w(x)  may be expressed as

u(x) = iilx  +  u2 (x) +  • • • =  jyjeLi uk(x),
(9.12)

w(x) = W l x  +  W 2 ( x )  +  • • • =  ICfcLi W k ( x )
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where the superscript indicates the order of the expansion in the Taylor series. Thus, 

instead of deriving one single nonlinear storage function and a corresponding nonlinear 

controller, the algorithm developed here derives the individual terms in the expansion of 

V{x),  u(x)  and w( x ), offering a unified framework for the derivation of a whole class of 

controllers by collecting the appropriate terms in the series expansion of ii(x). For example, 

the first order controller u =  u l (=  linear control law) is readily constructed from V 2(x), 

and the second order controller u = it1 +  u2 (=  nonlinear control law) requires V 2 (x) and 

V 3 (x). The process continues in a similar manner for higher order nonlinear control laws.

In the process of solving the HJI inequality, the parameters of the open-loop model in 

Eqns. 9.2 and 9.3 are also expanded in their Taylor series around the initial state vector x 0 

(=  nominal operating point) as

A(x)  =  A l (x0) +  A 2 (x) J----
Bi(x)  = B l ( x 0) + B 2 (x) + --- ( .
B 2 (x) = B \ ( x 0) +  B$(x)  H-----
C\(x)  =  C\{x  o) +  C 2 {x) +  • • •

The numerical forms of these equations are given on page 228. Substitution of these in 

Eqn. 9.10 gives the A;-th power term in the infinite summation form of the HJI

V 2 (x)TA k(x) +  V 2 {x)TA^k~l\ x )  + -----1- V k+l (x)T A 1 x  — u lTD u k — u2TD u k~l — • • • — ukTD u l -{

7 2w lTw k +  7 2w 2Tw k ~ 1 +  • • • +  7 2wkTw l +  C kT(x)Ck(x) < 0
(9.14)

where
w k — \ 'y~ 2 [B{TV£+1(x) +  B \ TV k(x) H h B \ T {x)V2 (x)^

(9.15)
u k = -§ £ > - ' \b \ t V k+,(x) + B f v k(x) + -----1- B kT(x)Vz(x)]

First-order controller

To derive the first-order controller (k = 1), for convenience the first term in the expansion 

of the storage function is chosen to be have the quadratic form V 2 (x) =  x TPx,  where the 

m atrix P  E R nxn, P  > 0, P  =  P T is unknown. W ith this storage function, the first order 

u 1 and w l (k =  1 in Eqn. 9.15) become

a 1 =  - ± ( D i 2 D V2 )- 'B!,TP x
(9.16)

w 1 =  ^7  2B{TP x

These control laws are identical to the state-feedback control laws derived in Chapter 6 for 

the linear Hoo problem (Eqn. C.21, page 284 with the assumption th a t D j 2C\  =0 ) .  To find
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the storage function V(x) ,  the first-order HJI equation (Eqn 9.14) reduces to the following 

Riccati equation

A vllP  +  P ^ 1 +  'P('y~2B \ B \ r -  B l2 D ~ lB}2T)P  +  C{TC} = 0 (9.17)

This equation is also identical to the Riccati equation associated with the linear state- 

feedback Hoc control law derived in Chapter 6 (Eqn. C.20). The solution of Eqn. 9.17 gives 

P, and hence iil and w l .

Higher-order controllers

To derive the second-order controller, the procedure continuous with k =  2. The second- 

order HJI equation becomes

V 2 (x ) 7 A 2 (x) +  V 3 (x)T A lx  — u lTD u 2 — u2TDii l + 7 2w lTw 2 +  7 2 w 2Tw l = 0 (9.18)

where V s(x) is unknown, and w 2 and u 2 being given by (k =  2 in Eqn. 9.15)

V ?  = - \ ( D J 2 D 12) - '  [BiTV2(x)  +  B ? ( x ) V x2 (x)

w 2 =  \ ^ - 2 [B\T V 2 (x) +  B'fr ( x )V 2 (r.)

Substituting u 2 and w 2 in the second-order HJI equation in Eqn. 9.18 and rearranging the

(9.19)

terms lead to

V 3 (x)A*x — —V 7 {x) [̂ 42(x) — B 2T (x)ul — B 2T (x)wl (9.20)

where

A m = (A lx  +  B \ Tu l +  B l Tw l) (9.21)

To solve Eqn. 9.20, the unknown V 3 (x) is taken to be a cubic homogeneous function. For

example, for a system with three state variables such as the Maglev model, it has the

following form

V 3 (x) = C \ x \  +  C 2x \ x 2 +  C g x \ x g  -I- b C g X 2 x \  + c10x3 (9.22)

Differentiating the above function versus x  gives with

ocia'2 1 ^  - -l  -  —2 ^  1 2

=  K3(*) =dx

Q y Z ( x ) % C \ X \  +  2c2 XiX2 +  2 C 3 X 1 X 3  + C4X2 +  C5 X 2 X 3  +  c6xj
— — c2x\  +  2c4jj1.'r2 +  C5X]X3 -f %c7x 2 +  2 c8x 2 X3 +  c9 x 2

_ C g x \  +  C5 X \ X 2 +  2c6XiX3 +  C gX 2 +  2C g X 2 X 3 +  3 C 10X 3 _

(9.23)

Substituting V^ix)  in Eqn. 9.20 and equating similarly power terms on both sides leads to 

a set of simultaneous equations in terms of the unknown coefficients c*. The solution to
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this set of linear equations gives Cj. Substituting these coefficients in Eqn. 9.23 gives V^(x)  

and in turn  the second order term in Eqn. 9.12

for the Maglev system. Simulation studies have shown tha t higher-order controllers (>2) 

have a m oderate improvement over the suspension characteristics but are associated with 

com putational and implementation difficulties.

9.2.3 A lgorithm  for deriving non-linear state-feedback 1-Loo con
trollers

Using the derivation steps above, the algorithm for deriving non-linear state-feedback 'H(yo 

controllers is summarised below

•  S tep  1 Use the nonlinear model in Eqn. 9.1 and Eqn. 9.3 and a set of initial conditions 

(zo, «o) to derive the first-order and the second-order terms in the Taylor series expan

sion of the system (Eqn. 9.13). The results are: A 1, A 2 (x), B{, B 2 (x), B\ ,  B |(x ), C\.

•  S tep  2 Construct the first-order Riccati equation in Eqn. 9.17. Solve this equation 

to determine P, P  > 0.

•  S tep  3 Use P as computed above in Eqn. 9.16 to derive the first-order control output 

u l and the worst-case disturbance w l .

•  S tep  4 Use P computed in Step 2 to derive V 2 (x) = x TP x  and V^ix)  =  d V( x) /d x  = 

2Px.  Use these two functions and the series expansions of the non-linear system to 

construct the right-hand-side in the second-order HJI equation in Eqn. 9.20.

•  S tep  5 Construct the closed-loop system A* in Eqn. 9.21 using A 1, u 1 and w l as 

computed above.

•  S tep  6 Construct the third-order storage function V (x)3 using the polynomial form 

in Eqn. 9.22. In this equation c*, i =  1..10 are unknown coefficients. Compute the 

gradient of this equation versus x  to get V^{x)  in Eqn. 9.23.

(9.24)

The second-order controller thus becomes

The above process may be continued with increasing values of k to derive V k+l(x) and 

uk. For the sake of brevity, only first and second order controllers are considered here
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•  Step 7 Construct the second-order HJI equation in Eqn. 9.20. Use this equation to 

construct a system of ten equations by collecting terms with equal powers in x. Solve 

these ten equations to find the unknown coefficients cz, i = 1 ..10 and consequently 

the third-order storage function V'*(x) and its gradient Vj (x )  (Eqn. 9.23).

•  Step 8 Use V*(x)  as computed above and V£{x) from Step 4 in Eqn. 9.19 to construct 

the second-order term u2 in the nonlinear controller. Use this solution and u l from 

Step 3 to construct the nonlinear state-feedback H 00 controller: ii = iA +  u 2.

• Step 9 End of the algorithm.

The application for this algorithm on Maglev is presented below.

9.2 .4  A pplication  to  M aglev m odel

To derive the state-feedback controller, a set of M atlab M atlab routines have been devel

oped. Because of the analytical nature of the derivations, the Symbolic Toolbox for Matlab 

has been used [95]. The software allows the design of controllers for a general class of non

linear systems. The inputs to the program are the open-loop model of the system (Eqn. 9.2 

and Eqn. 9.3) and the design parameters a , /3 and W c. The individual terms in the series 

in Eqn. 9.13 are computed internally for a given set of initial conditions. The full listing 

of the source code is included in Appendix G.

For the experimental Maglev system in Eqn. 9.1 the first two terms in their correspond

ing Taylor’s series expansion in Eqn. 9.13 with nominal operating point x 0 = [zq.ZqAq] 

become:

First-order term in A(x):

A lx =

Second-order term  in A(x)\

0
H0 N 2 A  i

2 m  
- 2 R  

H o N 2 A

%

1
0
ic.
20 Ho N 2 A

n 2 a

2m
Zo  + z  o J

’ Xi "
X2

. ^3 .

A*(x)  =
0

3mo N2A i 
4m +  m JLA ,Jb x l X3i 4m z x  m z x  1 °

-§ * 1 * 2  +  +  ToX2*3 +  .

First-order term in B\(x)  and ^ ( x )

' 0 0 0

A to 
*-* II — OL\  

m  1 0 0
0 0 2

Hq N 2 A  0 J
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Second-order term in B\(x)  and J32(x)

'  0 0

[B? | Bl\  = 0 0

0
MO~̂ Ta (x I -  z0)

and second-order terms in Ci (x)

C[ =

r a  o
o A

0 ‘ 
0

0 0 A 1

0 0 0

, c f  =  0 , c ‘ =  [i o o] c ‘ = o

First- and second-order terms in D i2(x) and D 2 i (x)

D \ 2 =  [0 0 0 Wcf , D ji =  [0 q 2] , t i \ 2 =  0, £>2, =  0

First order controller

For the derivation of the first-order state-feedback controller, the nominal point is specified 

at

[z0(<) z0 (t) io(t)] =  [4.0 x 10“3 0.0 3.13].

Initially, the design parameters are chosen at cq =  1, = 1 ,  W c =  0.12 and 7  =  1. The

nonlinear Maglev model in Eqn. 9.1 is derived using the param eters in Chapter 2

Xi — x 2

x 2 =  -0.1681413334 x 10~4| f  +  0.6666666667^! 
x 3 =  —136512.1406x^3 +  ^  +  19824.59201x!W

X  l

This model is linearised around the nominal operating point to get

0.0 1.0 0.0 
10060.72443 0.0 -6.952129418
-1283745.024 1447.142858 -955.5849842

A 1 =

B \  =  [0.0 0.6666666667 0.0]T B\  =  [0.0 0.0 138.7721441]^

These matrices are substituted in Eqn. 9.17. The resultant Riccati equation is solved in 

M atlab to get

55198.07124 639.9428407 -4.760108817
639.9428407 7.582268928 -0.5293414249 x 10-1
-4.760108817 -0.5293414249 x 10-1 0.1084364426 x 10“2

(9.25)

P  is positive definite and hence a suitable candidate for the construction of the storage 

function. W ith V ^ x ) =  2Px, the first-order linear control law in Eqn. 9.16 is derived

?i1(x) =  26213.11534xi +  291.499383x2 -  5.9714118x3 (9.26)

and the worst-case disturbance as (Eqn. 9.16)

w \ x )  =  [ ^ { ( x ) , ! ^ ) ]  =  [426.62856X! +  5.054846x2 -  0.352894283 x 10^ X 3, 0]T
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Second-order control law

To derive the second-order term in the feedback controller, the storage function U3 is 

considered to take the following form

V 3 (x) =  C \ X ' \  +  o2x2x2 + T ( ‘4 X 1X 2 -f c.r/x 1X 2 X 3 + CgXjX2 +  c.jx'2 +  o8x2x'3 C $ x 2 x 3 +

This function is differentiated with respect to x  to get

V?{x) =
3cxx\  +  2 c2XiX2 +  2C3X1X3 +  c4x.2 +  c5x2x3 +  6*6X3
C2 X 2 +  2c 4 X i X 2 +  C5X1X3 +  3 C 7X2 +  2C8 X 2 X 3 +  C9X3

_ C3X2 +  C3X1X2 +  2c6XiX3 +  C8£ 2  +  2c9X2X3 +  3c]0X3 _
(9.27)

Using B\  and B\  as derived above, and the first-order solutions v} and w l , Eqn. 9.21 is 

used to derive the closed-loop state m atrix of the first-order problem

A* = (A lx  -I- B ^ u 1 +  B \ Tw l) =
0.0 1.0 0.0 
5432.118506 3.369897302 -6.602055955 
1750497.228 23897.92535 -1019.571770

Since the eigenvalues of this m atrix are negative, the closed-loop Maglev system with the 

first-order state-feedback controller is stable. To continue with the derivations, this m atrix 

and the gradient of the storage function, I/.3 in Eqn. 9.27 are used to construct the left- 

hand-side in Eqn. 9.20. In this equation, V 2 =  2xTP , B \  and B% are derived above and 

the numerical form of A 2 (x) is calculated below

A 2 (x)
0.0
-1930387.31? -  1.050883334a:| +  3289.264835.r1x:l 
—195625.0 x 2x i — 136512 .1406x iX3 +  250 .0 x 2X3

Substitution of the above terms in Eqn. 9.20 generates a homogeneous function of degree 

three in x i, x2 and X3 on each side of Eqn. 9.20. Equating terms with equal powers lead to 

a set of ten simultaneous equations. A routine using the Gauss-Seidel elimination method 

for the solution of these equations (included with the symbolic program indicated earlier) 

generated the following coefficients for the Maglev system

ci =  1.2889 x 107 c2 -  3.9820 x 105 c3 =  1.7574 x 102
c4 = 1.8152 x 103 c5 =  -2.0861 x 101 c6 =  -7.9762 x 10' 1
c7 = -1.2719 x 101 Cg =  -7.0574 x 10“ 2 c9 =  -5.7758 x 10" 3
cio =  4.8840 x 10“ 5

W ith the above values of Cj, V 3 (x) in (Eqn. 9.23) and P  derived earlier, Eqn. 9.24 generates 

the second order term in Eqn. 9.12 as

u2(x) =  —483882.9537x2 +  57438.22080xix2 +  4392.370457xix3+
194.3201504x2 +  31.80633378x2x3 -  0.4034296096x;

230



Combining this equation with Eqn. 9.26 yields the second-order nonlinear state-feedback 

control law
u{x)  =  ^ ( x )  +  u2 {x) = 26213.11534^! +  291.4993829x2 -  5.971411760x3-

483882.9537^1 +  57438.22080x1 x2 +  4392.370457xix3+  
194.3201504x2 +  31.80633378x2x3 -  0.4034296096x*

(9.28)

The expression for w 2 is also generated at this stage but not included as it is required for 

the derivation of V̂4(x) and the third order controller.

9.2.5 S im ulation  results

To assess the behaviour of the closed-loop system with the state-feedback 7i00 controller, 

a simulation model for Simulink was constructed. This is shown in Fig. 9.3 and uses 

the nonlinear dynamic system in Fig. 9.1 and the nonlinear state-feedback controller in 

Eqn. 9.28 with the coefficients below

k(  1) -  26213.11534 k(2) =  291.4993829 k(2) = -5.97141176
k(4) = -483882.9619 k(5) =  194.3201492 k( 6 ) = -0.403429607 (9.29)
k(7) =  57438.21965 k{8 ) =  4392.370468 k(9) =  31.80633312

A step response of the closed-loop system to changes in the nominal operating airgap from 

4 mm to 3 mm is shown in Fig. 9.4. This response indicates th a t the closed-loop system is 

dissipative around the operating point and hence stable. Furthermore, the new nonlinear 

7~Lo o  controller improves the settling time almost by a factor of two compared to the linear 

state-feedback controller (Fig. 2.7, page 23) and has lower damping than the linear 

controller (Fig. 6.9, page 108). In contrast to the linear /H00 controller, this compensator is 

suitable for practical implementation (results are presented in the following section). The 

reduction in overshoot suggests th a t within the definitions of linear systems, the infinity 

norm of the complimentary functions remain below the 0 dB boundary. The steady state 

error in the response is due to the absence of an integral action in the state-feedback 

controller. This can be compensated by an appropriate filter for the reference input.

The design param eters a\  and a 2 are used to normalise the input disturbances. For the 

state-feedback design, a\  is used to scale the force disturbances entering the system. For all 

experiments, cq =  1. Similarly to the linear Hoo control design (Chapter 6 ), the penalty on 

the control action is determined by Wc. Using the developments for the linear % 00 design, 

this param eter was set to W c = 0.12 for all experimental results to give an upper bound 

of +18.42 dB on the control signal. The design parameter 7  determines the scale factor 

between the disturbance w and the penalty output q (Eqn 9.4). For all experiments in this 

chapter, 7  is fixed at 7  =  1 to give a dissipative closed-loop systems.
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Figure 9.3: Simulink block-diagram used in the analysis of the nonlinear state-feedback 
'H00 controller.

In contrast to the linear state-feedback 'H00 controller derived in Chapter 6, the nonlin

ear state-feedback controller does not use an additional transfer function as performance 

weights in the design (VF(s) for the linear design). The developments and the numeri

cal results are thus suitable for practical implementation. The corespondent experimental 

results are discussed in Section 9.4.2. In the next section, a design procedure for deriving 

nonlinear output-feedback controllers using the dissipation principles is derived. This con

troller can be used for Maglev applications (magnetic bearing for example) where only a 

position transducer is used for feedback.

9.3 Nonlinear output-feedback controller

9.3.1 D erivation  o f th e controller

Although all three state variables are available for feedback in a Maglev vehicle suspension 

system, the above results are extended to output feedback for two reasons: (a) use of 7i00
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Figure 9.4: Simulated transient response due to a step change from 4 mm to 3 mm in the 
operational airgap and the nonlinear state-feedback controller.

controllers to other Maglev systems, such as a magnetic bearings which usually employ 

only position sensors, and (b) provide a basis for further work related to sensor fault 

accommodation in Maglev vehicles. The output feedback control law derived here uses a 

state estim ator in conjunction with the same state feedback control laws from the previous 

section (Fig. 9.5). For compatibility with the numerical analysis, the nonlinear observer 

design m ethod based on the concept of local dissipation has been adopted [105]. The full 

order state estim ator used in this context has the following structure

x  = A(x)  A  B i (x ) w A B 2 (x)u A  Q(x)(y  — y) 
y =  C 2 ( x ) a D 21w

(9.30)

where x  is the estim ator state vector, y is the estim ator output and Q(x) is a weight m atrix 

(output injection gain [105]) to be determined. The design task is to derive Q(x)  such that 

the overall system is asymptotically stable. This methodology is outlined below.

The overall configuration of the closed-loop system with estim ator state feedback is 

shown in Fig. 9.5; the corresponding state equations for the augmented system are given 

below
A(x) A  B\ (x )w  - I -  B 2 ( x ) u  
A(x)  +  B\ (x)w +  B 2 ( x ) u  A  Q (x)(y — y)

X

X

i d Fci(xcl,w)

Following the procedure developed earlier, derivation of Q(:r) is constrained by the existence 

of a non-negative storage function N ( x ci) =  N(x ,  x)  and dissipativity of the closed-loop
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Figure 9.5: O utput feedback control configuration.

system with respect to the supply rate in Eqn. 9.5. While the supply rate is dependent on 

the penalty vector and the disturbance, the structure of the supply rate does not change 

with the addition of the state estimator. Using Eqn. 9.7, existence of N(x ,  x) leads to to 

the HJI inequality [105]

d N ( x . x )  . d N ( x . x )  i r  o rp
K ; -  1 v ’ } x  +  qTq -  7 2wTw < 0
dx

x  +
dx

N x ( x , x )  N x ( x , x )

The augmented system posses local dissipativity as long as the above inequality is satisfied. 

If the estim ator is to have asymptotic stability in the locality of x = 0, [with N x (z,0) =  

^V*(x)], then substituting for x  from Eqn. 9.2 and x  from Eqn. 9.30, with N x(x,0)Qy  — 

—Y T (x,y)y,  the above inequality becomes [105]

N x(x)[A(x)  +  B\(x)w\  — Y t ( x , y)y  +  qTq — j 2wTw < 0 (9.31)
Hamiltonian function: M ( x , N x , w , Y )

Y r (x, y)y  is a vector of smooth functions th a t vanish at y =  0 [105]. To relate this inequality 

with the state feedback derivation, the following equivalent transformations are performed. 

First, H(x,  Vx, w , u  = 0) in Eqn. 9.7 is added to and subtracted from to the right-hand-side 

of the above inequality

N x(x)[A(x)+Bi(x)w] — Y T (x ,y)y+qTq—j 2wTw —H ( x ,V x, w , 0 ) + H ( x , V x,w,0)  < 0 (9.32)

Then using Eqns. 9.3 and Eqn. 9.7, Eqn. 9.32 simplifies to [with u(x) = u(x) = 0]

[iVx(ar) -  Vx(x)][A(x) +  B x (x)w] -  Y T(x , y)y  +  H(x,  Vx, w,  0) <  0
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Since H ( x , Vx, w, 0) < H*(x, Vx) < 0, the above also implies the existence of the inequality 

below

[Nx(x) -  Vx(x)][A(x) +  Bi(x)w\  -  Y r (x, y)y  < 0 (9.33)
M( x , Nx , w , Y ) - H. ( x , V x)

and hence M(x ,  N x , w, Y)  < 0, i.e. the closed-loop system is dissipative at the equilibrium 

point. Since v =  x — x  —> 0 is the general requirement for the estim ator design, combination 

of Eqns. 9.2 and 9.30 with x  =  0 (equilibrium point) leads to the following identity

A(x)  -f B\ (x)w  =  Q y

Substituting this equation in Eqn. 9.33 gives the following upper bound of Eqn. 9.33 [105]

[Nx(x) -  14(x)]Q(x) =  Y t (x , y) (9.34)

This equation forms a basis for the derivation of Q(x).

D e riv in g  Q(x)

There are two stages in the estim ator design: (a) derive N( x)  in Eqn. 9.34 and (b) use 

this storage function to compute Q(x). As w is the unknown disturbance, it is convenient 

first to estim ate the value of w tha t maximises M(x,  N x, w , Y )  in Eqn. 9.31. Denoting the 

solution of
d M ( x , N x, w , Y )
 —-------------— 0 as w(x)  =  w{x, N X, Y )  (9.3o)

Eqn. 9.31 indicates that

d 2 M ( x , N x, w , Y ) / d w 2 < 0

Since Y T (x , y) in Eqn. 9.34 is also unknown, with the above value of w(x, N x, Y) ,  M[x, N x , 

w(x,  N x, y ) ) , Y] is further differentiated versus Y

d M ( x , N x , w , Y )
 v ’ ’ =  0 (9.36)

to get the critical point Y ( x , N x) where M[x,  N x , w ( x : N X, Y ) ) , Y ]  is minimum. Denoting 

this minimum as M[x, N x,w{x,  N x, Y ( x ,  N x) } , Y ( x ,  N x)], the following inequality can be 

established.

M [ x , N x, w, Y]  < M[x, N x, w{x,  N x, Y(x ,  A^)}, Y(x,  N x)] < M[x, N x , w{x,  N X, Y } ,  Y]

The above results corresponding to the critical points w(x, N x, Y ( x ,  N x)) and Y ( x , N x) 

transforms Eqn. 9.33 into

M[x, N XJ w { x , N x, Y(x ,  TV,)}, Y(x ,  TV,)] -  H.(x ,  Vx) < 0 (9.37)
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This HJI inequality can be solved to derive N x(x). This N(x)  can be further used in

(Nx(x) -  Vx(x)) Q(x) =  Y r (x, N x(x)) (9.38)

to compute the output injection gain Q(x). V(x)  is already known and corresponds to the 

storage function used in the derivation of the state feedback control law. The procedure 

for determining N x{x) is given below.

Solution to  the HJI inequality

A possible numerical approach for the solution of Eqn. 9.37 is to expand N( x)  around the 

origin as

N(x)  = N 2 (x) + N 3 (x) + ■ ■ ■

and then to substitute the individual terms in M(x,  N x, w , Y )  (Eqn. 9.31) along with the 

Taylor series expansions for the system ’s model (Aj, Bi,  C\, C2 and D 21). Eqn. 9.37 may 

then be solved for N 2 (x), N 3 (x), ..., individually, and the final solution of N(x)  obtained 

by adding all such individual solutions. This is then used to derive the complete value of 

Q which, in general, will have a nonlinear structure.

First order solution:

To derive the first order term N 2 (x), this function is assumed to have the following structure

N 2(x ) =  :c7 R j;

where R  is unknown and N 2 (x) = d N 2 ( x ) /dx  = 2xTR . The problem reduces to solving 

Eqn. 9.37 for the unknown m atrix R  (R  =  R T, R  > 0). To construct this equation, N 2 is 

substituted in Eqn. 9.31, together with the first-order expansion in the system’s model, i.e. 

A1, J9j, Cl  and C\.  The resultant Hamiltonian function M(x,  N x, w , Y )  is differentiated 

as per Eqn. 9.35 to get

w { x , N x( x ) , Y }  =  i 7 _2[2R}TR x -  D l xY{x,y)]

This signal is substituted back in Eqn. 9.31 and the new function M(x,  N x, w, Y)  is differ

entiated in terms of Y (x, y ) to determine

r{x,7V x(x)} =  2 {D2 l D ^ ) - \ D 2 lB \ TH x  + 1 2Clx)

The substitution of the above function in M  (x, N x, w , Y)  together with H*(x, Vx) (Eqn. 9.10) 

are used to construct Eqn. 9.37. Since all terms in this equation are quadratic in x, after
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rearrangements this first-order HJI inequality can be rewritten as a m atrix Riccati equation 

of the form

A #R  +  RA ^ +  RB/?R -I- C r =  0 (9.39)

where
A r  = A'  - B \ D T ( D 2 lD T ) - ' C l
B r  =  7 ~2 {B \B \r  -  B \ D l l (DnDT' i ) - 'D21B \T]
C r = C \TC\ -  H,

The solution R for this equation, and the solution for P in Eqn 9.17 provide a basis for 

computing the first-order Q in Eqn. 9.38

( R -  P )Q  =  (£»21£»^1) - 1(£>21B r R  +  72C21) (9.40)

Although this Q is linear, the resulting observer is nonlinear due to the nonlinearities in 

the other terms in Eqn. 9.30. It has been observed that deriving higher-order terms in Q 

do not improve the general estimation quality of the observer and hence to simplify the 

complexity in the DSP implementation, only the first-order solution is considered for the 

Maglev work. This is demonstrated in the following section.

9.3.2 A lgorithm  for deriving non-linear output-feedback con
trollers

Based on the mathematical developments in the previous section, the algorithm for deriving 

non-linear output-feedback 'H00 controllers is summarised below.

•  Step 1 Use the nonlinear model in Eqn. 9.1 and Eqn. 9.3 and a set of initial conditions 

(zo, io) to derive the first-order and the second-order terms in the Taylor series expan

sion of the system as per Eqn. 9.13. The results are: A 1 , A 2 (x), R j, B 2 (x), (a;), C\.

•  Step 2  Construct the first-order Riccati equation in Eqn. 9.17. Solve this equation 

to determine P, P  > 0.

•  Step 3 Use P  as computed above in Eqn. 9.16 to construct the first-order control 

output u 1 and worst-case disturbance w 1.

•  Step 4 Use P  computed in Step 2 to construct 17 (x) — x  P x , ^x) — 2Px and

in Eqn. 9.17 (left-hand-side).

•  Step 5 Construct the Riccati equation for the estimation problem in Eqn. 9.39. Solve 

this equation to determine the unknown matrix R, R  > 0.
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• Step 6  Use R  as computed above and P  as computed at Step 2 in Eqn. 9.40 to derive 

the output-injection gain Q.

•  Step 7 Construct the nonlinear observer in Eqn. 9.30 using the nonlinear model of 

the system and Q as computed above.

• Step 8 Combine the nonlinear observer and the nonlinear state-feedback controller 

as per Fig. 9.5 to construct the nonlinear 'HOQ output-feedback controller.

•  Step 9 End of the algorithm.

Application of this algorithm to Maglev systems is described below.

9.3 .3  A pplication  to  M aglev system  
C om putation o f Q

To derive the output injection gain Q and the nonlinear observer in Fig. 9.5, the above 

design steps were coded in a set of symbolic routines for Matlab. These routines require 

the open-loop Maglev model and the design parameters o, (3 and Wc. The output is the 

nonlinear observer and the second-order nonlinear state-feedback controller. The full source 

code is given in Appendix G. Employing the parameters of the system A \, JE?i, C2, D2i 

derived in Section 9.2.4 and H* in Eqn. 9.10, the Riccati equation in Eqn. 9.39 is solved to 

get
' 9.6628 x 1011 -2.8380 x 107 -9.3912 x 108

R  =  -2.8379 x 107 2.4514 x 104 -1.2372 x 105
-9.3912 x 108 -1.2372 x 105 2.4921 x 106

Using this value of R , and P  in Eqn. 9.25, Q is computed from Eqn. 9.40 to get

' 8173.302 
Q =  33.401 x 106

[ 47.382 x 105

Nonlinear observer

(9.41)

To construct the observer in Eqn. 9.30, u and w are taken to be the first order terms (u l

and u)1) as derived in Section 9.2.4 with x = x

u \ x )  =  26213.11534X! +  291.499383x2 -  5.9714118x3
w l (x) = [426.62856X1 +  5.054846x2 -  0.352894283 x lO"1̂ ,  0]T

Substituting these equations in Eqn. 9.30, together with the Maglev model (Eqn. 9.1),

yields the following observer dynamics

x =  A(x)  -I- B i ( x ) w l (x) + B 2 ( x ) u 1( x )  +  Q(y  -  C2 {x) +  D 2 \ w l (x))

=  A(x)  +  T 2 B i B \ t P x  -  D ~ lB 2B l2TP x  -  Q C \ x  +  +  Q y
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Using the numerical form of Q derived in Eqn. 9.41 and the Maglev model in Eqn. 9.1, the 

following nonlinear state-observer is derived in a numerical form

i ,  =  -8173.303^! +  x 2 +  8173.302y
x 2 =  -3 3 .4  x 10 xj +  7 .992^ +  159 x 1 0 "%  +  0.168 x 10~4p  +  33.401 x 10by 
i s  =  -4738.236 x 10;ii i  +  ^  +  47.382 x 10byX  i

(9.42)

Integration of these equations gives the estim ator’s output x  =  [x\ , x2 , x ^  which can be 

used with the second order state-feedback controller (Eqn. 9.28) to construct the output- 

feedback control law u(x)  as in Fig. 9.5.

9.3.4 S im ulation  results

A Simulink block-diagram of the nonlinear observer in Eqn. 9.42 is shown in Fig. 9.6. The 

coefficients in this figure are given below

Q1 =  8173.3029 Q2 =  3340.0749 x 104 Q3 =  4738236.7017
G 1 =  1.0 G 2  = 0.0 G3 =  0.0
G4 = —4.7382 x 106 G5 =  -0.0159 G6 = -1 .6 8 1 4  x 10"5 (9.43)
G7 = -3.3400 x 107 GS = 7.9920 G9 = 0.0
G10 =  1.0 G i l  =  -8.1733 x 103

The nonlinear output-feedback controller is constructed from this observer and the non

linear state-feedback controller in Eqn. 9.28. A Simulink block diagram of the closed-loop 

system is shown in Fig. 9.7. To compare to the previous results in this chapter, the oper-

-K-

Q3-K- ~x3
-K-

Q2-K- G9 ~x2

Q1 >K-
~x1G5

G10G2
-K-

G1 G11-K-'-K-
G6 -K-

G3 -K-
G8

- K -

07 /«-
G4

-K-

1/u

Figure 9.6: Simulink block diagram of the nonlinear observer; the input is the position 
between the magnet and the track, and outputs are the three states: position x\,  velocity 
x 2 and current ab

ating airgap is modified from 4 mm to 3 mm. The closed-loop response in the suspension 

airgap is shown in Fig. 9.8. As with the results obtained from the nonlinear state-feedback
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Figure 9.7: Simulink block diagram of the closed-loop Maglev system with the nonlinear 
Tioo controller.

controller, the closed-loop system is stable and the response is over-damped. In comparison 

to the linear output-feedback 'H<x> controller (Fig. 6.18, page 119), the settling time in the 

airgap is reduced by almost a factor of two, and the overshoot in the response has been 

reduced to 0 mm. This characteristic is well suited for Maglev applications since it gives 

good ride qualities with low acceleration levels in the cabin. Responses with similar charac

teristics were obtained by using two-degrees-of-freedom controllers (//—optimal design for 

multi-magnet vehicles in Chapter 8).

9.4 Experimental results
9.4.1 D S P  im plem entation  o f th e nonlinear controllers

To asses the suspension characteristics of the closed-loop system, the nonlinear state- and 

output-feedback controllers derived above are implemented on the DSP control hardware 

for Maglev (Chapter 5). For operational convenience, the M atlab function is constructed 

to transfer the coefficients of the nonlinear controllers directly to the control software on
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Figure 9.8: Simulated transient response due to a step change from 4 mm to 3.0mm in the 
reference airgap applied at t = 0.5 sec. and the nonlinear output-feedback l i 00 controller

the DSP via the provided E th ern e t/T C P /IP  communication channels. The DSP control 

software collects experimental data  during the operational run and then transfers it to 

M atlab for visualisation and analysis. The sampling time for the control loop is fixed to 1 

millisecond for compatibility with the electrical time constant of the experimental system 

(magnet winding inductance). The main tasks performed by the control software at each 

sample are: da ta  capture and conversion (including integration of the acceleration signal 

to generate velocity), implementation of the control algorithms, outputting of the control 

signal and logging data  for off-line analysis. Each sample is interrupt driven from the 

internal tim er of the DSP. The control software was written in C and assembly languages 

for the SHARC family of DSPs [45, 69, 70]. The analogue processing tasks such as data 

conversion, integration and domain conversion, consume 5% to 8% of the sampling time. 

The nonlinear state-feedback controller (Eqn. 9.28) uses a further 5% to 10% of 1 ms. For 

the rest of the time the processor serves tasks requested from the host computer.

To implement the output-feedback controller (state estimator +  state-feedback con

troller) on the embedded hardware, the classical linear control requires a transformation 

from the continuous time-domain to the discrete time-domain. Because of the nonlinear 

nature of the observer (Eqn. 9.42), this procedure is not directly applicable. A possible way 

of overcoming this lim itation is to include a Runge-Kutta solver within the control loop.
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At every sample (=  1ms) the software on the DSP receives the most recent output of the 

system (y ) and multiplies it by the output injection gain Q. The set of first-order differ

ential equations (Eqn. 9.42) is then integrated numerically by a dedicated Runge-Kutta-4 

integration routine. A typical control sample for the nonlinear output-feedback controller

1| | 2

-I------------------------------------------------------------------------------------------
control control
sample k sample k + 1

Figure 9.9: DSP tasks executed by the nonlinear 'H00 controller within one control sample 
(1 ms). (1) Read the position value from ADC and store data  for analysis. (2) Solve 
the nonlinear Dynamics (Eqn. 9.42) with a Runge-Kutta solver to get x . (3) Calculate 
the nonlinear output-feedback /H00 controller from Eqn. 9.28 and output the value to the 
output circuits. (4) Spare time.

is shown in Fig. 9.9. At the beginning of the sample, the software integrates the nonlinear 

dynamics of the observer (task-2). For satisfactory convergence of this integration process, 

experience suggests that around 50 steps, each of length h = 10.0 x 10-6 , are needed to 

produce a representative estimation of the system’s states x. At the end of the 50th step 

the final values of the three state variables , x(50), are taken as the input to the nonlinear 

state-feedback controller in Eqn. 9.28 (task-3). The full collection of software tasks for 

nonlinear output-feedback control takes around 400//S per cycle; the remaining 600//S of 

the sampling time being taken up to serve the host. This is indicated as spare — tim e  in 

Fig. 9.9 (task-4).

9.4.2 E xperim ental results

One of the fundamental requirements of the attraction type suspension system is its 

capability for sustaining stable equilibrium under all operating conditions and disturbances. 

In addition to changes in suspended load, sources of disturbance on a moving vehicle in

clude unsteady aerodynamic forces, guideway induced vibrations, and continuous excitation 

due to guideway roughness and misalignments. The guideway usually consists of beams 

supported at equal intervals which would introduce additional modes into the suspension 

system leading to dynamic interactions between the guideway and the suspension control
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loops. Random  or sinusoidal variations in the guideway profile would introduce undesir

able resonance conditions. To avoid such interactions, an adequate separation between 

the guideway natural frequency and the suspension natural frequency needs to be main

tained [1]. In order to emulate guideway movement with a view to assessing the effects

„  track movement
tick ▲

▼ I I I track position sensor guideway
on 1— 1—  *

ztrack

variation
rate 
,1 1 , j

Q j oscillatimg i  
mechanism rH

\ FX/,z) f z (0
r i—O

position 
*  sensor

current

electromagnet

z(t)
airgap

g  m
vertical

accelerometer acceleration

Figure 9.10: Magnet-guideway configuration of the experimental system. D isturbance to 
the guideway is introduced by the oscillating mechanism on the top left corner.

of the new generation of nonlinear control laws derived in the previous sections, an os

cillating mechanism was added to the experim ental system. This mechanism is shown in 

Fig. 9.10 and consists of a DC motor and an unbalanced disk. Facilities are provided for 

varying the rotational speed of the shaft and hence the variation ra te  in the guideway 

profile. R otational movements in the shaft are translated  to  linear displacements via a 

bearing mechanism connected perm anently to the track. A position sensor is employed to 

register the position of the track z track• This signal is sampled by the control hardware for 

visualisation purposes. The oscillating mechanism is capable of introducing step changes 

as well as periodic motion in the guideway position with respect to the suspended mag

net. The resulting configuration perm its the analysis of the suspension system with track 

disturbance in both  frequency- and time-domains.

In the first set of experiments, the step responses of the closed-loop system due to track 

disturbances in the reference position and the track were studied. Fig. 9.11 (top) and 9.11 

(bottom ) show the responses of the suspension system to a step change in guideway position 

( z t r a c k )  and a step change in the reference airgap (zref ) for three types of controllers:

(a) linear state-feedback as derived in C hapter 2, curve-1

(b) second order nonlinear state-feedback (Eqn. 9.28), curve-2 and

(c) the nonlinear output-feedback (Eqn. 9.42 with conjunction with Eqn. 9.28), curve-3.
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Figure 9.11: Experim ental and sim ulation transien t responses. Top: step change in airgap 
reference (clam ped guideway); z rej  = 2.75mm to  z rej =  2.0mm. (1 ) Linear state-feedback 
controller w ith kp =207.923, kv = 1.5 and ka =  0.00424. (2) Nonlinear state-feedback 
controller (Eqn. 9.28) w ith a i  =  0 .2  — 7  =  1, (3 = diag{ 1 , 1 , 1 } and Wc =  0.12, (2a) 
corresponding sim ulation response. (3) N onlinear output-feedback controller (Eqn. 9.42 and 
Eqn. 9.28) w ith a, /?, 7 , Wc as in the nonlinear state-feedback, (3a) corresponding sim ulation 
response. Nominal operating conditions for all nonlinear controllers are z0=3.13A and 
2o= 4 .0 mm. B ottom : Experim ental responses due to a step change in guideway position 
( z ref kept constant a t 2.5mm); controller param eters as above.
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Figure 9.12: Experimental responses due to sinusoidally oscillating track for three different
frequencies with linear state-feedback controller; kp =207.923, kv =  1.5 and ka =  0.00424.
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Figure 9.13: Experim ental frequency responses (the sensitivity function) of the closed- 
loop system; (1 ) linear state-feedback controller, (2 ) first-order nonlinear state-feedback 
controller (Eqn. 9.26), (3) second-order nonlinear state-feedback controller (Eqn. 9.28), 
and (4) nonlinear output-feedback controller (Eqn. 9.42 and Eqn. 9.28). [7 specifies the 
peak value of the sensitivity function. The value of Wc pu ts a penalty  on the control signal; 
sm all values of Wc lead to faster transient response and hence wider bandw idth. 7 = 1  and 
Wc =  0 . 1 2  in all experim ental responses contained in this paper.]

The first order nonlinear state-feedback control law in Eqn. 9.26 was also implemented. 

The corresponding step responses, however, are very close to  the responses from the linear 

state-feedback control law and therefore are not included in Fig. 9.11.

The experim ental responses in Fig. 9.11 indicate th a t the new nonlinear controllers improve 

the overall settling  tim e alm ost by a factor of two, com pared w ith the conventional linear 

sta te  feedback controller. These observations are consistent w ith the sim ulation results 

in Figs. 9.4 and Fig. 9.8 (included in the figure w ith dotted  lines). The reduction in 

overshoots in Fig. 9 .11  (curve-3) indicates th a t, w ithin the definitions of linear systems, 

the peak am plitude in the sensitivity function will remain below the 0 dB boundary. The 

shapes of the com plem entary functions for different controllers provide a reasonable basis 

for the assessment of the disturbance a tten u atin g  properties of the suspension system (=  

track following capability) with sinusoidal variations in the guideway profile. To study this 

further, a  series of experim ents were carried out w ith sinusoidal variations in the guideway 

position. At each run, the system is suspended at a fixed zrej , the track is oscillated, 

and the airgap and the guideway positions logged. Fourier analysis is then  employed on 

the logged d a ta  to  determ ine the fundam ental frequency of the guideway profile and the
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a ttenuation  ra te  of the airgap error (zref  — z ). Initially, these experim ents were performed 

w ith a linear state-feedback controller, and the corresponding responses for three different 

frequencies are shown in Fig. 9.12. The attenuation  ra te  of the closed-loop system is given 

in the figure. These experiments were repeated over the whole of the frequency range 

for which the  system  m aintained a stable suspension, and the corresponding sensitivity 

function (curve 1) is plotted in Fig. 9.13. The bandw idth of the closed-loop system from 

the track d isturbance input to the airgap position w ith the linear s ta te  feedback controller 

was observed to  be around 9.5 Hz. The peak value of this sensitivity function is 6  dB. 

Therefore, d isturbances w ith frequencies above 9.5 Hz will be amplified nearly by a factor of 

two by the  closed-loop system, leading to an unacceptable operation (airgap error rising up 

to  two tim es the guideway variation). A lthough there was insignificant difference between 

the step  responses of the linear s ta te  feedback and the nonlinear first order s ta te  feedback 

controllers (Figs. 9.11), the la tte r was seen to have a narrower bandw idth bu t a  lower peak 

(curve 2 in Fig. 9.13).

The above sequence of operations were also perform ed w ith the nonlinear second-order 

state-feedback controller and the nonlinear output-feedback controller over the same range 

of frequencies. The corresponding responses are shown in Figs. 9.14 and 9.15. The exper

im entally  derived sensitivity functions for these two controllers are given in Fig. 9.13 as 

curves 3 and 4, respectively. Two specific observations may be m ade from the shapes of 

these sensitivity  function (Fig. 9.13):

(a) The closed-loop bandw idth w ith the nonlinear controllers increased. This results in 

b e tte r a tten u a tio n  of track disturbances in the low-frequency range, and

(b) The peak of the sensitivity functions rem ains below 0 dB and hence the inequality in 

Eqn. 9.4 is satisfied. This observations stands th a t the increase in energy on the outpu t 

rem ains bounded by 7  =  1 .

Consequently, a t low frequencies (<10H z), the m agnet will follow the guideway profile sa t

isfactorily (as in Figs. 9.14 and 9.15). W hile the airgap error goes up a t higher frequencies, 

it would still rem ain below the am plitude of the guideway movement (m easured from its 

da tum  line). As the permissible peak variation in the guideway is closely related to  the 

m ean operating airgap, this implies th a t the  second order state-feedback and the output- 

feedback nonlinear controllers are capable of m aintaining a stable suspension. Fig. 9.15 also 

shows th a t w ith the nonlinear controllers, the phase difference between the airgap and the 

guideway profile rem ains below 90° for variation above 10Hz, while the linear state-feedback
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controller in Fig. 9.12 introduces a phase difference of up to 180° for this frequency range.

In com parison w ith the experim entally derived sensitivity functions for the linear %00 

controller (C hapter 6 , page 127), the nonlinear /H00 controllers derived in this chapter im

proves the bandw idth  by almost a factor of three (5.6 Hz vs. 17.5 Hz). The peak on the 

sensitivity function has been also reduced from -1-5 dB (Fig. 6.27) to  -1 dB (Fig. 9.13). Al

though the the  bandw idth for the linear design can be also controlled by the performance 

weights for the  design (Wc and W), this would typically lead to  an increase in the high- 

frequency noise w ithin the operational bandw idth due to  m agnitude responses with gains 

above 0dB  in the com plim entary and the sensitivity transfer functions and the flat magni

tude response w ith high gain w ithin the lead part (>  20H z  in Fig. 6.20) of the com pensator. 

In con trast, the  dissipation properties of the nonlinear Hoo design lead to  com pensators 

w ith gains <  0dB  and hence a considerably b e tte r attenuation  characteristics for the high- 

frequency noise. In addition, low-frequency noise generated from the supporting  beams in 

the track (up to  10 Hz for a vehicle travelling w ith 500 k m /h  with track supports every 15 

m [17]) is a tten u ated  by -15 dB by the nonlinear l-ioo controllers. For m ulti-m agnet design, 

however, the increased com putational dem ands by the nonlinear controller m ight require 

employing m ultiprocessing to  meet the com putational requirem ents.

9.5 Conclusions

In th is  chapter, a  unified framework for the derivation of nonlinear 'H00 controllers was 

presented w ith particu lar reference to  its application to  electrom agnetic suspension sys

tem s. Two nonlinear controllers were derived: a nonlinear state-feedback Hoo controller 

and a nonlinear output-feedback 'H00 controller. Sim ulation and experim ental results were 

presented to  dem onstrate  the stabilisation characteristics of the new controllers. The ex

perim ental results suggest th a t the second order state-feedback and the output-feedback 

controllers improve the disturbance rejection properties of the closed-loop system. W hile 

bo th  nonlinear controllers lead to  improved suspension characteristics, the ou tpu t feed

back controller (which subsumes a nonlinear s ta te  estim ator) has been observed to  provide 

significant im provem ent over the linear state-feedback controllers (Fig. 9.15).

One of the key differences between the nonlinear state  and the o u tpu t feedback con

trollers is the execution tim e of the control algorithm s (Eqn. 9.28 and Eqn. 9.42): 4-5% of 

lm s for the form er and 400 /xs for the la tte r. In m ultim agnets vehicles this may impose 

some operational constraints. To overcome this, the embedded DSP hardw are has been
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designed w ith com m unicating protocols between local control loops for individual mag

nets and supervisory control functions to co-ordinate the d istribu tion  of suspension force 

generated by the various m agnets m ounted on the vehicle chassis.
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Figure 9.14: Experimental responses due to sinusoidally oscillating track for three different
frequencies with nonlinear second-order state-feedback 'H00 controller (Eqn. 9.28).
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Figure 9.15: Experimental responses due to sinusoidally oscillating track for three different
frequencies with nonlinear output-feedback 'Hoo controller (Eqn. 9.42 and Eqn. 9.28).
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C hapter 10 

C onclusions and future work

10.1 Conclusions

In th is thesis, the  problem  of controlling m agnetically levitated system s using DC elec

trom agnets under different operating conditions has been studied w ith a design process 

prim arily driven by experim ental results. W ith  some generalisation, the controller design 

m ethods and algorithm ic work presented in this thesis can be divided into: non-adaptive, 

adaptive, optim al linear and nonlinear.

State-feedback control using inputs from position, velocity and acceleration (Chap

te r 2 ), is by far the most widely studied control law for electrom agnetic suspension sys

tem s [1, 13, 15, 16]. A key feature in the design is the choice of the nom inal operating 

poin t such th a t the param eters (ki, kz and L0) rem ain unchanged for the whole of the op

era ting  ranges for the current and the airgap. The closed-loop system  can be modelled as a 

second-order system  w ith kp controlling the steady-state  error, the natu ra l frequency and 

the stiffness (Fig. 2.6, page 22), kv controlling the dam ping ration and ka controlling the 

overall s tab ility  [1]. A lthough the well established PID  m ethod is able to provide the basic 

suspension perform ance, acceleration-velocity feedback adds more flexibility in the choice 

of suspension dam ping. Use of state-feedback, however, requires additional transducers to 

m easure the vertical acceleration. A lthough the cost of this is negligible com pared to  the 

overall cost of the vehicle/control system, additional algorithm s are required for full-scale 

fau lt-to leran t applications. The lack of dc-integration in the loop frequency response, leads 

to  steady-sta te  errors and although these can be successfully accom m odated for changes in 

the reference dem and by using prefilters, response to unknown external force and mass dis

turbances lead to  steady-state  errors (Figs. 3.8 and 3.9, page 46). To account for this, the 

state-feedback controller needed to  be enhanced and two adaptive mechanism s have been 

developed to  improve the response by adap ting  the controller’s param eters in real-time.
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The adaptive pole-placem ent control law defines a cost function for a m inim isation 

problem  defined as the error between the desired and the current location of the closed-loop 

poles (C hapter 3). A m inim isation algorithm  based on a recursive least square algorithm  

has been im plem ented in real tim e to adapt the state-feedback param eters (kp, kv and ka in 

Fig. 2.6, page 22) to  minimise the above cost criteria  (Fig. 3.6, page 40). The identification 

routine and the  state-feedback controller have been im plem ented as software algorithm s 

on the control hardw are while the desired location of the closed-loop poles is defined as a 

characteristic  polynom ial from a host com puter. The adap ta tion  ra te  in th is algorithm  is 

determ ined by the param eter A and choosing its value is crucial since it determ ines how fast 

the ad ap ta tio n  of the gains reacts to  the external disturbances. A trade  off in the selection 

of th is  param eter has to be made depending on the operational model. Analysis has shown 

th a t the  locations of the closed-loop poles (derived from identification) slightly differ from 

the desired locations specified in the definition of the cost function. This is m ainly due to 

errors from linearision, unmodelled dynam ics and conversion from the linear s—dom ain to 

the discrete z —dom ain. The desired locations used for the experim ental work were derived 

em pirically to  get high stiffness in the response. This m ight be adjusted  depending on 

the application. The sam pling tim e for the algorithm  also influences the adap ta tion  rate. 

P relim inary  im plem entation results on the transpu ter hardw are have shown th a t w ith 950/xs 

sam pling tim e, the  suspension system  did not appear to  be capable of accepting disturbance 

inputs. T his was improved on the DSP hardw are by reducing the sam pling tim e to  200(is. 

To accom m odate a d isturbance force input of 120N, approxim ately 5000-6000 identification 

cycles (« 1  second) were needed (Fig. 4.4, page 56) to  reduce the steady-state  error.

A model-reference adaptive controller, which minimises analytically the error between a 

reference system  and the experim ental system , was also derived (Fig. 3.7). The closed-loop 

reference model is run on the control hardw are in real-tim e and a t every control sample, 

the error is minim ised by adapting  the controller’s gains. This configuration considerably 

improved the response of the system to  external disturbances in force and payload (Fig. 4.1, 

page 4.1). Since the suspension balance is driven by a force balance, the vertical acceleration 

signal is m ost sensitive to  external disturbances with acceleration gain being the most 

responsive during adap ta tion  (from 25% to  250% change from its initial value). kv has 

varied w ithin ±25% , while kp has varied only 5% from its initial value. Several factors may 

influence the choice of the reference model including the am ount of energy available for the 

adap ta tio n  by the m agnet’s lift-force ra iting  and available current supply from the power
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amplifier. The operating conditions for the reference model have been chosen in the linear 

p a rt of the force-current characteristics. The adap ta tion  rule thus can return  the airgap of 

the suspended system  to th a t of the reference model for large variations in the operating 

conditions. For large variations w ithin the nonlinear force-airgap characteristics, a family 

of pre-stored models or a nonlinear model can be used. A daptive nonlinear control for 

electrom agnetic system is proposed in [29]. These authors have studied the performance in 

response to  changes in the desired airgap w ithout explecitely analysing the performance to 

d isturbance inputs. A mechanism is developed to  analyse the stab ility  of the closed-loop 

system  using Lyapunov m ethods [29].

The no ta tion  of uncertainty, which arises in the form of discrepancies between the phys

ical p lan t and the m athem atical model used for controller design and unm easured noises 

and disturbances th a t act on the physical plant, is an im portan t factor in the  design of 

the feedback controller. To cope w ith external force and payload noise, an adaptive mech

anism  for tuning  the state-feedback controller in real tim e has been proposed [35]. The 

mechanism for the adap ta tion  rate, however, is based on good knowledge of the m athem at

ical model and although by using precise identification, this requirem ent can be fulfilled 

for small-scale applications, a full-scale m agnetically suspended vehicle would require ro

bustness properties to  be built into the controller directly. Hoo and /i—synthesis was thus 

considered as a  suitable framework for m ulti-m agnet controller design. The derivation of 

the 1-Loo com pensator is based on an optim isation procedure th a t minimises the worst-case 

gain, the  oo-norm, between unknown external disturbances entering the suspended system 

and a vector of penalty  signals by selecting the feedback com pensator. The optim isation 

natu re  of the  controller derivation steps allows single and m ulti-m agnet problems to  be 

solved by following the  same procedures.

For the Hoo derivation, all d isturbances acting on the suspended m agnet, such as track 

irregularities, external force, payload disturbances and measurem ent noise are grouped to

gether into one disturbance vector on the o u tp u t (Fig. 6.1, page 8 8 ). The mixed sensitivity 

m inim isation problem  is then considered which aim s to make the closed-loop system  invari

an t to  all d isturbances by selecting a feedback com pensator th a t minimises the sensitivity 

of the system. For robustness, an upper bound on the ou tpu t of the controller (magnet 

current) was also considered (Fig. 6.3). To provide a basis for custom isation of the Hoo 

design and facilities of incorporating it into the DSP software, the algorithm  for the solu

tion of the Hoo problem  was fully derived using Lagrange m ultipliers and differential game
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theories. The derivation steps result in a procedure which derives identical controllers in 

term s of perform ance as the algorithm  in M atlab. State-feedback controllers using Hoo 

weighted sensitivity m inim isation were firstly derived and although these are not suitable 

for practical im plem entation, im portan t design steps have been discussed. Comparison 

between sim ulation step responses show th a t the Ho0 state-feedback controller improved 

considerably the steady s ta te  response, overshoot and settling  tim e (Figs. 6.9 and 6.10). 

In addition the  Hoo procedure provides a system atic way of describing suspension qualities 

by shaping the  perform ance weights for the design. Based on these observations, the algo

rithm  for Hoo design is further extended to  the output-feedback setting  by incorporating 

an Hoo~ o p tim a l observer. Experim ental results show th a t the weighted mixed sensitivity 

problem  is suitable for Maglev control and the design param eters provide a valuable input 

for selecting desired suspension characteristics. The bandw idth of the closed-loop system 

can be su itab ly  controlled as well as the upper bound on the sensitivity to  the  disturbances. 

In th is respect a  valuable mechanism can be derived for separating guidance disturbances 

from the system ’s bandw idth. Due to  the integration characteristics of the loop-frequency 

response a t low frequencies, the controllers give zero steady-sta te  errors (Fig. 6.23). The 

m echanism  proposed in this thesis based on the weighted sensitivity m inim isation prob

lem reduces considerably the overshoot and the response tim e com pared to  the sim ulation 

results presented in [30] and provides lower values for the oo—norm  on the sensitivity func

tion com pared to  the response in [31]. The mechanism used for the digital im plem entation 

is based on a Z O H -transform ation of the linearly-designed feedback com pensator. The 

experim ental work suggests th a t this approach is suitable for Maglev design. The sampling 

frequency was fixed a t 1 kHz, which proved to  be sufficient for the operational bandwidth.

Due to  the  nonlinear force-current and force-airgap relationships, changes in the oper

ating  conditions will modify the open-loop model used for the controller design. Although 

the Hoo controller satisfies the perform ance criteria, analysis using the structured  singular 

value fj, has shown th a t ±25  % variation in the typical operating point (z0 =  3A, z0 = 4mm  

typicaly) and 2 0 0 % variation in the suspended mass will lead to instability  when using the 

Hoo controller (C hapter 7). Using two m ethods for modelling uncertainty, the robustness 

analysis has shown th a t the closed-loop system  w ith the Hoo controller is more sensitive to 

changes in the operating conditions and the suspended mass and less sensitive to  uncer

ta in ty  in the electical param eters of the model (30% variation in R,Lo). Combining Hoo 

and /i—analysis provides a mechanism for em bedding robust properties into the controller.
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Using th is new design tool, the //-optim al controller, designed w ith the same perform ance 

requirem ents as the 'H00 com pensator, provides a considerable increase in the robusness 

m argin for the  sam e uncertainty in the model (Fig. 7.19 versus Fig. 7.3). Sim ulation and 

experim ental responses have shown th a t the suspension properties are considerably im

proved for a system  subjected to additional mass disturbance.

A Maglev vehicle supported and guided by electrom agnets acts as a  free body in space 

unconstrained by a physical contact w ith its surroundings (Fig. 8.1). The requirem ent for 

the control system  is to  drive four or more m agnets sim ultaneously and to  keep the sus

pension m odes (heave 2 , pitch 6 and roll </>) in equilibrium . C ontroller synthesis based on 

optim isation  provides a suitable basis for the derivation of the com pensator w ith an ap

p ropria te  cross-com pensation structu re  to  reduce coupling effects caused by the rigid body. 

Using a m ultivariable model for the vehicle and a set of perform ance criteria, this control 

problem  has been solved using the Hoo and / /—synthesis tools and the weighted sensitivity 

optim isation criteria  derived for the single-m agnet case (C hapter 8 ). To improve the sus

pension qualities, a prefilter to  specify the desired response in all three suspension modes 

is added to  get over-damped transien t responses (Fig. 8.15, page 192) and an acceleration 

level of m axim um  OAg for the heave response. The experim ental work is carried out on 

a 8 8  kg vehicle developed in [2 1 ]. Since suspension forces in the experim ental vehicle are 

actively controlled, Maglev controller design w ith guidance support is addressed in simula

tion only. L ateral guidance support in the experim ental vehicle is provided by the inherent 

la teral stiffness of the  suspension m agnet (leakage flux). The m ultivariable controller de

signed using / /—synthesis considerably improves the disturbance rejections properties as 

well as the  transien t response and the bandw idth  of the system. Experim ental results from 

the vehicle have shown th a t the m ultivariable controller improves the response to  guidance 

induced disturbances (Fig. 8 .8 ) and in con trast to  the state-feedback controller it reduces 

the overshoot in the heave response to  a  m inim um . Hoo controllers for Maglev vehicle have 

been previously proposed in [31], bu t the  design there has been simplified to  a single loop 

design by neglecting the  cross coupling. Therefore the design strategy proposed in this 

thesis considerably improves the response in the vehicle to disturbance rejection compared 

to  [31]. Com pared to  the integrated and local vehicle control strategies presented in [1 , 13], 

m ultivariable controller design w ith / /—synthesis provides less overshoot in the response 

due to  the in tegrated pre-filter. The experim ental step-response to  a 1mm sim ulated track 

step change has less overshoot and faster transien t response com pared to  the  force-feedback
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controller presented in [21]. Responses to  force disturbances are also successfully accommo

dated  by the design (Fig. 8.24) w ithout the necessity of an additional feedback loop from 

an estim ator for the d isturbance as proposed in [18] (Fig. 1 1 ). For the controller-design 

process a  trade  off has to  be m ade between the allowed uncertain ty  in the system, the 

closed-loop bandw idth , the sam pling tim e m agnet force satu ration  and operational stabil

ity. Increasing the  uncertain ty  in the system  typically require a relaxation the upper-bound 

requirem ents on the  control actions and hence an increase in closed-loop bandw idth. The 

controller is then  required to  operate over a larger bandw idth which pu ts additional con

s tra in ts  on the sam pling tim e. The increased num ber of state-variables in the m ulti-m agnet 

controller tends to  consume most of the available processing bandw idth. It was estim ated 

th a t controlling a m ultivariable system with guidance support would require approxim ately 

350-400 microseconds. Reducing the sam pling tim e for wider operational range and higher 

closed-loop bandw idth  uses up the available com putation tim e-slot. For th is application, 

the m ulti-processing facilities provided by the DSP hardw are have to be used. In addition, 

an increase in operational bandw idth leads to  exciting higher frequency modes in the ve

hicle body which are excluded from the modelling work. W ithout additional account for 

these, undesirable resonance effect are generated leading to  increased acceleration levels. 

The m ultivariable controller is im plem ented on the DSP hardw are in discrete state-space 

form. It has 14 state-variables, seven inputs and four outputs. I t requires 345 DSP cycles 

and  it takes 125 microseconds to  execute. This considerably improves the rounding up er

rors and the  phase delays in the com putation in comparison to  executing 28 compensators 

(needed for 7 inpu t and 4 ou tputs).

The concepts of dissipativity, supply power and stored energy can be used to derive 

nonlinear H 00 controllers using the nonlinear model of the suspension system directly w ith

out linearision (C hapter 9). The energy balance criteria are satisfied by solving a set of 

H am iltonian-Jacobi-Isaacs inequalities to  derive a nonlinear state- and output-feedback 

control laws. W hile the  exact solution to  th is inequality is not readily available, an ap

proxim ate solution involving Taylor series expansion is used to derive higher-order term s 

in the nonlinear controllers. The derivation process is performed analytically  and a fully 

worked-out exam ple for a single-m agnet system  is presented. The analysis of the control 

laws is perform ed on a single-m agnet test rig which is equipped w ith a mechanism for 

guideway-induced disturbances. Experim ental results over a large range of variation in 

the oscillating m echanism show th a t the  nonlinear output-feedback controller improves the
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bandw idth  of the system  and suppresses the guidance induced disturbances by minimising 

the energy of the  disturbances. The a ttenuation  rate with the nonlinear controller has been 

increased to  10 Hz and has been doubled in a comparison w ith the results presented in [16]. 

For the im plem entation, a nonlinear set of dynamic equations have to be solved to  pro

vide the estim ations for the state-variables. R unge-K utta m ethod is im plem ented and run 

in real-tim e on the software as a pa rt of the controller-derivation process. The nonlinear 

controller requires 400//S to execute on the DSP hardware. Nonlinear control for Maglev 

based on a coordinate transform ation has been previously studied [25, 26, 27]. However, 

application of nonlinear /H00 control for Maglev, as derived in this thesis is considered to 

have been presented for the first tim e [36].

10.2 Future research recommendations

A num ber of areas have been identified which could benefit from further research.

The control work described in this thesis has been derived on the basis of simplified 

single- and m ulti-m agnet models. W hile this is sufficient for the controller-design work, a 

more detailed model is necessary for the sim ulation work to  include unm odelled dynamics 

a t high-frequencies, oscillation modes in the chassis, dynam ic responses of the amplifier and 

transducers. In addition, the track-guidance interaction have to  be included for the analysis 

of high-speed suspension characteristics which is difficult to  reproduce in laboratory-scale 

experim ents.

In the  derivation of the Hoo controllers it would be beneficial to  employ cost optim isation 

objectives which include suspension qualities criteria, such as suspension stiffness and ride 

comfort. In addition , the  flux leakage and eddy-current loses can be also accounted for in 

the electrom agnetic suspension systems. Two possible approaches can be investigated in a 

further research work: (1 ) to  develop a detailed model of the electrom agnetic suspension 

system  which includes flux leakage and to  construct an adap tation  scheme which is based 

on the suspension airgap in order to  regulate the force to  account for the leakage, or

(b) to  model the degradation in suspension forces due to  the flux leakage using uncertainty 

models as described in C hapter 7 and to  design a //-optim al controller which accom m odates 

a complex pertu rbation  model for the uncertain ty  and provides robustness against it.

The nonlinear Hoo controller is derived for the single-magnet model. It would be in

teresting to  analyse the suspension qualities and the interaction of m ulti-m agnet configu

rations controlled by a nonlinear m ultivariable controller. In addition, robustness in term s
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of param eter pertu rbations is not accounted for in the proposed nonlinear design and it 

would therefore be beneficial to  add robustness analysis and synthesis in the nonlinear 

dom ain.
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A p p en d ix  A  

C V I environm ent for M aglev  control
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Figure A .l: The software application on the host working in Windows environment. 
This software communicates with the transputer-based and the DSP-based control hard
ware/software and facilitates monitoring and modifying different control techniques and 
param eters.
The top panel carries the main menu.
The left panel Maglevl shows the suspended magnet on-line and the three state  variables. 
From this panel the desired position may be modified in real-time.
The right panel shows a typical configuration screen related to a control technique. The 
state  feedback screen is given as an example.
The bottom -right figure shows how a param eter may be monitored as a graph-plot in real
time. The figure shoes the airgap signal as an example.
The software is w ritten in C language using the National Instrum ents LabW indows/CVI 
compiler.
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Figure A .2: The software application on the host working in W indows environment. 
This software comm unicates with the transputer-based  and the DSP-based control hard
w are/software and facilitates m onitoring and modifying different control techniques and 
param eters. On the top figure is shown the menu of the advanced control algorithm s as 
described in C hapter 3. The next figure shows the menu of param eters th a t may be speci
fied for p lo tting  an d /o r m onitoring. The last figure shows the menu, related to the control 
hardware.
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A p p en d ix  B  

D S P -based  control hardware
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Figure B .l: Top: DAC’s ou tpu t offset circuit and ou tpu t buffer. Bottom : Anti-aliasing 
filter and input amplifier.
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Figure B.3: Frequency response of the  anti-aliasing filter. The circuit provides -2.6dB 
a ttenuation  a t 25kHz.
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Processor One ADSP-21062 Analog Devices SHARC processor 
40MHz, 25ns instruction rate, 120M FLOPS, 40MIPS 
32/40-bit floating point, 32-bit integer
2 M bits dual-ported on-chip SRAM memory, organised x32 or x48 
six 40M B/s link ports, and two 40M bit/s  serial ports

Interface One SHARCPACK standard  interface
External M emory 4M bit FLASH memory

Up to 32M bit SRAM zero wait s ta te  memory
E therne t port One lO M bit/s E thernet port

lOBase-T unshielded tw isted pair RJ45 interface
Link Ports Four external link connectors

Two are connected directly to the SHARC on the  board 
Two are routed from the SHARCPAC module

Serial Ports Four serial interfaces routed to  the SHARCPAC connector
Analogue inputs Eight 12-bit analogue inputs 

M aximum conversion ra te  454 kHz 
four ±5.0V  input channels 
four 0 -2 0 mA input channels
Eight independent anti-aliasing analogue filters (25KHz cut-off freq.) 
Four program m able gain amplifiers w ith 255 positions 
Four fixed gain amplifiers (1:1)

Analogue ou tpu ts Four 12-bit analogue ou tpu ts 
6 /xs settling tim e 
four ±5.0V  ou tpu t channels 
Four fixed gain amplifiers (1:1)

D igital I /O Eight program m able digital I/O s 
TT L in p u t/o u tp u t levels

Encoder inpu ts Two 12 -b it inputs for ro tary  encoders 
TT L  input levels
Direct interface to  standard  encoders

Program m able I /O G ate-program m able digital I/O s  (Lattice ispLSI1016-180 CPLD)
Debug Port 14-pin IDC header for IEEE JTAG 1149.1 boundary 

scan w ith extensions for in-circuit em ulation 
Supports Analog Devices EZ-ICE em ulator

Software support Em bedded kernel on board  th a t supports T C P /IP  and 
host booting
Host interface tool for booting
Support of the Analog Devices developing tools
M atlab client/server m odule for direct interface to  M atlab/S im ulink

Power 650mA@5V typical (not including optional SHARCPAC module) 
optional 650mA@12V (not including optional SHARCPAC module)

Size 4.7” x6 .4”
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Figure B.5: SHARC DSP, Reset circuits, 40MHz clock and its buffers.
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Figure B.8: SRAM memory and FLASH memory modules.
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Figure B .ll: Programmable digital I/O  interface
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Figure B.15: Connectors: analogue I/O , digital I/O, and link ports for multiprocessing.
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Appendix C 

Solutions to 'Hoc control problems

Although the algorithm for deriving H 00 controllers is readily available, an alternative 

analytical solution is developed using Lagrange multipliers methods and differential games

solution. The m athematical derivations are fully described below. The algorithmic work 

is a summary of the analytical work in [80, 84, 85, 86 , 87], which is further customised to 

suit the 1-Loo optimisation problem.

C .l State-feedback "Hoc optimisation problem

The state-feedback Hoo problem requires the solution of the optimisation task in Eqn. 6.33 

for K .  This requires the construction of the state-space model of the open-loop model P(s)  

(Fig. 6.4) from Eqn. 6.28 [y is not used for the state-feedback design and hence removed 

from the model]

To simplify the derivations and without a loss of generality, D u  in Eqn. 6.28 is taken to 

be zero by selecting a strictly proper performance weight W  (e.g. D w = 0 in Eqn. 6.27 and 

consequently D u  =  0). W ith reference to Eqn. C .l, the Hoo design goal is to minimise the 

influence of the disturbance w on the penalty q by driving the control input u =  K x.  This 

can be achieved by assigning an upper limit on the oo-norm of the transfer function from 

w to q, i.e.

Since the oo-norm is related to the energy of the input and the output signals (Eqn. 6 .4), 

the above inequality can be rewritten to the following equivalent form

theory [82, 81, 83]. Motivation for this work is its close analogies with the classical LQG

x  =  A x  4- B\w  -I- B 2u 
q — C\x  +  D i2u

(C.l)

(C.2)
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where supw is the worst possible disturbance input w. Rearranging the right-hand-side of 

the above inequality to

provides a suitable basis for defining a cost function for the optimisation problem: Minimise

j ( u , w )  =  I I 9 I I 2  -  72 I M I 2  ( c - 3 )

for the worst possible input w by finding a feedback controller K  tha t drives u in Eqn. C.l. 

This optimisation problem is a two-player dynamic game problems [80, 81, 82, 83]. The 

first input (or player) w is driven by the nature and its goal is to maximise the cost function. 

The second input u is driven by the controller and its aim is to minimise the cost function 

for the worst possible w. This can be summarised as

J ( u , w) =  inf [sup  (||g ||2 -  7 2IM l2)}  (C-4)

where i n f  and sup represent min  and m a x , respectively, for a fixed interval of interest.

Employing the definition of energy and substituting the 2-norm with its integral equivalent 

(see Eqn. 6.5), the above cost is rewritten to

Similar optimisation problems have been previously solved in the control literature (for 

example the LQR control problem [79, 80]). Defining w as the worst input w that maximises 

J ( u , w) and u as the optimal u tha t minimises J(u , w), the optimisation task is to find the 

saddle point in J(u ,w)  such that

J(u ,w)  < J(ii,w) < J(u,w)

where w and u are arbitrary w and u.

Eqn. C.4 defines a constrained optimisation problem since q, w and u have to satisfy 

Eqn. C .l. To solve this, Lagrange multipliers can be used to transform the original opti

misation problem to a higher-order, unconstrained problem [79, 80, 110, 91]. This requires 

transforming the original cost function to

J(u ,w ,p)  =  J (u , w) +  p f(x )

where p is the Lagrange multiplier and f ( x )  = 0 is the constraint condition in Eqn. C.l. 

The solution to the above problem will give the optimal u and w , as well as p.
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A: Deriving u and w

Employing the definition of Lagrange multipliers, the cost function in Eqn C.5 is converted 

to an unconstrained cost function by adding the constraint in Eqn. C .l

J(u ,w ,p)  = -  qTq — ry2wTw +  2pT (Ax  +  B\W 4- B 2u — x) dt (C.6)
f(x) = 0

The factor of |  is included for convenience without changing the generality of the deriva

tions. Substituting q in the definition above with its equivalent from Eqn. C .l, transforms 

J ( ’) to
J(u ,w ,p)  =  i / o 7 {(Cla; +  D l2u)T(CiX +  D l2u) -  j 2wTw 

+  2pT (Ax  +  B\w  +  B 2u — x)} dt

For convenience, the following Hamiltonian function [79, 80] is defined for the derivations

H (x ,p ,w ,u )  = i  ( (C ix  +  D i 2u) t ( C i x +  D i2u) -  7 2wTw \  + p T (Ax  +  B xw +  B 2u) (C.8)

to simplify the notation of the performance cost in Eqn. C.7 to

ftf
J(w, w,p) = /  H (x ,p ,w ,u )  — pTx dt (C.9)

Jo

Integrating pTx  by parts yields

J f pTxdt =  pT (tf)x(0)  — pT (0 )x(tf)  — j  f pTxdt

Assuming tha t the initial condition x(0) and the final condition p(tf)  satisfy

p(tf)  = 0 , and x(0) =  0 (C.10)

substituting the latter integral back in Eqn. C.9 transforms it to

J(u ,w ,p)  = J  H(x ,p ,  w, u) + p Txdt  (C .ll)

The 'Hqo minimisation task becomes determining w and u that maximises and respectively 

minimise J (u ,w ,p)  in Eqn. C .ll.

Deriving w : Determining the worst estimation for the disturbance, w, requires solving

— 5 ~ :P) =  £  C  {H (*- P’ w> “ ) +  pTx } dt = 0

Since the limits of the integral are not functions of w, this differential equation is same as

dJ(u, w,p) d f \ , -r 1 d H (x ,p ,w ,u )
dw = g ^ { f f ( x , P , y > , n ) + p x }  = -------^ -------- =  0
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Using the definition for the Hamiltonian function in Eqn. C.8 , the optimal w is derived by 

solving
d H ( x ,p , w, u)

dw
= —7  2w +  B j p =  0

This gives

w = 7  2 B \ p (C.12)

w maximises J(u ,w ,p)  since

d2H ( x ,p , w , u)
dw2

=  ~ 7 2 <  0

w in Equation C.12 is a function of the Lagrange multiplier p. the procedure for determin

ing p , which is also called by some authors the co-state of the system [79], is given below 

on the page.

D eriv in g  u: Determining the optimal control law u requires differentiating the Hamilto

nian function in terms of u

d H (x ,p , w, u)
du

Solving this equation gives

=  Dj2Di2u +  B 2p +  D{2CiX =  0

u = - ( D ^ D u ) - 1 (BZp + D l & x ) (C. 13)

This function minimises J(u ,w ,p)  since d2H ( x ,p ,w ,u ) /d u 2 = 2 > 0. The only unknown 

in the optimal state-feedback control law is p.

D e riv in g  p: Determination of p requires differentiating the cost function in Eqn. C .ll  

in terms of x  and p

dJ (u ,w ,p )  d H (x ,p ,w ,u )  , T  T ^ w r n  , \ T  , -r n — ----- = ---------—--------- (- p =  C{ Cix  +  C[ D u u +  A 1 p +  p1 = 0

The differential equation for the co-state p  becomes

P =
dH(x,p ,  w, u) T T

— = —C[ C\x — D{2Ciu — A p
dx

Similarly, differentiating J(u ,w ,p)  in terms of p gives

d J (u , w,p)
dp

= A x  +  B\W +  B 2u — x = 0
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The differential equation for x becomes

d H ( x ,p , w, u )
x =

dp
= Ax + B\w  + B 2U

The validity of the latter equation can be easily checked by comparison with Eqn. C.l. 

To summarise, for a given Hamiltonian function H ( x ,p , w , u ), x  and p are given as the 

solutions to [80, 79]
x

P

dH(x,p , w,u)

d H (x,p,w,u)
dx

For the Hamiltonian function in Eqn. C.8 , these solutions are

x = Ax  +  B\w  +  B 2u 
p = -CffCiX -  D\2Cxu -  ATp

(C. 14)

(C.15)

To reduce the number of unknowns, u and w are substituted with their optimal values u 

and w in Eqns. C .12 and C.13; this transforms x  and p to

x = ( A -  B 2 V1~1DJ'2C 1) X  + -  B 2 V1~1B j )  p

p = -  (C fC i  -  C f f D n V c 'D ^ C i )  x  -  (A -  B 2V r 1D j’2Cl) p 

where Vj =  {Dj2D vl). These equations can be grouped to one single state equation

(C. 16)

X

. p  .

(A -  B j V ^ D ^ C i ) j - ^ B i B i  -  B 2 \ \ - ' B l '
- j r

X

. p  ._ -  (C fC r  -  CflDl2V{'D^C,)  ‘ ‘  ’ —  ~  V' „ (C -17)

Finding the co-state p requires solving this unforced system of differential equations. Re

calling from the state space theory that the solution to the unforced system x = Ax  is 

given by its fundamental matrix, i.e. x(t) — eAtx(0 ) = <&x, the state and the co-state at 

the terminal moment t j  are given by

1L

.  p (*/) .

^ 1 1  (^ /  — $ 1 2  (tf — t)
$ 2 1  (t f  ~  t) $ 2 2  {tf — t)

x(t) 
P(t)

(C.18)

Since p(tf)  = 0 , finding p requires solving

0 =  $21 (fy -  t)x  +  ®2 2(tf -  t)p, or

P = $22(tf -  t y l $ 2\ ( t f  -  t)x

The form of this equation suggests tha t p is a linear combination of the state variables x.

This fact has been used by several authors and the solution to p can be found with the

help of the sweep method [80, 110] which requires substituting p with

p  — P.T (C.19)
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where P  is the matrix of proportionality between the state x  and the co-state p. The 

problem of determining p then becomes a problem of determining the matrix P .

D e te rm in in g  th e  m a tr ix  o f p ro p o rtio n a lity  P : Finding P  requires differentiating 

Eqn. C.19

p = P x  +  Pi:

Substituting p and x  with their equivalents in Eqn. C.16 and using the fact that p = Px,  

the above equation is transformed to

-  (C'[Ch -  C f  D n \ \ - 'D '^ C , )  X - (a -  B 2V1- 'D { 2C , ) T P x  =

P x  +  P  { [A -  Dl2C\) x  + ( j~ 2B , B f  -  B 2V f l B%) Px}

Since this equation has to hold for all possible trajectories x  /  0, x  can be dropped from

the above definition and the resultant equation transforms to a Riccati equation

P  (A -  B 2 V f 1Dj2CiJ + (a -  B 2 V1- 1Df2Cl) T P -  
- P  (B 2 V{~l B l  -  j - 2B lB f )  P  +  (C fC i  -  C j D n V ^ D ^ )  = 0

with the boundary condition P(t f )  =  0 . The solution to this equation is the unknown

matrix P . To solve this equation, one can substitute each element of P  with p itj and then

transform Eqn. C.20 to a linear system of equations with p ^  unknowns. This approach,

however, is tedious since it involves some analytical transformation and collecting terms.

Riccati equations are typically solved numerically ([111] and the references therein). Once

P  is determined from Eqn. C.20, the optimal control signal u (Eqn. C.13) and the estimation

of the worst disturbance w (Eqn. C.12) become

u  =  - V f 1 ( B j p  +  D ^ c A  X
w = 1 ~2B j P x   ̂ ^

where V\ — The optimal control law is a state feedback control law, since u

is a linear combination of the state vector x. The spectrum of the Hamiltonian matrix 

in Eqn. C.16 is symmetrical with respect to the imaginary axis, i.e. it has n eigenvalues 

with Real(s) > 0 and n eigenvalues with Real(s) < 0. The Riccati equation in Eqn. C.20 

has a solution P  (and hence the feedback controller in Eqn. C .21 exists) as long as these 

eigenvalues are strictly real. The algorithm for deriving state-feedback 'H00 controllers is 

summarised in Section C .l.2 .

C.1.1 P roof of results

To prove tha t u and w in Eqn. C .21 are the optimal solutions to the optimisation problem, 

these are substituted in the cost function J(u ,w)  (Eqn. C.5) and its value is calculated.

284



The derivations in this section use the fact that since p{tf)  =  P (tf) =  0 and x(0) =  0, the 

following function has a zero integral value

Jo ' ~ ~ W ~ dt =  "  zT(0)P (0M 0) =  0

Furthermore, the following function is constructed

dxTP x  .T T
—  ----- =  x P x  +  x  P x

dt

Substituting x  with its equivalent in Eqn. C .l, the above can be transformed to

dxl * x = (Ax  +  B\w  +  B 2u)t P x  +  xTP (A x  +  B xw +  B 2u)
=  x T(ATP  +  P A )x  +  wt B \P x  +  xTP B f  w +  uTB 2P x  +  x 1 P B 2 u

Making use of the following equivalent transformations

wTB \ P x  +  x TP B f w  = —(w — B j P x ) T (w — B f P x )  +  wTw +  xTP B \ B j P x
= — ||n; -  B j P x \\2 +  ||u; | |2 +  x ^ B ^ J P x

and

u t B 2P x  +  x TP  B 2 u — (u +  B 2 P x ) T(u +  B j P x )  — uTu — x TP B 2B 2 P x  
= ||u +  B%Px \\2 -  ||u ||2 -  x TP B 2B l P x

the function in Eqn C .22 is further transformed to

nT _  r t \-p \  rr.
(C.23)=  X T  (4 TP  +  P A  +  P f B ^ f  -  B 2B J )P )  X  

+  ||u +  B7 P x ||2 -  ||u ||2 -  ||io — B f l ? x \\2 +  ||u>||2

To simplify this equation further, the Riccati equation in Eqn. C.20 is used to make the 

following substitutions

xT (.4r P  + P A  +  P (B jB f -  B 2B l ) p )  =  P B 2r>22C1+ (B 2Bf2C1)TP -(C ? ’C1 -  C [ D 12Dj2C,)

For better readability and without changing the generality of the solution, 7 in Eqn. C.20 

is considered to be 7 =  1, and V\ =  Dj2D \ 2 is considered to be V\ — I  (this requires 

applying some equivalent transformations to the state-matrices [37]). Substituting the 

right-hand-side of this equation in Eqn. C.23, reduces the latter to

=  x T ( P B 2Dj2Cl + (B2D j 2C 1)TP - ( C [ C l - C f [ D 12Dj2C 1) ) x  
+  ||u -I- B 2 P x \\2 — ||w||2 — 11 it; — B f  P x \\2 -I- ||w ||2

W ith reference to the state-space representation in Eqn. C .l, qTq can be described as 

QT Q — Ikll2 — ( C \ x  -I- D i2u )t (C \X  +  D \ 2u ) =  x T C ^ C \ x  +  u T D j 2C \ x  +  x t C ^ D i2u +  u Tu 

Making use of the following equivalent transformation

ut D^2C\x  +  x t C i D i 2u = || u +  D l 2C \x \\2 — ||w||2 — x TC f  D \2D{2C\x
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2 further reduces to

IMI2 =  x TC ^ C xx -  x t C tx D x2D{2C xx  +  \\u +  D tX2Cxx ||2

Substituting —x r (C'[Cx — C j D x2Dj2Cx)x from this equation to Eqn. C.23 transforms the 

latter to

^  =  x T {P B 2DTl2C l + (B2DTu C l )TP ) x
-  ||g ||2 +  ||u +  Dj2C \x \\2 + ||u +  B j’PxH2 -  ||u ||2 -  \\w -  B j P x \\2 +  \\w\\2

(C.25)

Furthermore, the following equivalent transformation

Wu+D ^Cix f+W u+BlBxW 2 =  \ \u+(B^Px + D ^ C ix )  \\2 +\\u\\2 - x TC f D l2B 2P x - x TP B 2D^2C l 

is substituted the equation above to simplify Eqn. C.25 to

=  ||U +  ( B j P x  + D ^ C .x )  II2 -  ||9 ||2 -  IIw -  B j P x \\2 +  I M P  (C.26)

This equation is further integrated from 0 to t j  to get

So Sŝ r Ldt =  So' { -  ( I M P  -  I M P )  -  I k  -  B T P x \\2 +  | | u  +  ( B f P x  +  D j2C xx)  II2 }  dt 

=  -  ( I k l l i  -  I M P )  -  I k  -  B l P x II2 +  | | u  +  ( b ^ P x  +  D Tn C ,x )  II2
(C.27)

Recalling the fact tha t the above integral has a zero value and tha t the cost of the optimi

sation problem is

I M P  -  I k l l l  =  J ( q , w )

Eqn. C.27 simplifies to

0 =  —J ( u , w) -I- \\u +  (B 2 Y*x +  D^2C\x}  Hi — 11it; — B j P x ||2 (C.28)

which in turns implies that

J ( u , w) = \\u +  [B2 P x  +  D^2C\x}  ||2 — ||iy — B x P x  \\\ (C.29)

- u  ™

Based on the above derivations the following conclusion can be made. If the control signal 

u and the disturbance w chose to use the design strategies u and w in Eqn. C.21, the cost 

of the optimisation problem in Eqn. C.4 which turns to be same as the cost in Eqn. C.29

reduces to 0. This implies that any other control strategies u and w will make this cost

larger and hence u and w are the optimal solutions to the state-feedback control problem. 

Based on the mathematical derivations, the full algorithm for deriving state-feedback %00 

controllers is presented below.
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C .l .2 A lgorithm  for deriving state-feedback 'H OQ control laws

Step  1: For a given open-loop system G(s) and performance weights W(s)  and Wc, construct 

the state-space model of the generalised open-loop system in Fig. 6.4 using Eqn. 6.28.

Step  2: Use the state-space matrices to construct the following Riccati equation (Eqn. C.20); 

take 7  to be a large number and V\ =  Dj2 Di2

P  [a  -  D2Vt- 'D j.2C \)  +  ( A  -  B 2V{ ~ 1 D j2C ! ) 7 P — 

—P  (B 2Vx~l B l  -  j ~ 2B i B f )  P  +  ( C f C i  -  C j D n V ^ D ^ C , )  =  0

Step  3: Solve this equation to determine P, P  > 0 using a standard Riccati equation 

solver (for example are in Matlab). Use P  to derive the H 00 state-feedback gain 

K  (Eqn. C.21) in Fig. 6.4

u = K x  = —(Df2 Di2 ) ~ 1 ( B j P  +  Dj2Cx) x  (C.30)

Use this control law u in Eqn. 6.28 to construct the closed-loop state-space matrices 

for the system in Fig. 6.4

x = A x  +  B\w  +  B 2u = — B 2V f 1 [ b 2 P +  x  +  B \w  =  Acl%  +  B\w

Acl
q = C ix  +  D n u = [Cx -  D ^ V f 1 (B %P +  D ^ ) )  x  = CIClx

C\CL

y — C2x  +  D2\W
(C.31)

Construct the closed-loop transfer function from the disturbance w to the penalty 

output q using the closed-loop state-space representation, i.e.

Tqw — C ic l{sI  ~  A Cl ) lBi  = --
1

0 tr-< B i  1
C \ C L 0 (C.32)

Calculate the 00—norm of this transfer function using the algorithm in Section 6.3. 

If the infinity norm is greater than one, reduce 7  and continue from S tep  2 .

S tep  4: If for a given value of 7  the infinity norm of Tqw approaches its optimum value or the 

Riccati equation does not have a positively definite solution, stop the design loop. 

The state-feedback Hoo controller is given in Eqn. C.30 where P  is taken from the 

last design iteration.

C.2 O utput-feedback optim isation problem

The output-feedback design problem requires solving Eqn. 6.40 for K.  In many control 

techniques, for example the Linear Quadratic Gaussian control (LQG) [79, 91, 88], the
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output feedback controller is an interconnection of a state-observer (estimator) and a state- 

feedback controller. For design consistence this principle has been adopted here, and the 

proposed output-feedback Hoo controller consists of an Hoo state-estim ator and a state- 

feedback Hoo controller [37]. The problem of deriving the state-feedback controller was 

fully described in the Section C .l. The problem of deriving H 0o estimators is the topic of 

this section.

The mathematical developments in the next section are organised as follows. Sec

tion C.2.1 develops an algorithm for deriving Hoo state-estimators which can be used for 

a general-purpose estimation problems. This algorithm is extended in Section C.2.5 with 

the state-feedback controller to construct a design procedure for deriving output-feedback 

Hoo controllers. A step by step algorithm for output-feedback Hoo design is given in Sec

tion C.2.6.

C.2.1 E stim ation problem s using the 1-Loo design criteria.

A typical estimation problem is shown in Fig. C .l (a). The design goal is to find an auxiliary 

dynamic system called an estimator or an observer which uses the input u and output y to 

produce state estimations (x ) such that x —> x  as t —>• oo. This problem has been solved by 

Kalman for cases when the power spectral density of the noise is known and the solution is 

the Kalman filter. In this section the task is to find the dynamics of the unknown observer

Q e ► minimal

Q e ► minimal

w

SYSTEM

OBSERVEROBSERVER

SYSTEM

x x
(a) (b)

Figure C .l: (a) Kalman filter used as a state observer; Q is the output injection gain, (b) 
State observer using the Hoo performance criterion.

in Fig. C .l(b) by minimising the error between the penalty output q and an estimation for
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the penalty output q, e = q — q, for the worst possible noise w , i.e.

I k  -  v h  ^max t;— < 7
w'n \\w\\2 + ||n||2

This is an /H00 design criterion, which is appropriate in applications with a significant 

uncertainty in the power spectral density of the noise [85, 72]. w is substituted with the 

worst possible disturbance w (Fig. C .l(b)) within the optimisation setting. At this early 

design stage, the structure of the observer in Fig. C .l is unknown, and the penalty output 

from the observer is given below

q = C\X

where x  is the observer’s state vector. The design goal is to derive the dynamics of the the 

observer to provide x  such that the difference between q and q is minimised for the worst 

possible disturbance input w [84, 85]. This is an Hoo optimisation problem (see Eqn. C.2).

For the estimation problem, the state-space model in Eqn. 6.28 is used to describe the 

model of the SYSTEM in Fig. C .l(b)

x = A x  +  B\W
q = C\x  (C.33)
y = C2x  +  D2xw +  n

Two changes to this model are made with reference to the original model in Eqn. 6.28 :

(a) In the equation for y , n  has been added for derivation purposes to represent the 

measurement noise in the system (Fig. C .l(b)), and

(b) The known control input u has been removed from formulation to simplify the deriva

tions. This does not change the generality of the derivations since using the super

position principle, u can be added to the estimator at the final design stage.

Based on the above two changes, the inputs to the system for the estimation problem 

are the noise components w and n. Substituting q with its equivalent in Eqn. C.33 and 

q = C\X, the following inequality is constructed [86 , 87]

\ \ C i ( x - x ) \ \2
max - —n < 7

w ' n  I M I 2  +  I M h

This inequality provides a basis for the definition of the following cost function for the 

estimation problem (see Sec. C .l)

J{x ,w)  = 7 " 2 ||C i(x -  x)\\\ -  I M I 2 -  I N I !  (C.34)
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With n =  y — C2x — D 2\W, the integral form of this function is

J (x ,w )  = [  /y~2 (x—x)TC f C i ( x —x ) —ivTiv — (y—C2X—D 2 \iv)T (y—C2X — D 2 iw)dt (C.35)
Jo

Similarly to the state-feedback problem, this optimisation problem has two players: the 

state vector x  and the disturbance input w. The optimisation goal is formulated as finding 

a saddle point such that [84, 87, 89]

J(x ,w)  < J (x ,w )  < J (x ,w )

where x  minimises J(x, w), w maximises J(x , w), and x  and w are arbitrary x  and w. It has 

to be noted tha t the cost function defined in Eqn. C.35 is different from the cost function 

defined in Eqn. C.5. Therefore w derived here is different from w derived as a part of 

the state-feedback solution since these are the optimal results to two different optimisation 

problems. On another hand, w is the same disturbance signal for both problems with w 

being an estimate for the worst possible w. For the estimation problem, this duality does 

not play an im portant role. For the output-feedback controller, however, this duality leads 

to the violation of the separation principle. This is discussed in Section C.2.5.

Deriving the structure of the Hoo estimator

To derive the structure of the unknown Hoo estimator in Fig. C .l (b), the cost function 

in Eqn. C.35 has to be solved. Since this is a constraint optimisation problem, Lagrange 

multipliers are used (see Section C .l) to transform the optimisation problem in Eqn. C.35 

to a higher-order unconstrained problem defined by the following cost function

J(x,  w, tf) = fof y~2(x -  x )TC j C i  (x -  x) -  wTw -  (y -  C2x -  D 2\w)T(y -  C2x -  D 2iw) 
+tfT(A r +  Biw  — x)dt

(C.36)

where tf is the Lagrange multiplier. To this problem, the following Hamiltonian function is 

assigned

H ( x ,d , x ,w )  = \  |(x — x)TC jC i ( x  — x) — 72wTw — y 2(y -  C2x -  D2 iw)T (y -  C2x -  D2\w)} 
+i9T(Ax  +  B\w)

(C.37)

After applying integration by parts for / 0e/ dTxdt  =  — Jq1 dTxdt  (see Sec. C .l), the latter 

function is rewritten to (tf(£/) =  0 , x (0 ) =  0)

J (x ,w ,d )  = / H(x,  tf, x, w) +  dTxdt  (C.38)
J 0
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Since the disturbance w is unknown, the number of unknowns is reduced by estimating 

the worst-possible value w.

D e te rm in in g  w: Finding w requires solving

dH(x,  d, x , w)
dw

= 0

Differentiating H(x, 'd ,x ,w)  in Eqn C.37 in terms of w gives 

d H ( x , $, x, w)
dw

= —w 4- D ^ y  — D 21C2X — D 2 iD 2\W +  B j d
w

Since d2 H (x , 'd , x ,w ) /d w 2 =  —72 < 0, the above equation gives the following value

w = V2 ( B ^  + D ^ y - D ^ C 2x)  (C.39)

where V2 = (1 +  D j iD 2 i)~1-

C o n s tru c tin g  th e  a u g m e n te d  sy stem : Similarly to determining p in the state-feedback 

problem, finding d requires constructing the Hamiltonian m atrix associated with the aug

mented system [x, 0]. Using Eqn. C.14, the dynamics of 0 can be calculated from the

Hamiltonian function as

0  =  -
d H ( x , 0, x, w) 

dx
Differentiating H(x,  0, x , w) in Eqn C.37 in terms of x  gives

8H{x, t), X ,  w) _  7 - 2C r CiS + CTy _  c j c 2x -  C \ D 2Xw +  A Tti
dx

Substituting w with the estimation w tha t maximises if ,  after some rearrangement the 

above equation becomes
^    dH(x, 'd,x,w)

d x

=  - ( 7 - 2C f C l  _  c l c 2 +  C^D2iV2D^C2)x -  (AT -  C^D2iV2Bj)d
^ C f C . x  -  C l y  +  C j D 21V2D l y

Similarly, x  is derived below (Eqn. C.14)

d H ( x , 0, x , w )
x

<90
— A x  -I- B\w

Substituting w with w, the dynamic equation for x  becomes

x = (A — B xV2D lxC2)x +  B xV2B x tf +  B xV2 D ^ y  

Finally, combining x  and 0 to one single dynamic equation gives

(A -  B XV2DZXC2)
~ h ^ C [ C x -  C£C 2 + CZD 2 l V2 D ‘xC2)
- b xv2d i  
c z  -  c z d 21v2d z

B xV2B?
- ( A -  B XV2D ‘XC2)

' 0
y  + . r 2c \ c x

X

0

X

(C.40)

291



For better readability, in the subsequent derivations the above equation is represented in 

the following form

X ' A B
C -A ir

e
T y +

o
9

X (C.41)

To derive the structure of the unknown estimator x, a new state variable x  is defined 

which satisfies the following equation [84, 86 , 87, 80]

(C.42)

where Q is an unknown matrix. This new variable x  represents the difference between the 

system ’s state x  and a linear combination of $, i.e. Q$. To find the structure of x  and the 

unknown m atrix Q, Eqn. C.42 is differentiated to get

x  =  x  — Qtf —

Substituting x  and $ with their equivalent in Eqn. C.41 yields to

x  — A x  + Bd — £y  — Q$ — Q [Cx — A T$ — F y  4- Qx\

Substituting x  in the above equation with x = x  +  Q$ from Eqn. C.42 gives 

x = A ( x  +  Qi9) +  B'd — — £y — Q[C(x +  Q$) — AFd  — T y  +  Qx)

x  — A x  +  Q Cx + £y  — Q T y  +  Q Qx =  — Q$ +  +  Q A 1ft — QCQ^ +  Bd

To satisfy Eqn. C.42, x  and Q have to satisfy the following two equations

x  =  A x  — Q A x  — £ y  + Q T y  — QQx (C.43)

Qd  =  (^ Q  +  QA t  -  QCQ +  6 )t? (C.44)

These two equations provide a basis for determining Q and the structure for x.

D e te rm in in g  Q: To determine Q, Eqn. C.44 is used with A, B and C substituted with

their equivalents in Eqn. C.40. Since Eqn C.44 has to hold for all possible #, the latter can 

be dropped from the expression and the resultant equation can be rewritten as a Riccati 

equation
Q =  ( A - B 1V2D |’1C2)Q  +  Q ( y l - B 1K2JD2T1C2)T

+ Q ( ' r 2c ' f c \  -  c2tc2 + c ‘ d 2i V iD ^ C i ) Q + B iV 2b'I { )

This Riccati equation can be solved for Q.
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D e te rm in in g  x : Substituting A  to T  in Eqn C.44 with their equivalents in Eqn C.40 

gives the following structure for x

i  = ( A -  B ^ D j C ^ x  + Q ( j ^ C j C , -  C j C 2 + C j  D 2 l V2D j C 2) x  
+ B tV2Dln y +  Q C j y  -  Q C j D 21V2D j y  -  7 “2Q C j C a

i  =  (A -  B\V 2D j C 2)x -  QCjTU -  D2 ,V2D j ) C 2x + B ^ J y  
+ Q C J  ( l  -  D 21V2D j )  y -  y~2 Q C [C i(x  -  x)

i  = (A -  B lV2D l C 2)x +  QC^(1 -  D2 lV2 D l )  {y -  C2x}  +  B,V 2D ^ y  -  7 “2Q C f C ^ x  -  x)
(C.46)

where Q is the solution to Eqn. C.45. Apart from the term (x — x) all other terms in 

the above equations are known. To find the structure of the unknown observer x , the 

subsequent derivations assume that [84, 86 , 90]

x — x  = {) —>• x = x

i.e. the optimal estimation is given with x  =  x  in Eqn. C.46. W ith this assumption,

Eqn. C.46 reduces to

i  =  (A  -  B ^ D ^ C J x  +  QCJ  ( l  -  D 2l V2 D * )  {y -  C2x )  + B l V2D%1y (C.47)

This equation provides the structure of the unknown estimator in Fig. C .l(b) and hence

it becomes the main result of this section. The output injection gain Q is the solution to 

Eqn. C.45. Based on this, the structure of the observer in Fig. C .l(b) is given below

X = ( A -  B xV2D l f i 2)x +  Q C J  ( l  -  D 21V2D J )  {y -  C2x}  +  B ^ D j y  
q = C\x
y = C2x

Since the above /H00 estimator is based on the assumption tha t x  = x, the next section 

shows th a t the value of the cost function in Eqn. C.34 is minimal when the estimator choses 

to use the structure in Eqn. C.47.

C .2.2 Value o f the cost function in Eqn. C.34 when x  =  x  in 
Eqn. C.47

To prove the assumption that Eqn. C.47 gives the optimal estimator that minimises the 

cost in Eqn. C.34, the estimation error is constructed as

e — x — x
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Differentiating this equation on both sides and substituting: (a) x  and y with their equiv

alents in Eqn. C .l and (b) x  with its equivalent in C.47 gives

e = x  — x
=  Ax +  B 1w - U A -  BtD l C 2 -  72QC'J'C0 x + (y2QCZ +  BjDjA y]
= A x  + B xw - \ { A - B xD \xC2 -  7 2Q C |’C2) x + (y2Q C J  + B xD j x) (C2x  + D2lw +  n)}

The simplify the subsequent derivations and for better readability, without a loss of gener

ality D 2i will be taken to be D 21 =  0. W ith this assumption, after some suitable simplifi

cations and the fact that e — x — x  the above equation simplifies to

e = {A -  7 2QC [ C 2) e +  B xw — j 2 Q C [ n  (C.48)

Furthermore, the following quantity is constructed [84]

rf(e7~^~le) =  eTQ ~ le + eTQ~le (C.49)
at

Substituting e with its equivalent in Eqn. C.48, gives

d{eT%~le> =  { ( A - y 2 Q C ^ C 2) e  + B xw - j 2QCq'n}T Q - le 
+  eTQ “ 1 { (.4 -  7 2Q C fC 2) e + B xw -  7 2Q C [ n J

= eTA Q ~ 1e -  eTC%C2e +  ivTB { Q - ' e  -  nTC j e  
+  eTQ ~M e — eTC j C 2e +  eTQ - 1J3iu; — eTC2n

(C.50)

Using the fact that

wTB T Q ~ 1e -I- eTQ ~1B iw  = —{w — B f Q ~ 1e)T(w — B j Q _1e) +  wTw +  eTQ ~l B i B T Q _1<
=  - | \w  -  B { Q ~ le \\2 +  | |^ | |2 +  eTQ - 1B lB f  Q le

and
rcT(7 je -I- eTC2n  = ( n  +  C2e)T(n +  C2e) — eTC j C 2e — nTn 

= \\n + C2e f - \ \ C 2e f - \ \ n \ \ \ ^

Eqn. C.50 reduces to

d{eT%~'e) = eTA Q - 1e + eTQ - 1A e - 2 \ \ C 2e \\2

-  ||w -  B f  Q -'eH 2 +  |M |2 +  eTQ - 1B 1B fQ ~ 1e
-  ||n +  C2e||2 +  ||C2e ||2 +  ||n | | |2

=  eT (A Q ~ l + Q - lA  + Q - lB 1B T Q - 1) e
-  \\C2e \\2 -  ||u; -  B { Q -1e ||2 -  \\n +  C2e \\2 +  ||u>||2 +  ||n|| |2

To simplify this quantity further, Eqn. C.45 is multiplied by Q _1 from the left and right 

hand-sides to get

Q - 1 { ^ Q  +  Q A T +  Q ( C f C x -  7 2C ?C2) Q +  7 ~2B xB [ j  Q 1 =  0 «■
Q - U  +  A TQ~l +  Q r lT 2B xB j Q ~ l + C?fCx -  7 2C fC 2 =  0
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Substituting the left hand side of this equation in the equation above gives

=  eT ( - C f C ,  + r lc j c 2) e -  ||C2e ||2 -  ||uj -  -  ||n +  C2e ||2 +  |M |2 +  ||r
=  — ||C ie ||2 -  ||w -  B f Q ~ le \\2 -  ||n +  C2e ||2 +  ||w ||2 +  ||n ||2

Since Q (tf) — e(0) =  0, integrating Eqn. C.49 from 0 to t f  gives a zero quantity

Jo ' =  -\\c ie\\l -  11“  -  B r Q _ l e ll2 -  II" +  cA\l +  I M G  +  \\n\\l =  0

Consequently,

IMG +  IMG =  IICiclG +  11“  -  B f  Q - 'e lll  +  ||n +  C2e ||2

Substituting HHIi +  IMli from this equation in Eqn. C.34 reduces the cost of the estimation 

problem to

J{x ,w)  = \\C\(x — x ) ||| — HC'ielll — \\w -  B ( q r le\\l -  ||n +  C2e||^ (C.51)

If the estim ator x  chooses to use the state-variable x  in Eqn C.47, then

11CiOr -  x)\\l -  \\Cie\\l =  \\C\{x -  x)\\\ -  \\Cie\\\ =  ||Cie||^ -  \\Cxe\\l =  0 

Using the fact that

||n +  C2e\\\ =  ||n +  C2(x -  x ) \ \ 22 = ||(n +  C2x) -  C2x)\\\ =  ||y -  C2x\\\ 

the cost function to the estimation problem in Eqn. C.51 reduces to (JE?fQ-1e =

J{x ,w)  =  - \ \ w - B ^ & \ \ l -  \ \y -C%x\&  (C.52)
w y

To summarise, choosing the estimator to have the form in Eqn. C.47 reduces the cost 

for the optimisation problem to Eqn. C.52. This cost has is minimum when w =  w, y =  y, 

and x = x. Any other estimator strategy x  makes the cost larger and hence x  =  x  is the 

optimal solution to the estimation problem.

C .2.3 A lgorithm  for deriving 1-Lqq state-estim ators

The algorithm for deriving H 00 state estim ator is summarised below.

S tep  1 Use the state-space representation of the system (e.g. Eqn. C.33) and a given large 

value for 7  to construct the Riccati equation in Eqn. C.45 for the estimation problem. 

Solve this equation to find Q.
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Step 2 If the eigenvalues of the following Hamiltonian m atrix associated with this Riccati 

equation

(  a  —  r .  t a d ? \ r . A T  r . i / . r t '  i

(C.53)
(A -  B 1V2Dl\C2)T C, ViB'l j

-  C2 C2 + CZD nV iD TC z) — {A -  Bi V2O 2IC2)

are away from the imaginary axes and Q is positively definite, reduce 7  is reduced 

and the computation continues from step 1.

Step 3 When for a given value of 7 one or more the eigenvalues become pure imaginary, 

stop the design loop. Use Q from the previous iteration to construct the following 

state-estim ator

X  = (A —  B1V2D21C2 -  QC2t  (1 -  D n V iD h )  C2) x  + (QC2T (1 -  £>21 + B iV 2D j j ) y  + B 2u

q = C\x  
y = C2x

Acat BeBt

(C.54)

Step 4 End.

C .2.4 D esign  example: deriving 'H QO state  estim ator

For validation purposes, an Boo state estimator for the Maglev model is derived below 

using the above design steps. Since the open-loop Maglev model is unstable and hence 

inconvenient for estimation, the system is stabilised with the state-feedback controller from 

C hapter 2. The overall model is shown in Fig. C.2. The open-loop Maglev system is 

described using the state-space form in Eqn. 6.35, where A, B 2 and C2 are given in Eqn. 6.35
n T- 1 0  0(right-hand side), C\ = [1, 0 , 0] and B\ = 1 0 0 . Starting with 7  =  100, after

18 iterations, 7  saturated to 1.8 with the following positive definite solution to the Riccati 

equation in Eqn. C.45

Q =
0.0026553 -0.026054 -12.557

-0.026054 2.9965 0.033605
-12.557 0.033598 64955

This m atrix and Eqn. C.54 are used to construct A est and B est; these are given below

-366.67 1 0 ' 0.0026553 '
-Aest 0.026054 0 1 5 Best — -0.026054

-3.4792 x 109 -3.0265 x 107 -6.7257 x 105 -12.557

Since the eigenvalues of A est are negative, X(Aest) = [—6.7252xl05, —349.68, —61.984] < 0, 

the estim ator is stable. A step response in the desired airgap is applied to the system and 

the simulated output is shown in Fig. C.3. The output from the estim ator overlaps almost
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B1* u

dot xB2*u K*u

C2B2

a1* u

K*u

□
bar v

Best

B2* u

B2
bar x

C2
B1* u

■►fbarx

Aest

Hoo e s t i m a t o r

Figure C.2: Closed-loop Maglev system with an % 00 state estimator. K  is the state- 
feedback controller in Eqn. 2.17, 21 .
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completely with the output from the system. To investigate this further, the state variables 

of the system x  are compared with the state variables of the estimator x. Since these results 

are also very close, the difference between x  and x  is computed for plotting purposes. This 

is shown in Fig. C.4. The maximum error :r3 — x3 is «  8 x 10-3  for the acceleration

x 10
4.5

3.5

output y

l>» 2.5

estim ated output y

0.5

0.250.15 0.20.05 0.1
time

Figure C.3: Output with noise and estimated output.

signal while xi  — X\ and x 2 — x 2 are both below 1 x 10-5 . Therefore, the mathematical 

developments in Section C.2.1 derive observers with good estimation characteristics which 

can be used for the H 00 output-feedback design.

C .2.5 O utput-feedback 1~L00 design

Classical output-feedback control techniques use separation principles to design the ob

server and the state-feedback controller independently (the LQG  controller, for example, 

is a combination of a Kalman filter and a state-feedback controller [88]). A combination 

between the Hoo estimator and the Hoo state-feedback controller fails to provide separa

tion properties since the disturbance signal w is derived independently in both designs 

(Eqns. C.21 and C.39) to estimate the worst case w. This limitation can be overcome with 

some changes in the variables [37]. The Hoo controller will be then derived by alternating 

between a state-feedback design and an estim ator design until the optimal solution is found. 

This is described below.
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x 10"

0 .2 5
tim e

Figure C.4: Plot of the errors between the system’s state variables and the estimated state 
variables, i.e. x  — x for the transient responses in Fig. C.3.

The developments in Section C.2.2 suggest that the cost function in Eqn. C.3 can be 

equivalently transformed to

J (u ,w )  = II9 II2 -  7 2 |Ml2 = llu + ^1 1 (B 2 P x + Dj2Cix) \w B j P x (C.55)

where P is the solution to the Riccati equation in Eqn. C.20 for the state-feedback problem. 

Eqn. C.55 suggests that at every state-feedback design iteration q becomes approximately 

u -I- ^B2 P x  -I- D j2C\X^ and w becomes approximately (w — ry~2B'['Px). This observation 

motivates the definition of the following two new signals [37]

q  =  u  -  u  =  u  + Vf1 ( B j P x  +  D J 2 C i x )

w — w — w = w — Px

Since this is an equivalent transformation which does not change the value of the cost 

function, w and q in Eqn. C.33 can be substituted with w = w + ^~2B f P x  and q = q — 

u + V i 1 (B 2  P x  + D j2C\x}. It can be proved that if ||T^|| < 7  then \\Tqw\\ < 7  [37]. Using 

this result, the open-loop system (Eqn. C.33) used for the design of the Hoo estimator can 

be modified as follows (note that u — 0 for the estimator design)

x  ~= A x  -I- B\w  = A x  + Bi(w  + ' y ^ B j P x )  
q = V l~l {Bl-p + D TX2C l) x  
y = C2x  + D2\w = C2x  + D2\ ( w  + j ~ 2B f  Pa;)
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This can be further rearranged to get the modified state and output equations

x = (A + 7 ~2£ii?jrP) x  + B\w
> v ............ — .I ^

g = V l- l (B l 'P  + D Tn C , ) x

C\M
y = (C2 + y~2D21B '[P )x  + D21w

(C.56)

C2 M

which in a more compact form gives

x — A m x  + B\W
q = ClMx (C.57)
V = C2Mx  + D2\ w

To derive the estimator for the control problem, the algorithm requires using A m , CW and 

C2m in the process of deriving Q. These results will be used to summarise the following 

algorithm for deriving output-feedback 1-Loo controllers.

C .2.6 A lgorithm  for deriving output-feedback %00 controllers:

Step 1 For a given open-loop system G(s) and performance weights W(s) and Wc use 

Eqn. 6.28 to construct the state-space model of the mixed sensitivity Hoo control 

problem in Fig. 6.3.

Step 2 Take 7  to be a large number and construct the Riccati equation for the state-feedback 

controller in Eqn. C.20 (Vi = D\2D\2)

P (a  -  B i V ^ D j t C i )  + (A -  B 2V{-1Df2C1) T P —
—P  (B 2V{-lB l  -  T 2B xB J )  P  + (cfCi -  <^£>12 Vf'D^Ci) = 0

Solve this equation to determine P, P > 0.

Step 3 Use P  to construct the following state-space matrices associated with the modified 

estimation problem in Eqn. C.56.

A m = ( A  + j ~ 2B i B f P )  
C xm = K f1(Bj'P + D?2C1)
CW = C 2 + j ~ 2D2lB f P

Use these matrices to construct the Riccati equation for the estimator (V2 = (1 — 

D l D 21)~')

(Am -  B ^ D I C m )Qm + QmM -  B 1V2D%1C2M)T
+ Qm ( 7  2CiMC\m — C J m ^ m  + CJm D2iV2D 2 iC2m) Qm + B\V2B j  = 0

(C.58)

Solve this equation to determine the output injection gain Qm, Qm > 0 .
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Step 3 Use this value for Qm and the value for P (computed at Step 2 ) to construct the 

estimator-based output-feedback Tioo controller which can be described in one of the 

following three equivalent forms:

(a) observer-based form
x  = K ax + K By
u = K c x

where
K a = {Am ~ B i V f 1 ( B j P x  +  D j2C ,x) -  B , V2D'f2iC- 

—Q m 'Y2C2MC2m +  Q m  C-im B'i i V2 D2 \ C2 a / )

K b  — QmC2m ~  QmĈ vŷ 21  ̂ '2D2] + B\ V2D2

K c  = - V C 1 (B2t P + DJ2Cx)

K c  is the state-feedback 'HOQ controller (b) state-space form

K  = [ K a K b 1
[ K c 0

(c) transfer-function form

K  = K c * ( s I -  K a )~' x K B

(C.59)

(C.60)

(C.61)

Step 4 Construct the closed-loop system in Fig. 6.3 by combining Eqn. 6.28 and Eqn. C.59. 

This is given below

X

X

A B 2K c 
K b C2 K a

x
X

+
B l

K BD2\ w

Acl B c l

q = [Ci, D 12K c ]
C\CL

(C.62)

x
x +  D 2Xwy = [C 2^o]

C2 CL

where K A, K B, K c  are defined in Eqn. C.60.

Step 5 Use Eqn. C.62 to construct the closed-loop system from w to q for the mixed sensi

tivity problem.

A c l B c l

C i c l 0
Tqw — C \ c l  x ( s i  + A c l ) x B C l  —

Compute the infinity norm of Tqw. IF for the current value for 7 :

(a) Both Riccati equations have positively definite solutions P and Qm, and

(b) the norm HT̂ Hoo continues to decrease,

THEN reduce 7  and continue the calculations from Step 2.

(C.63)
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If for a given value for 7  the infinity norm calculated in Step 5 reaches its minimum, 

stop the algorithm. The optimal output-feedback Hoo controller is given in Eqns. C.59 

to C.61.

It has been demonstrated in [37] that the state-feedback Riccati equation in Eqn. C.20 

and the Hoo estimator Riccati equation in Eqn. C.45 can be solved independently for P 

and Q [37] and the relationship between the solution Qm in Eqn. C.58 and Q is given 

below [37, 112]

Qm = (/ -  7“2QP)_1Q

It has been established in Section 6.5.3, however, that the algorithm developed here produce 

identical to the algorithm in Matlab [37, 76] results.
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Appendix D 

Computing the structured singular 
value f i

At present, algorithms for the analytical computation of the structured singular value fi are 

not known. There exists, however, a numerical method that yields good results. From the 

fact that the matrix of perturbation A is structured along the main diagonal (A=diag(Aj)), 

for any diagonal matrix A, the following relationship can be written

D A  = A D ,

Using this and the transformation in Figure D.l it follows that

H(M) = n {D M D ~ l) (D.l)

From the fact that /r(M) < a(M),  from Equation D.l it follows that [93]

H{M) < a ( D M D ~ l ).

The same uncertainty

         A
A

l

D ] A D

= ►

M D M D l

 v  -
New block M=DMD

Figure D.l: Adding the D-structure to the general control configuration in Fig. 7.13.

This relation suggests that the upper bound of f i(M) can be determined by selecting 

the function D  that minimises the maximum singular value of (D M D ~ l ) [74], i.e.

f i(M) < mina ( D M D ~ l ) (D-2)



Equation D.2 is a convex optimisation problem which finds D  that minimises the largest 

singular value of ( D M D ' 1). It has been suggested in [113] that minimisation of the Frobe- 

nius norm \ \ D M D '1\\F yields a very good approximation for the optimal D that minimises 

d ( D M  D ' 1). A significant reduction in \ \DMD~1\\F will result in a significant reduction of 

a ( D M D ~ l ). Therefore the matrix D that minimises \ \DMD~l \\F is usually a very good 

approximation of D that minimises a ( D M D ~ 1).

A demonstrative algorithm that computes the upper bound on f i(M)  is given below. 

Considering the complex matrix M

and a scaling matrix D

M  =

D =

mu m 12
m2i m2 2

' dx 0 ‘
0 d-2

D M D  1 is computed as below

D M D ' 1 =

By definition the Frobenius norm of this matrix is

dxm xxdx 1 dxm x2d2 1 
d2m 2xdrx x d2m 22d2 l

D M D  1 p = yj(dxm xxdx *)2 + (dimX2d2 x) 2 + {d2m 2idl 1)2 + (d2m 22d2 1) 2 

Without a loss of generality it can be assumed that d2=l.  Then the latter norm becomes 

D M D ' 1 p = yj (dimndi-1) 2 + {dxm x2)2 + { m ^ d ^ 1)2 + (m22) 2 

The optimisation problem is defined as finding this d = dx, that minimises {{DM D'1]]?, or

min J  — y ( d m X2)2 + (ra2id- 1 ) 2
d ’

Let d is the solution of Equation D.3, then the scaling matrix D  becomes

D =

(D.3)

d 0  
0 1

and the matrix D M D  1 is derived below

D M D ' 1 =

Hence, the upper bound of the structured singular value is given by

fjt(M) < ^ ( D M D ' 1) = a

mu dimi2

ra2i m22

mu dimi2 

m 2 l  d ~ 1 7 7 * 2 2

and equals the largest singular value of D M D ' 1.
In the following section, a Matlab script is written that computes the structured singular 

value of M  using the above numerical algorithm. The result is compared with the result 
from //-Synthesis toolbox.
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yt********************************************************************
'/, Computes the SSV of a 2x2 matrix M 
7.
7.

M= [
rand(l) rand(l); 7. generates the matrix M 
rand(l) rand(l)

];

d=0.1:0.01:5; 7. the range of d

for i=l:length(d),
Y(i)=sqrt((d(i)*M(3) )~2 + ...

(
);

end

plot(d,Y(l:i)); 
miny=min(Y);

for i=l:length(d), 
if Y(i)==miny,

Dmin=d(i);
end

end 

D=[
Dmin 0;
0 1 

];

max(svd(D*M*D''-l) ) , 7. computes the maximum singular value of DMD-1 
max(mu(M)) 7* compares to the result generated by Matlab

M(2)*d(ir-l)-2 . . .

7# plots the Frobenius norm as a function of d 
% finds the minimum of the norm

7* determines which d produces this minimum 

7. produces the scaling matrix D
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Figure E.l: Calculation of perturbation model w a (s) using the procedure in Section 7.2.3 
for parameter variations as in Table 7.2. Top left corresponds to row-1 , top-right to row-2, 
middle left to row-3, and etc. The new models are presented in Table 7.2, column-6 .
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Figure E.3: Plots of ^-values for stability robustness. Parameter variations are as in 
Table 7.2 (indexes corresponds to the experiment numbers).
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Appendix F 

Multivariable controller design

F .l  Local control of M aglev vehicle using state-feedback

Local control of the electromagnetic suspension vehicle using state-feedback controllers for 

each corner is shown in Fig. F.l [13]. The gains for each compensator are kp = 2079.23, 

kv = 18.0, ka = 0.0423. The open-loop model used for the analysis is taken from Sec

tion 8.2, page 168 with parameters in Table 8.1.

F.2 'Hoo design for m ulti-m agnet system s

The initial multivariable design is based on the design process developed in Chapters 6 . 

The controller-design task is based on optimisation of performance criteria (Section 6.4) 

and single- and multiple-input-output controllers are designed in the same framework. 

The design of the Hoo controller is based on the block-diagram in Fig. 6.11, page 110, 

conveniently redrawn in Fig. F.2 for the multi-magnet design. The vector r consists of three 

reference signals: the reference heave, pitch and roll positions. These are subtracted from 

the heave, pitch and roll positions from the system (modelled in Eqn. 8.14 with state-space 

matrices given thereafter) and added to the vector of disturbance inputs d. The unknown 

multivariable H 00 feedback compensator K(s) which has to be designed has three inputs 

and four outputs (control voltages driving each of the magnet’s current controllers). The 

performance specification of the system, as with the single-loop design, is specified by a 

performance function W with three inputs and three outputs. The same applies to the 

weight on the robustness performance Wc. Since the performance requirements for all 

three channels (heave, roll and pitch) are required to be the same, W has the following
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diagonal structure

' W(s) 0 0
'  0 . 6 6 6 7 ( s + 6 0 )  

( s + 0 . 0 4 ) 0 0

w = 0 W(s) 0 = 0 0 . 6 6 6 7 ( s + 6 0 )
( s + 0 . 0 4 ) 0

0 0 W(s) 0 0 0 . 6 6 6 7 ( s + 6 0 )
( s + 0 . 0 4 )

The numerical form of the individual elements VU(s) are taken from Eqn. 6.43, page 115. 

In state-space form, W (s) = B w ( s l  — A w )-1Cw + D ^ . Similarly, W c is given below

■ w c 0 0 0 ' ■ 0.05 0 0 0

0 Wc 0 0 0 0.05 0 0

0 0 W c 0 0 0 0.05 0

. 0 0 0 Wc _ . 0 0 0 0.05 .

with individual elements W c  from Section. 6.5.2, page 111. Using the above two inputs and 

the vehicle model derived in Eqn. 8.14, the multivariable %QO controller K(s) in Fig. F.2 

is derived in Matlab. Since in total this controller has three inputs, four outputs and 12 

state-variables, for the sake of space its numerical form is not included here. For the exper

imental work, this controller is converted to digital form using a Tustin transformation and 

a sampling frequency of 1 kHz. Software routines for the DSP are designed to measure the 

inputs from the magnets and to implement the multivariable compensator. The DSP imple

mentation uses the discrete state-space form of the controller. This reduces the complexity 

of the implementation, saves code and data space and also allows the designer to analyse 

each state-variable independently. The assessment of the controller-design work is done in 

the time-domain. The experimental step responses to a step change in the heave position 

at two particular moments are shown in Fig. F.2:top; the independent airgap responses are 

shown in the bottom of the figure. As depicted in Fig. F.2 , the compensator manages to 

perform a stable vehicle suspension with acceptable settling time. The response at t = 0.6s 

has a slightly larger overshoot due to the additional earth acceleration component in that 

direction.

For the multivariable design work, the numerical form of the performance function W 

was copied directly from the single-magnet work. Since the vehicle uses magnets with 

different force-current characteristics, it is convenient to modify the design requirements 

by changing the performance function W. Employing this, a new controller was designed 

to reduce the closed-loop overshot to 1.5 mm with settling time increased to 0.4 sec. For 

the sake of space these results are not presented here.
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x 1 0 '

heave

pitch

roll

-2 0.1 0.2 0.3 0.4 0.5 
Time [sec]

0.6 0.7 0.8 0.9

x 10'

0.4 0.5 0.6
Time [sec]

Figure F.3: Experimental step responses to a 1 mm reference heave change. Top: heave, 
roll and pitch responses; Bottom: independent airgap responses.
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Figure F.4: Acceleration responses for: (top) 1mm step change in reference heave position; 
(middle) step change in reference roll position; (bottom) step change in reference pitch 
position;
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F.3 Num erical form of the m ultivariable ^-controller

The multivariable controller derived in Section 8.4.1 is given below

'  U i ' '  * r , l * r , 2 * r , 3 * 1 , 4 * 1 , 5 * 1 , 6 * 1 , 7  I
U 2 * r ,  1 * r , 2 * r , 3 * 2 , 4 * 2 , 5 * 2 , 6 * 2 , 7
U s * r , l * r , 2 * r , 3 * 3 , 4 * 3 , 5 * 3 , 6 * 3 , 7
U 4 .  * r , l to * r , 3 * 4 , 4 ^ 4 , 5 * 4 , 6 * 4 , 7  .

Z\

Z2
*3
Z4

(F.l)

The individual numerical forms of the compensator are included below. For the presen

tation, these are included after cancelling closely located poles and zeros. The simulation 

and the experimental work, however, uses the full form of the controller as given in the 

following page.

JT — 0 . 0 1 5 3 5 3 ( s - 3 . 5 9 8 e 5 ) ( s + 7 3 . 1 8 ) ( s + 3 . 5 5 4 ) ( s 2 + 3 4 6 . 5 s + 7 . 0 2 6 e 4 )
—  ( s + 1 . 6 4 4 e 4 ) ( s + 3 . 6 1 5 ) ( s + 0 . 0 2 ) ( s 2 + 6 9 1 s + 1 . 6 8 4 e 5 )

i-s _  0 . 0 1 1 9 7 9 ( s — 1 7 3 7 )  ( 5 + 2 8 . 7 5 ) ( s 2  — 2 5 . 2 3 5 + 9 . 8 1 4 e 4 )
—  ( s + 4 9 6 . 3 ) ( s + 0 . 0 2 ) ( s 2  + 4 8 9 . 7 s + l  . 5 8 6 e 5 )

K  __ 0 . 0 0 3 0 9 7 1  ( s — 7 5 2 9 ) ( 5 + 8 0 . 0 9 )  ( s + 3 . 3 1 6 )  ( s 2  + 3 0 8 . 1 s + 9 . 5 5 3 e 4 )
/ ' ' r >3  —  ( s + 6 3 4 . 9 ) ( s + 3 . 5 2 1 ) ( 5 + 0 . 0 2 ) ( s 2 + 4 7 5 . 4 5 + 1 . 6 9 3 e 5 )

- 0 . 0 0 4 2 7 5 2 ( s - H . 9 e 7 ) ( s + 1 0 4 5 ) ( 5 + 5 5 5 . 9 ) ( s 4 - 2 1 0 . 4 ) ( 5 + 5 3 . 0 9 ) ( 5 + 6 . 1 3 6 ) ( a 2 + 6 7 3 . 4 s + 1 . 9 5 7 e 5 ) ( s 2 + 4 8 2 . 9 s + 1 . 6 4 6 e 5 )
* 1 , 4

* 1 , 5

* 1,6

* 1 , 7

* 2 , 4

* 2 , 5

* 2,6

* 2 , 7

* 3 , 4

* 3 , 5

* 3 , 6

* 3 ,7

( s + 1 . 6 4 4 e 4 ) ( s + 6 3 4 . 9 ) ( s + 4 9 6 . 3 ) ( s + b . 0 2 0 1 ) ( 5 2  + 6 9 1 s + 1 . 6 8 4 e 5 ) ( 5 2 T 4 8 9 . 7 s + 1 . 5 8 6 e 5 ) ( s 2 + 4 7 5 . 4 s + 1 . 6 9 3 e 5 )  

0 . 0 1 2 1 8 3 ( s — 6 . 3 8 8 e 6 ) ( s + 7 3 6 . 5 ) ( s + 3 8 1 . 9 ) ( s + 2 7 4 . 8 } ( s + 4 2 . 3 3 ) ( s + 9 . 5 1 5 ) ( s 2 + 4 3 2 . 5 s + 1 . 2 4 9 e 5 ) ( s 2 + 5 2 3 . 9 s + 1 . 9 9 3 e 5 )
— ?2 _ l i( s + 1 . 6 4 4 e 4 ) ( s + 6 3 4 . 9 ) ( s + 4 9 6 . 3 ) ( s + 0 . 0 2 0 1 1 ) ( s 2 + 6 9 1 s + 1 . 6 8 4 e 5 ) ( 5 2 + 4 8 9 . 7 5 + 1 . 5 8 6 e 5 ) ( s 2 + 4 7 5 . 4 5 + 1 . 6 9 3 e 5 )

— 0 . 0 0 8 7 6 7 3 ( s + 8 . 8 7 8 e 6 ) ( s + 1 8 3 . 3 )  ( s + 5 1 . 5 9 ) ( s + 8 . 3 5 2 )  ( s 2 + 1 1 2 2 5 + 3 . 3 0 2 e 5 ) ( s 2 + 5 6 3 . 65+ 1 . 7 1 9 e 5 ) ( s 2 + 4 0 7 . 2 s + 1 . 6 6 6 e 5 )  
( s + 1 . 6 4 4 e 4 ) ( s + 6 3 4 . 9 ) ( s + 4 9 6 . 3 ) ( s + 0 . 0 2 0 1 ) ( s 2 + 6 9 1 s + 1 . 6 8 4 e 5 ) ( s 2 + 4 8 9 . 7 s + 1 . 5 8 6 e 5 ) ( s 2 + 4 7 5 . 4 s + 1 . 6 9 3 e 5 )

0 . 0 0 7 6 8 9 5 ( s - 9 . 6 7 6 e 6 ) ( s + 5 8 4 . 4 ) ( s + 1 5 8 . 1 ) ( s + 9 6 . 1 3 ) ( s - 2 7 3 . 7 ) ( s - 4 . 4 6 6 ) ( s 2 + 6 0 9 . 2 s + 1 . 0 8 e 5 ) ( s 2 + 4 8 0 . 5 s + 1 . 6 3 7 e 5 )  
( s + 1 . 6 4 4 e 4 ) ( 5 + 6 3 4 . 9 ) ( s + 4 9 6 . 3 ) ( 5 + 0 . 0 2 0 0 9 ) ( s 2  + 6 9 1 s + 1 . 6 8 4 e 5 ) ( s 2 + 4 8 9 . 7 s + 1 . 5 8 6 e 5 ) ( s 2 + 4 7 5 . 4 s + 1 . 6 9 3 e 5 )

0 . 0 1 2 1 8 3 ( s — 6 . 3 8 8 e 6 ) ( s + 7 3 6 . 5 ) ( s + 3 8 1 . 9 ) ( s + 2 7 4 . 8 ) ( s + 4 2 . 3 3 ) ( s + 9 . 5 1 4 ) ( s 2  + 4 3 2 . 5 s + 1 . 2 4 9 e 5 ) ( s 2 + 5 2 3 . 9 s + 1 . 9 9 3 e 5 )  
( 5 + 1 . 6 4 4 e 4 ) ( s + 6 3 4 . 9 ) ( s + 4 9 6 . 3 ) ( s + 0 . 0 2 0 1 ) ( s 2 + 6 9 1 s + 1 . 6 8 4 e 5 ) ( s 2 + 4 8 9 . 7 5 + 1 . 5 8 6 e 5 ) ( s 2 + 4 7 5 . 4 s + 1 . 6 9 3 e 5 )

— 0 . 0 0 4 2 7 5 2 ( 5 + 1 . 9 e 7 ) ( s + 1 0 4 5 )  ( s + 5 5 5 . 9 )  ( 5+ 2 10 . 4 )  ( 5 + 5 3 . 0 9 )  ( 5+ 6 . 1 3 6 )  ( s 2 + 6 7 3 . 4 5 + 1 . 9 5 7 e 5 ) ( 5 2 + 4 8 2 . 9 . 5 + 1 . 6 4 6 e 5 )
( 5 + 1 . 6 4 4 e 4 ) ( s + 6 3 4 . 9 ) ( s + 4 9 6 . 3 ) ( s + 0 . 0 2 0 1 1 ) ( s 2 + 6 9 1 s + 1 . 6 8 4 e 5 ) ( s 2 + 4 8 9 . 7 s + 1 . 5 8 6 e 5 ) ( 5 2 + 4 7 5 . 4 s + 1 . 6 9 3 e 5 )

0 . 0 0 7 6 8 9 5 ( 5 — 9 . 6 7 6 e 6 ) ( s + 5 8 4 . 4 ) ( 5 + 1 5 8 . 1 ) ( s + 9 6 . 1 3 ) ( s — 2 7 3 . 7 ) ( s — 4 . 4 6 6 )  ( s 2  + 6 0 9 . 2 s + 1 . 0 8 e 5 ) ( s 2 + 4 8 0 . 5 s + 1 . 6 3 7 e 5 )  
( s + 1 . 6 4 4 e 4 ) ( s + 6 3 4 . 9 ) ( s + 4 9 6 . 3 ) ( s + 0 . 0 2 0 1 ) ( s 2 + 6 9 1 s + 1 . 6 8 4 e 5 ) ( s 2 + 4 8 9 . 7 s + 1 . 5 8 6 e 5 ) ( s 2 + 4 7 5 . 4 s + 1 . 6 9 3 e 5 )

— 0 . 0 0 8 7 6 7 3 ( 5 + 8 . 8 7 8 e 6 ) ( s + 1 8 3 . 3 )  ( s + 5 1 . 5 9 )  ( s + 8 . 3 5 2 ) ( s 2  + 1 1 2 2 s + 3 . 3 0 2 e 5 ) ( s 2 + 5 6 3 . 6 s + 1 . 7 1 9 e 5 ) ( s 2 + 4 0 7 . 2 s + 1 . 6 6 6 e 5 )  
( s + 1 . 6 4 4 e 4 ) ( 5 + 6 3 4 . 9 ) ( s + 4 9 6 . 3 ) ( s + 0 . 0 2 0 0 9 ) ( s 2 + 6 9 1 s + 1 . 6 8 4 e 5 ) ( s 2 + 4 8 9 . 7 5 + 1 . 5 8 6 e 5 ) ( s 2 + 4 7 5 . 4 s + 1 . 6 9 3 e 5 )

— 0 . 0 0 8 7 6 7 2 ( s + 8 . 8 7 8 e 6 ) ( 5 + 1 8 3 . 3 )  ( s + 5 1 . 5 9 )  ( s + 8 . 3 5 2 ) ( s 2  + 1 1 2 2 s + 3 . 3 0 2 e 5 ) ( 5 2 + 5 6 3 . 6 5 + 1 . 7 1 9 e 5 ) ( s 2 + 4 0 7 . 2 s + 1 . 6 6 6 e 5 )  
( s + 1 . 6 4 4 e 4 ) ( 5 + 6 3 4 . 9 )  ( 5 + 4 9 6 . 3 ) ( 5 + 0 . 0 2 0 0 9 )  ( s 2 + 6 9 l 5 + 1 . 6 8 4 e 5 ) ( 5 2 + 4 8 9 . 7 5 + 1 . 5 8 6 e 5 ) ( 5 2 + 4 7 5 . 4 s + 1 . 6 9 3 e 5 )

0 . 0 0 7 6 8 9 4 ( 5 — 9 . 6 7 6 e 6 ) ( 5 + 5 8 4 . 4 ) ( 5 + 1 5 8 . 1  ) ( 5 + 9 6 . 1 3 ) ( 5 — 2 7 3 . 7 ) ( 5 — 4 . 4 6 6 ) ( 5 2  + 6 0 9 . 2 5 + 1 . 0 8 e 5 ) ( 5 2 + 4 8 0 . 5 s + 1 . 6 3 7 e 5 )  
( 5 + 1 . 6 4 4 e 4 ) ( s + 6 3 4 . 9 ) ( 5 + 4 9 6 . 3 ) ( 5 + 0 . 0 2 0 1 ) ( 5 2 + 6 9 l 5 + 1 . 6 8 4 e 5 ) ( 5 2 + 4 8 9 . 7 s + 1 . 5 8 6 e 5 ) ( s 2 + 4 7 5 . 4 5 + 1 . 6 9 3 e 5 )

— 0 . 0 0 4 2 7 5 3 ( 5 + 1 . 9 e 7 ) ( 5 + 1 0 4 5 ) ( 5 + 5 5 5 . 9 ) ( 5 + 2 1 0 . 4 ) ( 5 + 5 3 . 0 9 ) ( 5 + 6 . 1 3 6 ) ( 5 2  + 6 7 3 . 4 5 + 1 . 9 5 7 e 5 l ( 5 2 + 4 8 2 . 9 5 + 1 . 6 4 6 e 5 )
( 5 + 1 . 6 4 4 e 4 ) ( s + 6 3 4 . 9 ) ( 5 + 4 9 6 . 3 ) ( 5 + 0 . 0 2 0 1 1 ) ( s 2  + 6 9 1 5 + 1 . 6 8 4 e 5 ) ( 5 2 + 4 8 9 . 7 s + 1 . 5 8 6 e 5 ) ( s 2 + 4 7 5 . 4 s + 1 . 6 9 3 e 5 )

0 . 0 1 2 1 8 3 ( 5 — 6 . 3 8 8 e 6 ) ( 5 + 7 3 6 . 5 )  ( 5 + 3 8 1 . 9 )  ( 5 + 2 7 4 . 8 )  ( 5 + 4 2 . 3 3 ) ( 5 + 9 . 5 1 4 ) ( 5 2  + 4 3 2 . 5 5 + 1 . 2 4 9 e 5 ) ( 5 2 + 5 2 3 . 9 5 + 1 . 9 9 3 e 5 )  
( 5 + 1 . 6 4 4 e 4 ) ( s + 6 3 4 . 9 ) ( s + 4 9 6 . 3 ) ( 5 + 0 . 0 2 0 1 ) ( 5 2 + 6 9 1 s + 1 . 6 8 4 e 5 ) ( 5 2 + 4 8 9 . 7 s + 1 . 5 8 6 e 5 ) ( s 2 + 4 7 5 . 4 5 + 1 . 6 9 3 e 5 )
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TS _  0 . 0 0 7 6 8 9 6 ( 5 — 9 . 6 7 6 e 6 ) ( s + 5 8 4 . 4 ) ( 5 + 1 5 8 . 1  ) ( 5 + 9 6 . 1 3 )  ( 5 — 2 7 3 . 7 )  ( 5 — 4 . 4 6 6 )  ( s 2  + 6 0 9 . 2 5 + 1 . 0 8 e 5 ) ( s 2 + 4 8 0 . 5 s + 1 . 6 3 7 e 5 )  
/ ' ‘ 4 - 4  —  ( s + 1 . 6 4 4 e 4 ) ( s + 6 3 4 . 9 ) ( s + 4 9 6 . 3 ) ( s + 0 . 0 2 0 0 9 ) ( s ' 2 + 6 9 1 s + 1 . 6 8 4 e 5 ) ( s 2 + 4 8 9 . 7 s + 1 . 5 8 6 e 5 ) ( s 2 + 4 7 5 . 4 s + 1 . 6 9 3 e 5 )

K  _  — 0 . 0 0 8 7 6 7 4 ( s + 8 . 8 7 8 e 6 ) ( s + 1 8 3 . 3 ) ( s + 5 1 . 5 9 ) ( s + 8 . 3 5 2 ) ( s 2  +  1 1 2 2 s + 3 . 3 0 2 e 5 ) ( s 2 + 5 6 3 . 6 s +  1 . 7 1 9 e 5 ) ( s 2 + 4 0 7 . 2 s + 1 . 6 6 6 e 5 )  
'r t "4 >5  —  ( s + 1 . 6 4 4 e 4 ) ( s + 6 3 4 . 9 ) ( s + 4 9 6 . 3 ) ( s + 0 . 0 2 0 1 ) ( s 2 + 6 9 1 s + 1 . 6 8 4 e 5 ) ( s 2 + 4 8 9 . 7 s + 1 . 5 8 6 e 5 ) ( s 2 + 4 7 5 . 4 s + 1 . 6 9 3 e 5 )

K  _  0 . 0 1 2 1 8 3 ( 5 — 6 . 3 8 8 e 6 ) ( s + 7 3 6 . 5 )  ( 5 + 3 8 1 . 9 ) ( s + 2 7 4 . 8 )  ( s + 4 2 . 3 3 ) ( 5 + 9 . 5 1 5 ) ( 5 2  + 4 3 2 . 5 . S + 1 . 2 4 9 e 5 ) ( s 2 + 5 2 3 . 9 5 + 1 . 9 9 3 e 5 )  
A 4 >6  —  ( s + 1 . 6 4 4 e 4 ) ( s + 6 3 4 . 9 ) ( s + 4 9 6 . 3 ) ( s + 0 . 0 2 0 1 1 ) ( s 2 + 6 9 l 5 + 1 . 6 8 4 e 5 ) ( s 2 + 4 8 9 . 7 5 + 1 . 5 8 6 e 5 ) ( 5 2 + 4 7 5 . 4 5 + 1 . 6 9 3 e 5 )

K  _  —  0 . 0 0 4 2 7 5 1  ( 5 + 1 . 9 e 7 ) ( s + 1 0 4 5 ) ( s + 5 5 5 . 9 ) ( 5 + 2 1 0 . 4 ) ( 5 + 5 3 . 0 9 )  ( s + 6 . 1 3 6 ) ( s 2  + 6 7 3 . 4 5 + 1 . 9 5 7 e 5 ) ( 5 2 + 4 8 2 . 9 s + 1 . 6 4 6 e 5 )  
- ^ 4 >7  —  ( s + 1 . 6 4 4 e 4 ) ( s + 6 3 4 . 9 ) ( 5 + 4 9 6 . 3 ) ( s + 0 . 0 2 0 1 ) ( s 2  + 6 9 1 5 + 1 . 6 8 4 e 5 ) ( 5 2 + 4 8 9 . 7 s + 1 . 5 8 6 e 5 ) ( 5 2 + 4 7 5 . 4 5 + 1 . 6 9 3 e 5 )

In state-space form the above controller used for the simulation work in Fig. 8.13, page 188 

has the following representation:

A: Continuous s-domain

K = Ck {sI  — A k ) 1B k + D k

B: Discrete z-domain

K = dCK(zI  -  dAK)~ldB K + dDK

The individual numerical terms of the above matrices are given below. d A K, d B x , dCx  

and dDK are used for the DSP work.
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X X X X X X X X X X X X X X

00 C0 to to 0 ^
X X X X X X

‘o o o o o o o o o o o o o oI I I I +  I I I I +  I I I I 
o o o o o o o o o o o o o oO O O O O O O O O O O f - i - Ot DWOOCBOOO' JOO-JUHOOt O

o © © © w o © w b s o o w o oOOE)©KJ©OOCOWOO(X)OOCCiHw,
^ ^ ^ o p ^ ^ ^ ^ g ^ g ^ o ^ o o q o o q o o o t D o o o  

X

Cn -4 Co O ►£* O

tocococnoocoooco
x x x x x x x x x

I I + I I + + I I I I I I I
X X  o o o o o o o o o o o o

o  o  o o o o o .
2© o o o o o o o o o o o o o

o o o o o o o o o o o o
H ' t M O l O l O M O ' ® ® ® ' -

o x  
o  o00 CO

X X X X X

H t O t O H t o O i O O ^
t o o c n © © ^ s ©
> U H ( D N t O ^ © S
W t O W . U t O © W O
W W t O © C O O - 4 W

x x x x x x x x

o o o o
? l i l l  
Cc CO Co Co

I I +  +  +  I +  I +  +  I I I 
o o o o o o o o o o o o o  
o o o o o o o o o o o o o

M M H H O

00 Cn CO -sj

I © O O © ^ * ^ * ^ * ^
o o t o E 3 ( O t S g 2 9 g  

x  x  ^  ^  ^  M

O O O O O O O O O O O O O O  
+  I + I I + I I I I + + I I +
o  o o o o o o o o o o o o o o
o  I I I I  I I I  o o o o o o o o o o o o o o

H H t O H H © W t O 0 0 © C n  0 D o c n 0 5 C 0 C n c n O 0 5 . U C 0 0 O O

I I I I I
C0C0t O^ t OJ ^C£500

b e n b o c o b b o c o b ^ a b o w b oXXXOOOWMWOOtOWOOOOOOOO.  w. _ ^ _
o i o o - ^ o o ^ - . u s i M a K j o O ' ^ a p r t - ' ^ r j r' * ‘ m t i S U f t O l K J H s l 0 ® 0 0

^ ( 0 © © © < 0 © W H
( O C O S © t O t D 4 5 i ^ t O
! ^ H t O © H s l © W O
( 0 c c 4 5 t 0 © ^ © © 0
x x x x x x x x x

O O O O  2
o o o o
o o o o

totococnoocoooco
" +X X X X X X

O O O O 1 o o o o

cn to 
X

o o o
4  I

O M 2  g  «  | I I | I I

y x x x x Q 0 £i 0 - i b o t - * t o O " - i ‘-‘ 
00 CO cc CO t o CO t o

n n n n n n n ® w ' ® ^ N ^ t o W K 5 W S J 5 0 0 H
| | 4. | | | j H S 0 0 M ( ° C n 00 0 0 © t O 0 0 © t D K 5

X X  o o o o o o o o o o o o o  o X X X X X X X X X X X X X X
o o o o o o o o o o o * - *

to CO CO CO
I I

I I
to t o to to 
© © © © t o t o t o t o

O O O O O O O O O O O O O O  
I 1 + 4 4 1  +  1 +  4 1  I 1 +
o o o o o o o o o o o o o oO O O O O O O O O O O O  “ -

m 00 s) tx 00 h  to

I I I I I

O O O O O O O O O O O O O O+  1 l +  l I I + + I  I l +  lO O O O O O O O O O O O O O

t o t o (O to -4 -4 ~4 -4 to
I I

05 00 x  X X X c n ^ j ^ c n *
X X X X

l5*s|COtOtD-4tOOt(0^tOtOCOtO
A W M t o w b o b b t o ^ t D ^ i b b
C O © ( 0 © t 3 © H * 4 t O © 0 <0 © t O
O t H C o s C O © © W O t O S W H O O
W W © » © t O O ^ s N © O S H
X X X X X X X X X X X X X X

o  o  o  o  _ _ _
I I I I o  o o
O O O O I I Io o o o ' ' '

©Cncn00C$©00C*3O-4Q0W00©X0 © © M © © ( O C O © » © © I - , © LJL-UJLJL. 1_1L. L. LJ 
© t O M O C J i t O H ^ O O O O O O O O O+ I^ t o t o c o c n o o c o o o t o

I X X X X X X X X X .........................  _ _
I O h H h H M H M M M M H H M h OO 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0  ' + + +1 + 1 4+1 11 +

o o o

o oo 05 to --I cn

to Jx Cn t-* CO -4
©  15 b  to t o b
O  O  -4 00 00 05
00 CO Co Cn to 00

o o o o o o o o o
to to 05 *>4 00 o

15 H  OJ to 
Cn b  cn

+  I I I I +  I I I
o o o o o o o o
o o o o o o o oS h QO- J sJ ^ O - J

° ° W M 0 0 W » W S t O t O 0 0 © t J

x x x x x x x xo  o  o  o  X X- O Mw *-

o o o o o o o o o o o o o o
o o o o o o o o o o o o o o

o  o to

o o o o o o o o o o o o o oI I I +  I I I I +  I I I I I 
o o o o o o o o o o o o o oO O O O O O O O O O O O O wt o o c n OMCn i Ut o t o o o o MUO

CO CO CO CO

»£h ^
o o o o

o o o o  + + + +
o o o o

I I Co co Co co

to to to to

o o o o

o o o o
o o o o

l 5 H t i 0 0 C n ^ © H ( » M
to »U m cn to Ssj H H © H (O to
© © CO Co s(0 CO © to to
x x x x x x x x x x x x x x

O O O O O O O
I l + l I + +

O O O O O O O  . 1 1 1 1  + 11 
o o o o o o o o o o o o o o  
o o o o o o o o o o o o o o
-4 -4 to 05 05 t O» t kCnCn- s i OODO

I I I I I©MK3tOlfr l5lU S l 5 H ^ h - H H
t o t o c o ^ t o b t o © © s © b H Q 0r^-4tOCOOOOC£5-4CnODK5*— cot—
© © ^  to O © M H ^  -1 © O *4 ©00©CoO( DW©Ht OOS©©*- *
x x x x x x x x x x x x x x

o o o o o o o o o o o o o oI I +  I I I +  I I I I I I I
O O O O O O O O O O O O O O
O O O O O O O O O O O O O O-4 <0 O Cn -s| 00 to «s| to



d A K =

9.9998 X 1 0 - ° 01 -3 .0 3 5 6 X 1 0 - ° 15 4.5827 X 1 0 -0 1 5 5.7592 X 1 0 - ° 04 4 .2106 X

-6 .7 1 4 3 X 1 0 - ° 17 9.9998 X 10 -001 7.7224 X 1 0 ~ 015 -5 .2 2 4 3  X l 0 - ° 13 6 .8770 X

-4 .9 4 1 9 X 1 0 - ° 16 -7 .6 2 2 2 X 1 0 -0 1 5 9.9998 X 10 -0 0 1 1.1111 X i o - ° 12 9.8044 X

-2 .6 1 5 9 X i o - o ° 4 -6 .6 5 3 8 X 1 0 - 0 1 3 - 4 .2 2 2 3 X 10—012 6.6435 X 1 0 -0 0 ! -2 .5 1 0 5  x

1.9810 X IO-0 0 4 1.1705 X IQ—013 2.5742 X 10-0 1 2 2.4947 x 1 0 -0 0 ! - 8 .1 3 3 3  X

2.1383 X IO-0 1 3 - 7 .6 5 3 7 X 10—004 - 3 .8 8 9 2 X 10- o n 3 .6553 X 10- o n 1.7285 x

3.1944 X 10—014 1.8883 X 10_ 004 2.5473 X IQ-OIO - 2 .1 3 6 4  x i O - ° 10 - 2 .0 7 4 9  X

-1 .9 2 0 8 X IO- 012 -1 .0 2 8 9 X 1 0 - ° 10 9.8739 X 10—004 1.5526 x IO-0 0 9 1.0051 X

- 1 .3 4 1 8 X I O '012 4.2891 X 1 0 - o n 2.3346 X l 0 - ° 04 - 1 .0 4 0 9  X l 0 - ° 09 - 8 .0 2 9 0  X

2.4999 X iO- 005 4.9424 X 1 0 - ° 13 -4 .6 1 9 0 X 1 0 - ° 12 1.5205 X 1 0 - ° 01 1.1564 x

-2 .6 6 4 1 X 1 0 - ° 14 -1 .2 0 5 5 X 1 0 - ° 04 -4 .8 8 7 3 X 1 0 -0 1 2 1.4094 x 1 0 -0 1 ° 1 .4153 X

-1 .4 5 6 6 X 1 0 - 0 1 3 6.0615 X IO- 012 -1 .4 8 2 9 X 1 0 - 004 - 1 .3 7 7 5  X l 0 - ° 09 - 1 .0 1 3 3  X

4.3326 X 1 0 - 0 0 6 1.6057 X 1 0 - 015 3.9703 X l 0 - ° 14 1.5842 x I Q -003 1.2511 X

.  -1 .6 3 9 6 X 10- ° 1 5 1.9029 X IO- oo® 1.8152 X l 0 - ° 13 2.8687 X 10 *” 0 13 9 .2648  X

10

C OI—1<o

dB K =

dC k  =

d D K =

10 - 0 1 3
, - 0 0 1

10

10

4 .2 4 5 8  X 
6 .3 5 7 7  X 
7 .5 2 8 8  X 
1 .4 4 4 7  x  

- 1 .9 5 8 0  x  
1 .8 3 1 5  x  

- 8 .6 7 2 8  X 
6 .9 1 8 9  X 
6 .0 5 5 4  x  
4 .3 0 6 0  X 
1 .1 3 4 3  X 
5 .9 1 0 6  X 

- 5 .2 9 9 3  X 
2 .1 4 4 1  X 

-2 .3 5 0 6  X 
- 2 .3 5 0 6  X 
- 2 .3 5 0 6  X 
- 2 .3 5 0 6  X

-2 .6 4 9 1  x  10

io + ooo

10-01°
IO-009
10+ooo
10+ooo
1 0 -0 0 9

1 0 - 0 1 0

1 0 '

10

-0 0 1
- 0 0 1-2 .6 4 9 1  

-2 .6 4 9 1  x  10  
-2 .6 4 9 1  x  IO-0 0 1

7 .3 7 8 4
4 .7 7 9 6

-7 .4 5 2 3
-2 .8 8 4 1

2 .6 9 8 2
- 6 .5 5 5 0

8 .4 1 6 2
3 .5 9 6 6
1 .3 4 8 5

- 2 .1 8 3 6
1 .8 6 2 1

- 9 .4 7 7 2
- 7 .5 6 9 0
- 1 .1 2 5 0
-1 .1 0 9 1
-1 .1 0 9 1

1 .1 0 9 1
1 .1 0 9 1

X 10' 
X 10' 
X 10' 
X 10' 
X 10 
X 10 
X 10 
X 10  
X 10 
x  10 
x  10  
x  10 
x  10 
x  10 
x  10" 
x  10' 
X 1 0' 
x  10"

-0 0 9
-0 0 8
-0 0 1
-0 0 9
-0 0 9
-0 0 9
-0 0 8
-0 0 1
-0 0 3
-0 0 8
-0 0 9
-0 0 1
-0 0 9
-0 0 8
-0 0 3
-0 0 3
-0 0 3
-0 0 3

- 8 .1 1 4 3  X 

1 .3 9 8 9  X 
7 .2 0 7 4  X 
1 .1 9 8 9  X 
1 .4 5 2 5  X 
3 .4 7 2 7  X 
9 .7 5 6 6  X 

- 3 .2 9 4 8  X 
- 3 .5 4 3 5  x  
- 1 .0 3 9 0  X 

3 .4 0 3 5  X 
5 .5 3 9 6  X 

- 6 .1 0 4 4  x  
- 3 .5 8 4 4  X 
-9 .9 0 3 0  x

9 .9 0 3 0  X 
- 9 .9 0 3 0  x

9 .9 0 3 0  x

- 0 1 0  

+ 000 
- 0 0 8  

0 10  

- 0 1 0  
- 0 0 1  
002 

- 0 0 8  
- 0 0 8  

- 0 0 9  
- 0 0 1  

0 08  
- 0 1 0  
- 0 0 1  

- 0 0 4  
- 0 0 4
-0 0 4

-1 .0 0 6 9  X IO-003  
1 .0 0 6 9  X IO-003

1 .0 0 8 6
8 .6 0 4 9
9 .1 7 4 2
3 .4 3 5 2

- 2 .5 1 5 9
2 .8 3 3 8

- 7 .0 9 2 8
- 2 .7 5 9 1
- 6 .5 7 3 0
- 4 .2 7 5 7

4 .0 0 8 5
3 .6 6 0 9

- 5 .0 6 9 0
7 .1 2 8 7

3 .4 3 8 5  X
3 .4 3 8 5  X
3 .4 3 8 5  X
3 .4 3 8 5  X

X 10 
X 10
10 - 0 0 2

10 - 0 0 2

- ° 01 - 1 .0 0 6 9  X IO-003
1 .0 0 6 9  X IO-003

-6 .2 1 9 4  x  1 0 ~ 003 
-6 .2 1 9 4  x  i o - 0 0 3

6 .2 1 9 4  X IO-0 0 3
6 .2 1 9 4  x  IO- 0 0 3

- 0 0 4  - 2 .2 5 3 8  x  1 0 ~ 013
- 9 .9 1 4 9  X 1 0 ~ ° ° 4 
- 7 .9 9 3 6  X 1 0 ~ 011 
- 1 .6 7 7 5  x  IO-010  

4 .0 8 1 7  X IO-012  
4 .2 2 6 2  x  IO- 0 0 1  

- 3 .6 8 1 9  X 1 0 ~ 001 
5 .7 4 3 0  X IO-0 0 8  

4 .9 8 4 7  X 1 0 ~ ° 08 
3 .8 7 3 0  X 1 0 ~ 010 

- 1 .6 7 9 7  x  1 0 -0 0 1  
- 5 .3 5 7 9  x  1 0 ~ ° 09 
- 1 .4 9 4 3  x  IO-011  
- 3 .5 6 1 1  x  IO-003  

7 .0 1 8 7  x  IO-005  
3 .3 8 9 9  x  1 0 ~ ° 13 

- 5 .0 9 4 3  x  1 0 ~ ° 12 
- 1 .5 1 9 8  X IO-001  

1 .1 5 9 1  X IO-0 0 1  
4 .9 7 4 3  X IO-0 1 0  

1 .6 5 3 3  X IO-0 1 0

, - 0 1 0  
■ j - O i O  
-j —0 0 9
r ,  — 0 1 0  

0 -0 0 1  
- 0 1 0  

- , - 0 0 9  
£,— 0 0 3  
r, —0 1 3

- 2 .3 2 2 7  x  IO-013  
- 2 .4 7 0 9  X IO-004  

2 .2 8 7 1  X IO-0 1 0  
4 .8 7 2 4  X IO-010  

- 4 .0 7 3 7  x  IO- 0 1 0  
3 .6 8 4 0  X 1 0 ~ ° 01 
9 .0 4 6 2  x  IO- 0 0 1  

- 1 .1 8 0 7  x  1 0 “ 007  
- 0 0 85 .5 4 3 1  X 10 

1 .2 1 6 6  x  1 0 ~ ° 10 
- 4 .5 1 5 2  x  IO- 0 0 2

9 .4 2 7 9  X IO-013  
4 .6 7 4 0  X 1 0 ~ ° 12 
1 .0 6 6 9  X 1 0 ~ 003 

- 2 .9 9 0 0  X IO-0 0 9  

2 .3 0 7 1  X IO-0 0 9  

- 5 .7 7 3 9  X IO-008  
- 9 .6 8 6 2  X lO -0 0 8  

4 .4 3 2 0  X 1 0 -0 0 1  
3 .6 0 3 3  x  IO-001
4 .6 7 3 2  x  10 - 0 0 9

3 .2 8 7 9  X 10 - 0 0 8

2 .2 8 6 5  x  IO-009  
- 1 .2 1 3 6  X IO-0 0 9  

7 .4 6 7 9  X 1 0 ~ 001 
- 2 .4 4 4 7  x  IO-0 1 1  
- 7 .1 0 8 8  x  IO-010

, + 0 0 0
, - 0 0 1

-0 0 1

X 10 
X 10 
x io  
X 1 0 + ° 01 
X 1 0 + 001 
X 1 0 + ° 01 
X 1 0 +QO°  
X 10 + 001 
X 1 0 + 0 ° °  
X 10 + ° ° °  
X 1 0 + ° ° °  
X 1 0 + 0 0 °

-0 0 2
-002

1 .0 0 8 6  X
^q+OOO

8 .6 0 4 9  X 1 0 - 0 0 1

- 9 .1 7 4 2  X lO - o o i

3 .4 3 5 2  X 10+ 0 0 1

- 2 .5 1 5 9  x 1 0+ 0 0 1

2 .8 3 3 8  X i o + ooi

- 7 .0 9 2 8  X 1 0 + 0 0 0

2 .7 5 9 1  x JQ +  001

6 .5 7 3 0  X 1Q +  000

- 4 .2 7 5 7  X 1 0 + 0 0 0

4 .0 0 8 5  X 1 0 + 0 0 0

- 3 .6 6 0 9  X 1 0 + 0 0 0

- 5 .0 6 9 3  X 1 0 - ° 02

7 .1 2 9 0  x 1 0 - ° 02

2 .5 1 4 0  X 1 0 “ 002 _

2 .5 1 4 0  X IO- 002 _

2 .5 1 4 0  X 1 0 ~ 002

2 .5 1 4 0  X 10"■002

5 .2 3 9 0  X IO- 0 0 3  
1 .3 5 0 0  x  IO- 0 1 1

1 .0 0 8 6  x  1 0 + ° ° °  
- 8 .6 0 4 9  X 1 0 ~ 001 

9 .1 7 4 2  X IO-001  
3 .4 3 5 2  x  1 0 + 001 

- 2 .5 1 5 9  X 1 0 + 001 
- 2 .8 3 3 8  x  1 0 +001  

7 .0 9 2 8  x  1 0 + ° ° °  
- 2 .7 5 9 1  X 1 0 + 001 
- 6 .5 7 3 0  X 1 0 + 0 0 0  
- 4 .2 7 5 7  X 1 0 + 0 0 °  
- 4 .0 0 8 5  x  1 0 + 000 

3 .6 6 0 9  x  lO+00° 
- 5 .0 6 9 3  X IO-002  
- 7 .1 2 8 7  x  IO-002

3 .1 5 9 9  X IO-012
- 9 .3 5 7 6  X IO-004

8 .6 2 2 8  X IO-015
- 1 .4 7 2 3  X IO-004
- 4 .9 9 2 6  X 1 0 - 0 1 2
- 8 .0 5 3 4  X IO-0 1 1

2 .5 7 7 0  X IO-0 1 1
- 1 .6 7 9 9  X IO-001

4 .5 2 2 6  X IO-0 0 2
- 1 .5 3 4 6  X IO-008

1 .1 9 3 7  X IO-008
4 .9 7 8 9  X IO-0 1 0
6 .8 7 9 0  X IO-001
1 .0 4 3 7  x  IO- 0 0 9

- 3 .7 6 4 3  X 1 0 ~ o n  
- 0 0 2

, - 0 1 2

- 1 .2 7 2 3  X 10
1 .0 0 8 6  X 1 0 + ° ° °  

- 8 .6 0 4 9  X IO-0 0 1  
- 9 .1 7 4 2  X IO-0 0 1  

3 .4 3 5 2  X 1 0 + 001 
- 2 .5 1 5 9  X 1 0 + 001 
- 2 .8 3 3 8  X 1 0 + 001 

7 .0 9 2 8  X 1 0 + ° ° °  
2 .7 5 9 1  X 1 0 + 001 
6 .5 7 3 0  X 1 0 + ° ° °  

- 4 .2 7 5 7  X 1 0 + ° ° °  
- 4 .0 0 8 5  X lO+00° 
- 3 .6 6 0 9  X 1 0 + ° ° °  
-5 .0 6 9 0  X 10

6 .2 1 1 9  x  IO- 0 0 9  
1 .5 0 1 9  x  IO-0 0 1  
6 .7 5 7 2  X IO"011 
8 .2 1 2 9  x  10  

- 3 .0 0 4 4  x  10 
5 .3 5 2 0  X 10 

- 1 .5 1 7 7  x  10 
6 .1 8 0 1  X 10 

- 4 .9 0 1 9  x  10 
7 .6 6 5 3  X 10  
3 .6 3 0 9  x  10 
1 .5 0 5 9  x  10 
3 .9 6 1 1  x  10  

- 1 .7 4 5 6  x  10 
6 .0 7 4 3  X 10 
7 .4 4 4 7  x  10 
3 .3 9 9 6  x  10  
6 .0 7 6 6  X 10

j - 0 1 3  
3 - 0 1 2  
- , - 0 0 4  

- 0 1 0  
- 0 1 0  
- 0 1 0  
- 0 0 8  

- , - 0 0 1  
, - 0 0 2  
-, — 0 0 9  

- 0 0 9  
5 - 0 0 1  
r\— 0 1 0  

- 0 1 0

1.7392 x  10' 
9.7561 x  10' 

-2 .5 2 9 9  x  10' 
-1 -4910  x  10' 

1.1227 x  10' 
3.0812 x 10' 

-5 .5 8 0 0  x 10' 
-3 .6 0 3 6  x 10 

9.0998 x  10 
2.3937 x  10 
1.6904 x  10 

-3 .9 5 1 0  x  10 
2.9554 x  10 
3.8982 x 10 

1 9458 x io - ° ° 6  
-2 .5 9 7 3  x  i o ~ 014 

4.2886 x  i o ~ 014 
-3 .1591  x  10~ 003 

2.3969 x  10~003 
-2 .9 5 7 2  x 10~ 011 

1.4503 x  10~011 
-7 .9 4 5 7  x IO-011  
-5 .3 3 7 6  x  10~011 
-1 .2 6 5 6  x  1 0 ~ ° 02 
~ 1.2417 x  1 0 ~ °10 

2.9638 x  10~ ° 10 
9.9614 x 10~ ° 01 

-1 .3 2 8 9  x 10~ 011

- 0 1 2
-O il
-0 0 4
-0 0 9
-0 0 9

-0 0 8
-0 0 8
- 0 0 1
-0 0 1
- 0 1 0
-0 0 8
- 0 0 2
-O il
- 0 1 0

- 7 .3 0 1 1 X IO- 0 1 5
- 3 .3 6 1 3 X 1 0 - 0 0 6

- 1 .2 3 0 3 X IO- 0 1 3
1 .0 7 0 9 X 1 0 - o n

- 9 .0 3 8 8 X 1 0 - 0 1 2

- 4 .6 6 5 7 X l 0 - ° 03

1 .2 4 6 2 X IO- 0 0 3
- 4 .2 1 7 1 X IO- 0 1 0

3 .3 6 9 0 X 1 0 -O iO

6 .4 2 0 1 X 1 0 - o n

- 1 .8 4 8 8 X l 0 - ° 02

2 .5 4 4 8 X IQ-OIO

8 .9 6 8 0 X 1 0 - ° 13

9 .9 5 7 4 X i o - ° 01

-002

- 2 .8 3 4 2  X 10 
2 .8 3 4 2  X 10

- 0 0 2
-002

2 .8 3 4 2  x  IO-002
2 .8 3 4 2  X IO-002

- 7 .1 2 9 0  X IO- 0 0 2  J 
- 7 .0 8 0 3  X IO-0 0 3  
- 7 .0 8 0 3  X 1 0 - 0 0 3

7 .0 8 0 3  x  IO-003
7 .0 8 0 3  x  1 0 “ 003

4 .2 7 1 0  X 1 0 - 0 0 3  - 4 .0 1 0 1  X 10 003
4 .2 7 1 0  X 10 -0 0 3

2 .7 5 9 2  x IO-002  
- 2 .7 5 9 2  x IO-002

2 .7 5 9 2  x IO-002  
- 2 .7 5 9 2  X IO-002

3 .6 7 1 5  X 1 0 ~ 003
3 .6 7 1 5  x  1 0 - 0 0 3

- 4 .6 2 0 5  x  10 + 0 0 °  
- 3 .4 9 8 7  x  lo +00° 
- 3 .4 3 0 0  x  lO+00° 
- 2 .3 0 8 2  x  io + 000

- 3 .4 9 8 7  X 
- 4 .6 2 0 5  X 
- 2 .3 0 8 2  x  
- 3 .4 3 0 0  X

4 .0 1 0 1  X 1 0 - ° ° 3 - 3 .6 7 1 5  x io -003
4 .2 7 1 0  X IO-003  4 .0 1 0 1  X IO-003  3 .6 7 1 5  x 1 0 ~ 003

1 0 + ° ° °  - 3 .4 3 0 0  X 1 0 + 000 - 2 .3 0 8 2  X io + 000 1
jO+OOO - 2 .3 0 8 2  x  l o + 000 - 3 .4 3 0 0  X 10 + 0 ° °
10+000 - 4 .6 2 0 5  X 1 0 + ° ° °  - 3 .4 9 8 7  X 10 + 0 0 °
lO+OOO - 3 .4 9 8 7  X 1 0 + 000 - 4 .6 2 0 5  x i 0 + 0 0 °

- 6 .5 7 0 8  X 1 0 - ° 03
6 .5 7 0 8  X 1 0 - 0 0 3  

- 6 .5 7 0 8  X IO-003
6 .5 7 0 8  X IO-003

1 .1 7 9 0  x  IO-004
1 .1 7 9 0  x  IO-004
1 .1 7 9 0  x  IO-004
1 .1 7 9 0  x  IO- 0 0 4

9 .0 4 5 9  X 10
9 .0 4 5 9  X 10
9 .0 4 5 9  X 10
9 .0 4 5 9  X 10

-0 0 5  -| 
-0 0 5  
-0 0 5  
-0 0 5



Appendix G 

Mat lab programs for deriving 
nonlinear 'Hoo state-feedback and 
output-feedback controllers

*/, Nonlinear state-feedback Hoo controller for Maglev 
used for the derivations in Chapter 9 

clear all

syms F Z A B C D R Ham P syms x v f Res m gamma tmp tmpl res K IC vs 
V Vx syms As Vs3 Lc i j V3 Vx3 V2 index f2 f2Vx2 xl c Veq syms Vind 
k;

syms xl x2 x3 vl v2 syms cl c2 c3 c4 c5 c6 c7 c8 c9 clO

x=[xl x2 x3];

disp(’Nonlinear Hoo controller for MAGLEV’);
disp( ’ ’) ;
disp(’’);

'/, parameters of the maglev system 
f =5.04424e-5; */. f = uo*N~2*A/2
Res =1.1; '/. magnet’s coil resistance
m =1.8; mass of thge magnet

'/, energy limit
gamma =1; % gamma

*/, Initial conditions 
IC = [4e-3,0,3.13,0,5];

'/, Dynamics of the system
F = [ x2 -l/(2*m)*f*x3~2/xl~2+l/m*vl
-xl*Res/f*x3+l/xl*x3*x2+xl/f*v2*l.0 ];

Z = [ l*xl, l*x2, l*x3, 0.12*v2 ];

'/, Section A
'/, Computing the jacobians
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A = subs(jacobian(F,[xl x2 x3]),{xl x2 x3 vl 
v2},{IC(l),IC(2),IC(3),IC(4),IC(5)}); B = subs(jacobian(F, [vl 
v2] ) , {xl x2 x3 vl v2},{IC(l),IC(2),IC(3),IC(4),IC(5)}); C =
subs(jacobian(Z, [xl x2 x3]),{xl x2 x3 vl
v2},{IC(l),IC(2),IC(3),IC(4),IC(5)»; D = subs(jacobian(Z, [vl 
v2] ) , {xl x2 x3 vl v2},{IC(l),IC(2),IC(3),IC(4),IC(5)»;

'/, R matrix
R = D ’*D - [gamma"2,0;0,0] ;

*/, Hamiltonian system 
Ham = [

A, -(B*R~-1*B’) ;
- C ’*C, -A’
];

'/, Riccati equation state-feedback
result = are(double(A),double(-(B*R~-1*B’)),double(-C’*C)) ;

P matrix 
P = - result;

'/, first-order state-feedback controller 
K = R^-l+B’+P; 
vs = -K* [xl;x2;x3];

d i s p d ------------------------------------------------------------------ ’) ;
d i s p d  First order Hoo controller:’); K1 = double(-K(2,:))
disp(5------------------------------------------------------------------ ’ ) ;

V = [xl x2 x3]*P*[xl; x2; x3] ;
Vx = jacobian(V,[xl x2 x3] );

*/, First order closed-loop system A*
As = (A-B*K); As = As*[xl;x2;x3];

'/, storage function V2
V2=[xl~2, xl*x2, xl*x3, x2"2, x2*x3, x3"2];

storage function V3 
V3=[xl"3, xl"2*x2, xl"2*x3, xl*x2"2, xl*x2*x3, xl*x3"2, x2"3, 
x2~2*x3, x2*x3"2, x3"3];

*/t Expanding in series,

tmp(l) = mtaylor(F(l),[xl x2 x3],[IC(l) IC(2) IC(3)]);
tmp(2) = mtaylor(F(2),[xl x2 x3],[IC(1) IC(2) IC(3)]);
tmp(3) = mtaylor(F(3),[xl x2 x3], [IC(1) IC(2) IC(3)]);

f2(l) = subs(tmp(l) - subs(tmp(l),{xl x2 x3},{0 0 0}),{vl v2>,{0 0});
f2(2) = subs(tmp(2) - subs(tmp(2),{xl x2 x3},{0 0 0}),{vl v2},{0 0});
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f2(3) = subs(tmp(3) - subs(tmp(3),{xl x2 x3},{0 0 0}),{vl v2},{0 0>);

7,AsVx3=-f 2Vx2

7, right-hand side 
f 2Vx2 = (Vx* Cf2(1);f2(2);f2(3)]);

7. left-hand side
c = [cl;c2;c3;c4;c5;c6;c7;c8;c9;cl0];
Vx3 = jacobian(V3*c,[xl x2 x3] ) ;

7. solution for the unknown storage function 
Veq = simplify(Vx3*As + f2Vx2) ;

disp(’Arranging the coefficients’);
disp(’------------------------------------------------------------------ ’);
disp(’’);

7. arrange the coefficients 
srtcoef;

disp(’Solving the system of equations’);
disp(’------------------------------------------------------------------ ’) ;
disp(’’);

7. Solving the system of ten equations with ten unknowns (ck)
S = solve(Sveq(l),Sveq(2),Sveq(3),Sveq(4),Sveq(5),Sveq(6),Sveq(7),Sveq(8), 
Sveq(9),Sveq(10));
7. coefficients from the resultant staructure 
clear C;

for i = 1 :1 0 ,
tmps = sprintf (’ c7»d’,i) ;

C(i) = double(getfield(S,tmps)); 
end

7. Computes the second order controller
V = V + V3*C’; Vx = jacobian(V, [xl x2 x3]) ; vs = -0.5*IT-1* (B’*Vx’);
K = expand(vs(2));

7. Get the coefficients from the symbolic solution 
getcoef;

disp(’ ’) ;
disp(’ Nonlinear state-feedback Hoo controller:’); K2
disp( ’ ’) ;

% Nonlinear output-feedback Hoo controller for Maglev 
7. used for the derivations in Chapter 9

clear all

syms F Z A B C D R Ham P ...
x v f Res m gamma tmp tmpl res K IC vs V Vx ...
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As Vs3 Lc i j V3 Vx3 V2 index f2 f2Vx2 xl c Veq . . . 
Vind k Cl C2 B1 Dll D21 w u Y X Ae Qe ... 
n ml m2 pi p2 us ws Xs Zs Hs ...
Dllt D21t R1 Rli DRD DRDi eyeml .. . 
hs Be Ce Q ys y wh wss Ys G W Wx;

syms xl x2 x3 vl v2 v3 ul syms wl w2 

x = [xl x2 x3]; v = [vl v2 v3];

disp(’Nonlinear output-feedback Hoo controller for MAGLEV’);
disp( ’--------------------------------------------------------- ’);
disp(’’);

*/, parameters of maglev system 
f =5.04424e-5; 7. f = uo*N~2*A/2
Res =1.1; 7. magnet’s coil resistance
m =1.8; 7. mass of thge magnet

gamma =1; 7* gamma

7. Initial conditions
IC = [4.0,0,3.3, 0,0,1] ;

w(l) = v(l); w(2) = v(2); ul = v(3);

7. System’s dynamics 
X = [ x 2 , ...

-l/(2*m)*f*x3~2/xl~2+l/m*vl, ... 
-xl*Res/(f)*x3+l/(xl)*x3*x2+xl/(f)*v3 ];

7. System’s dynamics 
Z = [l*x(l),0.2*v3 ] ;
% System’s dynamics 
Y = [x(l)+l*v2];

7. linear state-space system

A = subs(jacobian(X, [xl x2 x3]),{xl x2 x3 vl v2
v3},{IC(l),IC(2),IC(3),IC(4),IC(5),IC(6)»; B = subs(jacobian(X, [vl 
v2 v3]) ,{xl x2 x3 vl v2 v3>,{IC(l),IC(2),IC(3),IC(4),IC(5),IC(6)»; 
C = subs(jacobian(Z,[xl x2 x3]),{xl x2 x3 vl v2
v3>,{IC(l),IC(2),IC(3),IC(4),IC(5),IC(6)» ; D = subs(jacobian(Z,[vl 
v2 v3]) ,{xl x2 x3 vl v2 v3>,{IC(l),IC(2),IC(3),IC(4),IC(5),IC(6)»;

C2 = subs(jacobian(Y,[xl x2 x3]),{xl x2 x3 vl v2 
v3>,{IC(l),IC(2),IC(3),IC(4),IC(5),IC(6)»; B1 = 
subs(jacobian(X,[w(l) w(2)]),{xl x2 x3 vl v2 
v3>,-[IC(l),IC(2),IC(3),IC(4),IC(5),IC(6)»; Dll = 
subs(jacobian(Z,[w(l) w(2)]),{xl x2 x3 vl v2 
v3>,{IC(l),IC(2),IC(3),IC(4),IC(5),IC(6)»; D21 = 
subs(jacobian(Y, [w(l) w(2)]),{xl x2 x3 vl v2
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v3},{IC(l) ,IC(2) ,ICO) ,IC(4) ,IC(5) ,IC(6)» ;

Cl = C; Dllt= Dll’; D21t= D21’;

'/, R matrix
R = (D’*D - [gamma-'2 0 0;0 gamma-'2 0;0 0 0]);

7. Riccati equation
Ae = (A - B*R~-1*D,*C1) ; Qe = (C1’*C1 - Cl’*D*R~-1*D’*C1) ; 
result = -are(double(Ae),double(-(B*R~-1*B’)),double(-Qe)) ;

*/, P matrix 
P = result;

7. first-order state-feedback controller 
F = R~-1*B’*P + D ’*C1; vs = -F* [xl;x2;x3];

disp(’ First-order Hoo controller:’); pretty(vs(3)); double(-F(3,:)) 
disp(’ ------------------------------------------------------------------’);

% storage function V=xTPx 
V = [xl x2 x3]*P*[xl; x2; x3];
7, it’s gradient
Vx = jacobian(V, [xl x2 x3]);

7, Closed loop matrix A*
As = A-B*F; As = As*[xl;x2;x3] ;

ws = [vs(l),vs(2)]; us = vs(3);

Xs = subs(X ,{vl v2 v3},{vs(l),vs(2),vs(3)>) ; Zs = subs(Z ,{vl v2
v3},{vs(l) ,vs(2) ,vs(3)>) ;

7* Hamiltonian function
Hs = (Vx*Xs’ + Zs*Zs’ - gamma~2*ws*ws ’) ;

7. Riccati equation, to find W and Wx

R1 = Dllt*Dll - gamma~2 * eye(2,2);
DRD = D21*Rl~-l*D21t; DRDi = DRD~-1;

hs = 0.5*subs(Hs ,{xl x2 x3},{IC(l) ,IC(2) ,IC(3)» ;

Ae = (A - (Bl*Rl~-l*(Dllt*Cl+ (D21t*DRDi*(C2 - (D21*Rli*Dllt*Cl)))))); 
Be = (Bl* (-Rl~-1 + (Rl-'-l*D21t*DRDi*D21*Rli) ) *B1 ’) ;
Ce = (C2 - D21*Rl~-l*Dllt*Cl)’*DRDi*(C2 - D21*Rl~-l*Dllt*Cl) - ... 

(Cl»* Dll* Rl~-1* Dllt*Cl) + (Cl’+Cl) - eye(3,3)*hs;

result = -are(double(Ae’) ,double(Ce),double(-Be));

7. what, ystar, and wstarstax.
Q = result'-l; ys = (-2 * (DRDi*(C2 - (D21*Rl~-l*(Dllt*Cl+ 
B l ’*Q)))*[xl;x2;x3])); wh = (-Rl~-1 * ((Dllt*Cl*[xl;x2;x3]) +
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(Bl’*Q*[xl;x2;x3])- 0.5*D21t * y)); wss = subs(wh ,{y},{ys>);

Ys = subs(Y,{vl v2},{ws(l) ws(2)>);

*/, Compute Q(x)
G = - ( (Q - P)~-1*(C2 - (D21*Rli*(Dllt*Cl+Bl»*Q)))>*DRDi) ;

'/, Compute W and Wx
W = ([xl x2 x3]*Q* [xl;x2;x3]); Wx = jacobian(W, [xl x2 x3]) ;

'/, nonlinear observer
Sys=expand( [Xs(l) ;Xs(2) ; Xs (3)3 + G * (y - Ys));

disp (J------------------------------------------------------------------’) ;
disp(Nonlinear Hoo observer’); disp(,Statel=’) ;
'/.pretty(Sys(l)) ;
disp(,State2=’);pretty(Sys(2)); disp(,State3=’);pretty(Sys(3)); 
disp(’ ------------------------------------------------------------------ ’);

' / f u n c t io n  Sveq = s r t c o e f ( V e q , c , x )
'/. s o r t  t h e  i d e n t i c a l  term s i n  x

c l e a r  s v e q  i  j p a t  RES c o e f  Sveq;

debug = 0;

i f ( 0 ) ,  t s t e q ,  end

V e q = c o l l e c t ( V e q , c ) ; 
sVeq = ch a r (V eq );

j = i ;
P = l ;  

w h i le  j< = 2 0 0 ,
f o r  i = l : l e n g th ( s V e q )

i f  ( ( s V e q ( i )  == | s V e q ( i )  == ’ - ’ ) & i  > 1)
b reak ;  

e l s e
s v e q ( j , i )  = s V e q ( i ) ; 

end '/.if  
end '/.for i
sVeq = s V e q ( i : l e n g t h ( s V e q ) ) ;
j  = j + i ;

end '/.w h ile

pat(l,:) = { ,xl*x2*x3’ ’xl*x3*x2’ ’x2*xl*x3’ ’x2*x3*xl’ ,x3*x2*xl’ ,x3*xl*x2’};
pat(2,:) = { ,xl~2*x2’ ’x2*xl~2’ ”  ”  >> ” };
pat(3,:) = { ’xl~2*x3> >x3*xl~2> >> *> >> ” >;
pat (4,:) = { ’x2~2*xl’ ,xl*x2~2’ ”  ”  ”  ” >;
pat(5,:) = { ’x2~2*x3’ ’x3*x2~2’ ”  ”  ”  ” >;
pat(6,:) = { ’x3^2*xl’ ,xl*x3^2’ ”  ”  ”  ” >;
pat (7, :) = { ,x3'‘2*x2’ ’x2*x3~2’ ”  ”  ”  ” >;
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pat(8,:) = ’X1+X2’ »x2*xl» ’ i i i i

pat(9,:) = ’X1+X3’ ’x3*xl’ ’i i i  i

pat(10, )  = ’x2*x3’ ’x3*x2J * i i i i

pat(11, )  = ,xl~2’ ’> > > >)  } i i , y .

pat(12, )  = >x2~2’ *) >) } > >i n y .

pat(13, )  = Jx3~2’ *) ) > ) > ) i n y .

pat(14, )  * ,xl‘'3> * ) ) j ) > ) i n y .

pat(15, )  = ,x2~3J * ) >)  > j ) i n y .

pat(16, )  = »x3~3» * ) ) > ) )  > i a y .

pat(17, )  = ’xl* »» ) > ) > > >

p at(18, )  = ’x 2 ’ ” > > ) j j j
* * > ;

p at(19, )  = >x3> ” i t  i i  i i

for j=1:19 
tmpc = ’ ’;

for k = 1:6,
for i=l:length(sveq(:,1))

% move all c-coefficients at the end of expresion 
where = findstr(sveq(i,:),’ c ’) ; 
ends = length(sveq(i ,:) ) ;

if( (where+3) < length(sveq(i,:)) )
if( sveq(i,where+2)==,* ’ )

tmps = sveq(i,where-l:where+1); 
sveq(i,where-l:ends-3)=sveq(i,where+2rends); 
sveq(i,ends-2 rends)=tmps; 

elseif( sveq(i,where+3)==’* } ) 
tmps = sveq(i,where-1 :where+2); 
sveq(i,where-1 :ends-4)=sveq(i,where+3rends); 
sveq(i,ends-3 rends)=tmps;

end
end

where = findstr(sveq(i,:),char(pat(j,k)) ); 
if( ~isempty(where) )

if(debug)
disp (5 ») ;
sveq(i,:),

end;

if(where>2)
sveq(i,where-l:where-l+length(char(pat(j,k)))) = blanks(1); 

else
sveq(i,where:where-l+length(char(pat(j,k)))) = blanks(l);

sveq(i,where+0:where+1) = ’1 
sveq(i,where+2rwhere+length(char(pat(j,k))));
'/. s veq (i,where+length (char (pat (j ,k)))) =

end

tmpc = strcat(tmpc,sveq(i,:));
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end '/.if 
end '/,i 

end */,k

k = 1;
len = length(tmpc);
‘/.clear empty spaces 
for i=l:len

if (isspace(tmpc(i))),

where = findstr(tmpc,,* }) ;

tmpc (i :length(tmpc (where (k) :length(tmpc)))+i-l)=tmpc(where(k) : length (tmpc)) ; 
tmpc (length (tmpc (where (k) : length (tmpc) ) ) + i : len) =

blanks (length(tmpc(length(tmpc (where (k) : length (tmpc) ) )+i: len) ) ) ; 
if( isempty(findstr(tmpc(where(k):length(tmpc ) ) , ’ * ’ ) )  ) 

break; 
end ‘/.if 
k = k+1;

end
end

*/, Remove coefficients without terms in ’ c ’ 
where = findstr(tmpc,’c ’); 
if("isempty(where)),

Sveq(p) = sym(tmpc(l:where(k)+5));
P = p+1; 

end

end '/.j
*/, get the numerical form of the coefficients of the state-feedback

clear sveq sK K2 k sK;

k=collect(K,x); 
sK = char(k);
j = 1;i = i;

while j<10,
for i=l:length(sK)

if ((sK(i) == ’ + ’ | sK(i) == »->) & i > 1) 
break; 

else
sveq(j,i) = sK(i); 

end '/.if 
end '/.for i
sK = sK(i:length(sK));
j = j+i;

end '/.while
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for i=l:length(sveq(:,1))
where = f i n d s t r ( s v e q ( i }* }) ;
K2(i) = double(sym(sveq(i,1:where-l)));

end

'/, customised second-order Taylor expansion of F around xO 
function f = mtaylor(F,x,xO)

Df = jacobian(F,x) ;
DDf= jacobian(Df,x);

f = subs(F,{x(l) x(2) x(3)},{x0(l),x0(2),x0(3)>) + ...
subs( Df(l),{x(l) x(2) x(3)},{x0(l),x0(2),x0(3)>)*(x(l)-x0(l)) + ...
subs( Df(2),{x(l) x(2) x(3)>,{x0(l),x0(2),x0(3)})*(x(2)-x0(2)) + ... 

subs( Df(3),{x(l) x(2) x(3)},{x0(l),x0(2),x0(3)})*(x(3)-x0(3)) + ... 
l/2*subs(DDf(1,1),{x(l) x(2) x(3)>,{x0(l),x0(2),xO(3)})*(x(l)-xO(l))~2 + ...

subs(DDf(1,2),{x(l) x(2) x(3)>,{x0(l),x0(2),x0(3)>)*(x(l)-x0(l))*(x(2)-x0(2)) + . 
subs(DDf(1,3),{x(l) x(2) x(3)},{x0(l),x0(2),x0(3)})*(x(l)-x0(l))*(x(3)-x0(3)) + . 

l/2*subs(DDf(2,2),{x(l) x(2) x(3)>,{x0(l),x0(2),x0(3)>)*(x(2)-x0(2))"2 + ...
subs(DDf(2,3),{x(l) x(2) x(3)},{x0(l),x0(2),x0(3)})*(x(2)-x0(2))*(x(3)-x0(3)) + • 

l/2*subs(DDf(3,3),{x(l) x(2) x(3)},-(x0(l),x0(2),x0(3)})*(x(3)-x0(3))"2 ;
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Abstract

This paper develops a model-reference adaptive controller (MRC) design framework for magnetically suspended vehicles (maglev) 
using the criterion of stable maximum descent. The adaptation algorithm is constrained to reduce the airgap error between the 
reference model and the actual system. The explicit relationship between the parameters of the performance criterion (function of the 
airgap error and its derivative) and the state feedback adaptation rule is derived for a single degree-of-freedom suspension system. 
Experimental results from a small representative test-rig are presented to illustrate the effectiveness of the proposed non-linear 
controller in the presence of variations in pay-load (suspended mass), disturbance force and airgap set-point. Hardware aspects of the 
transputer and DSP-based real-time controller are briefly discussed to highlight some of the practical issues related to digital 
implementation of the airgap adaptive control law. © 1999 Elsevier Science Ltd. All rights reserved.

Ke ywo r ds :  Magnetic suspension; Maglev; Transportation; Electromagnetic suspension; Adaptive control; Model-reference adaptive 
control; Real-time control; Transputers; Digital signal processors

1. Introduction

Interest in the developm ent of magnetically levitated 
(maglev) vehicle technology continues to  grow world 
wide. The environm ental, commercial and technological 
attractiveness of maglev is likely to be enhanced in the 
new m illennium  with the com pletion of the high-speed 
maglev link between H am burg  and Berlin in Germ any 
(The Econom ist, 1998). Im provem ents in m aterials and 
control technology (hardw are and software) are expected 
to be im portan t in m aglev’s evolution. Until recently, the 
stabilising controllers for the electromagnetic (attraction 
type) maglev systems have been based on variations of 
m odel-based state feedback control laws (Sinha, 1987). 
This paper presents a new basis for model-reference 
adaptive controller of a single-degree-of-freedom maglev 
system based on the theoretical concept developed earlier 
(Sinha and Hulme, 1983). W hile expert knowledge of 
suspension dynamics is still required, by removing the 
need for a priori knowledge of the non-linear force char-

* C orresp on d in g  author. E-mail: p .k .sinha@ reading.ac.uk .
1 T his paper w as not presented at any IF A C  m eeting. T he paper  

w as recom m en ded  for publication  in revised form by E ditor Peter  
D orato .

acteristics of the suspension m agnet, the adaptive con
troller generates a con tro l law capable of providing an 
acceptable degree of disturbance stability with enhanced 
stiffness. A full account of the design fram ework and 
a selection of transpu te r and D SP-based  experimental 
results from a single-m agnet suspension system are pre
sented in the paper to provide a basis for further work for 
m ulti-m agnet maglev vehicles.

2. Modelling and design preliminaries

F o r the electrom agnetic suspension (EMS) system 
shown in Fig. la , if the reaction surface ( =  guideway for 
m oving m agnets) is considered to be sufficiently rigid, z{t) 
may be taken as the absolute position [ =  airgap or 
clearance] of the suspended m agnet with z(t) being its 
absolute vertical acceleration at any instance of time t. 
W ith these assum ptions, the dynam ics of the suspension 
system is described by (Sinha, 1987)

di(t) 
d t m

d z(t) R  1
-  -/(/)z(0 + pZ(z)y(A

in
cl2 z(t)
dU-

i ( 0

z(t) +  +  m g ,

(la)

(lb)
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z(t )

POSITION 
*  SENSOR

i (t)

z(t)
ACCELEROMETER

( a )

z ( 0

-  i k+

Z(t)

( b )

F i g .  1 .  M a g l e v  s y s t e m  c o n f i g u r a t i o n ;  ( a )  s e n s o r  a n d  g u i d e w a y  l o c a 
t i o n s ,  ( b )  l i n e a r i s e d  m o d e l  w i t h  l i n e a r  s t a t e  f e e d b a c k  c o n t r o l l e r .

where T =  g0h2A P/2 is a characteristic feature of the 
suspension m agnet, with il as the num ber of turns in 
the m agnet w inding and A P as the pole face area; R  is the 
to tal resistance of the electrical circuit (output resistance 
of the voltage to current amplifier plus the m agnet wind
ing resistance),/, (£) is the vertical disturbance force, mg is 
the to tal weight of the suspended object, and v(t) is the 
input voltage to the m agnet amplifier. The now-classical 
m ethod of designing stabilising controller for the system 
is based on a small perturbation  linear model around 
a specified nom inal operating point (i0,z0). The corres
ponding linear m odel being described by

dA/(£) 
d t

dAzff) ~Ro Ai(t) +
" 1 “

_zo_ d£ _To_ _To_
Au(t), (2a)

in-
d 2A z(t) 3F( i,z )

d t a z
A z(t)

Oo.Zo)

dF(i, z)
01 A / ( f )  +  A f d { t )

Oo. -o)

kzAz{t) — kjAi(t) +  A/j(f), (2b)

where

k: = T i l j z l ; ki =  T  /'o/zo; T 0 =  r / z 0; k f  = k : L 0, 

and mg =  T/2  [ i0/ z 0 ] 2 .

T a b l e  1
P a r a m e t e r s  o f  t h e  m a g n e t  a n d  t h e  l i n e a r  s t a t e  f e e d b a c k  c o n t r o l l e r  f o r  
t h e  e x p e r i m e n t a l  s y s t e m  u s e d  h e r e

P a r a m e t e r V a l u e P a r a m e t e r V a l u e

kz ( N / m ) 5 0 , 0 0 0 R (  Q ) 7 . 0
k, ( N / A ) 3 8 . 0 m  ( k g ) 5 . 0
z„ ( m m ) 5 . 2 k„ 2 0 , 8 3 3
L„ ( m H ) 3 3 . 0 k,. 2 5 0 . 0

( A ) 1 . 8 ka 4 . 0

A wide range of controllers for suspension stability and 
ride control has been developed using Eq. (2) as the 
base-line model (Fig. lb) and a linear state feedback 
control law of the form in Eq. (3) (Sinha, 1987):

Av(t) = kaAz(t) + k„Az(t) +  k„[z(t) -  zref] . (3 )

The key feature in the design of linear controllers is the 
choice of the nom inal operating point (i0,z0) such that the 
param eters /c,, kz , and L 0 are constan t over the whole of 
the operating ranges of current and airgap (Table 1 gives 
the key system param eters for the experim ental system 
used here). This is usually achieved by choosing the 
nom inal operating point on the linear p a rt of the m ag
net’s force-current and force-airgap characteristics. E x
tensive theoretical and experim ental maglev results ind i
cate that feedback of at least position and velocity signals 
are required for stability and dam ping, and the add ition  
of acceleration feedback (a) yields a stifFer suspension by 
increasing the range of permissible kv , (b) extends b an d 
width to give greater stability m argin, and (c) provides 
a better basis to control vertical acceleration levels (ride 
quality) (Sinha, 1987). W hile the success of the linear 
controller has been dem onstrated through the design and  
operation of num erous laboratory  prototypes and full- 
scale vehicles, the constraints of small pertu rbations on 
the suspension m odel (constant k ( and kz) imply th a t the 
airgap has to be very tightly controlled with m agnets 
operating on the lower end of their m agnetising charac
teristics (B — H  curves), typically with flux densities 
around 0.5 T and 10-12 mm airgaps, with a correspond
ing reduction in m agnet’s lift force to weight ratio. Al
though a theoretical basis of an adaptive controller 
concept was developed some years ago (Sinha and 
Hulme, 1983) to overcome some of these operational 
constraints, with advances in digital processing devices it 
is now becoming a realistic engineering proposition to 
implement real-tim e adaptation  laws for maglev systems.

3. Model following adaptation

The general configuration of the overall control envi
ronm ent is shown in Fig. 2, where the reference model is 
derived from off-line identification of the closed-loop
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zref adkp, adks adka

R e f e r e n c e
m o d e l

O p e n - l o o p
n o n l i n e a r

s y s t e m

A d a p t i v e
a l g o r i t h m

F i g .  2 .  C o n f i g u r a t i o n  o f  t h e  m o d e l - r e f e r e n c e  c o n t r o l l e r  s e t - u p .  R e f e r 
e n c e  m o d e l  i n  t h e  e x p e r i m e n t a l  r e s u l t s  p r e s e n t e d  h e r e  h a s  t h e  s t r u c t u r e  
a s  s h o w n  i n  F i g .  l b .

suspension system operating  at its nominal airgap and 
current levels. This is considered to be a realistic basis for 
adaptive control as (a) m agnets are designed to offer 
optim um  perform ance (lift to weight ratio) over a prefer
red range of airgaps and currents, and (b) the operating 
airgap (set-point) of the system is norm ally set at a pre
scribed value to m eet various (somewhat conflicting) 
requirements, including m agnet efficiency, passenger ride 
comfort, and probability  of contact between the moving 
m agnet and the guideway (Sinha, 1987). Furtherm ore, 
due to variations in troduced during the magnets’ m anu
facturing process and system com ponent tolerances, ana
lytical m odelling of a m agnet is likely to have limited 
scope. In contrast, im plem entation of a fully autom ated 
identification of the system while suspended at its 
nom inal airgap with rated  payload may be treated as a 
routine operation  w ithin the m anufacturing/assem bly 
process.

Using standard  no tations and terminology (Sinha, 
1984), the airgap erro r dynam ics of the system may be 
expressed by an n th-order state equation of the form 
(Sinha and Hum le, 1983)

e ( r )  =  xr(£) -  xp(t) = [Arxr(r) +  M r ) +  dr(0]

-  [Apxp(0 +  bp v{ t )  + dp(0]

=  Are(0 +  G xp(0 +  d(0,

where

G =  Ar — Ap, d(0 =  dr(0 -  dp(0,

e(0 =  xr(0 — xp(0- (4)

The state variables are defined as: [ x l5 x 2, * 3] T =  
[z(r), z(t), zO)]1 with appropriate subscript p for process 
(actual system) and r for reference model, respectively. 
For notational convenience, the subscript p is dropped in 
subsequent derivations. The disturbance term dr(r) in the 
reference model m ay be removed in a first analysis w ith
out any loss of generality. In the conventional scheme of

adap tation , the control law is usually derived by asym p
totic stability assum ption of the reduced unforced system

e(t) =  Are(0

by using a Lyapunov function of the form V(e, t) = 
eT(t)Pe(t) with P  chosen by solving ArP  +  PA r =  — Q, 
Q typically being taken to be an identity m atrix of 
appropria te  dimension. The associated design stages are 
well established in adaptive contro l theory, e.g. for pole 
placement (Sinha, 1984; P orter, 1969). W hile there is 
some flexibility in the choice of the perform ance function 
for this form of adaptive control, for maglev system the 
state error as well as its derivative need to be included to 
exert a greater degree of control over stability and dam p
ing of the overall closed-loop system. In  an  earlier theor
etical work, a perform ance criterion of the type 
J(c,t) =  || E ie ( t)  +  E 2e(r) ||2 was used to develop a con
ceptual fram ework for state feedback adap ta tion  (Sinha 
and Humle, 1983). While this was successfully applied to 
sim ulation models, m ore recent work, with em phasis on 
experim ental im plem entation, indicates tha t a choice 
of cost function of the form (P and Q being n-square 
matrices):

J(e) =  eTPe +  eTQe, notation t for time is 

dropped for convenience (5 )

offers significant im provem ent in transien t response. In 
addition, as the airgap error and vertical velocity have 
dom inant effects on stiffness and suspension stability, 
such a criterion offers a flexible fram ew ork for the choice 
of the controller param eters (G ottzein and  Lange, 1975; 
Jayaw ant and Sinha, 1977).

4. M ethod of stable m aximum descent

If a is an arbitrary  param eter in A (which is to be 
controlled), then for a given perform ance criterion J  (..), 
the conventional m ethod of steepest descent rule to ad
ju st a is given by (Sinha, 1984)

da
dr

dJ(e) > 0.

However, a more detailed analysis of the concept of 
m axim um  descent indicates that a m ore effective version 
of the above adaptation rule is to use m axim um  stable 
descent giving (Sinha and Humle, 1983; Sinha, 1984; 
D onaldson, 1961)

da dJ (e)
dr +  ' da

y > 0, (6)

where A =  {z/ (a)}, with a being the param eter to be 
adapted in any (/,_/) element of A. The dynam ic adjust
ment of a relies on the sensitivity of J  to the elements of 
A (Donaldson, 1961). Similarly the adjustm ent for the
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param eter 3 in d isturbance d(r) may be derived as (Sinha 
and Humle, 1983)

(7)

In general, for any n-error vector, the first derivative of 
the perform ance criterion in Eq. (5) with respect to the 
controller param eters a is

dJ(e) o(eTPe 4 -eTQ e)
00. 00

oe
o o oo (8a)

where P , Q, M , N  are n-square matrixes related by 
M  =  P  +  PT and N  =  Q  +  Q T. C om bination of Eqs. (4), 
(8a) and (8b) gives

5.7(e) ~ oe T /  oe oG 
e M  —  + e N ( Ar—  +  - r ~ x

do oo \ oo oo

Ti i m .Txm oe e M —  +  e N A r—  +  e N  —  x .
do oo do

(8b)

By choosing M  and N  in the form M  =  W eIrAr and 
N =  — W elr, the gradient optim isation equation be
comes

da oJ(e) 
dr ' do

yeTW eIr ^  x,
oa

(9a)

where Ir =  [11 1] and W  is a diagonal norm alisation 
m atrix (chosen to m ake N  symmetric). W is derived from 
the m axim um  am plitudes of the errors in the adaptation 
channels. F o r the single-degree-of-freedom suspension 
system, o assumes three adaptive gains adkp, adkv, and 
adk„, and W (with an additional scaling param eter w) 
being given by

W =

1
w

m a x (e j
0 IV

0
m ax (ex) 
m ax (e2)

0 vv

0
0

max (ex) 
m ax(e3)_

(9b)

Substitution of the values of G  from Eq. (4) and its partial 
derivatives with respect to the three feedback gains kp, k,„ 
and ka in Eqs. (9a) and (9b) generates the following three 
first-order differential equations for adaptive feedback 
gains:

dr

d£

{ttdkp) yeTWef^Xi

Or(adkv) — — ye We —  x 2,
L0

—  (cidka) =  
dr

•Tin; f  O u  k z  Q a k i  \  /  i r \ \ye1 We —— X x — x 3 , (10)
\ m L o  m L 0 J

where ijp, cjv and ga are the gains of the corresponding 
sensors (voltage/physical unit). In tegration  of Eq. (10), 
with the initial values set a t their respective linear state 
feedback gains, produces the adaptive gains required to 
minimise the perform ance criterion in Eq. (5).

5. H ardw are set-up

To implement the contro l laws derived above, a 5 kg 
one-degree-of-freedom suspension system, schematically 
shown in Fig. la  was set up. O pera tiona l details of the 
control com ponents are given in Sinha (1987) and Sinha 
and Jayaw ant (1979). Initially the ad ap ta tio n  algorithm  
in Eq. (10) was im plemented on a netw ork of three 
transputers (Fig. 3a), this has now  been ported  on to 
Analog Devices’ SHARC digital signal processor using 
a proprietary interface and con tro l board  within 
a PC /W indow s environm ent (Fig. 3b). In  the transpu ter 
hardw are, da ta  transfer am ongst the three netw orked 
transputers is performed by Inm os serial links a t 20 M b/s 
(Sinha and M cLagam , 1993). T he d a ta  transfer loading 
between the interface processor (T-225) and o ther two 
processors, and the execution times for the various tasks 
on all three processors were such th a t the ad ap ta tion  
control required a sam pling tim e ranging from  370 to 
430 ps (400 ps was observed to  be an average value). 
Because of the periodic time sharing between high and 
low priority tasks within any given transpu ter, execution 
time is likely to vary, depending on the overall loading of 
the individual transputers (processors) in a network. 
This, along with the event-driven natu re  of d a ta  transfer 
architecture of the transputer (rather than  in terrup t sour
ces as in DSPs), creates variations between two consecut
ive sam pling intervals. The p roprie tary  D S P  hardw are 
consists of one 32-bit AD21061-40M Hz processor com 
m unicating with interface com ponents m em ory mapped 
on the processor’s address space. There are three main 
tasks in the im plem entation of the adaptive algorithm  in 
Fig. 2: da ta  acquisition and low-level processing to read 
the position and acceleration signals, solution of a set of 
three first-order differential equations to generate three 
reference model state variables, and the derivation of 
three adaptive state feedback gains. The last task includes 
the derivation of the two error vectors [e(r) and e(r)], 
com position of the adaptive rules as per Eq. (10) with 
user specified values of vv and y, and the m ultiplication 
of the three feedback signals with their adaptive gains 
(Fig. 2).

6. Experim ental results

From  operational viewpoints, a maglev system should 
ideally possess infinite suspension stiffness, that is the 
airgap error should be zero for any changes in operating
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( b )

F i g .  3 .  T r a n s p u t e r  a n d  D S P - b a s e d  s y s t e m  c o n f i g u r a t i o n s ,  ( a )  T a s k  d i s t r i b u t i o n  f o r  t r a n s p u t e r  i m p l e m e n t a t i o n  o f  F i g .  2 .  T h e  t r a n s p u t e r  h a r d w a r e  
e m p l o y e d  h e r e  f o r m s  p a r t  o f  a  1 0 0  k g  m u l t i m a g n e t  t e s t  v e h i c l e  d e s i g n e d  a n d  b u i l t  i n  1 9 8 8  ( S i n h a  a n d  M c L a g a n ,  1 9 9 3 ) .  ( b )  I n t e r f a c e  d e t a i l s  f o r  t h e  
p r o p r i e t a r y  D S P  b o a r d .  T h i s  h a r d w a r e  i s  n o w  b e i n g  e x t e n d e d  t o  w o r k  w i t h  n e t w o r k e d  D S P  d e v i c e s  f o r  a d a p t i v e  c o n t r o l  o f  m u l t i m a g n e t  v e h i c l e s .

conditions or any external disturbance. F o r example, 
a change in suspended mass will induce a change in the 
model, consequently with a non-adaptive controller the 
steady-state error in airgap will change from its nom inal 
design value. A lthough a maglev system is designed with 
a rated suspended mass at the nom inal operating point, 
changes in passenger loading (in full-scale vehicles) 
are to be expected. Any significant change in suspension 
stiffness will be manifested in the form of a changed 
airgap (above or below the set-point), with the pos
sibility that the suspension m agnet may be moved from 
its ideal linear design range to the non-linear parts of its 
m agnetising curve. The effectiveness of the proposed 
adaptive controller in reducing the static position error, 
and hence significantly improved suspension stiffness, is 
highlighted by the responses due to step input of mass in 
Fig. 4.

D isturbance force acting in line with the suspension 
axis adds an additional input to the system; this in tu rn  
will change the operating airgap according to the dynam 

ics within the open-loop system in Fig. la . In linear 
controllers, the state feedback gains are chosen to assure 
stability with a notional force d isturbance at the expense 
of a change in steady-state error in the airgap. A nother 
factor that has a destabilising effect on the suspension 
system is the reduction in suspension (lift) force due to 
eddy-current effects of a moving m agnet. This reduction 
in lift force has been found to be somewhere between 
a linear and an exponential form with much of the 
reduction being in the range 10-50 m/s, depending on 
m agnet and guideway geometry (Sinha, 1987). A lthough 
this reduction in effective lift force is taken into account 
in the design process, a precise a priori description of the 
linear velocity profile is not available. The adaptive con
troller again was able to return the airgap to its nom inal 
value for step changes in disturbance force as shown in 
Fig. 5. As indicated earlier with its enhanced processing 
power (80 M FL O PS as opposed to 4.3 M FL O PS for 
the transputer), the SH A RC-D SP was able to run with 
a much lower sam pling interval. F o r com parison,



1462 P.K. Sinha, A.N. Pechev/ Automatica 35 (1999) 1457-1465

mmm m 5 . 75 . 7

5 . 65 . 6

5 . 55 . 5

5 . 45 . 4

5 . 35 . 3

5 . 25 . 2

5 . 1

3 42 5 6 7 8 40 1 2 3 5 6 80 7
sec sec

m m mm5 . 7 5 . 7

5 . 6 5 . 6

5 . 5 5 . 5

5 . 4 5 . 4

5 . 3 5 . 3

5 . 2

5 . 1 5 . 1

30 1 2 4 5 6 7 8 1 2 40 3 5 6 7 8
( a )  s e c  ( b )  s e c

F i g .  4 .  T r a n s i e n t  r e s p o n s e s  o f  a i r g a p  d u e  t o  a  s t e p  c h a n g e  o f  5  k g  m a s s  ( 1 0 0 %  m a s s  c h a n g e )  w i t h  4 0 0  ( . is  s a m p l i n g  t i m e  ( n o m i n a l  o p e r a t i n g  p o i n t  s e t  a t  
5 . 2  m m  a n d  1 . 8  A ) ,  ( a )  T r a n s p u t e r - b a s e d  s y s t e m .  T o p :  n o n - a d a p t i v e  s y s t e m  ( l i n e a r  s t a t e  f e e d b a c k  c o n t r o l  l a w ) .  B o t t o m :  a d a p t i v e  s y s t e m ,  ( b )  D S P -  
b a s e d  s y s t e m .  T o p :  n o n - a d a p t i v e  s y s t e m .  B o t t o m :  a d a p t i v e  s y s t e m .

responses from the transputer-based and D SP-based 
controllers are included; the D SP  system being capable 
of producing im proved transient response a t a half the 
sam pling time with twice the disturbance input (Fig. 5b, 
bottom).

Thus, while the set-point for the airgap in a maglev 
system is not changed during a particular run, pay-load 
and force disturbances or linear m otion are likely to 
change the actual airgap which in some cases m ay drive 
the m agnets away from their nom inal operating points. 
These highlight the desirability of an adaptive airgap 
control law rather than a linear controller; the la tter 
being only able to  com pensate for operational changes 
and disturbances by adjusting the steady-state erro r in 
airgap.

Several com m ents regarding the choice of the design 
param eters are in order. The three elements in W  corres
pond to the scaling factors for the widely differing sensor

signals to bring Eq. (10) to within a uniform  range. In the 
experimental results presented here, norm alisation  was 
performed with reference to the airgap signal. Any of the 
other two signals may be used, bu t the choice of airgap is 
preferred as the am plitude of the feedback gain in this 
channel has the highest numerical value (in the order of 
20,000). The weight w offered a further choice in scaling; 
it was chosen to be unity in all responses presented here. 
The scalar param eter y is then chosen to control the 
integration rate: smaller value corresponding to slower 
adaptation  and larger value faster adap ta tion  w ithout 
reaching the saturation limits associated with the DAC. 
A lthough the values of y and the elements of W collec
tively ensure that the three adaptive gains rem ain within 
the bounds of the interface hardw are, use of two param  
eters provides some additional flexibility in the selection 
of the initial feedback gains. While the elements of W are 
related to the calibration param eters of the sensors and



P.K. Sinha, A.N. Pechev/Aitlomalica 35 (1999) 1457-1465 1463

mm5 . 7

5 . 6

5 . 5

5 . 4

5 . 3

5 . 2

5 . 1

2 3 4 6 70 1 5 8

mm5 . 7

5 . 6

5 . 5

5 . 4

5 . 3

5 . 2

5 . 1

3 4 50 1 2 6 7 8
sec sec

mm5 . 7

5 . 6 5 . 6

5 . 5 5 . 5

5 . 4 5 . 4

5 . 3 5 . 3

5 . 2 5 . 2

0 2 3 4 5 6 7 80 21 3 4 5 6 7 8
(a) sec ( b ) sec

F i g .  5 .  T r a n s i e n t  r e s p o n s e s  o f  a i r g a p  d u e  t o  a  s t e p  c h a n g e  o f  f o r c e  ( n o m i n a l  o p e r a t i n g  p o i n t  a s  i n  F i g .  4 ) .  ( a )  5 0  N  s t e p  f o r c e  d i s t u r b a n c e ,  
t r a n s p u t e r - b a s e d  c o n t r o l l e r  w i t h  4 0 0  p s  s a m p l i n g  t i m e .  T o p :  l i n e a r  s t a t e  f e e d b a c k  c o n t r o l l e r  ( n o n - a d a p t i v e ) ,  b o t t o m :  a d a p t i v e  c o n t r o l l e r ,  ( b )  D S P -  
b a s e d  a d a p t i v e  c o n t r o l l e r .  T o p :  a d a p t a t i o n  w i t h  4 0 0  p s  s a m p l i n g  t i m e  f o r  5 0  N  s t e p  f o r c e  d i s t u r b a n c e .  B o t t o m :  a d a p t a t i o n  w i t h  2 0 0  p s  s a m p l i n g  t i m e  
f o r  1 0 0  N  s t e p  f o r c e  d i s t u r b a n c e .

hence not adjustable, the value of y may be set at the 
design stage to control adap ta tion  rate. This is dem on
strated in Fig. 6 for step disturbances of mass and force 
with the D SP-based controller.

7. Concluding comments

N um erous studies related to the stability of model- 
reference adaptive systems have been undertaken in the 
late 1960s and throughout the 1970s. Since convergence 
of the augm ented error vector in Eq. (4) is the basis for 
the derivation of the adaptation  algorithm , a necessary 
condition for closed-loop stability is satisfied (N arendra 
and Valavrin, 1978). In addition, by suitable choice of the 
design param eters, boundedness of the three adaptive 
gains may be assured, leading to stability on a piecewise

linear basis. As the adaptation  algorithm  gets imple
mented, the three state feedback gains in the adaptive 
loop move from their nominal (initial) values towards 
their new values to drive (asymptotically) all three ele
m ents in the error vector to zero. Since suspension dy
namics is driven by force balance [Eq. 1(b)], the vertical 
acceleration signal is m ost sensitive to external d istur
bances. F o r this reason, the acceleration feedback gain 
(aclku) has been observed to be m ost responsive during 
adaptation , typically changing from 25% to as much as 
250% of its initial value during experiments which p ro 
duced Fig. 6. The other two gains have been relatively 
less responsive; adk,, rem aining within +  25% of its 
initial value, and adkp varying by only around +  5% . 
This boundedness of the three adaptive gains provides 
an experim ental verification for the asym ptotic s ta 
bility of the overall system. F u rth er work to derive
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Fig. 6. T ransient responses o f  airgap w ith D S P -b ased  controller  for four different values o f  y. Top: state feedback controller  w ith ou t any adaptation , 
then top -d ow n  adap tive loop  where the values o f  y are: 19.25, 38.5, 77.0 and 144.0 . N o m in a l operating param eters are as in F ig. 4 . (a) Step change o f 
10 kg m ass and (b) step change o f 100 N  force. Sam pling tim e w as set at 200 ps for all experim ents.

an analytical fram ework for stability assessment with Several factors may influence the choice of the refer-
non-linear force-distance-current characteristics is in ence model, including the range of airgap to be adapted, 
progress. Such a requirem ent, while appearing to be contradictory
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to the very concept of adaptation, is essential as the 
am oun t of energy available for adaptation  is physically 
lim ited by the m agnet lift force rating, available power 
supply (forcing voltage and current rating (Sinha, 1987)) 
and the bandw idth of the control signal. In the experi
m ental results presented above, the reference model cor
responds to the suspended mass of 5 kg with a 10 cm 
lam inated U-core m agnet; the operating airgap was set at 
5.2 m m  requiring a current of around 1.8 (Sinha, 1987). 
These values and their corresponding linear state feed
back gains have been used here to set the reference model 
(Table 1). Consequently, the adaptation  rule brings the 
airgap of the suspended m agnet to that of the reference 
m odel for any variations in the operating conditions as 
show n in Figs. 4-6. Such adap tation  in airgap is achieved 
by varying the m agnet current along the non-linear 
force-airgap characteristics of the magnet. Thus, in con
ceptual form, the algorithm  is capable of m aintaining 
adaptation  as long as the power amplifier is able to 
generate the required current within the practical operat
ing constraints (saturation limits of sensors and magnetic 
flux as well as the therm al limits of the m agnet and its 
windings). Several m odifications in the choice of the 
reference model may be made. F or example, a non-linear 
m odel or a family of pre-stored linear models may be 
used to  provide a particular ride quality or stability 
properties, subject to the condition that the integration 
interval w ithin the reference model is com patible with the 
sam pling time of the adap tation  routine. Some of the 
practical aspects of these are being investigated and 
a m echanism  to relate the airgap adaptation  algorithm  in

Eq. (10) to real-tim e param eter estim ation of the sus
pended system (e.g. a ttraction  force and suspended mass) 
is being form ulated.
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Technical Notes and Correspondence
Nonlinear H 00 Controllers for Electromagnetic 

Suspension Systems

P. K. Sinha and A. N. Pechev

Abstract—This note presents a unified framework to derive nonlinear 
Hoo state and output feedback controllers for magnetically levitated (Ma
glev) vehicles with controlled dc electromagnets, referred to as electromag
netic suspension systems. The theoretical exposition, based on the Taylor 
series expansion solution to the Hamilton-Jacobi-Isaacs inequality, is fol
lowed by an assessment of some of the practical issues in realizing the non
linear controllers with a digital signal processor and embedded hardware. 
A select set of experimental results from a single-degree-of-freedom suspen
sion system is included to highlight the effectiveness of the proposed non
linear state- and output-fecdback i f  oo controllers to suppress guideway-in
duced disturbances.

Index Terms— i f  oo controllers, digital signal processors, electromagnetic 
suspension systems, embedded control, Maglev, magnetic levitation, non
linear systems.

I .  I n t r o d u c t i o n

With the construction of the Shanghai city-Pudon international air
port link in the Peoples Republic of China and the Hamburg-Berlin 
intercity route in Germany, magnetic levitation (Maglev) using elec
tromagnetic suspension technology has come of age [1], [2]. The elec
tromagnetic suspension (EMS) provides noncontacting suspension by 
means of dc electromagnets in conjunction with a position regulator 
using position (= a irgap),  velocity and acceleration feedback. Linear 
control theories have provided much of the benchmark design proce
dures for numerous full-scale vehicles in large test facilities [3]. How
ever, due to constraints of linearization, the resulting time- and fre- 
quency-domain controllers have restricted capability to cope with sig
nificant changes in the suspended load (payload and disturbance force) 
or large variations in the guideway profile. An adaptive controller to 
compensate for payload variations and external force disturbances has 
been presented earlier [4]. This note develops a unified account for the 
derivation of nonlinear H 0c state and output feedback controllers to 
attenuate the effects of guideway-induced oscillations on suspension 
stability of the EMS system.

II. N o n l i n e a r  M o d e l  o f  t h e  EMS S y s t e m

A schematic of a single-degree-of-freedom suspension system with 
a controlled dc electromagnet is shown in Fig. 1. The vehicle module, 
with its suspension magnet and payload (total mass m), travels under 
the fixed reaction surface (track or guideway); the linear propulsion

motor is not shown in this illustration. Using the notations given in 
Fig. 1, the vertical dynamics is described by [3]

d2z{t) 
' dt*

F ( i , t) +  f,i +  rng 

IH)N2a,n \ i ( t )

d i ( t ) i( t )  </.:(/)
:(t)

9

+  f,i +  rny

- z ( t ) ( R ini ( t ) - u ( t ) ) .  (1)
dt z ( t )  dt  p o  A ' 2 <7.,

Defining a state vectorx ( t )  = [ z( t )  z ( t )  i(t.) ]1 £  3?", n =  3 and 
an external disturbance vector w( t )  =  [ wi ( t )  11:2 (t )  ]1 , £  3 ^ , /  =
2 ,(1) yields the following nonlinear state-space model of the open-loop 
suspension system:

~X\ ( / ) '
X 2 (t) II

>■•»(*)- - 2 H

X 2 ( t )

A [•<:■(') I2 
4m J [ ,  ,(/) J

TT~

+
0 0

■II! I (t) 
W 2 ( t )

+ v.(t)

x(t.) =  A (x ( t ) )  +  B] ( x ( t ) ) w ( t )  +  B 2(x ( t ) ) u ( t )  

x 2(t)

=  C 2x(t )  +  D-2 \w( t )

y ( t ) = [  1 0  0 ]

0 , v ^ u x  1 ( * )  -

3  2  O'- 

+  [ 0 0:2 ]
W \  ( t ) 

W 2 ( t )

(2 a)

(2b)

with and as gains of the two disturbance inputs: w i ( t )  [— 
force disturbance, f,i] and w 2 (t) [=  track or guide way disturbance, 
£i.rack(*)]. While a predefined stability margin around a nominal 
operating point (zo, 2,0) is readily provided by a linear state feedback 
control law of the form (~i ei = reference airgap)

u ( t )  —  k p { . K \  ( t )  — 2:,.,. I } +  k , , X 2 ( t )  -f- k a X 2 ( t ) (3)

where k p influences the steady-state error and hence stiffness, 
controls suspension damping and k„ overall stability margin, 

linear controllers have limited ability to suppress guideway-induced 
disturbances. The track oscillating mechanism in the experimental 
rig shown in Fig. 1 has specifically been added to emulate vertical 
movement of the guideway as the vehicle travels along. The analytical 
derivations presented in this note demonstrate that the control 
methodology offers a convenient design framework to deal with the 
effects of such external disturbances with respect to a user-defined 
penalty vector q(t) £ ?R"+I (Fig. 2)

M a n u s c r i p t  r e c e i v e d  A p r i l  1 8 ,  2 0 0 2 ;  r e v i s e d  D e c e m b e r  1 6 ,  2 0 0 2 .  R e c o m 
m e n d e d  b y  A s s o c i a t e  E d i t o r  K .  M .  G r i g o r i a d i s .  E q u i p m e n t  a n d  s o f t w a r e  s u p p o r t  
f r o m  A n a l o g  D e v i c e s  a n d  f i n a n c i a l  s u p p o r t  f r o m  J u p e l i e r  T e c h n o l o g y  d u r i n g  
t h i s  b a s i c  r e s e a r c h  p r o j e c t  a r e  g r a t e f u l l y  a c k n o w l e d g e d .

R  K .  S i n h a  i s  w i t h  t h e  D e p a r t m e n t  o f  E n g i n e e r i n g ,  T h e  U n i v e r s i t y  o f  R e a d i n g ,  
R e a d i n g  R G 6  6 A Y ,  U . K .  ( e - m a i l :  p . k . s i n h a @ r d g . a c . u k ) .

A .  N .  P e c h e v  i s  w i t h  t h e  C a r d i f f  S c h o o l  o f  E n g i n e e r i n g ,  C a r d i f f  U n i v e r s i t y ,  
C a r d i f f  C F 2 4  0 Y F ,  U . K .

D i g i t a l  O b j e c t  I d e n t i f i e r  1 0 . 1 1 0 9 / T A C . 2 0 0 3 . 8 2 2 8 6 5

'<1\ ■ 0 0
<12 0 ih 0

0 0 3
. <B . .0 0 0

_ ■ 0 ■
x  I

0x 2 +
v-.t _

0

.  .

=

= C'\x + D r2u (4)

where W u is a weight on the control signal and C 1 £ ?R(“+l)Xn is a 
scaling matrix chosen to define the relative influence of the state vari
able in the construction of the penalty vector. The objective of the non-
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F i g .  1 .  M a g n e t - g u i d e w a y  c o n f i g u r a t i o n  o f  t h e  e x p e r i m e n t a l  s y s t e m  u s e d  i n  t h i s  n o t e .  G u i d e w a y  d i s t u r b a n c e  i s  i n t r o d u c e d  b y  t h e  o s c i l l a t i n g  m e c h a n i s m  o n  t h e  
t o p  l e f t  c o m e r .  N o t a t i o n s :  rn =  m a s s ;  f d =  f o r c e  d i s t u r b a n c e ;  g  =  g r a v i t a t i o n a l  a c c e l e r a t i o n ;  N  =  n u m b e r  o f  t u r n s  i n  t h e  m a g n e t  w i n d i n g ;  a m =  
m a g n e t  p o l e  f a c e  a r e a ;  R.m — m a g n e t  w i n d i n g  r e s i s t a n c e .

linear design procedure developed here is to identify a class of feedback 
controllers that satisfies the £ 2-gain inequality [51

/ '  ||?(f)||2df < 7 2 / 7 \ \w(t) \ \2dt,  
Jo Jo

0  <  7  <  1 (5)

by keeping the energy of the penalty vector q( t )  bounded and smaller 
than the energy of the disturbance input w ( t ) .  Because of this bounded 
energy notion, the concepts of dissipativity and storage function [6], 
[7] are adopted here. It has been established that the equilibrium point 
of a dissipative dynamical system is stable if for z(t)|t=o =  0 , there 
exists a nonnegative smooth storage function V ( x ( t ) )  that satisfies the 
Hamilton-Jacobi-Isaacs (HJI) inequality [8], [9]

Vx ( x ) T [A{x)  -f B i  ( x ) w  +  B 2( x ) u ]

+  [C\ x  +  D i z u ] 1 [Ci x  +  D i  2u] -  ~f2u)r w  <  0 (6)

(where Vx (x)  =  d V ( x ( t . ) ) / d x ( t ) ;  for notational simplicity, time (t)  
is dropped in subsequent derivations). In subsequent derivations, the 
whole left-hand side of the HJI inequality is denoted as the Hamiltonian 
function H[x,  V*(x), w , «]. The premise of the proposed algorithm is 
that any feedback control law that satisfies the HJI inequality will yield 
a stable closed-loop system; i.e., the closed-loop system is locally dissi
pative with respect to its supply rate. As local dissipativity also implies 
the existence of storage function, the H 0o design in this context may 
be recast as the problem of deriving a class of control laws and their 
corresponding storage functions which satisfy (6)

III. N o n l i n e a r  S t a t e  F e e d b a c k

The general configuration of the closed-loop system is shown in 
Fig. 2, where the unknown disturbance inputs w  1 and w 2 are force and 
track disturbances with the penalty vector q being defined in (4).

As the design criterion is to find u( x)  that satisfies the HJI inequality, 
the analytical derivations are focussed on finding a saddle point in the 
Hamiltonian function such that

H  Vx (x) ,  w,  u j < H  Jar, Vx ( x) ,  V! u. J < H  |x, Vx( x) ,  w ,  itj

with hi as the worst disturbance input that maximizes H (•) and u 
as the control input that minimizes H { » ) .  With D  — D ( 2D \ 2 and 
C i  D 12 = 0 for the Maglev model, these are given by [5], [8], [9]

m  =  S | i , V , ( I ) ]  =  \(x ) r K ( * )

u =  n { x , V , ( z ) )  =  - ^ D - ‘ B2(x )t V, (x ). (8a)

To compute the unknown storage function V( x( t ) )  that satisfies the 
above saddle point condition, (8a) is substituted into (6) to give the 
following HJI inequality:

H*[x, Vx{x)\=Vx( x ) 1 A ( x ) — u D  uAa:1 C{  C i x + q f w  w < 0.
(8b)

In the absence of an analytical solution, (8b) is transformed into an 
infinite sum inequality by Taylor series (originally proposed in [10]) 
with the k " ‘ power term as

Vx( x f ] r A ( x ) l,c] +  ■ • • + V,:( x f + l ] r A z [l] -  u [1]TD u [k]
■-{k]T —[1] T ,r

 Ul Du. i + x T C T C i x

+ 2 r - [ i ] r  - [A ]  
7  < It! 1C u, }<<0 (9)

where A x ^ \ A ( x ) ^ s. . .  A (a:)^ are the first, second,. . . ,  kth terms 
in the Taylor series expansion of A ( x )  in (2a). Application of the same 
power series expansion to (8a) gives the following generic relationships 
for the worst disturbance vector and the input control signal for any A-th 
order term

w h] = l-!~2 {b[I]TI4(x)["+1] + ••• + B,(x)[fclr yx(x-)[2]}

n[k]= ~ \ d~' {4 '1TK(x)[A+,]+-• • +B2̂ [k]TVA:if]} (10)

where B ^ \B ^  and I r{x)^+l \  j  =  1 , . . .  k, are the Taylor series 
expansion of the system in (1) and the storage function V(x).  The 
generic properties of these power series provide a mechanism to build 
up higher order controllers cumulatively, as given as follows for first- 
and second-order controllers.

a) First-order controller, u =  \  with »  ̂  ̂ given with A: =  1
in (10)

control input—* u  ̂ ^= — - D  ' B ^ 1 Vx ( x ) ^

(7) (Ha)
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worst, disturbance vector —>  ̂=  - 7  2 b \ ^ ! l'x (x )^

( l ib)

The corresponding first-order control law and the disturbance signals 
are then derived from (11) and given in (14).

H JI  inequali ty—+ Vx ( x ) ^ 1 A x ^  — 2 u ^  D i / -  [ 11 a
C j C \ x  <  0. r - i ' l li r  1

r

(11c)
II, — -  M  

2

— [1] - [ 2] •—[2]
b) Second-order controller, » = u +  a , where u is given

with k =  2 in (10)

u ['2] =  -  l- D ~ x +  B 2( x ) [2] r V:i:{x) [2]] (12a)

w [2] =  i 7 “ 2 [ b [ ,]/ K ( .x )[:,] +  B\  (x )[2]7> : ,(x ) [2]] (12b)

V:r(x)[2yrA ( x ) [2] +  Vl:(x ) [:i]T A x [>] -  ‘ D u ^
-M''' -  [II . 2 f - [!]/*—[a] -[2]7 -[!]'!u D  u -(- 7  < w w  +  in w  > <  0.

(12c)

A. Numerical Results

To derive the above nonlinear H x  state-feedback controllers, the 
Taylor-series-expansions for the Maglev system in (2) is derived as in 
(13a) for a nominal operating point zo = 4.0 x 1()~,! m, i() = 3.13 A 
withAr — 280, in. =  1.5kg,am = 1.024 x 10_i m2 andRm = 1.112

A ( x ) =  Ax[l]+_4(x)[2]
0 1 0

=  H + O f  «
. ( » f e  _ :f) S

0
/jo A'-’u,,, f  -1‘q 2 . l 2 '1 'o ... ... 1 777 \  l-r tt+ i

f  ̂  + “ t ) *J + i ;V;2-T:!+£7fJ;'

X  1'

X 'l

_X;,_

B i ( x ) = B [ l] +  B \ ( x f ] =

B 2( x ) =  BlJ]+ B 2 ( x f ]=

D  = D X2D \ ‘> — TV

0 0

0 0
+  0;

0
0 +‘>

,, -v 2 „  -1) /J0 A - "  v 2   f- '̂l — Z q ]0 am
(13a)

It can be shown that for a dissipative system to be stable, the storage 
function has the characteristic features of a Lyapunov function with

■ -  [ i ]
a strong local minimum at the equilibrium point [6]. To derive u , 
V ( x ) W  is taken as the quadratic function V'(x)^ =  x '  P x ,  with P  >  
0 being unknown, the HJI inequality in (11c) then holds good if P  
satisfies the Riccati equation in (13b)

H i ,  - A [>]rP  +  P A ll]

+ P  ^ r 2B\>]B\']T -  BlJ]D - ' B l l]r') P  +  C ’i'Ci =  0. (13b)

Assigning the values «i = ov = 1 , 8  = J:j, TV',, = 0.12 and 7  = 1 
in the series expansion matrices shown previously, a solution of (13) 
(using Matlab algebraic Riccati equation routine) gives

P  =
5.5198 x 10'1 6.3994 x 102 -  4.7601
6.3994 x 1()2 7.5823 -5.2934 x 1(F2
-4.7601 -5.2934 x HP2 1.0844 x HP3

= 262.13 x 10 x, + 291.5x> -  5.972x;! (14a)
4.647 x HV.x, +5.534x2-3.822 x l(P 2.x:(

0
(14b)

To derive the second-order controller, u =  11L J + u 2 , Vr(x)^ is 
defined as the cubic polynomial F fx)^  = c \ x'l +  c2x j x 2 +  c:»x‘f x :t + 
— 1-c>)X‘i x2 + c 10x '\, where the unknown coefficients { a  } , i =  1.. 10 . 
are to be derived from the second-order HJI equation in (12c), rewritten 
as (15) with V*(x)^, 11 and m taken from the first-order controller

VJ:(x )[:!]̂ 4x[i] +  B \ l]rw ['] +  B [} ]r u [l])  x

+ K ( : v ) [2]( a ( x ) [2] +  B ,  ( x ) [2]7 'w [ , ]  +  B 2 ( x ) [2 ]7 ' m [11)  = 0 .

(15)

Equating terms in (15) with equal powers leads to a set of ten equations. 
Solution of these equations using the Gauss-Seidel elimination method 
gives the values for the unknown coefficients { c , }, i = 1, . . . ,  10 
and hence the unknown storage function V { x )^ .̂ With the parameters 
given earlier, the second-order controller in (1 la) and (12a) becomes

u(x) =  {</ } +  {« }

=  (262.13 x 102x, +  291.5X2 -  5.972x:,}
-{483 .88  x 10:Yf -  574.38 x 102x,X2 -  4392.37.x, x3 

-  194.32x2 -  31.80.X2X;, +  0.403.x2}. (16)

This second-order controller has been implemented on the experi
mental single-degree-of-freedom system; the controller’s performance 
in attenuating track disturbance is discussed in Section VI.

IV. N o n l i n e a r  H ^  O u t p u t  F e e d b a c k

Although all state variables are available for feedback in a Maglev 
vehicle suspension system, results Section III are extended to output 
feedback for two reasons: a) use of Hoc controllers to other applica
tions, such as magnetic bearings which usually employ only position 
sensors; and b) provide a basis for further work related to sensor fault 
accommodation [11]. The output feedback control law derived here 
uses a state estimator in conjunction with the same state-feedback con
trol law in (16). For uniformity in the design procedure, the nonlinear 
state estimator [(17)] is derived using the concept of local dissipation 
described earlier [9].

X — -4(x) + B I (x)ll' + B ‘2 (X ) 77 + Q ( x ) ( y  

V  — C / X  + D-2\ III

V)

(17)

where x is the estimator state vector and y  is the estimator output. 
In general, the unknown output gain Q ( x )  has a nonlinear structure; 
an approximate solution maybe derived by using the same procedure 
based on Taylor series expansions as in Section IV. The corresponding 
first-order solution for is then derived as [9]

(R-r)QW = (z>2,Af,) 1 (b2,b!i]7 b + 7 2 c J ) (18a)
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F i g .  2 .  ( a )  S t a t e - f e e d b a c k  a n d  ( b )  o u t p u t - f e e d b a c k  c o n t r o l  c o n f i g u r a t i o n s .

where P  defines the storage function V’(x)^ as computed in the state 
feedback controller derivation and R  is the solution of the following 
Riccati equation:

( a ['] -  B \ ' ]D l  ( D n D ^ y '  R  

+ R ^ l [i] -  (D2lD l \y lC ^

+ R  ( ~ f 2B \ i]B \ ' ] r  -  B \ l]D l  ( D 2XD ^ y l R

+  C l ' C i - 72Cl '  ( D 2 l D Z \ y ' C t - H i ,  = 0 (18b)

with H  i * as defined on the left-hand side of (13b). For the Maglev 
system with parameters in Fig. 1 and the value of P  as computed in 
Section III.A, the solutions for R  and are derived as

R =
9.6628 x 10*1 -2.8380 x 1()7 -9.3912 x 108 1
-2.8379 x 107 2.4514 x 104 -1.2372 x 1()5
-9.3912 x 108 -1.2372 x 1()5 2.4921 x 10®

and
8.1733 x 104 
33.401 x 10® 
47.382 x 105

with the corresponding state estimator given by (19), as shown at the 
bottom of the page. Solution of these nonlinear equations gives the es
timated state variables 7 1, x 2 and 7:1 which are then used in (16) to 
implement the output feedback controller using the configuration in 
Fig. 2(b); performance of the resulting controller is discussed in Sec
tion VI.

V .  C o n t r o l  H a r d w a r e

As part of a hardware design project for commercial Maglev vehicles 
and magnetic bearings, an Analog Devices Share 21 062 DSP-based 
embedded controller hardware has been manufactured by the authors 
and their industrial collaborators [12]. It integrates Ethemet/TCP/IP 
communication facilities and software functions for real-time commu
nication with Matlab/SIMULINK environment. The sampling time has 
been chosen to be 1 ms for compatibility with the typical inductance 
values of the windings of suspension magnets and the cut-off frequency 
of the anti-aliasing filter set at 25 kHz [= (1/2) of per-channel sam
pling rate of ADC]. The main tasks performed in each sample are: data

capture and conversion (including integration of the acceleration signal 
to generate velocity), execution of the control law, outputting of the 
control signal and storing data for offline analysis (the embedded hard
ware offers up to 4 Mbytes of onboard RAM). Each sample is inter
rupt-driven from the internal timer of the DSP. The software written 
in C/assembler for SHARC DSP’s offers facilities to serve host-based 
Matlab visualization. The analogue processing tasks consume 5% to 
8% of the sampling time and the nonlinear state-feedback ((16)) a fur
ther 5%-40%, the remainder being used to serve the host.

To implement an output-feedback controller (state estimator + state- 
feedback controller) on an embedded hardware, the classical linear 
control would require a transformation from the continuous time-do- 
main to a discrete time-domain. Because of the nonlinear nature of the 
observer [(19)], this procedure is inapplicable. The scheme adopted 
here to overcome this limitation is to include a Runge-Kutta solver 
within the control loop. In doing so at every sample, the software on the 
DSP reads the most recent output of the system and multiplies it by the 
output injection gain \  The set of first-order differential equations 
in (19) is then integrated by a dedicated Runge-Kutta-4 integration rou
tine. For satisfactory convergence of this integration process, experi
ence suggested that around 50 steps, each of length h =  10-r’, are 
typically required for reasonable estimation of the state vector x-,o =  
[ x  i x-> .7;.i ]/(). At the end of the 50th step, final values of these three
state variables are taken as the input to the nonlinear state-feedback 
controller ((16)). The full collection of software tasks for nonlinear 
output-feedback control takes around 400 //s per cycle; the remaining 
600 //:s of the sampling time is available to serve the host.

VI. E x p e r i m e n t a l  R e s u l t s

The oscillating mechanism in Fig. 1 is capable to introducing step 
change as well as periodic motion of the guideway. The vertical 
profile of the guideway is measured by a noncontacting position 
sensor mounted on a fixed datum. Fig. 3 shows responses of the 
suspension system with a step change in the guideway position 
(-struck) and a step change in the reference airgap (-r,.e() for three 
types of controllers: linear state-feedback, second order nonlinear 
state-feedback and the nonlinear output-feedback. The first-order 
nonlinear state-feedback control law in (14a) was also implemented, 
but as the corresponding step responses almost overlapped with those 
with the linear state-feedback control law in (3), they are not included. 
The responses in Fig. 3 indicate that the new nonlinear controllers 
improve the overall settling time almost by a factor of two, compared 
with the conventional linear state feedback controller. The reduction in 
overshoots in Fig. 3 (curve-3) indicates that, within the definitions of 
linear systems, peak amplitude in the sensitivity function will remain 
below the 0-dB boundary. To study this further, a series of experiments 
was carried out with sinusoidal variations in the guideway position. 
At each run, the system is suspended at a fixed z rt!f, the track is 
oscillated and the airgap and the guideway positions recorded. Fourier 
analysis is then performed on these data to determine the fundamental 
frequency of the guideway profile and the attenuation rate of the airgap 
error (r,e( — .:). Initially, these experiments were performed with a 
linear state-feedback controller ((3)); the corresponding response for 
the highest frequency is shown in Fig. 4 (top, with attenuation rates 
as given). These experiments were repeated over the whole of the

’ X 1 ’ —81(3.371 -f- 72 -|- 81 / 3.3/;
x -1 = -33.4 x 10®7, + 7.9972 + 159 x 10“ *7:, +0.168 x 10“' :d  + 33.4 x 10®0

. . -4738.2 x 10:*7, + 0.7508 x 1077,72 -  151.461 x 10~7 7;( + 0.5406 x 10!,7t + + 47 .332  x U f  y  _
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F i g .  3 .  E x p e r i m e n t a l  a n d  s i m u l a t i o n  t r a n s i e n t  r e s p o n s e s .  T o p :  s t e p  
c h a n g e  i n  a i r g a p  r e f e r e n c e  z r e r  f r o m  2 . 7 5  m m  t o  2 . 0  m m  w i t h  c l a m p e d  
g u i d e w a y .  ( 1 )  L i n e a r  s t a t e - f e e d b a c k  c o n t r o l l e r  ( 3 )  w i t h  k p =  2 0 7 . 9 2 3 ,  
A -„  =  1 . 5  a n d  =  0 . 0 0 4  2 4 .  ( 2 )  E x p e r i m e n t a l  r e s p o n s e s  w i t h  n o n l i n e a r  
s t a t e - f e e d b a c k  c o n t r o l l e r  ( 1 6 )  a n d  ( 2 a )  t h e  c o r r e s p o n d i n g  s i m u l a t i o n  r e s p o n s e .  
( 3 )  E x p e r i m e n t a l  r e s p o n s e  w i t h  n o n l i n e a r  o u t p u t - f e e d b a c k  c o n t r o l l e r  ( 1 6 )  
a n d  ( 1 9 )  a n d  ( 3 a )  t h e  c o r r e s p o n d i n g  s i m u l a t i o n  r e s p o n s e .  N o m i n a l  o p e r a t i n g  
c o n d i t i o n s  f o r  a l l  c o n t r o l l e r s  a r e  io — 3 . 1 3  A  a n d  z 0  =  4 . 0  i n r n .  B o t t o m :  
E x p e r i m e n t a l  r e s p o n s e s  d u e  t o  a  s t e p  c h a n g e  i n  g u i d e w a y  p o s i t i o n  ( z lK{ k e p t  
c o n s t a n t  a t  2 . 5  m m )  w i t h  c o n t r o l l e r  p a r a m e t e r s  a s  a b o v e .

frequency range for which the system maintained a stable suspension 
and the corresponding sensitivity function (curve-1) is plotted in 
Fig. 5; bandwidth of the closed-loop system with linear state feedback 
controller was observed to be around 9.5 Hz with the peak value 
of its sensitivity function being 6 dB. Consequently, disturbances 
with frequencies ~  15 Hz will be amplified nearly by a factor of 
two, leading to an unacceptable operation (airgap error rising up to 
two times the guideway variation). Although there was insignificant 
difference between the step responses of the linear state feedback and 
the nonlinear first-order state feedback controllers, the latter was seen 
to have a narrower bandwidth but a lower peak (curve-2 in Fig. 5). The 
above sequence of operations was also performed with the nonlinear 
second-order state-feedback controller and the nonlinear output-feed- 
back controller over the same range of frequencies. The corresponding 
responses for 15.63 Hz are shown in Fig. 4 (middle and bottom). The 
respective experimentally derived frequency responses are marked 
as curves 3 and 4 in Fig. 5. To provide a basis for comparison with 
theoretical results, frequency responses with nonlinear state feedback 
and output feedback controllers from simulation studies have been 
included in Fig. 5 (dotted lines). These, along with the simulated step 
response in Fig. 3, underline the overall effectiveness of the proposed 
control architecture.

Two specific observations may be made from the shapes of the sen
sitivity function (Fig. 5): a) bandwidth is increased, giving increased 
attenuation in the low-frequency range; and b) the increase in energy 
on the output remains bounded by i  = 1 and hence the inequality in 
(5) is satisfied. Consequently, at low frequencies (< 10 Hz) the magnet
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F i g .  4 .  E x p e r i m e n t a l  r e s p o n s e s  w i t h  s i n u s o i d a l l y  o s c i l l a t i n g  t r a c k .  T o p :  l i n e a r  
s t a t e - f e e d b a c k  c o n t r o l l e r  ( 3 ) ;  m i d d l e :  n o n l i n e a r  s e c o n d - o r d e r  s t a t e - f e e d b a c k  
c o n t r o l l e r  ( 1 6 ) ;  b o t t o m :  n o n l i n e a r  o u t p u t - f e e d b a c k  H M  c o n t r o l l e r  ( 1 6 )  a n d  
( 1 9 ) .

will follow the guideway profile satisfactorily and at higher frequencies 
it would still remain below the amplitude of the guideway movement 
(measured from its datum line). As the permissible peak variation in the 
guideway is closely related to the mean operating airgap, this implies 
that the second order state-feedback and the output-feedback nonlinear 
H 0o controllers are capable of maintaining a stable suspension over a 
wider frequency range than their linear counterpart.

VII. C o n c l u s i o n

While the linear state feedback controllers have successfully been 
used over the years, the new experimental results presented here 
demonstrate the viability of using more computationally demanding 
nonlinear controllers for stabilization and control of electromagnetic 
suspension systems. The superiority of the second-order state feedback 
and the output feedback controllers in tracking a moving guideway 
with improved disturbance rejection properties has been illustrated. 
While both nonlinear controllers improve suspension characteristics, 
the output feedback controller (which subsumes a nonlinear state 
estimator) has been observed to provide significant improvement over



568 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 4, APRIL 2004

dB
(2)

(3 )( 1)
(4a)

- 1 0 -

-15-

-20 -

-25l 20Hz1510

F i g .  5 .  E x p e r i m e n t a l  a n d  s i m u l a t i o n  s e n s i t i v i t y  f u n c t i o n s  o f  t h e  c l o s e d - l o o p  
s y s t e m .  ( 1 )  L i n e a r  s t a t e - f e e d b a c k  c o n t r o l l e r  ( 3 ) ,  ( 2 )  f i r s t - o r d e r  n o n l i n e a r  
s t a t e - f e e d b a c k  c o n t r o l l e r  ( 1 4 a ) ,  ( 3 )  s e c o n d  o r d e r  n o n l i n e a r  s t a t e - f e e d b a c k  
c o n t r o l l e r  ( 1 6 )  a n d  ( 4 )  n o n l i n e a r  o u t p u t - f e e d b a c k  c o n t r o l l e r  ( 1 6 )  a n d  ( 1 9 ) .  
( 3 a )  a n d  ( 4 a )  r e p r e s e n t  t h e  s i m u l a t i o n  r e s p o n s e s  c o r r e s p o n d i n g  t o  ( 3 )  a n d  ( 4 ) .  
T h e  v a l u e  o f  W u p u t s  a  p e n a l t y  o n  t h e  c o n t r o l  s i g n a l ;  s m a l l  v a l u e s  o f  W u 
l e a d  t o  f a s t e r  t r a n s i e n t  r e s p o n s e  a n d ,  h e n c e ,  w i d e r  b a n d w i d t h .  I n  a l l  r e s p o n s e s  
c o n t a i n e d  i n  t h i s  n o t e  7 a n d  W,L — 0.12.

the now-classical linear state feedback controllers. The concept of 
linear H ^  [13] has been used for Maglev control [14], [15] earlier, 
however, direct application of nonlinear H 0c to deal with track 
disturbance in an EMS system is considered to be novel.

Although several issues require careful assessment for the real-time 
implementation of these nonlinear H 0c controllers derived here, exten
sive range of experimental work carried out by the authors indicate that, 
providing a reasonable care is taken in specifying the physical param
eters of the suspension magnet, the analytically derived control laws, 
for a given set of 0., ,6, 7  and W n, may directly be used in assessing the 
performance of laboratory-scale demonstration systems. A key differ
ence between the nonlinear state and the output feedback controllers is 
the execution time of the control algorithms ((16) and (19)); 50 //s for 
the former and 400 /rs for the latter (within a sampling interval of 1 ms). 
In multimagnet vehicles this may impose some operational constraints. 
To overcome this, the embedded DSP hardware described in Section V 
provides communication protocols between local control loops for in
dividual magnets and supervisory control functions to coordinate the 
distribution of suspension force. The dynamics of these mechanically 
coupled magnets on suspension stability and tracking properties are 
currently under investigation.
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Robust Stability and Stabilization of Discrete Singular 
Systems: An Equivalent Characterization

Shengyuan Xu and James Lam

Abstract—This note deals with the problems of robust stability and stabi
lization for uncertain discrete-time singular systems. The parameter uncer
tainties are assumed to be time-invariant and norm-bounded appearing in 
both the state and input matrices. A new necessary and sufficient condition 
for a discrete-time singular system to be regular, causal and stable is pro
posed in terms of a strict linear matrix inequality (LMI). Based on this, the 
concepts of generalized quadratic stability and generalized quadratic sta
bilization for uncertain discrete-time singular systems are introduced. Nec
essary and sufficient conditions for generalized quadratic stability and gen
eralized quadratic stabilization are obtained in terms of a strict LMI and a 
set of matrix inequalities, respectively. With these conditions, the problems 
of robust stability and robust stabilization are solved. An explicit expression 
of a desired state feedback controller is also given, which involves no matrix 
decomposition. Finally, an illustrative example is provided to demonstrate 
the applicability of the proposed approach.

Index Terms—Discrete-time systems, linear matrix inequality (LMI), pa
rameter uncertainty, robust stability, robust stabilization, singular systems.

I .  I N T R O D U C T I O N

The problems of robust stability analysis and robust stabilization of 
linear state-space systems with parameter uncertainties have received 
much attention in the past decades [3], [23]. A great number of re
sults on these topics have appeared in the literature. Among the dif
ferent approaches dealing with these problems, the methods based on 
the concepts of quadratic stability and quadratic stabilizability have
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